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Proceedings of the International Congress of Mathematicians 
Vancouver, 1974 

Invariants of Flat Bundles 

Jeff Cheeger 

Let G be a Lie group with finitely many components. We are going to discuss 
some cohomology invariants of flat principal (/-bundles. Their properties were 
developed jointly with Simons [2] in an outgrowth of earlier work of Chern and 
Simons [3]; see also [4] for related ideas. 

We begin with some notation. Let /*(<?) denote the ring of invariant polynomials 
of G and w: Ik(G) -> HU(BG> R) the universal Weil homomorphism. Fix A<£.R, 
a proper subring and define 

K*(G9 A) = {(P, u) E P(G) x H*KBG> A) \ w(P) = r(u)}. 

Here r(u) e HU(BG, R) is the real image of u. Let G° represent G equipped with 
the discrete topology. BGo = K(G°, 1) is the classifying space for flat principal 
G-bundles. Let b: H2k^( , R/A) -> #2*( , A) denote the Bockstein map of the 
coefficient sequence 0 -> A -> R -> R/A -> 0. 

THEOREM 1. There is a homomorphism S; Kk(G, A) -+ //2*-1(i?Go, R/A) such that 
the following diagram commutes 

K*(G, A) 

H^KBG*> R/A) zt HHBG°, A) £ . H**(BG9 A) 

Equivalently, for each flat bundle a over a space M there exists SPtU(a)e 
H2tt~l(M9 R/A) which is natural under bundle maps such that b{SPtU(oc)) = 
- w(a)ei/2*-i(M). 

The Sp)U are secondary characteristic classes in the sense that unless P E O , 
they are not the pull-back of classes in BG, 

©1975, Canadian Mathematical Congress 



4 JEFF CHEEGER 

For the details of their construction and its extension to the more general context 
of nonflat bundles with connection we refer to [3]. 

K*(G, A) = ®Kk (G, A) forms a graded ring with multiplication (Pis U{) 
.(p2s U2) = (Pi-Pto Ui U Uà- H*(R/A) is also a graded ring with respect 
to the »-product fx*f2 = (-1) kib *f) U h where f{ e H"( , R/A). Note that 
if A = Q, the rationals, then b = Q and the »-product is trivial. Also it may be 
shown that S is a ring homomorphism. 

In case the holonomy group H of a is finite then, as J. Millson pointed out, the 
SP,U have an explicit interpretation. Let p: BH -» BG. Since H is finite, H*(BH, R) 
= 0 for i ^ 1 and b : H2i~l(BH9 R/A) -> H2i(BH, A) is an isomorphism. Then 
necessarily we must have H2i~l(BH9 R/A) 3 SPiU = - b(p*(u)). In case H is infin
ite, it is no longer true that H^Bx, R) = 0, but the formula may still be general
ized by introducing so-called Borei cohomology. 

It is also possible to construct the SPiU intrinsically: 
EXAMPLE 2. Let G = SO(2«), # be the Euler class and Px the Pfaffian. Let a be 

a flat (/-bundle and S(E) the associated sphere bundle. Then we have the homol
ogy sequence 

0 -> #2»-i(s2«-i) _> H2n(S(E)) -> H2»(M) -> 0. 
I* 
Z 

Let Vol denote the volume form on the fibre normalized so that Vol (S2n~x) = 1. 
Since S(E) is flat, Vol extends uniquely to a closed form o> on S(E). Given x e 
H2n-i(M9 Z) choose z e Z2w_i(J5'(M)) such that |>r(z)] = w. Set SPxtX(x) = %(x) 
= (Cü(Z)) ~ where ~ denotes reduction mod Z. It follows from the exact sequence 
that x is well defined and one may show that % = SPxt%. 

In analogy with Example 2 it is possible to represent % by an explicit Borei cocy-
cle in the bar resolution of G°. The formula for this cocycle involves the transcen
dental function which expresses the volume of a totally geodesic simplex on S2""1 

in terms of its dihedral angles. We mention in passing that by means of the power 
series for this function it is possible to construct a/?-adic analogue of %. 

With appropriate modifications, the discussion of % applies equally well to classes 
ci9 pi corresponding to Chern and Pontryagin classes of GL(«, C) and GL(«, R) 
bundles. Set c = 1 4- Tn>o à{. if we regard c as being defined for flat vector bundles 
then the expected relation c(E ® F) = c{E) * c{F) holds. Moreover, taking A = 
Q we have (ch) corresponding to the Chern character. Because the *-product 
is trivial mod Q, 

(3) (&) = » + ZJ( - l ) ' - i ,. * ' n , 

and 

(4) (elk) (En* ® E*) = n2(ch) (EnC) + n^Bi) (En*) - nxn2. 

An important property of the SPiU is their rigidity under deformations in 
dimension > 1. 
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THEOREM 5. Let 6t be a X-parameter family of flat connections on the bundle 
G -> E -> M, Let SPìU e H2kr~\M9 R/A) be an invariant corresponding to 0t. If 
k > l9SPitl is independent oft. 

This result is somewhat mysterious in that the proof makes use of nonflat 
bundles. Observe that for flat circle bundles over the circle, % e H^S1, R/Z) is 
just given by the angle of holonomy which can take on any value. It is therefore 
not rigid. 

The deepest questions about the SPtU relate to the values which they take on 
cycles. Let V denote the vector space over Q generated by the values of SPtU e 
H2k'\BGo9 RIZ). Although for k > 1 the SP>U are not known to take on irrational 
values, it seems reasonable to conjecture that the dimension of V is countably 
infinite. In fact if G is algebraic, an argument based on the rigidity theorem shows 
that the set of values of SPtU is countable for k > 1. The dimension of V furnishes 
a lower bound for the rank of the homology group H2k-i(BGo9 R). However, these 
homology groups can often be shown to be infinite by more indirect arguments. 
For example, 

THEOREM 6. The groups H2n-i($0(2n, C)) and H2n-i(SO(2n, R)) and 
H2n-i(SO(2n — 1,1, R)) all have infinite rank, 

The proof uses what might be called "real noncontinuous" cohomology classes 
to show that certain cycles constructed from number theory are independent. In 
fact, the invariant polynomial P% on SO(2w, R) extends by complex linearity to 
an invariant polynomial on SO(2w, C). If IP% denotes the imaginary part of this 
polynomial, then w(IPx) = 0 and we have Jx = SIPx,0 e i/r2w_1(̂ so(2«,c)» ^)« Let 
a be an automorphism of the algebraic numbers. Then G may be extended to a 
(noncontinuous) automorphism of C and hence induces an automorphism of a* of 
jj2n-i (BSO(2ttiC)9 R). The relevant classes are of the form G*(JX) for suitable a. 

We should not neglect to mention the important problem of finding a natural and 
complete set of invariants for deciding when a cycle in H%(BGo9 Z) is homologous 
to zero. 

We will close by describing how the SPfU arise in the context of the "geometric 
index theorem" of Atiyah, Patodi, Singer [1]. They have defined a spectral invariant 
7]& (M2Ä_1, g) of a flat unitary bundle En over a riemannian manifold M2k~l 

with metric g. If E1 is globally flat, we just write 7](M2k~l
9 g), k odd implies 

v(M
2*-\g) = 0. 

Now assume that M2k~l = dN2k and that En extends to a possibly nonflat 
bundle Fn over N2*. Choose a metric g on N2k such that on U = dN2k x [0, e] c 
N2k

9 g is isometrically the product of g and the metric on [0, e). Likewise, let v 
be a connection on Fn\ U which is the product of the flat connection on En and the 
trivial connection along [0, e]. Let Q9 0 denote the curvature forms of g, v and 
L9 ch denote the Hirzebruch and Chern character polynomials. Then, there is an 
integer # which is the index of a certain boundary value problem associated to 
the data such that 



6 JEFF CHEEGER 

- f = Jjp L(fl) A <4(0) + ( -1)* VE(g). 

We observe 

LEMMA 7. j ^ , iL(fl) A ch(@) = L(M) U (ch)(En)(M) mod ß , so fAûf 

( - 1)*+1 9£Cf) = i ( A O U (ch)(E»)(M) mod ß . 

The proof while not standard is quite short. Combining Lemma 7 with (3) and 
(4) gives 

( - l)k+lyE*(M,g) = ( - \)k^n^(M9g) 
(8) + | {^ r i ) l L*M U ^ ^ ( Ä - X A O mod ß 
and 

(9) ^«,®i?»2 W #) = «2%», (AG #) + «î^», (M, g) - Wi«2̂  (M, g) mod ß . 

Because these formulas only hold mod Q, it seems doubtful that they can be 
proved directly by purely analytic methods. 
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Geometric Aspects of the Generalized Plateau Problem 

H. Blaine Lawson, Jr. 

Let M be a Riemannian manifold and denote by @tp{M) the rectifiable currents 
of dimension p with compact support on M (cf. [3]). Then a generalized Plateau 
problem on M is the following. Given a current B e $tp_x{M) such that B = dV0 

for some given VQ e 0tp{M)9 find a current of least mass (i.e., "weighted area") in 
the class jtfBtVo = {Ve &ëp(M): dV = B and V is homologous to VQ}. When 
B = 0, this becomes the problem of finding a representation of least mass in a 
given integral homology class on M. Analogous formulations of the problem exist 
using homology with (Z//wZ)-coefficients. For m = 2, this is called the "unoriented 
Plateau problem". From the work of Fédérer and Fleming the existence of solu
tions to a generalized Plateau problem is guaranteed whenever there is a sequence 
of currents {VJ)JL\ <= j / B > 7 o with uniformly bounded supports, whose masses tend 
to the minimum. In particular, solutions are always guaranteed if M is compact or 
homogeneous. The question then is to determine the structure of such solutions. 
This falls into the general problem of determining the structure of stationary (or 
stable) currents on M. These latter classes are defined by infinitesimal criteria, 
namely, that the first variation of mass be zero (or that the first variation be zero 
and the second variation be ^ 0) for smooth deformations which preserve the 
boundary; and so they lend themselves more directly to the methods of differential 
geometry. 

Certainly it is of fundamental importance to understand the local (i.e., the sin
gularity) structure of these currents, and the first step in approaching this question 
is to understand the structure of their tangent cones. In particular, this means 
studying the geometry of compact minimal submanifolds of the Euclidean sphere 
Sn. In dimension one, such submanifolds are simply great circles. However, matters 
quickly become more complicated (cf. [9], [10]). 

©1975, Canadian Mathematical Congress 



8 H. BLAINE LAWSON, JR. 

THEOREM 1. There exist compact orientable surfaces of every genus minimally 
embedded in S3. When the genus is not prime, the embeddings are not all congruent. 
However, two minimally embedded surfaces of the same genus are always ambiently 
isotopie. 

The cones on these surfaces give examples of stationary 3-currents in Euclidean 
4-space with isolated singularities. However, such cones cannot be stable. 

THEOREM 2 (ALMGREN, SIMONS [15]). Let Vn~2 be a compact minimal submanifold 
of dimension n — 2 in Sn~l such that the cone C(Vn~2) over Vn~2

9 with the origin as 
vertex, is stable in Rn. Then ifn < 8, Vn~2 is a totally geodesic (n — 2)sphere. 

This result is the key differential geometric fact used in proving the complete in
terior regularity of mass-minimizing hypersurfaces in »-manifolds for n < 8. Simons 
points out that the cone C(S3 x S3) on S3 x S3 = {(*, y) e Ä4 x J?*: |*|2 = 
|y|2 = ^} <= 5 7 i s stable; and Bombieri, De Giorgi and Giusti [1] proved that, in 
fact, C(S3 x S3) is the unique solution to the Plateau problem for S3 x S3 in 
Ä8. The analogous statement is true for a number of homogeneous cones in
cluding the cones on Mp>q = {(x, y) e RP+1 X R*+1: \X\2 = p/(p + q) and | y \2 = 
9/iP + «)} c » + f + 1 for p + q + 2 ^ 8 and {p, q] * {1, 5} (cf. [11], [14]). The 
mass-minimizing 7-cones in iJ8 are known to be finite up to ambient isotopies (of 
S7). However, the general question of classifying stable cones of codimension 1 in 
Rn is one of the major outstanding problems in the theory of minimal varieties. 

The global structure of the stable currents without boundary on a Riemannian 
manifold M is intimately related to the global geometry of M. Of course, every 
nonzero class a e HP(M; G) for G = Z or Z/mZ gives rise to a stable /̂ -current by 
solving the Plateau problem for a. However, under appropriate curvature assump
tions (in this case extrinsic curvature) such currents can be shown not to exist (cf. 
[13]). 

THEOREM 3. Let M be a compact n-manifold immersed in the unit sphere with 
second fundamental form A9 and suppose that \A\2 < mm{2(pq)l/2

9 pq} on M 
where p + q = n. Then there are no stable currents without boundary of dimension 
p or q on M, and, in particular, HP(M; G) = Hq(M; G) = 0 for any finitely 
generated abelian group G. 

This result is sharp, since there exist embeddings of S* x S« into SP+v+l with 
||^||2 ES 2(Pqy<2. 

An immediate corollary of Theorem 3 is that there are no stable closed currents 
on Sn. This leads naturally to the question of the structure of the stable currents on 
the other positively curved (rank-one) symmetric spaces. In these cases there is 
homology, so stable currents must exist. In fact, in complex projective space Pn(C) 
a closed rectifiable current is a solution to the Plateau problem in its homology class 
if and only if it is a positive integral chain of algebraic sub varieties. This follows 
from a result of Fédérer [2] together with King's solution of Lelong's conjecture 
[8]. More generally, from [13] and [7] the following is true. 

THEOREM 4. A closed rectifiable current on Pn(C) is stable if and only if it is an 
integral chain of algebraic subvarieties. 
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In particular, there are no stable odd-dimensional cycles on Pn(C). Note that in 
Theorem 4, arbitrary (not just positive) integral combinations of subvarieties are 
allowed. -It is far from true that every stable current is homologically mass minimiz
ing. Interestingly, the hypothesis of stability in Theorem 4 can be reduced to the 
assumption that the average second derivative of mass with respect to holomorphic 
deformations is zero. 

No similar characterization of stable currents in quaternionic projective space 
has yet been found. 

In the light of these results it seems natural to conjecture the nonexistence of 
stable closed currents on compact simply-connected manifolds whose sectional 
curvature is strictly ^-pinched. 

The remarks preceding Theorem 4 give an indication of the special role played 
by the Plateau problem in complex geometry. In fact, from the results of Fédérer 
and King referred to there, the following is true. Let M be a Kahler manifold and 
suppose that Ve 0tip{M) is a positive holomorphic p-chain, i.e., V is given by 
integration over a positive integral chain of complex /?:dimensional subvarieties in 
M — supp (dV). Then Fis a solution to the Plateau problem for B = dVin M, and 
any other solution must also be a positive holomorphic /?-chain. If M = Cn with 
the flat metric or if M is a Stein manifold with metric induced from a proper 
embedding into Cm, then Vis, in fact, the unique solution. 

This raises the interesting question of which currents B e 0t<ip-\(M) on a Stein 
manifold M are the boundaries of holomorphic ̂ -chains. There are certain obvious 
necessary conditions for this to be true. If p = 1, then B must satisfy the moment 
condition: B(Cû) = 0 for all holomorphic 1-forms co. If p > 1, then B must be 
maximally complex, i.e., B(co) = 0 for all (/*, j)-forms œ with \r — s\ > 1. In the 
case that B corresponds to integration over a C1 submanifold B2P~l <= M, maximal 
complexity is equivalent to the local condition that 

dim* [TXB2P-1 n J(TxB
2P-iy\ = 2 / 7 - 2 

for all x e B2P~l, where / is the almost complex structure on M. 
It follows from generalizations of work of John Wermer [16] that if B is a system 

of C1 oriented closed curves that satisfies the moment condition, then B is the 
boundary of a (unique, not necessarily positive) holomorphic 1-chain with compact 
support in M. For dim B > 1, the following is true (cf. [6]). 

THEOREM 5. Lef B2P~l be a compact, oriented C2 manifold ofdimension 2p — 1 > 1 
embedded in a Stein manifold M.JfB is maximally complex, then it is the boundary 
of a unique holomorphic p-chain with compact support in M. In particular, ifB is also 
connected, then it is the boundary of a unique, irreducible complex p-dimensional 
subvariety V in M — B. Furthermore, there is a closed set S c B of Hausdorjf 
(2/7 — l)-measure zero, such that every point in B — S has a neighborhood in which 
V is a regular C2 manifold with boundary. 

Interestingly, the "soft" version of this theorem is false. That is, on any Stein 
manifold M with H%(M; R) ^ 0, there exist (nonrectifiable) maximally complex 
(2/7 — l)-cycles which are not the boundaries of real (p, /7)-currents with compact 
support. 
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I re-emphasize that the condition of maximal complexity, as opposed to the 
moment condition (when dim (B) = I), is local in nature. This is related to the 
appearance in several complex variables of Hartogs' phenomenon. In fact, Theorem 
5 gives a direct generalization of a result of Bochner on extending functions which 
satisfy the boundary Cauchy-Riemann equations. 

COROLLARY 6. Let B be a connected manifold as in Theorem 5, and let V be the 
irreducible complex subvariety which it bounds in M. Let / e C2{B) be a complex-
valued function which satisfies the tangential Cauchy-Riemann equations {i.e., the 
differential of fis complex linear when restricted to the complex subspaces ofT(B)). 
Then there exists a weakly holomorphic function F on V which is continuous on V 
(and class C2 at points of boundary regularity of V) such that F\B = /. 

The corollary follows essentially from the observation that the graph of a func
tion satisfying the tangential Cauchy-Riemann equations on a maximally complex 
submanifold is again maximally complex. 

These last results can be generalized to manifolds which are somewhat larger 
holomorphically. 

THEOREM 7. Let M = X — Y where X is a complex projective n-manifold and Y is 
a k-dimensional complete intersection on X. Then any real (2p — \)-manifoldB a M 
where p + k > n, which satisfies the hypotheses of Theorem 5, is the boundary of a 
unique holomorphic p-chain with compact support in M and with boundary regularity 
almost everywhere on B. 

All these results remain true when B is assumed to be a maximally complex, real 
analytic cycle (i.e., supp B is a finite union of (2/7 — l)-dimensional analytic blocks). 
In this form, Theorem 6 generalizes a result of Rossi on extending complex sub-
varieties defined in a neighborhood of Y. 

The discussion above leads naturally to the question of when a class a e 
H2p(M; Z), on a compact Kahler manifold M, can be represented by a positive 
holomorphic/7-cycle. One necessary condition is that aR9 the image of a under the 
coefficient homomorphism Z c; R, be dual to a class &R e H2{n~P){M\ R) repre
sented by a closed (n — p,n — /7)-form. (Equivalently, <a, [p]> = 0 for all closed 
(r, j)-forms <p with | r — s \ > 1.) 

Interestingly, this question leads to the study of a pair of related Plateau prob
lems. Let || a || denote the infimum of the masses of the closed rectifiable currents in 
a, and, similarly, let \\aB || denote the infimum of the masses (in the sense of Fédérer 
and Fleming [4]) of all closed de Rham currents in aR. Then \\mcc\\ ^ ||(wtf)Ä I = 
m J aR I for all positive integers m, and Fédérer has shown that lim^oo m~l \\ma \ = 
||arÄ||. Suppose now that aR contains a positive closed (n — p,n — /7)-form co. 
Then Harvey and Knapp [5] have shown that the current [œ] e aR9 defined by 
setting [co] (<p) = Jjif a) A (p for smooth 2/7-forms <p, is a current of least mass in aR 

and, moreover, that a contains a holomorphic/7-cycle if and only if ||a|| = ||aje||-
A well-known result of Atiyah and Hirzebruch says that it is at least necessary, 

in general, to pass to positive integral multiples of a in order to find holomorphic 
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cycles. Thus, one is led to conjecture that if a is a homology class on a compact 
Hodge manifold M such that aR is dual to a positive closed (n — p,n — /7)-form, 
then: 

(S) There exists an integer m ^ 1 such that nrl\ma\ = \ctB\. 

Unfortunately, this is not quite true (cf. [12]). 

THEOREM 8. There exists a class a e H\(T\ Z) on a four-dimensional abelian variety 
T, which is dual to a positive, invariant (2, 2)-form, but no multiple of a carries a 
positive holomorphic cycle. 

One might then ask whether statement (S) holds for the classes an = a + n[HP] 
for all sufficiently large integers n9 where HP is a /7-dimensional linear section 
obtained from some embedding M <+ px(C). This refined statement is equivalent 
to the condition that a contain a (not necessarily positive) holomorphic cycle, 
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Problèmes de Géométrie Conforme 

J. Lelong-Ferrand 

Soit (M9g) une variété riemannienne de classe C°° et de dimension n ^ 3. Plaçons 
nous d'abord au point de vue usuel de la géométrie différentielle et notons C(M, g) 
[resp. I(M, g)] le groupe des C°°-difféomorphismes conformes de M fresp. le groupe 
des isométries de M]. D'après les théorèmes de Montgomery et Kobayashi on sait 
que C(M,g) est un groupe de Lie pour la topologie compacte ouverte: c'est en 
effect, le groupe des automorphismes de la structure conforme de M9 qui est une 
G-structure de type fini. Un sous-groupe G de C(M9 g) est dit essentiel s'il n'existe 
aucune fonction régulière p sur M telle que G <= I(M, e2Pg)9 inessentiel dans le cas 
contraire. Cela étant le problème suivant (conjecture de Lichnérowicz) a fait l'objet 
de nombreux travaux: 

Existe-t-il des variétés non conformes à l'espace euclidien (En
9 gQ) ou à la sphère 

standard (Sn
9 gG) pour lesquelles la composante connexe CQ(M, g) de C(M9 g) soit 

essentielle? 
Ce problème a d'abord été résolu sous diverses hypothèses supplémentaires, 

m particulier: M est compacte [5], [9]. [10] et: {M, g) est une variété d'Einstein 
complète [13] (pour une bibliographie plus détaillée, voir [5] ou [9]). 

Une réponse définitive (et négative) nous est maintenant donnée par le théorème 
suivant de D.V. Alekseevski [1]: 

THéORèME 1. Si C0(M9 g) est essentiel, (M9 g) est conforme à (Efl,g0) ou à (Sn
9 gQ). 

On en déduit facilement: 

THéORèME 1 BIS. Si (M, g) est compacte et si C0(Af, g) est non compact, {M9 g) 
est conforme à (Sn

9 go). 

Ce dernier résultat, qui apparaît maintenant comme un corollaire du Théorème 1, 
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avait été établi presque simultanément par M. Obata et moi-même, par des 
méthodes essentiellement différentes: c'est par une étude précise des modules de 
continuité des transformations quasi-conformes que j'établis l'équicontinuité de 
C(M9 g) lorsque (M, g) n'est pas conforme à (Sn, gQ); M. Obata utilise au contraire 
les techniques propres à la géométrie riemannienne et prouve que, si CQ(M, g) est 
non compact, (M, g) est conformément plate; il y parvient en étudiant l'action de 
CQ(M9 g) sur l'ouvert formé des points de M où le tenseur de courbure conforme est 
non nul. Par un théorème de N. Kuiper [4] on est alors ramené à l'étude d'un ouvert 
de (Sn

9 go); on utilise le fait que CQ(M9 g) contient un sous-groupe essentiel à un 
paramètre et qu'un tel sous-groupe G admet un point fixe; le résultat est obtenu 
par une analyse du comportement de G en ses points fixes. 

La démonstration du Théorème 1 donnée par D.V. Alekseevski n'est pas sans 
analogie avec celle du Théorème 1 bis par Obata. Elle est fondée sur la notion de 
groupe isotropiquement compact, i.e., tel que le sous-groupe d'isotropie de chaque 
Pe M soit compact; et elle se décompose en trois parties : 

(A) Un sous-groupe essentiel G de C(M9 g) n'est pas isotropiquement compact. 
(B) Si CQ(M, g) n'est pas isotropiquement compact, il contient un sous-groupe 

essentiel à un paramètre. 
(C) Si (M, g) admet un groupe essentiel à un paramètre de transformations con

formes (M, g) est conforme à (En
9 gQ) ou à (Sn, gQ). 

Pour établier (A), D.V. Alekseevski considère un sous-groupe fermé et isotropi
quement compact G de C(M, g) et montre tout d'abord que G opère proprement 
dans M au sens de Bourbaki; puis il construit, sur un voisinage G-invariant Up 

d'un point arbitraire pe M, une métrique G-invariante et conforme à g. Enfin, 
il construit une partition G-invariante de l'unité, subordonnée au recouvrement 
{Up}, et il en déduit l'existence sur M d'une métrique G—invariante et conforme 
à g, prouvant ainsi que G est inessentiel. 

Pour établier (B) il suffit de prouver que si le groupe d'isotropie Cp d'un point P 
est non compact, sa composante connexe est non compacte. On se ramène au cas 
où CQ(M, g) est transitif en considérant l'orbite M' de p, et en prouvant que le 
groupe facteur C" agissant sur M' est essentiel. La fin de la démonstration utilise 
une représentation de Cp dans C(E„) et une étude fine des transformations confor
mes au voisinage de leurs points fixes, fondée sur un développement limité d'ordre 2. 

Pour établier (C) on montre d'abord que chaque point fixe p d'un sous-groupe 
essentiel à un paramètre de CQ(M, g) admet un voisinage ouvert et G-invariant V 
sur lequel le tenseur de courbure conforme s'annule; il ne reste ensuite qu'à prouver 
que 3 V est vide ou réduit à un point. 

Enfin D.V. Alekseevski signale en note que le Théorème 1 reste vrai si l'on rem
place CQ(M, g) par C(M, g) lui-même. 

Par contre, il n'existe pas de résultat analogue pour les variétés pseudo-rieman-
niennes. 

Etude directe du cas compact. Etant donnée la complexité des techniques utilisées 
par D.V. Alekseevski il n'est peut-être pas sans intérêt de rappeler ici la méthode 



PROBLÈME DE GÉOMÉTRIE CONFORME 15 

relativement élémentaire que j'ai utilisée dans le cas compact; de pluis cette méthode 
fait apparaître le Théorème 1 bis comme une conséquence d'un théorème d'analyse 
plus général, relatif aux transformations quasi-conformes. 

DéFINITION 1. Soit (M, g) et (M, g) deux variétés riemanniennes de classe C1 et de 
dimension n ^ 2. Nous dirons qu'un homeomorphisme 0 : M -+ M est fc-quasi-
conforme si: 

(i) <f> est ACL" (i.e., si 0 est absolument continue sur presque toute ligne coordon
née relative à un atlas donné, et si ses dérivées partielles appartiennent à Lf0C(M)). 

(ii) Pour presque tout x e M la différentielle de <f> et son jacobien métrique J^ 
vérifient: 

(1) fyx) * 0 et \p{x)\» û k»Jt(x) 

(la condition (i) entraînant l'existence de (f>'(x) pour presque tout x). 
En tout point x où <j>'(x) existe et vérifie <j>'(x) ^ 0, on a nécessairement 

\<f>'(x) \n ^ J$(x). On a donc toujours k ^ 1 ; et si k = 1, (j>'(x) est une similitude: 
les homéomorphismes 1-quasi-conformes peuvent donc être dits conformes; et, 
pour prouver que ce sont des transformations conformes au sens classique, il suffit 
de prouver que ce sont des difféomorphismes (voir plus loin). 

Désignons par Qk(M9 M) l'ensemble des homéomorphismes fc-quasi-conformes 
de M sur M, muni de la topologie compacte ouverte. On a alors [5b, Théorème 
9.3]: 

THéORèME 2. Si M9 M sont compactes et si Q^(M9 M) n'est pas compact, il existe 
un homeomorphisme K-quasi-conforme de (M9 g) sur (Sn, gQ). 

En prenant M = M et k = 1, on en déduit: 

COROLLAIRE. Si le groupe des homéomorphismes conformes d'une variété rieman-
nienne compacte (M, g) n'est pas compact il existe un homeomorphisme conforme de 
(M9 g) sur (S*, g0). 

Si (M, g) et (M, g) sont de classe C°°, on peut prouver que les homéomorphismes 
conformes de (M, g) sur (M, g) sont des difféomorphismes (voir plus loin). Du 
corollaire précédent on déduit alors que le Théorème 1 bis reste vrai en remplaçant 
CQ(M9 g) par C(M, g). 

La théorie générale des transformations quasi-conformes permet de montrer 
que Qk(M9 M) est une partie fermée de l'ensemble des homéomorphismes de M 
sur M; pour prouver que Qu(M9 M) est compact il suffit donc (si M ti M sont com
pactes) de prouver que la famille Qk(M, M) et la famille formée par les réciproques 
des éléments de Qk(M9 M) sont équicontinues. Nous allons donner un aperçu de 
la démonstration. 

Problèmes d'équicontinuité. La construction de modules de continuité effectuée 
dans [5b] pour les applications quasi-conformes a été reprise de manière plus 
systématique dans [8]; pour la rendre plus intuitive, nous introduirons ici une 
définition : 

DéFINITION 2. Une partie X de la variété (M .g) sera dite de diamètre apparent 
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S 8 s'il existe une partie compacte propre de M, contenant X et difféomorphe 
à une boule de En

9 dont la frontière ait un diamètre géodésique ^ ô. 
La proposition suivante résulte alors du Lemme (5.2) de [8] et du fait qu'une 

variété riemannienne est localement difféomorphe à En : 

PROPOSITION 1. Les notations étant celles de la Définition 1, soit <f>:(M, g) -» 
(M, g) une application ACLn vérifiant 

(2) J \<t>'\n dx è m. 
M 

Pour chaque compact K c M, il existe un nombre ak > 0, ne dépendant que de K, 
tel que limage par <j> d'une boule géodésique centrée sur K et de rayon p < <xk ait, 
dans M, un diamètre apparent inférieur à (mBn/\Log r\)1/ n

9 où Bn désigne une con
stante dépendant seulement de n. 

La condition (2) est vérifiée par tout homeomorphisme fc-quasi-conforme 0 :M -> 
M, si M est de mesure finie ^ mk~n. D'autre part, on a la proposition suivante, 
qui résulte du Lemme 7.3 de [5b] et qui permet d'établir un lien entre le diamètre 
apparent et le vrai diamètre. 

PROPOSITION 2. Si (M9 g) est compacte il existe un nombre 7* > 0 possédant la 
propriété suivante: si X est une partie de M de diamètre apparent ô < ï, l'un des 
ensembles X9 M\X a un diamètre géodésique ^ 45. 

Des Propositions 1 et 2 on déduit le critère d'équicontinuité qui suit: 

PROPOSITION 3. Soit 0 une famille d'homéomorphismes k-quasi-conformes de la 
variété compacte (M, g) sur la variété compacte {M, g) ; pour que 0 soit uniformément 
équicontinue, il suffit qu'il existe un nombre h> 0 tel qu'à chaque <f>e0 on puisse 
associer trois points aÌ9 a2, a$ de M vérifiant dM(ai9 aj) ^ A et d^(<f>(at), <f>(aj)) 
^ h pour i9 j — 1, 2, 3 (f ^ j) (dM et d^ désignant les distances gèodésiques sur M 
et M). 

Si la famille 0 n'est pas équicontinue, ce lemme montre, en gros, qu'on peut en 
extraire une suite convergeant vers une transformation dégénérée. De façon précise 
on a: 

PROPOSITION 4. Soit 0 une famille non équicontinue d'homéomorphismes k-quasi-
conformes de la variété compacte (M, g) sur la variété compacte (M9 g); alors il 
existe une suite (<f>p) extraite de 0, un point ade M et un point bde M tels que : 

(i) la suite (<j>p(x)) converge vers b pour tout x e M\{a}9 la convergence étant uni
forme sur tout compact de M\{a}; 

(ii) la suite ((ßjHy)) converge vers a pour tout y e M\{b}9 la convergence étant 
uniforme sur tout compact de M\{b). 

Par une nouvelle application de la Proposition 3, on montre que l'existence 
d'une telle suite (<f>p) implique celle d'un homeomorphisme A>quasi-conforme de 
M\{a} sur (En, g0); et, par prolongement, on en déduit l'existence d'un homéomor-
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phisme /̂ -quasi-conforme de M sur (Sn
9 go) (cf. demonstration du Théorème 8 

dans [5b]); d'où le Théorème 2. 
Notons que l'existence d'une suite de difféomorphismes conformes de (M, g) 

sur (M9 g) vérifiant (i) et (ii) permettrait de montrer que (M, g) et (M9 g) sont con
formément plates. On en déduirait une démonstration "mixte" du Théorème 1 bis, 

Constructions d'invariantes conformes. C'est pour préparer une démonstration 
du Théorème 1 que, dans [7] j'avais cherché à construire, sur les variétés riemanien-
nes non compactes, des métriques (au sens général) conformément invariantes. En 
fait il s'agit d'invariants globaux liés à la structure conforme de (M, g), et qui pré
sentent par eux-mêmes un intérêt, même lorsque le groupe conforme de (M, g) se 
réduit à l'identité. J'en dirai donc ici quelques mots. 

A chaque variété (M9 g) de dimension n associons la classe H*(M) formée des 
fonctions numériques u, continues et ACLW sur M, telles que: 

(i) I(u9M) = JJ I# |V«|*Ä<oo; 
(ii) pour chaque partie ouverte, connexe et relativement compacte U de M, on 

ait: 

sup u(x) — sup u(x), inf u(x) = sup u(x). 
xedU x^U x^dU x^U 

Si la famille H*(M) sépare les points de M, on obtient une distance ôM sur M en 
posant : 

a (v ,A
 SUP W(x) - u(y)\ ôM(x,y) = u^m l ( /^ M))\?J . 

Cette distance est (comme l'intégrale I(u9 M)) invariante par déformation con
forme de M; et la topologie qu'elle définit est moins fine que celle de (M, g): pour 
cette distance C(M9 g) est donc un groupe d'isométries. 

Interprétation fonctionnelle des homéomorphismes conformes. Une autre méthode 
d'approche des transformations conformes consiste à leur associer des opérateurs 
linéaires. 

A chaque variété (M9 g) de dimension n ^ 2 associons l'algèbre de Banach 
A(M9 g) formée des fonctions numériques continues et ACLM sur M, vérifiant: 
I(u9 M) = \M |Vw|w d% < oo et tendant vers zéro à l'infini, pour la norme v(u) = 
1111»+[/(^AOl17-. 

Si <f> : M -> M est une application continue, notons 0* l'application ^(M) -> 
<g(M ), VHVof On montre alors [6] que l'application ^ i-* 0* définit une bijec-
tion de l'ensemble des homéomorphismes fc-quasi-conformes <f> : M -» M, sur 
l'ensemble des isomorphismes de norme ^ k de A(M, g) sur A(M, g). Le groupe 
conforme C(M9 g) s'identifie donc à une partie de la sphère unité de J?(A(M, g)); 
et le problème qui se pose est de comparer les diverses topologies que l'on peut 
définir naturellement sur cet ensemble. 

Problèmes de régularité. Pour faire le lien entre les méthodes d'analyse utilisées 
dans [5] et celles de la géométrie différentielle, il reste à prouver que tout homéo-
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morphisme conforme d'une variété riemannienne de classe C°° sur une variété de 
classe C°° est lui-même de classe C°°. L'historique du cas euclidien, que nous allons 
esquisser, montre que ce problème n'est pas trivial. 

En 1850 Liouville prouvait que tout difféomorphisme conforme <j> d'ouverts de 
(En

9 g0)n^3 était la restriction d'une transformation de Möbius. Mais sa démons
tration supposait implicitement 0 de classe C3; et à ma connaissance, ce n'est qu'en 
1947 qu'il fut prouvé, par P. Hartman [3], qu'il suffisait de supposer <f> de classe C1 : 
la démonstration de P. Hartman utilise les propriétés des systèmes différentiels 
elliptiques sur-déterminés. 

En 1960, J.G. Resetnyak [11] prouve que tout homeomorphisme conforme 
d'ouverts de Rn est de classe C3; et, en 1962 F.W. Gehring [2] donne une autre 
démonstration du même résultat: tous deux utilisent les propriétés des solutions 
d'équations elliptiques, mais la démonstration de Gehring utilise les extrémales 
de l'intégrale J]Vw|w dz9 tandis que celle de Resetnyak est fondée sur des inégalités 
isopérimétriques et utilise la théorie du potentiel. 

Aucune de ces démonstrations ne se généralise simplement aux variétés rieman-
niennes; mais l'étude du cas riemannien, bien que plus général, est facilitée par l'in
troduction de la fonction courbure scalaire. En effet, tout homeomorphisme con
forme 0: (M, g) -> {M9 g) peut être considéré comme une isométrie de (M, |0'|2g) 
sur {M, g). Or, si u est de classe C2 sur M, la courbure scalaire Ru de (M, w4/(M_2)g) 
est liée à la courbure scalaire R de (M, g) par 

n — 2 u 

On peut donc s'attendre à ce que la fonction u = |0'|(w~2)/2 admette au sens 
des distributions, un laplacien vérifiant : 

(3) au = u ~ \ {RU - R o 0!|<»+2>/<"-2)) 

ou R désigne la courbure scalaire de (M, g); et on en déduit que u (donc aussi 0) 
est de classe C°° : on peut en effet se ramener localement au cas où R = R = 0, 
auquel cas u = |^'|(M"2)/2 est harmonique. Cependant, une démonstration rigou
reuse de (3) s'impose : ce sera l'objet d'un autre article. 

On notera que la demonstration de Resetnyak consiste à prouver, par des con
sidérations géométriques, que, dans le cas euclidien, \<$'\ (w~2) / 2 est sous-harmonique. 

Un problème ouvert. Convenons de dire qu'une application continue (non néces
sairement bijective) <f>:(M, g) -> (M, g) est conforme si elle est ACLW, si elle con
serve l'orientation et si, pour presque tout x e M, <f>'(x) est une similitude (c'est une 
extension aux variétés riemanniennes de la notion d'application 1—quasi-régulière). 

En 1967, Resetnyak [12] a pu montrer que toute application conforme d'un 
ouvert de (En

9 g0) dans En était un homeomorphisme (donc la restriction d'une 
tiansformation de Möbius). Pour les variétés riemanniennes, le problème se pose 
donc de savoir s'il existe des applications conformes qui ne sont pas localement 
des difféomorphismes. 
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Le problème se pose également de savoir si, pour des variétés de classe C1, tout 
homeomorphisme conforme est aussi de classe C1. 
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rpyAH Me>KAyHapoAHoro KoHrpecca MaTeMaTHKOB 
BaHKyBep, 1974 

AucKpeTHbie rpynnbi ^BH^euntì MHoroo6pa3Mw 

HenOJIO>KHTejIbHOft KpHBH3HbI* 

T. A. MapryjiHC 

RoKJiaA B ocHOBHOM nocBameH pe3yjibTaTaM 0 6 apH^MeranHoera H KOHCHHO-

^epHbix npe^cTaBJieHHHX AHCKperabix rpynn ABHHceHHfi CHMMeTpnqecKHx npocr-
)aHCTB. npHBOAHTCH TaK^e OÖOÖUlßHHH 9THX pe3yjIbTaT0B Ha AHCKpeTHbie no/i-
'pynnbi B ^-a^HHecKHX rpynnax, H3 KOTOpux, B CBOIO onepe^b, BbiTeKaeT, B 

lacTHOCTH, "noHTH oKOHnaTejibHan" KJiaccH(J)HKauHH KOHeHHOMepHbix npe^cTaB-
ieHHH rpynnbi fc-ToneK npOH3BOjibH0H nojiynpocroft O#HOCBH3HOH ajireßpamecKoft 
o r p y n n u , r#e k—Kouemioe pacinnpenne nojia paijHOHajibHbix Huceji. ,ZJajiee 
[)0pMyjiHpyi0TCH HeKOTOpbie HepemeHHbie sa^a^H 0 AHCKperabix rpynnax 
i,BH»:eHHÖ B CHMMeTpHHecKHX npocTpaHCTBax H B 6ojiee OôLUHX MHoroo6pa3HHX 
ienojio>KHTejibHOH KpHBH3Hbi. flocneAHHH nacTb ^OKJia^a nocBHineHa sKBHBa-
)HaHTHbIM H3MepHMbIM OT06pa>KeHHHM, HrpaiOIIJHM OCHOBHyK) pOJIb B #0Ka3aTejib-
:TBe ynoMHHyTbix pe3yjibTaTOB. npH nocTpoeHHH 9THX oTOÔpameraft c y m e c -
TBeHHO HCnOJIb3yiOTCH MeTO^bl 9prOAHHeCKOH TeopHH H TeopHH npeACTaBJieHHH. 

1. ApHtJweTHHHocTb H KOHeHHOMCpHbie npeflCTaBJieHHH pemeTOK B nojiy-
ipocTbix BemecTBeHHbix H /j-a^HHecKHx rpynnax . KaK OôHHHO, C, Ä , Q, Z, 
V+ , Qp o6o3HaqaK)T cooTBeTCTBeHHO MHO^ecTBa KOMnJieKCHbix, BemecTBeHHbix, 
)ai;HOHajibHbix, i^ejibix, ijejibix < 0, p-a^HnecKHX HHceji. Jim JIK)6OH jinnenHoft 
ijireôpaHHecKOH Jfc-rpynnu N H jiioöoro KOjibu,a K} BJio>i<eHHoro B O^HO C k KOJibijo, 
ïepe3 NK HJiH N(K) o6o3HanaeTCH MHOKCCTBO ToneK rpynnbi JV, onpeAejieHHbix 
iaA K, onpe^eJiHTejib KOTOpbix HBJineTCH oôpaTHMbiM sjieMeHTOM KOJibija K. J\j[n 
11060H ajireöpaHHecKoft Ä-rpynnbi H ^epe3 H% ôy^eM o6o3HanaTb CBH3Hyio 
coMnoHeHTy e£HHHu;bi rpynnbi JIH HR. 

*Not presented in person. 
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^HCKpeTHan no^rpynna A jioKajibHO KOMnaKTHofi rpynnbi H Ha3biBaeTca 
peiuemKOii) ecjiH o6-beM (J)aKTOpnpocTpaHCTBa H/A (oraocHTejibHo Mepbi Xaapa) 
KOHeqeH. PemeTKa A Ha3bmaeTCH paenoMepHoâ, ecjiH H/A KOMnaKTHo, H uepae-
HOMepHou B npOTHBHOM cnyqae. PemeTKa A a H Ha3biBaeTcn nenpueoduMou, 
ecjiH äJIH Jiioôoro HenpepbiBHoro anHMOp(f)H3Ma/: H -+ F noßrpynna/04) He^nc-
Kperaa B F, KaK TOJibKO rpynnbi K e r / n F 6ecKOHeHHbi. 

JXZIH Jiioöoro noAMHOHcecTBa M ajireôpaHnecKOH rpynnbi F nepe3 M 6y^eT 
o6o3HanaTbCH 3aMbiKaHHe no 3apnccKOMy M B F. Mepe3 char k o6o3Ha*iaeTCfl 
xapaKTepHCTHKa nojin k. 

1. CKaaceM, HTO ajireopannecKaH jR-rpynna G ne uMeem KOMnaKmubix cßaKino-
poe, ecjiH y rpynnbi JIH G% HCT SecKOHeqHbix KOMnaKTHbix 4>aKTOprpynn. flpe 
no^rpynnbi Ha3biBaK)TCH cou3MepuMbiMu, ecjiH HX nepeceqeHne HMeeT KOHCHHUH 
HH êKC B KaMĈ OH H3 HHX. 

T E O P E M A 1. riycmb G—C6H3HO,H npaeoedanenuaH noAynpocman ajizeöpatmec-
KCLH R-zpynna 6e3 KOMnaKmmix cßanmopoe, R—panz (m. e. pa3Mepnocmb MCIKCU-

MdAbHozo pacufenuMozo Had R mopa) Komopou 6oAbtue 1, a r—uenpvteodvtMan 
peiuemKa e G%. Tozda r HO Axemen apucßMemwtecKoü, nodzpynnoä 6 G, m.e. 
naädemcn marcan dAzeópamecKan Q-zpynna G' u maKoä onpedeAennuä nad R 
9nu,M0pcßu3M f: G' -> G, nmo zpynna JIu (Ker f)R KOMnaKmm, a noâzpynnbi 
f(G'z) U r C0U3MepUMU. 

TeopeMbi 1 BMecTe c TeopeMofi Eopejm-XapHin-MaHÄpbi o KOHCHHOCTH oô-beMa 
4)aKTOpnpocTpaHCTBa nojiynpocTOH rpynnbi JIH no apHcjMeTHHecKOö no^rpynne 
[25] (CM. TaKMCe [24], [30]) #aeT KJiaCCH(j)HKaUHIO C TOHHOCTbK) J\0 COH3MepHMOCTH 
Bcex HenpHBO^HMbix pemeTOK B nojiynpocTbix BemecTBeHHbix rpynnax jR-paHra 
öojibuiero 1. TeopeMy 1 MOäHO nepecJDOpMyjiHpoBaTb Ha H3biKe TeopHH CHMMeTpn-
necKHx npocTpaHCTB. 

T E O P E M A 1'. Uycrm S—puManoeo ctiMMempmecKoe npocmpancnwo nexoM-
naKirwozo marta panza óoAbtuezo 1, a r—nenpueoduMan ducKpemnan zpynno 
detiotceuuä npoempancmea S, öAH Komopoä cßaKmopnpocmpaHcmeo S/r UMeem 
KoueHHUü o6*eM. Tozda r HßAHemcH apvttpMermmecKoa nodzpynnoä e zpynne 
deaotcenaä npocmpaucmea S. 

TeopeMbi 1 H T BbicKa3biBajiHCb B KanecTBe rnnoTe3bi CejiböeproM B cjiynae, 
Kor^a r HepaBHOMepHa [44], [45] H ntaTeijKHM-IIIanHpo B oßmeM cjiynae [17], [18], 
HMH >Ke 6biJiH nojiyneHbi Ba>KHbie pe3yjibTaTbi B HanpaBJieHHH AOKa3aTejibCTB2 
9T0H rnnoTe3bi [16], [17], [18], [44], [46]. nepBOHanajibHO [45] npeÄnojiaraJiocb, 
HTO TeopeMa 1 BepHa BCHKHH pa3, Kor/ja G ^ SL(2, R). Ho nocTpoemibie 
MaKapOBbiM [8] H BnHÔeproM [4], [5] npHMepbi HeapH(J)MeTHqecKHX pemeTOK B 3, 
4 H 5-MepHbix npocTpaHCTBax JIoßaqeBCKoro 3acTaBHJiH npe/mojio}KHTb, HTO R 
paHr rpynnbi G öojibuie 1. RJIH HepaBHOMepHbix r TeopeMa 16buia paHee ÄOKa3ara 
^OKJiaÄ̂ HKOM MeTO^OM, KOTOpblH OCHOBaH Ha H3yHCHHH yHHnOTCHTHblX SJieMeHTOI 
noÄrpynnbi /"H nosTOMy HenpHMeHHM K paBHOMepHbiM pemeTKaM (AOKa3aTejibCTBC 
AJin "no^TH Bcex" G CM. [10]). CymecTBeHHoe npo^BH^ceHHe B HanpaBJieHHt 
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A0i<a3aTejibCTBa TeopeMbi 1 B cjiynae HepaBHOMepHbix F 6biJio TaK>Ke nojiyqeHO 
ParynaTaHOM [43]. 

ECJIH 3a^aHbi KOHennoMepHoe npeACTaBJieHHe T rpynnbi H HaA nojieM k H 
BJio>KeHne G nojiH k B Apyroe nojie k', TO, npHMeHna roMOMOp(J)H3M G K KOBCJKJMH-

UHeHTaM MaTpHi* T(h), heH, MH nojiyqaeM HOBoe npeACTaBJieHHe, KOTOpoe 
ecTecTBenHO o6o3HaHHTb nepe3 G ° T. npeACTaBJieHHe T no^rpynnbi r ajireßpan-
necKofl rpynnbi F HaA nojieM k Ha3oseM nceedopaufionaAbHüMy ecjiH Hafl̂ eTCH 
TaKoe pai;HOHajjbHoe npeACTaBJieHHe f rpynnbi F Haß HeKOTOpbiM nojieM k' H 
TaKoe BJio>KeHHe G : k -*k\ HTO G ° T = f ir(r.e. G ° T(T) = T(T) AJIH Jiioßoro T e T). 
npeACTaBJieHHe T rpynnbi THasoßeM ßbipootcdenmiM, ecjiH rpynna T(T) KOHenHa. 

TEOPEMA 2. Uycmb GuT me otce, nmo a e TeopeMe 1, a T—KonennoMepHoe 
npedcmaBAeuue zpynnu r nad noMM k. Tozda 

(1) ecAti npedcmaßAeme T nenpueoduMo, a aAzeöpamecKan zpynna T(T) 
cßH3Ha u npocma, mo T nceedopai^uonaAbHo, 

(2) ecAVt char k ^ 0, mo T ßupootcdem, 
(3) ecAti char k = 0, mo T ßnoAHe npusoduMo. 

OTMCTHM, HTO yTBep>i<AeHHe n. 1 cTajio 6bi HeBepHbiM, ecjiH 6bi MM BMCCTO 

npocTOTbi rpynnbi T(JT) noTpeßoBajin TOJibKO nonra npocTOTy. Mu npHBe^eM 
HaßpocoK ÄOKa3aTejibCTBa TeopeMbi 1 H n. 1 TeopeMbi 2 (n. 2 BbiTeKaeT H3 n. 1, 
a ÄOKa3aTejibCTBO n. 3 ocHOBaHO Ha 6JIH3KHX coo6pa>KeHHHx). OcHOBHyio pojib B 

AOKa3aTejibCTBe TeopeMbi 1 H n. 1 TeopeMbi 2 nrpaeT 

TEOPEMA 3. Uycmb G a r me owe, nmo a ß TeopeMe 1, a T—marne (aócoAtom-
HO) HenpusoduMoe KonennoMepHoe npedcmaßAeme zpynnu T nad uenomopUM 
AOKaAbHUM {m. e. neducKpemHUM AomAbHo KOMnaKmubiM) MOM M K, nmo 
zpynna T(T) cen3Ha a npocma. Tozda 

(1) ecAW zpynna T(T) ne nßAnemcn ommcameAbHo KOMnaummä ß K-monoAo-
zmi, mo K ecmb R HAU, C\ mme zoßopn, ecAti K ne ecmb R VLAVL C, m.e. K 
ßnoAHe necßX3Ho9 mo zpynna T(r)omHocumeAbHo KOMnaumna ß K-monoAozuu, 

(2) ecAti K ecmb R UAVL C, a zpynna T(T) ne HßAnemcn omnocameAbHo 
KOMnaummü ß K-monoAozua, mo T npodoAowaemcn do paujioHaAbHozo nped-
cmaeAeHun zpynnu G. 

MTo6bi AOKa3aTb TeopeMy 1 (n. 1 TeopeMbi 2) HaAo npHMeHHTb TeopeMy 3 K 
HenpHBOAHMbiM KOMnoHeHTaM npeACTaBJienHH G ° Ad (npe/urraBJieHHH G°T) AJIH 
Bcex BJioM<eHHH G HaHMeHbmero nojia onpe^ejieHHH [5] rpynnbi Ad T (T(T)) B 
iHOKaJibHbie nojiH. npH 9TOM Hcnojib3yeTCH TeopeMa o TOM, HTO rpynna T KOHCHHO 

nopo>KAeHa (CM. [42, 3aMenaHHe 13.21]). 
TeopeMy 3 HeTpyAHo BbmecTH H3 npHBOAHMbix HHM<e TeopeM 4,5 H 6 H TeopeMbi 

nJioTHOCTH BopejiH [22], B TeopeMe 4 yTBep>i<AaeTCH KOHeHHOCTb Europa rpynnbi 
T no ee KOMMyTamy. 3Ta TeopeMa npHMeHneTCH B cjiynae, KorAa npeACTaBJieHHe 
T oAHOMepHo. B TeopeMe 5 yTBep>KAaeTCH cymecTBOBaHHe "xopoiiiHx" 9KBH-
BapnaHTHbix H3MepHMbix OTo6pa>KeHHH, a B TeopeMe 6 yTBep^<AaeTC5i, HTO A^IH 
rpynn G JB-paHra ôojibuiero 1 9TH (a TaKM<e HecKOjibKO öojiee oÔLune) oToôpa-
H<eHHH paiJHOHaJIbHbl. 
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TEOPEMA 4. uycmb G—noAynpocman aAzeópamecmn R-zpynna 6e3 KOM-

naumnux cßaKmopoß, R-panz Komopoä 60Abtue 1, a r—nenpmoduMan pe-
uiemm e G%. Tozda cßanmop zpynnu T no ee KOMMymanmy Konenen. 

B cjiynae, KorAa G He HMeeT $aKTOpOB jR-paHra 1 TeopeMa 4 AOKa3aHa KaHeyKH 
H HaraHO [31] AJIH paBHOMepHbix T H Ka>KAaHOM [3], [6], [26], [45] AJIH Bcex T. B 
cjiynae, KorAa G He Ä-npocra, a1 T paBHOMepHa, TeopeMa 4 AOKa3aHa EepHurreft-
HOM H Ka>KAaHOM [1]. B ocTajibHbix cjiynanx, T.e. KorAa G He Ä-npocra H HMeeT 
4>aKTopbi jR-paHra 1, a T HepaBHOMepHa, MCTOA BepHinTeHHa-KancAaHa TaiOKe 
npHMeHHM, ecjiH Hcnojib30BaTb pe3yjibTaTbi ParyHaTaHa o CTpoeran (J)yHAaMeH-
TajibHbix oôJiacTeo [42, TeopeMbi 13.12 H 13.19], 

OTo6pa>KeHHe npocTpaHCTBa X c Mepoft p, B TonojiorHnecKoe npocTpaHCTBO 
(npocTpaHCTBO c Mepofi) Ha3biBaeTCH u3MepuMUM no Mepe p,y ecjiH OHO onpeAejieHO 
nOHTH BClOAy H np006pa3 JlIOOOrO OTKpbITOrO (H3MepHMOro) MHOtfteCTBa H3MepHM. 
Rjin JiOKajibHoro nojra Kn n e N+ nepe3 Gr(w, K) o6o3HaHHM rpaccMaHOBO MHoro-
oôpa3He (Bcex jiHHefiHbix noAnpocTpaHCTB B Kn) c uT-TonojiorHefi. 

TEOPEMA 5. uycmb G—noAynpocman aAzeópamecmn R-zpynna 6e3 
KOMnaKmubix cßaxmopoß, T—HenpußoduMan peuœmm ß G%> ne N+, K— 
AOKaAbHoe noA£y a T—manoe n-Mepnoe {aócoAtomno) nenpueoduMoe npeàcmae-
Aenue zpynnu T nad noMM K, nmo T(ry c SL{n, K), nodzpynna T{T) ne 
nßAnemcn omnocumeAbHo KOMnanrnmä e K-monoAoztiu, a aAzeópamecmn 
zpynna T{T) cen3Ha. npeànoAowuM, nmo ßunoAneno xomn 6u oâno U3 
CAeàytoufux mpex ycAOßuä: (1) pememm T paenoMepna, (2) ß T naaâemcn 
mamn nodzpynna F Konennozo unae^ca, nmo T nepeeodam ynunomenrnHbie 
dAeMenmu 113 F' e yHanomenrnnue Mamputtfii, (3) R-panz zpynnu G 60Abtue 1. 
Tozda Haudemcn mamn napaóoAmecmn R-nodzpynna P zpynnu G a marne 
vt3MepuMoe {no Mepe Xaapa) omoópaotcenue œ zpynnbi Jlti G% e zpaccManoeo 
MHOzoo6pa3ue Gr(w, K), nmo âAn nonmu ecex {no Mepe Xaapa) geG% 

(1) 0 < dim œ{g) < n, 
(2) omoópaotcenue œ dmusapuanmHOy m.e. œ{gT) = r(7"_1)û)(g) àAn AIOóOZO 

re/7 , 
(3) œ{pg) = œ{g) dAn Aioóozo p e P n G%. 

TeopeMa 5 3aHHMaeT ijeHTpajibHoe Meero B AOKa3aTejibCTBe TeopeMbi 3. 
ZtoKa3aTejibCTBO TeopeMbi 5 ocHOBaHO Ha npnMeHeHHH MyjibTHnjiHKaTHBHofl apro-
AHHecKoft TeopeMbi H MeTOAOB TeopHH npeACTaBJieHHH. CymecTBeHHyio pojib B 
AOKa3aTejibCTBe nrpaeT TaiOKe OAHa MOAH(f)HKaijHH TeopeMbi TnTca 0 CBOöOAHHX 

noArpynnax jiHHenHbix rpyim. Mbi ôojiee noApQÔHO ocTaHOBHMCH Ha AOKa3aTejib-
CTBe TeopeMbi 5, a TaiOKe TeopeMbi 6, B nocjieAHeö nacra AOKJiaAa. 

TEOPEMA 6. IJycmb G—noAynpocman aAzeópamecmn R-zpynna 6e3 KOM-

naKmubtx <fiaKmopoe9 R-panz Komopoä óoAbuie 1. T—nenpueoduMan petuemm 
e G%, P—napaóoAmecmn R-nodzpynna 0 G, K—AomAbHoe noM9 F—aAzeópau-
necmn K-zpynna, K-pavtfUonaAbHO âeacmey/otqan na aAzeópawiecKOM K-MHOZO-
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o6pa3uu M, T—zoMOMopcßu3M nodzpynnu T e zpynny FK, œ—u3MepuMoe {no 
Mepe Xaapa) omoópaotcenue zpynmi JIu G% 0 Mnootcecmßo MK K-monen MHOZO-

oópa3un M. npednoAooicuMy nmo dAn nonmu ecex {no Mepe Xaapa) g e G%> 
(1) ù){gï) = T{T-l)ù){g) dAn Aioóozo Ter, 
(2) cû{pg) = ù>{g) dAn AioóozopeP fl G%. 

Tozda 
(1) ecAU K ne ecmb R UAU C, m.e. K enoAne necen3no, mo a> ecmb omoópa

otcenue ß moHKy {moHnee} U3 G% MOOICHO ßuopocumb marne Mwotcecmeo A Mepu 
nyAby nmo co{x) = a){y) dAn AIOóUX x,ye G%-A), 

(2) ecAU K ecmb R UAU C, mo omoópaotcenue CD pavtfwnaAbno {monnee, 
coßnadaem nonmu eciody c ozpanmenueM na G% nenomopozo paufionaAbwozo 
omoópaotcenun zpynnu G). 

3AMEHAHHE. C TeopeMOö 3 cBH3aHbi TeopeMbi Cejibßepra-BefljiH o jioKaJibHofl 
acecTKOCTH [44], [50] H TeopeMa MocTOBa o CTporoö >KecTKOCTH [35], [37], [38]. O 
npeACTaBJieHHHX apHcjweTHHecKHX noArp'ynn rpynn HeHyjieBoro Q-paHra CM. 
[21], [41], [47]. npacaA [39] npHMeHHJi MCTOA MocTOBa AJIH AOKa3aTejibCTBa 
CTporoö M<ecTi<ocTH HepaBHOMepHbix pemeTOK Q-paHra 1, a TaioKe AOKa3aJi [40] 
TeopeMy o CTporoö KCCTKOCTH AJin/?-aAHHecKHX rpynn. MOCTOB AOKa3aji TeopeMy 
o CTporoö KecTKOCTH, ocHOBbiBancb na CBOHX 3aMenaTejibHbix HAenx o npoAOJi>Ke-
HHH H30MOp(j)H3MOB AHCKpeTHblX nOArpynn Ha KOMnai<TH4)HKaU[HH CHMMeTpHHeC-
KHX npOCTpaHCTB. ÔKJiaAHHK HaXOAHJICH nOA CHJIbHbIM BJIHHHHeM 9THX HAeÖ, H 
O6LUHö nJiaH AOKa3aTejibCTBa TeopeMbi 3 noxonc Ha oömnö njiaH AOKa3aTejibCTBa 
TeopeMbi MocTOBa. C Apyroö CTOpOHbi, OTMCTHM, HTO MOCTOB paccMaTpHBaji 
TOjibKO nenpepbißHbie sKBHBapHaHTHbie OTOöpanceHHH, a ero MCTOA nocTpoeHHH 
OTo6pan<eHHH cymecTBeHHO OTJiHnaeTCH OT Hamero H HBJIHCTCH HHCTO reoMeTpH-
HeCKHM. 

2. nycTb S—HeKOTOpoe MHOKCCTBO npocTbix HHceji, K KOTOpoMy npncoeAHHeHa 
oo. ECJIHp = oo, TO nojiOKHM Qp = R. I~IOJIO>KHM Q{S) = {qeQ\ vp{q) ^ 1 AJIH 

jiioôoronpocToro/? $ S}, r&e vp—(MyjibTHnjiHKaraBHoe) p-aAHnecKoe nopMHpOBa-
HHe. nycTb Gp, peS ecTb OAHOCBH3Han nojiynpocTan ajireöpaHnecKan Qp-
rpynna, npHHCM Gp {Qp) ne HMeeT 6ecKOHenHbix KOMnaKTHbix ^aKToprpynn. 
nojioMCHM G = Up^s Gp, Gs = Up^s Gp {Qp). PanroM rpynnbi Gs Ha30BeM cyMMy 
%p<=s rank^G^ Q^-paHroB rpynn Gp. B npHBOAHMbix HH>i<e TeopeMax 7, 8 H 9 MM 
npeAnojiaraeM, HTO MHOKCCTBO S KOHCHHO, a T— HenpHBOAHMan pemeTKa B GS . 

TEOPEMA 7. EcAupanz zpynnu Gs óoAbtue 1, mo T nßAnemcn S-aputpMemu-
necKoä nodzpynnoä ß G, m.e. naädymcn aAzeópamecmn Q-zpynna H, 3aMKny-
mue nodzpynnu Hi u H2 AomAbno KOMnanmnoa zpynnu Hs = Up^s H{QP), 
omKpuman KOMnaumnan nodzpynna F zpynnu H2 a nenpepuemia u30Mop$U3M 
f: Gs -> Hi marne, nmo Hs = Hx x H2, a nodzpynnu d{{Hx x F) n H{Q{S))) u 
f{T) cou3MepuMUy zde d:Hs -> Hy—ecmecmeennuä snuMopcßmM. 

fljiH HeKOTOpbix G TeopeMa 7 BbicKa3biBajiacb (npaBAa, B HecKOjibKo HCTOHHOH 

cj)opMe) B KanecTBe rnnoTe3bi flHTeuKHM-IlIanHpo [17], 
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TEOPEMA 8. IJycmb T—KonennoMepnoe npedcmaßAenue zpynnu T nad noAeM 
k. npednoAootcuMy nmo panz zpynnu Gs óoAbtue 1. Tozda 

(1) ecAu npeâcmaeAenue T nenpueoduMO, a aAzeópamecmn zpynna T{T) 
cen3na u npocma, mo T nceedopaufionaAbHJO, 

(2) ecAu char k ^ 0, mo T eupootcdeno. 
(3) ecAu char k = 0, mo T enoAne npußoduMo. 

TEOPEMA 9. OóO3HOHUM nepe3 P zpynny r-pav^uonaAbmix SAeMenmoe ß Gs, 
m.e. P = {geGs\ gTg~l cou3MepuMa c T}. Tozda, ecAu P ec/ody nAomna ß 
Gs, mo T nßAnemcn S-aputpMemmecKoä nodzpynnoä ß G. 

TeopeMa 9 B cjiynae, KorAa G—BemecTBeHHan rpyrma, ôbijia BbiCKa3aHa B 
KanecTBe rnnoTe3bi B paöoTe riHTeuKoro-LUannpo H IIIac^apeBHHa [18] H paHee 
AOKa3aHa Ka^AaHOM AJIH HepaBHOMepHbix pemeTOK B G = 51,(2, R), COCTOHIUHX 
H3 MaTpHIj;, SJieMeHTbl KOTOpblX HBJIHIOTCH UejIblMH aJireSpaHHeCKHMH HHCJiaMH 
[7]. TeopeMbi 7 H 8 HBJIHIOTCH o6o6meHHHMH TeopeM 1 H 2, MeTOA AOKa3aTejib-
CTBa TeopeM 7, 8 H 9 6JIH30K K MeTOAy AOKa3aTejibCTBa TeopeM 1 H 2. 

3. noArpynny T ajireöpaHHecKOö fc-rpynnbi H, char k = 0 Ha30BeM donycmu-
Moäy ecjiH Jiioéoe ee npeACTaBJieHHe HaA nojieM HeHyjießoö xapaKTepHCTHKH 
BbipoÄAeHO, a jiioôoe npeACTaBJieHHe HaA nojieM Hyjießoö xapaKTepHCTHKH 
pa3JiaraeTCH B npHMyio cyMMy aßcojiioTHO HenpHBOAHMbix npeACTaBJieHHö, 
KancAoe H3 KOTopbix HBJineTCH TeH3opHbiM npoH3BeAeHHeM Bbipo>KAeHHoro npeA-
CTaBJieHHH H (HecKOjibKHx) nceBAopaijHOHajibHbix npeACTaBJieHHö. H3 TeopeMbi 
8 HeTpyAHO BbIBeCTH 

TEOPEMA 10. IJycmb G,GsuT me owe, nmo u e TeopeMax 7—9. Tozda, ecAu 
panz zpynnu Gs óoAbtue 1, mo F nßAnemcn donycmuMoä nodzpynnoä zpynnu G. 

H3 TeopeMbi 10, Hcnojib3yn TeopeMy Eopejia o npHBeAeHHH [23], cnjibHyio 
annpoKCHMaijHOHHyK) TeopeMy H TeopeMy TTjiaTOHOBa o (nonra) npocTOTe rpynnbi 
/7-aAHHecKHX ToneK OAHOCBH3HOö HeKOMnaKTHOö (noHTH) npocTOö Q^-rpyrnibi [15], 
HeTpyAHO BbIBeCTH 

TEOPEMA 11. Uycmb k—Konennoe paciuupenue noAn Q, l—nodKOAbttp e k, 
G—odnocßn3nan noAynpocman aAzeópamecmn k-zpynna, S—neuomopoe 
MHooicecmßo nopMaAusoeannux nopMupoßanuä noAn k, codepotcamee ece neap-
xuMeâoeu nopMaAU3oeannue nopMupoßanun. Hepe3 ks oóo3nanuM nonoAnenue 
no An k omnocumeAbHo nopMupoßanun s. TIoAootcuM k{S) = {q e k ;s{k) ^ 1 dAn 
AIOóOZO s $ S}. Tozda, ecAu 2 s e 5 rankÄi G ^ 2 u l => k{S), mo A/oóan nodzpynna 
Konennozo undenca zpynnu Gt nßAnemcn donycmuMoä nodzpynnoä zpynmi G. 

TaK KaK GÄi H30TpOIIHbI AJIH BCeX HOpMaJIH30BaHHbIX HOpMHpOBaHHH S, KpOMe 
KOHenHoro HHCJia, TO H3 TeopeMbi 11 BbrrenaeT 

TEOPEMA 12. uycmb kuG me owe, nmo u ß TeopeMe 11. Tozda Gk nßAnemcn 
donycmuMoä nodzpynnoä zpynmi G. 

TeopeMbi 11 H 12 cBH3aHbi c pe3yjibTaTaMH 06 aocTpaKTHbix H30MOp(f)H3Max H 
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roMOMOp(})H3Max noArpynn ajire6paHHecKHX rpynn [26], [31], [32], [48] (o 6ojiee 
paHHHX paôoTax CM. RheRomie [29]). MeTOAu, KOTopbiMH nojiynaioTCH 9TH pe-
3yJIbTaTbI, HBJIHIOTCfl, B OTJIHHHe OT H3JIO>I<eHHOrO 3AeCb, HHCTO ajire6paHHecKHMH 
H ocHOBaHbi, rpyßo roBOpn, Ha H3yneHHH "reoMeTpHH" rpynnbi Gk. 

2. HeKOTOpbie HepeweHHbie 3aAanH. 1. B [42, cjieACTBHe 6.13] ajireôpaHnec-
KHMH MeTOAaMH AOKa3aHO, HTO jiio6aH KoneHHO nopOH<AeHHaH rpynna ABHMceHHH 
CHMMeTpHnecKoro npocTpaHCTBa X coAep>i<HT noArpynny KOHeHHoro HHAeKca, He 
HMeiomyio 9JieMeHTOB KOHeHHoro nopHAKa. BepHa JIH aHajiorHHHan TeopeMa, ecjiH 
X— npOH3BOJIbHOe nOJIHOe pHMaHOBO MH0r006pa3He HenOJIOH<HTeJIbHOH KpHBH3HbI 
(He o6n3aTejibHO cHMMeTpHHecKoe)? 

2. B CBH3H c TeopeMOö 1 H paHee ynoMHHaBLUHMHCji npHMepaMH MaKapOBa H 
BHH6epra B03HHKaeT Bonpoc, OTBCT Ha KOTopbift coBepinerao HenceH. B KaKHX 
Beu;ecTBeHHbix nojiynpocTbix rpynnax i?-paHra 1 ecTb HeapHcfMeranecKHe 
peiueTKH? 

3. nycTb G H T Te H<e, HTO H B TeopeMe 1. BepHO JIH, HTO BCHKHH HeTpHBHaJib-
Hbiö HOpMajibHbiö ACJiHTejib rpynnbi F HMeeT KOHeHHbiö HHACKC B T? BacepurreÖH 
[2] AOKa3aji, HTO OTBCT yTBepAHTejieH AJIH ninpoKoro Kjiacca apHcJDMeranecKHX 
noArpynn KJiaccnnecKHX rpynn nojio>KHTejibHoro Q-paHra. ynanceM Tanice Ha yme 
ynoMHHaBiiiHecH pe3yjibTaTbi o KOHCHHOCTH (J)aKTopa no KOMMyTaHTy. 

4. BcerAa JIH (JtyHAaMeHTajibHaa rpynna KOMnaKTHoro MHoroo6pa3HH HenojioMCH-
TejibHoö KpHBH3Hbi HMeeT TOHHoe KOHeHHOMepHoe npeACTaBJieHHe? Bojiee 
o6me, BCHKaa JIH rpynna ABHKCHHH nojiHoro OAHOCBH3HOPO MHoroo6pa3HH Heno-
jio^HTejibHOö KpHBH3Hbi HMeeT TOHHoe KOHeHHOMepHoe npeACTaBJieHHe ? 

5. MoH<eT JIH rpynna aBTOMOp(})H3MOB CBOôOAHOH rpynnbi 6biTb rpynnoö 
ABHM<eHHÖ nOJIHOrO OAHOCBH3HOrO MHOr006pa3H5I HenOJIOHCHTeJIbHOÖ KpHBH3HbI? 
T O T >Ke Bonpoc AJIH rpynnbi aBTOMop(})H3MOB c})yHAaMeHTajibHoä rpynnbi KOMnaKT-
HOö pHMaHOBOö noBepxHocTH H AJIH- rpynnbi KOC ApTHHa. ECJIH OTBCT oTpHijaTe-
jieuy TO BO3MO>KHO, HTO 3Aecb 6yAyT nojie3Hbi pe3yjibTaTbi paßoT JIoycoHa H 

Hy [34], [51]. 
6. ECJIH G = SL{29 R), a A H T2—peuieraH B G, TO, KaK xopomo H3BCCTHO, 

oTHomeHHe oß'beMOB v(G//7
1)/v(G//7

2) pau,HOHajibHO. MTO MO>KHO yTBep>KAaTb A M 

npOH3BOJibHOö noJiynpocToö rpynnbi JIH G? y>Ke B cjiynae, KorAa G = SL{3, R), 
B03HHKai0T HHTepeCHbie TeOpeTHKOHHCJIOBbie Bonpocbi. 

7. CKa>i<eM, HTO pHMaHOBO MHoroo6pa3ne M ne uMeem nAocmx CAazaeMbix, 
ecjiH M Hejib3H pa3Jio>KHTb B npHMyio cyMMy Aßyx pHMaHOBbix MHoroo6pa3HÖ, 
OAHO H3 KOTOpblX H30MeTpHHHO eBKJIHAOBy npOCTpaHCTBy nOJIOMCHTeJIbHOH pa3-
MepHOCTH. nycTb «—HaTypajibHoe HHCJIO, a 0 < Jf ' < K < <x>. 06o3HaHHM nepe3 
A{n> K) H A{n, K, K') KJiaccbi Bcex nojiHbix 0AH0CBH3Hbix MHoroo6pa3HÖ Henojio-
>KHTeJIbHOÖ KpHBH3HbI, He HMeiOLUHX nJIOCKHX CJiaraeMblX, y KOTOpblX KpHBH3Ha k 
no jiioôoMy AßyMepHOMy HanpaBJieHHio yAOBJieTBOpneT COOTBCTCTBCHHO cjieAyio-
mHM HepaßeHCTBaM: - K^k^O, - K^k<L-K'. Hepe3 B{n, K)H B{n> K, K') 
o6o3HaHHM KJiaccbi Bcex (J)akTOpnpocTpaHCTB BHAa XfA9 rAe X npHHaAJie>KHT 
cooTBeTCTBeHHO A{n9 K) H A{n, K, Kf), a A—AHCKperaaa rpynna ABHWCHHö 
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MHoroo6pa3HH X, a nepe3 C{n, K) c B{n, K) H C{n, K, K') c B{n, K, K')—KJiaccu 
Bcex MHoroo6pa3HH HenojiOÄHTejibHOö KPHBH3HM, y KOTopbix yHHBepcajibHan 
HaKpbiBaiomaH npHHaAJie>KHT cooTBeTCTBeHHO A{n, K) H A{n, K, K'). BbicKa^ceM 
cjieAyioiUHe npeAnojioaceHHH: 

(a) HaöA^TCH TaKoe p{n, K) > 0, HTO, ecjiH X\A e B{n, K), TO oö'beM v{X/A) 
ôojibine p{n, K), H, B nacTHOcra, ecjiH M e C{n, K), TO oß-beM v(M) öojibiue 
p{n, K); 

(6) AJIH jiioôoro V > 0 HaöAeTCH KOHenHoe HHCJIO TaKHX rpynn A\, •••, Am, HTO, 
ecjiH X\A e B{n, K) H V{X/A) < V, TO A H30MOp(J)HO OAHOH H3 rpynn Ai9 1 ^ i ^ 
w. B nacTHOCTH, AJIH Jiioôoro 7 > 0 HaöAeTCH TOJibKo KOHenHoe HHCJIO roMOTonn-
necKH HeaKBHBajieHTHbix MHoroo6pa3HH Kjiacca C{n> K), o6-beM KOTOpbix He 
npeBoexoAHT V; 

(B) ECJIH X/A e B{n> K), TO AJIH AHCKperaoö rpynnbi A cymecTByeT (J)yHAa-
MeHTajibHan o6jiacTb c KOHeHHbiM HHCJIOM CTopoH. B nacTHOCTH, ecjiH X/Ae 
B{n, K), TO rpynna A KOHCHHO onpeAejieHa, T.e. HMeeT KOHenHoe HHCJIO oôpa-
3yiomHX H KOHenHoe HHCJIO cooTHomeHHH. B nacTHOCTH, ecjiH M e C{n, K), TO 
4)yHAaMeHTajibHan rpynna %\{M) KOHCHHO onpeAejieHa. 

^OKJiaAHHK yMeeT AOKa3bmaTb STH npeAnojioaceHHH AJIH KJiacca B{n, K, K'). 

3. 9KBHBapHaHTHbie H3MepHMbie OToôpaweHHH. OcTaHOBHMCH Tenepb ôojiee 
noApoÔHo Ha AOKa3aTejibCTBe TeopeM 5 H 6. HaM noHaAoÔHTCH OAHO cjieACTBHe 
H3 MyJIbTHnJIHKaTHBHOH SprOAHHeCKOH TeopeMbi H OAHH pe3yjIbTaT O CBOÖOAHblX 
AHCKpeTHbix noArpynnax jiHHeöHbix rpynn, KOTopbie MH ceönac npHBeAeM (B n. 1 
H 2). Ho npe>KAe 3acf)HKCHpyeM n e N+ H JioKajibHoe nojie K, cHaôxceHHoe aôco-
JIIOTHOH BeJIHHHHOH </) H nOJIO>KHM ||x|| = m a x ^ - ^ (jj{xt) AJIH" jnoôoro x = (x l s •••, xn) 
eKn H I i l I = s u p ^ ^ . , ^ 0 | | J 4 * | | / | | X | | AJIH Jiioôoro 4 e End Kn. 

1. riycTb X—npocTpaHCTBO Jleôera (CM. [20]) c HenpepbiBHOö HOpMHpOBaHHoä 
MepOÖ p. {fi{X) = 1), T.e. X H30MOp4>HO (B CMbICJie TeopHH Mepbl) C TOHHOCTbK) 
AO MHO>KecTB Mepbi Hyjib 0Tpe3Ky HHCJIOBOH npHMoö c oöbiHHOö Mepoö Jleôera. 
npeAnojio^HM, HTO Ha X 3aAaH aBTOMOp(J)H3M L, T.e. H3MepHMoe BMecTe c 
o6paTHHM'B3aHMHo oAH03HaHHoe (nocjie BbièpacbmaHHH MHo^cecTBa Mepbi Hyjib) 
npeo6pa30BaHHe, coxparaiomee Mepy p,. Flyerb Ha X 3aAaH H3MepHMbiö KOV^UKA 
u{m> x),meZ,xe X, u{m + k,x) = u{m, Lkx)u{k, x) OTHOCHTejibHO AHHaMHHecKOH 
CHCTeMbi {/>} co 3HaneHHHMH B rpynne GL{n, K). KOIJìHKJI u{m, x) Ha30BeM 
ozpanmennuM, ecjiH ln||u(ly JC)|| e L°°{X,p) H cywjecmeenmiM, ecjiH 

m±-Sln\\u{m,x)\\d/t>0. 

riPEAJio>KEHHE 1. npeànoAootcuM, nmo det u{m, x ) s l , aemoMopcßu3M L apzo-
dmen, a KOUJIKA u{m, x) nßAnemcn ozpanmennbiM u cyufecmeennuM. Tozda 
naädemcn marne u3MepuMoe omoópaotcenue <p:X-* Gr(«, K), nmo dAn nonmu 
ecex {no Mepe p) xe X: (1) dAn AIOóOZO nenyAeeozo yeKn cywficmeyem npeâeA 

X{y,x)=lim — In || u{m9x)y || 
m » I QO *•' «—H» 
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npmeM %{y> x)<0 mozda u moAbKo mozda, Kozday e (p{x); (2) 0 < dim p{x) <n. 

npH K = R npeAJioM<eHHe 1 BbiTeicaeT H3 MyjibTHnjiHKaTHBHOö sproAnnecKoö 
TeopeMbi (CM. TeopeMbi 1, 2 H 4 paßoTbi OcejieAeija [14]); 6JIH3KHC pe3yjibTaTbi 
(CM. TaioKe paôoTy MnJiJiHOHiUHKOBa [13]). AHajiH3 AOKa3aTejibCTBa TeopeM 1, 2 
H 4 B [14] noKa3biBaeT, HTO aHaJiorn 9THX TeopeM BepHbi A ÎH Bcex jioKajibHbix 
nojieö K, npHneM AOKa3aTejibCTBa nepeHOCHTCH 6e3 cymecTBeHHbix H3MeHeHHH. 

2. 3jieMeHT g rpynnbi GL{n9 K) Ha30BeM cywjecmeennjo neKOMnaumnuM, ecjiH 
aScoJiFOTHan BejiHHHHa XOTH 6bi OAHoro H3 ero coßcTBenHbix 3HaneHHö OTJiHHHa 
OT 1 (HanoMHHM, HTO <J> eAHHCTBeHHbiM o6pa30M npoAOJDKaeTcn Ha Jiioßoe 
KOHenHoe pacuuHpeHHe nojin K). 

nPEAJioKEHHE 2. npednoAootcuM, nmo nodzpynnna A zpynnu GL{n, K) 
aócoAiomna nenpueoduMa {m.e. mootcdecmeennoe npedcmaßAeme U:U{X) = \ 
aócoAiomno nenpueoduMo) u nmo A ne nßAnemcn omnocumeAbno KOMnanrnmä 
ß K-monoAozuu. Tozda 

(1) A codepotcum cytujecmeenwo neKOMnaumnuä sAeMenm; 
(2) ecAu A Konenno nopootcdena, A <= SL{n9 K) u zpynna Ä cen3na, mo A 

codepotcum neaóeAeey cßooodnyio ducKpemnyio {ß K-monoAozuu) noâzpynny. 

JIpKa3aTejibCTBO n. 1 ocHOBaHo Ha HeBbipo>KAeHHocTH (JDopMbi cjieAa Ha ajireôpe, 
nopo>KAeHHOH noArpynnoö A (KOTOpan BHTeKaeT H3 TeopeMbi BepHcaöAa) H 
aHajiorHHHO AOKa3aTejibCTBy JleMMbi 3 paôora Mep3JiHK0Ba [12], B paßoTe TnTca 
{Free subgroups in linear groups» J. Algebra 20 (1972), 250-270) (|)aKTHHecKH 
AOKa3aHO, HTO H3 n. 1 H HenpHBOAHMoera noArpynnbi A BbiTeKaeT n. 2. 

3. Cyw/ecmeoeanue "xopotuux" dmmapuanmmix u3MepuMbix omoópaowe-
nuä. npHBeAeM HaöpocoK AOKa3aTejibCTBa TeopeMbi 5 B npeAnojio>KeHHH, HTO 
pemeTKa T paBHOMepHa. 3ac})HKCHpyeM KOMnaKTHyio c})yHAaMeHTajibHyio oôjiacTb 
A e G% pemeTKH r H MaKCHMajibHbiö pacmenHMbiö HaA R Top S rpynnbi G. ^JIH 
jiioôoro g e G% HaöAeTCH pOBHO OAH'H TaKOÖ sjieMeHT T{g) e r, HTO g e A ï{g). JXJIH 

jiK)6bix g9 gì e G% nojiOM<HM 

D{g) = T{ï{g)) H B{g9gi) = D{ggi){D{gi)YK 

JICHO, HTO B{g, giï) = B{g9 gi) AJIH jiK)6oro TeT. IlosTOMy B{g9 gx) HHAyiJHpyeT 
B{g9 x)9 x e G%jr. riojio>KHM 

a{g) =Sxln\\B{g9x)\\d]i{x)9 

TAC fi—Mepa, HHAyUHpOBaHHaH Ha X Mepoö Xaapa /u Ha G%. HCHO, HTO B{g9 x) 
—KOUHKJi, T.e. B{g1 g29 x) = B{gh g2x) B{g29 x). FIosTOMy 4>yHKUHa a{g) noAyad-
dumußna, T.e. a{gig2) ^ a{gi) + a{g2). npeAnojio>KHM, HTO se S%9 s ^ e TaKOB, 
HTO 

(1) Em ~-a{s™)> 0. 

TorAaAJIHxeXIKMKMKHML{x) = sx9 u{m9x) = B{sm
9x). TaKKaKB{g9x)—KOIJHKJI, 

TO u{m9 x)—KOLJHKJI OTHOCHTejIbHO AHHaMHHeCKOH CHCTeMbI {Lm}, npHHeM orpaHH-
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neHHbiH (TaK KaK A KOMnaKTHa) H cymecTBeHHbiö (ßBHAy (1)). C Apyroö CTOpoHbi 
aBTOMOp(J)H3M L sproAHHeH (BBHAy JleMMbi 4 B [36]), a det u{m9x) = 1 (TaK KaK 
T{T) c SL{n9 K)). ripHMeHHM Tenepb E[peAJio>KeHHe 1 H nojioacHM œ{g) = 
{D{g))~1(p{7c{g))9 rAe %\ G% -> G%ir—~ecTecTBeHHan npoeKijHH. HCHO, HTO 0 < 
dim o){g) < n9 œ{g7) = T{7~l)œ{g). C Apyroö CTOpOHbi, H3 CBOHCTBa 1 OTo6pa>KeHH5i 
<p BbiTeKaeT, HTO 

(2) co{g) = {y e K- ; Um -J- In \\D{s>»g)y \\ < o}. 
v, m-*+oo "* J 

VÌ3 (2) H KOMnaKTHOCTH oôjiacra A jierKo BHTeKaeT, HTO œ{pg) = œ{g) AJIH jiK)6oro 
P e ^s, rAe P s = {g e G%\ MHO>KecTBO {^wgJ~w}, m e N+, OTHOCHTejibHO KOMnaKT-
Ho B G%}. Ho, KaK HeTpyAHO noKa3aTb, HaöAeTCH TaKaa napaoojinnecKan R-
noArpynna P, HTO PS => P fl G£. TaKHM o6pa30M, ocTaeTcn AOKa3aTb cymecTBOBa-
HHe s e S%, AJIH KOToporo BbinojiHneTCH (1). TaK KaK (J)yHKu;HH a orpaHHneHa Ha 
JH060M KOMnaKTe (noTOMy HTO A KOMnaKTHa) H nojiyaAAHTHBHa, TO, BBHAy pa3-
jio)KeHHH KapTaHa, AOCTaTOHHO noKa3aTb, HTO 

(3) îîm fyü > 0 
W 1*4 un- Ms Il 

ÄOKasaTejibCTBO HepaBeHCTBa (3) npoBOAHTCH MeTOAaMH TeopHH ôecKOHenHO-
MepHbix npeACTaBJieHHö. I IOJIOäHM H = SL{n9 K). nycTb E—jieBoe peryjinpHoe 
npeACTaBJieHHe rpynnbi H B npoerpaHCTBe L2{H, p ' ) , rAe ^'—Mepa Xaapa Ha H, 
T.e. Ehf{h') =f{h~lh'). riojiOÄHM F{7) = E{T{7)) H nycTb V—yHHTapHoe npeA
CTaBJieHHe rpynnbi G%, HHAymnpOBaHHoe B CMbicjie MaKKH npeACTaBJieHHeM F 
AHCKpeTHOö noArpynnbi r (npocTpaHCTBO / npeACTaBjieHHH V COCTOHT H3 TaKHX 
4)yHKE[HH j Ha G% co 3HaneHHHMH B L2 {H9 p,'), HTO j{gï) = F{7~l)j{g) H II 7 (I G 
L2(i4, ^) ) , a G^ AeöcTByeT Ha / jieBbiMH CABHraMH (YJXSi) = J Û T ^ i ) . Äajiee, TaK 
KaK r paBHOMepHa, TO r KOHCHHO noponcAeHa. FIosTOMy, Hcnojib3yn n. 2 npeAJio-
HceHHH 2, nojiynaeM, HTO T{T) coAepHCHT HeaôejieBy CBoßoAHyio AHCKperayio 
noArpynny â. TaK KaK â AHCKperaa, TO orpaHHneHHe Ha â npeACTaBjieHHH E 
pa3JiaraeTCH B npHMoö HHTerpaji npeACTaBJieHHö, 3KBHBajieHTHbix peryjinpHOMy 
npeACTaBJieHHK) rpynnbi A. Ho [28], [49] peryjrapHoe npeACTaBJieHHe Heaßejießoö 
CB060AHOH rpynnbi H30JiHpOBaHO OT eAHHHHHoro. riosTOMy npeACTaBJieHHe F 
H30JiHpoBaHO OT eAHHHHHoro. Ho V HHAyUHpoBaHO npeACTaBJieHHeM F, a r 
paBHOMepHa. riosTOMy npeACTaBJieHHe Kn30jiHpoBaHO OT eAHHHHHoro (STOT 4>aKT 
B cjiynae, KorAa G He HMeeT cjpaKTopOB jR-paHra 1, HenocpeACTBeHHO BbiTeKaeT 
H3 pe3yjibTaTOB 0 CBOöCTBC T Ka>KAaHa [3], [6], [28], [49]). rio3TOMy Ha G% Haö
AeTCH TaKan HeoTpHijaTejibHan (})HHHTHafl HenpepbiBHan ^ H K U H H / , HTO 

J fdp = 1, HO \\V{f)\\ < 1, rAe V{f) = J Vgf{g) dp{g). 
/-«O /-i0 

nycTb d > 0 TaKOBO, HTO ({)yHKUiHH b{h) = \\h\\~d
9 h e H npHHaAJie>KHT L2{H9 p ' ) . 

" riojiOÄHM 6{g) = F{{7{g))~l)b. HCHO, HTO 0 e / . TaK KaK (l)/<j>HHHTHa, (2) {V{f))m 

= Wfm), rAe /1 =f,fm= fm-\ * / H * o6o3HaHaeT CBepTKy, (3) cKajiHpHoe npOH3-
BeAeHHe {V{g)0, 0) > 0 AJIH jiio6oro g e G%, (4) || F ( / ) | | < 1, (5) JG3I fdp = \9 TO 
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(4) E -MW> 0 
^cfciwHoo ln||g|| 

Ho npocTbie BbiHHCJieHHH noKa3biBaioT, HTO 

(5) {V{g)69 d) ^ {b9 b)r*«r\ g e G%. 
H3 (4) H (5) BbiTeKaeT (3). 

3AMEHAHHE. RJIH HepaBHOMepHbix T7 npeABapHTejibHO AOKa3biBaioTCH cjieAyio-
u\m ABa yTBep^AGHHH: 

( l^nopoKAaeTCH KOHenHbiM noAMHo>KecTBOM M, H, KpoMe Toro, HaöAeTCH 
TaKan (JDyHAaMeHTajibHan oôjiacTb A noArpynnbi T H TaKoö KOMnaKT N c G&, HTO 
a7 e Na AJIH Jiioôbix a e A9 7 e M, 

(2) AJIH T HaöAeTCH TaKan 4>yHAaMeHTajibHaH oôjiacTb A, HTO KOIJHKJI B{g9 x) 
yAOBJieTBOpneT cjieAyioineMy ycjiOBHio 

fL{x) = sup ln||JB(g,x)|| e L°°{X9p) 

AJIH jiioßoro KOMnaKTa L c G%. 
JI|oKa3aTejibCTBO yTBepKAeHHö(l) H (2)onnpaeTCH Ha KOHCTpyKijHH 4>yHAaMeH-

TajibHbix oôjiacTeo AJIH apH^MeTHnecKHX noArpynn [24], [25], [30] H pemeTOK 
Q-paHra 1 [42, TjiaBa XIII], a TaKHce Ha pe3yjibTaTbi paôoTbi [10] (HJIH [43]) (npH 
9TOM BHanajie AOKa3biBaeTCH, HTO H3 ycjiOBHH (3) B (|)0pMyjiHp0BKe TeopeMbi 5 
BbiTeKaeT ycjiOBne (2)). 

4 ^ PaufioHüAbHocmb drnwapuanmnbix u3MepuMUx omoopaotcenuä. ßaAHM 
HaôpocoK AOKa3aTejibCTBa n. 2 TeopeMbi 6 (n. 1 AOKa3biBaeTCH aHajiorHHHO H 
Aance HecKOJibKO nponje). nycTb P'—npOTHBonojioKHan (CM. [26]) K PnapaôojiH-
necKan Ä-noArpynna, U'—yHHnoTeHTHbiö paAHKaji rpynnbi P1, S—MaKCHMajibHbiö 
pacmenHMbiö HaA R Top rpynnbi G, j i e^amnö B P Ç] P'. IlycTb s e S%9 s ^ e9 

C = C{s)—i^eHTpajiH3aTOp s B G, a C% = C{s)% c C%—MHOäCCTBO yHHnoTeHTHbix 
sjieMeHTOB B CR. 06o3HaHHM nepe'3 2 npocTpaHCTBO H3MepHMbix oTo6pa>KeHHö 
rpynnbi JIH C% B MK C Tonojiorneo CXOAHMOCTH no Mepe Ha Kan<AOM KOMnaKTHOM 
noAMHOMcecTBe (MU He pa3JiHHaeM OToßpa^eHHH, oTJinnaioiUHecH Ha MHoaœcTBe 
Mepbi Hyjib). rpynna FK AeöcTByeT Ha 2\{fa){c) = f{o{c))9 fé FK9 a e 29 c G C% H 
nycTb 2—npocTpaHCTBO opÔHT SToro AGöCTBHH C HHAyiJHpoBaHHOÖ c 2 Tonojio-
rneö. ^ J I H Jiioôoro sjieMeHTa a e 2 e ro CTarjHOHapHan noArpynna Fa HBJIHCTCH 

ajireôpaHHecKoo (3Aecb HaAO Hcnojib30BaTb TO, HTO jiiooaa CTporo B03pacTaiomaH 
nocjieAOBaTejibHOCTb ajireopannecKHx noArpynn rpynnbi -FcHeraa). Pa3MepHOCTb 
opÔHTbi F{a)9 a e 2 onpeAejiHM KaK pa3HOCTb dim F- dim Fff, rAe dim noHHMaeTCH 
B CMbicjie TeopHH ajireôpaHHecKHX MHoroo6pa3HH. Hcnojib3yn jieMMy o 3aMKHyTbix 
opÔHTax [52, 1.8], HeTpyAHO AOKa3aTb, HTO A«ïïH Jiioôoro a e 2 rpannija opÖHTbi 
F{a) HBJineTCH oÖTbeAHHeHHCM opÖHT CTporo MeHbiueö pa3MepHOCTH. riosTOMy 
npocTpaHCTBO 2 nojiyoTAejiHMO. ^ J I H Jiioèoro g e G% nojio>KHM 

o)g{c) »= co{cg)9 C G C%, 

H o6o3HaHHM Hepe3 tò{g) eSry opÔHTy, Ha KOTOpoft Jie>KHT cog e 2. TaK KaK C% 
KOMMyTHpyeT c s, a s e P f| G%, TO H3 CBOöCTB 1 H 2 oTo6pan<eHHH œ BbiTeKaeT, 
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HTO AJIH noHTH Bcex g G G% H JIK)6bIX 7 G r, n G Z 

(6) œ{s»g7) = <â(g). 

OTOÖpaMceHHe co, a, cjieAOBaTejibHO, H d) H3MepHMbi. C Apyroö CTOpOHbi [36, 
JleMMa 4], s sproAHHecKH AeöcTByeT Ha G%/r. riosTOMy H3 (6) BbiTeKaeT, HTO AJIH 
jiioöoro OTKpbiToro noAMHO^cecTBa YB 2jm6op{â)~1{ Y)) = 0, JIHôO p{G% - âTl{ Y)) 
= 0. Ho 2, a, cjieAOBaTejibHO, H 2 HMeioT cneTHyio 6a3y OTKpbiTbix MHOäCCTB. 
riosTOMy B GB HaöAeTCH TaKoe noAMHO)KecTBO L Mepbi Hyjib, HTO AJIH JIKDôHX 

gh gï G GR - L JIK)6aH OKpeCTHOCTb TOHKH ô){gi) COAep)KHT ô){g2). ÛTCIOAa 
H H3 nojiyoTAejiHMOCTH npocTpaHCTBa 2 BbiTeKaeT, HTO œ{GB - L) ecTb TOHKa. 
rio3TOMy AJIH Jiioöoro c e CB AJIH noHTH Bcex g e GB HaöAeTCH TaKoe h{g9 c) e FK, 

HTO 

(7) (og{cic) = o)cg{ci) = h{g, c)œg{ci) 

AJIH noHTH Bcex cx G C%. nycTb F g c FK—cTaunoHapHan noArpynna sjieMema 
o)gG2, Ng—HOpMajiH3aTopnoArpynnbiFgBFK, arg:Ng—>Ng/Fg—ecTecTBeHHbiö 
9nHMOp(})H3M. HCHO, HTO h{g9 c) G Ng. 110JIO)KHM CCg{c) = rg{h{g9c)). JlCHO, HTO ag\ 

CR -* NgIFg HBjineTCH roMOMOp(})H3MOM, npnneM, KaK MO>KHO noKa3aTb, HenpepbiB-
HbiM. Ho orpaHHHeHHe Ha CB jiioöoro HenpepbiBHoro roMOMOp(f)H3Ma rpynnbi C% 
pauHOHajibHO. rio3TOMy, AJIH noHTH Bcex g e G%, a)g{cic) pauHOHajibHO no c e CB 

AJIH noHTH Bcex ci G CB. Ho cxC% = C%ci AJIH Jiioöoro q e C%. nosTOMy, AJIH 

noHTH Bcexg G G%, o)g{cci) = (oClg{c) pauHOHajibHO uo ceC% AJIH noHTH Bcex cx e 
C%, H, cjieAOBaTejibHO, BepHa 

JIEMMA 4. JjAn AIOóOZO s G S%9 S ^ e eepno, nmo o){cg) paufionaAbno noce C{s)B 

dAn nonmu ecex g G G%. 

TaK KaK jR-paHr rpynnbi G öojibine 1, TO B U' HaöAeTCH TaKoö HOpMajibHbiö 
pHA ajireopannecKHx Ä-noArpynn U' = Nk => Nk_i =) ••• => Ni = {e}, HTO N{ ecTb 
nojiynpHMoe npOH3BeAeHHe U{ Ha N{_u ruß U{ c C{s{)9 % e S°R9 s{ ^ e. TaK KaK U' 
yHHnoTeHTHa, TO AJIH Jiioöoro i9l£i£k HaöAeTCH TaKoe onperyjiapHoe OToßpa-
)KeHHe Àì:{Nì)R -* Rqt+t'i % = dim j/V,-_l91{ = dim U{ npH KOTOpOM jießbie CMe>KHbie 
KJiaccbi no {Ui)B nepexoAHT B noAMHoacecTBe BHAa {x9 R*1), xeR«1, a cMOKHbie 
KJiaccbi no (Ni_i)B — B noAMHO^cecTBe BHAa {Rqt> y), y e Rtf. Ho, KaK HeTpyAHO 
noKa3aTb, Jiio6afl H3MepHMan (jtyHKijHH OT {X9 y), x e R*9 y e Ru, KOTopan paijno-
HajibHa no x AJIH nonra Bcex y H pauHOHajibHa no y AJIH noHTH Bcex x, paijHOHajib-
Ha. riosTOMy, Hcnojib3yn JleMMy 4, HHAyKijneö no i nojiynaeM, HTO co{ug) 
pauHOHajibHO no w G N{ f| GB AJIH nonra Bcex g e G% H Jiioöoro i9 1 ^ i ^ k. 
QrcioAa H H3 CBOöCTBa 2 oTOÔpaaceHHH <o BbiTeKaeT, HTO o){upg) pauHOHajibHO 
3aBHCHT OT {u9p) G (£/' f] GB) x {P f| GB) AJIH nonra Bcex g e GB. Ho [26, 4.10] 
OTo6pa>KeHHe 

a:U' x P -* G, a{u9 p) = up, ue U'9 peP9 

HBjineTCH ÖHperyjiHpHbiM OTo6pa>KeHHeM Ha orapbiToe no 3apnccKOMy noAMHo-
acecTBO B G. rioaTOMy 0T06pa»:eHHe <o pamnoHajibHO. 
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Foliations and Local Homology of Groups of Diffeomorphisms 

John N. Mather 

Haefliger has defined a classifying space Brr
q for codimension q foliations of class 

jCr in [4], [5]. As a result of the classifying theorems of Haefliger [4], [5] and Thurs
ton [13], [14] it is known that the homotopy and homology groups of Brr

q are of 
considerable geometric interest. 

There is a "normal mapping" y: BFr
q -> BOq for r ^ 1 and Br°q -» BTopq 

for r — 0. We will denote the homotopy theoretic fiber of this mapping by Frr
q. 

Obviously the homotopy and homology groups of Brr
q are related to those of Frr

q, 
and the latter groups are probably the more fundamental mathematical object. 

The homotopy and homology of Frr
q are mostly unknown. However, some 

striking results have been obtained. It is an easy consequence of Bott's vanishing 
theorem [1] that the homology (or, equivalently, the homotopy) of FTr

q is infinitely 
generated [2] if r, q ^ 2. Thurston has shown that there is a homomorphism of 
Hiq+i{Frr

q, Z) onto R, if r ^ 2. Several mathematicians have noticed a homomor
phism of Gel'fand-Fuks cohomology into H*{FTr

q, R) (cf. [3]). All of these results 
may be viewed as giving lower bounds for the homology oîFTr

q. 
This article reports on some recent work which was motivated by the desire to 

find "upper bounds" for the homology and homotopy of FTr
r Before stating the 

main result, we mention the two principal consequences which have been obtained. 

THEOREM 1. Fr\ is contractible. 

THEOREM 2. FTr
q is {q + \)-connected if r ¥= q + 1. 

The analogue of Theorem 1 is true for Lipschitz foliations. As a consequence, 
Thurston was able to show that every subbundle of the tangent bundle of a mani
fold is homotopic to an integrable subbundle. However, the foliation which the 
integrable subbundle defines is only a Lipschitz foliation. This contrasts with Bott's 
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vanishing theorem, which shows that there are subbundles which are not homo-
topic to integrable subbundles defining C2 foliations. 

Haefliger already showed [4] that Frr
q is ̂ -connected if r ^ 1. However, his proof 

showed that this is of no geometric interest. The first homotopy group which car
ries geometrically interesting information is 7cq+\{Frq). 

To state the main result, we need to define the local homology of a topological 
group. This is analogous to the Eilenberg-MacLane homology of a (discrete) 
group, the difference being that the homology is computed by means of chains 
supported in a small neighborhood of the identity. 

DEFINITION. Let G be a topological group such that the identity has a neighbor
hood which is contractible in G to 1. Let G§ be the underlying discrete group. Let 
G denote the homotopy theoretic fiber of the identity mapping Gd -> G. With its 
usual realization (paths in G, emanating from the identity, with the topology 
generated by the compact-open topology on the paths and the discrete topology 
on endpoints), G is a topological group. The local homology of G is the homology 
of BG. 

The local homology of G depends only on the algebraic and topological structure 
of G in a neighborhood of the identity. If G is a Lie group, Hi{BG) « g/[g, g], 
where g denotes the Lie algebra of G. However the other local homology groups of 
G are unknown, if G is not abelian. 

Another way to describe the local homology of G is as Hi{S{G)/G), where S{G) 
denotes the singular complex of G and G acts on S{G) on the left by pointwise 
multiplication. 

Let $)r
q denote the group of Cr compactly supported diffeomorphisms of Rv. 

If K is a compact subset of Ä«, let @r
q{K) denote the subgroup of those diffeomor

phisms having support in K. Topologize ^{K) with the Cr topology, and let Br
q = 

inj lim^ @r
q{K) have the direct limit topology. 

MAIN THEOREM. There exists a mapping B3)r
q -> Q*Frr

q which induces ismorphism 
in integer homology, 

This theorem is due to Thurston [12]. It generalizes to arbitrary q a theorem the 
author proved for q = 1 in [9]. This was announced in [8]. 

Since $)\ is contractible (by the Alexander trick), and B{<®Q
q)8 is acyclic [7], it 

follows that B§>\ is acyclic. Therefore, by the main theorem, Q^Frq is acyclic. 
Since Haefliger already showed [4] that Frr

q is {q — l)-connected, we obtain 
Theorem 1. Similarly, Theorem 2 follows from the main theorem, and the study of 
commutators of diffeomorphisms made in [9], [10]. The case r = oo of the main 
theorem can also be derived from the main theorem, the Kolmogorov-Arnold-
Moser implicit function theorems, and Thurston's "Hurewicz theorem", for the 
KAM theorems show that any diffeomorphism of Tn near the identity is a product 
of commutators near the identity [6]. This implies that the local H\ of the group of 
C°° diffeomorphisms of Tn vanishes. Then Thurston's Hurewicz theorem [12] 
permits one to conclude the same result for the group of compactly supported C°° 
diffeomorphisms of Rn. 
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Riemannian Structures and Triangulations of Manifolds 

V. K. Patodi 

Let X be a closed C°°-rrianifold of dimension N. Then two additional structures 
on X have been quite extensively studied. One is the Riemannian structure giving 
rise to Riemannian geometry and the other one is the triangulation of X giving 
rise to polyhedral or combinatorial topology. 

Sometimes we come across a problem in which we have an invariant for the 
manifold which has a nice expression in terms of one of these structures and we 
want to express this invariant in terms of the other structure. Let us consider two 
examples. Our first example is related to Pontrjagin classes pi9 1 g i g N/4, of the 
manifold X. If we choose a Riemannian structure on X, then by the well-known 
Chern-Weil theory (see [2]) we can explicitly write down a closed 4/-form represent
ing the ith Pontrjagin class regarded as an element of H4,(Z, R). It is an open prob
lem to obtain a combinatorial formula for Pontrjagin classes. 

We now come to our second example. Our second example refers to Reide-
meister-Franz torsion. Let % be a representation of %\{X) by orthogonal n x n 
matrices, n a fixed positive integer. Let £x be the flat vector bundle on X defined 
by this representation. Suppose that all the cohomology groups of X with coeffi
cients in the vector bundle £z are zero. Then one can define an invariant known as 
Reidemeister-Franz torsion (see [3] and [4]) depending on X and %. To define this 
torsion one first chooses a smooth triangulation of X and in terms of this triangu
lation one defines an invariant which one proves is not changed if we consider 
subdivisions of the triangulation. We do not have so far a definition for this torsion 
which does not make use of the choice of a triangulation. It is an interesting open 
problem to define this invariant in terms of a Riemannian structure. 

There is a conjecture of Ray and Singer (see [4]) in this direction. They define 
an invariant which they call analytic torsion. The Ray-Singer analytic torsion is 
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defined in terms of the eigenvalues of the Laplace operator acting on differential 
forms with coefficients in the vector bundle £ r Ray and Singer have proved that 
this invariant is independent of the choice of the Riemannian metric and they 
conjecture that this analytic torsion is equal to the Reidemeister-Franz torsion. 

By these examples we see that many times we come across an interesting problem 
which involves passing from one of these structures to the other one of these two 
structures. We will now describe a method which in a sense builds a bridge be
tween these two structures and allows us a considerable interplay between them. 
The basic ideas are from Whitney's book [5] and Dodziuk's thesis [1], 

Let g be a Riemannian metric on X and K a smooth triangulation of X. Let 
T*{X) be cotangent bundle of Zand A* = A«T*{X), 0 ^ q g N. Let Cq{K), 0 ^ 
q ^ N, be simplicial (oriented) real chain groups and C«{K) be the dual simplicial 
cochain groups. 

Now in Riemannian geometry we consider de Rham complex : 

0 - C°°{A°) -*- C°XAl) - * - . . . - * - C°°{AN) -> 0. 

And in simplicial topology we consider the complex : 

0 -> C\K) -*- C\K) -*- - . - i - CN{K) -» 0. 

We have de Rham map R: C°°{A«) -> C*{K), 0 <> q <L N, from the de Rham 
complex to the cochain complex. This is given by integration. 

Whitney in his book [5] has defined a map W which assigns to a cochain A e 
Ci{K), a differential form WA on X of type q. The map Wis defined in the following 
way. Let a = {po,~m, pq) be an oriented g-simplex, a* be dual simplex and 2 be an 
JV-simplex. Then W{a*) on [ l̂ is zero unless a is a face of 2. Also if a is a face of 
I and I = {po, ••-, PN)> then any point x e \ü\ has barycentric coordinates ^ , 
'•',fipN and we define f^ö-Jonl^l as: 

?! h ( - I ) % 4 K > n dfiPl n - n ^ n <fc*„ n - n <K-
i—O 

This defines W on dual simplices. We then extend W to the whole of C*{K) by 
linearity. 

The form WA for A e C«{K) is not a C°°-differential form, but on any JV-simplex 
2{N = dim of X) WA is C°°, and if an r-simplex a, 0 ^ r g N, is a face of two 
JV-simplices I7, 2", then 

i*{WA\x) = (fT(WA\r)9 

where i, i' are inclusions of a in^, 2". 
Hence it makes sense to apply the de Rham map R to the form WA and we have 

(1) RWA = A, 
(2) rf^v4 = WdA. 

We can now use the Whitney map to pull the Riemannian inner product from 
the de Rham complex to the simplicial cochain complex. We thus obtain an inner 
product in cochain groups defined by 
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<c, c> = def < wc, way, e, e e C*{K\ O^q^N. 
Let 3* : Cv{K) -> C*~l(K) be the adjoint of 3, with respect to this inner product and 
Aq — (33* + 3*3) be combinatorial Laplacian from C«(K) into itself, O ' g g ^ i V . 
Now let us consider subdivisions Sn{K)9 n ^ 1, of K. For any triangulation K of X 
we define mesh r]{K) of K by 97(A) = Sup d{x, y), where the supremum is taken 
over all points x, y e Zfor which there exists a simplex 2 such that x j e 12\ ; and */ 
is the Riemannian distance function on X x X defined by the Riemannian metric. 

Let us suppose that 7]{SnK) -> 0 as n -> 00 and subdivisions are reasonably 
nicely chosen so that there exists a constant C > 0 such that, for n ^ 1, rf(y, <a) > 
CT}{S71{K)) for all vertices y, co, v ¥" a), belonging to a simplex of Sn{K). 

Now for each n we have the de Rham map Rn : C°°{Aq) ~> C<*{SnK)9 Whitney map 
Wn and inner product in &{SnK)9 defined by Whitney map Wn. With respect to 
this inner product we have the adjoint operator 3* and combinatorial Laplacians 
Aqt1l from C«{SnK) into itself. 

The inner products induced by the Whitney map depend on the Riemannian 
metric g in T*{X) and a natural question now would be whether we can get back the 
Riemannian structure from these inner products in C^{SnK)9 11 ^ 1. This is in fact 
true in a suitable sense and we now state these results. 

The first approximation theorem, proved by Dodziuk (see [1]) is that for any 
C°° form/on X, WnRn f converges to / i n L2 as n -> 00. Then by (2) it follows that 
dWnRnf{= W„dRnf= WnRndf) converges to df in L? as n -> 00. It is however 
not true in general that Wnd%Rnf converges to 5/ in L2 as n -> 00. We nevertheless 
have approximation theorems for Hodge decompositions: 

THEOREM 1. Letfs C°°{Aq) and 

f =/i + df2 + Of3, Rnf= A, + dA2 + d*A3 

be Hodge decompositions {f\ is a harmonic form and A\ is a harmonic cochain, 
i.e., dAi = 3*^! = 0). Then, 

f/! - WnAi 1 è CVn £ | |4f ||, H df2 - WMzW S CVn t f J*/||, 
i"=0 i = 0 

and 

k 
Iof,- w„d*A3\\ <;cVnE\\J<f\\ 

where C and k are positive integers independent off, n and 7jn = rj{SnK) is the mesh 
ofS»{K); f || isL2-norm. 

THEOREM 2. Let A e C<*{S»K) and 

A=Al + dA1 + d*A* WnA=f1 + df2 + öf3 

be Hodge decompositions {WnA9 though not smooth, is an JJ-form and therefore we 
still have its Hodge decomposition). Then 

f W„AX - / x I £ Cfolog 7]n) (| WA I + \\dW„A J ), 
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I WMt - df% || û C(vJog 7]X 1 WnA || + || dW„A || ), 
and 

I W„d*A3 - ôf31 g CO^log^Xl ^ || + \dW„A\\), 

where C is a constant independent ofn and A. 

Theorem 1 was proved by Dodziuk [1]. 
Furthermore the eigenvalues of ân%q converge to eigenvalues of smooth Lapla-

cian Aq and we now proceed to state this result precisely. 
Let âq\ C°°{Aq) -+ C°°{Aq) be smooth Laplacian of Hodge theory, 0 ^ q ^ N. 

Then it is known that âq has an infinite sequence of eigenvalues 0 ^ X\,q ^ X2tq ̂  
• •• ^ Xniq ^ ••• î oo, each eigenvalue being repeated as many times as its multi
plicity indicates. Similarly combinatorial Laplacians Aqi„ have eigenvalues (finite
ly many) 0 g Af,? ^ }%iq ^ — ^)%{qin)tq9 where d{q9 n) is the dimension of 
Cv{SnK). Our main theorem is 

THEOREM 3. Let j be any fixed positive integer. Then Xn
jiq converges to Xj,q as n -> oo 

{note that ln
jiq is defined only when n is sufficiently large so that d{q, n) ^ j). More 

precisely there exist a constant C > 0 and an integer k > 0 {independent off and n) 
such that 

(a) ^.,{1 - CXlq{7]n\og Vn)
2} ^ X%q and 

(b) w-avu /̂,* 
{provided that Xn

jtq is defined, i.e., d{q, n) ^ j). 

Since eigenvalues {Xn,q} are known to contain considerable geometric informa
tion of the Riemannian manifold {X, g), the above theorem means in a sense that by 
taking subdivisions Sn{K) we get back a considerable amount of Riemannian 
structure. 

As an immediate consequence of Theorem 3, one gets the following result, which 
may have more significance for the Ray-Singer conjecture about Reidemeister-
Franz torsion. Let 

C«(0 = S {ha)~s> s a complex number; 
A,„>0 

then the zeta function ^{s) converges uniformly and absolutely for Re s > N/2 
{N = dim of X) and has an analytic continuation to the whole of the complex plane 
with some possible simple poles on the real line. Let 

c*,« = s a?.qr
s 

be finite combinatorial zeta functions. Then we have 

THEOREM 4. Çw>9Cs) -> Ç,q{s) asn -* oo, uniformly on compact subsets of the region 
defined by Re s > N/2. 

This theorem was conjectured (for all q) by Dodziuk in [1] and was proved by 
him for the case q = 0. Theorem 3 follows quite easily by using Theorems 1 and 
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2 and defining eigenvalues of Aq9 âq%n in terms of maxima-minima principle applied 
to appropriate quadratic forms; the details will be published elsewhere. 

Finally I would like to thank Professor I.M. Singer for bringing Dodziuk's thesis 
[1] to my attention. 
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Bases and Approximation by Splines 

Z. Ciesielski 

1. Introduction. Our main interest is in constructing a basis in the Banach space 
of functions of several complex variables analytic in the interior of a polydisc and 
continuously differentiable on its boundary a given number of times. The solution 
depends on results which are tied up with the history of spline bases of which we are 
giving a short account. 

In the space C{I)9 I = <0, 1>, there are essentially different bases: the inter
polating Schauder basis and the orthonormal Franklin system. Most interesting 
are those two types of bases of splines of higher orders which are simultaneous in 
Cm{I) [13]. The first simultaneous basis of splines of order 1 was exhibited in [3] 
(see also [11]), and it was used in [12] and [4] to construct a basis in Cl{Id). Exten
sion to higher orders of orthogonal splines was carried out in [8] and [7]. Approx
imation properties of those bases are discussed in [5]. In the periodic case similar 
questions were considered in [10] and [6], 

The periodic and nonperiodic simultaneous interpolating bases of splines are 
discussed in detail in [14], [13] and [13], [9], respectively. 

Using the results for the periodic simultaneous spline orthonormal systems, 
which are stated in § 2, we were able to carry out the construction of § 3. It 
extends the result of [1] corresponding to the case of m = 0. The construction in 
[1] depends on the Franklin system, and the ideas contained there suggested the 
solution presented in this note. 

2. Periodic spline orthonormal bases. Let us start with dyadic and periodic 
partition of the real line. For n = 2*> -f q, 1 <̂  q ^ 2P9 p ^ 0, let 

sntj = %{2j/2P^ - 1) for./ = 0, . . . , 2(7, 
= rc(2(7 - q)/2P - 1) for / = 2q + l9 - , n; 
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a.ndsnti+kn = s„ti + 2izk9snik = n{2k - l)forfc = 0, ± 1, ... . 
The well-known 5-splines of order m ^ — 1 corresponding to the partition 

{sn>i} are defined in terms of divided differences as follows: 

In every interval the nontrivial i?-splines are linearly independent and form 
a partition of unity. The corresponding 2#-periodic 2?-splines are given by the 
formula 

TW(t)= S JVSft* + 2**). 
k=0, ±1,-

The set of 2flr-periodic splines of order m corresponding to the «th partition 
{s„ti} is denoted by S%{T)9 T = < - %9 TT>. Again, {T„ii9 i = 0, ± 1, «•«} forms a 
partition of unity and {Tnii9 i = 1, •••, n] is a basis in 5^(T). In the space C{T) 
the following scalar product is given 

(2.1) (/, g) = iwm*-
T 

Let ?4w) denote the orthogonal w.r.t. (2.1) projection of C{T) onto S%{T). Then 

Wm)/)(0 = J KpK*, *)/(*) * / e C{T)9 
T 

where 

and the matrix (A(#lj) is the inverse to the Gram matrix corresponding to the 
functions T^™}. 

THEOREM 2.1 (J. DOMSTA [10]). To each m ^ - 1 there are constants Cm and 
am-> 0 < qm < 1, such that 

\A&j\ < Cjußt'fi 

where dn{i9j) = min(| i - j \ 9 n -1 i - y |). 

In what follows D denotes the usual differentiation operator and 

(tf/XO = im as - - ^ j f [Î /(") du] ds. 

Clearly, DHf = — / . Moreover, let 

THEOREM 2.2 (CF. [6]). To each m ^ - 1 there are constants Cm and qm9 0 < qm 

< 1, such that 

^ + K^k'k\t9s)\<Cmnq^s) 

holds for t9seT90^k^m+ 1 with d{t9 s) = minflf - j | , 2% -\t -s\). 
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Since Sf{T) c Sf+1{T) there is an ONC set of splines Ffì e SJ{T) such that 

Kty = £ /*/»> ® FW. 

Clearly, F^ = {2%)~ln. Moreover, for each integer k9 \k\%\ + m9 we define 
a new set of splines 

JT^.A> = D * F ^ for k = 1, • • • , m + 1, 

= Jär-*/?y»> forÄ: = - 1, ... , - (m + 1); 

and F<f* °> = Ff> for./ = 1, - , ff* *> = {2x)~w. The system {jF$r *>, F^' -*>, 
f9j = 1, 2, •••} for given fc, \k\ ^ m + 1, is biorthogonal w.r.t. (2.1). Correspond
ingly, let 

^Y=t{fF^~^)Ff^\ 

and let œ[p\f9 l/n) denote the LP{T) modulus of smoothness of order 1 correspond
ing to the increment l/n. 

THEOREM 2.3 (CF. [6]). For each k9 \k\ ^ m + 1, {F^f* k\j = 1, •••} is a basis in 
LP{T)9 1 ^ p < oo, and for \k\ ^ m ft £y a basis in C{T). Moreover, for fe LP{T)9 

1 g p g oo a«</ l&l ^m+lwe have 

|/-*<"-*)/|>gci,fflJö*HC/";i/»). 
COROLLARY 2.1. i w ê cA ;w ^ 0, *Ae system {F{f*9j = 1, •••} w a simultaneous 

basis in Cm{T). 

COROLLARY 2.2. A suitable d-fold tensor product of the basis {F^/n\ j = 1, •••} 
is a simultaneous basis in Cm{Td). 

There are two more facts which play an essential role in the construction of §3. 
As in [7] we have 

LEMMA 2.1. Let m ^ - 1 and let f= 2^=i ajTfr). Then, for some Cm > 0, 

c-i/H^dsKi^^^ii/ii,. 
LEMMA 2.2. Let m ^ 0. Then there is a constant Cm such that, for f e S%(T), 

f(t + s)-f(t-s) ^Cmn* I \f(u)\du 
\t-u\<Cjn S 

holds for 0 < s < l/n. 

The last inequality was suggested by an inequality for polygonals derived by 
S.V. Botschkarievin[l]. 

3. Construction of a basis in Am{Ad). We use the following notation: A = 
{z eC:\z\ g 1}, Ad = â\ x ••• x Ad9 At = 4. The set of all complex polynomials 
of d variables is denoted by Wd> For given m *z 0 and w e Wd we define the norm 
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O.I) MP-J5 UM* 
where 5 = {dÌ9 •••, 5rf), |5| = 5i + — + 5 ,̂ || ||rf is the usual max norm over Ad

9 

and the differentiation is taken in the complex variables. The completion in the 
norm (3.1) of the polynomials restricted to Ad is a Banach space and is denoted 
here by Am{Ad). Our aim is to construct a basis in Am{Ad). The problem is reduced 
to one variable by the following 

THEOREM 3.1. If there are simultaneous bases in Am{Adl) and Am{Adt), then their 
suitable tensor product is a simultaneous basis in Am{Ad&di). 

Now, let A™{T) = {/: f{t) = F{e% F e Am{A)} and 

\\fW = £ \\DjfU Ikllr = m a x {\s(t)\ :t e T}. 

It can be seen that the two Banach spaces <^W(J),| |iw)> and <Am(T),\\ |̂ >> 
are linearly isomorphic. Thus, it is sufficient to construct a simultaneous'basis 
i n<^(D, | | IP>. 

~Nov/,feA(T) = A°(T) iSf=U + i(0+lm(f, 1)) and U, 0eC(T), where 

it r-o* ì 2tgs/2 

Using the basis {F^} in C{T) for each fixed m ^ 0 the following system of com
plex valued functions is defined as 

C?! = l, Gj = Fffl + iFffl for; = 2 ,3 , .» , 

where F+ is the even part of F. Moreover, for 0 ^ k ^ m9 let G^k) = (2TT)~1/2, 
G</> = DkGj and G<"*> = #*Gy forj = 2, 3, - . 

THEOREM 3.2. For fixed /w = 0 and for given k90 £ k ^ m, {Gf\ / = 1, 2, •••} 
is a basis in (A{T)9 ^A ||T> and for fin A{T) we have 

oo 

/ = 2 (/. Re G<f*i)Gf. 

THEOREM 3.3. The system {Gj9 7 = 1 , 2, •••} is a simultaneous basis in 

(A»{T\ || ysr>>. 
An important role in the proof of Theorem 3.2 is played by Theorems 2.2 and 2.3, 

and Lemmas 2.1 and 2.2. 
The complete proofs will appear in [6]. 
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Recent Results on General Banach Spaces 

Per Enfio* 

Here we will consider the following general question : What can be said about 
the general Banach space? We will look into three aspects of this question, where 
substantial progress has been made over the last few years. The first we will call 

1. The approximation problem and the basis problem. The approximation problem 
is the question whether every compact operator T: B -» C between two Banach 
spaces can be approximated in the norm topology for operators by finite rank 
operators. In many special cases this problem has an affirmative answer. This is, 
for instance, the case when C has a Schauder basis. A Schauder basis of C is a 
sequence {e/\ such that every xe C can be uniquely expressed as a convergent 
sum x = ^ajej. If we put Pn : x -• Tinj=i^jej then the finite rank operators 
Tn = PnT will approximate Tin the norm topology for operators. 

The approximation problem and the basis problem—the question whether every 
separable Banach space has a Schauder basis—have now been solved negatively 
by myself. However, another problem in this direction as old as the ones mentioned 
—it appeared already in Banach's book from 1932—has recently been solved 
affirmatively by Pelczynski and Ovsepian. The question is the following: Is there in 
every separable Banach space a fundamental and total biorthogonal sequence 
{en9 e,*) such that supw||ew|| ||e*|| < oo? 

A sequence {en9 e*) is called fundamental if the e„'s span the Banach space; it 
is called total if e*{x) = 0 for all n implies x = 0; it is called biorthogonal if 
e*{em) = Oïïn ^ m and 1 if n = m. If a Banach space has a Schauder basis {en} 
and if {eft} denotes the corresponding sequence of coefficient functionals, then 
{en9 el) is a fundamental, total, biorthogonal sequence with supM \\e„ || \\e„ \\ < oo. 

*This research was done under the sponsorship of National Science Foundation GP-43083. 
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There are several other properties weaker than having a Schauder basis for which 
the answer is not known in general, but for which an answer would be desirable in 
order to understand several long open problems about operators between Banach 
spaces. We will not go into these in this survey, but instead turn to 

2. The role of the /̂ -spaces in a general theory. The first result to be mentioned 
here is a now classical theorem by Dvoretsky: Every separable Banach space 
contains a (1 + e)-isomorph of «-dimensional Euclidean space for every e -» 0 
and n. Two Banach spaces B and C are said to be ^-isomorphic if there is a con-
tinous, one-to-one operator Tfrom B onto C with ||r|| [| y—x [[ ̂  K. They are said 
to be isomorphic if they are ^-isomorphic for some K. If some part of the proof 
would generalize, one would haVe gotten the stronger result: Every separable 
Banach space contains an isomorph of lp or c0. lp is the space of sequences* a = 
{aÌ9 a2, •••) with the norm [|a|| = (Sltf/lp)1'^ and cQ is the space of sequences tend
ing to 0 with the norm max,- \aj\. 

This stronger result has been proved for Orlicz spaces by Lindenstrauss and 
Tzafriri. In general, however, it is false as was recently shown by Tzirelson. It 
seems that a weaker conjecture should be true: Every separable Banach space 
contains an isomorph of l\ or c0 or a reflexive Banach space. There is a recent 
characterization due to Rosenthal of Banach spaces containing li which supports 
this conjecture : 

A Banach space contains an isomorph of l\ iff it contains a sequence {en} with 
no weak Cauchy subsequence. 

A sequence {e„} is a weak Cauchy sequence if {<p{en)} is a Cauchy sequence for 
every functional tp. 

The lp -spaces also come up in several other contexts in connection with questions 
about general Banach spaces; for instance, some of them are characterized by 
special properties of their bases. Here we will mention the affirmative solution of 
the "complemented subspaces problem" due to Lindenstrauss and Tzafriri: A 
Banach space is isomorphic to l2 if and only if there is a continuous linear projec
tion onto every closed subspace. 

3. The /̂ -problem and uniform convexity. First in this section we should mention 
a result by R. C. James: Every nonreflexive Banach space contains a (1 + e)-
isomorph of /? for every e > 0. l\ is the space of «-tuples {aÌ9 ~-,an) with norm 
S|fly|. The spaces which do not satisfy the conclusion of the theorem are called 
uniformly nonsquare. James later proved results for uniformly nonsquare Banach 
spaces and these were used by myself to prove the following result: Every uniformly 
nonsquare Banach space can be given an equivalent uniformly convex norm. 

A norm || || is called uniformly convex if there is a function d{e) > 0 for e > G 
suchthat ||JC|| ^ 1, ||^|| ^ 1 and fl* - j ; | | ^ e implies ||JC + y\\ £ 2 - d{e). 

From the proof methods, the two results above were connected in the following 
way: If the first could be extended to l\ instead of l\9 then the second could be 
extended from "uniformly nonsquare" to "uniformly non-/f. The question 
whether this is possible became known as the "/^-problem". It was recently solved 
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negatively by James who proved the following result : There exists a nonreflexive 
Banach space B and an e > 0 such that B does not contain a (1 + e)-isomorph of 
/?. The /̂ -spaces are uniformly convex for p > 1 and for them 5{e) can be chosen 
to be K'£Q for some K > 0 and q > 0. The question, whether it is always possible 
to renorm a uniformly convex space so that 5{e) can be chosen as K-ev, was re
cently answered affirmatively by Pisier. For wide classes of uniformly convex 
spaces even more precise information has been obtained by Figiel and Johnson. 

The development in the theory of general Banach spaces has gone fast during the 
last few years. Even so, there is certainly still a long way to go to get a satisfactory 
understanding to general Banach spaces. The richness in examples has for a long 
time made it hard to ask the right questions, a difficulty which is now overcome in 
many respects. 

Of the results mentioned in this survey none is easy. The methods used to prove 
them have connections with many areas of mathematics such as harmonic analyisis, 
probability theory, integral geometry, combinatorics, etc. 

STANFORD UNIVERSITY 

STANFORD, CALIFORNIA 94305, U.S.A. 





Tpyflbi Me>KAyHapoAHoro KoHrpecca MaTeMaTHKOB 
BaHKyBep, 1974 

OÔ30p TeOpHH Pa3MepHOCTH 

B.B. 4>HJinnnoB 

TeopHH pa3MepH0CTH oôuiyix TonojiornnecKHX npocTpaHCTB HMeeT 3a nocjieAHHe 
HeCKOJIbKO JieT pHA KpynHblX AOCTHH<eHHH, CBH3aHHbIX C riOHCKOM eCTeCTBeHHblX 
rpaHHu BbinojiHeHHH OCHOBHHX pe3yjibTaTOB KjiaccHHecKoft TeopHH. npH STOM C 
OAHOH cTopoHbi nojiyneHbi CHJibHbie nojio>KHTejibHbie pe3yjibTaTbi, c Apyroö— 
nocTpoeHbi HHTepecHbie npHMepbi. 

Xopomo H3BecTH0,KaKyK) pojib nrpaeT coBnaAeHHe pa3JinqHbix pa3MepH0CTHbix 
HHBapHaHTOB B TeopHH pa3MepH0CTH MeTpH^ecKHX npocTpaHCTB [1], [4], [7]. 3 T O T 
Bonpoc ecTecTBeHHo B03HHKaeT H npH nocTpoeHHH TeopHH pa3MepH0CTH B ôojiee 
oôiuefl nocTaHOBKe. B nacraocTH, B nocjieAHee BpeMH npHBJieK.no BHHMaHHe Bonpoc 
0 COOTHOIlieHHH pa3MepH0CTHbIX (JtyHKIJHH B KJiaCCe ÔHKOMnaKTHblX xaycAopopoBbix 
npocTpaHCTB, nocTaBJieHHbiH n . C . AjieKcaHApoBbiM B AOKJiaAe Ha MOCKOBCKOH 
Me>KAyHapoAHOH TonojiornqecKoft koH(})epeHi;HH B 1935 r. KaK H3BecTH0, AJIH 
jiK)6oro ({)HHajibHO-KOMnaKTHoro npocTpaHCTBa X BbinojmeHo HepaBeHCTBO AjieK-
caHApOBa dim X ^ ind X <; Ind X, npHHeM paBeHCTBO 0 JIK)6OH H 1 OAHOH H3 
HHAyKTHBHbix pa3MepH0CTeft BJieneT paBeHCTBO Bcex pa3MepH0CTeft. B [16], [17] 
4>HJinnnoB nocTpOHJi npHMep ÔHKOMnaKraoro xaycAopopoBa npocTpaHCTBa X c 
ind X= 29 Ind Z = 3. 3Ta KOHCTpyKî HH BHA0H3MeHHJiacb IlacbiHKOBbiM H JIHCJMHO-
BbiM [8], [13] H ^HJinnnoBbiM. Hanôojiee CHJibHbift pe3yjibTaT, nojiyneHHbift c ee 
noMombio [18], ecTb 

E[PEAJIOM<EHHE. JXAH AIOóOZO namypaAbmzo HUCAO, i ^ 1 cymecmeyem 6a-

KOMuaKm Xi c dim X{— 1, ind X( = /, Ind X{ = 2i — 1. 

B CBH3H c BonpocoM o HecoBnaAeHHH pa3MepH0CTefi dim H ind BO3HHK cHJibHbifl 
MeTOA nocTpoeHHH npHMepOB B KJiacce ÔHKOMnaKTOB [14], [19]. B [19] nocTpoeHa 
cepHH cpaBHHTeJibHO npocTbix npHMepOB: AJIH JIIOOHX HaTypajibHbix HHceji m H n9 
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1 ^ m ^ w, cymecTByeT ÔHKOMnaKT X c nepBoft üKCHOMOH cneTHOcra c dim X = 
m, ind X = n. B npeAnojio>KeHHH KOHTHHyyM—rnnoTe3bi STOT »ce MeTOA no3BOJineT 
nOCTpOHTb COBepiUeHHO HOpMajIbHblH ÔHKOMnaKT C TeMH » e pa3MepHOCTHbIMH 
CBOHCTBaMH. OeAopnyK [15] AJIH Jiioôoro HaTypajibHoro n ^ 1 nocTponji 6HKOM-

naKT, Jiioöoe 3aMKHyTœ noAMHoncecTBo KOToporo JIHôO «-MepHo, JIHôO HyjibMepHo. 
B npeAnojioHceHHH 2*° = X i OeAopnyK ycHjmji STOT pe3yjibTaT, nocTpOHB AJIH 
juoôoro HaTypajibHoro n ^ 1 ÔHKOMnaKT Jiioôoe ôecKOHenHoe 3aMKHyToe IIOAMHO-
HCeCTBO KOToporo W-MepHO. 

B oôjiacTH H3yneHHH noBeAeHHH pa3MepHOCTH npn 3aMKHyTbix oToôpanceHHHx 
OHjiHnnoB nojiyHHJi ABe peAyrcijHOHHbie TeopeMbi [20]. riepBan ecTb: 

TEOPEMA. nycrm>f\X-* Y—3aMKnymoeomo6paotcemempMaAbmzonpocm
paucmea X ua HopMaAbHoe npocmpancmeo Y. Tozda cywficmeyiom {Mempti3y-
eMbie) KOMnaKimi X' u F', dim X' = dim X, dim T = dim Y a uenpepueuoe 
omoópawenue f :X' -> Y' npu KomopoM 

dim{/ : / e F, | / ' - i ( / ) | ^ k} ^ vdY{y: y e Y, \f~Ky)\ è k}. 

B Apyroö TeopeMe AonojiHHTejibHO npeAnojiaraeTCH, HTO FecTb F-npocrpaHCTBo 
(CM. [9], cjiaöo napaKOMnaKTHbie npocTpaHCTBa H ff-npocrpaHCTBa HBJIHK)TCH F-
npocTpaHCTBaMH) H TorAa AJIH KOHCTpynpyeMoro OToèpaaceHHH MU uoyaeu CHH-
TaTb BbinojiHeHHbiM cjieAyiomee HepaBeHCTBO 

dim{/ : / G F, dim f'-*(/) ^ k] ^rdY{y :yeY9 dim f~\y) ^ k}. 

3 T H peAyKijHOHHbie TeopeMbi B pHAe cjiynaeB AejiaioT TpHBHajibHbiM nepeHeceHHe 
pe3yjibTaTOB co cjiynan (MeTpH3yeMbix) KOMnaKTOB Ha OöLUHH cjiyqafi. TaK AJIH 

3aMKHyToro oToôpaHceHHH / : X -+ Y BbinojiHeHo HepaBeHCTBO ApxaHrejibCKoro 
(CM. [3]) 

(*) dim Y ^ rdY{y:y e Y9\f~Ky)\ ^ A j + d i m J T + J f c - l , 

ecjiH npocTpaHCTBa I H YHopMajibHbi, H OUçHKH 

(**) dim X ^ max{rd r {y : y e Y, dim f~Ky) ^ f e } + f e : f c = 0, — , d i m / } ; 
dim Y ^ max{dimJr, rdY{y:ye Y9 \f~l{y)\ ^ 2} + 1, 

xdY{y\ye F, dim f~Hy) ^ fc} 4- k:k = 1, •••, d i m / } ; 
dim Y^ rdY{y:ye Y9 \f~l{y)\ ^ k} + d im/+ k - 1 

(AJIH k = 1, •••, dim Y - dim X + 1) ecjiH npocTpaHCTBa Xu FHopMajibHbi H Y 
ecTb F-npocrpaHCTBo. 

OTMeTHM, HTO (j>opMyjia TypeBHHa dim X <£ dim Y + dim / (AJIH 3aMKHyToro 
oToöpaÄeHHH/: X-+ Y) ne BbinojiHeHa B KJiacce HopMajibHbix npocTpaHCTB [20], HO 
BbinojiHeHa, KorAa o6pa3 ecTb F-npocTpaHCTBO B CHJiy HepaBeHCTBa BaöHiirreHHa-
CKjinpeHKo (**). B AonojiHHTejibHbix TeoperaKO-MHOHcecTBeHHbix npeAnojioaceHHHX 
MOMceT 6biTb nocTpoeH npHMep HeBbinojiHeHHH <j)opMyjibi TypeBHHa B KJiacce 
coBepmeHHO-HopMajibHbix npocTpaHCTB. OopMyjia TypeBH^a dim Y S dim X + 
KpaTHocTb/- 1 BbinojiHeHa B CHJiy (*). K Heft npHMbiKaeT cjieAyioman npoßjieMa, 
nocTaBJieHHan A.B. ApxaHrejibCKHM: BepHO JIH, HTO dim(Z, r) S » TorAa H TOJibKo 
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TorAa, KorAa cymecTByFOT TonojiorHH Tì9 •••, T„+I Ha X, AJIH KOTOpbix dim {X9 T() 
^ 0 H x = f|*-±} T( ? B KJiacce MeTpH3yeMbix npocTpaHCTB OTBCT 6MJI nojiyneH 
B.n. 3ojioTapeBbiM [5] B cjieAyiomeM BHAe: 

TEOPEMA. Uycmb {X9 %)—MempmyeMoe npocmpaucmeo. Tozda dim(I, T) ^ n 
e moM ti moAbKo e moM CAynae, ecAu cymecnwyiom manne monoAozuu TI, •••, 
zn+Ì9 nmo: 

(a) {X9 Ti)—MempmyeMoe npocmpancmeo, i = 1, •••, n + 1, 
(6) {X9 P)f=1 Ti)—Mempu3yeMoe npocmpancmeo, fc = l, — , / i + l , 
(B) dim(Z, Ti) S 0, 

OAHOH H3 ijeHTpajibHbix H3 ocTaBiiiHxcH HepemeHHbiMH 3aAaH oßmeft TeopHH 

pa3MepHOCTH HBJIHeTCH BOnpOC 0 BbinOJIHeHHH ^opMyjibi 

(***) dim(Z x Y) S dim X+ dim Y 

B KJiacce HopMajibHbix npocTpaHCTB. 
HaHÔOJiee CHJIbHblMH pe3yJIbTaTaMH, CBH3aHHbIMH c STHM BonpocoM, HBJIHKDTCH 

TEOPEMA (MOPHTA [6], 4>HJiHnnoB [21]). ECAVL e npomeedemu X x Y enoAue 
pezyAHpuux npocmpancme npoeumapoeanue na odun U3 coMwotcumeAeü ecmb 
3aMKuymoe omoópaotcenue•, mo 

dim ß{X x Y) ^ dim ßX + dim ßY. 

TEOPEMA (4>HJinnnoB [21]). flycmb npocmpancmeo X x Y nopMaAbuo a cnemno 
napaKOMnaxmHo, Y—napaKOMnanrnme p-npocmpancrmo, mozda 

dim(Z x Y) ^ d imZ + dim Y. 

AHaJIOrHHHblH BOnpOC CBH3aH C HepaBeHCTBOM 

Ind( X x Y) ^ Ind X + Ind 7. 

B cjiynae MeTpHnecKHx npocTpaHCTB oße (J)opMyjibi coßnaAaioT H xopouio H3BecT-
Hbi, HO y>Ke B KJiacce ÖHKOMnaKTOB ecTb cymecTBeHHbie pa3JiHHHH. 3Aecb (j)opMyjia 
(***), KaK H3BecTHO, BbinojiHeHa H TeM He MeHee cymecTByioT ÖHKOMnaKTbi Xl9 

dim Xi = ind Xi = Ind Xi = l9uX29 dim X2 = ind X2 = Ind X2 = 2, AJIH KOTOpbix 
ind(Zi x l 2 ) ^ 4 (c&HJiHnnoB [22]). EIojioKHTeJibHbie pe3yjibTaTbi, aHajiorHHHbie 
cooTBeTCTByiomHM pe3yjibTaTaM AJIH dim, MoryT 6biTb nojiyqeHbi npH AoßaBJieHHH 
ycJiOBHH BbinojiHeHHH TeopeMbi cyMMbi A-TIH Ind B COMHOHCHTCJIHX [21]. 

B CBH3H c BonpocoM o MOHOTOHHocTH pa3MepH0CTH oTMeTHM Aßa pe3yjibTaTa. 
B [21] $HjiHnnoB cTpOHT HacJieACTBeHHO HopMajibHoe npocTpaHCTBO X9 dim X = 

0, coAepJKamee noAnpocTpaHCTBO Bcex noJio>KHTejibHbix pa3MepH0CTeft, neu 
peuiaioTCH npoôjieMbi 4exa H ßayKepa. HeAaBHO B . n . 3ojiOTapeB, noKa3aji, HTO 
ecjiH B HopMaJibHOM npocTpaHCTBe X JIOKHT BnojiHe napaKOMnaKTHoe noAnpocTpaH-
CTBO Y, TO dim Y ^ dim X. 

JXnn nocTpoeHHH yHHBepcaJibHbix npocTpaHCTB AaHHoro Beca H AaHHofi pa3Mep-
HOCTH B. A. flaCblHKOB C03AaJI CHJIbHblH MeTOA, HCnOJIb3yiOIHHH (J)aKTOpH3aUiHOHHbie 
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TeopeMbi [10], [12], 3THM MCTOAOM HM HeAaBHO ôHJIO AOKa3aHo cymecTBOBaHHe 

yHHBepcajibHoro ÔHKOMnaKTa AaHHoro Beca AJIH pa3MepHOCTH Ind. ^JIH pa3Mep-

HOCTH dim oTMeTHM MeTOA A.B. ApxaHrejibCKoro [2] AOKa3aTeJibCTBa (J)aKTOpH3a-

UHOHHoft TeopeMbi MapAeuiHHa. 
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Results and Independence Results in Set-Theoretical 
Topology 

A. Hajnal 

The lecture contained a survey of results obtained by the author and I. Juhâsz 
concerning the following problems : 

(A) How large discrete subspaces can be found in a T2 space of large cardinality? 
(B) What cardinalities can a T2 space have? 
(C) Under what conditions do the following properties imply each other: 

(1) R is hereditarily «-separable, 
(2) R is hereditarily a-Lindelöf ? 

Here is a list of publications where most of the results stated can be found : 
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Topological Structures 

Horst Herrlich 

"New points of view on old subjects are needed. There are too many point set topo-
logists, and not enough who pay attention to what a topological space ought to be." 

Saunders MacLane, Notices Amer. Math. Soc. 21 (1974), 183. 

The concept of a topological space has been a prime object of topological 
investigations. Unfortunately it suffers from certain deficiencies such as : 

(a) The category Top of topological spaces and continuous maps is not as well 
behaved as one would like it to be; e.g., Top is not cartesian closed, i.e., it is not 
possible to supply for any pair {X9 Y) of topological spaces the set XY of all continu
ous maps from Y to X with a topology such that {XY)Z is naturally isomorphic to 
XY*Z. Also, in Top the product of quotient maps in general is no longer a quotient 
map. 

(b) Several important concepts of a topological nature—such as uniform con
vergence, uniform continuity, and completeness—cannot be expressed in the 
framework of the theory of topological spaces. 

There have been serious efforts by prominent mathematicians to remedy this 
situation. But none of the solutions offered is free from all the deficiencies men
tioned above. The purpose of this note is to stimulate discussion on these matters 
among point set topologists. 

A. General features of convenient topological categories. To remedy the defi
ciencies mentioned in (a) several substitutes for Top have been suggested, e.g., 

{a) suitable subcategories of Top, e.g., 
the category of Kelley spaces which is the coreflective hull of all compact 

Hausdorff spaces in the category Haus of Hausdorff spaces and continuous maps; 
the category of compactly generated spaces which is the coreflective hull of all 
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compact Hausdorff spaces in Top; 
the category of sequential spaces which is the coreflective hull of all (compact) 

metrizable spaces in Top. 
(/3) suitable supercategories of Top, e.g., 

the category of quasi-topological spaces and continuous maps; 
the category of limit spaces and continuous maps; 
the category of filter-generated merotopic spaces and merotopic maps. 

Several of the above categories have some other deficiencies, e.g., we do not 
know how to describe them in a sufficiently elegant manner directly from suitable 
axioms. But the general features of convenient topological categories A become 
apparent: 

A should be a cartesian closed concrete category with small fibres, just one 
structure on any one-point set, and such that initial structures for arbitrary sources 
exist. Equivalenti^, the following conditions should be satisfied : 

(Top 1) A is (complete and) cocomplete, 
(Top 2) A is (well-powered and) co-well-powered, 
(Top 3) for any A-object A the functor Ax- : A -» A preserves colimits, 
(Top 4) the terminal A-object T is a separator and the functor hom(7\ —) : A -> 

Set preserves colimits. 
A list of references concerning this subject is provided in H. Herrlich, Cartesian 

closed topological categories, Math. Colloq. Univ. Cape Town 9 (1974), 1-16. 

B. Concrete topological structures. Many solutions have been offered for problem 
(b), e.g., (generalized) uniform structures, proximity structures, contiguity struc
tures, syntopogeneous structures and merotopic structures. Recent investigations 
have shown that suitable axiomatizations of each of the following concepts give 
rise to equivalent !) satisfactory solutions of problem (b): 

(a) the collection p of all "uniform covers" of a set X, 
(b) the collection y of all collections of subsets of X which "contain arbitrary 

small members", 
(c) the collection f of all collections of subsets of X which are "near" to some 

"spot" inside or outside X. 
Consider the following axioms on [x : 
(NI) fi is a nonempty collection of covers of X. 
(N2) A cover of X belongs to p, if it is refined by some member of p. 
( N 3 ) 0 ^ . 
A pair {X9 pi) may be called a preuniform space provided it satisfies the above 

axioms. A map/:(Z, p) -> (7, v) may be called uniformly continuous provided the 
preimage of each member of v belongs to p,. The category P-Unif of preuniform 
spaces and uniformly continuous maps satisfies (Top 1), (Top 2), (Top 4) but not 
(Top 3). The functor Ax-\ P-Unif —> P-Unif preserves coequalizers but in general 
not coproducts. Most of the above-mentioned "convenient" topological categories 
can be nicely embedded into P-Unif. 

Before we define several familiar full subcategories of P-Unif by adding further 
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axioms, we define the structure y = mer(^) and the structure £ = near(^) associated 
with a preuniform structure fi on X: 

WeroVVleiilUeVllAe%AczU9 

%eÇo{X-B\Beti)1:{ji. 

Then each of the structures y9 respectively £, contains complete information about 
fi since 

tti/io{Jir-l/|l/eU}^eoV«6r3i4G«3ÜGU,i4c:J7. 

Further axioms : 
(N4)Ue/ i and B e ^ imply { u p K| i7et tand K e S j e ^ 
(N5) Vie/i implies {int,, U\ Ue U} e fi where * G int^(C/) o {17, Z — {x}} G fi. 
(N6)t te / / implies {Fez Z|3 Î7 G U { £/, X - K j e ^ e / i . 
(N7) Every U G ^ has a star-refinement in //. 
(N8) Every Vie fi is refined by some finite member of fi. 
(N9) If {ini, U\UBVL] covers X then U G fi. 
Some results. The full subcategory of P-Unif whose objects satisfy axiom (N4) is 

denoted by Q-Unif. It is bicoreflective in P-Unif and isomorphic to each of the 
following categories : 

(a) the category of quasi-uniform spaces and uniformly continuous maps in the 
sense of J. R. Isbell, 

(b) the category of merotopic spaces and merotopic maps in the sense of M. 
Katëtov, 

(c) the category of discrete structure spaces in the sense of D. Harris, 
(d) the category of quasi-nearness spaces and nearness preserving maps in the 

sense of H. Herrlich. 
(N4) and (N5) is denoted by Near. It is bireflective in Q-Unif. 
(N4) and (N6) is denoted by R-Near. It is a bireflective subcategory of Near and 

equivalent to the category of regular T-uniform spaces in the sense of K. Morita, 
resp. to the category of semiuniform spaces in the sense of A. K. Steiner and E. F. 
Steiner. 

(N4) and (N7) is denoted by Unif. It is a bireflective subcategory of Near and 
isomorphic to the category of uniform spaces in the sense of A. Weil and J. W. 
Tukey. 

(N4), (N5) and (N8) is denoted by Cont. It is a bireflective subcategory of Near 
and isomorphic to the category of contiguity spaces in the sense of V. M. Ivanova, 
A. A. Ivanov, and W. L. Terwilliger. 

(N4), (N5) and (N9) is denoted by Top. It is a bicoreflective subcategory of Near 
and isomorphic to the category of symmetric (= RQ-9 — weakly regular) topo
logical spaces and continuous maps. 

(N4), (N6) and (N8) is denoted by Prox. It is bireflective in Near and isomorphic 
to the category of proximity spaces and 5-continuous maps in the sense of V. A. 
Efremovic and Yu. M. Smirnov. 

Furthermore, if an object of Near is called complete provided each (nonempty) 
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maximal dement of £ contains an adherence point, then there is a canonical con
struction by means of which any Near-object can be embedded densely into a 
complete Near-object. This completion generalizes the uniform completion of 
uniform spaces and the various distinguished Hausdorff compactifications of 
suitable topological, uniform, and proximity spaces. Moreover any strict extension, 
hence especially any regular extension, of an arbitrary topological 7\-space can be 
obtained in this way. 

Further, a topological i?0-space is compact iff—considered as a Near-object—it is 
contigual, i.e., iff it satisfies (N8). A topological ify-space is fully normal (= regular 
paracompact) iff—considered as a Near-object—it is a uniform space, i.e., iff it 
satisfies (N7). 

A topological i?0-space is regular iff—considered as Near-object—it is regular, 
i.e., iff it satisfies (N6). 

A topological i?0-space is normal iff—considered as Near-object—its contigual 
reflection is regular (equivalently, uniform). 

Further details and a reference list are contained in H. Herrlich, Topological 
structures, Math. Centrum Amsterdam 52 (1974), 59-1^. 
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Tpyflbi Me>KAyHapoAHoro KoHrpecca MaTeMaTHKOB 
BaHKyBep, 1974 

HeKOTOpbie 3KCTpeMajibHbie 3aAaiH TeopHH 

AnnpOKCHMaujiH 

H. n. KopHeflqyK 

B ^oKJia^e 6y^yT H3Jio>KeHbi HeKOTopue pe3yjibTaTbi no TOHHOMY pemeHHio 
SKCTpeMajibHbix 3aAan TeopHH npH6jiH>KeHHH, nojiyneHHbie B nooneAHHe ro#bi B 
ĵ HenponeTpoBCKOM rocyAapCTBeHHOM yHHBepCHTeTe. 

B pHAe cjiynaee ycnex 6biJi AocrarHyT 6jiaroAapH BBeAeHHK) cneunajibHoro 
onepaTOpa, c onpeAeJieHHH KOToporo MH H na^HeM. ByAeM noKa paccMaTpHBaTb 
27T-nepH0AHHecKHe ^HKUHH (HenepnoAHHecKHfi cnynafi 6yAeT oroBapHBaTbcn 
oco6o). nycTb V—MHOMcecTBo (J)yHKUHH c orpaHHqeHHbiM H3MeHeHHeM Ha nepHo^e, 
a WrV{r = 1,2, •••)—MHO ĉecTBO r-x nepHOAHHecKHX HHTerpajiOB OT/e V. JhoSyio 
4>yHKumo f{x) ^ const H3 WW (H Aa>Ke H3 6ojiee iiinpoKoro MHoacecTBa) MOHCHO 

npeACTSBHTb B BH ê 

(1) /(*) = 2 (PJL*) + d (*o ^ * ^ *o + 2w), 

r^e d = A*o)> |/(*o)| = minÄ |/(*)|, npnneM 
(a) <pk{x)—a6coJiK)THO HenpepbiBHbie (J)HHHTHbie 4>yHKU[HH c HOCHTCJIHMH [aÄ, ft] 

c [XQ9 X0 + 27r], CTporo MOHOTOHHbie Ha HHTepBajiax {at,, a'k) H (ft, ft) {ak < ak ^ 
ft < ft) H nocTOHHHbie Ha [a*, ft], ecjiH dk < ß'k\ 

(b) ecjiH x e (aÄ, c^) U (ft, ft), TO/ (X) = c)A(x) + const; 
(c) J^|/(*)|£fa = E* Jft|w(*)|<k + 2*|rf|; 
(d) *W) = s* ̂ â(̂ ). 
riojio>KHM AJIH / e FT ! K ( / # const) 

0C/Î *) = S w(*) + H (0 S x ^ 2%)9 
k 

r^e (f>k{x)—yßbmaiomaH nepecTaHOBKa (J)yHKUHH |p*| Ha [0, 2TT]. H3 onpeAeJieHHH 
© 1975, Canadian Mathematical Congress 
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onepaTopa 0 H CBOHCTB (a)—(d) pa3Jio>KeHHH (1) cjieAyeT, HTO Q{f, x) ne B03pac-
TaeT H a6cojiK)THO HenpepbiBHa, $( / , x) > \d\ AJIH 0 g x < â = sup*(ft - ak), 
0{f9 x) = \d\ AJIH A ^ x S 2%9 npHneM 

l<Kf,x)dx=\\f\\L= \\f\dx, 
<Kf, 0) = i VHf)+ \d\ = i\\f \\L + 14 

BecbMa ncwie3HHM OKa3ajiocb ÄajieKO He TpHBHajibHoe HepaBeHCTBO [1], [2] 

|0'(/,*)|^if0(/",O<fc, 
^ 0 

TOHHoe Ha MHOHcecTBe W3V. 
CjieAyioiune ABa (})aKTa oôycjiOBHJiH 3(J)(j)eKTHBHOCTb Hcnojib30BaHHH onepaTopa 

0. 
(1) OnepaTOp 0 IIO3BOJIHJI o6Hapy>KHTb H onncaTb c noMombio TOHHMX Hepa-

BeHCTB HOBbie SKCTpeMajibHbie CBoficTBa AH4)$epeHi;HpyeMbix nepnoAHHecKHx 
(J)yHKu;HH. JXJIR a > 0 nycTb 7jaQ{x) = \ (0 ^ x < a)9 r)a^{x) = 0 {x ^ a) H 

*, tó - I T r^r-i(0 * (0 û x < a)9 

l o {x ^ a), r= 1,2,— . 

JlerKo npoBepHTb, HTO ^ / w > r (A:) = 0{gnr, x) (0 ^ x <; 27r), rAe gwr(*)—*-ft nepHO-
AHHecKHft HHTerpaji OT gnQ{x) = sign sin «x/4« c HyjieBbiM cpeAHHM 3HaneHHeM 
Ha nepHOAe. 

TEOPEMA 1 [2]. ECAU g e WrV{r = 1, 2, •••), Vfr(gM) ^ 1 u npu nemmopOM 
a > 0 

2*r 

/rco|0'(& *) | ^ |^crW| ötfscte « û ( 0 , a)9 zde 0'{g9 x) cyufecmeyem, m.e. nonmu eaody. 

CJIEACTBHE. ECAU g e W*V {r = 1, 2, • »), Vfr(gM) S 1 u \\g\\L S | M L , mo 
\0'{g9 X)\ S \0'{gnr, X)\ {0<X< Tu/n). 

TEOPEMA 2[1]. flycmbge WV{r = 1,2, - ) , \gir){x)\ g 1 u \\g\\c S | | ^ r | | c , zde 
<f>nr{x) = 4ng„r{x). Tozda non/m eciody na (0, %\n) eunoAnnemcn, no Meubiueu 
Mepe, oduo U3 Hepaeencme: 

\0'{g, X)\ S \0'(<t>»n X)\ UAU 0{g, x) ^ 0{(])nr9 x)9 

a npu r ^ 3 nepeoe Hepaeencmed eunoAnnemcn o6H3ameAbuo. 

Cc|)opMyjiHpoBaHHbie yTBep>KAeHHH MO>KHO paccMaTpHBaTb KaK aHajiora TeopeMbi 
cpaBHeHHH A.H. KojiMoropoBa [3]: ecjiH | g | | c ^ llflMIc H k ( r ) W | ^ 1» TO H3 
paBeHCTBa g{a) = (/>nr{cc) cjieAyeT \g'{a)\ ^ flnr(a)\. 

(2) C noMombK) onepaTopa 0 MO>KHO B pHAe cjiynaeB nojiyHHTb TOHHyio oijeHKy 
AJIH HHTerpajia OT npoH3BeAeHHH AByx 4>yHKijHH. flycTb H«1—KJiacc HenpepbiBHbix 

file:////f/dx
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2^-nepHOAHHecKHx (J^HKUHH A X ) TaKHX, HTO | / ( * ' ) " - / ( * " ) | è <t)(\x'-x"\), rpß 
<o{t)—3aAaHHbift MOAyJib HenpepbiBHOcTH, KOTopbift Be3Ae HHHce MM cHHTaeM 
BbinyKJibiM. 

TEOPEMA 3 [1], [2]. ECAU geV, $*g{t) dt = 0, mo 

2% 2% 

(2) sup \ g{t) A*) dt < mm \ 0{GC9 t)a>'{t)dt9 
/e/fw 0 e 0 

zde Gc{x) = \*cg{t) dt. Cywficmeyiom <pyMU)uu geV, òAH Komopux e (2) uMeem 
Mecmo 3uaK paeencmea. 

nepexoMcy K paccMOTpeHHio KOHKpeTHbix 3aAan. 

1. Hamiynuiee npn6jiH>KenHe TpnroHOMeTpHHecKHMH nojiHHOMaMH Ha 
KJiaccax AH(|)(l)epeHu,HpyeMbix (j)ynKu,HH. nycTb X ecTb npocTpaHCTBO C HJIH 

L 2̂ -nepHOAHHecKHx ^ymiumAx) H 

En{f)x= inf \\f-T\\X9 

rAe FL-i~noAnpocTpaHCTBO TpnroHOMeTpHHecKHX nojiHHOMOB nopHAKa n — \ 
(dim F^w_! = 2n - 1). Mepe3 WrH» o6o3HaHHM KJiacc (f)yHKijHH / H 3 Cr, y KOTOpbix 
f(r) G JJa> {W^H* = H°>). Ecmfe WrH(û

9 TO B CHJiy COOTHOIIieHHft ABOHCTBeHHOCTH 
C M . HHKOJibCKoro [4] 

2% 

En{f)c= SUp lg{t)A'\t)dt9 
8^Wr

Ln 0 

rAe g G Wr
Ln 03HanaeT, HTO g{x) opToroHajibHa noAnpocTpaHCTBy F$n_19 g{r~l){x) 

aôcojiioTHO HenpepbiBHa H ||g(r) ||L ^ 1- nycTb g e Wr
Ln H g\{x)—HHTerpaji OT g c 

HyjieBbiM cpeAHHM 3HaneHHeM Ha nepHOAe. TorAa gì e Wffi H, KaK cjieAyeT H3 
pe3yjibTaTOB CM. HiiKOJibCKoro [4], | | £ I | | L ^ ||^»r||L- rio TeopeMe 3 

2% 2% 

0 0 

= I y*/n.Mû>'(t)dt - J [^/w,r(0 - 0{gi> OMO dt. 
0 0 

nocjieAHHH HHTerpaji no CJICACTBHKD H3 TeopeMbi 1 HeoTpHi;aTejieH, noaTOMy AJIH 

juoôoPifeWH" 
2% 

(3) W)c £ f v,/m,JtW(t) & 
0 

JlerKO npoBepHTb, HTO npaBaa nacTb (3) coBnaAaeT c HopMofi B C JpyHKixm fnr{x) 
= fnr(<*>> x) nepHOAa 27c]n c HyjieBbiM cpeAHHM 3HaneHHeM Ha nepHOAe, y KOTopofl 

f(r)(rì -f(r\- J ^ 2 * ) {O^X^ %\2n)9 

JnAX) 7„oW \\o>{2%\n - 2x) {%\2n ^x^ %\n)9 

fnoi - X) = - fn0{x). 

TaK KaK/Mr 6 WrH°> H E„{fnr)c = \\fnr\\c> TO npHXOAHM K COOTHOUieHHHM [1] 
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n/n 
sup E„(f)c = || fnr ||c = j 7]M/,,r(t)t»'(f)dt 

fëW'H<» 0 

(4) = T^r J 9«.r(0û>(£) * (' = 0, 1, 2,-. ; « = 1, 2, -.). 

npH œ{t) = Ift STO ecTb H3BecTHbifi pe3yjibTaT 4>aBapa-AxHe3epa-KpefiHa AJIH 
KJiaccoB KW&1 {r = 0, 1, •••) (J^HKIüHH / e C , y KOTOpbix f{r){x) aßcojiioTHO 
HenpepbiBHa H vrai supx |/ (r+1)C*:)| ^ AT. 

AHajiorHHHo, c noMomuo TeopeMbi 2, MO>KHO npnft™ K cjieAyiomHM paBeHCTBaM 

[1]: 

/eSup (̂/)L = ||/.|k = 7^-J^-^KÌ)^ 
OTMCTHM eux** pe3yjibTaT A.A. Jluryua [5], KOTopufl yeraHOBHJi, HTO B Hepa-

BeHCTBe ü^ceKcoHa 

s*Ar S £ « ( / " . £)x 

{p>{f> t)x—MOAyJIb HenpepbIBHOCTH (})yHKl]iHH/BnpOCTpaHCTBe X) npH X= CHJIH 
L H Bcex HeneTHbix r HaHMeHbuiee B03MO>KHoe 3HaneHHe KOHCTaHTbi cr ecTb 
2/rc 2 £ . O ( 2 * + l ) - r _ 1 . (ZIJIH r = 1 STO paHee AOKa3aJi B.B. >KyK [6].) Cymec-
TBeHHO, HTO 3Aecb yKa3aH JiHHefiHbiH onepaTop H 3 I B F$„_l9 ocyiuecTBJiHwiUHö 
npHÖJMÄeHHe C 3TOH KOHCTaHTOH Ha BCeM MHOÄeCTBe 4>yHKE[HH / , y KOTOpblX 
Ar)eX. 

2. HaHJiynuiee paBHOMepHoe npHOJiHKeHHe Kjiacca WrH<* KjiaccoM KW$\ 
ECJIH <p${x) H3 KWfâ1 ecTb (fyyHKUHH HaHJiyHHiero paBHOMepHoro npHÖJiH>KeHHH 
AJIH / G WrH°>9 TO B cHJiy oômero KpHTepnn Ho(f)4)e-THxoMHpoBa [7] cymecTByeT 
4>yHKiiiHH go e V c eAHHHHHOH Bapnaunen H HyjieBbiM cpeAHHM 3HaneHHeM Ha ne-
pHOAe TaKan, HTO 

2% 2% 2% 

J Wfeo = sup J <pdg09 \\f-<po||c = f ( / - <Po)dgQ. 
0 y^KWÏÏ1 0 0 

3 T H cooTHoiueHHH, a TaK>Ke TeopeMa 3 no3BOJiHK)T nojiynHTb ouemey 

p(/, KWtf)c
Aâ inf ||/ - cp\\c g J [o,'(0 - K]0(gr, t) dt, 

<p^KWrM+l ° 

rAe gr (-v)—r-ö nepHOAHnecKHH HHTerpaJi OT g0 TaKofi, HTO j§* sign g r(0 dt = 0. 
ECJIH BbiôpaTb b > 0 TaKoe, HTO6M 6biJio [|9*r||i = ||0(£r)||i,> TO no TeopeMe 
1 10'{gn 01 = | Vàri*) | (0 < * < Ä) H Mhl npnxoAHM K HepaBeHCTBaM [2] 

p{f9 KW'^c ^ \ [a>'(0 - K]Vbr{t)dt g max f [co'(0 - K]Var{t)dt. 
0 OêatÊn 0 

riocjieAHHH oueHKa Ha KJiacce WrH°> TOHHa, KorAa K = Kn BbiöpaHO TaK, HTO 
MaKCHMyM B npasoH nacTH AOCTHraeTCH npH a = %\n {n = 1,2, •••). 
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3 . nonepeiHHKH KJiaccos (|)yHKu,HH H SKCTpeMajibHbie noAnpocTpancTBa. 
nycTb FN—noAnpocTpaHCTBO pa3MepHocra N HOpMHpoBaHHoro npocTpaHCTBa X 
H AJIH 3K <= X 

EW,FN)X= sup inf \\f-p\\x. 

iV-MepHbiM nonepeHHHKOM (no KojiMoropoBy) MHO^ecTBa 3H B npocTpaHCTBe X 
Ha3biBaioT BejiHHHHy (CM., Hanp., [8]) 

dN{<m, X) = inf^(9W, FN)X. 

ECJIH £"(5!R, FN)x = fiWSK, X)9 TO FN Ha3bmaeTCH SKCTpeMajibHbiM noAnpocTpaH-
CTBOM AJIH SW B X. H3 npHBeAeHHbix B n. 1 pe3yjibTaT0B cjieAyeT, HTO KorAa X 
eCTb C HJIH L, TO 

(5) 4,-l(»W X) S \\fnr\\x = WW, F^x)x. 

HepaBeHCTBO d2n-.\{WrHm
9 X) ^ \fnr\x AJIH X= C coAepHCHTCH B KHHre Lo-

rentz'a [9], a AJIH X = L AOKa3aHO B .n . MoTopHbiM H B.H. PyfiaHOM [10], TaK HTO 
Ha caMOM AeJie B (5) Hy>KHO ocTaBHTb 3HaK paBeHCTBa. KpOMe Toro, B.H. Py6aH 
ycTaHOBHJi [11], HTO dto(iVrH»9 C) = d2n-\{WrHùi

9 C). TaKHM o6pa30M, Tpnro-
HOMeTpHHeCKOe nOAnpOCTpaHCTBO -FJ,-! HBJIHeTCH 9KCTpeMaJIbHbIM AJIH KJiaCCOB 
WrH°> {r = 0 , 1 , •••) B C H B L, npHneM B npocTpaHCTBe C HHKaKoe noAnpocTpaH-
CTBO pa3MepH0CTH 2« He AaeT jiyniuero npH6jiH>KeHHH. 

OTMeTHM, HTO B cjiynae o){t) = Kt9 T.e. AJIH KJiaccoB KWfc {r = 1, 2, •••) STH 

pe3yjibTaTbi B npocTpaHCTBe C 6MJIH paHee nojiyneHbi B. M. THXOMHPOBHM [8], 
[12], a B npocTpaHCTBe L—K).H. MaKOB030M [13]. 

Hcnojib3yn TeopeMbi 1 H 3 MO>KHO AOKa3aTb [14], HTO ecjiH npH HeKOTOpoM r = 
0, 1, 2, ••• noAnpocTpaHCTBO FN HBJineTCH SKCTpeMajibHbiM B C AJIH WrH°> npH 
o){t) = t9 TO FN 6yAeT SKCTpeMajibHbiM B C AJIH KJiacca WrHm npn JIIOôOM BbinyK-
jiOM œ{t). B nacTHOCTH, noAnpocTpaHCTBO S%„ nojiHHOMHajibHbix cnjiaHHOB nopHAKa 
r H Ae(J)eKTa 1 no paBHOMepHOMy pa36neHHK) fc?r/w 9KCTpeMajibH0 B C He TOJibKo 
AJIH KJiacca WÖ"1, KaK noKa3aji B.M. THXOMHPOB [12], HO H AJIH KJiacca WrH*. 
3aMeTHM OAHaKo, HTO XOTH nonepenHHKH KJiacca W&1 B C peajiH3yioT HHTepno-
jiHUHOHHbie cnjiaftHbi H3 ££« [12], Ha KJiacce WrH" B cjiynae HejiHHeöHOcra œ{t) Ha 
[0, %\ri\ 9TOT $aKT no KpafiHefi Mepe npH ne raux r He HMeeT MecTa. 

4. npHÖJiHiKenne HHTepnojimj,noHHbiMn cnjiaHHaMH Ha Kjiaccax c^yHKujiH. 
3Aecb 6H6jiHorpa(J)HH npeAiuecTByiomHX HCCJieAOBaHHft ocoßeHHo oÖiiinpHa, HO 
Mbi, KaK H B npeAbiAyiUHX nyHKTax, orpanHHHMCH TeM, HTO npHBeAeM necKOJibKo 
HaHÖojiee HHTepecubix, Ha Hani B3IVIHA, oKOHHaTeJibHbix pe3yjibTaT0B. 

npH oueHKe norpeniHocTH npHÔJiHMceHHH cnjiafiHaMH Ha KJiaccax AH(J)(J)epeHUH-
pyeMbix (̂ yHKUHH pemaïoinyio pojib HMejio HccjieAOBaHHe SKCtpeMajibHbix CBOHCTB 

HApa HHTerpajibHoro npeACTaBjieHHH STOH norpeniHocra H noJiyneHHe yTBep>K-
AeHHH Tnna TeopeMbi 3. ByAeM o6o3HanaTb nepe3 amn{f9 x) HHTepnojinuHOHHbie 
spMHTOBbi cnjiaftHbi nopHAKa 2m + 1 H Ae^eKTa m + 1 no pa3ÖHeHHK) A = {0 = 
*o < *i < ••• < xn = 1} TaKHe, HTO ag i ( / , xk) = fU)(xk) 0' = 0 , 1 , •••, m\ k = 0, 
1, •••, n). MHOKecTBa 3aAaHHbix Ha [0, 1] 4)yHKU,HH, Booßme roBOpn HenepHOAH-
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necKHX, ycjiOBHMCH OTMeHaTb nepTOH CBepxy. npeAnoJiaran HTO W C CS, HO 3K <£ 
C s + 1 , nojiOÄHM 

*m* à)u = ™V II/"" ^ / 2 3 . » ( / ) | | L , ( 0 , 1 ) O S P ^ CO). 

ZJjiH KJiaccoB Wr
L (r = 1,2, •••) §y\m\m f9jf KOTOpbix / ( r - 1 ) aôcojiioTHO Henpe-

pbiBHa Ha [0,1] H \f{r) ||Lf(0f i) ^ 1 {Wr
L„ = ^fo) B. JI. BejiHKHH AOKa3aji [15], HTO 

A^Sf> ^)c = \A|'/-i [(r - 1)!!]-2 2"' {r HeneTHo),1 

£{Wl, A)L = \A\ (r!)-i 2-r (r nemo), 

rAe |^ | = max^^jx ;* - xÄ_i), ja TaK^e npn Bcex neTHbix r BMHHCJIHJI 3Ha-
neHHH BejiHHHH ê{Wr

M9 A)Lp9 ê{Wr
U9 A\ H ê{Wr

L9 A)c. B^paôoTe [15] AaHa TaKace 
HeyjiynmaeMan Ha MHo^cecTBe Cr {r = 1, 3, 5, •••) oijeHKa 

\Ax) - ^ C - D / 2 . * (/, *) | è \A\r r-i [{r-1)!!]-2 2"-i *(/<">, |A\). 

MTO KacaeTCH KJiaccoB WrH°>9 TO MU Mo>KeM yKa3aTb Ha nojiyneHHbie B eraTbe 
[17] paßeHCTBa 

1 Ml/2 _ 1 IJI 

<̂ ( ww°>9 A)c = ~- | ^ ( 0 * ; <r( *r3#», j ) c = -±- J f ( j - t)a){t) du 

KOTopbie HHTepecHO conocTaBHTbc cooTHomeHHHMH (4)n. 1 npH r = 2 H 3. 
OTMeTHM eme, HTO B paôoTax B.JI. BejiHKHHa [18] H A.A. )KeHCbiK6aeBa [19], 

[20] nojiyneH pHA oKOHHaTejibHbix pe3yjibTaTOB no ouemce npHÔJiHMceHHH HHTep-
nojiHUHOHHbiMH cnjiafiHaMH Ae^eKTa 1 Ha KJiaccax HenpepbiBHbix H AH^epemjH-
pyeMbix nepnoAHHecKHX 4)yHKn;Hfi. 

5. Hatuiymiiue KBaApaTypHbie (j)opMyjibi AJIH KJiaccoB cj)yHKu,HH. PaccMa-
TpHBaioTCH KBaApaTypHbie c^opMyjibi BHAa 

(6) f Ax) dx = £ E PkiAHxk) + R{f). 

ECJIH 30î—HeKOTopbifl KJiacc 3aAaHHbix Ha [a9 b] H AocTaTOHHoe HHCJIO pa3 AH(|)(})e-
peHiüHpyeMbix (JDyHKijHH, TO 3aAana COCTOHT B OTbicKaHHH BejiHHHHbi 

inf sup|*( / ) | 
x,.ßu /GSK 

H B yKa3aHHH y3JIOB Xk H K03({)4)HIJHeHTOB pk» peaJIH3yiOIli;HX TOHHyK) HH>KHK)K> 
rpaHb. fljiH KJiaccoB (})yHKi;HH c orpaHHHeHHoft no HopMe B LP r-oft npOH3BOAHoft 
3Ta 3aAana peAyuiHpyeTCH K 3KBHBajieHTH0ft 3aAane MHHHMH3au;HH HopMbi HCKOTO-

poro MOHOcnjiaftHa B conpH^eHHOH MeTpHKe [21], [22]. 3Aecb nojiyneH pnA 
oKOHHaTeJibHbix pe3yjibTaTOB (KaK B nepHOAHHecKOM, TaK H B HenepHOAHHecKOM 
cjiynanx), npnneM Hanöojiee AaJieKo HccjieAOBaHHH B STOM HanpaBJieHHH npoABH-
HyTbi B paôoTax H.E. Jlymnan (CM., Hanp., [23]). (IloApoÔHee 06 9TOM CKa3aHO B 
AoöaBJieHHH aBTopa K HaxoAnmeMycH B nenara BTopOMy H3AaHHK) KHHrn [21].) 

Ba3Hpyncb Ha coBepmeHHo HHHX HAenx H Hcnojib3yn TOHKHe (J)aKTbi Tonojio-
rnnecKoro xapaKTepa, a TaK^e paccy>KAeHHH, CBH3aHHbie c npHMeHeHHeM onepaTopa 

^ J I H neTHbix r BejiHHHHa <f ( W£, A)c BbiHHCJieHa paHee B [16], 
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0 , B . n . MoTOpHbift AOKa3aji [24], HTO cpeAH KBaApaTypHbix 4>opMyji (6) npH [a, b] 
= [0,2%] H p = 0 , l nanjiyHineft AJIH onpeAeJieHHbix B n. 1 nepHOAHHecKHx KJiaccoB 

Wr
u {r = 1,2, •••) H WrH«> {r = 1, 3, 5, •••) HBJIHCTCH 4)opMyjia npHMoyrojibHHKOB 

c xk = 2k%\n9 pkQ = 2%\n9 pki = 0. BepxHHH rpaHb ocTaTKa STOH (JDopMyjibi 

Ha yKa3aHHbix KJiaccax paBHa cooTBeTCTBeHHo 2% \ abnr \\c H 2^| | /M r ||c. 
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Quelques Problèmes de Factorisation 
d'Opérateurs Linéaires 

Bernard Maurey 

En 1956, A. Grothendieck a démontré le résultat suivant : Tout opérateur linéaire 
continu d'un espace C{K) dans un espace L1 se factorise par un espace de Hilbert. 
Plus précisément, il existe une constante KG telle que pour tout compact K, et 
pour tout opérateur linéaire u de norme g 1 de C{K) dans un espace L1, il existe 
une probabilité de Radon pi sur K telle que w admette la factorisation : C{K) _Z> 
L2{K, ß) Ä L1, où j désigne l'application naturelle de C{K) dans L2{K9 ju), et où 
!« I £ KG (voir [2], [5]).* 

Dans le cas d'un opérateur de c0 dans un espace L1, le résultat prend la forme 
suivante: Tout opérateur linéaire u de norme ^ 1 de CQ dans un espace L1 admet 
la factorisation c0 _̂> l2 JU L1, où a est un opérateur diagonal (ßn) -• {a„ß„)9 

avec E|a:w|2 g 1, et où ||û|| g KG. Cette dernière propriété peut être interprétée 
comme une propriété des séries inconditionnellement convergentes dans un espace 
L1 : si £*„ est une série inconditionnellement convergente dans un espace L1, avec 
||2e„#w|| ^ 1 pour toute suite de nombres en = ± 1, on peut trouver une décom
position xn = anyn9 où {cc„) est une suite scalaire telle que S|^«|2 è 1, et où {yn) 
vérifie : V ( / U |2&J>»M *c(2|A,|2)1 / 2 . 

Du point de vue dual, on peut dire que tout opérateur linéaire continu d'un 
espace L°° dans l1 admet la factorisation L°° —• l2 _^ 71. Plus généralement Gro
thendieck a démontré que tout opérateur linéaire u de norme ^ 1 d'un espace C{K) 
dans Ll{Q9 /u) admet la factorisation : 

C{K) _ i _ L2{09 [S) _If_ L\Q9 ju), 

iCettG constante n'est pas égale à la constante KG de [5]. 
© 1975, Canadian Mathematical Congress 
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où Tg désigne un opérateur de multiplication Tg{f) =fg9 avec J l ^ l 2 ^ ^ 1, 
et ||â|| ^ KG. 

Nous étudierons dans ce qui suit deux problèmes de factorisation suggérés par 
le théorème de Grothendieck. L'un concerne simplement la possibilité de factoriser 
un opérateur donné à travers un espace de Hilbert. L'autre problème est l'étude 
des espaces de Banach E vérifiant la propriété suivante: 

Tout opérateur linéaire continu d'un espace C{K) dans E admet la 
(D) factorisation C{K) ±> L2{K9 pi) -> E, où pt est une probabilité de Radon 

sur K. 

Comme dans le cas du théorème de Grothendieck, la propriété (D) admet deux 
propriétés équivalentes: la décomposition des suites {xn) telles que la série £*„ 
soit inconditionnellement convergente, sous la forme x„ = anyn9 H\an\

2 < oo, 
sup{||2]/3w>>w||; L|/3„|2 g 1} < oo, et la factorisation des opérateurs linéaires con
tinus de E' (dual de E) dans un espace Ll{Q9 pi) sous la forme E' —> L2{Q9 pt) 1$, 
Ll{09 /x), avec g e L2{Q9 pi). 

A partir de cette dernière formulation, il est naturel de poser une question plus 
générale: trouver un critère pour qu'un opérateur linéaire continu u d'un espace de 
Banach jFdaàs un espace JJ{Q9p)9 0 < p < oo, admette la factorisation: 

(F,) FSL*{a,fx)ï->LP{Q9fi) 

avec/? ^ q :g oo, ü continu et g e Lr{Q9 fi), l/p = l/q + 1/r. 

THéORèME 1 ([13] ET [6, CHAPITRE I]). Pour que u\F-+ U{Q9pi) admette la fac
torisation {Fg) il faut et il suffit qu'il existe une constante C telle que 

(KEl^h)*'« dfx^P ^ C(S NI*)1'*, V {xn) e F 
La démonstration utilise des arguments de convexité, et en particulier une forme 

du théorème du minimax. Ce théorème a été généralisé dans un cadre plus abstrait 
par J. L. Krivine [12, Exposés 22—23]. 

La condition (D) est en général difficile à vérifier directement. Nous allons in
troduire une condition sur les suites "presque inconditionnellement convergentes", 
c'est-à-dire les suites {xn) telles que la série %enx„ converge pour presque tout 
choix de signes en = ± 1 . Nous dirons qu'un espace de Banach E est de cotype 2 
si'il existe une constante K telle que: 

(Q ( S ||*„||2)i/2 ^ K{i\\T,xnen (0||2 dP{t)Y'29 V {xn) e E9 

où {en{t)) désigne une suite de variables de Bernoulli sur un espace de probabilité 
{X9 P), c'est-à-dire une suite de variables aléatoires indépendantes, prenant les 
valeurs ± 1 avec probabilité 1/2. 

On vérifie facilement que &{Q9 pi) est de cotype 2 pour 1 ^ p g 2 (en utilisant 
les inégalités de Khintchine). Plus généralement, si E est de cotype 2, U>{09 fi9 E) 
est de cotype 2 pour 1 ^ p ^ 2. Si A est une C*-algèbre (non nécessairement com
mutative!), son dual Ä est de cotype 2; ce résultat nettement plus difficile est dû 
à N. Tomczak [14]. 



FACTORISATIGI. D'OPéRATEURS LINéAIRES 77 

THéORèME 2. (C) => (D). 

(Ce théorème contient le théorème de Grothendieck, puisque L1 est de cotype 
2.) 

La démonstration se fait en deux étapes: la première, assez facile, consiste à 
montrer que lorsque E est de cotype 2, tout opérateur linéaire continu de E' dans 
un espace &{Q9 p) admet la factorisation (F2), lorsque 1 < p ^ 2. Dans la deux
ième étape, plus difficile, on passe de p > 1 kp = 1. Cela peut être fait d'au 
moins quatre façons différentes: [6, Chapitre VIII], [11, Exposé XXII, Théorème 
1 bis], [9] ou [10]. 

On peut généraliser la propriété (D) de la façon suivante: Notons LP{Q9 pi) 
l'espace vectoriel des classes de fonctions mesurables scalaires sur un espace de 
probabilité {O, pi)9 muni de la topologie de la convergence en probabilité. On a 

THéORèME 2 BIS. Supposons que E vérifie (C) et que E' vérifie Vhypothèse d'ap
proximation bornée. Tout opérateur linéaire continu de E' dans un espace L°{û9 pi) 
admet la factorisation: E' —> L2{Q9 pi) £4 LP{Û9 fJ)9 avec g e Iß{Q9 pi). 

Cet énoncé s'applique en particulier aux opérateurs d'un espace L°° dans un 
espace L°(0, pi). En fait on étend facilement le résultat aux espaces j£f°° de [5], donc 
aux espaces C{K)\ le Théorème 2 bis donne dans ce cas une généralisation du 
théorème de Grothendieck aux opérateurs de C{K) dans L°(û, pi). (C'est bien une 
généralisation dans la mesure où tout espace L1 peut se plonger dans un espace 
LQ{Q9/x).) 

Le Théorème 2 bis permet de réduire certaines questions concernant des fonc
tions mesurables quelconques au cas de fonctions de carré integrable. Par exemple, 

COROLLAIRE 1 [9]. Soit {X„) une suite d'éléments de L°(û, pi) telle que J^X„ soit 
inconditionnellement convergente en probabilité {c'est-à-dire que SZ„ converge en 
probabilité pour toute suite de signes en = ± 1). // existe Z e LP{Q9 pi) tel que 
Z~lXn e L2{Q9 pi) pour tout n, et que J^Z~lXn converge inconditionnellement dans 
L2{Û,pt). 

A partir de ce corollaire, on peut obtenir en utilisant un théorème classique de 
Menchov : 

COROLLAIRE 2 [6, COROLLAIRE 96]. Soit {X„) une suite dans L°{Q9 pi)9 telle que 
J^X„ converge inconditionnellement en probabilité. La série J]Xn/log{n 4- 1) con
verge presque sûrement. 

Le résultat est le meilleur possible dans le sens suivant : Si {ccn) est une suite 
décroissante vers zéro telle que J]anXn converge presque sûrement dès qu£ J^X„ 
converge inconditionnellement en probabilité, on a an = 0(1/log n) [8]. 

On peut se demander si le Théorème 2 admet une réciproque, à savoir: 
Question 1. Est-il vrai que (D) => (C)? 
D'après [1], la réponse est oui si l'espace E est un treillis norme, ou plus générale

ment un espace muni d'une structure locale inconditionnelle. 
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Dans la cas général, on montre dans [10] que: si E vérifie (D), il existe pour 
tout q > 2 une constante Kq telle que 

(Ski«)1'« ^ * , a i Z W ) | 2 dP(t)r*, V(x„)eE. 
Dans une seconde partie, nous allons nous intéresser au problème général de la 

factorisation d'un opérateur linéaire à travers un espace de Hilbert. Une condition 
nécessaire et suffisante a été donnée par Lindenstrauss et Pelczynski : Si {xn) et (;;„) 
sont deux suites d'éléments de E, nous noterons {xn) < {y„) si l'on a 

THéORèME 3 [S\. Un opérateur linéaire u entre deux espaces de Banach E et F se 
factorise par un espace de Hilbert si et seulement s'il existe une constante C telle que 

M < {yn) => S |K*„)||2 û C2 L \\yn\\2
9 V(*w), {yn) e E. 

Ce critère n'est pas facile à vérifier en général. Il permet néanmoins de déduire 
un résultat de S. Kwapien, que nous allons énoncer après quelques définitions. 

Un espace E est dit de type 2 s'il existe une constante stelle que 

(III S^eB(0|2 ÄX0)1/a ^ *(Z k l 2 ) 1 ' 2 , v(*„) e E. 
On voit facilement que LP9 2 ^ p < oo, est de type 2. Plus généralement LP{E) 

est de type 2 si E est de type 2, 2 ^ p < oo. Si J? est de type 2, il en est de même de 
ses sous-espaces et de ses quotients, et le dual E' est de cotype 2. (Par contre ll est 
de cotype 2, mais l°° n'est pas de type 2.) 

THéORèME 4 ([4] ET [11], EXPOSé VIII]). Si E est de type 2 et F de cotype 2, tout 
opérateur linéaire continu de E dans F se factorise par un espace de Hilbert. En 
particulier, si E est de type 2 et de cotype 2, il est isomorphe à un espace de Hilbert. 

Ce théorème est à rapprocher du Théorème 2. En fait, on peut poser une ques
tion, dont la solution par l'affirmative impliquerait à la fois les Théorème 2 et 4: 

Question 2. Si E' et F sont de cotype 2, est-il vrai que tout opérateur linéaire 
continu de E dans F se factorise par un espace de Hilbert? 

Citons un cas particulier de ce problème: E = A9 F - 2?', où A et B sont deux 
C*-algèbres. Plus particulièrement E = «£?(//), algèbre des opérateurs d'un espace 
de Hilbert, et F = N{H)9 espace des opérateurs nucléaires d'un espace de Hilbert. 

En modifiant très légèrement les arguments qui démontrent les Théorèmes 3 et 
4, on obtient le résultat suivant: 

THéORèME 5 [7]. Soient E un espace de type 2, EQ un sous-espace de E9 F un espace 
de cotype 2. Tout opérateur linéaire continu u de EQ dans F admet un prolongement 
linéaire continu ü de E dans F, tel que \\ü\\ g K \\ u ||, où K ne dépend que de E et F. 

COROLLAIRE. Soit E un espace de type 2. Si F est un sous-espace de E isomorphe 
à un espace de Hilbert, il existe une projection % de E sur F, telle que |rc|| ^ 
Kd{F9 H), où H désigne un espace de Hilbert de même dimension (finie ou infinie) 
que F, et où K ne dépend que de E. 
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Ce dernier résultat généralise un théorème de Kadéc et Pelczynski [3], obtenu 
pour E = LP9 2 g p < oo. 
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The Normality of Products 

Mary Ellen Rudin 

By a space9 we mean a nondiscrete Hausdorff space, and by a map we mean a con
tinuous function. References to early papers can be found in the papers listed 
in the bibliography, particularly in [3]. 

Until paracompactness was defined, we essentially knew nothing about the 
normality of products. Sorgenfrey's half-open interval topology on the line was the 
first example of a normal (paracompact) space whose square is not normal. Michael 
gave a similar example of a metric space and a normal space whose product is not 
normal. Nonnormal products with one compact and one normal factor have also 
been known for many years. It was known that o)\ x {o)\ + 1) is not normal when 
Tamano proved that, for completely regular X9 X x ßX is normal if and only if X 
is paracompact. Dowker and Katëtov independently proved that if / is the closed 
unit interval (or any compact metric space), then I x Y is normal if and only if Y 
is normal and countably paracompact. Extending this theorem, Morita proved 
that, for infinite cardinals X9 Ix x Y is normal if and only if Y is normal and X-
paracompact. The problem of finding a Dowker space (normal but not countably 
paracompact) seemed important partly because of Borsuk's homotopy extension 
theorem which had been proved to hold for spaces Y where I x Yis normal. 

Closed maps préserve normality, paracompactness, collectionwise normality, 
^-paracompactness, and ^-collectionwise normality. For a given space X, let JV{X) 
denote the class of all spaces Y such that X x Y is normal. Let ^V be the class of all 
spaces X such that Jf{X) is closed under closed maps. The class JfiX) is trivially 
closed under perfect maps since, if/:Z-> Z is perfect, then ( / x idr) :{X x Y) -> 
(Z x Y) is perfect. Morita asked if all metric and all compact spaces belong to Jf. 

Four years ago in Nice, Nagami spoke on the normality of products [5]. He 
stressed the beautiful work which had been done in space classification, particularly 
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in the discovery of a number of useful classes which are preserved under countable 
products. He called for answers to Morita's questions as well as to others almost 
all of which have now been answered. 

We know that there is a Dowker space [6\; this Dowker space is a subset of a 
box product of {o)n}neQ) and its cardinal functions are basically bounded below by 
X<u- If there is a Souslin line, we know that there is a Dowker space of cardinality 
Xi which is hereditarily separable. A Souslin tree of cardinality X, where X is the 
successor of a regular cardinal, can be used to construct a Dowker space most of 
whose cardinal functions are ^ X. 

QUESTION 1. Is the existence of a separable {ccc, 1st countable, cardinality Xi) 
Dowker space independent of the usual axioms for set theory ? 

QUESTION 2. Is there a Dowker space X x Y such that neither X nor Y is a Dowker 
space ? 

Normality does not imply countable paracompactness nor vice versa. However 
[8] if if is a metric space and Fis a normal space, then X x Fis normal if and only 
if X x Tis countably paracompact; in addition if X x Y is normal, then X x Y 
is A-paracompact (A-collectionwise normal) if and only if Y is. In fact, 

THEOREM 1 [8]. Suppose that X is metric, C is compact, and Y is normal and X-
.paracompact. Then the following are equivalent: 

{di) X x Y and X x C are both normal. < 
(b) X x Y x C is normal and countably paracompact. 
(c) X x Y x C is normal and X-paracompact. 

This allows us to answer Morita's questions. Both the class of all metric spaces 
and the class of all compact spaces are contained in N. In fact, 

THEOREM 2 [8]. If X is a metric space and C is a compact space, X x C x Y is 
normal, and Z is the image of Y under a closed map, then X x C x Z is normal. 

All of the questions about normality in products with a metric factor are tied to 
the countable paracompactness of the product. However, when one looks at nor
mality questions for products with a compact factor X, the basic requirement lies 
between the w(X)-collectionwise normality and the w(X)-paracompactness; neither 
condition is both necessary and sufficient in all cases. By w{X) we mean the weight 
of X or the minimal cardinality of a basis for X. 

THEOREM 3 [7], [10]. Suppose that X is a compact space and that Y is a normal 
space. IfXx Y is normal, then Y is w{X)'Collectionwise normal. If Y is w{X)-para-
compact, then X x Y is normal. 

Necessary and sufficient conditions for the product of a compact space and a 
normal space to be normal must of necessity be complicated, but one can give such 
conditions which together with the following basic lemma are sufficient to prove 
that all compact spaces belong to Jf. 

THEOREM 4 [7]. Assume that X is a cardinal, that Y is a space which is normal and 
a-collectionwise normal for all a < X9 that & is an open cover of Y of cardinality X9 
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and that ffl is a hereditarily closure-preserving closed refinement of<3. Then <& has a 
locally finite refinement. 

Starbird proves [8] that Jf is not the class of all spaces. However the following 
basic questions remain unanswered : 

QUESTION 3. Is there a paracompact {or collectionwise normal) space not in oV ? 
QUESTION 4. Is there a paracompact p-space not in Jf ? 
The behavior of products with a compact factor leads one to a theory of test 

spaces', a space X is a test space for property P provided a space Y has property P 
if and only if X x 7 is normal. Besides /*, X + 1 is a test space for /l-paracom-
pactness. The one-point compactification of a discrete set of cardinality X is a test 
space for /l-collectionwise normality [10]. 

Starbird [9] and Morita [4] independently discovered the following remarkable 
theorem. 

THEOREM 5. IfC is a closed subset of a normal space X, A is any compact or metriz-
able absolute neighborhood retract, and f: {C x I) [] {X x {0}) -> A is a map, 
then there exists a map extending f to X x I. 

Thus the binormal hypothesis in Borsuk's homotopy extension theorem is un
necessary ! Both Starbird and Morita also discovered a related extension theroem : 

THEOREM 6. If X is a compact space, then any map from a closed subset of C{X) 
into a w{X)-collectionwise normal space has an extension to C{X). 

Still unsolved is : 
QUESTION 5. If X is normal, C is a closed subset ofX, andf:{C x I) [] {X x {0}) 

-• Y is continuous, can f be extended to X x I if Y is an ANR {normal) ? 
The example of a Dowker space in [6] is a subset of a box product. Four years 

ago we knew nothing about the normality or paracompactness of any box product 
of infinitely many spaces. For the next theorems we assume that Zis a box product 
of a family {Xn}n(E(û of (nondiscrete) topological spaces. The fact that all of the 
positive theorems are consistency results and that we have no positive theorems 
for box products of uncountably many spaces is unfortunate. However, the prog
ress is tremendous even so. 

THEOREM 7 [1]. IfXQ is the set of all irrational numbers with the usual topology', and 
Xn = OJQ + 1 for all n > 0, then X is not normal. 

So having all factors metric is not sufficient to ensure normality. 

THEOREM 8 [2]. If each X„ = 2(c+), then X is not normal. 

So having all factors compact is not sufficient to ensure normality. However : 

THEOREM 9 [2], [11]. The continuum hypothesis implies that X is paracompact if 
each Xn is a compact space which is either scattered or of weight ^ c. 

Compact in this theorem can be replaced by ^-compact and paracompact. 
If one assumes the generalized continuum hypothesis, one can decide whether 
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any given box product of ordinals is normal [3], [12]. Assuming Martin's axiom 
rather than the continuum hypothesis, one can still prove Theorem 9 if 1st coun
table is added to the hypothesis [3]. 

QUESTION 6. Is the box product of uncountably many copies of I normall 
QUESTION 7. Can the set theoretic assumptions be removed from Theorem 9? 
1 conjecture that the answer to Questions 6 and 7 is no, but that the answer to 

the remaining questions is yes. 
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Structure Theory for Type III Factors 

A. Connes 

Motivated by the study of the regular representation of nonunimodular locally 
compact groups J. Dixmier, in 1952, introduced quasi-Hilbert algebras. M. Tornita 
proved in 1967 that any von Neumann algebra M arises from a modular Hilbert 
algebra.1 As shown then by F. Combes and M. Takesaki, each weight2 <p on M gives 
rise to a modular Hilbert algebra giving back M9 and in particular to a positive 
operator A9 (the modular operator) and a one-parameter group of automorphisms 
of M: a? (the modular automorphism group). See [7]. 

The formulas 

(A) UM) = H Sp V 
(B) p{M) = {e~2«/T

9 3 <p with of = 1} 

relating the above objects to the Powers, Araki, Woods, Krieger classification [1] 
if M is an infinite tensor product of factors of type I drove us to study the two 
invariants: 

S{M) = f) S p ^ , T{M) = {Te B9 3 tp9 o*T = 1} 

for arbitrary type III factors. 
It was essential, in this respect, to determine how the modular automorphism 

group a* depends on the choice of cp. The answer [2] is summarised in : 
(1°) For any weight tp on the von Neumann algebra M there exists a unique uni-

1 Hence a quasi-Hilbert algebra. 
zWe mean a faithful semifinite normal weight. 
3V. Ya. Golodets reached a formula very close to (A); see [2] for bibliography. 
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tary cocycle4 t -• y,t {y, denotes {Dab:D(p) because it is a "Radon-Nikodym" 
derivative) such that: 

ai{x) = y.t o%{x)[if V xe M, V t e R 
and 

(p{x) = <p{xfi-.t) V x e M+.5 

(2°) For any unitary cocycle t -> pt there exists a unique weight (f> on M such that 
{Dqb\D(p)t = fit VteR. 

Hence there exists an abstract kernel ô, homomorphism from R to the center of 
Out M = Aut M/Int M which characterises the automorphism groups a9 by the 
commutativity of the diagram: 

Aut M 

R / 

Out M 

Moreover T{M) = Ker ö and S{M) f| R$ is the spectrum (in the sense of [2]) of ö 
provided M is a factor. It follows that both are groups,6 that when S{M) ^ {0, 1} 
T{M) is the orthogonal of S{M) fi R$, while when S{M) = {0, 1}, it can be any 
denumerable subgroup of R. 

Also T and S become easy to compute ; for instance, when M is the factor arising 
from an ergodic action of a group, they are related by formulas (A), (B) to the 
invariants r and p introduced in ergodic theory by W. Krieger. 

In particular this showed that property LA of Power is not equivalent to Vx of 
Araki [1], so that in general S and r^ are different invariants. But let us enter in the 
details of the classification : Any factor of type III belongs to one of the following 
three classes : 

IIIA X e ]0, 1[ meaning S{M) = {X»9 n e Z}~9 

III0 ie. , S{M) = {0,1}, and 
Uli i.e., S{M) = [0, + oo[. 
For factors M of type Hlh X e ]0,1 [, we have : 
There exist maximal subalgebras7 of type lloo of M. Let N be a maximal 11«, 

subalgebra of M; then it is a factor and M is generated by N and a unitary U in the 
normaliser of iVsuch that z{UxU*) = Xz{x)9 V xeN+9 Vr normal trace on N. 
Let M = Ni{U{) = N2{U2) be two decompositions of M as above; then there is 
an inner automorphism <$> of M such that <f>{Ni) = N2,<f>{U{) = (72. This decomposi
tion allows us to translate most of the problems on M in terms of N which is a simpler 
object. For instance any normal state q> on M is unitarily equivalent to a state 0 o E 

*For each / e R, /xt is a unitary in M, the map t -> pt is continuous and satisfies fJLh±tz — HtffîXPto 
\ftut2eR. 

5For a precise statement see [2] 
6For S this property was proven in collaboration with van Daele. 
7Here by "subalgebra" we mean a von Neumann subalgebra range of a normal conditional ex-

pection of M. 
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where cj) is a normal state on N and E is the unique expectation of M onto N. 
The cross product N{0) of a factor N of type H*, by an automorphism 0 multi

plying traces by X is a factor of type lllh and any factor of type III^ is obtained this 
way, with N\{0\) isomorphic to N^O^), if and only if there exists8 an isomorphism 
% of ~N\ on N2 such that %0\%~l = 02- There are factors N of type 11^ and auto
morphisms 0i, 02 of N multiplying the traces by the same number X G ]0, 1[ though 
they do not belong to the same conjugacy class in Aut N. 

Factors of type III0 appear as a limiting case of the type II^. Let M be of type III0 ; 
then it is the cross product of a von Neumann algebra of type 11^ by the infinite 
coproduct of groups of two elements. Moreover any subalgebra9 of type 11«, of M 
is the first element of an increasing sequence Nj of von Neumann subalgebras of 
type II«, with UNj = M. Let N be a von Neumann algebra of type 11^, and 
0 G Aut N be a strict contraction with respect to some trace (see [2]) and strictly 
ergodic on the center C of N. Then the cross product N{0) is a factor of type III0. 
Any factor of type III0 arises this way andiVi(öi) is isomorphic to N2(02) iff there 
are nonzero projections eje Cj such that the automorphisms 0y, ej induced by fly 
on ej in the sense of Kakutani are the same. 

Using this and the previous work of W. Krieger on automorphisms which are not 
of infinite product type, one gets a hyperfinite factor which is not an infinite tensor 
product of type I factors [2]. Now starting from a discrete decomposition M — N{0) 
as above of a factor of type III0 and building the flow on 0 under the function 
dz/dvod,10 one obtains a one-parameter group (a^eizï of automorphisms of a von 
Neumann algebra p of type 11«, yielding the decomposition of M as a continuous 
cross product given by M. Takesaki [8] which this time is unique. 

His duality technique allowed him to prove the following final results [8] : 
Factors of type IIIj. Let JVbe a factor of type 11^, (ô,), eB a one-parameter group of 

automorphisms of N9 with r°dt = e~H for any normal trace T; then the continuous 
cross product of N by {dt)t<=R is a factor of type IIIx. Any factor of type IIIx arises 
this way and the decomposition is unique (as for factors of type III^). 

However the appearance of continuous cross products complicates the study of 
M. For instance, though on factors of type III^, X i=- 1, any normal state has a 
centraliser containing a maximal abelian subalgebra of M9 it fails for factors of 
type IIIx. Also, using the closure of the range of the modular homomorphism ö in 
Aut M/Int M as a Galois group of M, one can exhibit factors of type IIIj which 
admit no decompositions as cross products of semifinite von Neumann algebras by 
discrete abelian groups [4]. 

Insofar as factors of type III^, Xe ]0, 1[, are very simple to analyse (for instance 
they exhibit strongly their nonnormalcy : the relative commutant of a maximal 
lloo subalgebra is reduced to the scalars), it is often helpful, when trying to prove 
a general property of type III factors to begin by the case III^, X G ]0, 1[, and then 

8The theory of factors of type III; as presented in [2] was complete in the spring of 1972; the 
improvement on [2] on uniqueness was obtained in collaboration with M. Takesaki [5]. 

9Here by "subalgebra" we mean a von Neumann subalgebra range of a normal conditional 
expectation of M. 

10T is a trace contracted by 6; for details see [2]. 
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consider the case 11^ as a limit when X -^ 1. The final proof is independent of the 
classification (cf. [2] for the nonnormalcy of the Ill's). 

One of the important effects of Tomita's theory is to yield the right generalisa
tions to type III of notions which existed only for semifinite algebras. For instance, 
the only Hilbert-Schmidt operator on a factor of type III being 0, it seemed dif
ficult to have an interesting generalisation of the cone of positive Hilbert-Schmidt 
operators. Using the modular operator, one can construct pre-Hilbert space struc
tures s on M for which the completion of M+ is a self-dual cone ; the cone obtained 
is then independent of s9

n and reduces to the Hilbert-Schmidt cone when M is 
semifinite.12 

Moreover the class of cones thus obtained is exactly the class of convex self-dual 
cones V in Hilbert space H satisfying the two following conditions: V is complex, 
i.e., the quotient by its center of the Lie algebra D{V) = {d9 deJ?{H)9 et8V = 
V9 V t] is a complex Lie algebra for some complex structure /. V is facially homo
geneous, i.e., for each face F of V the operator PF — PFL belongs to D{V) where PF 

means the orthogonal projection on the linear span of F and FL the face orthogonal 
toF. 

There is a striking analogy between the relations type II and type III and the 
relations between unimodular and nonunimodular locally compact groups. 
Compare for instance what is said above for the case IIIA, X e ]0, 1[, with the 
elementary description of a locally compact group G whose module AG has range 
{Xn

9 n e Z}, as a cross product of a unimodular group (the kernel of AG) by a single 
automorphism. 

If one enlarges the notion of locally compact group to include Mackey's virtual 
groups, one has still a notion of module A of G and of left regular representation of 
G; it generates a von Neumann algebra U{G). Then the closure of the range of the 
module is a virtual subgroup of R% and the following is true when G is a principal 
virtual group:13 

If A{G) is a usual subgroup of R%9 it coincides with S{U{G)) (and in particular 
with r{G)9 the ratio set of Krieger); otherwise U{G) is of type III0, and the strictly 
ergodic action of R% corresponding to A{G) is nothing but the flow described above 
for factors of type III0. 

In [5] we study the virtual modular spectrum SV{M) for arbitrary factors and 
show, for instance, by the formula Sv{Mi ® M2) = SV{M{) • SV{M2) how much it 
behaves like the closure of the range of a "module" of M. 

We cannot end without quoting the beautiful result of W. Krieger on weak 
equivalence [6]. With the above terminology it shows that the virtual modular 
spectrum Sv is a complete invariant for the class of factors which arise from ergodic 
transformations,14 and can assume as value any virtual subgroup of JB*. 

"For a precise statement see [3]. 
"This generalisation was obtained independently by S. L. Woronowicz, H. Araki and myself. 

See [3] for bibliography. 
13U(G) is then a factor. 
"By the group measure space construction. 
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This shows how important it is to decide whether any hyperfinite factor arises 
from an ergodic transformation and in particular whether the hyperfinite factor 
of type lloo is unique. 
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Inversion Formula and Invariant Differential 
Operators on Solvable Lie Groups 

Michel Duflo 

In this article, I show some applications of Kirillov's method of orbits to the 
harmonic analysis of bi-invariant differential operators on Lie groups. For instance, 
we obtain the Plancherel formula for an exponential solvable group, and the fact 
that on such a group a bi-invariant differential operator has a fundamental solu
tion. We prove that, on a solvable group, a bi-invariant differential operator is 
locally solvable. This is a joint work with Mustapha Raïs. 

1. Notations. We consider a connected Lie group G with Lie algebra g. We choose 
a Haar measure dX on g and denote by dg the associated left Haar measure on G. 
We define a positive function j on g byj{X)2 = d{txp X)jdX. We denote by A the 
modular function on G: A{g) = d{hg)jdh. We denote by U{g) the complex envelop
ing algebra of g9 by Z{g) its center, by Z'{g) the set of semi-invariants in U{g). 
We denote by S{g) the complex symmetric algebra of g, by I{g) the subalgebra of 
invariants. 

Let ßr* be the dual space of g. It is identified to the dual group of g by the pairing 
exp(/ </, X}). If m is a bounded measure on g9 we put m{f) = <m, e*f}. If n is a 
bounded measure on g*9 we put n{X) = <w, eiX}. We denote by dfths dual Haar 
measure on g*. 

Let/e 0*. We denote by Gf the stabilizer of/ in G9 and by gf its Lie algebra. 
Then gf is the kernel of the 2-form Bf on g defined by/. Let Q <= g* be a G-orbit. 
We denote by ßQ the canonical invariant measure on Û, normalized as in [1, p. 20]. 

2. Definition of the mapping a. We fix a connected G-invariant open neighbor
hood F of 0 in fir such that exp is a diffeomorphism of V onto W = exp(F). Let 
^ be a distribution on W. We define a distribution a(^) on V by the formula 
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<a{<p)9j<p o exp> = (<j>9 <p} for all tp e C?{W). 

When G is semisimple (and F completely invariant), Harish-Chandra [5] proved 
the following result: 

(1) a{u * <f>) = a{u) * a{<f>) for all u G Z(fir) and all central distributions <f> on W. 

This paper would be greatly simplified if we knew this result for all Lie groups. 
Suppose G is solvable. Then I proved in [3] that (1) is true if <f> is in Z{g). We shall 
prove below that (1) is also true for some distributions associated with orbits of G 
in fir*. 

3. Definition of some distributions. We fix a G-orbit Q in g* of maximal dimen
sion, a character % of G with values in C*9 and a function ^ on Q such that <J){g~lf) 
= %Gf)0(/) f°r a U / G $ andgeG. We shall say that 0has weight %. We assume 
that the following is verified: 

There exist a positive N and a norm || • || on g* such that 

(2) j ( l + | | / | | ) ^ | ^ ( / ) | ^ ( r f / ) < a ) . 

For cp G CC{W), we put 

(3) <0(ß, 0), p> = J Up « exp)A {f)ab{f)ßQ{df). 
Q 

Thus, 0(0, >̂) is a distribution on PF, and a{<f>{Q9 cß)) is the restriction to V of the 
Fourier transform (ç%>)~ of $3fl. Under the adjoint representation, <fi{Q, <jj) is 
semi-invariant with weight A^. 

4. The distributions <f>{Q9 (p) on solvable groups. We assume that G is a solvable 
connected simply connected Lie group. We consider an integral (j-orbit Q c g*: 
This means there exists a unitary character yj of Gf {fis some point of Q) whose 
differential is the restriction of */to gf. Fix such a character TJ. We denote by icQti} 

the irreducible unitary class of representations of G associated to these data by 
Auslander and Kostant, with the normalization of [1, p. 217]. 

Let i be a character of G with values in (0, oo), and 0 a positive function of 
weight x on Q. There is a canonical way to associate to ^ a selfadjoint positive (in 
general unbounded) operator A^ in the space of %Qili such that 

W & ^ V ^ f e " 1 ) = X(S)^ for all g G G. 
Suppose moreover that (2) is verified and that Q has maximal dimension. Then, if 
<p G C~(G), the operator Ay2-n:QiV{(p)Ay2 can be extended to a trace class operator, 
and we have 

(4) tr{Al'2iüQiV{<p)A}/2) = (<j>{Q9 4>)9 p> for all <p G C?{W). 

(This is an extension of [1, Chapter IX].) 
Let u G Z{g). Then a{u)A is an invariant polynomial on g*. We denote by a{u)A{Q) 

its constant value on Q. We have 

(5) 7CQ,v{u) = a{ur{Q)Id. 
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If ^ is a distribution on G9 put d${g) = d<j>{g"1). Formulas (4) and (5) imply 

(6) Ü * <j>{Q9 ab) = a{u)A{Q)<j>{Q9 <jj) 

which is equivalent to 

(7) a{ü * 0 ( 0 , </>)) = <u) * a{<l>{Q9 <fi)). 

When (2) is verified, but Q not integral, there is probably a formula analogous to 
(4) involving instead of 7c0tV one of the factorial normal representations constructed 
by Pukanszky [7]. 

5. Harmonic analysis of the distributions w(s) {u G Z{g)). We do not suppose for 
the moment that G is solvable. We suppose there is a G-invariant subset gf of g* 
which is the union of locally closed orbits of maximal dimension, and such that 
0* —ff? is of Lebesgue measure 0. Choose a nonzero rational function d' on g^9 

semi-invariant with weight A~l (cf. [2]) and put 0 = |0' | . The measure d{f)~1df 
on g* is (/-invariant. The quotient space X = g*/G is a standard Borei space. There 
exists a positive Borei measure me on X such that 

(8) f Kf) df = J mm S KfW)ß0{df) 
g* X 0 

for all positive Borei functions on g*. 
Apply (8) to the function h{f) = (1 + \\f\\)'N9 where N = 1 + dim g. Fubini's 

theorem shows that we have 

(9) f(l + |/|)-W)|9fl(40<°o, 
Q 

for almost all OeX. Then, the distribution <$>{Q9 0) is defined on W for almost all 
QeX. Notice that these distributions are central. We shall use them to decompose 
other interesting central distributions on W. 

Let p G S{g) be such that p is a positive function on g*. For seC with Re(>s) ^ 
0, we denote by ps the tempered distribution on g whose Fourier transform is ps. 
Then, by the Atiyah-Bernstein theorem, ps can be extended to a meromorphic 
function of £ defined in C with values in the space of tempered distributions. Let 
ueZ{g) such that a{u)A is positive. We shall denote by u{s) the distribution on 
W such that a{u{s)) = a{u)s. Thus w(s) is a meromorphic function of ssC with 
values in the space of central distributions on W. 

From (8) and (3), we get the following formula: Let u G Z{g) such thata(w)A is 
positive. Suppose Re{s) ^ 0. Let cp G CC{W). We have 

(10) <«w, <p} = J md{dQ)a{ür{Q)K<f>{Q, 6)9 p>. 

When w = 5, (10) gives a local inversion formula: 

(11) v(l)-^mém<tfP,<r),9>' 
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6. Solvability of bi-invariant differential operators on solvable Lie groups. In this 
section, G is a simply connected solvable Lie group. 

We have the following result. Let u G Z{g) be such that a{u)A is positive, and let 
v G Z{g). We have the equality of meromorphic functions: 

(12) a{v * M(S)) = a{v) * a{u{s)). 

To prove (12), we imbed G in a simply connected group G corresponding to an 
algebraic envelope g of g9 and remark that we can assume G = G. Then all orbits 
of G in g* are integral and locally closed. Then (12) follows from (7) and (10). 

It follows from (12) that the constant term of the Laurent expansion of w(s) at 
s = — 1 is a distribution E on W which verifies u*E = E*u = d (the Dirac mass at 
1). From this, it is easy to obtain the following theorem. 

THEOREM 1. Let G be a connected solvable Lie group. Keep the notations O / § § 1 

and 2. Let u e Z'{g). There exists a distribution E on Wsuch that u*E = E*u = d, 
and such that, for all v G Z'{g)9 a{v * E) = a{v) * a{E). 

When G is an exponential solvable group, we may choose W = G. In this case u 
has a fundamental solution defined in all of G. For G simply connected nilpotent, 
this is due to Raïs [8]. 

We do not know any example of a simply connected solvable group G9 and 
u G Z'{g)9 without a global fundamental solution. 

7. The Fiancherei formula for an exponential solvable group. In this section, G is an 
exponential solvable group. In this case, it is known that all orbits in fir* are locally 
closed and simply connected. To each orbit is associated one unitary irreducible 
class 1ÜQ of representations of G. Choose the function 0 on fir* as in §5. Denote by 
AdfQ the positive selfadjoint operator in the space of %Q associated with the restric
tion of 0 to Q. Let g* be the union of orbits of maximal dimension in g*. Define 
X and me as in §5. From (11) and (4), we get the following inversion formula. 

For almost all QeX9 the operator A}f% 7CQ{<p)Al(l extends to a trace class opera
tor for all <p G Q°(G), and we have 

(13) <p{l) = J me{dQ) tT{Al(faQ{<p)Al(l). 
x 

For each QsX, realize icQ in some Hilbert space HQ9 and denote by L2{HQ) the 
Hilbert space of Hilbert-Schmidt operators on HQ. From %Q9 we get an irreducible 
representation of G x G in I^HQ). 

THEOREM 2. Let <p e Li{G) f| L2{G). For almost all QeX, the operator itQ{(p)Al(l 
extends to an element [7CQ{<P)AI{%] of L2{HQ). The mapping ç -+ {[iUçfap)Al{%]}QeX 

extends to an isometry U of L2{G) onto $x L2{H^me{dQ). The isometry U intertwines 
the representation of G x G in L2{G) {the double regular representation) and the 
representation ofGxG in $x L2{HQ)me{dQ). 

Theorem 2 is the Plancherel theorem for G. If G is unimodular, it is a well-known 
application of formula (13). 
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8. Square-integrable representations of exponential solvable groups. In this section, 
G is an exponential solvable group with center Z. We choose a left Haar measure 
on G/Z. Let % be a unitary irreducible representation of G in a Hilbert space H. It is 
square-integrable (mod Z) if and only if it occurs discretely in L2{G9 TJ)9 where y is 
the restriction of it to Z, and L2{G9 yj) the space of the representation induced by y 
to G. Suppose n is square-integrable (mod Z). There is on H a positive self adjoint 
operator K9 called the formal degree, which verifies %{g)K7t{gYl = A{g)~lK for all 
g G G, and such that 

J|(*,*fe)A)|2#= |*||» |*-1/2*||2 

G/Z 

for all k e H and h e dorn #~1/2 (cf. [4]). 
The extension of Theorem 2 to L2{G9 rj) gives the following result (which, if G is 

nilpotent, is due to Moore and Wolf [6]): 
Let 0 <= g*. The representation %Q is square-integrable (mod Z) if and only if 

Gf = Z for all/G Ö. Let eÌ9 •••, e2rf be a basis of r̂/js? such that the unit cube has 
volume 1. If /G fir*, we denote by discr(/) the discriminant of the 2-form on g/z 
deduced from Bf9 relative to the basis eÌ9 •••, e2d. Suppose %Q is square-integrable 
(mod Z). If/GÛ, put (Jj{f) = (2flr)-rf|discr(/)|. Then the formal degree of %Q is 
the operator A$ (cf. §4). 
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A Szegö Kernel for Discrete Series 

A. W. Knapp* 

The Szegö kernel for the unit ball in Cm is a reproducing kernel that gives a for
mula for holomorphic functions in the ball in terms of their boundary values, 
namely 

(D m = teaP±j /(O MO 
2«" ic,J=i ( l - ^ C » - ' 

where / i s the boundary function for jpand da is Lebesgue measure on the sphere. 
When m = 1, (1) easily transforms into the Cauchy integral formula. In dimension 
m9 the formula extends to be defined on all / in L2, always yielding holomorphic 
functions. If we identify holomorphic functions with their boundary values, the 
extended operator can be regarded as the orthogonal projection from L2 to the 
holomorphic functions in L2. This projection property characterizes the kernel. 

In terms of semisimple Lie groups, functions on the sphere suggest nonunitary 
principal series representations and holomorphic functions on the ball suggest 
discrete series representations, and the Szegö kernel should suggest a map from the 
one to the other. Actually formula (1) will not arise with discrete series but with so-
called limits of discrete series. For ordinary discrete series representations, we shall 
use operators that are more analogous to the formula for the {n — l)st complex 
derivative in the disc, 
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influence of conversations with K. Okamoto and early collaboration with E. M. Stein upon the 
developments in this paper. 
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Such operators are not projections but do carry general boundary functions into 
good functions with a known relationship to the original function. 

We examine first the role of this mapping for the holomorphic discrete series of 
G = SU(1, 1) = {(*£), |a:|2 — |/3|2 = 1}. The holomorphic discrete series is a 
sequence of square-integrable unitary representations parametrized by an integer 
n ^ 2. The space is 

(3) {F{z) analytic in C1 for \z\ < 1 |Jlzl<1 | F(z)|2(l - \z\*)»-*dxdy < oo} 

with group action 

U{g)F{z) = (ßz+a)-»F{^^y 
For the nonunitary principal series, let 

A _ /cosh r sinh r\ M _ (\ + ix — ix\ v _ (eid 0 \ 
A * Vsinh r cosh r J9 iy ~ \ ix Ì - ix / A ~ ^0 er*)m 

For a the indicated matrix in A, let Xs{a) = eris+1) for complex s. Pick some com
plex s and one of "even" or "odd", say "even", for example. The space of a 
representation is the space off defined on the circle K with just "even"-numbered 
Fourier coefficients. These functions extend uniquely to G by f{ank) = Xs{a)f{k)9 

and the group action U{g)f{x) = f{xg) preserves the space. 
Fix n ^ 2, use "even" or "odd" according to what n is, and put s = ± {n — 1). 

To fix the ideas, let us take n even. Then the nonunitary principal series representa
tion is reducible. Iri terms of Fourier coefficients, the situation is as follows: At 
,y == — {n — 1), holomorphic discrete series number n arises as a quotient from 
coefficients {--9 —{n + 2), — n}9 a finite-dimensional representation appears as an 
invariant subspace from coefficients {—{n — 2), — {n — 4), •••, {n — 2)}, and an 
antiholomorphic discrete series appears from coefficients {n, {n + 2), •••}. At s = 
+ {n — 1), the numbers are the same, but the roles of quotient and subspace are 
reversed. 

The intertwining operators first constructed by Kunze and Stein [4] are equiva-
riant maps of the representation at s to the one at —s9 but at s = — {n — 1) the 
operator has a simple pole. Work by Sally [8] yields an explicit formula for the 
residue operator in terms of Fourier coefficients, showing that the residue operator 
is equivariant and maps the nonunitary principal series representation to the sum of 
the two discrete series. If we compose with the projection to the holomorphic 
discrete series and reinterpret the principal series as suitable functions on K/Z2 and 
the discrete series in its form (3), we obtain (2) as the formula for the composition 
intertwining operator. 

We shall attempt to extend these matters to arbitrary (not necessarily holomor
phic) discrete series representations of the automorphism groups of noncompact 
hermitian symmetric spaces. Let G be a connected semisimple Lie group with finite 
center, let A' be a maximal compact subgroup, and assume that G/K is hermitian. 
Let g = f + p be the corresponding Cartan decomposition of the Lie algebra of 
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G9 and let I) £ f be a maximal abelian subspace. Then tj is a Cartan subalgebra 
of g, and we let QC = If -f 2]0« be the root-space decomposition. Here ga = CEa9 

and we take the Ea to be normalized as in [1]. Introduce an ordering on the roots 
such that no sum of two noncompact positive roots is a root. 

A parametrization of the discrete series was supplied by Harish-Chandra [3], 
If we let p be half the sum of the positive roots and if, as we may, we assume that p 
is integral, then the parameter space is the set of integral forms A + p on t) such 
that (A + p9 a} > 0 for a > 0 compact and {A + p9 a) ^ 0 for a > 0 non-
compact. Since G/K is hermitian, it follows that every such A satisfies <yl, a} ^ 0 
for a > 0 compact. 

The Langlands conjecture says that the above representation is realized in a 
certain 3-cohomology space, described as follows. Let Q = {a > 0 noncompact | 
{A + p9a) > 0} and q = |g | . TO avoid bundles, introduce a symbol ora for 
each a > 0, to be thought of as a ûfë-type differential form. If a = («i, •••, ccq) is 
any ordered #-tuple of arbitrary positive roots, let ara = of~ai A ••• A û; -"'. 

Consider expressions 

^ = 2 Faoj-«9 
\a\=q 

where each i^ is a smooth scalar-valued function on G satisfying 

Fa{hx) = £,*+«,+...+«, (A}Fa(*) for A G exp Ç, * e G. 

(Here £ denotes a character.) The 3-operator is given on functions (0-forms) by 

dF{x) = 2 £-«fWû)-«, 

«>o 
where jE"_a denotes the right-invariant differentiation computed as the real part plus 
/ times the imaginary part. Extend 3 by making 32 = 0, and let 3* be the formal 
adjoint relative to L2{G). Take ker 3 f| ker 3* in dimension q as a dense subspace 
of a representation, and use the norm (S JG \Fa\

2 dx)l/2. The group operation is a 
right translation of the coefficient functions. The Langlands conjecture is the state
ment that the completion of this constructed representation is the discrete series 
representation with parameter A + p. The conjecture is known for G = SU(1, 1) 
by easy computation, for general G and q = 0 by work of Harish-Chandra [2], 
for | (A -f p9 a} | > c whenever a is noncompact by Narasimhan and Okamoto [5], 
and for </l -|- p9 a) > 0 whenever a > 0 is noncompact by Parthasarathy [7]. 
The proofs by Narasimhan and Okamoto and Parthasarathy are not constructive. 

For the nonunitary principal series of G9 let G = AN Khz an Iwasawa decompo
sition, let M = ZK{A)9 let a be an irreducible representation of the compact group 
M9 let X be a linear functional on the Lie algebra of A9 and let p+ be half the sum of 
the positive restricted roots counted with multiplicities. The space consists of vec
tor-valued functions/on K mthf{mk) = a{m)f{k)9 which are then extended to G 
by the definition f{ank) = exp((A + p+) log a)f{k). The group G acts by right 
translation. 

Problem. Give an integral formula for passing from appropriate nonunitary 
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principal series, realized as spaces of functions on K9 to discrete series realized in 
the format of the Langlands conjecture. 

Solving the problem would consist of four steps: (1) existence—producing an 
integral formula so that the members of the image satisfy dF = 0 and 3*F = 0, 
(2) finiteness—establishing the square-integrability of the ^-finite members of the 
image, (3) uniqueness—proving irreducibility of the image, and (4) identification— 
computing the character of the image representation. We shall do (1) in general and 
(2) in some special cases. Steps (3) and (4) follow whenever (1) and (2) and the 
Langlands conjecture are known. 

To define the Szegö kernel, let A + p and Q and q be as before. The linear func
tional I is yet to be specified, but we extend arbitrary scalar-valued functions / on 
K to G by f{ank) = exp((A + p+) log a)f{k). We map a smooth / into F = 
Ei.1^1 Faar« with 

(4) Fa{x) = J Sjk)f{kx) dk = J Sa{tc{kx^)) exp((p+ - l)H{kx^))f{k) dk 
K K 

and Sa{k) = {TA{k)<f>A, <f>A){Ad{k)Ea9 EQ). Here $A is a highest weight vector, 
and Ea and EQ denote alternating tensors. This is a group-theoretic generalization 
of the formula in SU(1,1) except that the Ad factor was not present in dealing with 
0-forms. The first part of (4) shows the map is equivariant, but the second is more 
useful in computations. The formula for FQ has been considered by Okamoto [6]. 

Two comments are in order before we state precise theorems. First, no special 
M-dependence off is assumed in (4). However expansion off in Fourier series on 
M and a change of variables show that only one particular representation of M 
plays a role. Thus the domain can be regarded as a single nonunitary principal 
series, but with a finite multiplicity. Second, the choice of A in the Iwasawa de
composition is not arbitrary. [In fact, assume the Langlands conjecture. Then the 
infinitesimal character of the nonunitary principal series is determined in one way 
by that of the discrete series and in another way by the character of A and the 
placement of M in K. These cannot match unless M is placed in K properly.] 

Thus we must define A. Any two A's are conjugate by a member of K. Define a 
standard AQ by ûO = S R{Eai + £-«,), where a,- is defined inductively as the 
largest noncompact positive root orthogonal to a\, •• •,«,•-!, and use the basis 
{Eai + E_a} to define an ordering. Let A = pA$p~l

9 where p is a member of the 
Weyl group of K yet to be specified. 

THEOREM 1. If p and Q satisfy a compatibility condition (*), then to each A cor
responds a unique }. = X{A) such that the image F = £ Fa co~a satisfies dF = 0 and 
3*F = Ofor each fin C°°{K). 

We shall state (*) shortly. Our finiteness theorem is as follows. 

THEOREM 2. Let G = SU(1, 1), or let G be general but q = 0. If{*) holds and if 
A = X{A)9 then the image of the trigonometric polynomials under (4) is exactly the 
space ofK-finite elements in the cohomology space, and the cohomology space is the 
discrete series representation with parameter A + p. 
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Also, by a lengthy computation, we have established square-integrability of the 
image of / = SQ for SU(2,1) when q = 1,1 = 1{A)9 and p is trivial. 

To state condition (*), let a{T) be the function from positive noncompact roots to 
the a/s defined above, given as the first CCJ such that T is not orthogonal to a,-. Then 
a{7) — T is always a positive compact root or 0. Hence pa{p~lT) — T is always a 
compact root or 0. 

Condition^). Every positive noncompact root T not in g satisfies pa{p~lT) — 7^ 
0. Also every positive noncompact root/ in g satisfies pa{p~lT) - T ^ 0. 

One can show case-by-case that to each g corresponds some p such that p and 
g satisfy (*). 

EXAMPLE. G =SU(/w, 1). One can arrange that the positive compact roots are 
e( — ej9 i < j ^ m9 and the positive noncompact roots are e{ — em+Ì9 i S m- The 
element p is a permutation of {1, •••, m}. Then AQ is built out of Eex-em„ -f 
üLc„_,B+1), and pA0p~l necessarily is built out of 2£ft_fc41 + JEL(ft_fa„) for some /. The 
set g has the form {e,- — em+i, i ^ q}. If 0 < q < m9 two choices of / (namely 
1 = q and q + 1) are such that /? and g satisfy (*), and generally these lead to 
really distinct nonunitary principal series. If q = 0 or m9 there is only one such 
choice (namely / = 0 or m9 respectively). However, when m — 2 and q = 1, it is 
known that there are three nonunitary principal series, not two, with a given dis
crete series as quotient. 

We conclude with the formula for X{A). Let 

w| = | {T > 0 noncompact | TeQ9T ^ pai9pa{p~lT) = pa,} |, 

«7 = | {T > 0 noncompact| T $Q,T # poci9 pa{p~l7) = pctv} |. 

Then /I is determined by the values of ^' = p+ - I on all Ad(p)(£'ai + E^a). If 
pa,- is not in g, 

A'(Ad(/0(£Bi + £_„,)) = - \at-\-W^<A + g - n^pa^paiy. 

If pa{ is in g, 

•A'(Ad(/>)Œr. + £ _ J ) = | a , | - i V 2 < ^ + g + fqpai9pai>. 
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Operator Algebras and Their Abelian Subalgebras 

J. R. Ringrose 

1. Introduction. From time to time in the study of operator algebras a situation 
arises in which it is desirable to deduce a certain piece of information about an 
algebra 8f from the same (or similar) information about every maximal abelian * 
subalgebra stf of S(. After a very brief description of several problems of this type, 
and of the progress that has been made towards their solution, I shall discuss two 
of them in somewhat more detail. 

1.1. Measures on projections. By a measure on the set 0> of projections in a von 
Neumann algebra % we mean a mapping fj,\0> -> R+

9 such that /LtfàPj) = S//(P/) 
whenever (P;) is an orthogonal family of projections in 3(. When œ is a positive 
normal linear functional on 21, the restriction co \ 3P is a measure on @>. 

1.1.1. Problem (Mackey). Does every measure on & arise in this way? 
For abelian algebras, the question is easily answered in the affirmative. From 

this, and since a completely additive positive linear functional on 8( is normal, the 
question (for general 2() can without difficulty be rephrased in the following form. 

1.1.2. Problem. If a mapping v\% -> C satisfies 
(i) v{H + iK) = v{H) + iv{K) for all selfadjoint H and K in ST, 
(ii) for each maximal abelian * subalgebra stf of St, the restriction v \ stf is a posi

tive normal linear functional on j / , 
does it follow that v is linear on %1 When/* is the dimension function in a factor 
8( of type IIl5 the above questions reduce to the problem of "additivity of the 
trace", solved affirmatively by Murray and von Neumann [14, Chapter II]. An 
ingenious argument due to Gleason [6] gives a positive answer when 2f is <%{3tf)9 

the algebra of all bounded operators acting on a Hilbert space ffî. From this, 
and by establishing continuity properties of measures, Gunson [8] proved the same 
result for hyperfinite factors. Analogous questions for certain special C*-algebras 
have been considered by Aarnes [1], [2]. 
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1.2. Closure problems. Let 3f be a * algebra of operators acting on a Hilbert 
space ffl. 

Problem. If each maximal abelian * subalgebra srf of Sf is norm closed in ^(^f ), 
does it follow that 8f itself is norm closed? 

This question remains open. The analogous problem, with weak-operator closure 
in place of norm closure, has been solved affirmatively by Pedersen [15], after ear
lier work by Laison [12], 

1.3. Continuity of linear mappings. Suppose that % and (% are C*-algebras, acting 
on Hilbert spaces 2tf and j f respectively, and £ :9Î -> 38 is a linear mapping. 

1.3.1. Problem. If f | srf is norm continuous, for every maximal abelian * subalge
bra j3f of 8t, does it follow that £ is norm continuous on 81? 

1.3.2. Problem. The same question for ultraweak continuity. 
1.3.3. Problem. The same question for ultrastrong * continuity. 
Easy examples, in which £ is a * isomorphism or a * anti-isomorphism between 

von Neumann algebras, give negative answers to the corresponding questions 
about the weak, strong and ultrastrong topologies. 

Problem 1.3.1 arose in connexion with a question about continuity of certain 
derivations (which was later answered by different methods [9], [16]). By the 
principle of uniform boundedness, it is equivalent to the corresponding question 
about linear functionals on %. It has an affirmative answer when SI is a von Neu
mann algebra, a uniformly hyperfinite C*-algebra [17] or a postliminal C*-algebra 
[4]. For general C*-algebras, the problem remains open, and is equivalent [4] to the 
corresponding question in which stf runs through all C*-subalgebras with a single 
self adjoint generator. In the negative direction, Barnes and Duncan [5, Proposi
tion 5.1] give an example of a Banach algebra with a discontinuous linear func
tional which is continuous on each abelian subalgebra. The analogous problem, 
for homomorphisms from a C*-algebra 9( into a Banach algebra, has recently been 
solved affirmatively by Sinclair [18, Corollary 4.3], following earlier work by Stein 
[19, Corollary II. 1] in the von Neumann algebra case. The existence or otherwise of 
a discontinuous homomorphism, from an abelian C*-algebra into a Banach al
gebra, is a well-known unsolved problem; for some recent results, see [10]. 

Problem 1.3.2 reduces at once to the corresponding question about a linear 
functional p on %. Takesaki [20, Corollary 1] gave an affirmative answer for the 
case in which SÏ is a von Neumann algebra and p is norm continuous on 3(; in view 
of later work on Problem 1.3.1, the assumption of norm continuity is seen to be 
redundant. In the context of C*-algebras, Problem 1.3.2 remains open. By taking 
91 in its universal representation, an affirmative answer for Problem 1.3.2 (in full 
generality) would imply the same for Problem 1.3.1. 

For a linear functional on 3f, ultraweak continuity is equivalent to ultrastrong * 
continuity, so Problems 1.3.2 and 1.3.3, for linear functionals, are equivalent. 

1.3.4. Problem. Does ultraweak continuity of a linear mapping £ :9( -> & imply 
ultrastrong * continuity? 

It is known that ultraweak continuity of £ on S( is equivalent to ultrastrong * 
continuity on bounded subsets of% ([3, Corollary III. 10]; the extension from von 
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Neumann algebras to represented C*-algebras is straightforward). If £ is positive, 
or if either of the algebras 8f, ^ is abelian, Problem 1.3.4 has an affirmative solu
tion; in general, it remains open. This problem, for represented C*-algebras, is 
equivalent to the same question for von Neumann algebras only; and both are 
equivalent to Problem 1.3.3 for von Neumann algebras. 

2. Norm continuity of linear functionals. Our work on Problem 1.3.1 starts with 
the following simple result. 

2.1. LEMMA. Suppose that 8Fis a family of C*-algebras with the following property: 
( ^ ) If tye 8F9t is an unbounded linear functional on S( and K> 09 there is a self-

adjoint element A in the unit ball of%, and a C*-subalgebra gft oftyi, such that ^ ë J ^ , 
T 18ß is unbounded, 

\z{A)\ > K9 AB = BA = 0 {Be<%). 

If p is a linear functional on a C*-algebra 8( in <F, and p\srf is bounded for each 
maximal abelian * subalgebra srf of%, then p is bounded. 

PROOF. If p is unbounded, successive applications of ( ^ ) yield a sequence (2(y) 
of C*-subalgebras of ?X, and a sequence {A/) of selfadjoint elements in the unit ball 
of St, such that 

| p{A3) | > j9 AjB = BAj = 0{Be <%j), A y+1 G &h ats e &9 

^ i e ^ 2 2 ^ 3 ^ • • •, p|Ä,- is unbounded. 

Since AjAk = 0 when y ^ k9 there is a maximal abelian * subalgebra stfof%, whose 
unit ball contains e a c h ^ ; and p\stf is unbounded, contrary to our assumption. 
Thus p is bounded. 

We next sketch a proof that the condition (-&) is satisfied when <F consists either 
of all continuous von Neumann algebras or of all properly infinite von Neumann 
algebras. In either case, each ?J( in <F has a * subalgebra Jt9 with the same unit as 8f, 
* isomorphic to the algebra of 2 x 2 complex matrices. With {Fjk\j9 k — 1, 2} a 
selfadjoint system of matrix units in Ji9 and % an unbounded linear functional on %9 

at least one of the four linear functionals zjk {j9 k = 1, 2) on Sf defined by zjk{A) = 
T{FjiAFik) is unbounded. If E (^ 0, / ) is a projection in M9 and 

(1) p{A) = T{EFnAFnE), 

then p can be expressed as a linear combination of the Tjk 's. Given four such pro
jections E\9 - • •, £4, and the corresponding pw-,p^ computation of the appropriate 
determinant shows that it is, in general, possible to "invert" and express each zjk 

as a linear combination of pÌ9 •••, p±. Hence at least one of pÌ9 •••, p^ is unbounded. 
This shows that the linear mapping p in (1), and hence also the restriction T \EtyE9 

is unbounded for "most" projections E in St. It turns out that one can choose E so 
that both %\E%E and z\{I - E)W{I - E) are unbounded. With K a positive con
stant, there is a selfadjoint A in the unit ball of (J - Eyü{I - E) such that | z{A) \ > 
K\ so the conclusions of condition (ft) are satisfied, with (% defined as EWE. 

The preceding paragraph, together with Lemma 2.1, gives an affirmative answer 
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to Problem 1.3.1 for continuous or properly infinite von Neumann algebras. With 
slight variation, it yields the same result for all von Neumann algebras and for 
certain other C*-algebras. For the details, we refer to [17]. 

3. Ultrastrong * continuity of linear mappings. Suppose that 81 and 31 are C*-
algebras acting on Hilbert spaces j ^ and j f respectively, TJ : 91 -> & is an ultraweakly 
continuous linear mapping and yj'.tyc -> 8ß~ is its ultraweakly continuous extension 
to the weak-operator closure %~ of 9(. It is not difficult to prove 

3.1. LEMMA, TJ is ultrastrong * continuous if and only if the same is true off). 

By exploiting the fact that the given representation of 9( on j f is quasi-equivalent 
to a subrepresentation of the universal representation % of % we can deduce from 
Lemma 3.1 that 

3.2. LEMMA, TJ is ultrastrong * continuous if and only if the same is true ofTj°%~1 : 

Since every positive linear functional on 7r(9t) is ultraweakly continuous, it is 
easy to check that TJ o ^-i is ultrastrong * continuous if and only if the following 
condition is satisfied : Given any normal state co of (%9 there is a positive linear func
tional p on % such that 

(2) CO{TJ{A)*TJ{A) + TJ{A)TJ{A)*) ^ p{A*A + AA*) {A G 90. 

Let y ( e $) be the set of operators. 

t W4r)*V<4r) + vWMAr)*], 

where Al9 •••, Anety and || %i[A*Ar + ArA*] || ^ 1. If TJ°7C~1 is ultrastrong * 
continuous, it follows from (2) that each normal state co on & is bounded on Sf\ 
and from the principle of uniform boundedness, Sf is bounded. By homogeneity, 
i fM=sup{| |S | | :Se<^}, 

(3) I S lr){Ar)*V{Ar) + V{Ar)V{Arr]\\ ^ M\\ £ \A*Ar + ^ * ] | , 
II r = l II II r = l II 

whenever v41? •••, y4w G SÏ. Conversely, if (3) is satisfied for some constant M, and co 
is a normal state of &9 it is easily verified that the convex hull Sf\ (£ 3f+) of the set 

{A*A + AA*:Ae% CO{TJ{A)*TJ{A) + TJ{A)TJ{A)*) = 1} 

does not contain {0}. Upon separating Sf\ and {0} by a hyperplane, we find a 
positive linear functional p on Sf which satisfies (2). 

From the preceding paragraph, together with Lemma 3.2, we have 

3.3. THEOREM. An ultraweakly continuous linear mapping TJ: 2f -• ̂  is ultrastrong * 
continuous if and only if there is a constant K such that 

S [7}(Ar)*v(Ar) + r/iAMArH ^ #|M|2 

r = l II 
(4) 

for every finite set AÌ9 ~-,An of elements of% 

S [A*Ar + ArA*}\ 
r = l II 
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From Theorem 3.3, and by taking 2( in its universal representation, it follows 
that Problem 1.3.4 has an affirmative answer if and only if every bounded linear 
mapping TJ between C*-algebras satisfies an inequality of the type (4). It suffices to 
consider only hermitian mappings TJ and, for these, (4) can be replaced by the 
simpler inequality 

(5) 2 y{Ary 
II r = l 

ÉK\\V\\ 
n «II 

S A*\ 
r = l II for every finite set AÌ9 --,An of selfadjoint elements of 3(. 

When & is abelian, (5) is automatically satisfied with K = 1 and can be proved 
by straightforward estimation of p(2rç04r)

2), where p is a multiplicative linear 
functional on 38. It follows at once from the generalized Schwarz inequality [11] 
that (5) is again satisfied with K = 1 when TJ is a positive linear mapping. 

Suppose next that 21 is abelian. By taking % in its universal representation, ex
tending rj to an ultraweakly continuous hermitian linear mapping from 3t~ into &~ 
and approximating each Ar by a finite linear combination of its spectral projections, 
the proof of (5) is quickly reduced to the case in which each Ar has the form 

m 
Ar = 2J A/V ^h 

. 7 = 1 

where {El9 ••',Em} is an orthogonal family of projections with sum /. With x a 
unit vector in jf, and ajk = RQ(TJ{EJ)X9 Tj{Ek)xy, 

2 ajkSjtk\ = \ R^Tj{ZsjEj)x,V{EhEk)xy\ ^ \\TJ\\\ 

whenever sh •••, sm tÌ9 •••, tm are real numbers with modulus not greater than 1. 
A well-known inequality of Grothendieck ([7], see also [13, p. 279]) now implies 
that 

(6) S ajk(uJ9Vkì ^ K\\TJ\\2 SUp f fly J sup J Vä| 
j,k=l J 

whenever w1} •••, um9 vÌ9 •••, vm are vectors in a real inner product space, K being a 
constant ( ̂  sinh \%). With Uj {= Vj) the vector (ylyl, • • •, AJn) in Rn

9 (6) reduces to 

<(S f){Ar)*)x9 x) H K\\TJ\\* \A\ + ... + Al\\. 

Thus (5) is automatically satisfied, with K = sinh \%9 when % is abelian. 
This concludes my positive information concerning (5). In the negative direction, 

one can construct von Neumann algebras 8f (abelian) and ^ , an ultraweakly closed 
selfadjoint subspace Jt of SÏ which contains the identity of % and an ultraweakly 
continuous hermitian linear mapping TJ\J(-+@19 such that (5) fails for every K > 0. 
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Some Aspects of Ergodic Theory in Operator Algebras 

Erling Stornier 

1. Introduction. There seems to be a strong tendency towards a closer relation
ship between the theory of von Neumann algebras and ergodic theory. This will be 
apparent from the work of Connes and Krieger to be discussed at this Congress, 
and I believe that further study of automorphisms of von Neumann algebras will 
be most fruitful. In the present report I shall give a survey of what is known in the 
case when there exist normal states invariant under a group of automorphisms, and 
show how many results are direct generalizations of theorems on finite invariant 
measures in ergodic theory. 

The main progress on this part of the theory has been made during the last eight 
years after mathematical physicists became seriously interested in C*-algebras and 
mainly in the more special ones called asymptotically abelian C*-algebras, dis
cussed by Ruelle at the Nice Congress; see, e.g., [6], [15], [10]. One of the more 
special definitions of this concept states that a C*-algebra % is asymptotically 
abelian with respect to a group G of *-automorphisms if there is a sequence {g„} 
in G such that limw \\[gn{A)9 B]\\ = 0 for all A, Be ST. Then the G-invariant states 
form a Choquet simplex, so it is natural to study the extreme points, called ergodic 
states. Using the GNS-representation one quickly reduces the analysis to the case 
of ergodic groups of automorphisms of von Neumann algebras such that there 
exists a normal invariant state, where a group G is said to be ergodic if g{A) — A 
for all g G G implies A is a scalar operator. 

2. Generalizations of abelian theory. I shall first review the part of the theory 
which is analogous to the abelian case, and then in the next section discuss results 
which are purely nonabelian in character. Throughout these notes we let 0% denote 
a von Neumann algebra, G a group of *-automorphisms usually considered as a 
discrete group, and <%G the fixed point algebra in ^ under G. Note that if {X, &9 fj) 
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is a measure space with p, a probability measure and T a nonsingular measurable 
transformation of X leaving ^ invariant, then T induces a *-automorphism of the 
abelian von Neumann algebra L°°{X9 ft) v i a / -» / o T - 1 , a n d / -» J/dJu is a normal in
variant state on L°°{X, JLI). Thus the connection with ergodic theory should be clear. 

The ergodic theorem known [12] states that 0t is G-finite, i.e., the normal G-
invariant states separate points of ^ + , if and only if there is a faithful normal G-
invariant projection map (i.e., conditional expectation) 0 of f onto @P. 
Furthermore, the normal G-invariant states are exactly those of the form 
co ° 0 with co a normal state on @lG. For A e <%9 0{A) is the unique operator in 
con\{g{A) : g e G)~ fi @G, and there exists a fixed net in conv(g: geG) converging 
pointwise strongly to 0 [7]. In particular, if G is cyclic generated by 0, then 

0{A) = strong limit — £ Oi{A). 
n n i 

As in the abelian case compactness conditions on G are equivalent to G-finite-
ness. Let co be a normal state such that its orbit {co°g: geG} is weakly relatively 
compact in the predual (%%. Then its convex hull is weakly relatively compact, so 
the Ryll-Nardzewski theorem gives rise to a normal invariant state. Using a result 
of Akemann on weak relative compactness in 01+ we have [17] : 

THEOREM 1. Suppose co is a faithful normal state on 0t. Then there exists a faithful 
normal G-invariant state if and only if given e > 0 there exists d > 0 such that if E 
is a projection in 0t with co{E) < d then co{g{E)) < e for all g e G. 

It is also possible to characterize G-finiteness in terms of relative compactness of 
G in the space of linear operators on M [17]. 

About 30 years ago Hopf (see [11]) introduced an equivalence relation on the 
measurable sets. In the language of von Neumann algebras it said that two pro
jections E and F in M (now abelian) are equivalent if for each geG there is a 
projection Ege0t such that E=J^Eg and F = £g{Eg). Hopf showed that 
finiteness in the partial ordering obtained was equivalent to the existence of a finite 
invariant measure, and later on Kawada and Halmos (see [11]) did a similar thing in 
the semifinite case. In the nonabelian case the analogous equivalence relation is the 
following : If E and F are projections in <% then E ~ G F if for each geG there is 
Tg e @ such that E = ST*Tg and F = Zg{TgT*) [18]. Note that if Tg = 0 when
ever g ¥" e then E ~ F in the usual sense, and if G = {e}9 E ~ F if and only if 
E ~GF. Since it can be shown that under an assumption of countable decom-
posability the relation ~G restricts to that of Hopf in the abelian case we have 
unified the latter and the usual equivalence relation in von Neumann algebras. 
Let 2K be the crossed product of 0$ with G, and let 0 be the imbedding of & into 9JÎ. 
Then it can be shown that E ~G F if and only if 0{E) ~ ¥{F)9 and furthermore 
that E is finite in the ordering <G defined by ~G if and only if 0{E) is finite in 
W [14]. Thus it is not difficult to show the following [18] : 

THEOREM 2. <% is semifinite with respect to the ordering -<G if and only if there 
exists a faithful normal semifinite G-invariant trace on <%. 
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THEOREM 3. If<% is countably decomposable, 0t is finite with respect to -<G if and 
only if there exists a faithful normal finite G-invariant trace on 0t. 

From the point of view of this report very little has been done on spectral theory 
for unitary operators implementing automorphisms. A very powerful technique is 
available in the theory of spectral subspaces [2], [3], [4], which is applicable to the 
case when G is a locally compact abelian group and the automorphisms are imple
mented by a strongly continuous unitary representation of G. A result along these 
lines is the following [20] : 

THEOREM 4. Suppose 02 is not both abelian and finite dimensional. Suppose U is a 
unitary operator implementing an ergodic automorphism of £%. Then the spectrum 
of U is the unit circle. 

When 0t is hyperfinite it appears that entropy will be a useful tool in the study of 
automorphisms. In work being done by Connes and the author at the time of this 
writing two possible candidates for entropy appear naturally when ^ has a faithful 
normal finite trace %. The simplest concept of entropy for an automorphism 6 is the 
abelian entropy H{6) = sup H{6 \ sé)9 where the sup is taken over all abelian von 
Neumann subalgebras stfof0l invariant under 0, and H{6 \ stf) is the entropy of the 
restriction of d to j / defined in the abelian theory. For the analogues of Bernoulli 
shifts it is possible to show that the entropy is as expected from the abelian case; 
in particular we have the following [5] : 

THEOREM 5. Let 3% be the hyperfinite My factor and6 the n-shift, i.e., there exists 
a ln-subfactor F of 01 such that F and Oi{F) commute whenever j ^ 0, and 
(LU* W(F)Y = ®- Then H{0) = log n. 

3. Purely nonabelian theory. This theory is concerned with the algebraic structure 
of 0t and special properties of the invariant states, e.g., how close they are to being 
traces. The first general result is due to Hugenholtz [10] and was afterwards gener
alized in several directions. In one direction we have [16] : 

THEOREM 6. Suppose 0t is semifinite and G acts ergodically on the center of 0t. 
Suppose co is a faithful normal G-invariant state. Then there exists up to a scalar 
multiple a unique faithful normal semifinite G-invariant trace z on 0t. Furthermore 
there exists a unique positive selfadjoint operator H affiliated with t%G such that 
co{A) = z{HA)forAe@. 

In particular if G is ergodic, co is a trace. If separability conditions are added, it is 
possible to extend the theorem to the case without ergodic action on the center 
[8], [13]. 

In order to study the type III case it seems that some assumptions of asymptotic 
abelianness are necessary. The most easily formulated result is this [19], [1], [9] : 

THEOREM 7. Let co be a faithful vector state on <% obtained from the GNS-repre-
sentation of an ergodic state of an asymptotically abelian C*-algebra. Then the 
spectrum of the modular operator defined by co equals the invariant S{0t) defined by 
Connes [4]. 
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It should be remarked that the assumption that co be faithful is unnecessary. 
If E denotes the support projection in 0t of co and Aœ = AE + (1 - E) with A the 
modular operator of co restricted to 0tE9 then the following possibilities occur for 
co obtained as in the theorem. 

(a) 0t is of type I«, and co\0tE is a trace. 
(b) 0t is finite and co is a trace. 
(c) 0t is of type lloo and co\0tE is a trace. 
(d) 0t is of type IIIA, 0 < I < 1, and Sp Am = {ln\n e Z}~. 
(e) m is of type Uli. 
Note that 02 cannot be of type III0, and that we obtain no new information in the 

type IIIx case. 
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Homotopy Invariants for Banach Algebras* 

Joseph L. Taylor 

Our topic is the relationship between the structure of a commutative Banach 
algebra A with identity and various homotopy invariants of its maximal ideal 
space A. 

The subject began with Shilov's idempotent theorem [11] which can be formulat
ed as follows : If Q{A) denotes the additive subgroup of A generated by the idempo-
tents of A9 then the Gel'fand transform induces an isomorphism Q{A) ~ H°{A,Z) 
where HP{A9 Z) denotes the/rth integral Cech cohomology group of A. 

Arens [1] and Royden [10] later proved that the Gel'fand transform induces an 
isomorphism A~1/Qxp{A) c* Hl{A9 Z), where A~l is the invertible group of A and 
cxp{A) is the subgroup consisting of elements with logarithms in A. 

At this point it seemed natural to try to characterize all the Cech groups of A in 
terms of the structure of A. However, the next result led in a new direction. This 
was the Arens theorem [3] which asserts that the Gel'fand transform yields an 
isomorphism 

[GL„04)] - [A, GL„(C)]. 

Here, Ghn{A) is the group of invertible n x n matrices over A9 [GL„(>4)] is the 
factor group modulo the identity component, and [A9 GL„(C)] is the set of homo
topy classes of maps from A to GLn{C). 

Eïdlin [4] and Novodvorskiï [8] pointed out that the Arens result could be used 
to characterize the group K~l{A) of Atiyah-Hirzebruch ^-theory in terms of the 
structure of A. Novodvorskiï [8] also established an isomorphism Proj(>4) ^ 
Vect(J) where Proj(yi) is the semigroup (under ®) of isomorphism classes of finitely 
generated projective yl-modules and Vect(J) is the semigroup of isomorphism 

* Research supported by the National Science Foundaion under NSF grant GP-43114X. 
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classes of complex vector bundles on A. This leads immediately to an isomorphism 
K0{A) ca K°{A) between the Grothendieck group K0{A) for A and the group K\A) 
of Atiyah-Hirzebruch ^-theory for A. 

Module tensor product induces a multiplication on Proj(^f) which makes it into 
a semiring with identity. The invertible group in this semiring is the Picard group 
Pic(/4). Forster [5] pointed out that the Gel'fand transform induces an isomor
phism YIG{A) ~ H2{A9 Z), thus carrying the program of characterizing the Cech 
groups of A one step further. 

The second generation results along these lines (those of Arens, Novodvorskiï, 
Forster) all derive from fundamental work of Grauert [6] on holomorphic fiber 
bundles. Grauert's work makes possible a very general theorem (Theorem 1 of 
this paper) which can be used to generate the preceding results and many more. 
A weak version of this general theorem appears in Novodvorskiï [8]. The general 
result is more or less implicit in a paper of Lin [7]. We shall give a detailed proof 
and a wide variety of applications in [14]. Here we shall simply state the result and 
list some unsolved problems. 

Since our interest in this subject stems from our study of measure algebras on 
locally compact groups, we include a brief discussion of the connection between the 
two subjects. 

1. A general theorem. In what follows let F be a closed complex submanifold of 
a domain U c Cn, and let A be a commutative Banach algebra with identity and 
with maximal ideal space A. 

We define a subset AF of An—the set of «-tuples of elements of A. If A is semi-
simple, it suffices to define AF to be the set of all a e An such that 

(a) a{a) a F9 

where a{a) is the joint spectrum of the tuple a. If A is not semisimple we must be 
more subtle. If a = {aÌ9 -~,an) satisfies (a) and an+Ì9 •••, am are arbitrary elements of 
A, then the tuple a' — {aÌ9 •••, am) has its spectrum in the set F x Cm~n <=• Cm. 
Given a domain V c Cm with G{CX') C Fand a function/e (9{V)9 the holomophic 
functional calculus for Banach algebras yields an element/(a') e A. We define AF 

to the set of tuples a e An such that a satisfies (a) and 
(b) For arbitrary m ^ n9 an+Ì9 •••, am9 V, and / , as above, i f / = 0 on V Ç] 

{F x Cm~n) then/(a:') = 0. 
This is complicated looking condition. However, in most applications it turns 

out to be equivalent to a very simple condition. Suppose there exist functions <pi, • • •, 
<pk e 0{U) which vanish on F and are such that the complex Jacobian matrix 
(d(pi/dzj) at each z e F has kernel equal to the complex tangent space to F at z. Then 
(b) is equivalent to 

(b') (pia) = 0 fori = 1, •••,£ 

(cf. [14, §2.8]). This is a condition that is easily checked in practice. 
We can now state the main theorem : 
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THEOREM I. If F is a discrete union of complex homogeneous spaces, then AF is 
locally path connected and the Gel'fand transform induces a bijection [AF] ca [A, F]9 

where [AF] is the set of components of AF and [A9 F] is the set of homotopy classes of 
maps from A to F. 

In the case where Fis open in Cn and A is semisimple, this result is due to Novod
vorskiï [8]. The result is implicit in work of Lin [7] and is developed in detail in 
[14]. 

Each of the theorems mentioned in the introduction can be easily deduced from 
this result. For example, the Arens theorem follows directly by choosing F = 
GLn{C). The results of Novodvorskiï [8] and Forster [5] on Proj(^)5 KQ{A)9 and 
Pic(v4) follow by choosing F to be appropriate spaces of idempotent complex 
matrices. Other choices for F lead to results relating topological invariants from real 
and symplectic iT-theory to the structure of Banach algebras. For details see [14]. 

The point is that Theorem 1 can be used to relate homotopy invariants of the 
form [A9 F] to the structure of A whenever F is a space which has the homotopy 
type of a complex homogeneous space or a direct limit of complex homogeneous 
spaces. The invariants that arise in 7£-theory (the study of real, complex, or sym
plectic vector bundles) are all of this form. On the other hand, while the functors 
HP{ , Z) of Cech cohomology have the form A -> [A, K{Z, p)] for spaces K{Z9 p) 
(the Eilenberg-MacLane spaces), only for p = 0, 1, 2 can these spaces be approxi
mated by complex homogeneous spaces. Hence we are still faced with the following 
problem: 

Problem 1. Find a direct characterization of the Cech groups HP{A9 Z) {p > 2) in 
terms of the structure of A. 

Of course the cohomology and J^-theory of a space determine each other up to 
torsion via the Chern character. Since the analogous problem for i£-theory has 
been solved, Problem 1 has been solved up to torsion (i.e., for rational rather than 
integral coefficients). However, a solution to the full problem would be very 
interesting. 

Complex homogeneous spaces play the role they do because Theorem 1 is based 
on a result of Grauert [6] and Ramspott [9] : If F is a complex homogeneous space 
and A" is a Stein space, then the inclusion yields a bijection [X9 F]a -* [X9 F]9 where 
[X, F]a is the set of homotopy classes of holomorphic maps from X to F. This 
raises the following question : 

Problem 2. For what class of complex manifolds F does the conclusion of the 
Grauert-Ramspott theorem hold for all Stein spaces Z? Is it nececssary that F be 
complex homogeneous? 

We close with a discussion of a particular class of Banach algebras where further 
progress in this area might lead to very interesting results. 

2. Measure algebras on a locally compact group. Let G be a locally compact 
abelian group and let M{G) be the Banach algebra of all finite regular Borei mea
sures on G under convolution multiplication. We denote the maximal ideal space 
of M{G) by A. 
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It is well known that M{G) is a very complicated algebra and that A is a large and 
complicated space which defies explicit description. Hence, it is rather surprising 
that certain kinds of problems in M{G) have rather simple and elegant answers. 
For example, Cohen's computation of the idempotents of M{G) is such a result 
(cf. [3]). 

In view of Shilov's idempotent theorem, Cohen's result can be thought of as a 
computation of HQ{A, Z). 

In fact, all of the Cech groups of A can be computed. Let Mi{G) = @vL{Gt)9 

where T ranges over topologies on G which dominate the original topology and for 
which Gx is still a locally compact topological group. Here L{GT) is the algebra of 
measures absolutely continuous with respect to Haar measure on Gx. Now M\{G) 
is a relatively simple subalgebra of M{G). If A\ is its maximal ideal space, then the 
inclusion M\(G) -> M{G) induces a continuous map A -> A\. The basic theorem is 
the following (cf. [12]): 

THEOREM 2. The map A -> A\ induces an isomorphism HP{AÌ9 Z) -> H*{A, Z) of 
Cech cohomology for each p ^ 0. 

For/? = 0 this leads directly to Cohen's idempotent theorem. For/? = 1 it leads, 
together with the Arens-Royden theorem, to a characterization of the invertible 
elements of M{G) modulo exponentials (cf. [12]). For/? = 2 it leads, together with 
Forster's theorem, to a characterization of Pic(M(G)) (cf. [13]). In each of these 
cases it leads to an explicit and useful result concerning measures on G. What 
significance does it have for /? > 2? This is not yet clear in view of the lack of a 
solution to Problem 1. 

If we could prove that the map A -> A\ induces a bijection [A, F] -* [Ay F] when
ever Fis a complex homogeneous space, then we could use Theorem 1 to generate 
a wide variety of results on M{G). A map X -> Y of compact Hausdorff spaces is 
called a shape equivalence if the induced map [Y, F] -> [X9 F] is bijective whenever" 
F is an ANR. Thus, what we really need is a positive solution to the following 
problem: 

Problem 3. Is the map A -> A\ a shape equivalence? 
In conjunction with Theorem 1, a positive solution to Problem 3 would yield 

solutions to a variety of problems in harmonic analysis. Among them are 
Problem 4. Characterize (up to exponential factors) the invertible n x n matrices 

over M{G). 
Problem 5. Characterize (up to similarity) the n x n idempotent matrices over 

M{G). 
Problem 6. Characterize the finitely generated projective M{G) modules. 
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Harmonic Analysis on Real Semisimple Lie Groups 

V. S. Varadarajan* 

This report is a survey of some of the main results concerning harmonic analysis 
on real semisimple Lie groups. Due to limitations of space and time only the bare 
outlines of the theory are sketched; the reader interested in a more detailed treat
ment should consult the articles cited at the end. The bibliography is not intended 
to be exhaustive and serves only to indicate some of the main sources of the subject. 

Let G be a connected semisimple Lie group having finite center and 0 a Cartan 
involution of G. We write Kfov the maximal compact subgroup of G corresponding 
to 0 ; g (resp. t) for the Lie algebra of G (resp. K) ; and © for the universal enveloping 
algebra of the complexification gc of g. Most of the progress in the subject has 
centered around two broad themes: 

(I) Explicit construction of the irreducible representations of G. 
(II) Development of a Fourier transform theory for functions and distributions 

on G9 in particular, explicit determination of the Plancherel formula for G. 
The most fundamental representations of G are those that occur as irreducible 

direct summands of the regular representation of G in L2{G). These are precisely 
the irreducible unitary representations of G having square-integrable matrix coef
ficients. The set of equivalence classes of these is called the discrete series of G and 
is denoted by é>z{G). Of course G need not always have a discrete series. It was 
proved by Harish-Chandra [3] that g2{G) ^ 0 if and only if rk(G) = rk{K)9 rk 
being the rank, or equivalently if and only if G has a compact Cartan subgroup 
(CSG). We shall now describe briefly Harish-Chandra's construction of the discrete 
series of G [3], 

Let ^o be the algebra of all differential operators on G and ^ , (resp. <2>r) the 
subalgebra of all elements of ^ 0 that commute with the left (resp. right) transla-
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tions of G; let @ be the subalgebra of 0O generated by 9t U ^r- Let G = KAN be 
an Iwasawa decomposition of G. If || • || is any ^-invariant norm on g, there is a 
unique function a on G which is invariant under right and left translations by 
elements of K and is given on A by <r(exp H) = ||üT||, He a, a being the Lie algebra 
of A. By the Schwartz space &{G) of G we then understand the space of a l l / e C°°{G) 
for which (1 -f- <r)r{Ef) e L\G) Vr^09Ee@. <g{G) is a Fréchet space under the 
collection of seminorms /»-> ||(1 + o)r{Ef)\\2 (||- H2 *s the norm in L2{G)). It is 
closed under convolution (*), and * converts it into a topological algebra. C™{G) 
c <g{G)9 the natural inclusion being continuous; moreover, Q°(G) is dense in 
<£{G). Distributions on G that extend (necessarily uniquely) to continuous linear 
functionals on <ê{G) are called tempered. 

Suppose % is an irreducible unitary representation of G. Then its character &% 

is a distribution on G that is invariant under all inner automorphisms of G and is 
an eigendistribution for every z e Q where S is the center of © and is identified as 
usual with £iïl f| <&r. Distributions on G with these two properties are called 
invariant eigendistributions and it was proved by Harish-Chandra [2] that any such 
distribution is a locally integrable function on G which coincides with an invariant 
analytic function on the dense open subset G' of regular points of G. Given an 
invariant eigendistribution 0 on G we write 0 also for the corresponding analytic 
function on G'. We now have the following theorem, where, for simplicity of for
mulation, we assume that G is contained in the simply connected complex analytic 
group Gc with Lie algebra QC. 

THEOREM, ê2(G) ^ 0 if and only if rk(G) = rk(A:). Let rk(G) = MK) andB c K 
a compact CSG. Let b a t be the Lie algebra ofB and A an integral linear form on bc 

which is regular in the sense that <Ä, a} ^ Ofor all roots a of{$C9 hc). Let A as usual 
be the function on B such that 

* A{txp H)= n {e«W* - er*m/*) ( # e î ) ) 

where F is a positive system of roots. Then there exists exactly one invariant eigendis
tribution &x on G such that 

(i) 6x is tempered, 
(ii) 0,(exp H)A{exp H) = ES.WCG/B) « ( J ) * * ™ {He b, exp He B f| G'\ 

where W{GjB) is the subgroup of the Weyl group of{§C9 hc) coming from G, ande{s) 
has the usual meaning. Further, let b = bxbe the character ofB such that ft(exp H) 
= e^H) {He h) and write 0* = 0 ,̂ e{6) = sgn T\aGPQ9 a> andlq = idim{G/K). 
Then (— 1)* e{b)&è is the character of a class o){b) e $2{G)'9

 and the map b \-* co{b) 
induces a bijection of B'IW{GIB) onto $2{G)9 B' being the set of all bxeB with X 
regular and integral. 

With appropriate modifications this theorem remains valid even for a possibly 
disconnected reductive group G provided it satisfies the following conditions: 
(i) G and center(G) have finitely many connected components, (ii) Ad(G) is con-

1 q is an integer ^ 0. 
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tained in the connected complex adjoint group of g„ (iii) the analytic subgroup of 
G defined by [g, g] is closed in G. Further, one can associate an invariant eigen
distribution 0£ which is tempered and is given on the compact CSG B by a formula 
similar to (ii) of the theorem, not only for be Bf but also for all b eB. It is no 
longer true that such an eigendistribution is determined by its restriction to B f) G', 
but one can make canonical choices and arrange matters so that the 0£ satisfy the 
following symmetry conditions: If G is an automorphism of G with oB = B and if 
s{o) = ± 1 is such that a • A = e{a)A9 then a • 0£ = e{o)6è {b e B) (cf. Harish-Chandra 
[3]). It is however not known whether 0$ is, for b e Ê\B'9 a scalar multiple of the 
character of an irreducible unitary representation of G. 

In view of the great importance of the discrete series it is natural to seek to obtain 
the corresponding representations of G more directly. It turns out that one can 
realize "almost all" of the discrete series in certain "L2 cohomology" spaces as
sociated with G. For details the reader is referred to the papers of Narasimhan and 
Okamoto [1], Parthasarathy [1], and Schmid [1]. 

Following Harish-Chandra we now associate with each conjugacy class F of 
CSG's of G a set é>

P{G) of equivalence classes of irreducible unitary representations 
of G. If the CSG's in B are compact, S'r{G) — ê2{G)\ otherwise, we proceed as 
follows. Let A G r be 0-stable and write A = AjAR where Aj = A Ç\ K9 AR = 
exp aR, aR being the subspace of the Lie algebra of A on which 0 = — id. We choose 
a parabolic subgroup (psgrp) P of G whose Langlands decomposition is of the form 
P = MARN (cf. Harish-Chandra [4] for details); M is reductive, KM = K f| M is 
a maximal compact subgroup of M9 Aj is a CSG of M (so that rk(M) = rk{KM)) 
and AR lies in the center of MAR. Then ê2{M) ^ 0. For any a e $2{M)9 £ G Â R , 
we can now introduce the unitary representation %a^ of G induced by the repre
sentation man i-* %{à)r}{m) of P where TJ is any member of a. The equivalence class 
of %0£ depends only on a and £ and not on P, while, for fixed o9 %a^ is irreducible 
for almost all £ and has a finite composition series for all £. The set of equivalence 
classes of the irreducible constituents of the %a^ is êr{G) ; it depends only on 71 and 
not on the choice of AeT. If œ e $r{G)9 a) is tempered in the sense that the cor
responding character and matrix coefficients are tempered distributions on G; 
conversely, if iz is an irreducible unitary representation of G whose matrix coef
ficients are tempered, then the equivalence class of % belongs to êr{G) for some 
r (cf. Langlands [1], Trombi [1]). 

If the CSG's of r are of the Iwasawa type, i.e., if dim(̂ 4Ä) has its maximum pos
sible value, then the associated psgrp's are the minimal ones. Then the representa
tions %a£ are the so-called principal series representations of G. Since M is com
pact in this case, one does not need the theory of the discrete series to construct 
them. So it is not surprising that historically these were studied first (cf. Gel'fand 
and Naïmark [1], Harish-Chandra [1], Bruhat [1]). 

For fixed A9 F, it is natural to ask for the structure of the ring of bounded opera
tors in the Hilbert space of itat^ commuting with %a%^\ in particular, one would like 
to determine the set 0{A) of all (a9 £) G S>

2{M) X ÂR for which %a^ is irreducible. 
Although these questions have not yet been fully answered, substantial results have 
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been obtained; for A not of Iwasawa type, see Harish-Chandra [5]. Suppose A is of 
the Iwasawa type. Then Bruhat [1] has shown that %a^ is irreducible whenever 
(<7, £) is in "general position" in the following sense : If x e G normalizes MAR but 
does not centralize it, then the representations ma »-» ${a)rj{m) and ma »-> %{ax)7){mx) 
of MAR are inequivalent; in the case when vk{G/K) = 1, Knapp and Stein [1], 
[2] have determined Q{A) explicitly. If we suppose further that a is the trivial class 
of M, then the representations ica^ are spherical, i.e., they contain the trivial class 
of ^exactly once. One can analyse them in great detail using infinitesimal methods. 
This was done by K. R. Parthasarathy and others [1] when G was complex and by 
Kostant [1] for arbitrary G, and led to the result that the representations %a^ {a 
trivial, £ G ÂR) are all irreducible. In the case of a complex G, there is only one 
conjugacy class of CSG's; the CSG's in this class are of the Iwasawa type and the 
corresponding representations %fftç are all irreducible (cf. Wallach [1], Zelebenko 
[1], Knapp and Stein [1], [2]). 

The infinitesimal method was pioneered by Harish-Chandra [1]. His work sug
gests that it might be worthwhile studying the class of ©-modules V having the 
following properties : (i) Vis finitely generated, (ii) each element of Fis contained in 
a f-stable finite-dimensional subspace of V and the isotypical subspaces of V con
sidered as a Ï-module are all finite dimensional. The structure of such ©-modules is 
not completely determined except in some special cases (cf. Gel'fand and Pono-
marev [1]). 

Fix a 0-stable CSG A = AjAR. Then Â ~ Âj x AR. For f e i we write 
£/,£K for the projections of £in Âl9 AR. IfÇjeÂ'j, then we can associate, with 
£/, <T(£/) G $2{M) and construct the representation TC^^^. Let 0Ç be the character of 
notiù,& W e t h e n define, for a n y / e <éì{G)9 

/A(£) = ( - iy«e{tiW{f) 
where qM, e(£7) have the same relation to M as q, e{b) have to G in our statement of 
the theorem on the discrete series. It can then be proved that fA extends from 
A j x AR to Â as an element of the Schwartz space <g{Â) of Â, that the extension 
is unique, and that the extension (denoted byfA again) has the following symmetry 
property for a suitable ± 1-valued character eA of W{G/A): 

/ A ( ' - 0 = 9A(S)/A(& (f e i , ^ W{G/A)). 
Let now A{ (1 ^ i g r) be a complete system of 0-stable CSG's of G no two of 
which are conjugate in G. For/G ^(G), write/,- = fAi9 e{ — eAf9 and put, following 
Harish-Chandra [4], / = {fÌ9 ••• , / r) . We call/the invariant Fourier transform off. 
The map/»->/is continuous from #(G) into ^{A{) x ••• x &{Ar) and gives rise, 
via duality, to a Fourier transform theory of tempered invariant distributions on 
G. The computation of the Fourier transform of the Dirac measure at the identity 
element 1 of G then leads to the Plancherel formula (Harish-Chandra [4]) : 

THEOREM. There exist unique continuous functions Q on Â{ (1 ^ / ^ r) with 
the following properties : 

(i) Ci(Ç) = OifÇJeÂI\Âi. 
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(ii) C,(*-£) = et(s)Ct{£) {se W{G\A^ £G Ât). 
(iii) Cf has at most polynomial growth on Â{. 
(iv) There is a constant c ^ O such that, for allfe <£{G)9 

cf{\) = S j C,(£)/,(£) d& 
i ^ r Â, 

where d£ are fixed Haar measures on A(for 1 g / ^ r. 

One would like to determine the Fourier transform of important tempered in
variant distributions associated with G. When rk{G/K) = 1, Sally and Warner 
[1] have done this for the invariant measures on the conjugacy classes of G. 

It is natural to attempt to construct a more general transform for functions in 
<̂ (G) that uses the matrix coefficients of Tü^^^ rather than its character. The 
resulting transform theory would be capable of dealing with arbitrary (not neces
sarily invariant) tempered distributions on G. For G = SL(2, R) this was done by 
Ehrenpreis and Mautner [1] and by Ranga Rao and Varadarajan (unpublished); 
for the general case see Arthur [1]. 

It is of interest to examine the Fourier transform on the subspace fé^(G) of all 
fe <#{G) with (1 + a)m{Ef) e LP{G) for all m ^ 0, E e 0 (1 ^ p < 2). Ehrenpreis 
and Mautner [1] studied the case G = SL(2, R); the general case has not been com
pletely settled. At the level of the discrete spectrum this is substantially the problem 
of determining the subset &P{G) c &2{G) of classes that have matrix coefficients in 
LP{G)\ although this has not yet been answered, Trombi and Varadarajan [2] have 
obtained many partial results, and in particular have proved that if a> e ê2(G) cor
responds to X e &*, co G &p{G) provided infa | </l, a> | is sufficiently large. Further, 
for the case of the continuous spectrum, Trombi and Varadarajan [1] have com
pletely determined the spherical transforms of the convolution algebra J^P{G) of 
spherical functions in ^(G); among other things they have shown that the spheri
cal transform is a topological algebra isomorphism of <fP{G) with the multiplication 
algebra of functions defined and holomorphic on a certain tube domain in a*, 
that are in addition invariant under the Weyl group of the symmetric space G/K 
and rapidly decreasing in a suitable sense (here a is the Lie algebra of A and G = 
KAN is an Iwasawa decomposition). 

It should also be mentioned that analogous transform theories have been devel
oped for functions and distributions on homogeneous spaces associated with G, 
especially G/K. For an account of some of these see Helgason [1], Gangolli [1]. 

Finally it must be noted that the semisimple groups differ from the compact 
and abelian groups in their having irreducible unitary representations that do not 
enter the Plancherel formula. From our point of view these are the irreducible uni
tary representations whose characters are nontempered. We call the corresponding 
set of equivalence classes the exceptional series of G. 

The main technique of studying the exceptional series seems to be that of analy
tic continuation. More precisely, if A is a 0-stable CSG, we consider the representa
tions 7c0lç of G induced by the representation man *-* fjt,{m)£{a) of MARN9 where £ 
is now a quasi-character of AR, i.e., a member of the group ÄR of continuous homo-
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morphisms of y4Äinto Cx, the nonzero complexes. According to a theorem of 
Harish-Chandra [1], all irreducible representations of G (unitary or not) occur as 
subquotients of the %at %{oe ê2{M)9 £ G ÄR) associated with an Iwasawa type CSG. 
Consequently it is natural to look for the exceptional series from this large series 
of representations. Although the theory is incomplete, substantial results have al
ready been obtained; see Kostant [1], Harish-Chandra [5] and Knapp and Stein 
[1], PL 

References 
J. Arthur 

[1] Harmonic analysis on the Schwartz space of a reductive Lie group. I, II (preprint). 
F. Bruhat 

[1] Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France 84 (1956), 97-205. 
MR 18, 907. 

L. Ehrenpreis and F. I. Mautner 
[1] Some properties of the Fourier transform on semi-simple Lie groups. I, II, III, Ann. of Math. 

(2) 61 (1955), 406-439; Trans. Amer. Math. Soc. 84 (1957), 1-55; ibid. 90 (1959), 431-484. 
MR 16, 1017; 18, 745; 21 #1541. 

R. A. Gangolli 
[1] Spherical functions on semisimple Lie groups, Short courses presented at Washington Univer

sity, Marcel Dekker, New York, 1972. 
I. M. Gel'fand and M. A. Naïmark 

[1] Unitary representations of the classical groups, Trudy Mat. Inst. Steklov. 36 (1950); German 
transi., Unitäre Darstellungen der klassischen Gruppen, Akademie-Verlag, Berlin, 1957. MR 
13, 722; 19, 13. 

I. M. Gel'fand and V. A. Ponomarev 
[1] The category of Harish-Chandra modules over the Lie algebra of the Lorentz group, Dokl. 

Akad. Nauk SSSR 176 (1967), 243-246 = Soviet Math. Dokl. 8 (1967), 1065-1068. MR 36 
#6552. 

Harish-Chandra 
[1] Representations of semisimple Lie groups. II, Trans. Amer. Math. Soc. 76 (1954), 26-65. MR 

15, 398. 
[2] Invariant eigendistributions on a semisimple Lie group, Trans. Amer. Math. Soc. 119 (1965), 

457-508. MR 31 #4862d. 
[3] Discrete series for semisimple Lie groups. I. Construction of invariant eigendistributions', II. 

Explicit determination of the characters, Acta Math. 113 (1965), 241-318; ibid. 116 (1966), 
1-111. MR 36 #2744; #2745. 

[4] Harmonic analysis on semisimple Lie groups, Bull. Amer. Math. Soc. 76 (1970), 529-551. MR 
41 #1933. 

[5] On the theory of the Eisenstein integral, Conference on Harmonic Analysis (College Park, 
Maryland, 1971), Lecture Notes in Math., vol. 266, Springer-Verlag, New York, 1972. 

S. Helgason 
[1] A duality for symmetric spaces with applications to group representations, Advances in Math. 

5 (1970), 1-154. MR 41 #8587. 
A. W. Knapp and E. M. Stein 

[1] Intertwining operators for semisimple Lie groups, Ann. of Math. (2) 93 (1971), 489-578. 
[2] Irreducibility theorems for the principal series, Conference on Harmonic Analysis (College 

Park, Maryland, 1971), Lecture Notes in Math., vol. 266, Springer-Verlag, New York, 
1972. 



HARMONIC ANALYSIS ON REAL SEMISIMPLE LIE GROUPS 127 

B. Kostant 
[1] On the existence and irreducibility of certain series of representations, Bull. Amer. Math. 

Soc. 75 (1969), 627-642. MR 39 #7031. 
R. P. Langlands 

[1] On the classification of irreducible representations of real algebraic groups (preprint). 
M. S. Narasimhan and K. Okamoto 

[1] An analogue of the Borel-Weil-Bott theorem for hermitian symmetric pairs of non-compact 
type, Ann. of Math. (2) 91 (1970), 486-511. MR 43 #419. 

K. R. Parthasarathy, R. Ranga Rao and V. S. Varadarajan 
[1] Representations of complex semi-simple Lie groups and Lie algebras, Ann. of Math. (2) 85 

(1967), 383-429. MR 37 #1526. 
R. Parthasarathy 

[1] Dirac operator and the discrete series, Ann. of Math. (2) 96 (1972), 1-30. 
P. J. Sally, Jr. and G. Warner 

[1] The Fourier transform on semisimple Lie groups of real rank one, Acta Math. 131 (1973), 1-26. 
W. Schmid 

[1] On a conjecture of Langlands, Ann. of Math. (2) 93 (1971), 1-42. MR 44 # 4149. 
P. C. Trombi 

[1] The tempered spectrum of a real semisimple Lie group (preprint). 
P. C. Trombi and V. S. Varadarajan 

[1] Spherical transforms on semisimple Lie groups, Ann. of Math. (2) 94 (1971), 246-303. MR 
44 #6913. 

[2] Asymptotic behaviour of eigenfunctions on a semisimple Lie group: The discrete spectrum, 
Acta Math. 129 (1972), 237-280. 

N. R. Wallach 
[1] Cyclic vectors and irreducibility for principal series representations, Trans. Amer. Math. Soc. 

158 (1971), 107-113. MR 43 #7558. 
D. P. Zelobenko 

[1] The analysis of irreducibility in the class of elementary representations of a complex semisimple 
Liegroup,lzw. Akad.NaukSSSRSer. Mat. 32(1968), 108-133 = Math. USSRIzv. 2(1968), 
105-128. MR 37 #2906. 

UNIVERSITY OF CALIFORNIA 

Los ANGELES, CALIFORNIA 90024, U.S.A. 





Tpy^bi MoKAyHapOÄHoro KoHrpecca MaTeMaTHKOB 
BaHKyBep, 1974 

KOMIIJieKCHblft TapMOHHHeCKHfl AnajiM3 Ha 

IlojiynpocTbix rpynnax JIH* 

A. n. >Kejio6eHKO 

1. BBe^eHHe. rioA KOMnjieKCHbiM rapMOHHHecKHM aHajiH30MHa rpynne JIH GMH 
noHHMaeM anajiH3 (B Ayxe ntejm-BHHepa) fyyuKuyin Ha G9 onepaTopHbie o6pa3bi 
Oypbe KOTopbix ecTecTBeHHo npOAOJi>KaK)TCfl B KOMnjieKCHyio oßjiacTb. K STOMy 
KJiaccy OTHOCHTC5I rpynnoBan ajireôpa ^(G)Bcex $HHHTHHX o6o6meHHbix ^ H K U H H 

Ha G9 a TaioKe SbiCTpo yobiBaiomne (ßbicTpee JIK)6OH SKcnoHeHTbi) (J)yHKijHH Ha 
G. Cpe^H noAajireßp @{G) ocoßyio pojib B TeopHH npeACTaBJieHHö nrpaioT 
Co°(G), 3>e{G\ r ^ e @e{G)—noAajireöpa Bcex (j)yHKijHH c HOCHTejieM B eAHHHHHoft 
TOHKe e eG. 

MeTOA, pa3BHTbiö B paßoTax aBTopa [2]—[5] ^ji5i nojiynpocTbix rpynn JIH, 
no3BOJineT cBecTH HCCJieAOBaHHe onepaTopHoro HHTerpaJia ò>ypbe Ha rpynne G K 
HccjieAOBaHHK) ero cneunajibHoro cjiynan—c^epHHecKoro npeo6pa30BaHHH $ypbe , 
KOTopoe HHAyuHpyeTCH B KJiacce AßycTopoHHe üT-HHBapnaHTHbix (J)yHKUHft, rAe 
K— MaKCHMajibHan KOMnaKTHan noArpynna B G. (ECJIH G—KOMnJieKCHan rpynna 
paHra /, TO c^epH^ecKoe npeo6pa30BaHHe <ï>ypbe CBOAHTCH K oßbiHHOMy HHTerpajiy 
$ y p b e B /-MepHOM CBKJIHAOBOM npocTpaHCTBe.) yKa3aHHbifl MCTOA flBJineTca HHCTO 

ajireopannecKHM H ocHOBaH Ha paccMOTpeHHH cneijHaJibHOH KaTeropHH B KJiacce 
ABycTopoHHHx U- X-MOAyjiefi, rAe nojio>KeHO U=U{QC)9Q

C—KOMnjieKCH(})HKaij,HH 
ajireöpbi JIH g rpynnbi G. riocpeACTBOM 3Toro noAxoAa yAaeTca ycTaHOBHTb 
anajiorn KjiaccnnecKHX TeopeM FfejiH-BHHepa MK (})yHKUHH KJiacca C™{G)9 3e{G)9 

a TaKH<e juin MHornx Apyrnx KJiaccoB (j)yHKUHH. 
3aMeHaTejibHo, HTO npH AOKa3aTeJibCTBe STHX TeopeM HcnoJib3yeTCH jiniiib 

He3HaHHTejibHan HH^opMaijHH o Mepe rkaHiuepeJifl (xapaKTep pocTa H HBHoe 

* Not presented in person. 
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3Ha*ieHHe B KJiacce AßycTOpOHHe Ä-HHBapnaHTHbix tyymum). TeM He MeHee 
nojiHbie pe3yjibTaTbi nojiyneHbi B Hacronmee BpeMH jiHiiib AJIH cjiynan, KorAa G 
KOMiiJieKcm (Apyrne cjiynan ynoMHHaioTCH HHxee). 3 T H pe3yjibTaTbi HMeioT cy-
mecTBeHHoe npHMeHeroie K TeopHH npeACTaBjieHHH (KJiaccH$HKai;HH HenpHBOAH-
Mbix G-MOAyJieft H HenpHBOAHMbix g-MOAyJieö XapHin-HaHApbi). 

2. npeo6pa30BaHne Oypbe. B AaJibHeflmeM AJIH npocTOTbi H3Jio>KeHHH MH 
CHHTaeM, HTO G—nojiynpocTan KOMiuieKCHan CBH3Han rpynna JIH, G = KAN—eë 
pa3Jio>KeHHe HßacaBbi. npeo6pa308ameM Oypbe HHCJIOBOH 4>yHKUHH x{g) Ha G 
Ha3biBaeTCH onepaTopHan (f)yHKijHH 

x& a) = \x{s)eM) dg, 
rAe dg—Mepa Xaapa Ha G9 eva—ajieMeHTapHoe npeACTaBJieHHe rpynnbi G, HHAy-
UHpoBaHHoe B C°°{K) xapaicrepoM Qva{man) = mva*+p 6opejieBCKOH noArpynnbi B 
= MAN. Bojiee AeTajibHo, nycTb Dva—noAMOAyJib JieBoro peryjinpHoro G-
MOAyjiH B KJiacce C°°{G\ BbiAejineMbiH ypaBHeHHeM 

f{xy) = f{x)Ova{y)-\ xeG9yeB. 
OnepauHH cy>KeHHH Ha noArpynny K H30Mop(j)HO OTo6pa>KaeT Dva Ha noAnpoc
TpaHCTBO 3)v Bcex (JtyHKUHH KJiacca C°°{K)9 yAOBJieTBOpHioiunx ypaBHeHHio <p{km) 

= <p{k)m~v, keKtmeM. ^eftcTBHe rpynnbi G B 3 ) V o6o3HanaeTCH ev<r npH STOM 
MH nojiaraeM 

mv = exp(v, In m)9 ax = exp(A, In a)9 v e T7, X e f, 

rAe(- , •)—KHJijiHHroBa (J)opMaB KOMoneKCHofi ajireôpe g, tj—KapTaHOBCKan noA-
ajireôpa B g, T— pemeTKa BecoB Topa M, BJioaceHHanB % oraocHTejibHo KHJIJIHHFOBOH 
4)opMbi, A = a + p, rAe p—-nojiycyMMa nojio>KHTejibHbix KopHefi B ïf. (npeACTaBjie
HHH eva npn HHCTO MHHMbix a o6pa3yioT ocHOBHyio cepHK) reJib4)aHAa-HaflMapKa.) 

npeo6pa30BaHHe 4>ypbe ecTecTBeHHo npoAOJiacaeTCH Ha oôoémeHHbie (J^HKUHH. 
ECJIH x e 3){G)9 TO x{v9 a) HBJIHCTCH uejioft onepaTopHoft (ftyHKuneft OT a. ECJIH 

x e $}e{G)9 TO X{V, ö-)—onepaTopHbifl noJiHHOM OT a. 

3. npocTpaHCTBO X H KaTeropHH X*P. OnHiueM KJiacc npocTpaHCTB, AJIH 
KOTopbix npHMeHHMbi npeAJiaraeMbie MCTOAH KOMnjieKCHoro aHajiH3a. nycTb X— 
jiHHeöHoenpocTpaHCTBOo6o6uj[eHHbix({)yHKUHH Ha G, yAOBJieTBopniomeeycjioBHHM: 

(1) X HBJlHeTCH AByCTOpOHHHM Ä-MOAyJieM OTHOCHTeJIbHO JieBblX H npaBbix 
CABHroB Ha G, 

(2) X HBJineTCH C/-MOAyjieM OTHOCHTeJIbHO AH(j)(})epeHUHpoBaHHH o6o6meHHbix 
(JtyHKIJHH, 

(3) o6pa3bi 4>ypbe ajieMeHTOB x e X HBJIHIOTCH uejibiMH (onepaTOpHbiMH) (j)yHK-
UHHMH OT <7. 

nycTb A—MHo>KecTBO Bcex cTapuiHX BecoB rpynnbi K. Rjin KaacAoro XeA 
nycTb ^—ueHTpaJibHbiH npoeKTop B C{K) CO crapniHM BecoM A:e* = nx%X9 rAe 
Xx—xapaKTep, nx—pa3MepHOCTb HenpHBOAHMoro npeACTaBjieHHH TCX co CTapniHM 
BeCOM h riOJIOÄHM 

X^ = e*Xei>9 X* = S X^. 
h fi 



KOMnJIEKCHblH rAPMOHHHECKHH AHAJIH3 131 

3jieMeHTbI x{v, a) npH X e X*t* eCTeCTBeHHO OTO>I<AeCTBJIHK)TCH C MaTpHHHblMH 
4>yHKUHHMH OT a co 3HaneHHHMH B Hom(L£, Lx)9 rAe noJioM<eHO Lx = eX(&v. 3aMe-
THM, HTO, no npaBHJiy ABOHCTBCHHOCTH $po6eHHyca, LX^EX® Ex (aHTHJiHHeftHO 
no BTopOMy coMHOKHTejiK)), rAe Ex—npocTpaHCTBO 7u\ EX—BecoBoe noAnpoc-
TpancTBo Beca v. CooTBeTCTBeHHo, ecjiH XXP—o6pa3 Oypbe X*P9 TO HeTpyAHO 
noi<a3aTb, HTO 

XXP s Jtip <g> Xxv9 

TAe Mip = H o m ( ^ 5 Ex) H SJieMeHTbl XXP HBJIHIOTCH MaTpHHHblMH (jtyHKUHHMH OT 
a co 3HaneHHHMH B Hom{E$9 Ex). 

ECJIH X— ajireôpa OTHOCHTeJIbHO CBepTKH, TO X^X^ C XXV
9 T.e. ceMeficTBO X*? 

o6pa3yeT KaTeropnio (c eAHHimaMH ex). 

3aMeTHM, HTO ajireôpa U = U{QC) S @J&) ne yAOBJieTBopneT ycjiOBHio (1). B 
9T0M cjiynae nojio>KHM 

Uxf = {ueU: Jxu c I V } , l9[ieA, 

rAe ./* = ker %x—AßycTopOHHHÖ HAeaji B U{lc)9 t—ajireöpa JTH rpynnbi K 
3aMeTHM,HTO npeo6pa30BaHne <J>ypbe "(v,a)sjieMeHTa ueUonpeAeJineTCH HHCTO 
aJireöpannecKH (AH(})(})epeHH;Haji eVff). 

B AaJibHeftmeM (§5) ycjiOBHH (1)—(3) 6yAyT AonoJiHeHbi. 

4. CooTHOuienHH CHMMeTpHH. Me>KAy (f)yHKUHHMH x{v9 a) cymecTByioT ajire-
ôpannecKHe cooTHoiueHHH, nopoH<AeHHbie cnjieTaiomHMH onepaTopaMH AJIH npeA
CTaBJieHHö eva : 

Cx{v9 a) = x{v\ a')C9 

rAe C—cnjieTaromHH onepaTOp AJIH napbi eVG9 ev,ff„ CpeAH TaKHX cooTHomeHHH 
ocoßyio pojib HrpaioT ycjiOBHH CHMMeTpHH OTHOCHTeJIbHO rpynnbi Beftjm: 

I. ycjiDßiiH cuMMetnpua I poda HHAyunpyioTCH rpynnofi Befijin W = M'\M H 
onpeAejiHiOTCH HHTerpaJiaMH IIlH(j)MaHa C = A{m9 v9 a)9 m e M' , npnneM v' = w , 
a' = wa9 we W9 rAe w—KJiacc, C0Aep>i<amHft m. B[2]noKa3aHO, HTO A{m9 v9a)— 
pauHOHajibHan MaTpHHHan <j>yHKijHfl, nopOM<AeHHaH (MyjibranjiHKaTHBHo) / o6pa-
3yiomHMH A{{v9 a) (npocTbie pec})JieKCHH B W). 

II. Y ernenn cuMMempuu II poda HHAyunpyioTCH rpynnofi W x W (rpynna 
Befljin ajireöpbi gc) H onpeAejiHiOTCH HHcf)HHHTe3HMajibHbiMH (npaBbiMH) cABHraMH 
B ocoôbix TOHKax (J)yHi<uHH At{v, o\ npnneM v\ a1 BbipaacaioTCH nepe3 v, a npeo-
6pa30BaHHHMH W x W no napaMeTpaM v ± a [2], [5]. 

OnepaTopbi CHMMCTPHH coxpaHHioT Xxv9 X,[xeA>w HHAyaHpyioT ajireöpaHHecKiie 
(MaTpHHHbie) COOTHOHJeHHH AJIH SJieMeHTOB Xx?9 Xxt>. 

5. OcHOBHbie pe3yjibTaTbi. HanoMHHM, HTO c^epnnecKoe npeo6pa30BaHHe 
Oypbe AeftcTByeT B KJiacce Xm ABycTopoHHe J£-HHBapHaHTHbix (J>yHKUHH. npH 
9TOM, COrJiaCHO §4, SJieMeHTbl X0Q = X00 HBJIHIOTCH HK-CHMMeTpHHHblMH. 

npeAnojioH<HM, HapHAy c (1)—(3), BbinojiHeHHe cjieAyiomnx ycjiOBHH. 
(4) X0QJ^{G) <= X9 OTHOCHTeJIbHO 06bIHH0r0 yMHOKeHHH (JtyHKUHH Ha G, rAe 
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J^{G)—MHOHCeCTBO BCeX MaTpHHHblX 9JieMeHTOB rOJIOMOp(})HbIX HenpHBOAHMblX 
npeACTaBJieHHö rpynnbi G. 

(5) Bee MaTpHHHbie sjieMeHTbi x{v, (j)9xeX#9 npHHaAJie>KaT JiHHefiHOMy npoc-
TpaHCTBy ^f, 3aMKHyT0My OTHOCHTeJIbHO yMHOMceHHH Ha pauHOHajibHbie (})yHKu;HH 
(T.e. ecjiH z e ££9 r—parjHOHajibHan (j)yHKUHH, rz—uejian ilpyHKmn, TO rz e &). 

(6) X°° = ar*. 
riojio>KHM Hip = Hom(£ç , Ex). J^JIH Ka>KAoro ve T nycTb v+—AOMHHaHTHbifi 

o6pa3 BeKTopa v oraocHTejibHO W9 Wv—crauHOHapHaH noArpynna TOHKH V. 

T E O P E M A 1. Tiycmb Z^—MHODtcecmeo eeex (pyrncufiii KAacca % co 3uaHeHUHMii 
e HXP9 ydoôJiemeopMfoujtix ycjioôtixM cuMMempuu I a I I poda. Tozda 

Xxe = Zxf< òAH ecex I, p. e A . 

T E O P E M A 2. Tiycmb Zxv{è)9 e e A—Muooicecrmo ecex 9/ieMewnoe Zxt*9 paenux 
nyAK) npu v+ ^ e. Tozda 

2 ÜX8X8v = Zxv{e), s e A . 
d<e 

CJIEACTBHE 3. Tiycmb Nx = J^d<x U
X8XXd e npocmpancmee Xx = Xxx. Tozda 

XxlNx*iJ{u®&Wx9 XeA. 

TeopeMa 1 AaeT nojiHoe onncaHHe npocTpaHCTBa, AßoficTBeHHoro K X# OTHO-
CHTejibHo npeo6pa30BaHHH Oypbe (aHajior TeopeMbi IfejiH-BHHepa). 3aMeTHM, HTO 
TeopeMa 1—nacTHbifi cjiynafi TeopeMbi 2. CjieACTBHe 3 HMeer npnjioHceHHH B 
TeopHH npeACTaBjieHHH (CM. HHMce). 

ECJIH X— HenpepbiBHbifi J^-MOAyJib, TO X* BCioAy njioTHO B X9 HTO no3BOJineT 
npoAOJiMCHTb nojiyneHHbie pe3yjibTaTbi Ha Bee npocTpaHCTBO X. 

TlpuMep. npocTpaHCTBO, ABoficTBeHHoe K X = CQ{G)9 COCTOHT H3 Bcex ijejibix 
4)yHKUHfi x{a) = ®vx{v, a)9 rAe x{v9 a)\%v-> ®v, yAOBJieTBopnioiUHx ycjiOBHHM 
CHMMeTpHH I H II poAa H orjemcaM BHAa 

(*) \<r\»\\ßn*x{a)ß«i ^ CnninteK«r>°\ re$+9n9nl9n2 = 0 , 1 , 2 , . - , 

rAe nojio)KeHO ||x||—HopMa onepaTopa x B L\K)9 ß—oneparap Jlanjiaca-Bejib-
TpaMH Ha K9 t)+—3aMbiKaHHe AOMHHaHTHoft KaMepbi Befijin B §. Upn STOM (*) 
paBHOCHJIbHO 

supp x c {geG: ln||g||f- ^ ri9 i = 1, 2, •••, / } , 

rAe n = (r, X{), 1— (JDyHAaMeHTajibHbie Beca ajireöpbi g, |g||,—HopMa %Xt (g). 

6. CxeMa AOKa3aTejibCTea. npHHUHnnajibHbiM MOMCHTOM TeopHH HBJIHCTCH 

AOKa3aTejibCTBO TeopeMbi 1 npn X = U = U{QC) (onepaunoHHoe HCHHCJieHHe [5]). 
B oßmeM cjiynae TeopeMa 2 paBHOCHJibHa CHCTeMe TOHCACCTB 

Ü» Xf ü'f = Zx/{d\ d = v+, 

me HH>KHHH HHAeKc 03HanaeT cynceHHe 4>ynKUHfi x{v, a) Ha (J)HKCHpoBaHHoe 
3HaneHHe v, v+—AOMHHaHTHbifi o6pa3 BeKTopa v oraocHTejibHO rpynnbi Befijin. 
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OnHcaHne MHO>KCCTB Üxs
9 Üsf TpeôyeT rJiyÔoKoro ajireßpaHHecKoro aHajiH3a [1], 

[4], [5]. OnHcaHne MHOMcecTB Xô
v
ô
9 3 = v+, CBOAHTCH K c^epHHecKOMy npeo6pa3o-

BaHHK) $ypbe [5]. (3aMenaTejibHO, HTO TOJibKo nocjieAHHH 3aAana 3aBHCHT OT 
Bbi6opa npocTpaHCTBa X.) 

3AMEHAHHE. riepBOHanajibHaH (j)opMa onepauHOHHoro HCHHCJieHHH [4] 6bijia 
ocHOBana na paciuHpeHHH ajireôpw U c noMombio npoeKTOpOB ex. ^ajibHefiiiiHe 
ynpomeHHH nojiyneHbi B [1], [5]. HeKOTopbie TexHHHeciCHe (j)parMeHTbi onepaunoH-
Horo HCHHCJieHHH (c(f)epHHecKHH cjiynaft) coAep>i<aTCH B [7], 

7. HenpHBOAHMbie MOAyJiH XapHin-HaHApbi. BCHKHö g-MOAyJib, rpaAynpOBaH-
Hbifi KOHeHHOMepHbiMH f-noAMOAyJiHMH, Ha3biBaeTCH ModyAeM Xapvau-Handpu. 
npHMepOM HBJIHeTCH MOAyJIb Lva BCeX AT-(j)HHHTHbIX BeKTOpOB eva9 HenpHBOAHMblH 
npn noHTH Bcex a [3]. IIOJIOMHM 

rAe L\a = UeQ9 eQ—neHyjieBOft BeKTop, npHHaAJie^aiunfi î -noAMOAyJiio %x\ A0 = 
v+—MHHHMajibHbift H3 CTapuiHX BecoB rpynnbi K B eva9 L+—MaKCHMajibHbifi noA-
MOAyjib B LQ

va9 He coAepMOLUHfi %x\ 

TEOPEMA 4. BCHKVLü nenpmodvLMUü ModyAb Xapum-Handpu aKeaeaAenmen 
oduomy U3 modyAeü Vva. 

npH 3T0M Vva ~ Vv,a, TOJIbKO npH v' = WV, o' = WG. Ha Ka>KAOH W-op6HTe 
cym,ecTByeT TOHKa v, a, AJIH KOTOpofi Vva = Ljff. TeopeMa 4 BbiTeKaeT H3 CjieA-
CTBHH 3 npn X = U ([1] H AHCcepTaijHH aBTOpa 1971 r.). 

8. HenpHBOAHMbie G-MOAyJiH. VCJIOBHMCH paccMaTpHBaTb HenpHBOAHMbie G-
MOAyJiH B ceKBeHunajibHO nojiHbix jioKaJibHO BbinyKjibix npocTpaHCTBax. nycTb 9D?>,ff 
—MHOHcecTBO Bcex TaKHX MOAyJieft, coAep>i<ainHx Vva KaK BCioAy njiOTHyio nacTb 
CBoero AH(})(j)epeHu;Hajia. 

TEOPEMA 5. BCHKVLü, enoAue uenpueoduMUü G-ModyAb dKemaAenmen odnoMy 
U3 ModyAeii KAacca 9Rvff. 

TeopeMa 6 BbiTeKaeT H3 CJICACTBHH 3 npH X = Cg°(G) [6]. YcjiOBHe noJiHofi 
HenpHBOAHMOcTH MOKHO 3aMeHHTb aHaJioroM JieMMbi Iilypa B npocTpaHCTBe 
TopAHHra TonojiorHHecKH HenpHBOAHMoro npeACTaBjieHHH [5]. 

CJIEACTBHE 6. BCHKVLü enoAue nenpueodvLMUu ModyAb E codepztcum ynAom-
nenae EQ9 dyaAbmiü ModyAb K KomopoMy codepotcam cmapwue eeKmopu {co6-
cnweHHbie eeKmopu öopeAeecKoü nodzpynnu B = MAN). 

B nacTHOCTH, AJIH yHHTapHbix npeACTaBJieHHö B KanecTBe E0 MO>KHO BbiôpaTb 
noAnpocTpaHCTBO TopAHHra B E. ConpnHceHHbie CTapuine BeKTOpbi MO>KHO 
Hcnojib30BaTb [5] AJIH KjiaccH(j)HKauHH BnojiHe nenpHBOAHMbix G-MOAyJiefi. 

9. BemecTBeHHbie rpynnw. H3 BemecTBeHHbix rpynn Hanôojiee noApoÔHO 
HCCJieAOBanbi rpynnbi paHra 1 {SO{n9 1), SU{n9 1)) H rpynnbi c eAHHCTBeHHbiM 
KJiaccoM conpH>KeHHOCTH KapTaHOBCKHX noArpynn (KBaTepHHOHHbie rpynnbi 
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SL{n9 H)). fljiH oôiuefi nojiynpocTofi rpynnbi JIH H3Becrabi onepaTopbi CHMMe
TpHH I poAa (HHTerpajibi IIIn^MaHa), nacTHHHo HccjieAOBaHa HX peryjinpH3auHH 
(KHann H LIlTefiH). CpaBHHTejibHO AeTajibHO HccjieAOBaHo c(f)epHHecKoe npeoôpa-
30BaHne Oypbe (XapHin-HaHApa, XejiracoH, TpOMÖH H BapaAapaA^caH), c aHa-
JioraMH TeopeM IlsjiH-BHHepa AJIH ABycTopOHHe #-HHBapHaHTHbix (J^HKUHH. 

HeKOTopbie (J)parMeHTbi onepaunoHHoro HCHHCJICHHH coAepacaTCH B H3BecTHofi 
paßoTe B. KocTaHTa (no npeACTaBJieHHHM KJiacca 0). AHajiorn TeopeM riajiH-
BHHepa nojiyneHbi TaK)Ke AJIH npocTeftuiHx npHMepOB HHJibnoTeHTHbix H pa3pe-
niHMbix rpynn JIH (KyMaxapa H OKaMOTO, AHAO), a TaK>Ke AJIH rpynnbi ABHäCHHö 

BemecTBeHHoro eBKJiHAOBa npocTpaHCTBa. 
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The Solution to the Buffon-Sylvester Problem and Stereology 

R. V. Ambartzumian 

The last decade has witnessed a rapid increase of research activity in the subject 
of geometrical probability. Among other things this has resulted in the rise of two 
completely novel branches, stochastic geometry and stereology. 

Briefly, stereology is interested in the possibility of making inferences about size 
and shapes of bodies (say in R3) based on the investigation of random patterns on 
lines or planes which intersect the body at random. 

In the randomised version of the same problem the bodies may compose a 
statistical ensemble. In this case the problem is to infer the properties of the ensem
ble, making use of an appropriate mixture of the samples of intersections, drawn 
from the individual bodies. Such a situation arises for example when we have non-
overlapping random bodies placed in some random way in R3 (that is, we have a 
spatial stochastic process of bodies) and the problem is to infer about the ensemble 
they compose, based on statistical properties of disjoint patterns, appearing on 
planar or linear sections through the whole space. 

If the mutual position of the bodies is also of interest, then it is convenient to 
think about the union of the bodies as a single random set. 

In such cases the assumption of invariance of the spatial process with respect to 
the group of all Euclidean motions of R3 (the E.m.-invariance) is usually imposed. 

At this step we come quite close to the topic of the stochastic geometry, which 
devotes itself, as we see it, to investigation of the properties of random sets of 
different kinds, which satisfy the general condition of invariance of their distribution 
with respect to groups of transformations of the basic space. 

In this connection I would like to mention the recent book Stochastic geometry, 
edited by D.G. Kendall and E.F. Harding. 

A glance through the field shows clearly enough that substantial progress here 
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takes place mostly in those cases in which rather straightforward application of 
concepts and methods of conventional stochastic process theory is preceded by 
some specific work of pure geometrical or combinatorial nature. The work of K. 
Krickeberg and of the late Rollo Davidson in [1] is a bright illustration for this. 

In the same manner a number of new tools, now in the process of development 
and presumably useful in both stereology and stochastic geometry, have as their 
starting point the combinatorial solution of the Buffon-Sylvester problem in inte
gral geometry. It is the aim of the present report to give a brief account of this devel
opment, as well as tb describe the B.-S. problem and its solution in more detail. 

The classical Buffon's problem of the needle (1776) may be formulated as fol
lows. 

Let m be the set of all sensed (directed) lines on R2
9 m{ ) be the E.m.-invariant 

measure on m. Given a needle A c R2 (needle = a finite line segment), put B = 
{gew,g fi à # 0 }. Find m{B). The answer is of course m{B) = 4p, p is the length 
of A. In the year 1890 J. J. Sylvester considered the following modification of 
Buffon's problem. 

Let AÌ9-~9AN be TV needles fixed on the plane in general position. Find m{ QY^i) 
and « ( U W . Bi = feem; g fi 4 \ * 0 } -

According to J. J. Sylvester [2], "the measures in question become linear Dio-
phantine functions of the sides of the complete 2iV-gonal figure, of which the n 
pairs of extremities of the needles are the angles". 

The problem of finding some general algorithm for calculation of those Dio-
phantine coefficients has been posed explicitly by J. J. Sylvester in [2], and this is 
what we call the Buffon-Sylvester problem. 

The surprisingly simple solution, which has been obtained in [3], [4], is conven
iently written when the B.-S. problem is generalised in a way in which all pairs of 
points appear symmetrically. 

Suppose a finite set of points { P j * is fixed on the plane. Denote by g{j e m a line 
through PiPj {gjj and gj( have opposite directions), by p{j the distance between Pf-
and Pj9 by g+ {g~) the right (left) half-plane, bounded by g. 

Consider the minimal algebra a of the subsets of m, which contains all Ai9 

i = 1, —9n9Ai = { s e m ; i \ e s + } . 
THEOREM I. If in the set { P j ï no three points lie on a line, then for every A e a, 

m{A) < oo, 

m{A) = QpijCyiA), 

CiM) = iA{i\r) + iA{i-j+) - W+J+) - iA{i-J-\ 
where IA{ìXIP)

 are defined as conditional limits of the indicator function I&{g) of the 
set A, that is9 IA{ix

9 jy) = lim IA{g)9 g -• gij9 P{ e g*9 Pj e gy. 

Let us see how (1) is generalised to the case of planes in R3. 
Let 9K be the set of oriented planes in R3

9 M be the E.m.-invariant measure on 
% {PiY, c= R\ 

The position of G e 30Î, satisfying the condition P{ e G9 Pj e G9 is specified by 
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<j> e (0, 2%)9 the angle of rotation around the P{Pj axis. Denote such a plane by 
Gitjtf. Let G+ and G" be the two half-spaces bounded by G e 3K. Again 8( is the 
minimal algebra, this time of subsets of 3W, which contains the sets A{ = {G e 3D?: 
P , e G + } . 

THEOREM 2. If in the set {P,}ï no three points lie on a line, then for every A e % 
M{A) < oo, 

M(A) = ±-Ep<jCij(A)9 

(2) c{j{A) = )\iA{i\j-,<f>) + 7it(i-,7
+, 4>) - W+J\ 4>) - W-*t, 4>)i #> 

lAÜxJy> 0 = l i m ^(G)> G -+ GùM> pi E G*> pJ e Gy-

The above limits are well defined for almost all <f> e (0, 2%). 

Of direct stereological interest is the following corollary of Theorem 1, which is 
obtained by a rather long process of integration of (1), written for 

A = Ç\Bi9 Bt = {gsmig fl 4 * 0}> 
i 

{4}ï being independent, uniformly distributed random chords of a planar convex 
domain. 

The result refers to convex polyhedrons in R3 and happens to be 

( 3 ) 2(n+l) Ç Bl*+iVà = I% n dL - T i" fteei^ cos 5 rfZ, 

Here/A is the set of faces of the polyhedron X, Bl„{ ) are functionals, defined for 
convex planar domains, which have been introduced by W. Blaschke under the 
name of "Integrale der Sehnenpotenzen". On the right side of (3), x is the length of 
L fi X9 L is a line in R3

9 dL is the element of invariant measure of lines in R3
9 e\ 

and e2 are the angles between L and the normals ft\ and n2 to dX at the points of 
intersection of L with X, 5 is the angle between the planes Ln\ and Ln2. 

From the point of view of applications, the most desirable would have been the 
result of the form 

(4) S Bl„{fk) = Ez{x) 
k 

where E is the expectation with respect to random L with density proportional to 
dL9 with some function z. Meanwhile (3) is tantamount to EkBIn{fk) = 
Ez{x9 Qi9 02), Qi and ß 2 are the directions of«! and w2-

We encounter an analogous situation when obtaining expressions for the mo
ments 

mn = E (* - cck) \ek\»" ( £ ( * - ak)\ek\)^ 
k 

{{ek} is the set of edges of X9 ak is the angle at ek9 | • | stands for length) by proper 
integration of (2). 
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Here an equation of the form 

(5) mn = EZ{p;<f>l9.-9<f>k) 

is obtained, Z standing for a functional, depending not solely on the polygon 
p = X (Ì G> but also on the angles 0 b •••, <f>k of intersection of G with the faces of 
the polyhedron X. In (5), E stands for expectation with respect to random G (with 
density proportional to dM). Of course, (5) is a weaker result than the equation 

(6) mn = EZ{p) 

about which the applied mathematician would dream. Unfortunately, neither (4) 
nor (6) is at present known to exist. 

Let us look now how (3) applies in the stereology of E.m.-invariant random 
(loose) packings of nonoverlapping convex polyhedrons in R3. Assume that the 
polyhedrons are coloured white, and the complement—black! 

First, fix an individual realisation of the packing, and write down (3) for each X{ 

in the realisation, supplying the corresponding quantities by index i. Sum up over 
the set {i; X{ c S{R9 0)}, S{R9 0) is the sphere of radius R centered at 0. On the 
right side we obtain 

f ( 2 *jfl - 4 ^ftgef cos dJ)dL 

J(L9 R) = {/; L[\Xi* 0 , Xi a S{R9 0)}. 

Formal application of the law of large numbers yields 

S tftgéptgép cos dt = £xn\ 1 - 4 teilte*2 c o s s r c a r d J-

On the line L we have a stochastic process {Ii9 Q
(f9 Qtp} (that is the process 

of white intervals "marked" by orientations at their ends) with distribution not 
dependent on L. ê stands for expectation with respect to an arbitrary white interval 
in this process. 

It is well known that J card J{L9 R) dL = n-X{R)9 X{R) is the total area of the 
faces inside S{R9 0). Therefore 

,[! - £ tgeitge* cos a = lim [icl{R)Yl S Bln{fk)9 fk e S{R, 0). 

The limit on the right-hand side is assumed to exist and not to depend on the real
isation with prob. 1. It clearly has the meaning stf~~l£Bln{f)9 with / for "arbitrary 
face" in the spatial process, sé for mean value of the area of such a face. Finally 

(7) <$Bln{f) = stfêx» [1 - {n/2)tgeitge2 cos 5]. 

Turning to consider the theoretical models of such random packings, the natural 
first step would be to look for the cases when the term êxntgeitge2 cos 5 vanishes. 
This happens, for example, when the components of {X, Qi9 02) are independent. 
The corresponding class of random packings will be called IOSC (independent 
orientations stereological class). An example of such random packing is obtained 
when the Poisson field of planar layers is considered. Assume that the union of the 
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layers is coloured black, and its complement—white. The white random set is of 
desired type if the layers have random, independent and identically distributed 
thickness. There are also some other examples. 

It is natural to ask how the equation (7) generalises for random sets (white sets 
in random black-white colouring) of more general nature, when only the assump
tions of invariance and piecewise-smoothness of the boundaries is retained. 

A rather special process of integration of (1) again leads to a result. In the planar 
case, this has the form of some relations between distributions associated with 
marked white interval processes on the arbitrary transection and on some properly 
defined tangent lines. The terms which involve orientations at the ends of white 
intervals again disappear for random sets from the IOSC (defined analogously 
for general random sets). 

The following observation gives an idea how rich is the IOSC of these more 
general random sets (planar case). 

Let {Dj} be a sequence of random, identically distributed independent bounded 
convex domains with piecewise-smooth boundaries, {/J be random set of vectors, 
with endpoints composing an independent Poisson field in R2 with constant 
intensity. The random set {Pe R2; P is covered by less than k domains from the 
set {/,-A}} belongs to IOSC for every k = 1, 2, 3, ••• {tD denotes the domain D 
shifted by vector t). 

The following proposition serves to build new examples of random sets from 
IOSC and increases the interest for the class. 

PROPOSITION. The IOSC is closed with respect to operations of taking set-
theoretical intersections and unions {the latter under the additional assumption that 
the sequence of white marked intervals on the transection is a sequence of inde
pendent triples). 

An outstanding unsolved problem in the present theory is to understand the 
structure of the IOSC, either in special or in general cases. Such an understanding 
would permit one to judge whether in a given practical situation one can avoid 
measuring orientations. 
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The Gaussian Process and How to Approach It 

R. M. Dudley 

1. de Moivre 
Dear listeners, please smile indulgently 

At this brief introductory phase 
Of somewhat metered, sing-song words; 
Not poetry, perhaps, yet not quite prose, I hope. 

To speak of "Gaussian" measures, now 
Is first of all, to credit C. F. Gauss 
For objects he was not the first to find; 
Some three quarters of a century before 
Carl Friedrich took them up 
We find that Abraham de Moivre 
Already had described them ; 
And so to him should go, I think, the fame 
Of finding out the laws we call by Gauss's name, 
Those bell-shaped curves of density 
Whose formulas we now write with ease 
In terms of e to minus half x squared 
But which de Moivre more laboriously did call 
The number which answers to the hyperbolic 
Logarithm minus half x times x. 
The central limit theorem, too, is found 
In Abe de Moivre's book, Doctrine of Chances, and if 
It's only for binomial distributions, well 
Now only after Fourier and then by Paul Levy 
Is rendered easy such a proof; 
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Without their tools perhaps, dear listener, 
You'd demonstrate it as a tour de force; 
I've tried without success. 
And yet to say "de Moivrian" rather twists the tongue 
And it's too late to change the name 
So we'll have to find some other way 
Of remembering the founder of this line of work; 
Let's dedicate now to him, de Moivre 
A few moments of our kindest thoughts. 

2. Finite-dimensional Gaussian measures. On the real line, the Gaussian or 
normal probability distribution N{m9 a

2) has density a^ÇLic)'1 '2 exp [—{x—m)2/2(r2] 
with respect to Lebesgue measure, where a > 0 and meR; N{m9 0) is the unit 
mass at m. A probability measure on a Euclidean space is called Gaussian if every 
linear form has a Gaussian law. 

Here are two unsolved problems over fifty years old about Gaussian measures 
and convergence to them. 

Problem 1. This was posed by Cantelli in 1917. If Zand Y are independent ran
dom variables with distribution N{09l)9f^ 0,/is measurable and X + f{X)Yhas 
a Gaussian distribution N{09 a2)9 is /necessarily a constant almost everywhere? 
Some work on this problem is surveyed by Tricomi [1967]. The problem seems to 
be a mere curiosity, but that will perhaps be unclear until it is solved. 

Problem 2. This was implicitly posed by Karl Pearson in 1900: the question of the 
accuracy of the #2 approximation to the X2 statistic. Given ps> 0, j = 1, •••,«?, 
J^Pj = 1, XÌ9 -", Xn independent, Pr{X£ = j) = pj9 nj = the number of values of 
i' <^ n such that X{ = j9 

X* = E («y - npìPlm* Xl-x = S* G% 
y=i j-i 

where Gj are independent N{091). Let Zs be such that Pr (;£*,_! ̂  Zs) = s. It is 
known from the multidimensional central limit theorem that Pr {X2 ^ Zs) -+ s 
as n -> oo for fixed pj. 

Question. For conventional statistical significance levels including s = .05, .01 
and .001, how large must min,- npj be (for fixed m) to make the approximation valid 
within, say, a factor of 5/4 ? 

I have nothing new to say about these finite-dimensional problems; most of the 
recent progress has been in infinite dimensions. 

3. Sample continuity of processes. To define a Gaussian stochastic process, we 
have a probability space {Q9 3F9 P)9 a set T9 and a function X{t9 co) on T x Q such that 
for any tÌ9 ~-9tn in T, X{tÌ9 •), ••-, X{tn9 •) have a Gaussian joint distribution on Rn. 
For simplicity, from now on we only consider Gaussian laws with mean 0. Assume 
T is equipped with a compact metrizable topology. 

Question. Under what conditions is X{-, •) sample continuous, i.e., when is there 
a process Y such that for each t9 X{t9 œ) = Y{t9 co) almost surely, and such that, for 
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each tû9 t -• Y{t9 œ) is continuous? For this to be true, t -* X{t9 co) must at least be 
continuous in probability and hence (using Gaussian) in quadratic mean. 

Let d{s91) = [E{X{s9 •) — X{t9 -))2]1/25 the intrinsic Hilbert space metric. Looking 
at T with this metric is essentially equivalent to replacing T by the set K = 
{X{t9 -): t e T) in the Hilbert space H = L2{Q9P) and considering "the" Gaussian 
process L on H with mean 0 and covariance equal to the inner product. Since 
Gaussian probability laws are uniquely determined by their means and covariances 
through L, we can reduce the study of all Gaussian processes to that of L, 

A useful sufficient condition for sample continuity can be given in terms of 
metric entropy as follows. For any e > 0 let 

N{e) = N{T9 d9 e) = inf in: 3 Au - , An: T c= [j Aj9 

sup d{s, l) S 2e9 j = 1, 

THEOREM (DUDLEY [1967], [1973]). X is sample continuous if 

JJ[log N{x)]i/2dx< oo. 

(Note that the square root of the log is the inverse of the exponential of the 
square, which relates to the Gaussian density.) 

THEOREM (FERNIQUE [1974a,b]). If X is a stationary Gaussian process {on R9 with 
joint probability laws invariant under translations of the axis) then it is sample con
tinuous if and only if\\ [log N{x)]1/2 dx < oo, where N is defined for T = [0,1]. 

For nonstationary Gaussian processes on [0,1], however, the metric entropy 
integral condition is no longer necessary for sample continuity. A necessary and 
sufficient condition was stated by Sudakov [1971] ; it is not as easy to apply as the 
metric entropy condition. For proofs of some of Fernique's and Sudakov's results, 
I have found Chevet [1974] a useful reference. 

4. The central limit theorem in Banach spaces. Given a probability measure p 
on a Banach space, let XÌ9 •••, Xn9 ••• be independent random variables in the Ban
ach space Xmth distribution// and Sn = X\ -f- ••• -f- X„. We say the central limit 
theorem holds for ju if and only if there is a Gaussian probability measure j ^ o n l 
(i.e., a probability measure such that each continuous linear form has a Gaussian 
distribution) such that the distribution of SJn1 /2 converges vaguely to y as n -» oo, 
in the sense that for every bounded continuous real-valued function / on X, 
Ef{SJni/2) -> \fdv. 

We call X a CLT space if \x dp = 0 and j"|x||2 dp, < oo imply the central limit 
theorem for p. 

Forlet and Mourier [1955] proved that LP is a CLT space for 2 ^ p < oo. There 
are counterexamples for p < 2 and for p = oo. (For p < 2, one set of examples 
uses the existence of stable laws of index < 2.)1 So for general Banach spaces we 
need a stronger condition, such as the following: 

^ O T E ADDED IN PROOF. G. Pisier has proved that A" is a CLT space iff it is of type 2, i.e. 
whenever E||A:M||2<OO and Gn are independent N(Q, 1), £G„x„ converges a.s. 
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THEOREM (JAIN AND MARCUS [1974]). Given a bounded linear transformation T 
of a Banach space X into a Banach space Y9 with adjoint T* from Y* into X*t let fj, 
be a probability measure on Y* with \z dp,{z) = 0 and \\z\2 dy,{z) < oo. Let B be 
the unit ball in X and assume 

j[logN(T(B),\\-\\r,S)]^de<oo. 
0 

Then the central limit theorem holds in X* for T*fi. 

References 

S. Chevet [1974], Mesures cylindriques, espaces de Wiener et fonctions aléatoires gaussiennes, 
Exposé 8 (Clermont-Ferrand). 

R. Dudley [1967], The sizes of compact subsets of Hilbert space and continuity of Gaussian pro
cesses, J. Functional Analysis 1,290-330. MR 36 # 3405. 

, [1973], Sample functions of the Gaussian process, Ann. Probability 1,66-103. 
X. Fernique [1974a], Des résultats nouveaux sur les processus gaussiens, C. R. Acad. Sci. Paris 

Sér. A-B 278, A363-A365. 
, [1974b], Minorations des fonctions aléatoires gaussiennes, Ann. Inst. Fourier, 24 fase. 

2, 61-66. 
R. Fortet and E. Mourier [1955], Les fonctions aléatoires comme éléments aléatoires dans les es

paces de Banach, Studia Math. 15,62-79, MR 19,1202. 
N. Jain and M. Marcus [1974], Central limit theorems for C(S)-valued random variables, 

Ann. Probability (to appear). 
V. N. Sudakov [1971], Gaussian random processes and measures of solid angles in Hilbert space, 

Dokl. Akad. Nauk SSSR197, 43-45 = Soviet Math. Dokl. 12,412-415. MR 44 #6027. 
F. G. Tricomi [1967], Einige ungelöste Probleme der klassischen Analysis, Abh. Math. Sem. 

Univ. Hamburg 31, 25-32. MR 36 # 1 . 

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y 

CAMBRIDGE, MASSACHUSETTS 02139, U.S.A 



Proceedings of the International Congress of Mathematicians 
Vancouver, 1974 

Semigroups of Invariant Operators 

J. Faraut 

I. Introduction. Let G be a locally compact group and K a compact subgroup of 
G9 and let Xbo the homogeneous space X = G/K. We denote by C0{X) the space of 
continuous complex functions on X vanishing at infinity. With the norm 
SupxeX \f{x)\ the space CQ{X) is a Banach space. 

To any element g of G we associate the transformation zg of CQ{X) defined by 
Tgf{*)=f{g-lx). 

An operator A on the space CQ{X) is said to be invariant if it commutes with the 
transformations Tg. 

Let us consider a strongly continuous semigroup of contractions of the space 
CQ{X)9 i.e., a family {Pj^ 0 °f operators of CQ{X) such that 

(1) PO = /, PtPs = Pt+s, 

(2) II'«Il ^ L 
(3) V/eCo(n lim||P,/-/|| =0 
(we shall say a contraction semigroup). 

Let us assume that each operator Pt is invariant. Let {DA9 A) be the infinitesimal 
generator of the semigroup, i.e., the operator defined by 

DA = {/e C0{X) | lim \{Ptf - / ) exists}, 

Af=lim\{Ptf-f). 

The infinitesimal generator {DAi A) has the following properties : 
(a) The operator {DA9 A) is closed, and its domain DA is dense. 
(b) The operator {DA9 A) is dissipative, i.e., for any function / of the domain 

Ai , / (* )= | | / | = * R e / ( * ) ^ 0 . 
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(c) The operator {DA9 A) commutes with the transformations zg9 i.e., for any 
element g of G, TgDA = DA, vgA = Axg. We say also that the operator {DA, A) is 
invariant. 

At present one can prove that an operator satisfying (a), (b), and (c) is the in
finitesimal generator of a contraction semigroup in three cases : 

(1) The group G is compact. 
(2) The convolution algebra M\G) of bounded measures on G bi-invariant by K 

is commutative. This hypothesis is satisfied if G is abelian; also if {G9 K) is a Rie
mannian symmetric pair, then the space Zis a Riemannian symmetric space. 

(3) The group G is a Lie group and the domain DA contains the C°° functions on 
X with compact support. 

For Rn the result is due to the author [2] (1969), for a Riemannian symmetric 
space to the author and Harzallah [3] (1971), for a pair (G, K) with the algebra 
M\G) commutative to Hirsch and Roth [4] (1973) and for a Lie group to Duflo 
[1] (1974). The case of positive contractions was studied by Hunt [5] (1956). 

II. Properties of dissipative operators. 

PROPOSITION ILL The infinitesimal generator {DA, A) of a contraction semigroup 
{Ptimo *J dissipative. 

Let / be a function of DA and xQ a point of X such that f{xQ) = \\f\\', because 
Pt is a contraction we have 

V x9 Re Ptf{x) S | Ptf{x) | ^ || / 1 | = f{xQ) 

and then 

Re Af{x0) = lim - f [Re P,/(*o) - /(*o)] ^ 0. 

PROPOSITION II.2. If {DA9 A) is a dissipative operator then V X > 0, V fe DA, 
\\Xf-Af\\ZX\\f\\. 

Let/belong to DA, and let xQ be a point of Xsuch that \f{xQ)\ = \\f\\. We can 
suppose f{xQ) ^ 0 (if necessary one can multiply/by a complex constant) and then 
Re Af{x0) ^ 0; it follows that 

\\Xf- Af\\ ^ U{x,) - Re^/(^o) è A/(*o) = * | / | . 

REMARK 1. From Proposition II.2 it follows that \S{DA9 A) is a closed dissipative 
operator, V X > 0, {XI - A)DA is closed. 

REMARK 2. One can prove (see [6]) that a dissipative operator with dense domain 
is closable and that its closure is also a dissipative operator. 

From the Hille-Yosida theorem one can deduce the following (similar to a 
theorem of Lumer and Phillips [6]). 

THEOREM II.3. An operator {DA, A) on CQ{X) generates a contraction semigroup if 
and only if: 

(a) The operator {DA, A) is closed and its domain DA is dense. 
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(b) The operator {DA, A) is dissipative andVX> 0, {XI - A)DA = C0{X). 

We give another form of this theorem. 

THEOREM IIA Let {DA9 A) be an operator on C0{X) such that: 
(a) Its domain DA is dense. 
(b) The operator {DA9 A) is dissipative. 
(c) V X > 0, {XI - A)DA is dense. 

Then the operator {DAi A) is closable and its closure generates a contraction semi
group. 

IH. The group G is compact. Let G be a compact group, K a compact subgroup, 
and X = G/K. Let {T,} be the set of (classes of) irreducible representations of G 
which occur in the decomposition of L2{X). Let ^ = Trace (J1,-) be the character 
and di the dimension of T{. For a function/of L2{X) we put %{f — rff^,*/(we con
sider a function on X as a function on G right invariant by K). The map %t is an 
orthogonal projection. We define H{ = ittL

2{X). H{ is a finite dimensional subspace 
of C{X). We have the following: 

PROPOSITION III.l. Let {DA9 A) be an operator on C{X)9 closed, with dense domain 
and invariant. Then the subspaces H{ are contained in DAi and A maps H{ into H^ 

And we deduce 

COROLLARY 111,2. Let {DA, A) be an operator on C{X)9 closed, with dense domain 
and invariant. If the operator {DA, A) is infective then its range is dense. 

The restriction Ai to H{ is an injective endomorphism of the finite dimensional 
space Hf9 it follows that A{ is onto. Then the range of {DA9 A) contains the sub-
spaces Ht9 and by the Peter-Weyl theorem its range is dense. 

THEOREM III.3. Let {DA9 A) be an operator ofC{X)9 dissipative, with dense domain 
and invariant. Then {DA, A) is closable and its closure {DA9 Ä) generates a contraction 
semigroup of C{X). 

From Proposition II.2 and Remark 2 we know that for X > 0 the operator 
XI — Äi& injective, and from Corollary III.2 it follows that its range is dense. The 
result follows from Theorem II.3 or IIA 

IV. The algebra M\G) is commutative. We assume now that the convolution 
algebra M\G) of bounded measures on G bi-invariant by ^Tis commutative. 

PROPOSITION IV. 1. Let {DA> A) be an operator ofC0{X)9 closed, with dense domain 
and invariant. If{DA9 A) is injective then its range is dense. 

We use the Hahn-Banach theorem. Let N be the space of bounded measures on 
X orthogonal to the range of {DA9 A). We shall prove that N = {0}. Let /j, be a 
measure of N invariant by K\ we have 

V / e DA9VgeG9 J Azgfdp = J XgAfdp = 0, 

that is9Af*jû = 0 where the measure jl is defined by 
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Sfdfi = j/cr1) afa) 
and where we consider functions and measures on X as functions and measures on 
G right invariant by K. 

From the commutativity of M\G) we deduce, i f / i s invariant by K9 ji*Af = 0 
and A{ji*f) = 0 because {DAi A) is closed and invariant. Then for a n y / o f DA 

invariant by K, \fdy, = 0, and, as ß is invariant by K9 V / G DA9 \fdfj, = 0. 
The domain DA is dense so that ft = 0. From the invariance of the space N it 

follows that N = {0}. 
We deduce as before a theorem similar to Theorem III. 3. 

V. The group G is a Lie group. We assume now that G is a Lie group so that X 
is a C°°-differentiable manifold and we use the distribution theory. We denote by 
@{X) the space of C°° functions on X with compact support. 

We say that a distribution T on X is dissipative if 
(a) V / G @{X),f{0) = | | / 1 | => Re \fdT ^ 0 (0 denotes the coset eK), 
(b) Tis invariant by K. 
Every dissipative and invariant operator on CQ{X) with domain @){X) has the 

form 

Af{g0) = \f{gx) dT{x) 

where T is a dissipative distribution on X. We have in particular Af{0) = j " / rfT. 
If we consider functions and distributions on X as functions and distributions 

on G right invariant by K we have Af = f*f. 
Outside of a neighbourhood of 0 a dissipative distribution T is a bounded mea

sure, so that it is a Radon measure outside of {0}, and can be written T = S 4- a 
where S is a distribution with compact support and a a bounded measure. 

THEOREM V. 1. Let Tbea dissipative distribution on X, and let {DA9 A) be the opera
tor on CQ{X) defined by 

DA = 9{X), Af(g0) = J/fcx) dm. 

Then the closure of{DA9 A) generates a contraction semigroup. 

We have to prove that for all X > 0 the space {XI — A)<@{X) is dense. We shall 
use the Hahn-Banach theorem: let v be a bounded measure on Xsuch that 

V / G »(JO, J t t / - Af)dv = 09 

that is, Xv — v*T — 0 and by regularization, V a G »(G), A a*v — a*v*T = 0. 
The distribution f is, as T, dissipative; then by Proposition II.2, Va G »(G), 

a*v = 0. It follows that v = 0. 
Conversely one can prove that the domain of the infinitesimal generator of any 

invariant contraction semigroup contains $){X) so that there is a bijection between 
the dissipative distributions and the invariant contraction semigroups. 

It is possible to give for the dissipative distributions an integro-differential 
representation analogue to the Levy-Kinchine formula. 
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Some Mathematical Problems Arising in Robust Statistics 

Peter J. Huber 

1. Robustness and continuous statistical functionals. Let xh x2i ••• be observations 
with values in some complete separable metric space SC. Many test statistics and 
estimates depend on the sample {x\9 •••, xn) only through the empirical distribution 

0) ^w = — S ^ l 5 

where dx denotes the pointmass 1 at x9 and thus they can be written as Tn{xÌ9 • • -, x„) 
= T{ftn). For the sake of simplicity we shall assume that the functional T is de
fined everywhere on the set Jt\ of all probability measures on SC. 

The basic stability or robustness requirement is (Hampel [1968], [1971]) : A small 
change mpLn should induce only a small change in T{ftn). Here "small" can mean 

small changes in many or all of the *,- (rounding and grouping errors) ; 
large changes in a few of the X{ (occasional gross errors). 
This amounts to requiring that T should be continuous for the weak topology, 

i.e., for the weakest topology on M\ such that the functionals 

(2) fi -> J 0 dfx 

are continuous for all bounded, continuous functions <p on SC. Conversely, all weak
ly continuous, linear functionals on J(\ then are of this form (2) with a bounded, 
continuous (jj. 

The standard classical statistics, like the sample mean, T{ftn) = J x dftn do not 
satisfy the robustness requirement. But from the practical point of view—especially 
if the data are to be processed with little, if any, human intervention—it is crucially 
important as a safeguard against catastrophes caused by occasional gross errors. 

2. Metrics on M\. If we are to treat quantitative questions, we must metrize the 
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weak topology. While the topology is forced upon us by the outside requirement of 
robustness, the metric can be chosen according to convenience. 

On the real line, SC = R9WQ can use the Levy metric: 

dL{ft9 v) S e iff, for all x9 

ft{{- oo, x - s)} - e g v{(- oo, x)} ^ ft{{- oo, x + e)} + e. 
For general SC9 there is the Prohorov metric : 
dp{ft, v) ^ e iff, for all measurable sets A, ft{A) S v{AB) + e. 

Here, Ae denotes the closed e-neighborhood of A. 
This has a particularly nice interpretation due to Strassen [1965] : dP{ft9 v) S e 

iff there is a measure X on SC x SC with the marginals ft9 v and such that X{{x9y) j 
d{x9 y) ^ e} ^ 1 - e. 

For certain purposes, the bounded Lipschitz metric dBL may be more convenient. 
Assume that the given metric d on SC is bounded by 1 (if necessary, replace it by 
d/{l + d)). Then dBL{ft, v) S £ iff for all functions $ satisfying \<ß{x) — </){y)\ S 
d{x9 y) we have | J cj) dft - J </> dv\ S e. 

Also this has a nice interpretation (proved by Kantorovic and Rubinstein 
[1958] for compact SC9 but the result generalizes) : dBL{ft9 v) ^ s iff there is a measure 
Aon^ x f with the marginals ft, v such that J d{x9 y) dX ^ e. 

It is straightforward to show that dp ^ dBL ^ 2dP. 
In the following, d* will denote any metric (or pseudo-metric) compatible with 

the weak topology and with the usual Euclidean metric on lines : For any ftQ9 

fti ejfh 

(3) d*{fti9 ft
s) = 0{\t - s\) 

where. 

(4) ftt = (1 - t)ftQ + tftl9 O^t^ 1. 

3. Differentiate functionals. Differentiable statistical functionals were intro
duced by von Mises [1937]; their importance for the heuristics of robustness was 
first recognized by Hampel [1968]. 

Assume that T can be linearized at a fixed ft in the sense that there is a linear 
functional L such that 

(5) m - T{ft) = L{v -ft) + o{d^9 v)). 

If T is continuous at v = ft, then also L is; hence it must have the form (2). 
Without loss of generality we standardize 0 = 0^ such that l^^dft = 0, and then 
(5) can be rewritten as 

(6) T{\>) - T{ft) = j</>fidft + o{d*{ft9 v)). 

Fréchet differentiability (6) is often difficult to establish, but ^ is easily cal
culable as a Volterra derivative: Put ft0 = ft, ft\ = dx in (4); then 

(7) ft^-Um21^-^. 
t~*0 * 
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In view of this, (JJ^X) can be interpreted as the differential influence of one ob
servation with value x toward the value of the estimate (Hampel [1968]). 

Assume now that the jcf- are independent with common distribution ft. The typical 
asymptotical normality proofs use linear approximations. For instance, one may 
be able to show that 

(8) nvKT(fi„) - Tiix)) = J^L Uxi) + °M-

Here the right-hand side is asymptotically normal in view of the central limit 
theorem. If 

(9) d^,ßn) = 0,(H-i'2) 

then (6) implies (8), but in general neither of the two relations implies the other. 
Since (9) would allow very streamlined asymptotic normality proofs, this raises 

a puzzling question : For which d* and ft do we have (9)? 
Assume first SC = P. Then it is well known that (9) holds for dL and arbitrary ft. 

If ft = C/(0,1) is the uniform distribution on the unit interval, it also holds for 
dp and dBL (Dudley [1969]). It is false if ft has sufficiently long tails (rational tails 
suffice, ft{\x\ > t} ~ t~k for some k). 

If ft is the uniform distribution on a /c-dimensional cube, then (9) fails for dP 

and dBh9 if k ^ 3, and the question seems to be open for k = 2. 
Apart from that, we seem to lack the machinery for proving or disproving 

Fréchet differentiability. For instance, linear combinations of order statistics 
correspond to functionals of the form 

(10) Tfa) = j F-Kt)M(dt), 

where F{x) = ft{{— oo, x)} and M is some signed measure on (0, 1). The gap 
between the necessary and the sufficient conditions for differentiability of (10) is 
uncomfortably wide. 

4. Capacities and exact finite sample results. Classical statistical decision theory 
is concerned with parametric families {PQ)Q<=B of probability measures and tries to 
find "optimal" (admissible, minimax, etc.) decision procedures, assuming that the 
true underlying distribution belongs to the family {P6). But, to be honest, we can 
at best hope that the true probability distribution P lies in the set &>e = {PE M\ | 
d*{PQ, P) ^ e} for some 6. Of course, then there is no longer a single "true" value 
of the parameter 0, but concepts like interval estimates, confidence intervals, etc., 
remain meaningful. 

It turns out that the approach works if (and essentially only if) the sets &>e can 
be described as <Pe = {P e Jtx | V A9 P{A) g vd{A)} where ve is an alternating 
capacity of order 2. 

A real valued function v on the set of all subsets of SC is called a capacity if 

AczB=> v{A) ^ v{B)9 

An\ A=> v{An) Î v{A)9 

An i A, A„ closed => v{An) I v{A)9 
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and it is called alternating of order 2 (or 2-alternating) if v{A [} B) + v{A f| B) 
S v{A) + v{B). 

All our capacities will furthermore be normalized such that v(0) = 0, v{SC) = 1. 
The requirement that v is 2-alternating is crucial; it is equivalent to the following 

property : For every upper semicontinuous function h ^ 0 on SC one has 
oo oo 

sup J h dP = sup J P{h > t}dt = J v{A > f} A. 
P^w 0 0 

In other words, not only the upper bounds for probabilities, but also those for 
expectations, can be expressed in terms of v. 

Interestingly, Prohorov neighborhoods can be expressed in terms of a 2-alter
nating capacity (the set function A -* P{AS) -f e is 2-alternating). 

There are at least two explicitly solvable special cases fitting into this general 
framework: 

(i) {Pd)de={du02} has only t w o members (Strassen [1964], Huber [1965], Huber 
and Strassen [1973]). This generalizes the Neyman-Pearson lemma to capacities. 
At the same time, this gives a natural generalization of the Radon-Nikodym 
derivative to capacities. 

(ii) {Po)oe=R is a location family, where PQ has density f{x — 0) with respect to 
Lebesgue measure, such that - log/is convex (Huber [1968]). 

The obvious and intriguing question now is : How much of classical probability 
and statistics generalizes to capacities? 
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Théorie du Potentiel Récurrent (Résultats Récents) 

J. Neveu 

1. Soit P un noyau markovien défini sur l'espace mesurable {E9 sé) que nous 
supposerons separable. L'ensemble des fonctions mesurables h: E -> (0, 1) étant 
désigné par H9 nous poserons Uh = EN {PMi-h)

nP pour toute fonction h E /fen 
convenant de noter Mk le noyau de multiplication par la fonction k {kE H); ces 
noyaux positifs Uh {h E H) vérifient les relations 

(1) Uh = £ (UhMk-ù"Vk lorsque h g k dans H9 
N 

et donc aussi les équations résolvantes Uh = Uk + UhMk-hUk = Uk + 
UkMk-hUh{hSk). 

Les noyaux Uh ont plusieurs interprétations probabilistes intéressantes. D'abord 
si {Xn9 nE N) est une chaîne de Markov de probabilité de transition P et si vA — 
min {n: n ^ 15 X„EA)9 on a Ux;f = Em(H\Af(Xn))

 e t e n particulier E / ^ = 
P-(v,4 < oo). Deuxièmement la résolvante d'un processus markovien de sauts 
{Xt9 0 ^ / < Q de durées de séjour exponentielles de paramètres q{x) {x E E) et de 
lois de sauts données par le noyau P vaut XVx = Mhx + M^hJJhxMhx ou hx = 
A/̂  + q> Enfin si (Z<9 0 g / < C) est un processus de Hunt sur un espace l.c.d. 
(= localement compact à base dénombrable) et si {Ux,X > 0) désigne sa résolvante, 
alors en prenant P = Uh on trouve que Uhf = E-(J"o°exp { — Ht)f{Xt) dt) si Ht 

= Jf) h{Xs) ds\ dans ce cas d'ailleurs les noyaux Uh peuvent être définis plus générale
ment pour toute fonction bornée et même pour toute fonction mesurable h: 
E -• R+ telle que Ht < oo p.s. {t E R+) tout en vérifiant encore les relations (1) ci-
dessus [2]. 

(Considérons les noyaux positifs Q tels que P ^ PQ (ou que P ^ QP) parmi 
lesquels figurent les Mh {h E H); les noyaux positifs UQ = E#(/*(/ - Q))n P qui leur 
sont associés vérifient des relations analogues à (1) et notamment la relation 
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UNWQQYUQ = UQ qui entraîne que UQQ et QUQ sont des noyaux potentiels. Cette 
remarque devrait être intéressante.) 

2. Etant donné une mesure positive m sur {E9 sé)9 le noyau markovien P est dit 
m-irréductible si l'absolue continuité m <TiN ?"{*>') a lieu pour tout XEE. 
D'après un résultat de Jain et Jamison ([6], voir aussi [10]) un tel noyau P ne peut 
être que transitoire ou récurrent; de manière plus précise ou bien il existe une 
fonction mesurable strictement positive h telle que UQh soit bornée, ou bien après 
s'être restreint à un sous-ensemble de E P-invariant de mesure m pleine convenable 
on a Uhh = 1 pour tout h E H tel que m{h) ^ 0 tandis que U0f = + oo dès que 
m{f) # 0. On montre d'autre part que P est /rc-irréductible dès que Z!JV^W(* , A) > 0 
presque partout pour tout A non négligeable, c'est à dire dès que l'opérateur défini 
par P sur L°°{m) est irréductible, à moins que les mesures m et ]£NPn{x9 •) ne soient 
étrangères pour tout x E E [9]. Dans le cas de la promenade aléatoire à gauche de 
loi X définie sur un groupe l.c.d. G par Pxf= JG / ( • > x) dX{x), ce noyau Px est ir
réductible par rapport à une mesure de Haar à droite /a de G si et seulement si G 
est le plus petit groupe fermé portant X et s'il existe un entier n ^ 1 tel que Xn* et 
p, ne soient pas étrangères; une telle probabilité X sur G est dite étalée. 

3. Dès 1956 Harris introduisit la condition de récurrence: "£/ÄA = 1 pour h E H 
tel que m{h) ^ 0" (sous la forme équivalente: UAlA = 1 si m{A) ^ 0) pour en 
déduire l'existence et l'unicité à un facteur constant près d'une mesure positive 
ö*-finie et P-invariante ^ sur is telle en outre que m <̂  p,. Nous avons démontré que 
cette condition entraîne aussi l'existence d'une fonction strictement positive h\ 
dans H telle que Uhl ^ 1 ® p,9 ce qui permet de développer une théorie du potentiel 
(du type logarithmique) très complète pour le noyau P à partir du noyau positif 

Whl = S {VhlMn)nVkl {Vhl =Uhl-l®fi^0) 
N 

(voir [10]). Remarquons que le résultat de Jain et Jamison, celui de Harris et le notre 
aflirmant l'existence d'une fonction h\ telle que Uhl è 1 ® p> se déduisent assez 
simplement du lemme suivant en se servant des équations résolvantes. 

LEMME [10]. Si p et q sont deux fonctions mesurables strictement positives sur 
{E9 stf)2® et si m est une mesure positive non nulle, la fonction r{x, z) = 
\E P{x> y)^{y^ z) dm{y) peut être minorée par le produit a{x)b{z) de deux fonctions 
mesurables strictement positives sur {E, sé). > 

Si E est un espace l.c.d., il n'est pas difficile de montrer qu'un noyau markovien 
P est récurrent au sens de Harris dès qu'il est fortement fellérien (Pfest continue si 
/ e s t borélienne bornée) et que UQ (-,0) = + oo pour tout ouvert non vide 0. Sem-
blablement la promenade aléatoire Px sur le groupe l.c.d. G est récurrente au sens 
de Harris dès que X est étalée et que ]£NXn*{0) = oo (0: ouvert non vide). 

4. Pour développer la théorie du potentiel on introduit le cône convexe S des 
fonctions/dites spéciales, c'est à dire des fonctions positives telles que Uh(f) soit 
bornée pour tout h E H {fi{h) ^ 0) ou ce qui est équivalent telles que Whl{f) soit 
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bornée (our un hi fixé); ces fonctions sont nécessairement ^-intégrables. On in
troduit aussi le vectoriel 2 des charges spéciales, c'est à dire des fonctions de SS 
de ^-intégrale nulle. S et 2 ont la propriété importante d'être stable par P et plus 
généralement par les MhUh. Un des résultats principaux de la théorie est alors que 
pour tout/e 29 la fonction Whx /est à une constante additive près l'unique solution 
bornée de l'équation de Poisson (1 - P)u = Pf. Les fonctions de 2 satisfont aussi 
à un principe semicomplet du maximum relativement à Whl (pour tout ceci, voir 
[10]). 

Métivier ([7] a démontré pour les fonctions spéciales le théorème ergodique quo
tient suivant: Quelles que soient les probabilités X\9 X2 sur E et quelles que soient 
/ b / 2 e S ( M / 2 ) *0) , 

*i(Ê Pmf) j h(t /*"/a) -* M/1W2) lorsque n î 00. 

(Pour des fonctions de Ll{p)9 le résultat analogue est faux comme l'a montré 
Krengel.) En appliquant ce théorème aux promenades aléatoires gauche et droite 
associée à une probabilité X définie sur un groupe G l.c.d., on en déduit que G ne 
peut porter de promenade récurrente au sens de Harris que si G est unimodulaire. 

Au départ je me suis intéressé aux fonctions spéciales parceque les fonctions 
bornées spéciales/peuvent être caractérisées comme étant les fonctions positives 
bornées telles que Ucf ^ 1 (g) v pour une mesure positive non nulle v et une con
stante c > 0. Il s'en suit [4] que lorsque le noyau markovien P admet un noyau 
dual P par rapport à //, c'est à dire s'il existe P est un noyau markovien tel que 
\Pfg dp, — \fPg dp9 les fonctions bornées positives /telles que Uef *£ 1 (g) p. 
pour une constante c > 0 sont exactement les fonctions bornées spéciales à la fois 
pour P et pour P (à une modification de P près). On notera que les fonctions spé
ciales pour P9 resp. pour P9 ne sont pas nécessairement les mêmes. 

Lorsque E est un espace l.c.d. et. lorsque P est féllérien, il existe une fonction 
spéciale continue strictement positive de sorte que toute fonction continue positive 
à support compact est nécessairement spéciale. En général les constantes positives 
ne sont pas spéciales; pour que 1 soit spéciale il est en fait nécessaire et suffisant 
d'après Brunei et Revuz [4] que P soit quasi-compact. 

5. L'opérateur Wh peut être déterminé explicitement dans un certain nombre 
de cas. D'abord si E est fini et si P est une matrice markovienne récurrente ir
réductible, le noyau Wh est donné explicitement par 

Wh = (/ - P + Ph ® fy<)-i/> - {p{h))-\\ ® [i)\ 

ce noyau existe ici pour tout h ^ 0 non nul et d'après nos résultats il est positif si h 
est assez petit. 

Pour un processus de Hunt récurrent au sens de Harris les relations entre les 
opérateurs Uh et Wh et l'opérateur infinitésimal A du processus ont été étudiées 
dans [1] où l'on trouvera comme application la détermination de l'opérateur Wh 

pour les processus de diffusion récurrents sur R. D'autre part dans le cas d'un pro
cessus à accroissements indépendants stationaires sur R de fonction de Lévy (/), 
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en supposant la fonction l/<fi integrable à l'infini et le processus récurrent au sens 
de Harris, on trouve que le noyau Wh possède la densité 

-/0> - *) + (j (K* -x) + l{y - z))h{z) dzf\h{z) dz^j + ch 

où ck est la constante JJ" /(;; - x)h{y)h{x) dx dy/{$ h{z) dz)2 et où / est la fonction 
continue donnée par la formule 

Kx) = \(ßixt - 1 - ixt l\t\gLi)-rLr + ax (a constante arbitraire). 
R <l\t) 

6. Si G est un groupe opérant sur E en laissant P et fi invariants et si on pose 
Tgf = f{g~1-) sur E9 il est facile de voir que TgWh^ = WTthl et que le cône S 
des fonctions spéciales est invariant par les Tg {g E G). En se plaçant alors dans le 
cas où P admet un noyau dual P par rapport à p, pour simplifier, la question se 
pose de savoir si par une modification inessentielle de Wkl en W = Whl — 
{a ® y, + 1 ® âp) où a et â désignent deux fonctions positives, il est possible de 
construire un opérateur potentiel W invariant par le groupe {Tg9 g E G). Cette 
question revient à trouver des fonctions a, â telles que 

Tga-a + -J^Whx{Tgh) = cg9 Tgâ - â + ^W^Tfa) = cg {g E G) 

pour des constantes cg9 cg dont la somme doit en outre être égale pour tout g fixé 
à la fonction constante {Whl{Tgh{) -f WTtki{hi))/p (Ai). 

La question précédente admet une réponse immediate s'il existe une fonction 
spéciale et cospéciale invariante par les Tg comme c'est le cas pour tout espace 
homogène compact E = G/K et tout noyau P de convolution par une probabilité 
^-invariante sur E9 récurrent au sens de Harris. 

D'autre part lorsque G = E est un groupe l.c.d. unimodulaire, Brunei et Revuz 
[3] ont pu construire un opérateur potentiel invariant Wen définissant les fonctions 
aetâ par les formules 

lim WhJPn{x9') = a{x)fi9 lim WhlPn{x9-) = â{x)p 
M-KX3 n—oo 

(limites vagues sur E9 uniformes en x sur tout compact), la difficulté étant évidem
ment de montrer que ces limites existent. Le noyau Wqui est un noyau de convolu
tion sur G applique les fonctions spéciales dans les fonctions finies bornées supéri
eurement de telle manière que {I — P)Wf = P/pour tout/e S; en outre lim^ooP*/ 
= Wf pour toute charge spéciale/à la fois pour P et P. 

Bibliographie 
1. F. Bertein et C. Cocozza, Note, C. R. Acad. Sci. Paris (à paraître). 
2. F. Bronner, Méthodes probabilistes pour la détermination de résolvantes markoviennes asso

ciées à un noyau vérifiant le principle complet du maximum, Ann. Inst. H. Poincaré 11 (1975). 
3. A. Brunei et D. Revuz, Marches récurrentes au sens de Harris sur les groupes localement 

compacts, Ann. École. Norm. Sup. 7 (1974). 
4. , Quelques applications probabilistes de la quasi-compacité, Ann Inst. H. Poincaré 

10 (1974), 301-338. 



THÉORIE DU POTENTIAL RÉCURRENT 161 

5. T. E. Harris, The existence of stationary measures for certain Markov processes, Proc, Third 
Berkeley Sympos. on Math. Statist, and Probability, 1954/55, vol. II, Univ. of California Press, 
Berkeley, Calif., 1956, pp. 113-124. MR 18,941. 

6. N. Jain and B. Jamison, Contribution to Doebiin's theory of Markov processes, Z. Wahrschein
lichkeitstheorie und Verw. Gebiete8 (1967), 19-40. MR36 #4643, 

7. M. Métivier, Théorème limite quotient pour les chaînes de Markov récurrentes au sens de 
Harris, Ann. Inst. H. Poincaré Sect. B 8 (1972), 93-105. MR 46 #4613. 

8. J. Neveu, Bases mathématiques du caicui des probabilités, 2ieme ed., Masson, Paris, 1970, 
MR 42 #6885. 

9. ; Sur Virrèductibiiitè des chaînes de Markov, Ann. Inst. H. Poincaré 8 (1972), 249-254. 
10. , Potentiel markovien recurrent des chaînes de Harris, Ann. Inst. Fourier (Grenoble) 

22 (1972), fase. 2, 85-130. 

UNIVERSITé DE PARIS 
PARIS, FRANCE 





Proceedings of the International Congress of Mathematicians 
Vancouver, 1974 

Functional Equations and Characterization of 
Probability Distributions 

C. Radhakrishna Rao 

1. Introduction. The importance of characterization of probability distributions 
in problems of statistical inference has been stressed in a recent book by Kagan, 
Linnik and Rao (Russian ed. 1971, English ed. 1973) which will be referred to as 
KLR in the rest of the paper. There are different types of characterization problems 
of which the following two seem to have received considerable attention. 

One is to assume a model underlying a stochastic phenomenon and derive the 
appropriate distribution of an observable random variable. Classical examples are 
the derivation of the normal distribution from Hagan's hypothesis on errors of 
measurement and from Maxwell's hypothesis on velocities of molecules in a gas 
(see Rao [4, pp. 160-161]). 

A second type which opened up a rich area of research is what may be described 
as characterization of probability distributions through properties of sample 
statistics. More precisely the problem can be stated as follows : 

Let {A, B) and (C, D) be two measure spaces and T : A -> C be a measurable 
mapping of {A9 B) into (C, D). Further let p be a probability measure on {A, B) 
and pT the probability measure induced by (statistic) T on (C, D). Further let % 
be a specified property of pT. The problem is to find the class 

(1.1) P = {p \pT has the specified property %}. 

The mathematical problem is interesting when % is a weak property and P is a 
small class. A famous example is the Darmois-Skitovic theorem: Let Xi,---9Xn be 
independent variables, T\ = a\X\ + ••• 4- anXn and T2 = biX\ + ••• + bnXn be 
linear functions where ai9 b{ are nonzero, and % be the property that T\ and T2 are 
independently distributed. Then each X{ is normally distributed. 
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In most cases the problem of characterization reduces to finding the solution of a 
functional equation. Indeed, the study of characterization problems has led to 
several new functional equations, not all of which have been satisfactorily solved. 
In my article, I shall confine myself to the special area of characterizing the multi
variate normal distribution (m.n.d.) on RP, the Euclidean space of p dimensions 
(with possible generalizations to other spaces), describe the nature of functional 
equations involved and mention some unsolved problems (listed as Problems 
1-7). 

2. The Cauchy equation and generalization. Two basic results on functional equa
tions which led to the solution of many characterization problems are given in 
Lemmas 1 and 2 (see KLR, pp. 29-37, 471-476 for more general results). 

LEMMA 1 (KLR, P. 29). LetfÌ9 --9fkbe continuous complex-valued functions on Rl 

such that, for given a{ all different, 

(2.1) fx{t + axu) + ••• +fk{t + aku) = A{t) + B{u)9 V t9ueOl 

where Of denotes a region covering the origin in RP. Then f, A, B are all polyno
mials of degree ^ k in O1. 

LEMMA 2 (KLR, P. 471). Let gj be a continuous complex-valued function on Rp,
9 

and A] and B\ be matrices of rank pt and orders p x p{ and m x p{ respectively, 
i = 1, •••, k9 such that V f e O ^ and u E Om

9 

(2.2) gl{Axt + BlU) + - + gk{Akt + Bku) = C{t) + D{u). 

Then C{t) andD{u) are polynomials of degree ^ k in Op and Om respectively. 

Let us consider a simple case of the equation (2.2) with k = 1, 

(2.3) g{t + u) = g{t) + g{u) Vt9UEOP 

which is the famous Cauchy equation with a linear function as its solution. Let 
us restrict the validity of (2.3) to only pairs t9ueOP such that the inner product 

(2.4) {t, u) = 0. 

What is the solution of (2.3) with the restriction (2.4)? The answer is given in 
Lemma 3, which is proved by using Lemma 1. 

LEMMA 3. If g satisfies (2.3) with the restriction (2.4), then g is a polynomial of 
degree g 2 in OP. 

The solution is no longer linear but is still of the polynomial type. 
It may be noted that if the restriction on(£, w)is of the type 

{t9u) = [{t9t){u9u)]l/2 cosa, 

where cos a ^ 0, then again the solution is linear. 
It will be of interest to consider other restrictions which may lead to different 

types of solutions. I mention one such possibility which has applications in 
characterization problems. 
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Problem 1. Suppose for any given t e OP9 there exists u ( # 0)eOP such that 
g{at + bu) = g{at) + g{bu) V öf, & G O1. What is the solution for gl 

Note that no relationship between t and u such as (2.4) is specified. A possible 
solution for g is 

(2.5) g{t) = h{tl9 .-., /,) + Q{tM9 ..., g 

where t\9 • • •, /̂  are components of f in some order, /? is an arbitrary function and Q 
is a quadratic function. 

As an application of Lemma 3 we have Theorem 1 characterizing a m.n.d., while 
a stronger result is true for p = 2 as in Theorem 2. 

THEOREM 1. Le/ X be a p-vector r.v. {random variable) such that a'Xandb'Xare 
independently distributed for all a, beRP such that (a, b) = 0. Then Xhas m.n.d. 

THEOREM 2. Let X be a bivariate r.v. {with components e R1), A and B be two 
given nonsingular 2 x 2 matrices such that A~lB or B~lA has no zero element. If 
the components of BX are independent and so are also the components of AX9 

then X has a bivariate n.d. 

Theorem 2 shows that to assert bivariate normality of AT, it is only necessary to 
find just two pairs of linear functions such that the functions in each pair are inde
pendently distributed. For general p9 Theorem 1 requires independence for a very 
wide class of pairs of linear functions. We pose the following problems. 

Problem 2. Let AT be a /?-vector r.v. Suppose that for any given a G JR*, there exists 
b {¥" 0 )G jR^such that a'X and VXare independently distributed. Then what can 
be said about XI 

If (2.5) is the only solution, then some of the components of X have an arbitrary 
distribution and the rest have a m.n.d. 

Problem 3. What is the smallest class of pairs of vectors (a, b) such that a'AT and 
V X are independent, which ensures multivariate normality of XI (When/? = 2, 
just two pairs are sufficient.) 

3. Generalization of Darmois-Skitovic theorem. Let X\9 •••, Xk be kindependent 
/?-vector variables such that 

(3.1) AiXi + ••• + AkXk and BXXX + - + BkXk9 

where Ai9 JS,are nonsingular matrices, are independently distributed. Then Ghurye 
and Olkin [1] showed that each Xi has ^-variate n.d. This result is obtained by 
writing down the functional equation satisfied by gi9 the log of characteristic func
tion (cf.) of Xi9 

(3.2) gl(Ait + Biu) + .-. + gk{Akt + Bku) = C{t) + D{u)9 Vt9ueOP 

where OP is a suitable neighbourhood of the origin in which the logs of all func
tions are well defined, and applying Lemma 2, which shows that C{t) is a poly
nomial which being a cf. must be of degree ^ 2. Then S A{X{ has m.n.d. and 
hence AiX( and X{ have m.n.d. for each /. 

The crucial step in the proof is to show that C{t) is a polynomial, which very 
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much depends on the finite number of terms on the left-hand side of the equation 
(3.2). It is not clear what happens when the linear forms (3.1) contain an infinite 
number of terms. We may formulate the problem as follows. 

Problem 4. Suppose {JSfJ is an infinite sequence of independent /?-vector r.v.'s 
such that 

oo oo 

(3.3) Tx = S AìXì and T2 = £ B4Xt 

i i 

are independently distributed. Then what can be said about the distribution of Xp. 
A solution to this problem depends on the nature of the solution for C{t) in 

(3.2) when k = oo. When/? = 1, and the Ai9 B{^Rl satisfy some conditions it is 
shown that X{ are normally distributed (KLR, pp. 34, 94). The proof does not easily 
generalize to p > 1. 

4. Characterization through constancy of regression. Let XÌ9 X2 be independent 
and identically distributed /?-vector r.v.'s such that the conditional expectation 

(4.1) E{Xl - AX2\XX + B'X2) = 0 

for given nonsingular matrices A and B. What can be said about the distribution of 
JSTi? We may suppose that X\ has first moment. 

A complete solution to the problem is available when/?= 1 (KLR, pp. 158-161). 
A complete solution when/? = 2 and a partial solution for/? > 2 are given by Khatri 
and Rao [3]. We shall examine the nature of the functional equation for general/?. 

Let g{t) be the log cf. of X\ and define by G{t) = dg/dt, the vector of partial 
derivatives of g{t) with respect to the elements of t. Then it is easy to show that 
(4.1) implies 

(4.2) G{t) = AG{Bt) or A~lG{t) = G{Bt). 

The problem is to solve (4.2) for G given A and B9 and eventually to determine 
g such that G{t) = dgjdt. 

It is interesting to note that an equation of the type (4.2) occurs in the study of 
optimization problems and structural stability studied by Andronov and Pon
trjagin (see Robbins [5]). In their problem A"1 { = D say) and B stand for C1 diffeo
morphisms from a smooth manifold M onto itself and G is a homeomorphism such 
that/? ° G = Go Ain which case B and D are said to be topologically conjugate. 
Theorem 3 considers the special case of (4.2) when A = B'1. 

THEOREM 3. Let 

(4.3) S = *iQiP; + . - + örQrP'r 

be the singular value decomposition of B, where Q{ and Pt- are matrices of order 
p x m4 with orthonormal vectors corresponding to multiplicity m{ of the root 3,-. If 
A = Bl in (4.2) then g{t) is of the form 

(4.4) g{Pt) = Äxfo) + ... + hr{tr)9 

(4.5) g{Qt) = öl hfâHJ + - . + öl hr{ö~%)9 
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where t{ is a subvector oft of order mit and hi are suitable functions. Then h( in (4.4), 
(4.5) satisfy the equation 

(4.6) 2 A,(PiQi*i + - + P'iQrtr) - S 5? A,^1*,). 

Thus, the solution of the characterization problem (4.1) even in the special case 
A = B"1 depends on the solution of the functional equation (4.6) which is of the 
form discussed in KLR (p. 476) but not solved in generality. Solutions have been 
found for p = 1,2 and for general /? when the matrices P'iQj satisfy the conditions 
given in KLR (p. 476, Theorem A.5.3), leading to multivariate normality of Xt-
in (4.1). A solution to the equation (4.6) in the general case is of interest. 

Problem 5. Let h{ be a continuous complex-valued function on Rmt
9 P, and Q( 

be partitions with n^ columns of orthogonal matrices P and Q, and öt- be positive 
numbers for / = 1, •••, r. What are the solutions for h( of the functional equation 

(4.7) S Ä,(P;-Ql*l + - + P'iQrtr) = 2 Ö*ihi{ÖjHi)l 

Now we state a general problem : 
Problem 6. What is the solution for Gorg{G = dgjdt) of the equation 

(4.8) AiG(Bit) + - + AkG{Bkt) = 0 

where Ai and 2?, are given matrices and k may be infinite? 
The solution seems to be difficult even for k = 2. A solution to the general 

equation (4.8) would enable us to characterize the probability distribution of Xt-
by the condition (where Xt- are identically distributed) 

(4.9) E{Z AiXi\L BtX,) = 0. 

5. Generalization to other spaces. Throughout this paper, the variables like t9 

u are considered to belong to RP. All the problems could be generalized to vari
ables belonging to other spaces or topological groups. For instance the equation 
(3.2), in terms offi9 the cf. of Xi9 is of the form 

(5.1) Ûfi{Ait + BiU) = h{t)-m{u). 

One may generalize the problem as follows : 
Problem 7. Let t, u G X, a Hausdorff topological group, f be conditionally positive 

definite functions and Ai9 Bt- be continuous automorphisms of X. Then what are 
the solutions for/J of 

(5.2) flf{AitBiU) = h{t).m{u)l 
i 

This problem has been considered by Schmidt [6] and solved when k = 2. A 
solution in the general case (including k = oo) would be of interest. 

Similar generalizations can be made of Lemma 3 where t, u can belong to a space 
furnished with an inner product, Problem 1 to a general space, Theorem 2 to a 
r.v. with components defined on more general spaces instead of Rl and so on. 
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Random Time Evolution of Infinite Particle Systems 

Frank Spitzer 

This is an outline of progress in this field during the last four-year period, which 
was largely the result of major developments in equilibrium statistical mechanics 
during the preceding four-year period. A detailed version of this outline will appear 
in [27]. 

1. In 1968 ([2], [3]), Dobru§in introduced the notions of an infinite Gibbs 
state (IGS) and of a Markov random field (MRF), and showed that a MRF is a 
natural generalization of a stationary Markov process. Somewhat later [(1], [23], 
[22], [6]), it was realized that every MRF is an IGS with nearest neighbor potential, 
and vice versa. 

2. In 1969, Lanford and Ruelle [15] independently defined IGS and proved a 
variational characterization analogous to the classical one for finite Gibbs states. 

3. The year 1970 saw the first time evolutions which have a given MRF or IGS 
as equilibrium state. These were on one hand birth and death, or spin flip, evolu
tions [4], already studied in one dimension by Glauber [5]. On the other hand, time 
evolutions which preserve the number of particles were proposed in [24]. 

4. Rigorous existence proofs of such time evolutions as Markovian Feller semi
groups Tt91 ̂  0, acting on the continuous function space C{0)9 where Q = {0,1 }z" 
is the configuration space, were given during 1971 and 1972 by Dobrusin [4], 
Harris [7], Holley [9], Liggett [16]. Such a semigroup is ergodic if there exists a 
probability measure vonö such that p Tt => v for all//. Then v is the unique equili
brium state. 

5. Dobruâin [4] showed that a birth and death evolution with strictly positive 
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rates is ergodic if the interaction (dependence of rates on neighboring sites) is weak. 
The case of zero birth rate when all neighboring sites are vacant was studied by 
Harris [8], who proved ergodicity when the death rates are sufficiently small, non-
ergodicity in the contrary case. Holley [10], [11], [12], [13] obtained deep and de
tailed results when the birth rates are such that the equilibrium states are the 
equilibrium states for the Ising model. Thus he shows that Tt is nonergodic exactly 
when the corresponding Ising model exhibits phase transition. The reason one 
obtains a complete theory in this case was clarified [25], [21] by showing that Tt 

acts time reversibly in an equilibrium state exactly when the equilibrium state is a 
MRF (equilibrum state for the Ising model). A surprising irreversible case (the 
voter model) was recently (1974) completely analyzed by Holley and Liggett [14]. 

6. The jump processes with constant speed and exclusion have been completely 
analyzed [17], [26], [18] in the case when the transition function P{x9y) is symmetric. 
When P is recurrent or a random walk transition function, then the only equili
brium states are the exchangeable measures (convex combinations of Bernoulli 
product measures). When P is unsymmetric, recent work of Liggett [19], [20] 
suggests interesting conjectures. 
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Limit Theorems for Dependent Random Variables 
Under Various Regularity Conditions 

V. Statulevicius 

1. Introduction. Let Xt91 = 0, 1, 2, •••, be a sequence of random variables defined 
on the probability space {Q9 <F9 P) with values in Rk

9 k ^ 1. In limit theorems of 
probability theory asymptotic properties of the distribution P„{A) = P{Zne A} 
of the normalized sum 

n 

y=i 

are investigated most often as n -> oo, where An and B~l are a nonrandom vector 
and a matrix, respectively. 

The following are implied here : 
(a) the determination of approximating distributions G{A) for the distribution 

PJ4); 
(b) the investigation of the accuracy of the approximation Pn{A) — G{A); 
(c) the improvement of this accuracy by adding terms of the asymptotic expan

sion to G{A) ; 
(d) the investigation of probabilities with large deviations when A is removed 

together with n and Pn{A) -+ 0 when n -• oo. 
The following classes of sets A are usually considered : a class B of Borei sets, 

and a class E of convex measurable sets. The distance p{Pn9 G) between Pn and G 
is also investigated in various metrics. 

Similar problems arise in investigating a still more complicated distribution of a 
random process Zn{t)9 0 ^ t ^ 1, formed by partial sums S0 = 0, Si, *••, Sn 

in the configuration of a random polygonal line with vertices at the points 
{tk9 B-^Sk - Ak))9 k = 0, 1, •••, n910 = 0 g tx ^ ••• ^ tn = 1, or the distribution 
of functionals of Z„{t)9 for example, max o<k^nSk a nd so on. 
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It stands to reason that we can speak of general theories in these problems only 
when the variables X\9 •••, Xn are stochastically independent or, in some sense, 
weakly dependent on one another. 

At the present time, in the case of independent summands particularly great 
attention is paid to the questions (b)—(d). Significant results have been obtained 
here, especially in the case of finite-dimensional Xj. Due to the absence of good an
alytical methods it is much more difficult (excluding (a)) to discover those peculiari
ties which arise in the case of dependent summands, though limit theorems for the 
distribution of sums of dependent random variables become more and more topical 
problems in the statistics of random processes, statistical physics, additive number 
theory and so on. 

We present some results for problems of the types (b)—(d) under various condi
tions of weak dependence. 

2. Conditions of weak dependence. Let SF\ — a{XU9 s ^ u ^ t} denote the 
(7-algebra of events generated by the random variables XU9 0 g s ^ u ^ t. L{!F§ 
stands for the totality of all J^J-measurable random variables with finite variance. 

The following conditions of weak dependence are usually considered : 
(I) strong mixing (SM): 

sup sup \P{AB) - P{A)P{B)\ = a{s) -» 0 {s -> oo), 

(II) full regularity (FR): 

sup E[ var \P{B\&$ - P{B)\] = ß{s) - 0 (j - oo), 

(III) uniformly strong mixing (USM): 

sup sup [ ^ ) - y ( J » | = y ( ^ 0 ^ ^ 
' ;4e.^; PU)>0: B<z&~3 P{A) 

(IV) Markov type regularity (RMT): 

\P(AB\C) - P(A\C)P(B\C)\ S {™ | C W s )
 (

( ^ 2 ) 
for all Ae^b,Ce &§£-\ B e &?+s, where T&s) -• 0 {s -> oo), i = 1, 2; 

(V) regularity of correlation functions: 
Let E\Xt\

k < oo for all t and Sf{tÌ9 •••,**) = r{Xtl9 •••, Xt} be a correlation 
function of a random process Xt of the fcth order, i.e., a simple semi-invariant of a 
random vector {Xtl9 •••, Xt). The regularity condition lies in that S^ßfa, ••-, tk) 
should be sufficiently small when max(f;- — ff-) -> oo, for instance, in the sense of 
the existence of integrals J" ••• jS^{th —9tk) d¥{tÌ9 •••, tk) for all k ^ 1. 

The first condition was introduced by M. Rosenblatt (1955, [1]), the second by 
A. N. Kolmogorov, the third by I. A. Ibragimov (1959, [2]), the fourth by B. Rjauba 
and V. Statulevicius (1962, [3]) and the fifth by V. P. Leonov and A. N. Sirjaev 
(1959, [4]). 

Analogues of conditions (I)—(III) in terms of conditional expectations were 
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considered in the classical work by S. N. Bernstein [5]. 
In some works (see, for example, [6], [7]) the asymptotic behavior of PZn is in

vestigated under elegant conditions on P{X;eA |S/-i}, j = 1, 2, •••, n. These con
ditions, however, are hardly verifiable and they do not separate the properties of 
dependence from the individual properties of summands, though such a separation 
would be quite desirable. 

Instead of condition (III) one may introduce condition (III') : p{s) -• 0 {s -> oo), 
where p{s) is a maximal coefficient of the correlation between the past ^ and the 
future <Ff+t of the process Xt : 

m—**-"*?-"> oXoY 

in which the supremum is taken over all random variables l e L ( ^ ) and 
YeL&ï+s), and t9 while a here denotes standard deviation. The maximal 
correlation coefficient was considered in [8]—[10]. We always havep(,y) ^ 2<p1/2{s). 
Similarly it is possible to define the maximal kth order correlation coefficient 

where the supremum is taken over all £i e L{^0)9 ÇjeL&fy.j = 2, •••, k - 1, 
£he&fi.t with E\Çj\* < co and over all * and Uj S vj9 where 0 g / < w2 ^ 
v2 < ••• < w*-i g vÄ_i < t + J. The symbol JFis defined as follows: The sign " ^ " 
over 7 denotes the centering 7 = 7 - £7 ; then 

^ 7 i - . . 7 r = JE?7i72-. 7 r_i7 r. 

It is evident that p2{s) = p{s). Theorems of large deviations for P{Zn > x} under 
the condition pk{s) g k\ Lk exp { - ßn • s} with all A: ^ 2 were proved in [11] and [12]. 

If the random variables Y\9 •••, 7 r are related to a Markov chain x{t)9 t = 1, 
2, •••, r, 7; =/(x(0) with transition probability P,(;c, y4) and initial distribution 
PY{A)9 then 

# 7 ? ... 7 - = J ... U^i)p(dxl)ÜMxJ){Pj{xj-l9 dxf) - Py(Äy)) 
y—2 

where Pt{A) = P{x(0e^} . 
Let us consider the kth order correlation among the indicators IAl of sets 

4 e ^ £ > J = 2> ••'» * - 1> Aie&b, Ake&?+S. Assume that a{Al9 •», ^Ä) = 
EIAì '" IAi. Let us say that the condition {ak) is satisfied if 

sup \a{Ai9 •••, Ak)\ = ak{s) -+ 0 (J -> oo) 
<i «/éy/i At 

as well as the condition {(pk) if 

sup k^i,-y,^)l = ( j) ^ 0 ( j 
t.«^vitA«P(AU>0 P{Ai) ™ W V ' 

There exists a positive constant ck9 depending only on k9 such that 
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Pk{s) â ckq>yk{s). 

The properties of a{AÌ9 •••, Ak) were studied by Kolmogorov and Zurbenko 
[13]. The conditions (a*) and {(pk) were applied in [35] in investigating the accuracy 
of the approximation of Pn{A) by a normal distribution. 

Note that (a2) coincides with condition (I) and {<p2) with (III). When k increases 
the conditions {ak) and {<pk) become more and more restrictive, and transform into 
RMT I and RMT II, respectively. 

We shall not linger on the conditions for convergence of the distributions 
PZn and PZtt(-) to limit ones. We shall only direct the reader to the papers [1] — 
[41], where one can also find a rather complete bibliography. We shall only il
lustrate an interesting result by Ibragimov [14]. Assume that Xt is a strictly station
ary sequence with EXt = 0 and p{s) -> 0 as s -> oo. Then either s\xpna

2S„ < oo or 
o2Sn = n-h{n)9 where h{n) is a slowly varying Karamata function. If in addition 
E\Xt\

2+d < oo for some ö > 0 and o2Sn -> oo {n -> oo), then 

lim P {SJaSn < x} = 0{x)9 
»—oo 

—oo 

3. Large deviations. 

THEOREM 1. If the condition RMT II with 

(1) r&) ^ e~r''s> ?n > 0, 

is satisfied, Xj e R9 EXj = 0, and 

E{\XPj\ l ^ r 1 } ^p\LKP~2a2XJ9 j = 1, - . , « , 

with probability 1 for all p ^ 3, then for Zn = SJBn9 B2 = o2Sn9 the relation of 
large deviations 

(2) Pi-n0(X)} = exP«*3/4,)W4,)} (i + eH.3 ^+A) 

holds when 0 ^ x S S-An9 ö < öff9 where 0ff9d is bounded by a constant depending 
only on H and 59 

oo 1 

m^zhj", I^I=IHW' * = o,i,-. 
Here 

â = CKL-T„-B„ H=CKr
 L ? = 1 °2X' 

The positive constants cKtL and CKtL depend only on K and L9 and 5H > 0 is a 
maximal root of the equation 6HdH/{l - dH)z = 1 (estimation for 0S,H can be 
found in [15]). 

REMARK 1. If \Xj\ g Cin\j = 1, ••-,«, with probability 1, then in this case 
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(2) holds when An = {Tn-Bn)l{HrC™)9 H = 2Hh where H1 > 0 and H2 > 0 
are absolute constants included by the estimate for the semi-invariant /7Ä{5'B} of 
the M L order of the sum Sn: 

(3) I^J l iMiag!^, , = 3,4,.., 

REMARK 2. If Xt91 e (— oo, oo), is a strictly stationary process, E\ Xt | * < oo for 
all & ^ 1 and 

for all fc ̂  3, then for P { Z r > x}9 where ZT = (Cr - E^T)/(T^T9 Çr = lïXt dt> 
the relation of large deviations (2) is valid when âT = cTl/2/H^9 H = H^jc2

9 

îîOKT'Z CT (see [11]). 
The method of proving such theorems is as follows. The kth order semi-invariant 

of the sum 

r„{sn}= s r{xtl,-,xu} 
l£tu"',U£n 

may be exactly expressed in terms of EXth ••• XUm9 m ^ k. When \Xj\ ^ C(w), 
j = 1, ••-,#, and (1) is true the estimation 

\ÊXtll - Xtlm\ <; C-C<->«-» exp{-r„-(*y . - g } r f ( A . ^ y , 

holds if tjt ^ ••• ^ (,-„, where C is an absolute constant. Hence we get estimates of 
the type (3) for rk{s'H}. Further, if \rk{Z] | g k\ H\Ak~2 for all k^39EZ = 0, 
a2Z = 1, then (2) is valid for P{Z > x} with the parameters H and J (see [15]). 
Estimates for r{Xh9 •••, Xtt} under the RMT II conditions were obtained by 
I. G. Zurbenko [27], [28] as well. 

4. Rate of convergence and asymptotic expansion. 

THEOREM 2. IfXj e R*9 EXf = 0,y = 1, ••«, n9 and RMT II wiYA ï2{s) S l/{T%-sa) 
is satisfied for all I ^ s ^ nandsomea > 39T„> 0, iS? | A"y |3 < 00,7 = 1, ---9n9 then 

(4) Sup\P{SttzA}-0sXA)\£C(a,k) sup ^ " ? f feffl^>. 

Here (#, >>) denotes the scalar product, and C{a9 k) depends only on k and a. 

THEOREM 3. IfXj e R9 EXS = 0, E\ Xj\* < 00,7 = 1, •••, n, and RMT II with 
T2{s) ^ e~r"'sis satisfied, then there exists an absolute constant Ci such that 

sup '{^r^Hirj-'"* 
SC,-

0 

1 max . ^ • ^ e s s s u p J g d Z y l 3 ! ^ - 1 } , B2 = 2S 

i ^ e s s i n f ^ l ^ f 1 } TnBn minj 

In fact condition RMT II is necessary in order to obtain the theorems of large 
deviations such as Theorem 1 (there is an example indicating that relation (2) is not 
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valid without RMT). To obtain (4), however, it is not required. Further, let 
XjGR9j = 1, •-•, n9 and 

L - L%i^supE{\Xj\r\^^} B2 = <J2S 
1 n Dn 

THEOREM 4. If the condition (p3) with 

(5) f&) * yj-r, l*s Zn, 

is satisfied for some a > 3, E\ Xj\* < oo9j = 1, •••, n9 then there exists a constant 
Ca depending only on a such that 

sup|P{ZB < x} - 0{x)\ £ Ca-L3n. 
x 

THEOREM 5. //I^y] ^ C(w), j = 1, •••, n9 with probability 1 and the condition 
(0:3) with 

(6) a&) i 1/rj-J-, 1 ^ s ^ n, 

is satisfied for some a > 3 then there exists a constant C'a such that 

sup \P{Z„ < x} - 0(X) I * C a ( x n ^ \ | x | y 

If we want to get an asymptotic expansion for P {Zn < x} — 0{x) with the help 
of Cebysev-Hermite polynomials 

P{Zn <x} = 0{x) + ( 2J ) 1 / 2 e-*l/2r£pvn{x) + 6rLrn 

with as simple a structure of the remainder term as that of Lrn9 the condition {<pr) 
will be needed here if £r|Ar

/|
r < 00 and {ar) when \Xj\ g Cin),j = 1, •••, n (see 

[35]). Note that in Theorems 2-5 the conditions for T2{s)9 <pr{s)9 ar{s) are not best 
possible; they can be weakened. And in general in asymptotic expansions one can 
get estimates of the order (log n)/{nl/2)r"2 by imposing stronger restrictions on 
<pm{s), m <r9 but it will be very difficult to describe the structure of the remainder 
term exactly. For instance, if <p{s) = <p2{s) ^ C3e~b's9 E\Xj\3 g C4, j = 1, •••, n, 
then it is possible to obtain the estimate 

P{Zn <x} = 0{x) + 0{{logn)/n"2) 

when a2 {St — Sk} M / - k9 1 ^ k < I ^ n. The rate of convergence under the 
condition (III) was dealt with in [22], [32], [29]. 

In the remainder terms of Theorems 2-5 the conditional moments E {\Xj | 3| ^f1} 
can be replaced by absolute ones 23ÌX,|3 by multiplying the remainder terms by 
log n. The method of proof rests on the accurate investigation of logarithmic 
derivatives 

r»{Smt} = -£• lOg/5.« 

of the characteristic function of the sum S„ when \t\ £ Lj£/(r~~2'iJ%1. 
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We shall present here one more theorem which employs the regularity conditions 
(V). 

Let Xt be a strictly stationary random sequence with EX( = 0 and E\X$ \ < co 
for all/? ^ 1. Let F{X) = $f{X) dX be a spectral function of the process Xt with 
bounded density sup^/(^) ^ L. Let 

be the estimation for F{X). 

THEOREM 6. If 

2 - ZW('i, -,'*-i,0)| ^ k\H^m~2
9 

k—i 

then 

sup 
X 

p { T i n <?"§ ̂ TW ~ F^\ - ffT'x}~ p{ IUP K')l ^ *} 
< c iog(i + r) 

where w(j) is a Wiener process, a\ = 2% \1\2f{l)dX. 

Estimations of such a type for the Gaussian sequence were obtained by T. Arak 
[37]. 
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The Theory of Harmonic Spaces 

Bertram Walsh 

Let {X9 j f) be a harmonic space in the sense of H. Bauer's address. This report is 
devoted to exposition of some things one can say, and questions one can ask, about 
X and ffl from the standpoints of topology, functional analysis, and sheaf theory. 
While it will seem that potential theory does not appear explicitly and probabil
istic considerations are absent, one should keep in mind W. Hansen's work [13] 
showing that the operators we shall examine are either semigroup generators or 
potential kernels. 

J.-M. Bony [6], [7] has shown that if X and 3tP are sufficiently differentiable, then 
on an open dense set 3f? is the solution sheaf of a second-order equation Lu = 0, 
where Lu = / i s (locally) solvable for a large class of functions/and solutions are 
superharmonic i f / ^ 0. The situation \n{X93/£) is thus the same as the classical 
one in open sets of Rn where L = A and «, /are #°° functions, i.e. (in the usual 
sheaf-theoretic formulation), O - ^ ^ f - ^ ^ J ^ ^ - ^ O is an exact sequence of 
sheaves {£ being the sheaf of [germs of] c€°° real-valued functions). Since it is a 
"fine resolution" of ffl9 this sequence makes it possible in the classical situation to 
determine the sheaf cohomology groups with coefficients in ffl. Since S is a sheaf 
of modules over the fé00 functions it is also possible, for each fé700 function m9 to 
define an operator 0m: u -• Au H- rn-u. It is classical that the sequence 0 -> <&m -> 
ë 1$ ê -» 0 is also exact and that <&m = Ker 0m satisfies the Brelot axioms. 
Harmonic structures "near" the classical one thus exist. 

Assuming only the usual axioms for (AT, jf?) (and the weakest convergence axiom), 
one can construct ([28], [29], [30]) fine sheaves 0t and â and a homomorphism â 
such that 0 - > ^ ^ ^ - ^ ^ - > 0 i s exact; moreover, â is a sheaf of modules over 
the sheaf J1 of germs of bounded Borei functions on X, so it makes sense to define 
operators dM\ u -* Au + u-M over t/for any MET{U9 J2). Any &M = Ker 6M 
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is a sheaf of continuous functions for which {U9 &M) is a harmonic space [30]. !% is 
the sheaf of germs of continuous functions that are local differences of continuous 
jf-superharmonic functions ; if 1 G ffi this is a sheaf of algebras possessing par
titions of unity, so in all cases it is locally fine and hence fine. To define J, for each 
open U ^ X let Sßu be its cone of continuous ^-potentials, and if V ç U let 
rvu : *§u -> *$v be defined by rvup = q9 where q G Sßv is the potential part of the 
Riesz decomposition p\V = q + h on V. The rVu$ extend linearly to the spaces 
&u — ?fiu — *$u> a n d & is the sheaf associated with the presheaf {0U9 rvu). The 
operator A : & -> â is defined similarly at the presheaf level: If s is a continuous 
superharmonic function on an open set U it determines a continuous potential p 
in any open V with compact closure contained in U9 namely the potential part p 
of the Riesz decomposition s\V = p -f h on V; one verifies that the map s —*p 
determines a linear homomorphism A : & -> â with «^ = Ker A. â is fine as a 
consequence of the theory of specific restriction of potentials [15] or specific multi
plication [11], [27], according to which there is an action of the bounded Borei 
functions on open U £ X upon the potentials on U that has all the properties of 
the classical action given by/-/? = \Gu{-9y)f{y) d/u{y) where U ^ Rn is open, 
Gu is its Green's function for the Laplace equation, and p, is the unique measure 
for whichp = \Gu{'9y) dß{y). In any harmonic space rvu{f-p) = {f\V)-rvup 
holds, so â is a sheaf of modules over $& and is therefore fine. 

For each open U £ x the space r{U, £) can be made a Fréchet space, and in
deed a Banach space if U is compact, â is the analogue of the sheaf i f of (germs 
of) measures defined as follows in the classical setting: ß G Jt{U) belongs to £g if 
IRGU (m>y) d\p\ {y) is continuous for every U ^ Rn possessing a Green's function 
and every compact K £ jj. If {X, J/If) has local Green's functions [11], [15], [16], 
then the family i f of measures formally defined in the same way is a sheaf iso
morphic to â as a sheaf of ^-modules, and A becomes an operator sending func
tions to measures. If the adjoint sheaf [15] exists locally, then [29] it too has a resolu
tion 0 -» jjf* -» ^* -> Se * -> 0 and there is a duality relation (I) T7 {U9 M*) ^ 
//J(c7, ,^) ' , and a similar one with 2f? and ^ * interchanged [29]; natural locally 
convex topologies are present. If X is compact, then the convergence principle 
implies that T{X9 2tf*) is finite-dimensional and thus so is Hl(X, Jf); if 1 G «^* the 
dimension is Oor 1. 

Even without duality the short fine resolution implies H^{U9 ffl) = 0 for q ^ 2. 
If X is a compact Brelot harmonic space with 1 G ffî9 or if a consistent family of 
ways of solving the exterior Dirichlet problem for a basis of neighborhoods of oo 
in the one-point compactification X of X is given (normal operators [28] general
izing the notions of L. Sario [22] or a full-harmonic structure like those of Z. Kura-
mochi [18], with corresponding sheaf of "full-harmonic" functions tf* over X)9 

then it is possible to determine .[28] the Cech Hl{X9 3^) (or H\X9 jj?2), mutatis 
mutandis) by solving Cousin problems. This is most perspicaciously done using a 
theorem of H. Schaefer [23] about positive operators on spaces <&{Y). 

(H) If 1 $ tfx then Hl{X9 tf) = 0, while if 1 G #ex then dim H\X9 tf) = 1 ; 
the dijal of Hl{X9 tf) has a "positive" generator identifiable with the classical flux. 
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(HI) One can determine Hl{X9 j^) for general compact X by perturbing the sheaf 
j ^ [30]; one defines 0M: £% -» â and <&M — Ker 0M as above and &M *s a har
monic structure, though one can only preserve a weak convergence axiom. If M 
is sufficiently "large" in a natural ordering of â9 then <3M will possess a strong 
potential. With U = X9 it follows from this fact and the R.-M. Hervé extension 
theorem [15] that r{X9 &M) = 0 and Hl{X9 &M) = 0. r{X9 ®) and r{X9 â) can 
be topologized as Banach spaces; 0M is an isomorphism of these spaces and differs 
from A by the operator w -> w • M, which has compact square. Fredholm index 
theory then makes dim r{X9 &M) ~ dim Hl{X9 &M) independent of M and thus 
zero ; in particular, dim r{X9 ffl) = dim Hl{X9 3^)9 the index-zero theorem of [30]. 

The following questions arise with respect to these results (three are keyed by 
Roman numbers) : 

(I) Even for the weakest axioms, for any open V £ U there is a natural mapping 
H\{V9 tf) -> H\{U9 W) and thus a natural transpose H\{U9 #?)' -* H\{V9 34?)'; 
the family of all such spaces and maps forms a presheaf that is a natural adjoint 
object to jf. This is naturally isomorphic to «#** when the latter exists. Can one 
realize it as a sheaf of functions, measures, or anything reasonable-looking? This 
might localize and extend J. C. Taylor's results [25]. 

(D) If 1 G Jt? and the Brelot axioms hold, there is a natural way to use local 
cones of potentials to order each H\{U9 ffi). A positive linear functional on 
H\{X9 ffî) is a flux functional as in [28]. Any normal structure S with 1 G ffl* 
generates a flux functional; in particular, if {X, ffl) has no global potential the least 
Dirichlet solutions of [28] can be used to show that such a functional exists (see 
also V. Anandam [1], [2]). Does such a functional exist in general? If it does, it can 
be used to construct normal structures. 

(DI) A number of interesting unanswered questions concern perturbed harmonic 
structures. In [30] it is shown that the weakest "Bauer" convergence axiom [11] 
is inherited from ffl by any <&M\ it can be shown that nuclearity of section spaces 
is inherited if M ^ 0. Are side conditions on M needed in order that the "Doob" 
or "Brelot" convergence axioms be preserved? For a "completeness" question, it 
is easy to see that if M ^ 0 the sheaf ffl dominates <3M in P. Loeb's ordering [19]. 
Is it true that if ^ ^ j f in that ordering, then there exists 0 <; M G r{X, S) with 

For global problems, suppose X compact. If M G r{X9 3) is so positive that 
&XM has a potential for large /I ^ 0, then >l's for which <&iM ^ {0} can be inter
preted as eigenvalues. Can one arrange that they have multiplicity 1, or is that true 
for "generic" M (cf. [26])? Is the m a p / -> fM from r{X9 m) to r{X9 â) nuclear, 
or does it have a nuclear power, for suitable M9 or generic M9 or all Ml 

(IV) One would like information about the kind of topological spaces that can 
support harmonic structures. Strong hypotheses on J4? can restrict Xseverely [17]. 
If nonpolar points are admitted, A'can be very unpleasant [10], [11]: It is not hard 
to see that there are infinite-dimensional Z's that support Brelot harmonic struc
tures. These spaces are not homogeneous, and an excellent test question is whether 
TN supports a group-invariant harmonic structure; perturbation theory and 
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harmonic analysis can be brought to bear here. A negative answer would suggest 
that "sufficiently homogeneous" harmonic spaces may have to be locally Euclidean. 

A drawback of knowing the spaces H*(X, 3tf) for all q is that one knows they 
contain no information about X. The classical case shows that an axiomatic theory 
of biharmonic spaces [24] would contain no more. Suppose X compact; replacing 
ffl by a suitable ^ M if necessary, one might as well assume 1 G ̂ f. One can then 
formally construct the quotient sheaf 3^/R; classically, this is the sheaf of germs 
of harmonic differentials. The cohomology exact sequence associated with 0 -> 
R -> 34? -> 3tf/R -> 0 can be used to show that if X has a basis of open C/'s with 
Hl{U9 R) = {0}, then the section spaces of 3^1 R have Fréchet topologies such that 
restriction to relatively compact subsets is a compact operator. That is a strong 
condition—e.g., it implies that Hl{X9 R) and Hl{X9 3^/R) have finite dimensions 
differing at most by 1—and if it could be established under hypotheses on ffl rather 
than X it would severely limit the choice of X—e.g., exclude TN. In the best of 
all possible worlds one would like to represent 34?/R as a sheaf of sections of a 
vector bundle—is this possible over a locally compact group using the distribution 
theory of J. Riss [21] or something similar? 

If X is compact and 1 G 3tf there is a natural map H\X9 R) -> Hl{X9 3tf) that is 
either onto or zero; examination of simple cases suggests that these cases corres
pond to Brownian motion with or without diffusion respectively. Is this, or a vari
ant of it, the way to distinguish these cases for general {X9 3^)1 
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Stochastic Integrals in the Plane 

John Walsh 

The work described here was done in collaboration with R. Cairoli ; it will be 
published in full elsewhere. In that article, however, we treat integration with 
respect to arbitrary square-integrable martingales, which requires the construction 
of some expensive machinery. In the present paper we will try to sketch some parts 
of the subject in their simplest terms. 

I. White noise and line integrals. Let us begin with white noise in R\ (the positive 
quadrant of the plane). This is a finitely additive set function W defined on the 
Borei subsets of R\ such that 

( i ) W{A) is a N{09 \A\) random variable ; 
(ii) if A fi B = 0,then W{A) and W{B) are independent. 
It is natural to consider stochastic integration with respect to W—this has in 

fact been done by numerous authors—but let us proceed slowly and first define 
a stochastic process Wst whose parameter set is R%. Let Rst denote the rectangle 
[0, s] x [0, t]9 and define Wst = W{Rst). (We use W to denote both the measure 
and the process; this will not cause confusion.) 

Wst9 s9 t ^ 0, is called the two-parameter Wiener process, or the Brownian sheet 
(to visualize its sample paths, picture a wrinkled bed sheet). It is a continuous mean 
zero Gaussian process; its covariance function is easily calculated from (i) and 
(ii). If t is fixed, the process s -> Wst is a Brownian motion, as can be seen from its 
covariance function. Since the theory of stochastic integration with respect to 
Brownian motion is well known, we can have stochastic line integrals with respect 
to W along the lines / = constant. By symmetry, we can also integrate along the 
lines s = constant. Putting these two together, we can integrate along polygonal 
curves in Ä | consisting of a finite number of horizontal and vertical segments. We 
call such curves staircases. 

©1975, Canadian Mathematical Congress 
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The above remarks tacitly assume we are integrating in the direction of increasing 
s and t9 but we can define the integral in the direction of decreasing s and t simply 
by changing sign. We denote the line integral of </> over an oriented staircase r by 

It is convenient to introduce an analogue of the integral of a differential form. 
This is totally trivial in the present setting but serves to simplify our notation. If r 
is a staircase, \r <j>d\ Wis the line integral of 0 over the horizontal segments of Z7, 
and J/1 <f> 32 Wis the integral over the vertical segments. Then we have 

All three of the above line integrals can be extended to sufficiently regular curves 
by a limiting argment, but staircases will suffice here. 

If f{x9 s91) is twice continuously differentiable in its arguments, we can write 
Ito's formula in differential notation: 

hf{Wst9s91) = | f {Wst9 s9 t)dxW 
(1) 

+ ( T Ifofi (Wst> s> ° + " I f W " ' • ° ) * 

with the symmetric equation holding for 32/. 

H. Martingales. Stochastic integration is inextricably mixed with martingale 
theory, and, before we go further, we should look at martingales in our context. 
We are working in the plane, so the processes we consider will have R%. as a para
meter set. We give R% the usual partial order: {s91) < {u9v)os ^ u and t S v. 

Define a-fields <FZ9 zeR%9 by 8FZ = a {W^9 Ç -< z}. A stochastic process 
{M2, z G R%} is a martingale relative to the fields {8FZ) if 

(i) E{\MZ\} < oo, all z; 
(ii) Mz is ^-measurable; 

(iii) z<z' => E{MZ, \&z} = M2. 
Thus we are talking about martingales with a partially ordered two-dimensional 
parameter set. Cairoli [1] has proved versions of both the maximal inequality and 
the martingale convergence theorem in this setting, but on balance it seems that 
relatively little is known about such martingales, and almost nothing about the 
corresponding sub- and supermartingales. This is one of the principal difficulties of 
stochastic integration in higher dimensions. Indeed, extensions of the classical 
theory can be quite delicate, as is indicated by the following two facts: 

1 °. If {MZ9 z e RX\ is a separable martingale relative to ( JQ which is bounded 
in L log L, its sample functions are a.s. continuous. 

2°. There exists a separable, uniformly integrable—and hence Z^-bounded— 
martingale which is everywhere discontinuous with probability one. 

REMARK. The continuity of L log L-bounded martingales is a property of the 
particular fields {^Fz). For more general fields it is not even known whether or not 
all bounded martingales have a right continuous version. 

in. Surface integrals. Stochastic integration with respect to W can be defined, 
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following Ito, exactly as in the classical case. We will outline this briefly. 
If A a R\ is a closed rectangle with lower left-hand corner z0, define <j> by 

(2) (j>z = W z ) , z e R%9 

where 0O is immeasurable and square-integrable. Then let 

( f W)z = \Rz <j> dW =def foW{Rz n ^) . 

This defines a stochastic process ci • W which is 
(i) a.s. continuous in z, 
(ii) a martingale, and 

(iii) E{(<j>-W)*} = JÄ. £{$}</£. 
If ç6 is simple, i.e., a finite sum of processes of the form (2), its integral is defined by 
linearity. In general, if 0 satisfies 

(a) 02 is ^-measurable, 
(b) (z, o)) -• 0Z(û>) is J1 x .^"-measurable, and 
(c) JÄ. £{$} rfC < oo for all z G J^, 

then we can find a sequence of simple <j>„ for which JÄi 2?{(0„ - 0)2} dZ,-* 0 for 
each z. The integrals (0„- ï^)z then converge in L2, a subsequence converges a.s., 
and even uniformly for z in compacts thanks to Cairoli's maximal inequality. We 
define <j>-W= lim <j>n-W. Then 0- Walso satisfies (i), (ii), and (iii). 

REMARK. In contrast to the classical case, there seem to be genuine difficulties in 
extending the integral very far beyond the square-integrable case. 

IV. The measure /. It turns out that the integral we have just defined is not suffi
cient in this theory, and a second type of integral is needed. Wong and Zakai 
[3] have introduced a type of multiple integral which is exactly what is needed for a 
complete discussion, but we will be able to get by here with something simpler. 
The basic difficulty is that W9 whatever else it may be, is not a product measure. 
We want to introduce a measure / which will in some sense satisfy dJ « d\WdiW9 

where d\W and d2W are respectively the "horizontal" and "vertical" increments 
of Wst. To be specific, let us fix a point zeR% and divide Rz into 22n congruent 
rectangles as in the diagram below. 

1 

1 

m • 

- A | , 

^§fc§§ 

z 
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Let Aij and B0- be the cross-hatched rectangles above. Note that if z(j is the lower 
left-hand corner of the ijth rectangle, then W{A{J) = WZim - WZil. We define /* by 

/ ? = S W{AiJ)W{BiJ)9 
i.f=l 

and define Jz by Jz = lim^..^ /£ . 
One can show this limit exists and defines a continuous martingale which is 

orthogonal to W9 that is E{JzWj\ = 0 for all z, z\ We get the desired measure, 
again denoted by /, by setting J{RZ) = Jz, and extending it to all rectangles in 
the obvious way. Integrals with respect to / are defined exactly as in §111. 

V. Green's formula. We need to introduce the notion of a stochastic partial 
derivative. We define this globally: A process {0st9 s9t^ 0} has a stochastic partial 
{<j>9 cj)) with respect to {W91) if there exist adapted measurable processes <f> and <J> 
such that, for each s, f = 0, 

(3) 0st = 0os + J <f>sv d2Wsv + J cj)sv dv. 
0 0 

We will often simply speak of a stochastic partial with respect to t. We remark that 
if 0 is a martingale, then <fi vanishes a.e. 

THEOREM 1 (GREEN'S FORMULA FOR RECTANGLES). Let 0 be an adapted, measurable, 
L2-boundedprocess which has stochastic partials {$, <f>) with respect to {W9 t). Sup
pose further that <fi = 0. Let A be a rectangle whose boundary dA is oriented clock
wise. Then 

(4) J 0dxW = $0dW+ \<f>dJ. 
dA A A 

Similarly, if0 has stochastic partials (0, <j)) with respect to {W9 s) and ifcj) vanishes, 
then 

(5, \0d2w= - \0dw-\$dj. 
\JJ dA A A 

REMARKS. 1 °. The hypothesis <J) = 0 serves purely to simplify (4) and (5). If <p did 
not vanish, we would have to add the iterated integral J ( j*^ diWuv) dv to the 
right-hand side of (4). However, in our applications, 0 will be a martingale, so 
cj) will vanish. 

2°. (4) and (5) are true for regions A with sufficiently regular boundaries. 
For a quick application of the theorem, take 0st = Wst9 0 = 1, and apply (4) to 

A = Rst. Using Ito's formula (1) on the line integral, we get an expression for / : 

Jst=\-(Wl-st)- J WdW. 

VI. Holomorphic processes. A process 0 = {0Z9 z e R%] is said to be holomorphic 
in R%9 or, more simply, holomorphic, if there exists an adapted measurable process 
(j> = {<f>Z9 z e R%} such that E{<f>*} is bounded for z in compacts and such that, 
for all zeR%. and any staircase T7 c R\ with initial point 0 and final point z, 

(6) 0Z = 0O+ $r<l>dW 
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where 0O is constant. We call 0 the derivative of 0. 
It is easily seen that the line integral of 0 around any closed staircase vanishes, 

and we could treat this subject from the point of view of path independent inte
grals. But the structure of holomorphic processes bears a striking resemblance in 
some respects to that of classical holomorphic functions of a complex variable, and 
it seems worthwhile to bring this out here. We should emphasize, though, that our 
processes are real-, not complex-valued. 

A holomorphic process is necessarily a martingale, being defined as a stochastic 
integral. The class of holomorphic processes is nontrivial, since J^is holomorphic 
(its derivative is identically one). One might ask if W2

9 W
3
9 etc., were holomorphic. 

They are not, but we should remember that the stochastic analogue of zn is not 
Wn

9 but Hn{Wst9 st)9 where Hn{x9 t) is the «th Hermite polynomial, 
Here, Hn is defined by 

(7) Hn{x91) = 1=&- e** -*L e-*V2<. 

Then HQ = 1, Hx{x9 t) = x, H2{x9 t) = \{x2 - t) and Hfa t) = (x3 - 3*0/3!. 
For each fixed t9 the set {H„{x9 0}̂ =o is a complete set of orthogonal polynomials 
relative to the weight function e~x%l2t dx. In particular, since Wst is N{0, st)9 we have 

( 8 ) E{Hn{Wsi9 st)Hm{Wst9 st)} = 0 if m * „, 
= {st)njn\ if m = n. 

Let us apply Ito's formula (1) to the process Hn{Wst9 st) along the line t = 
constant. If we use the facts (derivable from (7)) that 

(9) j ; »•-**•! a n d TF^ + ¥ f f ' ^ 

we see that 

H„(Wst,st) = \Hn^{Wut,ut)dxWut; 
0 

by symmetry, this is also 

= ÌHn_L{WSV9sv)d2Wsv. 
o 

We conclude from this that {Hn{Wst9 st), s9 t ^ 0} is a holomorphic process, with 
derivative Hn_i{Wst9 st). As sums of these processes are also holomorphic, the 
class of holomorphic processes is evidently relatively large. Now let us turn to the 
general case. 

THEOREM 2. If0 is holomorphic and Tis a closed staircase, then \r 0 dW = 0. 

This is almost immediate. It reduces to the case where 71 is the boundary A of a 
rectangle, where it follows directly from (4) and (5) and the observations that 0, 
being holomorphic, has a stochastic partial <j> with respect to both s and t9 and that 

I 0dW= $ 0dxW + \ 0d2W. 
dA dA dA 
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It follows that we can define a holomorphic process W with derivative 0 by 
¥z = Jo 0 dW. Thus the integral of a holomorphic process is holomorphic. What 
about the derivative? This is a more delicate question, but it still has a positive 
answer. 

THEOREM 3. Let 0 be holomorphic. Then 0 admits a derivative <j> which is also holo
morphic. 

It follows from this that 0 has holomorphic derivatives of all orders. We denote 
the «th derivative of 0 by 0{n). We then have the analogue of Taylor's theorem, 
which gives the basic structure of holomorphic processes. 

THEOREM 4.1f0 is holomorphic, then 
oo 

Qst = 2 0&° H„(Wst, st), 

where the above series converges in L2for all s, t ^ 0. 
REMARKS. 1 °. ̂ Q is trivial, so the coefficients 0o

w) are constant. 
2°. Theorem 4 implies Theorem 3—indeed, the derivative of 0 is evidently 

0'st = Z^n)Hn^{Wst9st). 

However, by far the most difficult part of the proof of Theorem 4 lies in establishing 
Theorem 3. 

The most striking aspect of Theorem 4 is that we knew a priori only that 0st was 
.^-measurable. This is much weaker than what turns out to be true, namely that 
0st is actually a function of Wsi. 

Let us close this article with one further result which indicates that the existence 
of stochastic partials is more demanding than one might think. In proving Theorem 
3, it turns out that one constructs a holomorphic version of the derivative using 
only the fact that 0 is a martingale and has stochastic partials with respect to both 
s and t, but without using the fact that they are equal. Thus, applying Theorem 1 
to this derivative, we get: 

THEOREM 5. Suppose {MZ9 z e R%} is a square-integrable martingale which has 
stochastic partials with respect to both s and t. Then M is a holomorphic process. 
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Theory of Factorization and Boundary Properties 
of Functions Meromorphic in the Disk 

M. M. Dzrbasjan 

1. The now classical formula of Jensen and Nevanlinna and the most important 
notation of the characteristic function which is deduced from it constitute the basis 
of the modern theory of meromorphic functions. 

The problem of a complete description of the class of functions F{z) meromor
phic in the disk | z \ < 1 for which the termwise passage to the limit in the Jensen-
Nevanlinna formula is possible, yielding a representation for the function log F{z) 
in the entire open disk \z\ < 1, was first posed and solved by R. Nevanlinna in the 
mid-twenties [1]. 

Like the investigations in the value distribution theory of meromorphic func
tions, the solution of this problem is also based on the determination of the charac
teristic function T{r; F). 

Defining the class N as the set of functions meromorphic in \z\ < 1 for which 
sup 0<r<1 T{r; F) < + oo, R. Nevanlinna showed that the mentioned termwise 
passage to the limit is possible only for the functions of the class N. Thus he proved 
the possibility of complete parametric representation and factorization of the class 
N. 

2. In connection with this basic statement of R. Nevanlinna and its method of 
proof, the following problem arises naturally. 

Do there exist other, more general, formulae of the Jensen-Nevanlinna type, 
permitting the establishment of parametric representation and factorization for 
more classes larger than N and for more restricted classes of functions meromor
phic in the disk? 

In the early papers [2], [3] of the author apparently the first attempt in the direc-
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tion of solving a problem of this kind was undertaken, although the result obtained 
there was far from complete. 

Considerably later [4] the author returned to the problem of factorization of 
meromorphic functions in a general form, constructing a general theory of parame
tric representation of Na classes ( - l < a : < + oo)of functions meromorphic 
in the disk \z\ < 1 as complete as the now classical theory of the class N. These 
results were presented in detail in the monograph [5] by the author. 

3. The definitive and complete theory of factorization of functions meromorphic 
in the disk |z| < 1, including the theory of the Na classes as a special case, was 
constructed in the recent investigations by the author [6], [7]. 

A cursory survey of these results follows. 
Denote by Q the set functions œ{r)9 œ{r) e L[09 1), subject to the following con

ditions : 
(1) co{r) > 0, œ{0) = 1, continuous on [0, 1]; 
(2) the integral kœ = JJ (1 — œ {x))/x dx converges absolutely. 
In the class of functions <p{r)9 possessing a bounded and piecewise continuous 

derivative on [0, 1), the operator L(a>){(p{r)} will be defined as follows: 

(1) 2>> {<p{r)} = <p{0) +r) <p'{r z) œ{<c) dz9 r G [0,1], 
o 

(2) I>> {<p{r)} = <p{r)9 if co{r) EE 1, r G [0,1). 

The operator Lio)){<p{r)} is an essential generalization of the Riemann-Liouville 
operator D~a {— 1 < a < + oo) so far as in the special case <o{x) = (1 — x)a 

(— 1 < a < + oo ) the identity 

L^{<p{r)} = T{1 + a) r~« D-« <p{r) 

holds. 
The functions 

(3) C{z; œ) = Ü - ^ p , S{z; œ) = 1 + 2 f z* 

where d{0) = 1, A{X) = X JJ œ{r) r*~l dr9 A G (0, + oo), and also the following three 
functions, which play an important role in the entire theory, 

^J^"^0 = ̂ ) { l o g | l - ^ | } , 

(4) WJre*; 0 = - ^ r f S{é»z; œ) W ; 0 <*£, 

AJLz; 0 = (l - f ) exp( - WJz; Q) (0 < |C| ^ 1) 

are associated with the operator L(û)). 

THEOREM 1. For an arbitrary function F{z) meromorphic in the disk\z\ < 1 having 
the zeros {aM} and poles {bv}9 and for arbitrary œ{r) G O, p (0 < p < 1) the formula 
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log F{z) = i Arg cK + X K + l log {zjp) 

+ 2 l o g ^ ; - ^ ) - S l o g ^ f e - ^ ) 
(5) 0<la,|ep V p p / 0<W^ \ P 9 1 

+ ^^S^^^L^{\og\F{^^\)d9 ( | z | < p ) 

Ao/öb, wAere A awrf cj ore defined from the decomposition F {z) = c^z* + cj+1 zA+1 

+ - ( c ^ 0 ) /« a vicinity of the point z = 0. 

Note that in the special case co(r) == 1, when the formula (5) coincides with that 
of Jensen-Nevanlinna, here, as in the theory of R. Nevanlinna, the general for
mula (5) leads naturally to the definition of the functions 

(6) mjr; F) = * f L<${log \F{re<v)\ } dtp 

and 

(7) NJn F) e ] «'i °°) - " ^ °°> « ( I ) dt + «(0; co) {log r - ka], 

where L^ == max {Z,(ûj), 0} and n{t9 oo) is the number of poles of the function 
F{z) in the disk \z\ g /, counted in accordance to their multiplicity. 

By means of these functions the function 

(8) TJr\F) = mJr\F) + NJr\F) 
is finally defined, which we shall call the ^-characteristic. It coincides with the func
tion T{r; F) of R. Nevanlinna when co{r) = 1. 

Finally, to every function o){r) G Q an N{co} class is associated, as the set 
of functions F{z) meromorphic in the disk \z\ < 1 subject to the condition 
sup0<r<i TJr, F) < + oo. 

By this the N{CD} class coincides with the class Nof R. Nevanlinna in the special 
case when œ{r) = 1. The comparison between the N{œ} classes, when œ{r) ^ 1, 
and the class N is given in the following theorem. 

THEOREM 2. Let œ{r) G 0. Then 
1. lfct){r) is nondecreasing on [0, 1), then N{co} a N. 
2. Ifœ{r) is nonincreasing on [0, 1), then N <= N{co}. 

4. Passing to the fundamental theorems of the theory of factorization of the 
N{ù)} classes, consider first the theorem about the parametric representation of the 
N{(o} classes. 

THEOREM 3. The N{co} class coincides with the set of functions representable in the 
disk \z\ < 1 in the form 

(9) F (z) = *T+». zi * « g ; ^ exp ( ^ Î S{er<' z; œ) d^)}, 

where 
00 00 

(10) B^z; au) = II A^z; aX B^z; bv) = n A<À?\ K) 
f i = l r v=l 



oo 1 

(11) S I o){x)dx < + oo, 
k=i \ki\ 
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are converging products from the N{co} class, $ {$) is a real function on [0, 2 %\ with 
V'I* </){$) < + oo, X ̂  0 w a« arbitrary integer, T is an arbitrary real number. 

In the case when the function œ{r) e Q is nondecreasing on [0,1] and thus the 
inclusion N{œ} c Nis true, there holds 

THEOREM 4. 1. If the sequence {zk}f satisfies the condition 

1) 

then the representation 

(12) Bm{z\ zk) = B{z; zk) exp { J L f S(*-« z; o>) rf/^)} 

AöWJ, wAere fi{$) is a certain nonincreasing and bounded function on [0, 2 TU]. 

2. TAe CZORS N{û;} C JV coincides with the set of functions representable in the disk 
\z\ < 1 in the form 

(13) F{z) = «T*» z* g * ' ' « j exp { - L - j ' Sfrr« z; co) #(t9)} 

wAere B{z;afi) and B{z;bv) are the Blaschke functions with zeros satisfying the 
conditions (11). 

3. Any function F{z) G N{œ} <= N is representable in the form F{z) = 
fi{z)lfz{z){\z\ < 1) where fk{z) e N{co}9 \fk{z) \ ^\{\z\<\) are analytical in the 
disk \z\ < 1. 

THEOREM 5. For any function F{z) meromorphic in the disk \z\ < 1 there exists 
a function coF{r) e Q such that F{z) G N{COF}. 

5. As is well known, the class N possesses important boundary properties. 
For any function F{z) G N the limit 

(14) F{e<*) = lim F{re™) 
r- l -0 ' 

exists for almost all S G [0,2 TC] ; by this,/ if ^(z) # 0 then, 

(15) J |log|F(<^)||rfi9< + oo. 

The boundary properties of the N{a)} classes have been investigated with respect 
to Theorem 2. 

The case N{œ} => N. Here the following theorems are established. 

THEOREM 6. Let F{z) G N{CO}9 where co{r) is nonincreasing and satisfies the con
dition Lip 1 on every interval [0, 41 (0 < à < l).1 Then'. 

1. The limit 

(16) lim Re Z>> {log F{re™)} = ^'{S) e L{09 2%) 
r-l-0 

exists almost everywhere on [0, 2%\ 

1Below the class of such functions will be denoted by 0. 
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2. We have as well 

(17) lim Re Z>> {log BJre1*)} = 0 
r—1-0 

almost everywhere on [0, 2%). 

Recently [8], the existence of these limits was established generally, and, in parti
cular, for the case when the real part sign is dropped. 

The following theorem of uniqueness is an enlargement of the now classical 
theorem by Szegö for the classes N{co} => N. 

THEOREM 7. Letf{z) G N{œ} be analytical in the disk | z | < 1. Then: 
i.lfœ{r)eûis nonincreasing on [0, 1) then its boundary values 

L^{\og 1/(^)1} = lim Z>>{log \f{rei»)\\ 
r-l-0 ' ' 

are such that 
2% 

(18) J Z>>{Iog \f(é*)\) dS> - oo. 
o 

2. There is no function f {z) ^ 0 analytical in the disk \z | < 1 for which 
2% 

(19) J L^{\og\f{re^)\}dS = - oo, 
o 

or 

(20) E J co{x)dx = + oo {f(aj = 0}. 

The case N => N{co}. In connection with the known boundary properties of 
classes N{(o}cz N noted above, the following questions arise naturally. 

Does the "thin" exceptional set E c [0, 2%] of linear measure zero for the 
classes N{a)} c N9 where the limit F{eiS) of a function F{z) e N{co}9 perhaps not 
exist? 

Can there be stated something else about the boundary values of a function 
F{z) G N{œ} ci N9 except the boundedness of the integral (15)? 

The author and V.S. Zakharian succeeded in obtaining the positive solutions of 
both these problems in the papers [9], [10] in terms of the ct)-capacity notation 
introduced by us. The co-capacity is associated with the integral 

2% , 

(21) (J (z;p) = J \C(u-»i <o)\d(x, fJ.(E) = 1, 
m 0 

and coincides with the (1 + ^-capacity in the Frostman sense when a){x) = 
(1 — x)a{- 1 < a < 0). The solution of the problem posed above about the 
boundary properties of the functions of the N{co} <= N classes is contained in 
the following theorems. 

THEOREM 8. For any function F{z)eN{c»} c N the bounded limit F{eiS) = 
lim^x-o F{reid) exists for all S G [0, 2%\ except, perhaps, an exceptional set E c 
[0, 2%\ having zero (^-capacity. 
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THEOREM 9. Let F{z) e N{û)} C N and E c [0, 2%\ be any set with positive 
œ-capacity. Let, further, y,<E9 p,{E) = 1 be any measure with the property [jcXfd = 
suPi2i^i Uû>(Z' A*) < + °°- Then the boundary values F{eid) of the function F{z) 
satisfy the condition 

2K 

I |log| F(e<*) \\dfiW - J |log | F(e<*)\\ tfym < + oo. 
E 0 

As is well known, iff{z) is an analytical function from the class N, thenf{z) = 0 
( | z | < 1), iff{e'*) = 09deE9 meas£ > 0. 

THEOREM 10. Let f{z) e N{œ} be analytical in the disk \ z \ < 1 and f{eid) = 0, 
S e E9 where meas E = 0 but E has positive (o-capacity. Thenf{z) = 0 ( |z | < 1). 
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Some Metric Properties of Quasi-Conformal Mappings 

F. W. Gehring* 

1. Introduction. This article is a summary of some recent research concerned with 
the following problem. Suppose that/: D -• D' is an «-dimensional quasi-conformal 
mapping and that .Eis a set in D. How do E and/(i?) compare in size? By the size of 
a set we mean either the Hausdorff/^-dimensional measure or the Hausdorff dimen
sion of the set. 

For/? G [0, oo) the normalized Hausdorffp-dimensional outer measure of a set E 
in Euclidean «-space Rn is defined as 

tfp {E) = lim Anf S a{p) 2~P dia (E*)*) 

where the infimum is taken over all countable coverings of E by sets Ej with 
dia {Ej) < t9 and where 

aKP) r{p\2 + \y 

As p varies from 0 to n9 the measures ffî* interpolate in a natural way between the 
counting measure and Lebesgue measure in Rn. In particular, if Tis a/?-dimension-
al hyperplane in Rn

9 then tfp | T coincides with the Lebesgue /^-dimensional outer 
measure mp in T. The Hausdorff dimension of E is defined as 

j^-dim {E) = inf {p: jfP{E) = 0}. 

Clearly 0 g ^-dim {E) ^ n and «?f-dim {E) = p whenever £"is an open/?-dimen-
sional planar set. 

2. Hausdorff dimension under quasi-conformal mappings. Suppose that/:Z>-»Z>' 

*This research was supported in part by the National Science Foundation,ContractGP-28115. 
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is a homeomorphism where D and D' are domains in Rn. Then 

(1) .r-dim {f{E)) = j^-dim {E) 

for all £ cz D if / i s a diffeomorphism or, more generally, if bo th /and /" 1 are 
locally Lipschitzian. The homeomorphism/is said to be an «-dimensional quasi-
conformal mapping if the function 

H{x9f) = lim sup 
r-0 

/O0-/W 
/ ( * ) - / ( * ) 

\y - x\ = \z - x\=r9 

is bounded in D9 in which case it follows that/has a nonsingular differential at 
almost all points of D. The following example shows, however, that (1) fails for this 
more general class of mappings [6]. 

EXAMPLE 1. For each p, qe (0, n) there exist an n-dimensional quasi-conformal 
mapping f: Rn -» Rn and a compact set E a R" such that j^-dim {E) = p and 
^-dim (/(£)) = q. 

On the other hand, we have the following result relating the Hausdorff dimen
sions of E a,nd f {E) with the linear dilatation K{f)9 K{f) = ess sup*eö H{x9 / ) , 
for a quasi-conformal mapping/ ([1] and [6\). 

THEOREM 1. If f: D -> Dr is an n-dimensional quasi-conformal mapping and if 
p G [0, n]9 then 

(2) cp/{c + « - / ? ) ^ 3^-dim {f{E)) g {c + n)p\{c + p) 

for each set E cz D with 3tf-d\m {E) = /?, where c is a positive constant which 
depends only on K{f) and n. 

Inequality (2) shows that (1) holds for an «-dimensional quasi-conformal map
ping/whenever E is of Hausdorff dimension 0 or n. 

Theorem 1 is a consequence of the following higher dimensional analogue of an 
important result due to Bojarski [1]. 

THEOREM 2. Iff:D-*D' is an n-dimensional quasi-conformal mapping, then the 
partial derivatives of fare locally LP-integrable in D for pe[n9 n + c)9 where c is 
a positive constant which depends only on K(f) andn. 

Theorem 2, in turn, depends on the fact that the maximal stretching 

y-x | y — X j 

for the quasi-conformal mapping / satisfies a reversed Holder inequality on all 
small «-cubes Q c D and on the following result [1]. 

LEMMA 1. Suppose that q9 be {l9 oo) and that Q is an n-cube in Rn. If g: Q -> 
[0, oo] is L^-integrable in Q and if 

m m^8qdm-b{~^&) ^gdm)q 
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for all parallel n-cubes Q'cz Q9 then g is LP-integrable in Q with 

_ 1 IgPdm ^ —-* (—L_ \g*dm Y" 
™{Q) Q q + c -p \m{Q) S ) 

for p G [q9 q -f c)9 where c is a positive constant which depends only on q9 b andn. 

3. .^-absolute continuity. Suppose that / : D-^D' is an «-dimensional quasi-
conformal mapping and that E cz D. Since any similarity mapping g : Rn —> Rn is 
quasi-conformal, there can be no meaningful relation between ^fP{E) and #?P{f{E)) 
without some further normalization fo r / On the other hand, it is well known that 
/ is ^"-absolutely continuous, i.e., #?n{E) = 0 implies that Jfn{f{E)) = 0. Since 
ffi\E) is equal to the cardinality of E9 f is also ^-absolutely continuous. The 
following example shows, however, that p = 0 and p — n are the only values of 
p e [0, «] for which each such/is j^-absolutely continuous ([3] and [6]). 

EXAMPLE 2. For each p e (0, «) there exist an n-dimensional quasi-conformal 
mapping f: Rn -> Rn and a compact set E cz R» such that 3tfP{E) = 0 and 3tfP{f{E)) 
= oo. Moreover whenp is an integer, we can choose E so that, in addition, it lies in a 
p-dimensional hyperplane T. 

On the other hand, we can establish the following result [4]. 

THEOREM 3. Suppose that T is a p-dimensional hyperplane in Rn where p G (1, «]. 
If f. D—*D' is an n-dimensional quasi-conformal mapping and if ffîP{f{E)) < oo for 
each compact set E cz D [}T9 thenf \{D {] T) is j^P-absolutely continuous. 

Hence, in particular, the restriction of an «-dimensional quasi-conformal map
ping / to an open p-dimensional planar set G is .^-absolutely continuous if 
^ ( / ( G ) ) < o o . 

An example due to Beurling and Ahlfors can be used to exhibit a quasi-conformal 
mapping/: Rn -+ Rn such t h a t / ^ 1 ) = Rl and such t h a t / | Rl is not ^-absolutely 
continuous [3]. Thus the hypothesis that/? > 1 is essential in Theorem 3. 

The proof of Theorem 3 is based on the following inequality for the .^-measure 
of an open /^-dimensional planar set under an «-dimensional quasi-conformal 
mapping [4]. 

THEOREM 4. Suppose that T is a p-dimensional hyperplane in Rn where p G [1, «]. If 
f.D-*D' is an n-dimensional quasi-conformal mapping and ifxsDf) T9 then 

tfP{f{D ^T))^c dist (/(*), 3D% 

where c is a positive constant which depends only on K{f) andn. 

The proof for Theorem 4 depends, in turn, on the following lower bound for the 
Hausdorff measure of sets which link in Rn [2], 

LEMMA 2. Suppose thatp is an integer in [1, ri). If A and B are disjoint compact sets 
in Rn and if B is a topological (« —p — \)-sphere which is not contractible in Rn ~ A, 
then 3/?P{A) ^ c dist {A9 B)P9 where c is a positive constant which depends only on n. 
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4. Modulus inequality. Suppose that T is a family of curves in Rn = Rn U {oo}. 
For p, q G (0, oo) we define the p-dimensional q-modulus of the family T by 

MP{D = inf \h*d2teP9 

where the infimum is taken over all Borei measurable functions h: Rn-+[0, oo] 
such that Jr h ds ^ 1 for all locally rectifiable curves 7 G/7. For convenience we 
write M{D = M»{r). 

The inner and owter dilatations of an «-dimensional homeomorphism/: Z) -> Z>' 
are given by 

W ) = sup {M{f{r))IM{D)9 K0{f) = sup {M{r)IM{f{D))9 

where the suprema are taken over all curve families T in D. The homeomorphism/ 
is quasi-conformal if and only if these dilatations are finite, i.e., if and only if the 
«-dimensional «-moduli of curve families are quasi-invariant under/ 

The analysis leading to the proof of Theorem 3 yields the following result on the 
behavior of the /7-dimensional /^-moduli of curve families under an «-dimensional 
quasi-conformal mapping [4] (cf. also [5]). 

THEOREM 5. Iff satisfies the hypotheses of Theorem 3, then 

MPp{D ^ K0{f)MPp{f{D) 

for each curve family T in D Ç] T. 
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TpyAH Me>KAyHapoflHOro KoHrpecca MaTeMaTHKOB 
BaHKyBep, 1974 

O npeACTaBjieHHH ÂHajIHTHieCKHX 4>yHKU,Hfi 

PflAaMH ^HpHxjie 

A. * . JleoHTbeB 

1. nycTb D—KOHeHHan 3aMKnyTan BbinyKJian oôjiacTb, K{tp)—eë onopHan 
(̂ yHKUHfi, h{(p) = K{- q>)9 L(A)—uejian (J)yHKijHH 9KcnoHeHunajibHoro THna c 
HHAHKaTpHCOH pocTa h{cp)9 Àk{k t 1) —HyjiH L{X). ^onycTHM, HTO Bee HyjiH— 
npocTbie. 06o3HaqHM nepe3 (])h{t) {k ^ 1) (j>yHKijHH, accoijHHpoBaHHbie no 
BopejiK) c [L'{Xk){X - Xk)]~

l L{X), OHH peryjinpHbi BHe D. HMeeM 

rAe C—3aMKHyTbift KOHTyp, oxBaTbiBaioiUHft D. B CHJiy SToro fyyuKuyM f{z), 
aHajiHTHHecKoft Ha D9 conocTaBHM [1] pw flHpHXJie 

(1) f{z) ~ 2 a***9 *k = 4^ J/WACO *• 
k=i 2%i 

HMeeT MecTo [2] TeopeMa ê HHCTBeHHOCTH: ecjiH Bee ak = 0, TO f{z) = 0. P H A O ) 

Booôine ne MOH<eT cxoAHTbcn B oôjiacTH G zo t>. ^0Ka3aH0 [3]: 1) %jin Toro, 
HTOßbl pHA (1) CXOAHJICH B D (OTKpblTOH HaCTH D), KaKOBa 6bl HH 6bIJia (JtyHKUiHH 
f{z)9 aHajiHTHqecKan Ha D9 HeoôxoAHMO H AoeîaTOHHO, HTOôH BbinojiHHJiocb 
ycjiOBHe 

(2) ln\L'{Xk)\ > [h{tpk) - e) |âA | , A, = \h\ *», k > k0{e)9 V* > 0; 

2) AJIH Toro, HTofibi pHA(1)Bcer^a CXOAHJICHBDK^yuKuym f{z)9 HCOOXOAHMO 

H AOCTaTOHHO, HToßbi (J)yHKijHH L{X) 6bijia (J)yHKUHeft BnojiHe peryjmpHoro pocTa 
H BbinojiHHJiocb ycjiOBHe (2). OyHKijHH L{}) BnojiHe peryjinpHoro pocTa co CBOH-

CTBOM (2) AJIH JIK)6OH KOHCHHOH BbinyKjioft oöjiacTH D cymecTByioT. Bojiee Toro, 
© 1975, Canadian Mathematical Congress 
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HMeioTCH 4>yHKD[HH BnojiHe peryjinpHoro pocTa co CBOHCTBOM (2), KOTopue yAOB-
JieTBOpHK)T AOnOJIHHTejIbHOMy yCJIOBHK) 

(3) | £ 0 ^ ) | < eh{&r\rv9 [M>\. 

npH 3TOM yCJIOBHH (ĵ yHKlJHH (j)k{t) aHajIHTHHHbl BHe D H HenpepbiBHbi BHe D. B 
3TOM cjiynae pHA (1) MOHCHO CKOHerpyHpOBaTb AJIH $ywmv&f{z), aHajiHranecKHX 
B D H HenpepbiBHbix B D ( B (jwpMyjie AJIH KOS^HUHCHTOB B KanecTBe C HaAO 
B3HTb rparauy oSjiacTH D). ECJIH L{X) BnojiHe peryjinpHoro pocTa H yAOBjieTBO-
pneT ycjiOBHHM (2) H (3), TO pHA ( 1 ) H B HOBOH CHTyaijHH CXOAHTCH B D K / ( Z ) . 

Bonpoc o pa3JioHceHHH B pHA ,D[npHXjie fyyuKwPi, aHajiHTHnecKHx jraiiib B oöjiac™ 
D, peiuaeTCH nojio>KHTejibHO Ha ocHOBaHHH cjieAyiomeft TeopeMbi [4]: nycTb F{z) 
peryjiHpHa B KOHenHoft BbinyKjioft OTKpbiToft oöjiac™ D. HMCIOTCH (f)yHKu;HH/(z), 
aHajiHTHHecKan B D H HenpepbiBHan B D9 H uejian (j)yHKUHH M{i) = EofM* c 
pocTOM He Bbiiue nepBoro nopHAKa MHHHMajibHoro rana TaKHe, HTO 

oo 

M(D)f(z) = S bkfW(z) = F(z). 

npeACTaBHB/(z) pa^oM (1), B CHJiy yKa3aHHoft TeopeMU 
oo 

F(z) = L akMa„y", zeD. 
0 

KaK cjieACTBHe SToro pe3yjibTaTa nojiynaeM: npOH3BOjibHyio (j)yHKi*HK) F{Z)9 

aHajiHTHHecKyio B BbinyKjiOM MHoroyrojibHHKe D c BepiiiHHaMH B TOHKax Tw~9 Tp, 
MOHŒO npeACTaBHTb B BHAe 

F{z) = L Fk{z)9 
k=i 

rAe Fk{z) peryjiHpHa B nojiynjiocKocra Dk, orpaHHHeHHOft npHMoft, npoxoAHineft 
nepe3 BepiuHHbi Tk H Tk+i {D c Dk), H nepnoAHHHa c nepnoAOM paBHbiM Tk+\ -
Yk {Yp+i = fi)-

ECJIH Ha (J)yHKü;HK) L(X) He HaKJiaAbmaTb HHKaKHx orpaHHneHHft KpOMe Toro, HTO 
OHa sKcnoHeHUHajibHoro THna c HHAHKaTpncoft pocTa h{<p), TO pHA 0 ) MonceT He 
cxoAHTbcn HH B KaKoß oôjiacra. TeM He MeHee ero KoscjKjwijHeHTbi ak{k ^ 1), B 
CHJiy TeopeMbi eAHHCTBeHHocra, npHHUHnwajibHO AOJDKHM onpeAejiHTb <J)yHKUHio 
f{z). B [5] paccMOTpeHa CHTyauHH, KorAa Bee Àk BemecTBeHHbi H L{X) BemecTBeH-
Ha Ha BemecTBeHHoft OCH. B STOH CHTyauHH npH HeKOTopbix ^ f oo onpeAejieHbi 
({)yHKUHH 

f+{z) = lim S ave
h\ f~{z) = lim £ ave*-z 

cooTBeTCTBeHHO B yrjiax |arg(z - a+) - iu\ < <po < TT/2, |arg(z - a~)\ < <po, rAe 
a+ < 0 < <x~. Penb HAëT o TOM, KaK BOCCTaHOBHTb/(z) c noMombio/+(z) H / " ( Z ) . 
OTBCT cocTOHT B cjieAyiomeM. Bo3MO>KHbi TPH cjiynan: ( l ) <$ynKnmi f+{z) H / ~ ( Z ) 
aHajiHTHHecKH npoAOJiMcaioTCH Ha HeKOTOpbift HHTepBaji BemecTBeHHoft OCH H Ha 
9T0M HHTepBajie/+(x) +f~{x) =f{x)'9 (2)<j)yHKIJHH/+(z)H/~(z) KBa3HaHajIHTH-
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necKH npoAOJî aioTCH Ha HeKOTOpbift HHTepBaji BemecTBeHHoft OCH H Ha HëM/+(#) 
+ / " ( * ) " f(x)i (3) (JtyHKUHH / + ( z ) H /"(z) aHaJIHTHHeCKH npOAOJDKaiOTCH AO 
Hanajia KoopAHHaT no BemecTBeHHoft OCH (B STOM cjiynae D—Hanajio KoopAHHaT 
H Hanajio KoopAHHaT—ocoôanTOHKa AJIH 4>yHKi;HH/+(z),/~(z)), npnneM cymec-
TByioT npeAejibi l im v __ 0 / + a ) (^ ) , limx^+0f-<

k){x) H 

lim/+<*>(*) + lim/-<*>(*) = / ( Ä ) ( 0 ) 

TaK, H T O / ( Z ) MOMCHO BoccTaHOBHTb c noMoinbio eë pHAa Teftjiopa. H.4>. KpacHH-
KOB-TepHOBCKHft [6] B o6meft CHTyauHH H HHbiM cnocoöoM yKa3aji, KaK c 
nOMOIUbK) K03(})(j)HIi;HeHTOB an MO>KHO BblHHCJIHTb BejIHHHHbl/(A)(0) (fc ^ 0). 

2. MO>KHO paccMOTpeTb Bonpoc o npeACTaBjieHHH ^yuKuyiu PHAOM fiyipuxjie B 
3aMKHyTOH OÔJiaCTH, eCJIH $yHKU[HH aHaJIHTHHHa B OTKpbITOH OÔJiaCTH H HMeeT 
onpeAejiëHHyK) çjiaAKOCTb B 3aMKHyToft oßjiacTH. B [7] paccMOTpeH cjiynaft, KorAa 

Ltf)= \e^da{t\ C = dD9 
c 

rAe o{t)—(J)yHKUHH orpaHHHeHHoft BapHaijHH Ha C. FIOJIOKHM 

(J)yHKUHH/(z), aHajiHTHHecKoft B D H HenpepbiBHoft B 5 , conocTaBJineTCH pHA (1). 
JtoKasaHO, HTO ecjiH L{X)—4>yHKi;HH BnojiHe peryjinpHoro pocTa H 

°° , 

2 WW]"1**- < » , zeA 
*=1 ' ' 

a / ( z ) HMeeT HenpepbiBHbie npoH3BOAHbie/'(z),/"(z) B D H yAOBjieTBOpneT ycjio-
BHK) 

1/(0^(0 = 0, 
c 

TO pHA (1) a6C0JIK)TH0 CXOAHTCH B 3aMKHyTOH o6jiacTH D K / ( Z ) . ECJIH D—BbinyK-
JlblH MHOroyrOJIbHHK, BepHbl OLJCHKH 

\L'Qk)\ > Ae»m9 ^ = arg^, 
\L{re«P)\ > BeWr, rk - p ^ r £ rk + p9rkì co, 

af{z) HMeeT HenpepbiBHyio npOH3BOAHyio f'{z) B D9 TO pHA (1) paBHOMepHO cxo-
AHTCH K / ( z ) B o6jiacTH De9 nojiynaeMofi H3 D BbißpacbraaHHeM e-OKpecTHocTeft 
BepUIHH. 

3. 3Aecb penb noöAeT o npeACTaBjieHHH aHajiHranecKHX cjtyHKij.HH pHAaMH 
^HpHXJie B ßecKOHeHHbix oßjiacTHx. HMeeT MecTO cjieAyioman TeopeMa [8]: nycTb 
D—jieBan nojiynjiocKOCTb Re z < 0. KaKOBO 6bi HH ôbijio p > 1, HMeeTCH nocjie-
AOBaTejibHOCTb nojiOH<HTejibHbix HHceji {^}r» I™*-«, k\"k% = T, 0 < T < oo, TaKan, 
HTO JIK)6yiO 4)yHKU,HK)/(z), aHaJIHTHHeCKyK) B D9 MO>KHO npeACTaBHTb B BHAe 

oo 

/ ( z ) = S Ahex" +ijejiaH (|)yHKu;HH. 
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MTO KacaeTCH uejibix 4>yHKijHft, TO OTHOCHTejibHO HX BepHO yTßepxcAeHHe [1]: 
jiiooyio uejiyio <f)yHKu;HK) MOHCHO npeACTaBHTb BO Bceft njiocKocTH PHAOM ^ n p n x -
jie, npnneM noKa3aTejiH pHAa MOHœO BbiôpaTb jie^camnMH Ha Tpëx jiynax. 

3aMeTHM, HTO jnoôyio (J^HKUHK), aHajiHTHHecKyio B BbinyKjioft 6ecKOHenHoft 
MHoroyrojibHoft OôJœCTH (orpaHHHeHHoft KOHCHHUM HHCJIOM 0Tpe3K0B npHMbix) 

MO)KHO npeACTaBHTb B BHAe cyMMbi 4>yHKUHft, KaacAan H3 KOTopbix peryjinpHa B 
cooTBeTCTByiomeft nojiynjiocKOCTH. OTCioAa, corJiacHO BbiineH3Jio>KeHHOMy, 
cjieAyeT nojio>KHTejibHoe pemeHHe Bonpoca o pa3JioMceHHH B pHAbi Rnpuxjie 

aHajIHTHHeCKHX (jtyHKIJHft ß TaKOrO pOAa OOJŒCTHX. 

4. nycTb L{X)—mejian 4>YHKUHH sKcnoHemmajibHoro THna, T{t)—(j)yHKUHH, 
accouHHpOBaHHaH no Bopejno c L(X), D—HaHMeHbinee BbinyKjioe 3aMKHyToe 
MHO)KecTBO, coAepMcamee Bee ocoßeHHOcra T{t). 06o3HaHHM nepe3 X\, A2, ••• — 
HyjiH L{X) H npeAnojiOMCHM paAH npocTOTbi, HTO Bee OHH—npocTbie. ECJIH PHA (1) 
(HJIH nocjieAOBaTejibHOCTb KOHenHbix jiHHeftHbix KOMOHHaunft ehz) CXOAHTCH B 
oôjiacTH G ZD D, TO ero cyMMa (npeAejibHan (J)yHKUHH nocjieAOBaTejibHOcra) 
yAOBJieTBOpneT ypaBHeHHio CBëpTKH 

(4) ML{f) EE ^ I r0)f(t + z)dt = Q 

AJIH z AocTaTOHHO Majibix no MOAyJiio. SKcnoHeHTbi eXkZ{k è 1)—9JieMeHTapHbie 
pemeHHH ypaBHeHHH (4). OCHOBHOö Bonpoc B TeopHH ypaBHeHHft (4)—STO Bonpoc 
o TOM, KaK H rAe MO>KHO Bbipa3HTb pemeHHe ypaBHeHHH (4) nepe3 aneMeHTapHbie. 
PemeHHK)/(z) ypaBHeHHH (4) conocraBJineM pHA (1). B npocTOM cjiynae, KorAa 
L{X)—4>yHKUHH BnojiHe peryjinpHoro pocTa, H3BecTeH cneAyiomnft pe3yjibTaT 
JluKcona [9] (CM. T a o c e [10]): r iycTb/(z) pemeHHe ypaBHeHHH (4), peryjinpHoe 
B oôjiacTH G = \JaeQ Da9 rAe Q—OTKpbiTan oßjiacTb H Da—cMemeHne D Ha 
BeKTOp a. TorAa BHyTpn oôjiacra G paBHOMepHO 

(5) /(z) = lim S «•**•> rh T oo. 

n p n njioxHx oueHKax CHH3y AJIH L{X) npeACTaBJieHHe B BHAe (5) HJIH COBCCM 
He nojiynaeTCH, HJIH nojiynaeTCH B oßjiacra MeHbmeft oßjiacra G. B CBH3H C STHM 
B03HHK Bonpoc o cyMMHpoBaHHH pHAa (1). B pHAe cjiynaeB cyMMnpoBaHHe AeficTBH-
TejibHO MO>KHO ocymecTBHTb. Bee a r a cjiynan OTHOCHTCH K CHTyaunn, KorAa 
pemeHHe/(z) HBJIHCTCH peryjinpHbiM B OAHOCBH3Hofi ôecKOHenHoft oôjiacra G. 

OÔJiacTb G 6yAeM Ha3bmaTb odnacTbio THnâ JieBoft nojiynjiocKocra, ecjiH OHa 
oôjiaAaeT CBoftcTBaMHiKaKOBOÔbiHHÔbiJio JV > 0, HMeioTCHTOHKHz = x + iy B Gc 
y > Nny < - N; ecjin z0 G G, TO H Bce TOHKH ropH30HTajibHoro Jiyna, HAymero 
H3 z0 BJieBO, npHHaAJieMcaT G. OßjiacTb, KOTopan nojiynaeTCH H3 oôjiacra THna 
JieBoft nojiynjiocKOCTH nyTëM noBopOTa BOKpyr Hanajia KoopAHHaT, 6yAeM Ha3bi-
BaTb oôjiacTbio THna nojiynjiocKOCTH. B [11] A0Ka3aH0, HTO ecjin pemeHHe/(z) 
ypaBHeHHH (4) peryjrapHO B OôJœCTH G THna nojiynjiocKOCTH, TO TorAa pHA (1) 
cyMMHpyeTCH onpeAejieHHbiM MCTOAOM K / ( Z ) BO Bceft oôjiacra G. P H A yAaeT-
CH npocyMMHpOBaTb K / ( Z ) emë B Aßyx cjiynanx: B cjiynae, KorAa G ecTb oôjiaerb 
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THna nojiocbi H B cjiynae, KorAa G ecTb oßjiacTb THna nojiynojiocbi. OTMCTHM, HTO 
jiioôan oecKoneHHan BbinyKJian oßjiacTb npHHaAJie>KHT K OAHOMy H3 yKä3aHHbix 
Tpëx THnoB. B cjiynae KOHenHbix oßjiacTefi M.4>. KpacHHKOBy-TepHOBCKOMy [13] 
yAajiocb AOKa3aTb annpoKCHMaunoHHyio TeopeMy: ECJIH pemeHHe/(Z) ypaBHeHHH 
(4) peryjiHpHO B BbinyKjioft oßjiac™ G => j5, T O / ( Z ) BHyTpH G MOMCHO annpOK-
CHMHpOBaTb C JIIO60H TOHHOCTbK) JIHHefiHblMH KOMÔHHaiJHHMH 3JieMeHTapHbIX 
pemeHHH. 

5. Pe3yjibTara npeAbiAymero nyHKTa MOKHO Hcnojib30BaTb AJIH BbiHCHeHHH 
CTpyKTypbi noAnpocTpaHCTB aHajiHTHnecKHX (J)yHKijHH, HHBapnaHTHbix OTHOCH-
Tejibno AH(J)(j)epeHUHpOBaHHH. nycTb G—oôjiacTb KOMnjieKCHoft njiocKocTH, H— 
npocTpaHCTBO (J)yHKHHft, aHajiHTHnecKHX B G, W c H—3aMKHyToe noAnpocTpaH
CTBO, HHBapHaHTHoe OTHOCHTeJIbHO AH(})$epeHUHpOBaHHH. npHMepoM HHBapHaHT-
Horo noAnpocTpaHCTBa W MO>KeT cjiyncHTb coBOKynHOCTb (})yHKi;Hft, aHajiHTH-
HeCKHX B G, KOTOpbie yAOBJieTBOpHïOT OAHOMy HJIH HeCKOJIbKHM ypaBHeHHHM 
CBëpTKH. riyCTb W— HHBapHaHTHOe nOAnpOCTpaHCTBO. PaCCMOTpHM BCeB03MO>K-
Hbie 3KcnoHeHUHajibHbie OAHOHJieHbi zkeXz

9 KOTOpbie C0Aep>i<aTCH B W. JI. lllßapu 
B 1947 roAy c(J)opMyjiHpOBaji 3aAany: AonycKaeT JIH Ka>KAoe 3aMKHyToe HHBapH-
aHTHoe noAnpocTpaHCTBO W cneKTpajibHbift CHHTe3, T.e. coBnaAaeT JIH C 
3aMbiKaHHeM jiHHefiHofi 060J10HKH 3KcnoHeHUHajibHbix OAHOHJICHOB, B HëM coAep-
M<amnxc5i. B cjiynae, KorAa G—BCH njiocKOCTb, OTBCT nojio>KHTejibHbift, HTO 
noKa3aji eine caM JI. IIlBapij. CHCTeMaranecKH 9Ty 3aAany B nocjieAHHe roAbi 
HCCJieAOBaji H.4>. KpacHHKOB-TepHOBCKHft [12]—[14], O H noi<a3aji, HTO ecjiH G— 
6ecKOHeHHan BbinyKJian oôjiacTb, TO cneKTpajibHbift CHHTe3 HMeeT MecTO BcerAa. 
B [11] ycTaHOBJieno, HTO cneKTpajibHbift CHHTe3 BcerAa AonycTHM, ecjiH G— 
oßjiacTb THna nojiynjiocKOCTH (oHa He o6n3aTejibHO BbinyKjia) HJIH THna nojiyno-
jiocbi, npnneM npOH3BOJibHan (J)yHKijHH / ( z ) e W npeACTaBJineTCH c noMoinbio 
npocyMMHpoBaHHoro pHAa H3 SKcnoHeHijHajibHbix OAHOHJICHOB, KOTOpbie npHHaA-
jieacaT W. OôjiacTb G THna nojiynjiocKOCTH HJIH THna nojiynojiocbi oôjiaAaeT 
TeM xapaKTepHbiM CBOHCTBOM, HTO HMeeTCH HanpaBJieHne /, yAOBJieTBopniomee 
ycjiOBHK): ecjiH z0 e G, TO H Becb Jiyn, BbixoAHiunft H3 Z0 B HanpaBJieHHH /, npn-
HaAJiencHT G. HMeeTCH npHMep 6ecKOHeHHoft oßjiac™ G 6e3 9Toro CBoftcTBa H 
npHMep noAnpocTpaHCTBa W, KorAa W—He TpHBHajibHoe HHBapHaHTHoe noA-
npocTpaHCTBO H W He coAep>KHT B ce6e sKcnoneHT. H.O. KpacHHKOB-TepHOBCKHft 
AOKa3aji, HTO KaKOBa 6bi HH 6biJia orpaHHHeHHan BbinyKJian oßjiacTb, BcerAa cyme-
cTByeT ne TpHBHajibHoe HHBapnanTHoe noAnpocTpaHCTBO, He AonycKaiomee 
cneKTpajibHoro CHHTe3a. OH yae noi<a3aji, npH IOKHX AonojiHHTejibHbix ycjioBHHX 
cneKTpajibHbift CHHTC3 HMeeT MecTO. 3aAana CBOAHTCH K sKBHBajieHTHoft 3aAane 
0 3aMKHyTbix noAMOJiyjiHx B TonojiorHnecKOM MOAyJie uejibix (J)yHKU[Hft sKcnoHeH-
qnajibHoro THna. 
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Classification of Kleinian Groups 

Bernard Maskit* 

We present here a complete classification of those Kleinian groups which have 
an invariant region of discontinuity and which, in their action on hyperbolic 
3-space, have a finite-sided fundamental polyhedron. This classification is complete 
in the same sense that finitely-generated Fuchsian groups of the first kind are com
pletely classified, i.e., there is a countable collection of topologically distinct 
classes, each such class can be described by a finite set of numbers called the signa
ture; all the groups belonging to any one topological class appear (infinitely often) 
in the deformation space (defined using quasi-conformal mappings) of any one group 
in the class; this deformation space can be parametrized as a complex manifold. 

Our results can also be regarded as a classification of all uniformizations of any 
finite Riemann surface (i.e., a closed Riemann surface from which a finite number 
of points have been deleted), where the uniformizing group has a finite-sided funda
mental polyhedron (see §9). 

The proofs of the theorems are based on the combination theorems [12], the 
planarity theorem [13], Bers' technique of variation of parameters using quasi
conformal mappings [4], and Marden's isomorphism theorem [11]. Details will 
appear elsewhere. 

1. A Kleinian group is a discrete subgroup of PSL(2; C) which acts discon-
tinuously at some point of C = C U {oo}- The set of points at which G acts dis-
continuously is denoted by Û = 0{G); its complement, the limit set, is denoted by 
A = A{G). 

The components of 0 are called components of G. G is a function group if there 
is a component A which is kept invariant by G. 
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2 1 4 BERNARD MASKIT 

From here on we consider only Kleinian groups which have a finite-sided funda
mental polyhedron, and which are function groups, with invariant component 
A = A{G). Under these conditions, Ahlfors showed that A{G) has 0 measure [2], 
and that A'jG = {â — {elliptic fixed points})/G is a finite Riemann surface [1]. 

2. A parabolic element g e G is called accidental if there is a conformai map 
/ : A{G) -> A (G*), where/conjugates G into G*, but/ogo/-i is loxodromic. 

3. Combining the criterion of Beardon and Maskit [3] with the results in [14] 
and [15] (see also Bers [5] and Kra and Maskit [10]), one sees that if A is simply-
connected and if G contains no accidental parabolic elements, then G is either ele
mentary (i.e., A contains at most one point), or quasi-Fuchsian (i.e., G is a perhaps 
trivial quasi-conformal deformation of a Fuchsian group). In either case, the action 
of G on A can be topologically completely described by a collection of "integers" 
called the signature {g9 n\ v\9~ -9vn) as follows : 

A'IG is a surface of genus g with n distinct points removed; lifting a small loop 
about the fth puncture yields an elliptic or parabolic element of order y,-. 

For topological reasons, the signatures (0,1 ; v) and (0, 2; v\9 v2)> v\ ^^ cannot 
occur. All other signatures with g ^ 0,w ^ 0,2 g y,- ^ oo, do occur. 

4. Returning to the general case, a subgroup H e G is a, factor subgroup if H is a 
maximal subgroup for which A{H) is simply connected, H contains no accidental 
parabolic elements, and i7 contains every parabolic element of G whose fixed point 
lies in A{H). 

5.- Every factor subgroup of G is finitely generated, and up to conjugacy in G9 

there are only finitely many [15]. Let HÌ9'~9HS be a complete list of nonconjugate 
factor subgroups, and let {gi9 «,•; vn ,•••, vin) be the signature of //, ; these signatures 
are called the factor signatures of G. 

There is a partial pairing P among the yf-y given by intersections of factor sub
groups. If H' is a factor subgroup conjugate to Hk9 then J = Hi f| H' is either 
trivial or is a common maximal elliptic or parabolic cyclic subgroup. In Hi9 J 
corresponds to some v,y, and after conjugation, / corresponds to some vki in Hk. 
This intersection pairs v^ with yw, and of course vi7 = vki- (The partial pairing P 
can be regarded as a symmetric incidence matrix where there is at most one 1 in 
any row.) 

Using the combination theorems, we can construct a minimal subgroup G0 

having HÌ9~-9HS as factor subgroups, and with partial pairing P\ G is then con
structed from G0 as the free product of G0 with a Schottky group of some rank 
t à 0 [15]. 

The signature of G is the collection {(gi,«i; Vn,—, vu),~;{gs, ns; ì>8Ì3~; vsn)9 

P91}. The group G does not uniquely determine the signature, for we may permute 
the Hi9 and for fixed i we may permute the v,y. We identify two signatures if they 
differ by such a permutation. 

6. Not all signatures can actually occur. Certain factor signatures cannot occur 



CLASSIFICATION OF KLEINIAN GROUPS 215 

(see §3); the factor signature (0, 0) can occur only if s = 1; if there is a factor 
signature (0, 2; vn, y,-2), then vn can only be paired with vi2 and then only if 
va < oo ; if there are two factor signatures (0, 3 ; 2, 2, oo), then the parabolic 
elements cannot be paired with each other. A signature satisfying these rules is 
called admissible. 

THEOREM 1 [14], [16]. Every admissible signature is the signature of a Kleinian 
group. 

7. There is a technique due to Bers [4] which shows that once we have a group G 
realizing a certain signature, then the conformai structure on A'\G can be chosen at 
will, i.e., there is a quasi-conformal homeomorphism w : V —> C9 where woGow"1 

= G* is also a Kleinian group (i.e., G* is a quasi-conformal deformation of G), 
so that A{G*)/G* has a preassigned conformai structure. 

THEOREM 2. G and G* have the same signature if and only ifG* is a quasi-con
formal deformation ofG. 

Proof of this theorem will appear elsewhere. 

8. Bers [6] defined the deformation space T{G) as the space of isomorphism 
classes of normalized quasi-conformal deformations of G. Kra [9] proved that 
T = T\ x T2, where T\ is supported in A and T2 is supported in Q - A. T2 is a 
product of Teichmüller spaces, hence (Bers [7]) a domain in some Cn. T2 is a com
plex mainfold [17] which in special cases is known to be a domain in some Cn; 
one expects that this is generally true. One can factor the deformation space by a 
discontinuous group to obtain the space of Kleinian groups of the same signature; 
Bers [8] showed that it is a normal complex space. 

9. In general, a uniformization of a finite Riemann surface X' is a Kleinian 
group G (not necessarily a function group), where X' is conformally a connected 
component of Û/G. Our results can be viewed as a classification of all uniform-
izations of X' by function groups with a finite-sided fundamental polyhedron, where 
X' = A'IG (each such uniformization can be described by an admissible signature, 
every admissible signature comes from such a uniformization, and every other 
such uniformization corresponding to this signature is a quasi-conformal deforma
tion, of the first, supported on Q — A). 

The signature describes the regular covering p : A1 -+ X' and describes which 
elements of G are accidental parabolic. This information can also be given by a set 
of branch numbers for the deleted points of X'9 together with a set Wi,--9wn of 
simple disjoint loops, and "integers" oc\9••-,«„, 1 ^ ^ ^ oo [13], [14]. These loops 
divide Xf into subsurfaces YÌ9"-9YS'9 the factor subgroups are precisely the stabiliz
ing subgroups of the connected components of the sets/r^ l'i). Lifting a loop w,-
yields an elliptic or accidental parabolic cyclic subgroup of order a,; if a,- > 1 
then this cyclic subgroup is the intersection of two factor subgroups, and every 
nontrivial intersection of factor subgroups can be obtained in this manner. 
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Intrinsic Metrics on Teichmüller Space 

H. L. Royden 

1. My purpose here is to describe some recent results about metrics on the Teich
müller space Tg9 that is on the space of moduli of compact Riemann surfaces of a 
given genus g > 1. If W is a differentiate surface of genus g and &* the family of 
all conformai structures on W9 then two structures in &> are said to be equivalent 
if there is a conformai mapping <p from W with one structure onto PTwith the other 
structure such that (p is homotopic to the identity map on W. The Teichmüller space 
Tg is the set Sf of conformai structures modulo this equivalence. The space Tg 

carries a natural complex analytic structure which makes it a {3g — 3)-dimen-
sional complex manifold which can be embedded in C3*-3 as a bounded domain 
of holomorphy [6]. It is homeomorphic to a ball. 

A conformai structure on W is usually given by specifying a collection of local 
uniformizing variables on W9 i.e., ä collection {za} of homeomorphisms of open 
sets on Plinto C such that z^zj1 is a holomorphic function wherever defined. 

Let WQ be W with a fixed conformai structure. A Beltrami differential p, on WQ 
is an entity which changes under holomorphic coordinate changes in such a way 
that fxdz/dz is invariant. In modern terminology p, is a differential on WQ of type 
(0, 1) with values in the (holomorphic) tangent bundle of WQ. The absolute value 
|^ | of a Beltrami differential is well defined independently of coordinates, and we 
make the space of Beltrami differentials into a normed space by using the L°° norm 
l/̂ foo = sup^fl |/z|. Given a Beltrami differential// with ||//|| < 1, we can define a 
new conformai structure by taking as local uniformizing variables functions w 
which satisfy the equation dw/dz = pdw/dz. The Riemann surface obtained from// 
in this way is denoted by Wp and the Beltrami differential JU is just the complex 
dilation of the identity map of W0 into W^ that is ft = {dw/dz)/{dw/dz)9 where z 
and w are local uniformizers on WQ and Wp respectively. Conversely, given a con-
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formai structure making W into a Riemann surface W', the complex dilation ft of 
the identity map from WQ onto W' is a Beltrami differential on WQ and Wp = W'. 
We say that two Beltrami differentials ft and v are equivalent if W^ and JFy are 
equivalent, i.e., if there is a conformai map <p of Wp onto W„ which is homotopic 
to the identity. Thus Tg is the unit ball in the space of Beltrami differentials modulo 
this equivalence, and a point x e Tg is a class [FFJ of equivalent structures on W. 
The space M of Beltrami differentials is a normed linear space and thus has a 
natural topological and complex analytic structure. We take the quotient topology 
which Tg inherits from M for the topology of Tg9 and will see that Tg also inherits 
a complex analytic structure from M. 

The preceding representation of Tg depends on the base point WQ chosen, but 
if we take a different conformai structure W^ for our base point, then we have a 
natural map between the set M 0 of Beltrami differentials of norm less than one 
on WQ and the set M^ of those on W^. This map is given by 

dz v — ft dw/dz dw 
dz 1 - vfi dw/dz dw ' 

Thus to consider local properties of Tg in a neighborhood of a point x e Tg9 we may 
always use a representation in which the base structure is an element of the equiva
lence class x. 

2. The tangent and cotangent spaces for Tg. A flow on W is a family tpt of dif
feomorphisms of W onto itself depending smoothly on a parameter t. If <p0 is the 
identity, then in terms of a local uniformizer z we have cpt{z) = z + th{z) -f- 0{t2) 
where A is a vector field on WQ. If we let ftt be the complex dilation of <pt9 then 
ftt = tdh/dz + 0{t2). Thus we say that a Beltrami differential ft is infinitesimally 
trivial if there is a tangent vector field on WQ such that ft = dh/dz. If /j is a Beltrami 
differential and ^ a quadratic differential on WQ, then /*^ is a form of type (1,1), 
and hence jWo fty is well defined. It can be shown that ft is infinitesimally trivial if 
and only if j / ^ = 0 for all holomorphic quadratic differentials TJ on WQ. 

Since the tangent space at 0 to the space M of Beltrami differentials is just M 
itself, we see that the tangent space at [WQ] to Tg is the space of Beltrami differen
tials on WQ modulo the infinitesimally trivial ones. Since \fti) = 0 for all quadratic 
differentials 7] if and only if ft is infinitesimally trivial, it follows that the space Q of 
quadratic differentials is the cotangent space to Tg at WQ. 

3. Differential metrics on Tg. A differential metric on a manifold V is given by 
specifying a real-valued function F = F{x9 £) defined for points <#, £> in the tangent 
bundle of V {x e V9 £ e {TV)X)9 such that F{x9 | ) > 0 for £ =£ 0 and F{x, a?) = 
|a|F(:x;, £). Arc length for a curve x{t) is defined by / = $F{x{t)9 x{t)) dt9 and the 
distance between any two points is defined to be the infimum of the lengths of 
curves joining them. The metric is Hermitian if for each x the form F{x9 £) is a 
Hermitian form on {TV)X. 

We can also define a differential metric by giving a form G{x9 rj) on the cotangent 
bundle of Kwith G{x9 yj) > 0 for TJ ï 0 and G{x9 aij) = |a|G(jc, 77). We define F 
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by duality as F{x9 £) = sup {[£, rj\ : G{x9 TJ) = 1}, and proceed as before. 

4. The Teichmüller metric and its properties. Since the cotangent space to Tg at 
[Wp] is the space Qp of holomorphic quadratic differentials on Wp9 each differen
tial metric on Tg is obtained by assigning a norm in each of the linear spaces Qp. 
One natural norm to take is the L\ norm \y\ = \W(l \ T] |. If we take this norm for the 
form G{ft9 rj) on the cotangent bundle, we obtain the infinitesimal form of the 
Teichmüller metric. 

If we use this to define a norm in the tangent space at WQ9 then it is readily seen 
that for this norm \\ft\\T = inf ||v||oo, as v ranges over all Beltrami differentials with 
ft — v infinitesimally trivial. 

If 7] is a holomorphic quadratic differential on WQ and k a constant less than 1, 
then ft = ky}/\ rj | is a Beltrami differential, and such a Beltrami differential is called 
a Teichmüller differential. It is known [1], [5] that every Beltrami differential v with 
||y||oo < 1 is equivalent to a unique Teichmüller differential ft9 and \ft\oo Û ||v||oo 
for every y equivalent to ft with equality only if ft = v. It follows from this that for 
a Teichmüller differential ft the mapping t -> tft is a geodesic in the Teichmüller 
metric and that every geodesic has this form. 

The norm G{x9 rj) = J1971 on the space Q of holomorphic quadratic differentials 
is not smooth, but has first derivatives which satisfy a Holder condition with 
exponent depending on the order of the largest zero of 7]. This fact can be used to 
show the following [9] : If 0 : Qw -• Qw, is a linear isometry, then there is a confor
mai map <p: W -> W such that 0 = a<p* with \a\ = 1. From this it follows that 
every isometry of Tg with the Teichmüller metric maps a class [Wp] of conformai 
structures into a class [Wv] with Wv conformally equivalent to Wp9 i.e., there 
exists a conformai mapping between them, not necessarily homotopic to the 
identity. 

The set of orientation preserving diffeomorphisms of Wonto itself is a group, and 
those homotopic to the identity form a normal subgroup. The quotient group is 
called the mapping class group or the Teichmüller modular group. This group acts 
on Tg as follows : Given a diffeomorphism <p9 we consider cp a map from WQ to Wp. 
Define tppt to be the complex dilation of this map. Then the equivalence class [<pft] 
of <pft depends only on the mapping class of cp and the equivalence class of ft. Thus 
we have an action of the Teichmüller modular group on Tg9 and it is not difficult to 
show that the action of [<p] is a biholomorphic map of Tg onto itself isometric with 
respect to the Teichmüller metric. Our previous statement implies that every iso
metry arises from the action of the Teichmüller modular group. 

Kobayashi [7], [8] has introduced an invariant pseudo-metric on each complex 
manifold F which can be characterized as the largest pseudo-metric on F such that 
each holomorphic map ip of the unit disk (with the Poincaré metric) into V is 
distance decreasing with this metric. This pseudo-metric is, by its definition, invari
ant under biholomorphic self maps of V. From the characterization of the geo
desies in the Teichmüller metric it can be shown [9] that the Teichmüller metric on 
Tg is the infinitesimal form [10] of the Kobayashi metric for Tg. Thus the Teichmül-
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1er metric of Tg is invariant under biholomorphic self maps of Tg9 and we see that 
the biholomorphic self maps of Tg are the actions of the Teichmüller modular 
group. 

5. The Bers embedding of Tg. If ft\, •••, ftu, N = 3g - 3, are any set of Beltrami 
differentials on WQ which are independent modulo the infinitesimally trivial ones, 
we obtain local holomorphic ooardinates for a neighborhood of WQ in Tg by 
assigning <fl5 •••, tN} to [Wp] with ft = Sfyty- If T] is a holomorphic quadratic dif
ferential on WQ and ds2 = 2?\dz\2 is the Poincaré metric on W0, then A"2Ç is a 
Beltrami differential, and one of this form is called a Bers differential. By using the 
3g — 3 independent holomorphic quadratic differentials to get our fti9 we obtain a 
special set of holomorphic coordinates at [WQ] known as Bers coordinates. It turns 
out [4], [5] that these coordinates can be extended to a global set of coordinates on 
Tg and that they then embed Tg as a bounded domain of holomorphy in C3*-3. 

6. The Weil-Petersson metric. To prescribe a Hermitian metric on Tg we need to 
define a Hermitian form on the cotangent space at each point, i.e., on the space of 
holomorphic quadratic differentials on each surface. If ds2 = ^2|rfz|2 is the Poin
caré non-Euclidean distance on a surface WQ9 we can define such a Hermitian form 
by setting {T]\9 ç2) = $w* ^~~2ViV2- This metric is the Weil-Petersson metric, and is 
readily seen to be invariant under biholomorphic self maps of Tg onto itself. 

Given a Hermitian metric ds2 = ga$ dza dzß on a complex manifold, we say that 
it is Kahler if dga$/dzr = dg7$/dza. A metric is Kahler if and only if we can find 
normal coordinates at each point, i.e., holomorphic coordinates such that at the 
point the metric tensor has the development gaß = daß 4- 0(|z|2). If the metric is 
Kahler and real analytic, one can introduce a set of canonical coordinates at a point 
which are characterized by the property that the power series for ga$ contains no 
terms which are products only of unbarred variables (or only of barred variables). 
Ahlfors [2] has shown that the Bers coordinates are normal coordinates for the 
Weil-Petersson metric and hence that it is Kahler. I have recently extended this 
result to show that the Bers coordinates are canonical. 

In terms of canonical coordinates, 

gat = Saß - \ra-ßrizrz* + 6>(|z|3) 

where ra$rg is the Riemann curvature tensor. If £a and if are unit tangent vectors, 
the holomorphic bisectional curvature in the directions £, TJ is given by K^ = 
raßrd£a£ßyryd a n d t h e holomorphic sectional curvature in the direction £ is given 
by 

Ahlfors [3] has shown that the holomorphic bisectional curvature of the Weil-
Petersson metric is nonpositive and the sectional curvature is negative. I have 
recently established the bound K# < - (55/18) [%{g - l)]"1. There is heuristic 
evidence that 55/18 should be replaced by 4. 
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On Quadratic Differentials and Extremal 
Quasi-Conformal Mappings* 

Kurt Strebel 

1. Extremal quasi-conformal mappings and Teichmueller mappings. A regular 
quasi-conformal mapping of a plane domain G onto a domain G' (more generally 
of a Riemann surface R onto a surface R') is an orientation preserving homeomor-
phism/with continuous partial derivatives which, except for isolated points, has a 
nonvanishing Jacobian and takes infinitesimal circles into infinitesimal ellipses of 
bounded dilatation. To fix the notation, we put w = f{z) and write the differential in 
complex form: dw = p{z)dz 4- q{z)dz9 with/? = fZ9 q = f-z and \p\ > \q| ^ 0. Then 
the dilatation at the point z becomes 

1 + U(*)l jyy) = IPCOI + \q{z) 
1 - U{z)V \p{z)\- I?« 

with K{Z) = q{z)/p{z) the complex dilatation of/. The supremum K = supzeG D{z) 
is called the maximal dilatation of/; evidently K = (1 + k)/{\ — k) with k = 
supgeG | tc{z) | < 1. Any quasi-conformal mapping with a maximal dilatation K g Q 
is called g-quasi-conformal. 

The first to consider this class of mappings was Herbert Groetzsch in 1928. He 
also solved the following extremal problem: Given two quadrilaterals S and S'9 

i.e., Jordan domains with four assigned boundary points, map S quasi-conformally 
onto Sf with smallest maximal dilatation K. Such a mapping is called extremal 
quasi-conformal (möglichst konform). The solution is of the form / = 
#r-i0jFo(p5 where 0 and W are conformai mappings of S9 respectively S'9 onto 
horizontal rectangles and F is a horizontal stretching with the factor K. For every 
other mapping/ which preserves the vertices we have K> K9 i.e.,/is even unique 
extremal. 

* An extended version of this article will be published elsewhere. 
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If we introduce the modulus M of a quadrilateral as one of the ratios of the sides 
of a conformally equivalent rectangle, the above result shows that for any Q-
quasi-conformal mapping we have Q~lM ^ M' ^ QM. It was an extremely fruit
ful idea to replace the original definition of quasi-conformality by just this pro
perty: Any homeomorphism / which satisfies the above inequality is called Q-
quasi-conformal. 

One of the big gains by introducing this larger family is normality or even com
pactness. To fix the ideas, let/ be a quasi-conformal mapping of the disk D : \ z | < 1 
onto D' : | w \ < 1. In the class of all quasi-conformal mappings of D onto D' which 
agree with / on the circumference T: \z\ = 1, there exists an extremal quasi
conformal mapping / However, it is in general not unique [4]. 

In order to get uniqueness of the solution, we go back to the example of 
Groetzsch. The complex dilatation of this mapping is 

K{Z) = k0'2/\0'\2 =kip/\(p\9 

with k = {K — \)/{K + 1) and ç = 0'2. Under a change of the variable, the 
function <p evidently transforms like a quadratic differential. For an arbitrary 
holomorphic (or meromorphic) quadratic differential <p and positive number k9 

0 < k < 1, we can form K = &p/|p|. A quasi-conformal mapping/with this com
plex dilatation is called a Teichmueller mapping associated with the quadratic dif
ferential <p. It is locally, except for the zeroes and poles of <p9 of the form "conformai 
o affine o conformai". It is known ([5], [3}) that a Teichmueller mapping of the 
disk, more generally of a compact bordered Riemann surface, which is associated 
with a quadratic differential <p of finite norm ||p|| = JJ|^|(^)| dx dy9 is unique ex
tremal. But now we have lost the former general existence theorem. In order to get 
existence and uniqueness, one either has to impose certain conditions on the 
general solution (without losing the existence theorem) or else prove the existence 
of Teichmueller mappings. It is the purpose of this article to do the latter. 

2. Quasi-conformal mappings with equal boundary values. Following [3], let / and 
/ be quasi-conformal mappings of D onto D' which agree on the circumference 
T. S e t / = /~ 1 . Let cp be an arbitrary holomorphic quadratic differential in D 
with norm \<p\ = 1. Any (noncritical) vertical trajectory ß of <p is mapped by the 
composition/io/onto an arc with the same endpoints on T. Therefore the length 
inequality 

f|rt*)|1/aH^ J | P ( * ) | 1 / 2 N 
ß WW 

holds. We now decompose D into open vertical strips S with respect to (p. Each S 
is mapped by any branch of 0{z) — \{(p{z))1/2 dz onto a domain 5* swept out by 
vertical straight segments. We introduce £ = £ + ìTJ = 0{z) as a conformai para
meter in S. With dz = pxdw + q\dw the differential of/1, we get 
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where the integral is taken over the vertical segment in £* which corresponds to 
j8. Integration over £, transition to S by the mapping £ = 0{z) and then summation 
over the strips of the exhaustion gives 

1 è n|?>(*)|1/2|p(z)|1/2U;> + qiq - (Plq + qxp)-X 
D J \H>\ 

dx dy. 

An application of the Schwarz inequality and subsequent arranging of terms finally 
yields the result: 

l g \\ \(p{z)\ l 1 " ^ / ^ ! 2 U - KI{PIP){<PI\<P\){1 - *p/M)/(i - w/\<p\)\2
 dx dy 

D 1 — \fC\2 1 — | All2 

for every holomorphic quadratic differential <p in D with norm ||p || = 1. 
The inequality contains the uniqueness theorem I mentioned: A Teichmueller 

mapping / associated with a quadratic differential <p of finite norm is unique ex
tremal. This simply follows by putting tt — kïp/\ip\ (||p|| = 1) into the inequality and 
looking at the right-hand factor of the integrand. 

On the other hand, an easy estimation of this factor leads to 

from which it is not difficult to get the following sufficient condition for extremality : 
If there is a sequence of holomorphic quadratic differentials <pn9 \\(pn\\ = 1, such that 

lim J J <p„ tt dx dy = k9 
W—oo D 

then tt is extremal (i.e., the mapping / which is determined by A; up to a linear 
transformation is extremal for its boundary values). It is known ([1], [3]) that this 
condition is also necessary for extremality. Let us call a sequence {<pn) with the 
above limit property a Hamilton sequence for tt. Then the result can be expressed 
in the following way : A complex dilatation tt is extremal if and only if it admits a 
Hamilton sequence. 

3. Existence of Teichmueller mappings. Let us assume that there exists a Hamilton 
sequence {(pn) for tt which converges in norm to some (p9 i.e., \\<pn — p| | -• 0. Then <p 
is holomorphic, has norm one and JJÖ tptt dx dy — k\ hence tt — k<p/\<p\. The 
mapping/is thus aTeichmueller mapping associated with (p. For any sequence {<pn) 
we can of course take a subsequence which converges locally uniformly in D to 
some cp9 0 ^ || p || g 1. If we can give conditions under which |p | | < 1 is impossible, 
we have the desired existence theorem. 

Let <p = lim„_oo (pn = 0, and l e t / be a quasi-conformal mapping on an annulus 
f < |z | < 1 which agrees wi th /on T (but not necessarily on \z\ = f). We choose 
f"o, 0 < r0 < 1, such that the composition/ o/ / = / - i , makes sense. It maps the 
circle |z | = /-Q onto some Jordan curve /Q in D. We apply the earlier procedure to 
the mapping/i o/in the annulus r0 < |z | < 1 and to the quadratic differentials <pn. 
A vertical trajectory which has one or both of its endpoints on | z | = r0 now is 
transformed into a curve with one or both of its endpoints on /V But as the <pn's 
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go to zero, the length inequality will, for these arcs, eventually hold up to some 
arbitrarily small term. Moreover, the circle \z\ = rQ itself will become arbitrarily 
short. With this in mind, we get 

A. r.<lzl<l 1 — |£ | f i 

for arbitrarily small e and all sufficiently large n. Using the fact that 

lim JJ <pntc dx dy = k 
»-oo n*<\z\<l 

and letting e -+ 0 we finally get k ^ k. We have proved 

THEOREM 1. If there is a Hamilton sequence {<p„)for tt which tends to zero locally 
uniformly in D (degenerating Hamilton sequence), then f is extremal compared with 
any quasi-conformal mapping f of an arbitrarily small annulus f < \z\ < 1 which 
agrees with f on T: \z\ = 1. 

The case 0 < || <p \ < 1 is reduced to the above by choosing <pn = 
{<Pn — 9)1 \<Pn ~ 91 • This is a degenerating Hamilton sequence for K9 as is easily seen. 
We can therefore say: If it admits a Hamilton sequence {<pn) which tends locally 
uniformly to <p9 0 < \\<p \\ < 1, then it also admits a degenerating Hamilton sequence. 

Let now / with complex dilatation K be an extremal mapping for the given 
boundary values. If k =^0, it is conformai, hence unique extremal. So let k > 0. 
If the boundary homeomorphism admits a quasi-conformal extension / into an 
annulus f < | z | < 1 with k <k9 any Hamilton sequence for K must converge in 
norm. Hence/is a Teichmueller mapping. We have proved 

THEOREM 2. Given a homeomorphism ofT: \z\ = 1 onto F \ \w\ = 1 which admits 
a quasi-conformal extension f into an arbitrarily small annulus f < \z\ < 1 with a 
maximal dilatation K arbitrarily close to one, then there is a unique extremal quasi
conformal mapping f with the given boundary values. It is a Teichmueller mapping 
associated with a quadratic differential <p of norm one, and every Hamilton sequence 
{<pn) converges in norm to <p. 

The same is true if the maximal dilatation K of the "barrier" / can be chosen 
smaller than the maximal dilatation K of the extremal mapping/. 

A simple example of a boundary correspondence of the first kind is an analytic 
homeomorphism of T onto F\ but it is elementary to show that, e.g., a homeo
morphism with a continuous second derivative and a first derivative bounded away 
from zero also has the extension property. 

On the other hand, there can exist degenerating Hamilton sequences for an affine 
mapping of a bounded domain, as was recently shown by E. Reich in [2], where 
somewhat related ideas are used to characterize the "substantial" boundary points 
of a domain. Therefore our condition for the extremal to be of Teichmueller form 
is only sufficient. But it can of course be generalized to compact bordered Riemann 
surfaces. 
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Some Recent Advances in the Multidimensional 
Parametric Calculus of Variations 

William K. Allard 

Introduction. Suppose Q is an open subset of Rn, k is an integer and 0 ^ k ^ n. 
Let G{n9 k) be the Grassmann manifold of A>planes through 0 in Rn. Suppose 0 is a 
positive k-dimensional parametric integrand on Q; by this we mean that 0 maps the 
product Q x G{n9k) smoothly into the positive real numbers. Let R be a ^-dimen
sional surface in Q (we will be precise momentarily). If x is a regular point of R let 
Rx e G{n9 k) be the tangent plane to R at x. We study the existence and regularity of 
surfaces R satisfying conditions on how the integral JÄ 0{x, Rx) dHkx changes when 
R is replaced by an image of R; here Hk is the fc-dimensional Hausdorff measure on 
Q, which we define and discuss below. Our treatment of this problem and problems 
closely related to it is by no means complete. The theorems discussed in this article 
are treated in detail in the works listed in the References, among which is Herbert 
Federer's treatise Geometric measure theory which comprehensively exposes the 
geometric approach with which we attack the problem. 

Hausdorff measure, surfaces. Let a{k) = Lk{xe Rk: \x\ < 1}, where Lk is the 
Lebesgue measure on Rk. Given A cz Q and 5 > 0, let 

(pô{A) = inf{| ; a(&)(diam^-/2)*} 

where A c [j^ A{ c Q and diam A{ g ö. Let Hk{A) = limdi0(pô{A) and call 
this set function the k-dimensional Hausdorff measure on Û. Hk is Borei regular 
and Hn = Ln. We set {W fl A){B) = H*{A [\ B) whenever A c ß, B c Q. 

Let Mk{Q) be the class of C1 properly imbedded /^-dimensional submanifolds of 
0 of locally finite &-area. Thus M e Mk{Q) if M c Q9 H

k fi M is locally finite and, 
for each a e M9 there is F:Q -+ Rk such that F is C1, rank DF{a) = k and M = 
{x :F{x) = F{a)} near A. Let Rk{Q) be the class of k-rectifiable subsets of J0; by 
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definition, R e Rk{Q) if R cz Q,Hk p\ Ris locally finite and, for Hk almost all aeR9 

there is Ra e G{n9 k) such that 

limsk{Hk fi {x:s-l{x - a)eR}) = H* [\ Ra 
S-»oo 

weakly as Radon measures on Rn. These are the "surfaces" R of the Introduction 
and the "regular points" are the points a for which Ra exists. The relationship 
between Mk{Q) and Rk{Q) is as follows: 

THEOREM (SEE FéDéRER). R G Rk{Q) if and only if R cz Q and, for each e > 0, 
there is Me Mk{Q) such that Hk[{M ~ R) {} {R ~ M)] < e. 

If F'.Q -> R> is C1 we let the Jacobian JkF: Q x G{n9 k) -> {s:0 ^ s < 00} 
have at {x9 S) G Q X G{n9 k) the value (det <vf-, DF{xy>-<yJ9 DF{x)})i/2

9 where 
v1? ~-9vkeS and vrvj = <5#. The following mapping formula is basic for our 
purposes : 

THEOREM (SEE FéDéRER). IfR e Rk{0), r is an open subset ofRv andF:Q -» ris 
C1 and proper, then (a) F{R) e Ä^/7); {b)for Hk almost all b G F{R)9 F{R)b = 
DF{a){Ra) whenever a G R fl F-^b}; 

(c) J JkF{x9 Rx) dWx = J card {R Ç] F^{y}) dH*y. 
R r 

Minimizing conditions and the Euler-Lagrange operator. We now specify two 
types of "conditions on how the integral changes". 

Suppose that 0 is an integrand on Q; 0 < ö ^ 00 ; ß :[0, ô) -> [0, 00), ß G C°°, 
^(0) = 0, ß' ^ 0. We say that R e Rk{Q) is {0,d, ß) minimizing in Q if whenever F: 
Q -> Q is C°°, Â  = Closure{x :F{x) ^ x} is compact in Q and r = diamfÄ' U F{K)] 
^ ö we have that 

J <P(*, Äx) d»*j: g (1 + iS(r)) J 0{y, F{R)y) dH*y. 
RHK F(RHK) 

Rectifiable set solutions to a wide variety of geometric variational problems 
with constraints are {09ö9ß) minimizing. Surfaces which arise from capillary action, 
surfaces which minimize an integral avoiding an obstacle and surfaces which solve 
variational problems with partially free boundary are examples. 

Our second type of condition is more infinitesimal. Let S£{Q) = {g:Q -> Rn, 
g is C°°, spt g is compact} ; think of the members of <%{Q) as vector fields on Q. 
Given g G &{Q)9 set ht{x) = x + tg{x) for {t9 x) G JB X Q and let 

for {x, S) G Q x G{n9 k). ô{0; x9 S){g) = J*- 0{ht{x)9 Dht{x){S))Jkht{x, S) 

Note that ö{0; x, S{g)) depends linearly on g. Given R e R{Q) with $R0{x9Rx) dHkx 
< 00, we calculate 

4 - J 4>(y, ht(R)y) dH*y = * j <Hht{x), Dht{x){Rx))Jkht(x, S) dH»x 
a l *,(/?) m R 

= l5mx,Rx){g)dH«x. 
R 

t=0 
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Thus for any R e Rk{Q) we have a linear functional ö{0; R) : %{Q) -> R9 the 
Euler-Lagrange operator9 whose value at g G 3Ç{Q) is the last term in the above 
calculation. 

If 1 < p g oo and 1=1//?+ \jq9 we let 

||*(0; R)\\p = sup j<?«P; JQfe) : J |*|f dH> = l}. 

For example, if M G Mk{ü)9 M is smooth, M is closed relative to Q and # is the 
mean curvature vector of M then 

\\o{0;R)\\p = k(jjH\PdH*y 

The relationship between these two types of conditions is not understood at 
this time. It obvious, however, that if R is {0, d9 0) minimizing then d{0; R) = 0. 

Some theorems about {09 ö9 fi) minimizing sets. We say an integrand 0 on Q is 
elliptic if there is c > 0 such that for all {a9 T)eQ x G{n, k) we have 

J 0{a9 Rx) dWx - J 0{a9 Dx) dH*x ^ c\H*{R) - H*{D)] 
R D 

where D = T [\ [x\\x\ < 1} and ReRk{Rn) is compact and does not retract 
ontoT n {JC:|JC| = 1}. 

The area integrand A on Q defined by A{x9 S) = 1 for {x9 S) eQ x G{n9 k) is 
obviously elliptic as are the integrands which are close to it in the C2 topology. 
Ellipticity is a natural sufficient condition for the regularity of {0, d, ß) minimizing 
sets as well as for lower semicontinuity theorems for the integral of 0 over a recti
fiable chain. Ellipticity is invariant under diffeomorphisms. In case k = n — 1,0 
is elliptic if and only if, for each a G Q9 Rn ~ {0} 3 £ -> |£ | 0{a9 {v:v-£ = 0}) 
defines a uniformly convex norm on Rn. 

A basic fact in the theory is the 

REGULARITY THEOREM (ALMGREN). If 
(a) 0 is elliptic on Q9 

(b) 0 < 5 S oo, 
(c) fâr-{1+a)fi{r)l/2 dr < oo for some a with 0 ^ a < 1, 
(d) R G Rk{Q) is {09 ö, ß) minimizing in Q 

then spt(/f* R R) = M U S where. MeMk{Q), S is closed and H*{S) = 0. {S 
is the singular set.) In case a > 0, the tangent map of M is locally Holder continuous 
with exponent a. 

It is not true in general that S= 0 ; except in special cases, not much is known 
about S. 

The partitioning problem which we are about to discuss is a geometric minimi
zation problem with a constraint. Fix an integer pt = 2. We say a sequence Gi9 •••, 
GM of disjoint open subsets of Rn is an admissible Ln partition ofRn if Gf- is bounded, 
1 ^ i g p - 1 ; L»{Rn - U^iGv) = ° a n d B d ry G<G JVitßw)> 1 ^ * ^ ju. 
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Minimization problem. Suppose 0 < Vt < oo, 1 ^ i <; y. - 1; 0 < Wit y < oo, 
1 ^ ^ < y ' ^ /« ; ßflrf $ ö ö» (w - \)-integrand on Rn. Among all admissible Ln parti
tions Gl5 ••-, Gp of Rn with Ln{Gt) = Vi9 1 ^ i ^ /* - 1, ft it possible to find one 

for which 

2 W,.y J *(*,(*,.,),) dH»-ix 

is least! {Here Bitj = Bdry G, (] Bdry Gy.) 

THEOREM (ALMGREN). If{a)0 = 0{x9 S) is elliptic and depends trivially on x, 
(b) for each i = 1, •••, pt and each nonzero pt-tuple {bÌ9 ••-, b^) of nonnegative real 
numbers there exists j & i such thatbjWjj > E M é « , ^ bk{Wktj — Wïtk) {here we 
have written Witj == Wjti in case i > j)9 then (c) the minimization problem has a 
solution; (d) ifGÌ9 •••, G^ solves the minimization problem, (Jf=1 Bdry G, is Hn~l 

almost equal a member of Mn-\{Rn) which is C°°. 

Heuristically, (b) says that it is always advantageous to eliminate a particular Gy 
by adding it to a judiciously chosen Gy. The proof of (d) depends on the regularity 
theorem. 

In case k = 2, n = 3, and we are dealing with the area integrand A, a very satis
factory regularity theorem is known. We introduce notation to facilitate its formu
lation. Whenever A cz Ä 3 and b G JR3, let Tb{A) be the class of subsets B of Ä 3 

for which there exist open neighborhoods U of 0 and V of b and a C 1 diffeomor-
phism F:U -+ V such that F{0) = b9 DF{0) is an isometry and F{A (] U) = 
B fl V. Let p be a rotation of Ä 3 by 2TC/3 and let H be a closed half-plane in jß3 

whose edge contains the axis of p. Let Y = (J?=o pKH)- Fix a regular tetrahedron 
in R3 with center of gravity 0. Let T be the set of points tx such that f ^ 0 and x 
lies in the closure of the 1-skeleton of T. 

THEOREM (TAYLOR), (a) Y and T aret up to rotation and H2 null sets, the only 
{A, oo, 0) minimizing cones with vertex 0 in Ä2GR3) besides the members ofG{39 2). 

(b) Suppose Q cz R\ 8 > 0, JJ r~lfi{ry2 dr < oo, ReR2{0) and R is {A, Ö, fi) 
minimizing. Then spt H2 f! R = M U C U A where MeM2{Q), CeMi{0), 
D G MQ{Q);for each ceC9M\J CeTc{Y); for each deD9 M U C [} Be Td{T). 

EXAMPLE. Let B = {x G R2m : £ £ i xf *= S?=m+i *? = V2/2} and let C = {tx: 0 

^ / ^ 1 and je G B}. 

THEOREM (BOMBIERI, D E G I O R G I , GIUSTI) . If m = 4 ,5 ,6 , ••-, f/ze« H^-^C) < 

H2m~l{R) whenever R e A2m-i(-R2w), ^ is compact, R cannot be retracted on B and 
R is not H2m~l almost equal C. 

COROLLARY. If m = 4 ,5 ,6 , •••, and M e üf2w-i(jR2w) has boundary B, then 
d{A; M){g) < 0forsomege^{R2m) with spt g Ç] B = 0 . 

LEMMA (SIMONS). Suppose m = 2, 3. Then d{A; C){g) = 0 whenever g G %{R?m) 
û«rf spt g fi B = 0 . However, there exists g e # ,CR 2 O T ) with spt g f| 2? = 0 MCA 
that{d/dt)2H2*»-i[ht{C)]\t=Q < 0, whereht{x) = x + tg{x)for{t9x)eR x R2*». 

THEOREM. Suppose n = 3 ,4 ,5 ,6 , 7. Suppose B e Mn~i{Rn) is compact. Among all 
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M G Mn~\{Rn) with boundary B9 there is at least one which minimizes Hn~l measure. 
Any such manifold is analytic away from B and {smooth) analytic at B ifB is {smooth) 
analytic. 

From the first theorem we learn that singularities arise even in codimension 1 
minimizing problems. From the corollary we see that a singular extremal, unlike a 
smooth extremal, need not locally minimize. 

Some theorems about the Euler-Lagrange operator. 

INTERIOR REGULARITY THEOREM (ALLARD). Whenever 0 < e < 1 and k < p < 

oo there is 7] > 0 with the following property: If Q = {x:\x\ < l}9 R e Rk{0)9 

0 G spt J/* fi R> H*(JR) ^ 0 + ?)«(*) and \\S{A;R)\\P ^ 7) then M= {x:\x\ < 
l-e}r\spt{H*(}R)eMk{Q)> H*{M ~ R) = 0 and \\MX - Ma\ i% e\x - a\i~*'P 
whenever x9aeM. 

Roughly speaking, one might say that if R is like a A>disc in area and generalized 
mean curvature, it is like a &-disc in the C}_Ä//, topology. We have a relative ver
sion of this theorem in which the model is a half disc instead of a disc. If B G 
Mk-i{{x:\x\ < 1}), 0 < R < oo, we say B is of reach R if, whenever b G B, V is 
normal to B at b and | v | = R, the ball {x : | x - {b + v) \ < R} does not meet B. 

BOUNDARY REGULARITY THEOREM (ALLARD). Whenever 0 < e < 1 and k < p 

< oo there is rj > 0 with the following property: If Be Mk-i{{x:\x\ < 1}), B is 
smooth, B is closed relative to {x:\x\< l}90 e B9 Bis of reach l/7j9Q = {x:\x\<l} 
~ B9ReRk{Q ~ B)9 distance{09 spt H* Ç] R) g yj9 H*{R) ^ (1 + 7J)a{k)/2 and 
\\5{A; R)\\p g v then M = {x : \x\ < 1 - e} fl spt(#* (] R)e Mk{Q)9 H*{M - R) 
= 0, M is a C1 manifold with boundary B f) {x:\x\ < I — e} in{x:\x\ < 
1 - e} and \\MX — Ma\ ^ e\x - a\l~k/P whenever x9 aeM. 

It is not known for what class of integrands these theorems are true. In dealing 
with the area integrand it is extremely useful to study ö{A9 R){g) where g{x) = 
<p{\x\)x for x e Rn because one obtains thereby information about 
r~kHk{R fl {x : \ x | < /*}) as a function of r. Little is known about how this quantity 
changes in terms of 5(0; R) when 0 is not the area integrand. 

Does every compact Riemannian submanifold contain a closed submanifold of 
everywhere zero mean curvature having a given dimension? The answer is not 
known in general. Using Morse theory methods Almgren has proved the following. 

EXISTENCE THEOREM. Suppose N is a compact Riemannian manifold and 0 < k < 
dim N. There are a positive integer y, and RÌ9 •••, R^ e Rk{N) such that Rt- = 
spt(/7* n Ä,) ^ 0, 1 è i ^ pt ;B1 ZD ... 3 Rp and S? = 1 0{A ;Jl,) = 0. 

Let us now take RÌ9 •••, ^ as in the conclusion of the existence theorem. We 
would like to apply the interior regularity theorem at Hk almost all points of Rx 

but cannot since we do not know if 8{A ; R{) = 0. Since the R{ are closed, simple 
point set theoretic considerations allow us to conclude that d{A ; R{) = 0 near the 
points of dense subset of Ri. Thus for some M G Mk{N) we have that Closure M 
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= Ri. It is our hope that some recent deep unpublished work of Almgren will be 
carried to the point where one can conclude that Hk{Ri ~ M) = 0. 

It has been know for some time that, in case k = 1, one can take p. = 1 and 
R\ e M\{N) in the conclusion of the existence theorem. Very recently, this result 
has been extended to the case k = 2, n = 3. 

THEOREM (PITTS). Suppose dim N = 3. There is M e M2{N) such that M is closed 
andö{A;M) = 0. 

The theorem is proved by combining the proof of the existence theorem with 
the interior regularity theorem and some classical 2-dimensional differential 
geometry. 
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Free Boundary Problems in the Theory of Fluid 
Flow Through Porous Media 

Claudio Baiocchi 

A. Introduction. It is well known that variational inequalities, and in particular 
inequalities with obstacles, give rise to free boundary problems9 the free boundary 
being the boundary of the "coincidence set" ; and conversely in some free boundary 
problems the free boundary can be obtained as the boundary of the coincidence set 
for the solution of a variational inequality (see [22]; and the articles in these 
PROCEEDINGS of Kinderlehrer [21] and Lions [23]). 

However, in many concrete free boundary problems, the solution cannot be 
directly seen as the solution of a variational inequality (see [23] again, in particular 
§3); and this is the case of the free boundary problems connected with the fluid 
flow through porous media. In order to study this type of problem I introduced 
in [2] a change of unknown functions which still enables one to see the free boundary 
as the boundary of the coincidence set for the solution of a variational problem; 
more precisely, by means of this transformation, the free boundary problem is 
reduced to one variational inequality in the simplest cases (see [2], [5], [6], [7], [9], 
[24], [25]); into a family, depending on a real parameter, of variational inequali
ties, in more complicated situations (see [5], [6], [7], [13], [14], [26], [28]); and into 
a #wflM-variational inequality in the general case (see [3]). 

Here we will limit ourselves to describe the transformation for some free bound
ary problems arising from hydraulics; however the method seems to have more 
general applications. It has been adapted to problems of fluid dynamics (subsonic 
flow around an obstacle, see [11], [12]) and of thermodynamics (a Stefan-type prob
lem, see [18]). We will also limit ourselves to stating theoretical results for our 
problem; however we want to point out that the method is very well adapted to the 
construction of numerical solutions: Indeed it suggests algorithms which are 
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justified from the mathematical point of view and which compete very well with the 
ones already known1 both in simplicity of programming and in speed of execution 
(see [4], [6\9 [7], [14], [15], [16], [28]); although in many cases (see [6], [7], [13], [14], 
[28]) some theoretical results have been obtained by using numerical analysis, say 
by passing to the limit on approximate solutions. 

B. The physical problem. Two water reservoirs, of different levels, are separated 
by an earth dam; water flows from the highest level to the lowest one; and we look 
for the quantities (like flow region, streamlines, velocity, pressure, discharge,...) 
associated with the motion. 

We will limit ourselves to the case of a homogeneous isotropic dam, on a hori
zontal impervious basis, for a steady, irrotational, incompressible and bidimen-
sional2 flow; moreover we neglect capillarity and evaporation effects. However 
the method has been adapted to more general situations like variable permeability 
([5], [9]), sloping basis ([5], [13], [14]), evolution problems [27], tridimensional dam 
[25], evaporation [24] ; problems like infiltration from a channel [26] and presence of 
many liquids with different densities3 [5] can also be treated. 

We will suppose that the cross section D of the dam has the form 

(B. 1) D = {{x, y)\a<x<b;0<y< Y{x)} 

where a < 0 < b9 Fis a "regular" function, e.g., 

(B. 2) Y{x) is C2 and concave on [a9 b] 

and, for a suitable c with 0 < c < b* we have 7(0) = yh Y{c) = y2; yt-denoting 
the heights of the reservoirs., 

>* A = {a, 0) x = 0 x = c B = (b, 0) 

The problem is usually5 stated as follows : We look for a subset Q of D and for a 
function u{x, y) such that 

(B.3) Au = 0 in Q {A = 32/3x2 + 3 W ) ; 

^ee, e.g., [17] for a survey on numerical treatments of free boundary problems. 
2I.e., along the direction orthogonal to the figure the dam is infinitely extended and has a 

constant section. 
3E.g., fresh and salt water in a coastal aquifer. 
4A case where ECB is vertical, so c = b, will be treated in §D. 
5See, e.g., [1], [8], [20]. Q is the flow region; rf, rs are respectively the "free line" and the "seep

age line"; u(x, y) is a "potential velocity", say the velocity V of water in Q is proportional to the 
gradient of u: V— — kS/u (k being the permeability coefficient). For the physical meaning of 
(B. 3), • • -, (B. 7) see [1], [8], [20] again ; (B. 8) means that there is no water coming into Q through rs. 
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(B. 4) u\AF = yx; u\BC = y2; u\Ps = y9 

where rs = dQ f]dD\FABC; 

(B. 5) u\p, = y, where rf = dQf)D; 
(B. 6) {du/dy) \AB = 0; 
(B. 7) {du/dn) \ Pf = 0 (3/3n outward normal derivative); 

in [3], in order to exclude some "nonphysical" solutions, we proposed to impose 
also the relation : 

(B.8) {du/dri)\rs^0. 

REMARK B.l. Obviously Q cannot be "any" subset of D9 e.g., setting D± — 
{{*> y)\{x9 y)eD9 a<x^ 0}, D2 = {{x9 y)e D\c £ x < b}9 D3 = {{x9 y) \ 
{x9 y) e D, 0 < x < c} and denoting by <p the "upper boundary" of Û in Z>3, say 

(B. 9) <p{x) = sup{.y | {x9 y) e Q}, 0 < x < c9 

we must have 

(B. 10) Q = A U D2 U {{x9 y) | {x9 y) eD39y< <p{x)}. 

Regularity assumptions on tp9 u and the meaning of (B. 3), •••, (B. 8) will be sum
marized in § C. 

REMARK B.2. Problem (B. 3), •••, (B. 7) is a typical free boundary problem: In a 
domain Q with boundary partially unknown we must solve a problem with "too 
many" conditions (see (B. 5), (B. 7)) on the unknown part rf of 30. 

C. Reduction to a quasi-variational inequality. We start with a definition of weak 
solutions for our problem. 

DEFINITION C.l. A couple {Q, u) is a weak solution of the problem (B. 3), •••, 
(B. 8) if 

(C.l) Q is an open connected subset of D such that, with the definition (B.9) of 
<p9 (B.10) holds ;_ 

(C.2) u 6 C°{0) R Hl{Q)9* and satisfies (B.4), (B.5) in the sense of the continuous 
functions ; 

(C.3) for any 0 e Cl{D) vanishing near AF U BC and satisfying cj){x9 Y{x)) ^ 0 
for 0 < x < c9 we have ]Q Vw- V<f> dx dy ^ 0. (Note that (C.3) contains (B.3) in 
the distribution sense and (B.6), (B.7), (B.8) in the usual variational sense.) 

REMARK C.l. Condition (C.2) is "almost optimal" because we can prove that any 
solution must have unbounded gradient in Q; on the contrary, condition (C.l) is 
very weak : From the physical point of view we could impose a hypothesis of the 
type 

(C.4) cp is continuous strictly decreasing on [0, c]; 
a weak solution satisfying(C4) will be called a strong solution. 

We perform now a change of unknown functions, setting 

6Say u is continuous on 0 and its first derivatives (in the distribution sense) are square-integrable 
onß. 
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ü{x9 y) = u{x9 y) in Q9 _ 
(C. 5) =y mD\Q; 

y 
z{x9y) = | [t — ü{x, t)] dt ini). 

o 

We can prove (for the details see [3]) that {Q, u] is a weak solution if and only if 
z{x,y) satisfies: 

(C.6) zeC\D); 
(C. 7) z\AB = 0; zyhp = y - yl9 zyÌBC = y - y2\ zyÌFBEC = 0; 
(C. 8) [0, c] 3 x *-> z{x, Y{x)) is concave; 
( C 9) â z e XDl + %Dl + XD3 • H{z - z{x, Y{x))9 

where D{ are defined in Remark B.l, %Di is the characteristic function of Di9 and 
H is the maximal monotonie graph associated with the Heaviside function.7 

REMARK C.2. Formula (C.5) gives the map {Q, u} -> z; the inverse map can be 
given in the form 

( C 1 0 ) Q = Dll)D2l) {{x9 y)eD3\ z{x9 y)> z{x9 Y{x))}9 

u{x9 y) = y - zy{x, y) in 0. 

In order to study problem (C. 6), ••-, (C. 9) we first remark that on setting 

a{u, v) = J [{ux - Y'uy)vx + {uy + Y'ux)vy - Y"uyv] dxdy V u, v e Hi{D),* 
D 

L{V) = - J vdxdy + f(l + Y'*){Y{x) - yi)v(x, Y{x)) dx 
(C. 11) DlUDl a 

+ f (1 + Y'2){Y{x) - y2)v{x, Y{x)) dx V v G W{D)? 

j{W, v) = J (V(JC, JO - W{x, Y{x))Y dxdy V v, w G H \D)9™ 

under hypothesis (B.2) on Y{x)9 we have 
(C. 12) For any We Cl{D) there exists a unique zweHl{D) with z ^ = 0 

such that, for any v G Hl{D) with v | AB = 0, we have 

ö(Z^V - zw) + y(J^, v) ^ y ( ^ *w0 + ^ ( v - zw)l 

moreover, for problem (C. 12) we have a "regularity result" : 
(C. 13) For any We Cl{D\ zweC\D)\ moreover zw satisfies (C.7) and 

so that the solutions of (C.6), (C.7), (C.9) are the fixed points for the map W -> zw. 
In other words we must solve : 

'I.e., H is the multivalued function defined by H(t) = {0} for t < 0, H(t) = (1) for t > 0, 
/f(0)= {Ä |0^Ä^1} . 

8fl(«, v) is the bilinear from associated to the Laplace operator for which the "natural condition" 
on AFECB is d/dy. 

9L takes into account the terms %Di + %Dl in (C. 9), and the nonhomogeneous conditions on 
zy in (C. 7). 

10We set t+ = t for f ^ 0 and t+ = 0 for / ^ 0; remark that H(t) is the subdifferential of t -* t+. 
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( c u ) zeHKD); z\AB = 0; 
^ } for any v G Hl{D) with v | AB = 0, a{z, v - z) + y(z, v) ^ Xz> z) + ^ 0 ; - z). 

Problem (C.14) is a quasi-variational inequality,11 and we can prove that there 
exist a maximal solution zmax and a minimal solution zmin of (C.14). Remark 
however that we do not need any solution of (C.14) (say of (C.6), (C.7), (C9)) but 
only the solutions of (C.14) which satisfy (C.8). Actually we can prove that 
(zmaxfe Y{x))) " S 0 in ]0,c[, while, in general, {zmin{x9 Y{x)))" $ 0 in]0, c[; however, 
in the family of the solutions z of (C.14) which satisfy (C.8) there exists a minimum 
element that will be denoted zmin. 

By means of these results wd get an existence theorem for weak solutions (in the 
sense of Definition C.l) of the free boundary problem; a uniqueness result, and the 
validity of (C.4), will be proved in § D for the case when "the right wall is vertical" ; 
remark that, in general, the uniqueness of the solution is equivalent to the 
validity of the relation 

( C 15) zmax = zmjn, 

while the regularity of the solution, i.e., the validity of (C.4), is a problem of reg
ularity for the boundary of the "coincidence set".12 

REMARK C.3. Our theory seems to be very well adapted to numerical computa
tions; in particular we make use of efficient and rigorous algorithms in order to 
get approximations of zmax and zmin (see [15)); numerical results suggest the 
conjecture that, in any case, (C.l5) holds. 

D. The case when the right wall is vertical. In this section we will study the prob
lem assuming that ECB is vertical, say c = b and ECB = {{c9 y)\0 ^ y ^ j ^ } . 

Let us first remark that in this case, for the strong solutions, we have 

(D. 1) J ux{x91) dt is constant (a. e.) on [0, c]. 
o 

In terms of z this relation gives 

(D. 2) iq:z{x, Y{x)) = z{E) + q{x - c) V x e [0, c]; 

moreover some of the oblique derivative conditions in (C.7) become tangential, so 
that we get 

(D.3) z\AB = 0; z\BC= y ' - ^ y ; z\CE=-y\l2 

and from (D.2), (D.3) (with an unknown q\): 

(D. 4) z(x, Y(x)) = - G*/2) + q(w-c) Vxe[0, c]; 

nQuasi-variational inequalities have been introduced in [10] in order to study some impulsive-
control problems ; also in this case it was a free boundary problem (see the article of J. L. Lions in 
these PROCEEDINGS [23]). 

12For this problem, in general, see the article of Kinderlehrer in these PROCEEDINGS [21]; for a 
result related to infiltration problems see [19]. 
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moreover we still have 

(D. 5) z,ljr = y-yh 

(D. 6) z„„ = 0. 

Suppose now that q is known; on setting 

Kq = {v \veHW, V\AB = 0; v|BC = (j* - 2 W ) /2 ; 
(D. 7) v | CE = - ^1/2; v(x, Y(x)) = - y\\2 + q(x - e) (Ó £ * ^ c)} ; 

Ä(v) = f ((v + rf/2) - q(x - c)y dx dy, 
Dz 

we still can put the problem (C.6), (C.7), (C.9) into a variational form: 

(D. 8) zeKq9Vve Kq, a{z9 v - z) + jg{v) ^ jq{z) + L{v - z) 

{a{u9 v) and L{v) being similar to the ones defined in (Cil)); (D.8) contains (D.3), 
(D.4), (D.5), (C.9); moreover (C.8) is obviously satisfied (see (D.4)); so that, in 
order to solve (C.6), • • -, (C.9) we only need a value q* of q such that the correspond
ing solution zq* of (D.8) satisfies (D.6), (C.6). In [5], [13] it is proved that such a 
q* exists and is unique; moreover zq* is such that the corresponding <p defined 
through (C.9), (B.9) satisfies (C.4); so that we have an existence and uniqueness 
theorem for strong solutions. 

We can also prove that in this case the procedure of § C gives zmax = zmin = 
zq*\ this result can be regarded as a uniqueness and regularity theorem for the 
quasi-variational problem. 

Finally we consider a more particular case, assuming that D is a rectangle: 
D - ]0, c[x]0, Ji[. In this case also (D.5) is a tangential condition; from (D.3), 
(D.4), (D.5), z being continuous, we can deduce 

>.10) z U - ( ^ - 2 w ) / 2 1 q = 0* - yl)/2c, 

ö that the values of z are known on the whole dD. Let g{x, y) be a function defined 
n 3D and assume the same values of z; on setting 

(D.ll) K={v\veHKD);v\dD = g} 

we can write the problem in the form : 

zeK, V v G K, a{z, v — z) + J (v — g{x, y{))+ dx dy 

( D ' 1 2 ) ^i(z-g(pc,yù)+dxdy 
D 

where a can now be any bilinear form associated to the Laplace operator; for in
stance we can choose a{u, v) = j"D Vw-Vv dx dy, and in this case (D.12) is equiva
lent to : 

zeK;z minimizes on Kthe functional /given by 
y 13 ) J{v) = -f J | Vv|2 dxdy + \{v- g{x9yi)Y dx dy. 

L D D 

We still have that the (unique, q being known; see (D.10)) solution z of (D.12) 

file:///veHW
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(or (D.13)) is regular and satisfies (D.6); and we can reach a conclusion as in 
the previous case (for details see [2], [5]). 
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On a Class of Fuchsian Type Partial 
Differential Operators 

M. S. Baouendi* 

We shall mainly discuss in this article a characteristic local Cauchy problem for 
differential operators of the following form: 

(1) P{t, x, Dt, Dx) = t*D? + S aPia{t9 x)DPtD% 

where k is a nonnegative real number, t e R, x e Rn, aPtCC being defined in a neigh
borhood of 0 in Rn+1; the initial surface is {t = 0}. 

It is easily seen that no natural Cauchy problems are "well-posed" for such 
operators (1). We need some restrictions. We first define the notion of Fuchsian 
weight of a differential monomial. If 

Q = a{t9 x)tlD\D« 

where a is a continuous function defined in a neighborhood of 0 in Rn+1
9 I is a 

nonnegative real number, the Fuchsian weight of Q is said to be less than or equal 
top - I. It is exactly p - I if a{09 0) ^ 0. 

A differential operator (1) is called of Fuchsian type if the Fuchsian weight of any 
aatpD{D% is less than or equal torn — k9 and is strictly less than m — k if | a \ =£ 0. 
That is to say that P can be written in the following form: 

(2) P = l*Df + S bPta{t9 x)t-DtD«; 
\a\+pt£m;0£p£m-l 

the coefficients bPtCC are continuous functions near 0 in Rn+1 and ePi(X are non-
negative real numbers satisfying ePtCC ^ p - m + k and ePt(X > p — m 4- kif 
| a 17e 0. For more simplicity, we restrict ourselves here, unless otherwise mentioned, 

•Supported by NSF grant GP-35825. The contribution of the author is in a joint work with 
C. Goulaouic (University of Paris). 
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to the case keN9ePtCCeNand we assume the coefficients bPt0C to be <g°° functions. 
If k > m9 t

k~m is a common factor so that, without loss of generality, we can as
sume from now on that 0 ^ k S m. With the assumptions made above, the opera
tor (2) can be written 

(3) P = Q + R 

where 

Q = t*Df + ^ ( x ^ - i ^ r 1 + - + am-k{x)D?~\ 
R = S S r^xco^-m+i) aPta{t9 x)DPtDx. 

0<p^m-l \a\^m-p 

We say that Q is the principal Fuchsian part of P. It is an ordinary differential 
operator in t where x is a parameter. The characteristic polynomial associated with 
(3) is 

VCL, x) = A(A - 1) - U - m + 1) + - + am-k{x)X{X - l ) . . . (J - m + fc + 1) 

and its roots, called characteristic roots, are denoted by \\{x), •••, Àk{x), Xk+i = 0, 
...,Am = /w - fc - 1. 

The first result is a generalization of the Cauchy-Kovalevsky theorem: 

THEOREM 1. Assume that the coefficients ofP are analytic functions. The following 
two conditions are equivalent : 

(i) ^(0) ${leN,l^m- k},forl^j^m. 
(ii) For any analytic functions uQ, •••, wm-Ä-i defined in a neighborhood of 0 in Rn 

and for any analytic function f defined in a neighborhood ofO in Rn+1, there is a 
unique analytic function u, defined in a neighborhood ofO in Rn+1, such that Pu = f 
andD{u{0, •) = Uj forO ^j S m - k - 1. 

If condition (i) fails, the kernel and the compatibility conditions for the Cauchy 
problems (ii) can be described. 

We shall give now a uniqueness result. We assume that the coefficients of P are 
defined in a neighborhood of 0 in Rn+l of the form ( - T, T) x Q where T > 0 
and Q is an open set in Rn. We have 

THEOREM 2. Assume that the coefficients of P are ^°° with respect to t valued in 
the space of analytic functions with respect to x. Let heN be such that Re Aj{0) < 
m - k + h for 1 ^j ^m.Ifue <g°°{{- T, T), &{())) satisfies 

Pu == 0andD{u{0, •) = 0 forO ^j ^ m - k + h - 1, 

then u vanishes in a neighborhood of "0 in Rn+l. 

The proofs of Theorems 1 and 2 are in [5] and use an abstract method for 
solving the Cauchy problem (see [20] ,[17], [19] and others). Theorem 2 is a generali
zation of the Holmgren uniqueness theorem. Let us note that, in particular in 
the case k = 0, one does not need the analyticity of the coefficients with respect to 
t, as it is done usually in classical proofs (see [14], [15]). A similar result in the non-
characteristic case is obtained also in [18]. 
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It is not possible in general to start with any distribution w vanishing for t < 0 
in the statement of Theorem 2, but one can consider "regular" distributions at 
/ = 0 and use the regularity theorem stated below (Theorem 3). 

If / G N9 we denote by VLJ{{— T9 T)9 @'{Q)) the space of distributions u defined 
in ( - T9 T) x Q such that there are m e N and v e «"(( - T9 T)9 3>'{Q)) satisfying 
u = {Dtt)

mv. If - / e N9 we denote by <£!«,((- T9 T), @'{Q)) the space of distribu
tions u such that there is w e ^5Loo((- T9 T)9 @'{Q)) a n d w = D7lw- We have: 

THEOREM 3. Let l e Zbe such that Re Xj{x) < I — m + k for any xeQ and 
1 Sîûk.If ue VLooft- T, T)9 3}'{Q)) and Pu e V°°{{- T, T), a'iß)) then u e 
V°°({- T9T)9@'{Q)). 

The proof of Theorem 3 and applications are given in [6]. Let us observe that the 
conclusion of Theorem 3 fails to be true for operators P of the form (1) with #°° 
coefficients if one does not assume that P is of Fuchsian type. 

OTHER RESULTS. I would like to mention briefly some recent results closely re
lated to the preceding ones : 

1. Alinhac in [1] and [2] studied the Cauchy problem for Fuchsian hyperbolic 
operators. He proved in particular in [2] that if P is an operator of the form (1), 
with #°° coefficients, reduced to its principal part, and if there are uniqueness and 
existence in the space of <g°° functions" vansining at t = 0 as well as all their deri
vatives, P must be necessarily of Fuchsian type. 

2. A class of singular evolution equations is studied in [3]. 
3. Helffer and Zuily proved in [13] that Fuchsian operators with fé*30 coefficients 

with k > 0 are not hypoelliptic. However if P is elliptic outside {t = 0} a "partial 
hypoellipticity" and "analyticity" might be true. This problem has been studied in 
some general cases in [4], [8], [9] and [10] extending [11] and [12] to the characteristic 
case. 

4. Some results for singular nonlinear Cauchy problems of Fuchsian type have 
been recently obtained [7]. This work is based on an adaptation to the singular 
case of some ideas of Nirenberg [16] used in the noncharacteristic case. 
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Monotone Operators, Nonlinear Semigroups 
and Applications 

Haim Brezis 

Our purpose is to discuss some recent progress in the area of monotone operators 
and nonlinear semigroups as well as some applications to nonlinear partial differen
tial equations. The first papers on this subject (by G. Minty, F. Browder, J. Leray 
and J. L. Lions, M. Visik; see [3], [8], [13] for a complete bibliography) were mainly 
concerned with the question of existence of a solution for nonlinear equations of 
Hammerstein type or elliptic type or parabolic type. These existence results are by 
now well known and I would like to describe further properties. 

Essentially we are going to consider operators in a real Hilbert space H (for the 
latest news in Banach spaces, the reader is referred to the article of M. Crandall). 
Let A be a multivalued mapping from H into H, i.e., for every u e H, Au is a subset 
of H; let D{A) — {u e H; Au # 0 } and R{A) = (J„e# ^w" ^ *s m o n o t o n e if 

(/i - h> wi - w2) ^ 0> f\ e Aul9 f2 e Au29 

and maximal monotone if A has no proper monotone extension. A characterization 
due to G. Minty asserts that a monotone operator A is maximal monotone iff 
(/ + XÄ) is surjective for every A > 0, in which case Jx — {I + XA)~l (the resolvent 
of A) is an everywhere defined contraction on H. 

A fundamental class of maximal monotone operators consists of subdijferentials 
of convex functions. Let <f>\H-+{— oo, + oo] be a convex l.s.c. function such 
that^ & -f co ; let D{<}>) = {ueH; (j>{u) < + oo} and for ueD{<j>) let 30(w) = 
{ / G H; <}>{V) — <j>{u) ^ (/, v - «), V v G H]. Then d<j> is maximal monotone. 

We recall that when A is maximal monotone then, for every u e D{A)9 Au is 
closed and convex {A°u denotes the projection of 0 on Au) and also D{A) is a con
vex set. 

© 1975, Canadian Mathematical Congress 
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1. A strange property of R{A + B). Let A and B be maximal monotone opera
tors; we have always R{A + B) cz R{A) + R{B) and in general R{A) + R{B) is a 
much larger set. However it turns out that in many cases we have "almost" equality. 
Here is a typical result in that direction. 

THEOREM 1. Let A be maximal monotone and let B = 30. Assume that 

(1) <f>{{! + M)~lu) ^ <f>{u)9 l>0,ueH. 

Then Int [R {A + B)] = Int [R{A) + R{B)] andR{A + B) = R{A) + R{B). 

SKETCH OF THE PROOF. Given/e Int [R{A) + R{B)] we would like to solve Au + 
Bu 3 f. It follows from (1) that A + B is maximal monotone (see [2]). Therefore 
there exists ue such that eue + Au£ + lfc/e B / . 

Using (1) it is easy to verify that | Aue | ^ C, \ Bue | ^ C with C independent of e. 
We have now to show that | ue | remains bounded as e -> 0. Instead of obtaining a 
bound on \us\ (as usually done) we rely on the uniform boundedness principle. 
Let r > 0 be such that B{f r) c R{A) + R{B). Given A G # with | h \ < r we have 
/ + heAv + 5w. By the monotonicity of A and 5 we get 

{Aue — Av, ue — v) ^ 0, (2?w£ — 2?w, we — w) è 0. 

Therefore (A, ue) ^ (̂ 4v - (̂M£, V) + {Bw - Bue, w) ^ C and so |we| remains 
bounded. 

In case we assume just fe R{A) + R{B)9 then we can only prove that ^/e \ue\ 
remains bounded and at the limit/e R{A + B). 

REMARK. The conclusion of Theorem 1 still holds true if (1) is replaced by one of 
the following assumptions : 

(2) Both A and B are subdifferentials of convex functions and A + B is maximal 
monotone. 

(3) D{B) = H. 
The last result can be used to solve equations of Hammerstein type. Let K be a 

maximal monotone operator with D{K) = H and let B = d<f> with D{B) = H; 
then R{I + KB) = H. Indeed for /e # , the equation u + £2?w sf can be written 
as 4̂M + £w 3 0 where Au = - ^ ( w - / ) and 1*04) = H. So IntR(,4 + £) = 
Int[l*04) -f- 1*CB)] = H. A similar result has been proved in [5] for mappings in 
Banach spaces. 

We now illustrate Theorem 1 by two examples. 
EXAMPLE 1. Consider a periodic evolution equation of the form 

(4) du/dt + <%u= f{t) on (0, T) with w(0) = u{T) 

where u{t) takes its values in a Hilbert space ffl and <% is the subdifferential of 
a convex function in «5f. It is clear that if (4) has a solution, then necessarily 

I T 

1 0 

Conversely we have 
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THEOREM 2 (HARAUX). Suppose 

^]f{t)dtelntR{@y9 
1 o 

then (4) has a solution. 

It suffices to apply Theorem 1 with H = L2(0, T; 3^)9 Au = du/dt9 D{A) = 
{ue H;u' e H and w(0) = u{T)} and B is the canonical extension of & to H. It 
is clear that R{A) + R{B) z> {fe H; T~l ft / ( / ) * G *(#)}• 

EXAMPLE 2. Consider the nonlinear boundary value problem 

(5) au = 0 on Û, 3w/3n + ß{u) sf on 3Û, 

where ß is a smooth bounded domain and ß is a maximal monotone graph in 
R x R. It is clear that if (5) has a solution then | dû |_ 1 Jao /(ö*) rfö* G J?(/3). Conversely 
we have 

THEOREM 3 (SCHATZMAN, HESS). Suppose 

^ j m J<r eint R(ß); 

then (5) has a solution. 

REMARKS. (1) In case D{ß) = [0, + oo ), ß{r) = 0 for r > 0, /3(0) = ( - oo, 0], 
the boundary condition in (5) can be written u ^ 0, du/dn - / ^ 0, u{du/dn — f) = 
0 on dû and a solution exists provided J90 f{a) do < 0 (a similar result can be found 
in [15]). 

(2) Theorems 2 and 3 are comparable to some results of Landesman and Lazer 
and L. Nirenberg (see [16]). However the techniques are totally different. 

2. Evolution equations and nonlinear semigroups. Let A be a maximal monotone 
operator and consider the evolution equation 

(6) du/dt + Au 3 0 on [0, + oo), w(0) = w0. 

We recall first a well-known result 

THEOREM 4 (KATO [11], KOMURA [12]). Given w0 G DC4), f/zere exists a unique solu
tion of {6) such that u{t) e D{A)for allt^O andu is Lipschitz continuous on [0, -f oo). 

REMARK. The same method can be used to solve du/dt 4- Au 3f{t)9 w(0) = w0, 
provided / is smooth enough. In addition u{t) is differentiable from the right at 
every t ^ 0 and d+u/dt + A°u = 0 for all t t 0 (see Kato [11], Crandall and Pazy 
[9], Dorroh [10]). If w0, û0 e D{A)9 the corresponding solutions u{t) and u{t) satisfy 
| u{t) — u{t) | ^ | M0 - ÛQ I for all * ^ 0. Thus the mapping w0 -> w(f) can be extended 
by continuity to Z>(̂ 4). We denote the extension by S{t); S{t) is called the semigroup 
generated by — A. 

A number of results about linear semigroups are still valid for nonlinear semi
groups. For instance we have nonlinear analogues of the theorems of Hille-Yosida-
Phillips and Trotter-Kato-Neveu. 
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THEOREM 5 (KOMURA [12], CRANDALL AND PAZY [9]). Let Cbea closed convex set 
in H and let S{t) be a semigroup of contractions on C {i.e., 5(0) = I, S{ti + r2) = 
S{t{) o S{t2), \S{t)u - S{t)v\ ^\u-v\and \S{t)u - u\->0 as t -> 0). Then there 
exists a unique maximal monotone operator A such that D{A) = C and S{t) coincides 
with the semigroup generated by — A. 

THEOREM 6. Let An9 A be maximal monotone operators and let Sn{t)9 S{t) be the 
corresponding semigroups. The following properties are equivalent: 

(7) V x e D{A)9 3 x„ e £>{An) such that xn -> x and Sn{t) xn -> S{t)x uniformly on 
bounded t intervals. 

{S)VxeD{A)9VX> 0, (/ + Un)~l x -* (/ + U)-1 x. 
(9) V x e D{A)9 3j:„e D{An) such that xn -• x and A%xn -» A°x. 

Related results were obtained by Miyadera and Oharu, Brezis and Pazy, Benilan, 
Goldstein, Kurtz, etc. 

3. Smoothing action and asymptotic behavior of semigroups generated by sub-
differentials. In general when w0

 G ^C^)» (6) has no "real" solution and S{t)u0 re
presents a generalized solution of (6). But in case A = d<j>9 S{t)uQ turns out to be a 
"classical" solution of (6) even for w0 G D{A). More precisely 

THEOREM 7. Let A = d<f> and let uQ e D{A). Then u{t) = S{t)uQ e D{A)for all t > 0, 
u{t) is Lipschitz continuous on every interval [d , + oo) {5 > 0) and u{t) satisfies 
(6). In addition one has 

(10) \A»S{t)uQ\ = i j * (f) £ I-1if0 - u{t)| for all t > 0. 

For the proof see [2] (estimate (10) is new). 
Since S{t) maps D{A) into D{A) for positive t we can say that S{t) has a smoothing 

action on the initial data. To illustrate the smoothing action, consider the following 
nonlinear heat equation 

n n du/dt - Au + ß{u) 3 0 on ûx{09 + oo), 
u = 0 on 3flx(0, + oo), u{x9 0) = uQ{x) on Û9 

where ß is a monotone function (or graph). Given u0 e L?{û)9 the solution «(-,/) 
lies in the Sobolev space H2{0) for every t > 0. 

REMARKS. (1) In fact (11) has a stronger smoothing action. Starting with w0
 G 

Ll{û) one can show that u{-91) e W2-P{û) for everyp < + oo and t > 0. The proof 
is quite technical and is not a consequence of an abstract result about smoothing 
action in Banach spaces. 

(2) When ß is not smooth there is also an "unsmoothing" action of S{t) (a typi
cally nonlinear phenomenon, well known in variational inequalities) : Even if 
UQ e C°°, it may happen that w(-, t) $ C2. 

Suppose now <f> achieves its minimum and let K = {veH; ${v) = Min <f>}. The 
trajectories S{t)uQ are orthogonal to the level curves of <f> (as in the steepest descent 
method) and it is natural to conjecture that S{t)uQ converges to some limit in K 
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as t -> H- oo. So far it is not known whether the strong limit exists. There are only 
partial answers : 

(a) For every w0 G D{A)9 S{t)u0 converges weakly as t-+ + oo to some limit in K 
(R. Brück), 

(b) If (/ + A)'1 is compact (i.e., maps bounded sets into compact sets), then 
S{t)uo converges strongly as t -> + oo. 

(c) If 0 is even, then S{t)u$ converges strongly as t -+ + oo (R. Brück). 

4. Interpolation classes. Let A be maximal monotone; for 0 < a ^ 1 and 1 ^ 
p g + oo define 

u0eD(A); (I + M)-iWo -
C 

- " 0 (o,,4)}. ifa * — iwncx/i/ii. ._ e U& — L/P\ 

When A is a linear operator the ^ a , / s coincide with the interpolation spaces be
tween D{A) and H of Lions and Peetre [14]. These intermediate classes (not spaces !) 
can be characterized in various ways (D. Brezis [1]): 

(a) The trace method. 

<%atP = {v(0);v G C([0,1]; H) with fi-« \dv/dt\ e L£, fi-«\A*v\ e 14}. 

(b) The methodK. Let#(f, w0) = I n f ^ ^ ) {|v - uQ\ + r |^°v |} ; then 

««. p = {"0 e D{A); r«K{t9 w0) G L£}. 

(c) The semigroup method. Let S{t) be the semigroup generated by — A ; then 

^ = {u0em-,\muo
t-

Uo\*Lt} 
To prove the last result one can use the following simple inequalities : 

\S{t)uQ - i/o I ̂  3|J>o - w0|, 
( 1 2 ) |/,«o - i/o I ̂  \ J |5(r)i/0 - i/o I A . 

In case A — d^ one has also 

(13) I/.i/o - »oI £ (1 + 2-i /2) | £(, ) W o _ WQ|. 

Rephrasing this fact we can say that if we consider the singular perturbation prob
lem uB + BAUB = UQ and the evolution problem du/dt + Au = 0, w(0) = w0, then 
the rate of convergence of | ue — w01 as e -> 0 is the same as the rate of | u{t) — uQ | as 
t -> 0. When /4w = — du + \u\k sign w one can describe &a,pin terms of Besov and 
Lorentz spaces. 

5. Compact supports. We conclude with a surprising property which is specific 
to nonlinear problems and has no analogue in the linear theory. Consider the evo
lution equation 

(14) du/dt + Au3f on (0, + 00), w(0) = u0. 
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Question. Under what conditions does u have a compact support, i.e., u{t) = 0 
for t ^ TIA necessary condition is that/(f) e AO for t ^ T9 but in general this is 
not a sufficient condition. If A is linear it just means tha t /has a compact support, 
and of course this will not imply that u has a compact support. When A is mul
tivalued one can give a sufficient condition which is very close to the necessary 
condition. 

THEOREM 8. Suppose there is some p{t) ^ 0 such that B{f{t)9 p{t)) cz AOfor t ^ f0 

and j£ p{t) dt = oo. Then the solution ö / ( 1 4 ) has a compact support. 

We illustrate this fact by an example. Suppose g{t) is the given trajectory of a 
gangster chased by a policeman p{t). The strategy of the policeman is simple: He 
runs with speed F (as fast as he can!) towards g{t). Thus we have 

i.e., dp/dt e A{g{t) - p{t)) where Au = Vu/\u\ for u ^ 0 and AO = 5(0, V) (so that 
A is maximal monotone). Let u{t) = g{t) — p{t), and we get du/dt + Au 3 dg/dt. 
Here Theorem 8 tells us that if \dg{t)/dt\ ^ V and Jg° V - \dg{t)/dt\ dt = -h oo, 
thenp reaches g in a finite time. 

A similar property holds true in nonlinear parabolic equations even though we 
cannot apply Theorem 8. Consider for example l 

(15) • ^ - Au + ß{u) 3f on Rn x (0, + oo), u{x9 0) = uQ{x) on R»9 

where ß is a monotone function with a jump at 0, /3(0) = [T~9 T
+]. 

In [6] we show that if T~ + e S f ^ T+ — e for some e > 0, and if w0 h
a s a 

compact support, then (15) has a solution with compact support (both in x and f). 
If «o does not have a compact support, but u0 -» 0 at infinity then, for every f > 0, 
w(-, f) has a compact support in x. In other words the support of u "shrinks" in
stantaneously (in sharp contrast with what happens for the linear heat equation!). 
Similar results for elliptic problems are considered in [4]. The original motivation 
for looking at the compact support property came from the study of the flow past a 
given profile. In [7] we show that in the hodograph plane the problem can be stated 
as a free boundary value problem which turns out to be solvable by the techniques 
of variational inequalities. The size of the support corresponds to the maximum 
velocity of the flow and plays an important role. 
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Semigroups of Nonlinear Transformations and 
Evolution Equations* 

Michael G. Crandall 

Over the past several years a substantial theory concerning certain nonlinear 
evolution equations in general Banach spaces has been developed which recent 
investigations indicate will provide a convenient framework for the treatment of 
many interesting problems in nonlinear partial differential equations. Here we give 
a brief report on some of these developments. 

No attempt is made to state the sharpest known results as this would involve 
distracting technicalities. The heart of the matter is illustrated by more easily 
stated cases which are sufficient for most applications. 

A. The general theory. Throughout we denote by J a subinterval of R9 by X a 
Banach space with norm || ||, by A a mapping A : X -+ 2X and by/an element of 
L\QC{J9 X). We consider the equation 

(Ef) du/dt + Au 3 f. 

A function u :«/ -> X is a strong solution of (E )̂ on, / if w e C{f9 X)9 u is absolutely 
continuous and differentiable a.e. on compact subintervals of int # and du{t)/dt + 
Au{t) 3f{t) a.e. on J. A weak solution u of {Ef) on ̂  is a function u e C{J9 X) for 
which there is a sequence {[un9 /„]} such that un is a strong solution of (E/B) on J 
and [un9fn] -> [u9f] in C{J9 X) x L\QZ{J9 X). 

For existence results we will have to restrict A. Let T: X x X -> R be defined by 

z{x,y) = lim X-\\x + Xy\ - \\x\) = inf*-i(||* + Xy\\ - \\x\). 

Then % is upper semicontinuous and ||* + 'ky\ ^ ||x| for 1 > 0 iïïz{x9y) ^ 0. The 

•This work was supported in part by NSF grant GP-38519. 
© 1975, Canadian Mathematical Congress 

257 



258 MICHAEL G. CRANDALL 

operator A is accretive if T{XI — x2, y\ - ^2) ^ 0 whenever y{ e Ax{ for i = 1,2. 
Equivalently, A is accretive iff the operator Jx = {I + XA)~l defined for X > 0 by 
Ji{x + Xy) = x if y e Ax is a contraction mapping R{I -f >U) = {A: + Xy :x e X, 
y e Ax} into X. The following is a basic existence theorem: 

THEOREM I. Let A be accretive, x0 e D{A) and R{I + XA) 3 D{A)for X > 0. 
Then the unique solution ue{t) = /p/^+D xQ of 

m M) - we(* - e))/e + Aue{t) 3 0 fort^O, 

converges locally uniformly as e I 0. Moreover, ifSA{t)x0 = Ume_0+ Jrp/e]+%0 /öA* 
x0 e D(y4), r §; 0, fAew »5,4(0 '•* a semigroup of contractions on D{A). 

This result was proved in Crandall and Liggett [14] by explicit estimation of the 
quantities \\jpc - Jfx\\ for x e D{A)9/i9 X > 0, n9 m e Z+. Of course, u{t) = SA{t)x0 

is supposed to be a solution of the Cauchy problem (E0), w(0) = xQ. If X is reflexive 
and A is closed, u{t) is a strong solution of (EQ) on [0, 00) for x0 e D{A) and a weak 
solution for xQ e D{A). The proof uses the inequalities 

(2) \\u{t) - x\\ - \\u{s) - x\\ g \T{X - «(a), j ) rfa 

for 0 ^ »y ^ r, A: e D{A) and j e Ax. Inequalities equivalent to (2) were established 
in [14] under an additional technical condition which was removed by Miyadera 
[22]. Unfortunately, SA{t)xQ may fail to be diiferentiable for any t ^ 0, x0 e D{A)9 

if Zis not reflexive and it is not known if SA{f)xQ is a weak solution of (E0). A 
notion of solution of {Ef) was given by Benilan for which SA{t)xQ is the unique 
solution of (E0), u{0) = xQ. Generalizing (2), u is called an integral solution of (Ey) 
on J Hue C{J9 X) and 

(3) ||w(f) - x\ — \u{s) - x\\ ^ f z{x - u{a)9y - f{a)) da 
s 

whenever s^t9x9tej and y e Ax. It is easily shown that weak solutions of {Ef) 
are integral solutions if A is accretive. Benilan's uniqueness result states that if u 
e C{^9 X) is obtained as the uniform limit of solutions of implicit difference schemes 
converging to the problem (E/), then 

(4) \u(f) - v{i)\ - \u{s) - vOOll g / z{v{a) - u{a)9g{a) - f{a)) da 
s 

whenever v is an integral solution of (E )̂ on J9 etc. This strongly generalizes (2). 
See [3] for the precise formulations and proof as well as the related notion of a 
"good" solution which is defined via (4). In particular, (1) is an implicit scheme of 
the appropriate kind and SA{t)x is the unique integral solution of (E0) satisfying 
w(0) = jc. 

Existence theorems for {Ef) are easily obtained from Theorem I. For example, if 
A is accretive and R{I + A) = X (i.e., A is m-accretive), fe Ll ([0, T]9 X)9 x e D{A)9 

file:////jpc
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then {Ef) has a unique integral solution u on [0, T] satisfying w(0) = x (and the 
inequalities (4)). This result was established in Benilan [2]. The existence is also 
proved in Crandall and Pazy [15], while investigating a more general time depen
dence than A{t) = A - f{t). 

The above concerns just one aspect of the general theory important for ap
plications, Namely, it provides existence theorems and a notion of solution for 
problems of the form (Ef) which may not admit any strong solutions. Among other 
types of results useful in applications are the convergence and perturbation the
orems. Convergence theorems deal with the continuity of solutions of {Ef) in A 
and have been proved by many authors (see, e.g., [3], [9], [19], [23], [25]). We take 
an example from [3]: Let An be m-accretive, fn e ^([0 , T]9 X), xn e D{An) and un 

be the integral solution of {Ef) satisfying wff(0) = xn. Let xn -> xQ and /„ -»/o 
in Li([0, T]9 X). If £w e D{An)9 £„ -+ f 0 e D{A«) implies (/ + X{An - f{t)))~^n -> 
(/ + X{A0 - / (0)) - 1£o for X > 0 a.e. / G [0, T]9 then un -+ w0 uniformly on [0, T\. Useful 
general perturbation theorems valid in unrestricted spaces are rare. A nice one 
states that A -j- i?is m-accretive if A is m-accretive and B : X -* Z is continuous and 
accretive. This was proved by Webb [29] if A is linear, Barbu [1], and the simplest 
proof is in Pierre [26]. For another result see [11]. It is probably the case that most 
useful perturbation theorems in nonreflexive spaces will involve hypotheses (max
imum principles, etc.) reflecting a particular class of applications as in [5], [10], and 
[18]. 

There are many individual contributors to, and interesting results in, this area 
we are not able to mention. In particular, we have limited ourselves to results which 
are valid in nonreflexive spaces X. A good bibliography for the subject through 1971 
and a commentary is available in the book of Brezis [8]. The best source covering 
arbitrary Banach spaces is the paper of Benilan [3], which treats the topics we have 
touched upon and much more in considerable generality. A couple of further 
remarks may make the earlier literature more intelligible. Considerable interest 
was attached to the nature of the map A -• SA and infinitesimal generators of 
semigroups of contractions. A report on the map A -> SA is given in [12]. Benilan 
has shown that the situation here is improved if one deals with the map assigning 
to A the solution operator associated with the family of problems (Ef) as / is 
varied rather than just SA (at least if A is m-accretive). The question of whether 
there is a useful notion of an infinitesimal generator such that each semigroup of 
contractions has a nontrivial one is not settled. (It is known that ^-valued notions 
are too restrictive.) See, however, Neuberger [24]. As a carry-over from studies in 
Hilbert spaces, £|| | 2 and its directional derivatives appear in many papers rather 
than || || and the function called «r- here. It is now clear that || || and z are the most 
convenient to use in general spaces, but notation and practice here vary and each 
paper must be checked for its conventions. Finally, we remark that other notions 
are associated with the term "weak solution" besides the one used here. See, e.g., 
the discussion in Oharu [25] and the works referenced there. 

B. Applications. The study of applications of the general theory is very young and 
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developing rapidly. Thus we merely intend to indicate something of its current 
nature and scope. Aside from the first case below, which is discussed in more detail, 
we do so by means of reference to selected examples. 

We begin with the conservation law 

(CL) ut + 2 * iplu) = ut + <p{u)x = 0 
i—l OXj 

where (p:R-> RN. It is well known (see, e.g., [21]) that the Cauchy problem 
(CL), w(0, x) = uQ{x), does not admit global (in t ^ 0) continuous solutions in 
general, no matter how smooth <p and w0 may be; and that if (CL) is understood 
in the sense of distributions then solutions are not unique. Kruzkov [20] gave a 
notion of solution of equations generalizing (CL) and proved existence and 
uniqueness theorems for the Cauchy problem. In the case of (CL), Kruzkov 
interprets the equation as the family of inequalities 

OO / 

U(Ht,x)-k\ft(t,x) 
(5) OB»V 

+ siga(u(t, x)~k)Z {f,{u{t, x)) - (p,{k))fXi(t, x)) dxdt^O 
i=1 / 

for fe ^((0, oo) x RN)9 f^09keR. The relation of (CL) to the abstract theory 
was suggested in Quinn [27] and established in [13] (and in a special case by Flasch-
ka [16]). If u9 <p{u)9 (J) e L\0C{RN) we say divKcp{u) = <f> if 

(6) J sign(W(*) - t ) ( s ( # W ) - <pmU*) + #*)/(*)} dx^O 

for fe @{R"), f^09keR. Let D{A) = {u e D{RN) fl L°°{R") : div*p(w) = </> 
for some 0GLl{RN)} and Au = divK<p{u) if ueD{A). It was proved in [13] that 
R{I + A) 2 Ll fl L°° if <p is continuous. If also lim supr_0 |p(r)|/M < co, it was 
shown that A is accretive in L^JÎ^). This last condition was weakened to 
lim r_o|^) | / | '" |w~1 ) /^ = 0 by Benilan who also proved that D{A) is dense in 
Ll{RN). It then follows that the closure Ä of A is w-accretive in Ll{RN). Moreover, 
the evolution associated with the operator Ä agrees with Kruzkov's interpretation 
(5) of (CL). This example shows, in particular, that the difficulties associated with 
interpreting the solutions of the abstract equation are not due to an irrelevant 
generality. 

The works of Benilan [4] and Oharu [25] treat the technically more complex 
case where ç = <p{x9 u) depends on x. It should be mentioned that all these treat
ments use Kruzkov's ingenious arguments. 

Other equations give rise to /w-accretive operators in L1 spaces. Examples of a 
nonlinear hyperbolic system and a nonlinear diffusion equation were given in 
[12]. The latter topic has had considerable development. Initial boundary value 
problems for equations of the form ut — A<p{u) = 0, where <p is nondecreasing and the 
boundary conditions are nonlinear, are treated in [2]. The results of Brezis and 
Strauss [10] give rise to a related class of examples. Consideration of the A associated 
with ut — A(p{u) = 0 in Ll{RN) leads to interesting problems in anaylsis [7]. 
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Kurtz [19] uses the theory in an interesting way. Let j£? = {u e Ll{R) :u ^ 0}. For 
each a > 0 there is an accretive operator Aa in [L^R)]2 with D{Aa) = S£ x <£9 and 
R{I + XAa) •=> ££ x if for X > 0 which governs the evolution in i f x i f associated 
with the system ut + aux + a2{u2 - v2) = 0, v* - avx -j- a2(v2 — w2) = 0. Kurtz 
shows that there is also such an operator A in $£ corresponding to the equation 
wt — i(log w)xx = 0. (This last equation does not fall within the scope of the results 
mentioned above due to the fact that 0 is not in the domain of the log function.) 
Finally, using his convergence theorem, he proves lim^ooS^X^OIwo» wo] = 
[SA{t)uQ9 SA(t)u0] for uQ e j ? . 

Spaces of continuous functions are the natural setting for some problems. Equa
tions of the form cp{ut) — Au = 0 give rise to w-accretive operators in CQ{D) and 
L°°{Q) as is shown in Benilan [6] and Konishi [17]. Tamburro [28] obtains an m-
accretive operator A in the space of bounded uniformly continuous functions on 
RN corresponding to the equation ut + f{Vu) = 0 where/ :RN —> JB is convex. 
Similarly, the expression/(Vw) — Au defines an w-accretive operator in this space 
even if / i s not convex. 

For other examples, the reader can consult the works of Konishi referenced in 
[17]. As mentioned, the study of applications is just beginning, and there are many 
open questions concerning both known examples and what other equations might 
fall within the scope of the theory (or suitable extensions). For instance, (1.3) and 
(1.4) of Lax [21] correspond to m-accretive operators. Does (1.5)? In the nonlinear 
hyperbolic system of [12], the associated accretive operator is described as the 
closure of a relatively simple operator. What is the domain of this closure? And 
so on. There is much to be done here. 

ADDED IN PROOF. The bibliography and text of the paper On the relation of 
the operator d/ds + d/dz to evolution governed by accretive operators, by M. G. 
Crandall and L. C. Evans, which will appear in the Israel J. Math., provide 
access to some interesting results which have appeared since the preparation of 
this paper. 
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Applications of Fourier Integral Operators 

J. J. Duistermaat 

Fourier integral operators, for the calculus of which I refer to Hörmander [17], 
have been applied in essentially two ways: as similarity transformations and in 
the description of the solutions of genuinely nonelliptic (pseudo-) differential 
equations. 

The first application is based on the observation of Egorov [12] that if P9 resp. 
g, is a pseudo-differential operator with principal symbol equal to p9 resp. q9 and 
Po A = AoQ for an elliptic Fourier integral operator A defined by the homogeneous 
canonical transformation C, then p = #°C. This idea, or rather its local version 
in conic open subsets of the cotangent bundle of the manifolds on which the 
operators are defined, is a much more powerful tool for bringing operators locally 
into standard form than merely by coordinate changes in the base space. It has been 
used not only to reduce the study of wide classes of operators to simple ones like 
3/9*1, 3/3*1 + ?'3/3*2> 3/3*i + ?*i3/3*2> but also in more subtle problems it has 
been a helpful trick. A rather complete impression of this sort of application can 
be obtained by looking at the papers of Egorov [13], [14], Nirenberg and Treves 
[26], Hörmander [18], Duistermaat and Hörmander [7], Sato, Kawai and Kashi-
wara [27], Duistermaat and Sjöstrand [8], Sjöstrand [28], Boutet de Monvel [3], 
and Weinstein [29]. 

In this respect the following conjecture of Singer seems interesting. Let Lm{X) 
denote the space of pseudo-differential operators of order m9 Lr°°{X) the space of 
smoothing operators. I restrict here to operators for which the total symbol has an 
asymptotic expansion in homogeneous terms of integer order. If A is an elliptic 
Fourier integral operator defined by a canonical transformation C: T*Y\0^> 
T*X\09 then P H* A~lPA is an isomorphism of filtered algebras: 
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(J z,»(jr)/L-°°(Jso -> (J L»(y)/L-°°(y). 

If moreover .4 is invertible, then P *-* A~lPA is an isomorphism of filtered alge
bras: \Jm^z D»{X) -> (J^z ^ ( ^ ) . 

Now the conjecture is that conversely each isomorphism of filtered algebras of 
pseudo-differential operators is equal to conjugation by a Fourier integral operator. 
In this direction Singer and I have proved : 

THEOREM. Let Xbe compact, Jr71(T*Ar\0, C) = 0. Then: 
(a) Any isomorphism of filtered algebras 

U L»(X)IL-°°(X) -+ (J L«(F) /L- (y ) 

is either equal to conjugation by an elliptic Fourier integral operator, or by one pre
ceded by the automorphism of {jmeZ Lm{X)/L~°°{X) sending the symbol £ j Pj{x9 £) 
into the symbol 2 / e~"Ä','v' Pj{x9 — £). Here Pj{x9%) denotes the homogeneous term 
of degree j in the asymptotic expansion of the total symbol. 

(b) Any isomorphism of filter ed algebras: Umezu{-oo} L
m{X) -> (Jwezu{-oo> Lm{Y) 

is equal to conjugation by an invertible continuous linear operator A: C°°{Y) -> 
C°°{X). 

(c) If A is an invertible continuous linear operator: C°°{Y) -> C°°{X) and A~lPA 
e Lm{Y)for every P e Lm{X)9 all m e Z9 then A is an elliptic Fourier integral operator. 

The second use of Fourier integral operators, namely as solution operators, goes 
back to the historical origin of their calculus, because in their local representations 

(1) {Au){x) = j 0<*.y.4) a{x9 y9 S)u{y) dy dS; 

the integrands ei(f>{Xtyd)a{x9 y9 S) are the asymptotic oscillatory solutions khown 
from geometrical optics and the> W.K.B. method in quantum mechanics. Contin
uous superposition of such waves resembles the construction of Huygens [19], 
and the observation that the major contributions only come from the places 
where the phase function <p is stationary as a function of S is a counterpart of his 
well-known principle. 

Lax [21] and Ludwig [22] showed that the solution operators for the Cauchy 
problem for strictly hyperbolic equations have local representations like (1), 
leading among others to results about the propagation of singularities. (For the 
case of characteristics of constant multiplicity, see Chazarain [4].) 

Then in [16] Hörmander developed a local theory of Fourier integral operators 
to give a description for small 11\ of the unitary operator U{t) = e~itp = solution 
of the hyperbolic equation (i_13/3r + P)°U = 0, U{0) = I. Here P is a positive 
elliptic pseudo-differential operator of order 1 on a compact manifold X. From it 
he obtained the estimate 

(2) t{j;Xj g X} = {!%)-« vol {B*X)-1« + 0{X^)9 X -> oo, 

for the spectrum Ai ^ A2 ^ - of P. Here B*X = {{x9 £) e T*X;p{x9|) g 1} and 
p denotes the principal symbol of P. The improvement over previous results was 
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that the error term is the best possible for general operators P. 
However from the global calculus of [17] it follows that U9 regarded as an 

operator from C°°{X) to C°°{R x X)9 is a Fourier integral operator of order 
- j - defined by the canonical relation 

(3) c = {{{{t9 x)9 {<u9 £)), {y, 5?)); r + P{X9 o = o, (*, © = ny, y)}. 
Here P is the time / flow of the Hamilton vector field Hp{= 2 y 3/>/3£y3/3*y ~ 
dp/dXj-d/dttj on local coordinates) defined by/?. 

In particular U{t) is for each t a Fourier integral operator of order 0 defined by 
the canonical transformation 0f

9 a fact which can also be proved by first showing 
that eitPQe-itP G Lm{X) if QeLm{X) and then applying the theorem above. 
This shows also that t »-> e~itp cannot be a smooth family of Fourier integral 
operators if the order of P exceeds 1, because then 

^{e«pQe-»p)\t=Q = i[P9Q] 

is of order > m for most Q e Lm{X)9 so the order of eitpQe~itp
9 if it were pseudo-

differential operators, would blow up immediately. 
The function 

(4) t i-> a{t) = Trace U{t) = 2 er*** 
def J 

is a tempered distribution on R and from the global characterization of U as a 
Fourier integral operator it follows that it can only have singularities at the 
periods of periodic ^-solution curves. The singularity at a period Tcan be tested 
by multiplying a with a smooth cut-off function p9 having its support in a small 
neighborhood of T9 and then investigating the asymptotic behaviour of the inverse 
Fourier transform 

(5) S p{l - X,) = {fi * a){X) = (2*)-i J e* p{t)a[t) dt 
J 

as X -• oo. 
The analysis of the singularity at t = 0 gives back the asymptotic expansion (2) 

of Hörmander and implies (see [10]) the Minakshisundaram-Pleijel formula for 
S y exp(— Xjz) (asymptotics for z \ 0), as well as the statements about the poles of 
the ^-function S Xjs in Seeley [30], well known in the case that P2 = Laplace oper
ator, See also the article by Singer in these PROCEEDINGS. 

Chazarain [5] determined the nature of the asymptotic expansion for the singu
larities at the periods T ^ 0 under the assumption of clean intersection of the 
graph of the Hp-üow with the diagonal. In [10] the top order terms of his expansions 
are computed in terms of the differential of the return map (Poincaré map) of the 
Hp-Üow along the periodic solution curve. There it is also shown that periodicity of 
the total Hp-üow with period T > 0 is equivalent to a strong asymptotic clustering 
of the spectrum around the points 2%k/T + ß, k = 1,2, • • •. {ß is a fixed real num
ber.) It was this clustering effect which destroyed the possibility of improving the 
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error term in (2). If not all //^-solutions are periodic (and some pathological cases 
are excluded), then the spectrum is in fact fairly evenly distributed and (2) can 
be replaced by {n > 1): 

HJ;Xj ^X} = {2IZ)-»-VQ\{B*X).X» 
C6) - {2x)~»( J sub P\ ^«-i + o{X»-l)9 X->ao. 

\s*x ) 
Here S*X = {{x9Ç)eT*X; p{x9S-) = 1}, the integration is over the canonical 
density in T*X divided by dp9 and sub P is the so-called subprincipal symbol of P. 

In the asymptotic expansions for (5) a power of i comes up due to the fact that 
the principal symbol of U is a section of a complex line bundle (called the Maslov 
bundle) over C, rather than a scalar-valued function. The results of Colin de 
Verdière [6] suggested that the integer in the exponent should be equal to the Morse 
index for periodic geodesies if P = # / 2 . The proof of this resulted in a new ap
proach to the Morse index in variational calculus; see [11]. 

If the condition of clean intersection is dropped, then the asymptotics of (5) will 
be that of more general oscillatory integrals, for which the phase functions have 
degenerate stationary points. Such integrals have been studied by Airy [1], Ludwig 
[23], and many others. Using Thorn's theory of unfoldings of singularities much 
progress in the understanding of such integrals has been made recently; see Arnol'd 
[2], Guillemin and Schaeffer [15] and the survey [9]. Malgrange [24] has given an 
exposition on the relation with the monodromy of singularities. 

In [7] parametrices and solutions having their singularities on a bicharacteristic 
strip have been constructed using Fourier integral operators, for pseudo-differential 
operators with real principal symbols having only simple zeros or complex principal 
symbols satisfying an integrability condition. 

Recently Melin and Sjöstrand [25] (see also Kucerenko [20]) developed a theory 
of Fourier integral operators with complex phase functions. They also showed 
that the projection operators on the kernel and cokernel of operators P such that 
{Pi P} 7e 0 onp = 0, constructed in [8], belong to their class. A still more interesting 
application of their calculus is perhaps the construction of solutions of wide classes 
of equations with their wave front set on the intersection with the real cotangent 
bundle of a so-called positive invariant Lagrange manifold. 

I hope that I have convinced you that Fourier integral operators now are a well-
established tool in the theory of linear partial differential equations. I am sure that 
its use will continue to have a stimulating effect on the research in this area, at least 
in the near future. 
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Elliptic Variational Inequalities 

David Kinderlehrer* 

1. The theory of elliptic variational inequalities has as its model the variational 
theory of boundary value problems for elliptic equations, but differs from this 
theory in that the competing functions belong to a convex set, rather than an affine 
space of functions. We propose to discuss here the influence of the constraints 
which define this convex set on the solution to the variational inequality. For sim
plicity of exposition, we focus our attention on several special problems of obstacle 
type. An interesting feature of such a problem is its set of coincidences, that set 
where the solution coincides with the obstacle. Also, in distinction to the solution 
of a boundary value problem, the solution to the variational inequality has a maxi
mal smoothness, regardless of the smoothness of the data. 

To initiate our discussion, we suppose given Q a Rn
9 a convex domain with 

smooth boundary dQ and cj) e C\Q) an "obstacle," that is, max0 cf> > 0 and (p ̂  0 
on dû. Denote by 

(1) K = K$ = {v : v is Lipschitz in Q9 v ^ 0 in Q9 and v = 0 on dû}9 

a convex set. We consider now 
PROBLEM 1. To find usK: $0DJUDJ{V - u) dx ^ 0 for all v e K. 

Dj = d/dxj9 j = 1, •••, n; and 
PROBLEM 2. To find ueK: 

ITr^n^pF1 Dj{y"w)dx-°forallveK-
The existence of a solution to Problem 1 was established in G. Stampacchia [36] 

and J. L. Lions and G. Stampacchia [29]. In H. Lewy and G. Stampacchia* [27] it 
was shown that ueH2tS{0) fl ChX{Q)9 1 g s < oo and 0 < X < 1. The existence 

*The preparation of this report was partially supported by ASOFR 71-2098. 
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of a solution ue H2'S{Q) fl Cu(fl), 1 ^ s < oo andO < X < 1, to Problem 2 was 
proven by H. Lewy and G. Stampacchia [28] and also by M. Giaquinta and L. 
Pepe [14]. 

The interpretation of these problems is evident: The first refers to the function 
of minimum energy in K and the second to the function of minimum area in K. 
From the abstract point of view, each of the distributions — Au and Au defined 
via the pairings 

( - Au9 Q = J DjuDJl dx9 u9 C e H\Q)9 

o 
(Au' ° = i ô + $ V « D*dx- u>c e H1,"{Q)> 

is monotone and has some continuity property. Recall that an operator T which 
maps a Banach space V into its dual V* is called monotone if {Tv — 7V, v - v') 
^ 0 for all v, v' G V. The Laplace operator has the additional property of 
coerciveness meaning that (— Av9 v) ^a[|v||2, v G Hl{Q), for an a > 0, which the 
area functional does not possess. As a result the existence theory for Problem 2 
involves finding an a priori estimate for sup | Du |. 

Let / = {x G fl: u{x) = <J){x)} be the coincidence set of the solution and T its 
boundary, the "curve" of separation. 

2. In this section we suppose that n = 2 and that (J) is strictly concave, fl strictly 
convex. Assuming that <p is also real analytic, H. Lewy and G. Stampacchia [27} 
proved that the T of Problem 1 has an analytic parametrization. Remarkably, it is 
not known beforehand in the proof of this theorem that T is even a curve. The 
proof relies on the holomorphic nature of D\u — iD2u in fl — I to extend, by 
means of an implicit function theorem, an appropriate conformai mapping. 

This method did not generalize to Problem 2, where a different sequence of events 
transpired. There, it was first shown that T7 is a Jordan curve [16]. The analyticity 
of T was then achieved by the resolution of a system of differential equations which 
connects a conformai representation of the minimal surface S= {{xÌ9 x2, x3): 
x3 = u{x\9 x2), {x\9 x 2 ) e û - /} with its harmonic, or analytic, extension. This 
idea is due to Hans Lewy, who used it to study minimal surfaces with prescribed 
or partly free boundaries ([23], [24]). Boundedness of the second derivatives Djku 
is of vital importance to execute the program of finding, solving, and identifying 
the solution of the differential equations to which we have just referred. This is 
because of its use in the proof that T is a C1 curve, a conclusion valid in both 
Problem 1 and Problem 2 assuming that (J) e C3{Q) [18]. The limitation was es
tablished in [17] for this case. That T is analytic when $ is concave and analytic in 
Problem 2 answers a question of H. Lewy [25]. 

3. J. Frehse [8] gave an elegant proof that Djku e L°°{Q) for a variation of Pro
blem 1. A general result was proved in [6] and a similar one by C. Gerhardt [13]. 
There is also other work by Frehse [9]. To explain this theorem, let fl be as in § 1 
and a{p) = {ax{p)9 •••, an{p))9 p G Rn

9 be a C2 vector field which satisfies the condi
tion: 
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For each compact C c= Rn
9 there exists a v = v{C) > 0 such that 

{a{p) - a{q)9p - q) ^ v \p - q\2 for allp9 qeC. 

Now let cp G C2(fl) satisfy <p g 0 on 3Û and / b e defined by (1). Let/G Cl{Q) and 
consider 

PROBLEM 3. To find ueK: $0aj{Du)Dj{v - u)dx ^ Jß/(v - w) dx/or all V'G # . 

In [6] it is shown that if w is a solution to Problem 3, then Djku e Lfcjß). The 
proof depends on a deep result of G. Stampacchia [35], Also in [6], using an idea 
of [4], it is proven that Au = - Djaj{Du) is of bounded variation in fl. Since the 
characteristic function of /, tpl9 may be written <pj = {Au — f)/{A(J) — / ) a.e. in fl, 
it follows that if A$ — f # 0 in fl and (]) G C 3 (û ) , then p7 is also of bounded varia
tion. Hence, in the language of DeGiorgi-Miranda (cf., e.g., [32]), / i s a Caccioppoli 
set or a set of finite perimeter. 

These results have led to generalizations of [18]; cf, [19], [20]. 

4. The existence of a solution to Problem 3 was shown in the case fl convex and 
/ = 0 in [28]. In general a relationship between/and 3 A must be fulfilled, for given 
a{p)9 just as in the discussion of the Dirichlet problem for 

(2) - Dja^Du) =finû9 u = g on 3Û 

(cf. J. Serrin [34]). S. Mazzone has proved that if the vector field a{p) is sufficiently 
coercive, then the solution to Problem 3 exists and is in H2tS{Q) [30]. She further 
shows that otherwise Problem 3 may lack solutions. The coerciveness conditions 
fail in particular when aj{p) = pj/{\ + p2)1/2, which is the obstacle problem for 
surfaces of prescribed mean curvature. For this case, S. Mazzone [31] and C. 
Gerhardt [12] have demonstrated the existence of a solution to Problem 3 under 
the same hypotheses necessary to obtain the solution to the Dirichlet problem (2). 

Two noteworthy features of these papers are the construction of special global 
barriers for the solution (cf. especially [31]) and the use of a continuity method. In 
line with a discussion of variational inequalities having geometrical interpretations, 
G. Vergara-Caffarelli ([38], [39]) has considered an interesting problem about two 
surfaces of given mean curvature forced against each other. 

5. At times, the curve of separation in Problem 3 arises as the graph of a function. 
The most celebrated example of this is perhaps due to C. Baiocchi ([1], cf. also 
these PROCEEDINGS [2]) who studied a problem of stationary fluid flow. In this 
connection there is also work of V. Benci [3] and a generalization to higher dimen
sions by G. Stampacchia [37]. A different generalization to higher dimensions has 
been given by A. Friedman [10]. 

An analogous situation is encountered in [22] where a free boundary problem in 
the plane is resolved. Given is a smooth/satisfying inf/ < 0 and {p2f)p ^ 0 in R2. 
Here z = jq + ix2 = peid

9 0 g 0 < 2%. Now consider 

PROBLEM 4. To find a hounded domain fl and a function u such that 

Au = p-Kp-V)P inQ9 
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« = 0, *L = p2f*L onr,u(0)=i, 

where T = 3fl, v is the outward directed normal vector, and s is the arclength on T. 

The conditions prevailing on T are "natural". It turns out that u, fl exist, that fl 
is star-shaped with respect to z = 0, and T has a C1,x parameterization (cf. also 
[21]). When/is analytic this result also follows from a work of H. Lewy [26]. The 
existence of w, fl is secured by transforming Problem 4 into a form of Problem 3 
with unbounded obstacle for a function w{z) satisfying u{z) = 1 — pwp{z). 

H. Brezis [5] has considered a variational inequality whose solution has compact 
support. This problem has a resemblance to the variational inequality for w. The 
possibility that the free boundary in a given situation was star-shaped motivated 
the study of a Stefan problem [11] after a formulation of G. Duvaut [7]. 

6. There are many important areas of variational inequalities omitted from this 
discussion. As two examples, we mention the work of M. K. V. Murthy and G. 
Stampacchia [33] and the paper of E. Giusti [15]. Both of these papers contain 
extensive biliographies. 
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Monge-Ampère Equations and Some Associated 
Problems in Geometry 

L. Nirenberg* 

1. Given some geometric structure, it is usually extremely useful to find analytic 
structures, such as differential equations, which are associated in some natural way 
with the geometry. As we well know, geometry has been an extremely rich source 
of interesting problems in partial differential equations. The equations may be 
complicated and some have resisted efforts of analysts for many years. 

This article is devoted to recent joint work with E. Calabi [4] on some analytic 
problems coming from geometric questions which involve nonlinear elliptic equa
tions of Monge-Ampère type (to be explained). 

Monge-Ampère equations occur in various geometric problems, for example, 
isometric embeddings; perhaps the most familiar one is the classical Minkowski 
problem. Let cj){v) be a given positive smooth function defined on Sn c Rn+1 

satisfying 

J V(j){v) do) = 0 
5" 

where dœ is the usual measure on Sn (thus $ satisfies n + 1 conditions). Find a 
compact convex hypersurface M <= R»+1 with the property that for each v e Sn> 
at the point where the exterior normal to M is y, the curvature K = product of 
principal curvatures is equal to ç6(v). 

Minkowski proved the existence of a "generalized solution" of the problem. 
After a number of years and the efforts of a number of mathematicians, it was 
shown, in case n = 2, that if (p is smooth, so is the generalized solution. For n > 2 
several authors have contributed to the problem of smoothness of the solution, 
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but it was finally proved only in 1971 by A. V. Pogorelov [6\. Analytically, the 
problem may be expressed as a nonlinear partial differential equation for the 
support function, which turns out to be of Monge-Ampère type. Pogorelov has 
seen how to obtain the crucial a priori estimates for the second and third derivatives 
of the solutions. For the latter he makes use of some ideas used by Calabi [1]. 

In his papers [7], [8] in 1971 Pogorelov has considered the Dirichlet problem for a 
convex function u{x) in a bounded convex domain Q in Rn : 

,.v det {uXiJ) = (J){x) > 0 in fl, 
u = g on 30, 

and has shown how to obtain smooth strictly convex solutions in the interior, 
under some smoothness conditions on <j) and g. Equation (1) is an equation of 
Monge-Ampère type, and this usually means a partial differential equation of 
second order for a function u in which the principal terms of highest order are 
nonlinear and of the form det (WäV). 

I am going to describe two geometric-analytic problems that Calabi and I have 
solved, and then discuss the related, purely technical, results on the Dirichlet 
problem for Monge-Ampère equations. In proving these we have used and extended 
the techniques of Pogorelov in [6] — [8]. 

2. First problem. Some years ago Charles Loewner formulated the problem of 
assigning to each bounded convex domain Q in Rn a Riemannian metric which is 
invariant under projective transformations between such domains. The classical 
Hilbert metric defines a distance function between any two points x,yeQ which is 
invariant under projective transformations between convex domains. In general 
this metric does not correspond to a Riemannian metric—though it does in the 
case of a ball : For | JC | < 1 in Rn, 

(2) ds* = {\- |*|2)-1 J dxi> + (1 _ |^|2)-2 (^ xidxi \2. 

Loewner proposed an invariant Riemannian metric which agrees with Hilbert's for 
the ball. It is defined by means of the solution of a boundary value problem for a 
negative strictly convex function u defined in O; u is to satisfy the Monge-Ampère 
equation 

J_ 

Since u = 0 on the boundary, this is highly singular as well as nonlinear. The 
associated metric is 

(3) det(w,.v) = N 2 in O, u = 0 on dQ. 

(4) ds* = - — S ux*x, dx'dxi. 

The solution ifit exists is unique, and for the ball [ x\ < 1 it is « = — (1 - | * | 2 ) 1 / 2 

leading to the Hilbert metric (2) in that case. 
Under a projective transformation of Q to some other convex domain, the 

problem (3) and the metric (4) are invariant in a suitable sense—the function u 
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does not transform as a scalar but is multiplied by a suitable function depending 
on the projective transformation (see [5]). 

Some remarks about the complicated equation (3) and the metric (4) are in 
order. It turns out that they are quite classical. For n = 2 the equation, and its 
invariance under projective transformations, were discussed in 1908 by G. Tzitzèica 
in his study of affine hyperspheres (these correspond to solutions of the equation 
after a Legendre transformation). Blaschke and others, most recently Calabi, have 
made further studies of affine hyperspheres; in particular the metric (4) was pro
posed by Berwald and Blaschke. See [2] for details and references. 

The boundary value problem for n = 2, and Q having smooth strictly convex 
boundary, was solved in Loewner, Nirenberg [5], where it was proved that there is 
a unique strictly convex solution u e C°°{Q) fi C{Q), and the metric (4) is complete, 
i.e., C1 curves tending to the boundary have infinite length when measured in the 
metric (4). 

THEOREM A [4]. For Q bounded and convex in Rn, n ^ 2 {with 30 not necessarily 
smooth), there exists a unique, strictly convex, negative solution u belonging to C°°{Q) 
fl C{Q) o/(3), and the corresponding metric (4) is complete. 

It follows from Theorem 5.4 of [2] that the Ricci curvature tensor (as a quadratic 
form) of the metric (4) is nonpositive. 

REMARK. TO prove completeness of the metric we establish the following estimate 
for the solution : 

(5) -i—r Y. u^uKiY, < constant in Ö, 
w | w | *-l XX -

where u*J is the inverse matrix of the Hessian matrix uxtx,. 
Second problem. In [3] Calabi proposed a Kähler-Einstein metric associated with 

certain tubular domains in cn : M = Û © iRn where Q is a convex domain in R„. 
The metric 

ds2 = 2 8ij dzfdzi 

is to be Kahler, i.e., d{gtJ dz* A dz') = 0, invariant under the group of transforma
tions along iRn

9 and is to be Einstein, i.e., the complex Ricci tensor 

*'" Wwiogg' 8==det^> 
is to satisfy 

(6) Rj, = Kgij9 K = constant. 

For a negative constant (it suffices to consider K = — 1) the metric is defined via 
a solution of the following boundary value problem: Find a real strictly convex 
function u in 0 satisfying 

(7) det(wÄV) = eu in ß, u{x) -> H- oo as x -• dû. 

The metric is then defined as (here zi = x* + iyi) 
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(8) ds2 = S uxlx,{x) dz'' dzl. 

With ds so defined, the equation (7) simply expresses condition (6). The condition 
u = + oo on 9fl is to make the metric as large as possible in order that it be complete. 

THEOREM B [4]. Let Q be a bounded convex domain in Rn, n ^ 2. There exists a 
unique, strictly convex, C°° solution u of (7). Furthermore, in fl © iRn the Einstein 
metric (8) is complete. 

REMARK. Completeness is proved with the aid of the estimate 

S uij uxiUxi S constant in fl, 

where u*i is the inverse matrix of the Hessian matrix ux<x,. 

3. We now turn to the technical results concerning the Dirichlet problem for 
Monge-Ampère equations of the form 

,g, <tet(wÄV) = <f,{x, u) > 0 in fl, 
^ u = g ondO. 

Here <f> is a positive C°° function, g is continuous (usually smooth) and fl is a 
bounded convex domain in Rn, n ^ 2. We seek smooth and strictly convex solu
tions. First a result giving smooth solutions in fl. 

THEOREM 1 [4]. Assume that <j) G C°°(fl x Rl) and d<f>/du ^ 0. Assume that dû is 
C°° and strictly convex, and that g belongs to C°°(3fl). Then there exists a unique 
strictly convex solution u of'{9) belonging to C°°{0) if and only if there exists a strictly 
convex function w° G C°°(fl) which equals g on dû and satisfies 

(10) det(w<>v) ^ cjj{x, Mo). 

(It suffices that w° G C3(Ö).) } 

The proof is based on a priori estimates and makes use of the continuity method : 
For each t in 0 ^ t ^ 1 we find a smooth solution of 

det(wÄV) = t<p{x, u) 4- (1 - Odet(w°v) in fl, u = g on 3fl. 

The a priori estimates for the second and third derivatives1 are extensions of those 
of Pogorelov for (1). He derived strictly interior estimates and regularity, assuming 
g G Ck, k è 2. Having interior estimates one might be tempted to believe that it 
should be possible to obtain solutions which are in C°°(fl) fl C{Q) in case g is 
merely continuous. However, this is not always the case. In [8] Pogorelov presents 
an interesting example with g e C1+a, 0 < a < 1, g $ C2, for which the unique 
"generalizes solution" of (1) is not smooth in fl. Furthermore he proves in [7] that 
if the generalized solution is strictly convex then it is smooth in fl. It is possible to 
give reasonable conditions on continuous boundary values g to guarantee the 
existence of smooth solutions inside fl: 

THEOREM 1' [4]. Let übe a bounded convex domain in Rn. Assume $ G C°°(fl x Rl) 
1ADDED IN PROOF. We recently observed that our a priori estimates of the third derivatives 

at the boundary are incomplete. The results presented in this paper are, therefore at this point, 
not fully established. 
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{this may be weakened) and (])u j> 0. Suppose g G C{dû) and there exist two strictly 
convex functions w°, u1 G C°°(fl) f| C(3fl) which equal g on dû and satisfy 

(11) det(wjiy) g <]){x, w»), det(w*v) ^ # * , w1) 

/« fl* 77?£W fAera exists a unique, strictly convex, solution u G C°°{0) () C(fl) of {9). 

Clearly the existence of such functions w°, w1 is also necessary. 
Among other things the proof uses the maximum principle—guaranteed by the 

condition cpu ^ 0. If we drop this condition we may still obtain solutions by a 
familiar (though in this case more tedious) argument. 

THEOREM 2 [4], Let übe a bounded convex domain in Rn with dû strictly convex 
and C°°. Assume (p e C°°(fl x R1) and g e C°°{dû). Assume that there are two strictly 
convex functions w°, u1 in C°°(fl) which equal g on dû and satisfy (11) and u1 ^ w° 
in fl. Then there exists a strictly convex solution ue C°°(fl) of {9) satisfying u1 ^ u 
^ w° in fl. In fact there are minimal and maximal such solutions. 

Again, the existence of such functions w°, w1 is also necessary. 
To prove Theorems A and B, both of which involve singular boundary value 

problems, we first approximate them by regular ones : For positive constant e we 
solve (3) and (7) with the respective modified boundary conditions u = e, u = 1/e 
on 3fl, and then let e -> 0. In carrying out the limit process we use a priori estimates 
for the solutions and their derivatives in the interior of fl which are independent 
of e. 
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TpyAbi Me>KAyHapOÄHoro KoHrpecca MaTeMaTHKOB 
BaHKyBep, 1974 

ÂHajiHTHHecKHe PeuieHHH ypaBHemift c BapnauHOtiHbiMH 

npOH3BOAHb!MH H MX npHJIOMKeHHH* 

M. H. BHIIIHK 

B HacTOHii;eM AOKjia^e H3JiaraioTCH pe3yjibTaTbi paßoT A. B. OypCHKOBa H M. H. 
BHUIHKa [1]—[4], OTHOCHIUHXCH K aHajIHTH êCKHM IiepBblM HHTerpajiaM HeJIHHefiHblX 
napaöojiHHecKHX CHCTCM AH(j)(f)epeHijHajibHbix ypaBHeHHH, a TaK>Ke ypaBHeHHH 
HaBbe—CTOKca H HX npHjio>KeHHHM. 

JIJIH KpaTKocTH H3jioHceHHe Be^eTCH B cjiyqae nepHO^HHecKHx rpaHHHHbix 
ycjiOBHH. Cjiynaft Beerò npocTpaHCTBa paccMOTpeH B [2]. ^oKJia^ pa3ÔHT Ha nnTb 
nyHKTOB: (1) AHajiHTHHecKHe nepBbie HHTerpajibi napaôojinqecKHx CHCTCM; (2) 
^yHKUHOHajibHO-aHajiHTHHecKan 3aBHCHM0CTb peiueHHH napaöojiH^ecKHX CHCTCM 
OT HanajibHbix ycjio^Hfi; (3) ypaBHeHHH HaBbe—CTOKca; (4) IlocTpoeHHe MOMCHT-
Hbix 4)yHKUHH H xapaKTepHCTHHecKoro (JDyHKijHOHajia cTaTHCTH^ecKHX pemeHHft; 
(5) ACHMnTOTHHeCKOe pa3JI0>KeHHe MOMeHTHblX (f)yHKi;HH CTaTHCTHHeCKHX 
peiueHHH. 

1. AnajiHTHMecKne nepBbie HHTerpajibi napaooj iunecKHx CHdeiw. nycTb 
A{£) = ||^y(f)||f- ly=i1... l p—MaTpHaa pa3Mepa p x p , sjieMeHTbi KOTopoft 4 / £ ) 
HBJIHKDTCH MHoroHJieHaMH nopHAKa ^ m OT (f1, •••, £w) = £ : 

Aj{0 = S <#£"» a = {ah —, an)9 \a\ = ax + ••• + an. 

npeAnojiaraeTCH, HTO cncTeMa £H(j)(j)epeHi];HajibHbix onepaTopOB 

(1.1) | r + ^ M > D-(DU....DJ, Dt = \-£-t 

u = {ul{t9 x), •••, uP{t, x)\ x = {x\ '-',xn)e Bn
9 

*Not presented in person. 

© 1975, Canadian Mathematical Congress 
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—napaöojiHHecKaa no H.T. üeTpoBCKOMy, T.e. npH JIIOôOM J e B " Bce COôCTBCH-

Hbie 3HaqeHHH A%£) 0 ' = 1 , — , / 0 MaTpHijbi A°{£) = | |E i a l = w f l j /£ a | | HMCIOT 

nojiOÄHTejibHyio AeficTBHTejibHyio nacTb, T.e. Re A%i-) > 0, cneAOBaTejibHO, 
Re A%%) ^ cl |Ç|W. BoJiee Toro, 6yAèM npeAnojiaraTb, HTO coöcTBemibie 3HaneHHH 
/ l / f ) MaTpnabi A{£) yAOBJieTBOpHioT ycjioBHK) Re Affi > 0, £ e Rn. OTMCTHM, 

HTO B 9TOM cnynae cnpaBeAJiHBa oijeHKa 

(1.2) \e-^t\ s Cer«1*™» [1]. 

nycTb 

(1.3) ck{D) = {c\{D){u)9 ..., c*k{D){u)) 

—BeKT0pH03HaHHbiH fc-JiHHeöHbift AH^epeHijHaJibHbiH onepaTop nopHAKa a9 a ^ 
m, npnneM 

c{{D){u) = S S 40'b - , h\ a* - , ajt) D«>^ •» D«W>, 
Ju - i /«=1 layj » - i I «jk\^a 

rAe <?!(—, •••)—nocTOHHHbie K09(J)(})Hii;HeHTbi, ay,—MyjibTHHHAeKCbi. Mépes /^w) , 
| r | ^ ö " , o6o3HanaeTCH cjieAyiomafl, Booöme roBOpa, ôêcKOHeHHan cyMMa fc-jiHHeft-
Hbix onepaTopoB: 

oo 

(1.4) f(Dru) = S cfPXu). 

ConocTaBHM (J3yHKijHH D°"w HHCJia zaieC. TorAa onepaTopy (1.4) conocraB-
JIHèTCH (j)yHKIJH5l/(z) = {fl{z)9 '"9fî{z)) CO 3HaHeHHHMH B CP, TJie Z = (•••, Zaj9 •••) 
—Tonna MHoroMepHoro KOMnjieKCHoro npocTpaHCTBa. npeAnojiaraeTCH, HTO 
BbinojmeHo 

YCAOeUe 1.1. OyHKUHH/'^)^ = 1, '"9p) rOJIOMOp4)HbI B HeKOTOpOM nOJIHAHCKe 
\Zii\<R9R>0. 

H3ynaeTCH HejiHHeHHan ŒCTeMa AH(j)(})epeHUHajibHbix ypaBHeHHH BHAa 

(1.5) du{t9 x)/dt = - A{D)u + f{Dru) 

npH nepHOAHHecKHX rpaHHHHbix ycjioBHax 
(1.6) u{t9 x1, •••, xk + 2%9 —, xn) = u{t9 x\ ••-, xk

9 •••, xn)9 

t > 0, HJIH BO BceM npocTpaHCTBe Rn:x e Rn
91 > 0. Mepe3 

\ 
2ic 2îT 

(1.7) v{yj) = {2%)~n f — J e"^* M(x) £fc = Fx_^u{x)9 V e Z", 
0 0 

o6o3HanaK)TCH K09<i)(|)HE[HeHTbi Oypbe fyyuKuyM u{x). 
JlerKo BHAeTb, HTO 

(1.8) Fx^{ck{D){u)) = L % - ?i vu ck(Vh - , 9*) (vfyi), - , v(^)), 
91. - . 7* 

rAe ck{j]l9 ••-,%)—fe-jiHHeöHbiH oneparap, cooTBeTCTByiounHH onepaTopy (1.3), 
5(Q = 0 npH C # 0, ô{0) = 1, C e Z» (CM. [1]). 

JXTIH KpaTKocTH B AajibHenmeM Hcnojib3yeTCH o6o3HaneHHe 



AHAJIHTHHECKHE PEUIEHHH yPABHEHHH 283 

(1.9) Lk{i]l9 •», 7]k){v{i]i)9 •••, v{yk)) = Lk{7))v{y)9 

npnneM HHACKC ky Lk yKa3HBaeT Ha TO, HTO Lk{rj) = Lk{7ji9 •••, jjk) H HTO STOT 
onepaTop AencTByeT Ha Ha6op H3 k BeKTopOB v{yj) = (v(rçi), •••, v{yjk)). H3 (1.4), 
(1.8), (1.9) cjieAyeT, HTO 

oo 

(1.10) Fx^(f(Dru)) = Htf, v) = S Ö(£ - Vl yùc^Xy). 

nepexoAH K K09(j)(j)Hi;HeHTaM 4>ypbe B o6enx nacTnx (1.5), nojiynHM cjieAyio-
myio CHCTeMy ypaBHeHHH: 

(1.11) dv{t9 £)ldt = - A{Ç)v{t9 £) + if(£, v{t9 •)), f e Z», 

B KOTOpOH #(£ , V) 3aAaeTCH (JDOpMyjIOH (1.10). 
nycTb Vs—6aHaxoBo npocTpaHCTBO, cocToamee H3 Bcex BeKTop~(})yHKn;HH v(£ ) = 

(v 1©, '", vKO)> £ G %"* Ä«HH KOTOpblX KOHeHHa HOpMa 

(1.12) ||v||f = J ] 0 + |£|)<|v(£)|, rAe |v(£)| = ( £ K ö l 2 ) 1 ' * ' 

Mepe3 5* o6o3HanaeTCH map paAHyca a B npocTpaHCTBe Vs : 

B i = { v : | | v | f < f l } -

OnPEAEJiEHHE 1.1. OyHKUHOHaji W{v{'))9 3aAaHHbift B mape Bs
a9 a > 0, Ha3biBaeT-

CH aHajiHTHHecKHM H npHHaAJie>KaiHHM KJiaccy 9T(5*), ecjiH BHyTpH 9Toro inapa 
OH pa3JiaraeTCH B CXOAHIÎ HHCH pHA BHAa 

oo 

(1.13) r(v)=srxv), r=0 

r^e V0(v) = WQ = const H npu r ^ I, 

Wr(v) = £ SPVfyi..... Vr)(v(Vl), - , vfo,)) = S 0"rO7)vO?), 
571, - Cr ? 

rAe îPVO?) = ?P"r(̂ iJ •••, Vr)~r-JiHHeöHaH (})0pMa OTHOCHTeJIbHO V(TJI)9 —, v(^r), 
3aBHCHii;aH OT 571, •••, 7?r KaK OT napaMeTpoB. npH STOM npeAnojiaraeTCH, HTO Bee 
(J)yHKUHOHajibi Wr{rj) AJIH Jiioßoro Haßopa 571, •••, t]r yAOBJieTBOpnioT cjieAyiomeMy 
yCJIOBHK) CHMMeTpHH : 

W r i V j * " > V j r ) ( v ( V j > ) > ' " * V ( V J ) ) = * X ? 7 i > " • » V r ) ( v f y i ) , - , v 0 ? r ) ) 

(1'14) =wr{v)v{v)= E wr{v>h,-">kryiVl)9--.9v*{vr), 

rAe O'I, • • •, JV)—JiK)6an nepecTaHOBKa (1, • • •, r). BßeAeM cjieAyioiutHe o6o3HaneHHH: 

1 1 / P \ l / 2 
WXv)\ = [ s | ^ ; * i . - . * r ) | 8 ) . 

PVL = sup \Wr(v)\/fl (1 + k|) s- 9/6 Z"-

ECJIH (j)yHKijHOHaji w{v) aHajiHTHneH H orpaHHneH B mape Bs
rt-> H H > f2> TO 

HafiAeTCH TaKan KOHCTaHTa D9 HTO 
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(1.15) Wrl ^ D{rve. V~P)r = Crg, V r. 

OôpaTHo, H3 oijeHOK (1.15) cjieAyeT, OHCBHAHO, HTO 4>yHKijHOHaji W{v) aHajiHTHHeH 
B mape B*^ (CM. [1]). 

OnPEAEJiEHHE 1.2. OyHKUHOHaji 0{t9 v), onpeAeJieHHbiH B HeKOTopofl oßjiacra û 
c Rj x Vs9 Ha3biBaeTCH nepBbiM HHTerpajiOM CHCTeMbi (1.11), ecnn Ha JIIOôOM 

pemeHHH v{t9 £) CHCTeMbi (1.11), TaKOM, HTO {t9 v(*,-)) e fl, oHnpHHHMaeT nocTOHH-
Hoe3HaneHHe, T.e. &{t, v{t9-)) = const. AHajiorHHHo onpeAeJineTCH nepBbift HHTe-
rpaji CHCTeMbi (1.5). 

nycTb 0{t9 v)—nepBbift nmerpaji CHCTeMbi (1.11), AHc^epeHunpyeMbift no 
Openie B HeKOTopoft oôjiacTH fl npocTpaHCTBa R] x Vs. TorAa, KaK noKa3aHO B 
[1], 3TOT 4>yHKUHOHaji yAOBJieTBopneT cjieAyiomeMy AH^epeHijHajibHOMy ypaB-
HeHHK) B nacTHbix npOH3BOAHbix nepBoro nopHAKa OT ôecKOHeHHoro nncjia nepeMeH-
Hbix: 

(1.16) —Wt E\-gïgp MS)) + S \ 9v(|) > »& v ) / - o, 

rAe30/3 v(£) = (30/3 v1^), •••, 30/3W>(£)). 3 T O ypaBHeHHe AJIH nepBbix HHTerpajioB. 
B TOM cjiynae, KorAa pemeHHH ypaBHeHHH (1.5) paccMaTpHBaioTCH BO BceM 

npocTpaHCTBe: x e R\ napaMeTp £ B (1.11) npoôeraeT Bce B?5 a B ypaBHeHHH (1.16) 
3HaK cyMMbi no £ e B* 3aMeHneTCH HHTerpajiOM no £ e Ä», nacraan npoH3BOAHan 
30/3v(£) 3aMeHneTCH Bapnai;HOHHoft npoH3BOAHoft 30/3v(£) (CM. [2]). JJJIH KpaT-
KOCTH HHMce MM orpaHHHHBaeMCH cjiynaeM nepnoAHHecKHx rpaHHHHbix ycjiOBHH. 

JIJIH ypaBHeHHft nepBbix HHTerpajioB (1-16) HMeeT MecTO cjieAyiomnft aHajior 
TeopeMbi Komn—KoBajieBCKoft: 

TEOPEMA 1.1. Flycrm napaóoAtmecKax Mampuufl, A{Ç) ydoôAemeopHem 
ycAoetuo(1.2)cKOHcmaumoü, C=\9aonepamop f{Dm)ydoeMrmopHemycAoeuio 
1.1. Tiycmb npu t = 0 3adam HanaAbHoe ycAoeue 

(1.17) 0| ,=o = W{v)9 

zde (pyHKUfjuonaÂ ¥{v) npunadMotcum KAoecy 2f(2?p, npuneM uMe/om Mecmo 
oufiMti (1.15). Tozda ôAH S ^ a {zde a—MaKCUMaMHbiâ nop HOOK npou3eod-
HbiXy exodnu{ux 8f{Dru)) cymecmsyem ^yanquonaA 0{t9 v), ydoeneimopHtow/iii 
cjiedy/otifUM ycAoeuxM : 

(a) HAH AJOôOZO t ^ 0 cyufecrmyem manoe p > 0, ne 3aßwcHwpe om t9 nmo 
0{t9 v) e 8t(5p, CAedoeameAbHO, 

oo 
0(*> V) = 2 M, V), 0O(<, V) = 0„(O> 

(1.18) '=° 
4>r(t, V) = S 0r(', V) <V) = 2 #(*, VU ", ?r)(vO?l), - , V(çr)), r 7i. •••• 17, 

npuneM r-Auneumie cßopMM 0r(t, yj) ydoeMmeopfiiom ycjwewo cuMMempuu 
(1.14). 

(6) Cyufecmey/om maKue KOHcmaHmu C > 0, y > 0, «e 3aeacHU{ae om t, nmo 

(1.18') [0r(', .)L ^ Cr, p < r 1 . - œ < ' < 0. 
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(B) 0yHKuivtJOHaA 0{t, v) ydoeMiwopHem mnaAbHOMy ycAoeuto (1.17). 
(r) IJpu t < 0 (fiyuKupjoHUA 0{t9 v) na mape Bs+m a vs+m ydosAermopnem 

ypaemmiK) (1.16). 
Petueme 0{t9 v) 3adanu Koiuu (1.16), (1.17), ydodAerneopHtowee ycAoeuHM (a) 

—(r) , eduHcmeeuHo. 

npn Aoi<a3aTejibCTBe 9T0H TeopeMbi (CM. [IDBHBOAHTCH CHCTeMa peKyppeHTHbix 
AH(J)(j)epeHUHajibHbix ypaBHerafi AJIH Kosc^HijHeHTOB 0r{t9 yy —, rjr)9 H3 KOTOpbix 
Aajiee BMBOAHTCH oijenKH (1.18'). npHSTOM cymecTBeroibiM 0Ka3bmaeTCH Bbiôop 
npocTpaHCTBa Vs c nopMoft (1.12). 

TeopeMa 1.1 ocTaeTCH cnpaBeA^HBoft H AJIH CHCTCM BHAa (1.11), ABoftcTBeHHbix 
K CHCTeMaM (1.1), K09(j)(J)Hi;HeHTbI KOTOpblX 3aBHCHT OT t H OT X [2]. 

AHajiorHHHan TeopeMa AOKa3aHa B [2] AJIH ypaBHeHHH c BapnaijHOHHbiMH npo-
H3BOAHHMH, oTBenaiomnx cjiynaio Beerò npocTpaHCTBa Rn. 

2. 4>yHKu,noHajibHO-aHajiHTHHecKasi 3aBHCHMOCTb pemeHHft napaôojiimec-
KHx CHCTeM OT HanajibHbix ycjiOBHH. (a) PaccMaTpHBaeTCH CHCTeMa ypaBHeHHH 
(1.11) npH HanajibHbix ycjiOBHHX 

(2.1) v | , = 0 = v0(£), £ e Z » . 

TEOPEMA 2.1. IJycmb eunoAneno ycAoeue (1.2) c Atoöoü Koncmanmou C u 
eunoAuemycAoeue 1.1. Tozda npu \\v0\\s < a9 zde a—docmamoHHO Marne HUCAO9 

cywjßcrmyem pemenue v{t9 £) 3adanu (1.11), (2.1), cßyHKu,uoHaAbHo-aHaAumu-
HßCKU 3aewcnwfee om v0(^), m.e. 

(2.2) v{t9 £) = v{t9 £; v0(-)) = 2 E Bk{U £; Ci, - , W W W , - , v0(£*)). 

Peiuenue v{t9 £) ydosMrmopnem nepaeencmey 

(2.3) suj> ||v(*, - ) | | . ^ Ca. 

B AOKa3aTejibCTBe STOH TeopeMbi [1] BHBOAHTCH peKyppeHTHbie cooTHomeHHH 
AJIH K09(J)(J)Hi;HeHTOB Bk pa3JIO>KeHHH (2.2) H C nOMOIHbK) MeTOAa npoH3BOAHmnx 
(J)yHKî HH AOKa3biBaioTCH AJIH Bk oi;eHKH, aHajiorHHHbie (1.18'). 

HJIH pemeHHH u{t9x) 3aAaHH KOUIH AJIH (1.1) npH ycjiOBHHX nepHOAHHHoera 
(1.6) H npH HanaJibHOM ycjiOBHH u\t=Q = uQ{x) HMeeT MecTO pa3Jio>KeHHe, ABOHCT-

BeHHoe K (2.2), TOHHee 

U{t9 X) = u{t9X\ UQ{-)) 
(2 4} oo oo oo 

= 2 J - j Gk{t, x;yh -,yk){u0{yi)9 - , u0{yk))dyl - dyk9 
k=l o o 

Tflß HApa Gk HBJIHIOTCH, BOOÖme TOBOpH, 0606m,eHHbIMH (jtyHKLJHHMH OTHOCHTeJIbHO 
yi,'",y*(CM. [1]). 

(6) CjieAyioJUHft npocToft npHMep noKa3braaeT, HTO npH öojibmnx ||v0||f pHA (2.2) 
MOKeT pacxoAHTbCH. JlerKO BHAeTb (CM. [4]), HTO (j)yHKi;HH v{t9 £) = 0 npH £ ^ 0 H 

v{t9 0) = - KÄ(0)e-AM'l ( - ^(0) + /3*(1 - <r^o><)) 
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yAOBJieTBOpneT HanajibHOMy ycjiOBHio v | , = 0 = v0 = K npH £ = 0 H V | / = 0 = v0 = 0 
npH £ ^ 0 H cncTeMe ypaBHeHHft (1.11), OTBenaiomeft CKajinpHOMy ypaBHeHHio 

3w/3f = - A{D)u + /3M2, ß > 0. 

4>yHKUHH v{t9 £) aHajiHTHHHa no K JXJISI \K\ < A{0)/ß H HMeeT ocoôeHHocTb BTOHKe 
K = A{G)\ß{\ - e-A™<). 

KaK noKa3aHo B [4], ypaBHeHHe Bioprepca 

du{t9 x)/dt = 32w/3x2 - 3W2/3JC 

npH nepHOAHHecKHX rpaHHHHbix ycjioBHHX H npn HanajibHOM ycjiOBHH 
w|*=o = Vieix + V-ie~tx 

HMeeT, H npHTOM eAHHCTBeHHoe, pemeHHe u = u{t9x'97ji97]-i)9 aHajiHTHnecKH 
3aBHcnmee OT 371 H 17-1 npn AOCTaTOHHo Majioft \TJI\ + |rç_i|. 

OAHaKO, npn jiioôbix (J)HKCHpoBaHHbix x, 0 g x <£ 27T, H t > 0, cymecTByioT 
TaKHe KOMnjieKCHbie t]\ H ç - I (3aBHCHmne Booôme roBopn OT t9 x), npH KOTopbix 
4)yHKii;HH «(f, *; TJ\9 y-i) HMeeT ocoôeHHocTb (TOHHee, oôpamaeTCH B ôecKOHen-
HOCTb). 

( B ) nycTb K„—BbinyKJibift KOHyc, AJIH KOToporo cymecrayeT TaKoft BeKTop e 
c Kn9 \e\ = 1, HTO 

{e97j)^r\y\> V ^ e ^ , 

rAe r > °- TlycTb 1£ = Z* f| A : M \ { 0 } . B TOM cjiynae, KorAa (J^HKUHH V 0 (£ ) B 

HanajibHOM ycjiOBHH (2.1) yAOBJieTBOpneT ycjiOBHHM 

(2.5) | v0(£) | g Ce"'*', v0(£) = 0 npn £ $ K9 

pemeHHe v(/, £) 3aAaHH (1.11), (2.1) BbipaacaeTCH PHAOM (2.2), B KOTOPOM Jinnib 
KOHenHoe HHCJIO cjiaraeMbix OTJIHHHO OT Hyjin. n p n STOM, KaK noKa3aHO B [3], npn 
jiK)6bix v0(£), yAOBJieTBOpHiomHX (2.5), cymecTByeT pemeHHe v{t9 £) 3aAaHH (1.11), 
(2.1), npHHëM 

(2.6) | v{t9 £) | ^ deMM-«'*', a > 0, v{t9 £) = 0 npn £ t *• 

npocTpaHCTBO 4>yHKu;HH, y KOTopbix K09(J)4)Hii;HeHTbi4>ypbeyAOBJieTBopHK)TycJio-
BHHM (2.5), o6o3HaHHM Hepe3 V'K. TaKHM o6pa30M B [3] noKa3aHO, HTO ecjiH 
HanajibHoe ycjiOBHe 3aAanH (1.11), (2.1) npHHaAJie^HT V'K9 TO H eë pemeHHe TaioKe 
npHHaAJie^HT V'K npn KancAOM t > 0. npocTpaHCTBO V'K MoaceT 6biTb onncaHO 
H B TepMHHaX 4>yHKUHft B X-npeACTaBJieHHH, a HMeHHO". (})yHKUHH u{z)9 z= x + iy9 

npHHaAJieMCHT V'K9 ecjin OHa: (a) aHajiHTHHHa npH z = x + iy e Rn 4- iAT* + /^o, 
rAe iC*—KOHyc, ABoftcTBeHHbift KK9y0e K*—HeKOTOpbift BeKTop; (6) nepnoAHHHa 
no x c nepHOAOM 2% ; ( B ) npn z e Ä* + iX* + ij>0 yAOB^ieTBopneT oueHKe 

|W(Z)| ^ Q / j _ g-|y-y0|cos(y-yo,aÄ:))» ' 

rAe cos(j>, 3 A : ) = infÇe9 iC(y/|^|, £ / | £ | ) . OTMCTHM, HTO npH AOCTaTOHHo 6ojibiuHx 
/, pemeHHe u{t9 z) = F^z v{t9 £) onpeAeJieHO H aHajiHTHHHo npn AeftcTBHTejibHbix 
z (CM. (2.6)). 
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3 . ypaBHeHHH HaBbe—CTOKca. KaK noi<a3aHO B [ 1 ] , TeopeMbi 1.1 H 2.1 0606-
maioTCH Ha cjiynafl CHCTeMbi ypaBHeHHH HaBbe—CroKca. BSTOM cjiynae noHBJinio-
TCH ABa HOBbix oôcTOHTejibCTBa. Bo-nepBbix, B pe3yjibTaTe HCKJHOHCHHH AaBJieHHH 
H3 CHCTeMbi HaBbe—CTOKca nojiynaeTCH CHCTeMa ypaBHeHHft, coAepKaman 
HejiHHeftHbie HHTerpo-AH(j)(i)epeHijHajibHbiecjiaraeMbie. Bo-BTopbix, MaTpHija^(£)y 
nocjieAHefi CHCTeMbi coBnaAaeT c £2/, rAe I— eAHHHHHan MaTpnua, cjieAOBaTejibHO, 
He BbinojiHeHa npH £ = 0 oijeHKa (1.2). 0 6 a 9TH $aKTa He npennTCTByioT (CM. [1]) 
cnpaBeAJiHBOCTH TeopeM 1.1, 2.1, B KOTOpbix MO>KHO Aa>Ke B3HTb s = 0 (CM. [1]). 

4 . IlocTpoeHHe MOMenTHbix cfryHKu.Hft H xapaKTepHCTHHecKoro cj)yHKUH0-
Hajia CTaTHCTHHecKHx pemeHHft. (a) nycTb juo{dv)—BeponTHOCTHan Mepa, 
3aAaHHan Ha ßopejieBCKoft ajireöpe MHOKCCTB npocTpaHCTBa Vs. FIOA CTaTHCTHne-
CKHM pemeHHeM ypaBHeHHH (1.11) noHHMaeTCH, KaK H3Becrao ([5], [6]), BeponT-
HOCTHan Mepa /nt{dv)9 3aBHCHiuan OT t, 3aAaBaeMan 4>opMyjioft /Ltt{œ) = ^{Sf1 co), co 
c VS9 rAe St—onepaTop CABHra BAOJib pemeHHH 3aAaHH (1.11), (2.1): ^v 0(£) = 
v{t9 £). B TOM cjiynae, KorAa onepaTop St 3aAaH Jinuib Ha mape Bs

a a vs, rAe a 
—TaKoe yae, KaK B n.2, a Mepa /UQ{CO) HMeeT HOCHTejib B Bs

a9 cTaracTHHecKoe 
pemeHHe 3aAaeTCH (})opMyjioft: 

f * M = MSTKO) R QÒ) rAe Qt = StB*a. 

3Aecb noA Sj\o) fl Qt) noHHMaeTcn MH0>KecTB0 TaKHx v G Bs
a9 AJIH KOTOpbix St v 

e co n a . 
nycTb ßo{a))—BeponTHOCTHan Mepa c HocHTeJieM B mape Bs

a. nycTb 0 ( - t, v) 
{t > 0)—aHajiHTHHecKoe pemeHHe 3aAaHH KOHJH (1.16), (1.17), KOTOpoe 3aAaeTCH 
pHAOM (1.18), cxoAHiUHMCH Ha Bs

a9 a HanajibHoe ycjiOBHe W{v) = 0 (0 , v) aHajiHTj*HHO 
B mape Bs

p, rAe p = Ca9 C—TaKoe >Ke KaK B (2.3). TorAa cnpaBeAJiHBO cjieAyio-
m e e HHTerpaJibHoe TOAACCTBO: 

(4.1) J^(v)M^)= \0{-Uv)^{dv). 

3Aecb (})yHKUHOHaJibi W{v) H 0 ( - t9 v) cHHTaioTCH KaK-HH6yAb HenpepbiBHO npo-
AOJi>KeHHbiMH BHe mapOB Bs

p {p = Ca) H Bs
a. 

ZloKa3aTejibCTBO (4.1) ocHOBaHO Ha TOM, HTO 

0 ( - t9 v) = W{Stv)9 veB*a. 

ZIJIH ynpomeHHH 3anncH 6yAeM CHHTaTb HH>i<e, HTO v{t9 £)—cKajinpHan fyyuKmn 
(T.e. p = 1). (OÔIUHA cjiynafl CM. B [1].) MoMeHTHoft dpymiweM cTaTHCTHnecKoro 
pemeHHH pt{dv) Ha3biBaeTCH c})yHKijHH 

(4.2) M / e l f - , £*) = J v(£0 - v(£,)M</v). 

TEOPEMA 4.1. Tiycmb ^{o^—eepoHtnHocmHaH Mepa, cocpedommennan e mape 
Bs

a e Vs9zdea—maKoe Dice, KüK e TeopeMe 2.1, a /it{co)—coormemcmeyfoufee cma-
mucmmecKoe pemeuue. Uycrm 0{ - f ,£i, -~9£k;v)—aHaAumuHecKoe pemeuue 
ypaenemn (1.16) npu uawAbwoM ycAoeuu 

0(0, £ 1 , - , £*;v) = v(£!)-v(£,). 
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Tozda dAH Atoôozo t > 0 uMeem Mecmo pa3Aootcenue\ 

oo 

(4.3) Mfa, »., &) = E S 0 r ( - U Ii, - , £*; ci, - , i/,) Mo^i, - , Vr), 

ede 0 r ( - *,—)—KOd^uufienmbi pa3Aoofcenu% e pnd no v{rjt) (pynKt^uonaAa 
$ ( - U £i, —s £*; v(-)), û M)0?i, '"^^—MOMeumnan (pyrncu/in Mepu ^{dw). 

AHajiorHHHan TeopeMa cnpaßeAJiHBa TaK^ce AJIH MOMCHTHUX ^ H K U H H 

Jtt{xi, —, xk) B ̂ -npeACTaBjieHHH: 

«^*(*b - > *k) = J "(*i) - "(**) i " Ä 

rAe /î(rf«) = /Ltt{dv)9 ecjiH 3JieMeHTbi dw H dv cooTBeTCTByioT Apyr Apyry npH 
OTo6pa>KeHHH Fx_ç{du) = dv. B STOM cjiynae $opMyjia, aHajiorHHHan (4.3), HMeeT 
cjieAyioLUHft BHA: 

oo 1% 2TT 

^t{xh'~>Xk) = S J— $Kr{- t9xl9 -9xk;yl9 —9yr) M^yy '-9yr) dyi - dyr9 
r=kO 0 

rAe Kr—Booôme roBopn, oôoômeHHbie ̂ ymum OTHOCHTeJIbHO yi9 ••• yr. 
(6) KaK H3BecTHO, xapaKTepHCTHHecKHft 4>yHKUHOHaji Mepbi p,t{dv) 3aAaeTCH 

(})opMyjioft 

X{t9 *<-)) = Jexp (i Ç v(£)-w(£))^v), 

TAe V(£) 6 Vs9 W(£)—JIK)6aH (jtyHKIJHH C KOHeHHOft HOpMOH 

(4.4) M s = s u p | ^ ) | / ( l + |^|>. 
V 

TEOPEMA 4.2. Tiycmb pt{co) ydoeAermopnem ycAoeuHM TeopeMbi 4.1 u %{t9 w) 
—eë xapaKmepucmmecKuü (pyHKu/wuaA. Tozda (pyrncufin %{t9 w) npu AìOóOM W 

c KOWHHOü, HopMoü (4.4) pa3AazaemcH e aöcoAiomno cxodnmfiücn pnâ 

oo 

X(t, W) = 0OlU£- 0 + L S 0r,«,(- U Tju-, Tjr) Mfa, - , f)r), 
r=l J?l, -,7Jr 

zde 0r,w—KO300uuiueHmbLpa3AootceHUH 6 cmenenuoU pnd no v{rj) (pynKUfionaAa 
0w(- ' , v)> Komopbiä HßAHemcH e Bs

a anaAurmmecKUM pemeuue M ypaenenun 
(1.16) npu CAedytotufiM uanaAbHOM ycAoeuu: 

0(0, w) = exp (i S v(£M£)) = S ~ S v(£i) w(£x) - v(£w) w(£J. 
\ f / »=0«!? . , - ,? , 

5. ACHMnTOTHHeCKOe pa3JI0>KeHHe MOIVieHTHblX (j)yHKU,HH CTaTHCTHHeCKHX 
peuieHHft. Mepe3 RVS o6o3HanaeTCH noAnpocTpaHCTBO Vs, cocTonmee H3 Tex 
9JieMeHT0B V{KJ) e Vs, KOTOpbie yAOBJieTBOpnioT ycjiOBHK) v ( - rj) = v{rj). OTMCTHM, 
HTO sjieMeHTbi vQ{7])eRVs HBJIHIOTCH Koŝ cJwijHeHTaMH Oypbe BemecTBeHHbix 
4)yHKUHH UQ{X) = F-%{7j). 

ZlonycTHM, HTO ypaBHeHHe (1.1)—BemecTBeHHoe H BbinojiHeHbi cjieAyioiUHe 
ycjiOBHH: (1) ZtjiH JiK)6bix v0 = VQ{TJ), npHHaAJiencamnx HeKOTOpOMy ôaHaxoBy 
npocTpaHCTBy BQ, 3aAana (1.1), (1.6) npn HanajibHOM ycjiOBHH 
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(5.1) u\t=0 = UQ{X) = E v0{V)e<»*9 vQ{V) e B09 
V 

HMeeT, H npHTOM eAHHCTBeHHoe, pemeHHe u{t9 x), npHHaAJienomee ÖaHaxoßy 
npocTpaHCTBy Bx; (2) HMeeT MecTO BJioaceHHe B0 m RVS; (3) JIJIH pemeHHH u{t9 x) 
3aAaHH (1.5), (1.6), (5.1) npH Bcex *e[0 , r ) H £ e Z M onpeAejieHbi Kos^nuneHTbi 
4>ypbe v{t, £; v0) = Fx^ u{t9 x), npmeyi 

| v a £ ; v 0 ) | g C 2 | | v o | | 5 l , 

rAe C2 He 3aBHCHT OT v0 eBQ,te [0, T) H £ e Zn; (4) Ko9(J)$Hu;HeHTbi Oypbe 
HU €; vo) nenpepbiBHO 3aBHCHT OT V0 G BQ: 

| v(*, £; v0) - HU £; vi) | -> 0 npH || v0 - vó| A -» 0. 

OTMeTHM, HTO Bee 3TH ycjiOBHH BbinojiHeHbi AJIH cjiynaH MOHOTOHHbix napaßojin-
necKHX ypaBHeHHH [7], [8], B nacraocTH, HanpHMep, AJIH ypaBHeHHH BHAa 

n p n 9TOM B KanecTBe BQ MO>KHO B3HTb npocTpaHCTBO CoôojieBa Hp <= RVS9 p > 
S + fl/2, BCeX (JtyHKlJHH V(£), AJIH KOTOpblX KOHeHHa HOpMa 

IHk = ( s ( i + |f|)2Mv(o|2)1/2. 
ycjiOBHH (1)—(4) BbinojiHeHbi TaKH<e AJIH AByMepHoft CHCTeMbi ypaBHeHHH HaBbe 
—CTOKca. 

nycTb fj,{dv)—BnojiHe aAAHTHBHan BeponraocTHan ôopejieBCKan Mepa Ha npoc
TpaHCTBe BQ, AJIH KOTOpOH npH JIK)60M N ^ 1 

(5.2) J | | vo | | £M r f v o)< + oo-

3aMeTHM, HTO ^(rfVo) MO>KeT HMeTb HeorpaHHHeHHblH HOCHTeJIb B BQ. 
06o3HaHHM nepe3 fia{dv) Mepy, onpeAeJieHHyio paBeHCTBOM ju^co) = piG^œ), 

rAe Gy—onepaTop pacTHHcenHH: Gav = ov AJIH V e B0. PaccMOTpHM MOMeHTHbie 
(j)yHKU,HH OTHOCHTeJIbHO Mep fJLa 

Mtëu - , £*, a) = J v(f, £1 ; v0) - v{t9 £ft; v0) fxff{dv0). 

TEOPEMA 5.1. flyc/m à AH 3adanu (1.5), (1.6), (5.1) eunoAneubt ycAoeun (1)— 
(4). Tozda MOMenmnue (pynKUfiu M,(£i, —, £Ä, a) pa3AazatomcH npu G -> 0 e 
acuMnmomwtecKuü pnd 

00 

(5.3) M,(É!, - , ^ , a) ~ S 4<f, fi , - , f*) ffr, 

ade Ar{t9 £1, —, £*) eupaoicatomcH nepe3 KOBtfxpuufienmbi B{t9 £,-; 571, •••, ^ r ) (/ = 
1, — » k) pa3A0DwenuH (2.2). 

Tonnée, dAH AIOóOZO N^k 

M,(£i, - , £A, a) - EA(',£i, -,£*Vr g c w + 1 ^ + » , 
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zde Koncmaumbi CN+i ne 3aeucnm om t9 £ l5 •••, £Ä, a9 m, eooóufe zoeopn, ueozpa-
Hmettup pacmym npu N -* oo {CM. [4]). 

v nycTb Z ? c Zn—noAMHOMcecTBO uejioHHCJieHHoft pemeTKH, TaKoe, HTO: (a) 
ecjiH rj ^ 0 H r] e Z\9 TO—rç $ Z\\ (6) Z\ U ( - Zf t = Zn. 

B cjiynae v{rj) = a{rj) + ib{rj) e B0 = Hp B KanecTBe Mepbi ^(rfv), yAOBJieTBopn-
lomeft nepeHHCJieHHbiM Bbime ycjiOBHHM, MO>KHO B3HTb rayccoBCKyio Mepy, CHHTan 
KOMnoHeHTbi a{rj)9 b{rj) {rj e Z?) He3aBHCHMbiMH cjiynaftHbiMH BejiHHHHaMH, pacnpe-
AeJieHHbiMHno rayccoBCKOMy 3aKOHy c MaTeMaranecKHM oHŒAaHHeM, paBHbiM 
HyjiK), H AHcnepcneft, paBHOft a\rj) = (1 + M ) - 2 * , A > p + n/2. 
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TpyAbi MewAyHapOAHoro KoHrpecca MaTeMaraKOB 
BaHKyBep, 1974 

reoAe3OTiecKife B 4>HHCJiepOBofi TeoMeTpHH 

# . B. AHOCOB 

1. B 4)HHCJiepOBOH reoMeTpHH, KaK H B pHMaHOBoft, paccMaTpHBaeTCH rJiaAKoe 
MHorooöpa3ne M, AJIH KacaTejibHbix BeKTopoB KOToporo onpeAeJieHO noHHTHe 
AJIHHbl (TaK HTO MO>KHO TOBOpHTb 0 AJMHe napaMeTpH30BaHHOH KpHBOftj nocjieAHHH 
AJiHHa paBHa HHTerpajiy OT AJIHHM BeKTopa cKopocTH). OTJIHHHC OT pHMaHOBoft 
reoMeTpHH COCTOHT B TOM, HTO Bbipa^ceHHe AJIH AJIHHM Mo>KeT 6biTb öojiee oßmHM. 
HMCHHO, A îHHa BeKTopa v G TXM A S ë T C H (j)yHKijHeH L(x9 v), KOTopan oôpamaeTca 
B Hyjib jiHinb npH v = 0, nojio>KHTejibHa npH V ^ O H HBJIHCTCH nojio>KHTejibHO-
OAHOpoAHoft nepBoft CTeneHH no v. Ha L HajiaraioTCH ppa OôIIJHX ycjiOBHH: 

YcjiOBHe AOCTaTOHHoft rjiaAKOCTH BHe HyjieBoro ceneHHH KacaTejibHoro paccjio-
e r a a ; 

ycjiOBHe BbinyKJiocTH "eAHHHHHbix c4 )ep" L{x9v) = 1 BO Bcex KacaTejibHbix 
npocTpaHCTBax TXM, ycHJieHHoe e m ë AonojiHHTejibHbiM TpeôoBaHHeM, H T O ô H 
KpHBH3Ha "eAHHHHHOH C^epbl" (BblHHCJieHHafl no OTHOUieHHK) K npOH3BOJIbHOH 
9BKJIHAOBOH MeTpHKe B TXM) HHrAe He oöpamajiacb B Hyjib. 

TeOAe3HHeCKHMH JIHHHHMH B (})HHCJiepOBOft reOMCTpHH Ha3bIBaK)T SKCTpeMaJIH 
(J)yHKUHOHajia AJiHHbi. Mbi HMeeM 3Aecb AêJIO c BapnauHOHHoft 3aAaneft B napaMe-
TpHHeCKOH (jX)pMe. B BapHaUHOHHOM HCHHCJieHHH "eAHHHHHbie C(f)epbl " Ha3bIBaiOT 
HHAHKaTpHcaMH, a ycjiOBHe HX BbinyKJiocTH BMecTe c ycHJiHBaioinHM e r o Tpeöoßa-
HHeM 0 KpHBH3He SKBHBaJieHTHO TaK Ha3bIBaeMOMy yCHJieHHOMy yCJIOBHK) 
JIe>KaHApa, npn BbinojiHeHHH KOToporo roBOpHT o nojioKHTejibHoft peryjinpHOcra 
Bapnaî HOHHOH 3aAaHH. 

HHorAa K c(j)opMyjiHpoBaHHbiM AByM O6IHHM ycjiOBHHM AoöaBJinioT e i n e TpeTbe: 
HHAHKaTpHCa U;eHTpaJIbHO-CHMMeTpHHHa, T.e. L{X9V) = L{x9 - v). 3l<BHBaJieHTHaH 
(J)opMyjiHpOBi<a: AJiHHa Ka>KAoft napaMeTpH30BaHHoft KpHBoft coBnaAaeT c AJIHHOH 
TOft >I<e CaMOH KpHBOH, npOXOAHMOH B OÔpaTHOM HanpaBJieHHH. npH BbinOJIHeHHH 
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3TOrO yCJIOBHH TOBOpHT O "CHMMeTpHHHOCTH" HJIH "ofipaTHMOCTH " (nOCJieAHHÖ 
TepMHH npeAnoHTHTejibHee, H6O nepBbift HMeeT B pHMaHOBoft reoMeTpHH Apyroft 
CMblCJl). 

rioMHMO 3THX OôIIJHX ycjiOBHH, B pa3JiHHHbix 3aAanax Ha L MOiyr HajiaraTbCH pa3-
jiHHHbie Apyrne orpaHHHeHHH, CBH3aHHbie co cneijH(j)HKoft raro HJIH HHoro Bonpoca. 

2 . BojibniHHCTBO (ecjiH He Bee) coAepncaTejibHbix pe3yjibTaT0B (JwHCJiepOBoft 
reoMeTpHH CBH3aH0 c reoAe3HnecKHMH JIHHHHMH. Uej ib HacTonmero AOKJiaAa 
cocTOHT He B oÔ3ope Bcex 9THX pe3yjibTaTOB, a cKopee B H3JioHceHHH Moeft TOHKH 
3peHHH B CBH3H C HeKOTOpblMH H3 HHX. 

PaccMaTpHBan RBmKemie no reoAe3HnecKoft c nocTOHHHoft cKopocTbio,o6biHHbiM 
o6pa30M npHxoAHM K reoAe3HnecKOMy noTOKy. ( 3 T O T TepMHH, B 3aBHCHMOcra OT 
KOHTeKCTa, OTHOCHTCH KaK K AHHaMHHeCKOft CHCTeMe, 4>a30BbIM npOCTpaHCTBOM 
KOTOpoft cjiy^HT Bee KacaTejibHoe paccjioeHHe TM, TaK H K e ë orpaHHneHHio Ha 
HHBapHaHTHyio rnnepnoBepxHOCTb, o6pa30BaHHyio BeKTopaMH eAHHHHHoft AJIHHH.) 
reoAe3HHecKHft noTOK coxpaHneT ecrecTBeHHyio HHBapHaHTHyio Mepy—oô-bëM B 
4>a30BOM npocTpaHCTBe—H HBJIHCTCH raMHjibTOHOBOft CHCTeMOft (npn HaAJie^ameM 
nOHHMaHHH 9T0r0 TepMHHa). 

MOH HHTepeC K (J)HHCJiepOBOH reOMeTpHH CBH3aH OTHaCTH C TeM, HTO TaKHM 
nyTëM OHa npHBOAHT K AOBOjibHO uinpoKOMy Kjiaccy AHHaMHnecKHx CHCTCM, 
KOTOpbift AonycKaeT npHMeHeHHe reoMeTpnHecKHX noHHTHft H cooöpanceHHft npH 
4)opMyjiHpOBKe 3aAan H npH HX HCCJieAOBaHHH. OTnacra ace STOT HHTepec Bbi3BaH 
McejiaHHeM BbiAejiHTb B 3aAanax pHMaHOBoft reoMeTpHH TO, HTO cBH3aH0 c OAHOö 
HX BapHauHOHHoft npHpOAoft, a OT ocTajibHbix cneuH^HHecKHx ocoôeHHOCTeft 
pHMaHOBOH reOMeTpHH He 3aBHCHT. HMeH B BHAy 3TH ABa MOTHBa, H OCTaHOBJIIOCb 
Ha AByx Bonpocax, KOTopbie B pHMaHOBoft reoMeTpHH npHHaAJiencaT K Hanöojiee 
H3BeCTHbIM H BOCXOAHT, COOTBCTCTBeHHO, K AAaMapy H üyaHKape: CBOÖCTBa 
reoAe3HHecKHX noTOKOB Ha MHoroo6pa3Hnx oTpHuaTejibHoft KPHBH3HH H 3aMKHyTbie 
reoAe3HnecKHe Ha MHoroo6pa3Hnx, roMeoMop(})Hbix c(f)epe. OKa3biBaeTcn, HTO B 
pHAe cjiynaeß HBJIHCTCH ßojiee HJIH MeHee cymecTBeHHoft oöpaTHMocTb MCTPHKH, 
cneuHcfmnecKoe >ne Bbipa^eHHe AJIH pHMaHOBoft MeTpHKH He nrpaeT HHKaKoft pojiH, 
no KpaftHeft Mepe, B 6ojibuiHHCTBe cjiynaeß (HO B OAHöM HHTepecHOM cjiynae STO 
noKa He BbincHeHo, CM. HH>Ke). 

3 . Pa3JiHHHbie aBTOpbi npeAJiarajiH HeaKBHBajieHTHbie onpeAejieHHH napajiJiejib-
Horo nepeHeceHHH H KOBapnaHTHoro AH(f)4)epeHii;HpoBaHH5i B (f)HHCJiepoBoft reoMe-
TpHH (CM. noApoÔHoe H3Jio>KeHHe B [1]; c Tex nop noaBHJiHCb e m ë HOBbie BapnaHTbi). 
3 T O noKa3biBaeT, HTO Ha caMOM Aejie B (JMHCJiepoBofi reoMeTpHH HeT "xoponiero" 
aHajiora Ha3BaHHbix noHHTHft. OAHaKO Bee, HTO HaM TpeöyeTCH—STO npHBeAemie 
ypaBHeHHH B BapnaijHHX AJIH reoAe3HHeckoro noTOKa K CTOJib ace yAOÖHOMy BHAy, 
KaKoft OHH HMeioT B pHMaHOBoft reoMeTpHH npn Hcnojib30BaHHH napajiJiejibHoro 
nepeHeceHHH opTOHOpMHpoBaHHoro 6a3nca BAOJib paccMaTpHBaeMoft reoAe3Hne-
CKoft. 3 T O n p o m e Beerò cAeJiaTb, paccMaTpHBan BcnoMoraTejibHyio pHMaHOBy 
MeTpHKy, "conpHKaCaiOmyiOCH" (B HeKOTOpOM CMbICJie) C (J)HHCJiepOBOft BAOJib 
paccMaTpHBaeMoft reoAe3HnecKoft. B ypaBHeHHH B BapnauHnx BoftAëT KpHBH3Ha 
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conpHKacaioLueftcH MeTpHKH no AByMepHOMy HanpaBJieHHio, coAep>KameMy 
KacaTejibHyio K paccMaTpHBaeMoft reoAe3HHecKofi. 3Ta KpHBH3Ha He 3aBHCHT OT 
cjiynaftHOCTeft BbiÔopa conpHKacaiomeftCH pHMaHOBoft MeTpHKH, T.e. HBJIHCTCH 
HeKOTOpOH BHyTpeHHeft XapaKTepHCTHKOH (}>HHCJiepOBa MHOrO0Ôpa3HH. OHa 3aBHCHT 
He TOJIbKO OT TOHKH H AByMepHOH KaCaTeJIbHOH nJIOCKOCTH B 3TOH TOHKe, HO H OT 
HeKOTOporo OAHOMepnoro HanpaBjieHHH B STOH TOHKe (HanpaBJieHHH HCXOAHOH 
reoAe3HHecKoft); nosTOMy B (})HHCJiepoBOH reoMeTpHH cjieAyeT roBopHTb o KpHBH3He 
B HanpaBJieHHH AByMepHoro (})jiara (T.e. (jwrypbi, cocTonmeft H3 njiocKOCTH c 
BbiAejieHHoft Ha Heft npnMoft HJIH Aa>Ke c BbiAeJieHHbiM JiynoM,—nocjieAHee B Heo-
6paTHM0M cjiynae). 

nocjie CKa3aHHoro HeTpyAHO noHHTb, HTO AJIH reoAe3HHecKHx noTOKOB Ha 
3aMKHyTbIX (j)HHCJiepOBbIX MHOrOOÔpa3HHX, KpHBH3Ha KOTOpblX B Ka>KAOH TOHKe H 
B HanpaBJieHHH Jiioôoro AByMepHoro (Jviara OTpHijaTejibHa, BbinojiHHioTCH Te >Ke 
caMbie "ycjiOBHH y ", HTO H B pHMaHOBOM cjiynae (CM. [2], [3]). B nacraocTH, STH 
noTOKH sproAHHHbi. HTOôM CAejiaTb ôojiee CHjibHoe 3aKJiioHeHHe 06 HX aproAH« 
necKHX CBoftcTBax, nymiio AOKa3aTb, HTO y HHX HeT HenpepbiBHbix coôcTBeHHbix 
(J)yHKUHft. B pHMaHOBOM cjiynae STO AejiaeTcn JIHôO Ha ocHOBaHHH TeopeMbi 
ApHOJibAa 0 HHCjiax BpameHHH (o6cy>KAeHHe H jiHTepaTypy CM. Hanp., B [3]; TaM 
HMeioTCH HeKOTopbie ycoBepmeHCTBOBaHHH no cpaBHeHHio c nepBOHanajibHoft 
(J)opMyjiHpOBKoft ApHOJibAa, yKa3aHHbie MapryjiHcoM, HO caMO noHHTHe "HHCJia 
BpameHHH " 4>opMajibHO He Hcnojib3yeTCH, TaK HTO B STOM oraoïneHHH [3] HaAO 

HCnOJIb30BaTb BMeCTe C IJHTHpOBaHHOft TaM JIHTepaTypOft), JIHÔO Ha OCHOBaHHH 
TeopeMbi Pn6a [9] 0 HeB03MO>KHOCTH TpaHCBepcajibHbix ceneHHft AJIH reoAe3HHecKHx 
noTOKOB. IlocjieAHHH TeopeMa B paBHoft Mepe TOAHTCH H AJIH Bcex (J)HHCJiepOBbix 
MeTpHK, BKJiFOHan HeoöpaTHMbie, AJIH KOTOpbix nepBan TeopeMa He BepHa. 

B CBH3H co CKa3aHHbiM o TeopeMe Pn6a jiioôonbiTHO 3aMeTHTb, HTO MCTOAH 
KaTKa, 0 paßoTe KOToporo [5] e ine 6yAeT penb Aajibine, no3BOJinioT nocTpOHTb 
npHMep TaKOH Heo6paTHMOft (j)HHCJiepOBOH MeTpHKH, AJIH KOTOpOH reoAe3HnecKHH 
noTOK 9proAHHeH, HO HMeeT coßcTBeHHyio ^yHKi^Hio. CorjiacHo KaTKy, MO>KHO 
Aaace AOÔHTbCH, HToßbi nocjieAHHH HMejia cpaBHHTejibHO Majio pa3pbiBOB—Bce OHH 
pacnojioH<eHbi Ha AByx OKpyncHOcrax, npnneM y (J)yHKijHH cymecTByioT npeAeJibi no 
nanpaBJieHHHM npH CTpeMJieHHH K STHM OKpy>i<HOCTHM; HMeeTCH TpaHCBepcajibHoe 
K noTOKy MHoroo6pa3He c KpaeM, orpaHHHeHHoe STHMH caMbiMH oi<py>KHOCTHMH. 

BepHeMCH K "ycjiOBHHM yn. KjiHHreHÔepr [10] nccjieAOBaji Bonpoc 0 TOM, HTO 
MOHŒO CKa3aTb O CBOHCTBaX pHMaHOBa MHOr006pa3HH, eCJIH H3BeCTH0, HTO COOT-
BeTCTByiomnft noTOK yAOBJieTBOpneT "ycjiOBHHM y ". OAHO H3 ocHOBHbix paccyno 
AeHHft B [10] COCTOHT B Aoi<a3aTejibCTBe Toro, HTO cooTBeTCTByiomnft reoAe3HHe-
cKHft noTOK yAOBJieTBOpneT TorAa H ApyroMy ycjioBHio, xopomo H3BecraoMy B 
AH(J)4)epeHi;HajibHOH reoMeTpHH—y Hero HeT conpHMcenHbix'ToneK. Rjin Heo6pa-
THMbix $HHCJiepOBbix MeTpHK paccy>KAeHH5i KjiHHreHÔepra B STOM MecTe He 
npoxoAHT H AOJDKHbi 6biTb 3aMeHeHbi ApyrHMH. MO>KHO npeAJio>KHTb AOKa3aTejib-
CTBO OTcyTCTBHH conpH>i<eHHbix TOHeK, ocHOBaHHoe B AByMepHOM cjiynae Ha 
ynoMHHyToft Bbiine TeopeMe Pnôa, a B 6ojiee BHCOKHX pa3MepHOCTnx—Ha 
HeKOTOpoM ee o6o6meHHH. PaccMOTpHM Te TOHKH (J)a30Boro npocTpaHCTBa, AJIH 
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KOTopbix npoeKUHH "cMMaK)merocH"KacaTejibHoro noAnpocTpaHCTBa (noAnpoc
TpaHCTBa XI B o6o3HaneHHHX [2]) Ha ncxoAHoe (J)HHCJiepOBO MHoroo6pa3He 
Bbipo>KAaeTCH. OKa3biBaeTCH, HTO B AByMepHOM cjiynae STH TOHKH o6pa3yioT B 
4>a30BOM npocTpaHCTBe TpaHCBepcajibHyio K noTOKy noBepxHOCTb, HTO npoTHBO-
penHT TeopeMe Pn6a . B ßojiee BHCOKHX pa3MepHOCTnx H3-3a B03MO>KHbix H3MeHeHHft 
KpaTHOCTH BbIpO>KAeHHH MHOrOo6pa3HH MO)KeT H He nOJiyHHTbCH, HO OKa3bIBaeTCH, 
HTO Bee >Ke nojiynaeTCH HCHTO BpoAe TpaHCBepcajibHO HMMepcnpOBaHHoro MHoro-
06pa3HH KOpa3MepHOCTH OAHH. BCH HeTOHHOCTb 9TQÖ (J)OpMyjIHpOBKH CBH3aHa 
TOJibKO c HeoßxoAHMOCTbK) öojiee AeTajibHoro onncaHHHSToro noHHTHn"HMMepCHH, 
TpaHCBepcajibHoft K noTOKy ",—H3-3a oôbiHHOft B noAOÖHbix Bonpocax HerjiaAKOCTH 
TyT HeoöxoAHMa HeKoropan ocTopo>KHocTb, He npeACTaBjiHioinan, OAHaKo, 
HHHero npHHu;HnHajibHO HOBOTO no cpaBHeHHio c [2]. 

4 . B 3aAane o 3aMKHyTbix reoAe3HnecKHx Ha ccj)epe Hanöojiee 3aKOHneHHbie 
pe3yjibTaTbi OTHOCHTCH B Hacronmee BpeMH K AsyMepHoft c(J)epe S2. O H H 6HJIH 
nojiyneHbi JIiocTepHHKOM H IllHHpejibMaHOM B 1929 r. H noApoÖHO H3jio>KeHbi B 
[4]. 3 T O H3Jio)KeHHe orpaHHHHBaeTCH pHMaHOBbiMH MeTpHKaMH; npaBAa, B OAHOM 
MecTe MHMOXOAOM cKa3aHö (nacTb II , §6), HTO MOHCHO roBOpHTb H O 3aMKHyTbix 
SKCTpeMajiHX AJIH nojrc»KHTejibHO peryjiHpHoft BapnauHOHHoft 3aAaHH, OAHaKo 
AajibHeftuiHe paccy>KAeHHH ( B §8) HenocpeACTBeHHO OTHOCHTCH K pHMaHOBOMy 
cjiynaio. KaK 6bi TO HH öbijio, cooTBeTCTByiomne paccy>KAeHHH MO>KHO MOAHC})H-
UHpOBaTb TaKHM o6pa30M, HTOÔbl pacnpOCTpaHHTb HX Ha (J)HHCJiepOBbI MeTpHKH. 
fljiH oôpaTHMbix (})HHCjiepoBbix MeTpHK oKOHHaTejibHbift pe3yjibTaT—TOT >Ke, HTO 
B [4]. J\m HeoöpaTHMbix MeTpHK MOHCHO rapanrapoBaTb TOJibKO cymecTBOBaHHe 
AByx 3aMKHyTbix reoAe3HHecKHx. 

riocjieAHHft pe3yjibTaT npeACTaBJineT TOT HHTepec, HTO OH HBJIHCTCH oKOHHa-
TejibHbiM. CooTBeTCTByiomnft npHMep yKa3aH KaTKOM ([5, §6, n. 5]). B [5] STOT 
npHMep,caM no c e 6 e npocToft, HBJineTCH HCXOAHHM 9TanoM cjio)KHoft KOHcrpyKijHH, 
npHBOAHmeft B npeAejie K HeoöparaMoft ({)HHCJiepOBoft MeTpHKe KJiacca C°° Ha S2, 
AJIH KOTOpoft reoAe3HHecKHft noTOK aproAHneH, npnneM MO>KHO oôecneHHTb, HTOôM 
npeAejibHan MeTpHKa nonpe>KHeMy HMejia TOJibKO ABe 3aMKHyTbie reoAe3HnecKHe. 
BMecTe c TeM ynoMHHyTbift npHMep HaBOAHT Ha Mbicjib: XOTH HHCJIO 3aMKHyTbix 
reoAe3HnecKHx, KOTopoe MO>KHO rapanrapOBaTb HJIH XOTH 6bi o^HAaTb Ha OCHO-

BaHHH COBpeMeHHOrO BapHaUHOHHOrO HCHHCJieHHH B UeJIOM, OÖblHHO BecbMa HeBe-
jiHKo, 6biTb MoaceT, OHO HBJiHeTCH HeyjiyHuiaeMbiM ? 

fljiH w-MepHoft c(})epbi Sn npHMep K a m a AaëT HeoôparaMyio (})HHCJiepoBy 
MeTpHKy, CKOJib yroAHO 6jiH3Kyio K "cTaHAapTHoft" (K MeTpmce nocTOHHHoft 
KpHBH3Hbl) H ,HMeiOmyK) 2[(fl - l ) / 2 ] 3aMKHyTbIX reoAe3HHecKHX. 3 T O HHCJIO 
coBnaAaeT c oijeHKoft CHH3y, KOTopyio ecrecTBeHHO oncHAaTb AJIH HeoöpaTHMbix 
({)HHCJiepOBbIX MeTpHK Ha Sn H KOTOpyiO MO)KHO A0Ka3aTb AJIH MeTpHK, AOCTaTOHHO 
ÔJIH3KHXK "CTaHAapTHOft". 

5. Bbime H ABaacAbi ynoMHHyji o HHCJie 3aMKHyTbix reoAe3HnecKHx, "o>KHAae-
MOMwHa OCHOBaHHH COBpeMeHHOrO BapHaUHOHHOrO HCHHCJieHHH B uejiOM. fl HMeK) 
B BHAy HHCJIO pa3JIHHHbIX TOHCK B (J)yHKIJHOHaJIbHOM npOCTpaHCTBe 3aMKHyTbIX 
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*» KpHBblX, Ha KOTOpblX BHCHT IJHKJIbl, npeACTaBJIHFOIIJHe rOMOJIOrHH SToro 
npocTpaHCTBa (TOHHee—HeKOTOpyio nacTb roMOJiornft, HX "HanajibHyio cepnio"). 
B 0630pe [6] 06 9TOM HHCJie TOBOpHTCH KaK 0 HHCJie "reOMeTpHHeCKH pa3JIHHHbIX" 
pemeHHH BapHaiJHOHHOft 3aAaHH. 3Ta HCTOpHHeCKH CJIOH<HBIIiaHCH TepMHHOJIOrHH 
HeyAaHHa, H6O He HCHO IOK pa3 TO, cooTBeTCTByioT JIH STH pa3JiHHHbie TOHKH B 

(j)ym<ijHOHajibHOM npocTpaHCTBe pa3JiHHHbiM c reoMeTpHnecKoft TOHKH 3peHHH 

KpHBblM B HCXOAHOM MHOr006pa3HH (ßeAb ABe pa3JIHHHbie TOHKH MOrJIH 6bl COOT-
BeTCTBOBaTb OAHOH H TOH Me 3aMKHyTOH KpHBOH, OÔXOAHMOH pa3JIHHHOe HHCJIO 
pa3). B HacTOHinee BpeMH B STOM COCTOHT ocHOBHan TpyAHOCTb npn n > 2, 

KOTopyio yAajiocb npeoAOJieTb jinuib AJIH pHMaHOBbix MeTpHK c onpeAejiëHHbiMH 
OrpaHHHeHHHMH Ha KpHBH3Hy (CM. [6]). npH 9T0M HCnOJIb3yeTCH, HTO npH 9THX 
orpaHHneHHHX HMeeTCH HeKOTOpan oueHKa AJIHHH 3aMKHyTbix reoAe3HHecKHX. 

HeH3BecTHO, BepeH JIH aHajior STOH OIJCHKH AJIH (JMHCJiepoBbix MeTpHK. 3 T O npeA-

CTaBJineTCH aKTyajibHofi 3aAaneH. 

6. BepHëMCH K AByMepHoft cc|>epe, KOTOpofi 3aHHMajicn eine üyaHKape [7], E ro 
paccy>KAeHHH 6e3A0Ka3aTejibHbi, HO AaioT HeKOTOpbie aßpHcranecKHe AOBOAM B 

nojib3y cjieAyiomero yTBep>KAeHHn: ecjiH AJIHHH HauiHX Tpëx reoAe3HHeci<Hx 
pa3JIHHHbI, TO ABe H3 HHX 6yAyT yCTOÖHHBbl B JIHHeftHOM npHÔJIHM<eHHH, a TpeTbH 
—^HeycTOHHHBa. B [8] cKa3aH0 (§7), HTO STO yTBep>KAeHHe MO>KHO CTporo AOKa-

3aTb nocpeACTBOM paccy>KAeHHft THna HMCIOLUHXCH B [7], B nëM H coMHeBaiocb; BO 

BCHKOM cjiynae, noApoÔHoft nyßjiHKaijHH He noHBHjiocb. TeM ne MeHee caMO STO 

yTBep>KAeHHe BepHO. 
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Symbolic Dynamics for Hyperbolic Flows 

Rufus Bowen 

Let/, {t e R) be a differentiable flow on a compact manifold M. A compact in
variant set A containing no fixed points is called hyperbolic if the tangent bundle 
restricted to A can be written as the Whitney sum of three Zyj-invariant continuous 
subbundles TAM = E + Es + Eu, where Eis the one-dimensional bundle tangent 
to the flow, and there are constants c, X > 0 so that 

(a) ||l>/,(v)|| S cr* ||v|| for veE',t^0, 
(b) ||2>/-,(v)| g certo ||v|| for veE», t ^ 0. 

A hyperbolic set A is called basic if , 

(a) the periodic orbits of ft | A are dense in A, 
{b)ft\A is a topologically transitive flow, 
(c) there is an open set U 3 A with A = fi'e*/< ^ 

Basic hyperbolic sets occur in Smale's Axiom A flows [11], a class containing all 
known structurally stable flows. An important special case is an Anosov flow; here 
M itself is a hyperbolic set. 

We will outline a method for studying the structure of basic sets, namely sym
bolic dynamics. The space 2„ = IL{1> •-» »} is compact when given the product 
topology (and {1, •••,«} the discrete topology). One writes x = (#,-)£>-<» for a 
point in 2n and x{ = {x)t-. The shift homeomorphism a :2n -> 2n is defined by 
G{X)ì = Jfy+i. For A an « x n matrix of 0's and l's, the set 2A = {xe2„: 
AX/tXj+l = 1 for all i) is compact and tf-invariant. A basic hyperbolic set A will be 
closely related to a certain symbolic space IA. 

1. The model. For g: IA -• RSL positive continuous function one considers 
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Y = {{x9s):se[0,g{x)]} cz 2A x R 

and then identifies (JC, g{x)) with {a{x), 0) for all x e 2^ to get a new space A{A, g). 
This is a compact metric space, and one can define a flow 0, on it by 

<f>t{x, s) = {x9s + t) for s + f e [0, g(jc)] 
and remembering identifications. This flow is the suspension ofa\2A under the func
tion g. There is a restriction on g which will be important to us. Let 

var„(g) = sup {\g{x) - g{y)\:x,ye2A and *, = y{ V i G [ - n, «]} 

and say g e J*^ if varw(g) :g can for some constants c and a G (0, 1). 

THEOREM [1]. The following two classes of flows coincide: 
(a) ft | A with A a one-dimensional basic hyperbolic set for a dijferentiableflow, 
(b) ^ |yl(>4, g) with A such that a\lA is transitive andg: 2A -> R strictly positive 

with g e <F A. 

THEOREM [2J. Letft \Abea hyperbolic basic set. Then one can find A, g e ^A, and 
a continuous surjection iz : A{A, g) -> A so thatf % — ic§t. 

The first theorem identifies the simplest basic sets and the second shows how to 
relate any basic set to one of these simple ones. One then studies basic sets in 
general by first considering the simple models and then "pushing down" results 
via %. Below we will see several examples of this. 

For the Anosov case, % was constructed independently by M. Ratner [7] and 
anticipated by Ja. Sinai [10]. For diffeomorphisms (instead of flows) the analogous 
results are due to Sinai and the author. 

2. Recurrence properties. 

THEOREM [2]. The point x = ic{x') is periodic, transitive, recurrent or almost 
periodic w.r.t. ft if and only ifx' is w.r.t. <f>t. The minimal sets offt\A are one dimen
sional. 

One should note that x' = (JC, s) has one of these properties iff" JC does (w.r.t. 
a\2A). These results are proved by finding an N so that card 7U~l{x) ^ JVfor all 
x G A and showing that % is a local homeomorphism over various subsets of A. 
The above theorem generalizes results of M. Morse [6\. 

An interesting problem is to calculate the number NT{ft) of closed orbits T in A 
with some period equal to z. Using a method of Manning [4], one can find matrices 
AÌ9 ••• , Am and positive functions gf- G <FAS SO that [2] 

Here e, = ± 1 and NT{Ai9 g{) = NT{<j>t) on A{A{, gt). This reduces the counting 
problem to the case of the model A{A9 g). The model is complicated and it is un
known for instance whether its zeta function (see Smale [11]) is meromorphic in 
the whole plane. This is true (Manning and the author) if g is locally constant. 

The growth rate of NT{ft) as z -> oo equals the topological entropy A(/i), the 
closed orbits are equidistributed as z -> oo w.r.t. a measure^, and^ is the unique 
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invariant probability measure on A maximizing entropy. These facts can be derived 
using symbolic dynamics (i.e., via Tt) though they were first proved in other ways. 

3. Ergodic theory. Let m be some smooth measure on M and define 

WS{A) = {y eM: d{fty9 A) -> 0 as t -> 00}. 

The basic set A is called an attractor if WS{A) is a neighborhood of A in M. 

THEOREM. Assume ft is C2. Then m{Ws{A)) > 0 iff A is an attractor. If A is an 
attractor, then there is an invariant probability measure /LL+ on A so that 

l T 
lim Y I Hfy) & = Jw fy+ 

for m-almost every y G WS{A) and every w G C{M). 

This theorem is due to Ruelle and the author [3]. The convergence part or some
thing similar was proved earlier for diffeomorphisms by Ruelle [8], for Anosov 
diffeomorphisms by Sinaï [9], and for Anosov flows by Margulis [5]. 

Let Xt{x) be the Jacobian of the linear map Dft \E
U

X -+ Eu
ftx and define </>: A-* R 

by 

#*) = - dl*]M 
dt *=o 

Then fx+ is the unique invariant measure v on A which maximizes the expression 
[3] hv{fi) + JV àv. Analogously to statistical mechanics, ̂ + is called the equilibrium 
state of (j). This concept is useful in symbolic dynamics because it reacts well to %. 
We remark that Sinai [10] used the slightly different formalism of Gibbs state. 

If ft\A is topologically mixing, then the measure fx+ is Bernoulli. This follows 
from the corresponding theorem on the model flow A{A9 g) due to Ratner and 
Bunimovic (independently). Finally we remark that all this theory depends on ft 

being C2; one can find a C1 horseshoe for instance with positive Lebesgue measure. 

4. Other properties. There are two directions in which symbolic dynamics has 
been applied to diffeomorphisms, though not yet for flows. The first is homology 
theory with papers by Ruelle and Sullivan, Shub and Williams, and the author. 
The second is the dynamics of the unstable foliation. If A is an attractor, dim Eu 

= 1 and Eu is orientable, then one can define a Wu-üow on A whose orbits are the 
unstable manifolds Wu{x). For A a mixing hyperbolic attractor for a diffeomorphism 
B. Marcus has shown that this flow is uniquely ergodic. For flows this is still open; 
if it is true, it would generalize Furstenberg's theorem on the horocycle flow. 

ADDED IN PROOF. Marcus has now proved this result for Anosov flows, and 
Marcus and the author have done this for Axiom A flows. 
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On Generators in Ergodic Theory 

W. Krieger 

We are concerned with measure preserving transformations T of a Lebesgue 
measure space {X, &9 fj) where fj,{X) = 1. Consider a finite partition &> = {Pi, • • •, Pn) 
or a countably infinite partition 0> = {Ph •••) of X. Such a partition & is said to 
be a generator of T if 

3 = V TW (mod pi). 

More generally a sub-^-algebra sé of ^ is called a generator for Tif 

^ = V 7W (mod a). 

For a survey of the theory of generators see U, Krengel's 1971 Prague conference 
address [23]. 

Generators have been of use in entropy theory. The entropy of the partition &> is 
defined by 

h{&)= - EpiPJlog/iiPJ. 
m 

The mean entropy of the partition &> with respect to the measure preserving 
transformation T is defined by 

h{&>, T) = lim L h( V T-*0>\ 
A-oo k \l£i^k J 

and the entropy of Tis then defined by h{T) = sup h{&>, T) where the supremum is 
taken over all finite partitions. The Kolmogoroff-Sinai theorem states that h{T) = 
h{&>, T) if 0> is a finite generator for T. As a consequence one has that h{T) <nifT 
has a generator of size n. In the converse direction it is known that every ergodic 
measure preserving transformation T with entropy h{T) < oo has a generator with 

© 1975, Canadian Mathematical Congress 

303 



304 W. KRIEGER 

no more than eÄ(TJ + 1 elements [24], [25]. A simpler proof of this result has been 
given by M. Denker [4]. Denker observed further that finite generators are dense in 
the set 77 of all partitions with mean entropy h{T) < oo if 77 is given the entropy 
metric \0>,£\ = 2h{0> v J) - h{0>) - h{â\ ^ , J2e 77 [5]. 

A partition & is said to be a strong generator for T if <% = V ÏŒN T~* &> (mod /a). 
Finite strong generators (in fact strong generators of size 2) exist if and only if 
h{T) = 0. Recall that by a theorem of Parry and Rohlin every aperiodic trans
formation T has a countable strong generator. 0> is a strong generator for T if and 
only if its remote past equals ^ , 

Si = f) V T-*9 (mod p). 
;eJV fèj 

Partitions with such a property have been called deterministic. Define £P as bila
terally deterministic if 

0 = f] V T-*0> (mod p). 

D. Ornstein and B. Weiss have shown that every ergodic measure preserving trans
formation with finite entropy has a bilaterally deterministic finite partition [33]. 
This answers also a question that was raised by O. E. Lanford and D. Ruelle in 
connection with X-automorphisms [31]. 

Consider the shift space Qn = Hï(=z {1, •••, n} over the alphabet {1, •••,«}. Qn is 
given the product topology of the discrete topologies. The «-shift S on Qn, {Sx){ = 
Xf-i, ieZ, x — {xt)t<=z e Qn is a homeomorphism of Qn. Let now &> = (PÌ9 •••, Pn) 
be a generator for the measure preserving transformation T. One obtains a map
ping of X into Qn if one sets 

{Ux)i = m, if T{x e Pm, U / W ^ H , i eZ , f, ^-a.a. x e X. 

Setting for a Borei set A c Qn, Ufx{A) — fx{U~lA), one transports the measure 
fi from X to Qn, and in this way one has produced a shift-invariant measure 
v = U/u on ß„. As a consequence of the generation property of 0> the systems 
{X9 fi, T) and {Qn9 y, iS) are isomorphic in the sense of measure theory. For the case 
of the shift the finite generator theorem provides therefore an answer to the follow
ing question : Does a given homeomorphism 0 of a compact metric space E have 
an invariant probability measure v such that the system {E, y, 0) is isomorphic to 
a given system {X,fi, T)l The notion of topological entropy furnishes a necessary 
condition for such an imbedding. Topological entropy is defined as follows [1]: 
For an open cover <$ of E let h{<£) be the logarithm of the minimal cardinality of 
a subcover of ^. Then set, for a homeomorphism 0 of E9 

^•«-sK^*) 
and define the topological entropy of 0 by h{0) = sup h{<£9 0) where the supremum 
is taken over all open covers. The «-shift has topological entropy log n. One has for 
all (^-invariant probability measures fi that h{fi, 0) ^ h{0) [12]. In fact, one has 
h{0) = sup h{fi, 0) where the supremum is taken over all 0-invariant probability 



GENERATORS IN ERGODIC THEORY 305 

measures fi [10]. This notion of topological entropy is an invitation to define the 
topological analog of a generator. This was done by H. Keynes and J. Robertson [20] 
as follows : An open cover ^ is a topological generator of the homeomorphism 0 if 
for all (C(/)),.eZ

 G ^ z the s e t Oi^z Q 0 contains at most one point. This definition 
stands the test: If # is a topological generator for 0 then h{0) = h{&9 0) [20]. 0 is 
called expansive if there exists a ö > 0 such that, for all x, y e E, x ^ y, there is an 
i e Z such that d{0*x, 0*y) > d where dk a metric of £*. Exactly the expansive home-
omorphisms have topological generators [20]. The expansive homeomorphisms 
of the Cantor discontinuum are given by the subshifts; these are the closed shift-
invariant subsets of the Qn with the shift acting on them. Topological Markoff 
chains are subshifts of what is called finite type. A topological Markoff chain can, 
e.g., be described as the shift acting on a set M that is given by a transition matrix 
7){m, l) G {0, 1}, 1 g m, I ^ «, where M = f]iŒZ {xeQn: 7}{xi9 xi+i) = 1}. One 
can extend the finite generator theorem from the «-shift to aperiodic topological 
Markoff chains [28] : For all aperiodic topological Markoff chains M and for all 
ergodic measure preserving transformations T such that h{M) > h{T) there exists a 
shift-invariant probability measure v on M such that the systems {X, fx9 T) and 
(M, y, S) are isomorphic in the sense of measure theory. In this context one can con
sider minimal expansive homeomorphisms instead of ergodic measure preserving 
transformations. Recall that a homeomorphism is called minimal if all of its orbits 
are dense. One has [28] : If C is a minimal subshift and if Mis a topological Markoff 
chain such that h{C) < h{M) then C is topologically conjugate to the shift acting 
on a closed invariant subset of M. 

Consider the 77-shift {Qn, S) and let M be the set of ergodic » -̂invariant prob
ability Borei measures on Qn with support Qn. Denote by #f the group of homeo
morphisms of Qn that commute with *S*. j f acts on J( by fi -> U/a {fie Jt)9 Ue 34?. 
The following theorem was proved by A. Kuntz [30] : Let fi, ve M, h{\>) ^ h{fi), and 
let / e N, e > 0. Then there exists a t / e / such that for all cylinder sets Z{a) = 
{xeQn: Xi = ai9 1 g / g / } , ae {1, •••,«}/, one has \fi{Z{a)) - Uv{Z{a)) \ < e> 
a e{l, •••, n}1. This is also a statement about generators since every ordered genera
tor of size n yields a shift-invariant measure on Qn. An approximation result of this 
kind was first obtained in [24, §3]. The present proofs of the isomorphism theorem 
for Bernoulli systems [32], [35], [36] apply in their initial stage such an approxima
tion (for partitions, not necessarily for generators). In their later stage they use an 
approximation with respect to a different topology that is given by the rf-metric. 

A homeomorphism is said to be strictly ergodic if it is minimal and if it has a 
unique invariant probability measure. Representing an ergodic measure preserving 
transformation Tas a strictly ergodic homeomorphism amounts to finding a 
generator of T with the appropriate properties. It was proved by R. Jewett that 
every weakly mixing measure preserving transformation has a representation as a 
strictly ergodic homeomorphism of the Cantor discontinuum [16]. The possibility 
of such a representation for all ergodic measure preserving transformations was 
shown in [26]. This proof used the finite generator theorem. A proof that did not 
use the finite generator theorem was then given by G. Hansel and J. P. Raoult [14]. 
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For the case at an ergodic measure preserving transformation T with finite entropy 
h{T) one has that T can be represented as a strictly ergodic expansive homemor-
phism of the Cantor discontinuum, more precisely, as a strictly ergodic subshift in 
a shift space over [eh -f 1] symbols [26]. Denker has given a simpler proof of this 
[3], This line of investigation was continued by G. Hansel who considered measure 
preserving transformations that are not necessarily ergodic [13]. He proved that 
every measure preserving transformation can be imbedded in a homeomorphism 
all of whose orbit closures are strictly ergodic. 

There exist minimal homeomorphisms that are not strictly ergodic (see [34]). 
Indeed, E. Effros and F. Hahn [9] have constructed a minimal homeomorphism 
with more than countably many ergodic invariant probability measures. Their 
example is distal and hence has entropy zero [19]. I. P. Kornfel'd [21] has shown 
that one can have this situation also with positive entropy, and T. N. T. Goodman 
[11] has produced such examples in the shift space. These examples suggest the 
possibility of imbedding (not necessarily ergodic) measure preserving transforma
tions into minimal homeomorphisms. Ch. Grillenberger has recently shown that 
such an imbedding is always possible. 

Attempts have been made to develop this theory for groups other than Z [2], 
[18], [28]. Let us consider the case of a countably infinite group ^ that acts ergodi-
cally and freely on (Z, (%9 fi) by measure preserving transformations Tg9 g e ^.The 
action is called free if p,{x e X: Tgx = x} = 0 for all g e & that are not equal to the 
unit e of &. Call a sequence ^{k) c &,keN, of finite sets a summing sequence if 

Urn | &{k) I"1 \^{k)Ag^F{k) | = 0, g e <&. 

Using a summing sequence ̂ {k), keN, one attempts for a partition 0> the definition 

h{&>, &) = lim |#"(*) H hl V TgeÄ 

and one sets then h{&) = sup h{&>, &) where the supremum is taken over all finite 
partitions. We know that we obtain in this way an entropy theory with the familiar 
features including, e.g., a finite generator theorem, for a class of groups (e.g., for 
solvable groups), provided that we can prove an analog of the tower theorem 
[27]. The tower theorem asserts for an ergodic measure preserving transformation 
T that for all / e TV and e > 0 there exists an F a Zsuch that Ifi{F) > 1 - e and 
F fl T{F = 0 , 0 < i < J. An analog statement for the action Tg, g e &, would be 
as follows: For some summing sequence ^{k)9 each ^{k) containing e9 one can 
findforallfcGJVrandalU>OanFc:JirsuchthatÄ:ia(iO> 1 - e a n d i ^ fl TgF=0, 
g e #"(&), g =£ e. In most cases proving such a statement is equivalent to proving 
the hyperfiniteness of {Tg : g e &}. Let us recall here the notion of hyperfiniteness 
that is due to H. A. Dye [7]: The action {Tg:g e &} is called hyperfinite if there 
exists a measure preserving transformation T whose orbits are a.e. the same as the 
orbits of the action: 

{Tgx:ge&} = {T'xiieZ} f.a.a.xGZ. 
There are results available on hyperfiniteness in the papers of H. A. Dye [7], [8], 
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E.g., abelian groups are hyperfinite. On grounds of these results we have the tower 
theorem for a significant class of groups, and hence we have entropy theory for a 
significant class of groups. The opinion that hyperfiniteness would enter into the 
entropy theory of groups was expressed by A. Stepin [37] and A. Veräik, who has 
announced further results on hyperfiniteness [38]. 

Investigations on generators for one-parameter flows of measure preserving 
transformations have also been carried out, e.g., the representation of an ergodic 
one-parameter flow of measure preserving transformations as a strictly ergodic 
flow was achieved by K. Jacobs [15] in the weakly mixing case and by M. Denker 
and E. Eberlein [6] in the general case. For more information on the results for 
flows we refer to U. Krengel's survey [23]. 

The situation changes completely if one drops the assumption that a finite 
measure is preserved. As a matter of fact, as was shown by A. Kuntz [29], if one has 
a group <g of nonsingular transformations acting on {X, 08, /u) such that no prob
ability measure that is absolutely continuous with respect to y, is preserved by ^, 
then there exists a set A c X such that {TA: Te &} is dense in ^ . For previous 
results on single nonsingular transformations see [22] and [17]. For more informa
tion on this topic we refer again to U. Krengel's survey [23]. 
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Tpyflbi MoKAyHapoAHoro KoHrpecca MaTeMaTHKOB 
BaHicyBep, 1974 

O IlOBeAeHHIl TaMHJlbTOHOBblX CHCTeM, BJIH3KHX 

K HHTerpHpyeMbiM 

H. H. HexopomeB 

JXoKJiaR nocBHumeH HccjieAOBaHHK) noBe#eHHH nepeMeHHbix ACHCTBIIH 7 B 
CHCTeMe KaHOHHHecKHx ypaBHeHHH TaMHJibTOHa 

/ = - dH/dcp, p = dHldl, 

C raMHJIbTOHHaHOM H 

(1) H = HQ{I) + eHtf, <p), e<l, 

B TeneHHe ßojibiuoro no cpaBHeHHio c 1/e B JIK)6OH cTeneHH OTpe3Ka BpeMeHH; 
3Aecb B03MymeHHe eHi—nepno^a 2% no yrjiOBbiM nepeMeHHbiM <pu --,$>„, a / = 
h> •••» h—W-MepHblH BeKTOp. 

1. KojiMoropOBCKne TOpw H #,H4>4>y3HH ApHOJibßa. A .H. KojiMoropoB, B.H. 
ApHOjibA H K). Mo3ep noKa3ajiH (CM. [1], [2], [3]), HTO ecjiH HeB03MymeHHbifi 
raMHjibTOHHaH H0—(J^HKUHH "oßmero nojionceHHH" TO B $a30BOM npocTpaHCTBe 
CHCTeMbi c raMHJIbTOHHaHOM (1) cymecTByeT MaccHBHoe MHO^ecTBO, cocTOHin.ee 
H3 «-MepHblX HHBapHaHTHblX TOpOB, ÖJIH3KHX K TOpaM, Bbl̂ eJIHeMblM ypaBHCHHHMH 
/ = const. MaccHBHoe B TOM CMbicjie, HTO Mepa ßonojiHeHHH K HeMy MaJia BMecTe 
c e. 3 T O MHOHcecTBO, Ha3bmaeMoe KOJiMoropoBCKHM, 3aMKHyT0 H HHr^e He njiorao. 

ECJIH HHCJIO cTeneHeft CBO6OAH n paBHO 2, TO 2-MepHbie KOJiMoropoBCKne Topbi 

"pa3AejiHK)T" 3-MepHbie noBepxHOCTH ypOBHH dpynKuyivL TaMHjibTOHa H. nosTOMy 
npn Bcex HanajibHbix ycjioBHHX 7(0), <p{0) pemeHHH I{t), cp{t) 6y^yT TaKHMH, HTO 
TOHKa 7(0 6y#eT BCHHO ycTOHHHBOH, TO ecTb BejiHHHHa sup, e Ä 17(0 - 7(0) || Majia 
BMecTe c e. ECJIH n > 2, TO, i<ai< noKa3biBaioT npHMepbi, nocTpoeHHbie B.H. 

ApHOJIbAOM B [4], B ÄOnOJIHHTeJIbHOM K KOJIMOrOpOBCKOMy MHOH<eCTBe TOHKa I{t) 

MOMCeT yXO^HTb, XOTH H OHCHb MeflJieHHO, OT HaHaJIbHOrO nOJIOM<eHHH. 
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2. 3KcnoHeHUHajibHasi ou,eHKa. B c(})opMyjiHpoBaHHOH B n. 4 TeopeMe oueHH-
BaeTCH CHH3y "ßpeMa yaep>KaHHfl" TOHKH 7(0 B6JIH3H 7(0) cpa3y /ura Bcex 
HanajibHbix ycjiOBHH 7(0), <p{0). OKa3bmaeTCH, HTO ecjiH ^ H K I ^ H H HQ y^OBJieTBo-
pHeT HeKOTOpblM yCJIOBHHM, Ha3BaHHbIM yCJIOBHHMH KpyTH3HbI, TO 3a ÔOJIbllIOH 
npoMe^cyTOK BpeMeHH nopazuca exp(l/ea) TOHKa ,7(0 He yfiweT OT 7(0) ^ajibiue, 
neM Ha Majioe paccTOHHHe eb, r #e 0 < a < l , 0 < 6 < l . 

3. nepeiYieHHbie AeftCTBHH—a/waöaTHnecKHe HHBapnaHTbi. SKcnoHemjHajib-
Han oueHKa cnpaBe^JiHBa H AJIH TaKHX CHCTCM, y KOTOpbix B03MymeHHe eHx 

3aBHCHT TaKMCe H OT Me^JieHHOrO BpeMeHH et, TO eCTb £JIH CHCTeM C raMHJIbTOHH
aHOM 

H = 770(7) + ^ ( 7 , tp, et). 

TaKHM o6pa30M, nepeMeHHbie 7, HBJIHIOTCH aÄHaöaTHnecKHMH HHBapnaHTaMH. H3 
SToro 4>aKTa, B nacTHOCTH, cjie^yeT ycTOHHHBOCTb B TeneHne sKcnoHeHunajibHO 
ôojibiuoro npoMencyTKa BpeMeHH roiaHeTHofi CHCTCMH, TO ecTb CHCTCMM THna 
Hameö CojiHeHHOH CHCTeMbi. 

4. ToHHaa (J)opiviyjiHpoBKa 3KcnoHeHu,HajibHon ou,eHKH AJIH CHCTeMbi (1). 
nycTb (J)yHKi;H5i H = HQ{I) + eHfâ <p) aHajiHTHHHa B KOMnjieKCHOH oôjiacTH F 
BH^a 

FiReleG, | lm7 |< 1 o , | I m p | < p , ryjep > 0, a G c En, 

E"—eBKJiHAOBO npocTpaHCTBO. By^eM npe/mojiaraTb, HTO 

inf ||grad 770|/|| = 1, sup 1^(7, <p)\ = 1, a sup ï ^ p ) \ I < co, 

r^e ||(327/o(7)/37,-97y)|/||—HopMa JiHHeöHoro onepaTopa B Cn, MaTpHija KOToporo 
HMeeT BUA {d2HQ{I)ldIidIj). 

TEOPEMA [5], Flycmb (pymcupu H0 u TTi yàoeAemeopHiom onucanmiM euiue 
ycjioeuHM u nycrm cßyHKquH H0 Kpyman 8 oónacmu, G {onpede/ieuue Kpymu3Hbi 
dam 8 cjiedytoufeM nyuKme). Tozda cywjecrmyem Koucmauma eQ = eQ{HQ, p) > 
0, o6Aadatoi4aH cjiedyioufUM C8oäcmeoM. 06o3HamiM nepe3 G - d MHOowecnwo 
monete, codepotcawfixcn & G eMecme co ceoeä d-oKpecmuocmbio. Tozda ecnit 0 < 
e < en, mo SAH JIIOöOZOpeiuenan7(0, ç{t)cucmeMU(1), maKozonmo7(0)eG- d 

||7(0 - 7(0)|| < d npu ecex t G [0, T], 

zde 

(2) d = eb, T= exp (1/e*). 

KoHcmawribi a > 0 u b > 0,3a6iicmi{iie Jiuuib om HQ9 oyâym onpedenemi motce. 

5. ycjiOBHH KpyTH3Hbi. FtycTb X—npOH3BOjibHoe (a<|)(j)HHHoe) noAnpocTpaHCTBO 
npocTpaHCTBa En, coAep^camee TOHKy 7' G G, dim l ^ 0. 06o3HaHHM rpa^nem 
cyÄeHHH HQ Ha njiocKocTb X nepe3 grad (7T0|A). 06o3HaHHM MHHHMajibHoe 3HaneHHe 
ÄJiHHbi BeKTopa grad (7f0|A>Ha c(|)epe pa^nyca TJ C uempoM B V nepe3 mrtX{yf), 
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Mi%&ii)= m i n | |grad(J^oU)|j||-

OnPE^EJIEHHE. OyHKUHK) HQ Ha30BCM KpyTOH B TOHKe 7 Ha nJIOCKOCTH /I, eCJIH 
Hafi^yTCH HHCjia C > 0 , 5 > 0 H a ^ 1, TaKHe HTO 

max mj fa) > C£a 

npH Bcex £ G (0, 5]. KoHCTaHTbi C H ö Ha30BeM K09(J)(J)HijHeHTaMH, a a—noKa3aTe-
JieM KpyTH3HbI B TOHKe 7 Ha X. 

06o3HaHHM nepe3 Ar{I) MHOKCCTBO Bcex r-MepHbix njiocicocTeft, npoxoAamnx 
nepe3 TOHKy IeEn. 

OnPEAEJlEHHE. <£>yHKRHK) HQ Ha30BCM KpyTOfi B TOHKe / C K09(j)(j)HUHeHTaMH Cr 

H ör H noK33aTejiHMH an r = 1, •••, n - 1, ecjiH, BO-nepBbix, grad i 7 0 | 7 =£ o, BO-
BTOpbix, AJIH Ka>KAoro r = l , • • • , » - 1 , (j)yHKijHH Tfo 6y^eT KpyTOH B TOHKe 7 Ha 
Ka^AofiraocKOCTH /IG Ar{I) nepneHAHKyjiapHOfi BeKTOpy grad HQ\Ifc K o s ^ H q H -
eHTaMH Cr H òr H noKa3aTejieM ar. 

OyHKUHK) i7 0 Ha30BeM KpyTOH B OÔJiaCTH G C K09(J)(})HLi;HeHTaMH Cr H 5 r H 
noKa3aTejiHMH anr = 1, •••, n - 1, ecjiH OHaKpyTan B Ka>KAofi TOHKe 7G G c TeMH 
K e K09(J)$HUHeHTaMH H nOKa3aTejIHMH. 

6. Fl0Ka3aTejIH KpyTH3HbI H CTeneHb "yCTOÖHHBOCTH" CHCTeMbi. KOHCTaHTbl 
a Kb, onpeAejiHiomne oijeHKH (2) TeopeMbi 4, HBJIHIOTCH (j)yHKUHHMH noKasaTejieft 
KpyTH3Hbi au •••>a«-i: 

a = 2/(12Ç + 3« + 14), è = a /a w - i , 

r^e Ç = [{ax{a2 ••• (wa f f-2 + w - 2) + — + 2) + 1)] - 1 npH « > 2 H Ç = 1 npH 
« = 2. 

ZIJIH KOHCTaHTbl a MO)KHO nojiyHHTb H Jiyninee 3HaneHHe. H o BHA e e 3aBHCHMOC-
TH OT noKa3aTejieö KpyTH3Hbi yKa3biBaeT Ha TO, HTO neM öojibiiie 9TH noKa3aTejiH, 
TO ecTb neM MeHee Kpyran ^ynmxuyi H0, reM MeHbme BpeMH yAep>KaHHH TOHCK 
7(0 B6JIH3H HanajibHoro nojio^eHHH. 

7. BeCKOHeHHOBbIpO>KAeHHOCTb HeKpyTWX 4)yHKU,Hfl. PaCCMOTpHM npOCTpaH-
CTBO Jr r-CTpyft (jtyHKIJHH B npOH3BOJIbHOH TOHKe 7, TO ecTb npOCTpaHCTBO 
MJiaAUIHX K09(j)(|)HIJHeHT0B TeftjIOpa AO nopHAKa r BKJIIOHHTeJIbHO pa3JIOH<eHHH 
(f)yHKijHH B STofl TOHKe. B paßoTe [6] AOKa3aHO, HTO AJIH Ka>KAoro r B Jr cymecT-
ByeT nojiyajireôpaHHecKoe MHOMCCCTBO 2n oôjiaAaiomee cjieAyiomHMH CBOHCTB-
aMH. Bo-nepBbix, KBACAWB npeACTaBHTejib H0 Ka>KAOö CTpyn, jjemsaupk BHe 
2r} JIH6O HBJineTCH KpyTOH (fryHKUHefi B neKOTOpoft oKpecraocra TOHKH 7, JIHôO 
grad HQ\J = 0. Bo-BTOpbix, Kopa3MepHOCTb 2r B Jr CTpeMHTCH B 6ecKOHeHHOCTH 
npH r -• oo. 

TaKHM 06pa30M, HeKpyTbie B OKpeCTHOCTH HeKpHTHHeCKOÖ TOHKH (JtyHKIJHH 
6ecKoneHHOBbipo>KAeHHbie: K09(})(j)HUHeHTbi Teftjiopa pa3Jio>KeHHfl 9THX <|>yHKijHft 
B TaKOH TOHKe yAOBJieTBOpHIOT ÖeCKOHeHHOMy HHCJiy He3aBHCHMbIX nOJIHHOMHaJIb-
Hbix ypaBHeHHH. 

8. Aj ireopanqecKne upHTepHH KpyTM3Hbi. JJJIR Ka>KAoro r HBHO BbinncbmaioTCH 
CHCTeMbi nojiHHOMHajibHbix ypaBHeHHH OTHOCHTeJIbHO K094>(|)HUHeHT0B Tefljiopa H 
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HeKOTOpbix Apyrnx nepeMeHHbix (napaMeTpoß) TaKne, HTO ecjiH HCKJiioHHTb napa-
MeTpbi, TO nojiynaTCH nojiyajireöpaHnecKHe ycjiOBHH, 3aAaiomHe 2r. TeM caMbiM 
B HeKOTOpoM cMbicjie peuiaeTCH Bonpoc 06 9({)(f)eKTHBHOo npoBepKe ycjiOBHH 
KpyTH3HbI. 

9. Kßa3HBbinyKjibie (j)yHKu,HH. FIpHMepaMH KpyTbix (J^HKIIHH HBJIHIOTCH 
4>yHKUHH HQ, oojiaAaiomne cjieAyiomHM CBOHCTBOM: AJIH Ka>KAoft TòHKH 7 H3 ee 

oßjiacTH onpeAejieHH5i grad HQ \ j ^ 0 H cncreMa 

£ VW) V _ p . A d*H0{l) 0 

He HMeeT pemeHHH 97 = 771, ---, 77«, KpoMe TpHBHaJibHoro 77 = 0. TaKHe ^ H K U H H 

6yAeM Ha3bmaTb KBa-3HBbinyKJibiMH. 
PaccMOTpHM onpeAejiHTejib cHMMeTpHHHOH MaTpHijbi nopHAKa n 4- 1 

'327T0/372 3i70/37> 

37T0/37 

OKa3bmaeTCH, HTO npH n = 2 KBa3HBbinyKJiocTb 9KBHBajieHTHa He oôpameHHio B 
HOJib A, a npn « = 3 9KBHBajieHraa ycJiOBHio, HTO npH Bcex IeG9A MeHbine Hyjin. 

JXJIK KBa3HBbinyKJibix (IpymujÄK H TOJibKO AJIH HHX Bee noKa3aTejiH KpyTH3Hbi ar 

MHHHMajibHbi, TO ecTb paBHbi eAHmme. ECJIH cnpaBeAJiHBa ranoTe3a H3 nyHKTa 6, 
TO npH n = 3 CHCTeMbi, AJIH KOTopbix A MeHbine Hyjin, AOJI^KHM 6biTb ropa3AO 
ycTOHHHBee, neM Te, AJIH KOTOpbix A ue MeHbine Hyjin. 

10. O AOKa3aTejibCTBe 3KcnoHeHu,najibHOH oi;eHKH. #0Ka3aTejibCTB0 onn-
paeTCH Ha TexHHKy, pa3BHTyio B [2]. OôIIJHH XOA AOKa3aTejibCTBa 6JIH30K K 
AOKa3aTejibCTBy (J)opMajibHOH ycTOHHHBOcra, npoBeAeHHOMy fl)K. TJIHMMOM B [7]. 
OTMeTHM, HTO H yCJIOBHH KpyTH3HbI ÖJIH3KH K yCJIOBHHM, HajIOMCeHHbIM TjIHMMOM 
Ha HQ, XOTH OH H He BbiHCHHJi, yAOBjieTBopHioT JIH C^HKUHH oömero BHAa e ro 
yCJIOBHHM. 

11. IIOHTH HHTerpajibi. OcHOBHan HAea AOKa3aTejibCTBa COCTOHT B TOM, HTO 
oôjiacTb G, IeG a En npoHH3aHa nonra HHTerpajiaMH. To ecTb cymecTByiOT 
({tyHKUHH, onpeAejieHHbie Ha G x Tn, rAe tp G Tn, Ka>KAan H3 KOTOpbix, BO-nepBbix, 
noHTH He oTJiHHaeTCH OT 4>yHKu;HH, 3aBHCHmeft TOJibKO OT 7(9Ty 4>yHKu;HK) H 6yAeM 
Ha3biBaTb noHTH HHTerpajiOM), BO-BTOpbix, 9KcnoHeHunajibHO MeAJieHHO MeHnefCH 
Ha pemeHHHx CHCTCMH (1). Eton™ HHTerpajibi JIKHCHHO 3aBHCHT OT nepeMeHHbix 7. 

KaK HHCJIO jiHHeöHO He3aBHCHMbix noHTH HHTerpajioB, TaK H pacnojioMceHHe B 
En nepeceneHHH HX noBepxHOCTeö ypoBHH, Booôme roBopn, MCHHIOTCH OT TOHKH 
K TOHKe. B nacTHOCTH, cymecTByiOT oôjiacTH, B KOTOpbix ecTb nojiHbiH Ha6op, TO 
ecTb n jiHHefiHo He3aBHCHMbix noHTH HHTerpajioB. CjieAOBaTejibHO, B 9THX 
oßjiacTHX cpeAHHH cKopocTb TOHKH 7(0 6yAeT 9KcnoHeHij;HajibHO MajiOH, 3Aecb 
7(0, <p{t)—npoH3BOjibHoe pemeHHe. 

12. JIoeyuiKH. TaM, rAe HHCJIO nonra HHTerpajioB MeHbine n, TOHKa 7(0 M O ä C T 
c "öojibiuoö", TO ecTb nopHAKa e, cKopocTbio ABHraracn BAOJib nepeceneHHfi 
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noBepxHOCTeft ypoBHH 9THX noHTH HHTerpajioB. Ho ecjiH cj)yHKijHH HQ—KpyTan, 
TO H B 9T0M cjiynae noHTH HHTerpajibi H3 coceAHHX oöJiacTeft "3annpaioT" TOHKy 
7(0 B MHOMcecTBe Majioro BMecTe c e AHaMeTpa: TOHKa 7(0 KaK 6bi HaxoAHTCH B 
jioByujKe MaJibix pa3MepOB, no KOTopofl Mon<er 6eraTb c Ôojibmofl cKopocTbio. 
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On Bifurcations of Dynamical Systems 

M. M. Peixoto 

1. Introduction. We survey here a certain line of developments of bifurcation 
theory of dynamical systems on a compact differentiable manifold Mn. 

The word bifurcation was introduced by Poincaré in connection with differential 
equations of celestial mechanics depending on a real parameter X. He focused on a 
certain feature of the equation, say an isolated closed orbit, present for X = ô- If 
when X varies past XQ this closed orbit disappears or undergoes a sudden topological 
change, ^0 is said to be a bifurcation value; otherwise it is an ordinary value of the 
parameter. Traditionally bifurcation theory has been developed from this local 
point of view. 

After the emergence of the generic theory of dynamical systems via the coming of 
age of the concept of structural stability it became natural to take a more general 
and global approach to bifurcation theory, as follows. Let 3£ be the space of all 
Cr-flows (diffeomorphisms) on Mn with the Cr-topology, 1 < r < oo, and 2 c 3E 
be the structurally stable ones. Bifurcation theory is then the study of maps of a 
compact manifold Ak (parameter space) into Mn or more precisely the study of the 
intersections of the image of Ak with the connected components of 2. 

The first to adopt this point of view was J. Sotomayor [15], [16] who considered 
for flows the case where n = 2 and k = 1. He describes how, generically, an arc in 
3E intersects 2. Later on he generalized part of this work for n > 2 but keeping 
k = 1 [18], this generalization being some kind of analog of the Kupka-Smale 
theorem. 

A natural approach to the much more difficult case n > 2 is to substitute for 2 
the best known open subset of 2, namely the subset A of all Morse-Smale dif
feomorphisms (flows) on Mw. 

This approach was adopted by Newhouse and Palis [8], [9] who give a very 
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delicate analysis indicating what happens, generically, when an arc chosen within 
a certain open set of arcs and starting at an interior point Xe A meets the bound
ary dA for the first time. 

Another natural approach making even more drastic assumptions on the data in 
order to get some simplicity in high dimension bifurcation is the simple arc ap
proach of Newhouse and the author. Here one starts with the endpoints X, Y on 
A (or 2) and one tries to find an arc T on X connecting X and Y and having only a 
finite number of "simple" bifurcations and this in a stable way. 

On the historical side it should be mentioned here the important role played in 
bifurcation theory by the paper of Andronov and Leontovich [1] where they char
acterize first order structural stability (i.e., structural stability in 3£ — 2) on the two-
dimensional disc. It is a role similar to the one played in dynamical system theory by 
the original paper of Andronov and Pontrjagin [2] on structural stability. The fact 
that the important concepts developed in these papers remained dormant for 
decades can probably be explained by the circumstance that their authors refrained 
from making a metric space out of the totality of all differential equations that they 
considered. 

We now pass to describe in more detail the three approaches to bifurcation 
theory mentioned above. 

2. The generic approach of Sotomayor. Consider first flows on M2, r ^ 4, 3£ 
being a Banach space. 

(2.1) THEOREM. There exists a dense subset 2\of3l — 2 which is a codimension 1 
immersed submanifold of class Cr~l of HI and such that any Xe2\ has a neighbor
hood in the intrinsic topology of 2\ made up of flows topologically equivalent to X. 

In 3£ - 2 there is then a codimension 1 differentiable part. Whether or not it is 
maximal remains an enticing but very difficult open problem. 2\ was constructed 
so as to contain the flows structurally stable of the first order. The subset 2\ cor
responding to them constitutes an imbedded submanifold of 3£. Along these lines, 
a program for higher order structural stability was suggested in [17]. 

Now use 2\ to get information about the generic arc in 3£. Let 0 be the Banach 
manifold of all C^-maps of J = [0,1] into 3£ and W cz 3£ be the set of all Kupka-
Smale flows. 

(2.2) THEOREM. There exists a Baire set T cz 0 of maps such that T e T implies: 
Ï is transversal to 2\, Ï{J) c W U 2\ and besides the set of ordinary values ofT is 
open and dense in J and coincides with T~l{2). 

The above situation suggests the consideration of structural stability of arcs in 
X, i.e., of elements of 0 and in particular the question: Are they dense in 0 ? In 
[5], J. Guckenheimer constructed, for T2, an open set of nonstructurally stable 
elements of 0 and gave a sufficient condition for structural stability of arcs in 
terms of 2\. 

We now pass to n > 2 and discuss Sotomayor's analog to the Kupka-Smale 
theorem. 
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Define the quasi-Kupka-Smale flows Q cz X [11] as the flow obtained by weaken
ing in the least possible way exactly one of the conditions that characterize the 
Kupka-Smale flows and maintaining the others. So a flow in Q either presents a 
single quasi-hyperbolic singular point or closed orbit and all the appropriate stable 
and unstable manifolds are transversal or else all the singular points and closed 
orbits are hyperbolic and all stable and unstable manifolds are transversal except 
exactly one pair of these which are quasi-transversal. 

We now explain the meaning of quasi-hyperbolic and quasi-transversal. 
A fixed point of a diffeomorphism is said to be quasi-hyperbolic if all the eigen

values are simple and lie off the unit circle with a single exception which is 
either 1, - 1 or a pair of complex eigenvalues. In each case one has to impose 
nondegeneracy conditions involving derivatives up to order 4. 

Now a singular point of a flow is said to be quasi-hyperbolic if the corresponding 
time 1 diffeomorphism has this point as a quasi-hyperbolic fixed point. Then the 
corresponding stable and unstable manifolds are immersed euclidean spaces or 
immersed half-euclidean spaces so that these are manifolds with boundary. A 
closed orbit is quasi-hyperbolic if the corresponding Poincaré map is quasi-
hyperbolic. 

The above picture of quasi-hyperbolicity results from the work of Hopf [20], 
Sacker [14], Brunovsky [3] and Ruelle and Takens [13] in the case of complex 
eigenvalues; and from that of Sotomayor [16], [18] in the real eigenvalue case. We 
say that the differentiable manifolds V,Wcz Mn are quasi-transversal at a point p 
of their intersection if TPV + TPW is an {n — l)-dimensional subspace of TpM

n 

and besides at/? the contact of Fand Wis "as small as possible". This concept is 
due to Sotomayor who communicated it to several persons. See [8] and [11]. 

We can now state the analog to the Kupka-Smale theorem. Let Q cz 3£ be the 
set of all quasi-Kupka-Smale flows and, as before, 0 the space of all Clares in X. 

(2.3) THEOREM, (a) The set Q is the union of an expanding sequence of embedded 
codimension one submanifolds Qi9 i = 1,2, •••, ofHl. 

(b) There is a Baire set T in 0 such that every arcT e T is such that T{t) is Kupka-
Smale for all te J = [0, 1] with the eventual exception of a countable set in J and 
besides 7 is transversal to Q. 

In [18] there is a version of this theorem which is weaker because it does not deal 
with quasi-transversal intersections but on the other hand gives further information 
about stratifications associated to the stable and unstable manifolds. 

3. The approach of Newhouse and Palis. Since the set A of Morse-Smale dif
feomorphisms constitutes the best known open set of the set of structurally stable 
diffeomorphisms, it is natural to use A to get a hold on more complicated dif
feomorphisms and more precisely the ones that lie on the boundary dA and beyond. 
Along this line Newhouse and Palis [8], [9] consider an arc £{t), 0 ^ t ^ 1, such 
that £(0) G A and call b the first value of t for which £(/) $ A. Their problem is 
then to describe, for a Baire set of the family 0 of all arcs £ with £(0) G A and 
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£(é) e dA, the phase portrait of £(è) and that of £(0 for b < t < t + e and some 
e > 0. In the above papers they give a partial answer to this very difficult problem. 

Their results can be summarized briefly as follows. Let L~{f) and L+{f) stand 
respectively for the closure of the set of a-limit points o f / and the closure of the 
ûj-limit points of / .Call L{f) = L~{f) [} L+{f). 

(3.1) THEOREM. The set of arcs T cz 0 such that £ G T implies that L{£{b)) is 
finite is open. 

The following theorem describes the behaviour of a generic arc in T. 

(3.2) THEOREM. There is a Baire set of arcs T\ cz r such that for £ G T\ we have : 
(a) IfLr{fz{b)) has no cycles, then, for some e > 0, £(0 is Morse-Smale for t in a 

dense open set in [b9 b + e]. 
(b) IfL-{f~{b)) is hyperbolic and has a cycle, then for some e > 0 there are infinitely 

many topologically distinct structurally stable £(0'^ with L{lj{t)) infinite, b < t < 
b + e. 

An outstanding conjecture of this theory is whether or not the set of arcs £ 
for which either L+(£(è)) or L~{lj{b)) is finite is.. dense in 0. Another is whether 
or not there is a Baire set in 0 such that for an arc £ on- it there is an e > 0 such 
that £(0 is structurally stable for an open dense set of values of t in [b, b + e]. 

4. The simple arc approach. Analogously to what was done for Kupka-Smale 
flows on Mn we say that a flow is quasi-Morse-Smale if it differs from a Morse-
Smale flow by the fact that either a unique singularity is quasi-hyperbolic or else 
a unique pair of intersecting stable and unstable manifolds is quasi-transversal. Say 
that an arc T = T{t) c X is simple if T{t) a A for t = 0 and t = 1 and all other values 
of t except a finite number of them for which the corresponding flow is quasi-
Morse-Smale and this in a stable way, i.e., any neighboring arc has the same number 
of exceptional points. In [10] Newhouse and the author proved the following 

(4.1) THEOREM. There is a simple arc joining any two Morse-Smale flows. 

When Mn = S2 this theorem is an immediate consequence of an argument 
used in [12] for another purpose, and in this simple case we have an actual con
struction of the arc in which the exceptional points correspond to flows devoid 
of saddle connections, i.e., of quasi-transversal intersections. 

To find a constructive proof of (4.1) is an open problem which seems to be far 
off, involving too much knowledge of the topology of Mn. Even when n = 2 this 
is open but M. Barone (unpublished) found such a proof for T2. Another interesting 
open problem is whether or not (4.1) can be strengthened so that the exceptional 
points exhibit no quasi-transversal intersections. 

There are some interesting relations between (4.1) and other topics. Fleitas [4] 
indicated that (4.1) for gradient-like flows on M3 is essentially equivalent to an old 
theorem by Singer [19] about "moves" on Heegard diagrams. Also Fleitas remarked 
that the proof of the A-cobordism theorem in [6] contains as a special case the con
struction of a simple arc between any two gradient flows on Sn, n §; 6. Simple 
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arcs are then a nice differentiate way to express some surgeries used in topology. 
Simple examples show that there is no analog of (4.1) for diffeomorphisms. 
We finally remark that in [7] Newhouse extended (4.1) for flows substituting for 

A the wider class of flows satisfying Axiom A and the strong transversality condi
tion, in case n < 4. If n ^ 4 the extension still goes but a further condition related 
to the nonwandering set has to be assumed. 
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The Structure of Bernoulli Systems 

Benjamin Weiss 

In the wake of D. Ornstein's proof five years ago that Bernoulli shifts with the 
same entropy are isomorphic came a flood of new results concerned in one way or 
another with Bernoulli shifts. Perhaps most surprising has been the discovery that 
so many of the classical examples of ergodic theory, as well as many "physical" 
systems, are isomorphic to Bernoulli shifts. We shall not discuss this aspect in 
any detail and merely mention some of the systems that have been shown to be 
Bernoullian: (a) ergodic automorphisms of Tn [4], T°° [7]; (b) the geodesic flow on 
surfaces of negative curvature [13]; (c) Anosov flows with smooth measures [16]; 
(d) two-dimensional billiards with a convex scatterer [3]. Even though many in
nocent looking questions still remain unanswered, such as [20, Problem 7.2], it 
seems that the time is ripe to focus on other aspects of Bernoulli systems. In parti
cular, having shown that some physical system is Bernoullian, what does that allow 
one to say about the system itself? To answer such questions one must dig deeper 
and gain a better understanding of a Bernoulli system, and here the work has in 
some sense just begun. While some progress has been made in understanding pro
perties that are universally true for all partitions of a Bernoulli shift, there are many 
questions, such as the central limit theorem, whose answers depend upon the parti
cular partition chosen. To concretize this last point let us look at the property of 
weak Bernoulli (WB) (as general references I shall use [12], [17] where the terms not 
defined here, as well as further references, may be found). It is known that not 
every partition of a Bernoulli shift is WB, and there are some properties that hold 
for them that do not hold in general (for example the generators a mentioned at 
the end of §2(a) cannot be WB, since for WB ß, f]n V m>n <p'ß is trivial). The 
problem is on the one hand—what else is true specifically for WB partitions and 
on the other hand—how are we to recognize them? For example if an Anosov flow 
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is Bernoulli are all smooth partitions WB? (See Note 1 at the end of this paper.) 
My article will divide into two parts. In the first I will try to give a general frame

work for Bernoulli systems. A host of open problems is implicit in the gaps in the 
picture that will be drawn. In the second part I shall discuss in outline what is 
known about the deeper structure of Bernoulli systems—and there too, as will be 
seen, we stand really at the threshold. 

1. Generalized Bernoulli systems. Let {X, &, /j) be a measure space; for most of 
the discussion (JL{X) is assumed finite and normalized [x{X) = 1. If G is any group 
then an action of G on X is a representation of G as a group of measure preserving 
transformations (m.p.t.) <pg\X -> X and will be denoted by 0 = {<pg}g<=G' Most of 
ergodic theory has been developed for G = Z when the action is defined by pl5 

a single invertible m.p.t. We shall also refer to 0 as a system or dynamical system. 
A system 0 is said to be Bernoulli, in case G is countable, if there is defined on X 
a random variable (= measurable function)^:X -» R such that the random vari
ables {fg{x) = f{<pg{x))}gt=G aTe mutually independent and ^ is the smallest «-alge
bra with respect to which all t h e ^ are measurable. In case fQ can be chosen to be 
finite or countably valued the partition a of A" into sets of constancy for/0 is a finite 
or countable generator, while the independence of thefg means, of course, that the 
partitions {(pga}gGQ are independent. By the standard construction of product 
measure spaces Bernoulli systems always exist in this case, and provide, in some 
sense, the simplest kind of actions. 

The theory of Bernoulli systems for G = Zd, d ^ 2, was developed by several 
authors [2], [5], [19]. It turns out that the entire Ornstein-isomorphism theory car
ries over to Zrf-Bernoulli systems. The main examples for Zrf-actions, so far, have 
been statistical mechanical systems where the action of Zd arises from a group of 
symmetries preserving the physical system. Several years ago I conjectured that 
most such Gibbs states, or Markov random fields, would turn out to be Bernoulli 
systems, and this indeed has turned out to be the case. I should like to emphasize, 
however, that it is not at all clear what is the "physical" meaning of such results. 
It seems that too many diverse systems are isomorphic with the usual concept of 
measure theoretic isomorphism for this latter notion to be useful. This point will 
be taken up again in § 2(c). 

W. Krieger [6] has further extended the theory to a wide class of countable groups 
including many noncommutative ones, but the case of nonamenable groups such 
as the free group on two generators still seems rather intractable. Further fruitful 
development here will probably have to await the discussion of good examples to 
which the theory may be applied. The most likely source of such examples is in the 
statistical mechanics of physical systems which have G as a group of symmetries. 

Turning to noncountable groups we encounter quite a different situation. It is 
natural to suppose here that G is a topological group and that <pg{x) is jointly 
measurable in {g, x). We cannot require now the existence of a random variable/0 

with {fo{<pgx)} mutually independent since that would force the measure space 
{X, J>, p) to be nonseparable. We will say instead that 0 is a Bernoulli system if 
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for every discrete subgroup G0 cz G, {<pg}gE=Ga *
s a Bernoulli system. It is now a non-

trivial task to establish that Bernoulli systems exist at all. This was done for G = Rl 

by D. Ornstein [11], who also extended the isomorphism theory to these Bernoulli 
flows. The key tool required to extend this construction and isomorphism theory 
to Rd, namely an Rd version of the Kakutani-Rohlin tower theorem, has been 
established [8], but the isomorphism theory has not yet been carried out in detail. 
Here too statistical mechanics provides us with natural candidates for 2?-systems 
such as infinite systems of hard spheres in Rd. Beyond Rd nothing seems to be 
known, although it would appear possible to extend the theory at least to something 
like nilpotent Lie groups. (See Note 2 at the end of this paper.) 

2. The fine structure of Bernoulli systems. 
(a) A system can be said to be well understood only if one also understands its 

substructures, and thus one is led to the study of factors of Bernoulli systems. We 
restrict now to G = Z1 and represent 0 by <p = (pi. The first result here was that of 
D. Ornstein [10] who characterized partitions of a 2?-shift by the property of being 
finitely determined and thus showed that any factor of a Bernoulli shift was a 
Bernoulli shift. If one asks what kind of independence is inherited by any partition 
of a l?-shift one is led to the notion of very weakly Bernoulli which we proceed 
to define. Given two finite sequences of labeled partitions {av}j, {ßi}i (possibly 
on different spaces) we define 

KWi}iAßi}i)='^\td{äißi) 

where the infimum is taken over all partitions {ä,-, ßjf defined on a normalized 
measure space that satisfy 

dist V a{ = dist V äi9 dist V ft = dist V ft 
i i i i 

and d{a,ß) = £ pi^âBÙ when a = {Au - , Ak}, ß = {Bh - , Bk). 
A process {<p, a) is said to be very weakly Bernoulli (VWB) if for any e > 0 there 

is an n0 such that, for all m and n > nQ, 

3({tfa}i, {<p?a\B}$<* 

holds for a set of atoms B e Vff(p-*a of total measure at least 1 - e. Naturally if one 
can satisfy these conditions with e = 0 we have independence, and this is one way 
of weakening absolute independence. This turns out to be the correct notion in 
the sense that any process defined on a jB-shift is VWB [10], [11], while on the other 
hand any process that is VWB is isomorphic to a jB-shift [14]. In passing we may 
mention that many other features of independence do not carry over to arbitrary 
partitions of Bernoulli shifts. For example one might think that any partition a of 
a l?-shift satisfies the following strengthening of the condition for ^-automor
phisms : f]n V |f|>M <p*a is trivial. However it follows from [15] that there are genera
tors a for any Bernoulli shift such that V ]t-\>n (p*a = V -^ <p*a for all n. 

(b) Having established what the factors of a 5-shift look like when viewed on 
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their own we turn to the question of how they are placed or situated. We shall say 
that two ̂ -invariant subalgebras j ^ l 5 stf2 °f a -S-shift {X, &, y, <p) are similarly placed 
if there is an invertible measure preserving transformation <J> of X into itself that 
commutes with <p and maps stf\ onto stf2. Clearly h{<p, sé\) = h{cp, sé2) is

 a necessary 
condition, and that it is not sufficient, so that there is some interest in the question, 
can be seen already from trivial examples such as the following. Let S be an in
volution that commutes with <p and let sé = {A:SA = A}. Then h{cp, sé) = h{<p,<%) 
but sé and ^ are not similarly placed, since one can add sets to A without increasing 
the entropy. J.-P. Thouvenot has initiated in [18] a program of relativizing ergodic 
theory to deal with such questions. The simplest way that a subalgebra sé\ can be 
placed is for there to exist an independent algebra sä2, ^-invariant, such that 
sé\ v séf2 equals <%. In that case we say that sé\ has an independent complement. 
Clearly a necessary condition for sé\ to have an independent complement is that it 
be maximal in its entropy class, i.e., sé\ => sé\ with h{<p, sé\) = h{<p, sé\) implies 
sé\ = sé\. D. Ornstein has constructed an example to show that the condition is 
not sufficient. (See Note 3 at the end of this paper.) It is likely that his construction 
can be modified to produce uncountably many "maximal" subalgebras of the 
same ̂ entropy that are pairwise not similarly placed. In some sense it seems that all 
m.p.t.'s are reflected in the relative structure of factors of 5-shifts. 

(c) Now that so many different systems have turned out to be Bernoulli one is 
tempted to refine the equivalence relation and study more restrictive kinds of iso
morphisms. We shall mention here only one of the possibilities. The first examples 
of isomorphisms between Bernoulli systems [9] or Markov shifts [1] were "finitistic" 
in the sense that the coding from one sequence to another terminated after a finite 
number of steps, with probability one. To be precise let Ai9 i — 1, 2, be two finite 
alphabets and ya shift invariant measures on A% = Xh i = 1, 2. A shift invariant 
mapping $:Xi -> X2 that maps yx onto y2 is said to be finitistic if, for each a e A2, 
the set $~l{x2 :x2{0) = a} differs from a union of finite cylinder sets by a set of 
measure zero. Naturally there may be countably many cylinder sets involved, so 
that $o{x) is determined after a finite, but unbounded in general, number of sym
bols in x have been examined. It is not difficult to give examples of partitions a 
in 5-shifts such that {<p, a) cannot be finitistically coded by an independent process, 
so that the notion is indeed finer than that of isomorphism. A determination of 
possible invariants for this equivalence relation would shed much fight on the vari
ety of Bernoulli systems. 

It seems that about a hundred years after the invention of "ergodic theory" 
by the physicist Boltzmann the circle is being completed and finally answers are 
being found to the problems that he raised. To be sure, this record does not hold 
forth much hope for those scientists seeking help from mathematics for the pro
blems of today—but in any event with patience all turns out well. 

ADDED IN PROOF. 1. R. Bowen has answered in the affirmative; see Smooth-par
titions of Anosov diffeomorphisms are weak Bernoulli to appear in Israel J. Math. 

2. Cf. Bernoullian translations and minimal horospheres on homogenous spaces 
by S. G. Dani, Tata Institute Preprint. 
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3. For details see Factors of Bernoulli shifts, to appear in Israel J. Math. 20. 
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Control Theory and Related Optimization Problems 
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Contrôle Impulsionnel et Inéquations 
Quasi Variationelles 

À. Bensoussan 

I. Introduction. On considère un système dont l'état à l'instant t est un vecteur de 
Rn donné soit par la solution de l'équation différentielle ordinaire 

(1.1) dy/dt = g{y), y{0)=xeR», 

soit par la solution de l'équation différentielle stochastique (du type Itô) 

(1.2) dy = g{y)dt + a{y)dw{t\ y{0) = x. 

Les fonctions g et a sont des fonctions Lipschitziennes et bornées. On exerce un 
contrôle sur l'évolution de la manière suivante: en une suite d'instants O ^ f l 1 ^ 
d2 è -•' l'état du système passe instantanément de y{di~) ày{d*~) + £'. Les instants 
d* sont appelés instants d'impulsion et les valeurs £' niveaux d'impulsion. Entre deux 
instants d'impulsion successifs, l'évolution du système est décrite par (1.1) ou par 
(1.2). L'ensemble v = {01, Ç1; •••; ÖS ff"; •••} est appelé un contrôle impulsionnel. 
On se donne un critère 

(1.3) JJy) ie-«'f(yx(t))dt + kEe-
0 » 

k > 0, a > 0, 

et on s'intéresse à la fonction 

(1.4) u{x) = Inf JJy). 
V 

Notre objet est de caractériser la fonction u et d'en déduire le contrôle impulsionnel 
optimal, s'il existe. Cette approche est similaire à celle de Hamilton-Jacobi-Bellman 
pour le contrôle continu ou à celle de Bensoussan-Lions pour les problèmes de 
temps d'arrêt optimal. Nous renvoyons à l'exposé de J. L. Lions [1] à ce congrès 
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pour une présentation générale des différentes situations ainsi que pour les ré
férences bibliographiques. 

Des situations du type contrôle impulsionnel sont fréquentes en économie ou en 
gestion (gestion des stocks, production, maintenance, etc., cf. Bensoussan et Lions 
[1], Breton et Leguay [1], Goursat, Leguay et Maarek [1]) ce qui explique en partie 
pourquoi les modèles en temps discret sont, dans ce domaine d'application, pré
férés aux modèles en temps continu (on peut alors appliquer la programmation 
dynamique en temps discret; toutefois on introduit des difficultés du type non 
convexité; cf. Veinott [1]). 

n. Problème type de contrôle impulsionnel: conditions suffisantes d'optimalité. 
On précise tout d'abord les notations de l'introduction. On prend (pour simplifier) 
a{x) = al (/ = matrice identité, a réel > 0) et f{x) une fonction continue bornée 
sur Rn g 0 et e L?{Rn). On se donne un espace de probabilité (0, sé* P) et une 
famille croissante de er-algèbres <Ft c sé. Le processus w{i) est un processus de 
Wiener (standard) par rapport à la suite 3Ft et à valeurs dans Rn. On se place sys
tématiquement dans le cas stochastique (toutefois le cas deterministe s'obtient au 
moins formellement en faisant a — 0; cela se justifie par ailleurs sous certaines 
conditions). Les 0* forment une suite croissante de temps d'arrêt par rapport à &t. 
On suppose que £' est ,^> mesurable et£ » e J£ (sous ensemble compact de Rn). On 
se limite (sans perte de généralité) au cas où 

p.s. 0* *-* 4- oo, i -> oo. 

L'évolution de l'état du système yx{t) est définie par 

dyx = g{yx)dt + <rdw{t), 0< g t < 0'+i, V / ^ 0 , 
(2.1) yxm = yjm + ft 

J>*(0) = x, 

avec les notations 

(2.2) 00 = 0, (0',+1)- = V si 0',+i = 0>" 
et le critère par (1.3). 

On introduit alors le problème suivant: trouver u{x) telle que 

(2.3) u est continue et bornée, u e Hl{Rn), Au e L?{Rn), 

(2.4) - *- Au - Ç gi{x) - ^ + au ^ /p.p., 

(2.5) u g Mu, 

(2.6) (u - Mi0[- -y- Au - Ç gi{x) *L + a« - / ] - 0 p.p., 

où on posé 

(2.7) Mu{x) = k + Inf w(* 4- £). 

Si w est une fonction vérifiant (2.3)—(2.7) on pose 
(2.8) Cu = {xeR»\u{x) < Mu{x)}, 
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et on associe à M un contrôle impulsionnel v = vu de la manière suivante: on 
considère l'équation 

dy = g{y)dt + adw{t)9 y{0) = x9 

et on pose 

(2.9) 8i = 1nï{y(t)tCu}9 

(2.10) fi = KX^1-)), 

où £(#) est une fonction mesurable de Rn -• AT définie par la condition 

(2.11) Inf u{x -f- f ) = w(* H- £(*)) V je. 

D'une manière générale, connaissant 0' et £' on considère l'équation 

n nv * = SUO* + ff*<0. ' ^ fr, 
( } y{ê>) = y0n + fr 
et on pose 

(2.13) 0<+i = Inf{XOéC„}, 

(2.14) l'+1 = £CK0('+1>-)). 

On démontre (cf. Bensoussan et Lions [2]) les résultats suivants: p.s. Ô* -• + oo, 
i -> oo, de sorte que {• • • 0% f« ; • • •} est bien un contrôle impulsionnel v et 

(2.15) u{x) = Jx{v) ^ Jx{v) Vv, 

de sorte que l'existence d'une solution u{x) du problème (2.3)—(2.6) implique bien 
l'existence d'un contrôle impulsionnel optimal. On remarquera que si <Wt = <&$ 
désigne la famille de cr-algèbres engendrée par le processus y{t) = y{t; v) alors <W\ c 
<Ft V t, les instants d'impulsion sont des temps d'arrêt par rapport à cette famille et 
les niveaux d'impulsion sont obtenus à l'aide d'un feedback £{x). Le contrôle im
pulsionnel optimal est markovien. On retrouve ici l'analogue d'un résultat fonda
mental de la théorie du contrôle stochastique, à savoir que lorsque l'on peut ob
server l'évolution de l'état, alors il existe en général un contrôle stochastique mar
kovien optimal dans la classe des contrôles markoviens ou non (cf. Fleming [1], 
Fleming et Rishel [1]). 

m. Inéquations quasi variationnelles. Le problème mathématique restant à 
résoudre est donc celui de l'existence d'une fonction u solution de (2.3)—(2.6). 
Pour cela J. L. Lions et l'A, ont introduit une technique nouvelle, susceptible 
d'applications nombreuses même en dehors du contrôle impulsionnel. Cette techni
que généralise celle des inéquations variationnelles (I.V.) de Lions et Stampacchia 
[1], ce qui justifie la terminologie d'inéquations quasi variationnelles (I.Q.V.). 
On introduit la forme bilinéaire a{u, v) sur H^R») définie par 

(3.1) a{u9 v) = -%y- J grad M-grad v à - J f gi{x)-^-v dx + a\uv dx. 
i R. i R* OXi Rn 
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On cherche u solution de 

(3.2) u G L?0C{R») R # W , u ^ Mu p.p., 

(3.3) a{u9 v - w) ^ (/, v - u) V v G Hl{Rn) avec v £ Mu p.p. 

On a noté par ( , ) le produit scalaire dans L?{Rn) {{{, )) désignera le produit scalaire 
dans Hl{Rn).) La relation entre (3.2), (3.3) et (2.3)—(2.6) est la suivante: s'il 
existe u solution de (3.2), (3.3) vérifiant en outre les propriétés de régularité (2.3) 
alors u satisfait aussi à (2.4), (2.5), (2.6). 

L'étude de (3.2), (3.3) repose sur la propriété fondamentale de monotonie de 
l'opérateur M9 à savoir 

(3.4) u,ve L£C{R„) et u ^ v p.p. => Mu g Mv p.p. 

Pour démontrer l'existence d'une solution de (3.2), (3.3) on peut utiliser la méthode 
constructive suivante : on part de uQ solution de 

(3.5) a{uQ
9 v) = (/, v) V v G Hl{Rn), w° e Hl{Rn). 

Ayant défini un
9 on définit un+1 solution de 

n a{un+\ v - un+1) + À{un+\ v - un+1) ^ (/, v - u»+i) + X{un
9 v - un+1)9 

( } un+l S Muu9 V v ^ Mu», n^l. 

Le nombre A > 0 est choisi de façon que a{v9 v) + À \ v\2 ^ jö||v||2 V v G Hl{Rn)9 

ß > 0. A l'aide du principe du maximum, on vérifie que la suite un est décroissante 
et positive. On démontre alors que un i u solution de (3.2), (3.3). Une autre techni
que non constructive mais plus générale, due à Tartar repose sur l'étude de la 
famille Tx d'opérateurs (non linéaires) de L2{Rn) -• Hl{Rn) définie par : u = Tx w 
est solution de l'inéquation variationnelle 

(3.7) a{u9 v — u) + À{u9 v — u) ^ (/, v — u) + X{w9 v — u) V v ^ Mw9 u ^ Mw. 

Il est clair que si u est un point fixe de Tx alors u est solution de (3.2), (3.3). L'ap
plication Tx est croissante pour tout X. Utilisant le théorème de Zorn, on montre 
alors l'existence d'un tel point fixe. L'unicité de la solution de (3.2), (3.3) peut se 
montrer d'une manière directe (cf. L. Tartar [1], Th. Laetsch [1]). 

Le problème de la régularité de u (telle que (2.3)) est pour l'instant ouvert. On 
remarquera que, grâce à (2.15), il ne peut exister au plus qu'une solution de (2.3), 
- , (2.6). 

IV. Autres situations et exemples. 
4.1. Le cas d'évolution. On peut considérer un problème de contrôle impulsionnel 

sur un horizon fini avec des fonctions f{x9 t) dépendant du temps. On est alors 
conduit à une I.Q.V. d'évolution. Posant Q = Rn x]0, T[ on démonter (cf. 
Bensoussan et Lions [2]) l'existence d'une solution u{x91) du problème suivant ( / 
étant supposée ^ 0, G L\Q)9 df/dt G L2{Q)9 df/dt ^ 0) 

( ueL°°{0, T; Hl{R»)) fi L°°{0, T; L°°(0)) V(9 ouvert borné de R»9 
1 ' dujdt G 1,2(0, T; L2{R»))9 du/dt ^ 0 p.p., u ^ 0 p.p., 
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(4.2) u ^ Mu p.p., 

(4.3) - {du/dt9 v - u) + a{u9 v - u) ^ (/, v - u) V v G H\R»)9 V S Mu9 

(4.4) u{T) = 0. 

4.2. Cas de contraintes sur l'état. Lorsque l'on veut tenir compte de contraintes 
sur l'état à chaque instant, représentées par y{t) G^Vr, Q ouvert de Rn

9 on est 
conduit à remplacer le modèle d'évolution (2.1) par un modèle d'équation diffé
rentielle stochastique sur un ouvert. On démontre alors que les relations (2.3)— 
(2.6) restent valables sur (9 (au lieu de Rn). Il convient toutefois de rajouter des 
conditions aux limites dont un exemple possible est le suivant 

( . u S Mu sur r = d(99 
K } du/dn \r^0 {u- Mu) du/dn \P = 09 

où du/dn est la dérivée normale de u sur T7 («-normale orientée ver l'extérieur). 
Utilisant la formulation I.Q.V., il suffit de remplacer Rn par O dans (3.1), (3.2), 
(3.3). Une extension similaire est valable pour le cas d'évolution. 

4.3. Contrôle impulsionnel et contrôle continu. Dans les applications du contrôle 
impulsionnel, on rencontre souvent la situation où entre deux instants d'impulsions, 
on exerce sur le système un contrôle continu. Dans ce cas, les fonctions / , g 
dépendent d'une variable de décision deD9 soit / = f{x, d)9 g = g{x9 d). On définit 
l'Hamiltonien 

(4.6) H{x9 p) = Inf [f{x, d) + {p9 g{x9 d))]. 

Les relations (2.3)—(2.6) doivent être remplacées par 

(4.7) u continue et bornée, u G Hl{Rn)9 Au G L2{Rn), 

(4.8) - {G2\2)ûU + au^ H{x9 du/dx) p.p. H{x, du/dx), 

(4.9) u g Mu p.p., 

(4.10) {u - Mu) [- a2/2 -a2Au/2 + au - H{x9 du/dx)] = 0 p.p. 

On se reportera à Bensoussan et Lions [3], [5]. 
4.4. Système d'I.Q.V. D'autres applications (modèles de production en parti

culier) conduisent à des systèmes d'I.Q.V. On cherche deux (ou plus généralement 
n) fonctions 

(4.11) uh u2 continues bornées sur Rn, Au{ G L2{Rn), u{ G Hl{Rn)9 

(4.12) 

(4.13) 

^Aux - (g\ ^ + aux ^fh u^u2 + k2, 

{ui - u2 - k2) = 0, 

-~^Au 

(«2 - ux - kx) 

2 " \g* lof) + aW2 ~̂ 2' "2 - Ul + kh 

[ - - £ A > - ( ä - ^ ) + «ü- / . ] -O 
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(cf. Bensoussan et Lions [4]). 
De très nombreuses autres situations liées à des applications concrètes sont pos

sibles (I.Q.V. avec contraintes bilatérales provenant de situations de jeux dif
férentiels avec instants d'impulsions, I.Q.V. avec retard, I.Q.V. correspondant à 
des opérateurs intégro-différentiels, etc.). Elles seront décrites dans un ouvrage 
général de J. L. Lions et l'A. 
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Some Minimax Problems in Optimization Theory* 

V. F. Demyanov 

1. Many problems arising in engineering, economics and mathematics are of 
the form : Minimize a function <p{x) subject to x e Q where <p{x) is one of the fol
lowing functions : 
(1) <p{x) = max/(x, y)9 

y^G 

(2) <p{x) = max/(;e, y)9 
y^G(x) 

(3) <p{x) = max min f{x9 y9 z)9 
y^Gi(x) z^Giix) 

(4) <p{x) = max min ••• max min f{x,yÌ9 '"9yk9zÌ9 ~'9zk) 
yi^Gnix) ZIGGHU) y»^Gu(x) zt^Guix) 

and sets G{x)9 G(j{x) depend on x9 G is a given set. 
Such problems often appear in the engineering design theory. In recent years 

much attention was paid to the problems described. We mention only some books 
dealing with minimax theory [1], [5], [7], [9], [13]. It seems possible to claim that at 
present the minimax theory is formed. The minimax theory deals with the fol
lowing problems : 

1. Investigation of the properties of the functions (1)—(4) including their direc
tional differentiability. For various types of functions conditions for the function 
to be directionally differentiable are obtained and formulae for the first and higher 
order directional derivatives are found (see for example [6], [8], [9], [10], [18], [20], 
[21], [22]). 

2. Necessary and sufficient conditions and their geometric interpretation [2], [3], 
[9]. 

3. Steepest-descent directions and their applications to constructing numerical 

* Not presented in person. 
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methods. Numerical methods of the first order (of the gradient type). These prob
lems have been widely disucssed and studied for the function (1). For this case the 
first order methods [13] as well as various second order methods (see for example 
[25]) have been worked out. Some useful estimations have been obtained [12], [16]. 
Active research is under way to obtain numerical methods for minimizing the 
function (2) (see [24]) and the function (3) [17]. But there is too much to be done in 
this field. The main problem for the immediate future is to develop software for 
minimax problems and its practical applications. 

Sometimes it is possible making use of special properties of the problem to 
develop an effective method for its solution. 

4. Saddle points. The problem of finding saddle points is a special case of minimax 
problems. For this case it is possible to construct methods where it is not neces
sary to calculate the value of the function (1) at each step (see surveys [11], [14]). 

5. Optimal control problems with a minimax criterion function. 
6. Nonlinear approximation problems [15], [19]. 
Now we discuss Problems 1 and 5 in detail. 

2. Let <p{x) = maxye(Kx)f{x9 y) where xeEmyeEm. Fix xQ and g e E„. Let 

T{y) = {VeEm | g aQ > 0:y + aveG{x0 + ag)Vae[09 a0]}. 

The closure of T{y) we denote by r{y) = r{xQ, y, g). It is known [9], [22] that under 
some additional conditions the function cp{x) is differentiable at the point xQ w.r. 
to the direction of g and 

^Xo) = lim—-[<p{xQ + ag) - <p{xQ)] = sup sup '&'<&*)} 0g «-+0 « ye£(*0) v^r{y)l 

Higher order derivatives we define as follows. Suppose that / ^ 2 and that it is 
already known that 

<p(x0 + ag) = <p(x0) + S ^ ^ - ^ + o(«'-i) 

where dk<p/dgk are derivatives of the function <p w.r. to the direction of g at the 
point XQ. Then the limit 

dl<p{x0) r /! T , , . / x tì 9*p(*o) ock 

if it exists is called the /th derivative of the function <p{x) at the point xQ w.r. to 
the direction of g. 

Now let us introduce the set ri{y, vÌ9 •••, vt_{) of feasible directions of the /th 
order. Suppose that sets rl{y)9 r2{y, vx)9 •••, r

i~\y, vh •••, v,_2) have already been 
defined. Fix y e G{x0)9 vx e rl{y)9 •••, V/_x e ri~\y9 vl5 •••, V/_2) and define the set 

V{y9 vl9 - , V/.0 = \vteEm | 3 a0 > 0: y 4- JS a* • v* e tf(*0 + ag)Vae[09 a0]}. 

The closure of P{y9 vh •••, v,_x) let us denote by P{y9 vx, ••-, v/_i) and call it the set 
of feasible directions of the /th order (or course P and f' depend on xQ and g). 



SOME MINIMAX PROBLEMS IN OPTIMIZATION THEORY 337 

Suppose that the function / is / times continuously differentiate. Then for any 
a e [I : /] the following expansion is valid : 

/ ( *o + ag, y + S akVk + <>{a°) j 
(5) V k=l \ k 

= /(*b, y)+& Afa,y9 g, vu ", VÙJT + o{aa) 
k=i Kl 

where A k does not depend on a and is a function of the derivatives of the function 
/ o f order ^ k. Suppose that for any sequence {ys}9 ys e R{xQ + asg)9 as -> H- 0, 
there exists a subsequence {yS{} which can be written as 

/ - i 
J>„ = J + I ! aj v* + «(• vw + o(a{) 

where j ; e G{x0), h e rl{y\ •••, V i e / ^ ( A vb •••, Vz), % e T7'^, vi, - , Vi)> 
at- vti -> 0 as / -> oo. 

THEOREM 1. Le* / ^ 2. If there exists the first derivative of the function <p{x) at the 
point XQ w.r. to the direction of g and (5) is true, then under the assumptions above 
there exists the derivative of any order a e [2: n] and 

(6) %ig = SUP SUP ^ ^ 0 ' y* & vi> ' " ' v * ) 

wÄere >4ff(x0, y, g, Vi, •••, vff) is taken from (5); T^"1 I J the set of elements of [y, vi, 
•••, vff_i] iSt/c/i / t o supremum in the formula for the {a—l)th derivative is achieved 
at points [y9 Vi, •••, v„_i]. Note that Ta~l is not empty for G G [2 : n ] . 

3. Minimax problems in optimal control. Let x{t) =f{x9 u, t)9 x{0) = JC0, where 
x = {xÌ9 •••, xn)9 f = {fÌ9 •••, / „ ) , u = {ul9 •••, ur) and the functions f and 3 / , / 3 * 
are continuous in all variables. By XJ let us denote the class of piecewise con
tinuous controls u{t) such that u{t) e W c= Er for any t e [0, T]. Let /(w, z) = 
$g{x, u9 t9 z) dt where ze Z a Ep, the functions g and dg/dx are continuous in 
all variables. N o w let us consider the problem 

(7) max I{u, z) > min. 

Under some additional conditions the following result is valid. 

THEOREM 2 (SEE [4]). For a control w* e U to be an optimal one it is necessary that 
T 

min max \[Hz{u9 z) — Hz{u*9 z)] dz = 0 
«et/ ZœR(U*) 0 

where R{u) = {z e Z\l{u9 z) = maxüGZ I{u9 v)}9 

d(pJs) = _ (df{x{z9u*)9u*9z)\* M _ dg{x{z9 a*), u*9 z9 z) r(T) = Q 

dz \ dx ) w } dx ' W } 
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Stochastic Differential Games with Stopping Times 
and Variational Inequalities 

Avner Friedman 

Consider a system of 77 stochastic differential equations 

(1) dz{t) = f{x{t)91, y9 z) dt + o{x{t)91) dw{t) 

where a{x91) is an n x n matrix, f{x919 y9 z) is an w-vector, both uniformly Lipschitz 
continuous m{x9 t)eRn x [0,00), and w{t) is «-dimensional Brownian motion. The 
variables y, z are viewed as control functions. They are taken to be measurable 
functions y = y{x91)9 z = {x9 t) with values in compact sets Y and Z respectively. 
We say that Y and Z are the control sets for the players y and z respectively. We 
are also given a pay-off 

PzT{y9 S; z9 T) = E^ | j exp y J k{x9 s9 y9 z) ds h{x919 y9 z) dt 

(2) + e xP |_ J k(x> U y>z) dt gi(x(S)> S) XS^T 

+ exp [ J k{x9 u y, z) dt g2{x{T)9 T) } XT<S 

where k9 h9 gh g2 are, say, smooth functions with bounded second derivatives. Here 
S and T are stopping times with range in [z9 T0] for the process (1) with y = y{x91)9 

z = z{x91) and TQ is a fixed positive number. 
The aim of the player y is to choose {y{x91)9 S) so as to maximize the pay-off, and 

the aim of the player z is to choose {z{x91)9 T) so as to minimize the pay-off. We 
shall refer to (1), (2) as a stochastic differential game with stopping time. 

A pair {{y*{x91)9 S*)9 {z*{x, t)9 T*)} is called a saddle point if 

p^{y9 s\ z*9 T*) ^ PUy*> s*i z*> T1*) ^ PUy*> S*'> z> T) 
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for any pairs {y9 S) and (z, T). If such a saddle point exists, then the number 

v{ç9z) = pay*,s*;z*,T*) 
is called the value of the game. 

Let (7* be the transpose of a9 and let a = aa*. Set 

Lu = £ 2 aiß^ujdxßXj 

where a = (a,7). It is easy to see that if a saddle point exists then 

(3) g2{x91) ^ gl{x91)9 g2{x9 TQ) = gl{x9 F0). 

We shall now assume that (3) holds, that 

(4) 2 au{x , * ) « , ^ a | f |2 for all (*, 0, f e i ? » ( a > 0), 

and that the minimax condition holds : 

max min [h{x919 y9z) + p •/(*, f, >>, z) + uk{x91, y9 z)] 

(5) = min max [h{x91, y9z) + p •/(*,19 y9 z) + uk{x919 y, z)] 
z<=Z y*BY 

= H{x9t9u9p). 

Consider the nonlinear parabolic variational inequality 

u e LP{09 r0; W*>P*) [\ L°°(0, T0; W^)9 

( 6 ) dußt G LP{0, TQ ; V*'**), gi^u^ g2, 
[du/dt + Lu + H{x919 u9 ux)] (v - u) ^ 0 a.e. for every v, gi S v g g2> 

W(*,T0) =^i(x ,r 0 ) 
with any/? > w. Here JF'»^ is 0^(1?*) with any density function e~fi]xl, p > 0. 

THEOREM 1. (i) There exists a unique solution u of {6). 
(ii) Let y*{x91)9 z*{x91) be any control functions which realize the maxy and minz 

in (5) when p = ux{x91). Let S* be the exit time from the set {u{x91) > gi{x91)} fl 
{z < t g TQ} and let T* be the exit time from the set {u{x91) < g2{x91)} f| {z < t 
^ TQ}. Then {{y*9 5*), (z*, T*)} is a saddle point. 

(iii)K(f,r) = u{£,z). 

Theorem 1 is due to Bensoussan and Friedman [1]. The special case where there 
are no stopping times was proved earlier by Friedman [5]. The special case where 
there are no controls y{x91)9 z{x91) was proved by Bensoussan and Lions [2] and 
Friedman [6], [7] (in [2] there is only one player); Krylov [11] has considered the 
corresponding stationary case. 

Consider next the case where a{x91) = 0, i.e., (1) is replaced by a deterministic 
dynamical system 

(7) dx{t)=f{x9t9y9z)dt 

and Pç,T{y9 S; z, T) is defined by (2), but with E^tT removed. The stopping times 
S, T are now any numbers in the interval [z9 TQ]. Since the assertion (i) of Theorem 1 
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is false in the present case, we proceed in a different manner : 
In the theory of differential games [4] one takes control functions y{t)9 z{t) and 

defines the concepts of upper value, value, 5-strategy, strategy, saddle point, etc. 
Then one proves that the upper value V+ exists and, under some assumptions, the 
value exists. The differential game setting is that corresponding to taking S s= TQ, 
T = Jo. Bensoussan and Friedman [1] have generalized the basic concepts and 
existence theorems in the theory of differential games to differential games with 
stopping times. In particular, they proved : 

THEOREM 2. (i) The upper value V+{x91) exists and satisfies a.e. the first order 
nonlinear variational inequality 

(dV+ T dV+ l ì 

[—gf- + min m a x \Kx919 y9 z) + -^- • f{x919 y9 z) + V+k{x919 y9 z)j |(v - V+) 

^ 0 a.e.for any v9 gi ^ v ^ g2. 

(ii) Iff = fx{x919 y) + f2{x919 z), h = h\{x919 y) + h2{x919 z) then the value exists. 
Consider now the case where o = el91 the identity matrix. Denote the value 

occurring in Theorem 1 by VB{x91). 
In the special case where there are no stopping times, i.e., S = TQ, T = TQ9 it 

is known [3], [8] that 
(8) V&9T)-+V{C,T) i f e ^ O 

where V{t~, z) is the value of the deterministic differential game (with dynamics (7)). 
Bensoussan and Friedman [1] have proved (8) in case S is any stopping time but 
T = T09 provided 

* + $ - + • £ • / + » ! . s a 

We return to the situation of Theorem 1. It is of great interest to study the 
domains of continuation C\ = {u > gi}9 C2 = {u < g2}. 

In the case where there is only one player, say y9 and, furthermore, there are no 
control functions y = y{x91) in (1), (2), there are some recent results on the shape 
and smoothness of the boundary of C\ [12], [13], [10], [9]. It would be of interest to 
obtain such results in the case where there is a control function y in the system (1) 
and in the pay-off (2). 
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Necessary and Sufficient Conditions for Local 
Controllability and Time Optimality 

Henry Hermes* 

Introduction. Let M be an analytic n manifold and # = {Xa : a e A} a collection 
of analytic vector fields on M. A continuous map <p : [0, T] -> M, T > 0, is called 
a solution of<g if it is a "piecing together" of integral curves of the Xa

9 specifically 
if there exists a partition 0 = /0 < h < ••• < tk = T and <x\9 —9ah^A such that 
d<p/dt = <p = Xa<{(p{t)) on [>,_!, tt)9 i = 1, —, k. We denote by stf{t9p9 #) the set 
of all points in M attainable at time t > 0 by solutions of ^ initiating from p at 
time 0. 

The set of all analytic vector fields on M9 denoted V{M)9 may be considered as 
a real Lie algebra with product the Lie product [X, Y]. For any collection of vector 
fields #, let L{<#) denote the smallest subalgebra containing #; let TMq denote the 
tangent space to M at q and <gq = {X{q) e TMq\ Xe<g}. Associated with L{<g) is 
an ideal, LQ{^)9 consisting of elements of the form 2£=i AjXa{ + W9 where X,- are 
real, EAr- = 0 a nd W belongs to the derived algebra of L{<&). Sussmann and 
Jurdjevic [1] show that a necessary and sufficient condition that \Jm0 stf{t9 p9 q>) 
have nonempty interior is that dim L{<g)p = n. (See Krener [2] for a short proof 
of this.) Furthermore, they show that a necessary and sufficient condition that 
int stf{t9p9 <g) ï 0 for all/ > 0 is that dim L0{<tf)p = n. 

Let J e ^ and Tx{ • )p be its associated flow, i.e., the solution of x = X{x)9 x{0) = 
p. This manuscript deals with the problem of giving necessary and sufficient condi
tions that Tx{t)p e int jtf{t9 p9 <g) for all t > 0. If this occurs we say the system <g 
is locally controllable along Tx at p. The Pontryagin maximum principle for a time 
optimal problem associated with %> gives "first order" necessary conditions that 
Tx{t)p e dsé{t9 p9 <€) (here 3 denotes boundary) for 0 % t £ fj. Our results are 

* This research was supported by the National Science Foundation under grant GP-27957. 
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related to a higher order maximum principle. Throughout most of the paper we 
consider the special system 

(1) * ={*+ tcciV*: - l g o , . g l [ 

where X9 V* are analytic vector fields on M. We choose Tx{-)p9 i.e., all a,- = 0, 
as the reference trajectory. Let (ad X9 Y) = [X, Y] and inductively, (ad* X, Y) = 
[X9 (ad*"1 X9 Y)]. Define 

(2) ^ ° = {(ad/ X9 KO: / = 2, - , «57 = 0, 1, - }. 

One may show LQ{ê) = L{yQ) so dim L{<y°)p = n is necessary and sufficient 
that int srf{t9p9 $)¥=<& forali * > 0. It is well known [3] that rank Sf°p= n is sufficient 
that Tx{t)p e int jtf{t9p9 ê) V f > 0. Theorem 1 gives, under certain assumptions, 
necessary and sufficient conditions that Tx{t)p e int stf{t9 p9 ê) V ? > 0. This 
theorem is an improvement of the result announced in [4] in the case dim n = 2. 

One may show that the "Pontryagin first order approximating cone" along Tx 

at/71 = Tx{tx)p9 ti > 0, is span ff*p If dim span &%KT)P < n for 0 ^ z g tl9 the 
solution Tx{-)p is called singular on [0, fj in that the maximum principle gives no 
positive information. One can develop higher order maximum principles (see [5]) 
by constructing cones which, for this problem, include elements of L{Sf°) not in S?°. 
Theorem 1 considers such elements, and in the analytic case, resolves the question 
of whether or not a singular solution is time optimal. This is related to, but quite 
different from, the work of Kelley, Kopp and Moyer [6], who minimize a real 
function on */{T, p9 <T), 7* > 0 fixed. 

In §1 we state the main Theorem 1, the simplification which occurs in two di
mensions, and a brief outline of its proof. In §2 we illustrate the applications of the 
theorem via examples. Details of proofs and similar results for more general 
systems will appear elsewhere. 

The author would like to acknowledge helpful conversations and correspondence 
with Professor A. J. Krener. 

1. The main theorem. We make the following assumptions : 
(a.l) X{p)9 V

2{p)9 •••, Vn{p) are linearly independent. 
(a.2) V2

9 •••, Vn are involutive. 
Let Z be a smooth one-form on M uniquely determined by the conditions 

(3) <Z(*), X{x)y = 1, <Z(*), K'(*)> = 0, 1 = 2,-.., n, 

for x in some nbd. of p. We introduce the notation: v = (y2, •••, v j with the yf- non-
negative integers; \v\ = 2]>v;^J) = <Z(p),(ad/J^ 
s2 = {s9~-, sn) with Si real and in a nbd. of 0 ; 

W.M) = 23 4yJX- ^ - , ( -sn)
v* an "m-form". 

\v\=m 

THEOREM 1. Assume (a. 1), (a.2). A necessary and sufficient condition that jtf{t9 p9 S) 
have nonempty interior for all t > 0 {i.e., that dim L{£f°)p = n) is that some m-
form <pmj{s) ^ 0, m ^ 1, j ^ 0. Ifm* ^ 1 is the smallest integer such that <pmV ^ 0 
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for some] ^ 0 andj* the smallest j for which this occurs, a necessary and sufficient 
condition that Tx{t)p e int stf{t9p9 <̂ ) V t > Ois that çmy* {s) assumes both positive 
and negative values in every nbd. ofOe Rn~l. {Note that if m* is odd9 <pm*j{s) = 
-<pmV{-s); hence Tx{t)p e int sé{t9 p9ê)1 t> 0.) 

For dim n = 2, Theorem 1 admits a simpler statement, as announced in [4]. 
Indeed, for n = 2, assumption (a.2) is vacuous while v = v2, s = s2, V = V2 and 

tpmj{s) = s"{Z{p)9 (ad/Z, (ad- V9 X)){p)}. 

Let 

^ = {V9 (ad V9 X)9 (ad X, (ad V9 X))9 (ad2 X, (ad V9 X))9 » .} , 

^2 = {^ (ad2 F, X), (ad Z, (ad2 V9 X))9 (ad2 Z, (ad2 V, X))9 . . - } , 

5* = {K, (ad3 K, X), (ad Z, (ad* V, X))9 • - .} , 

etc. Note that, other than for V9 the elements of £fQ and £fl differ only in sign; thus 
rank Sfl

p = rank Sf°p. 

THEOREM 1 (CASE n = 2). Assume X{p), V{p) are linearly independent. A necessary 
and sufficient condition that int srf{t9 p9 $) ^ 0 V t > Ois that there exists an integer 
m ^ 1 such that rank Sf^ = 2. A necessary and sufficient condition that Tx{t)p e 
int jtf{t9 p9 ê)for all t > 0 is that the smallest such integer m be odd. 

REMARK 1. This statement differs slightly from that given in [4]. The above, 
stronger statement is more useful for computation since one need not first verify 
that dim L{S/>*)p = 2. 

We next give a brief sketch of the ideas involved in the proof of Theorem 1. If 
cj) is a solution of g with ^(0) = p9 <jj{t2) = Tx{t{)p = p1 and r = {<J){t): 0 ^ t 
^ t2} we have t2 = \rZ. If tp{z) = <]){t{z))9 0 ^ r ^ ^, is a reparametrization of cj)9 

t2 = tÌ(Z{<p{z))9<p'{z)ydz. 
o 

The first goal is to reparametrize so that the integrand in the above expression 
depends only on the point <p{z). From assumption (a.2), through each point 
Tx{z)p 3 an {n - l)-dim. integral manifold, Mn~1{Tx{z)p)9 for V\ •••, V» which 
is transverse to Tx{-)p. Define t{z) as that value t for which <]){t)eMn~1{Tx{z)p). 
Choose an ordering, say Vn

9 •••, V2; then 3 smooth functions s2{z)9 •••, sn{z) 
such that cj){t{z)) = <p{z) = Tv'{sn{z))o —o Tvt(s2(z))o Tx{z)p. This reparametrization 
is as required. Indeed, 

(Z{<p{z))9<f>'{z)y = <Z{<p{z))9 DTV\sn{z)) - nTy\s2{z)).DTx{z)X{p)y. 

Now let g{s9 z9 p) = Tv*{s„)°-• • o H 1 s 2 ) ° ^ ( ^ . For fixed J, T in a nbd. of 0 e jR»-i, 
g(j, r, -) : -^ "• -W diffeomorphically. We let g%{s9 z9 p) be the induced tangent 
space isomorphism. Then (Z{q>{z))9 <p'{z)y = (Z{g{s{z)9 z9 p))9 g*{s{z)9 z9 p)X{p)}. 
Define 

H{s9 z) = (Z{g{s9 z9 p))9 g*{s9 z, p)X{p)}. 
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Then H is real valued, analytic for s, z in a nbd. of 0 e Rn\ also H{09 z) = 1. One 
may show that H{s9 z) = 1 in a nbd. of zero implies dim L{SfQ)p < n; also #(£, 7) 
^ 1 (or H{s9 z) ^ 1) for all 0 £ z ^ *i and J in a nbd. of 0 e /e»"1 implies 
T ^ ( 0 P e 3J*( / , />, ̂ ) for 0 â * ^ *i-

Assumption (a.l) implies that, for each z e [0, t{\9 jtf{z9p9 ê) contains an {n - 1)-
manifold through Tx{z)p9 transverse to Tx

9 and having Tx{z)p as an interior point. 
(Indeed span ^TKT)P

 1S
 ^Q tangent space to such an {n - l)-manifold at Tx{z)p.) 

Assumption (a.l) also implies the existence of "comparison solutions" in a full 
nbd. of {Tx{z)p: 0 < z < ti}. If H{s9z) # 1 one can find comparison solutions 
whose values at time tx cover a set of the form {Tx{ti + a): a e [a9 ß]} where 
H{s9 z) ä 1 => a < 0, ß = 0; H{s9 z) S 1 => a = 0, p > 0 and #(.y, T) - 1 chang
ing sign => a < 0, ß > 0. Thus H{s, z) # 1 is sufficient that stf{t9 p, i) have 
nonempty interior while H{s9 z) - 1 changing sign => Tx{t)p e int j^( / , p9 é). 
An expansion of H is difficult; however one may proceed as follows. Letf{s)q = 
r^fo jo . -o 7 ^ ( ^ and define A(s, r) = (Z{T*(T)P\ UX{g{s9 z, p))}. Then 
#(,s, T) = T o h{s9 z) = 1/7" showing h — 1 changes sign if and only if H — 1 does. 
We next show Tx{-)p is singular iff rank Sf®p = n — I. Thus T* nonsingular o 
Pi/C5) # 0 o rank SfQ = n and the conclusion of Theorem 1 easily follows. If 
Tx is singular, {d/dt)Z{Tx{t)p) = - Z ( r* (0A(T*( / ) / ? ) and A(^) = <Z(p), 
&*1 ^(gfo ?> /?)))• Using the Campbell-HausdorfF formula for this case, i.e., 
<Pu{s) = 0, 

00 00 

h{s9 z) = 1 + S ( - #/*,!) - ( - jf/i*!) S fr>//!)fl(», 7). 
IPI=2 f=Q 

Now, specifically, h{s, z) — 1 "changing sign" in the above discussion means that 
for any e > 0 it is necessary and sufficient that h{s9 z) — 1 change sign as a 
function of s9 at s = 0, for some r e [0, e). Thus the role of z differs from that of 
s. Theorem 1 follows from the expansion of h. 

REMARK 2. Consider the system @ = {X + aY: - 1 ^ a ^ 1}. If 3 vector 
fields V\ •••, Vn such that A"(>), Y{p)9 V3{p), •••, K*(/>) are linearly indepen
dent while Y9 Vs, -~9V

n are involutive, one may expand <& to a system of the 
form <£\ Then a sufficient condition that Tx{t)p e ds#{t9 p, S) is also sufficient 
that Tx{t)p e dstf{t9 p9 &). Such a condition is H{s9 z) è 1 (or H{s9 z) ^ 1) for 
s in a nbd. of zero, 0 ^ r ^ ^. Equivalently, from Theorem 1, if some pOTy {s) # 
0 and <pm*j*{s) is definite, Tx{t)p e djtf{t9 p9 @) for sufficiently small t > 0. 

The existence of V3
9 ••-, Vn is equivalent to the existence of a foliation of co-dim 

1 for a nbd. of {Tx{t)p: 0 ^ t £ ti} such that the leaf through Tx{z)p is transverse 
to T*and contains the trajectory TY{-)oTx{z)p. Let ^ ° = {Y, (ad X, 7) , 
(ad2 A; F), •••} If rank {X U «^% = « the existence of F3, •••, V* is assured by a 
construction shown to me by Professor A. J. Krener. In this case, we also have 
H{s9 z) # 1 implies int s#{t9 p9®)± 0 , V t > 0. 

2. Examples. 
EXAMPLE 1. Let X{x) = (8, x2, x2)9 V2{x) = {x\9 1, 0), V\x) = (0,0,1) and/? = 

0. Then X{p), V2{p)9 V3{p) are linearly independent; V2, V3 commute, hence are 
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involutive. We compute Z{x) = (1/8 - xjD (1, - x\9 0); (ad-'' X9 [V2
9 X]){x) = 

(2 ( -2 )^ 2 , - 1 , - 1), ( a d / J U n *])(*) = 0. Then a{\9 09j) = a{09 l9j) = 0Vj^ 
<pij{s) = 0; hence Tx{t)p is singular. Since [V3

9 X] = 0, a{v2, v$9j) = 0 if y3 ^ 0. 
Also, (ad'T, (ad2 V2

9 X)){x) = ( ( - \y6x2, 0, 0) showing a{29 0, j) = 0 Vj. Thus 
<p2J{s) = 0 V / However (ad3 F2, *)(*) = (6, 0, 0) => o(3, 0, 0) = 2/3 => p^C?) 
= (2/3)4 Here w* = 3 is odd => JT*(/)/> e int stf{t9p9 ê) V / > 0. 

EXAMPLE 2. Let X9 V
3
9 p be as in Example 1 but now V2{x) = {x2,1,0). Again 

Tx{-)p is singular. Now Z{x) = (1/8 - x2){l9 - x2,0), Pi/fa) = 0 V j ; fl(v2, v3, 7) 
= 0 if v3 # 0 but (ad2 V2, X){x) = ( - 2 , 0, 0) => «(2, 0, 0) = - 1 / 4 and <p2,0{s) 
= ( - 4>i =* Tx{t{)p e djtf{tì9p9 ê) for sufficiently small ^ > 0. For such th h{s9 z) 
< 1 if 0 < z < ti and \s\ is sufficiently small => //(s, z) > 1 => Tx{-)p minimizes 
transfer time from /? to Tx{t{)p. 

EXAMPLE 3. Let X{x) = (4, x2i 0), V\x) = (*2, 1, ^2*3), V3{x) = (0, 0, 1), 
p = 0. Conditions (a.l), (a.2) are satisfied. Computing gives Z{p) = (1/4, 0, 0), 
(ad'T, K2)(x) = ( ( -* 2 y , 1, x2x3)9 (ad/*, K3)(*) = 0. Then a{\9 09j) = «(0, 1,7) 
= 0 V j=><pij{x) = 0=>Tx{-)p is singular. Next, (ad2 V2

9 X){x) = ( - 2 , 0, 0), 
(adF2, (adF3, *))(/>) = 0, (ad2 K3, *)(/?) = 0 so a(2, 0, 0) = -\9 a{\9 1, 0) = 
a(0, 2, 0) = 0. Thus <p2o{s) = —s|/4 and Tx{-)p minimizes transfer time from 
p to pl = Tx{t{)p for sufficiently spiali ^ > 0. 

References 

1. H. J. Sussmann and V. Jurdjevic, Controllability of non-linear systems, J.Differential Equa
tions 12 (1972), 95-116. 

2. A. J. Krener, A generalization of Chow's theorem and the Bang-Bang theorem to nonlinear 
control systems, SIAM J. Control 12 (1974), 43-52. 

3. H. Hermes, On local and global controllability, SIAM J. Control 12 (1974), 252-261. 
4. , On necessary and sufficient conditions for local controllability along a reference 

trajectory, Geometric Methods in System Theory, D. Q. Mayne and R. Brockett (editors), Reidel, 
Dordrecht, 1974. 

5. A. J. Krener, The high order maximal principle, Geometric Methods in System Theory, D. Q. 
Mayne and R. Brockett (editors), Reidel, Dordrecht, 1974. 

6. H. J. Kelley, R. E. Kopp and H. G. Moyer, Singular extremals, Topics in Optimization, 
Academic Press, New York, 1967, pp. 63-101. MR 35 # 5996. 

UNIVERSITY OF COLORADO 
BOULDER, COLORADO 80302, U.S.A. 





Proceedings of the International Congress of Mathematicians 
Vancouver, 1974 

A Finite Difference Method for Computing Optimal 
Stochastic Controls and Costs 

Harold J. Kushner* 

1. Introduction. Let U denote a compact set in some Euclidean space R?9 wt a 
standard J?w-valued Wiener process on [0, oo), and let /(•,•)• Rr x U-+Rr

9 

(?{-): Rr -• r x r matrix valued, k{-9-): Rr x U'-• R9 </>{•): Rr -» R where the 
latter four functions are continuous and bounded and {f{x9 U)9 k{x9 U)} is compact 
and convex for each x e Rr. Suppose that G is a bounded open set. We will consider 
an interesting computational method for the control system governed by the Ito 
equation1 

(1) dxs = f{xS9 u{xs))ds + a{xs)dwS9 u{x) e JJ. 

If a solution to (1) exists up until z{u) = min {t : xt e dG9 u{ • ) used}, and if Eu
xz{u) < 

oo, define the cost functional 

(2) W{u9 x) = E«x$ k{xS9 u{xs)) ds + E^{xt{u))9 
0 

and W{x) = infM W{u9 x)9 where the infimum is over all U-valued w(-) of the above 
type. We can also consider the discounted case and the case where control is 
stopped at a finite time T. 

Formally, if W{-) is smooth enough, Ito's lemma (where we abuse the notation 
u) implies that 

(3) inf [&«V{x) + k{x9 w)] = 0, x G G9 V{X) = ç5(xr), x e dG 

•This research was supported in part by the Office of Naval Research NONR N00014-67-A-
0191-001804, by Air Force Office of Scientific Research AF-AFOSR 71-2078C and the National 
Science Foundation GK-40493X. 

1Under an additional condition, a could also depend on the control. 
© 1975, Canadian Mathematical Congress 
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(where JSP* is the differential generator of (1)). Conversely (Fleming [1], Rishel [2]), 
a "smooth" solution to (3) yields W{-) and the optimal control ü{-). Generally, 
S£u is degenerate, and suitable smoothness of the V{-) in (3) cannot be guaranteed, 
and, indeed, the use of (3) for computational purposes is in question. 

Our plan here is the following. Finite difference (FD) approximations to (3) will 
be investigated. With a careful, but natural, choice of the FD approximations (dif
ference interval A), the FD equations are the backward equations for the optimal 
control of a certain family of Markov chains. It turns out that this family of chains, 
when suitably interpolated to get a family of continuous parameter processes, 
converges "weakly" to a controlled diffusion (when the sequence of measures cor
responding to a family of processes on some space converges weakly, we say that the 
processes converge weakly). Under some additional conditions, we can get an 
approximation to the optimal control for (1) and to the optimal costs. Such results 
are not frequently available, for our class of problems, by use of other current 
techniques. Space limitations prevent full development of the ideas of the physical 
intuition which the probabilistic approach provides. The probabilistic interpreta
tion is often helpful in comparing and developing algorithms and interpreting 
numerical results. Only a brief and heuristic outline will be given. More details are 
in Kushner and Yu [3] or Kushner [4], or will be published elsewhere, and much 
still remains to be done. 

2. Finite difference approximations. Define a{-) = a{-)a'{')/2. Purely for simpli
city, let a{ -) be diagonal. For each real A > 0, let Rr

k denote the FD grid on Rr with 
interval A, and write Gh = G fl Rr

k. Define dG as the set of points on Rr
k — Gh 

which are only one node removed from Gh. Let e{ denote the unit coordinate in the 
zth (orthogonal) direction of Rr. For reasons to be made clear below, choose the 
special finite difference approximations 

(4a) VXl{x) -> [V{x + efi) - V{x)]/h9 iff{x9 u{x)) £ 0, 
-> [V{x) - V{x - eMIK iff{x9 u{x)) < 0, 

(4b) VXiXl{x) -> [V{x + e{h) + V{x - eth) - 2V{x)]/h2. 

Define Qh{x9 u) = Ei[aü{x) + h\f{x9 u)\]9 and let MXtU(BU Qh{x9 u) ^ Kh for some 
positive real K. Substituting (4) into (3), collecting terms and denoting the finite 
difference solution by Vh{-) yields (where//" = max {fi9 0), etc.) 

(5) 0 = inf [ - V*{x)Qh{x9u) + £ V\x ± eMflifc) + hff{x9 u)] + h2k{x9 u)] 
u^u L i,± J 

for x e Gh9 and Vh{x) = </>{x) for x e dGh. 
At this point there are several directions that we can go in, but only one of them 

will be pursued. Define Qh{x) = sxxpueU Qh{x9 u). Then add Qh{x)V{s) to both sides 
of (5), divide (5) by Qh{x)9 and define (for x e Gh) 

AHx) = h2/Qh{x)9 pKx9 x±e{h\u) = [aü{x) - hf±{x9 u)]IQh{x)9 

ph{x9 x\u) = [Qh{x) - Qh{x9 u)]/Qh{x) and ph{x, x\u) = 1 for JC £ Gh. For all other 
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{x9 y)9 let p*{x9 y) = 0. Then2 for x e Gk9 

(6) VHx) = inf \vh{x)Ph{x, x\u) + 2 V*{x ± eji)p*(x, x ± e{h\u) + k{x9 u)At*{x)\ 
u^UL i,± J 

and Vh(x) = </>{x)9 xedGh. 
Now we are at the key point for the future development. The ph{ •, • | u) are transi

tion probabilities for a controlled Markov chain, which is absorbed on first exit 
from Gh. This Markov chain interpretation can be very helpful. Let {£*} denote the 
random variables of the chain, and define Nh{u) = min {n: £g e dGh9 u used}, and 
Atf = Ath{&) and t) = SjzJ Ath

s9 and zh{u) = t^i(u). To facilitate the discussion, 
let us make an assumption: 

(Al) for some /, inf^^X*)! > 0. 
(Al) is not necessary, but it does imply that snpUtXŒGMExNh{u) < oo, and 

strçWc» EfchfyW < oo, all A: > 0. Define the process &{t)9 t e [0, oo), by £A(0) = 
f j = x9 £

h{s) = £}, t G [tf91*+1). Then rÄ(w) is the escape time for £h{ • ). 
Now (6) is the value equation for optimal control of the {£A} with cost rate 

£(*, w) Ath{x). Under (Al) and the prior conditions, it has a unique solution, which is 

VKx) = inf JBsriTVa "(^))^^ + Ä(„))l 
(7) « L »=o J 

inf JB;[T,J*(e*(ff), «(€*(*)))* + tfe*(**M)) 

FA(*) is no larger than WA(w, x), the cost due to a policy w(-) for which E*Nh{u) < 
oo. Let MA(-) denote the optimal policy (defined in Gh). 

We have Ex[&+1 - « | « = x] = / (* , w(*))^A(x), 

covK*+1 - f») f* = *> w used] = 2a{x)Ath{x) + o{Ath{x)) 

which, together with the Ath{x) coefficient on k{x)9 further motivates our continuous 
time interpolation from {£A} to £*(•)• Write 

etn-ö+/(Ä«(€ö)4tf+ ft, 
where {/3A} is orthogonal. 

3. Limits of {£*(•)}• Let D denote the space of iïr-valued functions on [0, oo) 
which are right continuous and have left-hand limits, and which is endowed with 
the Skorokhod topology (Billingsley [5, pp. 111-118]). The topology is metrizable, 
and is complete and separable with respect to that metric. Define zh{-) as the piece-
wise constant process (on each Atf) with jumps At* IK^Gò. Thus TA(OO) = zh. 
Then {£*(•), rA(-)} (f°r anY sequence {ßA(-)}) is a tight sequence, and each subsequ
ence has a weakly convergent subsequence, i.e., for each subsequence there is a fur
ther subsequence and a process x{ • ), depending on the sequence and with paths in D 

2 It is sometimes better merely to divide (5) by Qh{x, u) (ignoring its w-dependence when doing 
that). Then ph and Ath in (6) have Qh rather than Qh in the denominator. Under reasonable 
conditions both equations have the same solution, as h —> 0, and the latter sometimes has some 
computational advantages. 
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w.p.l-, which is the weak limit. The limits are continuous w.p.l. Indeed, using a 
lemma of Skorokhod [6\ (and also Dudley [8]), we can and will suppose (by pro
perly choosing the underlying probability space) that all convergences are w.p.l. in 
the Skorokhod topology, hence uniform on any finite interval w.p.l. 

Until further notice, let us fix a weakly convergent subsequence (corresponding 
to {wA(-)})—denote it by {£»(•), zh{')} and the limit by {x{-)9 z{-)}. 

Write z{oo) = z. x{-) is absorbed on dG at z (not necessarily its first hitting time) 
and (w.p.l.) zh{uh) -> z ^ inf {t: xtedG}. Also by (Al), Ex z

k < oo, for any k > 0. 
It turns out that x{-) is a controlled diffusion until z. In particular, using the tech
niques of [3], [4] and the ideas of [7] concerning the nonanticipative form of the 
control, there is a Wiener process w{-)9 a nonanticipative control ü{'9-)mth 
values u{s9 x{-))e U9 for which (*(•) is also nonanticipative with respect to w{-)) 

tnf tr\f 

(8) xt = x H- J f{xsu{s9x{-))ds + J a{xs) dwS9 
0 0 

J k{^),u"(^)))ds + ^A(7A(«*)))J^ E\ jk(xs, a(s, *(•))) ds + <Kxt). 

Now, xt e G, t S ? J if *o == x e G. If z ^ z9 at some co then the path x{ • ) is tangent 
to dG at t = z{u) : It hits G and does not leave for some positive time. Many condi
tions can be invoked to eliminate this possibility. Here we only assume 

(A2) x{-) crosses dG w.p.l. at t = z{u). 
Then z = z w.p.l., and Vh{x) = Wh{x9 u

h) -» W{x9 u). (A2) can often be verified 
from the general form off{ •, • ), a{ - ) on the boundary, without knowledge of u{ •, • ). 

A control «(•) with values in U, and for which (1) has a unique solution up to 
z{u)9 is said to be discretizable if there exists a sequence of policies uh on Gh for which 
£A(-) converges weakly to JC(-) (corresponding to £(•)) on [09z{u)) and Eü

xz
h{$Lh) -* 

E*z{ûh) and {TA(äA)} is uniformly integrable. (The latter condition is implied by 
(Al).) W{x9 u) S W{x9 u) for all discretizable u. Suppose 

(A3) There is an optimal control M(-) which depends only on jcsattime s and is 
discretizable (with discretizations fih{ • )). 

Then W*{x9 ü*>) ^ W\x9 wA). Since V*{x) = Wh{x9 w
A) -^ W{x9 ü) and Wh{x9ù*) 

-± W{x9 ü) = V{x) ^ W{x9 ü)9 we have that Vh{x) -> F(x) as A -> 0. 
(Al) guarantees that sup̂ >Ä Exzh < oo and that {zh} is uniformly integrable. This 

is essential for the desired convergence. If zh < oo w.p.l., and we can prove that 
z = z9 then the uniform integrability condition can be eliminated by adding a dis
count factor. Let cc{ • ) be a bounded continuous nonnegative real-valued function on 
Rr. Adding the discount factor exp { - |6a(jcs) ds} to the cost implies the addition 
of -a{x)V{x) to the l.h.s. of (3). If inf, a{x) > 0, and we are able to prove that 
zh{uh) -> z{u) w.p.l., then we do not need uniform integrability of {zh{uh)}9 since, 
due to the discounting, the effective "extinction" times are uniformly bounded. 
Define z for xe G by z = inf {t: t > 0, x{t) $ G). Then uniform integrability 
is implied by (A2) and either sup^>eö E

u
xz < oo or, if k{x9 t, u) ^ kQ > 0, by 

sup^ec Eu
xz < oo for some u satisfying (A3). 
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5. The optimal control. We are not able to prove a priori "smoothness" of the 
Vh{ • ), uniform in A. Thus, we cannot, in general, assert that there is a subsequence of 
the uh{-) which converges pointwise to the optimal control. This is a serious dif
ficulty, since a main object of the numerical solutions is to obtain a useful ap
proximation to «(•). However, in typical numerical calculations, the uh{-) seem to 
converge to a smooth function pointwise, or to a discontinuous function where 
(in typical cases) the paths of the limiting process have "negligible" probability of 
being "near" the discontinuities at any time t. If this apparent convergence does 
take place, then the limit is indeed at least (under (Al)—(A2)) optimal with respect 
to any discretizable control. 

The ideas can be extended to control problems with reflections on a part of a 
boundary, and to problems with many types of constraints of both the path and the 
expectation types. 

6. Remaining problems. It would be very useful to have prior estimates on the 
smoothness of the Vh{x). Certainly much needs to be done to understand fully the 
properties that the {£A, w(-) used} derive from the properties of {x{-)9 «(•) used}, 
particularly on the behavior near the boundary and on the values of the exit times. 
An investigation of various finite difference and variable grid techniques (yielding 
weakly convergent sequences with the proper limit) would be helpful—for improv
ing the numerical efficiency of the method. 
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Controllability in Topological Dynamics 

Lawrence Markus 

1. Global controllability for dynamic polysystems. Global periodicity and transi
tivity theorems are proved for control dynamical systems, say dx/dt = f{x9 u)9 in 
terms of an abstraction of topological dynamics. Here the state x lies in a given 
topological space M (the state or phase space), and the controllers u{t) are piece-
wise constant functions with values, say uÌ9 u2, --,up in a suitable restraint set 0 for 
finite durations tÌ9 t2, ••-, tp. 

Instead of actions of the real time line R on M consider, more generally, any 
collection of topological groups GU9 as indexed by a control parameter u in Q9 each 
acting on M as a topological dynamical system 

0U :Mx Gu-+ M :{x9g) -> xg = xg. 

We seek to control the orbit of a point x e M by commands, each of which is 
described by a word (say, abracadabra!) 

w = (£Wl, wi)te„„ w2)-••(&,,, UP) ( f i n i t e P depending on w) 
with gut in the group GUJ (with repetitions allowed). Here the command w acts on 
x e M by 

x->xw = {{xgu)guy~gUt. 

We define the command group & using concatenation of reduced words (com
bining adjacent products from the same group Gu and omitting any factor contain
ing the identity eu of Gu), and consider the action of ^ , the free product of {Gu}9 

on the space M; see [3]. 
DEFINITION. A topological dynamical polysystem 

0 : M x &-> M :{x9w)-+xw = xgUlgUl-gUfi 

as constructed from a family of dynamical systems 0U : M x Gu -• M for u e Q9 
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is defined by the command group <3 of reduced words acting on M through con
catenation. 

We give ^ the strongest topology for which all maps GUx x GUt x ••• x GUt -> 
&: (gu* m">8u) ~* w a r e continuous. Then the map of ^ onto the orbit x& = 
{xw\w e&} given by w -> xw is continuous. 

Standing hypotheses. In this paper we consider only dynamical polysystems 0 for 
which: 

(i) Each group Gu is a copy Ru of the real number line R. 
(ii) The phase-space M is a compact metric space. 

(iii) The control restraint set fl is a compact neighbourhood of the origin u = 0 
in the real number space Rm. 

(iv) There exists a continuous map W : M x R x Q -* M which restricts to the 
dynamical system 0U for each fixed u e Q. That is, for each u0eQ9¥ on M x RxuQ 

is the map 0Uo on M x R. 
The dynamical system 0O (where u = 0) is called the free system and the other 

0U are the controlled systems. 
REMARK. The orbit of x e M under the command group & consists of all points 

xw = x{tÌ9 ui) {t2, u2)'"(tp9 Up) where x{th u{) = 0Ul(x9 t{) is obtained by the 
action of GUl = RUl on M for a time duration tl9 and the other actions hold 
thereafter for durations t2, •••, tp. Thus the orbit of x consists of all points of M to 
which x can be steered by piecewise constant controllers constructed by a concat
enation of actions of 0Ul9-~,0Up for durations th t29-~9tp (finite p depending on w). 

In case all these tj e R+9 that is, tj ^ 0 for y = l,-«-, p9 we declare that xw lies on 
the future orbit x&+ in M9 and the past orbit is defined in a similar way. We 
emphasize that our results on controllability involve only future orbits. In this 
case each command word w = (fb u{) ••- {tp9 up) all tj e R+ can be specified by a 
piecewise constant controller on future times, u{t) = uj on tQ + fj + ••• 4- f/_i 
3§ f ^ *o + fi + ••" + */ (usually f0 = 0). The corresponding response or trajec
tory of the point XQ on f0 ^ t ^ tQ + ••• + ^ is defined in the usual way and is de
noted by 0([w], xQ, tQ; t) with 0([w], x0, tQ; t0) = x0. 

DEFINITION. Consider the topological dynamical polysystem 0 : M x & -» M9 

as constructed from a family of dynamical systems 0U : M x Gu -» M, with GM = 
Ru for each «ef l , according to the standing hypotheses. For each xQe M and 
time z > 0 the set of attainability is defined by 

A{x0; z) = {x0w|w = {tÌ9 ui) ••• (fy, up) with all fy ^ Oand tx + 2̂ + ••• + * * = ?"}• 

Also $ is locally controllable along free trajectories, or 0 satisfies the uniform 
controllability hypothesis, in case 

(uc) for each z > 0 there exists a radius 57 = 7]{z) > 0 such that each set of 
attainability A{x0; z) contains an open rç-ball centred at the endpoint of the free 
trajectory point 0Q{xQ; z) = <f>{[0]9 xQ, 0; z). 

EXAMPLE. Consider a control differential system x = f{x9 u) for the state x in a 
compact Riemannian n-manifold M (without boundary and covered by C°° local 
coordinate charts), and the control u in a compact neighbourhood Q of the origin 
in Rm. More precisely,/(JC, u) is a C°° map into the tangent bundle TM9f: M x Q 
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-• TM9 which is a cross-section over M for each fixed u e Q. Hence, for each w0 G 
Q9 the tangent vector field f{x9 uQ) is globally defined on all M9 with solutions 
0(wo> *o> 'o; 0 i n C°°(ö> M9 R9 R) initiating at x0 G M when t= t09 and generating 
the flow 

0Uo: M x R-+ M : {x09 t) -> ç5(w0, x09 0; *)• 

Using the command group ^ of words w = (*i, Mi) ••• (^, up)9 say, with values 
«!,-•-, upeQ for finite durations /j,»-, tp> we define the dynamical polysystem 0 : 
M x ^ -> M. If all the durations fy ^ 0 in w G ^ , so w can be represented by a 
piecewise constant controller, we obtain points on the future orbit xQ&+ of the 
initial state xQ G M9 and then the corresponding set of attainability A{XQ; Z). 

The general study of the uniform controllability hypothesis for such control 
dynamical systems can be found in earlier papers [4], [6], [7], [8], and a general 
theory in [1]. Below we shall indicate that uniform controllability is a generic 
property for such control dynamical systems. 

If the free system of the above example x = f{x9 0) on the compact Riemannian 
manifold M is conservative, that is divxf{x9 0) = 0, then the flow 0Q is measure-
preserving on M. In this case there is a dense set of points in M each of which has a 
future recurrent orbit under 0Q (that is, the orbit is contained in its future limit 
set). Other types of differential systems also have such a dense set of recurrent 
points, for example Anosov hyperbolic flows—but some types definitely do not, for 
example Morse gradient flows. 

By assuming the uniform controllability hypothesis on 09 and that the free system 
0O has a dense set of future recurrent points in M9 we shall prove the global con
trollability conclusion A{xQ'9 T) = M for some duration T > 0 independent of the 
initial state xQ G M. This result is an easy case, simplified for exposition, of a much 
more difficult analysis of controlled differential systems [6], [8], as we comment 
below. 

LEMMA. Let the dynamical polysystem 0 : M x <3 -* M be constructed from a 
family of dynamical systems 0U for ueQ9 according to the standing hypotheses. 
Assume 

(i) the free dynamical system 0Q has a dense set of future recurrent points, and 
(ii) the uniform controllability hypothesis holds for j]{z) > 0. 

Then each initial state xQe M lies on a controlled periodic orbit. That is, there exists 
a piecewise constant controller u{t) on some finite interval 0 g t ^ T0 {moreover 
with T0^ I an integral period ofu{t)) such that (/>{[u]9 XQ9 0;TQ) = xQ. 

SKETCH OF PROOF. Given xQ e M take a future recurrent point xi so near that the 
corresponding free trajectories 0([O], x0, 0; t) and 0([O], xÌ9 Ó; t) remain within a 
distance of }rç(l) for the duration - 3 ^ t ^ 3. In unit time control xQ to the 
point ^([0], xh 0; 1), and thereafter follow the free trajectory until it recurs back at 
some rational time near to 0([O], xh 0; - 2 ) , then remains within }9y(l). Then 
control the trajectory to join ^([0], xQ9 0; - 1) and thence onwards to xQ after a total 
duration that is rational. By repeating this circuit a finite number of times we 
arrive back at xQ in an integral duration TQ. 
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THEOREM 1. Let the dynamical polysystem 0 : M x <3 -» M be constructed from a 
family of dynamical systems 0U for ueQ, according to the standing hypotheses. 
Assume 

(i) the free dynamical system 0$ has a dense set of future recurrent points, and 
(ii) the uniform controllability hypothesis holds for y{z) > 0. 

Then there exists a duration T > 0 such that, for each x0 G M, the set of attainability 
A{xQ; T) = M. 

SKETCH OF PROOF. Consider the reachable set, over integral times k ^ 1, 
oo 

Ax0) = {JA{x0;k). 
£=1 

In any neighbourhood of a boundary point z of A{xQ) in M there is a free recurrent 
point zx in some A{xQ; k{). Using the methods of the lemma, we show that z is 
necessarily an interior point of A{xQ)9 so A{x0) = M. 

Next use the compactness of M to select a finite set of initial and terminal "trans
fer stations" ai,---, ar and éi,--, bS9 respectively, so that each A{x; 1) for xe M 
contains some ai9 and each y e M lies in some A{bf9 1). Then using controlled 
periodic orbits through bj9 to waste time if necessary, we find an integral duration 
Tx such that bJeA{ai; Tx) for all a,- and bj. Then take T = Tx + 2 for the re
quired duration. 

These two qualitative results on controlled dynamical systems are easy theorems 
of topological dynamics, but they are the prototypes of more complicated theories, 
related to nonautonomous control differential equations. For example x = f{x919 u) 
for x in a compact Riemannian manifold M, and u in a compact neighbourhood Q 
of the origin in Rm for each time / G R, with the tangent vector field f{x91, u) and its 
first partial derivatives assumed bounded in M x R x Q. In addition we assume 

(c) conservative hypothesis, divxf{x9 t9 0) = 0; 
(uc) uniform controllability hypothesis for TJ(Z) > 0 

and also some type of time-periodicity of/(;c, t9 u). 
If f{x9 t + 1, 0) = f{x9 t9 0) is periodic in t9 then the free dynamical system can 

be interpreted as an autonomous flow on the product of M with a circle Sl. How
ever if we assume Bohr almost periodicity, 

(ap) f{x9 t9 0) is uniformly almost periodic in t for xe M, 
then the related autonomous flow occurs in M x H{f). Here H{f) is the hull of 
f{x9 t9 0) under the shift translational flow in a certain Banach space, so H{f) is a 
compact infinite-dimensional space. In spite of these difficulties the conclusions of 
the above theorems on control periodicity and transitivity have been proved. For 
details see [8]. 

2. Generic controllability. Consider linear control processes x = A{t)x + B{t)u 
for xeRn,ueR>n and with coefficient matrices {A{t)9 B{t)) in C°° on 0 ^ t ^ T. 
A sufficient condition for controllability in Rn on 0 ^ t ^ T9 with piecewise con
stant controllers u{t) on 0 ^ / g T (regardless of T > 0) is [1]: 

rank [B9 TB9 T
2B9 •••, rk~lB] = n at t = 0, for some integer t ^ l , 

rv{t) = —AV+ Vdefined as a differential operator. 
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Consider the complete metric space stf x M of all such C°° coefficient matrices 
{A{t)9 B{t))9 with the usual metric defining uniform convergence of arbitrarily high 
order derivatives on 0 S t ^ T. It is easy to show that the collection of all con
trollable members contains an open dense subset # a stf x ^ ; see [3]. 

For the proof take k = n and the sufficiency condition can then be expressed by 
the nonvanishing of a single real polynomial P in the entries of the matrices A{0)9 

B{0)9 2?(0), •••, 5(w_1)(0) (say, P is the sum of squares of the n x n subdeterminants 
of the controllability matrix). Hence the condition P ^ 0 defines an open set # c 
j / x $. But by perturbing the elements of {A{t)9 B{t)) by very small real polynomials, 
with suitably chosen derivatives at t = 0, we find that <g is dense in stf x <%. 

This result was noted for autonomous linear systems by the author [2] several 
years ago, and a corresponding theorem was also proved for local controllability 
for nonlinear systems near the origin. We here extend our results for nonlinear 
systems to the study of local controllability along trajectories, or equally well, the 
property of uniform controllability. 

Thus consider the complete metric space y of all control dynamical systems 
x = f{x, u) for x in a given compact Riemannian «-manifold M9 and u in a fixed 
compact neighbourhood Q of the origin in Rm. That is, £f is the space of all C°° 
cross-sections f: M x Q -> TM with the usual C°° metric of uniform convergence 
of arbitrarily high order partial derivatives on M x Q\ see [S\. 

THEOREM 2. Consider the complete metric space Sf of all C°° control dynamical 
systems x = f{x, u)for xe M and ue Q, as above. Then there exists an open dense 
subset <€ cz £f of systems that satisfy the uniform controllability hypothesis. 

SKETCH OF PROOF. First we obtain a sufficient condition that the vector field 
f{x9 u) satisfies the uniform controllability hypothesis (uc) on M. Take xQ e M 
and consider the free trajectory 0O(/) for a given finite interval 0 ^ / ^ : . 

Choose a family of controllers 

u{t, £) = £ ^ ( 0 + £2w2(0 + . - + £*uH(t) + - + £*•+* u2n+m{t) 

for 0 g t g z and £ G i?2»+»», and with piecewise constant controllers uj{t) in ß to 
be specified later. The corresponding responses are x = </>{t9 £) with (f>{t9 0) = 
0o(O and (f>{09 £) = x0. We require the C°° map i*2«+m _> M: £ -• (/>{z9 £) to cover an 
open neighbourhood of the point <j>{z9 0) = </)0{z) for £ near the origin. This will be 
assured by the implicit function theorem provided 

rank (90/3£)(<zr, £) | e = 0 = «• 
Let Z{t) = (30/3£)(/, 0) be a continuous {n, 2n + m) matrix (say computing all 

derivatives in one tubular neighbourhood of 0O(O o n ^)> afld we must show that 
Z{z) has rank n. But theyth column Zj{t) of Z{t) satisfies, except at the finite set of 
control discontinuities, 

Zj{t) = A{t)Zj + B{t)Uj{t)9 zy(0) = 0 

where A{t) = {df/dx){^{t)9 0) and B{t) = {df/du){^{t)9 0) are C°° matrices, and 
du/d& = uj{t). Hence, provided the piecewise constant controllers Uj{t) are suitably 
selected, the controllability condition (say with k = In H- m) 
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rank [B{0)9 TB{0)9 T
2B{0)9 -.-, r2n+m~lB{0)] = n 

guarantees that Z{z) has rank n9 and that x = f{x9 u) is locally controllable along 
the free trajectory 0o(O-

Now compute 

B{0) = /„(*b, 0), TB{0) = -AB + È= -fxfu+ fuxf 
and so forth, with TsB{0) given as an «-vector Ps with each component a nontrivial 
real polynomial in/and its partial derivatives of order ^ s + 1, all evaluated at 
(*o, 0). 

In terms of the {2n +• m)-jet Jüp+^fv/G express the controllability condition 
rank [/„, -fxfu + fuxf P2, ..-, P2n^x{f ...,/<2»+«))] = n. 

But / fails to meet this condition only when n + m + 1 determinants (among 
others) vanish simultaneously 

det[P0, A, - , Pn-i] = 0, det[Pl5 P2,..., Pn] = 0, -. , det[Pw+w, .», P2w+m_i] = 0. 

This set of determinantal conditions defines an algebraic variety of codimension 
^ n + m + 1 in the jet space J^\.mt„, for each ,s ^ 2n + w. By standard transver-
sality theory the set ̂  of control systems in Sf9 satisfying the sufficiency condition 
for controllability, is open and dense in y>9 at least for restrictions of £f to a fixed 
coordinate neighbourhood of xQ in M. 

To prove that ^ is open and dense in Sf9 for control systems defined on the 
compact space M x Q, which has dimension n + m9 we refer to the general theory 
of transversality in jet bundles. Then, from the compactness of M x fl, it follows 
that each/G ^ satisfies the uniform controllability condition (uc). 
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Tpy^bi MejKAyHapo/jHoro KoHrpecca MaTeMaTHKOB 
BamcyBep, 1974 

ynpaBJieHHe B ycjiOBHHx KoH(])jiHKTa H HeonpeAejieHHOCTH* 

A. H. Cy66oTHH 

B #aHHOM cooômeHHH paccMaTpHBaioTca HeKOTopbie Bonpocu TeopHH AH(j)(})e-
peHUiHajibHbix Hrp. OCHOBHOH 3a^aneH TeopHH AH^epeHijHajibHbix n r p HBJIHCTCH 

nocTpoeHHe Taicoro cnocoôa ynpaBJieHHH, KOTOpbifi oßecnenHBaeT TpeöyeMoe 
KanecTBO ynpaBjineMoro npoijecca npH Jiioôbix HeH3BecTHbix 3apaHee noMexax. B 
KOH(J)JIHKTHbIX CHTyaiJHHX TaKHMH IIOMexaMH HBJIHIOTCH ynpaBJieHHH npOTHBHHKa. 
K HacTOflineMy BpeMeHH onyôjiHKOBaHO MHoro paßoT no TeopHH AH(J)(J)epeHU,H-
ajibHbix n rp . Cpe/m HHX MO>KHO ynoMHHyTb HCCJieAOBaHHH P . AiteeKca, n . 
BapafiH, E .Ö. MnmeHKO, J l .C. EtoHTpHrHHa, B.H. niueHHHHoro, y . cîvieMHHra, 
A. OpHAMaHa. B STHX paôoTax npeAJiaraioTCfl pa3JMHHbie TpaKTOBKH HrpoBbix 
3aAan AHHaMHKH H noAXOAbi K HX pemeHHio. Hn>Ke H3JiaraeTCH noAXOA, KOTOpbifl 
CJIO>KHJICH B HHCTHTyTe MaTeMaTHKH H MexaHHKH ypajibCKoro HayHHoro ueHTpa 
AH C C C P H onnpaeTCH B OCHOBHOM Ha pe3yjibTaTbi H.H. KpacoBCKoro H aBTOpa 
AaHHoro cooßmeHHH. 

BBe^eM ocHOBHbie onpeAejieHHH, B paMKax KOTOpbix 6yAeM paccMaTpHBaTb 
pemeHHe no3Hi;HOHHbix HrpoBbix 3aAan AHHaMHKH. FlycTb ABH>KeHHe KOHC})JIHKT-

HO ynpaBJineMOH CHCTCMH onncbiBaeTCH ypaBHeHneM 

x = f{t, x9 w, v). 

3Aecb x— w-MepHbiH (f)a30BbiH BeKTop; /—nenpepbiBHan cj)yHKELHH, jinniunijeBa 
no x; u H v—BeKTOpbi, Bbißop KOTOpbix noAHHHeH nepBOMy H BTOpoMy HrpOKaM H 
CTecHeH ycjiOBHHMH u G P9 v G g , rAe P H g—HeKOTopbie KOMnaKTbi. npeAnojia-
raeTCH, HTO paccMaTpHBaeMbie HH>i<e ABH>i<eHHH npOAOJDKHMbi AO Jiioßoro MOMeHTa 
BpeMeHH t — d. CTpaTerHH nrpOKOB U + u{t9 x) H V -r- v{t9 x) 0T0>i<AecTBjiHioTCH 

C (jtyHKIJHHMH U = u{t9 X)HV = v{t9 X)9 OÖJiaCTH 3HaHeHHH KOTOpblX COAep>KaTCH 

*Not presented in person. 
© 1975, Canadian Mathematical Congress 
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B KOMnaKTax Pu Q cooTBeTCTBeHHO. OTHOCHTeJIbHO 3THX (J>yHKu;HH HenpeAno-
jiaraeTCH BbinojiHeHHe KaKHX-jinôo ycjiOBHH HenpepbiBHOCTH. XfcHmeHHH, nopo>K-
AeHHbie CTpaTerneö U -v- u{t9 x), BBOAHTCH cjieAyiomnM o6pa30M. CHanajia 
paccMaTpHBaioTCH annpOKCHMaaHOHHbie ABHACHHH xjf) = xÂ{t9 tQ9 xQ9 U9 v{-))9 

KOTOpbie 3aAaioTCH ypaBHeHHeM 

(2) x/f) = f{t9 xA{t)9 uâ{t)9 v{t))9 xA{tQ) = xQ9 t^ tQ9 

rAe 

ujf) = u{zi9 xjft)) {z{ ^ t < zi+i9 i = 0, 1, 2, •••), 

^ = {fo> ?i+i)' i = 0» !> 2» —» *o = h^i -* °o npH i -* oo}, v(0 eQ{t^ f0)—HeKO-
Topan cyMMHpyeMan peajiH3au;HH ynpaBJieHHH BToporo HrpoKa. 3aTeM paccMaTpn-
BaioTCH cxoAHLUHecH nocjieAOBaTejibHOCTH annpoKCHMan;HOHHbix ABHäCHHö 
*{k){t) = xÂt{t9 tQ9 x#\ U9 v<»(-)) (k = 1, 2, . . . ) , *bÄ) -> *o. s u p , ( r ^ - z&) -> 0 npn 
k -> oo. PaBHOMepHbifi Ha JIIO6OM KOHCHHOM 0Tpe3Ke [*0> $] npeAeji TaKOH nocjie-
AOBaTejibHOCTH 4>yHKij;HH x{k){t) {t ^ t0) Ha3biBaeTCH ABH^ceHneM CHCTCMM (1), 
nopOHCAeHHbiM CTpaTeraeo U -r u{t9 x)9 H o6o3HanaeTCH CHMBOJIOM x{t9109 x09 U)9 

rAe OTMeneHa 9Ta CTpaTernn H HanajibHan no3HijHH {t09 xQ); ynpaBJieHHe npOTHB-
HHKa B 9T0M onpeAejieHHH H o6o3HaneHHH He (J3HKCHpyeTCH. AHajiorHHHbiMo6pa30M 
BBOAHTCH ABH ĉeHHH x{t9 t09 XQ9 V), nopo>KAeHHbie CTpaTerneß V -r- v{t9 x). n p n 
TaKOM onpeAejieHHH CTpaTernn H oTBenaiomHX HM ABH^KCHKH cnpaßeAJiHBO 
cjieAyiomee nojio^ceHHe. 

nycTb M H N— HeKOTopbie 3aMKHyTbie MHoncecTBa B npocTpaHCTBe BeKTOpOB 
p = {t9 x). npeAnojiOHCHM, HTO jxm JIIOôOH no3HUHH p = {t9 x) H BeKTopa s 
cnpaßeAJiHBO paBeHCTBO 

(3) min max s'f{t9 x9 u9 v) = max min s'f{t9 x9 u9 v) 

rAe s'f— cKajiHpHoe npOH3BeAemie BeKTOpOB s H / . TorAa HMeeT MecTO cjieAyio-
man ajibTepHaTHBa. 

AjibTepHaTHBa I. KaKOBbi 6bi HH öHJIH HanajibHan no3Hij;HH {tQ9 x0) H MOMCHT 
BpeMeHH t = S è tQ, BbinojiHHeTCH OAHO H3 cjieAyiomnx AByx nojio^ceHHH: JIHôO 
cymecTByeT erpaTerHH U -r- u{t9 x) TaKan, HTO A M Jiioôoro ABHäCHHH x{t) = 
x{t9109 xQ9 U) TOHKa {t, x{t)) nonaAeT Ha MHO>KecTBO M K MOMeHTy t = S9 ocTaBancb 
npH 9TOM BO MHO>KeCTBe N BnJIOTb AO BCTpeHH eë C MHOMCeCTBOM M; JIHÖO 
cymecTByeT CTpaTernn V -=- v{t9 x\ KOTOpan A«flfl Jiio6oro ABHäCHHH x{t) = 
x{t9 tQ9 XQ, V) rapaHTHpyeT HJIH yKjiOHeHHe TOHKH {t9 x{t)) OT nonaAaHHH Ha MHO-
HcecTBO M BnjiOTb AO MOMeHTa * = S HJIH HapyuieHHe 4>a30Boro orpaHHHeHHH 
{t9 x{t)) G N paHbiue, neM npoH3oftAeT eë BCTpena c MHOHCCCTBOM M. 

K pemeHHio yKa3aHHbix 3aAan o cßjiHHceHHH H yKjiOHeHHH CBOAHTCH HCCjieAO-
BaHHe MHornx THTOB AH(j)(j)epeHi];HajibHbix nrp , HanpHMep, Tex, rAe njiaTa 3aAaHa 
(})yHKii;HOHajioM OAHoro H3 nepenncjieHHbix HH>Ke THnoB 

ri{x{-)) = min{*: t £ tQ9 x{t)e M*}9 ï2{x{-)) = <p{x{S))9 

(4) s 

rM')) = min <p{x{t))9 rM')) = J PWO) dL 



yCJIOBHH KOH4>JIHKTA H HEOnPEAEJIEHHOCTH 363 

3Aecb M*~3aMKHyToe MHOKCCTBO, S—3aAaHHoe HHCJIO, ç{X)—HenpepbiBHan 
(jtyHKIJHH. npH BbinOJIHeHHH yCJIOBHH (3) A^H 9THX Hrp H3 AjIbTepHaTHBbI I 
BbiBOAHTCH cnpaBeAJiHBOCTb cjieAyioiuero nojioMcenHH. 

AjibTepHaTHBa I*, JJJIH JIK)6OH HanajibHofi no3HUHH {tQ9 x0) H BCHKoro nncjia 
c G ( - oo, oo) JIH6O cymecTByeT CTpaTernn U -f- u{t9 x) TaKan, HTO AJIH Jiio6oro 
ABH ĉeHHH x{t) = x{t, tQ9 xQ9 U) 6yAeT cnpaßeAJiHBO HepaBeHCTBO r{x{-)) ^ c; 
JIH6O cymecTByeT CTpaTernn V -r v{t9 x) Taican, HTO AJIH JiioSoro ABHHceHHH x{t) 
= x{t9109 XQ9 V) 6yAeT BbinojiHeHO HepaBeHCTBO ?{x{-)) ^ c. 

Rjin paccMaTpHBaeMbix ranoB AH(jx£>epeHi];HajibHbix H r P H 3 AjibTepHaTHBbi I* 
BbiTeKaeT, HTO B paMKax H36paHHOH (j)opMajiH3au;HH cymecTByeT n,eHa nrpbi. 
OTMeTHM, HTO npH nOCTaHOBKe n03HU[H0HHbIX HrpOBblX 3aAaH AHHaMHKH B03M0>K-
Hbi H Apyrne onpeAejieHHH ABIDKCHHH H CTpaTeraö. HanpHMep, npn paccMO-
TpeHHH pa3pbiBHbix cTpaTernft HHorAa yAoÔHO 3aMeHHTb pa3pbiBHyio npaByio 
nacTb AH(J)$epeHi;HajibHoro ypaBHeHHH HeoAH03HaHHOH H Hcnojib30BaTb annapaT 
TeopHH AH(j)(})epeHLi;HajibHbix ypaBHeHHH B KOHTHHreHijHHX. OAHaKo TaKofi noAxoA 
MOKeT 0Ka3aTbCH HeyAaHHbiM. M3BecTHbi npHMepbi, B KOTOpbix pemeHHe nrpOBbix 
3aAan, nojiyneHHoe B paMKax npeAJio^eHHoft 3Aecb (j)opMajiH3au;HH, He yAaeTCH 
nojiyHHTb H AaM<e annpoKCHMHpOBaTb B paMKax Apyrnx $opMajiH3aii,HH, onnpaio-
iAHXCH Ha ypaBHeHHH B KOHTHHreHijHHX HJIH HenpepbiBHbie CTpaTernn. 

OßpaTHMCH Tenepb K cjiynaio, KorAa ycjiOBHe (3) He BbinojiHneTCH. BßeAeM B 
paccMOTpeHne KOHTpCTpaTerHH Uv + u{t9 x9 v) H VU -r v{t9 x9 u)9 KOTOpbie OTO>K-
AeCTBJIHIOTCH C (JtyHKlJHHMH U = u{t9 X9 v) H V = v{t9 X9 «), yAOBJieTBOpHIOLUHMH 
BKJiioHeHHHM u{t9 x9 v) G P H v{t9 x9 u) G g ßopejieBCKHMH no nepeMeHHbiM V H M 
COOTBeTCTBeHHO. ,ZjBH>KeHHH x{t9 tQi XQ, Uv)9 OTBCHaiOIUHe KOHTpCTpaTerHH 
Uv ~- u{t9 x9 v), onpeAejiHiOTCH npeAejibHbiM nepexoAOM OT annpoKCHMaijHOHHbix 
ABĤ CeHHH XA{t), KOTOpbie yAOBJieTBOpHIOT ypaBHeHHio (2), rAe 

ujf) = u{zi9 xA{zt)9 v{t))9 ti Sit < TM, i = 0, 1, 2, •••. 

AHajiorHHHbiM o6pa30M BBOAHTCH ABH>KeHHH x{t9 t09 x09 VU). JXJIH AH^epeHUH-
ajibHbix nrp , paccMaTpHBaeMbix B KJiacce cTpaTernfi OAHoro HrpOKa H KOHTpCTpa
TerHH Apyroro, cnpaBeAJiHBbi AjibTepHaTHBbi II H II*, (})0pMyjiHp0BKH KOTOpbix 
nojiynaioTCH H3 (jx)pMyjiHpOBOK AjibTepHaTHB I H I* 3aMeH0H CTpaTernn OAHoro 
H3 HrpOKOB Ha COOTBeTCTByiOmyK) KOHTpCTpaTerHH). 

n p n HapymeHHH ycjiOBHH (3) B03M0>KHa H Apyran nocTaHOBKa AH^epeHijH-
ajibHbix nrp , B KOTOpoft pemeHHe nrpOBbix 3aAan Tpe6yeTCH onpeAejiHTb B KJiacce 
CMemaHHbix CTpaTernn 0 -^ p,{t9 x) H V -f- v{t9 x). 3Aecb (j)yHKi;HH ft = {JL{U X) 
{v = v{t> x)) no3HUHH nrpbi {t9 x) cTaBHT B cooTBeTCTBHe BepOHTHOCTHyio Mepy ft 
(Mepy v), 3aAaHHyio Ha KOMnaKTe P (KOMnaKTe g ) , ^BHMCCHHH x{t9 t09 x09 D) 
onpeAejiHiOTCH npeAejibHbiM nepexoAOM OT nocjieAOBaTejibHOCTH annpOKCHtaaiiH-

OHHblX ABHMCeHHH XA{t)9 yAOBJieTBOpHIOmHX ypaBHennio 

*Â*) = J J/(*> xA{t)9 u9 v) dpàit dvt 

PQ 
rAe 

Put = t*fa> x/?i% itSt < T,+1, i = 0, 1, 2, •-., 
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vt —HeKOTOpan cjiaßo H3MepnMan (j)yHKii;HH. AHajiorHHHbiM o6pa30M BBOAHTCH 
ABHäCHHH x{t9 tÙ9 x09 V). J\jin AH4)$epeHaHajibHbix nrp, paccMaTpHBaeMbix B 
KJiacce CMemaHHbix CTpaTeraö cnpaBeAJiHBbi AjibTepHaTHBbi III H IIP, ^opuyjm-
pOBKH KOTopux nojiynaioTCH H3 $OpMyjIHpOBOK AjIbTepHaTHB I H I* 3aMeH0H 
AeTepMHHHpOBaHHbix CTpaTeraö U ~ u{t9 x) H V -r- v{t, x) CMemaHHbiMH CTpaTe-
THHMH 0 -r- f*{t9 X) H V -f- v{t9 x). 

CoAep^caHHe noHHTHft CMemaHHbix CTpaTernft H nopOÄAeHHbix HMH ABHACHHH 
pacKpbiBaeTCH npn paccMOTpeHHH CTOxacTHHecKHx npomeAyp, B KOTOpbix MrHO-
BeHHoe cMeuiHBaHHe ynpaBJieHHH 3aMeHneTCH nocjieAOBaTejibHOCTbio BepoHT-
HOCTHbix HcnbiTaHHH. npH ycjiOBHH B3aHMH0 He3aBHCHMoro HJIH cjiaôo Koppejinpo-
BaHHoro Bbiöopa cjiynaöHbix ynpaBJieHHH nrpoKOB STH CTOxacTHHecKnenpoueAypbi 
nopo^AaioT nyHKH cjiynaöHbix ABHäCHHö, KOTOpbie c BepoHTHOCTbio, CKOJib 
yroAHO 6JIH3KOH K eAHHHue, nonaAaioT B HanepeA 3aAaHHyio oKpecTHOCTb 
COOTBeTCTByiOmHX HAeajIbHblX ABH>KeHHH x{t9 tQ9 xQ, 0) HJIH x{t9 tQ9 x0, V). 3 T H 
CTOxacTHnecKHe npoaeAypbi HBJIHIOTCH (J)H3HnecKH peajiH3yeMbiMH H annpoKCHMH-
pyioT pemeHHH, nojiyneHHbie B paMKax HAeajibHofi KOHCTpyKUHH. OTMCTHM, HTO 
oöocHOBaHneM npeAnojio>KeHHH o B3aHMHO He3aBHCHMOM HJIH cjiaöo Koppejinpo-
BaHHOM Bbiöope cjiynaöHbix ynpaBJieHHH nrpoKOB Mo^eT cjiy>KHTb Hajinnne 
HH(})opMaij;HOHHbix noMex B cncTeMe ynpaBJieHHH. 

ÂoKa3aTejibCTBO AjIbTepHaTHB I—III ocymecTBJineTCH no eAHHoft cxeMe. 
OnnmeM KpaTKo A0Ka3aTejibCTB0 AjibTepHaTHBbi I. PaccMOTpHM CHanajia 3aAany 
o cßjiHHceHHH. npeAJiaraeMoe pemeHHe STOH 3aAann MOHCHO HarjiHAHO HCTOJIKO-
BaTb cjieAyiomnM o6pa30M. B npocTpaHCTBe no3Hii;HH(f,x)BbiAejiHeTCH HeKOTopoe 
MHO êcTBO W{u), o6pa3yioLuee MOCT, KOTopbrö coeAHHneT HanajibHyio no3HUHio 
(*o> *o) c u;ejieBbiM MHOMCCCTBOM M H jie^HT uejiHKOM BO MHoncecTBe N. MOCT 
Wiu) oßjiaAaeT CBOHCTBOM w-CTaÖHjibHOCTH, HTO no3BOjineT nocTpOHTb CTpaTernio 
C/°, KOTopan yAepÄHBaeT ABHHceHHe Ha STOM MocTy H TeM caMbiM AOCTaBjineT 
pemeHHe 3aAann o cßjiH^ceHHH. OopMajibHO MOCT W{U) onpeAejineTCH KaK 3aMK-
HyToe MHO ĉecTBO, KOTOpoe yAOBJieTBOpneT ycjiOBHHM W(u) <= N9 W^ = {{S9 x): 
{S9 x) e W(u)} c M H oßjiaAaeT cjieAyiomHM CBOHCTBOM w-CTaÖHJibHOCTH: KaKOBbi 
6bl HH ÖbIJIH TOHKa (**, X*) G W{u\ MOMCHT BpeMeHH t* G [f*, S] H BCKTOp V* G g , 

cymecTByeT pemeHHe x{t) ypaBHeHHH B KOHTHHreHunnx 

x{t) G co{/(f , x{t)9 u9 v*): ue P}9 x{t*) = x*9 

yAOBJieTBOpHiomee HJIH ycjiOBHK) (**, x{t*)) e W{u) HJIH ycjiOBHio {z9 x{z)) e M npn 
HeKOTOpOM Z G [**, t*]. 

CnpaßeAJiHBO cjieAyiomee nojio^ceHHe. 

JIEMMA. ECAU {t09 xQ) e W{u\ mo òAH AIOóOZO deuotcenuH x{t) = x{t9 tQ9 xQ9 U°) 

monna {t9 x{t)) ocmaemcH m Mocmy Wiu) eriAomb do ecmpenu eë c MuooicecmeoM 
M. 3decb U° -r- u°{t9 x) —cmpamezux, dKcmpeMuAbuan K Mocmy Wiu), onpede-
AHemcH cooniHoutenueM 

min max {x - w)' f{t9 x9 u, v) = max {x — w)' f{t9 x9 w°(f, x)9 v) 
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zde w—eeKmop, öAH Komopozo {t9 w)—monna Mwootcecmea W{u)> OAuoicQ&wflH 
K no3uu,uu {t9 x) {ecAu W^ = 0 , mo u\t9 x)—npou380AbHaH monna KOMuauma 

n 
3aTeM B npocTpaHCTBe no3HUHft BbiAejineTcn MHoacecTBo W*—coBOKynnocTb 

Bcex no3HUHH (**, x*), A.7IH KOTOpbix KaK A ^ HanajibHbix B KJiacce CTpaTernfi V 
-s- v{t9 x) pa3pemHMa 3aAana 06 yKjiOHeHHH. OKa3bmaeTCH, HTO AonojmeHHe K 
MHOH<ecTBy W* HBJineTCH MOCTOM WQ{u) B 3aAane o côjiHMceHHH. no9TOMy cnpa-
BeAJiHBOCTb AjibTepHaTHBbi I BbiTeKaeT Tenepb H3 onpeAejieHHH MHo>i<ecTBa 
Woiu) H c(J)opMyjiHpOBaHHOö Bbime jieMMbi. 

OcHOBHbiM MOMeHTOM npeAJiaraeMoro pemeunn nrpOBbix 3aAan AHHaMHKH HB-
jineTCH onpeAejieHHe noAxoAnmnx MOCTOB, nocjie nero nocTpoenne 9KCTpeMajib-
Hbix CTpaTeraö He AOCTaBJineT 6ojibiiiHX TpyAHOCTen. JXJIH 3aAan c6jiH^<eHHH H 
yKJiorieHHH H3BecTHbi peKyppeHTHbie npoijeAypbi nocTpoeHHH TaKHx MOCTOB, 
OAHaKo npaKTHHecKoe ncnojib30BaHHe STHX ajiropHTMOB orpaHHHHBaeTCH 6ojib-
mHMH TpyAHOCTHMH BbiHHCjiHTejibHoro xapaKTepa. nosTOMy npeACTaBjineT HH-
Tepec HCCJieAOBaHHe ßojiee npocTbix cnocoßoB nocTpoeHHH CTaÖHjibHbix MOCTOB. 
HaHÔojiee nojiHO B 9TOM OTHomeHHH H3yneHbi peryj inpnue cjiynan nporpaMMHoro 
norjiomeHHH, 3Aecb pemeHHe nrpOBbix 3aAan yAaeTcn nojiyHHTb B nanoojiee 
3aBepmeHHOM BHAe H ccjx)pMyjiHpOBaTb Am nero npHHn,Hn MHHHMaKca, KOTOpbiö 
MO>KHO paccMaTpHBaTb KaK o6o6meHHe npHHLjnna MaKCHMyMa JI.C. noHTpnraHa 
Ha cjiynaö nrpOBbix 3aAan AHHaMHKH. B peryjinpHbix cjiynanx pemeHHe nrpOBbix 
3aAan AHHaMHKH MOMœO AOBCCTH AO ajiropHTMOB, peajiH3yeMbix Ha BbinncjiHTejib-
HblX ManiHHax. 

Pemenne nrpOBbix 3aAan B (})opMe SKCTpeMajibHOH CTpaTernn MO>KeT OKa3aTbcn 
HeyCTOHHHBbIM no OTHOmeHHIO K HH(fX)pMaU(HOHHbIM nOMexaM. Rjin CTaÔHJIH3ai;HH 
9Toro pemeHHH Hcnojib3yeTCH npou,eAypa ynpaBJieHHH c noBOAHpeM, coAep>KaHHe 
KOTOpoö cocTOHT B cjieAyiomeM. HapHAy c peajibHoö CHCTCMOH BBOAHTCH B 
paccMOTpeHne noAoÔHan eö sTajiOHHan CHCTeMa—noBOAbipb, ABH>i<eHHe KOTO-
pOH MOAejiHpyeTCH B BbiHHCjiHTejibHoft ManjHHe H H3BecTHO c J11060H TpeöyeMoö 
TOHHOCTbio. ynpaBJieHHe nrpoKa B peajibHofi CHCTeMe H ABHMceHHe noBOAbipn 
(})OpMHpyK)TCH TaK, HTOÔbl OHH B3aHMHO OTCJie>KHBajIHCb, npHHCM nOBOAblpb 
ocTaeTCH Ha CTaÖHjibHOM MOCTy BnjiOTb AO nonaAaHHH ero Ha ijejieBoe MHoace-
CTBO. Tai<an npoijeAypa ynpaBJieHHH ycTOÖHHBa K omnÖKaM H3MepeHHH TeKymeö 
no3HUHH nrpbi H noMexaM, AeocTByiomnM Ha CHCTeMy. 

Bbime 6bijiH yi<a3aHbi HeKOTopbie cjiynan (CM. (4)), KorAa cymecTByeT ijeHa 
no3HUHOHHOö AHcJx^epeHiijiajibHOO nrpbi. PaccMOTpHM Tenepb O6IHHH cjiynaö, 
KorAa njiaTa r(x('))—npOH3BOjibHbio nojiyHenpepbiBHbin CHH3y (HJIH CBepxy) 
foymmHOHaji, onpeAejieHHbin na HenpepbiBHbix fyynKupxx. x{t) {t f* tQ), 
T.e. ììm^oo r(xÄ(-)) ^ r(^*(-)) (HJIH lim^oo r W ' ) ) ^ r(**(-)))> rAe (^HKIJHH 
x*{f) {t ^ /0)—paBHOMepHbin Ha Ka>KAOM KOHeHHOM 0Tpe3Ke [t09 S] npeAeji 
nocjieAOBaTejibHOCTH 4>yHi<i;HH xk{t) {t ^ t0). BßeAeM B paccMOTpeHne CTpaTeran 
U -r u{x{-9 tQ91)) H V -f- v{x{-9109 0) , KOTOpbie OTO>KAecTBJiHioTCH c onepaTOpaMH 
u = u{x{-9 tQ9 t))n v = v{x{-9 tQ9 /)), onpeAejieHHbiMH npH Ka>KAOM t e [t0, 00) Ha 
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npocTpaHCTBe HenpepbiBHbix (})yHKii;Hö x{z) {tQ^z^t)vi npnHHMaioiUHe 3HaneHHH 
Ha KOMnaKTax P H g cooTBeTCTBeHHo. flBH^ceHHH x{t9 tQ9 x09 U), nopo^AeHHbie 
CTpaTeraeö U + u{x{ •, t091))9 onpeAejiHiOTCH npeAejibHbiM nepexoAOM OT annpoKCH-
MaiUHOHHblX ABHXCeHHH XA{t) KOTOpbie yAOBJieTBOpHIOT ypaBHeHHK) (2), rAe ujf) = 
M ( * J ( - J *o> *d) *# = t <*V+i> * = 0, 1, 2, •••, xA{-9 tQ9 Zi)—annpOKCHMaii;HOHHoe 
ABHHceHHe, peajiH30BaBmeecH Ha oTpe3Ke[*0» ?i]. AHajioranHbiM o6pa30M BBOAHTCH 
ABH>KeHHH x{t9 t09 XQ9 V), nopo>KAeHHbie CTpaTeraeö V + v{x{-9 tQ9 t)). n p n 
BbinojiHeHHH ycjiOBHH (3) AJIH npoH3BOJibHoro nojiyHenpepbiBHoro (})yHKiiiHOHajia 
ï(x(')) cnpaBeAJiHBa AjibTepHaTHBa IV, 4>opMyjinpoBKa KOTOpoö nojiynaeTCH H3 
4>opMyjiHpOBKH AjibTepHaTHBbi I* 3aMeHOö - no3Hii;HOHHbix CTpaTeraö U -7-
u{t9 x) H V -f- v{t9x) cTpaTeraHMH U -i- u{x{-9 tQ9 0 ) H F T V{X{-9 tQ9 0)> KOTOpbie 
onnpaioTCH Ha HH^opMaqHio 06 HCTOpHH nrpbi. ECJIH >Ke ycjiOBHe (3) HapymaeTCH, 
TO BBOAHTCH KOHTpCTpaTerHH Uv -r- u{x{-9 t0, t)9 v) H Vu -r v{x{-9 tQ9 t), u) HJIH 
CMemaHHbie CTpaTeran 0 -f- /J,{X{-9 tQ91)) H V -s- v{x{-9 tQ9 t)) H AjibTepHaTHBbi 
V H VI 4)opMyjiHpyioTCH AJIH AH(|)4)epeHiiiHajibHbix nrp , paccMaTpHBaeMbix B 
KJiacce nap 

{17 - u{x{-9 tQ9 t))9 Vu -r- v(*(-, tQ9 t)9 II)} 

HJIH 

{Uv + u{x{-9 tQ91)9 v), V+ v{x{>91091))} H {0 -r- fi{x{.9 tQ91))9 V + v{x{-9tQ9 / ))}. 

n p n AOKa3aTejibCTBe AjibTepHaTHB IV—VI TaK^ce Hcnojib3yeTcn 9KCTpeMajibHan 
KOHCTpyKii;HH, npn 9TOM cTaÔHJibHbie MOCTH CTPOHTCH Tenepb He B KOHenHOMep-

HOM npocTpaHCTBe no3HUHÖ (/, x) a B (J)yHKE[HOHajibHOM npocTpaHCTBe Henpe-
pbiBHbix 4)yHKu;Hä x{z)9 z ^tQ. 

B 3aKjnoneHHe OTMCTHM, HTO 9KCTpeMajibHan KOHCTpymjHH npHMeHneTCH TaK^ce 
npn pemeHHH nrpOBbix 3aAan AHHaMHKH c HHTerpajibHbiMH orpaHHHeHHHMH Ha 
pecypcbi ynpaBJieHHH HrpOKOB, npH HCCjieAOBaHHH AH(J)(})epeHijHajibHO-pa3HOCT-
Hbix n rp H 3aAan ynpaBJieHHH B ycjiOBHHX HenojiHOÖ HH(J)opMau;HH o xoAe 
npoijecca. Bo Bcex 9THX cjiynanx B onncaHHyio Bbime cxeMy BHOCHTCH HeKOTopbie 
H3MeHeHHH, OAHaKo o6mee coAep^aHHe noAxoAa ocTaeTCH HeH3MeHHbiM. 

MHCTHTyT MATEMATHKH H MEXAHHKH AH CCCP 
CBEP^JIOBCK 620000, TCri-384, CCCP 
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Spectral Deformation Techniques and 
Application to TV-Body Schrödinger Operators 

J.-M. Combes 

We describe a new tool in spectral analysis which supplements the standard 
method of perturbation theory for continuous or discrete spectrum. The emphasis 
is mostly on the problem of analytically continuing matrix elements of selfadjoint 
operators, motivated by classical and quantum scattering theory or the general 
theory of linear passive systems [3], although this method also appears as being very 
useful for analysing properties of eigenvectors. The basic idea is that similarity via 
unbounded closed operators U does not preserve continuous spectrum in general 
although a discrete spectrum is usually invariant if associated eigenvectors are in 
the domain of JJ. This theory can then be used in two ways : 

(1) An active way where one tries to distort continuously the spectrum of an 
operator Tin order to obtain larger analyticity domains for matrix elements of the 
resolvent. In practice such spectral deformations are performed by embedding T 
into an analytic family T{X)9 XeC9 such that a{T{X)) = r{X) where r{X) is a family 
of homotopic paths in the connected region of C where one wants to perform the 
analytic continuation. If this deformation is implementable by a group U{X)9 

XeR9 such that 

U(X - h)T{X) U~\X - h) = TQ0) i n - XQeR9 

then analytic continuation can be performed for matrix elements between analytic 
vectors with respect to this group. 

(2) A passive way where one tries to control the deformation of the spectrum 
under similarity transformations. Invariance of a given eigenvalue usually implies 
domain properties of the corresponding eigenvectors. 

In the abstract treament described below we try to synthesize a series of papers by 
© 1975, Canadian Mathematical Congress 
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various authors which appeal more or less implicitly to the concept of spectral 
deformation, and summarize some of the most fruitful recent applications. 

I. Let t be a densely defined sesquilinear closed sectorial form on a Hilbert space 
ffl and T the associated sectorial operator [1]. We will denote by 3^+ the Hilbert 
space canonically associated to the domain of t [2]. The space j ^ _ of continuous 
linear functionals on 3^+ contains ffl as a dense subspace according to |{0, ¥)&{ 
=* II0IIJf ll^ll^- ^*s a continuous mapping from 34?+ to 3tf_ and one has t{09 W) = 
<0, 7¥>, {0, W) e 3f+ x œ+9 where < •, • > is the sesquilinear form on 34?- x 34?+ 
extending <•, • >^ defined o n / x 3^+. 

We now consider two such forms t{ on j f , i = 1, 2. Let ((7, £/) be a pair of 
densely defined closed linear mappings from tff\ to 3tf\\ we denote by DÜ9 Dv 

their domains. 
DEFINITION. We will say that {U, U) intertwine {th t2) if: 
(1) D and t/have zero null set and dense range. 
(2) 09WeDo [\ Du one has 

(A) <U09uwy^ = (09wy^9 

and 

(B) t2{O09 UW) = h{09 W). 

(3) For a sufficiently large and positive, 

{Tx + a)@u = R0* 

where Ru# denotes the range of Ü*. Some direct consequences of (1), (2) and (3) 
are (denoting by p{T)9 a{T), etc. the resolvent set, spectrum, etc. of T) : 

THEOREM 1. Let £/* {resp. D*): jjfl -+ Jtfl be the adjoint of U {resp. Ü). Then, 
V 0, W e Dv* x Du* and V z e p{T{) f| p{T2) and Re z sufficiently negative, one has: 

(C) <£/*£, {TX - z)-i or> = <09{T2 - z)-i fy 

Under our assumption the ranges of U* and Ü* are dense in ^ ? . and in practical 
applications have a dense intersection. This theorem furnishes then a basis of some 
of the analytic continuation techniques via the 

COROLLARY. V 0 e Rn* fl ^o* the function <0, (7^ — z)_1$> has a piecewise 
analytic continuation in p{T{) U p{T^. 

When Ti is selfadjoint this corollary allows in some cases analytic continuation 
through the continuous spectrum for expectation values of the resolvent as we will 
see later. On the other hand, using the fact that R{U*) and R{Ü*) are dense it 
is then possible to derive, e.g., results on the absence of continuous singular 
spectrum via Greenstein's theorem [3] asserting that a necessary and sufficient 
condition for 

<0, (T - z)-i0> = J h p b - d<0, E(X)0> 
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{E{-) ; spectral family of T) to have an analytic continuation through [a9 b] in that 
<0, E{X)0} is real analytic for A in this interval. 

Information about the discrete spectrum can also be obtained : 

THEOREM 2. Assume T± is selfadjoint and E e ap{T{) f| CaX^z)- Then E is an 
eigenvalue of T2 and has the same multiplicity as an eigenvalue of T± or T2. If E has 
finite multiplicity and TXW = EW9 then We Do fl A/-

EXAMPLE 1. 3^ is a Hilbert space, a{z) an analytic function in a neighborhood 
2 of R+ with positive derivative on R+. Let r <= 3 be a continuous path and 
define : 

3Fr = L*{r9\da\;lj) 

i.e., the Hilbert space of tj-valued measurable functions 0 on p such that 

J|0(z)|§|</a(z)|<oo. 
r 

Let 

(3) tr{09 ¥) = J z\0{z)9 W{z)\ \da{z)\. 
r 

If .Tis contained in a sector then tr is sectorial and one has 

tf£ = Î0eœr; J \\0{z)\\l{l + \z\*f* \da{z)\ < 00}. 

Let T7! = Ä+ and /^ be obtained by some local distortion of R+ and *V the com
plex domain with boundary T\ U A- Then define % = { $ e ^ f s.t. tf)(z) has 
an t)-valued analytic continuation in 'V with boundary value 0Pi e j ^ 1 } and 

(4) ^ M Ä ) 1 % - ( Z ) > **r* 
Then C/is closed on Dv. In the same way one defines, assuming F2 c: $}9 

<M»«-(-^r)"!w* 
Then property (1) is an easy consequence of the Stone-Weierstrass theorem and 
properties (2) and (3) follow immediately from the Cauchy equality and other 
elementary properties of analytic functions. 

Since o{Tr) = r2 it is clear that this example fulfills the analytic continuation 
program for resolvents of selfadjoint operators with uniform multiplicity like the 
Laplacian in L2{Rn). It is strongly related to the local analytic continuations studied 
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by Balslev and Babbit [4], Dolph, McLeod and Thoe [5], Grossman [6], Thomas 
[8]. 

We give now examples of global deformations of the spectrum. 
EXAMPLE 2. We now take 7\ = R+ and r2 = e~ia R+9 0 < a ^ %\2. lfa{z) = zn 

it is convenient to identify 3^Pl and 3^ri via 

(/0)(z) = 0{e-i"z)9 zeR+. 

Clearly this mapping from 3/fPx to 3tf Pt is unitary. The connection between T\ 
and T2 associated to the quadratic forms tPl{09 W) and tPi{I~l091~lW) as defined by 
(3) is simply 

(5) T2 = e-K«Tx. 

So a{T2) = e"2,aö,(r1). The construction of Ü and É7 can be made in the same way 
as before. A more elegant formulation can be obtained by noticing that in that case 
there exists an interpolating group U{0)9 \ Im 0 \ < a, such that U = eaA and Ü = e~aA 

where, for 0 e R9 

(6) {U{G)0){z) = e'»*'2 0{e-°z)9 z e R+. 

Then Du (resp. Dv) is the set of 0's in 3^X such that 0(0) = U{6)0 extends to an 
analytic ^+-valued function in — a ^ Im 0 ^ 0 (resp. 0 ^ Im 0 ^ a). (Notice 
that U{6) is a bounded group for 0 e R.) The family T{6) = e-2'?'! is an analytic 
family of type (B) and one has, for 09W eDv x DU9 

«m, Tmwy> = <0, T&\ 
since both sides are analytic for — a ^ Im 0 ^ 0 and coincide for 0 G R as can be 
seen by an elementary change of variables in the integral (3). Then property (B) 
follows by taking the limit 0 = ia. One shows (A) by the same kind of argument. 

The group U{0)9 0 G R+
9 so defined is called the dilation group. Complex dilations 

have been used in a number of papers on analytic continuation of scattering am
plitudes. One of the first systematic investigations is due to the physicist Lovelace 
[9]. They have been used for the study of Schrödinger operators by Aguilar, Balslev 
and Combes [10], [11], Simon [12] and Van Winter [13]. Other applications include 
Weber [14], [15] for the Dirac and Lee Hamiltonians. 

EXAMPLE 3. This example is given in view of the "passive use" of spectral de
formation techniques. 

Let 3^1 = 3tf2 = L2{Rn\ Î)) and 

(7) h{09 W)=\k2 (0{k)9 W{k)\ d»k. 

Let v e Rn and 

(70 t2{09 ¥) = f(* + ir)2 <0{k)9 ¥{k)yìì d»k. 

We are again in a situation where there exists an interpolating analytic family 

ta{0, ¥) = J(Ä + a T)2 i0{k)9 W{k)\ d»k. 

Analyticity in a is obvious for 0, W in the common form domain 
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^ + = {0 e #\ J kK0{k)9 y(*)>5 d»k < oo}. 

There also exists an interpolating group U{cc)9 aeR9 defined by 

(8) {U{a)0){k) = 0{k + ar). 

Then analyticity arguments as those developed for the dilation group lead to the 
verification that D = U{— i) and U = U{i) intertwine {tÌ9 f2)- The group (8) is called 
the boost group. It has been used in connection with the study of decay properties 
of eigenfunctions for Schrödinger operators by T. O. Connor [16], Combes and 
Thomas [17], Balslev [18]. 

Another interesting example is provided by Schrödinger operators T\ = — A + V 
on L2(jB3), where V is the multiplication operator by some function V{x) ^ 0. Let 
E be an eigenvalue of T\ then the class of operators {U9 U) intertwining Ti and any 
T2 having E as an isolated eigenvalue contains the operator U of multiplication by 
exp (0 fl*' W{r) dr)9 0 ^ 0 < 1, where W2{r) = mfw=r V{x). If E has finite multi
plicity this result of Simon [19] provides L2-bounds of WKB type on eigenfunctions 
particularly useful in some problems of singular perturbation theory (Combes 
[20], Maslov [21]). 

II. Perturbation theory. Most of the above examples bring really interesting 
results only after they are submitted to perturbations. Let V! be a ^-bounded form 
with relative bound smaller than one; assume that {Ü, JJ) intertwine (/l512). 

THEOREM 3. If there exists a t2-bounded form v2 with relative bound smaller than 
one such that 

(9) v2{ÜW9 U0) = viQF, 0), V 0, W e s0 x 9U9 

then {U9 U) intertwine {t\ + vh t2 + v2). 

Let Vi9 i = 1, 2, be the bounded mappings from 3^\ to 3^L associated to the 
forms vf«. 

THEOREM 4. If Vi9 i = 1, 2, are compact then V 0 e R0* p Ru# the function 
(0, {Ti + Vi - z)_10) has a piecewise holomorphic continuation in p{T{) [} p{T2). 

We describe below some applications of Theorems 1, 2, 3, 4. 

EXAMPLES 1—2. Assume that Vx admits a kernel Vi{z9 z') e B{îj) so that 

vx{09 W) = J <0(z), Vx{z9 z')W)\ da{z) da{z'). 

Existence of a v2 satisfying the conditions of the theorems is guaranteed if 
V\{z9 z') extends as a i?(t))-valued analytic function in «f x V having boundary 
value vPl{z9 z') and if 

VPl{z9z')= VPt{z9z')ß{z)ß{z') 

where ß2{z) = (z2 + z0)_1 da{z)j\da{z)\9 for some z§ $ r\9 defines a compact opera
tor on 3tfr\ 

As a more specific example let us consider perturbations of the three-dimensional 
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Laplacian T\ = — A on L2{RF)9 i.e., the situation of Examples 1 and 2 with Ï) = 
L2{Q)9 Q unit sphere in Ä3, and a(z) = z2. A multiplicative perturbation Kx(x) 
of — A has a kernel defined by 

(10) {V!(z, z') 0(z))(n;) = J Vx{zw - z'a;')0(z', u>') A / 
Q 

where Fi denotes the Fourier transform of Vx. If one wants to perform an analytic 
continuation in (z, z') up to r x r for an arbitrary r contained in some strip | Im z | 
< a it is clear from (10) that exponential decay properties of Vx are required via 
Paley-Wiener theorem. Actually the following criterion of Babbit and Balslev is 
sufficient for deformations in such a strip (and also covers nonlocal perturbations) : 

( . V\ = QBQ where Q is the multiplication operator by 
* ' e~M and B is compact from j p f to 3tf?+. 

Actually ÔJ7""1 extends to a bounded operator from «^f to <^+ for any T7 con
tained in the strip |lm z\ < a, and Ü*Q is bounded from ^ 5 * to jf£>. This ob
servation is more or less explicit but critical in [5], [6]. 

For contours r = e~iaR+ the restrictions on Vt are totally different. Simon has 
shown that for radial perturbations, deformation up to e~iaR+ is allowed if 

Ki(|*|) has an analytic extension to {r; | Arg r\ ^ a} 
( ' such that Ve{x) = V{e*°\x\) is in R + (L°% |0| ^ fl. 

( F e Ä iff J(| V{X)\ | r (F) | / |Z - F|2) d*Xd*Y < oo.) This class is denoted by 

So under condition (11) one obtains meromorphic continuation of resolvent 
matrix elements for — A + V\ in {z2[ |lm z | < a}9 under condition (12) in 
{z2| | Arg z | ^ a}. The poles of these matrix elements have a direct physical inter
pretation as bound-states or resonance energies [22], [13]. 

EXAMPLE 3. Assume that Vx has a kernel Vx{k9 k') e L{îj9 tj) depending only 
on k - k'. Then 

vi(0, ¥) = J <0(AO, Vx{k - k') W{k')y d»k d«K 
ä -

= J <0(Ä + ar), (̂Jfe - k') W{k + Ar)> d»k d»k' V a: e R, V r G ß«. 
ä -

Assuming that 09W eDn x Dv one gets then by analytic continuation 

vx{09 W) = vx{Ü{a)W9 U{a)0) = v^ÜW, U0). 

One is then in the conditions of Theorem 3. When applied to Schrödinger operators 
— A + V9 where Fis a local small form perturbation of - A, this example shows via 
Theorem 2 that any eigenstate of — A + F with eigenvalue E < 0 is in the domain 
of Ke = éw™9 0 ^ 0 < 1. This result is obtained by controlling the spec
trum of T2 as defined by (7') when r varies. This property extends to positive 
eigenvalues by performing simultaneous dilation and boost transformations and 
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can be used in turn to show absence of such positive eigenvalues if V\ e &% (Balslev 
[18], Simon [23]). 

HI. JV-particle Schrödinger operators. To conclude we apply these techniques to 
N-particle Schrödinger operators on L2(JB3 W _ 1 )) defined by H\ = Tx + V\ where 

(13) ^ i ^ S l - W 
and 

(14) Vl - S Va. 
a 

Here ß labels a set of three-dimensional relative coordinates Xß for the N-particles 
and Aß is the corresponding three-dimensional Laplacian; the decomposition (13) 
is nonunique if N > 2. As to the V„s in (14) they are two-particle perturbations 
depending only on the relative distance (or more generally relative dynamical 
variables) of the pair a. This last fact prevents V\ from defining a compact form 
perturbation of Tx and one needs new methods to find the spectra of Hi and H2 = 
T2 -f V2 where H2 is obtained from H\ by a complex dilation, or boost, or a com
bination of both. This can be done with the help of multiparticle resolvent equa
tions like those of Weinberg and Van Winter (see [24]) which connect the resolvent 
of if and those of Hamiltonians of subsystems : {H — z)"1 = D{z) + I{z){H — z)_1 

where I{z) and D{z) are analytic in f]D p{HD). Here HD is obtained from H by 
subtracting the sum of interactions between particles belonging to different clusters 
in the ^-cluster decomposition D = {Ch C29-~, Ck} of the system. HD has the 
following tensor form 

H» =T»® (Èli) + ID ® (È h ® - ® Hc< ® ». ® Ik) 

where Hc is the Hamiltonian for particles in cluster C noninteracting with the 
remaining particles and TD is a Laplacian-like operator. So the spectrum of HD can 
be found inductively using some recent results on the spectrum of operators having 
the form I ® A + B ® I (Ichinose [25], Simon and Reed [26]). The results are as 
follows: Assume two-particle interactions Vae gFa\ then 

(1) Matrix elements of the resolvent {Hx — z)_1 for vectors in a dense set have a 
many-sheeted meromorphic continuation through a{H{) with branch points at 
2 — Uö(SceDöfes) (where a^es is the set of poles for the matrix elements of 
(7/f - z)"1) up to the cuts A + e~2ia R+

9 A e 2. 

(2) Poles are isolated and can accumulate at most at I ([11], [12], [13]). 
Direct consequences of (1) and (2) are absence of continuous spectrum for HÌ9 

and finite degeneracy of eigenvalues of Hx in I. 
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(3) Assume HW = EW9E$ 1. Then ([16], [17]): 

W e ^(eö(iyi-Ei+mixi)5 0 ^ 0 < 1, 

where A is the closest point to E in 29 T
7 = | Im yl | and | x \2 = S ^ pß | ̂  |2. 

(4) If A ^ TT there are no positive eigenvalues ([18], [23]). Other results include 
analyticity properties of two-body scattering amplitudes [27] and proofs of unitarity 
of the ^-matrix for N = 2 or 3 ([4], [29]). 
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Time Evolution of Infinite Classical Systems 

Oscar E. Lanford III 

I will discuss in this article some recent progress in the problem of proving 
existence and uniqueness of solutions to Newton's equations of motion for infinite 
systems of classical particles interacting by two-body forces which go to zero 
reasonably quickly as the particle separation goes to infinity. For technical simpli
city, I will assume that the interparticle potential 0 has a Lipschitz continuous 
derivative and finite range, but the results I will describe have extensions which 
require neither finite range nor the absence of singularities in the potential. 

To establish notation: We consider systems of infinitely many particles with 
positions {qt) and momenta (/?,), moving in Rv. The equations of motion are 

where m is the particle mass and F = — grad 0 is the interparticle force. We assume 
that there are infinitely many particles, but that, initially at least, they are distri
buted so that there are only finitely many in each bounded region of space. Because 
of the infinite number of particles, these equations cannot be treated by the usual 
elementary techniques, and it is indeed not hard to imagine that some solutions 
may develop "singularities" in which, for example, infinitely many particles rush 
into a bounded region of space. What is needed is an existence result which assures 
us that such singularities are at least improbable. 

The result to be described assumes, in addition to the regularity mentioned 
above, that the interparticle potential 0 has good thermodynamic properties. 
More specifically, we assume that 0 is superstable in the sense of Ruelle [6]. It is 
then possible to single out a class of probability measures on the phase space for the 
infinite system—the so-called Gibbs states—which represent thermodynamic 
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equilibrium for the interaction in question. (See [1], [4], or [6].) What we show is 
that there exists a set of solutions to the equations of motion forming a set of prob
ability one for each Gibbs state. We are, however, not able to describe in any very 
explicit way the set of phase points which lie on such solution curves, nor are we 
able to prove existence of solutions for initial phase points representing situations 
which are globally not in thermodynamic equilibrium. In this respect, the results 
described here are much weaker than previous work on one-dimensional systems 
[2] which proved existence and uniqueness of solutions for all initial phase points 
satisfying some reasonable regularity conditions. 

Mathematically, the main novelty in the argument we will give is that it exploits 
the formal fact that Gibbs states ought to be invariant under the flow we are trying 
to construct. This leads to an a priori estimate which is shown to hold almost every
where with respect to each Gibbs state. The idea is that Gibbs states are concen
trated on very well-behaved phase points, and the invariance ought to imply good 
behavior at all times. The following result illustrates the argument: 

PROPOSITION 1. Let p be a Gibbs state, and assume that the equations of motion 
can be solved almost everywhere to give a flow T* leaving p invariant. Then, for almost 
every phase point x = {qi9 pt)9 there exists a constant M such that 

(2) |ft(0 - q{\ S Mlog+(<7,) for all i and\t\ ^ 1. 

{Here log+(#) denotes log (| q | ) if | q | ^ e and 1 otherwise.) 

To prove this result, we define a function B on the infinite system phase space by 

To say that B{x) is finite says that velocity fluctuations grow at most like the loga
rithm of the distance from the origin. A simple argument, using the Maxwellian 
(i.e., Gaussian) character of the momentum distribution, shows that B is integrable 
with respect to ^. Now define 

5{x) = } dt B{T*x). 
- i 

By Fubini's theorem and the assumed invariance of ß under T*, 

i 
\Bdfji, = $ dt $BoT* dp = 2\Bdtx < oo. 

- i 

Hence, B is finite almost everywhere. We now claim that, where B{x) is finite, there 
exists a constant M (depending only on B{x)) such that (2) holds. In fact, we have, 
for each /, 

\ * \dqj{h)ldt\ . 1 , f \Vi{tòl™\ \ », , 
0 l0g+(^('l)) _J! / Uog+Cfcft)); 

It is now a matter of elementary calculus to show that, for any number b9 there ex
ists an M{b) such that 

file:///Bdfji
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|dh lo^^j ^ b i m P l i e s k<(0 - 4<\ ^ M(ft) loS+fe)-

This proves the proposition. Of course, the proposition is of little direct use, 
since it assumes what was to be proved, the existence of solutions to the equations. 
Its usefulness derives from the fact that we can find approximate solutions to the 
equations of motion which leave ̂  invariant and to which we can apply the above 
argument. One way to do this is as follows : For each positive integer s9 let As denote 
the ball of radius s centered about the origin, and let T[s) denote the solution flow 
for the following dynamics : 

(a) particles initially outside As are frozen where they are (i.e., both positions and 
momenta remain fixed) ; 

(b) particles initially inside As move under their mutual interaction, with constant 
external forces exerted by the particles outside and with elastic reflection at the 
boundary of As. 

The definition of Gibbs state readily implies that every Gibbs state is invariant 
under T[s) for all s. We are going to construct solutions to the equations of motion 
as limits, as s -> oo, of T[sy 

To do this, we introduce functions 

S M l ldî
 B(T'^x) 

on the infinite system phase space. As before 

1 °° ilt 

(4) j J(S> du = - ^ T T T F f w B(T^x) = *B 4" 
for all s, so Bis) < oo almost everywhere. Also, if B{s){x) ^ b < oo, then, for any 
/ and |;| ^ z, 

o log+(^s)('i))l lö ( s W 

=S (1 + T*fr~-] dh
 B{T})X) £ (1 + T*).*.b, 

and hence, in the notation of Proposition 1, 

|?/->(0 - q{\ Û M{{\ + T*).n-b) log+(ft) 

for all / and all t with 111 ^ z. This inequality is a kind of localization condition 
which says that particles stay relatively near their initial positions. We would like to 
have a bound like this which is uniform in s, for almost all x. To get this bound, let 

S^x) = lim inf B{s){x). 
S—oo 

By Fatou's lemma, 5^ is integrable and hence is finite almost everywhere. We will 
show that, if 5OO(JC) is finite, then there is a solution of the equations of motion with 
initial data x. IfB^x) is finite, there is a real number b and a sequence {sn) increas
ing to infinity such that B(Sn){x) ^ b for all n. By the argument just given, this 
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means that, for any positive z9 

(5) |qWt) -9i\& M{(\ + r2)• *• b) log+fe) 

for all i and all t with \t\ ^ z. 
It is now easy to finish the proof. The bound (5) together with the finite range of 

the interaction places a bound on the number of particles which can interact with 
the rth particle for times between — z and z. Since the potential has no singularities, 
the force which can be exerted by any single particle is bounded so this gives a 
bound on \dp^\t)ldt\ for any fixed i which is uniform in t between — z and z and 
uniform in n provided sn is large enough so the inequality (5) prevents the rth 
particle from colliding with the wall between time — z and z. The Arzelà-Ascoli 
theorem implies that a subsequence of the/?^ {t) converges uniformly for t between 
— z and z. But i and z are arbitrary, so a diagonal procedure gives a subsequence 
along which eaJi/^-ty) converges uniformly on every bounded interval of times. 
Let us denote the limits by {pi{t)). If we define 

t 

(6) q{(f) = q{ + J dti Pi{ti)/m 
o 

then a straightforward passage to the limit in the corresponding equation for the 
p\s"\t) gives 

(7) Pi{t) = Pi + J dh S F{qi{tl) - qj{tx)) 
o /El

and equations (6) and (7) are simply the integral form of Newton's equations of 
motion. We have thus proved 

THEOREM 2. Let 0 be a finite-range superstable potential with Lipschitz continuous 
derivative, and let pt.be a Gibbs state for 0. Let B^ be defined as above. Then 

(i) J5oo dfj, < oo, and in particular B^ is finite almost everywhere. 
(ii) IfBooix) is finite, there exists a solution x{t) = {qt{t)9 A ( 0 ) of the equations 

of motion with x{0) = x which satisfies the localization condition 

(8) sup sup l ^ 7 ^ 1 < 00 

for all finite z. 

An existence theorem like this one, without a corresponding uniqueness result, 
is of very little use. Furthermore, examples can be found in which solutions are 
nonunique, at least for systems of infinitely many hard spheres. Fortunately, the 
localization condition (8), together with some mild restrictions on the initial phase 
point x (which hold almost everywhere with respect to each Gibbs state), suffices 
to determine the solution uniquely. The proof of uniqueness is straightforward: 
The equations are rewritten as integral equations : 

qif) = Qi + Kpi/m) + J Ai Ìdt2Fi{t2)9 
0 0 

http://pt.be
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J*i 

it is assumed that these equations have two solutions satisfying the same initial 
condition; the equations are subtracted and the localization condition (8) is inserted 
to obtain an integral inequality which is iterated to show that the two solutions 
must have been identical. 

Once uniqueness has been established, the solution mappings give a flow T* on 
the infinite system phase which is defined almost everywhere with respect to each 
Gibbs state. It may further be shown that T* leaves each Gibbs state invariant, and 
that T[s) converges in measure to T* as s approaches infinity. 

The results described above are discussed in more detail in [3]; a slightly different 
proof is given in [5]. A manuscript giving the extension to long-range and singular 
interactions is in preparation. It should be mentioned that there is another ap
proach to the problem of infinite system dynamics, due to Sinai, in which it is 
shown thit almost all initial phase points admit solutions in which, over any 
bounded in'erval of time, the particles break up into finite noninteracting clusters. 
This is proved for arbitrary densities in one dimension [7] and for small densities 
in more than one dimension [8] ; it is surely not true at high densities in more than 
one dimension. 
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Thomas-Fermi and Hartree-Fock Theory* 

Elliott H. Lieb 

Quantum mechanics had its genesis in the attempt to understand the properties 
of atoms and molecules, particularly the nonclassical feature of a minimum, or 
ground state, energy. It should come as no surprise, despite the current interest in 
extending quantum mechanics to the nuclear and subnuclear domain, e.g., field 
theory, that there are still many important mathematical problems left over from 
the early days. 

The chief triumph that established the Schrödinger equation was the analysis 
of the energy levels (i.e., discrete spectrum) of the one-electron hydrogen atom 
Hamiltonian (Z>0) 

(1) H% = - A - Z\x\-\ 
on L2 (Ä3), where Z is the nuclear charge and x e jß3. The discrete spectrum of Hh 

is {— Z2(2w)~~2: n = 1, 2,---} with degeneracy w2, and this checks perfectly with 
experiment. 

The good luck stops here. The JV-electron Hamiltonian, when there are k nuclei 
of charges Zf- > 0 located at Rt e R3, i = 1, •••, k9 is 

(2) HN = - £ 4 + L V{xt) + E \Xì - xj\'i 
t=l i=l l^i<j^N ' 

where V{x) = - SLi Z» | x - fy |_1. HN acts on the N-fold antisymmetric 
tensor product of £2(JB3). (Actually L2{RS; C2), but we shall ignore this compli
cation here.) Not much can be done with (2), even when N = 2 and k = 1. 

There exist two classical approximation methods for determining EN = 
inf spec HN: Thomas-Fermi (TF) theory and Hartree-Fock (HF) theory. These 
replace (2) by much simpler, although nonlinear, minimization problems. Two 

•This work partially supported by NSF grant GP-31674X at M.I.T. 
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questions arise: (i) Do these new problems actually have minima as distinct from 
infima? (ii) In what sense are these approximate solutions related to EN ? B. Simon 
and I [1], [2] have recently been able to answer (i) affirmatively using LP techniques, 
and to show that the approximations converge to ENSLSZ = 2*=i Z,- -> oo. 

I. Thomas-Fermi theory. Let p: Ä3 -> R+
9pe L 5 / 3 (Ä3) f| Ll{R3)9 and, ignoring 

some irrelevant constants, define 

(3) tip) = M P5'3 + J pV + 4. JJ p(x) p(y) \x-y\-*dx dy. 

The TF approximation to EN is 

EJ? = inf \ê{p): \P = N}9 NeR+. 

It is easy to prove (Holder and Young inequalities) that the infimum exists; if it is a 
minimum, the minimizing p will be unique since p -> ê{p) is strictly convex. In that 
case it is easy to see that p will satisfy the TF equation : 

(4) p%* (x) = max [<p{x) + CN9 0], J p = N9 

where <p{x) = — V{x) — J p#(.K) | x — y |_ 1 dy and Cjy ^ 0. 

THEOREM 1. ê{p) has a unique, minimizing p^ ijfN ^ Z, i.e., in the subneutral 
case. This pN satisfies (4). 

One first shows a minimum exists in £fN = {p: j" p ^ N}. The idea is as follows : 
(a) Observe that one can restrict one's attention to a bounded ball inL5/3(jß3). 
(b) p -» ${p) is lower semicontinuous in weak Z,5/3(Ä3) since the kernel | x — y\~l 

is positive definite and | x\~l e L5/2(Ä3) + L°°(Ä3). 
(c) If lim^oo ê{p{n)) = ÊN = inf {<f(p): p G J^V} for p(M) G J^V, then one can 

find a subsequence converging in weak L5 / 3(Ä3) to some pN. As long as ENis 
strictly decreasing in N9pNe{p: J p = N}. EN will be strictly decreasing until the 
absolute minimum is reached. This is when CN = 0 and, from the form of tp{x)9 

which can be shown by potential theoretic arguments to be positive, this requires 
that J pN = Z. 

By applying potential theory to (4) one can prove interesting properties of pN, 
Ejf and CN. For example, one can prove the Teller-Balasz theorem that if one 
adds the nuclear repulsion, 2lâ-<y^A Z{Zj \Rj — Rj\~l, to is£F then the total energy 
is greater than the sum of the energies obtained when the molecule is broken into 
two smaller molecules, i.e., there is no binding. Another typical result is that CN9 

which is called the chemical potential, is a concave function of N on [0, Z]. 
The connection between Ejf and the true EN of (2) is as follows: Fix k and 

replace Z, by z{N9 and R{ by N~l/3r{ with zi9 r{ fixed. Then it is easy to see 
that EJF satisfies a scaling law: £ $ F = N7/3EJF and N~2pN{N^/3x) = Pl{x). 

THEOREM 2. In the circumstances given above: 
(i) lim^oo EN/EjfF = 1. This limit depends, of course, onz — Sf=1 z{ = Z/N. 
(ii) IfEN is an eigenvalue ofHN, which will be the case when 2*=i z% è 1 > define 
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ßN{x) = N$ | W{x9 *2,-.., xN) |2 dx2 ••• dxN, 

with W being a normalized, ground state eigenfunction of HN. Then 

lim N-*pN{N-"3x) = Pl{x) in L}oc {R3). 

Theorem 2 is proved by obtaining upper (resp. lower) bounds for EN by decom
posing R3 into cubes of size N~1/3 and using Dirichlet (resp. Neumann) boundary 
conditions on the cube boundaries. The fact that the nuclear charges, Nzi9 go to 
infinity presents some difficulty. 

In summary, the solution to (4), when inserted into (3), gives a remarkably simple 
asymptotic formula for EN in the large N limit. It seems to be very difficult to find 
corrections to this N7/3 asymptotic formula; this is an important open problem. 

H. Hartree-Fock theory. Let W = {pi,---, <PN} be a set of orthonormal functions 
in H^R3), i.e., tp( and V#v G L2(jR3). Define the normalized function 

(5) Dv (xh -,xN) = (AM)-i/2 det [<p,(xMj=i 

in the antisymmetric tensor product of L2{R3)9 and let S'^W) = {DW9 HNDW). 
The HF approximation to EN is 

£HF = i n f w £N{W) 

Is this infimum a minimum? If so, thep,- will satisfy the coupled, nonlinear HF 
equations 

N 
(6) {Hw(pd {x) = S eytyix), i = 1, •••, N9 

where Hw is the selfadjoint operator on L2{R3) given by 

{Hw<p) {x) = { - A + V{x) + U¥{x)}cp{x) - {Kw<p) {x)9 

u¥{x) = i^Wi{y)\2\x-y\-1dy9 
i=1 
N . . 

{Kw(p) {x) = S <Pi(x) J <p{y) <pi{y) \x-y\-1 dy. 
f — 1 

Since H¥ is selfadjoint, e{j is a selfadjoint matrix. Let T be the 77-square unitary 
matrix that diagonalizes e^. The transformation <pt{x) -> £ ^ 4 T^tpj changes 
neither #N{W) nor H¥. Hence, we may assume efJ- = e{òij. Also, the numbers {ej 
are the N lowest eigenvalues of H¥\ if / / , the 7th eigenvector, is missing for j ^ 
TV, replace fN+k byfj and note that é?N{W) is lowered since |* - ^|_1 is a positive 
function on J?3 x JB3. 

Thus, if $N($) has a minimum, the HF equations will have a solution. There is 
no claim of uniqueness this time. 

THEOREM 3.IfN< Z + 1 then £{W) has a minimum. 

The idea of the proof is this: Let S = {(pi,---,^): M ^ /, M{j = {<pi9 (pj)}. For 
W G S9 let 

êN{W) = S (Vp„ Vp,) + dpi9 [V+\Uw-\ K¥]<pt) 
i—1 

and ÊN = inf {SN(W) :WeS}. Let W<"> e 5 and iN(WM) -> £*. Choose a subse-

file:///x-y/-1
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quence such that each <p\n) converges weakly in Hl to some <p{ and let W = 
{"PW^N)- NOW W -> $N{W) is weakly lower semicontinuous, essentially because: 
(i) U¥ — Kw > 0 and is bounded on Hl{R3)'9 (ii) V is a relatively form compact 
perturbation of - 4 so {(p\n)

9 VtpW) -* (̂ -, Kpf-). Therefore ÎP" minimizes iN{¥) 
and ?P" G 5. As before, the <pt- can be chosen so that Hw(pi = ef-pf- and {<pi9 (pj) = 
-̂ 5/y, 0 ^ yl; ̂  1. Clearly Af- = 0 (resp. 1) if e{ > 0 (resp. e{ < 0), and to complete 

the proof one has to show that if n is the number of negative eigenvalues of H¥9 

then n^. N. The crucial remark in this regard is that, for large x9 V{x) + U{x) ~ 
(— Z + n) \x\~x

9 and this Coulomb tail can accommodate a bound state or
thogonal to (pi,---, <pn when Z > n. 

It can also be shown that the (p{{x) have exponential fall-off at infinity, i.e., 

\<Pi{x) | ^ (const) exp(— A | x |) when A2 < min[— eÌ9—, —eN]. 

Two important open questions about HF theory are these : (i) Can anything be 
said abou the uniqueness of the HF minimizing solution? (ii) Does tf^W) have 
a minimum when N = Z + 1 ? Perhaps not always, but it should in some cases. 

The relationship of Effî to EN is the same as in the TF theory: lim^«, E§F/EN 

= 1 if, as before, Zt- = Nzi9 Rt = N~l/3 r{. This is so because a HF estimate, 
i.e., a particular choice of W9 was used to obtain the aforementioned upper bound 
to EN and this bound was asymptotically (in N) equal to EN. 

In summary, the existence of solutions to the nonlinear TF and HF equations, 
(4) and (6), has been established by noting that these equations are gradients of 
certain functionals and by applying the Banach-Alaoglu theorem to those func
tionals. The equations have been studied by themselves [3]—[8], but the results 
obtained by such a direct attack have thus far not been as general as those given 
here. 
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Relations Between the Modulus and the 
Phase of Scattering Amplitudes 

Andre Martin 

1. Introduction. For physicists a very important object is the scattering amplitude 
which is at the interface between theory and experiment. Theories are supposed 
to predict scattering amplitudes. Experiment gives some information on scattering 
amplitudes. Now what kind of information? In the simplest case, the case of a 
collision between two particles of spin 0, the scattering amplitude is a complex 
function of two variables, which can be taken to be for instance the centre-of-mass 
energy and the scattering angle. What is now easily accessible to experimentalists 
is the modulus of the scattering amplitudes because the differential cross section is 
just the square of the modulus times some trivial factor. In elementary particle 
collisions the phase is seldom accessible (a notable exception is K0 nucléon col
lisions). When I say that, I am taking a rather empirical point of view. I do not 
want to enter into a serious discussion of whether or not the phase is observable in 
some "gedanken" experiment (for a recent discussion of this, see Goldrich and 
Wigner [1]). 

However, even if in practice the modulus is most of the time the only accessible 
quantity, the phase and the modulus are linked by very general relationships based 
on things that most physicists believe, which are : 

(1) conservation of probability, which is technically called unitarity, and which 
implies in particular certain positivity properties ; 

(2) causality, more exactly microcausality as expressed by an underlying field 
theory; from this it follows that the physical scattering amplitude is the boundary 
value of an analytic function. 

In the following, we shall give more details on (1) and (2). We shall give then two 
illustrations of the usefulness of these properties: (a) we shall see that perfect data 
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on the modulus of the scattering amplitude at all energies fix the phase; in some 
cases, it is enough to have measurement at one energy; (b) the general information 
we have on the phase allows us to make some statements on the high energy be
haviour of the modulus, for instance to establish that the ratio of the moduli of the 
amplitudes for reactions A + B -> A + B and Ä + B -> Ä + B (where Ä de
signates the antiparticle of A) approaches unity or, more precisely, admits unity 
as one of its limiting values. This occurs for the forward scattering amplitude and 
also inside the region called the "diffraction peak". 

2. Notations. The scattering amplitude F{s9 cos 0) for the reaction A + B -> 
A + B is a function of two variables 

s = square of the centre-of-mass energy, 
0 = centre-of-mass scattering angle. 

Other useful variables are 

k = centre-of-mass momentum 
{{k2 + M2

Ay/2 + {k2 + M2
B)l/2)2 = s9 

t = square of the momentum transfer 
t = - 2k2 (1 - cos 0), 

and, finally, 

u = 2M\ + 2M\ - s - t. 

The usefulness of u will appear later. 
The scattering amplitude will be normalized if we say that do/dû, differential 

cross section, is 

%^\F{s^0)\2. 
dû 

3. Unitarity and positivity. 
3.1. The elastic region. Here it may be useful to use a vector notation :f{s9 n\9 n2) 

is the scattering amplitude from direction n\ to direction n2 : 

2k 
f{s, ni9 n2) = -jj2-F(s9 nvn2). 

The unitarity condition reads 

(1) Im/Cy, nl9 n2) = J ~^f*(s> nh n3)f{s9 n2, n3). 

The imaginary part of the scattering amplitude is also called the absorptive part. 
In fact, the scattering amplitude can be expanded in partial waves 

(2) F{s9 cos 0) = S {21 + I)Ms) Pfcos 0) 

where the P/'s are Legendre polynomials. It has been proved from field theory, i.e., 
microcausality and existence of a minimum nonzero mass, that this expansion 
converges. Then the unitarity equation becomes 
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(3) Wifr) = 4£|/iC0|8 

or 
1/2 

(4) fl{s) = ^Ycxp{iöl)lmöl. 

Unitarity is expressed by the fact that the "phase shift" <5, is a real quantity. The 
problem of obtaining the phase of the whole amplitude from the modulus is often 
called by physicists "phase shift analysis" because if one finds all the 5/s one knows 
the amplitude entirely by summing the partial wave series. However, it is not 
necessary to go through the expansion. Equation (1) can be viewed as a nonlinear 
integral equation for the phase, once the modulus is known : 

(5) f{nh n2) = \f{nl9 n2) | exp i<j>{nh n2)9 

\f{ni9n2)\sm<j){ni9n2) 

(6) = ^ \f{jlh nùll/(*2' "3)I cos M*> n*> - ^(/l2' *3)]-
We shall discuss later what can be extracted from this nonlinear equation. 
3.2. The inelastic region. When the collision energy of A and B is sufficiently high 

other reactions compete with the elastic reaction A + B -> A + B. Then the 
expression of the conservation of probability is not so simple, and we do not have 
anymore an integral equation for the phase. However, one very simple and fun
damental property survives : It is positivity which can be expressed as 

(7) \düxdü2 w{nò w*{n2) Im f{s9 nl9 n2) ^ 0, 

or, if one prefers to use the partial wave amplitudes : 

(8) Imffc) ^ 0. 

The most obvious consequence is 

(9) Im F{s9 cos 0 = 1) = S (2/ + 1) lmf{s) ^ 0. 

Therefore the phase of the forward amplitude stays between 0 and %. [The phase is 
defined by continuity. One can prove that the equality sign never happens in (9) 
unless the amplitude is identically zero !] However, a more subtle result has been 
obtained by Cornille and myself [2], which allows control of the phase at non-
forward angles. Here one makes use of the positivity of the individual Im / / s . 
One shows that 

Im F{s9 cos 6i) - Im F{s9 cos 02) + — + ( - ) N Im F{s9 cos 0^) 
Im F{s9 1) 

where 0b 02, •••, 0# are ordered, 0 < 0! < 02, ••• , < 0^ is bounded by C{N)l/2 

where C can be calculated explicitly. With the help of this property, one deduces : 

THEOREM I(CORNILLE-MARTIN). The phase of the scattering amplitude at the angle 
0, defined by continuity in the angle from 6' = 0 to 0' = 0, is bounded by 
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IA a?, m M . , (ra)Y | lmF( j ,cos0 = 1)|2 

Arg(F(^,cos0)) ^ % + v K\» x - L ^ — ^ L -
%3 min o ^ 0 | F ( .y ,cos0 ' ) | 2 

The conclusion of this is that the knowledge of the differential cross section at a 
given energy allows us to get bounds on the phase. 

A particular consequence is that "the phase is bounded inside the diffraction 
peak" [3]. The diffraction peak is defined as that angular interval in which, at high 
energies, the modulus of the scattering amplitude is a finite fraction of the forward 
amplitude. For instance, we could decide that the diffraction peak is that region 
where do/dû is larger than 1/e times the forward differential cross section; then the 
phase is bounded by % + e{r{\)Y/it3 according to Theorem I. 

4. Analyticity and the phase. We know that if we believe that particles are de
scribed by local fields of some kind, one can obtain analyticity properties of scat
tering amplitudes. In the simplest cases, like pion-nucleon scattering, these proper
ties contain dispersion relations. In more complicated cases, the proof fails but 
Bros, Epstein and Glaser have found an excellent substitute [4]. For simplicity I 
shall assume that we are in a "good case" where dispersion relations hold. We use 
now as variables s and t. F{s9 t), for fixed t, —T< t ^ 4m2

9 is analytic in a cut 
plane in s. Its boundary value on the right-hand cut F{s + is, t) is the physical 
scattering amplitude. The discontinuity across the cut is the imaginary part also 
called the absorptive part. The boundary value below the left-hand cut F{s — is, t) 
is the physical scattering amplitude for the crossed process Ä + B -> Ä -f B where 
the square of the (ÄB) centre-of-mass energy is given by u defined in §2. This is the 
famous "crossing property". For t ^ 4m2 where m% is the pion mass, the ampli
tude grows less fast than | s |2 in the complex plane and it is possible therefore to 
write dispersion relations with two subtractions [5], i.e., to express the amplitude as 
an integral over the absorptive parts of reactions A + B -» A + B and Ä + B -» 
Ä + B plus two constants at fixed t. 

In such a situation, we obtain a new link between the modulus and the phase, 
since the phase is conjugate to the logarithm of the modulus. However, analyticity 
alone is not very powerful because we can, for instance, introduce arbitrary zeros 
without changing the modulus on the cuts. This is very easily seen by mapping 
the twice cut plane on the unit circle. Then we know that multiplying by 
(z — z0)/(l — zz%) will not change the modulus on the circle. 

One can, however, make statements in the other direction and get some .restric
tions on the behaviour of the modulus if s -> oo. In particular we have: 

THEOREM II (CORNILLE-MARTIN [6]). Assume that for some fixed t the modulus of 
the scattering has no zero for sufficiently large, physical \ s \ {i.e., s-* + oo, s -> — co). 
Then it is meaningful to speak of the phase. Assume that the phases of the amplitude 
A + B -> A + B and of the amplitude Ä + B -• Ä + B are both o(log s). Then the 
set of limiting values of\F{s9 t)\j\F{—s, t)\for s -+ oo contains unity. 

For physicists who believe that this limit exists, this means that, if the phases 
are o(log s) the ratio of the differential cross sections for reactions A + B -> A + B 



MODULUS AND PHASE OF SCATTERING AMPLITUDES 391 

and Ä + B -+ Ä -f- B approaches unity at infinite energy. 
Now we shall see the power of the combination of unitarity with analyticity, 

From analyticity alone we have no way of knowing if the phase condition is 
satisfied. However, we find in §3.2 that the forward amplitude has a phase between 
0 and %. So it is bounded and, for / = 0, the ratio of the differential cross sections 
for particles and antiparticles approaches unity (if it has a limit) at infinite energy 

m-
In fact from Theorem I, this is true not only at t = 0 but also everywhere inside 

the diffraction peak. This implies that the widths of the diffraction peaks for 
particles and antiparticles tend to the same limit. A more refined version using 
two-variable analyticity can be used when the width of the diffraction peak goes 
to zero at infinite energy [2], The conclusion is the same: The ratio of the widths 
must approach unity. 

5. The phase problem. 
5.1. The phase problem at fixed energy. Here we want to come back to the ques

tion of determining the phase from the modulus at a given energy at all angles, 
the energy being low enough so that no inelastic channels are present. Let me say 
that the problem is not completely solved. There exist sufficient conditions under 
which (6) has a unique solution [8] [modulo a trivial ambiguity F{s, cos 0) -> 
— F*{s9 cos 0)]. Such a condition is 

J-©-l«»i.'H)IW»»»0| 
<10> • » - l / f r . , . ^ 1 S - 7 9 ' 

This constitutes Theorem III. 
Condition (10) is, from the point of view of physics, very strong and only satisfied 

in practice at very low energies. It can be shown that if any of the partial waves 
(except the S wave) is resonating (i.e., if <5/ is close to %/2) the condition is violated. 

On the other hand, long ago, Crichton gave explicit examples of nontrivial 
ambiguities. More recent examples have been given [9]. These examples are poly
nomials in cos 0 : Two different polynomials in cos 0 give exactly the same differen
tial cross section. Atkinson and Johnson [10] have recently shown that these ambi
guities occur also for the nonpolynomial case. 

However, nobody has succeeded in producing more than a two-fold nontrivial 
ambiguity. The belief that this would be impossible is supported by: 

THEOREM IV (ITZYKSON AND MARTIN [11]). If the class of scattering amplitudes is 
restricted to nontrivial entire functions of finite order, there cannot be more than two 
amplitudes, differing in a nontrivial way, reproducing the same differential cross 
section. 

However, we know that physical scattering amplitudes are not entire functions in 
cos 0. The amplitudes produced by a finite range potential are entire functions, but 
this is not a physical, relativistic case. So the problem is open. 

5.2. The phase problem using various energies and angles. Here I want to describe 
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some recent work by H. Burkhardt and myself [12] which is the continuation of an 
old paper by Bessis and myself [13]. 

If you assume that you know the modulus of the scattering amplitude at all 
energies and all angles, with perfect accuracy, the problem is overdetermined. 
Indeed you know the modulus at energies close to threshold, and then condition 
(10) is automatically fulfilled because the S wave (/ = 0) dominates the scattering 
amplitude. Hence we have only to worry about the trivial ambiguity. This is easily 
removed, by using analyticity with respect to energy, together with the existence of 
a new singularity at the first inelastic threshold. 

With Bessis first, in the case of a 7T° %° -> n0 iz° scattering amplitude and later with 
Burkhardt in the general case, we have tried another game: Assume that you know 
the modulus of the amplitude in two or three channels, say, A + B -> A + B 
{s channel) and Ä + B^>Ä + B{u channel), and try to find what is the minimum 
amount of unitarity that one should use to fix the scattering amplitude. 

Here we want to present 

THEOREM V (BURKHARDT-MARTIN). Assume that particles A and B have equal 
masses m; assume that no unphysical threshold is present. Suppose you have two 
scattering amplitudes F and G such that F and G are analytic in the axiomatic analy
ticity domain [5] and that \F\ = \G\inthe three physical regions corresponding to 
A+B-+A + B9Ä + B->Ä-\-B9A + Ä->B + B. Then 

F _ <f>{s, t, u) + ((4m2- s) {4m2- t) {4m2- u))l/2 

G <f>{s919 u) - {{4m2- s) {4m2- t) {4m2- u))1'2 

where <f>{s9 t9 u) is a real meromorphic function of s9 t9 u {with s + t+ u = 4m2)9 

i.e., such that <j>{s9 t9 u) = 0*(.s*, /*, w*). 

It is almost obvious that if F/G has such a form, the ratio of the moduli in the 
physical regions is unity. The converse is less evident. Remarkably enough, one 
does not have to make extra analyticity assumptions, such as Mandelstam repre
sentation, to get this result. One sees that one has still an enormous freedom. 
However, as soon as we put in positivity requirements of the type described in 
§3.2, this freedom may disappear. For instance, positivity does not only imply that 
the forward {t = 0) scattering amplitude has a phase between 0 and % but this also 
holds for the amplitudes A + B -» A + B and Ä + B->Ä + Bfox0^t< 4m2. 
Therefore the amplitude F{s, t) for 0 < t < 4m2 has a positive discontinuity on the 
right-hand cut and a negative continuity on the left-hand cut. This, combined with 
the fact that F{s9 t) grows less fast than s2, makes it possible to show that F has at 
most two zeros in the complex s plane. Therefore, from the requirement of posi
tivity in the s and u channels we deduce that the ratio of two amplitudes with the 
same modulus has at most two poles and two zeros for 0 < t < 4m2. That 
means 

F {A{t) + sB{t) + s2 C{t))l{a{t) + sb{t)) + ((4m2 - s) {4m2 - t) {4m2 - u))1 '2 

G " {A{t) + sB{t) + s2C{ty)l{a{t) + sb{fy 
The form of the meromorphic function is therefore enormously restricted. 
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If we have complete crossing symmetry as in the ^r%° —• 7C°7C° amplitude, we can 
go further. The only possible form of F/G is then 

F A + Bstu + C{s2 + t2 + u2) + {{4m2-s){4m2-t){4m2-u))l/2 

G * A + Bstu + C{s2 + t2 + w2) - ( (4m 2 -^) (4m 2 -0(4m 2 -w)) 1 / 2 

where A9 B and C are constants. 
However, with a few additional requirements, normal threshold behaviour, 

equality of the imaginary parts of Fand G for t = 0 (which comes from the equality 
of total cross sections), one shows that F/G = 1. 

So in this case, only positivity inequalities have been sufficient to remove an 
ambiguity which corresponds to the choice of an arbitrary function of two varia
bles. 
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Markov Fields 

Edward Nelson* 

1. Introduction. Markov fields are a generalization to higher dimensions of the 
one-dimensional notion of Markov processes. Markov processes with appropriate 
symmetry properties are a useful tool in quantum mechanics, since analytic contin
uation in the time parameter yields the solution of the Schrödinger equation. 
Similarly, in the scalar case, Markov fields with Euclidean symmetry have been a 
useful tool in constructive quantum field theory (see [4]). Here we shall sketch some 
of the ideas which occur in extending this connection to the nonscalar case. 

2. Markov fields. Let y be a finite-dimensional complex vector space, with dual 
y ' , and consider the vector bundle Ed x nK9 where Ed is rf-dimensional Eucli
dean space. (For the purposes of this section, any other C°° vector bundle would 
do as well.) Let D{Ed

9i
r') be the space of C°° functions with compact support in 

Ed taking values in "T'9 topologized in the usual way, and let D'{Ed
9 rT), the space 

of y-valued distributions on Ed
9 be its dual. 

Let 2 be the ^-algebra of subsets of D'{Ed
9

,f) generated by functions of the form 
H> ^ <p{f) for/in D{Ed

9 Y"). If A is a subset of Ed
9 let 2A be the ^--algebra of all 

sets in I which are invariant under the action of all C°° diffeomorphisms of Ed 

which leave A pointwise fixed. 
A ^-valued Markov field on Ed is a probability measure /A on {D'{Ed

9 "T), 2) 
such that if A is an open set in Ed and w is a positive or integrable Immeasurable 
random variable, then E{u\2A*} = E{u\2dA} where Ac = Ed\A and dA is the 
boundary of A9 and E{ | } denotes the conditional expectation. 

3. Euclidean covariance. Let <$d be the complex Clifford algebra of Ed%
9 that 

•Support is gratefully acknowledged from the National Science Foundation, grant GP-33314, 
and from the Institute for Advanced Study. 
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is, the complex associative algebra with unit 1 which is generated by elements 
T-x9 for x in Ed

9 subject to linearity and the relation T-xT-y + T-y T-x = 2x-y. 
Let 0{Ed) be the group generated by all T-x with x-x = 1, and let A{T-x) be the 
reflection in the hyperplane with unit normal x. Then A extends to be a homomor
phism of 0{Ed) onto the orthogonal group 0{Ed) with kernel {1,-1}. We let 
IO{Ed) be the semidirect product 0{Ed) x Ed with the multiplication law 
(A, a) {B9 b) = {AB9 A{A)b + a). 

If ir is a finite-dimensional complex vector space and S is a continuous repre
sentation of 0{Ed) on -T, then there is a natural action T of /d(2£«9 on Z>'(JErf, ir\ 
and also a natural action 5 of Ö(2?rf) on D'{Ed

9 ir) which acts on the fiber ir 
alone. A Euclidean Markov field of type S on 2Jrf is a f-valued Markov field 
such that the T{A, a) for {A, a) in IO{Ed) are measure-preserving transformations 
{Euclidean covariance), and the S{A) for 4̂ in <3(2?rf) are measure-preserving trans
formations {fiber covariance). 

4. The transition semigroup. Let /j, be a Euclidean Markov field of type S on 
Ed

9 and let j f = ^2{[i). Let jfo be the closed linear subspace of j f consisting of 
all 2V-i-measurable elements of X , and let EQ be the orthogonal projection opera
tor from j f to jf0. Let 

P*u = EQT{19 -ted)u9 ue j f 0 , 0 ^ t < oo, 

where erf is the unit vector perpendicular to Ed~l. Then there is a unique positive 
selfadjoint operator K on jfo such that P* = e"'*. The proof that P* is a contraction 
semigroup uses the Markov property (for half-spaces) and covariance under time 
translations in the familiar way, while the proof that P* (and hence K) is self
adjoint makes use of both Euclidean covariance and fiber covariance under re
flection. 

5. Euclidean expectation values and their analytic continuation. Let ïr be the 
complex conjugate vector space to f , consisting of objects ü for u in ir9 with 
ü + v = u + v and cm = au. If Tis an endomorphism of ir we define the endo-
morphism t of îr by f« = 7w. We define £( / ) , for / i n D{Ed

9ir')9 by p(/) = p(7). 
We adopt the general notational convention that if X is any object for which Xis 
defined then Xe = X for e = i and Xs = JP for e = -/, and if X = (Xl5 •••, Zw) and 
e = {eì9 - , O then Z« = (Xf, - , *£)• L e t / = ( / b - , / J where/,- is in D{Ed

9<r*'f) 
for j = 1, —, /2. If we assume that p£(/) = (pei{fi) ••• (pe"{fn) *

s integrable, then 
by the Schwartz nuclear theorem there is a unique ^-valued distribution &"§ on 
{Ed)n such that £*§(/) = E<pe{f)9 where is denotes the expectation. Next we need 
a technical assumption, similar to Assumption (A) of [2] or the Osterwalder-
Schrader growth condition [3], to ensure the possibility of analytically continuing 
«9̂5 with distribution boundary values nr^ on the «-fold product {Md)n of rf-dimen-
sional Minkowski space. Shorn of technicalities, this continuation is possible 
because the transition semigroup P* admits a continuous extension to Re t ^ 0 
which is holomorphic in the interior. 

To state the basic properties of the HT^, we need some additional notation. The 
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double covering P]+ of the restricted Poincaré group is imbedded in the complexi-
fication of IO{Ed)9 and the double covering £ j + of the restricted Lorentz group 
is embedded in the complexification of 0{Ed). The representation S extends to be 
holomorphic on f"9 and S given by S{A) = S{Â) is holomorphic on ïr while 
A\-+S{A) is antiholomorphic on "jr. 

We denote Fourier transforms by ~ and the closed forward light cone by V+. 
By 7tj we mean the permutation of x = {xÌ9 —, xn) which interchanges x$-\ and xj9 

by eKJ we mean the action of this permutation on e = {e^ —, en)9 and by p{%j) we 
mean the corresponding linear map of irt%» to i^e. 

The Wi are tempered ^-valued distributions on {Md)n with the following pro
perties : 

(a0) Covariance: 

S'(A) lir&A {A9 «)-i x) = irfHx\ {A9 a) e P\+{Md). 

(b0) Spectrality: 

#6(Pb ->/>*) = (2*)' <?( g /v ) WfohPi + />2. - >/>i + P2 + - + /V-i) 

where ïî'SG/i,—, #w_i) = 0 unless qj e K+ for j = 1, ••• , n — 1. 
(c0) Symmetry : 

p{xj) iTtfiXn) = ar%{x)9 X/_! - xj space-like. 

(d0) Positive definiteness : 

2 J - lf£(yi, -" > ym) trf*-***"* {ym9 - , yi9 xl9 - , xn)fn{xl9 - , xn) ^ o. 

6. Wightman distributions. At first sight, these properties (together with cluster 
decomposition, which we shall not discuss) look like the Wightman axioms for 
the vacuum expectation values of a quantum field. However, the covariance (a0) 
is the wrong kind of covariance. In order for the adjoint field to transform correctly, 
Wightman distributions tWE must satisfy 

(a) Covariance: 

S{Ay iT*{A {A9 A)-I x) = *"(*). ( 4 fl) e PU(Md)9 

and in general SS{A) # S{A)£. (For scalar fields, S is the trivial representation and 
the above properties do suffice to construct a quantum field from a Euclidean 
Markov field—see [4].) To a field theorist, there is an even more glaring problem: 
The symmetry property (c0) cannot hold for fields of nonintegral spin, S{— 1) = 
- 1 , by the theorem on spin and statistics, and symmetry should be replaced by 
antisymmetry. 

We shall very briefly sketch how to overcome these difficulties, for the two'-point 
function. Suppose that e = (/, — i). We make the simplifying assumption that (b0) 
is strengthened by assuming a mass gap. It can be shown that 

À = T-edAr-ed9 AeLU> 

Therefore W\ = 1 ® {S{7 • ed^fiir^ has the correct covariance (a). However, 
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positive definiteness is now destroyed. We restore it, while maintaining 
covariance and speciality, by using the projection given in momentum 
space by £(1 + S(J-p/p-p)l/2)). A study of symmetry leads to the projection 
\{\ + S{-r-p/{p'p)l/2)). The crucial point is that for integral spin, S{-1)= 1, this 
is the same projection operator whereas for nonintegral spin, S{— 1) = — 1, it is 
\{\ — S{T'p/{p-p)1/2))9 which is a projection onto a negative subspace for S{y-ed). 
In this way we obtain the right connection between spin and statistics even though 
we started from classical commuting random variables in the Euclidean world. 

Work extending this to the general «-point functions is nearing completion, and 
a complete account will be published elsewhere. The value of this approach will 
depend on its success in handling specific models, but we hope that in this way the 
techniques of classical statistical mechanics which Guerra, Rosen, and Simon, 
and others (see [4]) have applied to scalar fields will become available for quantum 
fields of higher spin, including Fermion fields. 

In conclusion, I would like to urge probabilists to study Markov fields in their 
own right, aside from possible applications to quantum field theory. The central 
problem is the existence of non-Gaussian fields in higher dimensions. As Glimm 
and Jafle have emphasized in their program of constructive quantum field theory 
(see e.g. [1] and the references therein), the central problem is the ultraviolet diver
gence. This problem remains, uncluttered by other complications, in the theory of 
Markov fields. 
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Approximation of Feynman Integrals 
and Markov Fields by Spin Systems 

Barry Simon* 

In this article I will discuss a similarity in the mathematical structures of two 
physically quite different classes of systems : the Markov processes associated with 
quantum mechanical anharmonic oscillators and field theories and the family of 
lattice models for ferromagnets. In fact, we will see that systems from the first class 
are limits of systems from the second class. This approximation is on two levels, 
the first due to Guerra, Rosen, and Simon [1973] and the second to Simon and 
Griffiths [1973]. These approximations, their extension and the development of the 
Ising model methods in constructive quantum field theory made available by them 
have been a major theme in constructive field theory during the past two and a 
half years. For a summary of applications up until January, 1974, I would refer 
you to my Zurich lectures(Simon [1974]). More recent work includes that of Glimm 
and Jaffe [1974a, 1974b], Guerra, Rosen and Simon [1974], Newman [1974], and 
Spencer [1974]. 

Here I would like to describe the basic ideas of the approximation and illustrate 
their application by discussing the proof of the following result which is essentially 
due to Glimm, Jaffe, Spencer [1973], 

THEOREM 1. Let E\9 E2, E3 be the three smallest eigenvalues of the differential 
operator H = - \ {d2/dx2) + ax2 + bx* {b > 0). Then 

(1) E3- E2^E2- Ex. 

Perhaps the most interesting feature of Theorem 1 is that its proof is intimately 
connected with the fact that the magnetization in a ferromagnet induced by an 
external magnetic field is a concave function of the inducing field ! 
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The basic systems. Let us begin by describing the basic systems which we will 
relate. The free Euclidean quantum field is the Gaussian random process 0(-) in
dexed by £f{Rn) with mean zero and covariance 

(2) J # / ) </>{g) dftQ = < / , ( - A + m*)-i gy 

where < , > is an L2 inner product. Due to work of Symanzik, Nelson and Oster-
walder-Schrader, constructive quantum field theory is now concerned with con
structing measures dv = lim^oo dvA {A c Rn; compact) with 

(3) dvA = exp ( - \A P{<ß{x))ren d^dßQ/Norm. 

where "Norm' represents a normalization factor chosen so that \dvA — 1. P is a 
polynomial bounded from below and "ren" indicates that when n ^ 2 certain 
infinite subtractions are needed. As n increases, the local singularities of <^{x) be
come worse and, as a result, the renormalizations more complex. In any event, d \>A 

has been defined in case n = 2 essentially due to work of Nelson and in case n = 3, 
deg P = 4, by recent work of Glimm and Jaffe and Feldman. In the physical case 
n = 4 {n is the number of space-time dimensions), there are still rather severe 
technical problems to be overcome in the definition of (3). (We expect that more 
details of this subject will be found in Glimm's and Nelson's contributions to these 
PROCEEDINGS.) When n = 1, there is a random process indexed by R9 q{t)9 with 
<f>{f) = J / ( 0 #(0 dt and this process is connected to the differential operator of 
Theorem 1 by the Feynman-Kac formula (for a proof, see, e.g., Simon [1974]) : 

THEOREM 2. Let n = 1, m = 1 in (2). Let P{x) = bx* + {a - \)x2 and let dv 

be the limit of the measures in (3). Let Qi be the eigenvector of H normalized by 
HQi = Ei Qh J Qi{x)2 dx = 1, H ^ Ex. Then 

(4) Sf(q{t))g{q{0))dv = <f{q)Qi9txp{- t{H - El))g{q)Q{). 

A classical Ising model is a probability measure on { — 1, 1}^ of the form 

(5) da = exp (S.Of/^öy + S P&i)/Norm 

where o{ = + 1 are coordinates for { - 1 , 1 }N thought of as the values of JVspins which 
can point up {o{ = + 1) or down (<7,- = - 1 ) . The //,- represent external magnetic 
fields and the measure a is called ferromagnetic if a{J> ^ 0, all i ^ j9 in which case 
there is a tendency for the spins to align in parallel. The study of Ising models has 
been much influenced by certain inequalities involving expectations of ö-'S and 
their products. The first of these "correlation inequalities" was proved by Griffiths 
[1967] and the subject has been developed extensively by Ginibre, Griffiths, Hurst, 
Kelley, Lebowitz, Perçus, and Sherman. In particular, Theorem 1 depends on the 
following inequality of Lebowitz [1974] (the proof may be found in the original 
paper or in Simon [1974]) : 

THEOREM 3. #*<•> denotes expectation with respect to a measure da of the 
form (5), then whenever a^ ^ 0, ̂  = 0, 

(6) <ßiGjOkGO è <ffiCTj> 0*ö7> + <öVö*> <ö/<7/> + <öVö-/> O^A>-

To understand the physical significance of (6), we note that 
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(7) LHS - RHS = &(Oi>ldpßiJLJbpi. 

Now <0V> represents the magnetization of spin / in the external field {[xj). The 
expected concavity of <öV> as a function of external fields is expressed by the 
Griffiths-Hurst-Sherman inequalities: If ̂  > 0, 

(8) dHoußvM^O. 
Since the derivative in (8) is zero if all ^ = 0 (by //,• «-+ — ßi9 07 <-> — Oi symme
try), (8) impies that the derivative (7) is negative if all ̂ , = 0 ; this is the inequality (6). 

We will also need to discuss generalized Ising models where da on {— 1, 1}N is 
replaced by a measure dß on RN with 

(9) dß = exp ( - S V^y + S inai) n/n<^)/Norm 

where rfT",- is a finite measure on j? and by is a strictly positive definite matrix. The 
ferromagnetic case is the one with by ^ 0 for i ^ j . Certain correlation inequalities 
hold for expectations with respect to ß but inequalities as detailed as (6) do not 
hold without additional restrictions on the d T. 

The approximation theorems. The basic approximation theorem of Guerra, Rosen 
Simon [1973] is: 

THEOREM 4. The measures d/uA of form (3) are the limits of generalized ferromagne
tic Ising models of form (9) in case n = 1, 2. The measures dï in (9) are of the 
form dT{a) = exp (— Q{o))da where Q = (const)P + quadratic term. 

Guerra, Rosen, and Simon present a general scheme (the "lattice approxima
tion") which formally approximates d/xA and prove its convergence in case n ^ 2. 
Recently, Park [1974] has proven convergence of this scheme in case n = 3, 
deg P = 4. The meaning of Theorem 4 is the following: For each / £ ^{Rn)9 <j> ( /) 
is a limit of suitable linear combinations of the 07 in the approximating theory and, 
if/ ^ 0, the coefficients in this linear approximation are positive. Thus multilinear 
inequalities on expectations (such as (6)) carry over to measures dptA. The basic idea 
of the proof of Theorem 4 is to replace Rn by a lattice Zn59 <f){f) = 
Smez-/(m^Vw, 0 and the Laplacian in (2) by a finite difference approximation. 
Since the inverse covariance matrix appears in the Gaussian for a joint probability 
distribution, dßQ is approximated by general Ising models with dT Gaussian and 
with by ^ 0 (/ 7̂  j) because — â has finite difference approximations which are 
negative off-diagonal. dvA is then approximated by 

IT exp(-5«PHen)^o 

so only the dT's are affected by the change from d/Ltoto dvA. 
The basic approximation theorem of Griffiths and Simon [1973] is 

THEOREM 5. A generalized Ising model of the form (9) with dTj{o) = 
exp(— bjfff — aof)do {bt- > 0) is a limit of classical Ising models of the form (5). 

To explain the idea of their proof, take N = mk in (5), replace cr,- by sa.r9 a = 
1, •'• 9m9r = 1, •••, k and let ay be of the form: 
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tar.ßt = - Kt/m {brr = 0). 

Then 

2 aySiSj = - 2 brtill m-1/2sa.r) ( 2 m~i/2sßtt) + constant 
i*j r,t \a / \ß * I 

so by the central limit theorem a = mrV2 2 Ja:r will approach a generalized Ising 
model with dì Gaussian. By adding a term const(l/wi)5r, to a we can cancel the 
Gaussian limit and by rescaling (i.e., taking ar = m-3/4 2 sa,r)gQt the quartic limit. 

The Griffiths-Simon theorem has recently been extended to the approximation of 
multicomponent fields by multicomponent Ising models (plane rotor and classical 
Heisenberg models) by Dunlop and Newman [1974]. 

PROOF OF THEOREM 1. By application of Theorems 3, 4, 5, the path space expec
tation dvA with n = 1, P{x) = bx* 4- {a - %) x2 obeys: 

<q{h) q{t2) q{h) q{k)> S <q{h) q{t2)> <{q{h) q{h)> + 2 others; 

so by taking A -> oo, letting tx = t2 = 0, f3 = f4 = t and using Theorem 2: 

(10) <?2 fli, exp {-t{H- Ex)) q
2QÙ - <q2Ql9 Où2 g 2 <g0lf r-*»-*) ,0^2. 

Letting Q\9Q29 • • • be the eigenfunction of //, (10) says that 

£ |<*aÛi, 0»>|2 exp(- /(£„ - £0) 
(11) m-2 

^ 2 [ 2 I <qQi,Om>\2cxp{- t{Em - Ejjf. 

Since Qm is an even (odd) function of qfor m odd (even), (jq2Q\9 Q<L) = 0, (jqQ\9Q\) = 
0. Moreover, since £w has m - 1 nodes, <#£?i, 02> ^ 0» <tf2ßb ö3> # 0. Thus 
as f -» 00, the leading behavior of the LHS and RHS respectively of (11) is 
\<qûu fl3>|2 exp ( - t{E3 - Ex)) and \(qQl9 fl2>|4 exp(- 2/(tfa - E{)). It follows 
that E % — Ei ^ 2(^2 — JEI) completing the proof. 
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Convergence in the Maximum Norm of Spline 
Approximations to Elliptic Boundary Value Problems 

James H. Bramble 

The subject matter in this article is based upon joint work with A. H. Schatz. 
A somewhat amplified version of this summary may be found in [3] and detailed 
proofs will be published elsewhere. 

Let fl be a bounded domain in Euclidean iV-space RN with smooth boundary 
dû. For u & real valued function defined on fl we shall consider the uniformly 
elliptic second order differential operator 

t;j=i dxj \ dX{ I 

where ay and c are assumed smooth. The associated bilinear form is given by 

B(v, w) = E J atj J j - 1 ^ dx + I cvw dx. 
ùj=l Q OXi OXj o 

For fe j£?2 (fl), a weak solution u of 

(1) Lu = f in fl 

satisfies 

(2) B{u9<p)= lf<pdx±{f9(p) 
o 

for all functions <p which are continuous and piecewise continuously differentiable 
in fl and which vanish near 3 A. We can associate with (1) various kinds of 
boundary conditions. Examples of these are 

(a) u — 0 on 9A, or 
(b) du/dv = 0 on dQ9 or 
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(c) du/dv + u = 0 on 3fl; where 

Here «,- is the component in the direction x£ of the outward normal to 3fl and 
d/dv is called the conormal derivative. 

Let Sh be a linear space of "finite elements" and uh e Sh an approximate solution 
to the boundary value problem (1) with (a), (b), or (c) satisfied. For many different 
finite element methods proposed for these problems the interior equations are as 
follows : 

(3) B{uh9<p) = {f9<p) 

for all <peSk which vanish near 3fl. In many different specific methods which have 
(3) in common, estimates for norms of the error u — uh in Sobolev spaces on all of 
A are well known. (For a summary of such results cf. [2].) Interior estimates in 
Sobolev norms for u — uh only satisfying (3) were given in [6] and in maximum 
norm in [1]. 

Here we shall consider, instead of uh as an approximation to u9 certain "local 
averages of wA". These, as will be seen subsequently, are formed by computing 
Kh*uh9 where Kh is a fixed function and * denotes convolution. As we shall see, the 
function Kh has the following properties : 

(i) Kh has small support. 
(ii) Kh is "independent" of the specific choice of Sh or the operator L. 

(iii) Kh*uh is easily computable from uh. 
(iv) Kh*uh better approximates u than does uh. 
We shall need some standard notation. To this end denote by O(fl), s = 0, 1, 

2,---, the space of functions defined on fl with uniformly continuous partial deriva
tives of order up to and including s on fl. For v G CS{Q) we set 

|v|Si0= sup \D«v{x)\9 

where a is a multi-index, \a\ = Si^i«,- and Da = 3a,/3xf ••• d^/dxff. For s 
real we define Hs{0)9 the Sobolev space with index s and, for veHs{Q)9 ||v||Sj0 

will denote its norm (cf. [S]). For example, for s = 0,1,2,---, || • \\SiQ is given by 

| |V |U=(S I|D«v|2^)1/2. 
Maluso / 

For s a positive noninteger HS{Q) may be defined by interpolating between suc
cessive integers and for s < 0 by duality (cf. [5]). 

The one-parameter family of spaces {Sh}9 0 < h g 1, which we shall consider, 
will be assumed to have the following properties. 

(i) For each A, Sh cz Hl{Q) and Sh is finite-dimensional. 
(ii) For xeQi acz Q and UeSh there are functions <pi9 -"9(pk which are piece-

wise polynomials with compact support such that 

U{x)=h L ai<pj{h-lx-a). 
/=1 aeZ" 
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Here Qx cz cz fl means Qx cz fl, aJ
a are real coefficients and ZN are the multi-inte

gers. (This property may be described as an interior translation invariance pro
perty.) 

(iii) For some positive integer r there is a constant C such that, for v G HS{Q)9 

mf (||v - <p\\0,a + h\\v - <p\\hQ) £ Ch°\\v\\s,0. 

(iv) Let fli cz cz fl and let w be an infinitely differentiable function with support 
in Qh There is a constant C such that for, v e Sh9 

inf Iwv - <p\\h0i S CA||v||ll0. 

It was shown in [1] that subspaces consisting of tensor products of one-dimensional 
splines on a uniform mesh have all the requisite properties. Also in [6] it was de
monstrated that the triangular element subspaces in JR2 defined in [4] are examples 
satisfying the above four conditions provided the triangulation is uniform. We 
emphasize that the uniformity is a condition which is only required locally. Thus 
we see that many of the finite element subspaces which are discussed in the litera
ture satisfy the above conditions. 

In order to define the function Kh we shall need to introduce the so-called smooth 
splines. In fact we shall choose Kh to be a particular smooth spline depending on 
the index r associated with the subspace Sh. 

For t real define 

fl, I / I 3 i 
10, | /1 > i, 

and for xeRN set <p{x) = nj£=i #(*/)• P° r ' a positive integer set <fiU){x) = 
(0*..- *<fi) {x)9 {I — 1) times. The function 0(/) is just the N-dimensional l?-spline 
of Schoenberg [7]. The space of smooth splines of order / on a mesh of width h 
consists of all functions of the form 

U{x) = S ^ » ( A - i x -. a), 
*eZw 

for some coefficients aa. 
The proof of the following will be given in a forthcoming paper by the author 

and A. H. Schatz. 

PROPOSITION. Let I and t be two given positive integers. The smooth spline 

Ux) <= s M w r * - «) 
aeZ" 

may be chosen so that 
(a) ka = 0 when \ a,- \ > t — 1 for somej, 

(b) for fl0 cz cz flx and v e C2t{Q{) there is a constant C such that 

| v - Kh*v\0tPt £Ch2t\v\zti0l9 and 

{c)for v G H2t{Qi) there is a constant C such that 

% ( ' ) -



408 JAMES H. BRAMBLE 

||v - * H * A £ c^bh'Or 
This function Kh is the aforementioned function in terms of which our local 

averages will be defined. 
Let us denote by Sh{ü\) the subspace of Sh whose elements consist of functions 

in Sh with support in Qx. Let us suppose now that uh e Sh satisfies B{u — uh9 <p) = 0 
for all <p G Sh{Qi). These equations are the same as (3) provided Lu = / . We now 
state our main result. The proof of this will be given in a forthcoming paper by the 
author and A. H. Schatz. 

THEOREM. Let fl0 cz cz flx cz cz fl and p be an arbitrary but fixed real number. Let 
I = r — 2 and t = r — 1. Then there is a constant C such that, for u G H2r^2 (fli), 

||« - Kk*Uh\\0tQo ^ C{h2r~2 H|2 r_2 ,ö l + ||tf - «*||-AflJ 

andt for u e #2,-2+ /̂2:1+1 (flj), 

\u - Kh*Uh |o,0o S C{h2r~2 ||w||2r-2+DV/2]+1.0x + Il M ~ «*||->oJ-

Let us consider some examples in order to illustrate the meaning of this result. 
Let Sfî consist of the smooth splines of order r (restricted to fl). Then for ç G S^ 
we see that Kh*<p G Sj?r~21. It is known that, for some Uh e SÄ

(2r~2), u — Uh = 
0{h2r~2) as h -> 0 for smooth u. The theorem says that in fact the special 
smooth spline Kh*uh is such that u — Kh*uh = 0{h2r~2) as h -> 0 in the interior 
of fl provided that, for some p, 

(4) ||« - «*|_>ft = 0(A2-2). 

Let us consider a case where (4) is known to be true for p = r — 2. Let c > 0 
in the operator L. Then the solution of the Neumann problem Lu = f in fl, 
du/dr = 0 on 3fl satisfies B{u9 <p) = (/, <p) for all <p G tf1^). The solution uh G S£° 
of B {uk9 <p) = (/, <p) for all <p G S£r) exists and is unique. As may be found in [2] 
the estimate 

I« - Ukh-r.Q> ^ k - Uhh-,0 ^ CA2'-2||M||r>0. 

More particularly if we choose r = 4 (cubic splines) we obtain, for N = 2, 

\u-KH*uh\o,a^Ch*{\\u\\8tQl+ H|4,fl}. 

Hence if u is locally smooth and globally less smooth (w G HS{Q{) fl H^{Q)) we 
see that Kh*uk is a local 6th order approximation to u while wA itself is in general 
only a 4th order approximation to u. 

We emphasize that Sh need not be chosen to be the smooth splines (locally) but 
may be chosen from a much larger class of approximating subspaces of Hl{Q). 
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A Survey of Recent Progress in Approximation Theory 

E. W. Cheney 

Because of the limitations of time, this article cannot survey the entire field of 
approximation theory, but instead limits itself to certain aspects of nonlinear best 
approximation in the real domain. A more comprehensive survey including an 
extensive bibliography is available from the Center for Numerical Analysis, Uni
versity of Texas, Austin, Texas 78712. 

The nonlinear theory of best approximation has been cultivated in two ways 
which are interrelated. First, there has been an intensive investigation of particular 
approximating families, such as the rational functions and exponential polyno
mials. Second, there have been investigations of broad classes of nonlinear families, 
such as the ^-polynomials and varisolvent families. The study of particular ex
amples has, of course, served to direct the general theory into suitable and produc
tive directions. Since the particular examples of approximating functions often 
arise from problems of science and technology, they provide proper motivation for 
the entire subject. 

Typically, the problems of best approximation conform to the following outline. 
One prescribes a compact Hausdorif space X9 which is often an interval on the real 
line. One denotes by C{X) the space of continuous real-valued functions on X9 

normed by putting | / | = maxÄ6Z|/(;x;)|. Next, a subset G is fixed in C{X). The 
elements of G are the "approximants". For any/e C{X)9 the distance between/ 
and G is the number dist(/, G) = infgf=G\\f- g\\. A complete theory would then 
attempt to answer the following eight questions. (1) For which/in C{X) does there 
exist a best approximation in Gl (2) Are best approximations in G uniquel (3) How 
can dist(/, G) be estimated from only gross knowledge of/? (4) What properties 
distinguish a best approximation to/from all the other elements of Gl (5) What 
algorithms can be devised for obtaining best approximations out of G for arbitrary 
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elements of C{X)1 (6) If a "proximity map" A is defined from C{X) to G by the 
requirement | | / - Af\\ = dist (/, G) for a l l / what is the behavior of Al (In parti
cular, is it continuous?) (7) Do there exist well-behaved and convenient maps which 
are "near" Al (8) What specific approximations from G to special functions are 
there, and are these competitive with other possible types of approximation? 

One of the first tasks in nonlinear approximation theory is to classify the types of 
approximating families. An ad hoc classification, based upon current research 
activity, contains the following ten categories (not mutually exclusive): (1) Gener
alized rational functions, (2) unisolvent families, (3) asymptotically convex families, 
(4) varisolvent families, (5) 7"-polynomials, (6) exponential polynomials, (7) con
strained linear families, (8) splines with variable knots, (9) approximation from 
manifolds, (10) everything else. 

Historically, the first important example of a nonlinear approximating family is 
the rational function class R%. This consists of quotients p/q9 in which p and q are 
polynomials of degrees ^ n and g m respectively. The theory here is well developed 
for the uniform norm, but work continues for Z^-norms. In the uniform case, there 
has been a flurry of activity on the subject of algorithms. Specifically, the differen
tial correction algorithm, proposed in 1962 by H. L. Loeb and myself, has been 
proved to be quadratically convergent, and hence competitive with the Remez 
algorithm. The references are Dua and Loeb (SIAM J. Numer. Anal. 10 (1973)), 
Barrodale, Powell and Roberts (SIAM J. Numer. Anal. 9 (1972)), and Lee and 
Roberts (Math. Comp. 27 (1973)). Here, as in many nonlinear situations, the 
numerical problems can be blamed directly on the discontinuity of the proximity 
map defined above. It is known that the proximity map A : C[0, 1] -> JR* is discon
tinuous a t / i f and only if Afe R%\. 

Rational approximation with other norms, particularly the L^-norms, is not so 
well understood. Best approximations are generally not unique, and the quantity 
| | / — r\ may have local minima as r ranges over Ü*, if the norm is an Z^-norm. 
As a general rule in all of approximation theory, it seems that the advantages of 
L2 approximation exist only for linear approximation, while the nonlinear theory 
seems to be more satisfactory in the Loo-case. References for recent work are Dun
ham (J. Approximation Theory 10 (1974)), Wuytack (J. Approximation Theory 
9 (1973)), and Lamprecht (Computing 5 (1970)). 

The study of exponential approximation begins with functions of the form 
a\ exp(Ai^) + ••• + an exp{Ànx) with the û'S and >Ts variable. An immediate 
problem arises over existence of best approximation, since the family is not closed. 
For example, the function xex is in the closure of the family but not in the family. 
The uniform closure of the family consists of all functions which can be expressed 
in the form S \=i A W exp(^ ) , with p{ being polynomials whose degrees dt- satisfy 
ZJJ=I(1 + dt) ^ n. This enlarged family is denoted by Vn. The existence of best 
approximations from Vn was proved by Werner (Oberwolfach (1967), MR 40 
#7689). Existence is not a triviality since closed and bounded sets in Vn need not 
be compact. For example, ea{x~l) on [0, 1] converges to a discontinuous function 
as a -> oo. The characterization of best approximations is due to Braess (Com-
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puting2 (1967)). Kammler (J. Approximation Theory 9 (1973)) has studied expo
nential sums by means of a different parametrization. For any 2n complex num
bers bÌ9 •••, bn9 cl9 •••, cn there exists a unique function g which solves the initial 
value problem £ } c^-tgif) = 0, Dt'g{0) = bi9 1 <; / g n. The mapping $„ so 
defined from C2n into C[0, 1] (complex functions) turns out to be a continuously 
differentiate homeomorphism when restricted to a suitable set of Baire category 
II. From this theorem, many existence theorems about constrained exponential 
approximation can be proved. 

The two special classes that I have described so far are contained in one of the 
general classes, namely the ^-polynomials. Here we fix X <= R, T a R, and 7 e 
C{T x X). A ̂ -polynomial is then a function of the form £ JLj aj{ti9 x) with t( e T. 
Important examples are obtained by taking 7 to be etx, cosh tx9 x*9 arctan tx9 

(1 -f tx)~l
9 or {x — 0+- Even for closed J7 and fixed n9 the set of ̂ -polynomials need 

not be closed. For example, {d/dt)7{t9 x) can occur as a limit function. Hence the 
existence of best approximations cannot be proved without additional hypotheses. 
As in exponential approximation, one must consider the enlarged class, containing 
functions 

,-=ij=o OV 

for which 2^i( l + mt) ^ n. Existence of best approximations from the enlarged 
class can be proved if Tis compact. See Braess (J.Approximation Theory 9 (1973), 
11 (1974)). The ̂ -polynomials were first studied by Hobby and Rice (Arch. Rational 
Mech. Anal. (1967)). Here the theory exhibits a bifurcation which is typical: The 
unenlarged family affords elegant characterization theorems for best approxima
tion, but is not large enough to assure the existence of best approximations for all 
continuous functions. The enlarged family contains best approximations for every 
continuous function, but they are not unique, nor so readily characterized. 

Another wide class of approximating functions is the varisolvent family. A set 
<F in C[a, b] is termed "varisolvent" if each/e !F has a "degree" n = n{f) with two 
properties : (1) If g e <F and g ^ /then f — g has at most n — 1 roots. (2) If a g 
Xi < ••• < xn ^ b and e > 0 then there is a 5 > 0 such that the inequality 
max,- \f(X{) - Ài\ < ö implies the existence of g in !F satisfying g{xt) = A,- and 

lk-/|| <s 

The two properties just described are abstractions of properties of the poly
nomial class 7C„-i, but in a varisolvent class, n{f) may vary. For a varisolvent family 
the following result holds: Let/e C[a, b], g e J*,/ — g nonconstant. In order that 
g be a best approximation to / i t is necessary and sufficient that/ — g possess an 
alternant of length n{g) + 1. That means points x0 < ••• < xn for which f{xt) — 
^ • ) = ( - i ) a | i | = \\f-g\. 

Recent work has been directed to removing the hypothesis in this theorem that 
f — g not be constant. Recent references are Baraar and Loeb (J. Approximation 
Theory 1 (1968)), and Ling and Tornga (J. Approximation Theory 11 (1974)). 

New directions in nonlinear approximation theory have been initiated in the past 
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three years by Wulbert and Braess, who in general have sought to bring global anal
ysis to bear upon approximation problems. I refer the reader to Wulbert (Amer. 
J. Math. 93 (1971), 2 papers) and Braess (Math. Z. 132 (1973)). One of Wulbert's 
theorems describes those nonlinear manifolds on which best approximations can be 
characterized by the linear theory on the tangent space. As a sample of the work 
in this promising new direction, I shall describe his result. First of all, manifolds 
arise naturally in this subject since an approximating class is often defined by a 
map F: Rn -> C[a9 b\ The points of Rn are the parameter vectors in the approxima
tion. Given g e C[a9 b] one may ask for a choice of parameters ve Rn which render 
||g — F{v) || a minimum. The classical polynomial theory, for example, is recovered 
by taking F{v) to be the function £?=1 v,*1"1. If M is a C^manifold in C[a, b] there 
are two maps of importance in approximation. Let Ag denote the set of best ap
proximations to g on M. Thus Ag consists of those m e M such that \\g — m|| = 
dist(g, M). Similarly, let Bg be the set of m G M for which \\g—m || = dist(g, T{m))9 

where T{m) denotes the tangent manifold at m. It is always true that Ag a Bg, and 
the case of equality, A = B, is of special significance since in this case the linear 
characterization of best approximations on T{m) also characterizes best approxima
tions on M. Wulbert proved that in order for M to be a Chebyshev set satisfying 
A = B9 it is necessary and sufficient that M be Haar-embedded, boundedly con
nected and boundedly compact. The terminology is as follows. A Chebyshev set is 
one from which best approximations exist and are unique. Haar-embeddedness is 
that each tangent space T{m) be a Haar subspace, i.e., the number of roots of a 
nonzero element must be less than the dimension of T{m). Finally, a set is boun
dedly connected (or compact) if and only if its intersection with each closed sphere 
is connected (or compact). 

My final remarks concern an old and bizarre example in nonlinear approxima
tion, namely the optimization of the Lagrange interpolation process. Some progress 
has recently been made by myself and a student, T. A. Kilgore. The problem is to 
select nodes t\ ••• tn in the order - 1 S t\ < t2 < ••• < tn ^ 1 so as to minimize 
the norm of the corresponding Lagrange interpolation operator. This operator has 
the form 

Lf= tfitòu with/,<*)= n £ ~ î ' v 

As is well known, the operator norm of L is equal to the sup-norm of its corres
ponding Lebesgue function, A{x) = 2 ?=i|/,-(#) |. It was conjectured by Bernstein 
and others that there exists a choice of nodes for which A{x) exhibits n + 1 equal 
maxima, and that such a choice of nodes solves the problem. We succeeded in 
establishing the existence part of this conjecture. Let h denote the maximum of A 
on the interval [ti9 ff-+1] (0 ^ i ^ n9 t0 = — 1, tn+i = 1). A basic lemma asserts 
that if the nodes tyt^iti+y ~tn are held fixed then t{ can be varied to make ^ï_1 = 
Xi. The correct position of t{ is unique and depends continuously on tyU-x ti+y 
tn. This enables one to define maps Mt- such that M{{tytn) = {tyti-isti+yt„) 
with s chosen to make f̂-_i = yl,-. A fixed point of the composite map M = 
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Mi° M2o-~°Mn would be a point for which XQ = X\ = ••• = Xn. The remainder of 
the proof is devoted to showing that M has indeed a fixed point on the (not closed) 
simplex which is its domain. This problem can be interpreted as one of minimizing 
||>4(/i, •••,/«; #)||> and is thus a problem of best approximation with highly non
linear dependence on the parameters tf. This work will appear in Aequationes 
Mathematicae. 
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Tpy^bi MoKflyHapoflHoro KoHrpecca MaTeMaTHKOB 

BaHKyBep, 1974 

TeopHH ycToflqHBOCTH Pa3H0CTHbix CxeM H 
HTepauHOHHbie MeTOAbi* 

A. A. CaMapCKHfl 

^OKJia^ nOCBHIlieH yCTOHHHBOCTH pa3HOCTHbIX cxeM C HecaMOCOnpHMCeHHblMH 
onepaTopaMH H CXOäHMOCTH HTepaijHOHHbix npoijeccoB /yin onepaTOpHoro ypaB
HeHHH nepBoro po#a Au = / . OmpaBHbiM nyHKTOM HBjmeTCH npeAJionceHHan 
aBTOpOM KOHUenUHH yCTOHHHBOCTH, H3JIOM<eHHe H pa3BHTHe KOTOpOH âHO B KHH-
rax [1] H [2]. HaM noHaAOÔHTCH ocHOBHbie Hcxo/mbie nocbiJiKH TeopHH. 

1. ÄByxcjioftHaa pa3H0CTiiaji cxeMa. Pa3HOcraaH cxeMa TpaKTyeTcn KaK one-
paTOpHO-pa3HOCTHOe ypaBHCHHe B JIHHeÖHOM HOMHpOBaHHOM npocTpaHCTBe H = 
Hh9 3aBHcnmeM OT napaMeTpa h—BeKTopa c HOpMOH \h\ > 0. ^ByxcnoftHan cxeMa 
3anHCbiBaeTCH B KaHOHHnecKOH fyopue 

(1) B{yn+l - yn)lz + Ayn = cpn9 n = 0, 1, ••, 3a,flaH yQ e H 

r^e A H B—jiHHeftHbie onepaTOpbi, 3aAaHHbie B H9 y„ = y{tn) e H—VLCKOMSìH, 
<Pn = p0«) e #—3a^aHHan aôcTpaKTHbie ^YHKUHH AHCKperaoro apryiweHTa tn 

= m9 A9 B9 yn9 <pn 3aBHCHT OT napaMeTpOB r H, h9 A H B MoryT 3aBHceTb OT tn. 
CymecTByeT onepaTop B~l. npocTpaHCTBO H MOM<CT 6biTb KaK ^eficTBHTejibHbiM, 
TaK H KOMnjieKCHbiM. HcxoAHoe ceMeftcTBO cxeM (1) 3aAaHO, ecjiH 3aAaHbi onepa-
TOpbl > 4 H Ä B 9T0M CeMeftCTBe HIIjyTCH KJiaCCbl yCTOHHHBblX cxeM. ECJIH H— 
KOHeHHOMepHoe rnjiböepTOBO npocTpaHCTBO co cKajinpHbiM npOH3BeAeHneM {y9 v) 
H HOpMOH \y\ = ^/{y9 y)9 TO Heooxo/jHMbie H ÄOCTaTOHHbie ycjiOBHH ycTofinn-
BOCTH cxeMbi (1) HMeioT BHA onepaTopHbix HepaBeHCTB ueyajxy A H B (CM. [1], [2]). 

2. ycToflMHBOCTb no HaiajibHbiM AaHHbiM. HanoMHHM oiipeAejieHHe ycTofi™-
BOCTH B̂yXCJIOHHOH CXeMbI 

*Not presented in person. 
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(2) B{yn+l - yn)jz + Ayn = 0, n = 0, 1, 2, . - , 3a^aH j>0 e F . 

ZIJIH npocTOTbi CHHTaeM, HTO An Bne 3aBHCHT OT n. riycTb D: H -+ H jiHHeft-
HbiH onepaTop, D* = D > 0, /fö—sHepreTHnecKoe npocTpaHCTBO, cocToamee 
H3 sjieMeHTOB y9 v e H co CKajinpHbiM npoHSBe^eHHeM {y9 v)D = {Dy9 v) H HOpMOH 
|| ̂  || D = V(Dy> y)- CxeMa (1) ycTOMHBa no HanajibHbiM #aHHbiM B HD9 ecjiH äJIH 
pemeHHH 3ajxamd (2) npH Jiioöbix yQ e H HMeeM: 

(3) {Dyn+l9 yn+l) S {Dyn9 yn\ n = 0, 1, 2. .. . . 

CxeMa (1) p-ycTOHHHBa, earn AJIH (2) HMeeT MecTO oaeHKa 

(4) {Dyn+l9 yn+i) ^ p{Dyn9 yn)9 n = 0, 1, 2 f - , o = e™9 

I7je cQ = Const He 3aBHCHT OT Z H h. 

3. HeoöxoAHMbie H AOCTaTOHHbie ycjiOBHH yCToftiHBOCTH. YKanceM HCKOTO-
pbie HeoöxoAHMbie H ßocTaTOHHbie ycjiOBHH ycTOHHHBoc™ cxeMbi (2) no Hanajib-
HbiM âHHbiM B HD, npe/tfiojiaran, HTO JIHôO OäHH H3 onepaTOpOB A H B, JIHôO o6a 

onepaTopa HBJIHIOTCH HecaMoconpHHteHHbiMH: 

(5) BQ = Re B ^ \zA9 ecjiH A* = A > 0, D = A9 

(6) Re 4-1 ^ \zB~\ ecjiH 5* = 5 > 0, D = 5, 
(7) D{RQA~I)D + ( * o - ± ) * ß ^ 0» ecjiH J3 = D + azA9 D = D* > 0, 

r#e ô* = 0Q + iVi—HHCJIO, OO = Re ô-, 5 0 = Re B = ^(5 4- 5*). 3 T H ycjiOBHH 
ÄOCTaTOHHbl RJISI yCTOHHHBOCTH nO npaBOH HaCTH CXeMbl (1) (npH COOTBeTCTByK)-
meM Bbiôope HOpMbi AJIH <pn). YKanceM eme OAHH pe3yjibTaT. 

HBHaH cxeMa {y„+i - y„)lz + Ayn = 0, iyie A—KoeocHMMeTpHnecKHH onepa
Top, A* = - A9 H A~l cymecTByeT—HeycTOHHHBa npH JHOôOM D = D* > 0. 

B [1], [2] HMeioTCH MHoro npHMepOB, noKa3MBaiomHX, HTO ycjiOBHe (5) y^oÔHO 
AJIH npoBepKH Ha npaKTHKe. YOJIOBKH (6) , (7) npOBepHTb TpyÄHee, ecjiH A* # 
A. TeopeMbi (6 ) , (7) c ycnexoM npHMeHHioTCH K HecaMOconpHHceHHbiM CHCTeMaM 
ypaBHeHHH. B STOM cjiynae A H B MaTpHijbi-onepaTopbi; HX nopa^OK paBeH nopn^-
Ky CHCTeMbi (CM. [3]). 

4. TpexcjiOHHbie cxeMbi c HecaMOConpflweHHbiMH onepaTopaiviH. H3JIO>KHM 
HeKOTopbie pe3yjibTaTbi äJIH TpexcjioöHoft cxeMbi 

(8) Byi 4- z2Ry-tt + Ay = 0, t = nz9 n = 1, 2, •••, 3aÄaHbi y°9 y
1 e H, 

r^e A, B, R—jiHHeftHbie onepaTopu, 3a^aHHbie B H9 

y=yn= y(tn)9 yt = (yn+1 _ y"-l)/2z9 

y-tt = {ynn - iyn + y*"1)/**. yQ = J<0) . 

PeiueHHeM 3a^aHH (8) B MOMCHT *„ = nz Ha3biBaeTcn BeKTOpj>„ = {yn
9y

n+ì} e H2
9 

H2 = H ® H. ycTOHHHBOCTb no HanajibHbiM ßaHHbiM cxeMbi (8) 03HanaeT, HTO 
{Dyn+i, y»+ù â {Dyn9 y„) npn jnoôbix y0 = {y0, y1} e H2, r^e D = D* > 0 — 
jiHHeflHbiH onepaTop, 3a^aHHbiH B H2. 

npHBe^eM B BH^e Taßjinubi HeKOTopbie TeopeMbi. 
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Hcxo^Hoe ceMeficTBO Heooxo^HMoe H ̂ ocTaTOHHoe 
yCJIOBHe yCTOHHHBOCTH 

(9) B0 > 0, A* = A > 0, R* = R R^ {A 

(10) B = E9 A* = - A9 R* = - R9 E+ z2A{A - 4R) ^ 0 
AR = RA {Ex = x) 

npe^CTaBJiHioT HHTepec cjie^yiomHe nacTHbie cjiynan 

CxeMa A* = A A* = - A 

yi + Ay = 0 AÔCOJIIOTHO HeyCTOHHHBa ycTOHHHBa npH r f i l || ^ 1 
ylt + Ay = 0 ycTOHHHBa npH 

A > 0, ( T 2 / 4 ) | U | | è 1 A6COJIK)THO HeyCTOHHHBa 

nptiMep 1. CxeMa #JIH ypaBHeHHH LIIpeAHHrepa V - 1 ^ + ö - ^ W + 1 + ( 1 -2o)Ay» 
+ oAy»~i = 0, ^ = - y-xx = - ( ^ - 2 ^ + ^+i)/A2 , y{ = X*i)> * = ih 
i = 0, 1, 2, ••«, TV, J>0 = yN = 0, (7—AGHCTBHTejIbHOe HHCJIO—yCTOHHHBa npH 
G ^ 1(1 - l/r2 | | ;412) HJIH a ^ i ( l - h*/16z2). B nacTHOCTH, HBHaH cxeMa yCTOHHHBa 
npH T ^ i/22. 

npuMep 2. CxeMa j>; + z2y-m\h = j>^, A: = fA, / = 0, 1, 2, ••-, N9 y0 = y N = 0 
ycTOHHHBa npn z ^ 0,5h2. 

5. AcHMnTOTHHecKan ycTOHHHBOCTb. Oômee onpe/jejieHHe yCTOHHHBOCTH He 
Bcer^a oöecnennBaeT HyaŒbie KanecTBeHHbie CBoficTBa cxeMbi. TaK, cxeMbi äJIH 
napaôojiHHecKHX H rHnepôojiHHecKHX ypaBHeHHH äOJDKHH oôjia^aTb pa3HHMH 
CBOHCTBaMH. JJJIH napaÔojiHHecKHX ypaBHeHHH xapaKTepHO 3aTyxaHne npn t -> 00 
(BMXOä na peryjiHpHbifi pe>KHM) BJIHHHHH HanajibHbix #aHHbix. EcTecTBeHHO Tpe-
ôoBaTb, HTOÔbi H cxeMa oôjia^ajia STHM CBOHCTBOM. By^eM roBOpHTb, HTO cxeMa 
(2) acHMnTOTHHecKH ycTOHHHBa B HD9 ecjiH cymecTByeT TaKan nocTOHHHan ô > 
0, He 3aBHCHman OT Z H h9 HTO ||J>M|| ^ e~dt" \\y0\\ npn JIIOôMX /„ = nz. ECJIH cxeMa 
(2) p-yCTOHHHBa C nOCTOHHHOH C0 = - 5 < 0, TO OHa aCHMnTOTHHeCKH yCTOHHHBa. 
Kai< noi<a3biBaeT npHMep cxeMbi c BecaMH {yn+i - y„)/z + A{oyn+1 + (1 - a)yn) 
= 0, Tflß A = A* > 0, TpeÔOBaHHe aCHMnTOTHHeCKOH yCTOHHHBOCTH MO>KeT npH-
BO^HTb K AOnOJIHHTeJIbHblM OrpaHHHeHHHM Ha Uiar Z. ^OCTaTOHHOe ycjiOBHe 
aCHMnTOTHHCCKOH yCTOHHHBOCTH HMeeT BHA ?<5/(l + GZÔ) + zA/{l + GZ A) g 2 
iyje ö H A HaHMeHbinee H Hanôojibinee coôcTBeHHbie 3HaneHHH onepaTopa A . 
OTCio^a cjie^yeT, HTO CHMMeTpHHHan cxeMa {G = 0, 5), aôcojiioTno ycTOHHHBan B 
OÔbIHHOM CMbICJie (3), aCHMnTOTHHeCKH yCTOHHHBa npn z S TO» to = 2/<v/<3A. B 
cjiynae ypaBHeHHH TenjionpOBOAHOCTH du/dt = d2ujdx2 Ha O T p e 3 K e O ^ ^ ^ I H 
w(0, t) = w(l, /) = 0 HMeeM Ay — — y x x H T0 « h\%. 

3aMeTHM, HTO cxeMa (2) c B = {E + GZA0/2)2
9 A = AQ + a2zA\/\9 r ^ e A% = A0 

> 0, G = 2 - AJ29 aCHMnTOTHHeCKH yCTOHHHBa npn JlIOÔblX z. 
napaôojiHHecKHe pa3HOcrabie cxeMbi H3ynajiHCb B [5], [6]. B [6] noKa3aHO, HTO 

ycjiOBHe napaôojiHHHOCTH cxeMbi (2) HMeeT BHA 

B ^ 1 'ï ezA9 e = Const > 0. 
Zi 
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6. HTepau,HOHHbie cxeMbi. MeTOAbi oômefi TeopHH yCTOHHHBOCTH pa3HOCTHbix 
cxeM no3BOjiHK)T nocTpoHTb e^HHyio TeopHio HTepauHOHHbix MeTo^oB pemeHHH 
JiHHeöHoro onepaTOpHoro ypaBHeHHH Au = f9 rAe A : H-> H9 feH9 H— rHJib-
ôepTOBO npocTpaHCTBO, A—Booôme roßopn, HecaMOConpn>KeHHbiH onepaTop. 
HTepauHOHHan cxeMa, no aHajiornn c n . l , 3anncbiBaeTCH B KaHOHHHecKOM BHAe 

(11) Byk+i-yk +Ayk=f9 Ä : = 0 , l , 2 , ... Vy0eH9 
Tk+i 

r^e yk—HTepauiHH HOMepa k9 zk—napaMeTp, B:H -> H—jiHHeflHbiH onepaTop; OH 
HMeeT oôpaTHbiH B~l H MOäCT 3aBHceTb OT k. ß^ecb, RJIH npocTOTbi, CHHTaeM, 
HTO B He 3aBHCHT OT k. ElycTb B H 3aßaH jiHHefiHbiH onepaTop D = D* > 0. 
3a^ana TeopHH COCTOHT B nojiyneHHH oijeHOK ||j>„ - u\\D ^ qn\\yQ - u\\D. CxeMa 
(11) CXOAHTCH, ecjiH q„ -> 0 npn « -> OO, TaK HTO tf„ < s npH « ^ «0(e)> e > 0. 
HaAO HaflTH min #w (min «0(e)) nyTeM Bbiôopa {zk} H 5 . 3aAaAHM ncxoAHoe ceMeß-
CTBO CXeM (11) yCJIOBHHMH 

(12) {DB-iA)* = DB^A9 7XD ^ DB~lA ^ r2Z>, 72^7X> 0. 

MHHHMyM #w AOCTHraeTCH, ecjiH {zk} ecTb neobimeBCKHH Haôop napaMeTpoB: 

** = W(i + pwà TQ = 2i{7x+72)9 p0 = (i - ç)/(i + o , e = n/r* ^ e 

3Jiw{Cos((2* - 1)/2«)TT, / = 1, 2, •••, « } , fc = 1, 2, •••, «, rAe 3RW—-ynopHAoneHHan 
nOCJie^OBaTeJIbHOCTb, npHKOTOpOHCXeMa(ll)BbIHHCJIHTejIbHO yCTOHHHBa. ycTOö-
HHBbie Haôopbi {zk} AaHbi B [7], [1], [8], [9]. npH STOM n ^ w0(e) = ln{2le)l2</£9 Ç 
= Ti/r* ECJIH « = 1, TO zk = Const = r0 H MH nojiynaeM HenBHyio cxeMy npoc-
TOH HTepau;HH; B 3TOM cjiynae «0(e) = ln(l/e)/2£. BbiHHCJiHTejibHan ycTOHHH-
BOCTb CXeMbI (11), T.e. yCTOHHHBOCTb OTHOCHTeJIbHO B03MymeHHH BCeX BXOAHblX 
AaHHbix:/, A9 B H nocTOHHHbix 7"i H 72 HCCJieAOBaHa B [10]. 

7. rionepeivieHHO-TpeyrojibHbiH MeTOA (I1TM). Ba>KHbiM HBJIHCTCH Bonpoc o 
Bbiôope B. npeA îOHceHHbiH aBTopOM [1] n T M onpeAejmeTCH 3aAaHHeM 

B = {E + CüJRI) {E + 0)1*2), * £ = Ru Ri + R2 = R = R* > 0, 

HTO cooTBeTCTByeT npeACTaBJieHHK) CHMMCTPHHHOH MaTpnubi R B BHAe cyMMbi 
HH>KHeH H BepxHeft TpeyrojibHbix MaTpnu, npnneM c{R ^ A ^ c2Ä, c2 è q > 0. 
napaMeTp cu BbiÔHpaeTCH H3 ycjiOBHH MHHHMyMa nncjia HTepauHH. B cjiynae 
MOAejibHOH 3aAaHH flnpHXJie AJIH p-uepmro ypaBHeHHH Jlanjiaca {p è 3) B 
napajiJiejiennneAe (0 ^ *a ^ 1, a = 1, 2, •••, /?) Ha ceTKe coh e maraMH Ai = h2 

= ... = hp = A n T M c ycTOHHHBbiM HeôbiineBCKHM HaôopoM {zk} TpeôyeT nQ{é) « 
0, 28 ln{2/e)l<s/h HTepauHH. XOTH A ™ MeTOAa nepeMeHHbix HanpaBJieHHH (MÜH) 
e UHKJiHHecKHM HaôopoM napaMeTpOB {zk} HMeeM n0{e) = 0(ln(l/A) ln(l/e)), 
OAHaKo, Ha peajibHbix ceTKax npn p è 3 AJIH n T M c neÔbimeBCKHM HaôopoM 
{zk} HaAO B 3 - 4 pa3a MeHbine HTepaimft, neM AJIH M Ü H [11]. KpOMe Toro, M Ü H 
npHMeHHM TOJibKO B cjiynae npHMoyrojibHbix oôjiacTen, TorAa KaK AJIH n T M 
TaKHX OrpaHHHeHHH HCT. HTM npHMeHHM A«nn pa3HOCTHbIX CXeM, COOTBeTCTBy-
loiUHx sjijiHnTHHecKHM ypaBHeHHHM H CHCTeMaM oômero BHAa. B STOM cjiynae— 
R—pa3HOCTHbiö onepaTop Jlanjiaca (B cjiynae ypaBHeHHH BTOporo nopHAKa). 
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Recent Progress in the Numerical Treatment of 
Ordinary Differential Equations 

Hans J. Stetter 

I. Two-point boundary value problems. We consider the nonlinear boundary 
value problem 
(D) y{t) = f{t9 y{t))9 

(R) r{y{0)9 y{T)) = 0, 

wherey: [0, T] -> Rs
9 f. R x R5 -> R5

9 r: Rs x R* -+ Rs. 
As the difficulties encountered with a reduction to initial value problems ("shoot

ing") increase with the length T of the basic interval, a fundamental approach 
consists in breaking this interval into segments [Tm-Ì9 Tm]9 m = \{\)M. Let 
<]){f]m-\9 7]m) denote the numerical approximation for (D) on [Tm-U Tm]; then 
(D)/(R) becomes 

î0?o> vi) 

{à) 0. 
(pM{VM-h VM) 

. r{yQ9 7]M) 

The system {A) has to satisfy a stability condition 
ll^d) _ ç(2>|| ^s | | rç(i> -wv™\\9 

so that the smallness of the local segmentation errors <p{y{tm-{)9 y{tm)) implies the 
smallness of 7jm -y{tm)-

There are two basic strategies to make the local segmentation error small : 
(i) to use large segments but a very accurate approximation to (D), 

(ii) to use a crude approximation to (D) but rather small segments. 
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Strategy (i) has been implemented in Bulirsch's version of parallel shooting [1] 
where (D) is replaced on each segment by a GBS extrapolation algorithm. The 
lengths of the segments are chosen sufficiently small to inhibit an undue growth of 
the trial solutions. Strategy (ii) is found, e.g., in Keller's "box-scheme" difference 
method [2] based on the trapezoidal rule. The local error is kept small by the use of 
sufficiently short segments. 

In each case, there remains the difficult problem of obtaining an accurate numeri
cal solution to the nonlinear system {A) with its typical bidiagonal block structure. 
Very refined techniques, like damped Newton iterations with Broyden's rank one 
updating of the Jacobian, have to be used (see, e.g., [3]). 

The asymptotic expansion results known for the difference method have been used 
by Pereyra [4] to design an iterated difference correction technique. By constructing 
increasingly better difference approximations to the local discretization error 
from previously gained solution values, one obtains more and more accurate 
solution values on the same segmentation, from essentially the same system of 
equations. 

The invariant imbedding approach (see, e.g., [5]), though mathematically quite 
interesting, suffers from the same practical difficulties as simple shooting of which 
it is a systematized version. Assume separated boundary conditions 

rx{y{0)) = 0, r conditions, 

r2{y{T)) = 0, s — r conditions, 

with (D). The components of y{t) are collected into vectors u{t) e Rr and x{t) e 
Rs~r such that (D) splits into 

*'(0 = F,{t9 x{t)9 u{t))9 
(C) w(0) = (JIJMO)), 

u'{t) = F2{t9 x{t)9 u{t))9 

which is equivalent to the hyperbolic initial value problem 

(H) ut + uxFi{t9 x9 u) = F2{t, x9 u), u{0, x) = R\{x). 

The solution trajectory {x{t), u{t)) of (C) must be imbedded in the solution mani
fold u{t9x) of (H); it can be distinguished by the boundary condition at the far end 
r2{x9 u{T9 x)) = 0. 

II. Stiff systems. A bibliography of the problem and of approaches to its solution 
up to 1970 is found in [6]; recently more than fifty percent of all papers on the 
numerical treatment of o.d.e.'s have been devoted to stiff systems. 

The consideration of uniform asymptotic stability,{for T -> oo) was introduced 
by Dahlquist [7] and further developed by Stetter [8]; it points out the nonvalidity 
of "linear equations with constant coefficients" results for general systems and 
for discretizations with variable steps. 

The necessity of distinguishing between slowly and quickly decaying solutions 
led to the model problem 
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, c . y'x = g\(u yu yàl* y\e &i = äS> 

y* = g&,yi,yù, j 2
e * 2 = &-

In this singular perturbation problem, one may study the limit process e ~-> 0 for 
fixed h > 0 and request that certain quantities of the discretization remain bounded 
uniformly for e e (0, e0). 

These ideas had already been present in earlier investigations (e.g., [9], [10]); 
very recently they have been elaborated in a thesis by van Veldhuizen [11]. He 
assumes that (S) may be transformed into 

(S7) x' = A{t9 e)x + Q{t9 x9 e) + b{t9 e) 

with 

A(t ^-p-1^') ° i 
AV>e>-l 0 A2(t)_ 

while Q and b remain harmless for e -> 0. Then one may define "regular" or 
"smooth'' solutions x which decay slower than some exponential ePf uniformly in 
e while "singular" or "fast" solutions x do not possess this property. An initial 
condition x{0) generates a unique decomposition into a regular and a singular 
component. 

For one-step recursions of the type xt- = P,_i^,_i + r,-_i(^-_i) + W{{x^) + b{ 

with Pi a rational function of 

e-iPu 0 
. 0 Pu J 

and well-behaved Ti9 Wi9 bi9 an analogous analysis is made by van Veldhuizen. He 
then studies one-step discretizations of (S) resp. (S7)- Consistency, convergence, 
and stability are defined w.r.t. smooth solutions only but required to hold uni
formly for e e (0, eQ] and h e (0, h0{e)]. If not A0(ê) = 0{e) as e -> 0 the uniformity 
region contains arbitrarily large values of h/e. 

In this fashion, one can even obtain some results about asymptotic expansions 
for smooth solutions; see also [9]. The main goal of the theory is a characterization 
of discretizations where the step size is only restricted by accuracy requirements. 
In this connection it is important that the decomposition into smooth and fast 
solutions is accurately modelled by the discretization. In an example, the implicit 
Euler and the implicit midpoint methods perform well in this respect while the 
implicit trapezoidal rule generates a decomposition error of 0{h2/e) ! The decom
position problem has also been taken into account in Lindberg's IMPEX 2-package 
for stiff equations [12]. 

One of the most powerful construction principles for discretization methods 
suitable for stiff systems is exponential fitting. There are two systematic approaches 
which differ when applied to systems : 

(i) reproduce exactly solutions of type pr{t)e^9 

(ii) solve exactly right-hand sides of type qy + pr{t)'9 

pr is a polynomial of maximal degree r ^ 0. 
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Approach (i) may be generalized to solutions of type 2l-jpri(0
<7,'> with qQ = 0. 

Mäkelä [13] has constructed linear multistep methods of this kind by considering 
Hermite interpolation with base functions Ve?*. 

In approach (ii), one assumes the knowledge of the solution y{t) = G{t9 t0)y{to) 
of the system y' = Q{t)y and imitates the classical construction principles starting 
from the representation 

y{t 4- h) = G{t + h9 t) y{t) + #+* G{t + A, <C)<J>{T9 y{z)) dz 

for a solution of y' = Q{t)y + <f>{t9y). In this fashion, Meister [14] has constructed 
analogs to R-K methods while Liniger and Sarkany [15] have constructed Adams-
type multistep methods. A practical difficulty of approach (ii) is the occurrence of 
matrix coefficients. 

HI. Error estimation and step size control. Even for nonstiff systems it is ex
tremely difficult and expensive to obtain meaningful bounds on the global discre
tization error; see, e.g., Jackson [16]. Thus one may resort to asymptotic estimates 
in spite of their dependence on A being "sufficiently small". Here, a suggestion due 
to Zadunaisky [17] appears to be quite efficient: A "comparison problem" with 
known solution is constructed and solved by the same method, its error is used as 
an estimate. 

The suggestion is implemented in this fashion: 
method M 

y' = fit, y), y(0) = y0 > rfifà 
stepÂ 

piecewise 
polynomial 

—> xo —> d(ty. = m - f{t, m) 
interpolation 

> y' = f{t9 y) + d{t)9 y{0) = yQ ("comparison problem") 
method M 

— • 9fo)-
step/» 

Then y{t{) - y{t{) « fj{tt) - y{tt) = fj{tt) - y]{tt). With sufficiently accurate inter
polation, asymptotic expansion theory shows [18] that for a method of order p 

viti) - y{td = m - çfo) + 0{h2P). 
Further analysis and experimental studies are in progress at the author's institute. 

If the asymptotic estimate is turned into a correction one obtains a close analog 
to Fox-Pereyra's difference correction procedure which could be called "differential 
correction". It can also be applied iteratively: see [18]. 

In the step size control problem one wishes to determine a step sequence such that 
the global discretization error is kept within a prescribed tolerance over the integra
tion interval with a minimal number of steps. A recent study by Lindberg [19] 
has added much insight into the structure of the problem. 

Lindberg assumes that the global error e is the solution of 
eV) - flu ><0M0 = # « P y{p+l)it), e{0) = o. 

The continuous function h{t) > 0 is to be determined such that ${dtjh{t)) becomes 
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a minimum while ||e(0|| ^ e f° r te[®> T], (For a reasonable analytic treatment 
one has to assume certain sign conditions on the components of e which exclude 
a cancellation of error terms.) 

The case y' = Ay9 y{t) e Rs, with Euclidean norm, gives the following explicit 
result: Let a{t) : = convex hull of {(0, 0), {t9 <j>{t))9 te[09 T]} where <j>{t) : = 
e/(c||.y^+1>(0||). Then hopt{t) := [a!{t)]l/P. Since a is convex, the optimal step se
quence cannot decrease, a surprising result which holds even in more general cases ! 

For stiff systems of type / = Ay9 the optimal step sequence is obtained (except 
in the initial phase) with the control ||/(0|| = |tf(0| s where / is the local dis
cretization error (per unit step) and q the "locally dominant eigenvalue" 

? ( 0 : = ^ | j ^ + 1 > ( 0 | / | | ^ + 1 ) ( 0 | | . 

Since the quantity may change violently in stiff systems the control || l{t) || ä e • const 
is inefficient. 

In all cases covered by Lindberg's theory the optimal step sequence corresponds 
to a certain control on the local error per unit step which is thus once more es
tablished as the relevant quantity. 

IV. Software for ordinary differential equations. The average user should : 
Specify his problem in a nonsophisticated and standarized form. 
Not have to set parameter values which have no meaning w.r.t. the problem 

(e.g., step size). 
Be able to specify qualitative information about his problem. 
Receive reliable results of a specified accuracy within a reasonable computing 

time. 
The creation and implementation of program packages meeting these demands 

require large-scale comparative testing and international collaboration and stand
ardization. Major steps towards these goals have been made by the Toronto 
testing project (see, e.g., [20]) and by the establishment of Working Group 2.5 on 
Numerical Mathematical Software within IFIP. 
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The Finite Element Method—Linear and 
Nonlinear Applications 

Gilbert Strang 

L Numerical analysis is a crazy mixture of pure and applied mathematics. It 
asks us lo do two things at once, and on the surface they do appear complementary: 
(i) to propose a good algorithm, and (ii) to analyze it. In principle, the analysis 
should reveal what makes the algorithm good, and suggest how to make it better. 
For some problems—computing the eigenvalues of a large matrix, for example, 
which used to be a hopeless mess—this combination of invention and analysis has 
actually succeeded. But for partial differential equations, which come to us in such 
terrible variety, there seems to be a long way to go. 

We want to speak about an algorithm which, at least in its rapidly developing 
extensions to nonlinear problems, is still new and flexible enough to be improved 
by analysis. It is known as the finite element method, and was created to solve the 
equations of elasticity and plasticity. In this instance, the "numerical analysts" 
were all engineers. They needed a better technique than finite differences, especially 
for complicated systems on irregular domains, and they found one. Their method 
falls into the framework of the Ritz-Galerkin technique, which operates with prob
lems in "variational form"—starting either from an extremum principle, or from 
the weak form of the differential equation, which is the engineer's equation of 
virtual work. The key idea which has made this classical approach a success is to use 
piecewise polynomials as trial functions in the variational problem.1 

We plan to begin by describing the method as it applies to linear problems. Be
cause the basic idea is mathematically sound, convergence can be proved and the 
error can be estimated. This theory has been developed by a great many numerical 

^he most important applications are still to structural problems, but no longer to the design of 
airplanes; that has been superseded by the safety of nuclear reactors. 
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analysts, and we can summarize only a few of the most essential points—the con
ditions which guarantee convergence, and which govern its speed. This linear an
alysis has left everyone happier, and some divergent elements have been thrown 
out, but the method itself has not been enormously changed. For nonlinear problems 
the situation is entirely different. It seems to me that numerical analysts, especially 
those in optimization and nonlinear systems, can still make a major contribution. 
The time is actually a little short, because the large-scale programs for plasticity, 
buckling, and nonlinear elasticity are already being written. But everyone is agreed 
that they are tremendously expensive, and that new ideas are needed. 

Nonlinear problems present a new challenge also to the analyst who is concerned 
with error estimates. The main aim of this paper is to describe some very frag
mentary results (§111) and several open questions (§IV). We are primarily inter
ested in those nonlinearities which arise, in an otherwise linear problem, when the 
solution is required to satisfy an inequality constraint. This is typical of the problems 
in plasticity. The solution is still determined by a variational principle, but the 
class of admissible functions becomes a convex set instead of a subspace. In other 
words, the equation of virtual work becomes a variational inequality. 

At the end we look in still a different direction, at linear programming constrained 
by differential equations. Here we need not only good algorithms and a proper 
numerical analysis, but also answers to the more fundamental questions of exist
ence, uniqueness, and regularity. 

H. Linear equations. The finite element method applies above all to elliptic 
boundary value problems, which we write in the following form : Find u in the 
space of admissible functions V such that 

(1) a{u9v) = l{v) for all v in V. 

STANDARD EXAMPLE. JJ {uxvx + uyvy) dx dy = JJ fv dx dy for all v in 3tf\{Q). 
This is the weak form of Poisson's equation — Au = f. Because the expression 
a{u9 v) is in this case symmetric and positive definite, the problem is equivalent 
to: Minimize J{v) = a{v, v) — 2l{v) over the admissible space V. The "strain 
energy" a{v9 v) is the natural norm in which to estimate the error. 

The error comes from changing to a finite-dimensional problem : Find uh in Sh 

such that 

(2) ah{uh9 vk) = lh{vh) for all vh in Sh. 

It is this problem which the computer actually solves, once it is given a basis 
<ph m~>$N f ° r the space Sh. Very briefly, it has to form the stiffness matrix K{j = 
ah {<j)i9 <f>j) and the load vector F3 = lh{<f>j)9 solve the linear system KQ = F, and 
print out the approximate solution^ = tlQj<f>j- That sounds straightforward, but 
it is nearly impossible unless the basis functions <j>j are extremely simple, and nearly 
useless unless they can provide a good approximation to the true solution u. The 
finite element method manages to combine both properties.2 

2We shall have to refer to the book [1] and to its bibliography, both for the construction of piece-
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Our plan in this section is to summarize four of the main points in the theory of 
convergence. Each of them is concerned with the change in solution when there is a 
change in the problem—when the admissible space V is replaced by Sh9 or the 
given a and / are approximated by ah and lh. To give some kind of order to the 
discussion, we formulate all four as applications of the "fundamental theorem of 
numerical analysis" : 

Consistency + Stability o Convergence. 

1. The classical Ritz-Galerkin case. The energy a{v,v) is symmetric positive 
definite ; Sh is a subspace of V\ ah = a and lh = I. 

Since every vh is an admissible v, we may compare (1) and (2) : a{u9 vh) = a{uh9 vh). 
This means that in the "energy inner product," uh is the projection of u onto the 
subspace Sh. In other words, the positive definiteness of a{v9 v) implies two pro
perties at once [1, p. 40] : The projection uh is no larger than u itself, 

(3) a{uh9 uh) S a{u9 u)9 

and at the same time uh is as close as possible to w : 

(4) a{u — uh, u - uh) S a{u - vh, u - vh) for all vh in Sh . 

Property (3) represents stability ; the approximations are uniformly bounded. Given 
that u can be approximated by the subspace S —in this Ritz-Galerkin context, 
consistency is the same as approximability—convergence follows immediately 
from (4). 

2. The indefinite case, u is only a stationary point of the functional J{v). This 
corresponds to the use of Lagrange mutipliers in optimization; the form a{v9v) 
can take either sign, and v may include two different types of unknowns—both 
displacements and stresses, in the "mixed method" and "hybrid method." 

Consistency reduces as before to approximation by polynomials. But stability is 
no longer automatic; even the simplest indefinite form J{v) = i>iv2—which has a 
unique stationary point at the origin, if Kis the plane R2—will collapse on the one-
dimensional subspace given by v2 = 0. Therefore, for each finite element space Sh 

and each functional J{v), it has to be proved that a degeneracy of this kind does not 
occur. 

The proper stability condition is due to Babuska and Brezzi : 

(5) sup|a(v, w)\ ^ c II w II. 
I le l l= l " " 

Brezzi has succeeded in verifying this condition for several important hybrid ele
ments. For other applications the verification is still incomplete, and the conver
gence of stationary points—which is critical to the whole theory of optimization— 
remains much harder to prove than the convergence of minima. 

3. The modified Galerkin method, a and /are changed to ah and lh (numerical 
integration of the stiffness matrix and load vector), and vh may lie outside V (non-

wise polynomials and for the proof of their approximation properties. Perhaps the favorites, when 
derivatives of order m appear in the energy a(v, v), are the polynomials of degree w + 1 . 
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conforming elements). 
The effect on u can be estimated by combining (1) and (2): 

(6) ah{u - uh9u- uh) = {ak - a) («, u - uh) - {lh - l){u- uh). 

Stability, in this situation, means a lower bound for the left side: 

(7) ah{u - uh9u- uh) ^ ca{u - uh9u - uh). 

Consistency is translated into an upper bound for the right side, and it is checked 
by applying the patch test: Whenever the solution is in a "state of constant strain"— 
the highest derivatives in a{u9 u) are all constant—then uh must coincide with M.3 

The patch test applies especially to nonconforming elements, for which a{vh9 vh) 
= oo ; the derivatives of vh introduce delta-functions, which are simply ignored in 
the approximate energy ah. This is extremely illegal, but still the test is sometimes 
passed and the approximation is consistent. Convergence was established by the 
author for one such element, and Raviart, Ciarlet, Crouzeix, and Lesaint have 
recently made the list much more complete. 

4. Superconvergence. Extra accuracy of the finite element approximation at 
certain points of the domain. It was recognized very early that in some special 
cases—u" =/with linear elements, or u"" = / with cubics—the computed uh is 
exactly correct at the nodes. (The Green's function lies in Sh.) And even earlier there 
arose the difficulty of interpreting the finite element output in a more general 
problem; uh and its derivatives can be evaluated at any point in the domain, but 
which points do we choose? This question is as important as ever to the engineers. 

In many problems the error u — uh oscillates within each element, and there must 
be points of exceptional accuracy. Thomée discovered superconvergence at the 
nodes of a regular mesh, for ut = uXX9 and his analysis has been extended by Doug
las, Dupont, Bramble, and Wendroff. It is not usually carried out in our context of 
consistency and stability, but perhaps it could be: Consistency is checked by a 
patch test at the superconvergence points, to see which polynomial solutions and 
which derivatives are correctly reproduced, and stability needs to be established in 
the pointwise sense.4 

HI. Variational inequalities. What happens when a constraint such as v g cj) is 
enforced on the admissible functions v, so that the functional J{v) is minimized only 
over a convex subset K of the original space VI This occurs naturally in plasticity 
theory, when v represents the stress; wherever the yield limit <J> is reached, the 
differential equation (Hooke's law) is replaced by plastic flow. For the minimizing 
u, the "free boundary" which marks out this plastic region u = <f> is not known in 
advance.5 Since such a solution u lies on the edge of the convex set K9 J{u) ^ 
J{u + e{v—u)) is guaranteed only for e ^ 0. This translates into the variational 

3The patch test is also an ideal way to check that a finite element program is actually working. 
Convergence in Loo has been proved by Scott since the Congress; it was one of the outstanding 

problems in the linear theory. 
5This boundary cannot be found by solving the original linear problem and then replacing u 

bymin(tf, <p)\ 
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inequality which determines u: 

(8) a{u9 v - u) ^ l{v - u) for all v in K. 

In the finite element method, we minimize an approximate functional Jh{v) = 
t*k(v9 v) ~ 2/Ä(v) over a finite-dimensional convex set Kh. For example, the piece-
wise polynomials may be constrained by vh ^ <p at the nodes of the triangulation, 
Again the minimizing uh is determined by a variational inequality, 

(9) ah{uh9 vh - uh) ^ lh{vh - uh) for all vh in Kh\ 

now a polygonal free boundary is to be expected. 
The practical problem is to carry out this minimization and compute uh; we are 

in exactly the situation described in the introduction, with many proposed algo
rithms and a difficult task of comparison and analysis. The theoretical problem, 
which assumes that uh has somehow been found, is to estimate its distance from the 
true solution u. We want to report on this latter problem, and it is natural to ask the 
same four questions about convergence which were answered in the linear case. 

The easiest way is to take the questions in reverse order: 
4. Superconvergence is almost certainly destroyed by the error in determining the 

free boundary. Even in one dimension with u" = \9u differs from uh by 0{h2). 
3. The approximation of a and / by ah and lh leads to no new difficulties; the 

identity (6) simply becomes an inequality, if we combine (8) and (9), and the patch 
test is still decisive. The same is true for nonconforming elements, and the extra 
term â in the error estimates [1, p. 178] is exactly copied from the linear case. 

2. It is an open problem, both for K and for the discrete Kh9 to show how stability 
can compensate for the indefiniteness of a{v9 v). 

1. This is the basic question in the nonlinear Ritz-Galerkin method : If the trial 
functions in Kh can approximate u to a certain accuracy, how close is the particular 
choice uhl It is no longer exactly optimal, because it is no longer the projection of 
u. But we hope to prove, in the natural norm ||v||2 = a{v, v), that \\u — uh\\ ^ 
cmin||w — vA||. 

First, we ask how large this minimum is, choosing vh to be the piecewise poly
nomial Uj in Sh which interpolates u at the finite element nodes. The answer de
pends on the degree of the polynomial and on the regularity of u. For our obstacle 
problem, with - Au = f in the elastic part and u = (j) in the plastic part, it is 
now known that u lies in W2,°°. (Brezis and Kinderlehrer announced this long-
sought result in Vancouver.) At the free boundary there is a jump in the second 
derivative of u, which absolutely limits the accuracy of the interpolation. Courant's 
linear approximation, on triangles of size /?, is still of order ||w — W/|| = 0{h). But 
for polynomials of higher degree, and a smooth free boundary, this is improved 
only to 0{h3/2)—and no elements can do better. There are 0{\jh) triangles in which 
the gradient is in error by 0{h). Therefore there is no justification for using cubic 
polynomials, and the question is whether quadratics are worthwhile ; we don't know. 

To prove that the actual error u — uh is of the same order as u — uj9 we depend 
on an a priori estimate of Falk [2]. It resembles (4), but the change in (8) and (9) 
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from equations to inequalities produces a new term : 

(10) \\u - Uh\\* ^ \\u - vh\\
2 + 2J(/ + Au) {u-vh + uk- V). 

We may choose any vh in Kh and any v in ̂ T—and for simplicity we have specialized 
to / = lh = J/v and a = ah = j"| Vv|2. The new term is automatically zero in the 
elastic part, where —Au=f, but elsewhere/ + Au > 0. 

To estimate (10), we take v = cj) and vh = u2—which lies in Kh because it cannot 
exceed (j) at the nodes, where it agrees with u. (In the case of quadratic polynomials, 
some members of Kh will go above the yield limit ^ within the triangles, but we have 
to be generous enough to permit that; it does not hurt the error estimate, and 
anyway it is only constraints on vh at nodal "checkpoints" which can be enforced 
in practice.) With this choice of v and vh9 the terms in (10) are 

(i) With Courant's linear finite elements : 

fu - uj ||2 ~ h\ \{f + Au) {u - ui) ~ h\ \{f + Au) {uh -c/>)S0. 

(ii) With quadratic finite elements : 

\\u - uj\\2 ~ h\ \{f + Au) {u - uj) ~ h\ \{f + Au) {uh -</,)- h\ 

(The next-to-last integral is split into a part completely within the plastic region, 
where u - Uj ~ A3, and a part formed from those triangles which cross the free 
boundary. This transition region has area 0{h)9 and the integrand u — uj is 0{h2).) 
Substituting back into (10), the rates of convergence are'A and A3/2in the two 
cases—and these rates are confirmed by experiment. 

IV. Open problems. True plasticity theory is a deeper mathematical problem than 
the model we have used above. The reason is that the history of the loading /has to 
be taken into account; a part of the domain can go from elastic to plastic and back 
again, as the external loads are increased. Therefore incremental theory introduces 
a time parameter, and a rate of loading/in the functional /—and it computes the 
stress rate &. In other words, as Maier and Capurso have shown, we have a time-
dependent variational inequality, 

(11) min J{v) = J{u)9 with K = {v e #e\, v ^ 0 where u{t) = cj)}. 

Notice that at each instant the convex set depends on the current state u. In a practi
cal problem the state is actually a vector of stresses and plastic multipliers, but we 
hope that this quasi-static obstacle problem will serve as a reasonable model. We 
also hope that the new results on regularity can be extended to u{t). But even on 
this assumption, there remain three new problems in numerical analysis : 

(i) Keeping time continuous, to prove convergence of the finite element ap
proximations. The difficulty is that the convex set K, and therefore the minimizing 
ù9 depend discontinuously on the current state u; therefore it is not true that ùh is 
close to ù whenever uh is close to u. 

(ii) To admit finite difference approximations in time, and to determine the 
stability limits on the interval At. 
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(iii) To find a quick way of solving, with adequate accuracy, the obstacle prob
lem which arises at each time step. 

We believe that these are among the most important questions in nonlinear 
finite element analysis and that answers can be found. 

A second class of problems, of an entirely different type, arises if we are in
terested only in the multiple X of the load/which will induce plastic collapse. This is 
known as limit analysis, and no longer requires us to follow the loading history. In 
place of minimizing a quadratic functional, the problem falls into the framework of 
infinite-dimensional linear programming. Here is a typical example, with unknown 
stresses afj{x9 y) and multiplier X: Maximize /I, subject to : 

equilibrium : £ {da^/dx^) = Xfj in Q, 2 07/ n% = tei o n 3ft and 
piecewise linear yield conditions : 2 &?/ On ^ ca in Q9 ì ^ a è M. 
Suppose we make this problem finite-dimensional by assuming that the stresses 

(and also the displacements, which are the unknowns in the dual program) belong 
to piecewise polynomial spaces Sh. The continuous linear programming problem 
is then approximated, in a completely natural way, by a discrete one [3]. But we 
know nothing about the rate of convergence. 
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TpyAbi MoK^yHapoAHoro KoHrpecca MaTeMaTHKOB 
BaHKyBep, 1974 

HncjieHHbie M C T O A M B TeopHH ,II,HCJ)paKi;HH* 

A. f. CßeiUHHKOB 

1°. B HacTonmee BpeMH HHCjieHHbie MCTOäH HBJIHIOTCH BecbMa S ^ C K T H B H U M 

annapaTOM HccjieAOBaHHH BO MHorax oôjiacTHX ecTecTB03HaHHH, Bojibwyio pojib 
HrpaioT OHM H B BJieKTpoAHHaMHKe H, B nacTHOCTH, HaxoAHT uiHpOKoe npHMeHe-
HHe npH HCCJieAOBaHHH MHOTHX npoöjieM TeopHH AH(J)paKijHH H pacnpocTpaHeHHH 
BOJIH. OcoôeHHO 9(f)(})eKTHBHbiMH HHCjieHHbie MeTOAbi 0Ka3biBaK)TCH B Tex cjiynanx, 
Kor^a HX npHMeHeHHe CBH3aHO c pa3pa6oTKOH O6LH,HX yHHBepcajibHbix ajiropHT-
MOB pemeHHH AOCTaTOHHO UIHpOKHX KJiaccoB 3aAan. 

Ha pHAe TaKHX O6IHHX ajiropHTMOB, c ycnexoM npHMeHHioinnxcH B nocjieAHee 
BpeMH AJIH pemeHHH HeKOTOpbix TpaAHijHOHHbix KJiaccoB 3aAan AH(j)paKijHH H 
pacnpocTpaneHHH BOJIH MH H ocTaHOBHMCH B HacTonmeM AOKJiaAe. 

2° . B KanecTBe nepBoro KJiacca 3aAan paccMOTpHM 3aAa™ AH(J)paKijHH Ha Tejie 
T9 HaxoAHiueMCH B cpeAe c JiOKaJibHO HeoAHOpoAHHMH xapaKTepHCTHKaMH. ECJIH 
AJiHHa naAaiomeft BOJIHM coH3MepHMa c pa3MepaMH oôjiacra, B KOTOpoft xapaKTe
pHCTHKH CpeAbI HBJIHIOTCH nepeMeHHblMH ubyHKUiHHMH KOOpAHHaT, TO AJIH pemeHHH 
SToro KJiacca 3aAaH OKa3biBaioTCH Han6ojiee scJD êKTHBHbiMH npHMbie HHCjieHHbie 
MeTOAbi, ocHOBaHHbie Ha HACHX MeTOAa TajiepKHna. 3aAana CBOAHTCH K onpeAe-
jieHHio peuieHHH CHCTCMH ypaBHeHHH MaKCBejuia 

(1) rot B = - iœïÊ + j ; rot Ê = ioyßE 

yAOBJieTBOpHKwero rpaHHHHOMy ycjiOBHio HMneAaHCHoro THna 

(2) [nË]\s = w[n[nÜ]]\s 

Ha noßepxHOCTH S Tejia T H ycjiOBHHM H3JiyneHHH Ha 6ecKOHeHHOcra. B CHJiy 
jioKajibHoro xapaKTepa HeoAHOpoAHOCTH TeH30pbi £ H ß HBJIHIOTCH nepeMeHHblMH 

*,Not presented in person. 
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4)yHKLI.HHMH KOOpAHHaT B OÔJŒCTH D, OrpaHHHeHHOH IIOBepXHOCTbK) S H HCKOTO-
poft noBepxHocTbK) 2, coAep>KameH Tejio T. B KaqecTBe noBepxHOCTH 2 M O ä C T 
6biTb, B nacTHOCTH, BbiöpaHa c$epa 2R AOCTaTOHHo ôojibiiioro paAHyca R c 
ijeHTpOM 0 BHyTpH Tejia T. BHe 2 TeH30pbi $ = e0 = Const, ß = ^ 0 = Const. TeM 
caMbiM HCxoAHan 3aAana HBJineTCH BHeiiiHeft KpaeBoft 3aAa*ieft AJIH sjurnnTH^ecKoft 
CHCTeMbi c JiOKaJibHO nepeMeHHbiMH Koa^cJDHijHeHTaMH, npnneM B CHJiy ycjiOBHH 
H3JiyHeHHH saAa^a 0Ka3biBaeTCH HecaMoconpHMceHHoft. n p n AOCTaTorabix ycjio-
BHHX rjiaAKOcTH 4>yHKiiiHH £ H ß H noBepxHOCTH S pemeHHe nocTaBjieHHOH 3aAaHH 
cymecTByeT H eAHHCTBeHHO [1]. 

3° . npHMoe npHMeHeHHe qncjieHHbix MCTOAOB K peineHHio BHeniHeft 3aAaHH 
3aTpyAHHTejibHO. MOHCHO nepeft™ K BHyTpeHHen 3aAane AJIH orpaHHHeHHoft 
oôjiacTH. JXJïH 3Toro HaAO BMCCTO oôbHHbix ycjiOBHft H3JiyqeHHH, onpeAejiHiomHx 
acHMnTOTHqecKoe noBeAeHHe pemeHHH Ha 6ecKOHeHHOCTH, c(|)opMyjiHpOBaTb TaK 
Ha3biBaeMbie "napijHajibHbie" ycjiOBHH H3JiyHeHHH [2]. riocjieAHHe (jropMyjinpyioTCH 
B BHAe HeKOTOpblX HHTerpaJIbHblX COOTHOUieHHH, KOTOpbIM AOJIÄHO yAOBJieTBO-
pHTb pemeHHe Ha noBepxHOCTH 2. Hanôojiee npocToft BHA STH cooTHomeHHH 
HMeioT B TOM cjiynae, KorAa 2—c(})epa 2R paAHyca R. B STOM cjiynae "napunajib-
Hbie" yCJIOBHH HSJiy^eHHH npHHHMaiOT BHA P ] 

(3) f [ M a ^ = Q A (fc=i,2,...), 

rAe Rk—nonepe^Han nacTb MarHHTHoro BeKTopa napijHajibHoft c^epHnecKoft 
BOJIHbl, Ck—K09({)(J)HIi;HeHT pa3JI0>KeHHH nOJIH {Ê, Ê) BHe 2R nO paCXOAHLUHMCH 
C(f)epHHeCKHM BOJIHaM {Ëk9 Ük}9 ßk—HOpMHpOBOHHblH KOS^HUHeHT. 

4 ° . C noMoiixbio MeTOAa TajiepKHHa 3aAaHa (1)—(3) Mo>KeT 6biTb CBeAeHa K 
KpaeBoft saAa^e AJIH CHCTeMbi oôbiKHOBeHHbix AHcf^epeHijHajibHbix ypaBHeHHH. 
npH 3TOM AaHHbiH MCTOA yAOÔHo npHMeHHTb B peryjinpHoft oôjiacTH. nosTOMy 
HCXOAHyK) OÔJiaCTb D 0T06pa3HM Ha mapOBOH CJIOH K MOKAy AByMH KOHIjeHTpH-
HeCKHMH C(J)epaMH Sri H Sn. EipH 9TOM B ypaBHeHHHX (1) TeH30pbI I H / I HaAO 
3aMeHHTb Ha HOBbie 3HaHeHHH I ' H ß'9 Bbipa^aiomnecH nepe3 g, ß H MeTpHnecKHft 
TeH3op g npeo6pa30BaHHH KoopAHHaT. 

BßeAeM CHCTeMbi BeKTOp-cJîyHKUHft {êk} H {h\k} nojiHbie Ha jiioöoft KOHuempH-
necKoft c4)epe Sr {rx S r S r2) BHyTpn K H 6yAeM HCKaTb nonepe^Hbie nacra 
npHÖJiHHceHHoro pemeHHH B BHAe 

(4) Ê?=Xan{r)ên; È» = 2 K{r) %n. 
n=\ n=l 

PaAHajibHbie KOMnoHeHTbi npHÔJiHHœHHoro pemeHHH onpeAejiHM H3 ypaBHeHHH 
0). 

ÜJIH HeH3BeCTHbIX K03(J)4)HUHeHTOB an{f) H bn{r) nOJiyHHM CHCTeMy OÔHKHOBeH-
Hbix AH(})(i)epeHii,HajibHbix ypaBHeHHH, noTpeöoBaß BbinojmeHHe Ha JIIOöOH c(j)epe 
Sr {rx < r < r2) cjieAyiomnx ycjiOBHH opToroHajibHOcra 

(5) J (rot È" - iu)ß'ßN)t Ä* da' = 0, 
Sr 
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J (rot &" + ia&'ËN - j)t e* da' = 0 {n = 1, 2, . - , N). 
Sr 

rpaHHHHbie yCJIOBHH AJIH 9T0H CHCTeMbi nOJiy^HM H3 (2) H (3), 3aMeHHB HX 
cjieAyioiHHMH HHTerpajibHbiMH ycjioBHHMn: 

(6) J ([«£"] - w[n[nÖH)])fy do = 0 {k = 1, 2, ••-, N) 
s 

H 

(7) J [«£"]£ <fc = f o& ftCf (m - 1,2, -.., iV), 

TAe K09(J3(})HqHeHTbI aWÄ H C% OnpeAejiHiOTCH H3 COOTHOmeHHH 

(8) S?\i, = 2 W Ä = 2 CfÊ» 
m=l k=l 

(9) C% = 2 airt ftm(r2). 
3aAana (5)—(7) HBJIHCTCH KpaeBoft 3aAaHeft AJIH CHCTeMbi oôbiKHOBeHHbix 

AH^epemjHajibHbix ypaBHeHHH Ha orpaHHHeHHOM npoMe^yrae r ^ r ^ r2. 
ECJIH TeH30pbi Sufi HMeioT BHA ê = el + êi9 ß = / / / + /?i, rAe Si H fli 

—9pMHTOBbI TeH30pbI, a S H /^—CKaJIHpHbie (JtyHKlJHH C nOJIO>KHTejIbHOH MHHMOH 
nacTbio, TO onepaTop KpaeBoft 3aAaHH (5)—(7) HBJIHCTCH nojio>KHTejibHbiM B 
noAxoAHm,HM o6pa30M onpeAejieHHOM 9HepreranecK0M npocTpaHCTBe. OTCioAa 
cjieAyeT, HTO AaHHan 3aAana BcerAa pa3pemHMa. Bojiee Toro pemeHHe 3aAaHH 
(5)—(7) oi<a3biBaeTCH paBHOMepHO orpaHHneHHbiM no N H npH JV-+ oo CXOAHTCH K 
pemeHHio HCXOAHOH 3aAann (1)—(3) B cooTBeTCTByioiueft HOpMe [3], npH 9TOM 
K09$(})HUHeHTbI B pa3JIO>KeHHH (8) CXOAHTCH K COOTBeTCTByiOIHHM K09(f)(J)HIi;HeHTaM 
pa3JioHceHHH TOHHoro pemeHHH, HTO npeACTaBjineT ocoöbin HHTepec npn pemeHHH 
MHornx npaKTHHecKHx 3aAan. 

Rjin HHCJieHHoro pemeHHH CHCTCMU (5)—(7) npHMeHHMbi xopomo pa3pa6oTaH-
Hbie MeTOAbi nporoHKH c opToroHa,7iH3au;HeH. npHMepbi npaKTHHecKoft peajiH3a-
UHH AaHHoro ajiropHTMa AJIH pemeHHH KOHKpeTHbix 3aAan HMCIOTCH, HanpHMep, 
B paôoTax [4], [5]. 

3(])(j)eKTHBHOCTb npeAJioweHHoro ajiropHTMa 3aBHCHT KaK OT cnocoôa OToôpa-
>i<eHHH HCXOAHOH oôjiacTH D Ha mapOBoft CJIOH K, Taie H OT Bbiôopa CHCTeMbi 
6a3HCHbix 4>yHKUHft {en9 îin}. OôbiHHO 9TH Bonpocbi pemaiOTCH HCXOAH H3 cooôpa-
ÄeHHH npocTOTbi peajiH3au;HH ajiropHTMa. Bonpoc onpeAejieHHH "onraMajibHoro" 
ajiropHTMa pemeHHH AaHHoro KJiacca 3aAan ocTaeTCH OTKpbiTbiM. 

5°. B HacTonmee BpeMH AocrarayT 3HaHHTejibHbift nporpecc B pa3pa6oTKe 
ycTOHHHBbix MeTOAOB pemeHHH HeKoppeKTHO-nocTaBJieHHbix 3aAan MaTeMarane-
CKOH 4>H3HKH [6]. nojiyneHHbie 3Aecb pe3yjibTaTbi mnpoKo Hcnojib3yioTCH npn 
pemeHHH 3aAan CHHTe3a 9jieKTpoAHHaMHnecKHx ycTpoficTB, B036y>KAaiomHX 
9jieKTpOMarHHTHoe nojie c 3aAaHHbiMH xapaKTepncTHKaMH. 3 T H 3aAann no nocTa-
HOBKe oneHb 6JIH3KH K oßparabiM 3aAanaM 9JieKTpoAHHaMHKH, KOTOpbie (jx)pMy-
jiHpyioTCH KaK 3aAaHH BOCCTaHOBJieHHH HCTOHHHKOB nojiH HJIH CHCTeMbi pacceHBa-
IOIUHX Teji no HaöjiioAaeMbiM xapaKTepHCTHKaM nojin. OAHaKo, HMCIOTCH H 
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cymecTBeHHbie OTJIHHHH B nocTaHOBKe 3aAan CHHTe3a H oöparabix 3aAan. B 
nacTHOCTH, B03M0HCHH H TaKHe nocTaHOBKH 3aAan CHHTe3a, rAe He TpeöyeTCH 
eAHHCTBeHHOCTb pemeHHH, yAOBjieTBOpniomero nocTaBJieHHbiM ycjiOBHHM. 3 T O 
no3BOjineT npOBOAHTb OTÔop pemeHHH c noMombio AonojiHHTejibHbix ycjiOBHH 
npeAnoHTHTejibHOCTH [7], [8]. 

nycTb 9jieKTpOMarHHTHoe nojie M, B036y>KAaeMoe 9JieKTpOMarHHTHbiM ycTpoft-
CTBOM z, onpeAejineTCH BbipaaceHHeM u = A[z]9 npnneM onepaTop A~l —Heorpa-
HHneHHbiH. lIInpoKHH Kjiacc 3aAan CHHTe3a 9JieKTpoAHHaMHnecKHX ycTpoftcTB 
COCTOHT B OnTHMH3aii;HH HCKOTOpOrO (J)yHKi;HOHaJia 0{u) H yAOBJieTBOpeHHH pHAa 
TpeßoBaHHH Ha ycTpoftcTBO z. KoppeKTHan nocTaHOBKa TaKoft 3aAaHH 3aKJnonaeTCH 
B MHHHMH3aUHH (jtyHKIJHOHajia 

(10) M = 0{A[z]) + 2 a&M 
i 

npH AonojiHHTejibHbix orpaHHneHHHx. OyHKUHOHajibi Q{ onncbiBaioT nocTaBjieHHbie 
TpeöoBaHHH Ha ycTpoftcTBO z, a BecoBbie MHOAHTCJIH «,• onpeAejimoT meHy 
KancAoro H3 nocTaBJieHHbix TpeôoBaHHft. 

6° . Ba)KHbiM KjiaccoM 3aAan CHHTe3a HBJIHIOTCH 3aAann B036y>KAeHHH 9jieKTpo-
MamHTHoro nojin e 3aAaHHbiMH xapaKTepncTHKaMH CHCTCMOH napajiJiejibHO 
pacnojio^ceHHbix nojiyoecKOHenHbix OTKpbiTbix BOJIHOBOAOB C OSIUHM njiocKHM 
4)JiaHii;eM. 

3Aecb B03MO>KHbi pa3JiHHHbie nocTaHOBKH 3aAaHH. HanpHMep, noTpeôyeM, 
HToôbi oTHomeHHe 9HeprHH L{cò), H3JiyneHHOH B 3aAaHHOM yrjioBOM ceKTope œ9 

KO BCeft OTpaHCeHHOH ß H paCCeHHHOH 9HeprHH L{Q) 6bIJIO MaKCHMaJIbHbIM npn 
AonojiHHTejibHOM ycjiOBHH 3aAaHHH nojiHoft 9HeprHH B036y)KAeHHH L0 . 3aAana 
CBOAHTCH K onpeAejieHHK) 

swp{L{co)l{L{Q) + Q)} 

npn AonojiHHTejibHOM ycjiOBHH L o f ó ] = 1. AJIH BbiHHCjieHHH 3HaneHHft ĉ yHKijHO-
HajiOB L{û))9 L{Q) H ß HeoôxoAHMO CHanajia HaftTH BO BceM npocTpaHCTBe 
9jieKTpoMarHHTHoe nojie npn 3aAaHHbix napaMeTpax B036y>KAeHHH al

m. 

7° . flonojiHHTejibHbie TpyAHOCTH npn pemeHHH 3aAan 9Toro KJiacca CBH3aHbi c 
OTcyTCTBHeM HBHoro aHajiHTHHecKoro BbipaaceHHH pemeHHH cooTBeTCTByiomefi 
npHMoft 3aAaHH Aa^ce B npocTeftmeM cjiynae. TpeôyeTCH pa3pa6oTKa cnei^najib-
Hbix HHCjieHHbix ajiropHTMOB HX pemeHHH. PaccMOTpHM 9TOT Bonpoc Ha npHMepe 
njiocKoft CKajiHpHoft 3aAann. 

ripHMan 3aAana B STOM cjiynae COCTOHT B onpeAejieHHH pemeHHH ypaBHeHHH 
TejibMrojibua 

(11) Au + k2u = -f 

yAOBjieTBOpniomero OAHOpOAHOMy ycjiOBHK) dujdn = 0 Ha rpaHHije oojiacra H 
ycjiOBHHM H3JiyHeHHH Ha 6ecKOHeHHOCTH. PemeHHe 9TOH 3aAann cymecTByeT H 
eAHHCTBeHHo, npnneM B OKpecTHOcra yrjiOBbix ToneK rpaHHijbi dujdp HMeeT 
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ocoôeHHOCTb nopHAKa p~% rAe 0 g at- g \ H p —paccTOHHHe AO yrJiOBoft TOHKH. 
9Ta 3aAana HBJIHCTCH nacrabiM cjiynaeM oßmeft 3aAann 06 9jieKTpoMarHHTHOH 

CBH3H oßjiacTeft D( nepe3 OTBepcran 5 / (j = 1,2, •••, N) B O6IHHX ynacraax 
rpaHHLibi. Ha S;- AOJDKHM BbinojiHHTbcn ycjiOBHH conpHM<eHHH 

rAe ai onpeAejiHiOTCH xapaKTepHCTHKaMH cpeAbi i-ofl o6jiacTH, a OTBepcrae Sj 

CBH3bmaeT f-yio H fc-yio oßjiacra. 3aAana (11)—(12) CBOAHTCH K cncTeMe CHHry-

jiHpubix HHTerpajibHbix ypaBHeHHH nepBoro poAa 

(13) 2 J Kh{xl9 fy) vfà) d£j = tpfru fy e S,, x, e S, (/ = 1, 2, • • -, tf). 
y Si 

OyHKUHH p/fo) onpeAejiHiOTCH cnoco6oM B036y>KAeHHH, HApa Kn HBJIHIOTCH 

cyMMoft (j)yHKijHH ÊpHHa oôjiacTeft, CBH3aHHbix nepe3 OTBepcrae Sh HApa Ku 

{j # /) Bbipa>KaioTCH nepe3 fyyuKuyiK) TpHHa oôjiacra, B rpaHHuy KOTOpoft BXOAHT 

ynacTKH St H SJ. B ôojiee o6u\eu cjiynae [9] nojiynnM cncTeMy HHTerpo-AH(f)(})e-
peHUHajibHbix ypaBHeHHH THna (13). 

ypaBHeHHH CHCTeMbi (13) HBJIHIOTCH ypaBHCHHHMH nepBOrO pOAa. yCTOHHHBblft 
ajiropHTM HX HHCjieHHoro pemeHHH ocHOBaH Ha MeTOAe, Hcnojib3yiomeM ocoôen-
HOCTb HApa Ku [10]. n p n peajiH3an;HH ajiropHTMa cymecTBeHHO Hcnojib3yioTCH 
MeTOAbi o6paii;eHHH AH(|)$epeHUHajibHoro onepaTopa [9], MCTOAH BbiAejieHHH 
ocoôeHHOCTH HApa, HMeiomero cjio>KHyio aHajiHTHnecKyio CTpyKTypy [11], H 
MeTOAbi BbiAejieHHH oco6eHHOcra pemeHHH HHTerpajibHoro ypaBHeHHH [12]. 

8°. PaccMOTpeHHbie ajiropHTMbi pemeHHH 3aAan AH(|)paKijHH H pacnpocTpaHe-
HHH BOJIH, ocHOBaHHbie Ha npoeKijHOHHbix MeTOAax H MeTOAax HHTerpajibHbix 
ypaBHeHHH, ycnemHO nepeHOCHTCH Ha 3aAanH AH(j)paKijHH Ha nepHOAnnecKHX 
CTpyKTypax. B cjiynae nepHOAHnecKoro B036y>i<AeHHH [13] 3aAana CBOAHTCH K 

onpeAejieHHio pemeHHH B nojioce, Ha rpaHHijax KOTOpoft AOJDKHH BbinojiHHTbcn 
yCJIOBHH 4>JIOKe 

(14) u{x + a9 y9 z) = eiau{x9 y9 z). 

3Aecb a—nepHOA CTpyKTypbi. 
Cjiynafl jioKajibHoro B036y>KAeHHH, KorAa pemeHHe ynce He yAOBJieTBOpneT 

ycjiOBHHM $JioKe, TaK^ce MoaceT 6biTb CBeAeH K 3aAane B nojioce [14], onpeAe-
jineMoft nepHOAOM CTpyKTypbi, HO yn<e He AJIH HexoAHoro pemeHHH, a AJIH ero 
cneunajibHoro npeo6pa30BaHHH 

00 

(15) U{t9 x9 y,z)= 2 u{x + na9 y9 z)e~int. 
n=—oo 

OneBHAHO, c})yHKUHH U{t9 x, y, z) yAOBJieTBOpneT ycjiOBHHM 4>Jioi<e. 
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Invariant Subspaces 

J. H. Wilkinson 

1. Introduction. In the last twenty years great advances have been made in the 
solution of the standard eigenvalue problem Ax = Xx9 and as far as dense matrices 
are concerned one of the few outstanding problems is the development of a satis
factory general purpose algorithm to deal with nonnormal matrices having ill-
conditioned eigensystems. Perhaps the major difficulty is to decide precisely what 
such an algorithm should attempt to do. 

The most widely used algorithm for real nonnormal matrices is that based on a 
preliminary orthogonal reduction to Hessenberg form followed by the use of the 
double Francis QR algorithm [1]. The combined process gives an orthogonal re
duction of the original A to triangular form T (or rather to quasi-triangular form 
since complex conjugate pairs of eigenvalues give rise to 2 x 2 blocks on the 
diagonal) and is therefore a practical realisation of the Schur canonical form. 

This algorithm is in one sense almost best possible since the computed T is 
exactly orthogonally similar to A + E where || E || 2/1| A || 2 is of the order of the ma
chine precision. However, the output of algorithms based on this reduction consists 
of n eigenvalues and n eigenvectors notwithstanding the fact that if A is defective 
it will not have n independent eigenvectors. This decision was not taken in ignor
ance of the facts of life; it was recognised to be an interim measure. The state of 
the art has now been reached when serious efforts might well be made to deal 
with this shortcoming. 

2. Ill-conditioned eigensystems. It is natural to ask "Why not compute the Jordan 
canonical form / and the associated X such that AX = XJT The columns of X 
would then give the n principal vectors. The difficulty is a purely practical one. It 
is not generally known in advance whether a matrix is defective, and one has to 
depend on computed eigenvalues for making this decision. A matrix can be de-
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fective only if it has multiple eigenvalues, but defective eigenvalues are, in general, 
very sensitive to perturbations in the elements of A. If, e.g., A has an eigenvalue X{ 

of multiplicity r associated with an elementary divisor of degree r then the eigen
values Ài{e) of A -f eB include values such that k{e) - X{ = 0{e1/r) as e -> 0. 
Hence even if one has exact eigenvalues of some A + E the computed values may 
not include any that appear unduly close. How are we to recognize that they 
'belong' to a set of r equal eigenvalues? 

However, it is a mistake to concentrate too heavily on defective matrices. It is 
more instructive to study the problems presented by a simple ill-conditioned 
eigenvalue, X(. In this case A + eB (with ||2?||2 = 1) has an eigenvalue X{{e) such 
that 

Ài{e) - Xi ~ e{y? Bxt)j{yf xt) as e -> 0, 

where y{ and x{ are (normalised) left-hand and right-hand eigenvectors. Hence we 
have \h{e) — /l,-| S es{ where s{ = yfx{ is the cosine of the angle between y{ and 
Xi. The bound is attained when B = y{x^. Not surprisingly a matrix having a 
small Si is close to a matrix having a multiple eigenvalue. Indeed there is a matrix 
A + E with || £ || 2 ^ ||̂ 412 J,-having X{ as an eigenvalue of multiplicity not less 
than two. This is rather a weak result; in general there is a much nearer matrix 
having a double eigenvalue at a point other than X{. 

A further problem associated with ill-conditioned nondefective matrices is that 
their eigenvectors are almost linearly dependent. In fact if X is the matrix of right-
hand eigenvectors, y$X = [0, O,---, si9 ••• ,0] and hence on{X) ^ s{ showing that 
if Si is small X is almost singular. This means that even if, in spite of the practical 
difficulties, one obtains quite accurate eigenvectors one cannot compute from 
them an accurate orthogonal basis for the corresponding invariant subspace. This 
is not surprising because when A is truly defective, some of the eigenvectors are 
coincident and a complete basis is constructed by adding principal vectors. 

There have been then two main strands in the research on ill-conditioned eigen
value problems. In the first a direct attempt is made to find the Jordan canonical 
form and an associated basis of a truly defective matrix in the neighbourhood of 
the given A. In the second, eigenvalues are grouped together in some appropriate 
manner and orthogonal bases are determined for the corresponding invariant sub-
spaces. 

3. The Jordan canonical form (J.cf.). Three essentially different algorithms have 
been developed for computing the J.cf. Suppose X is a multiple eigenvalue; then 
B = A — M has a corresponding multiple eigenvalue equal to zero. 

Method 1. This is based on the observation that the space spanned by the 
principal vectors of grades 1, 2,..., r is the null space of Br. Since one is concerned 
with rank determination, the singular value decomposition (S.V.D.) is used 
throughout. The general step is as follows. Suppose we have derived the relation 

Br\Vr = |> r |0] 

where Wr is an orthogonal matrix and the last mr columns of the R.H.S. are null. 
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Then the last mr columns of Vr give an orthogonal basis of vectors of grades 
l,---, r. We now have 

Br^Wr = [2Mr|0] s [Cr+1|0] 

and if the S.V.D. of Cr+1 is given by Cr+1 = Ur+12r+iV%.1 then2'r+1 has nr+x 

zero singular values. Writing 

Vr+l = 
V r+l Wr+i = WrVr+l9 

then 

Br+i]Vr+1 = [C/ r+1^ r+1 |0] = lr+1 0 
Wr+i 

The last mr columns of Wr+i are those of Wr. It is now clear that mr = 
«! + ••• 4- nr9 and in general the last mr+i columns of Wr+i give principal vectors 
of grades r -f 1, •••, 1. The process comes to an end when Cr+1 has no zero singular 
values. An outstanding difficulty of the method is providing a satisfactory criterion 
for determining whether elements of 2r+i may be regarded as zero. 

Method 2. This involves a systematic use of orthogonal deflation. The matrix 
B = B(0> is reduced successively to Ba), B™, •••by orthogonal similarities. The 
form of B(r) and its relationship to B is adequately illustrated by the fact that 

B (2) = {W™)TBW™ = 
[B& 

B® 
L*8P 

0 
0 

R(2) 
^ 3 2 

0 1 
0 

oj 

n-mz 

ih 

where rVi2) is orthogonal. If the multiplicity of the zero eigenvalue is m2 = 
ni + «2 the process is complete. Otherwise since J5^has the remaining eigenvalues 
of B it must be singular. If the S.V.D. of B[f is £g> = U™2™{V™)T then 

(j/(3)vrg(2)j/(3) = fymyrjwgtt) = z(3)2(3) = pg> 
Leg5 

01 

oj 
n-m3 

n—m /73 

where w3 is the number of zero singular values of B$. Hence writing 

y (3) 

_ p-C3) 

0 
0 " 
/ . 

yyiS) ._ yy(2)y(3) 

we have 

^ (3) = (J^(3>)rffJ^(3) 

2Jg> 

*8> 
B® 
*% 

0 
0 

* ® 
* ® 

0 
0 
0 

*a> 

0 
0 
0 
0 

n-nia 

«3 

ih 

'h 

n-m3 ii3 
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From the definition of the S.V.D. it follows that 2?/flt/ is of full rank for i ^ k and 
from this it is easy to deduce that the trailing columns of W{3) give orthogonal bases 
for vectors of grades 3, 2, 1. 

Decisions on zero elements of the 2(r) are much simpler than with Method 1. 
Both methods are essentially due to Kublanovskaya though she did not use the 
S.V.D. and the alogrithms were not described in these terms. An outstanding 
weakness of both methods is that in general they require the computation of the 
S.V.D.'s of matrices of high order. 

Method 3. This is based on the observation that if x is a principal vector of grade 
r + 1 then Bx is a nonnull vector of grade r and hence lies in the subspace spanned 
by the principal vectors of grades 1,2, •••, r. However if we were to obtain all such 
nonnull x they would, of course, include the previously computed vectors of 
grades 2, •••, r. A technique is needed which will exclude them. If B = U2VH 

then UHBU = 2VHU = 2WH (say) and it is simpler to work with 2WH rather 
than with B itself. The step in which vectors of grade k + 1 are computed may 
then be described as follows. 

Let the vectors of grade s be denoted by uf*\ •••, u$ {s = 1, •••, k). Then we 
require solutions of 

2{W*x) = 2y = [pibW"-P^nAk) - «ä?]a = ^(Ä)" 
where a is a vector of order nx which is to be chosen so that solutions exist. The 
source of the p$k) will become evident at the end of this step. The diagonal matrix 
2 has zero elements in the last nx positions and solutions y are given for any a 
which gives zero components in the last nx positions of the right-hand side. To 
determine such a we write 

n — nx 

and denoting the S.V.D. of Wf by Wfi = Uk2kVg we have 

2y = 
wWy.i r 1 

and if 2k has nk+i zero elements, the last «Â+1 columns of Z(A) give appropriate 
right-hand sides. Hence we obtain nk+i vectors y and the nk+i corresponding x give 
W(*+D 5 ...5 w^+D, the vectors of grade k + 1. The remaining nx — nk+i columns of 
Zik) are the vectors p[k+1)

9 ••-,jp^±^+1 of the next stage. This method is much more 
economical than the previous two, since we have only to compute the S.V.D. of an 
nx x nx matrix at each stage. 

4. Orthogonal bases of invariant subspaces. Even when using the S.V.D. the 
methods of the previous section are not particularly satisfactory from the point of 
view of numerical stability. Moreover they force one to treat matrices which are 
not truly defective as though they were. There is a good deal to be said for grouping 
eigenvalues together "appropriately" and finding an orthogonal basis for the 
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corresponding invariant subspace. Naturally the criterion should be such that 
when A really is defective the corresponding eigenvalues will be grouped together. 
A good starting point is the triangular matrix T given by the orthogonal reduction 
described in § 1. This matrix is exactly orthogonal to A+E with || E || 2/1| A 12 of the 
order of the computer precision. From the triangular form, the left-hand and 
right-hand vectors corresponding to each of the eigenvalues are easily and ac
curately computable and thence the values of the st- for the triangle. It is clear that 
if ||E || \\jsi + 1/jy] > | À{ - lj | the eigenvalues X{ and Ay may well correspond to 
coincident eigenvalues in the original matrix A and should certainly be grouped 
together. In practice one needs a less severe criterion than this; otherwise eigen
values will not be grouped together even when they are associated with an almost 
defective matrix. A useful criterion in practice has been to group together eigen
values for which 

| ^ - - Ay|maxfo,*y) ^2<-< | |^ | |F 

where computation is on a t binary digit computer and subspaces are required 
which are correct to roughly tx{^ t) binary places. Notice that if we take tx — t we 
will usually be forced to group all the eigenvalues together. 

Having decided which eigenvalues to group together probably the simplest 
method of determining an orthogonal basis for the corresponding invariant sub-
space is to subject T to an orthogonal similarity which retains triangularity and 
brings the grouped eigenvalues into the leading diagonal positions. At this stage 
we have (ignoring rounding errors) 

QTAQ = 7\ l ^12 
0 T22_ 

where the r grouped eigenvalues are the diagonal elements of the triangular matrix 
Tn of order r. The required orthogonal basis is then the first r columns ßi of 6-
Ruhe [3] has described a simple method for bringing the required eigenvalues into 
the leading positions by a series of plane rotations. This can be generalised to 
cover the case when there are 2 x 2 blocks on the diagonal of T corresponding to 
complex conjugate pairs of eigenvalues. 

Having obtained an approximate orthogonal basis in this way it may be im
proved by a process of iterative refinement analogous to that used for linear sys
tems. For this it is necessary to be able to compute the residual matrix R defined by 
R = AQi - QiTn and this must be done working to higher accuracy, preferably 
by accumulating inner-products in double precision. 
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Difficulty in Problems of Optimization 

Philip Wolfe 

1. Introduction. The concept of difficulty, or computational complexity, is central 
to the mathematization of the art of computation. A problem (short for class of 
problem) is a function from a certain set of mathematical objects to others: e.g., 
(a) from pairs of integers to their sum, (b) from systems of linear equations to their 
solutions, (c) from analytic functions to their sets of zeroes. Given a vocabulary of 
operations on objects of the domain, an algorithm is a sequence of operations yield
ing the value of the function for any member of its domain. The number of opera
tions—or time, or other measure of work—an algorithm takes in evaluation, for the 
worst case in its domain, is the difficulty of the problem-algorithm pair; and the 
minimum of problem-algorithm difficulty over all algorithms solving the problem is 
the difficulty of the problem. 

2. Combinatorial problems. These notions have their sharpest formulation in the 
first of three kinds of problem we discuss, the "combinatorial" type like (a), whose 
domain and value is always a finite set of integers. Results of fundamental import
ance for computation are typified by the work of Winograd [1, Bibliography, 
1965A, 1967A],1 who determined the difficulty of addition and multiplication for 
pairs of integers in terms of the gating operations used in real computers: e.g., 
log2 log2 N gatings for adding two integers not greater than N, no matter how they 
are represented. 

In combinatorial problems of optimization we know the difficulty of many 
problem-algorithm pairs, but few problem difficulties. One tries to summarize that 
information as follows: For a specific problem, let L be the "length of the input 
string", the number of bits required to encode a point in the domain of the algo-

1 For compactness, applicable references are made to the bibliography of our [1, pp. 187-122]. 
[1] constitutes an excellent survey of the subject of computational complexity. 
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rithm A. One attempts to determine a simple function dA{L) bounding the number 
of steps needed by A to solve the worst problem of length L, and represent problem 
difficulty by D{L) = Min^ dA{L). The most closely studied question has been 
whether particular problems are solvable in polynomial time {D{L) has polynomial 
growth, or slower) or exponential time (there is no polynomial bound for D). Many 
problems are known to be "polynomial" by exhibition of a suitable A; finding the 
shortest paths between two points of a graph, or between all pairs, and the "assign
ment" problem [2] of finding that permutation P of (1, 2, •••, n) minimizing 
2^iMiiPii) for a given «-order matrix M9 are famous examples. It is not known 
whether any interesting combinatorial optimization problem is exponential, but 
there is good reason to think that many of them are. Karp [1, Bibliography, 1972B] 
has listed 21 problems of importance and shown them equivalent with respect to 
polynomial-time solvability. His problems, on some of which much effort has been 
expended for the discovery of efficient algorithms, include 

(i) integer programming: given an integer-valued matrix C and integer vector d 
determine the existence of a vector x of zeroes and ones such that Cx = d\ 

(ii) Hamiltonian circuits: given a finite graph, determine whether it has a cycle 
containing each node exactly once; 

(iii) three-dimensional matching: given Tfinite and U ç T x T x T9 determine 
the existence of W Ç U such that no two elements of W agree in any coordinate 
and WKhas the cardinality of T. (If T3 of (iii) is replaced by T2

9 the problem is poly
nomial. Defining My = — 1 if (/, j) e U9 = 0 otherwise, it asks whether the mini
mum in the assignment problem above is — \T\.) 

3. Finite numerical problems. The assignment problem connects combinatorial 
problems with finite numerical problems : problems whose domains are sets of real 
numbers, and algorithms whose operations are those of real arithmetic (addition, 
division, comparison, •••), which solve the problems exactly using finitely many 
operations. The convex hull of the set of permutation matrices is the set of all 
doubly-stochastic matrices of order n9 i.e., such that X{j ^ 0, Tii^a = 1> Sy^i/ = 

1 for all 1,7, and each matrix in any set of permutation matrices is an extreme point 
of the convex hull of the set. The assignment problem can thus be solved by solving 
the linear programming problem of minimizing 2 L V / ^ I / ^ I / under the above con
straints. This formulation leads to a variety of special algorithms requiring only 
0{n2) operations, owing to the simple structure of the constraints, although its 
solution implicitly makes a choice among n\ objects. (Although eny permutation-
sum problem has similarly an equivalent linear program, it is usually hard to find 
and of impractical size. The "traveling-salesman problem" is that of finding the 
cyclic permutation P minimizing E*M,>P(t). Kuhn [3] found for n = 5 (24 permu
tations) the convex hull, of dimension 11, had 390 faces. Since this problem is at 
least as difficult as (ii) above, it is hard to believe that it has a polynomial-time 
algorithm.) 

The general linear programming problem has the form Min J^JCJXJ subject to the 
constraints Xj ^ 0 (7 = 1, ••-, n)9 Txfiu^j = b{ {i = !,-••, m). The only useful 
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algorithm for it is the simplex method of Dantzig [4], whose arithmetic operations 
per step can be closely estimated (and are less than mn); attention has focused on 
the number S{m9 n) of steps required to solve the problem. Empirically, S/m lies 
between 1 and 3 for most problems, and plausible arguments that S/m « log{n/m) 
when n > m have been substantiated by experiment [5]. Nevertheless, it has ex
ponential complexity. Klee and Minty [6] show the existence for any m of a problem 
with n = 3m, defining geometrically a deformation of the m-cube, for which the 
simplex method visits every vertex: £ = 2m — 1. (Their example assumes the 
"usual" decision rule for the simplex method; it is not known whether such exam
ples exist for other rules also used in practice.) It seems very likely that the linear 
programming problem has exponential difficulty. 

4. Nonfinite numerical problems. A real-variable optimization problem Min{/(;x;) : 
xe S ç Rn] more complicated than that of "quadratic programming"—the mini
mization of a quadratic function under linear inequality constraints—must be 
"solved" by the generation of a sequence of points {Xk} for which fk = f{Xk) -• 
Min /. The useful definition of efficiency has been that of order of convergence 
(explored in detail by Ortega and Rheinboldt [7]) : In one version, 

p = up {q: {fk - Min/)/(/Ä_! - Min/> is bounded}. 

Standard hypotheses are that fis convex and twice differentiable, or even analytic, 
and that the functions defining the constraint set S9 if any, also are. In that case 
much is known about the order of convergence for certain important algorithms for 
optimization in the absence of constraints [8], [9], and something for constrained 
problems [10]. 

The richness of possibilities for algorithms in this area makes determining prob
lem difficulty tremendously hard, and there is not general agreement on the im
portant concepts. We outline the approach we think most promising. We cannot 
suppose the problem domain consists of finite strings, but suppose that as the 
algorithm proceeds it may call for the computation off or of some derivatives at 
certain points. The number of such calls will be the work done by the algorithm, 
whatever computation done between such calls being ignored. An algorithm is then 
a sequence gk of functions, generating Xk by the recursion Xk+i = gk {Xk9 Xk^h ••• ; 
f{Xk)9 f{Xh_i)9 •-.; f'{Xk)9 f'{Xk_i)9 ...; •-.). Algorithms are classified by the 
information actually used: e.g., a single-point second-derivative algorithm has 

gii-) = h{xk,Axk),f'(xk),f"(xk)). 
The central question is : Among all algorithms of a certain class which converge to a 
solution when started in a sufficiently small neighborhood of the solution, what 
gives the highest order of convergence? 

Answers have been given in two extreme cases. For single-point second-deriva
tive algorithms for minimizing strictly convex, thrice-differentiable functions of n 
variables, Makurov [11] has shown the limiting order to be 2 which is, of course, 
achieved by Newton's method: gk = [f"{X^\~lf'{X^). Results are given for general 
gk only for n = 1, when much is known about the almost identical problem of find-
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ing a simple root off{x) = 0. Brent, Winograd, and Wolfe [12] have shown that if 
d is the order of the highest derivative used in gk9 and the algorithm converges 
when started in the neighborhood of a simple root of any analytic function, then 
the order of convergence cannot be higher than d + 2. That order can be approx
imated as closely as desired by the usual scheme which interpolates all the data 
with a polynomial and finds a root of that. It is to be expected that polynomial 
interpolation is likewise optimal even when information is limited, but the problem 
is subtle, and has not been resolved. The absence of results for n > 1 in other than 
the single-point case can be attributed to the absence of a satisfactory theory of 
interpolation for functions of several variables. Such results, when they arrive, will 
be fascinating, for it is hard to believe that our present methods, practically ex
cellent though they be, approach the ultimate in power: and the ability to answer 
that kind of question will convert optimization from an art into a science. 
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BaHKyBep, 1974 

HHAyKTHBHbift BbiBOA AßTOMaTOB, 4>yHKu,Hft H IlporpaMM 

% M. Bap3AHHb 

1°. HacTonm™ AOKJia^ nocBHineH H3jio>KeHHK) HeKOTOpbix pe3yjibTaTOB, nojiy-
qeHHbix B nocjie^HHe ro^bi no TeopHH HH^yKTHBHoro BbiBo^a. B HeM paccMaTpn-
BaeTCH BoccTaHOBjieHHe onncaHHö (HOMepoß) peKypCHBHbix (J)yHKunft, B TOM nncne 
aBTOMaTOB H nporpaMM, no HX paßoTe Ha OT^ejibHbix npHMepax. Cpa3y OTMCTHM, 
HTO MH 3/tecb He 6y#eM KacaTbcn Tpa/wijHOHHOH TeopHH SKcnepHMeHTOB c aBTOMa-
TaMH, Kor^a o paccMaTpHBaeMOM aBTOMaTe 3apaHee H3BecTHa BepxHna oueHKa 
HHCJia COCTOHHHH. 

2° . OcTaHOBHMCH CHanajia Ha OAHOM o6meM npHHunne HHAyKijHH, BbiCKa3aHHOM 
eme JlanjiacoM. Corjiacno 9T0My npHHu,Hny Hanôojiee npocTbie cooTHoineHHH 
(rHnoTe3bi) CHHTaioTCH Hanoojiee B03MO>ï<HbiMH. HeKOTOpbift no/jxoA K (j)opMajiH-
3ai;HH TaKoro npHHqnna H ero npHMeHeHHK) npH SKCTpanojiHUHH nocjie^OBaTejib-
HOCTefl coAep^CHTCH B paßoTe CojioMOHOBa [ 1 ] , flpyroe Hcnojib30BaHHe 9Toro 
npHHU[Hna 6biJio paccMOTpeHo aBTOpoM [ 2 ] npn H#eHTH(j)HKauHH KOHenHbix aBTO-
MaTOB. 

AßTOMaTbi paccMaTpHBaroTCH Kai< "nepHbie HIAHKH", C KOTOPHMH MO>KHO 

npoBO^HTb KpaTHbie SKcnepHMeHTbi. BXOAHOH H BHXO^HOH ajic|)aBHTbi CHHTaioTCfl 
H3BecTHbiMH. HHKaKan Äpyran HH(J)opMauHH 06 aBTOMaTax He AaHa. y>i<e MypoM 
[ 3 ] 6bIJI0 3aMeqeHO, HTO He B03MO>KeH SKCnepHMeHT, H£eHTH(j)HIJHpyK)IHHH JIK)60H 
TaKOH aBTOMaT. ABTOpoM 6biJi paccMOTpen cjießyiomHH ajiropHTM H£eHTH(j)HKaijHH 
2g> g—HeyôbiBaioman BbiHHCjiHMan (j)yHKi;HH. PaßoTa ajiropHTMa 2g9 npHMe-
HeHHoro K aBTOMaTy 8T, COCTOHT H3 nocjie^oBaTejibHbix maroB 1,2,3 • • •. Ha Ka>K^OM 
mare nopoac^aeTCH onpe^ejieHHan rnnoTe3a ; AQ—nanajibHan rnnoTesa—npon3-
BOjibHbiM o6pa30M $HKCHpOBaHHbiH aBTOMaT. OnHiiieM i-biH mar. BepeTCH rHnoTe3a 
Ai_i9 nopoHc^eHHan Ha npe^bi^ymeM mare ( |4-_i |—HHCJIO COCTOHHHH), H npOBe-
pneTCH, coBMecTHa JIH OHa c "nepHbiM HIUHKOM" 2f Ha BXOAHHX cjiOBax AJIHHH 
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£ ( | 4 - i | ) - ECJIH m> TO ajiropHTM ocTaHaBjiHBaeTca H ero pe3yjibTaTOM 2^(91) 
oö-bHBJineTCH rHnoTe3a Ai_x. ECJIH HeT, TO B KanecTBe HOBOH rHnoTe3bi A{ paccMa-
TpHBaeTCH aBTOMaT c MHHHMajibHbiM HHCjiOM COCTOAHHH ("Hanöojiee npocTaa 
rHnoTe3a"), KOTopbiö coBna^aeT c 2Ï Ha BXOäHMX cjiOBax äJIHHH g ( | 4 - i | ) , H 
ocymecT BJi5ieTCH nepexoA K cjie^yiomeMy mary. AjiropnTM 2g HAeHTHt̂ HijHpyeT 
3f, ecjiH OH ocTaHaBjiHBaeTCH H 2^(91) coBna^aeT c 8( Ha Bcex BXOäHHX cjiOBax. 

HCHO, HTO onncaHHbiH ajiropHTM HHrAe He ncnojib3yeT HH(})opMai;HK) o BepxHeft 
oueHKe HHCjia COCTOHHHH aBTOMaTa 2(. TeM He MeHee, OKa3biBaeTCH [ 2 ] , HTO AJIH 
Jiioôoro e < 1 cymecTByeT ajiropHTM 2g, KOTOpbifi H£eHTH<|)HUHpyeT e-yio Aomo 
Bcex aBTOMaTOB (T.e. AJIH jiioöoro k AOJIH aBTOMaTOB, KOTopbie 2g HAeHTH^HijH-
pyeT, cpeAH Bcex aBTOMaTOB c k COCTOHHHHMH, He MeHbine e). npn STOM oöman 
ÄJiHHa Bxo/üHbix CJIOB, Hcnojib3yeMbix yKa3aHHbiM ajiropHTMOM Ha aBTOMaTe 8f, 
He npeBocxoAHT |S(|s c—HeKOTopan KOHCTaHTa. 

B TO »ce BpeMH HCHO, HTO B cjiynae öojiee OöHJHX KJiaccoB 4>yHKUHH BO3MO>K-
HOCTH TaKoft H#eHTH(})HKaijHH (6y;jeM ee Ha3biBaTb npHMoft) BecbMa orpaHHneHbi. 

3° . flajibHeöman nacTb AOKJiâ a 6y^eT nocBnmeHa ôojiee oßmeMy noHHTHio 
H^eHTH^HKauHH—npe^ejibHOH H/ieHTH^HKauHH. B âHHOM cjiynae npouecc 
HH/tyKTHBHoro BbiBo^a paccMaTpHBaeTCH KaK npeAejibHbift npouecc, Koiyja 
CHanajia BbmaeTCH o^Ha rnnoTe3a ki9 3aTeM BTOpaa rnnoTe3a k2, 3aTeM k3 H 
T. A- Mbi roBopHM, HTO 9TOT npoijecc B npe^ejie #aeT HCKOMHH pe3yjibTaT, ecjiH 
HaHHHan c HeKOTOporo i Bce ranoTe3bi fc,- HCTHHHM (XOTH MM caMH STO i MO>KeM H 
He 3HaTb H npoAOJi^aTb npoBepKy). n o TaKoft cxeMe nponcxo^HT, HanpHMep, 
OTJia^Ka nporpaMM. MHCJIO BapHaHTOB nporpaMM kl9 k2, k& ••-, KOTOpbie npo-
rpaMMHCT nepeÔHpaeT, HHor^a ßbiBaeT ^OBOjibHO ôojibiuHM. rio TaKoft nee cxeMe 
ocymecTBji5HOTCH H pa3JiHHHbie npoueccbi oöyneHHa. 

B KanecTBe cpe^CTB BbiBo^a Hcnojib3yioTCH npOH3BOjibHbie 3<})(|)eKTHBHbie npa-
BHJia, Ha3biBaeMbie CTpaTerHHMH. OopMajibHO no# CTpaTerHHMH öy^eM noHHMaTb 
npOH3BOJibHbie 1-MecTHbie oßmepeKypCHBHbie (J)yHKijHH G. B ^ajibHenmeM, ecjiH 
He oroßopeHo npoTHBHoe, noß <p öyjxeM noHHMaTb (jwKCHpoBaHHyio AonycTHMyio 
re^ejieBCKyio HyMepauHK) KJiacca Bcex 1-MecTHbix nacTHHHO peKypcHBHbix 
(j)yHKUHH. R—KJiacc Bcex oömepeKypcHBHbix (f)yHKijHH. 

nycTb /—HeKOTOpan oßmepeKypcHBHan 4>YHKRHH, KOTOpaa paccMaTpHBaeTCH 
KaK "nepHbiH HIUHK". C Heß MO>KHO SKcnepHMeHTHpoßaTb, T.e. AJIH Jiioöoro x 

MOHCHO y3HaTb, neMy paBHO f{x). npoinecc BbiBOßa, accoijHHpoBaHHbiH co CTpaTe-
rHeö G9 onpe^ejineTCH KaK nocjie^oBaTejibHoe BbiHHCjieHHe 3HaneHHft 

G«0,/(0)>), G«0,/(0), 1,/(1)>), - , G«0,/(0), ..-, f,/(0», - . 
3TH 3HaneHHH 6y/jeM o6o3HanaTb cooTBeTCTBÇHHO nepe3 ' 

K Q 9 K \ 9 • • • , K f r " " N ^ 

H 6y#eM Ha3biBaTb rnnoTe3aMH. THnoTe3a k{ cHHTaeTCH HCTHHHOH, ecjiH <pk, = / . 
CTpaTernn G npe^ejibHO H,ziieHTH(|)Hi;HpyeT / , ecjiH HanHHan c HeKOTOporo i Bce 
rnnoTe3bi k{ HCTKHHU H paBHbi MOR^y coöofi. Kjiacc U npe^ejibHO HAeHTH(J)HUH-
pyeM, ecjiH cymecTByeT CTpaTernn, KOTOpan H£eHTH(j)HUHpyeT Ka^K^yio dpynKmio 
H3 U. 
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noHHTHe npe^eJibHOö HAeHTH(j)HKau(HH ßbijio BBe^eHO TOJIAOM [4]. H M we 6MJIH 
nojiynenbi H nepBbie pe3yjibTaTbi. 

4°. nepBbift IJHKJI pe3yjIbTaTOB OTHOCHTCH K BblHCHeHHK) npHHIJHnHaJIbHblX 
B03MOMCHOCTefl npeAEJIbHOH HACHTH(})HKaiJHH. HCHO, HTO ee B03MOMŒOCTH 3HaHH-
TejibHo mnpe no cpaBHeHHio e npHMofi HAeHTH^HKauHeft. Ho TeM He MeHee, KaK 
noKa3aji TOJIR [4], KJiacc R ne Moa<eT 6biTb npe^ejibHO HAeHTH(J)Hij;HpoBaH. 3 T O T 
pe3yjibTaT 6biji ycnjien IloAHHeKCOM [10]. O H noKa3aji, HTO ecjiH e > 0, TO KJiacc 
R He MO>KeT 6bITb HAGHTHCJDHlI.HpOBaH TaiOKe H C HaCTOTOH 6. C ApyrOH CTOpOHbl, 
JIK)6OH KJiacc oômepeKypCHBHbix fyyuKuyivi, coAep>KamHÖCH B 9$(J)eKTHBHO 
nepeHHCjiHMOM KJiacce o6mepei<ypCHBHbix ^ynKixm, npe^ejibHO HAeHTH(J)HijH-
pyeM. BJIIOMOM [5] H aBTOpoM [6], [11] 6HJIO 3aMeneHO, HTO cymecTByiOT H TaKHe 
KJiaccbi oôuJiepeKypCHBHbix (j)yHi<HHH, KOTOpbie HAeHTH^imnpyeMbi (Aawe B 
npHMOM CMblCJie), HO KOTOpbie He COAepKaTCH HH B KaKOM 9(f)(j)eKTHBHO nepeHHC-
JIHMOM KJiacce oômepeKypCHBHbix (J)ynKUHH. 

BJIIOMOM [5] ßbijia naflAena HHTepecHan xapaKTepHCTHKa KJiaccoB o6mepei<yp-
CHBHbix $yHKi;HH, npeAejibHO HAeHTH^HqnpyeMbix c noMombio TaK Ha3bmaeMbix 
CTpornx CTpaTeraö, xapaKTepH3yioiHHXCH TeM, HTO AJIH J I I O 6 O H / E R9 ecjiH G He 
HAeHTH^HijHpyeT/,TO nocjieAOBaTejibHOCTb rnnoTe3k09fc l5---,k i9• • • ne CXOAHTCH. 
3 T O KJiaccbi, A^IH KOTOpbix B HeKOTopOM CMbicjie cymecTByeT HanjiyHiiiHH 
CnOCOÔ BblHHCJieHHH. OAHaKo Bonpoc o xapaKTepHCTHKe KJiaccoB (j)yHKn,HH, HAeH-
TH(j)HUHpyeMbIX C nOMOIJJiblO npOH3BOJIbHbIX CTpaTerHH, OCTaeTCH OTKpblTblM. 

ABTOpoM [11] ÖbiJio noKa3aHO, HTO ecjiH B onpeAejieHHH npeAejibHOH HAeHTH(j)H-
KauHH OTÖpocHTb TpeßoßaHHe, HTO HaHHHan c HeKOTOporo MecTa Bee rnnoTe3bi 
AOJDKHH 6biTb paBHbiMH, TO STO npHBOAHT K yBejinneHHio MHOKecTBa npeAejibHO 
HAeHTH(})HiJ[HpyeMbix KJiaccoB oömepeKypCHBHbix fyynKuyw. 

CTpaTerHio G Ha30BeM peryjinpHofi Ha U9 ecjiH AJIH J I I O 6 O H / E U H jiioßoro i 
rnnoTe3a k{ = G « 0 , / ( O ) , ••-, f , / ( 0 » oSjiaAaeT CBOHCTBOM: y>kl(x) = / ( * ) AJIH X 
= 0,1, • • -,/. EIpeACTaBjiHeTCH, HTO BCHKan "pa3yMHaH" CTpaTernn AOJDKHa oßjiaAaTb 
CBOHCTBOM peryJIHpHOCTH. BMeCTe C TeM MO)KHO yKa3aTb KJiaCC U Œ R9 KOTOpblft 
B oßbiHHOM CMbicjie HAeHTH(j)HE[HpyeM, HO c noMombio peryjiHpHbix Ha U CTpa
Teraö He HAeHTH(J)HUHpyeM. 

OpeßßajiAOM [7] HeAaBHO 6HJI paccMOTpeH öojiee O6II;HH cjiynafl, KorAa <p— 
npOH3BOJibHan BbiHHCjiHMan HyMepaijHH. H M Sbijio noKa3aHO, HTO TOJibKO KOnenHbie 
KJiaCCbl 06li;epeKypCHBHbIX (JtyHKIJHH HAeHTH(j)HIJHpyeMbI OTHOCHTeJIbHO JIK)60H 
BbiHHCJiHMOH HyMepaunn <p. Bojiee Toro, cymecTByeT <J)HKCHpoBaHHaH BbiHHCJiHMan 
HyMepai;HH <p9 OTHOCHTeJIbHO KOTOpOH HAeHTH(f)HUHpyeMbI TOJibKO KOHeHHbie 
KJiaccbi o6mepeKypcHBHbix (j)yHKijHH. 

5°. CjieAyiOLUHH UHKJI pe3yjIbTaTOB OTHOCHTCH K OIjeHKaM HHCJia H3MeHeHHH 
rnnoTe3 B npouecce HAeHTH(j)HKau;HH. PaccMaTpHBaeTCH HAeHTH(})HKaijHH na 
npOH3BOjibHofi nocjieAOBaTejibHOCTH HaTypajibHbix nnceji 

0> = \*0> xh *") xi9 " " } • 

THnoTe3a 
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k{ = G{(xQ9f{xQ)9 •-, xi9f{Xi)}) 

Ha3biBaeTCH HCTHHHOH, ecjiH <pk.(
x) == f(x) iww x e co (p—AonycTHMan reAejieBCKan 

HyMepaiHHH). EcTecTBeHHbiM o6pa30M yTOHHneTCH nororrae: G npeAejibHO HAeHTH-
(J)Hi];HpyeT / Ha œ. PaccMOTpeHHoe paHee noHHrae npeAejibHofi HAeHTH^HKaunn 
HBjineTCH nacTHbiM cjiynaeM, KorAa œ = COQ = {0,1, •••, i9 • • •} . noHHrae peryjrap-
HOCTH Tenepb onpeAejineTCH TaK: G peryjinpHa Ha U, ecjiH AJIH JIIOOHX a)9feUu. i9 

<Pki{x) = f{x)> x = x0> xl> ••*> xi- riOJIOÄHM 

C+( f\ ^ / HHCJIO H3MeHeHHH rnnoTe3, ecjiH G HAeHTH(})HIi;HpyeT/Ha O), 
^ iJ' l oo B npoTHBHOM cjiynae. 

PaccMaTpHBaeTCH HAeHTH<})HKau;HH HyMepOBaHHbix KJiaccoB {U9 z) oôuuepeKyp-
CHBHbix ^ynKum (T—BbiHHCJiHMan HyMepaunn KJiacca U). H3ynaeTCH MaKCH-
MajibHoe HHCJIO H3MeHeHHH rnnoTe3 npn HAeHTH(})HKauHH nepBbix n (})yHKUHH 
KJiacca U: 

G*{Cû9 n) = max G*{œ9 T*). 

OpeflBajiAOM H aBTOpoM [8], [12] A0Ka3aHa TeopeMa: 
AJIH jiioöoro HyMepOBaHHoro KJiacca {U9 T) MO>KHO nocTpoHTb peryjinpHyio Ha 

U CTpaTernK) G TaKyio, HTO AJIH JIIOôOH nocjieAOBaTejibHOCTH œ 

G*{ùJ9 n) g log2 n. 

CymecTByeT HyMepOBaHHbiö KJiacc {U9 z) HTO AJIH JIIOôOH CTpaTernn G 

G*{œ09 n) £ log2«. 

Jim cpaBHeHHH OTMCTHM, HTO crpaTeran, KOTopan Ka^Abiö pa3 B KanecTBe 
rnnoTe3bi BbiônpaeT dpyuKuyno c HaHMeHbuiHM r-HOMepoM (cpeAH ocraBiiiHXCH 
4)yHKu;HH), AaeT TOJibKO oijeHKy BHAa G*{co9 n) ^ nu nopHAOK STOH oueHKH AJIH 

TaKHx CTpaTerHH B o6meM cjiynae He M O ä C T ôbiTb noHHweH. HAen nocTpoeHHH 
CTpaTernn G, Aaiomeö oijemcy G*{a>9 n) & log2«, onnpaeTCH Ha Apyroö npHHijHn. 
A HMeHHO, nycTb TJ—np0H3B0jibHbifi nepeHHCJiHMbift KJiacc BCioAy onpeAejieHHbix 
(})yHKLj;HH. nycTb Ka>KAofl fe U npHnncaHa HeKOTopan "BeponraocTb" p{f) TaK, 
HTO 2p{f) S 1. OyHKUHio h Ha30BeM (})yHKUHeH Hanöojibmeö BepoHTHOCTH A^IH 
KJiacca U' ç U9 ecjiH AJIH Jiioôoro x 3HaneHHe h{x) paBHO HaHMeHbmeMy y TaKOMy, 
HTO AJIH Jiioôoro z ^ y: 

I! P(f)ì£ E K/). 

PaccMOTpHM cjieAyfomyio, Booôme roBopn, Hea^^eKTHBHyio CTpaTernio G: AJIH 
jiioöbix / H i 3HaneHHe G{(xQ9 f{x0)9 •••, xi9 / ( * , ) » paBHO HOMepy ^ymiuym 
HaHÖojibmeft BepoHTHOCTH AJIH KJiacca U'= {g\ge U&g{x0) = f{x0) &---&,g{xt) 
=f(xi)}' «HerKO yôeAHTbCH, HTO AJIH JIIOôOH fe U HMeeT MecTO G*{œ9f) ^ 
log2(l / p ( / ) ) . OTCiOAa, conocTaBJiHH (J^HKUHH T„ "BepOHTHOCTb"/?foi) = c/n{log2n)2

9 

nojiynaeM G*{<o9 z„) ^ log2« + 0(log2 log2 n). MOMCHO noKa3aTb, HTO crpaTernio 
G MOMCHO CAejiaTb S ^ C K T H B H O H , He MCHHH acHMnTOTHKy nojiyneHHOH oueHKH. 

H3 npHBeAeHHOH TeopeMbi cjieAyeT, HTO cymecTByiOT HyMepoBaHHbie KJiaccbi 
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{U9 z)9 AJIH KOTOpbix HMeioTCH acHMnTOTHHeciCHe HanjiynmHe CTpaTernn HAGHTH-
$HKaUHH (B CMbICJie BeJIHHHHbl G*{û)09 n)). riOAHHeKCOM, KHHÔepOM H aBTOpOM 
[13] noi<a3aHO, HTO cymecTByiOT H TaKne HyMepOBaHHbie KJiaccbi {U9 z)9 AJIH KO-
TopbiXB03MO^HOJiio6oeo6mepeKypcHBHoeyMeHbmeHHe BejiHHHHbi G*{œ09ri). S T O 
BepHO KaK AJIH npoH3BOjibHbix CTpaTerHH, TaK H AJIH peryjinpHbix Ha U cTpaTernft. 
B TO M<e BpeMH npeACTaBJineTCH npaBAonoAOÔHbiM, HTO AJIH "ecTecTBeHHbix" 
KJiaccoB {U9 z) cpeAH peryjinpHbix Ha U CTpaTernn cymecTByiOT aCHMnTOTHHeCKH 
HaHJiynmne. Bojiee noApoÔHO 9TH Bonpocbi eine He HCCJieAOBaHbi. 

6°. Bojiee TpyAHoft 3aAaneH AJIH HyMepoBaHHbix KJiaccoB {U9 T) HBJIHCTCH 
HAeHTH(})HKai;HH r-HOMepOB. B AaHHOM cjiynae rnnoTe3a k{ CHHTaeTCH HCTHHHOH, 
ecjiH zk({x) = f{x) AJIH x e œ. GT{co9 n)—cooTBeTCTByioman t^ymoim HHCJia 
H3MeHeHHft rnnoTe3. OKa3biBaeTCH, TpHBnajibHan BepxHHH oqeHKa GT{co9 n) g n B 
o6u;eM cjiynae He MoaceT ôbiTb cymecTBeHHO noHHHceHa [14]: cymecTByeT 
HyMepOBaHHbift KJiacc {U9 T) TaKon, HTO AJIH JIIOôOH CTpaTernn G9 GT{O)Q, ri) ^ n. 

npHBeAeM OAHO AOCTaTOHHOe yCJIOBHe, npH KOTOpOM BepXHHH OUeHKa MO)KeT 
ôbiTb noHH>KeHa AO log2«. nycTb {U9 z)—HyMepOBaHHbift KJiacc. fljin jiioôoro 
KopTe>Ka </i, •••, iky HaTypajibHbix HHceji paccMOTpHM Haôop (J^HKUHH zil9 •••,TfV 

OnpeAejiHM ^yHKi^nio h<iu,..th>\ AJIH Jiioôoro x ee 3HaneHHe *<*„...,,,>(*) paBHO Han-
MeHbmeMy y TaKOMy, HTO A«TIH Jiioôoro z^y : Card {V|T,X-^) =y} è Card {v | ^ /x ) = z}. 
Kjiacc {U9 z) Ha30BeM nojiHbiM, ecjin AJIH jnoôoro KOpTe>i<a <*i, •••, ik} 9(J)(J)eK-
THBHO MO)KHO nocTpOHTb TaKoe s9 HTO h<iti...tit> = zs. HMeeT MecTO TeopeMa: 
iXnn jiioôoro nojiHoro HyMepOBaHHoro KJiacca {U9 z) MO>KHO nocTpOHTb pery-
jinpHyioHa t/cTpaTernio GTaKyio, HTO A-TIH JIIOôOH nocjieAOBaTejibHOCTH co HMeeT 
MecTO GT{o)9 ri) ;g log2«. 

OTCioAa cjieAyeT, HanpHMep, HTO AJIH KJiacca Bcex npHMHTHBHO peKypCHBHbix 
(J)yHKunft npn oôbiHHOH ero HyMepaunn (o6o3HanHM ee nepe3 z) HMeeT MecTO 
oueHKa GT{co9 ri) ̂  log2w. OTCioAa cjieAyeT TaK>Ke aHajiorHHHan oijeHKa A«TIH 
KOHeHHbix aBTOMaTOB. C(J)opMyjinpyeM 9TO cjieACTBHe, BbiÔHpan B KanecTBe napa-
MeTpa HHCJIO COCTOHHHH aBTOMaTa. riyCTb Uaib—KJiaCC aBTOMaTOB C (f)HKCHpOBaH-
HblM a-6yKBeHHbIM BXOAHHM ajI(J)aBHTOM H è-6yKBeHHbIM BbIXOAHbIM ajI(})aBHTOM. 
nycTb œ—npOH3BOJibHan nocjieAOBaTejibHOCTb BXOAHMX CJIOB, G*{CO9 A)—HHCJIO 

H3MeHeHHft rnnoTe3 npH HAeHTH(})HKai;HH aBTOMaTa A Ha nocjieAOBaTejibHOCTH 
œ H G*(o), Uaib9 k) = max G*{co9 A)9 rAe max ôepeTCH no BceM A e Uatb, HMCIOIUHM 
ne ôojiee k COCTOHHHH. TorAa cymecTByeT peryjinpHan Ha U CTpaTernn G TaKan, 
HTO AJIH JIIOôOH nocjieAOBaTejibHOCTH co9 G*{o)9 Ua>h9 k) & {a-\)k log2fc. B [15] 
noKa3aHO, HTO 9Ta oijeHKa acHMnTOTnnecKH HeyjiynmaeMa. B[15]Taioi<e noKa3aHO, 
HTO aHajiornHHyio BepxHioio oijeHKy MO>KHO nojiynnTb H B cjiynae, KorAa 
BbixoAHbie aji(f)aBHTbi paccMaTpHBaeMbix aBTOMaTOB npoH3BOjibHbie. OTCioAa 
BbiTeKaeT OAHO Ban<Hoe cjieACTBHe AJIH CHHTe3a nporpaMM no ncTOpHHM HX 
paôoTbi [16]: cymecTByeT CTpaTernn G9 KOTOpan CHHTe3HpyeT nporpaMMbi P 
no onepaunoHHO-JiornnecKHM HCTOPHHM HX paôoTbi Ha OTAejibHbix npnMepax, 
coBepman npn 9TOM acnMnTOTHnecKH He ôojiee, neM | P || log21| P || H3MeHeHHfi 
rnnoTe3 (OIUHôOK), Il PII— HHCJIO jiornnecKHX KOManA» BXOAHIIJHX B P. 3 T O HHCJIO 
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OTHOCHTeJIbHO HeÔOJIbUiœ H nOHTH COH3MepHMOe C HHCJIOM OmHÔOK, KOTOpbie 
AejiaeT cpeAHnn nporpaMMHCT npn nporpaMMnpoBaHnn TpaAnunoHHbiMH MeTO-
AaMH. Bonpoc o TOM, HMeeT JIH MecTO aHajiorHHHan oueHKâ, KorAa BMecTo 
onepaunoHHo-JiornnecKHx HCTopnfl paccMaTpnBaioTCH onepaijnoHHbie ncTOpnH, 
OCTaeTCH OTKpbITbIM. TaKtftë OTKpbITbIM OCTaeTCH BOnpOC, MOHCHO JIH nOJiyHHTb 
aHajiorHHHyio oqeHKy c noMombio CTpaTerHH, KOTOpan Ka>KAbift pa3 B KanecTBe 
rnnoTe3bi BbiAaeT nporpaMMy c MHHHMajibHbiM HHCJIOM KOMaHA ("Hanôojiee 
npocTyio rnnoTe3y"). 

B 3aKJiK)HeHHe OTMCTHM, HTO 3a npeAêjiaMn HacTonmero AOKJiaAa ocTajiHCb 
ôojiee npaKTnnecKne BOnpocbi, Kacaiomnecn CHHTe3a n npoBepKn KoppeKTHOCTH 
nporpaMM no nx paôoTe Ha oTAejibHbix npnMepax ([9], [17], n Ap.)-
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Spectral Functions of Graphs* 

Alan J. Hoffman 

1. Introduction. Let G be a graph, and let its adjacency matrix A{G) be the sym
metric (0, 1) matrix with 0 diagonal whose {i9j)th entry is 1 if and only if vertices / 
and j of G are adjacent. Denote the eigenvalues of A{G) by Ai è À2 è ••• or A1 ^ 
X2 ^ • • •. The careful examination of the eigenvalues of A{G), and of the eigenvalues 
of some linear combinations of A{G)9 J9 and /, plays a central role in many com
binatorial investigations (see the excellent survey in [7]). Despite these achievements 
there are very few functions of a graph whose magnitude, even roughly, we know 
to depend on the spectrum of its adjacency matrix. To focus attention on this 
question, we first define precisely what we mean by such a "spectral function" and 
survey briefly what spectral functions are now known. 

An unbounded numerical function f{G) on the set of all graphs is said to be 
spectral if there do not exist two sequences of graphs GÌ9 G29 ••• and G'l9 G'2i ••• such 
that (i) for all /, the spectrum of A{G() is the same as the spectrum of A{G\)9 and (ii) 
{/(Gy)} is bounded, {/(Gy)} is unbounded. An auxiliary question, given a spectral 
function, is to determine the precise part of the spectrum on which it depends. 

(1) The maximum degree d{G) of the vertices of a graph is a spectral function, 
depending on X\. By the Perron-Frobenius theory of nonnegative matrices, it is 
easy to see that d{{G))1/2 ^ Ai ^ d; indeed [5], if d{G)9 the minimum degree of 
the vertices of G9 exceeds 2, then d{G)/{d{G) - 1)1/2 < Xx. 

(2) Let T{G) be the smallest number of parts into which the set of edges of a 
graph G can be partitioned so that each part is a complete bipartite graph on the 
vertices touched. It can be shown [2] that T{G) is a spectral function, depending on 
the number of eigenvalues each of which is at most — 1. (On the other hand, if each 

•This work was supported (in part) by the U. S. Army under contract DAHC04-72-C-0023. 
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part is a clique, or if each part is a complete multipartite graph, the corresponding 
function is not spectral.) 

(3) Call two vertices of G equivalent if every other vertex is either adjacent to 
both or adjacent to neither. Then the number of equivalence classes is a spectral 
function [3], and depends on the number of eigenvalues each of which is at most 
(— 1 — 51/2)/2 plus the number of eigenvalues each of which is at least 1. 

One way of discovering spectral functions, depending just on one particular 
eigenvalue, is to look for nested families of graphs such that no large representative 
of any family is an induced subgraph of a graph with that eigenvalue of modest 
size. For example, let mi{G) be the smallest integer m such that neither Km nor 
Kitfn is an induced subgraph of G. Then (1) above implies, by Ramsey's theorem, 
that mx{G) is a spectral function of G9 depending on X\. 

(4) Let Hn be the graph formed by adjoining to K2n one additional vertex adja
cent to exactly n vertices of K2n. Let ml{G) be the smallest integer m such that 
neither Khm nor Hm is an induced subgraph of G. Then [1] m\G) is a spectral 
function of G9 depending on A1. A similar result [6] holds yielding a spectral func
tion m2{G) depending on X2. 

These suggest the following 
CONJECTURE. For each /, there exists a finite set of sequences of graphs {G&}, 

n = 1, 2, '",j9 belonging to a finite set of indices, such that (i) Gì is an induced 
subgraph of GJ

n+l for ally, (ii) if m{{G) is the smallest m such that, for ally, Gj
m is not 

an induced subgraph of G, then m{{G) is a spectral function, depending on lim 

(Of course, one should make the corresponding conjecture for X{.) At the 
moment, we seem to have the tools for exploring this conjecture for small i, 
which involves discovering the specific families {G&}, but not for considering the 
general case. 

Results analogous to (4) can be established for the eigenvalues of the matrix 
J — I — 2A{G), and have various interesting interpretations and corollaries. 

(5) Let G and H be graphs, on the same set of vertices, and let d{G9 H) be the 
maximum valence in the graph whose set of edges is {E{G) — E{H)) [} {E{H) — E{G)). 
Let dB{G) be minimum of d{G9 H) where H ranges over all complete bipartite 
graphs on all vertices. Then [4] dB{G) is a spectral function (of the eigenvalues of 
/ - / - 2A{G))9 depending on X\J - I - 2A{G)). 

COROLLARY. If R is any symmetric matrix every entry of which is ± 1 , then every 
eigenvalue of R other than the largest is bounded by a function just ofXl{R). 

(6) Results on the second eigenvalue of symmetric matrices, every entry of which 
is ± 1 , have recently been proved by J. J. Seidel and the author. Together with 
(5), they establish that the following is true for i = 1 and 2: 

CONJECTURE. For each /, there exists a function/,- such that, if R is any symmetric 
matrix every entry of which is ± 1, then 

min Xi{DRD + / ) ^fi{Xi{R))9 D diagonal, da = ± 1. 
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Extremal Properties on Partial Orders 

D. J. Kleitman 

This paper contains a brief description of recent developments in three areas 
related to extremal properties of subsets of finite partially ordered sets. The three 
areas concern generalizations of Dilworth's theorem; a study of partial orders 
obeying inequalities analogous to that of Lubell, Meshalkin and Yamamoto for the 
lattice of subsets of a finite set; and extensions of the Littlewood-Offord problem 
on the distribution of linear combinations of vectors. Fuller descriptions of the 
first two problems appear in the Proceedings of the Nyenrode Conference (July 
1974). 

1. Generalizations of Dilworth's theorem. A finite partially ordered set is a finite 
set on which a binary "order" relation (one that is reflexive, asymmetric and 
transitive) is defined. A "chain" is a subset of such an order every pair of elements 
of which is ordered. An antichain is a subset of an order no two distinct elements of 
which are ordered. A well-known theorem of Dilworth states that the maximal size 
of an antichain in a partially ordered set S is equal to the minimal number of blocks 
in a partition of S into chains. If A is the set of all antichains of S9 C the set of all 
chains of S9 P and Q the sets of all partitions of S into chains and antichains 
respectively, this theorem can be written as 

fi = Max S 1 = Min S 1. 
B^A Geß £>ep H^D 

The dual relation (interchanging chain and antichain) also holds : 

/x* = Max S 1 = Min S 1. 
BeC GeB D^Q H^D 

We define a ^-family to be the union of k antichains, and a fc*-family to be the 
union of k chains. Let Qk be the set of fc-families and Ph the set of fc*-families. 
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C. Greene and the present author considered the question: What can be said 
about the maximum size of a k- (or k*-) family? 

Since each chain can intersect each antichain at most once, the right-hand sides 
in the relations above must obviously be greater than the left-hand sides. The 
analogous obvious inequalities for fc-families can also be proven to be equalities. 
The results obtained by C. G. and D. J. K. are 

(1) A s Max ( S l) = Min( £ Min (fc, | Jï|)) 

where | H\ is the number of elements of H. 
(2) If a£-saturated partition D into chains is one for which/Ä = J^HeDMm{k9\H\) 

then there always exist simultaneously k and k + 1 saturated partitions. (Similar 
results for k and k -f j fail for j ± 1.) 

Greene has obtained the following additional results : The same results hold with 
chain and antichain reversed. Moreover, if one constructs an array in which the 
length of the £th row is fk — fk_h and rows are left justified, then the length of 
the £th column is/!4 — /|L l5 with/Ä* the maximal k* family size. 

A. J. Hoffman has noted that these relations may all be proven using a formula
tion of the properties of partial orders in terms of linear inequalities using duality in 
linear programming, in particular an extension of the formulation used by Dantzig 
and himself to prove Dilworth's theorem. 

2. The LYM property. The Boolean algebra of subsets -of a finite set S forms 
a commonly encountered example of a partial order. For this example there is a 
"rank function" defined on the order; each element is a subset of Tand has rank 
given by the number of elements it contains. For our purposes a rank function is an 
order preserving function defined on the elements of the order with values in Z. 
Let the number of elements of rank k be Nk. 

For the subset order, Sperner, in 1928, proved that/i = MaxÄiVÄ. This result has 
been proven for the divisors of an integer under "divides" as order relation, for the 
subspaces of a finite vector space over a finite field; it may or may not hold for 
partitions of a finite set or finite integer with refinement as order relation. 

Lubell, Meshalkin, and Yamamoto (and apparently others as well) independently 
noticed that a stronger inequality holds. If x is any fc-family and Xj is the number 
of its elements of rank j , then 

(3) L(x,INj)£k. 
(The proof is easy—each summand on the left measures the proportion of all 
possible maximal chains met by members of x of rank j ; the inequality can be 
interpreted as saying that a fc-family meets a chain at most k times.) This relation 
implies Sperner's inequality as well as many other results. 

The question considered in the work announced here is : For what partial orders 
does the same result hold? 

The central result is the following characterization: The LYM inequality (3) 
will hold on a partial order if and only if the order S obeys the "normalized match
ing condition". 
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This condition states that for each k there exists a 1-1 mapping from A^+i copies 
of the /cth rank of S to Nk copies of the {k + l)st rank of S such that each element 
is ordered with respect to its image. 

As it is known that the divisors of an integer under divisibility as order relation 
satisfies normalized matching, this order must therefore satisfy the LYM property, 
a result previously obtained by I. Anderson. 

The order of partitions of n fail to satisfy the LYM property, as the lattice of 
partitions of a finite set (noted by J. Spencer). 

A number of consequences and implications of the LYM property can be 
described. The reader is referred to the reference for details. 

3. The Littlewood-Offord problem. Given n vectors, each of unit magnitude or 
more, consider all linear combinations of them with coefficient 0 or 1. (Other co
efficient sets may be considered with conclusions to most of the results described 
below.) Erdös, generalizing some questions of Littlewood and Offord, raised the 
question, how many of these linear combinations can lie in the interior of the union 
of k unit diameter regions? Katona introduced the question, if one deals with a 
diameter regions, what analogous conclusions follow? 

Erdös completely solved the problem for vectors in one dimension by noticing 
that for that case the linear combinations lying in the union of k unit diameter 
regions must be a /c-family in the sense of the first section above. 

Katona and myself independently found a generalization of the Sperner property 
that solved the problem for a single unit diameter region for vectors in two dimen
sions. Katona obtained a solution in the same case for a AJ~2 diameter region. A 
somewhat different approach of Kleitman yields the same diameter 1 and dia
meter -y/2 upper bounds (namely {[_„%i) a n d ([CMTD/2]))

 m arbitrary dimensional space. 
The ^-family result in one dimension implies that with suitable definition of rank, 

a LYM inequality can be obtained restricting the number of linear combinations 
for this case. 

It is the aim of the present research to examine the questions 
1. What larger diameter results exist? 
2. What strengthening of the bounds may be obtained? 
3. What analogues of the LYM property may be obtained in higher dimensions 

than one? 
A number of results have been found in all three of these directions. A lengthy 

paper describing all these will appear in Advances in Mathematics. 
In this article we confine ourselves to stating some results and open questions of 

the first kind, and to proving one simple result that to some extent is a mixture of 
the two latter categories. A number of other results are described in the reference. 

The best bounds have been obtained for vectors in two dimensions with dia
meters -y/T and ^ / T . They are 

2([«/2]> a n d ([w/2]) + ([»/2] + l ) + ([n/2]- l ) 

for 77 even, respectively. These bounds are conjectured for all dimensions, the latter 
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for even n9 and for odd n ^ 5. It is not difficult to conjecture upper bounds in terms 
of geometrically simple structures for any sufficiently small diameter compared to 
n. We prove the following result. 

THEOREM. Suppose two of the vectors have angle between them having cosine ^ 
\ in magnitude. Then the number of linear combinations in a unit diameter region 
cannot exceedz\ 

Z = \Kn + l)/2]) - 2([(«-~ì)/2]} 

{This is a tighter bound than ([W 2̂])-) This bound is not best possible. 

If all pairs of vectors have | cos 6 \ > \ for 0 the angle between them, the problem 
reduces to the one-dimensional case and LYM inequalities can be obtained for it. 

We conclude with a proof of this theorem. It is extremely simple—unfortunately 
simpler than most results on this area. 

PROOF. We obtain our bound by partitioning the set L of all linear combinations 
into blocks such that no two in a block are within a distance one of each other. 
Since the linear combinations in the interior of a diameter one region can have at 
most one I.e. per block, if the number of blocks is z our conclusion follows. Now 
we can partition L into ([„%]) s u ch blocks by imitating a standard partition of the 
subset of a set into that number of chains. 

Such a partition for subsets can be constructed inductively as follows. Consider 
each block B in a partition of the subsets of (1 ••• k) into chains. If a new element 
k + 1 is introduced one can define two chains of subsets of (1, ••-, k + 1) cor
responding to B—B itself and the addition of {k + 1) to each member of B. One 
obtains the desired partition by removing the maximal member of the latter and 
adding it to B. It is easily verified that this partition is/-saturated for every/ 

Thus for linear combinations, if for each k we can likewise transfer one member 
of one of the "daughter" blocks of $ block B on a partition of l.c.'s up to vector k 
to the other, we obtain a partition for k + 1 vectors having the same number of 
blocks of each size as the chain partition just described. We can always do this, 
since if the vector ak+i is introduced we can transfer the linear combination in B 
having minimum component in the direction of ak+i from B to the translate of B 
by ak+i. We thereby obtain two daughter blocks from B obeying the distance re
quirements on blocks and having sizes one less than and one greater than B. 

This argument yields the ([M72]) bound in any dimension. To obtain the im
proved bound of the theorem consider the two vectors having cosine of their in
cluded angle ^ \ in magnitude. All four of their linear combinations have distance 
^ 1 from one another, so that for k = 2 they form one 4-element block instead of 
a 3- and a 1-element block as in the chain case. Obtaining daughters from one 
4-element block for k = 2 by induction as indicated yields a partition into 

blocks as can easily be shown. 
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On the Theory of Inference Operators* 

Rolf Lindner 

It is well known that the theory of inductive inference contributes to a theory of 
interpolation in the discrete case: One investigates algorithms, which, from given 
values of a function, compute new ones (see [Go], [Ba], [Fe], [Thi], [Blu] et al.). In 
this discrete interpolation theory, such algorithms assign, to certain local informa
tions, constructive, global informations, i.e., one realizes mappings of the form 
0: ?$N2 -> N; the values in range 0 (hypotheses) are interpreted in a suitable ef
fective numbering ß: JV-> Pa1, where Pa1 denotes the set of partially recursive 
functions. Detailed studies of such inference operators are to be found, e.g., in 
[KILi]. 

At the same time, it is well known that this inductive recognition is a very special 
case of the one used in mathematical statistics. However, on the one hand, in 
mathematical statistics one finds hardly any constructive elements (global informa
tion, i.e., inductively determined laws mean here parameters of distributions), on 
the other hand, inductive inference restricts itself a priori to recursive objects 
(laws mean here computing procedures, Godei numbers etc.). 

Discrete mathematics, however, has already had for quite a while a much more 
far reaching concept of law, namely that of a constructively described null set. 

In this paper, we want to discuss some aspects of a theory of inference operators, 
in which the used hypotheses are constructively described null sets. For the sake 
of simplicity, we explain our ideas using the example of the set of indicator func
tions on N, which we shall identify with the set X<» {X = {0, 1}) of infinite sequences 
with values in X; we assume further //(0) = ju{l) = i and denote the product 
measure on X°> by ß. 

Following [Ma], [Ja], [Sch], we call a set 9? £ X* a recursive null set, if there 

"Translated from German at the author's request. 
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exists a recursive sequential test for 9?, i.e., a Y with the following properties : 
(Rl) Y Ç N x Z* and Fis enumerable. 
(R2) If we let [7,] =def {p: [i9p] e Y}-X"9 then fi{[Yt]) <Z 2~<. 
(R3) If we let <SlY =def f|, [7J, then 9?r = ft. 

Moreover, following [Sch], we shall call 31 a totally recursive null set, if there 
exists a recursive sequential test Y for 31, such that the following holds: 

(T4) The function/with/(0 =def fi{[Yt]) is computable in the sense of recursive 
analysis. 

What are the general implications, if one pursues inductive recognition by 
recursive null sets, i.e., if one considers inference operators 0: X<° -» TV, for which 
h e range 0 is interpreted by an effective numbering ß of recursive sequential tests 
(null sets)? 

For this, we let AKZ{09 ß) =def {£: £ e domain 0 A £ e/3°0(£)} ("e" is here 
shorthand notation for: £ is an element of the null set, described by the sequential 
test ßo0{£)). 

(I) The results of the theory of inductive recognition carry over. (According to 
[Sch], given any recursive £ e Xœ

9 there is a totally recursive sequential test Y with 
5Wr = {£}•) 

(II) The types of realizations of 0 are very similar to those discussed in inductive 
inference. (Identification by numbering, limit recursion, etc. ; see [So], [Go].) 

(III) The weaker concept of law allows also the nontrivial recognition of certain 
nonrandom and nonrecursive objects. 

(IV) The fusion of statistics and constructive mathematics, seen as a goal by 
[Sch], is completed. 

In order to illustrate (I)-(IV) we formulate here some statements about a certain 
type of recognition, using regular null sets. As in [McN], we call M ç X<° regular, 
if there exist regular Wi9 Vi g J * ( U ^ «) such that M = (J?=i W4Vf. Since 
recursive null sets are, topologically speaking, G8 sets (i.e., countable intersections 
of open sets), we shall consider from now on regular G8 sets. From [StWa] we know 

LEMMA 1. The following statements are equivalent: 
(a) M is a regular G§ set; 
(b) there are regular Wi9 V{ £ X* (1 ^ / ^ n)9 which are totally disordered with 

respect to the initial word relation such that M — \]%x WiVf; 
(c) there is a finitely determined acceptor 9Ï = [Z, X9f z0] and a $ a $Z, such 

that 

M = {£: 3Z' (Z ' e3 A U{0^)) [\Z'± 0)} 

where 0^) =def /(z0,£(l))- •- -/(z0, £(1 )•.•£(*)) and U{Q = {z: card{«: Ç(«) = z} 
= Ko}. 

This immediately implies 

THEOREM 2. Every regular Gd null set is totally recursive. 

Let R be the family of all regular G8 null sets and 3lR = def [j R ; let A be an effec-
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tive numbering of all recursive null sets (which exists according to [Ma], [Sch]). For 
any generally recursive function F: X* -> N9 we shall consider the set 

(*) AN{F) = J£: s = lim F{p) A A{S) e R A £ e &{A(s)j\ 
dei K />-£ ) 

of all "laws", recognized by F9 by a limit procedure. (Here S(M) denotes the closure 
of M.) This definition was made, following the method "GN" in [Ba], for example. 

Definition (*) does not force us to leave the regular Gd null sets because of 

LEMMA 3 (STAIGER). E(M) eRfor MeR. 

Further let AN =def {AN{F): /^generally recursive} and 31AN =def U AN. 

COROLLARY 4. 3lR = 3tJJV. 

Through identification by enumeration one has 

THEOREM 5. Given any effective ß: N -* R9 one can find effectively a generally 
recursive F such that 3lß £ AN{F)for $lß =def [jn ßn. 

In the proof one uses the fact that the property p • Xm f| M ^ 0 , for p e X* and 
regular M ^ X°> can be decided. This, too, explains why we restrict ourselves 
here to regular null sets. 

Let 3lT be the union of all totally recursive null sets. A comparison with 3ljN 

gives 

THEOREM 6. yiT => $ljN. 

One can prove the stronger result : If £ = 01 ••• 0W1W ••• is an element of a regular 
set M e Zw, then ß{M) > 0. 

Because of Corollary 4 we have, therefore, for the set Al ç X<* of generally 
recursive sequences 

THEOREM 7. At^Sl^ ^ 0 , since it is well known that Al c %lT {see [Sch]). 

Thus, on the one hand, one has recognitions of type AN for nonrecursive, non-
random sequences ; on the other hand, not all recursive sequences are JiV-recogniz-
able. 

We ask ourselves now whether there exists a universal JN-recognition for 9?Ä. 
To this effect, we prove 

THEOREM 8. The property of a regular Gs set to be a null set is decidable. 

By Lemma 1, it suffices to decide the property fi{[V]) < 1 for V ^ X* regular 
and totally disordered. 

To this end we use 

LEMMA 9 (PAZ, WECHSUNG). If V £ X* is totally disordered and if V is accepted 
by the finite determined automaton SÏ = [X, Z9f, z0, F] then one can effectively find 
polynomials g and h of degree card Z with rational coefficients, such that fi{[V]) = 
s(2-i).(A(2-i))-i. 

Thus one has 
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COROLLARY 10. One can construct an effective ß:N -* R such that ß{N) = R. 

Hence we conclude from Theorem 5 and Lemma 3 

THEOREM 11. One can construct a universal generally recursive F: X* -» N such 
that AN{F) = 3lR. 

At the same time one has 

THEOREM 12. One can construct a totally recursive sequential test Y such that 
3lR £ mY. 

For the proof one uses the following lemma, which goes back to [Sch], because 
of Theorem 2. 

LEMMA 13. Given any effective ß:N -> R, one can find a totally recursive sequential 
test Y such that 31 ß £ 3lY. 

This is another confirmation of Theorem 6, if one uses 

THEOREM 14 (SCHNORR). Given any totally recursive test Y, one can effectively 
construct a £ e Al\3lY-

Since there exists an effective numbering of all acceptors of regular G3 null sets 
such that the state numbers of the numbered automata increase, Theorem 8 im
plies the following sharpening of Corollary 10. 

THEOREM 15. One can give an effective Occam numbering ß : N -> Rfor R. 

For the strategy F: X* -> N, constructed in Theorem 11, we even get now that 
A o $(£) is a weight-minimal regular G§ null set for every £ e 3lR. By this, complexity 
in the discovered laws becomes accessible to investigation. 

The theorems formulated here for the case of JN-realizations of inference 
operators confirm sufficiently (I)—(IV) and suggest how to continue the investiga
tions for other types of realizations {GH'9 GN°°9 etc. ; see [Ba]) and for other classes 
of null sets constructively described. This will be done in a subsequent paper which 
is being prepared. 
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The Inherent Computational Complexity of 
Theories of Ordered Sets* 

Albert R. Meyer 

The significance of the theoretical distinctions between problems which are 
effectively decidable and those which are not can be challenged by objections of at 
least two kinds : 

(1) Only a finite collection of sentences about arithmetic, for example, are of 
human concern, so the undecidability of the infinite collection of true sentences of 
arithmetic is immaterial. 

(2) An efficient decision procedure for the monadic predicate calculus, for ex
ample, would have important practical applications, but the mere fact that it is 
effectively decidable is immaterial. 

We first consider the second objection. Clearly more time and effort are required 
to prove the truth or validity of long sentences simply because it may require along 
time to read them. The "efficiency" of a decision procedure must thus be measured 
relative to the size of the sentences to which the procedure is applied. A hint that 
many decision problems in logic cannot have efficient decision procedures follows 
from the observation that short sentences can define relatively large sets. 

For example, consider the pure predicate calculus with monadic (i.e., one argu
ment) predicate letters Ph P29 ••-, Pn. If we choose some interpretation of Ph P2, •••, 
Pn as predicates on some domain, then any element x in the domain can be iden
tified with the vector of truth-values (P\{x)9 Pyfac), •••, P„{x)}. Then the formula 

D£x9y) := {P£x) = -iP,{y)) A A foto = PjW) 
j*i 

means that x and y differ precisely in their /th component. Hence, the sentence 

This research was supported by the National Science Foundation under research grant GJ-
43634X. 
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S:=Vx(j^lyDfay)) 

means that for every vector x and every component of x, there is another vector 
y which differs from x precisely at that component. Clearly S is satisfied only by 
interpretations in which each of the 2n vectors occurs in the domain. Notice, how
ever, that S9 even with the abbreviated conjunctions fully expanded, contains only 
proportional to n2 connectives and is of length proportional to w2-log n. (By the 
length of S we mean the number of occurrences of all symbols including connec
tives, variables, predicate letters and parentheses. The factor log n appears because 
the alphabet of symbols is assumed to be fixed and n-log n subscript digits are 
then required to represent the n distinct predicate letters PÌ9 •••, Pn.) 

The following theorem implies that any decision procedure for satisfiability of 
sentences of monadic predicate calculus with n predicate letters requires essentially 
the same effort as exhaustively testing all possible interpretations on domains of 
size up to 2n. (The usual proofs of the decidability of monadic predicate calculus 
imply that testing domains up to this size is sufficient.) 

THEOREM (MEYER [MR75]). Any Turing machine which, given any sentence of 
monadic predicate calculus, decides whether the sentence is satisfiable, requires a 
number of steps exceeding 2e 'Iength(s)/Iogaength(s)) for some s > 0 and infinitely 
many sentences S. 

It should be apparent that if a Turing machine requires an exponentially growing 
number of steps, then so will any other reasonable model of a computer. Moreover, 
the lower bound of the theorem applies even to nondeterministic Turing machines, 
which implies that the shortest proofs of satisfiability or validity of such sentences 
will also be exponential (cf. [FR74] for further discussion of proof-length). 

The preceding theorem and others to follow can in retrospect be seen as a natural 
extension of GödePs first incompleteness theorem and Turing's and Church's proofs 
of undecidability: One "arithmetizes" or codes the computations of Turing ma
chines into a domain and constructs sentences which assert that the coded computa
tion halts in an accepting state. The technical flavor of the proofs differs from unde
cidability proofs in that emphasis rests on efficiently (relative to the size of the 
Turing machine) constructing short sentences which describe computations which 
eventually halt after a long time. We shall not attempt to describe the proofs further. 

The first proof that a decidable theory, namely the weak monadic second-order 
theory of the successor function on the nonnegative integers (WS 1 S), was discovered 
in May, 1972 [Me72], [Me73]. Since then reasonably close upper and lower bounds 
on the inherent computational complexity of most of the classical examples of 
decidable theories have been obtained. 

THEOREM. Any Turing machine which decides membership in the set st requires 
a number of steps exceeding 

„lengtWS). 

22' }£.log(length(S)) 
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for some e > 0 and infinitely many Sestf9 where stf is any of the following : 
1. WSIS {Meyer [M&3])9 

2. star-free expressions (from automata theory) for the empty set {Stockmeyer 
[St74], [SM75]), 

3. the theory of linear orders {Meyer [St74], [SM75]), 
4. the theory of any nonempty family of infinite linear orders with a single monadic 

predicate {Stockmeyer [St74], [SM75]), 
5. the theory of two successors and prefix {Meyer and Stockmeyer [St74], [SM75]), 
6. the theory of a single unary function {M. Fischer and Meyer [FM75]), 
7. the theory of pure finite types {M. Fischer and Meyer [FM75]), 
8. the theory of addition on the nonnegative integers with the predicate "x is a 

power of 2 and x divides y" {Meyer [Me73]), 
9. the theory of any nonempty family of pairing functions {Rackoff[Rac74b]). 

For each of these examples, decision procedures are known which require at most 

22"'2} n 

Turing machine steps on inputs of length n. It is a curious empirical observation 
that all natural decision problems known to be decidable require at most this many 
steps. (Of course it is not hard to contrive examples of decidable theories which 
are not even primitive recursive (cf. [Rac74b]).) 

An exponential lower bound for the computational complexity of the theory of 
essentially any algebraic structure follows from the following theorem. A family 
of semigroups is of unbounded order if for every k > 0 there is a semigroup in the 
family and an element s in the semigroup such that s* ^ s* for all 1 ^ / < j ^ k. 

THEOREM (M. FISCHER [FR74]). The first order theory of any family of semigroups 
of unbounded order requires time 2e ' I**BMS)9 

An immediate corollary is that exponentially many steps are required to decide 
sentences in the theory of the real numbers under addition, and, a fortiori, efficient 
implementations of Tarski's celebrated decision procedure for the real field do not 
exist. Decision procedures for sentences of length «in the first order theory of the 
real field which require at most 22*' steps for some constant k have recently been an
nounced by Collins [Col74] and independently by Monk [Mo74]and Solovay 
[So74]. 

The decision problem for Presburger's arithmetic (i.e., the first order theory of 
addition of integers) which admits a very simple proof of decidability compared to 
real closed fields is computationally more difficult. 

THEOREM (M. FISCHER-RABIN [FR74]). Presburger's arithmetic requires time 

THEOREM (OPPEN [Op73], FERRANTE-RACKOFF [FeRa75], [Rac74]). Moreover time 
2*^™ is sufficient. 

Fischer-Rabin [FR74] also have shown that three exponentials of steps are re-
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quired to decide the theory of multiplication of positive integers, and Rackoff 
[Rac74a, b] has developed a general theorem relating the complexity of theories of 
structures to theories of powers of structures (the positive integers under multi
plication being the weak direct power of the nonnegative integers under addition) 
which yields an upper bound of four exponentials for the theory of integer multi
plication. 

We note that since the lower bounds apply to nondeterministic as well as deter
ministic Turing machines, while the upper bounds are always deterministic, upper 
and lower bounds which differ by only one exponential are well matched (cf. 
[St74] for further explanation of this remark). 

Apparently similar theories may have quite different complexities. 

THEOREM (FERRANTE [Fe74]). The first order theory of& requires for sentences of 
length n time L{n) and can be decided in time U{n) where 

@ = 
1. Integers with successor 
2. Integers with order 
3. Integers with successor and a 

single monadic predicate 
4. Integers with order and a y*'''2}6'*1 o2-''2}n 

single monadic predicate 

(The lower bound in the last line follows from the result of Stockmeyer cited 
earlier, and the upper bound is implicit in the decision procedures of Büchi-Elgot 
[Bu60], [E161] and Rabin [Rab69].) 

Thus the second objection raised in the first paragraph seems cogent. Mere 
decidability of a problem cannot be taken even to suggest that the problem admits 
feasible, practical decision procedures. Indeed nearly all the known decidability 
results of logic are inherently impractical in that exponential or more time is re
quired by any possible decision procedure. (A notable exception is the decision 
problem for the propositional calculus. No subexponential time procedure is 
known, but neither have any nontrivial lower bounds been proved. We regard the 
determination of the computational complexity of the decision problem for the 
propositional calculus as the most important open problem in the theory of 
computation. Cook [Coo71]and Karp [Ka72] show that dozens of classical problems 
of combinatorial optimization are computationally equivalent to the decision 
problem for the propositional calculus.) 

To the first objection, however, the proofs of the above theorems as well as classi
cal undecidability theorems provide an implicit answer; the theorems about in
finite problems often contain information from which one can estimate the difficulty 
of finite problems. 

Consider Boolean functions of n variables and programs (or logical networks) 
which compute them by successively applying binary Boolean operations to the var
iables and to previously computed results. For example, the sequence of operations 
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tfx : = xx A x2, fl4 : = fli v a29 

a2 : = xi A *3 , A5 : = a4 v o3, 

fl3 : = X2 A *3> «6 : = ~~i(«l A X3), 
fl7 : = öf6 A a 5, 

comprises a program for the function 

/ ( * 1 , *2> ^3) = K*l A X2) V (*! A X3) V (X2 A X3)] A - i f a A X2 A * 3 ) . 

Thus/(xi, :̂2, x$) = 1 if and only if exactly two of the zero-one valued variables 
*b *2> *3 have the value one. 

We choose sentences of length n in some formal theory and code the symbols in 
these sentences as binary sequences. In the particular example below, six binary 
digits are sufficient to code all the symbols required, so sentences of length n 
correspond to binary sequences of length 6n. We then inquire about the minimum 
number of binary operations required in a network computing the function of 6n 
variables which equals one if and only if its 6n inputs are the code of a well-formed 
true sentence. 

The previous proofs show that short sentences can describe large networks as 
well as large Turing machine computations, and from this one can deduce that the 
size of networks which decide sentences of length n must grow exponentially with n. 
(This was first proved in 1967 by Ehrenfeucht [Eh72] for the sentences of "bounded 
arithmetic" with explicit use of constants in exponential notation, e.g., 329', allowed 
in the sentences.) In particular, 

THEOREM (STOCKMEYER-MEYER [St74], [SM75]). If we choose sentences of length 
616 in the decidable theory of WS\S and code these sentences into 6 x 616 = 3696 
binary digits, then any logical network with 3696 inputs which decides truth of these 
sentences contains at least 10123 operations. 

We remind the reader that the radius of a proton is approximately 10~13 cm, and 
the radius of the known universe is approximately 1028 cm. Thus for sentences of 
length 616, a network whose atomic operations were performed by transistors the 
size of a proton connected by infinitely thin wires would densely fill the entire 
universe. 
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Complexity of Product and Closure Algorithms 
for MatricesT 

M. S. Paterson 

0. Abstract Some algorithms for matrix product and for "transitive closure" of matrices 
over various structures are described, and relationships among the complexities of these 
operations are demonstrated. Determining the connected components of directed graphs, 
finding shortest distances in a network, and recognizing context-free languages are all 
applications of closure algorithms in different structures. 

1. Matrix product over rings. If A, B are n x n matrices over a ring, then their 
product and sum are given by 

{A-B)ik = 2 %• x bjh {^ + B)ik = aik + bik. 
i 

Counting just the elementary ring operations used by the obvious algorithm, we 
have w3 multiplications and n3 - n2 additions, and so 0(/?3) operations for the 
product and n2 operations for the sum. We shall refer loosely to these counts as the 
complexity of the corresponding algorithm. 

If A, B are partitioned in a suitably consistent way as shown below, we have the 
identity : 

^ n I A\2 \ ( Bn j 2?12 \ / AnBn + 412^21 j ^11^12 + Ai2B: 22 

^21 M22 / \ ^21 I ^22 / \ ^21^11 + ^22^21 ! 2̂1-̂ 12 + ^22^22 

This suggests a recursive algorithm which forms the product of two n x n matrices 
{n > 1) by computing the 8 indicated products of n/2 x n/2 matrices and then sum
ming them as shown. These smaller products are computed by the same algorithm 

tThis research was supported in part by the National Science Foundation under grant GJ-
43634X. 
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applied recursively. This algorithm has a complexity P{n)9 which satisfies P{n) ^ 
8 -P(r«/21) + 0{n2). It is easily seen, however, that P{n) is proportional to n3. 

2. Strassen's algorithm. The remarkable algorithm discovered by Strassen [Str] 
provides a key motivation for the results presented in this paper. He showed that 
the four submatrices A^By + Ai2B2j for i,j = 1 , 2 , can be computed using only 7 
rather than 8 small matrix products. The method is most easily presented in dia
grammatic form. 

B. 
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In this figure a • (o) in cell {Aij9 Bkl) represents the term + ( - ) AyBkh The 7 
connected groups each represent a set of terms which can be produced by a single 
product. For example, the large group of 9 terms comes from the product 
{-An + A2X + ^22X^11 - ^12 + ^22)- The f o u r quadrants of the product matrix 
C are given by 

C22 = a + c 4- d + e. 
Cn = a 4- b9 

C2i = a + c + d 4- g9 

These identities are a variant of those in [Str], obtained by applying a simple 
linear transformation. The complexity of Strassen's algorithm satisfies P{n) ^ 
7-P(«r«/21) + 0{n2) which yields P{n) = 0{nQ) where 0 = log27 « 2-8. 

Since recurrence relations of the above type will occur frequently, we present 
here a more general solution. 

LEMMA. Let G{n) = n& • h{n) where ß^O and h is a positive, nondecreasing function 
satisfying h{n) = o{ne)foralle > O.Ifa ^ \9b > 1 and F is a nonnegative function 
satisfying : 

F{n) = a-F{Vn/b~\) + 0{G{n)) 

then, ifa = log6 a, 
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F{n) £ 0{na) if a > ß9 

è 0{G{n)) if a < j8, 
£ 0{G{n)-log n) ifa = ß. 

3. Matrix inversion and determinants. For fields these immediate applications of 
Strassen's product algorithm are given in [Str]. Since 

An \ A12 W / A^ + ArtAl2E-^A2lArt - A£A12E-i 
£-1 ^2lM22/ \ -E lA21^U 

where E = A22 — A2ìArtAì2 and we assume An and E to be nonsingular, we get 
a recursive algorithm for matrix inverse with complexity I{n) satisfying 

I{n) <: 2-I{Vnj2~\) + 0{P{n)) 4- 0{n2) <: 0{n6) 
where 0 = log2 7 by the general solution given above. Similarly, we have for deter
minants that 

det (A
A

n A
À

12) = dtt{An) - det(E) 
\^21 ^22/ 

and so the complexity D{n) satisfies 

D{n) = 2-Z)(r/î/21) 4- I^n/21) 4- 0{P{Vnj21)) 

and so D{n) g 0{nd). A pivotal algorithm for inversion which does not require the 
nonsingularity assumption above and which has the same order of complexity is 
given in [Bun]. 

A converse reduction shows that inversion cannot be appreciably easier than 
product, 

/ / A O y 1 / / -A A-B\ 
0 / 5 = 0 I -B] 

\ 0 0 / / \ 0 0 / / 

where / is the identity matrix and 0 is the zero matrix. Therefore P{n) g I{3n). 

4. Boolean matrices. Matrices with domain {0, 1} (for {false, true}) are used to 
represent relations on a finite set, where, e.g., AtJ = 1 iff (/, j) is in the relation. 
Composition of relations corresponds to matrix product with the Boolean opera
tions A , v . We write A 0 B for this product when we want to make the operations 
explicit. 

{A^B)ik= V ^ A i y , 

Also, A v B corresponds to matrix sum where {A v B)ik = aik v bik9 and we 
write A £ B for A v B — B. A relation R is reflexive and transitive if R contains 
the identity relation and also RoR. 

Thus the {reflexive and) transitive closure A* of a square matrix A is the unique 
minimal matrix satisfying 

X=> A v I v {X®X) 

where / is the identity matrix. If we define A0 = /, An+l = A 0 An for n _• 0, then 
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since the Boolean product is associative, it is easily shown that A* = Vw^0 An. 
The following useful formula for the closure of a partitioned matrix is given and 

proved for regular algebras in [Con] : 

Mn ^i2y = Mfi 
V Aoi Aoo J \ 

v A& Al2 E*A2lAft Af,A12 E* ' 
i2l A22) V E*A2lA*x E* 

where E = 4̂22
 v ^21 ^n^i2-

If P{n) is the complexity of Boolean product and C{n) the complexity of closure, 
then based on the above formula we have C{n) S 2 • C(r«/21) 4- 0{P{n)) 4- 0{n2) 
and so if P satisfies the conditions on G in the general solution we have C{n) ^ 
0{P{n)). Also, since 

/O A 0 \* / / A A-B\ 
0 0 B) =io I B 

\ 0 0 0 / \ 0 0 / / 

we have P{n) ^ C{3n) S 0{P{n)). 
The obvious similarities with the results for matrix inversion over a field stem 

from the analogy between (/ — A)~~l « S«§o An in a field and A* = V„^0 An for 
the Boolean operations. 

5. Reduction of Boolean product to ring product. Strassen's method provides a 
subcubic algorithm for matrix products over a ring but it is not directly applicable 
to Boolean product. However, we can use the homomorphism h: Z-> {0,1} 
defined by 

h{n) = 1 if n Ï 0, 
= 0 if n = 0, 

under which x , 4- correspond to A , v , respectively. If h is extended to matrices 
in the obvious way, we have A®B = h{A gl?) for all 0,1-matrices. Better still 
is to use Strassen's algorithm on Zn+\9 the ring of integers modulo « 4 - 1 , since 
the ring product of two n x n matrices over {0, 1} in Z has entries no greater 
than n. In this case the basic ring operations can be expressed as sequences of 
Boolean operations acting on binary representations of the ring elements. In 
this way we obtain a Boolean product algorithm, and hence a closure algorithm 
of order 0{ne-(log n)2). For more details of these reductions, see [Fis], [Fur] and 
[Mun]. 

If we regard Boolean matrices as representing directed graphs {A{j = 1 iff there 
is an arc from i toy) then the closure matrix gives the connectivity relation {Afj = 1 
iff there is a path from / toy). When the domain is taken to be {nonnegative reals} 
(J {4- 00}, a matrix represents a directed network with distances on the arcs. The 
closure of such a matrix with respect to the operations 4-, minimum, i.e., "pro
duct" is n n̂, "sum" is min, gives the lengths of the shortest path between each 
pair of nodes. The recursive formula for closure in terms of product is still valid 
with + , min in place of A , v , and hence the close relation between the com
plexity of product and closure. In this case, however, no subcubic algorithm for 
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product is known. Different partitions of the matrix yield a family of 0{ns) algo
rithms, including the well-known Floyd algorithm given in [Flo], 

6. Context-free language recognition [Val], Our final example which introduces 
some new difficulties concerns context-free languages. With no essential loss of 
generality we can define a context free grammar (cfg) G as follows. G consists of a 
finite alphabet 2 = {AÌ9 •••, Ak) and a finite set P of productions', each of the form 
"Ai -* AjAk". We write W\A{w2 => W\A}Akw^ where wÌ9 w2 are arbitrary strings 
over 2 and Ai -> AjAk is in P. Let "=>*" be the reflexive and transitive closure of 
the "=>" relation. For each At- e 2 we define the language generated by A{ as LAi = 
{w\Ai =>* w}. The recognition problem for G is to determine for a string we 2* 
whether or not weLAi. For a cfg G we define the binary operator ® over the 
domain of subsets of 2 by 

Si® S2= {Ai\l Aj e Sh !AkeS2 and A{ -> AjAk e P}. 

We can then define a ^-product and (J -sum for matrices with subsets of 2 as 
elements. Then the transitive closure A+ of such a matrix A is the minimal matrix 
satisfying: X 2 A U C^H^O- The ®-operator and hence the corresponding 
matrix product is not associative and so a new algorithm for transitive closure is 
necessary. The correspondence with the recognition problem is the following. If 
w is the string X\ ••• Xn_i e 2n~l

9 let Mw be the n x n matrix defined by 

MitM = {Xt) for / = 1, •••, n - 1, 
^ • , ; = 0 if/ * / + 1-

LEMMA, i w any w, and 1 ^ u < v ^ w, 

* Z W . . . * „ _ ! } . 

PROOF. By induction on v — w. 
Thus, to solve the recognition problem it is sufficient to compute M+. Younger's 

algorithm [You] computes this matrix in a straightforward way in 0{n3) operations. 
Valiant [Val] obtains a subcubic algorithm by a reduction to Strassen's method. 

He first shows that the ^-product for any cfg is of the same order as Boolean pro
duct. For a cfg with only one production the product is isomorphic with Boolean 
product. The matrix product for an arbitrary cfg is obtainable as the union of the 
products corresponding to each production as a singleton. The remaining step is 
to show that transitive closure is of the same order as product for strictly upper 
triangular (s.u.t) matrices, i.e., A(j = 0 if/ ^ /. 

LEMMA If A is s.u.t. then A+ is the unique s.u.t. matrix satisfying X = A U 

If 

A 

\ b c 

\ e 

d 

f 
\g 

is s.u.t. and 
X c 

\E 

D 

F 
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then, by the last lemma, D = d U BD U CF [) DG. Thus 

4- \ ß D 

X 
again by the lemma. We therefore have a recursive algorithm Q for closing a s.u.t. 
matrix of the form 

\ c 
X 

d 

f 

where the submatrices {B9 C, E) and {G) are already closed. We apply Q to the sub-
matrix {E9f9 G) to compute F9 then compute the product CF9 and finally compute 
D by applying Q to the matrix {B9 d U CF9 G) as above. If the linear dimensions of 
the partition are in the ratio b:e:g = 1:1 : </2 and G{n) is the complexity of Q, 
we have the recurrence relation 

Q{n)^2-Q{rn/V2-\) + 0{P{n)). 

For a closure algorithm C we close matrices {b9 c9 e) and {g) recursively and then 
apply Q. Hence 

C{n) S C{^/2.n/{l 4- J%) + C{n/{1 4- v^)) 4- Q{n) S 2-C(2«/3) 4- ß(«). 

Since P{n) S 0{n%log nf)9 we derive C{n) ^ Ö(nö(log nf) with ô = log2 7 also, 
thus achieving a subcubic recognition algorithm. 

7. Conclusion. We have shown how the computational complexity for different 
matrix operations over various structures can be related, and in particular how any 
fast matrix product algorithms for rings can be applied indirectly to give correspon
dingly fast algorithm for finding connected components of directed graphs and for 
recognizing context-free languages. Strassen's 0(nloga 7) algorithm for matrix pro
duct provides a nontrivial application of these reductions. 
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Families of Sets 

Richard Rado 

1. Notation, terminology. Let /be a set, fixed throughout this article. Its elements 
will be used to label the objects we shall consider. The symbol {xv\ve I) denotes 
the family whose members are the objects xv. The same system of objects gives rise 
to the set {xv\ v e I}. If / is finite we use the simpler notation {x9 y9 z)9 {x9 y}9 etc. 
To illustrate the notation for sets and families, I note that {3,7, 8} = {7, 3, 8, 3}, 
(3, 7, 8) * (7, 3, 8, 3) ^ (7, 3, 8) * (3, 7, 8). We put {xv : v e I) = (yx: X e J) only 
if I = J and xv = yv for all v e I. If n is an ordinal number and J = {v : v < n} we 
also write 

1= n = {0,-.-,«}, 

where Ä denotes the obliterator, an operator whose effect consists in deleting from 
a well-ordered sequence the term above which it is placed. If / = n we also write 
{xv\ v e /) as {XQ9 ••-, x„). In a family F = {xv\vel) the xv are the members of F. 
For every family F = {Av : v e I) whose members are sets, we put FM = (J„ {v e M)AU 

for all M e /, and 

Firn = H (ve Jlf)4, if M * 0 , ^C0] = 0 . 

Throughout, from now on, we use the notation F = {Av\veï)\G = (/?„: ve / ) , 
where /, AV9 Bv are sets. 

We put F Ça G {strong isomorphism) whenever there is a bijection f : Aj -+ Bj 
suchthat1 f{Av) = £„ for all ve/ . 

Put F en G {weak isomorphism) whenever there is a bijection % : I -• / such that 
J? £ (J5ff(v) : v e /). The afom.y 

H do not hesitate to risk the well-known ambiguity inherent in the notation f(Av). 
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4-MJ '• = ^CM]\^/\M 

of the family F are pairwise disjoint and, apart from this restriction, can be pre
scribed arbitrarily. We have F Ça G if and only if | AMJ | = | BMJ | for all M ^ I. 

The relation A a c B means, by definition, that A ç B and \A | < Xo-

2. The reconstruction problem. Let 1^0. Put, for all v0 e /, 

FV0 = {Av:veI\{vQ})9 

and similarly for G. Suppose that, for some family F9 the isomorphism class of each 
of the familes FVo is known. Does this imply a knowledge of the isomorphism class 
of Fl To express this question more precisely: does FVo £ GVo for all v0 e / imply 
F Cä Gl The following theorem [1] shows that the answer is in the negative. 

THEOREM 1. Let I ^ 0 . Then there are families F, G such that FVa çé GVofor all v$ e /, 
butF£ G and hence, F g G. 

In fact, assume that Da f| Dß = 0 for a + /3, and, for some v\ e /, 

0 < \DV\ S | A , | ^ K o for all v * Vi. 

Put AVl = Dj and BVl = Dt \ DVl, whereas Av = Bv = Dv for all v ^ V\. Then the 
required relations hold. 

Here is a positive theorem. 

THEOREM 2. LeJ \AV\ < Xo / ^ all ve I and {Av : y e / ) ä (UV : v e / ) /or a// 

J œœ I. Then F s G. 

It is worth mentioning that this result does not seem to follow from general 
compactness considerations. 

Problem 1. Is there an analogue to Theorem 2 in which Xo is replaced by some 
other cardinal? 

3. U -and f| -representation. Let, for every M ç /, / (M) be a cardinal. Under what 
conditions does there exists a family F such that 

Case 1. \AM\ = /(M) for all M ç I {[j-representability off)9 

Case 2. \ALm\ = / (M) for all M (f|-representability)! 
There are trivial necessary conditions, such as 
in Case 1 : / ( 0 ) = 0; f{M) ^ f{N) fot M a N; 
i n C a s e 2 : / ( 0 ) = 0; f{M) ^f{N) for 0 a M a N. 

The next theorem [2] settles the two representability problems in the cases when 
either (i) | / | < Xo and/arbitrary or (ii) /arbitrary and/(M) < Xo f° r all M. 

THEOREM 3. (1) Let \l\ < Xo and f{M) be a cardinal for all M ç /. Then fis 
U -representable if and only if. f{0) = 0; f{M) ^f{N) for M a N; whenever 

/(M0) ^ Xo, /A*« fAere ft y0 e M0 withf{MQ) = /({v0}). 
(1;) Letf{M) < tfofor all M. TTze« / w [j-representable if and only if: For 

every /<=<=/, the function {f{M) : M Ç J) is [j -representable ; whenever M0 Ç /, 
there is MXœœ M0 withf{MQ) = /(MO; z/M c A, thenf{M) ^ /(AT). 
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(2) Let | / | < Ko andf{M) be a cardinal for all M. Then f is f| -representable if 
and only if:f{0) = 0 ; / (M) ^ f{N) for 0 c M a N; whenever 0 cz M0 Ç /, then 

E (M0 s TV; | t f \M 0 | even)AN) ^ 2 (M0 c= TV; | t f \M 0 | odd)f{N). 
N ' N ' ' 

(2') Letf{M) < tfoforallM. Then fis [}-representable if and only if. f{0) = 0; 
whenever 0 cz M0 Ç= I and N^ cz cz / \M 0 , fAe« 

(7(M0, TV0) : = S C? s tfo)(- 1) IP I/(M0UP) ^ 0; 
p 

whenever 0 cz MQ Ç= /, then, for all M § :=> 0 , 

S (M0 E M çz / ) inf{^(M, N)'.Nczcz I\M} = /(M0) . 
AT 

ProÄfe/w 2. Let | / | = Ko;/ (M) ^ Ko for ail M <= / ; /(M0) = Ko for some M0. 
Find conditions for U -representability (or f| -representability) of/. 

Problem 3. Let / , / , g be given, where/(M) and g{M) are cardinals, for all M çz /. 
Find conditions for the existence of a family F satisfying, for all M, the equations 
| Au | = f{M) and | ALM11 = #(M). If /, / (M), g-(M) are finite it is easy to state such 
conditions. 

There are some results which are closely linked to the representation problem. 
I mention the following, which is due to P. Erdös, A. Hajnal, E. C. Milner and R. 
Rado. 

Let K« be regular and let, for p, < \> < <wa+1, f{pt9 v) e {0, 1}. Then there are 
sets AQ, • • •, Âat+l e col s u c r i that the order types tp satisfy the conditions : tp Av = œl 
for all y; if y. < v9 then 

t p ( ^ fl Av) < coa if ftp, v) = 0, 
= coa if ftp, v) = 1. 

4. Families with exactly one transversal. A transversal of F is, by definition, a 
family {xvwe I)= such that xv e Av for all v e /. Thus the family({1, 2}9 {1, 2})has 
exactly two transversals, viz: (1, 2), (2, 1). Much work has been done on answering 
the question whether a given family has at least one transversal. I consider here the 
question whether Fhas exactly one transversal. 

For every ordinal p ^ 0, define, inductively, a set Ip by putting 

/ , = {veI:\Au\Aie\ = 1} for all p ^ 0. 

I recall that AJt = ( J ^ G / o U - U / P W It easily follows that Ia f| /p = 0 if 
a < p. Hence there is p* = min{p : Ip = 0 } . Put /* = Ipit. For each v e /*, there 
is a unique pair (p, av) such that y e Ip and 4„ \ ^ / e = {av}.~ We have [2] 

THEOREM 4. For every family F, the statements (i), (ii), (iii) are equivalent, where 
(i) F Aas exactly one transversal. 

(ii) /* = /. Ifp < p+, [J,9velp and[i ^ v9 then a^ ^ au. 
(iii) 77?ere is an ordinal k and a representation I = {y0, •••, £*}* and a sequence 

{XQ9 •••, xk)^ such that 
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x{ e AVl fi {*o> —» xi} for al1 i < k. 
The equivalence of (i) and (ii) has been proved independently by K. P. Steffens. 

5. The cardinal module. How many mathematicians have not wished at one time 
or another that the notion of a set embodied something like multiplicity of oc
currence ! Also, in some way, two families such as {x, y, z, y) and {y, z, x, y) should 
not really be considered as essentially different from one another; how could our 
notation take account of this? I propose to offer one way of accomplishing this and, 
so I believe, much more by introducing a structure I call the cardinal module [2]. 

Let us use the following notation: 
V = the universe = the class of all objects (nothing but a convenient notation), 
2 = the class of all sets (we use the Zermelo-Fränkel axioms with axiom of 

choice), 
T = the class of all cardinals, 2+ = 2\{0}; r+ = T\{0}. 
Let fl denote the class of all mappings <j> : V -» T which are such that <f>~l{r+) e 2. 

I call fl the cardinal module because, in a certain sense, fl is a module over Z7. The 
elements of fl are called m-sets (multisets). I will now describe operations and 
relations on fl. 

Let <j)v e fl for y e /. I define 

2(ye/)0v: = 0, 
V 

where <p{x) = 2 .AC*:) for all x e V. 
Since cjj~l{r+) = (J„ fo\r*) e 29 we have £ v $v

 G 0. For finite / one also writes 
0o + 0i, etc. This addition is associative and commutative. If, moreover, Ie2+ 

then I put 

n0„: = 0', 
V 

where </>'{x) = \[v <f>Xx) f° r all xeV. 
For a e T and <j> e fl I put a<f> : = <f>'9 where $'{x) = a<f>{x) for all xe V. 
I introduce a valuation on fl by putting, for <f> e fl, 

W = E(*e0-i(n)#*). 
X 

This valuation is strongly additive. If av e T and 0V e fl for all y e / , then 

If, in addition, / e 2+ then 

Here the inequality sign may hold. Thus, if 11\ ^ 2, ^v e 2T+ for y e / ; 0y(*) = 1 for 
xeAv;<ßv{x) = OforxeV\Av;Afi [}AV=0 for^ * y, then | IT &| = 0 < n |&| -

Finally, I associate with every family H = (xv : y e /) the m-set §H given by 
the rule : 
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0//W = I {y e / : xH = x} I for all x e V. 

Then \<pH\ = | / | . Given any w-set cp, there always is a family / /wi th cp = cpH. If 
/ / = {xv : y e /) and ^ = (j^ : X e / ) , then 0# = cpK if and only if there is a bijection 
f; I -> J such that #v = . y ^ for all y e / , i.e., i f / /and i£ differ only in the rather 
trivial way described at the beginning of this section. If Le 2 and H^ is a family, 
for each X e L9 and if, for some family K9 2AW G L)<I>H = <I>K> ^ i e n the family ^ 
is obtained by combining, with proper regard to multiplicities, the families Hx. 

I define a partial order on fl by putting (p ii cp whenever (j>{x) ^ ^(x) for all 
xe V, and 0 < cp whenever cf> ^ cp and cp ^ cp. Then (0, <) is a complete lattice. 
For every A e 2,1 define the characteristic m-set %A by putting ^ ( x ) = 1 for x e A, 
and %A{x) = 0 for x e V\A. Then, for A9Be2, we have |Zi l | = \A\; XAHB = XAXBI 

JUUB = %A + Zßj with equality if and only if A {] B = 0. Thus i ' is embedded in 
fl by the mapping A h-> j ^ , under preservation of the valuation and of multiplica
tion and, partially, of addition. In order to obtain the full benefit from the introduc
tion of the cardinal module, I identify %A with A. This creates no confusion because 
different symbols are used for operations and relations in 2 and in fl. 

In 2 : operations U 5 PU \> I " ' l> anc^ the relation cz. 
In fl : operations + , -, - , | ••• |, and the relation < . 

Thus, 0 (in 2) is identified with 0 (in fl), and we have, for all A9 B e 2, A f| B = 
A-B\A{] B S A + B with equality if and only if AB = 0; A cz B if and only if 
A < B9 etc. 

The following theorem asserts that the w-sets %A (= A) form a basis of fl over/7: 

THEOREM 5. Every m-set cp has a unique representation cp = £„(y < n)avAV9 where 
n is an ordinal; {a0, •••, â„\< cz /1+; A0, •••, A„ e 2+

9 andA^ f] Av = 0forju < y < n. 

In conclusion, I mention some identities that hold in fl. 

(1) A U B + A fl B = A + B for all A, B e 2. 

This is a special case of the equations (2) below. Let / ^ 0 . It can be shown [1] 
that in the power set &>{I) one can define & parity relation = , i.e., an equivalence 
relation having two classes and satisfying the condition M ^ M\{x} whenever 
xeM çz /. In fact, if | / | < Ko th e n ^ e onty parity relation is the relation given 
by M = N if and only if \M\ — \N\ is even, and if | / | ^ Ko t r l e n there are 22l/l 

parity relations. We have, for every / e 2+ and every parity relation = on £?{I)9 

2 ( 0 EE M çz l)AM + A[n = S ( 0 # N E / M „ , 
(2) 

S ( 0 s M ç= / ) ^ [ M ] + ^ = S ( 0 # AT ç= / H „ 3 . 
M N 

These equations have been used to carry out the discussion of the (J- and fl" 
representability mentioned in §3. 

Quite apart from its applications, the cardinal module seems worth studying for 
its own sake. At its lowest it offers a convenient vehicle for expressing operations 
in combinatorial set theory. 
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Some Results in Algebraic Complexity Theory 

Volker Strassen 

1. Summary. The minimal number of multiplications/divisions involved in various 
problems of symbolic manipulation of polynomials and rational functions is 
investigated. 

2. Definitions. A finite set of rational functions can always be computed (i.e., 
evaluated) without loss in efficiency on most inputs by a program not containing 
any branching instructions. The sequence of intermediate results produced by im
plementing such a program on an idealized computer is called a computation. All 
elements of a computation are rational functions in the input variables. Formally, 
we have 

DEFINITION 1. Let k be an infinite field, x\9 •••, xm indeterminates over k. A finite 
sequence ß from k{x\9 • • •, xm) is called a computation in k{xÌ9 • • •, xm) iff each element 
of j8 is either an indeterminate, or an element of k9 or is obtained from two previ
ous elements by applying addition, subtraction, multiplication or division, ß com
putes a finite set {fh --,fr} of rational functions iff each/,- occurs in ß. 

The indeterminates are interpreted as inputs; the elements of k appearing in ß 
are thought of as being stored in the program. 

The running time of a program will depend on how long it takes the computer to 
perform the various arithmetic operations. For mathematical convenience we will 
assume that /c-linear operations are instantaneous. Thus we define the running time 
or length of a computation ß as the number of elements of ß which are neither in
determinates nor are fc-linearly dependent on the set of previous elements. If k 
has characteristic 0, most of the results below remain correct when all multiplica
tions and divisions are counted. 

DEFINITION 2 (OSTROWSKI [15]). Let fh •-•9frek{xÌ9 • • • , x j . L{fh • •• , / r ) : = 
minimal length of computations in k{xÌ9 •••, xm) which compute {fh •••,/,•} is 
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called the complexity of {fh • • - , / , } . 
Upper bounds for the complexity are usually proved by exhibiting an algorithm. 

Thus Horner's rule implies 

(1) L{a0x« + - + an) ^ n9 

considered in k{aQ, ••-, a„, x). 

3. Pan's method. In the above-mentioned paper Ostrowski conjectured that we 
have equality in (1). This was proved 12 years later by Pan [16] by an elementary 
but ingenious method, which consists in substituting for one indeterminate a linear 
combination of the others and looking at the effect of this substitution on the first 
nonlinear operation of a given computation. Pan's method can be successfully 
applied to a surprising number of simple computational problems "with general 
coefficients", such as the evaluation of several polynomials, of a polynomial in 
several indeterminates, of a homogeneous polynomial, of the product of a vector 
by a matrix, or of a continued fraction (see Winograd [24], [25], Borodin-Munro 
[2], Strassen [20]). Also an arbitrary single quadratic form can be treated, as long as 
char k ^ 2. Unfortunately, the lower bounds derived by Pan's method cannot 
exceed the number of inputs to the problem. 

4. Nonlinear lower bounds. In the sequel,/ ~ g , / X S> a n d / < g mean respectively 
that/and g are asymptotically equal,/and g have the same order of magnitude, 
/== 0{g). All logarithms are to the base 2. The proofs of the lower bounds in this 
and the next section use some algebraic geometry. They can be found in Strassen 
[21], [22] and [23]. 

Let us first consider the problem of computing the set of elementary symmetric 
functions in n variables: 

G\ : = Z J ^ / J 0*2 :== ZI xixj> ""» Ö* :== Xy~Xn. 
i<j 

Clearly L{a{) = 0. Pan's method yields L{a2) = n — 1 for k = R and L{an) = 
n — 1. Also L{cTl9~-9 CJ„) ^ n log n (Horowitz [8]). 

THEOREM 1. L(<7i,---, a„) ~ n log n. 

More generally one has 

THEOREM 2. Let F be a finite set of symmetric rational functions of transcendency 
degree t over k. Then L{F) ^ t \og{tje). E.g., if char k = 0 and sp := £,- x% then 
L{si9—9sn) ~ « log« . 

Horner's rule is optimal for evaluating a general polynomial at one point. Is it 
also optimal for evaluating such a polynomial at many (say « + 1) general points? 
In other words, what is the complexity of j 0 , - - - 5 yn in k{a09-~9 an9 x0,---5 xn)9 where 

(2) Jo = tfo*o + — + <*n> —, yn = <**K + — + ß»? 

Surprisingly, separate evaluation using Horner's rule is not optimal (Borodin and 
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Munro [1]). One even has the following drastic result 

£0>o> •••> yn)< nlogn 

(Fiduccia [7], Moenck and Borodin [14], amended by Sieveking [19], Strassen [21] ; 
see also Kung [11] and the result of S. Cook in Knuth [9, p. 275]). 

THEOREM 3. L 0 v > );
n) è (P + 1) l o ê *> ond therefore L{yQ,-~,yn) X w log n. 

In contrast to Pan's result Theorem 3 remains true if aQ9-~9 an are replaced by 
arbitrary elements a v > an e k, as long as a'o ^ 0. So, e.g., L{xfi,--,x%) ~ « log «. 

The inverse problem to evaluation is interpolation. Here inputs XQ,-"9 xn9 

yQ, •••, yn are given and the coefficients a0,'~, an of the unique polynomial of degree 
n that interpolates y( at jcf- are to be computed. Equivalently, ao,---, an can be de
fined by (2), where now x0, ••-, xn, J V * y„ are interpreted as indeterminates. 
Again one has L{aQ,---, an) < n log n (Horowitz [8], Moenck and Borodin [14]; 
see also Strassen [21]). 

THEOREM 4. L{aQ,---, an) ^ (« + 1) log «, and therefore L{a0,---9 an))^nlogn. 

As it happens, several of the previous results are concerned with the computa
tional complexity of going from one representation of a univariate polynomial to 
another : Computing the elementary symmetric functions means computing the 
coefficients from the roots; evaluation and interpolation relate the coefficient re
presentation to the representation by a list of values (at « + 1 points). Our methods 
apply to several similar problems. Going from the set of roots to a list of values, 
going from one list of values to a new one, differentiating or integrating a poly
nomial given by a list of values all have a complexity of order of magnitude « log«. 
On the other hand, one can expand a polynomial at a new point in linear time 
(Shaw and Traub [18]). 

The problems discussed here belong to the field of symbolic manipulation (Col
lins [6]). Because of the constant use of modular algorithms in this area, evaluation 
and interpolation are of special importance. Usually one is interested in the case 
k = Zp9 since one has already applied modular reductions to integer coefficients 
(see Brown [4] for a typical situation). In many cases neither the base points for 
evaluation and interpolation nor the primes p to be used are known in advance. 
Thus apart from treating the base points as inputs (as we do in this paper) one has 
to look for algorithms that work over any Zp (or at least over any Zp with/? not too 
small). Now it is easy to see that, roughly speaking, such algorithms are equivalent 
to algorithms over Q. Since Q is an infinite field, the results of this paper apply (see 
Strassen [23] for a detailed discussion). 

5. A problem involving branching. Let AQ9 A\ be univariate polynomials over a 
field k such that « := deg A0 ^ deg A\ ^ 0. For simplicity assume char k = 0 
(but the remarks at the end of the last section apply here too). Euclid's algorithm 

A0 = Q\A\ + A2, Al = QzA2 + A*> '""J At-l = QtA*> 

with deg At- > deg Ai+i for / ^ 1 yields the Euclidean representation(d,---, Qi9 At) 
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of the pair {A0, A{). From this representation one can read off several important 
items: the continued fraction of AQ/AÌ9 the greatest common divisor of A0 and 
AÌ9 the resultant of A0 and Ax (Collins [5]), the discriminant of A0 if A\ = A'Q9 the 
number of zeroes of AQ in an arbitrary interval if A\ = A'0 and if k is the field of 
real numbers (Sturm). Improving the work of Lehmer [12] and Knuth [10], Schön
hage [17] computes the coefficients of QÌ9 •••, Qt, At from the coefficients of 
AQ9 AI with -< « log « multiplications and divisions (actually these papers are 
concerned with the analogous problem in number theory; the translation to poly
nomials is due to Moenck [13]). 

Size and shape of the output {Q\9-~, Qt, At) is determined by its sequence of 
degrees d := {dÌ9'"9 dt9 dt+i). Since d depends on the input polynomials AQ, AÌ9 

every algorithm for computing the Euclidean representation has to use branching 
instructions, say of the form "if/ = 0 then go to i else go t o / ' , where/has been 
previously computed. Let Md be the set of inputs for which the output has shape 
d and let H{d) be the entropy of the probability vector that is obtained from d by 
normalization. 

THEOREM 5. There are constants 0 < c < c' with the following properties: 
(1) For all d Schönhage*s algorithm takes < c'n{H{d) 4- 1) multiplications and 

divisions on Md. 
(2) For all d any algorithm that computes the Euclidean representation takes > 

cn{H{d) 4-1) multiplications and divisions on some input of M&. 

Thus, roughly speaking, Schönhage's algorithm is uniformly optimal. We remark 
that although branching instructions themselves are not counted, every multiplica
tion and division is counted, even if it serves only to prepare a branching instruc
tion. 

To a reader, who is interested in a detailed treatment of algebraic complexity 
theory, we suggest the book by Borodin and Munro [3]. 
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On Sets of Integers Containing No k Elements 
in Arithmetic Progression 

E. Szemerédi 

In 1926 van der Waerden [13] proved the following startling theorem : If the set of 
integers is arbitrarily partitioned into two classes then at least one class contains 
arbitrarily long arithmetic progressions. It is well known and obvious that neither 
class must contain an infinite arithmetic progression. In fact, it is easy to see that 
for any sequence an there is another sequence bn9 with bn > an9 which contains no 
arithmetic progression of three terms, but which intersects every infinite arithmetic 
progression. The finite form of van der Waerden's theorem goes as follows: For 
each positive integer n9 there exists a least integer f{n) with the property that if the 
integers from 1 to /(/?) are arbitrarily partitioned into two classes, then at least one 
class contains an arithmetic progression of « terms. (For a short proof, see the note 
of Graham and Rothschild [5].) However, the best upper bound on f{n) known 
at present is extremely poor. The best lower bound known, due to Berlekamp 
[3], asserts that/(«) < nln

9 for n prime, which improves previous results of Erdös, 
Rado and W. Schmidt. 

More than 40 years ago, Erdös and Turân [4] considered the quantity rk{n)9 

defined to be the greatest integer / for which there is a sequence of integers 
0 < a\ < a2 < ••• < a; ^ n which does not contain an arithmetic progression of k 
terms. They were led to the investigation of rk{n) by several things. First of all the 
problem of estimating rk{n) is clearly interesting in itself. Secondly, rk{n) < n/2 would 
imply f{k) < 77, i.e., they hoped to improve the poor upper bound on f{k) by investi
gating rk{n). Finally, an old question in number theory asks if there are arbitrarily 
long arithmetic progressions of prime numbers. From rk{n) < %{rì) this would follow 
immediately. The hope was that this problem on primes could be attacked not by 
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using special properties of the primes but by only using the fact that they are 
numerous, a method which is often successful. 

Erdös and Turân observed rk{m + n) S rk{m) + rk{n) from which it follows by 
a simple argument that 

lim rh{n)\n = ch 
»—OO 

exists. Erdös and Turân conjectured that ck = 0 for all k. A few years later Beh
rendt] proved that either cÄ = 0 for every k9 or limA_oo ck = 1. Erdös and Turân 
also conjectured rk{n) < «1_ei

5 which was shown to be false by Salem and Spencer 
[11] who proved r3{n) > n1-c/lo^io«n. In 1946 Behrend[2] proved r3{n) > «i-̂ /aog»v-
which is the best lower bound for r3(«) currently known. In [6], L. Moser con
structed an infinite sequence which contains no arithmetic progression of three 
terms and which satisfies Behrend's inequality for every n. Behrend's corresponding 
inequalities for k < 4 were improved by Rankin in [7]. 

The first satisfactory upper bound for r3(«) was due to Roth [8] who proved 
r3(«) < c«/loglog«. In 1967,1 proved that r4(«) = o{n). The proof used the general 
theorem of van der Waerden. Roth [9], [10] later gave an analytic proof that r4(«) 
= o{n) which did not make use of van der Waerden's theorem (in fact, he proved a 
much more general theorem) and his method probably gives r4(«) < «/log/ n where / 
is a large fixed integer and log/ denotes the /-fold iterated logarithm. 

In this article we give a brief outline of a proof of the general conjecture of 
Erdös and Turân: ck = 0 for all k. 

The proof is rather long and complicated although it uses only elementary com
binatorial arguments. Space limitations do not permit us to outline the proof here 
so we shall just restrict ourselves to mentioning several of the key ideas. 

An important lemma used in the proof states essentially that any finite graph can 
be partitioned into relatively few "nearly regular" subgraphs. The basic objects 
with which the proof of the main theorem deals are not just arithmetic progressions 
themselves but rather generalizations of arithmetic progressions called m-con-
figurations. Roughly speaking, a 1-configuration is just an arithmetic progression; 
an /«-configuration is an "arithmetic progression" of {m— ̂ -configurations. In a 
nutshell, one can show that for any given set of integers R of positive upper den
sity, a very long m-configuration which intersects R in a moderately regular way 
must always contain a shorter (but still quite long) {m— l)-configuration which 
intersects R in an even more regular way. In this way, we eventually conclude that 
R must contain arbitrarily long 1-configurations, i.e., arithmetic progressions, and 
we are done. 
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TpyAbi MoK^yHapOAHoro KoHrpecca MaTeMaTHKOB 
BaHKyBep, 1974 

GroxacTiwecKHe JXim&MmecKue Mo^ejiH 

9KOHOMHHeCKOrO PaBHOBeCHH* 

E. E. b̂lHKHH 

1. MHoroHHCJieHHbie cjiynaftHbie (|)aKT0pbi cymecTBeHHO BJIHHIOT Ha BKOHOMH-

Heocyio npaKTHKy. EcTecTBeHHO BBCCTH HX H B MaTeMaranecKHe MOAEJIH SKOHO-

MHMecKOH AHHaMHKH. M M ompaBJiHeMca OT H3BecTHOH MOAejiH (J)OH HeftMaHa-
refi«7ia (CM. , HanpHMep, [7]). Eë CTOxacTHHecKHH BapnaHT 6MJI npe^jionceH B [4] 
—[6] H H3yqajiCH flàjiee B [8]—[9].1 Ha STOH ocHOBe MM noerpOHM CTOxacrane-
CKyio AHHaMHqecKyio Mo^ejib paBHOBecnn, HBJiniomy IOCH pa3BHTneM MOAejiH S p p o y -
,ZJe6pe. KaK H B MOAejiH 3 p p o y - ^ e 6 p e , MM HMeeM AeJio C KOHCHHMM HHCJIOM no-
TpeÔHTejiefl H KOHCHHMM HHCJIOM npoH3BOAHTejieft. T^iaBHoe OTJIHHHC cToxacrane-

CKoro BapnaHTa COCTOHT B TOM, HTO npoH3BOAHTejiH, He 3Han S y A y m e r o , MoryT 
MaKCHMH3HpOBaTb JIHUIb 0>KHAaeMyK) npHÔMJIb. PaBHOBeCHe, KOTOpOeMM CTpOHM, 
9TO paBHOBeCHe MOKAy 0>KHAaHHHMH H HX OCymeCTBJieHHeM. TOHHee, CTpOHTCH 
CHCTeMa cJiynaftHbix ußn H CHCTeMa njiaHOB, onTHMajibHbix Ann KaatAoro ynacT-
HHKa npH 9THX ijenax, TaKHe, HTO BO Bcex cjiynaftHbix CHTyaijHHX nojiHOCTbio 
yAOBJieTBOpneTCH cnpoc H paBHa Hyjiio CTOHMOcTb H36MTOHHMX npoAyKTOB. 

Bo3MO>KHM pa3JIHHHbie npeAnOJIOHCeHHH O MexaHH3Me (J)OpMHpOBaHH5I AOXOAOB. 
Mbl CHHTaeM, HTO AOXOAM (})HKCHpOBaHM. 9 T O 3HaHHT, HTO MM He üMTaeMCH 
BMBecTH H3 MO^ejiH pa3Mepbi TpyAOBoro BK«7iaAa Ka>KAoro ynacTHHKa H onjiaTy 
Tpy^a, a npeAnojiaraeM, HTO OHH 3a£aHM 9K3oreHHO (CM. no 9T0My noBOAy [11]). 
B Mo^eJiH He yHHTMBaioTCH BO3MOM<HOCTH 3aHMOB H cöepeaceHHH. 

A p y r a e cnocoßbi BBeAeHHH cjiynaOHbix napaMeTpoB B MOACJIH paBHOBecnn ( B 
npocTefimeM cjiynae, KorAa 9TH napaMeTpbi npHHHMaioT JiHUib KOHenHoe MHO-
^cecTBO 3HaneHHH) paccMaTpHBajiHCb J\e6pe [3], Sppoy [1] H PaAHepoM [13]. 

•Delivered by D. Gale. 
!B ÖJIH3K0M HanpaBJieHHH paÔOTaioT PaAHep H ero coTpyAHHKH (CM., HanpHMep, [12]). 
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2. nycTb R—npocTpaHCTBO Bcex w-BeKTopoB x = {x1, •••, xm). I"IOJIO>KHM X 
e R+9 ecjiH xk ^ 0 npn Bcex k. ByAeM paccMaTpHBaTb 9JieMeHTM x H3 R+ KaK 
Haôopbi npoAyKTOB: xk 03HanaeT KOJIKHCCTBO fc-oro npOAyKTa B Haôope x. Ilapa 
9JieMeHT0B {x9 y) H3 R+ onncbmaeT npou36odcmeeHHUü npouficc c 3aTpaTaMH x H 
BbinycKOMj>. Rm Ka^Aoro t = 1, •••, T onpeAejieHO MHOäCCTBO Ft npoH3BOA-
CTBeHHbix npoueccoB, TexHOJiorHHecKH ocymecTBHMbix B MOMeHT t {mexHOAozwie-
CKoe MHOOicecmeö). M M 6yAeM CHHTaTb, HTO HMeeTCH HecKojibKO npOH3BOAHTejiefl. 
Bo3MO>KHOCTH /-Oro npOH3BOAHTejIH B MOMeHT t OnHCMBaiOTCH MHO>KeCTBOM &'ti. 

MTO6M BBecTH AeöcTBHe cjiynaHHbix (})aKTOpoB, paccMOTpHM BeponraocTHoe 
npocTpaHCTBO (0, J*7", P) e 3aAaHHMMH B HëM ö--ajire6paMH &\ e ^ e ... e &t 

s ••• s #*. SjieMeHTM &t HHTepnpeTHpyioTCH KaK COôMTHH, HacTynjieHne HJIH 

HeHacTynjieHHe KOTOpbix craHOBHTCH H3BecrabiM K MOMeHTy t. ByAeM npeAnojia-
raTb, HTO MHOHCeCTBa & ti 3aBHCHT OT CO TaK, HTO COOTBeTCTBHH &'ti H3MepHMM 
OTHOCHTeJIbHO &t:

2 TeXHOJIOrHHeCKHe B03MO)KHOCTH B MOMeHT t CTaHOBHTCH 
H3BeCTHMMH K 9TOMy MOMeHTy. TIAOH i-OZO npOU360dumeAH—310 nocjieAOBaTejib-
HOCTb ^ynKuyiìk{xt{co)9yt{co)){t = 1, •••, T), yAOBJieTBOpniomaHycjiOBHHM: {a)xi9yt 

H3MepHMM OTHOCHTejibHO nonojmeHHH # , <7-ajire6pbi &t no Mepe P ; {xt{ù))9 yt{o))) 
e ^ti{o)) npn Bcex t9 co. j3jpyrHMH cjiOBaMH, njiaH 9T0 nocjieAOBaTejibHOCTb #", -
H3M'epHMMX CejieKTOpOB COOTBeTCTBHH ^u{co). 

ByAeM npeAnojiaraTb, HTO: 
2. A. npH rnoobìx t9 i9 co MHoacecTBO &~ti{co) 3aMKHyTO, BbinyKJio H coAepÄHT 

9jieMeHT (0; 0). 
2.B. HaöAeTCH KOMnaKT K9 TaKOH, HTO ^H{CO) £ K npn Bcex /, L 

3. PemeHHe noTpeÖHTejraonncbiBaeTCH BeKTOpoM CER+— HaôopoM npoAyKTOB, 
KOTopbiH OH noTpeßjineT. OCHOBHMMH xapaKTepHCTHKaMH noTpeÔHTejin HBJIHIOTCH 

MHOÄecTBO C B03MOHCHMX ero pemeHHH, OTHomeHHe npeAnoHTeHHH > Ha C H 
AOXOA w. npeAnoJio^HM, HTO: 

3. A. C —3aMKHyToe BbinyKJioe noAMHO>KecTBO MHoacecTBa R+9 coAep>Kamee 
HyjieBOH BeKTop. 

3.B. OTHomeHHe >- MO>KeT 6biTb onncaHO e noMOinjbio HeKOTopofi HenpepMBHoft 
BorHyTOH (})yHKUHH u: cx > c2 TorAa H TOJIMCO TorAa, KorAa u{c{) > u{c2). 

3.B. 0 < w < oo. 
HMeeTCH HecKOJibKO noTpeÔHTejiefi. Hx npeAnoHTeHHH H AOXOAM MCHHIOTCH 

co BpeMeHeM H 3aBHCHT OT co. TaKHM o6pa30M, HMeioTCH ceMencTBa COOTBCTCTBHO 
Ctj{œ) H 4)yHKiJiHH utj{o)9 c)9 wtj{c). npeAnojiaraeTCH, HTO OHH JVH3MepHMM OTHO-
CHTejIbHO CO (B KaHCAMH MOMeHT H3BeCTHM XapaKTepHCTHKH nOTpeÔHTejiefl B 9TOT 
MOMeHT). üAüK j-ozo nompeóumeAH 9TO nocjieAOBaTejibHOCTb (JtyHKUHH cì9 c29 

•"•» ct+i> rAe ct #,-H3MepHMMH cejieKTOp COOTBCTCTBHH Ctj{co). 

2CooTBeTCTBHe 0 H3 Q B R — 3T0 4>yHKH,HH, conocTaanniomaH KajKAOMy œ e Q HenycToe 
noAMHO)KecTBO 0(a)) MHO>KecTBa R. n y c T b ^ ö--a^re6pa B Q. CooTBeTCTBHe 0 MH Ha3biBaeM SF-
H3MepnMbiM, ecjiH{(w: 0{ctì) n A # 0 } e «^"AJIH Jiioôoro 3aMKHyToro MHOKecTBa A. (OTHOCHTejib-
HO CBOHCTB H3MepHMbIX COOTBeTCTBHH H HX CejieKTOpOB CM., HanpHMep, [10].) 
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4. BCHKHH 9JieMeHT p H3 R+ MO>KeT TpaKTOBaTbCH KaK BCKTOp UßH. CrOHMOCTb 
Haôopa npoAyKTOB x B ueHax p BbipaacaeTCH CKajinpHbiM npOH3BeAeHneM px = 
%pkxk. ^ J I H noTpeÖHTejiH c AOXOAOM W AOCTynHM He Bee Haôopbi ôjiar c e C, a 
TOJibKO Te, KOTOpbie yAOBJieTBOpHioT HepaBeHCTBy pc ^ w. 06o3HanHM nepe3 
<p{p) COBOICynHOCTb MaKCHMaJIbHblX 9JieMeHT0B 9TOrO MHOH<eCTBa OTHOCHTeJIbHO 
>- (AJIH CTporo nojioH<HTejibHoro p 9T0 MHOKCCTBO HenycTo). CooTBeTCTBHe <p9 

3aAaiomee cnpoc, 3aBHCHT OT t, j , co. ̂ OKa3MBaeTCH, HTO <ptj{co9p) H3MepHMO 
oraocHTejibHO &t x J>. (Mepœ & o6o3HanaeTCH SopejieBCKan 0--ajire6pa B R.) 

5. riocjieAOBaTejibHocTb (|)yHKiJ,HH P\,P2, —9PT+I Ha Û co 3HaneHHHMH H3 R 
Ha3MBaeTCH CHCTCMOH ußu9 ecmpt #rH3MepHMa. njiaH^noTpe6HTejiHjHa30BëM 
onTHMajibHMM npH ueHax pt9 ecjiH ct{co) e <ptj{co, pt{co)) npn Bcex t, co. 

riyCTb {X, y)—npOH3BOACTBeHHMH npOUeCC, HaHHHaiOmHHCH B MOMeHT t. M M 
CHHTaeM, HTO 3aTpaTM OnJiaHHBaiOTCH B MOMeHT t9 B TO BpeMH KaK BbinyCK MO>KeT 
6biTb peajiH30BaH jiHiub B MOMCHT t + 1. EIosTOMy npHÖMjib BbiHHCJineTCH no 
(j)opMyjie pi+iy - ptx. n y c T b {xt9 yt) {t = 1, •••, T) KaKofi-HHÖyAb nJiaH i -oronpo-
H3BOAHTejiH. CooTBeTCTByiomaH cyMMapHan npHÖMJib paBHa 

T 

(i) Z{Pt+\yt - PtXt). 
i 

Ha30BëM onTHMajibHMMH (npH ijeHax pt) Bee nJiaHM, A ™ KOTOpbix MaTeMaTHne-
CKoe o>KHAaHHe cyMMM (1) AOcraraeT MaKCHMyMa. 

nycTb KancAbiH npOH3BOAHTejib H Ka>KAMH noTpeÔHTejib H36pajm Karae-
HHÖyAb njiaHM. BbipanceHHe 

dt = Hyt-u - Lxu - Lctj {t = 2, 3, ..., T +1) 
i t j 

ecTecTBeHHO Ha3BaTb u36umoHHbiM npedAODfceuaeM e MOMeum t (MM nojiaraeM 
XT+U = 0)- n p n t = 1 AeficTByeT Apyran (})0pMyjia 

St = yo- Hxu - E cu, 
i J 

rAe yo 3aAaHHMH HeoTpHuaTejibHbifl BeKTop, KOTopMH Ha3MBaeTCH eenmopoM 
HawAbHUx pecypcoe (HJIH HOHOAbHMM eeumopoM). 

CncTeMa ixen pt H CHCTeMa nJiaHOB Bcex ynacTHHKOB oöpmyerpaenoeecue, ecjiH 
nJiaH Ka>KAoro ynacTHHKa onraMajieH H ecjiH dt ^ 0, pt5t = 0 npn Bcex U o). 

Hama ijejib—AOKa3aTb cymecTBOBaHHe paBHOBecHH npH JIIOôOM nojio)KHTejib-
HOM HanajibHOM BeKTOpe y 0 . H t a e 6yxyr c(J)opMyjiHpoBaHbi ny>Kuue A-HH 9Toro 
AonojiHHTejibHbie ycjiOBHH H oö'bHCHeHM ocHOBHbie HAen AOKa3aTejibCTBa. 

6. CAejiaeM npeABapHTejibHO OAHO 3aMenaHHe, Ba>KHoe AJIH AOKa3aTejibCTBa H 
npeACTaBjiHiomee caMOCTOHTejibHbift 9KOHOMHHecKHH HHTepec. H T O ö M AeficTBO-
BaTb onTHMajibHo, Ka>KAOMy ynacTHHKy HeT HaAOÔHOcra HMeTb nojmyio HH(J)op-
MaUHK) OTHOCHTeJIbHO BepOHTHOCTHOrO MexaHH3Ma HBJieHHH H CJIOM<HBLLieHCH 
CHTyaiuHH. rioTpeOHTejiio AOCTaTOHHio 3HaTb B KancAwfl MOMeHT CBOH npeA
noHTeHHH, AOXOA H AGHCTByiomHe UßHbl. npOH3BOAHTeJIK) TpeôyeTCH 3HaTb 
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B MOMeHT t JIHUIb COÔCTBeHHbie TeXHOJIOrHHeCKHe B03MO>KHOCTH, AeHCTByiomne 

qeHbi pt H nporH03 pt+i = E{pt+i \ &t) u£H Ha OAHH m a r BnepëA. 

CKa3aHHoe OHCBHAHO B cjiynae noTpeÔHTejin. M T O ô M AOKa3aTb STO B cjiynae 

npOH3BOAHTeJIH, COnOCTaBHM npOH3BOJIbHOH nape BeKTOpOB p, q H3 R+ H JIIOÔOMy 

CO H3 Q MHOMCeCTBO ^ti{c09 p9 q) 9JieMeHTOB {x9 y) H3 &~u{ù))9 TaKHX, HTO 

qy — px = sup {qyf — px'). 

,fl(OKa3bIBaeTCH, HTO COOTBeTCTBHe ^ti{ù)9 p9 q) H3MepHMO OTHOCHTeJIbHO ^ X & 

x gß H nJiaH {xt9 yt) npoH3BOAHTejin / onTHMajieH npH u;eHax pt TorAa H TOJibKO 

TorAa, KorAa npn Ka>KAOM t9 

{xt9 yt) G zrti{co9 Pt, Pt+i) (n.H.), 

TaKHM 06pa30M, H T 0 6 M AGHCTBOBaTb OnTHMajIbHO, npOH3BOAHTejIIO AOCTaTOHHO 

Ha Ka>KAOM m a r e MaKCHMH3npoBaTb HenocpeACTBeHHO o>KHAaeMyio npHÔMjib 

Pt+iy - Pt*> 

7. Hanôojiee cymecTBeHHoe orpaHHneHHe, uymuoe HaM AJIR nocTpoeHHH paBHO-

BeCHH, MO>KHO C(j)OpMyjIHpOBaTb cJieAyiomHM o6pa30M. 

7. A . npH Ka>KAOM co BbinojiHneTCH ycjiOBHe: JIIOôOH npOAyKT B JIIOôOH MOMCHT 

t JIHôO HeoôxoAHM noTpeÔHTejiHM, JIHôO 6e3 Hero TexHHnecKH HeB03Mo>KHO 

nOJiyHHTb B OAHH H3 nOCJieAyiOIUHX MOMCHTOB t' = f + 1 , •••, T+l HeKOTOpbift 

npOAyKT, HeOÔXOAHMMH nOTpeÔHTejIHM B 9TOT MOMeHT. 

^ T O ô M pacmH(J)pOBaTb 9TO ycjiOBHe, BBeAëM coeoKynmLü cnpoc a coeoKynuoe 

mexHOAOzmecKoe MHoowecmeo KaK ajireopannecKHe cyMMbi 

<Pt{p) = L 9tj{p), Ft = L Pu-

M M roBOpHM, HTO npOAyKT c HOMepoM k neoóxoduM nompeóumeAHM e MOMeurn 
t9 ecjiH npn JIIOôMX u;eHax p Bce BeKTopbi e e <pt{p) HMCIòT nojio^HTejibHbie fc-e 
KoopAHHaTbi. npOAyKT k' mexHWiecKu, ueeo3MOJicHo noAynamb e MOMenm t' + 1, 
ne iiMen npodynma k e MOMenm t9 ecjin H3 cooTHomeHHH 

A = 0, {xt9 yt) G 3rt9 

xt+i ^ yt, {xt+u yt+i)G ^t+u "•> 
xv ^ yv-X9 {xV9 yt>) G ZTt, 

cjieAyeT, HTO y% = 0. 
H3 7.A BbiTeKaeT, HTO ecjin ct e <pt{co9 pt) AJIH Bcex t9 co H ecjiH 

n\ (**» yòG ft> xt + ct ^ yt-x {t = 1, 2, •••, «T), 
CT+I = y r* 

TO Bce BeKTopbi yt, ct CTporo nojio>KHTejibHbi. 
MTOôM oôecneHHTb cymecTBOBaHHe HeTpHBHajibHbix nocjieAOBaTejibHOCTeö, 

yAOBjieTBopniomnx cooTHomeHHHM (2), BBeAeM ycjiOBHe : 
7.B. CymecTByeT CTporo nojio>KHTejibHMH BeKTop x9 TaKoft, HTO npOH3BOA-
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CTBeHHbifi npoqecc {x9 x) npHHaAJie>i<HT TexHOJiornnecKHM MHO>i<ecTBaM &~t{co) 
npH Bcex t9 co. 

HaM noHaAOÔHTCH Tao<e ycjiOBHe : 
7.B. Bce AOXOAM wtj HMeioT KOHennbie MaTeMaTHHecKHe o>i<HAaHHH. 
HaKOHeij;, ny)KHa HeKOTOpan peryjinpHOCTb H3MepHMbix npocTpaHCTB {Q9 ^t)-

HanpHMep, AOCTaTOHHo npeAnojio>KHTb, HTO Ka>i<AaH ö-ajireopa &t nopo>i<AaeTCH 
OTo6pa>KeHHeM Q na ôopejieBCKoe noAMHOKecTBO HeKOTOporo nojibCKoro npoc
TpaHCTBa. OTCioAa cjieAyeT cymecTBOBaHHe ycjioBHoro pacnpeAejieunn Bepo-
HTHOCTefi na ^ + 1 OTHOCHTeJIbHO J*",, T.e. cymecTBOBaHHe 3aBHCHmeft OT CO 
BepOHTHOCTHoft MepM Pt{co9 •) Ha #"m> TaKoft, HTO P{A I grt) = Pt{co9 A) (n.H.) 
npH A G g?t+ì. 

8. KOHCTpyKIJHH, C nOMOIJJblO KOTOpOH CTpOHTCH paBHOBeCHe, HanoMHHaeT 
MeTOA AHHaMHHecKoro nporpaMMHpOBaHHH: cuanajia KOHCTpynpyeTCH (OT t+l K 
t) HeKOTOpan nocjieAOBaTejibHOCTb COOTBeTCTBHH, a 3aTeM e ee noMombio BMHHC-

JIHIOTCH (OT t - 1 K 0 u,eHM H onTHMajibHbie njianbi yHaCTHHKOB. 
PaBHOBecne MOKHO paccMaTpHBaTb KaK nocjieAOBaTejibHOCTb HaôopOB 

ft = (xt, yt, ct9 pt9 qt) {t = 1, 2,---, T + l ) 

(Ha30BeM HX jioKajibHMMH paBHOBecHHMH), rAe {xt9 yt) = Hi{xti9 yti)—coBOKynHoe 
npOH3BOACTBO, ct = Tictj—coBOKynHoe noTpeôjieHHe. Rjin nocTpoeHHH gt cy-
ii;ecTBeHHO 3HaTb H3 npomjioro TOJibKO jvi> a H3 ôyAymero TOJibKO pt+\. npn t 
= r + 1 ôyAymee He HMeeT 3HaneHHH. no9TOMyMOH<Hoo6o3peTbBcejioKajibHbie 
paBHOBecHH B MOMeHT T+ 1, oTBenaioiUHe BbinycKy z B MOMCHT T. 06o3HanHM 
MHÔ cecTBo cooTBeTCTByioiUHX paBHOBecHbix ueH pT+i nepe3 fe-i(û>, z). nycTb 
MM yyae 3HaeM MHOH<ecTBo <j>t+\{co9 z) Bcex paBHOBecHbix u,eH B MOMCHT t + 1, 
OTBenaioiUHX BbinycKy z B MOMCHT /. TorAa MHO>i<ecTBO BO3MO>KHMX B MOMCHT t 
nporH030B pt+i BbiHHCjineTCH no (JDopMyjie 

(3) Wt{co9 z) = \cj>m{a>'9 z) Pt{co9 dco'). 

ÜOACHHTaeM Tenepb BceB03MO>KHMe JioKajibHbie paBHOBecnn {xt9 yt9 ct9 pi9 qt) B 
MOMeHT / B npeAnojio>ï<eHHH, HTO BbinycK B MOMCHT t — 1 paBeH z. RJIH sToro 
naAO pemHTb cjieAyiomyio 3aAany: 

{xt9 yt) E jrt{co9 pt9 qt)9 ct E (pt{co9 pt)9 qt E Wt{co9 z)9 
(4) 

ct + xt ^ z, pt{ct + xt) = ptz. 

Uyrb K ee pemeHHio orapMBaeT TeopeMa KaKyTaHH o HenoABH>KHOH TOHKe.3 

nocjieAOBaTejibHOCTb maroB MO>KHO onncaTb cjieAyiomeft AnarpaMMofi 

çii fei <j>t fei fei (5> x y \y \/ \ / \ 
V,-i V, WT WT+l = {0}, 

Tipa 9TOM MU onnpaeMCH Ha o;wy jieMMy, AOKa3aHHyio B.M. ncviTepOBHieM, 
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rAe CTpejiKH, HanpaBJieHHbie BBepx, 03Hanai0T pemeHHe 3aAann (4), a CTpejiKH, 
HanpaBJieHHbie BHH3, BMHHCJieHHe ycjiOBHoro MaTeMaranecKoro o>KHAaHHH no 
(})opiviyjie (3). 

flocjie Toro, KaK nocTpoeHM COOTBCTCTBHH (5), BbinncjineTCH OT t - 1 K t 
nocjieAOBaTejibHOCTb gt = {xt9 yt9 ct9 pt9 qt). HMCHHO, MM noACTaßjineM z = yt-\ 
B 3aAany (4) H nmeM H3MepHMoe pemeHHe STOH 3aAann, yAOBjieTBopniomee AO-
nojiHHTejibHOMy ycjiOBHio E{pt\^t-ò = ft-i. 

PeajiH3auHH HaMeqeHHOH nporpaMMM TpeôyeT npeoAOJieHHH pHAa TexHHHecKHX 
TpyAHOCTeft. fljiH npHMeHeHHH TeopeMbi KaKyTaHH HCOOXOAHMO, HTOôM COOTBCT-
CTBne Wt npHHHMajio BbinyKJibie KOMnaKTHbie 3HaneHHH. OAHaKo MHOKCCTBO 
0t+i{co9 z) paBHOBecHbix neu He HBjineTCH, Booôme roBopn, HH BbinyKJiMM, HH 
KOMnaKTHMM. TeM He MeHee BbinyKJiocTb ¥t{co9 z) MO>KHO BbiBecra H3 H3BecTHoft 
TeopeMbi AyMaHHa (CM. [2]), ecjiH Bce Mepbi P,(ûv)6e3aTOMHbie. OômHftcjiyHaft 
MO>KHO HCCJieAOBaTb pa3jiaran 9TH Mepbi Ha aTOMM H 6e3aTOMHyio nacTb. 

H T O ô M npeoAOJieTb TpyAHOCTH, CBH3aHHbie e HeKOMnaKTHOCTbio @t+i{co, z)9 MM 
ype3aeM TexHOJiornnecKHe MHO^ecTBa, Tpeôyn, HTOôM coBOKynHbiö BbinycK yt{co) 
ÔbIJI He MeHbme HCKOTOpOH 3aAaHHOH nOJIO)KHTejIbHOH #rH3MepHMOH (jtyHKUHH 
st{co). n p n onpeAejiëHHbix ycjiOBHHX Ha Haôop f = {eì9 e29 ••-, eT) H HanajibHbifi 
BeKTop y0 onHcaHHyio Bbime nporpaMMy, AencTBHTejibHO, yAaeTCH ocymecTBHTb 
H nocTpOHTb HeKOTOpbiH cypporaT paBHOBecHH—MM Ha3bmaeM ero f-paBHOBecH-
eM. 3aTCM AOKa3MBaeTCH, HTO f-paBHOBecne HBJIHCTCH HaeroHiUHM paBHOBecneM 
npH noAxoAHmeM Bbiôope f. Cfl(oKa3aTejibCTBO Hcnojib3yeT ycjiOBHH 7. A H 7.B.) 
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The Future of Stochastic Modelling 

P. A. P. Moran 

Between the subject of probability theory (i.e., the study of nonnegative ^-finite 
measures) and the theory of statistical inference exists the vast field of stochastic 
modelling. This is the study of particular scientific models or theories in which a 
random element enters essentially. These three fields are very closely intertwined 
and need each other. Here we consider the future of stochastic modelling and its 
past also. 

Stochastic models often cannot be separated from their deterministic limits and 
analogues, and thus most of classical analysis may be needed to understand them. 
In fact the relationship between stochastic and deterministic behaviour is quite 
intricate, and each may shed light on the other in unexpected ways, as for example 
in the relationship between Brownian motion and potential theory. Probabilistic 
methods, in the form of numerical simulations, can in fact be used to provide ap
proximate solutions to deterministic problems, and when Metropolis and Ulam 
[4] coined the phrase "Monte Carlo method" they had in mind the solution of 
partial differential equations in this way. It was only later that the phrase came to 
mean stochastic simulation in general. 

Stochastic models of natural phenomena now cover an enormous field which 
includes all branches of statistical physics, queueing, congestion, storage, biological 
populations and population genetics. Of these the earliest to develop was statistical 
physics, beginning with gases and then moving into liquids and solids. This vast 
subject had no influence at all on statistical inference, nor was itself affected by the 
development of a rigorous mathematics for probability theory until about the late 
thirties. The block in communication was complete. When a statistician attempts to 
read any of the classical treatises on statistical mechanics written in the twenties 
and thirties, such as those of Tolman and Fowler, he is bewildered by the termino-
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logy, the subtleties of ergodic theory, and by the habit of the physicist of calculating 
the "most probable" state. Since the probability of the most probable state is usually 
either zero or exceedingly small, it takes some time for the statistician to realise that 
the physicist is really attempting to show that nearly all the probability is con
centrated around this state. It is only since the classical monographs [1], [2] of 
Khintchine that probabilists and physicists have been on speaking terms. Close 
and intimate relations have not yet been established. 

In classical statistical mechanics we attempt to make statements about averages 
taken over solutions of differential equations when the number of variables is very 
large. The essential feature seems to be the existence of a Hamiltonian or equiv
alent. When this is not so, the subject is relatively unexplored. There are however 
a number of other probability problems in physics which are not of this type. 

An interesting example is that of electric circuits containing random elements. 
Suppose for simplicity that these are resistances with small random variations about 
their nominal values. There appears to be no general theory about this situation 
although some isolated problems have been solved. Rayleigh pointed out in 1882 
that if we take k > 1 resistances whose true values are distributed about an un
known value R with a small coefficient of variation C, the ratio of their resistance 
in series to their resistance in parallel is nearly distributed about a mean equal to 
k2 with a bias and a coefficient of variation both of order C2. This fact is used in 
practice for very accurate bridge circuits for the measurement of resistances. Com
mercial instruments using this principle with specially designed switches are now 
available. Another type of problem occurs when the resistances are 0/1 random 
variables (or more generally 0/Jfy). Here simulation is at present the most expedi
tious approach. This subject is related at one extreme to the theory of inhomogene-
ous media and at the other to percolation and reliability theories. A survey of the 
percolation aspects has recently been given by Kirkpatrick [3]. 

A problem of a different kind is that of the long-term behaviour of globular star 
clusters. Here we have a Hamiltonian but only a pseudo-ergodic behaviour. These 
remarkable symmetric objects, of which over 100 are known, may contain 103 to 
105 stars. Their energy interactions cause them to settle down into a semistationary 
distribution, but an individual star may have a nonzero chance of acquiring enough 
energy to escape finally from the system which thus in the long run declines in 
number. A large literature exists on this subject, but clearly no exact theory is pos
sible. This led Ulam and his colleagues to carry out some fascinating numerical 
experiments with 12 attracting particles, started off" in a more or less random 
manner, and with their trajectories obtained by numerical integration. The whole 
subject of modelling clusters has been recently surveyed by Aarseth and is again an 
example where much is to be learnt by judicious numerical experimentation. 

The simulation of diffusion processes also occurs in very interesting problems of 
navigation. One example is the long study of bird navigation (Kendall [5]). This has 
some similarity to another published study by Levison, Ward, and Webb of the 
navigation across the Pacific of the Polynesian people under the influence of random 
winds and ocean currents. 
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Time series, i.e., stationary random processes, also occur widely in physical 
science, often in a manner requiring much more than conventional theory. One 
large class of interesting problems concerns the passage of random processes 
through dispersive media. An example is the study of the radiation received from 
pulsars. These are stellar objects which emit, at regular intervals, pulses with a wide 
band spectrum. On their long path to the earth they pass through a dispersive 
medium which spreads out the different frequency bands so that on arrival at the 
earth the amplitude envelope is nearly constant. The problem is to recover the 
underlying pulse frequency. The radio-astronomers solved this problem easily 
without help from statisticians by using the instinctive understanding of spectral 
theory possessed by communication engineers, but this example shows how the 
probability theory needs to be extended, e.g., in the direction of studying "local 
spectra". 

Dispersive effects with stationary processes are also illustrated by ocean waves 
which show astonishing and as yet not completely explained behaviour. 

Until recently geometrical probability consisted mainly of a few trivial problems 
in elementary textbooks but is now a flourishing subject with many practical ap
plications. The natural tool is Haar measure invariant under the Euclidean group. 
For rotations this is a probability measure since the group is compact (it may be 
pointed out that the natural way to deal with these in E3 and Ei is to use quater
nions), but for random points, lines and planes we need Lebesgue measure and 
therefore conditional probabilities (a general theory has been given by Renyi). 

Many natural phenomena and problems of practical measurement require geo
metric probability modelling. One of these is "Stereology", the estimation of the 
three-dimensional objects from one- and two-dimensional flat sections. This has a 
large literature of its own because it is of practical importance in biology and 
metallurgy. There are still some unsolved problems in this subject which might be 
soluble. Much more difficult, however, are the unsolved problems of the more or 
less random movement of metallurgical dislocations. 

Metallurgists are also interested in the very wide variety of models for the 
random division of space. The simplest such model is the random division of a 
plane by a Poisson field of lines. Although an elaborate theory exists in this sim
plest, but difficult, case many questions remain unanswered, e.g., the distribution 
of the area of the resulting polygons. In addition to discovering most of the known 
theory of this problem and its higher dimensional generalisations, Dr. R.E. Miles 
has succeeded (in collaboration with Dr. I.K. Crain) in programming a large-scale 
computer to do simulations of the resulting polygons. This has opened up the excit
ing prospect of the computer simulation of random geometry. 

Models of the coverage of one geometric element by randomly placed elements 
of another shape lead to the problem of estimating the probability of complete 
coverage on the one hand, and of the distribution of the measure of the region not 
covered on the other. The former problem is usually only open to heuristic theore
tical discussion but simulations give good agreement with such theory. The latter 
problem, which sometimes leads to central limit theorems for the measures of 



520 P. A. P. MORAN 

random sets, is analytically complicated and has some interesting applications in 
statistical mechanics. Here again numerical simulations have been done. 

The type of statistical models which lie at the basis of statistical inference and the 
mathematics of the latter now has an enormous literature. The use of computers 
makes it easy to calculate solutions of difficult estimation equations and, more 
importantly, to simulate the behaviour of any estimators for values of the para
meter point in the neighbourhood of the guessed value. In the future this is going 
to affect profoundly the practical techniques of statistical inference. 

However we must consider some rather newer and more difficult problems in 
inference. In any statistical inference problem we need not only to be concerned 
with the identifiability of the parameters but with what we may call the identi-
fiability of the model. Thus entirely different physical models may lead to the same 
predicted stochastic behaviour and even if they do not, the difference may be too 
small for discrimination in a reasonable sample (compare Cox's discussion of 
discrimination between logit and probit response). This may be put in another 
way by saying that there is a problem of the robustness of identification of a model. 

An important example of this situation is the identifiability of the internal struc
ture of a "black box". Suppose into some system (the "box") there is an observed 
input X{t) ( - oo < t < oo), and an observed output Y{t). We take Y{z) to be a 
functional, F{X{t))9 deterministic or stochastic, of X{t) for t S T. We seek to deter
mine as much as possible of the structure of F{X{t)) from an observed record. This 
is the situation in studying rainfall runoff, and F{X{t)) may be highly nonlinear. 
Identifiability is then a key question. Simulation may be of great use here if only to 
test the effectiveness of various methods of analysis. 

Simulated models are also important in testing other more well-known statistical 
techniques, and there is a need for much more work on "challenge statistics" where 
statisticians who claim to have successful methods of, say, factor analysis or cluster 
analysis are challenged to apply their methods to sets of artificially constructed data 
of known structure. 

From what has been said above, it is clear that nonlinearity is an all pervading 
problem and here we are confronted, if not with a brick wall, at any rate with a hill 
of rapidly increasing slope. 

Nearly all work done on time series has been from the point of view of spectral 
analysis which is a linear theory and is not invariant under nonlinear transforma
tions of the observed values. Thus many questions remain unanswered. No ade
quate general theory exists for processes in which X{t) is nonnegative but oscil
latory (except for special processes in which X{t) is an integer, the number in a 
population—see for example the theory and simulations of M.S. Bartlett for 
epidemics and interacting populations). Here again simulation can be used to 
throw much light on what happens. Of course some work has been done in elec
trical theory (e.g., by Rice and others) on the spectrum of the output of a nonlinear 
device fed by a Gaussian stationary process with a known spectrum, but this is 
rather a special case. Similar problems also occur in econometrics. 

Another nonlinear problem in time-series which is very important practically 
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is to study pairs of processes X{t)9 Y{t) where X{t) is driven by Y{t) in such a way 
that large peaks in the spectrum of X{t) are produced at submultiples of the 
frequencies of large peaks in the spectrum of Y{t). This occurs, for example, in 
frequency dividers and is an essentially nonlinear phenomenon. An example occurs 
in testing the reality of the alleged 22-year terrestrial effect of the 11-year sunspot 
cycle (there is a possible mechanism for this). 

Nonlinearity is important in biology, especially in the study of both isolated and 
interacting animal populations, and in population genetics. The theory of an 
isolated animal population usually involves both nonlinearity ("density depend
ence") and lagged effects. The stochastic theory is often only approachable by simu
lation, whilst the deterministic theory throws up very deep problems on the global 
behaviour of iterated functions, i.e., discrete time topological dynamics. A begin
ning at a general theory of this very difficult subject has been made by Smale, Fried-
lander, Kesten and others. Using computer simulations as an exploratory device it 
has been found that even the very simplest functional relations lead to quite ex
traordinarily complicated behaviour. 

In population genetics nonlinearity is the rule and has also been systematically 
studied by Karlin, Kesten and others. Some of the results may be of great im
portance in the study of common human diseases. 

From the above we see that in studying stochastic models repeated recourse has 
to be made to simulation. The existence of large powerful computers and, equally 
important, the arrival of the printed circuit programmable desk machine, makes 
such simulation practicable and often easy. I seem to detect some tendency for pure 
mathematicians to despise such work. This is a profound mistake and much of the 
future of both pure and applied mathematics will be the result of heuristic in
vestigations. As an example ,we may mention that L. J. Mordell once studied a 
certain cyclic algebraic inequality with seven variables. He did not succeed in prov
ing it, but Dr. K. J. Goldberg verified the inequality for 300,000 sets of pseudo
random numbers and after this the theorem was finally proved by P.H. Diananda. 
This illustrates the use of stochastic modelling in quite pure mathematical prob
lems. 
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Mathematics and the Picturing of Data* 

John W. Tukey 

1. Introduction. Why am I writing on this topic? Partly because picturing of 
data is important. Partly because, if present trends continue, an increasing frac
tion of all mathematicians will touch—or come close to touching—data during the 
next few decades. Mathematicians have many advantages in approaching data— 
and one major disadvantage. Those mathematicians who might come close to data 
need to know their advantages from their disadvantages. 

Experience and facility with clear thinking—and with varied sorts of calculi that 
lead step-by-step from start to conclusion—knowledge of a variety of mathematical 
structures—even some of the more abstract are sometimes relevant to data—these 
are great advantages. The habit of building one technique on another—of assem
bling procedures like something made of erector-set parts—can be especially 
useful in dealing with data. So too is looking at the same thing in many ways or 
many things in the same way; an ability to generalize in profitable ways and a 
liking for a massive search for order. Mathematicians understand how subtle as
sumptions can make great differences and are used to trying to trace the paths by 
which this occurs. The mathematician's great disadvantage in approaching data is 
his—or her—attitude toward the words "hypothesis" and "hypotheses". 

I must diverge for a moment to tell a story, dating to about 1946. The late Walter 
Mayer, then a member of the School of Mathematics at the Institute for Advanced 
Study, and I were chatting at the A.M.S. annual meeting at Rutgers. He was sur
prised that I was going to stay with Bell Laboratories, as well as with Princeton 
University. He explained how he had become involved with applied matters in 
Germany during World War I, and how happy he was to get back where, "and I 

•Prepared in part in connection with research at Princeton University supported by the U.S. 
A.E.C. 
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quote, "If I say a gik has certain properties, it does". If you cannot occasionally 
modify the attitude Walter Mayer then expressed, work close to data may not be 
your forte. 

When you come to deal with real data, formalized models for its behavior are 
not hypotheses in the mathematician's sense—in the sense that Walter Mayer so 
enjoyed—the language adopted by classical mathematical statistics notwithstanding. 
Instead these formalized models are reference situations—base points, if you like— 
things against which you compare the data you actually have to see how it differs. 
There are many challenges to all the skills of mathematicians—except implicit 
trust in hypotheses—in doing just this. 

Since no model is to be believed in, no optimization for a single model can offer 
more than distant guidance. What is needed, and is never more than approximately 
at hand, is guidance about what to do in a sequence of ever more realistic situations. 
The analyst of data is lucky if he has some insight into a few terms of this sequence, 
particularly those not yet mathematized. 

2. Picturing in simple cases. Picturing of data is the extreme case. Why do we use 
pictures? Most crucially to see behavior we had not explicitly anticipated as pos
sible—for what pictures are best at is revealing the unanticipated; crucially, often 
as a way of making it easier to perceive and understand things that would otherwise 
be painfully complex. These are the important uses of pictures. 

We can, and too often do, use picturing unimportantly, often wastefully, as a 
way of supporting the feeble in heart in their belief that something we have just 
found is really true. For this last purpose, when and if important, we usually need 
to look at a summary. 

Sometimes we can summarize the data neatly with a few numbers, as when we 
report: 

a fitted line—two numbers, 
an estimated spread of the residuals around the "best" line—one more number, 
a confidence interval for the slope of the "best" line—two final numbers. 
When we can summarize matters this simply in numbers, we hardly need a pic

ture and often lose by going to it. When the simplest useful summary involves many 
more numbers, a picture can be very helpful. To meet our major commitment of 
asking what lies beyond, in the example asking "What is happening beyond what 
the line describes!"9 a picture can be essential. 

The NW corner of Figure 1 is a wasteful, unhelpful picture, except for those who 
must be reassured that the U.S. population increased, roughly exponentially, 
between 1800 and 1890. The NE corner is an effective, helpful picture, showing 
how the census population deviated from one exponential. ("Census population," 
because census errors are comparable with what we now see.) It shows us the com
parison between the data and a simple, well-understood reference. The SW corner 
gives, numerically, the simplest relatively close fit to some data. Who among us can 
look at this and tell what is going on? The SE corner shows graphically exactly the 
same fit. All we have to do to use it is to learn to pay no attention to horizontal 
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position, to forget that coordinate entirely. Such a picture makes the otherwise 
complicated understandable. 

The main tasks of pictures are then : 
to reveal the unexpected, 
to make the complex easier to perceive. 

Either may be effective for that which is important above all: suggesting the next 
step in analysis, or offering the next insight. In doing either of these there is much 
room for mathematics and novelty. 

How do we decide what is a "picture" and what is not? The more we feel that we 
can "taste, touch, and handle" the more we are dealing with a picture. Whe'ther it 
looks like a graph, or is a list of a few numbers is not important. Tangibility is 
important—what we strive for most. 

The great geologist Chamberlain once said, in a paper recently reprinted in 
Science after seven decades: "Science is the holding of multiple working hypo
theses". We need to go further, to the broader—prouder—maxim: "The picturing 
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of data must be sensitive, not only to the multiple hypotheses we hold, but to the 
many more we have not yet thought of, regard as unlikely or think impossible". 

3. Some details. Just using residuals as a way of looking at the data against the 
straight line—instead of through its appearance—was not difficult. The same idea 
recurs, however, with ever-increasing complexity. As mathematicians we are used 
to taking a bit of process from one procedure and putting it in others. We need to 
do this widely and subtly with 

given = fit PLUS residual. 

Notice that we have pictured "plus" by writing it out in capital letters—thus giving 
it its proper emphasis instead of using a single unobtrusive symbol. 

Consider a fit in the form row PLUS column. (By not writing a{ + bj I am pic
turing the formula—and in the process not leaving its essentials to subscripts and 
+ signs which the nonmathematician finds it easy not to notice.) When we plot 
the points with coordinates (row, column) (easily found as the intersection of a 
family of vertical lines with a family of horizontal lines), the loci row + column = 
constant are parallel straight lines with slope— 1, and we have only to turn our 
picture through 45 degrees. All very simple—but equally mathematical. 

We have now made a picture where the vertical coordinate is all meaningful and 
the horizontal coordinate is to be forgotten. We have had many years' experience 
with graphs where both coordinates have meaning. Many find it suprisingly hard 
to give up the idea that ALL quantitative pictures have to involve TWO meaning
ful coordinates. 

4. Mental picturing of matrices. The mental pictures of those concerned with 
data have, of necessity, to be more or less mathematical. It is important that they 
involve appropriate mathematics, sufficiently understood. Failure to do this is 
most evident in connection with finite-dimensional linear spaces. 

To be useful in dealing with data, understanding of matrices needs to be both 
abstract and concrete, and the bridge between needs to be well trodden in both 
directions. An abstract matrix—whether it represents a linear transformation or a 
quadratic form—need not involve a coordinate system, though it must involve 
two vector spaces (which may coincide). A numerical matrix—whether it represents 
a linear transformation or a quadratic form or a change of coordinates, three 
interpretations that we MUST keep clearly separate, must involve not only two 
specific vector spaces but two specific coordinate systems (which again may coin
cide). To hint by saying that a matrix is "p x /?", that any two matrices with 
matching numbers of columns and rows can be freely multiplied together, is an 
egregious source of false understandings and error. 

The linear spaces that arise in treating data are rarely finite-dimensional ex
amples of the familiar self-conjugate Hilbert spaces. Rather they are finite-dimen
sional Banach spaces. (1, 3, 5) is quite different as the values of {xÌ9 x2, x3) in some 
given data set than it is as the coefficients {ct} in c\Xi + c2x2 + c3x3. Inner pro-
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ducts between a vector of c's and a vector of x's are well defined, and do not need 
assumptions. (Quadratic norms seem always to come from precise assumptions 
about relative sizes of variances and covariances. If these really mattered crucially, 
we would almost always be in very deep trouble. Fortunately, only rough ratios 
matter.) 

Let me remind you of the distinction between orthogonality {xi9 Xj) = 0, for 
/ T£ j and biorthogonality {ci9 xf) = 0, for / ^ j . 

Many have heard of orthogonality; some bow down to it as to an idol. Fewer 
have heard of biorthogonality, yet it is a much more important idea in handling 
data. The practice of solving linear equations usually involves orthogonalization, 
yet who teaches that this is an arithmetically convenient route to biorthogonality? 
(At times, I suspect this is orthogonality's chief—if not only—virtue.) 

Somehow ease of writing—or concentration on linear transformations—more 
precisely on linear transformations from and to the same space—rather than on 
quadratic forms—has made many find \A — Al\ = 0 the natural equation for eigen
values and eigenvectors—which are then said to be "of Ä\ When we deal with data, 
we are much more often concerned with \B — XC\ = 0 and we usually need to be 
concerned with the result as being "of B compared with C". 

Some may think of these as small points. They are not tremendous, but their 
neglect or misinterpretation has kept many from an adequate understanding of 
what they are doing. 

Mathematicians should, I believe, see that their students: 
understand that simple matrix operations, like inversions, finding eigenvalues, 

or finding eigenvectors really exist, and can be used—by a computer-and-programs 
system when available, by hand in case of need, 

understand the simple abstract characteristics of linear spaces, their conjugate 
spaces, linear transformations, and quadratic forms, 

understand what the effect of change of coordinates is on such objects, 
understand how to tie the concrete numerical and the abstract algebraic together, 

when thinking about and working with real examples, 
understand that every numerical matrix implies two coordinate systems. 

If people are to throw letters for matrices around as freely as they do letters for 
numbers—a noble goal—they need to be equally willing to throw in numerical 
values in the two cases—and as willing to introduce matrix coordinate changes in 
the one as to introduce scalar coordinate changes, perhaps feet to inches, in the 
other. Matrix algebra needs to have the same reality as scalar algebra. 

5. Cumulations. How do we present information about distribution—whether 
the distribution is a mathematical entity, a Lebesgue measure, or a batch of points? 
By saying "information about" we are admitting the need to give only a summary. 
By imbedding this question in a paper whose title includes the word "data" we are 
admitting that such questions as whether the mathematical distribution is discrete, 
singular or absolutely continuous are not to be answered. 

Before we summarize, the mathematician is likely to want to use the cumulative 
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(cumulative distribution function), usually defined with a ^ . Both he and the 
practitioner can gain by the redefinition 

F{x) = Probability {y < x} + \ Probability {y = x} 

which makes the cumulative of — y exactly 1 — F{x)9 any discontinuities included, 
and makes Fourier inversion exact at any discontinuities. (Karl Pearson did this 
without saying so seven decades ago.) 

The empirical distribution function is often defined as l/nth of the Count ofy's ^ 
x where n is the total count. Again it is better to choose 

n-Fn{x) = (Count of y's < x) + |(Count o f / s = x). 

We will soon learn to change n to n + -g- and add + £ on the right. 
How are we to summarize a function? This question is easier for the empirical 

case, where we have at most n values to begin with, where it is easy to move back 
from a higher-level description by a function to a lower-level description by n 
numbers, much more tangible as long as n is not too large. 

If we draw a sample yÌ9 y2, —9yn9 of n observations from dF{y) we are usually 
only concerned with symmetric functions of the y's. (Sometimes I think that only 
statisticians work with nonpolynomial symmetric functions.) The numerically 
least of yh y29--9 yn which we will label yVn is surely a symmetric function of the 
y's. (Rearrangement surely makes no difference to its value.) The same is true of 
y2]n9 the next-to-smallest, and so on. The order statistics y1]n ^ y2Xn ^ ••• ^ ynXn 

obtained by rearranging the fs in increasing order are actually the most general 
symmetric functions of yl9 y2,~-9 yn. 

Assume now that yi9'"9 yn are a random sample from a distribution with a con
tinuous cumulative F{x). This is a reference situation, not a real one, but that should 
not interfere with using it for guidance. 

It is easy to see that the distribution of F{y£[n) depends only on n and /, not at all 
on F. There are many ways to typify the location of each of these distributions 
with a number. The one that is most useful is by its median, especially since the 
operation of taking medians commutes with monotone re-expressions. Using the 
available tables—either of the beta distribution or of Snedecor's F distribution— 
we can learn that 

median {F{y^n)} g i — 

n + i 
where " < " means "is less than" and " « " means "is close to". Indeed for n ^ 5 
and all /, the reversed inequality holds when {i — 0.3)/{n + 0.4) replaces 
(i - *)/(» + i). 

By the commutativity noted above, F(median{^|W}) satisfies the same condition, 
so that 

median {yiin} g F~l i "1 
3 

n + | 

Thus the natural fraction to associate with the /th of n is neither of the traditional 
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choices—neither {i — \)jn nor ij{n -j- 1)—but rather (/ — \)j{n -I- \). 
What does this tell us about empirical cumulatives? Almost certainly that, if 

we must use them, 

F dA - (Count °f / s < x) + | (Count of / s = x) + \ 
nK } (Total count of fs) + \ 

is a still better choice. At the /th order statistic, the numerator is (/ — 1) + (1/2) + 
(1/6) = / — (1/3). So much for getting our ideas and definitions a little clearer. 

6. Summarizing. The n order statistics are a natural beginning for summarization. 
We want to pick out some of them to stand for the rest. We can do this fairly well, 
because we know roughly what their correlation structure is : roughly equal cor
relations for equal values of i\/i2. 

If we start with / = 1, and double, getting, successively, / = 2, 4, 8, 16,--- or go 
up by half-octaves, getting, after rounding to integers, / = 1, blank, 2, 3, 4, 6, 8, 
ll,--- we will have sequences of roughly equally correlated order statistics. We 
can use such sequences, from above and from below, quite effectively as summaries. 

This works well for some purposes. For others, where we would like to make use 
of the approximate stability of (/ — \)/{n + | ) as n changes, we do better to 
begin in the middle and make our way toward both ends using : 

depth of yi]n = the lesser of / or n + 1 — / = result of counting in from the 
nearest end, 

depth of median = \ (1 + total count), 
depth of hinge = \ (1 + depth* of median), 
depth of eighth = \ (1 + depth* of hinge), 

where we interpret depth* as "the integer part of the depth of" whenever, as is 
usual, we wish to confine / to integers or half-integers. (Otherwise we might solve 
(' - i)Kn + i ) = 2 _ / getting 7 = (1/3) + (2~'/3) + n\V9 to which the above 
is a reasonable approximation and which is more delicately precise than data 
warrants.) 

As a result, .we summarize our distribution information with a sequence of about 
2 log2w values (about 2 log2« + 2 if we go all the way, including depths lh and 1). 

We have come a long way toward tangibility in going from Fn{x) to 2 \og2n 
selected order statistics but this is only part way. We have not yet brought in a 
reference situation, so we are not in the favorable position of explicitly comparing 
what we have with a standard. 

One approach to bringing in the Gaussian reference will be noted here, another 
later. If, for mathematicians' use only, we label the selected order statistics Lk9-~, 
L3, L2, M9 U2, U3,--'9 Uk where L ; and Uj share a depth, we can replace each pair 
by the corresponding "mid" and "spread" 

Mj = {Lj + J7y)/2 and S, = Uj - L, 

and if we then divide the spreads by the values of the corresponding spreads for 
the unit Gaussian distribution, we obtain two sequences of numbers such that the 
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median values would be ^ for each mid and a for each divided spread provided we 
were sampling from a Gaussian distribution with mean p, and variance a2. Further 
investigation then suggests that we plot both sequences against the square of the 
divisor used for the corresponding spread. Thus, when we want to separate the 
issues of skewness from those of tail elongation, rather than separating what hap
pens in the lower tail from what happens in the upper tail, we can reach a respect
able pair of pictures comparing any batch of n observations with a Gaussian 
standard. (We can convert very easily to a logistic standard, or a Cauchy standard, 
or the standard provided by any other symmetric distribution. If a seriously asym
metric distribution is a natural standard, the separation into mids and spreads is 
likely to be unnatural.) 

7. And what of two dimensions? How can we generalize all this to the plane? 
Specifically to the affine plane? Direct generalizations of order statistics fail 
miserably. But if we regard an order statistic yiln as an oriented (up or down across 
the real line) point, with ^ i of the n values to its "left" or on it and g i - 1 strictly 
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to its "left", we can generalize easily. In the plane, an (i,j) line will be any directed 
line with ^ / points to its left or on it and Sj points strictly to its left. For any 
{i,j) the set of {i,j) lines is closed. For any / < n9 there is one and only one (/, i — 1) 
line in a given direction, one line of depth /. Thus the (/, / — 1) lines form a closed 
curve of lines of depth /, the /-loop. If y < / - 1, the set of {i9j) lines is finite. The set 
of (/', i — 2) lines forms a closed polygon, the (/ — ^-polygon (all its sides belong 
to both the (/ — l)-loop and the /-loop. 

The NW corner of Figure 2 shows 11 points and the \\polygon; the NE corner 
the same points and the 2\ polygon; the SW corner the two polygons and the 
sectors defining the segments of pencils of lines that complete the 2-loop. 

(Each filled-in sector represents all directed lines through the vertex which pass 
out through the sector. If a segment of a pencil is a "stub", is each such loop a 
"polystub"?) Clearly the 2-loop is too complex to be a satisfactory generalization 
of a pair of order statistics of matched depth. The midpoints of the segments cut 
off by the (/ - |)-polygon from the extensions of the sides of the (/ -f- | ) -
polygon define a new, intermediate polygon, the /-polygon, which seems to be a 
satisfactory generalization. The SE corner of Figure 2 shows the 2-polygon for the 
11-point example. 

8. Probability plots. A naive answer to "How should we picture a distribution 
based on n values?"—essentially the question asked in §6—would be to say "make 
a probability plot". (There are many weaknesses of such plots.) 

Today, Luis Nanni and I are hard at work developing a plot that meets these 
difficulties as well as we can see how to do this. Why did it take so many decades to 
attack this problem? Presumably because too few of us have tried to make more 
useful pictures. 
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Levels of Structure in Catastrophe Theory Illustrated by 
Applications in the Social and Biological Sciences 

E. C. Zeeman 

Catastrophe theory is a method discovered by Thorn [14] of using singularities of 
smooth maps to model nature. 

In such models there are often several levels of structure, just as in a geometry 
problem there can be several levels of structure, for instance the topological, dif
ferential, algebraic, and affine, etc. And, just as in geometry the topological level is 
generally the deepest and may impose limitations upon the higher levels, so in 
applied mathematics, if there is a catastrophe level, then it is generally the deepest 
and likely to impose limitations upon any higher levels, such as the differential 
equations involved, the asymptotic behaviour, etc. Again, in geometry the com
plexity of the higher levels may render them inaccessible, so that they can only be 
handled implicitly rather than explicitly, while at the same time the underlying 
topological invariants may even be computable. Similarly in applied mathematics 
the complexity of the differential equations may sometimes render them inacces
sible (even to computers), so that they can only be handled irnplicitly rather than 
explicitly, while the underlying catastrophe can be modeled, possibly even to the 
extent of providing quantitative prediction. 

Therefore catastrophe theory pifers two attractions: On the one hand it some
times provides the deepest level of insight and lends a simplicity of understanding. 
On the other hand, in very complex systems such as occur in biology and the social 
sciences, it can sQmetimes provide a model where none was previously thought 
possible. In this paper we discuss various levels of structure that can be superim
posed upon an underlying catastrophe and illustrate them with an assortment of 
examples. For convenience we shall mostly use the familiar cusp catastrophe (see 
[5], [13], [14], [24]). 

<P 1975, Canadian Mathematical Congress 
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Level 1. Singularities. 
Level 2. Fast dynamic (homeostasis). 
Level 3. Slow dynamic (development). 
Level 4. Feedback. 
Level 5. Noise. 
Level 6. Diffusion. 
Thorn's classification of elementary catastrophes belongs to Level 1. Levels 2,3,4 

refer to ordinary differential equations, and Level 6 refers to partial differential 
equations. 

Level 1. Singulairties. We begin by recalling the main classification theorem. Let 
C9 X be manifolds with dim C ^ 5, and let/e C°°{C x X). Suppose that/is generic 
in the sense that the related map C -» C°°{X) is transverse to the orbits of the group 
Diff {X) x Diff {R) acting on C°°{X). (Genericity is open-dense in the Whitney 
C°°-topology.) Let M c C x X be given by Vxf = 0, and let i\M-• C be in
duced by projection C x X -> C. 

THEOREM (THOM). (a) M is a manifold of the same dimension as C. 
(b) Any singularity ofi is equivalent to an elementary catastrophe. 
(c) i is stable under small perturbations off. 

The number of elementary catastrophes depends only upon the dimension of C 
(and not on X) : 

dimC 1 2 3 4 5 6 
elemementary catastrophes 1 2 5 7 11 (oo) 

For details of the elementary catastrophes the reader is ret erred to [10,] [14]. The 
first complete proof was given by Mather [8], and other references are [1], [17], [18]. 

REMARK. The classification of singularities goes infinite for dim C ^ 6, but the 
above table can be extended with finite entries, provided the concept of elementary 
catastrophes is suitably modified, as follows. The singularities correspond to orbits 
of a group acting on a space of germs (see Level 4 below). In particular the (oo) 
appears at dim C = 6 because there is a stratum of codimension 6 foliated by orbits 
of codimension 7. Arnold [1] calls the codimension of the foliation, which is 1 in 
this case, the modality of the stratum. More generally the orbits form a foliated 
stratification P, which Arnold has shown to be locally finite. The finite numbers of 
strata of each codimension give the desired extension of the above table. 

The reason that catastrophe theory exists is that by a happy accident P is 5-
simple, in other words each stratum of P of codim ^ 5 is simple, that is trivially 
foliated by a single leaf. These strata correspond to the elementary catastrophes of 
dim ^ 5, and hence the latter are finitely classified differential invariants. For 
most applications it suffices to have dim C ^ 5, and so there is no need to worry 
about the foliation of the higher strata. 

Application. Suppose we have some set of objects or events about which we want 
to test a hypothesis of cause and effect. One of the first things to do is to plot them 
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in cause-effect space, and see if they form a graph. Here C will describe the cause, 
X the effect, and/(c, x) the probability that cause c will produce effect x. The most 
likely effects are given by the peaks of probability, where both the gradient vanishes, 
Wxf = 0, and the Hessian is negative definite, V ^ / < 0. This determines a sub
manifold G of M (of the same) dimension. Then G will be the desired cause-effect 
graph in C x X. The events will be represented by a cloud of points clustering near 
G, with density of clustering depending upon the deviation of the probability 
distributions. 

Consider the first two elementary catastrophes, which occur when dim C = 2. 
The fold-catastrophe occurs at the boundary of G9 but since there is no dynamic in 
Level 1 there may not be any catastrophic jump here—all we can say is that the 
cloud of points appears to terminate. 

The cusp-catastrophe occurs when a probability distribution goes bimodal. In 
this case observers may implicitly recognise the phenomenon, and capture part of 
it by either naming the two modes, or alternatively framing some form of words, 
such as a proverb or a belief. However the cusp-catastrophe can often reveal other 
facets to the phenomenon, and give a new synthesis of understanding. We illustrate 
the two alternatives by a couple of examples. 

EXAMPLE 1. AGGRESSION [22]. According to Konrad Lorenz [7] fear and rage are 
conflicting drives influencing aggression. Here the two extreme behaviour modes 
are attack/flight, and X represents a 1-dimensional spectrum of behaviour varying 
from neutral to the two extremes at either end. The cause C is 2-dimensional, 
representing the strengths of the fear and rage drives present in the animal at that 
moment. Lorenz observes that in the case of dogs the coordinates of fear and rage 
can be read from the facial expression [7, p. 81], Rage only causes attack, fear only 
causes flight, and when both are present the effect is one of two extremes but 
unpredictable. Therefore the probability goes bimodal, and as a first approxima
tion we might expect our cloud of points to cluster around a cause-effect graph 
equivalent to the cusp-catastrophe as shown in Figure 1. We shall return to this 
example, and its uses, in Level 2. 

FIGURE 1 
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Other familiar examples of bimodality which can be modeled by the cusp-
catastrophe are (i) liquid/gas [3], [11], [15], (ii) diastole/systole [23], (iii) manic/ 
depressive [25], (iv) dove/hawk [5], or (v) bull/bear ([26], and Example 7 below). 

In each case the bimodality is caused either by conflicting factors such as 
temperature and pressure in (i), or by a splitting factor such as tension in (ii), disease 
in (iii), cost in (iv) or speculation in (v). Let us now give an example of a proverb. 

EXAMPLE 2, MORE HASTE LESS SPEED. This proverb is very familiar in England, 
although almost unknown in America. Its attraction lies in its brevity and con
trariness—it is the opposite of what one would normally expect, especially if the 
operator is skilled at his task. And this leads to the observation that speed really 
depends upon two factors, haste and skill, which are conflicting. For, when both 
factors are present, the probability goes bimodal, because either the operator's 
skill enables him to increase his speed, or his fumbling haste diminishes it. There
fore again we might expect our cloud of points to cluster around a cusp-catastro
phe, as in Figure 2. 

FIGURE 2 

We suggest a couple of uses for such a model. Firstly in psychology it might be 
possible to develop it further into a predictive quantitative model for explicit skills 
(see Level 2 below). Secondly in sociology it might provide a prototype for reconcil
ing conflicting theories. For, by the theorem, we should expect the cusp-catastrophe 
to occur in many phenomena, and, although the graph is visually simple, its subtlety 
is not easy to describe with any brevity in ordinary spoken or written language (see 
[5, §10]). Therefore although we may often recognise such a phenomenon intui
tively, we tend to describe it verbally by an oversimplification, possibly by directing 
attention only to the unexpected mode. For instance "more haste less speed" 
directs attention only to the lower front sheet of Figure 2, marked "slow". Similarly 
two conflicting opinions in a discussion, or two conflicting sociological theories, 
may in fact each be referring to a single mode of an underlying bimodal phe
nomenon, and the conflict may sometimes be reconciled by exhibiting the two 
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modes as the two sheets of a cusp-catastrophe growing smoothly out of an area of 
common agreement. 

Level 2. Dynamic. In addition to the generic function fe C°°{CxX) suppose 
we are given a dynamic D as follows. Denote the associated function C -> C°°{X) 
by c H> fc. Then D = {Dc} is a family of differential equations on X9 parametrised 
by C, such that, for each e e C, fc is a Lyapunov function for Dc. In other words, 
fe increases (or decreases) along the orbits of DC9 and so the maxima (or minima) 
of fc are the attractors of Dc. Therefore Dc is gradient-like, and this is the restric
tion that Level 1 imposes on Level 2. 

The graph G now represents the attractors of D. In applications we no longer 
intuitively imagine a cloud of points clustering statically near G9 but points flowing 
dynamically onto G and then staying there. The model is half dynamic and half 
static. It is sometimes useful to think of the parameter space C as control, and X 
as behaviour space. If we slowly move the control c then the behaviour x responds 
by moving continuously on G for as long as possible; in other words it is a theorem 
of Level 2 that the system obeys the delay rule of Thorn [5], [14]. 

If c now crosses the bifurcation set, then x may cross the boundary dG of G. 
In this case the dynamic will carry x rapidly onto some other sheet of G. The word 
"rapidly" assumes that the movement of control is slow compared with the dy
namic, and it is the sudden jump that occurs at the fold-catastrophes in Level 2 that 
is responsible for the name "catastrophe theory". 

EXAMPLE 3. The catastrophe machine described in [9], [24] is a simple toy made out 
of a cardboard disk and two elastic bands, which exhibits the catastrophic jump 
well, and the uninitiated reader is recommended to make one for himself. Here the 
function/of Level 1 is the potential energy in the elastic given by Hooke's law of 
elasticity, and the dynamic D is given by Newton's law of motion, suitably damped 
so as to minimise/. 

EXAMPLE 1. Returning to our first example we see that it can be promoted from 
Level 1 to Level 2. For we may reinterpret A" as the space of states ofthat part of the 
brain governing mood (perhaps the hypothalamus), and D as the associated dy
namic representing neurological activity. Then the attractors of D represent the 
attacking/retreating frames of mind, providing the background mood against which 
behavioural decisions are taken. Although X must necessarily be very high dimen
sional, and D consequently inaccessible in the sense of being only implicit, never
theless G will still be 2-dimensional. Therefore the cusp-catastrophe can still provide 
an explicit model, which for individual animals might be made quantitative and 
predictive. Moreover since it is a Level 2 model, even though D is only implicit, 
there will be catastrophic jumps of mood, resulting in sudden attacks or disengage
ments. For example in Figure 1 the path Ph representing increasing rage at a 
fixed level of fear, as for instance in a cornered dog, will lead to a sudden attack 
at c\ while path P2 to a sudden disengagement at c2. Meanwhile paths P3, P± 
illustrate how nearby paths can lead to divergent behaviour. Similarly humans, 
when made angry and frightened, are unpredicatable and are denied access to 
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rational behaviour, and may jump from abuse to apology, even from hysteria 
to tears. 

The interest of this example is that it may provide a general model for control 
of aggression, valid for different species under varying circumstances, and may 
give insight into how such controls develop and have evolved. More generally it 
provides a prototype for relating the neurology to the psychology of moods under
lying behaviour. 

EXAMPLE 2. Our second example may also be promoted from Level 1 to Level 2, 
because, if we consider the performance of an individual, his tendency to adjust 
his speed to x9 say, within the limitations of his skill and assuming a given amount 
of haste, is another way of saying there is an implicit dynamic that moves the speed 
to x. 

A path Pi , such as in Figure 1, here represents an increasing skill at a fixed level 
of haste, as for instance when learning to ride a bicycle, and at the point c\ a catas
trophe occurs when the individual is suddenly able to ride. Moreover the greater 
the haste—for instance the swifter reactions that are needed to ride a more unstable 
machine—then the greater the skill needed before the catastrophe occurs. Mean
while a path P2 here represents increasing haste at a fixed skill, as for instance a 
wireless operator trying to read faster and faster Morse code, and at the point c2 

a catastrophe occurs as the performance drops sharply. Moreover the greater the 
skill, the greater the haste possible before the catastrophe occurs. 

In general Level 2 is much easier to test experimentally than Level 1, because the 
cloud of points more accurately determines G, and the catastrophes determine dG. 
Whenever a phenomenon exhibits any one of the four qualities of bimodality, 
divergence, catastrophic jumps or hysterisis delays, then it may be possible to 
model it by the cusp-catastrophe, in which case it may be possible to predict the 
other three qualities. Sometimes the cusp-catastrophe can also be useful in appli
cations where the control space C is high dimensional, as shown by the following 
example. 

EXAMPLE 4. ECOMOMIC GROWTH. Let X represent the space of states of an econo
my, and C the external pressures on that economy together with the controls avail
able to the government. Let D represent the implicit response of the economy. We 
should expect C to be high dimensional, and so at first sight the theorem is of little 
use. However the evolution of the economy is in fact only a 1-dimensional path in 
C lifted to a 1-dimensional path in G9 and the corresponding 1-dimensional catas
trophes are the slumps, inflation explosions, etc. 

A typical problem facing the government is the realisation that whereas its 
present policy is now at control point cQ, it may have to change policy in the next 
few months to cÌ9 due to external pressures, balance of payments, etc. The govern
ment's freedom of action may be limited merely to choosing the path from c0 to 
c\. However such choice may be critical as we now explain. Suppose there is a 
choice between two paths Pi or P2. For simplicity let us assume that neither path 
involves a catastrophe. The question that must be asked is : Does the circle Px (J P2 

link any codimension-2 stratum I of the bifurcation set? For if it does, then a 
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2-dimensional disk E spanning Pj (J P2 will pierce 2, and the section of G over E 
will contain a cusp-catastrophe, as shown in Figure 3. The lifts Qh Q2 of Ph P2 will 
exhibit divergence, which could radically affect growth, inflation, unemployment, 
etc. 

high^ growth 
A 

devalue / p 

FIGURE 3 

For example suppose Pi represented deflation followed by devaluation (as in 
the U.K. in 1967), and P2 the reverse order (as in France in 1968). Then Qx could 
lead to low growth because, with reduced stocks, firms would be unable to exploit 
the devaluation, whereas Q2 could lead to high growth, because firms could switch 
sales of stock from the curtailed home market to the export market, without losing 
growth momentum. Therefore economists should be concerned not only with the 
more obvious codimension-1 problems of catastrophe, but also with the more 
hidden codimension-2 problems of divergence and choice. 

Level 3. Development. In addition to fe C°°{C x X) and the dynamic D suppose 
that we have time T occurring as one of the axes in the control space C. It is as
sumed that Tis slow compared with the fast time occurring in the dynamic D. 

EXAMPLE 5. EMBRYOLOGY. Level 3 occurs in Thorn's main application of catas
trophe theory to embryology [13], [14], [16], where the control space, C = S x T9 

represents space-time, and X represents the states of a cell. For instance A"may be 
a bounded open subset of Rn, with several thousand coordinates representing vari
ous chemical and physical parameters of the cell. The dynamic D represents the 
homeostasis of a cell returning it swiftly to equilibrium, and T the slow develop
ment of the cells. 

An example of a result in this context is the following : 

THEOREM [27]. Whenever a tissue differentiates into two types, the frontier between 
them first forms to one side and then moves through the tissue before stabilising in its 
final position. 

The proof uses the cusp catastrophe as illustrated in Figure 4. 5* is taken to be 
1-dimensional perpendicular to the frontier. Development paths of cells are given 
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by lifting time lines to G. The frontier first forms at cÌ9 then moves as a wave 
through 5 along the cusp branch Cic29 and then stabilises at c2, where the cusp 
touches the time line c2c3. Such a wave is often a hidden switching on of genes, 
and morphogenesis may be caused after some delay by a secondary wave of physi
cal manifestation. For example in [27] detailed models are given for the morpho
genesis of gastrulation and neurulation in amphibia, and of culmination in 
slime-mold. 

FIGURE 4 

Space-catastrophes. The above result depended upon the time-axis not being 
tangential to the cusp-axis, which can be justified by an appeal to genericity. 
However to put this type of genericity on a mathematical footing requires a general
isation of the classical theory as follows, which Wassermann [19] calls space-
catastrophe theory. (He also studies the dual concept of time-catastrophe theory.) 

Let E„ denote the ring of germs at 0 of C°°-functions Rn -> R, mn the maximal 
ideal, and G„ the group of germs of C°°-diffeomorphisms Rn

9 0 -> Rn, 0. Then Gn 

acts on mn9 leaving m% invariant. Classical catastrophe theory [1], [8], [14], [17], 
[18] consists of analysing the foliated stratification P of ml by Gn. The elementary 
catastrophes of dimension s are given by the strata of P of codimension s. Since P 
is 5-simple, the elementary catastrophes for s g 5 are finitely classified differential 
invariants, independent of« (for n ^ 2). 

For the generalisation we need some more definitions. We say a e Gn+r covers 
ß e Gr if %a = ß%9 where 7c:Rn+r -> Rr is the projection. Define 

Grn = {{oc, ß) e Gn+r x Gì+r; 3 T e Gr such that a, ß cover T}. 

Then Gj acts on mn+r9 leaving m\ -f mrEn+r invariant. For space-catastrophe theory 
we choose r = 1 (representing time), and analyse the foliated stratification Q of 
m2 4- miEn+i by G\. The space-catastrophes of dimension s are given by the strata 
of Q of codimension s + 1. 

Wassermann [19] has shown that Q is 2-simple, and hence the 1-space-catastro
phes are finitely classified differential invariants, independent of n ^ 1. There are 
exactly four, namely the beginning cÌ9 the middle, and the end c29 of the wave in 
Figure 4, and the "silent" dual of c2. Therefore the above theorem is valid, and 
exhibits them all. 

However Q is not 3-simple, for Wassermann has shown that the P-strata of 
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swallowtails and umbilics are not only substratified by Q but also foliated. There
fore the number of singularities in 2-space goes infinite, and although the 2-space-
catastrophes will still be finitely classifiable, they will no longer be differential 
invariants. Some will be—for example the cusp-projection of a fold-surface into 
2-space (analogous to the fold-projection of a fold-curve into 1-space at c2 in 
Figure 4). This example has been used to model the pattern formation of somites 
in amphibia [27]. 

However Thorn [14], [16] uses the swallowtail, butterfly and umbilics extensively 
in embryology, and hence it is important to classify the 2- and 3-space-catastrophes. 
Therefore mathematically we need to analyse the strata of Q up to codimension 4, 
and to understand the nature of the loss in differentiability implied by their folia
tion. 

Level 4. Feedback. Here we assume that the slow flow is not as simple as merely 
taking a coordinate in the control space, but may go in different directions on 
different sheets of G. In fact it may be conceived as a form of feedback : 

fast dynamic D 
C, "X. 

slow feedback F 

More precisely, in addition to / and D, suppose we are given a C°°-map F: 
C x X -> TC9 where TC denotes the tangent bundle of C, and F{c, x) is a tangent 
at c9 for each c e C, x e X. Therefore D and F together form an ordinary differential 
equation o n C x I (with the proviso that D is fast and F slow). 

EXAMPLE 6. HEARTBEAT AND NERVE IMPULSE [23]. Explicit examples of differential 
equations in form of feedbacks on the cusp-catastrophe were taken as models. In 
each case the flow possessed a stable equilibrium, which if suitably disturbed by 
an "external agent", triggered a catastrophe via D, and a return to equilibrium via 
F. In the heartbeat the return involved a second catastrophe (relaxation after con
traction), whereas in the nerve impulse the return was smooth (repolarisation). 
These models possess two interesting features. Firstly the feedback does not give a 
flow precisely on G9 but only near G9 the order of nearness depending upon the 
ratio K of fast/slòw. If X-> oo we obtain an idealised flow on G9 with instantaneous 
catastrophes, generalising the relaxation oscillations of electrical engineering. 
Secondly the words "external agent" above reveal the inadequacies of the models, 
in being only ordinary differential equations describing the local behaviour of 
heart muscle and nerve fragment; what is needed is to embed the latter in a larger 
partial differential equation that describes the global behaviour as waves. We 
return to this problem in Level 6. 

EXAMPLE 7. STOCK EXCHANGES [26]. The cusp-catastrophe is used to model the 
behaviour of stock exchanges, as follows. The excess demand is the normal factor 
controlling the rate of change of index, and the speculative content of the market a 
splitting factor. The dynamic D represents the immediate response of index to 
investors, and F the somewhat slower feedback. Plausible economic hypotheses 
lead to a flow that exhibits periodic bull market, recession, bear market and re-
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covery. However, to make this model realistic, we should promote it to Level 5 by 
including noise. 

^r(index) 

speculation 

FIGURE 5 

EXAMPLE 8. FUNNEL. In classifying the generic low-dimensional feedback-
catastrophes, Takens [12] has recently discovered an interesting new type, the 
simplest of which he calls the funnel. In the associated idealised flow a 2-dimen-
sional piece of G is funneled through a single fold-point P. Figure 6 illustrates the 
following explicit example: 

Fast dynamic D : x = — K{x2 + 2b)9 K large constant. 
Slow feedback F: à = 1, b = 3a + 4x. 

FIGURE 6 

Funnels may occur in biological regulation, for instance choosing x9 b to model 
the internal self-regulation of a cell, and a the production by the cell of some hor
mone for use outside the cell, whose production-rate needs to be funneled precisely. 

Level 5. Noise. We may superimpose on {/, D9 F) stochastic noise in the form of 
random small displacements of control and behaviour. For most noise the dynamic 
D carries the state rapidly back onto G9 and the slow flow F proceeds as before, 
and so the noise can be ignored. However in two cases noise can cause catastrophes, 
firstly if control-noise crosses the bifurcation set, and secondly more interestingly 
if the behaviour-noise crosses a separatrix. 
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EXAMPLE 7. In the stock exchange example noise represents external events and 
consequent jumpiness in the market, and may cause recessions to occur before 
the bifurcation set is reached. 

EXAMPLE 9. RIOTS [4]. This model reports joint work in progress with prison 
psychologists P. Shapland, C. Hall and H. Marriage, and statistician J. Harrison. 
We start with a truism : The more tension in an institution the more disorder. This 
applies not only to institutions such as prisons, universities, firms, or countries but 
also to individuals. In the case of prisons, an analysis of data suggests that the 
tension (or distress or frustration) can be measured by the numbers reporting sick, 
suitably smoothed, and the disorder can be measured by correlating independent 
assessments of the seriousness of incidents. Alienation (or lack of communication) 
seems to be a splitting factor, producing the two modes that we have labelled 
quiet and disturbed in Figure 7, and the data suggest that this may be measured by 
the numbers of disciplinary reports. The feedback flow represents the increase in 
tension during quiet (over months) and the release during disturbance (over days). 
Noise describes incidents, and if the noise level crosses the separatrix AA' at 
B then the incidents will escalate and spark a riot causing a catastrophe. Some 
types of prison population (e.g., young long-term) have a higher noise level, and are 
therefore more susceptible to riots. When the tension has subsided after a few days 
an incident may cause the reverse catastrophe at B'. The same incident might not 
have done so earlier, which explains the advantage of playing it cool. 

disorder disturbed 

A'< 

quiet AJ ^M 
FIGURE 7 

.riot 
B 

tension 

EXAMPLE 10. PHASE TRANSITION [3], [11], [15]. If the noise is frequent, and the 
noise-level high, the state will, averaged over time, seek the absolute maximum 
(or minimum) of/. This explains why Van der Waals' equation for liquid/gas 
phase transition has to be supplemented with Maxwell's rule [3], [5], [14], instead of 
obeying the delay rule. On the other hand, if the noise level is kept low then partial 
delays can be induced, such as in the supersaturated and superevaporated states of 
the cloud and bubble chambers. The usual proof of Maxwell's rule in statistical 
mechanics involves integration by steepest descent, but since this method breaks 
down near the critical point, it would be interesting if a new abstract proof could 
be devised, parallel to the proof of Thorn's theorem, in order to enhance critical 
point analysis. 

Level 6. Diffusion. The following arises out of joint work in progress with Sharon 
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Hintze, stimulated by papers of Winfree [20], [21] and Kopell and Howard [6] on 
the Zhabotinsky reaction. First the mathematics. 

Let y be a manifold and g be a C°°-vector field on Y. The associated ordinary 
differential equation is 

(i) y = g{y)-
In particular we shall be concerned with the type of differential equation given by 
Level 4, namely Y = C x X and g = {D9 F}. Suppose now that Y represents the 
space of local states of some medium in space-time S x T9 and that g represents the 
reaction of that medium. Suppose further that the medium not only reacts but also 
diffuses. Then, following [6], the global state y: S x T -> Y of the medium satisfies 
the reaction-diffusion partial differential equation : 

(2) dy/dt = g{y) + kS/2y 

where k is a constant (more precisely a vector bundle map k: TY ^ TY) represent
ing the different rates of diffusion of the various components of Y. We are parti
cularly interested in whether or not the medium can sustain stable periodic wave 
trains, or stable pulses (isolated waves). If it can, and d is the speed, then the global 
state y can be factored Sx T -» R -> Y such that dy/dt = dy and V2y = y9 where 
the dot denotes differentiation with respect to R. Therefore the partial differential 
equation (2) reduces to the ordinary differential equation 

(3) Oy = g{y) + ky. 

This equation (3) is the central interest of Level 6; compare it with equation (1) 
above. If k is small then (3) can be regarded as a singular perturbation of (1), but 
in important applications k is large, and so new methods are needed. 

For instance (3) can be regarded as a flow on TY9 with the same fixed points as 
(1), on the zero section Y. An attractor of (1) may be a saddle point of (3), and a 
homoclinic orbit of this saddle will represent a pulse solution of (2). Meanwhile a 
closed orbit of (3) represents a wave train solution of (2). Therefore we seek homo-
clinic and closed orbits of (3), that are stable with respect to (2). As yet relatively 
little is known, even when g represents a canonical elementary catastrophe with 
the simplest form of feedback. 

EXAMPLE 6. In the heartbeat and nerve impulse dynamics [23] Conley and Car
penter [2] have shown the existence of homoclinic and closed orbits, and the next 
problems are to prove stability and fit data. 

EXAMPLE 11. ZHABOTINSKY REAGENTS. Belousov discovered a mixture of chemi
cals that oscillates in colour at about twice a minute, and later Zhabotinsky and 
Zaiken observed that circular wave trains would propagate through this reagent, 
entraining the oscillation. Winfree [21] then modified Belousov's reagent by adding 
a little more bromide and a little less acid, so as to stop the oscillation. He called 
his mixture the Z-reagent, after Zhabotinsky and Zaiken, and showed that it could 
sustain both pulses and rotating scroll-shaped wave trains. In [21] Winfree offers 
equations which beautifully explain the geometry of the patterns, but which can be 
mildly criticised on four counts. Firstly his dynamic is discontinuous, and the 
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obvious way to make the model differentiable is to approximate it by a catastrophe 
model. Indeed as Kopell and Howard [6] point out there are both fast (fractions of 
a second) and slow (minutes) reactions, as well as a very slow (hours) loss of energy. 
Therefore one would normally expect the reaction dynamic to belong to Level 4. 
Secondly Winfree's equations do not illustrate the modification Belousov->Z, 
However this can be illustrated naturally in catastrophe theory, by modifying 
one constant, causing a Hopf bifurcation, as we show below. Thirdly his equations 
exhibit a jump return, like the heartbeat, whereas his photographs illustrate a 
smooth return, blue -> red, as opposed to the catastrophic hard edge, red -> blue, 
more like the repolarisation of the nerve impulse. This feature can be accom
modated by using the cusp-catastrophe [20], [23], Fourthly he does not offer mathe
matical proof of existence and stability. 

As Winfree has pointed out [20], the first two criticisms are answered by a 2-
dimensional fold-catastrophe model as follows (cf. [23, Figures 7, 9]). Let Y = R2

9 

and let g be given by 

D, fast dynamic: x = — (x3 — 3x + a), 
F9 slow feedback : à = e{x — X), 

where e9 À are constants and e is small. For the Belousov reagent choose A < 1, 
and for the Z-reagent X > 1. Then by [23] the decrease of the parameter I past the 
value X = 1 gives the Hopf bifurcation. The resulting flows are illustrated in 
Figure 8, with the catastrophe slow manifold shown dotted. For the Belousov 
reagent a theorem of Kopell and Howard [6] ensures the existence and stability of 
closed orbits for equation (3) near the Van der Pol attractor, but only provided 
diffusion is sufficiently small. For the Z-reagent Conley and Carpenter [2] have 
proved the existence, but not yet the stability, of homoclinic and closed orbits, 
provided e is sufficiently small, for the case of a large diffusion of x. What is needed 
is to handle both cases together and prove stability for large diffusion, giving an 
estimate on e, the ratio of slow/fast. Then extend the results to the cusp-catastrophe 
[23, Example 8]. Finally identity the equations with the explicit chemical reactions, 
make a quantitative model, and predict the speeds of the various waves. 

Belousov reagent 
x 

A source--

Van der Pol attractor 

sink 

closed orbit 
(wave train) 

_ homoclinic 
orbit (pulse) 

FIGURE 8 
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Section 20 

History and Education 





Tpyßbi MoicAyHapOAHoro KoHrpecca MaTeMaTHKOB 
BaHKyBep, 1974 

0 6 HccjieAOBaHHHx no McTopun MaTeiviaTHKH, 
npoBOA^m,MxcH B CoßeTCKOM Coio3e 

B. B. rHeßeHKO 

TocnoAHH npe3HAGHT ! 

Rmu H rocnoAa ! 

H CHaCTJIHB npeACTaBHBUieÖCH B03M0>KH0CTbI0 nOArOTOBHTb H npOH3HeCTH B 

CTOJIb BbICOKOM COÖpaHHH 0030p HCCJieAOBaHHH COBCTCKHX yHeHblX B OÖJiaCTH 

HCTopHH MaTeMaTHKH. HeT Hy>K^bi roßopHTb o TOM, HTO 9Ta TeMa HeooiaHTHa no 

CBOHM MaCIUTaÖaM, pa3H006pa3HK) B03HHKaK)lUHX B Heft BOnpOCOB H B03M0)KHbIX 

no^xo^oB K HX pemeHHio. EcTecTBeHHO nosTOMy, HTO MHe npH^eTCH ocTaBHTb 

BHe Moero BHHMaHHH ßojibujoe HHCJIO HHTepecHbix pe3yjibTaT0B, rnnoTe3 H ßa>Ke 

mejibix HanpaBJieHHH HCCJieAOBaHHft. K TOMy >Ke H H caM He CTpeMJiiocb npeßpa-

THTb Mon AOKJœA B nepeneHb HMCH H nacTHbix AOcra>KeHHH. 

r i p e t e Beerò xoTejiocb 6bi o6paraTb BHHMaHne Ha TO, HTO nocj ie#Hee BpeMH 

HHTepeC K BOnpOCaM HCTOpHH MaTeMaTHKH yCHJIHJICH H HMH 3aHHMaK)TCH He 

TOJibKO CneiJHaJIHCTbl B OÖJiaCTH HCTOpHH HayKH, HO H C06CTBeHH0 MaTeMaTHKH. 

B CBH3H c 3THM paciuHpHJiCH £Hana30H HCCJie^OBaHHH H HX rJiyÖHHa. ECJIH 3a 

nepHOß c 1917 no 1947 r. B COBCTCKOM CoK)3e 6HJIO onyßjiHKOBaHO OKOJIO 250 

pa6oT no HCTOpHH MaTeMaTHKH, TO 3a c j i eßy iomee AecHTHJierae noHBHJiocb 

CBbime 400 MOHorpacJ)HH H CTaTeß, a B AecnTHJieraH c 1957 no 1967 y ^ e ßoj iee 

500. npHHHH AJIH TaKOrO CHCTeMaTHHeCKOrO pOCTa BHHMaHHH K HCTOpHH MaTeMa

THKH (KaK H BOOÖme K HCTOpHH HayKH) MHOrO H OHH AajieKO BbIXOAHT 3a 

paMKH TOJibKO KOJIHHeCTBeHHOrO pOCTa TOH HaCTH OÔmeCTBa, K0T0paH3aHHMaeTCH 

HayHHbiMH HCCjieAOBaHHHMH. rioH<ajiyH, e i n e öojibiuee 3HaneHHe HMeioT HHbie 

npHHHHbl, B TOM HHCJie H CJieAyiOIHHe: OTHëTJIHBOe nOHHMaHHe TOrO, HTO HCTOpHH 

HayKH HBJineTCH (a) nenpeMeHHoft cocTaBHoft nacTbio Bceo6meft HCTOPHH, (6 ) 

OßHHM H3 BaHCHeftUIHX yCJIOBHH COBpeMCHHOrO pa3BHTHH HayKH, (ß) MeTOAOM 
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coBepmeHCTBOBaHHH oôyneHHH, (r) 6a3oö HayHHoft MeTOAOJiorHH, (A) OAHHM H3 
BaKHeftlUHX HCTOHHHKOB aHajIH3a npOUeCCOB MblUIJieHHH. 

Bceoöman HCTOPHH AO CHX nop yAejineT ocHOBHoe BHHMaHHe 6opb6e rpynnn-
pOBOK 3a rocyAapcTBeHHyio BjiacTb, cpa^ceHHHM, CMeHe npaBHTejieft. OAHaKo 
nporpecc nejioBenecKoro oômecTBa AajieKO He HcnepnbiBaeTCH TOJibKO STHMH 
acneKTaMH HCTOPHH. J^JIH nejioBenecTBa HecpaBHeHHO Ba>KHee neM nepenncjieHHe 
HMeH 3aBoeBaTejieft, 03HaKOMJieHHe c TeM H3yMHTejibHbiM nyTeM noôeA 3HaHHH 
HaA He3HaHHeM, KOTopbiM conpoBo>KAajiacb BCH ero HCTOPHH. RJIH. Beerò pa3BHTHH 
nejioBenecKoro oônjecTBa HH C neM HecpaBHHMyio pojib cbirpajio TO, HTO B ZtpeB-
Heft TpeuHH MaTeMaTHKa npeBpaTHJiacb H3 côopHHKa npaKTHHecKHx peijenTOB B 
AeAyKTHBHyio HayKy. Ha cyAbßbi Bceft HCTOPHH OTKpbiTHe 3aK0H0B HbioTOHa H 
C03AaHHe AH(})4)epeHij;HajibHoro H HHTerpajibHoro HCHHCJICHHö 0Ka3ajiH KyAa 
ôojibuiee BJiHHHHe neM ôHTBM npn BaTepjioo HJIH >Ke npn KaHHax. OAHaKo, AO CHX 
nop B yneÖHHKax HCTOPHH, KOTopbie H3ynaioT uiKOjibHHKH Beerò MHpa, OTKPHTHHM 
HbioTOHa H JleftÖHHua yAejinioT B JiynuieM cjiynae HecKOjibKo CJIOB, TorAa KaK 
Aa>Ke B caMbix KpaTKHx Kypcax HCTOPHH yKa3aHHbiM ÖHTBaM nocBnmeHbi MHorae 
CTpaHHRbi TeKCTa. Hy>KHO AyMaTb, HTO 3Aecb CKa3biBaeTCH He CTOjibKo HeBeAe-
HHe H OTpHaaHHe pOJIH (J)H3HK0-MaTeMaTHHeCKHX HayK, CKOJIbKO AaBHHH TpaAHUHH, 
KOTOpan BJiaAeeT yMaMH HCTOPHKOB H OTOABHraeT Ha 3aAHHft njiaH TO OöCTOH-
TejIbCTBO, HTO pa3BHTHe TOHHblX HayK He TOJibKO OÖyCJIOBJieHO OÖmeCTBeHHbIMH 
OTHOUieHHHMH, HO H CaMO OÖlIjeCTBeHHOe pa3BHTHe B 3HaHHTejIbH0H Mepe 3aBHCHT 
OT COCTOHHHH TOHHblX 3HaHHH. MbI AOJI>KHbI npH3HaTb, HTO HCTOpHH HayKH 
HBjineTCH Ba>KHeHuieH nacTbio HCTOPHH nejioBenecKoro oômecTBa H eraKyjibTypu 
H OT Hee Hejib3H OTpbiBaTb H3jio>KeHHe HCTOpHHecKoro npouecca. 

OTHOCHTeJIbHO 3HaHeHHH HCTOpHH HayKH AJIH COBpeMeHHOrO pa3BHTHH CaMOH 
HayKH ycTaHOBHBHierocH MHCHHH AO CHX nop HeT. H MH MoaceM B HayHHoft cpeAe 
BCTpeTHTb MHoroHHCJieHHbix npeACTaBHTejieft, KOTopbie npHAep>KHBaioTCH Toro 
MHeHHH, HTO 3aHHTHH HCTOpHefi HayKH He nojie3Hbi, a BpeAHbi AJIH nporpecca 
HayKH, nocKOjibKy OHH OTHHMaioT 3HaHHH, CHjibi H BpeMH Ha H3yneHHe Toro, HTO 
ôecKOHenHO ycTapejio H y>Ke He HMeeT peajibHoro 3HaneHHH. KOHCHHO, HCTOPHH 
HayKH HeoôxoAHMa AJIH H3yneHHH HCTOPHH oômecTBeHHoro pa3BHTHH, AJIH (|)HJIO-

CO(J)HH H AJIH oömero o6pa30BaHHH, HO caMa TO HayKa HenpepbiBHO A B H ^ T C H 
BnepeA, oöoramaeTCH HOBMMH HACHMH H (J)aKTaMH, HOBHMH KOHuenijHHMH H 

oôjiacTHMH HCCJieAOBaHHH. KaK >Ke B TaKHx ycjiOBHHX 3HaHHe npouijioro MO>KeT 
OKa3aTbCH nojie3HbiM AJIH HayHHbix HCCJieAOBaHHH HaniHX AHeft ? Hejib3H JIH cKopee 
cnpocHTb: He 0Ka3bmaeT JIH rpy3 npouijioro TOpM03Hin,ero BJIHHHHH Ha coBpeMeH-
Hbie HCCjieAOBaHHH, Meman noHBJieHHio HOBHX HAeft? 

H yôe^AGH, HTO 3HaneHHe HCTOPHH HayKH AJIH pa3BHTHH caMoft HayKH co 
BpeMeHeM 6yAeT B03pacTaTb, a He yobiBam ^ej io B TOM, HTO 3aAana HCTOPHH 
MaTeMaTHKH He CBOAHTCH TOJibKO K onncaHHK) npoHAeHHoro MaTeMaTHKOH nyTH, 
HO H ocMbicjiHBaHHe ero. HCTOPHH MaTeMaTHKH, KaK jiioôaH >KHBan HayKa co 
BpeMeHeM H3MeHneT CBoe coAep^aHHe H no-HOBOMy noAxoAHT K CBOHM 3aAanaM. 
ECJIH Ha nepBbix nopax eë pa3BHTHH ocHOBHoe eë coAepncaHHe CBOAHjiocb K 
onncaTejibHOH nacTH, TO Tenepb coônpaHHe 4>aKT0B H HX onncaHHe HBjineTCH 
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jiHUib HanajibHbiM MOMCHTOM. OcHOBHoe >Ke coAep>i<aHHe HCTOPHH MaTeMaTHKH 
Mbl BHAHM B BblHCHeHHH npHHHH nOHBJieHHH TeX HJIH HHblX pyKOBOAHIAHX HAeft, 
HanpaBJieHHH HCCJieAOBaHHH, (j)OpMyjIHpOBKe 3aKOHOMepHOCTeft pa3BHTHH MaTeMa
THKH, BbIHBJieHHH TeX TOpM03Hli;HX (JtöKTOpOB, KOTOpbie npHBOAHJIH K Kpaxy 
nporpeccHBHbix HaHHHaHHft. ECTCCTBCHHO, HTO B Tai<0M nJiaHe HCTOpneft MaTeMa
THKH MoryT ycneniHO saHHMaTbcn Jinnib Te jimjß, KOTOpbie caMH 6JIH3KH K 
caMocTOHTejibHOMy TBopnecTBy. B KaKoft TO Mepe STO noATBepacAaeTCH TeM, 
HTO Ka>KAbifi yneHbifi MaTeMaTHK B KaKoft TO Mepe BbiHyn<AeH 3aHHMaTbcn HCTO-
pneö HayKH, 3Hai<0MHCb MHHHMyM c HCTopneö Toro Bonpoca, KOTOpbiM OH 3aHHMa-
eTCH. nycTb npH STOM OH H He yxoAHT B rviyÔHHy BCKOB, a JiHiiib TinaTejibHO 
H3ynaeT p a ö o r a H HAen nocjieAHHx Aecnra-nnTHaAijaTH jieT. Ho npH STOM OH 
y3HaeT Ty HaynHyio aTMOC(})epy, B KOTOpoö po^AaJincb npoßjieMbi H B KOTOpoft 
paßoTajiH ero npeAinecTBeHHHKH H CTpeMHTcn noHHTb, HTO cjieAyeT H3MeHHTb, 

HTOÖbl HaftTH Hy>KHblft nyTb. riOCTOHHHO npOHCXOAHT TO, 0 HeM B CBOe BpeMH 
KpacoHHO nncaji H. HbioTOH: "ECJIH H yBHAeji 6ojibiue Apyrnx, TO TOJibKO 
noTOMy, HTO CTOHJI Ha njienax rnraHTOB." 

CoöcTBeHHO TO^e caMoe npOHCXOAHT nocTOHHHO c Ka>KAbiM HCCJieAOBaTejieM: 
HOBoe yAaeTCH OTKpbiTb B 3HaHHTejibHOH Mepe noTOMy, HTO Hcnojib3yeTCH onbiT 
H pe3yjibTaTbi npeAuiecTBeHHHKOB. A BeAb HCTOPHH HayKH KaK pa3 H HMeeT CBoeft 
ußjibio coßpaTb 9T0T onbiT H, O6O6Lü[HB ero, HafiTH Te 3aKOHOMepHOCTH nporpecca 
HayKH, KOTopbie TOjiKaioT eë BnepeA. HeAapOM ceftnac Ka>KAoft öojibinoft cneijH-
ajibHoß paöoTe npeAnocbiJiaioT HCTOpHHecKHfi 0630p. 3 T O AejiaeTCH He noTOMy, 
HTO TaKOBa TpaAHUiHH, a noTOMy, HTO TaKoft 0630p no3BOjineT oxßaTHTb npeAMeT 
HCCJieAOBaHHH rjiy6)Ke, nojiHee H MHorocTopoHHee. 

3HaHHe npouijioro HayKH no3BOjineT B KOHijeHTpHpOBaHHOM BHAe nojiyHHTb 
CBeAeHHH 06 HCTOKaX HAeft H (£>aKTOB, O (})OpMHpOBaHHH HayHHblX nOHHTHft 0 
nojieTax MHCJIH, onepeAHBUiHX CBoe BpeMH, a noTOMy 3a6biTbix H Tenepb y>Ke 
HeH3BecTHbix. HeMajio Toro, HTO 6MJIO HafiA^HO B CBoe BpeMH, noTOM 6bijio 
3a6biTO, Bbiujjio H3 MOAbi, HO 3aTeM B HOBbix ycjiOBHHX 3anrpajio BCCMH KpaCKaMH 
H OKa3ajiocb Hy>KHbiM AJIH coBpeMeHHOCTH. TaKHX cjiynaeß MaTeMaTHKa 3HaeT 
MHoro, TaK>i<e KaK H Bce ecTecTB03HaHHe. Bo MHornx cjiynanx noAJiHHHbift CMHCJI 
OTKpblTHH BblHCHHJICH Ha AaJIbHefiUJHX STanaX pa3BHTHH HayKH. TaK B CBoe BpeMH 
cjiyHHJiocb c OTKpbiraeM TeopHH OTHOCHTejibHOCTH B paöoTax A. riyaHKape. Ha 
rjia3ax Hainero noKOJienHH B03p0AHJiacb H pa3BHJiacb MaTeMaTHnecKan TeopHH 
nojieTOB B KOCMOc, co3AaHHan K . 3 . UHOJIKOBCKHM. O H 3HanHTejibHO onepeAHJi 
CBoe BpeMH H npn ero >KH3HH ero paôoTbi ne nojiyHHJiH npH3HaHHH. Ho TO, HTO 
HCTOPHH HayKH He 3a6bijia 0 HHX, oi<a3ajio cymecTBeHHoe BJIHHHHC na pa3BHrae 
TeopHH H npaKTHKH KOCMHHeCKHX nojieTOB HaiUHX AHefi. 

AJIH BoenHTaHHH HOBbix noKOJieHHft HCTOpHH HayKH Ba>KHa caMa no ce6e, 
6e30THOCHTejibHO K eë ijeHHOCTH A^H pa3BHTHH coBpeMeHHofi HayKH. Ha npHMepax 
npoujjioro cjieAyeT ynHTb MOjioAe>Kb CTpacTH K noncKy HOBoro, K TBopnecTBy, 
nayHHOMy ynopcTBy H HayHHoft HCCTHOCTH. npHMepbi BCJIHKHX npeACTaBHTejieft 
HayKH npouijioro, HX ynopcTBO B npeoAOJieHHH TpyAHOCTeft cnocoÖHbi Bbi3BaTb 
MOJioAbix jiioAeft Ha noAo6Hbie M<e CTpeMJieHHH. TajiaHTJMBbix npeACTaBHTejieft 
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lOHOiuecTBa TaKoe BoenHTaHHe MO>KeT HaTOjiKHyTb Ha Bbiôop HayHHoft Kapbepbi, 
ocTajibHbix yae npnyHHT K ynopHoft paôoTe, HenpecTaHHOMy nonocy nyTH, 
KOTopbift MaKCHMajibHO cooTBeTCTBOBaji 6bi CTonmeft nepeA HHMH npoôjieMe. Ha 
npHMepax TBopnecKofi >KH3HH yneHbix, Ha npnMepax HCTOPHH HX OTKPHTHH MO>KHO 

BAOXHOBHTb ynamnxcn Ha noHCKH neH3BeAaHHoro, npHBHTb HM Bepy B HX TBop-
necKHe CHJIH H CTpeMJieHHe HcnbiTaTb HX Ha pemeHHH 3aAan, B03HHKaiomHx 
nepeA coBpeMeHHoft HayKofi. 

HCTOPHH HayKH MO^eT H AOJiÄHa BBOAHTb ynamnxcn B TBopnecKyio Jiaôopa-
TOpHK) yneHoro H noKa3aTb KaK nocTeneHHO B03HHKajiH MHCJIH 06 OTKPHTHH, 
(})OpMyjTHpOBKH pe3yjIbTaTOB, HAeH AOKa3aTejIbCTB. Ä7IH STOft uejIH HeOÔXOAHMO 
yBHAeTb He TOJIHKO OKOHHaTejibHHft npOAyKT paôoTbi yneHoro—o^opMJieHHyio 
CTaTbio, MOHorpa4>HK) HJIH co3AaHHyio HM TeopHK), HO caM npouecc TBopnecTBa: 
B03HHKHOBeHHe BOnpOCa, npHKHAKH AOKa3aTejIbCTBa, nOHCKH MeTOAa H T.A. 

B 3T0M njiaHe MHe xoTejiocb 6 H oôparaTb BHHMaHne Ha noynHTejibHoe nccjie-
AOBaHHe r . n . MaTBHeBCKOft [1], nocBHmeHHoe HeonyôJiHKOBaHHHM 3anncHHM 
KHHH<KaM JI. Sftjiepa, xpaHnmHMCH B apxHBax AKaAeMHH HayK CCCP. 

H no3BOJiK) ceôe npHBecTH 3Aecb 3aKjiioHHTejibHyK) nacTb CTaTbH T. U. 
MaTBHeBCKOft: "••• 3anHCHbie KHH>KKH noKa3HBaioT, HTO BecbMa nacTO 3ftjiep 
npHXOAHJi K CBOHM pe3yjibTaTaM HHCTO SKcnepHMeHTajibHHM nyTeM, npOH3BOAH 
BHHHCJieHHH, KOTOpbie nOpa^aiOT CBOeft CJIOtfCHOCTbIO. nOATBepAHB CBOft OKOHHa
TejibHHft BHBOA pHAOM TaKHX HHCJIOBHX npHMepOB, OH KOHCTaTHpyeT nojiyneHHbift 
MaTeMaranecKHft (J3aKT H 3anacTyio STHM orpaHHHHBaeTCH Ha nepBoft CTaAHH 
paöoTH. HHorAa OH HaMenaeT nyTH AajibHeßmero HCCJieAOBaHHH, a 3aTeM 
B03BpamaeTCH K 3aHHTepecoBaBineMy ero Bonpocy MHoro pa3 Ha npOTHaceHHH 
pHAa JieT. B cooTBeTCTByiomHX 3aMeTKax H3 3anHCHbix KHHMCCK Sftjiep AejiaeT 
nonbiTKH AOKa3aTejibCTBa BHCKa3aHHoro yTBep>KAeHHH, npoôyn AJIH SToro 
pa3jiHHHbie nyTH H cnocoßbi. HeKOTopbie H3 nojiyneHHbix AOKa3aTejibCTB He 
HBJIHIOTCH CTpOrHMH, H Sftjiep OÔHHHO caM yKa3HBaeT Ha 9Ty HecTporocTb. Ho 
nocjie HecKOjibKHx nonbiTOK OH npHXOAHT K OKOHnaTejibHOMy CTporoMy AOKa3a-
TejibCTBy H TOJibKO TorAa CHHTaeT Bonpoc HCHepnaHHHM." 

JXo CHX nop HCTOPHH HayKH 6bijia HCKJiioHHTejibHO HCTOpneft ycnexoB nejiOBenec-
Koro pa3yMa. XoTejiocb 6 H AyMaTb, HTO HacTynnjia nopa KorAa HCTOPHH HayKH 
Mo>KeT CTaTb H HCTOpneft MbimjieHHH. MaTeMaTHKa B CHjiy CBoeft cneuH(})HKH, 
Mo>KeT AaTb B 3TOM OTHOiueHHH MHoro nojie3Horo. B H3BecTHbix paôoTax A. 
riyaHKape H >K. AAaMapa yBJieKaTejibHO H3jio>KeHbi $aKTH, B KOTopnx aBTopn 
caMH 6HJIH AeftcTByiomHMH jiHuaMH. Ka>KAOMy, KTO HcnbiTaji paAOCTb HayHHoro 
TBopnecTBa, xopomo H3BecTHO KaKoft nyTb AJIH 3Toro cjieAyeT npoftTH. npe>KAe 
Beerò AOJi>KHa ôbiTb Ta npoôjieMa, KOTOpan yBJieKaeT HCCJieAOBaTejin H 3acTaB-
jineT AyMaTb o Heft Bcë BpeMH H BO BpeMH paôoTbi H BO BpeMH OTAbixa. 3anacTyio 
nyTH, KOTOpbie npHBOAHJiH K ycnexy B Apyrnx, Ka3ajiocb 6 H 6JIH3KHX, Bonpocax, 
OKa3HBaioTCH HeAOCTaTOHHHMH. Mbicjib HLueT pemeHHH, conocTaBjineT. PaccMa-
TpHBaioTCH nacTHbie cjiynan, Ha KOTOpbix AejiaiOTCH nonbiTKH yjiOBHTb oômnft 
MeTOA AOKa3aTejibCTBa H oôinyio (J)opMyjiHpoBKy pe3yjibTaTa. npoxoAHT AHH, 
MecHUH, a nopoft H TOAH, noKa npocTan MHCJib, npocToft reoMeTpnHecKHft o6pa3 
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HJIH (j)H3HHecKoe conocTaBJieHHe He noACKa^yT TO, HTO TaK AOJiro H 6e3ycneniHO 
pa3HCKHBajiocb. BHe3anHoe 03apeHHe, B KOTopoM coAep>KHTCH HCKOMoe pemeHHe, 
npeKpacHO onncaHO A. nyaHKape. /tajiee HanHHaeTCH nepHOA >KaTBbi, KorAa 
MbICJIb H3 OCHOBHOft VLflßH BHBOAHT MHOrOHHCJieHHbie CJieACTBHH. 

TO, HTO TOJibKO HTO 6bIJIO CKa3aHO, HBJIHeTCH JIHmb BHemHHM onncaHHeM 
TBopnecKoro npouecca. 3 T O eme He MOAejib MbimjieHHH, KOTOpan MO>KeT 6biTb 
HCCJieAOBaHa. OAHaKO AJIH C03AaHHH MOAejiH MbimjieHHH Hy>KHbi Ha6jiioAeHHH H 
HCTOPHH MaTeMaTHKH MOMceT AaTb AJIH 3Toro ßyKBajibHO HeorpaHHHeHHbift Ma-
TepHaji. 

HCTOPHH HayKH Ban<Ha He TOJibKO noTOMy, HTO OHa HeoßxoAHMa AJIH pemeHHH 
pHAa HayHHbix H neAarorHHecKHx npoöjieM. OHa Ba>KHa H caMa no ce6e, KaK 
naMHTHHK nejioBenecKOMy reHHK), KOTOpbift no3BOjiHJi nejiOBenecTBy npoftTH 
BejiHKHft nyTb OT nojiHoro He3HaHHH H nojiHoro noAHHHeHHH CHJiaM npnpoAH AO 
BejiHKHX 3aMbicjiOB o 3aBoeBaHHH KOCMOca H AO nepBbix maroB B HX ocymecTBJie-
HHH. 

HCTOpHH HayKH HBJIHeTCH TeM (})aKeJIOM, KOTOpbift OCBeiHaeT HOBHM nOKOJieHH-
HM nyTb AaJibHeftmero nporpecca H nepeAaeT HM CBHineHHbift oroHb npoMeTen, 
TOJIKaiOIUHft HX Ha HOBbie OTKpHTHH. 

O 3HaneHHH HCTOPHH HayKH npeKpacHO CKa3aji eme JleftÖHHi; B OAHOM H3 
coHHHeHHÖ, ocTaBiuHXCH HeonyöjiHKOBaHHHMH npH ero >KH3HH [2] "BecbMa nojie3HO 
no3HaTb HCTHHHoe npOHCxo>KAeHHe 3aMenaTejibHbix OTKPHTHö, oco6eHHO TaKHX, 
KOTOpbie 6HJIH CAejiaHH He cjiynaftHO, a CHJIOKD MHCJIH. 3 T O npHHOCHT nojib3y He 
CTOJIbKO TeM, HTO HCTOpHH B03AaeT Ka>KAOMy CBOe H no6yAHT ApyrHX AOÖHBaTbCH 
TaKHX yae noxßaji, CKOJibKO TeM, HTO no3HaHHe MeTOAa Ha BHAaioiHHXCH npHMepax 
BeAeT K pa3BHTHIO HCKyCCTBa OTKpHTHH." 

HCCJieAOBaHHH nO HCTOpHH MaTeMaTHKH, KOTOpbie npOBOAHJIHCb B COBeTCKOM 
CoK)3e, MO>KHO pa3ÖHTb Ha cjieAyioiUHe rpynnn : 

1. Pa3pa6oTi<a BonpocoB HCTOPHH JXpeBuero BocTOKa (BaBHJioH, ^peBHHe 
ErnneT H KnTafi); 

2. MaTeMaTHKa RpeunePi rpeijHH; 
3. MaTeMaTHKa cpeAHeßeKOBbH, ocoôeHHO CpeAHeft A3HH H MycyjibMaHCKoro 

BocTOKa; 
4. MaTeMaTHKa HOBoro BpeMeHH; 
5. Pa3BHTHe MaTeMaTHKH B POCCHH, Tpy3HH, ApMeHHH H AP- HaCTHX COBeTCKO-

ro Coio3a; 
6. H3AaHHe TpyAOB KJiaccHKOB MaTeMaTHnecKoft nayKH c KOMMeHTapHHMH H 

TBOpHeCKHMH ÖHOrpa(})HHMH; 
7. Pa3pa6oTKa npoéjieM HCTOPHH OTAejibHbix MaTeMaTHnecKHX AHCUHHJIHH. 
ECTeCTBeHHO, HTO paÔOTa B OÔJiaCTH HCTOpHH MaTeMaTHKH npOBOAHJlâCb BO 

MHorHX njiaHax. Bo-nepBbix ßojibinoe HHCJIO HCCjieAOBaHHft nocBHiueHO pa3pa6oT-
Ke OTAeJIbHHX KOHKpeTHHX BOnpOCOB HCTOpHH MaTCMaTHKHj BO-BTOpHX B pHAe 
paöoT H3JiOM<eHH oömne KOHijenuHH HCTOPHH MaTeMaTHKH; B TpeTbHX BbinojineHO 
öojibmoe HHCJIO paöoT HHCTO OHorpacfmnecKoro xapaKTepa, B neTBepTbix onyßjin-
KOBaHH pa6oTH no HCTOPHH MaTeMaTHKH cneunajibHO AJIH uejieft neAarornKH. 
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PaSoTaM nepBoro H3 yKa3aHHbix HanpaBjieHHft 6yAeT nocBHmeHa ocHOBHan 
nacTb HacTonmero AOKJiaAa. O paôoTax ocTajibHbix HanpaBjieHHft MH AaAHM 
ceftnac >Ke HeKOTopbie cBeAeHHH. 

H3 opnrHHajibHHx paöoT, TpaKTyiomnx HCTOpHio MaTeMaTHKH B ijejioM, MHe 
xoTejiocb 6 H OTMeTHTb B nepByio onepeAb ôojibmyio cTaTbio A.H. KojiMoropOBa, 
HanHcaHHyio HM AJIH Bojibmoft CoBeTCKoft SHijHKJioneAHH [3]. 3 T O T OKaraft 
onepK HCTOPHH MaTeMaTHKH OT eë B03HHKHOBeHHH AO HaniHX AHeft npeACTaBJineT 
3HaHHTejibHbift HHTepec. A.H. KojiMoropoB npeAJio>KHJi nepHOAH3an;Hio pa3BHTHH 
MaTeMaTHKH. CorJiacHO STOö KOHuenijHH MO>KHO BHAejiHTb neTHpe nepHOAa: (1) 
3apo>KAeHHH MaTeMaTHKH KaK OTAejibHoft TeopeTHnecKoft HayKH. 3 T O T nepnoA 
3aKaHHHBaeTCH B VI-V BeKe AO Hamero jieTOHCHHCJieHHn; (2) nepHOA ajieMeHTap-

HOft MaTeMaTHKH HJIH HHaHe—nepHOA MaTeMaTHKH KaK HayKH O nOCTOHHHHX 
BejiHHHHax. 3 T O T nepHOA npoAOJDKajicn AO XVII BeKa. (3) nepHOA MaTeMaTHKH 
KaK HayKH o nepeMeHHbix BejiHHHHax. npoAOJDKaeTCH AO Hanajia XIX BeKa. (4) 
CoBpeMeHHan MaTeMaTHKa xapaKTepH3yeTCH 3HanHTejibHHM pacmnpeHHeM eë 
npeAMeTa H ôojiee BHCOKOö CTeneHbio aöcTpaKUHH eë noHHTHft. 

BbICOKOft OaeHKH 3aCJiy>KHBaeT KOJIJieKTHBHblft TpëXTOMHblft TpyA "HCTOPHH 
MaTeMaTHKH" noA peAaKijneft npoc|)eccopa A. n . lOuiKeBHHa [4]. H3Jio>KeHHe BeAëT-
CH OT rjiyôoKoft ApeBHOCTH AO Hanajia XIX BeKa. AßTOpH OTAejibHbix rJiaB 
HBJIHIOTCH TJiyÔOKHMH CneiJHajIHCTaMH B COOTBeTCTByiOmHX OÔJiaCTHX MaTeMaTHKH 
HJIH )Ke eë HCTOpHH H CaMH BHeCJIH MHOrO HOBOrO KaK B TpaKTOBKH H3BeCTHOrO 
MaTepnajia, TaK H B npHBJieneHHe HOBHX AaHHbix. 3 T O OTHOCHTCH KO BceM TpeM 
TOMaM. CneuHajiHCTbi3aMeTHT MHoro HOBHX Mbicjieft noHTH BO Bcex rjiaBax KHHrn. 
STO OTHOCHTCH B OCOÔeHHOCTH K H3JIO>KeHHIO MaTepHajia KacaiOU^erOCH pa3BHTHH 
MaTeMaTHKH B JXp^BuePi TpeuHH, cpeAHeBeKOBOM KHTae, B CTpaHax HCJiaMa. 
nOJie3Hbie TpaKTOBKH H (})aKTH COAep^aTCH H B TJiaBaX, nOCBHmeHHHX pa3BHTHIO 
OTAeJIbHHX MaTeMaTHHeCKHX AHCaHnJIHH. STO TpeXTOMHOe COHHHeHHe TpyAHO 
paccMaTpHBaTb B KanecTBe yneÖHHKa, nocKOJibKy OHO 3aAyMaHO H BbinojmeHO 
KaK MOHorpa({)HHecKoe HCCJieAOBaHHe, HanncaHHoe c CAHHHX MeTOAOJiornnecKHx 
n03HUHft. 

MHe xoTejiocb 6u yKa3aTb 3Aecb Ha ABe cjieAytomne MOHorpa4)HH A . n . K)m-
KeBHHa "HCTOPHH MaTeMaTHKH B cpeAHHe BeKa" [5] H "HCTOPHH MaTeMaTHKH 
B POCCHH" [6], B KOTOpbix AaHa ninpoKan KapTHHa pa3BHTHH MaTeMaTHKH. B 
nepBoft H3 HHX—B cpeAHHe BeKe H npH TOM 3HanHTejibHoe BHHMaHHe yAejieHO 
CTpaHaM MycyjibMaHCKoro MHpa, H3yneHHio KOTOpbix B COBCTCKOM Coio3e 3aHHMa-
eTCH BecbMa ôojibinoft KOJIJICKTHB yneHbix. Bo BTOpoft—AaHO nocjieAOBaTejibHoe 
H3Jio^eHHe MaTeMaTHnecKoft >KH3HH B POCCHH co BpeMeH o6pa30BaHHH ^peBHefi 
PycH. KaK nepBan, TaK H BTopan MOHorpa(J)HH ocHOBaHH Ha MHoroHHCJieHHbix 
HOBHX MaTepHajiax, H3yneHHbix rjiaBHHM o6pa30M 3a TOAH, npomeAmne nocjie 

OKOHHaHHH BTOpoft MHpOBOft BOftHH. 
3Aecb MHe xoTejiocb 6u HecKOJibKO öojibmee BHHMaHHe yAejiHTb paöoTaM, 

nocBHmeHHHM MaTeMaTHKe cpeAHHx BCKOB, nocKOJibKy, noacajiyft, B 3Toft oôjiacTH 
HCCJieAOBaHHft coBeTCKHM MaTeMaTHKaM npHHaAJie^HT Hanôojiee mnpoKHft $pOHT 
paôoT. B pe3yjibTaTe MHoroHHCjieHHbix KpHTHHecKHX nyöjiHKaijHfi TCKCTOB, 
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npHHaAJie>i<ainHX aBTOpaM cpeAHHX BCKOB, B 3HaHHTejibH0ft Mepe MaTeMaTHKaM 
MycyjibMaHCKoro BocTOKa, 3aKaBKa3bH, KnTan, HHAHH H 3anaAHOft Eßponn 
npOHCHHJiacb BnenaTJiHioman KapTHHa cepbe3Horo MaTeMaTHHecKoro nporpecca 
HMeHHO B snoxy CpeAHeBeKOBbH. 3a KopOTKHft cpoK noHBHJiocb 6ojibmoe HHCJIO 
nepeBOAOB na pyccKHft H3HK coHMHennft MaTeMaTHKOB CpeAHeft H BjiHH<Heft 
A3HH, nncaBmnx Ha apaôcKOM H3HKe. PHA H3 STHX coHHHeHHft AO nocjieAHero 
BpeMeHH Booöine ne 6HJI onyßjiHKOBan HH na OAHOM H3 eBponeftcKHx H3HKOB. 

KoneHHO, MaTeMaTHKH BjiH^mero H CpeAHero BocTOKa—apa6bi, HpaHUH, 
CHpHfti;bi, napoAbi cpeAHeft A3HH (y36ei<H, T8A>KHKH) H Ap.— 6HJIE yneHHiOMH B 
nepByio onepeAb rpeKOB H B 3HanHTejibH0 MeHbuieft CTeneHH HHAycoB H KHTaftueB. 
Ho yneHHKH ne TOJibKO npOAOJi>KajiH TpaAHipn CBOHX yHHTejieft. Hx BHHMaHHe 
npHBJieKajio ne TOJibKO HanpaBJienne KJiaccnnecKHX H3HCKaHHft B Ayxe EßKJiHAa, 
3HaHHTejibHoro pa3BHTHH AOCTHrjio BHHHCJiHTejibHO-ajiropHTMHHecKoe HanpaBJie-
HHe, KOTOpoe TOJibKO HaMenajiocb B JXpeBnen Tpeujm H He nojiynnjio pa3BHTHH 
B snoxy pacnaAa PHMCKOA HMnepHH. MuTepec K SToro pOAa 3aAanaM Tecno CBH3aH 
c HCCjieAOBaHHHMH no acTpOHOMHH H reorpacJMH. 

H no3BOjiK) ce6e KpaTKO KocHyTbcn HeKOTopbix H3 npOBeAeHHbix paöoT. Bojib-
moe BHHMaHHe 6HJIO yAejieHO MaTeMaTnnecKHM paöoTaM OMapa XaftHMa, pyccKoe 
H3AaHne KOTOpbix noHBHJiocb B 1962 r. H3yneHHio ero BKJiaAa B apncJMeTHKy, 
TeopHK) napajiJiejibHbix JIHHHH 6HJIH nocBnmeHbi paßoTH A . n . lOiiiKeBHHa, B.A. 
Po3eH(J)ejibAa, C.A. KpacHOBofi. TmaTejibHOMy H3yneHHio 6HJIH noABeprayTbi 
TpaKTaTH HacHp aA-Zl^Ha aT-TycH B pHAe pa6oT B.A. Po3eH(J)ejibAa, f.JX< 

MaMeAÖeftjiH, C.A. AxMeAOBa. IlocjieAHHft H3 Ha3BaHHbix JIHIJ 3aMeTHJi, HTO B 
apH(j)MeTHHecKOM TpaKTaTe aT-TycH HMeeTcn npaBHJio B03BeAeHHH B CTeneHb 
ÔHHOMa, a TaKH<e Ta6jiHu,a ÔHHOMHajibHbix KOSCJ^HUHCHTOB AO 12 CTeneHH BKJIIO-
HHTejibHO. TaM >Ke H3jio>i<eH ajiropHTM H3BJieneHHH icopHeft c JIK)6HM naTypajib-
HHM noKa3aTejieM no cnocoôy 'TopHepa-PycjxJMHH". 3THM caMHM OTOABHHyTO 
c XV Bei<a Ha XIII OTKpHTne KaK 4>opMyjibi ÖHHOMa HbioTOHa, Tai< H cnocoôa 
H3BJieneHHH KOpHeft ropHepa-Py(]x])HHH. PaHee STO OTHOCHJiocb K 1427 r . , KorAa 
noHBHJiCH "KJIIOH apH({)MeTHKH" aji-Komn, Tenepb yae BbincuHJiocb, HTO OHH 6HJIH 
H3BecTHH y^<e B 1265 r. HHTepecHH pe3yjibTaTH HCCJieAOBaHHH "Kjiiona apncj)-
MeTHKH" THHC aA-ÄHHa aji-KaniH H ero >i<e "TpaKTaTa 06 OKpy>KHOCTH", B 
KOTOpblX 6bIJIH H3JIO>KeHH HCKJIIOHHTejIbHO TOHKHe H H3HLi;Hbie MCTOAH BHHHCJie-
HHH HHCJia % H BHHHCjieHHH CHHyca OAHoro rpaAyca nocpeACTBOM npn6jiH)KeH-
Horo pemeHHH ypaBHennn TpeTbeft CTeneHH HTepau^HOHHHM MCTOAOM. CoAep>i<a-
TejibHH paöoTH M.H. MeAOBoro no H3yneHHio apH(})MeTHHecKHX MCTOAOB B 
TpaKTaTe A6y-Ji-Ba(})bi. O H Hameji, HTO STOT ynennft y>Ke npHÖeraji K ncnojib30-
BaHHK) OTpHU,aTejibHbix HHceji, BOCCTanoBHJi BO Bcex AGTajiHX TexHHKy onepai^Hft 
B AGJioBOH npaKTHKe c ApoÖHMH H -noABepr KpHTHnecKOMy anajiH3y pHA 'paHee 
yTBepAHBiHHXCH B HCTOpHH nojio>i<eHHfi. B nacTHOCTH OH oôocHOBaHHO oTBepraeT 
HajiHHHe B CTpanax ncjiaMa AByx UIKOJI—nporpeneccKofi H npOHHAHÖCKoft. 

KoHenHO, ci<a3aHHHM ne orpaHHHHBaeTCH paßoTa COBCTCKHX HCTOPHKOB MaTe
MaTHKH no H3yneHHio BKJiaAa yneHbix cpeAHHX BCKOB B nporpecc MaTeMaTHnecKoft 
HayKH. Bojibmoe HHCJIO HCCJieAOBaHHH 6HJIO nocBHineHO H aHajiH3y npOH3BeAeHHfi, 
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BbinojiHeHHbix aBTOpaMH cpeAHeßeKOBOft 3anaAHOft Eßponn, Tpy3HH, ApMeHHH, 
a T a o c e POCCHH. y^ce 90 jieT npomjio nocjie nepBbix nyßjiHKaijHft B.B. BoôbiHHHa 
o pyccKHx MaTeMaTHnecKHx pyKonncHX XIV-XVII cTOjieTHft, HO AO CHX nop He 
ßbijio AaHO HH HCHepnbißaiomero cpaBHHTejibHoro aHajiH3a HX coAep>KaHHH, HH 
nojiHoß HX nyöjiHKaiüHH c KOMMeHTapHHMH. noApoÖHoe H3yneHHe HMeiomnxcn B 
xpaHHJiHmax pyccKHx MaTeMaTHnecKHx pyKonnceft TOJibKO B 1955 r . öHJIO 3aßep-
meHO K.H. UlßeijOBbiM. no3AHee OH >Ke BMecTe c KXA. BejibiM onyôjiHKOBaji H 
npoKOMMeHTHpOBaji pyccKyio reoMeTpnHecKyio pyKonncb nepßoft neTBepTH 
XVII BeKa. HHTepecHbie paöoTH öHJIH BbinojmeHH B . n . 3y6oßHM, T.H. KOH-
niHHOft, JI.E. MaftcTpOBHM no aHajiH3y nepßoft MaTeMaTHHecKoft pyccKoft pyKO-
nncH KnpHKa HoBropOACKoro, a TaK>Ke HOBropOACKHX ßepecTHHbix rpaMOT. 

Bcë, HTO öbijio TOJibKO HTO HaMH ynoMHHyTO cymecTßeHHO npoABHHyjio HaniH 
3HaHHH npomjioro MaTeMaTHKH B pa3Hbix CTpaHax H y pa3Hbix HapoAOB, 
n03BOJIHJIO BHHBHTb npeeMCTBCHHOCTb 3THX 3HaHHft H BKJiaA pa3JIHHHHX HapOAOB 
B nejiOBenecKyio KyjibTypy. 

HecoMHeHHO, HTO coßeTCKHe HCTOPHKH MaTeMaTHKH He MorjiH npoftTH MHMO 
pa3BHTHH MaTeMaTHKH ß HOBOe BpeMH. OcOÖeHHO HHTeHCHBHO H pa3Hoo6pa3HO 
pa3BHBajiHCb HamH 3HaHHH o nepHOAe, CBH3aHHOM c noHBJieHHeM H CTaHOBJieHHeM 
MaTeMaTHnecKoro aHajiH3a H aHajinranecKoft reoMeTpHH. 3HaHHTejibHoe BHHMaHHe 
npHBJieKajiH TaKHe THTaHH MaTeMaTHHecKoft MHCJIH KaK HHOTOH, J M O H H I J , 

ÄeKapT, JI. 3ßjiep, KOIUH, JteacaHAp, Jlanjiac. HCTOPHH H npeAHCTOpHH AH(f)({)e-
peHUHajibHoro H HHTerpajibHoro HCHHCJICHHö 6HJIH npeAMeTOM MHoroHHCJieHHbix 
HCCJieAOßaHHft, B TOM HHCJie TaKHX KpynHHX MaTeMaTHKOB KaK A.H. KojiMoropoß. 
Bojibmoft TpyA 6HJI BJIOMCCH B H3AaHHe Ha pycCKOM H3HKe H KOMMeHTnpoBaHHe 
paöoT KJiaccHKOß—Kenjiepa, KaBajibepn, j^eKapTa, HbioTOHa, MoH^ca, KapHO, JI. 
Sftjiepa H Ap. OcoöeHHO MHoro 6HJIO B STOM OTHomeHHH cAejiaHO no HacjieAHio 
JI. Sftjiepa. TaK 6HJIH H3AaHH ero 3HaMeHHTbie "BßeAeHHe B aHajiH3", " f l n ^ e -
peHiHHajibHoe H HHTerpajibHoe HCHHCJieHHH", "TeopHH JlyHbi" H T . A. MoHorpa4)HHe-
CKOMy HCCJieAOBaHHH) noABeprjiHCb paöoTH JI. Sftjiepa no AH(J)(})epeHUHajib-
HHM ypaßHeHHHM (H.H. CHMOHOB, 4>.H. OpaHKJib), BapnauHOHHOMy HCHHCJICHHIO 
(K.A. PHöHHKOB, H.C. KomjiHKOß), TeopHH ^ymojHft (A.H. MapKymeBHH, C E . 
Bejio3epoß), TeopHH HHceji (B.A. BCHKOB, H T . BaniMaKOBa), MexaHHKe (K).A. 
KpyTKOß, r . K . MHxaftjiOß) H T.A. HHTepecHbift no coAep^aHHK) KOjijieKTHBHbift 
TpyA, nocBHineHHHH aHajiH3y TBopnecTBa JI. 3ftjiepa 6HJI noAroTOBjieH H 
onyôJiHKOBaH K 250-jieTHeMy loÔHJieio JI. 3ftjiepa. CAejiaHH nepßbie marn no 
H3yneHHio pyKonncHoro HacjieAHH, xpaHHinerocn B apXHBax AKaAeMHH HayK 
CCCP 3Toro THTaHa MaTeMaTHHecKoft MHCJIH. TjiyèoKHe no coAep>KaHHio 
MOHorpatJ)HH, ocHOBaHHbie Ha H3yneHHH apxHBHbix MaTepnajioB H HOAJIHHHHKOB 
noHBHJiHCb B nenaTH OTHOCHTeJIbHO H. Kenjiepa, B. nacKajin, T. JleftÖHHija. 3 T H 
MOHOrpa(})HH COAepMCaT He TOJibKO HOBbie TpaKTOBKH, HO H 3HaHHTejIbHblft CßeHCHft 
4>aKTHHecKHft MaTepnaji. 

He ocTajiHCb B CTOpOHe H TpyAbi KpynHeftniHx yneHbix XIX H XX CTOjieTHft. 
EcTecTBeHHO, HTO MaKCHMajibHoe BHHMaHHe npn 9T0M öbijio yAejieHO TBOpUaM 
HeeßKjiHAOBoft reoMeTpHH H.H. JIoöaneBCKOMy H 51. BOöHH. H3AaHH Ha pyccKOM 
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H3HKe COÔpaHHH HX COHHHeHHft B COnpOBO>KAeHHH nOApOÔHHX H KBaJIH(|)HIJHpO-
BaHHbix KOMMeHTapneB. JIoôaneBCKOMy nocBHmeHbi HecKOjibKO cneijHajibHbix 
MOHorpa4)Hft H ÖHorpac^HHecKHX onepKOB. B HacTonmee BpeMH 3aKaHHHßaeTCH 
noAroTOBKa K H3AaHHio pyKonHCHbix MaTepnajioB, nocBHineHHbix neAaroranecKHM 
H (J)HJIOCO(J)CKHM B3rjiHAaM SToro BHAaiomerocH yneHoro. H3AaHH TpyAbi n . J I . 
MeßbimeBa, A.M. JlnnyHOßa, M.B. OcTporpaACKoro, H.E. >KyKOBCKoro, I\<i>. 
BopOHoro, a T a o t e A. nyaHKape, PHMaHHa, C.H. BepHuiTeftHa H pHAa Apyrnx 
BHAaioiUHXCH yneHbix. 

H3AaHHe C06paHHÖ COHHHeHHft KJiaCCHKOB MaTeMaTHHeCKOÖ HayKH HBJIHeTCH He 
TOJibKO Ba>KHbIM MOMCHTOM B pa3BHTHH HCTOpHKO-MaTeMaTHHeCKHX HCCJieAOBaHHft. 
He MeHbmee 3HaneHHe HMeioT H Apyme acneKTH HX Hcnojib30BaHHH. npe>i<Ae 
Beerò H xoTeji 6 H yKa3aTb Ha CTHMyjiHpOBaHHe HayHHbix HCCJieAOBaHHft H Ha 
B03po>i<AeHHe i;eHHbix HAeft, KOTOpbie He 6HJIH CBoeBpeMeHHO 3aMeneHH H 
pa3BHTH. H no3BOjiK) ce6e CKa3aTb 06 STOM HecKOjibKO no3AHee 06 OAHOM Tai<OM 
cjiynae. Ho, noM<ajiyft, ocoßeHHoe 3HaneHHe TaKoro poAa H3AaHHH HrpaioT B 
BOCnHTaTejIbHHX UejIHX. fleftCTBHTejIbHO mHpOTe B3rJIHAOB H CMejIOCTH MHCJIH 
cjieAyeT ynHTbcn He y Tex, KTO STH MHCJIH nepecKa3HBaeT, a y Tex, KTO HX 
nopOAHJi H pa3BHji. Ceftnac >i<e, B nepHOA MaccoBoro yBJieneHHH HayHHHMH Hccjie-
AOßaHHHMH, HepeAKO BHHMaHHe MOJIOAe>KH OÖpamaeTCH He Ha AGOCTBHTejIbHO 
(j)yHAaMeHTajibHbie npo6jieMH HayKH a Ha AOA^JiKy Mejioneft, ocTaBmnxcn He3a-
BepmeHHHMH nocjie HCCJieAOBaTejieft AaJieKO He nepßoro KJiacca. 

B 1950-1952 r . r MHe H MoeMy Kojijiere E.H. PeMe3 AKaAeMHH HayK YKpanHH 
nopyHHJia B CBH3H CO 150-JICTHHM io6HJieeM M.B. OcTporpaACKoro H3yHHTb 
pyKonncHbift (J)OHA, xpaHHiUHftCH B KneBCKOft ny6jiHHHoft 6n6jiHOTeKe. PyKonncH 
OcTporpaACKoro 6HJIH H3yneHH oneHb njioxo H COCTOHJIH H3 JIHCTOB H KJIOHKOB 

öyMarn pa3Horo (j)opMaTa. TmaTejibHoe HX H3yneHHe npnHecjio HaM MHoro Heo-
HCHAaHHbix HaxoAOK. 0 6 OAHoft H3 HHX H xoTeji 6 H paccKa3aTb ceftnac. Ha rjia3a 
HaM nonajiHCb HecKOjibKO o6pbißi<OB, Ha KOTopnx 6HJIH paccMOTpeHH npHMepbi 
BHHHCJieHHH npHÖJIHHCeHHHX 3HaneHHft HppaUHOHajIbHHX HHCejI. ÖKa3ajIOCb, HTO 
OcTporpaACKHft Ha HHCJIOBHX npHMepax pa3pa6oTaji Aßa ajiropHTMa npnöjiHHceHHH 
HppaUHOHaJIbHHX HHCejI paUHOHaJIbHHMH HHCJiaMH C HCKJIIOHHTejIbHO ÖHCTpOft 
cxoAHMOCTbio (3HaHHTejibHO npeBbimaioineft ÖHCTpOTy CXOAHMOCTH CBoficTBeHHyio 
HenpepHBHHM APO6HM). noBHAHMOMy, 3TH noACHëTH npOH3BOAHJiHCb OcTporpaA-
CKHM B nocjieAHHe AHH ero >KH3HH, a noTOMy He 6HJIH AOBCACHH HM AO nyßjin-

Kai;HH. E.H. PeMe3 [7]yAajiocb paciUH(J>pOBaTb STH 3aMeTKH OcTporpaACKoro H 
noAapHTb MaTeMaTHKe xopomne MaTeMaTHnecKHe pe3yjibTaTH, ocTaBaBuinecH 
HeH3BecTHHMH B TeneHHe CTa JieT. H no3BOjiio ceöe BKpaTije AaTb onncaHHe STHX 
ajiropHTMOB. 

nyCTb HHCJIO 0) TaKOBO, HTO 0 < 0) < 1. npeACTaßHM 9TO HHCJIO B BHAe'OTHO-
meHHH Aßyx 0Tpe3K0ß A H B {A < B). JXJIH HeKOTOporo ijejioro p0 HMeeT MecTO 
paBeHCTBO B = PQA + Al9 rAe Ax < A. JXajiee nocjieAOBaTejibHO B = piA1 + A2 

{A2 < A{)9 B = p2A2 + A3 {A3 < A2) H T .A . JlerKO noKa3aTb, HTO HMeeT MecTO 
npeACTaBJieHHe 
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Po PoPi P0P1P2 

3 T O pa3JiOH<eHHe eAHHCTBeHHO AJIH Bcex HppauHOHajibHbix HHceji. npH ann-
poKCHMaiiiHH HHCjia œ cyMMoft nepBbix n HJICHOB norpemHOCTb 6yAeT MeHee neM 
\j{n 4- 2)!. H3 eAHHCTBeHHOCTH ôecKOHeHHbix pa3jio^ceHHft yKa3aHHoro THna 
MO>KHO 6e3 BCHKHX AonojiHHTejibHbix paccy^cAeHHft CAejiaTb BHBOAM OTHOCH-

TejibHO HppauHOHajibHOCTH pHAa HHceji. TaK HHCjie 

i_J_ + _ L - J _ + . . . = i _ l 
2! + 3! 4! + e 

MO)KHO cpa3y CKa3aTb, HTO OHO HppaqnoHajibHO, nocKOJibKy AJIH Hero pa3Jio>KeHHe 
paHee yKa3aHHoro BHAa 6ecKOHenHO. 

BTOpoft ajiropHTM COCTOHT B cneAyiomeM: nycTb q0, qï9 q29-~ HaTypajibHbie 
HHCjia, onpeAejineMbie nocpeACTBOM paßeHCTB: 

B = qQA + A' {A < A)9 q0B = qxA + A" {A" < A')9 

qQqxB = q2A" + A'" {A"' < A")9 q^qxq2B = q3A" + A" {A" < A")9 

MO>KHO AOKa3aTb, HTO 

œ = j . L + _L_ _L+ ... 
% #1 #2 #3 

npnneM BbinojiHHioTCH HepaBeHCTBa qx > qQ {q0 + 1), q2 > q\ {qx + 1), •••. 
norpemHOCTb, KOTOpyio AaeT npHÖJiH^ceHHe HHCJia œ nocpeACTBOM ncnojib30-

BaHHH nepBbix n HJICHOB He npeBOCxoAHT BCJIKHKHH en = 2~2\ M H BHAHM, HTO 

TOHHOCTb npHÔjiH>KeHHH He TOJibKO npeBOCxoAHT annapaT HenpepHBHbix Apoôeft, 
HO H nepBbift H3 yKa3aHHbix HaMH ajiropHTMOB OcTporpaACKoro. 

ECTeCTBeHHO, HTO AJIH pa3BHTHH HHTepeca K HCTOpHH HayKH, HeOÔXOAHMH 
coAep)KaTejibHbie, xopomo HanHcaHHbie yneÖHHKH H MOHorpac^HH. 3a nocjieAHne 
roAbi noHBHJiocb öojibmoe HHCJIO MOHorpa<|)Hft, KaK COBCTCKHX aßTOpOB, TaK H 
nepeBOAHbix. HeKOTopbie H3 MOHorpac})Hft mnpOKoro njiaHa MHOö 6HJIH Ha3BaHH 
paHee. Eme ôojibmee HHCJIO MHOH Aa>Ke He ôHJIH ynoMHHyTH. MHe xoTejiocb 6u 
ynoMHHyTb ceftnac jinmb ABa TaKHX H3AaHHH. Bo-nepBbix B Bbicmeft CTeneHH 
HHTepecHyio KHHry B.A. MeABeAeBa "Pa3BHrae noHHTHH HHTerpajia" [8], B 
KOTopoft c rjiyöoKHM 3HaHHeM Aejia AaH HCTopnHecKHft onepK pa3BHTHH 
noHHTHH HHTerpajia c rjiyßoKoft AP^BHOCTH. Bo-BTOpbix CHHTaio Hy^cHHM ynoMH-
HyTb (J)aKTHHeCKH nHTHTOMHOe COHHHeHHe ÔOJIbmorO KOJIJieKTHBa aBTOpOB 
"HCTOPHH OTenecTBeHHoft MaTeMaTHKH" [9]. KaK BcerAa, TpyA, B KOTOPOM 
npHHHMajiH ynacTne ACCHTKH aBTOpOB, He MonceT 6biTb OAHOPOAHHM no JiHTepa-
TypHHM AOCTOHHCTBaM H oß-beKTHBHO BHHBJIHTb MeCTO Ka>KAOft H3 BeTBeft 
MaTeMaTHHecKoft HayKH B coBpeMeHHOM eë pa3BHTHH. OAHaKo, AJIH oömero 
03HaKOMJieHHH c TeM, HTO 6bijio CAejiaHO AJIH pa3BHTHH MaTeMaTHKH B POCCHH, a 
no3AHee B COBCTCKOM Coio3e 9Ta MOHorpacj)HH BnojiHe npnroAHa. 

K coMcajieHHK), AO CHX nop eme He co3AaH yneÖHHK HCTOPHH MaTeMaTHKH, 
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KOTOpbift yAOBJieTBOpHJi 6 H coßpeMeHHHM K HeMy TpeöoBaHHHM. 3a nocjieAHHe 
roAbi 6HJI CAejiaH pHA TaKHX nonbiTOK. HeAaBHO noHBHJiocb 2-oe H3AaHHe opHrn-
HajibHoro TpyAa 9Toro M<aHpa, npHHaAJieM<am,ero K.A. PbiÔHHKOBy [10.] HecoM-
HeHHO, HTO paôoTa no co3AaHHio yneômiKOB HCTOpHH MaTeMaTHKH AOJW<Ha 
npOAOJi^aTbCH H AOJI>KHH 6biTb npeACTaBJienbi pa3JiHHHbie Haynnne noAXOAH K 
HX nocTpoeHHio. O TOM, HTO MoryT 6biTb cymecTßenHO pa3JiHHHbie TOHKH 3peHHH 
na xapaKTep nocTpoeHHH yneÖHHKa HCTOPHH MaTeMaTHKH roßopHT XOTH 6 H onbiT 
HenepHOAHHecKoro coßeTCKoro cßopHHKa "HcTOpHKO-MaTeMaTHnecKne nccjieAO-
BaHHn", B KOTOpOM JieT nnTnaAuaTb-AßaAUaTb na3aA 6HJIH onyßjiHKOßaHH 
BBOAHbie jieKUHH K Kypcy HCTOPHH MaTeMaTHKH HecKOjibKHX aBTOpOB. Bce 
H3Jio^<eHHbie noAXOAH 6HJIH cymecTBenHO pa3JiHHHH H Ka>KAMft H3 HHX 3acjiy>KH-
BaeT BHHMaTejibHoro paccMOTpeunn [11]—[13]. 
MHe XOTejIOCb 6bl em,e OCTaHOBHTbCH Ha BOnpOCe, CBH3aHHOM C MeCTOM HCTOpHH 

MaTeMaTHKH B ujKOjibHOM Kypce MaTeMaTHKH. KoHenHO, HHKaKoro CHCTeMarane-
CKoro H3JiOÄeHHH HCTOpHH MaTeMaTHKH B iiiKOjie He MO>i<eT 6biTb, HO öeceAH 0 
pa3BHTHH MaTeMaTHKH, o BejiHKOM BKJiaAe MaTeMaTHKOB B KyjibTypy HejiOBene-
CTBa H ero TexHHnecKyio Mom,b aöcojiioTHO Heo6xoAHMH. Ha npHMepax BCJIHKHX 
yneHbix npomjioro MOjioAbie JIIOAH AOJDKHH ynHTbcn HacToftHHBOCTH B AOCTH>i<e-
HHH u,ejiH H yMeHHio BbißnpaTb AOCToftHyio ußjib. fljiH SToro KaK yneÖHHKH 
MaTeMaTHKH AJIH mKOjibHHKOß, Tai< H MeTOAnnecKne nocoÖHH A^IH yHHTejieft 
AOJI>KHH COAep^aTb KpaTKHe CBeAeHHH H3 HCTOpHH HayKH. /JOJDKHH 6bITb 
HanncaHH KHiirn AJIH HTCHKH no HCTOPHH HayKH, o BHAaioiHHXCH yneHbix npom-
jioro. Bcë STO AOJI>KHO 6biTb HanncaHO yBJieKaTejibHHM H3HKOM H coAep^caTb 
TBOpnecKHe 6Horpac|)HH yneHbix, a TaK>Ke noKa3HBaTb KaK TecHO CBH3aHO pa3BH-
THe MaTeMaTHKH C TpeÔOBaHHHMH >KH3HH, HayHHOft H >KHTeftCKOH npaKTHKH. 

n o MoeMy npeAJio>KeHHK) B >KypHajie AJIH yHHTejieft MaTeMaTHKH "MaTeMaTHKa 
B njKOjie" Tenepb CHCTeMaTHHecKH nenaTaeTCH KajieHAapb HCTOpHnecKHX AaT. 
CßoeßpeMeHHO 3a Mecnij-ABa Ka>KAbift npenoAaßaTejib y3naeT KaKHe COöHTHH 
npOHCxoAHJiH B npomjioM B MaTeMaTHHecKoft HayKe. 3THM B pyKH neAarora AaëTCH 
cepbe3Han B03MO>i<HOCTb CßoeßpeMeHHO cooömaTb iiiKOJibHHKaM HHTepecHbie 
HCTOpHHeCKHe CBeAeHHH. 

nepBOHanajibHO HCCJieAOBaTejiH no HCTOPHH MaTeMaTHKH KOHuenTpHpoBajincb 
B MOCKOBCKOM yHHBepCHTeTe OKOjio ceMHHapa no HCTOPHH MaTeMaTHKH. no3AHee 
B 1945 rOAy 6bIJI C03AaH HHCTHTyT HCTOpHH eCTeCTB03HaHHH B AKaAeMHH HayK 
CCCP, rAe CTaji (jx)pMHpoßaTbCH KOCTHK HCCJieAOBaTejieft B oôjiacTH HCTOPHH 
HayKH, B TOM HHCjie H MaTeMaTHKH. nocjie Toro, Kai< C0103 CTaji onpaBJiHTbcn OT 
pa3pyxH, npHHHHeHHOft BOAHOO 1941-1945 r . r . , HHTepec K HCTOPHH MaTeMaTHKH 
CTaji B03HHi<aTb H B ApyrHx HayHHbix n,eHTpax CTpaHH—Kneße, EpeßaHe, T6HJIHCH, 
Tami<eHTe, JlennnrpaAe, BaKy, Ka3ann H Ap. H cnacTJiHB, HTO MHe AOßejiocb 
6biTb opraHH3aTopOM ceMHHapa no HCTOPHH MaTeMaTHKH B Kneße. no3AHee H 
nepeAaji pyKOBOACTBO STHM ceMHHapOM H . 3 . IllTOKajio, a B nacTonmee BpeMH 
(})aKTHHecKHM copyKOBOAHTejieM SToro ceMHHapa HBJIHCTCH yBJieneHHbift HCTOpHK 
HayKH A.H. BorojiioßoB. 

Pa60TH COBeTCKHX HCTOpHKOB MaTeMaTHKH ny6jIHKyK)TCH B pa3JIHHHHX H3Aa-
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HHHx, HO B nepByio onepeAb B "TpyAax HHCTHTyTa HCTOPHH ecTecTB03HaHHH H 

TeXHHKH", "HCTOpHKO-MaTeMaTHHeCKHX HCCJieAOBaHHHX", a TaKme Ha cTpaHHuax 

McypHajiOB "YcnexH MaTeMaTHnecKHx HayK", "MaTeMaTHKa B niKOjie", a TaK»:e 

B TpyAax yHHBepcHTeTOB, neAarornnecKHX H TexHHnecKHX HHCTHTyTOB. 

COBeTCKHe HCTOpHKH MaTeMaTHKH yßepeHH, HTO OHH BbinOJIHHIOT HCKJIIOHH-

TejibHO nojie3Hyio paôoTy, nocKOJibKy nejioBenecTBO AOJDKHO 3HaTb o B3jieTax 

MHCJIH Jiynmnx CBOHX npeACTaBHTejieft H, onnpancb Ha 3HaHHe npomjioro, yBepeHO 

CTpOHTb BejiHKoe 3AaHHe HayKH. B STOM TpyAe HCOôXOAHMO Me>KAyHapoAHoe 

coTpyAHHnecTBO H M H TOTOBH ynacTBOBaTb BO Bcex Me>KAyHapoAHbix aKUHHx, 

KOTOpbie HanpaBJieHbi Ha pa3BHTHe HayKH, KyjibTypn H MHpHoro coTpyAHHnecTBa 

HapOAOB. 
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The Theory of Matrices in the 19th Century 

Thomas Hawkins 

Although the origins of the theory of matrices can be traced back to the 18th 
century and although it was not until the 20th century that it had become sufficient
ly absorbed into the mathematical mainstream to warrant extensive treatment in 
textbooks and monographs, it was truly a creation of the 19th century. 

When one contemplates the history of matrix theory, the name that immediately 
comes to mind is that of Arthur Cay ley. In 1858 Cayley published A memoir on 
the theory of matrices in which he introduced the term "matrix" for a square 
array of numbers and observed that they could be added and multiplied so as to 
form what we now call a linear associative algebra. Because of this memoir, his
torians and mathematicians alike have regarded Cayley as the founder of the theory 
of matrices; he laid the foundations in his 1858 memoir, so the story goes, upon 
which other mathematicians were then able to erect the edifice we now call the 
theory of matrices. 

For convenience I shall refer to this interpretation of the history of matrix theory 
as the Cayley-as-Founder view. It is a very simplistic interpretation which, as I will 
indicate, does not make much historical sense. The history of the theory of matrices 
is much more complex than the Cayley-as-Founder view would imply. Indeed its 
history is truly international in scope and hence seems an especially appropriate 
subject for a Congress such as this. I will begin by indicating several reasons why 
Cayley's memoir of 1858 does not have the historical significance that the Cayley-
as-Founder view suggests. 

In the first place, Cayley's celebrated memoir went generally unnoticed, especial
ly outside of England, until the 1880's. This was before the days of comprehensive 
abstracting journals—the first began ten years later in 1868—and Cayley had 
published his memoir in the Transactions of the Royal Society of London, some-
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thing that does not seem to have been widely read for its mathematical content. 
Secondly, the ideas Cayley expressed in 1858 were not particularly original. The 

idea of representing a linear substitution (i.e., a linear transformation) by the square 
array of its defining coefficients is already found in Gauss's treatment of the arith
metical theory of quadratic forms as presented in his Disquisitiones arithmeticae of 
1801. There we also find the idea of composing two linear substitutions to form a 
third and the idea of representing substitutions by single letters for convenience. 

Furthermore Gauss's notational practices were carried one step further by 
Eisenstein [1], [2] in his efforts to develop further the general theory of forms 
envisioned by Gauss. Eisenstein observed that if linear substitutions (in any number 
of variables) are considered as entities and denoted by letters, then they can be 
added and multiplied much as ordinary numbers, except, as he stressed, the order 
of multiplication does matter: »ST need not be the same as TS. Eisenstein also 
introduced the common algebraic notation for products, inverses and powers of 
linear substitutions and used it to good advantage in his papers on the arithmetical 
theory of forms during the period 1844-1852 (the year of his untimely death). In 
the early 1850's, Eisenstein's contemporary, Charles Hermite, who was in contact 
with Eisenstein, continued the latter's use of the symbolical algebra of linear sub
stitutions, both in his work on the theory of forms and on the transformation of 
abelian functions. 

Thus by the mid-1850's the idea of treating linear substitutions as objects which 
can be treated algebraically much like ordinary numbers was not very novel. Hence 
it is not entirely surprising to find that during the period when Cayley's 1858 
memoir lay unread, two other mathematicians, Laguerre in France and Frobenius 
in Switzerland, further developed the consequences of the symbolical algebra of 
linear substitutions in a fashion similar to that taken by Cayley but without a 
knowledge of Cayley's memoir. Laguerre's work, which was published in 1867 in 
the journal of the École Polytechnique, suffered the same fate as Cayley's 1858 
memoir. Frobenius' work was published in 1877 in Crelle's journal—one of the 
leading journals of the time—and was more widely known. Frobenius' paper was 
also much more substantial than those by Laguerre and Cayley, and I shall have 
more to say about it further on. 

There is another reason why the Cayley-as-Founder view of the history of matrix 
theory is misleading. By focusing, as it does, upon the form of the theory, i.e., the 
matrix symbolism, it tends to ignore its content', the concepts and theorems that 
make it a bona fide theory. For example : the notion of an eigenvalue, the classifica
tion of matrices into types, such as symmetric, orthogonal, Hermitian, unitary, 
etc., and the theorems on the nature of the eigenvalues of the various types and, 
above all, the theory of canonical matrix forms—in short, what I shall refer to as 
the spectral theory of matrices. 

Spectral theory did not originate with, or depend upon, the work of Cayley. It 
originated in the 18th century when various physical investigations led to the con
sideration of eigenvalue problems. During the 19th century these problems were 
extricated from their physical contexts and transformed into a purely mathematical 
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theory at the hands of mathematicians such as Cauchy, Jacobi, Kronecker, Weier-
strass and Camille Jordan. This activity spanned, roughly, the 50-year period from 
1826-1876, and Cayley played no role in these developments. It was a spectral 
theory of linear substitutions and quadratic and bilinear forms. 

Because spectral theory is an important part of the theory of matrices, I would 
like to make a few remarks about its history at this point, particularly about the 
contributions of Cauchy and Weierstrass. The spectral theory of the 19th century 
was initiated by Cauchy in a paper of 1829 [3]. There he gave the first valid proof 
that the eigenvalues of an 77-by-/7 symmetric matrix must be real. (Cauchy did use 
matrices but called them "systems".) The significance of Cauchy's paper and its 
relation to the work of the 18th century geometers, however, have not been cor
rectly portrayed by historians, and I would therefore like to say a few things along 
these lines. 

One of the great achievements of the 18th century geometers was the successful 
application of the new analysis of the 17th century to problems in terrestrial and 
celestial mechanics. In the course of making such applications they were led to 
consider eigenvalue problems. Most eigenvalue problems arose in connection with 
the integration of systems of linear differential equations with constant coefficients. 
It was the physical contexts of these equations, i.e., stability considerations, that 
focused interest on the reality of the eigenvalues. The 18th century geometers had 
not correctly worked out the solution to these differential equations when multiple 
roots exist, but they could handle the case of distinct roots quite well—thanks 
especially to the work of Lagrange—and they could see that stability required that 
the eigenvalues be real. 

As long as the system of differential equations was sufficiently simple—i.e., as 
long as most of the coefficients were zero—reality could be established by special 
means, for example by actually solving for the eigenvalues. But in the second half 
of the 18th century the work of Lagrange and Laplace led to the consideration of 
differential equations and eigenvalue problems of a much more general nature— 
i.e., the coefficients were not specific numbers. The problem of establishing the 
reality of the eigenvalues seemed a terribly difficult problem in these cases, for it 
meant demonstrating the reality of the roots of a very general wth degree polynomial 
—the characteristic polynomial. For some time they (understandably) had no idea 
that the symmetry of the coefficients was relevant; and, in fact, in one such problem 
they considered—the secular (= long-term) pertubations of the parameters deter
mining the planetary orbits—the symmetry property of the coefficients was not 
immediately in evidence. Because of the apparent mathematical difficulty of the 
problem and because they were primarily concerned with the analysis of mechanical 
problems, Lagrange and Laplace introduced various physical arguments, together 
with some questionable mathematical reasoning (by modern standards), to estab
lish reality. 

Eventually, in a somewhat fortuitous manner (which perhaps proves that two 
wrongs make a right) Laplace discovered [4] that the symmetry properties of the 
coefficients in the secular perturbation problem could indeed be used to demon-
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strate the reality of the eigenvalues. (The symmetry property in this case is m^y^A^ 
= mjry2Aji9 where m{ = mass of /th planet and r{ = its mean distance to sun.) 
By modern standards Laplace's reality proof was not valid because what he did was 
to use symmetry together with the differential equations to derive an equality that 
implied the solutions had to be bounded as functions of time. Then from the form 
of the solutions to the differential equations, which, as noted, were not correctly 
formulated for multiple roots, he inferred the reality of the eigenvalues. 

Despite these flaws, Laplace's discovery of the relationship between reality and 
symmetry was a real breakthrough; Lagrange, for example, never realized the 
relationship. It is therefore somewhat ironical to find that it was Lagrange, and not 
Laplace, who had more influence upon Cauchy. When Cauchy wrote his paper in 
1829 he was not mindful of the eigenvalue problems that arise in integrating sys
tems of differential equations. He was writing some lectures that dealt with a favor
ite subject at the École Polytechnique in the early 19th century: the classification of 
quadric surfaces. And in this connection he was interested in the transformation of 
a quadratic form in three variables into a sum of square terms only. This problem 
also arose in the mathematical analysis of the rotational motion of a rigid body as 
studied by Lagrange in the 18th century [5], [6]. 

Cauchy was especially influenced by Lagrange's treatment of the transformation 
of a quadratic form, which was unlike anyone else's in terms of its essentially 
abstract formulation. Most mathematicians, both before and after Lagrange, 
regarded the problem as follows : Given a quadratic form in 3 variables, write down 
the equations for the change to another rectangular system of coordinates. These 
equations involved sines and cosines of 3 angles, and by using some trigonometry 
one could show how to eliminate successively the nonsquare coefficients. The 
proofs involved using the fact that a cubic equation—not the characteristic equa
tion—has a real root. 

Lagrange's approach, on the other hand, was this: Consider an arbitrary linear 
substitution in three variables x9 y9 z which has the property that it leaves x2 -f y2 

+ z2 unchanged. Lagrange showed that the coefficients of such a substitution must 
satisfy the now-familiar orthogonality conditions that characterize an orthogonal 
substitution. His problem was therefore to prove the existence of such an orthogo
nal transformation which takes the given quadratic form into a sum of square 
terms. Furthermore, unlike the other treatments of the problem, Lagrange's made 
the consideration of an eigenvalue problem central. That is, he showed that the 
eigenvalue problem determined by the coefficients of the quadratic form yields, as 
the eigenvectors, the coefficients of the desired orthogonal transformation; and the 
eigenvalues are the coefficients of the square terms in the transformed form. 

Naturally the existence of the orthogonal transformation depended upon the 
reality of the eigenvalues—the roots of the characteristic equation. This problem 
did not seem as overwhelming as the others because it was simply a case of a cubic, 
and Lagrange succeeded in demonstrating that this cubic has the "remarkable" 
property of having all its roots real, no matter what values are assigned to the 
coefficients of the associated quadratic form. What is especially significant about 
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Lagrange's formulation of the principal axis theorem is that it is immediately gene-
ralizable to n variables : It is clear what is meant by a quadratic form in n variables, 
and, thanks to Lagrange, it is clear what an orthogonal transformation in n vari
ables can be taken to mean. 

Lagrange was, of course, exclusively interested in the 3-variable case because that 
was the physically relevant case. Cauchy, however, was in a position—and of a 
frame of mind—to see that not only was Lagrange's formulation of the principal 
axis problem generalizable, so was his proof; it was only necessary to translate 
Lagrange's proof into the language of determinants to see that it was valid for any 
number of variables. In this connection I must point out that in the 18th century 
the notion of a determinant was only vaguely formulated and no significant pro
perties were established. Many mathematicians, including Lagrange, made no use 
of determinants. It was Cauchy who, in 1812, wrote a brilliant memoir [7] which 
essentially created the theory of determinants as we know it. With this background, it 
was only natural that he should look at Lagrange's proof in terms of determinants. 

In this manner Cauchy established the reality of the eigenvalues of a symmetric 
matrix, as a part of his generalization of the principal axis theorem. (It is worth 
noting that Cauchy's 1829 paper thus also represents the beginning of «-dimension
al analytic geometry.) Cauchy's generalization was, moreover, simply that—a 
generalization simply for the sake of an interesting generalization ; he did not see 
the relation of his theorem to the eigenvalue problems stemming from differential 
equations until it was pointed out to him by Charles Sturm, one of Fourier's stu
dents, while he was in the process of writing up his results for publication. 

Historians have attempted to capture the significance of Cauchy's work by 
attributing to him the discovery of the underlying similarity of many of the mechani
cal problems of the 18th century—i.e., that they involved eigenvalue problems with 
symmetric coefficients. If that honor can be said to belong to anyone, it belongs to 
Sturm.1 The actual historical significance of Cauchy's paper is to be found in its 
methodology: the theory of determinants. His contemporaries, led by Jacobi, saw 
in Cauchy's theory of determinants a new and powerful algebraic tool for dealing 
with rc-variable algebra and analysis. It was they, especially Weierstrass, who used 
determinant-theoretic methods to give a purely mathematical treatment of many of 
the other eigenvalue problems of the 18th century, viz. those of the form 

(1) AX = IBX with related differential equations BY = AY, 

where A and B are symmetric and B is definite. 
I cannot go into the work of Weierstrass in any detail, but I would like to point 

out that Weierstrass' treatment of (1) involved, implicitly, the notion of elementary 
divisors. In effect, Weierstrass proved [8] that it is possible to transform simul
taneously (by an orthogonal substitution) B into the identity / and A into diagonal 
form because the elementary divisors are linear. (Recall that an elementary divisor 
(/I—a)k of the characteristic polynomial of a matrix corresponds to a k-by-k Jordan 

1The title of Cauchy's paper [3] has misled historians. Evidence exists which suggests he added 
it at the last minute, after his encounter with Sturm. 
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block with eigenvalue X = a.) These results were then generalized to bilinear forms 
and became Weierstrass' theory of elementary divisors [9]. I should point out that 
Weierstrass introduced the so-called Jordan canonical form in developing his 
theory, and an immediate consequence of it is the theorem that two matrices (or 
bilinear forms) are similar iff they have the same Jordan canonical form. 

The above-mentioned work of Weierstrass spanned the years 1858-1868. A word 
is in order concerning the motivation behind it. We are all familiar with Weier
strass' work in analysis, which was characterized by his concern for rigor and hence 
for the foundations of analysis. Certain generalities seem to have been drawn from 
this, namely that a concern for rigor comes at the end of a mathematical develop
ment, after the "creative ferment" has subsided, that rigor in fact means rigor 
mortis. Weierstrass himself provides a good counterexample to this generality, for 
all his work on the spectral theory of forms was motivated by a concern for rigor, 
a concern that was vital to his accomplishments. 

Weierstrass was dissatisfied with the kind of algebraic proofs that were com
monplace in his time. These proofs proceeded by formal manipulation of the 
symbols involved, and no attention was given to the singular cases that could arise 
when the symbols were given actual values. One operated with symbols that were 
regarded as having "general" values, and hence such proofs were sometimes re
ferred to as treating the "general case", although it would be more appropriate to 
speak of the generic case. Generic reasoning had led Lagrange and Laplace to the 
incorrect conclusion that, in their problems, stability of the solutions to the system 
of linear differential equations required not only reality but the nonexistence of 
multiple roots. (Hence their problem had seemed all the more formidable !) In fact, 
Sturm who was the first to study the eigenvalue problem (1) proved among other 
things the "theorem" that the eigenvalues are not only real but distinct as well. His 
proof was of course generic, and he himself appears to have been uneasy about it; 
for at the end of his paper he confessed that some of his theorems might be subject 
to exceptions if the matrix coefficients are given specific values. Cauchy was much 
more careful to avoid what he called disparagingly "the generalities of algebra," 
but multiple roots also proved problematic for him. As he realized, his proof of the 
existence of an orthogonal substitution which diagonalizes the given quadratic 
form depended upon the nonexistence of multiple roots. He tried to brush away the 
cases not covered by his proof with a vague reference to an infinitesimal argument 
that was anything but satisfactory. 

It was to clear up the muddle surrounding multiple roots by replacing generic 
arguments with truly general ones that Weierstrass was led to create his theory of 
elementary divisors. Here is a good example in which a concern for rigor proved 
productive rather than sterile. Another good example is to be found in the work of 
Frobenius, Weierstrass' student, as I shall shortly indicate. 

So far I have indicated some features of the history of the theory of matrices 
which show that the significance of Cayley's memoir on matrices of 1858 has been 
grossly exaggerated. But I do not intend to imply that Cayley played no role what
soever. Indeed he did, but neither the nature of that role nor the motivation that 
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led Cayley to write his 1858 memoir has been correctly partaged by historians. 
Cayley's role and the motivation for his development of the symbolical algebra of 
matrices are linked with a problem of considerable historical importance for the 
theory of matrices. The problem is this: Given a nonsingular quadratic form in'w 
variables, determine all the linear substitutions of the variables that leave the form 
invariant. For reasons that will be clear momentarily, I shall refer to this as the 
Cayley-Hermite problem. 

The problem originated in a paper that Cayley wrote in 1846—and fortunately 
published in Crelle's Journal. He had read a paper in Liouville's journal by Olinde 
Rodrigues in which the latter showed among many other things that the 9 coef
ficients of a linear transformation of rectilinear axes could be expressed rationally 
in terms of three parameters. This was the period—the early 1840's—when Cayley 
was preoccupied with learning and applying the theory of determinants, and he 
showed that Rodrigues' result could easily be established using determinants and, 
in fact, extended to n variables. Cayley's general result was that if Xrs is a system of 
coefficients such that Xrr = 1 and Xsr = — ̂ r5, then the system of coefficients ars 

defined by 

(2) ars = 2Drs/D - drS9 D = \Xrs\, Drs = dDjdXrs9 

has the Lagrangian orthogonality properties. Thus the coefficients ars of the 
orthogonal substitution are expressible as rational functions of n{n - l)/2 parame
ters—the Xrs. 

Expressed in modern symbolism, Cayley's solution can be written as 

(3) U = 2{I + 5)-i - / = ( / + SYKI - S)9 £/•= {ars)9 I+S= {Xrs). 

The significance of Cayley's solution was that a succinct symbolical representation 
can be given if both the operations of addition and multiplication are employed. 
I already pointed out that in the late 1840's and early 1850's Eisenstein and Her-
mite recognized the possibility of a symbolical algebra of linear substitutions under 
addition and multiplication. But in their work they had—or saw—no occasion to 
make any symbolical use of the addition of substitutions. 

In his 1846 paper Cayley himself introduced no new symbolism. The notation of 
determinants provided a very succinct form for the solution, as (2) indicates. (Cay
ley did not, however, use Kronecker deltas.) The matter would probably have ended 
there were it not for Hermite and his interest in the theory of numbers. In the course 
of pursuing his research on the arithmetical theory of ternary quadratic forms 
Hermite had occasion to pose and solve an algebraic problem: Determine all the 
substitutions of a nonsingular ternary form which leave it invariant [10]. Hermite 
seems to have been aware of Cayley's paper of 1846 which can be interpreted as a 
solution to the problem when the form is x2 -f y2 + z2. Although Hermite gave 
another proof for the more general problem, he used Cayley's idea of generating 
solutions from skew symmetric systems and he also generalized the result to n 
variables. 

Hermite, however, left his solution in a somewhat incomplete form in the sense 
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that he did not explicitly write down the coefficients of the solutions to the problem 
except in the case of 2 variables. He could have written the solution down in suc
cinct explicit form had he thought to employ his symbolical algebra of linear sub
stitutions, but this thought did not occur to him. 

It did occur, however, to Cayley, who responded with a paper in 1855 in which he 
showed that Hermite's solution could be written using the composition of matrices : 

(x,r,z,-..) = 

(4) 

a, 
h, 
8, 

h, 
b, 

f, 

g — 
/ -
c ••• 

a9 h - v9 g +/!,• 
h + v9 b9 f- X9-
g - [x9f ' + X9 c9 • 

fl, h + v9 g - /ir 
h-v9 b, f + X9-
g + faf - *i c, • 

y, 
k 
g, 

K g... 
b, f -
/, c -

\{x9y9z9"-). 

X = A-\A - S){A + S)-iAx. 

In modern notation 

(5) 

There was nothing new about expressing results using the composition of matri
ces; Eisenstein and Hermite had been doing it regularly. Notice also that Cayley, 
like Eisenstein and Hermite, used only composition, not addition, of matrices. 
Cayley's originality consisted in seeing a new application for such symbolism, 
although in 1855, he himself did not develop the symbolism and its application any 
further than (4). As in the case of Eisenstein and Hermite, the symbolism was 
primarily used to express succinctly results obtained by other means. 

The Cayley-Hermite problem was, however, conducive to the fuller development 
of the algebra of matrices, and Cayley undertook this in his 1858 memoir on 
matrices. The importance of the Cayley-Hermite problem in motivating the 1858 
memoir is confirmed by the fact that Cayley actually wrote two companion mem
oirs in 1858; the second dealt with the Cayley-Hermite problem and treated it in 
terms of the more fully developed notation. (Cayley is thus able to express the 
solution in a form similar to (5).) Although the 1858 memoirs remained unknown 
for over 20 years, Cayley's papers of 1846 and 1855 were published in Crelle's 
journal, and through them Cayley did exert some influence. 

Before leaving Cayley, I must point out a characteristic of his mathematics. I 
have already stressed the importance in the history of the theory of matrices of 
distinguishing between form—the symbolical algebra of matrices—and substance. 
This distinction is especially meaningful in connection with Cayley's papers on 
matrices, for they are primarily on the formal level and lacking in much substance. 
The sole theorem contained in the 1858 memoir is that a matrix satisfies its charac-
terstic equation—a theorem immediately suggested by the symbolism. Cayley, 
however, did not prove it. He gave a computational verification for two-by-two 
matrices, assured his readers that he had also verified the computations for 3-by-3 
matrices and added: "I have not thought it necessary to undertake a formal proof 
of the theorem in the general case of a matrix of any degree." This reflects not only 
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Cayley's lack of interest in proofs, where inductive evidence seemed convincing, but 
also his failure to realize that his symbolical algebra of matrices makes it possible 
to give a simple general proof. Cayley never seemed to realize fully the power of the 
symbolical algebra of matrices as a method of reasoning. 

The only other general theorem in Cayley's 1858 memoir is the assertion that 
"the general expression" for the matrices which commute with a given matrix M 
are polynomials in M of degree ^ n— 1. This theorem is, of course, literally false; 
it is true when the minimal polynomial is the same as the characteristic polynomial, 
as Frobenius was to prove. But Cayley failed to introduce such distinctions in his 
extremely vague proof. It was typical of the generic level of reasoning in algebra 
that Weierstrass had just begun to criticize. Incidentally, this very problem of 
determining the linear substitutions that commute with a given one was to motivate 
Camille Jordan, 10 years later, to introduce the Jordan canonical form [11], [12]. 
Cayley, however, failed to do what Jordan did. 

The solutions that Cayley and Hermite had given to the Cayley-Hermite problem 
were also generic; they had not obtained all possible solutions to the problem. 
Generic proofs were the order of the day in the 1850's, and no one raised any 
objections. The Cayley-Hermite problem thus sank into oblivion where it perhaps 
would have remained had it not once again been for the theory of numbers. Just 
as Hermite's interest in the arithmetical theory of ternary forms had reawakened 
Cayley's interest in the Cayley-Hermite problem, so now in the early 1870's it was 
Paul Bachmann's interest in ternary forms that led him to re-examine Hermite's 
solution to the Cayley-Hermite problem and to discover its completeness. 

Bachmann's observations brought forth a reply from Hermite in which he patched 
up his earlier solution to cover the singular cases—but only for the ternary case. 
Also Bachmann's colleague at Breslau, Jacob Rosanes, attempted to deal with the 
«-variable case by making use of the fact, observed by Hermite and Cayley concern
ing their solutions, that if X is a characteristic root so is Iß. Rosanes' results were, 
however, incomplete, especially because he could not handle the case of multiple 
roots. 

Here then was a good "Weierstrassian" problem, a challenge similar to that 
faced earlier by Weierstrass. This time the challenge was taken up by Frobenius, 
who had received his doctorate under Weierstrass in 1870. The result was a 63-page 
paper which was published in Crelle's journal in 1877. Let me explain why it was so 
long. Frobenius saw that to provide a rigorous and elegant solution to the Cayley-
Hermite problem and the related questions raised by Rosanes' paper, it was de
sirable to fuse together the spectral theory he had learned from Weierstrass and 
Kronecker with the symbolical algebra of linear substitutions. To treat the Cayley-
Hermite problem Frobenius in effect composed a masterful and substantial mono
graph on the theory of matrices—or forms as he called his symbols. In its pages he 
convincingly demonstrated the power of the new symbolical method of reasoning 
when used in conjunction with spectral theory. 

Frobenius' paper thus represents an important landmark in the history of the 
theory of matrices, for it brought together for the first time the work on spectral 
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theory of Cauchy, Jacobi, Weierstrass and Kronecker with the symbolical tradition 
of Eisenstein, Hermite and Cayley. I should add that Frobenius' role in the history 
of the theory of matrices goes beyond what I have indicated. He also established the 
importance of matrix theory in important new areas of mathematics, such as 
hypercomplex numbers and group representations. 

Although I have stressed Frobenius' contributions, I trust that my necessarily 
incomplete historical sketch has been sufficient to indicate that the history of 
matrix theory involved the efforts of many mathematicians, that it was indeed an 
international undertaking. 
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Science as Handmaiden of Mathematics 

Geoffrey Matthews 

This is a survey report, and a limited one at that. It refers to teaching at school 
level, the whole range from nursery to college, but mainly to children aged about 
11 to 16. These children go from class to class during the school day, and if the 
mathematics teacher and the science teacher tell different stories, or even similar 
stories at different times and in different languages, the children can become 
confused. There is a need, therefore, at least for the mathematics and science staffs 
to speak to each other, and this dialogue will be more peaceful, and even construc
tive, if interdisciplinary material is available for them to work on together. Some 
work has been done elsewhere in this field, notably by Max Bell in Chicago, but 
the present paper describes only some activities in my own country. 

There are four main traditional areas of disagreement between science and 
mathematics teachers : 

(1) Notation. Mathematicians brought up on Newton's second law of motion as 
p = mf can be disconcerted to find the physics man propounding F = ma. This is 
not a serious problem; after all, F is for Force and a for acceleration, and anyway 
mathematicians are used to a bizarre range of notations (otherwise they would 
not be able to teach calculus). 

(2) Timing. Each year when I was a teacher of 17-years-olds, the class expressed 
surprise when I set up the differential equation for simple harmonic motion. 'But, 
Sir, we've just been doing this in physics, with a little man going round a circle 
dropping ping-pong balls onto a diameter.' I would express suitable surprise. 
But in less happy schools, the science teacher is forever attacking his mathematical 
colleague; 'Why haven't they done logarithms?', 'Why haven't they done %T The 
answer may be (i) 'They're not ready for it', (ii) 'Sorry, I'll do it tomorrow', or even 
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(iii) 'We've been doing it for the past fortnight', but the question should not have 
been necessary. 

(3) Respectability. When I once asked a science teacher why his colleagues wrote 
'Sin 0 = 0' as if it were an identity, he replied 'Well it is generally, isn't it?' (Alright, 
he was pulling my leg.) 

(4) Style. Quote from a chemistry teacher: Weight of a beaker + X = 38.55 g. 
This sort of hybrid sentence of course makes us all wince, particularly the use of 
* = ' for something which in the nature of things must be approximate. There is 
something to be said for being a bit fussy over this; see for example [8] where it is 
'proved' in 16 moves that a fly weighs the same as an elephant using ' = ' to 
mean 'weighs the same as' in the sense of balancing on a pair of scales as near as 
the eye can judge. 

A child of 2 understands the true nature of equivalence. 

After turning out mother's handbag, he partitions the set of objects into things 
he likes (button, bus-ticket, lipstick) and things he does not like (scissors, knife). If 
he picks up the button and replaces it, it will still go into the same subset, namely 
things he likes (reflexive property) and the symmetric and transitive properties are 
equally readily verified; the 2-year-old has had no trouble in establishing the 
well-known result that 

every partition of a set induces an equivalence relation 

though he is unlikely to use those words. 
When he goes to school some 3 years later, he will find no conflict at first between 

mathematics and science; they are both being taught by the same teacher (who may 
not have a special taste for either). Science here is quite happy as handmaiden to 
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mathematics; for example, an investigation into 'things that float and things that 
sink' is giving further experience towards the abstraction quoted above ('every 
partition •••'). 

At this level, it is indeed difficult to distinguish between mathematics and science. 
The Schools Council Project 'Science 5—13' for example has produced a publication 
Ourselves [12], largely concerned with pictorial representation of a type which 
could well have been marketed as mathematics. Again, my wife has devised a sim
ple form of recording progress for young children [10] in which some of the 
maths and science concepts are difficult to distinguish. 

Before turning to the 11 to 16 year olds, I will deal briefly with 'advanced level', 
i.e., for 16 to 18 year olds. Here the Royal Society has taken remarkable initiative 
and groups of physicists, chemists and biologists have been working to determine 
mathematical needs. The physicists have produced a report [11] and the others are 
on the way. The work has been undertaken in a friendly spirit, but mathematics is 
considered firmly in its traditional role as handmaiden of science. Is it just possible 
that the roles may sometimes be reversed even at this level? Two examples must 
suffice. First, the Nuffield advanced level physics course includes an obviously very 
simplified account of the Schrödinger equation applied to the hydrogen atom. It 
may well be debated how much this means in terms of physics (it seems to me a 
quite admirable preview but not everyone agrees with this), but certainly the 
students are intrigued and motivated to explore solutions of the differential equa
tion concerned both with and without a computer. (See Matthews and Lewis 
[9].) This is a good lead-in to numerical methods in general. My second example is 
contained in a small book Growth and Decay Models by my colleague Bob Lewis 
[4]. This pioneer work starts by looking at a variety of growth and decay situations 
(population, bacteria, compound interest, radioactive decay, etc.) and gradually 
building up the mathematics required, i.e., a study of the exponential function. 
The second part investigates the efficiency of the mathematical model of various 
situations (rumour-spreading, biological and economic growth, chemical decom
position, capacitor discharge in electrical circuits). The value of this exercise lies 
not so much in the handling of one particular topic in science as the realisation of 
the power of mathematics and the capacity of the student to transfer his mathe
matical expertise from one field to another. 

Capacity to think for oneself and transfer knowledge and skills to new situations 
must be rated very high among the aims of mathematical education; no other 
discipline affords such opportunities. Our central problem is: 'How, then, can 
science help with this aim?' 

I now turn to our 11 to 16 year olds and start with Project SCISP (Schools Coun
cil Integrated Science Project). This project is for abler children of about 14 to 16 
years and is remarkable for being conscious not only of the underlying mathematics 
but also the social implications of science teaching. The following is an extract 
from one of their first publications [13] : 
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Penguin mass/kg. approximate temperature range 
of habitat(s) / °C 

Emperor 
King 
Adelie 
Magellanic 
Chinstrap 
Peruvian 
Rockhopper 
Blackfooted 
Northern blue 
Southern blue 

29.15 
16.0 
5.0 
5.0 
4.5 
4.3 
2.8 
2.8 
1.8 
1.8 

-10 to 
0 to 

-10 to 
0 to 

- 5 to 
+ 6 to 
+ 5 to 

+ 10 to 
+ 12 to 
+ 8 to 

0 
+ 7 
+ 5 

+ 12 
+ 5 

+ 16 
+ 10 
+ 17 
+ 19 
+ 15 

What pattern is clearly shown by the information? Suggest an explanation for this 
pattern. Devise a way to test your explanation using ordinary laboratory apparatus 
as models. 

Clearly the penguins get larger the nearer they get to the South Pole and the 
problem has to do with the ratio of surface area to volume. It is of pedagogical 
interest to examine other ways of presenting the problem to children : 

1. 
2. 
3. 
4. 
5. 
6. (i) Cubes 

Investigate penguins. 
Investigate the size of penguins. 
Do thè sizes of penguins vary with distance from the South Pole? 
Do penguins get bigger the nearer you get to the South Pole? 
Why do penguins get bigger the nearer you get to the South Pole? 

Length of Side Volume Surface Area S A / V 

1 
2 
3 
4 
5 

1 

27 

6 
24 
54 

6 
3 
2 

Complete this table. 
(ii) The ratio 'surface area/volume' affects your capacity to keep warm (your 

teacher will explain why). As you approach the South Pole, it gets colder; research 
has shown that penguins get bigger the nearer you get to the South Pole. Can you 
use the above table to help you explain why? 

Here we have the whole range from the completely open-ended (1) to the highly-
structured, giving the game away completely (6). But whichever approach is used, 
it is an improvement on the mathematics textbook which starts with a rectangular 
lawn with a dull path all round it (and neither access nor flowerbeds) and ends 
with a mad sculptor who has made his model the wrong size and of the wrong 
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material and wishes to enlarge it by some outlandish factor. Here is surely a case 
where science can help mathematics, through motivation. 

Such thoughts gave rise to Project SUM (Science Uses Mathematics), now in 
its trial stages. At the Centre for Science Education, Chelsea College, University 
of London, where I work, we had made several attempts to get mathematics and 
science teachers together, but the result was invariably argument about notation, 
timing, etc., as described earlier. It therefore appeared necessary to produce some 
interdisciplinary materials so that they had something they could work on together. 
(See Dudley [1], [2], [3] and Malpas [5], [6], [7].) As a result, a number of 'modules 
of work' are in course of preparation, the main themes being Rates, Ratio and 
Measurement. I will illustrate the flavour of these by reference to such a module 
called 'Indices and Molecules'. This has roughly the dimensions of an airline 
ticket. The first part consists of bound-in notes for the teacher and the second a 
set of loose cards for issue to a group of say 3 or 4 pupils. One sequence consists 
of dissolving a gram of crystals of potassium permanganate in a litre of water, 
removing 1 cm3 of the coloured liquid, mixing this with more water and so on. 
This gives a genuine reason for introducing negative indices, so that the two things 
—experiment and mathematics—are going on together, and the science man need 
no longer growl 'Why haven't they done indices?'. Later in the same module, there 
is a sequence on the so-called oil-drop experiment (a drop of oil forms a patch on a 
surface of water, so that by estimating its volume and the area it then covers, some 
idea can be grasped of a molecule and its possible length). Here again the subjects 
are in harmony instead of 'Why haven't they done %T. 

So much for Project SUM. But underlying the conflicts between the teachers 
there is the fundamental fact that little research has been done on the hierarchy of 
concepts in either mathematics or science at this secondary level. We have recently 
received a grant from our Social Science Research Council for a five-year project 
to investigate this problem. There is only time to give a diagram of our plans : 

E n g i n e e r i n g 

C o n c e p t u a l 
Ana lys is 

-> 

After preliminary analysis of conceptual difficulties in various contemporary 
courses, the work splits into three branches : 

(i) Tree. This will be an attempt to make a partially-ordered 'tree of knowledge' 
to suggest preferred orders of treatment of topics. 

(ii) Engineering. By simply looking at the topics, ways of reducing difficulties 
(e.g., transferring from 'formal' to 'concrete' level) will suggest themselves. 

(iii) Assessment. Methods will be devised for production of reliable tests for the 
use of teachers to check on children's levels of understanding. 

Work in all these branches has begun this year. 
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Of course there is a lot more work to be done in forging links at this level 
between mathematics and other subjects—geography, economics, etc. Pupils will 
be really educated when they can appreciate mathematical applications to subjects 
other than their own chosen speciality—but we are a long way at present from that 
goal. 
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How to Understand and Teach the Logical Structure 
and the History of Classical Thermodynamics* 

C. Truesdell 

Prologue. I do not think it is possible to write the history of a science until that 
science itself shall have been understood, thanks to a clear, explicit, and decent 
logical structure. The exuberance of dim, involute, and undisciplined historical 
essays upon classical thermodynamics reflects the confusion of the theory itself. 
Thermodynamics, despite its long history, has never had the benefit of a magisterial 
synthesis such as that which Euler gave to hydrodynamics in 1757 or that which 
Maxwell gave to electromagnetism in 1873; the expositions in the works of dis
covery in thermodynamics stand a pole apart from the pellucid directness of the 
notes in which Cauchy presented his creation and development of the theory of 
elasticity from 1822 to 1854. Thermodynamics was born in disorder if not confu
sion, and there the common presentations of it have remained. 

Here I provide a simple logical structure for the classical thermodynamics of 
homogeneous fluid bodies. I take as primitive just those quantities which every early 
author took as primitive, namely : 

t time, 
and, associated at the time t with a fluid body : 

V(t) volume (V(t) > 0), 
6{t) temperature (by convention restricted to the range 0 < 0(t) < oo), 
p(t) pressure (p(t) > 0), 
Q(t) heating 

—these and no other. I deal only with classical thermodynamics, to which the term 

The research reported here was supported in part by grants of the United States National 
Science Foundation to the Johns Hopkins University. A full account, with proofs, many corol
laries, applications to cases, and historical analyses, will appear in the Archive for Rational 
Mechanics and Analysis 
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"reversible" was attached in later years, and only with two independent variables, 
which I choose to interpret as being the volume and temperature of a homogeneous 
fluid body. Finally, I employ no mathematical tools that were not already available 
in the 1820's, and every thermodynamic concept I use was introduced by 1854 at 
the latest. The entire theory is based on the systematic, elementary, and rigorous 
use of Carnot cycles. The central axiom is Carnot's own: The motive power of a 
Carnot cycle is a function of its two temperatures 0+ andO~ and of the heat absorbed 
at the higher temperature. 

My scope is threefold : 
1. Conceptual. For those already expert in thermodynamics, to show how all the 

concepts can be derived from simple and natural assumptions about heat engines, 
developed by simple and rigorous mathematics, with no "physical" arguments and 
no appeal to metaphysics. 

2. Pro-Historical. For those who would study the pioneer researches, by logical 
analysis to reveal the features of principle common to Carnot's thermodynamics 
and Clausius', and to discern the irreconcilable differences of principle between 
them, never before carded of metaphysics and rhetoric. 

3. Pedagogical. For those who wish to learn a clean elementary thermodynamics 
so as to teach it to beginners. 

Thus the past and the present illuminate each other. 
My work owes much to a long memoir of F. Reech, published in 1853. You will 

recall that Clausius introduced and developed the concept of internal energy of an 
ideal gas in 1850, that he did not publish his treatment of more general equations of 
state until 1854, and that only in that year did he introduce the concept of entropy 
or distinguish between reversible and irreversible processes. Reech's great memoir 
appeared after Clausius' first note and before the second one. 

Frédéric Reech was born in 1805 at Lampertsloch, Alsace. He studied at the 
École Polytechnique and became director of testing and development of marine 
steam engines at the French naval port of Lorient. Later he became director of the 
École d'Applications du Génie Maritime. He published a book on engines in 1844 
and a general course of mechanics in 1852. When Regnault, perhaps influenced 
by Joule, began to doubt that heat was an indestructible substance, Reech under
took a logical examination of the whole matter, starting from the most general 
form of Carnot's axioms, axioms Carnot himself had applied only subject to 
further restrictions. Reech was ready to reject the axiom that heat is conserved but 
not ready to adopt the axiom that heat and work are uniformly interconvertible. 

Reech's work on thermodynamics passed unread and has beea scarcely noticed 
to this day. Reech's axioms are exactly those Carnot had stated a quarter of a 
century earlier, apart from the assumption that heat is conserved. Carnot's own 
treatment is inextricably entwined with that assumption, which Reech cast aside. 
Reech attempted to develop all the consequences of Carnot's axioms, but he was 
not skilled enough in elementary analysis to do so. Indeed, he did construct a theory 
that subsumes both Carnot's and Clausius' ; he did introduce and exploit generali
zations of the entropy and the thermodynamic potentials before Clausius and 
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others introduced the special cases now familiar; and he did derive, in generalized 
form, every identity, definition, or other formal relation in the classical part of the 
subject. Unfortunately, the conditions he obtained, although necessary, are not 
sufficient. They are too general in that they leave unrestricted certain functions 
which the axioms in fact restrict severely. 

The theory I present now is based on Reech's axioms. It completes his work by 
exhausting the consequences of those axioms. It is a prolegomenon to the history of 
thermodynamics: an outline of the theory such as could have been written in 1854, 
had thermodynamics been blessed with an Euler, a Cauchy, or a Maxwell. That the 
discoverers did not find proofs so simple as mine and that they failed to draw some 
central conclusions which in fact do follow easily from their assumptions have 
nothing to do with the subject itself or the date at which it was developed, the 
organization of science, the social or economic circumstances of the scientists 
involved or not involved in its early development, or any of the other extranea 
now popularly invoked so as to smother thought and truth and to exalt what might 
well be called "group science". 

A list of the definitions, axioms, and main theorems follows. The proofs, which 
are omitted here, use a mathematical tool which the authors of textbooks, follow
ing the works of discovery, seem unwilling if not unable to apply. That tool is 
integral calculus. 

I. Calorimetry. 
DEFINITION 1 (CARNOT, 1824). A process is a pair of continuous and piecewise 

continuously diflerentiable functions Fand 0, defined over a closed interval [tÌ9 t2] 
of times t, ti < t2, and having as values V(t) and 0(t) a volume and a temperature, 
respectively, of some given body. 

DEFINITION 2. A process is isothermal if 6(t) = const, for all t e [th t2]. 
DEFINITION 3. Let a process have been given, and let p be an integrable function 

in Uh hi- Set L = \\\pV dt. Ifp(t) is the pressure exerted upon the given body at the 
time /, then the number L is the work done by the body subjected to the pressure/? 
in the given process. 

DEFINITION 4. Let a process have been given, and let Q be an integrable function 
in [tl912]. Set 

C^'fQdt, C+=\]{\Q\ + Q)dt9 C-sE-lfclßl-ß)*, 
u u u 

so that C = C+ - C". If 0 (0 is the heating of the given body at the time t, then the 
numbers C, C+, and C~ are, respectively, the net gain of heat, the heat absorbed, 
and the heat emitted'by the body in the process. 

Definitions 5—8 define the terms path, simple path, reverse - & of a path &>9 

and cycle. 

AXIOM I (EXISTENCE OF A THERMAL EQUATION OF STATE, EULER, 1757). In a 
certain nonempty connected open set @ of the positive V~d quadrant, the pressure p 
acting upon a given body is determined by the volume and temperature ofthat body: 
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p = W(V, d). 

The function \n is continuous and has continuous partial derivatives dxufdV and 
duf/dd; also dvjjdV < 0. 

EXAMPLE. A body is an ideal gas if UJ = Rd/V9 R being a positive constant. 

THEOREM 1 (FIRST REVERSAL THEOREM). The work L done by a body in a process 
depends only upon the path 0> of that process and is given by the line integral 

L = L{p) = J VJ(V9 6) dV. 

Also L ( - 0>) = - Up). 

COROLLARY 1.1. If <& lies in a simply connected part of@ and is a simple cycle, so 
oriented that the region stf it encloses lies on its right-hand side, then 

Lm = ij^dvde. 
AXIOM II (DOCTRINE OF LATENT AND SPECIFIC HEATS). There are functions Av 

and Ky9 defined over <&, continuous and having continuous partial derivatives there, 
such that in any process (V9 d) the heating Q of the body has the form 

Q = Av(V9d)V + Kv(V96)d 

at all times when V and d exist. Moreover9 Kv > 0. 

THEOREM 2 (SECOND REVERSAL THEOREM). The net gain of heat in a process de
pends only on the corresponding path : 

C = Qp) = J {Ay dV + Ky dd)9 

andC(- 0>) = - C{p). 

COROLLARY 2.2 (CLAUSIUS, 1850). If ^ is a simple cycle in @, so oriented that 
the region srf it encloses lies on its right-hand side, then 

Op) = IKdAvIdd - dKy/dV) dVdd. 

THEOREM 3 (FUNDAMENTAL THEOREM OF CALORIMETRY). Q = App + Kpd\ Ap, 

the latent heat with rdspect to pressure, and Kp, the specific heat at constant pressure, 
are related as follows to Ay andKv: 

A - Ay v v _ A d\n/dO 
Ap " fajdV' Kp-Ky--Ay ^py. 

Also 

(Kt-K^Q-Avy^p-KS] 

DEFINITION 10. A process such that Q = 0 is adiabatic. The path of an adiabatic 
process is called an adiabat. 

THEOREM 4 (LAPLACE, 1816-1823, IN PRINCIPLE). In an adiabatic process, p is a 
differentiable function of V9 and 
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dp/dV = r dvrßV, T = KPIKy. 
HISTORICAL REMARK. The position of this theorem in the development, before 

any relation between heat and work has been assumed, shows that Laplace's 
calculation of the speed of sound is independent of his assumption that heat is an 
indestructible substance consisting of molecules that act upon each other through 
central forces. 

COROLLARY 4.1 (LAPLACE AND POISSON, SUFFICIENCY ONLY, IN PRINCIPLE). Let a 

body of ideal gas undergo an adiabatic process. Then in order thatpVr = const., or, 
equivalently, 6Vf~l = const.; it is necessary and sufficient that Ï = const, on the 
adiabats. 

THEOREM 5 (EMISSION-ABSORPTION ESTIMATE). Let the cycle <g lie in apart of 2d 
over which exist a positive continuous function f and a differentiable function Hf 
such that Q = fHf. Then 

C-(<#) ^ min«f c+(V). 
max^+y 

Apart from cases in which C+(^) = 0 or C~(<£) = 0, equality holds if and only if 
fhas a constant value on <£~ and a constant value on # + , the two constants not neces
sarily being the same. 

II. Carnot's general axiom. 
DEFINITION 11. A cycle is a Carnot cycle if at all of its points where g exists, one 

of the following three alternatives holds : 

e = e\ ö > o, 
g = o, 
e = e- < e+

9 Q < o. 
That is, a Carnot cycle is formed by adiabats connecting two isotherms, and heat is 
absorbed on the isotherm at higher temperature but emitted on that at lower tem
perature. 

REMARK. The assumptions of smoothness and the inequalities included in the 
statements of Axioms I and II ensure also that if the adiabats and isotherms of a 
given Carnot cycle be extended slightly, another Carnot cycle is formed, and that 
a sufficiently small Carnot cycle is subdivided into smaller ones by any interior 
adiabats or isotherms. 

AXIOM III (CARNOT'S GENERAL AXIOM, 1824). If<£ is a Carnot cycle, then 

L(V) = G(6+
9 r , C+(V)). 

Moreover, the function G is of such a kind that if the isotherms 0 = x and 6 = y cut 
<&9 then 

G(x9 y9 z) > 0 if x > y and z > 0, 
G(x9 x9 y) = 0 if x > 0 and y ^ 0, 
G(x, y9 0) = 0 if x > y. 

Ifx and y are fixed, lim2_0+ G(x9 y9 z) = 0. 
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THEOREM 6 (REECH, 1851). U$) = F(0+
9 d~)C+ffî9 andF(x, y)>0ifx>y>0. 

F{x9 x) = 0. 

THEOREM 7 (EFFICIENCY THEOREM). There exist functions g and h such that 

and 

Kx) > 0, g(x) - g(y) >0ifx> y. 

The function h is unique to within a positive constant factor ; when h is determined, g 
is unique to within an additive constant. 

COROLLARY 1.1. Ina Carnot cycle 

c-(v) = ^c+m 

SUBCOROLLARY 7.2 (REECH). In order that C~(&) = C+(^) in all Carnot cycles, it 
is necessary and sufficient that h(0) = const. Equivalently, 

u& = [g(o+) - g(o-)]c+(n 
andg(x) - g(y) > 0 if x > y. 

HISTORICAL REMARK. Though Carnot stated his general axiom in words, he 
never used it except in the special case when G(d+, 0~9 C

+(<g)) = [g(0+) - g(0~)] 
• C+(<£). We may call this case Carnot's special axiom. Reech's subcorollary shows 
that Carnot need not have assumed, as he did, that heat was conserved. He could 
have proved that as a theorem. Also, the common claims that Carnot "knew" the 
"Second Law" without knowing the "First Law" are ridiculous. He knew neither. 
His special axiom contradicts the "First Law", so it cannot be consistent with what 
is called today the "Second Law". 

COROLLARY 7.3. In order that for all Carnot cycles the work done by a given body 
shall be one and the same constant multiple of the net gain of heat, that is, L = 
J(C+ — C~), / being a constant, it is necessary and sufficient that for that body 
g' = Jh'. 

COROLLARY 7.4 (CHARACTERIZATION OF CLASSICAL EFFICIENCY). In order that, 
for a given body, 

F(0+, e~)IJ = 1 - 0-/0+, 

it is necessary and sufficient that g oc h + const., A oc ô. 

THEOREM 8. The heat-loss function h is continuously differentiable at every 0 that 
corresponds to some point in <&. Moreover, h is an integrating factor for AydV + 
KydO. That is, 

d (Ay\ _ JJKy\ _ Q 
Ah ) w\ h )"u-
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THEOREM 9 (BASIC CONSTITUTIVE RESTRICTIONS OF THERMODYNAMICS). The 

function g is continuously differentiable at every 6 that corresponds to a point of$)9 and 

(g'\h)Ay = 3UJ/30. 

The partial derivative d2\n/dVdd exists and is continuous throughout @;d2\n/d02 

exists at all points in @ on the isotherm 0 = 0Q if and only if g"{6^) exists. At such 
points 

r'2 

T ^Ky=\ " fdhu ___ „ dur' 
8 902 g do 

dV+ k9 

k being a function of 6 alone. 

III. Energy, efficiency, and potentials. 

THEOREM 10. Let Axiom II and the formula for dvjjdd given by Theorem 9 be as
sumed, and let g and h be given. Then, whether or not Axiom III holds, in any simply 
connected part of 3 there is a function Ehig(V9 0)9 called the internal pro-energy of 
the body, such that 

(g/h)Av = m + dEhJdV9 (g/h)Kv = dEhJd6. 

Moreover, if È denotes the derivative of Ehig{V9 0) in the process (V9 0)9 then È = 
(g/h)Q - pV. 

COROLLARY 10.1 (CONDITION IMPOSED BY THE PRESSURE FUNCTION ON THE PRO-

ENERGY). With a choice of g such that g > Oandg' > 0, 

as** I2. J-.(™\-
g' ' dO\g) dv * 

THEOREM 11. If^ is a cycle in a simply connected part of@, 

Ufi) = \\Qdt = W^AvdV+Kydd). 

THEOREM 12 (CONVERSE OF THEOREMS 9 AND l).Let Axioms I and II be assumed, 
and suppose that there are functions g and h such as to relate the constitutive functions 
U, Ay9 and Kv in the way asserted by Theorem 9. Then in any simply connected part 
of $) where g' ^ 0 and where 92in/902 exists, Carnot's general axiom holds, and in it 
G has the form asserted by Theorems 6 and!. 

THEOREM 13. 

UP) S tei-tei)^]™ 
If both g/h and h are monotone nondecreasing and if at least one of them is strictly 
increasing, the upper bound is achieved by Carnot cycles and by them only. 

COROLLARY 13.1 (APPLICATION TO THE CALORIC THEORY). If h = 1, as Carnot's 

special axiom asserts, then for any cycle <ß with greatest and least temperatures 0+ 

and0~, respectively, 

file:////Qdt
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fe«?-) - g(o+)]c+m è m ) ^ fe(ö+) - g(o-)]c+w-
The maximum is achieved if and only if<g is a Carnot cycle having 0+ and0~ as the 
temperatures of its isotherms. The minimum is achieved if and only if<g is the reverse 
of such a cycle. 

COROLLARY 13.2 (APPLICATION TO THE CASE WHEN HEAT IS UNIFORMLY INTER

CONVERTIBLE WITH WORK). If Up) = J[C+(<£) - C~{<g)\for every cycle <g9 then 

Up) g J[l - h(0-)/h(0+)]C+W, 

and equality is achieved if and only if<£ is a Carnot cycle. 

DEFINITION 12 (REECH). For a given process of a given body, 

0 = E-gH9 X==E + pV9 Z = X-gH. 

The functions 09 X9 and Z are the free energy9 the enthalpy9 and the free enthalpy. 
DEFINITION 13. Let g and h be known. Then a function is a thermodynamic 

potential of a given body if it determines the three constitutive functions of that 
body: UT, Ay9 and Kv. 

THEOREM 14 (REECH). 

- 0 = vj(y9 0)V + g'(0)H(V9 0)d9 

ux = - d0/dV9 g'H = - d0/dd9 

A _ h d*0 v . 3 (1 d0\ 
Av - " Y WW' Kv - " hW\Y W 

7%M5 0 is a thermodynamic potential. If0 is a function of V and H, then E may be 
expressed as a function of V and H and is a thermodynamic potential. If V and 0 are 
functions of p and H, then X may be expressed as a function of p and H and is a 
thermodynamic potential. If V is a function of0 andp, then Z may be expressed as a 
function of0 andp and is a thermodynamic potential. 

IV. Universal efficiency. 

AXIOM IV (UNIVERSALITY). The function G in Axiom III is universal, not constitu
tive. 

That is, all bodies have the same efficiency in all the Carnot cycles possible for 
them with given temperatures 0+ and 0~. 

AXIOM V (KEY EXAMPLE). Some ideal gas has constant specific heats. 

HISTORICAL REMARK. Although this axiom may seem trivial to the modern 
student, who is accustomed to taking it for granted, it is the key to classical thermo
dynamics. The caloric theory contradicts it except in the trivial case when T = 1. The 
reader may see this for himself by comparing Corollary 2.2, which implies for the 
caloric theory that dAy/dO = dKv/dV9 with Theorem 3 after specialization to ideal 
gases. The pioneers' cry for new experiments so as to determine Carnot's function 
g was misdirected. Theorem 4 shows that the squared speed of sound, conceived as 
an adiabatic undulation, cannot be proportional to but greater than the isothermal 
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squared speed unless ï = const. > 1. In Carnot's thermodynamics this condition 
forbids Kp and Kv to be constants and makes both be decreasing functions of 
temperature. Carnot's thermodynamics is inconsistent with simple facts of ex
periment already well known when it was published. That the inconsistency re
mained unnoticed until 1973 results from Carnot's reluctance to apply clean 
mathematical reasoning, a reluctance abundantly reflected by every textbook and 
every historical study of thermodynamics that I have seen. 

In forming classical thermodynamics it was not experiment that wanted. It was 
mathematics. 

THEOREM 15 (UNIVERSAL EFFICIENCY). The functions g and h have the following 
universal forms : 

g oc h H- const., h oc 0. 

COROLLARY 15.1 (THE "FIRST LAW OF THERMODYNAMICS"; EFFICIENCY OF CAR

NOT CYCLES). Every body converts heat uniformly into work in any cycle: L = JC\ 
each body has an internal energy E(V, 0) such that È = g — pV; also 

' * - » - « ! W ( T ) - # - " ' - a r ' 
for any body undergoing a Carnot cycle C~/C+ = 0~/0+; the efficiency of a body un
dergoing a Carnot cycle is given by 

F(O+
90-)/J= 1 - 0 ~ / 0 + ; 

if 0" and 0+ are the least and greatest temperatures of a cycle that is not a Carnot 
cycle, then the efficiency ofthat cycle is less than 1 — 0~/0+. 

COROLLARY 15.2 (THE "SECOND LAW OF THERMODYNAMICS"). There exists an 
entropy Hd(V9 0) such that 

Av = 0dHd/dV9 Kv = 0dHd/d0 

Moreover, 

Epilogue. Reech's axioms refer to Carnot cycles. Thus in the thermodynamics 
based upon them, the theory of heat engines is not an application of general prin
ciples but the source of them. The traditional "First Law" and "Second Law" of 
thermodynamics for "reversible" processes in fluid bodies appear here as corol
laries of theorems on heat engines. Of course, also my proof that a Carnot cycle is 
more efficient than any other with the same extremes of temperature is mathemati
cal. The common circular and declaratory appeal to the absurdity of creating 
"something" from "nothing", though it has indeed discouraged many mathema
ticians and engineers so much as to bring them to contemn classical thermody
namics, by no means implies any defect inherent in that theory. 
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Thermodynamics, like mechanics and electromagnetism, is a rational science. 
As such, it may be taught to beginners, provided they master the elements of differ
ential and integral calculus. They will like it better than their teachers, who may be 
loath to give up the profound metaphysical taboos of the tribes which now possess 
the field. Such beginners, after they have learnt without starting from something to 
unlearn, may see lynx-eyed straight on into practical applications, into research 
upon the modern rational thermodynamics of deformation and reaction, into the 
history of the mathematical sciences. 

JOHNS HOPKINS UNIVERSITY 

BALTIMORE, MARYLAND 21218, U.S.A. 
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