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Organization of the Congress 

The recommendation to hold the 1978 International Congress of Mathematicians 
in Helsinki was made by the Site Committee of the International Mathematical 
Union during the Vancouver Congress in August 1974. Final decision was taken a 
few days later when the Congress at its closing session accepted the invitation to 
Helsinki, which was presented by Professor Rolf Nevanlinna on behalf of the Finnish 
National Committee for Mathematics. 

Before Finland offered to be host for the ICM 78, the support of the Finnish 
Government had been secured. The Congress was particularly honoured by the fact 
that Dr. Urho Kekkonen, President of Finland, consented to be its Patron. 

The scientific program was the responsibility of the International Mathematical 
Union through the Consultative Committee, whose members were Professors 
A. Borei (chairman), J. F. Adams, S. Chern, Y. Kawada, O. Lehto, I. S. Louhivaara, 
B. Malgrange, S. M. Nikolskii and C. Olech. After preparatory work which took 
about a year, the Committee decided in June 1976 to divide the mathematical program 
into 19 sections and appointed the cores of the panels for these sections. The panels 
completed themselves and submitted their suggestions, whereupon the Consultative 
Committee in October 1977 chose 17 mathematicians to give one-hour plenary 
addresses and 121 to give 45-minute addresses in sections. Two more names were 
added later. Of the 136 who accepted the invitation, 119 were present at the Congress. 

The Fields Medals Committee, consisting of Professors D. Montgomery (chairman 
ex officio), L. Carleson, M. Eichler, I. M. James, J. Moser, J. V. Prohorov, B. Szöke-
falvi-Nagy and J. Tits, arrived at its decisions in early 1978. 

Other preparations of the Congress were in the hands of the Finnish Organizing 
Committee. Its chairman was Olli Lehto who took direct responsibility of all 
arrangements. With time, the number of mathematicians involved in the organization 
increased, and the Committee split into several project groups. In these a great 
amount of work was performed by Heikki Apiola, Elja Arjas, Heikki Bonsdorff, 
Timo Erkama, Heikki Haario, Matti Lehtinen, Olli Lokki, Ilppo Simo Louhivaara, 
Olli Martio, Marjatta Näätänen, Rolf Nevanlinna, Seppo Rickman, Arto Salomaa, 
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Jukka Sarvas, Onerva Savolainen, and others. In all, about 100 Finnish mathema
ticians gave some assistance to the Congress. A lot of voluntary work was also done 
by the staff of the University of Helsinki. A small Congress Bureau with salaried staff 
was set up in late 1975. It expanded considerably during the half year preceding 
the Congress and assumed then a rapidly increasing share of the arrangements. 
A particularly important role was played by Leena Kahlas and Tuulikki Mäkeläinen, 
both engaged from the very beginning. Accommodation was handled by Area 
Travel Agency Ltd., which saved the organizers a great deal of work. 

The Congress had several sources of revenue: (1) annual grants in 1974—78 from 
the Ministry of Education of Finland; (2) a subvention from the International 
Mathematical Union; (3) donations, both in the form of direct grants or of facilities 
placed at its disposal without charge (a list of donors is given on p. 14); 
(4) membership fees, which were $60 for ordinary members registered before 15 May 
1978, $70 after that, and $35 for accompanying members. 

The International Mathematical Union gave travel grants to young mathematicians 
from developing countries or from countries with currency difficulties. The Congress 
waived their fees and, thanks to aid from the Finnish Government, was able to give 
them free accommodation. 

A short preliminary announcement about the Helsinki Congress was sent out in 
the autumn of 1976 to all countries of the world where some mathematical organi
zation could be located. The First Announcement was dispatched in July 1977 to 
these same addresses with the request that copies of it be further distributed among 
the mathematical community of the respective country. Those mathematicians 
wishing to receive the Second Announcement were asked to return an attached form. 
The Second Announcement contained detailed information about the Congress, in
structions about short communications and poster sessions, and the registration form. 
Its mailing began in November 1977, and it was sent in all in 7000 copies, mostly to 
individual addresses. Registration started immediately in November, reached its 
peak in May 1978 and continued even during the Congress. The Third Announcement, 
which contained a list and a rough schedule of invited lectures, was prepared as 
soon as the organizers had received answers from all invited speakers. Its mailing to 
registered members started in April 1978. 

There were 3038 registered ordinary members and over 900 accompanying members. 
Of these all were not present; on the other hand, lectures and seminars were also 
attended by a number of non-registered mathematicians. 

Mathematical activities of the Congress took place in the centre of Helsinki. 
Reports on the work of the Fields medallists and the plenary one-hour addresses 
were given in Finlandia Hall, where the opening and the closing sessions were also 
held. All other mathematical events took place at the University of Helsinki, which 
also housed the Congress Bureau. 

In addition to the invited lectures, about 500 ten-minute communications were 
given and 40 mathematicians spoke about their work in poster sessions. Abstracts of 
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these were published in a book distributed to members at registration in Helsinki. 
Unofficial mathematical activities also included a three-day symposium organized 
by the International Commission on Mathematical Instruction, a number of 
spontaneous seminars, and special sessions and films in two evenings. A book 
exhibition organized by Suomalainen Kirjakauppa was open throughout the Congress. 

The City of Helsinki showed hospitality to all participants. Since the City Hall 
was not big enough for all to attend at the same time, two receptions were held, in 
the evenings of August 16 and 17. 

The Organizing Committee arranged various social events. An open-air gathering 
featuring Finnish folklore took place on the island of Seurasaari on August 19. It 
was attended by well over 3000 people. On Sunday, August 20, the members were 
able to choose between two excursions. One was a four-hour cruise in the Gulf of 
Finland, the other a twelve-hour visit to Turku, the old capital of Finland. Both 
events were attended by about 1500 persons. Two passenger ships were needed for 
the cruise and 36 buses for the trip to Turku. Two piano concerts were also arranged. 
One by Minna Pöllänen was in Temppeliaukio Church on August 17, the other by 
Andrei Gavrilov in Finlandia Hall on August 22. 



Opening Ceremonies 

The opening ceremonies of the Helsinki Congress took place in Finlandia Hall on 
August 15, 1978, at 9.30. After a musical performance by the Helsinki Philharmonic 
Orchestra, Professor Deane Montgomery, President of the International Mathe
matical Union, opened the proceedings by proposing that Professor Olli Lehto be 
elected President of the Congress by acclamation. Following his election, Professor 
Lehto gave his presidential address to the Congress. 

It is my pleasant duty to declare the 1978 International Congress of Mathematicians opened. 
This is a great moment for the Finnish mathematical community on whose behalf I would like to 
cordially welcome all our foreign guests. This is a gathering of one huge mathematical family and not 
of delegations or representatives of countries, but just to illustrate its world-wide character, I mention 
the fact that there are participants here from 83 different countries. 

Organizing a meeting of this magnitude would not have been possible without the support of the 
Finnish government. We greatly appreciate the fact that the President of Finland, Dr. Urho Kekkonen 
accepted to be the patron of the Congress, and only regret that, owing to his absence from Finland 
at the moment, he could not personally attend these opening ceremonies as he had intended to do. 

At a very early stage, even before the IMU, the International Mathematical Union, had made the 
final decision in favour of Finland, the Ministry of Education explicitly promised to back the Con
gress in case it was to be held here. Its financial support was then indispensable throughout the 
early period of preparations. I have the pleasure to extend our thanks to Mr. Jaakko Numminen, 
Secretary General of the Ministry of Education, who in the absence of the Minister represents the 
Finnish Government here. 

The Congress will enjoy the hospitality of the City of Helsinki. The City has the reputation of 
being friendly to scientific conferences, but I guess that this time it took more than the customary 
friendliness when the size of our Congress was revealed. I am pleased to thank Mr. Teuvo Aura, the 
Lord Mayor of Helsinki, on behalf of the Congress. 

We would scarcely have ventured to take the responsibility for an ICM without hints from the 
IMU that Finland would not be a disagreeable choice to its Site Committee. This we interpreted as 
a kind of appreciation of the mathematical research carried out in this country. Now Finland has 
the privilege of possessing, since well over half a century, an unparalleled mathematical ambassador: 
I am speaking of course of Professor Rolf Nevanlinna. I propose that Professor Nevanlinna be 
elected Honorary President of this Congress. 

The proposal was warmly accepted by the Congress, and Professor Rolf Nevanlinna 
was elected Honorary President by acclamation. 
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Professor Nevanlinna in his opening address of the Stockholm Congress in 1962 and Professor 
Coxeter four years ago in Vancouver both pointed out the unique role of the ICM's as the only 
meetings where surveys are presented over the whole range of mathematics. They emphasized the 
great importance of this tendency for unification at a time when ever-expanding research threatens 
to lead our science to a dangerous ramification. These views are in full agreement with the instruc
tions given by the IMU to the Consultative Committee for planning and composing the mathematical 
program of the ICM's. 

A careful analysis of the reasons for holding ICM's not only serves as a motivation for the fairly 
difficult and expensive organization, It is also required if we wish to preserve the present character 
of these congresses. The mathematicians form a big active group, and it is only natural to try to 
associate all sorts of activities with a gathering as important as an ICM. No matter how important 
these activities are as such, and some clearly are, like promoting mathematics in developing countries 
and various questions related to the teaching of mathematics, at an ICM they can only play a 
secondary role, subjected to the official mathematical program. 

Since the Stockholm Congress 1962, the official mathematical program results from international 
collaboration governed by detailed rules issued by the IMU. Well over a hundred of the world's 
leading mathematicians are involved in the work, the panels make proposals about invited speakers, 
and the Consultative Committee creates the final list. In my opinion, this international cooperation, 
which goes on for over two years in each four-year period, is very important for our science as 
such, and I cannot see any essentially better procedure for a neutral and authoritative appraisal of 
current mathematical research. 

This time the Consultative Committee had seven members appointed by the IMU, namely 
Professor Borei as chairman and Professors Adams, Chern, Kawada, Malgrange, Nikolskii and 
Olech. Besides, there were two members from the host country. The committee eventually reached 
almost all its decisions unanimously. Its foreign members also went far beyond their liabilities in 
giving unobtrusively many valuable pieces of advice to the Organizing Committee. This applies in 
particular to its chairman, Professor Borei. May I propose a vote of thanks to the Consultative 
Committee. 

The Organizing Committee spent about one year in trying to solve as best it could the not quite 
trivial problem of informing all mathematicians of the world about the Congress, That the final 
result was quite satisfactory was largely due to the help obtained from many institutions and indi
viduals. The American Mathematical Society widely advertised the Congress, and more locally, the 
same was done by several other mathematical societies and national committees. 

We were particularly lucky in that the newly established African Mathematical Union, under the 
leadership of its President, Professor Hogbe-Nlend, practically eliminated our problems with Africa. 
In Latin America, good results were due to the personal efforts of Professor D'Ambrosio. Much to 
our pleasure, there are members in this Congress from a higher number of countries than ever 
before. 

The work of the Organizing Committee has been carried out at the University of Helsinki, where 
also a considerable part of the activities of the Congress will take place. The University has given 
assistance in so many direct and indirect ways that I am certainly unable to count them all, and the 
palpably friendly attitude of the administration has made the period of preparations very pleasant 
to the organizers. I would like to thank the Rector of the University, Professor Ernst Palmén, and 
the whole central administration. 

We had no high hopes when we started fund-raising for the Congress. But in spite of hard limes 
and the fact that after its divorce from computer science, mathematics has virtually no direct contacts 
here with industry, the end result is very good. The long list of donors is printed in the Program Book, 
and there is no exaggeration in the text which says that their contributions have been essential for 
the Congress. I hope this generosity means that society at large still esteems the intrinsic value of 
mathematics and understands that useful applications are possible only if backed and connected by 
theories on a more abstract level. 
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After this, Mr. Jaakko Nummiüeö, Secretary General of the Ministry of Education, 
representing the Fmtiish Government, Mi4. Teuvo Aura, thé leffd Mayor of He&iffki, 
and Professor Ernst Palmén, Rector of the University of Helsinki, gave short addresses 
welcoming members of the Congress to Finland. 

Professor Montgomery, chairman of the Fields Medals Committee, then presented 
the following report. 

The medals presented at each International Congress of Mathematicians were first proposed by 
Professor J. C. Fields, who was President of the Congress held in Toronto in 1924. The fund for the 
medals was obtained from funds remaining after the financing of the Toronto Congress. The proposal 
was accepted in 1932 and the first two medals were given in 1936. Each medal carries with it a cash 
prize of 1500 Canadian dollars. 

As usual, the Executive Committee of the International Union appointed a committee to select 
the medalists for this Congress. The Committee consisted of Professors L. Carleson, M. Eichler, 
I. James, J. Moser, J. V. Prohorov, B. Szökefalvi-Nagy, J. Tits, and myself as Chairman. The Com
mittee decided to follow the well-established tradition of considering only people of age 40 or 
under. Even with this limitation, the list of those seriously considered numbered several dozen. 

After much deliberation and consultation and after considering advice from many outside the 
Committee, the Committee has selected four individuals for the award. They are, in alphabetical 
order, P. Deligne, C. Fefferman, G. A. Margulis, D. Quillen. I offer them our warm congratulations. 

Information has been received that, unfortunately, G. A. Margulis is unable to be present, so his 
award will be presented to him later. I now ask Professor Rolf Nevanlinna, Honorary President of 
the Congress, to come forward to give the medals to the other three. 

When Professors Deligne, Fefferman and Quillen had received the prizes from 
Professor Nevanlinna, it was announced that after the opening session, Professor 
N. Katz would speak on the work of Deligne, Professor L. Carleson on Fefferman, 
Professor J. Tits on Margulis and Professor I. M. James on Quillen. 

The opening session ended with the Helsinki Philharmonic Orchestra playing 
Finlandia by Jean Sibelius, and the National Anthem. 



Closing Ceremonies 

The closing session of the Helsinki Congress took place in Finlandia Hall on August 
23, 1978, at 15.00. Professor J. W. S. Cassels, Vice-President of the International 
Mathematical Union, presented the following report: 

It is traditional that the General Assembly of the International Mathematical Union should be 
held immediately before the Congress and that the President of the Union should report briefly on 
it at this closing session. Unfortunately Professor Montgomery is unable to be here and so I have 
been asked to take his place. 

First, I must report the names of the members of the new Executive Committee who were elected 
to hold office for four years from 1 January 1979. They are: 

President Professor L. Carleson 
Vice-Presidents Professor M. Nagata 

Professor J. V. Prohorov 
Secretary Professor J. L. Lions 
Members-at-large Professor E. Bombieri 

Professor J. W. S. Cassels 
Professor M. Kneser 
Professor O. Lehto 
Professor C. Olech 

In addition, Professor D. Montgomery, who becomes Past-President, will remain a member, 
though without a vote. 

I can give only a brief informal report on the work of the General Assembly. A fuller account 
will appear in the Bulletin of the IMU which is sent to all National Adhering Organizations. The 
General Assembly had before it the report of the outgoing Executive Committee. Amongst other 
things, they listed the 19 Symposia and Conferences which have been co-sponsored by the Union 
during the past four years. The direct financial aid which the Union gives is necessarily small but it 
also helps with advice on the scientific programme and in other ways: and on occasion the moral 
support is also useful. Two of the meetings were jointly sponsored with the Physics Union, IUPAP, 
and two with the Mechanics Union, IUTAM. 

A problem of continued concern to the Union is that some mathematicians are prevented from 
attending meetings sponsored by the Union. This can happen in two ways. The first is that mathe
maticians may be refused entry by the country in which the meeting is held : this has caused difficulties 
in the past to our Union but is not, we hope, now a great problem. The other way in which mathe
maticians may be prevented from attending is that their own country may refuse permission to 
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attend. This is a continuing problem, as the present Congress has again demonstrated. These problems 
are not, of course, peculiar to our own Union but are common to the scientific community and have 
greatly occupied the attention and energies of ICSU (International Council of Scientific Unions). 
The General Assembly endorsed the stand of ICSU on this important matter and requested the 
incoming President to report on the situation to the next General Assembly. 

Another problem which our Union shares with most of the Unions of the ICSU family is that the 
Peoples' Republic of China is not a member. There are difficult issues here, to which ICSU and its 
Unions have devoted much attention and which I shall not go into now. It is fair to say that there is 
a general wish for the Peoples' Republic of China to become a member, but only if this can happen 
in a way which does not impair the principles on which our Union is based. The General Assembly 
urged the new Executive Committee to take positive steps to this end. 

The General Assembly also considered the organization of our Congresses and, in particular, 
the machinery for the selection of speakers. The organization of a Congress, other than its scientific 
programme, is in the hands of the Organizing Committee, which is appointed by the host country 
— and, in parenthesis, may I say how much we admire the excellent job the Finns have done this 
time. The selection of speakers is, however, in the hands of the so-called Consultative Committee, 
which is appointed jointly by the Executive of the Union and the Organizing Committee, with a 
chairman appointed by the President of the Union. This Committee seeks the advice of a large 
number of subject panels with a wide international membership. Some dissatisfaction was expressed 
by delegations at the working of this system, but many declared themselves happy with it. It was 
agreed that National Committees should be asked to make suggestions to the Executive Committee 
as to how it might be yet further improved and that the Executive should report if it felt that changes 
wprp Hesirahlp 

The General Assembly paid much attention to the fostering of mathematics in developing countries. 
In the first place, I should report that the Executive Committee, following the precedent for Vancouver 
set up a fund to give travel grants to well-qualified young mathematicians from developing countries, 
and also from countries where there are severe monetary restrictions, so as to enable them to attend 
this Congress. The money for this came mainly from the Union's own resources but we also received 
subventions from UNESCO, COSTED and the computer firm ICL, for which we are most grateful. 
Enquiries were made on a wide basis and nearly 50 young mathematicians were helped in this way : 
there were more deserving cases where the Committee administering the fund would have wished 
to help had more resources been available. There was one very welcome innovation. The Organizing 
Committee waived the congress fee for the grantees and together with the Government of Finland 
provided accommodation for them at no cost. The General Assembly welcomed this generous 
action and agreed to commend it to the Organizing Committees of future Congresses. 

In this connection I should like also to mention the Union's Fellowships which were established 
some time ago to assist mathematicians from developing countries to work at institutions elsewhere. 
The Italian government made a generous grant which was announced to the General Assembly four 
years ago at Vancouver. Disappointingly little use has been made of these Fellowships. I must 
hasten to add that funds are limited and so all proposals have to be submitted to the most rigorous 
examination. 

This is the appropriate place to mention the Commission on Exchange. It was initially set up to 
foster visits in general by mathematicians from one country to another. However in many cases 
existing channels work well without the intervention of the Union and so the emphasis has moved 
towards visits to and from developing countries. This has been in particular the case in the last four 
years under the energetic chairmanship of Professor Coleman. Particularly noteworthy is that the 
Commission has obtained generous support from the Canadian Government for the All-African 
Mathematical Conference which was held at Rabat in 1976, when the African Mathematical Union 
was founded, and also for a forthcoming conference on pre-university mathematics in Africa. 

So much for what has happened so far in relation with development: now for the future. The 
General Assembly decided to recognize the importance of mathematics for development by replacing 
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the old Commission on Exchange with a new Commission with new terms of reference. The new 
Commission will be called the Commission on Development and Exchange and the new chairman 
will be Professor Hogbe-Nlend. Further, it was decided to make a special appeal for contributions 
to finance development activities. It is hoped that member countries will subscribe generously and 
several delegations were already in a position to make promises of support. 

Last but not least I come to our other Commission: ICMI (International Commission on 
Mathematical Instruction) which has, in fact, a history antedating that of our Union. Under the able 
guidance of its chairman, Professor Iyanaga, and its secretary, Professor Kawada, it has continued 
and expanded its valuable role. Its activities are recorded in some detail in ICMI's own Bulletin and 
in a more summary form in the Bulletin of I^U. They are too varied to be described here: it is 
sufficient to remind you of the successful conference at Karlsruhe two years ago. The new chairman 
will be Professor Whitney. 

In conclusion, I am sure that you will join me in wishing the new Executive Committee and the 
new Commissions all success in the coming four years. 

Professor O. Lehto, as a member of the Committee to select the site for the 1982 
Congress, then invited Professor K. Urbanik to speak on behalf of the Polish National 
Committee for Mathematics. 

Professor Urbanik spoke as follows : 

On behalf of the Polish National Committee of Mathematics I have the honour to invite you to 
the next International Congress of Mathematicians in Warsaw. 

Poland, the home country of Banach, is eager to receive the world-wide mathematical community. 
For a long time Polish mathematicians have carried deep in their hearts the desire to organize an 
international congress and we are very happy that we shall now have this opportunity. 

We are all well aware that it is going to be a difficult task to organize such a big meeting, the 
more so as the memory of this splendid Helsinki congress will still be fresh. However, taking into 
account the help of the International Mathematical Union and the promised support of the Polish 
Academy of Sciences, we feel optimistic. 

Hoping that you will accept our invitation, I welcome all of you to the next International Congress 
of Mathematicians to be held in August 1982 in Warsaw. 

The invitation was accepted by acclamation. 
Speaking on behalf of the members of the Congress, Professors K. Chandra-

sekharan and B. Szökefalvi-Nagy expressed their thanks to the Finnish hosts. 
In his reply, Professor Lehto thanked the members of the Congress, particularly 

all speakers and the 140 chairmen of the various sessions. He passed on the words 
of thanks of Professors Chandrasekharan and Szökefalvi-Nagy to the Finnish 
mathematicians who had participated in the arrangements and to the members of 
the Congress Bureau, and closed his address as follows : 

Our organizational task was greatly facilitated by the wealth of advice and material we received 
from the organizers of the Vancouver Congress. We in turn are more than willing to pass our ex
perience, if it is requested, to our Polish colleagues. I wish best success to the ICM 82, and declare 
the 1978 International Congress of Mathematicians closed. 
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Invited Addresses 

Most of the speakers who accepted the invitation gave their addresses in the 
Congress themselves and submitted manuscripts for printing. If this was not the case, 
a number (1), (2), (3) or (4) appears after the speaker's name in the list below. These 
numbers have the following meaning: 

(1) The speaker did not attend the Congress. His manuscript was read there, and 
it is printed in the Proceedings. 

(2) The speaker did not attend the Congress. His lecture was cancelled, but his 
manuscript is printed in the Proceedings. 

(3) The speaker delivered the address in the Congress but did not submit a 
manuscript for the Proceedings. 

(4) The speaker did not attend the Congress and did not send a manuscript. 

Invited one-hour plenary addresses 

L. V. AHLFORS: Quasiconformal mappings, TeichmüUer spaces, and Kleinian 
groups 71 

A. P. CALDERóNI Commutators, singular integrals on Lipschitz curves and 
applications 85 

A. CONNES: von Neumann algebras 97 
R. JDOBRUSHIN (4): Classical statistical mechanics as a branch of probability 

theory 
R. D. EDWARDS: The topology of manifolds and cell-like maps I l l 
D. GORENSTEIN: The classification of finite simple groups 129 
M. KASHIWARA: Micro-local analysis 139 
N. N. KRASOVSKII (2): Control under incomplete information and differential 

games 151 
R. P. LANGLANDS: L-functipns and aytomorphic representations 165 
Jij. I. MANIN (I)- Modular forms md number theory 177 
$. P. NOVIKOV: Linear operators and integrable Hamjltonian systems 187 
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R. PENROSE: The complex geometry of the natural world 189 
W. SCHMID: Representations of semisimple Lie groups 195 
A. N. SHIRYAEV: Absolute continuity and singularity of probability measures 

in functional spaces 209 
W. P. THURSTON (3): Geometry and topology in dimension three 
A. WEIL: History of mathematics: why and how 227 
S.-T. YAU: The role of partial differential equations in differential geometry 237 

Invited 45-minute addresses in sections 

Section 1. Mathematical logic and foundations of mathematics 

J. H. CONWAY (3): Arithmetical operations on transfinite numbers 

L. HARRINGTON (3): Definability theory 
A. MACINTYRE: Nonstandard number theory 253 
T. C. MaKaHHH : ypaBHemaa: B CBOôOAHOH nojiyrpynne 263 
D. A. MARTIN: Infinite games 269 
R. I. SOARE: Recursive enumerability 275 

Section 2. Algebra 

M. ASCHBACHER: A survey of the classification program for finite simple groups 
of even characteristic 281 

K. S. BROWN: Cohomology of infinite groups 285 
B. FISCHER (3): Sporadische endliche einfache Gruppen 
M. HöCHSTER: Cohen-Macaulay rings and modules 291 
V. G. KAC: Highest weight representations of infinite-dimensional Lie algebras 299 
W. VAN DER KALLEN: Generators and relations in algebraic Ä>theory 305 
V. P. PLATONOV: Algebraic groups and reduced i^-theory 311 
A. V. ROITER: Matrix problems , 319 
A. A. CycjiHH: npo6jieMa coiepameHHfl flJia npoeKTHBHwx MOAyjieË H 

6jiH3KHe Bonpocti 323 
G. C. WRAITH: Intuitionistic algebra: some recent developments in topos theory 331 

Section 3. Number theory 

G. V. CHUDNOVSKY: Algebraic independence of values of exponential and 
elliptic functions 339 

J. COATES: The arithmetic of elliptic curves with complex multiplication... 351 
H. IWANIEC: Sieve methods < 357 
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The Work of Pierre Deligne 

N. M. Katz 

My purpose here is to convey to you some idea of the scope and the depth of the 
work for which we are today honoring Pierre Deligne with the Fields Medal. 
Deligne's work centers around the remarkable relations, first envisioned by Weil, 
which exist between the cohomological structure of algebraic varieties over the 
complex numbers, and the diophantine structure of algebraic varieties over finite 
fields. 

I. The Weil conjectures. Let us first consider an algebraic variety Y over a finite 
field Fq. For each integer n^l there is a unique field extension Fqil of degree 
n over Fq. We denote by Y(Fqn) the (finite) set of points of Y with coordinates 
in Fqli, and by # Y(Fqn) the cardinality of this set. The zeta function of Y over 
Fg is the formal series defined by 

Z(Y/Fq, D = exp f 2 v * Y (FÀ • 

Knowledge of the zeta function is equivalent to knowledge of the numbers { # Y(Fqn)}. 
After the pioneering work of E. Artin, W. K. Schmid, H. Hasse, M. Deuring and 

A. Weil on the zeta functions of curves and abelian varieties, Weil in 1949 made 
the following conjectures about the zeta function of a projective non-singular 
w-dimensional variety Y over a finite field ¥q. 

(1) The zeta function is a rational function of T, i.e. it lies in Q(T). 
(2) There exists a factorization of the zeta function as an alternating product 

of polynomials P0(T)9..., P2H(T)9 

P1(T)P>(T)...P*-1(T) 
Z(Y/Fq,T)=r 

P0(T)P2(T)...P2tl(T) 
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of the form 

Pi(T)= nV-aijT), 

such that the map oL*^qnloL carries the a u bijectively to the a2n-i,j-
(3) The polynomials Pt(T) lie in Z[T]9 and their reciprocal roots <xitj are 

algebraic integers which, together with all their conjugates, satisfy 

This is the "Riemann Hypothesis" for varieties over finite fields. 
(4) If Y is the "reduction mod/?" of a projective smooth variety F in charac

teristic zero, then the degree bt of Pf is the ith Betti number of Y as complex 
manifold. 

Underlying these conjectures was Weil's belief in the existence of a "cohomology 
theory", with a coefficient field of characteristic zero, for varieties over finite fields. 
In this theory, the polynomial Pi(T) would be the "inverse" characteristic poly
nomial det (1 — TF) of the "Frobenius endomorphism" acting on H\ Conjectures 
(1) and (2) would then follow from a Lefschetz trace formula for F and its iterates, 
and from a suitable form of Poincaré duality. Conjecture (4) would follow if the 
cohomology of the "reduction mod/?" Y ot a projective smooth variety Ï in 
characteristic zero were (essentially) equal to the topological cohomology of Y as 
complex manifold. 

The next years saw the systematic introduction of sheaf-theoretic and cohomolo-
gical methods into algebraic geometry. By the mid-1960s, M. Artin and A. Grothen-
dieck had developed the étale cohomology theory of arbitrary schemes, along the 
lines foreseen in Grothendieck's 1958 Edinburgh address. For each prime number /, 
this gives a cohomology theory, '7-adic cohomology", with coefficients in the field 
Ql of /-adic numbers, which is adequate to give parts (1), (2) and (4) of the Weil 
conjectures for projective smooth varieties over finite fields of characteristic p^l. 
In their theory, the cohomology of the "reduction mod /?" Y of a projective smooth 
Y in characteristic zero is just the singular cohomology, with coefficients in Qh 

of "Y as complex manifold". In the case of curves and abelian varieties, these 
constructions agree with those already given by Weil. 

For a given projective smooth Y/Fq, we now have, for each l^p, a factoriza
tion of the zeta function as an alternating product of /-adic polynomials Pi§l(T). 
There is, however, no assurance that the Pitl have coefficients in Q rather than 
in Ql9 much less that their reciprocal zeros are algebraic integers with the predicted 
absolute values. Of course, if one could prove directly that the reciprocal zeros of 
Pitl were algebraic integers which, together with all their conjugates, had the correct 
absolute value qi/2, then the polynomials Pu could be described intrinsically 
in terms of the zeros and poles of the zeta function itself, and hence would have 
rational coefficients independent of /. But how could one even introduce archi-
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medean considerations into the /-adic theory without first knowing the rationality 
of the cofficients of the Pitl ? 

Let me now try to indicate the brilliant synthesis of ideas involved in Deligne's 
solution of these problems. 

Initially, he tries to prove à priori that the Pul have rational coefficients inde
pendent of /. The idea is to proceed by induction on the dimension of Y. If Y is 
77-dimensional, then Poincaré duality and the fact that the zeta function is itself 
rational and independent of / reduce us to treating the polynomials PUi for 
i<77 —1. Now let Z be a smooth hyperplane section of Y. The "weak" Lefschetz 
theorem assures us that Y and Z have the same Pul for i^n—2, and that the 
Pn-jt1 for Y divides that for Z. This alone is enough to show inductively that the 
reciprocal zeroes of the Pitl are algebraic integers. 

In order to go further, and show that the Pitl actually have rational coefficients 
independent of /, the idea is to show that PH_lfI for Y is a generalized "greatest 
common divisor" of the P„-u of all possible smooth hyperplane sections. Un
fortunately, this "g.c.d." argument, which itself depends on the full strength of the 
monodromy theory of Lefschetz pencils, works only when Y satisfies the "hard" 
Lefschetz theorem (existence of the "primitive decomposition" on its cohomology), 
otherwise the "g.c.d." will be too big at some stage of the induction. But Deligne will 
later prove the hard Lefschetz theorem in arbitrary characteristic as a consequence 
of the Weil conjectures. What is to be done? 

With characteristic daring, Deligne simply ignores the preliminary problem of 
establishing independence of /. Fixing one I^p, he turns to a direct attack on the 
absolute values of the algebraic integers which occur as the reciprocal roots of the Pitl. 

Consider a smooth projective even dimensional Y, and a Lefschetz pencil Zt of 
hyperplane sections, "fibering" Y over the /-line. Factor the P„-lti of each 
Zt as the product of the "g.c.d." of all of them, and of the "variable" part. Deligne 
shows à priori that these "variable" parts are each polynomials with rational 
coefficients whose reciprocal zeroes all satisfy the Riemann Hypothesis 

K - l , variable | = ^ ( " " l ) / 2 . 

Deligne's proof of this is simply spectacular; no other word will do. He first uses 
a theorem of Kazdan-Margoulis, according to which the monodromy group of 
a Lefschetz pencil of odd fibre dimension is "as big as possible", to establish the 
rationality of the coefficients of the "variable" parts. Then he considers the L-function 
over the /-line whose Euler factors are the reciprocals of the "variable" parts. This 
L-function has rational Dirichlet coefficients. Deligne realizes that Rankin's method 
of estimating Ramanujan's function T(W) by "squaring" might be applied in this 
context to estimate the reciprocal poles of the individual Euler factors (i.e. the 
reciprocal zeroes of the "variable" parts!). The problem is to control the poles 
of all the L-functions obtained from this one by passing to even tensor powers 
("squaring"). Deligne gains this control by ingeniously combining Grothendieck's 
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cohomological theory of such L-functions, the Kazdan-Margoulis theorem, and the 
classical invariant theory of the symplectic group! 

Once he has this à priori estimate for the variable parts of the P„-ltl of the 
hyperplane sections Z,, a Leray spectral sequence argument shows that in the 
P„tl for Y itself, all the reciprocal zeroes are algebraic integers which, together 
with all their conjugates, satisfy the apparently too weak estimate 

Kj\ < 0(n+1)/2 (instead of qn% 

But this estimate is valid for Y of any even dimension n. The actual Riemann 
hypothesis for any projective smooth variety X follows by applying this estimate 
to all the even cartesian powers of X. 

II. Consequences for number theory. That there are many spectacular consequences 
for number theory comes as no surprise. Let us indicate a few of them. 

(1) Estimation of # Y(Fq) when Y has a "simple" cohomological structure. 
For example, if Y is a smooth «-dimensional hypersurface of degree d, we get 

i*rW-o+,+...+rti -= f - ^ r « - y , 
(2) Estimates for exponential sums in several variables, e,g 
(a) if / is a polynomial over Fp in n variables of degree d prime to /?, whose 

part of highest degree defines a nonsingular projective hypersurface, then 

2 expßjp/fe,..., xn))\ ^ (rf-l)V/2; 
*iEFp

 v p 

(b) "multiple Kloosterman sums": 

xt£F* V P \ xl~-xn)J\ 

(3) The Ramanujan-Petersson conjecture. Already in 1968 Deligne had combined 
techniques of /-adic cohomology and the arithmetic moduli of elliptic curves with 
earlier ideas of Kuga, Sato, Shimura and Ihara to reduce this conjecture to the Weil 
conjectures. Thus if 2a(n^n *s ^ e ^-expansion of a normalized (a(l) = l) cusp 
form on rx(N) of weight k^2 which is a simultaneous eigenfunction of all Hecke 
operators, then 

\a(p)\ < 2p(ft-l)/2 for all primes p\N. 

III. Cohomological consequences; weights. As Grothendieck foresaw in the 1960s 
with his "yoga of weights", the truth of the Weil conjectures for varieties over 
finite fields would have important consequences for the cohomological structure of 
varieties over the complex numbers. The idea is that any reasonable algebro-geo-
metric situation over C is actually defined over a subring of C which, as a ring, 
is finitely generated over Z. Reducing modulo a maximal ideal m of this ring, 
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we find a situation over a finite field, and the corresponding Frobenius endomorphism 
F(m) operating on this situation. This Frobenius operates by functoriality on the 
/-adic cohomology, which is none other than the singular cohomology, with Qr 

coefficients, of our original situation over C. This natural operation of Frobenius 
imposes a previously unsuspected structure on the cohomology of complex algebraic 
varieties, the so-called "weight filtration", or filtration by the magnitude of the 
eigenvalues of Frobenius. 

In a remarkable tour de force in the late 1960's and early 1970's, Deligne developed, 
independently of the Weil conjectures, a complete theory of the weight filtration 
of complex algebraic varieties, by making systematic use of Hironaka's resolution of 
singularities, of the notion of differential forms with "logarithmic poles" (i.e. pro
ducts of fi?///'s), and of his own earlier work on cohomological descent. The result
ing theory, which Deligne named "mixed Hodge theory", should be seen as a far-
reaching generalization of the classical theory of "differentials of the second kind" 
on algebraic varieties, as well as of "usual" Hodge theory. 

Consider, for example, a smooth affine variety U over C. By one of Hironaka's 
fundamental results, we can find a projective smooth variety X and a collection of 
smooth divisors Dj in X which cross tran sver sally, suchthat U^X—UDi. Deligne 
shows that the Leray spectral sequence, in rational cohomology, of the inclusion 
map Ua+X9 degenerates at £3, and that the filtration it defines on the cohomology 
of U is independent of the choice of the compactification. This is the desired weight 
filtration; its smallest filtrant is the image of Hm(X) in H*(U)9 i.e. the space of 
"differentials of the second kind on £/". 

One of the many applications of this theory is to the global monodromy of families 
of projective smooth varieties. Given a projective smooth map X-+ S of smooth 
complex varieties, and a point s£S9 the fundamental group n^S, s) acts on each 
of the cohomology groups Hl(XS9 C) of the fibre Xs. Deligne shows that these 
representations are all completely reducible, and that each of their isotypical com
ponents, especially the space of invariants, is stable under the Hodge decomposition 
into (p9 ̂ -components. 

By means of an extremely ingenious and difficult argument drawing upon Grothen-
dieck's cohomological theory of L-functions and the ideas of the Hadamard-de la 
Vallée Poussin proof of the prime number theorem, Deligne later established an 
/-adic analogue of this theorem of complete reducibility for /-adic "local systems" 
in characteristic /; over open subsets of the projective /-line P1, provided that all 
of the "fibres" of the local system satisfy the Riemann Hypothesis (with a fixed 
power of |/#). Once he had proven the Riemann Hypothesis for varieties over 
finite fields, he could apply this theorem to the local system coming from a Lefschetz 
pencil on a projective smooth variety over a finite field. The resulting complete 
reducibility is easily seen to imply the hard Lefschetz theorem. This theorem, pre
viously known only over C, and there by Hodge's theory of harmonic integrals, 
is thus established, in all characteristics as a consequence of the Weil conjectures. 
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Other outgrowths of Deligne's work on weights include his theory of differential 
equations with regular singular points on smooth complex varieties of arbitrary 
dimension, which yields a new solution of Hubert's 21st problem, and his affirmative 
solution of the "local invariant cycle problem" in the local monodromy theory of 
families of projective smooth varieties. 

Still another application of "weights" is to homotopy theory. Deligne, Griffiths, 
Morgan and Sullivan jointly apply mixed Hodge theory to prove that the homotopy 
theory ((g)Q) of a projective smooth complex variety is a "formal consequence" 
of its cohomology, 

IV. Other work. We have passed over in silence a considerable body of Deligne's 
work, which alone would be sufficient to mark him as a truly exceptional mathe
matician; duality in coherent cohomology, moduli of curves (jointly with Mumford), 
arithmetic moduli (jointly with Rapoport), the Ramanujan-Petersson conjecture 
for forms of weight one (jointly with Serre), the Macdonald conjecture (jointly with 
Lusztig), local "roots numbers", /?-adic L-functions (jointly with Ribet), motivic 
L-functions, "Hodge cycles" on abelian varieties, and much more. 

I hope that I have conveyed to you some sense, not only of Deligne's accomplish
ments, but also of the combination of incredible technical power, brilliant clarity, 
and sheer mathematical daring which so characterizes his work. 

PRINCETON UNIVERSITY 

PRINCETON, N.J. 08540, U.S.A. 
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The Work of Charles Fefferman 

Lennart Carleson 

There was'a period, in the 1940s and 1950s, when classical analysis was considered 
dead and the hope for the future of analysis was considered to be in the abstract 
branches, specializing in generalization. As is now apparent, the rumour of the 
death of classical analysis was greatly exaggerated and during the 1960s and 1970s 
the field has been one of the most successful in all of mathematics. Briefly, I think 
that one can say that the reasons for this are the unification of methods from har
monic analysis, complex variables and differential equations, the discovery of the 
correct generalizations to several variables and finally the realization that in many 
problems complications cannot be avoided and that intricate combinatorial argu
ments rather than polished theories often are in the centre. 

This general description of classical analysis also summarizes the work of Charles 
Fefferman. In an eminent way he masters these techniques and has contributed 
to the success of our common field and it is with real joy and pride, as a friend and as 
co-worker in the field, J shall try to sketch some lines in the development with emphasis 
on certain of Fefferman's many contributions. 

It is natural to start with the Hardy spaces Hp
9 i.e. functions f(z) holomorphic 

in |z|<l and belonging LP on the boundary of \z\ = l. Through the work of 
Marcel Riesz we know that Hp is the dual of HQ for conjugate exponents p and 
q for l < / x ° ° 3 and the theory becomes similar to the Lp

9 LMJieory. There was, 
however, no analogy to the L1, L°°-duality and special methods were necessary 
for every situation for H1. It was therefore a great sensation when Fefferman in 
1971 showed that the dual of H1 was a space that had been used a few years earlier 
by John and Nirenberg, the space BMO of functions of bounded mean oscillation. 
This is the space of functions which on every interval differs in the mean from its 
mean value by a bounded quantity. A canonical non-bounded example is the 
logarithm of the absolute value. Many problems for H1 now become concrete, 
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constructive problems for this class. As a simple illustration of the force of the 
method, consider Hardy's theorem that if f(z)=]g0cnz

nÇ:H1 then 2\cn\n~1<00-
Dually this means that ^ ^ ^ g B M O > ^ = ^ 

and this is essentially trivial to verify. 
The idea, however, carries much further. The result from 1971 by Gundy, Burk-

holder and Silverstein that a harmonic function u(z) in |z|<l is the real part of 
an //^function if and only if , N . r 1 

J sup M(zJ^L1 

zeve 

where V0 is the Stolz angle at ei9
9 also gets a natural explanation as a representa

tion problem for BMO. The interesting result appears that we need only take 
the sup over the radius. It is clear how this generalizes to several dimensions and we 
have in this theory one of the most rapidly expanding branches of analysis. In parti
cular, I should like to mention the recent theory of Muckenhaupt, Wheeden and 
others, where also Fefferman has contributed essentially, generalizing the //-theory 
of conjugate functions to weighted ZAspaces. The culmination is Calderóne recent 
work on singular integrals on Cx-curves which you will hear more about during the 
congress. 

In the centre of this development is the theory of singular integrals and different 
maximal versions of these integrals. In particulai, the maximal partial sum operator 
for a Fourier series is essentially such a maximal operator 

S*(f) = sup £„(/)(*) = sup ff®BT dt. 
n n J X—t 

Fefferman has given a direct combinatorial proof in the spirit of Kolmogorov that 
SnM(x) for arbitrary choice of n(x) is uniformly bounded on 1? and hence a new 
proof of the a.e. convergence of the Fourier series of a continuous function. We have 
of course similar formulas in several variables. It is remarkable that Fefferman was 
the first to find a counterexample showing that no similar result holds for rectangular 
partial sums in several variables, even if we make strong restrictions on the ratio 
of the sides of the rectangles. This is a result that should have been proved 100 years 
ago! 

We have seen here how the interplay between ideas in real and complex analysis 
has given striking and deep new results and that singular integrals and Fourier 
analysis were the main tools. These tools are also, as you all know, closely tied to 
partial differential equations with constant coefficients because of the algebraic 
way in which Fourier transform reflects derivations. In a similar way one can also 
treat differential equations with variable coefficients — the idea is to introduce in 
the Fourier transform a function p — the symbol — which also depends on the 
space variables: ( p j | ) ^ = J J ^ - ^ ^ {> y)u(y) dy ^ 

We can make the theory still more general by replacing (x—y) • £ in the exponent 
by more general functions. This will be important for us later. 
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The theory becomes highly technical and a careful classification of symbols 
p in terms of estimates of derivatives is necessary. In joint work with R. Beals, 
Fefferman has introduced a new weighted classification. The main application is 
a new proof of a result of Nirenberg and Treves for the local solvability of a partial 
differential equation of principal type. Using these methods Fefferman and Phong 
recently showed a best possible version of the sharp Gärding inequality, i.e. if 
p(x, 0 ^ 0 an(* is a^ n i ° s t °f second order in £ then 

(p(x9D)u9u)>-C\\u\\l 
There is a natural connection back from partial differential equations to complex 

analysis in the classical Cauchy-Riemann equations. In several variables, these are 
really a system of equations and an important difference between one and several 
complex variables is that certain of these equations dbf=0 also make sense on the 
boundary of the domain Q. In particular, if / is given on the boundary there is 
a natural L2-projection on solutions of these equations. This projection is realized 
by a kernel, the Szegö kernel. Similarly, the projection corresponding to L2 for 
the volume of Q is given by the Bergman kernel K(z9 Q. Clearly, in the centre 
of interest, we have the regularity of K as the points approach the boundary. 
It was shown by Kerzman that for strictly pseudo convex domains, the singularities 
appear as z->£ and the case z=Ç is particularly interesting. 

If Q is a strictly pseudo convex domain given by a smooth plurisubharmonic 
function ^ so that fì:^<0, then Hörmander proved in 1965 that for z0€#ß 

dzx 

limi//(z)' ,+1#(z, z) 
71 ! 

det *-tay 
dip 

V' -5=--

= - ^ 0 / / ) . 

dl// # 
dz\ •" dzn 

By a direct very ingenious construction Fefferman (1974) obtained a complete asym
ptotic formula which to everybody's surprise contained a logarithmic singularity: 

( - ^ « ^ ( z , z) = ^(z) + G(z)(-^)"+1log(-^) 
with F and G smooth. As was shown later by Boutet de Monvel and Sjöstrand 
this singularity can be best understood in the context of Fourier integral operators. 
Let^(z, Q be a convenient, explicit continuation of \jf(z9z)=\j/(z) from the diagonal 
in Q to CnXC". Then K(z9 Q is essentially a Laplace transform of the type 

oo 

f é*l*'Ok(z9£;t)dt 
0 

where k has a singularity at t=°° of the type tn which just produces singularities 
of Fefferman's type at the boundary where ^=0. 
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Fefferman's interest in the Bergman kernel originated in his desire to show the 
regularity of biholomorphic mappings up to the boundary of smooth domains. The 
metric 

is invariant under the mapping and its geodesies G are therefore natural bases for 
a geometric description of the correspondence between the boundaries of the domains, 
i.e. if we can show that G approaches a definite boundary point and that directions 
correspond smoothly to the boundary. Since we have a precise knowledge of the 
behavior of the metric at dQ all becomes concrete differential geometric problems. 
The difficulties are however very serious because of the singular behavior of K at dQ 
but were mastered by Fefferman in a remarkable way. 

Through Feffçrman's result we now have a foundation for a discussion of the 
mapping on the boundary. The fundamental problem is to classify domains which 
are biholomorphically equivalent or locally so. We shall only consider the local 
problem and then need a set of local invariants. In the case w=2 all local invariants 
were formed already by Eli Cartan and Chern and Moser gave a complete theory. 
In particular they found certain invariant curves; the chains. You will hear more 
about this in Jürgen Moser's lecture. Fefferman has given a differential geometric 
description of the Chern-Moser-chains derived from certain geodesies for a me
tric, which is related to the Bergman kernel function. He has also started the big 
program to find algebraic descriptions of the local invariants. In all probability 
we are here at the beginning of a completely new theory in several complex 
variables. 

I should like to finish by pointing to an alternative approach which is very attractive 
to a classical analyst. The most important tool in one complex variable is the 
harmonic functions. The class is invariant under conformai mappings because 
A(uof) = \f'\2Au. The natural analogue in several variables is the Hessian 
determinant 

We have already seen A in Hörmander's formula Lu for K(z9 z) and actually 
Ä and L are related by the change u-Aogu. The study of the equation Au=q> 
has started but basic estimates are still missing. Fefferman has made the important 
observation that the equation Lu=l9 u=0 on dQ9 can be solved approximately, 
again with regularity until the critical singularities enter for the «th derivative. 
I am sure that we see here another example of the beginning of an important theory. 

I hope this brief survey has convinced you of the vitality of classical analysis and 
of the great contributions of Charles Fefferman. 

I N S T I T U T M I T T A G - L E F F L E R 

(18262) DJURSHOLM, SWEDEN 
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The Work of Gregori Aleksandrovitch Margulis 

J. Tits 

The work of Margulis belongs to combinatorics, differential geometry, ergodic 
theory, the theory of dynamical systems and the theory of discrete subgroups of 
real and /?-adic Lie groups. In this report, I shall concentrate on the last aspect 
which covers his main results. 

1. Discrete subgroups of Lie groups. The origin. Discrete subgroups of Lie groups 
were first considered by Poincaré, Fricke and Klein in their work on Riemann surfaces : 
if M is a Riemann surface of genus s>2, its universal covering is the Lobatchevski 
plane (or Poincaré half-plane), therefore the fundamental group of M can be 
identified with a discrete subgroup r of PSL2 (JR) ; the problem of uniformization 
and the theory of differentials on M lead to the study of automorphic forms rela
tive to r. 

Other discrete subgroups of Lie groups, such as SLM (Z) (in SL„ (R)) and the 
group of "units" of a rational quadratic form (in the corresponding orthogonal 
group) play an essential role in the theory of quadratic forms (reduction theory) 
developed by Hermite, Minkowski, Siegel and others. In constructing a space 
of moduli for abelian varieties, Siegel was led to consider the "modular group" 
Sp2„(Z), a discrete subgroup of Sp2„(l?). 

The group SL„(Z), the group of units of a rational quadratic form and the modular 
group are special instances of "arithmetic groups", as defined by A. Borei and 
Harish-Chandra. A well-known theorem of those authors, generalizing classical 
results of Fricke, Klein, Siegel and others, asserts that if T is an arithmetic sub
group of a semi-simple Lie group G9 then the volume of G/T (for any (/-invariant 
measure) is finite; we say that F has finite covolume in G. The same holds for 
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G=PSLa(R) if r is the fundamental group of a Riemann surface "with null 
boundary" (for instance, a compact surface minus a finite subset). 

Already Poincaré wondered about the possibility of describing all discrete sub
groups of finite covolume in a Lie group G. The profusion of such subgroups in 
G=PSL2(Ä) makes one at first doubt of any such possibility. However, PSLa(Ä) 
was for a long time the only simple Lie group which was known to contain non-
arithmetic discrete subgroups of finite covolume, and further examples discovered 
in 1965 by Makarov and Vinberg involved only few other Lie groups, thus adding 
credit to conjectures of Selberg and Pyatetski-Shapiro to the effect that "for most 
semisimple Lie groups" discrete subgroups of finite covolume are necessarily arith
metic. Margulis' most spectacular achievement has been the complete solution of 
that problem and, in particular, the proof of the conjectures in question. 

2. The noncocompact case. Selberg's conjecture. Let G be a semisimple Lie 
group. To avoid inessential technicalities, we assume that G is the group of real 
points of a real simply connected algebraic group ^ which we suppose embedded 
in some GL„(J£), and that G has no compact factor. Let f be a discrete sub
group of G with finite covolume and irreducible in the sense that its projection in 
any nontrivial proper direct factor of G is nondiscrete. Suppose that the real 
rank of G is ^ 2 (this means that G is not a covering group of the group of motions 
of a real, complex or quaternionic hyperbolic space or of an "octonionic" hyper
bolic plane) and that GjF is not compact. Then, Selberg's conjecture asserts that 
r is arithmetic which, in this case, means the following: there is a base in Rn with 
respect to which 0 is defined by polynomial equations with rational coefficients and 
suchthat r is commensurable with &(Z) = Gn GL„ (Z) (i.e. r n&(Z) has finite 
index in both r and 0(Z)). Selberg himself proved that result in the special case 
where G is a direct product of (at least two) copies of SLa(Ä). 

A first important step toward the understanding of noncompact discrete subgroups 
of finite covolume was the proof by Kazdan and Margulis [2] of a related, more 
special conjecture of Selberg: under the above assumptions (except that no hypothesis 
is made on rkÄG), r contains nontrivial unipotent elements of G (i.e. elements all 
of whose eigenvalues are 1). This was a vast generalization of results already known 
for SL2(K) and products of copies of SL2(JR) (Selberg); in view of a fundamental 
theorem of Borei and Harish-Chandra ("Godement's conjecture"), it had to be 
true if r was to be arithmetic. Let us also note in passing another remarkable 
byproduct of Kazdan-Margulis' method: given G, there exists a neighborhood 
W of the identity in G such that for every r (cocompact or not), some conjugate 
of r intersects W only at the identity, in particular, the volume of GjF cannot 
be arbitrarily small (for a given Haar measure in G). For G=SL2(Ä), the last 
assertion had been proved by Siegel, who had also given the exact lower bound 
of vol (G/r) in that case. A. Borei reported on those results of Kazdan and Maigulis 
at Bourbaki Seminar [26]. 

The existence of unipotent elements in F was giving a hold on its structure. In 
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[6], Margulis announced, among others, the following result which was soon re
cognized by the experts as a crucial step for the proof of Selberg's conjecture : 

in the space of lattices in R"9 the orbits of a one-parameter unipotent subsemi-
group of GL„(Ä) "do not tend to infinity" (in other words, a closed orbit is periodic). 

For a couple of years, Margulis' proof remained unpublished and every attempt 
by other specialists to supply it failed. When it finally appeared in [9], the proof 
came as a great surprise, both for being rather short and using no sophisticated 
technique: it can be read without any special knowledge and gives a good idea of the 
extraordinary inventiveness shown by Margulis throughout his work. 

Using unipotent element, it is relatively easy to show that, G and T being as 
above, there is a Q-structure ^ on G such that Fa<g(Q). The main point of 
Selberg's conjecture is then to show that the matrix coefficients of the elements of 
r have bounded denominators. In [15], Margulis announced a complete proof of 
the conjecture and gave the details under the additional assumption that the Q-rank 
of 0 is at least 2. Another proof under the same restriction was given independently 
by M. S. Raghunathan. The much more difficult case of a Q-rank one group is 
treated by Margulis in [19], by means of a very subtle and delicate analysis of the 
set of unipotent elements contained in T. The main techniques used in [15] and [19] 
are those of algebraic group theory and /?-adic approximation. 

3. The cocompact case. Rigidity. Margulis was invited to give an address at thf 
Vancouver Congress, no doubt with the idea that he would expose his solution oe 
Selberg's conjecture. Instead, prevented (as this time) from attending the Congress, 
he sent a report on completely new and totally unexpected results on the cocompact 
case [18]. 

That case, about which nothing was known before, presented two great additional 
difficulties which nobody knew how to handle. On the one hand, if G/T is compact, 
r contains no unipotent element, so that the main technique used in the other case 
is not available. But there is another basic difficulty in the very notion of arithmetic 
group : let G, F be as in § 2 except that GjF is no longer assumed to be non-
compact; then r is said to be arithmetic if there exist an algebraic linear semi-
simple simply connected group ffl defined over Q and a homomorphism a : J^(l?) -*-G 
with compact kernel such that r is commensurable with a(c5f (Z)). The point is 
chat in the non-cocompact case, a is necessarily an isomorphism. In the general 
case, there is a priori no way of knowing what Jf will be (in fact, for a given G, ffl 
tan have an arbitrarily large dimension). A conjecture, more or less formulated 
by Pyatetski-Shapiro at the 1966 Congress in Moscow, to the effect that also in 
the cocompact case, assuming again xkR G^29F had to be arithmetic, was certainly 
more daring at the time and seemed completely out of reach. It was the proof of 
that conjecture that Margulis sent, without warning, to the Vancouver Congress. 

Arithmetic subgroups of Lie groups are in some sense "rigid"; intuitively, this 
follows from the impossibility to alter an algebraic number continuously without 
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destroying the algebraicity. On the other hand, theorems of Selberg, Weil and 
Mostow showed that in semi-simple Lie groups different from SL2(Ä) (up to 
local isomorphism) cocompact discrete subgroups are rigid, and Selberg had observed 
that rigidity implies a "certain amount of arithmeticity" : in fact, it is readily seen 
to imply that F is contained in 9(K) for some algebraic group 0 and some number 
field K. As before, the crux of the matter is the proof that the matrix coefficients 
of the elements of r have bounded denominators. This is achieved by Margulis 
through a "superrigidity" theorem which, for groups of real rank at least 2, is a vast 
generalization of Weil's and Mostow's rigidity theorems: 

Assume vkR G s>2, let F bea locally compact nondiscrete field and let Q: r^-GLH(F) 
be a linear representation such that Q(T) is not relatively compact and that its Zariski-
closure is connected; then F=R or C and Q extends to a rational representation 
of 9. 

The proof of this theorem is relatively short (considering the power of the result), 
but is a succession of extraordinarily ingenious arguments using a great variety of 
very strong techniques belonging to ergodic theory (the "multiplicative ergodic 
theorem"), the theory of unitary representations, the theory of functional spaces 
(spaces of measurable maps), algebraic geometry, the structure theory of semi-
simple algebraic groups, etc. In 1975-1976, I devoted my course at the Collège 
de France to those results of Margulis; I believe that I learned more mathematics 
during that year than in any other year of my life. A summary of the main ideas 
of that beautiful piece of work is given in [27]. 

Another, quite different proof of the superrigidity theorem and its application to 
arithmeticity (both in the cocompact and the noncocompact case)—using the work 
of H. Furstenberg—can be found in [20]. 

4. Other results. 

4.1. S-arithmetic groups. Let K be a number field, S a finite set of places of 
K including all places at infinity, o the ring of elements of K which are integral 
at all finite places not belonging to S9 3tfa<g<£n a simply connected semisimple 
linear algebraic group defined over K and J f (o )=^nGL H (o ) . Then, Jf(o) 
injects as a discrete subgroup of finite covolume in the product H=JJ0çs3ff(Kv)9 

where Kv denotes the completion of K at v. 
(Example: if o is the ring of rational numbers whose denominator is a power 

of 2, SL„(o) is a discrete subgroup of finite covolume of SLB(JR)XSLfl(Q2)). Now 
let G be a direct product of simply connected semi-simple real or ^-adic Lie 
groups. A discrete subgroup F of G is called ^-arithmetic if there exist K, S9 3tf 
as above and a homomorphism a: H-+G with compact kernel such that F and 
a(jf(o)) are commensurable. All results of [18], stated above for ordinary Lie 
groups and arithmetic groups, are in fact proved by Margulis in the more general 
framework described here. In particular, he shows that if G is as above, if the 
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rank of G (i.e. the sum of the relative ranks of its factors) is at least 2 and if r is 
a discrete subgroup of finite covolume in G, which is irreducible (as defined in n°2)t 

then F is S-arithmetic. 

4.2. "Abstract " isomorphisms. The very general and powerful superrigidity theorem 
(in the framework of 4.1) has far-reaching consequences besides the arithmeticity. 
For instance, it enables Margulis to solve almost completely the problem of "abstract 
isomorphisms" between groups of points of algebraic simple groups over number 
fields or arithmetic subrings of such fields; his result embodies, in the arithmetic 
case, all those obtained before on that problem by Dieudonné, O'Meara and his 
school, A. Borei and me, and goes considerably further. 

4.3. Normal subgroups. Let G be as in 4.1 and let F be an irreducible discrete 
subgroup of G of finite covolume. Margulis was able to show (cf. [27]) that if 
rk G ̂  2, then every noncentral normal subgroup of r has finite index. (In fact, 
the condition^ of Margulis' theorem are more general: under suitable hypotheses, 
G is allowed to have factors defined over locally compact local fields of finite 
characteristic.) So far, the only results known in that direction—results of Mennicke, 
Bass, Milnor, Serre, Raghunathan—were connected with the congruence subgroup 
problem and valid only in the cases where that problem has a positive solution. 

4.4. Action on trees. In a paper which appeared in the Springer Lecture Notes, no 372, 
Serre showed that the group of integral points of a simple Chevalley group-scheme 
of rank ^ 2 cannot act without fixed point on a tree ; this also means that such a group 
is not an amalgam in a nontrivial way. Serre points out that his method of proof 
does not extend to congruence subgroups and asks whether the result generalizes to 
such subgroups or to other arithmetic groups. With his own methods, Margulis 
was able to solve at once the problem in its widest generality: // G is as in 4.1, 
of rank at least 2, and if r is an irreducible discrete subgroup of finite covolume 
in G, then F cannot act without fixed point on a tree. 

5. Conclusion. Margulis has completely or almost completely solved a number 
of important problems in the theory of discrete subgroups of Lie groups, problems 
whose roots lie deep in the past and whose relevance goes far beyond that theory 
itself. It is not exaggerated to say that, on several occasions, he has bewildered the 
experts by solving questions which appeared to be completely out of reach at the 
time. He managed that through his mastery of a great variety of techniques used 
with extraordinary resources of skill and ingenuity. The new and most powerful 
methods he has invented have already had other important applications besides 
those for which they were created and, considering their generality, I have no doubt 
that they will have many more in the future. 

I wish to conclude this report by a nonmathematical comment. This is probably 
neither the time nor the place to start a polemic. However, I cannot but express 
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my deep disappointment—no doubt shared by many people here—in the absence 
of Margulis from this ceremony. In view of the symbolic meaning of this city of 
Helsinki,11 had indeed grounds to hope that I would have a chance at last to meet 
a mathematician whom I know only through his work and for whom I have the 
greatest respect and admiration. 
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D. G. Quillen's contributions to algebra are outstanding in their inventiveness, 
conceptual richness and technical virtuosity. He is the prime architect of the higher 
algebraic ^-theory, and this is perhaps his finest achievement. But before dealing 
with this I would like to say a few words about some of his other contributions to 
mathematics. 

I will begin with the cohomology of groups. First consider the mod/? cohomology 
ring of a finite group. It was long conjectured that the dimension of this ring, 
in the sense of commutative algebra, was the same as the rank of a maximal abelian 
/?-subgroup. Quillen established the conjecture by a method which was very original, 
elegant and powerful. An essential point was that, to prove a purely algebraic 
result, he enlarged the context by studying a more general problem which brought 
in topology by having the group act on a space. 

Among the most interesting groups, from the cohomological point of view, are 
the classical groups over finite fields. These occupy a central position in Quillen's 
work and he has obtained much important information about them. Moreover he 
has shown how such purely algebraic information can be used to prove deep results 
in topology. 

An example of this is Quillen's proof of the Adams conjecture in topological 
j&theory. Suppose we consider real vector bundles over a compact HausdorfT 
space X. These bundles generate the Grothendieck group KO (X), and this group 
admits a family of operators, called the i^-operations. In homotopy theory it is 
important to know when a bundle, or rather its associated sphere-bundle, is trivial 
in the sense of fibre homotopy type. Bundles which are trivial in this sense generate 
a subgroup of KO (X). Adams, around 1965, made the bold conjecture that this 
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subgroup could be constructed purely algebraically. Specifically he gave a formula 
for constructing elements of the subgroup in terms of ^-operations. Adams verified 
his conjecture for combinations of Une bundles and plane bundles. 

Despite much effort it was not until 1970 that the conjecture became a theorem. 
Quillen's proof introduced completely new methods into the subject, based on 
Brauer's work in representation theory. He begins with the case where the structural 
group of the bundle can be reduced from the full general linear group to a finite 
subgroup. Using the Brauer induction theorem he reduces this case to that of 
bundles with rank not greater than two, where Adams' methods suffice. Then he 
shows that the finite case exercises enough control over the general case to solve the 
problem. This was a real tour de force since it involved the use of the Frobenius 
map x-+xp in characteristic p (which corresponds to the operator \j/p) to solve 
a difficult problem in topology. Another proof was given by Sullivan about the same 
time, but it was not until several years later that Becker and Gottlieb found a proof 
using conventional algebraic topology. 

Another of Quillen's contributions to topology relates to the cobordism theory 
of Thorn. Here manifolds are classified modulo boundaries—those manifolds which 
bound manifolds with boundary. The classification of manifolds in this sense can be 
reduced to a homotopy-theoretic problem. Earlier methods of solving this problem 
required difficult calculations but Quillen discovered an entirely new approach, 
involving formal groups, which bypassed the difficulties in a spectacular manner and 
gave a beautiful and satisfying conclusion to this important theory. 

Now for one of Quillen's most recent achievements. About twenty years ago Serre 
showed that vector bundles over a space X could be interpreted as projective modules 
over the ring of continuous realvaluçd "functions on X Trivial bundles correspond 
to free modules. On the basis of this connection Serre formulated the plausible 
conjecture that all projective modules over a polynomial ring are free. The experts in 
commutative algebra found this an irresistible challenge but despite great efforts 
progress towards establishing the conjecture was very limited. Then, a couple of 
years ago, Quillen came up with a simple direct proof of a few pages, disposing 
of the whole problem. About the same time the Russian mathematician Suslin 
also found a proof. 

I hope I haven't been placing too much emphasis on Quillen's phenomenal suc
cesses in solving outstanding problems. These are not isolated achievements but 
appear rather as spectacular features of the new breed of mathematics he has been 
creating. It is algebraic K-theory9 more than anything else, which occupies the central 
position in his work. 

The development of iST-theory first in algebraic geometry and then in topology 
led many to search for a more general algebraic theory which would apply to any 
ring and especially to the ring of integers. This would be cohomological in form, 
with groups in all non-negative dimensions. The right definition in dimension zero 
was well-known, and various proposals were made for the definition in dimension 
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one. However it was Quillen, in 1972, who found the general definition and thereby 
opened up this major new area of research, of which the full potential lias yet to be 
realized. 

Quillen's definition involves a simple but novel idea, known as the plus construc
tion, which has since found many applications. For the construction one needs a per
fect normal subgroup E of the fundamental group n^X), where X is a complex. 
By attaching 2-cells and 3-cells to X, in a certain way, Quillen constructs a complex 
Z + such that the inclusion X-+X+ induces an isomorphism in homology while 
killing precisely E in the fundamental group. In the application X is the classifying 
space BGL (4) of the stable general linear group GL (A) of a given ring A. 
The commutator subgroup E(A) of GL (A) is known to be perfect. Quillen 
applies his construction, using the corresponding subgroup of the fundamental 
group of the classifying space, and obtains a space BGL (A)+. The higher J£-groups 
of A are defined to be the higher homotopy groups rc, (BGL (A)+). It required 
extraordinary insight to realize that this gave the correct formulation. 

Quillen's work has had a great influence on the thinking and perceptions of the 
present generation of topologists and algebraists. His papers are not merely infor
mative, but edifying and exciting to read. They bring into clear view a mathematical 
landscape of great richness and beauty that many others have vainly striven to 
approach. 

U N I V E R S I T Y O F O X F O R D 

OXFORD OX1 3LB, ENGLAND 
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and Kleinian Groups 

Lars V. Ahlfors* 

I am extremely grateful to the Committee to select hour speakers for the great 
honor they have bestowed on me, and above all for this opportunity to address 
the mathematicians of the whole world from the city of my birth. The city has changed 
a great deal since my childhood, but I still get a thrill each time I return to this place 
that holds so many memories for me. I assure you that today is even a more special 
event for me. 

I have interpreted the invitation as a mandate to report on the state of knowledge 
in the fields most directly dominated by the theory and methods of quasiconformal 
mappings. I was privileged to speak on the same topic once before, at the Congress 
in Stockholm 1962, and it has been suggested that I could perhaps limit myself 
to the developments after that date. But I feel that this talk should be directed to 
a much wider audience. I shall therefore speak strictly to the non-specialists and let 
the experts converse among themselves at other occasions. 

The whole field has grown so rapidly in the last years that I could not possibly 
do justice to all recent achievements. A mere list of the results would be very dull 
and would not convey any sense of perspective. What I shall try to do, in the limited 
time at my disposal, is to draw your attention to the rather dramatic changes that 
have taken place in the theory of functions as a direct result of the inception and 
development of quasiconformal mappings. I should also like to make it clear that 
I am not reporting on my own work; I have done my share in the early stages, and 
I shall refer to it only when needed for background. 

* This work has been supported by the National Science Foundation of the United Slates under 
Grant number MCS77 07782 
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1. Historical remarks. In classical analysis the theory of analytic functions of 
complex variables, and more particularly functions of one variable, have played 
a dominant role ever since the middle of the nineteenth century. There was an obvious 
peak around the turn of the century, centering about names like Poincaré, Klein, 
Picard, Borei, Hadamard. Another blossoming took place in the 1920s with the 
arrival of Nevanlinna theory. The next decade seemed at the time as a slackening 
of the pace, but this was deceptive; many of the ideas that were later to be fruitful 
were conceived at that time. 

The war and the first post-war years were of course periods of stagnation. The 
first areas of mathematics to pick up momentum after the war were topology and 
functions of several complex; variables. Big strides were taken in these fields, and 
under the leadership of Henri Cartan, Behnke, and many others, the more-dimen
sional theory of analytic functions and manifolds acquired an almost entirely new 
structure affiliated with algebra and topology. As a result of this development the 
gap between the conservative analysts who were still doing conformai mapping 
and the more radical ones involved with sheaf-theory became even wider, and for 
some time it looked as if the one-dimensional theory had lost out and was in danger 
of becoming a rehash of old ideas. The gap is still there, but I shall try to convince 
you that in the long run the old-fashioned theory has recovered and is doing quite well. 

The theory of quasiconformal mappings is almost exactly fifty yeais old. They 
were introduced in 1928 by Herbert Grötzsch in order to formulate and prove a 
generalization of Picard's theorem. More important is his paper of 1932 in which 
he discusses the most elementary but at the same time most typical cases of extremal 
quasiconformal mappings, for instance the most nearly conformai mapping of one 
doubly connected region on another. Grötzsch's contribution is twofold: (1) to have 
been the first to introduce non-conformal mappings in a discipline that was so 
exclusively dominated by analytic functions, (2) to have recognized the importance 
of measuring the degree of quasiconformality by the maximum of the dilatation 
rather than by some integral mean (this was recently pointed out by Lipman Bers). 

Grötzsch's papers remained practically unnoticed for a long time. In 1935 essentially 
the same class of mappings was introduced by M. A. Lavrentiev in the Soviet Union 
whose work was connected more closely with partial diflFerential equations than 
with function theory proper. In any case, the theory of quasiconformal mappings, 
which at that time had also acquired its name, slowly gained recognition, originally 
as a useful and flexible tool, but inevitably also as an interesting piece of mathe
matics in its own right. 

Nevertheless, quasiconformal mappings might have remained a rather obscure 
and peripheral object of study if it had not been for Oswald Teichmüller, an ex
ceptionally gifted and intense young mathematician and political fanatic, who 
suddenly made a fascinating and unexpected discovery. At that time, many special 
extremal problems in quasiconformal mapping had already been solved, but these 
were isolated results without a connecting general idea. In 1939 he presented to the 
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Prussian Academy a now famous paper which marks the rebirth of quasiconformal 
mappings as a new discipline which completely overshadows the rather modest 
beginnings of the theory. With remarkable intuition he made a synthesis of what 
was known and proceeded to announce a bold outline of a new program which he 
presents, rather dramatically, as the result of a sudden revelation that occurred 
to him at night. His main discovery was that the extremal problem of quasiconformal 
mapping, when applied to Riemann surfaces, leads automatically to an intimate 
connection with the holomorphic quadratic differentials on the surface. With this 
connection the whole theory takes on a completely different complexion : A problem 
concerned with non-conformal mappings turns out to have a solution which is 
expressed in terms of holomorphic differentials, so that in reality the problem 
belongs to classical function theory. Even if some of the proofs were only heuristic, 
it was clear from the start that this paper would have a tremendous impact, although 
actually its influence was delayed due to the poor communications during the war. 
In the same paper Teichmüller lays the foundations for what later has become 
known as the theory of Teichmüller spaces. 

2. Beltrami coefficients. It is time to become more specific, and I shall start by 
recalling the definition and main properties of quasiconformal (q.c.) mappings. 
To begin with I shall talk only about the two-dimensional case. There is a correspond
ing theory in several dimensions, necessarily less developed, but full of interesting 
problems. One of the reasons for considering q.c. mappings, although not the most 
compelling one, is precisely that the theory does not fall apart when passing to 
more than two dimensions. I shall return to this at the end of the talk. 

Today it can be assumed that even a non-specialist knows roughly what is meant 
by a q.c. mapping. Intuitively, a homeomorphism is q.c. if small circles are carried 
into small ellipses with a bounded ratio of the axes; more precisely, it is K-q.c. 
if the ratio is < K. For a diffeomorphism / this means that the complex derivatives 
fMifx-tfy) a n d fz=T(fx+ify) satisfy |/ f |-c*|/J with k=(K-\)l(K+l). 

Already at an early stage it became clear that it would not do to consider only 
diffeomorphisms, for the class of diffeomorphisms lacks compactness. In the begin
ning rather arbitrary restrictions were introduced, but in time they narrowed down 
to two conditions, one geometric and one analytic, which eventually were found 
to be equivalent. The easiest to formulate is the analytic condition which says 
that / is K-q.c. if it is a weak L2-solution of a Beltrami equation 

(1) /* = tf, 

where p=fjtf, known as a Beltrami coefficient, is a complex-valued measurable 
function with ||ju|L</c. 

The equation is classical for smooth /J, but there is in fact a remarkably strong 
existence and uniqueness theorem without additional conditions. If p is defined 
in the whole complex plane, with \p\^k-<l a.e., then (1) has a homeomorphic 
solution which maps the plane on itself, and the*solution is unique up to conformai 
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mappings. Simple uniform estimates, depending only on fc, show that the class 
of K-q.c. mappings is compact. 

It must be clear that I am condensing years of research into minutes. The fact 
is that the post-Teichmüller era of quasiconformal mappings did not start seriously 
until 1954. In 1957 I. N. Vekua in the Soviet Union proved the existence and uni
queness theorem for the Beltrami equation, and in the same year L. Bers discovered 
that the theorem had been proved already in 1938 by C. Morrey. The great difference 
in language and emphasis had obscured the relevance of Morrey's paper for the 
theory of q.c. mappings. The simplest version of the proof is due to B. V. Boyarski 
who made it a fairly straightforward application of the Calderón-Zygmund 
theory of singular integral transforms. 

As a consequence of the chain rule the Beltrami coefficients obey a simple 
composition law: 

The interesting thing about this formula is that for any fixed z and / the dependence 
on pg(z) is complex analytic, and a conformai mapping of the unit disk on itself. 
This simple fact turns out to be crucial for the study of Teichmüller space. 

3. Extremal length. The geometric definition is conceptually even more important 
than the analytic definition. It makes important use of the theory of extremal length, 
first developed by A. Beurling for conformai mappings. Let me recall this concept 
very briefly. If L is a set of locally rectifiable arcs in R2, then a Borei measurable 
function Q: R2-+R+ is said to be admissible for L if jyqds^l for all y£L. The 
module MÇL) is defined as inf fg2dx for all admissible Q; its reciprocal is the 
extremal length of L. It is connected with q.c. mappings in the following way: 
If / is a .K-q.c. mapping (according to the analytic definition), then M(fL)^ 
KM(L). Conversely, this property may be used as a geometric definition of 
K-q.c. mappings, and it is sufficient that the inequality hold for a rather restrictive 
class of families L that can be chosen in various ways. This definition has the 
advantage of having an obvious generalization to several dimensions. 

Inasmuch as extremal length was first introduced for conformai mappings, its 
connection with q.c. mappings, even in more than two dimensions, is another 
indication of the close relationship between q.c. mappings and classical function 
theory. 

4. TeichmüUer's theorem. The problem of extremal q. c. mappings has dominated 
the subject from the start. Given a family of homeomorphisms, usually defined by 
some specific geometric or topological conditions, it is required to find a mapping 
/ in the family such that the maximal dilatation, and hence the norm HfylL is 
a minimum. Because of compactness the existence is usually no problem, but the 
solution may or may not be unique, and if it is there remains the problem of describing 
and analyzing the solution. 
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It is quite obvious that the notion of q.c. mappings generalizes at once to mappings 
from one Riemann surface to another, each with its own conformai structure, and 
that the problem of extremal mapping continues to make sense. The Beltrami 
coefficient becomes a Beltrami differential \x(z)dz\dz of type (—1,1). Note that 
p(z) does not depend on the local parameter on the target surface. 

Teichmüller considers topological maps f:SQ-+S from one compact Riemann 
surface to another. In addition he requires / to belong to a prescribed homotopy 
class, and he wishes to solve the extremal problem separately for each such class. 
Teichmüller asserted that there is always an extremal mapping, and that it is unique. 
Moreover, either there is a unique conformai mapping in the given homotopy class, 
or there is a constant /c, 0</c<l, and a holomorphic quadratic differential <p(z)dz2 

on S0 such that the Beltrami coefficient of the extremal mapping is pf=k<pl\(p\. 
It is thus a mapping with constant dilatation K=(l+k)/(l—k). The inverse 
f"1 is simultaneously extremal for the mappings S-+S0, and it determines an 
associated quadratic differential \//(w)dw2 on S. In local coordinates the mapping 
can be expressed through 

Jty(w) dw = y<p (z) dz + k ffß(z) dz. 

Naturally, there are singularities at the zeros of <p, which are mapped on zeros 
of \jß of the same order, but these singularities are of a simple explicit nature. The 
integral curves along which j/ç> dz is respectively real or purely imaginary are 
called horizontal and vertical trajectories, and the extremal mapping maps the 
horizontal and vertical trajectories on S0 on corresponding trajectories on S. 
At each point the stretching is maximal in the direction of the horizontal trajectory 
and minimal along the vertical trajectory. 

This is a beautiful and absolutely fundamental result which, as I have already 
tried to emphasize, throws a completely new light on the theory of q.c. mappings. 
In his 1939 paper Teichmüller gives a complete proof of the uniqueness part of 
his theorem, and it is still essentially the only known proof. His existence proof, 
which appeared later, is not so transparent, but it was put in good shape by Bers; 
the result itself was never in doubt. Today, the existence can be proved more 
quickly than the uniqueness, thanks to a fruitful idea of Hamilton. Unfortunately, 
time does not permit me to indicate how and why these proofs work, except for 
saying that the proofs are variational and make strong use of the chain rule for 
Beltrami coefficients. 

5. Teichmüller spaces. Teichmüller goes on to consider the slightly more general 
case of compact surfaces with a finite number of punctures. Specifically, we say 
that S is of finite type (/?, m) if it is an oriented topological surface of genus p 
with m points removed. It becomes a Riemann surface by giving it a conformai 
structure. Following Bers we shall define a conformai structure as a sense-preserving 
topological mapping a on a Riemann surface. Two conformai structures G1 and 
<72 are equivalent if there is a conformai mapping g of c±(S) on v2(S) such 
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that G2
1ogoG1 is homotopic to the identity. The equivalence classes [G] are 

the points of the Teichmüller space T(p, m), and the distance between [G±] and 
[<T2] is defined to be 

d<brJ,[*D = loginf K(f) 

where K(f) is the maximal dilatation of / , and / ranges over all mappings homo-
topic to G2OG^1. It is readily seen that the infimum is actually a minimum, and 
that the extremal mapping from GX(S) to G2(S) is as previously described, except 
that the quadratic differentials are now allowed to have simple poles at the punctures. 

With this metric T(p, m) is a complete metric space, and already Teichmüller 
showed that it is homeomorphic to R*p-Q+2m (provided that 2p—2+m>0). 

Let / be a self-mapping of S. It defines an isometry / of T(jp, m) which takes 
[G] to [GO/]. This isometry depends only on the homotopy class o f / a n d is regarded 
as an element of the modular group Mod (/?, m). It follows from the definition that 
two Riemann surfaces G±(S) and G2(S) are conformally equivalent if and only 
if [G2] is the image of [oj under an element of the modular group. The quotient 
space T(p, m)/Mod (p, m) is the Riemann space of algebraic curves or moduli. 
The Riemann surfaces that allow conformai self-mappings are branch-points of 
the covering. 

6. Fuchsian and quasifuchsian groups. The universal covering of any Riemann 
surface 5, with a few obvious exceptions, is conformally equivalent to the unit 
disk U. The self-mappings of the covering surface correspond to a group G of 
fractional linear transformations, also referred to as Möbius transformations, which 
map U conformally on itself. More generally one can allow coverings with a signa
ture, that is to say regular covering surfaces which are branched to a prescribed 
order over certain isolated points. In this case G includes elliptic transformations 
of finite order. It is always discrete. 

Any discrete group of Möbius transformations that preserves a disk or a half-
plane, for instance Î7, is called a Fuchsian group. It is a recent theorem, due to 
J0rgensen, that a nonelementary group which maps U on itself is discrete, and 
hence Fuchsian, if and only if every elliptic transformation in the group is of finite 
order. As soon as this condition is fulfilled the quotient U/G is a Riemann surface S, 
and U appears as a covering of S with a signature determined by the orders of 
the elliptic transformations. The group acts simultaneously on the exterior U* of 
U, and iS*=C/*/G is a mirror image of S. G is determined by S up to conjugation. 

A point is a limit point if it is an accumulation point of an orbit. For Fuchsian 
groups all limit points are on the unit circle; the set of limit points will be referred 
to as the limit set A (G). Except for some trivial cases there are only two alternatives : 
either A is the whole unit circle, or it is a perfect nowhere dense subset. With 
an unimaginative, but classical, terminology Fuchsian groups are accordingly 
classified as being of the first kind or second kind. 

If S is of finite type, then G is always of the first kind; what is more, G has 
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a fundamental region with finite noneuclidean area. Consider a q.c. mapping 
/ : S0^S with corresponding groups GQ and G. Then / lifts to a mapping 
/ : U-+U (which we continue to denote by the same letter), and if g0£G0 there is 
a g£G such that fog0=gof. This defines an isomorphism G: G0-+G which is 
uniquely determined, up to conjugation, by the homotopy class of/. Moreover, 
/extends to a homeomorphism of the closed disks, and the boundary correspondence 
is again determined uniquely up to normalization. The Teichmüller problem becomes 
that of finding / with given boundary correspondence and smallest maximal 
dilatation. The extremal mapping has a Beltrami coefficient fi = k(p/\<p\ where 
cp is an invariant quadratic differential with respect to G0. 

Incidentally, the problem of extremal q.c. mappings with given boundary values 
makes sense even when there is no group, but the solution need not be unique. 
The questions that arise in this connection have been very successfully treated by 
Hamilton, K. Strebel, and E. Reich. 

For a more general situation, let \idz\dz be any Beltrami differential, defined 
in the whole plane and invariant under G0 in the sense that {liog^gJgQ=ix a.e. 
for all gQ£G. Suppose / is a solution of the Beltrami equation f^—\ifz. It follows 
from the chain rule that fog0 is another solution of the same equation. Therefore 
/og0o/_ 1 is conformai everywhere, and hence a Möbius transformation g. In this 
way \i determines an isomorphic mapping of G0 on another group G, but this 
time G will in general not leave U invariant. For this reason G is a Kleinian 
group rather than a Fuchsian group. It has two invariant regions f(U) and /(£/*), 
separated by a Jordan curve f(5U). The surfaces f(U)/G and /(C/*)/G are in 
general not conformai mirror images. 

The group G—fG^f~x is said to be obtained from G0 by q.c. deformation, 
and it is called a quasifuchsian group. Evidently, quasifuchsian groups have much 
the same structure as fuchsian groups, except for the lack of symmetry. The curve 
that separates the invariant Jordan regions is the image of the unit circle under 
a q.c. homeomorphism of the whole plane. Such curves are called quasicircles. 
It follows by a well-known property of q.c. mappings that every quasicircle has 
zero area, and consequently the limit set A(G) has zero two-dimensional measure. 

Strangely enough, quasicircles have a very simple geometric characterization: 
A Jordan curve is a quasicircle if and only if for any two points on the curve at* 
least one of the subarcs between them has a diameter at most equal to a fixed mul
tiple of the distance between the points. It means, among other things, that there 
are no cusps. 

7. The Bers representation. There are two special cases of the construction that 
I have described: (1) If \i satisfies the symmetry condition ii(l/z)z2/z2=fl(z), 
then G is again a Fuchsian group and / preserves symmetry with respect to the 
unit circle. (2) If \i is identically zero in U and arbitrary in U*9 except for being 
invariant with respect to (70, then / is conformai in £7, and f(U)/G is conformally 
equivalent to S= U/G, while /(£/*)/G is a q.c. mirror image of S. 

file:///idz/dz
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I shall refer to the second construction as the Bers mapping. Two Beltrami 
differentials /xa and p2 will lead to the same group G and to homotopic maps 
fl9f2 if and only if f±=f2 on dU (up to normalizations). When that is the case 
we say that px and \i2 are equivalent, and that they represent the same point in the 
Teichmüller space T(G0) based on the Fuchsian group G0. 

In other words the equivalence classes are determined by the values of / on the 
unit circle. These values obviously determine /(£/), and hence / , at least up ta 
a normalization. One obtains strict uniqueness by passing to the Schwarzian 
derivative <p = Sf defined in U (recall that Sf={f"lf)'-\{f"lfy). From the 
properties of the Schwarzian it follows that <p(gz)g'(z)2=(p(z) for all g€<j0- Further
more, by a theorem of Nehari |<p(z)|(l — |z|2)2 is bounded (actually ^6). Thus 
<p belongs to the Bers class B(G0) of bounded quadratic differentials with respect 
to the group G0. The Bers map is an injection T(G^)-*B(GQ). 

It is known that the image of T(G0) under the Bers map is open, and as a vector 
space JB(<J0) has a natural complex structure. The mapping identifies T(G0) with 
a certain open subset of B(G0) which in turn endows T(GQ) with its own complex 
structure. If S is of type (/?, m) the complex dimension is 3p — 3+m. The nature 
of the subset that represents T(p,m) in c3p""3+m is not well known. For instancel 
it seems to be an open problem whether T(l,l) is a Jordan region in C. 

The case where G=I, the identity group, is ot special interest because it is so 
closely connected with classical problems in function theory. An analytic function <p, 
defined on U, will belong to T(I) if and only if it is the Schwarzian Sf of a schlicht 
(injective) function on U with a q.c. extension to the whole plane. The study of 
such functions has added new interest to the classical problems of schlicht functions. 

To illustrate the point I would like to take a minute to tell about a recent beautiful 
result due to F. Gehring. Let S denote the space of all cp = Sf, f analytic and 
schlicht in £/, with the norm ||çj||=sup (l-|z|2)a|r/)(z)|, and let T=T(I) be the 
subset for which / has a q.c. extension. Gehring has shown (i) that T=IntS, 
(ii) the closure of T is a proper subset of S. To prove the second point, which 
gives a negative answer to a question raised by Bers maybe a dozen years ago, 
he constructs, quite explicitly, a region with the property that no small deformation, 
measured by the norm of the Schwarzian, changes it to a Jordan region, much less 
to one whose boundary is a quasicircle. I mention this particular result because 
it is recent and because it is typical for the way q.c. mappings are giving new impulses 
to the classical theory of conformai mappings. 

In the finite dimensional case T(p, m) has a compact boundary in B(G0). It 
is an interesting and difficult problem to find out what exactly happens when cp 
approaches the boundary. The pioneering research was carried out by Bers and 
Maskit. They showed, first of all, that when cp approaches a boundary point the 
holomorphic function / will tend to a limit which is still schlicht, and the groups 
G tend to a limit group which is Kleinian with a single, simply connected invariant 
region. Such groups were called jff-groups (B stands either for Bers or for boundary) 
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in the belief that any such group can be obtained in this manner. It can happen 
that the invariant simply connected region is the whole set of discontinuity ; such 
groups are said to be degenerate. Classically, degenerate groups were not known, 
but Bers proved that they must exist, and more recently J0rgensen has been able 
to construct many explicit examples of such groups. 

Intuitively, it is clear what should happen when q> goes to the boundary. We 
are interested to follow the q.c. images /(£/*). In the degenerate case the image 
disappears completely. In the nondegenerate case the fact that one approaches 
the boundary must be visible in some way, and the obvious guess is that one or 
more of the closed geodesies on the surface is being pinched to a point. In the limit 
f(S*) would either be of lower genus or would disintegrate to several pieces, and 
one would end up with a more general configuration consisting of a "surface with 
nodes", each pinching giving rise to two nodes. 

A lot of research has been going on with the intent of making all this completely 
rigorous, and if I am correctly informed these attempts have been successful, but 
much remains to be done. This is the general trend of much of the recent investiga
tions of Bers, Maskit, Kra, Marden, Earle, J0rgensen, Abikoff and others; I hope 
they will understand that I cannot report in any detail on these theories which are 
still in status nascendi. 

In a slightly different direction the theory of Teichmüller spaces has been extended 
to a study of the so-called universal Teichmüller curve, which for every type (/?, m) 
is a fiber-space whose fibers are the Riemann surfaces ofthat type. A special problem 
is the existence, or rather non-existence, of holomorphic sections. 

The Bers mapping is not concerned with extremal q.c. mappings, and it is rather 
curious that one again ends up with holomorphic quadratic differentials. The Bers 
model has a Kählerian structure obtained from an invariant metric, the Petersson-
Weil metric, on the space of quadratic differentials. The relation between the 
Petersson-Weil metric and the Teichmüller metric has not been fully explored 
and is still rather mystifying. 

8. Kleinian groups. I would have preferred to speak about Kleinian groups in 
a section all by itself, but they are so intimately tied up with Teichmüller spaces that 
I was forced to introduce Kleinian groups somewhat prematurely. I shall now 
go back and clear up some of the terminology. 

It was Poincaré who made the distinction between Fuchsian and Kleinian groups 
and who also coined the names, much to the displeasure of Klein. He also pointed 
out that the action of any Möbius transformation extends to the upper half space, 
or, equivalently, to the unit ball in three-space. Any discrete group of Möbius 
transformations is discontinuous on the open ball. Limit points are defined as in 
the Fuchsian case ; they are all on the unit sphere, and the limit set A may be regarded 
either as a set on the Riemann sphere or in the complex plane. The elementary 
groups with at most two limit points are usually excluded, and in modern terminology 
a Kleinian group is one whose limit set is nowhere dense and perfect. A Kleinian 
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group may be looked upon as a Fuchsian group of the second kind in three dimensions. 
As such it cannot have a fundamental set with finite non-euclidean volume. Therefore, 
the relatively well developed methods of Lie group theory which require finite Haar 
measure are mostly not available for Kleinian groups. However, the important 
method of Poincaré series continues to make sense. 

Let G be a Kleinian group, A its limit set, and Q the set of discontinuity, that 
is to say the complement of A in the plane or on the sphere. The quotient manifold 
Q/G inherits the complex structure of the plane and is thus a disjoint union of 
Riemann surfaces. It forms the boundary of a three-dimensional manifold M(G) = 
=B(l)uQ/G. 

What is the role of q.c. mappings for Kleinian groups? For one thing one would 
like to classify all Kleinian groups. It is evident that two groups that are conjugate 
to each other in the full group of Möbius transformations should be regarded as 
essentially the same. But as in the case of quasifuchsian groups two groups can also 
be conjugate in the sense of q.c. mappings, namely if G / =/G/" 1 for some q.c. 
mapping of the sphere. In that case G' is a q.c. deformation of G, and such groups 
should be in the same class. 

But this is not enough to explain the sudden blossoming of the theory under the 
influence of q.c. mappings. As usual, linearization pays off, and it has turned out 
that infinitesimal q.c. mappings are relatively easy to handle. An infinitesimal q.c. 
mapping is a solution of f2=v where the right-hand member is a function of class L°°. 
This is a non-homogeneous Cauchy-Riemann equation, and it can be solved quite 
explicitly by the Pompeiu formula, which is nothing else than a generalized Cauchy 
integral formula. In order that / induce a deformation of the group v must be 
a Beltrami differential, v€BelG, this time with arbitrary finite bound. There is 
a subclass N of trivial differentials that induce only a conformai conjugation of G, 
and the main theorem asserts that the dual space of Bel G/N can be identified 
with the space of quadratic differentials on Q(G)/G which are of class L1. 

This technique is particularly successful if one looks only at finitely generated 
groups. In that case the deformation space is finite dimensional, so that there are 
only a finite number of linearly independent integrable quadratic differentials. 
This result led me to announce, somewhat prematurely, the so-called finiteness 
theorem: If G is finitely generated, then S=Q(G)fG is a finite union of Riemann 
surfaces of finite type. I had overlooked the fact that a triply punctured square 
carries no quadratic differentials. Fortunately, the gap was later filled by L. Green-
berg, and again by L. Bers who extended the original method to include differentials 
of higher order. With this method Bers obtained not only an upper bound for the 
number of surfaces in terms of the number of generators, but even a bound on the 
total Poincaré area of S. 

It was not unreasonable to expect that finitely generated Kleinian groups would 
have other simple properties. For instance, since a finitely generated Fuchsian 
group has a fundamental polygon with a finite number of sides one could hope that 
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every finitely generated Kleinian group would have a finite fundamental polyhedron. 
All such hopes were shattered when L. Greenberg proved that a degenerate group 
in the sense of Bers and Maskit can never have a finite fundamental polyhedron. 
Groups with a finite fundamental polyhedron are called geometrically finite, and 
it has been suggested that one should perhaps be content to study only geometrically 
finite groups. With his constructive methods that go back to Klein, Maskit has been 
able to give a complete classification of all geometrically finite groups, and Marden 
has used three-dimensional topology to study the geometry of the three-manifold. 
These are very farreaching and complicated results, and it would be impossible for 
me to try to summarize them even if I had the competence to do so. 

9. The zero area problem. An interesting problem that remains unsolved is the 
following: Is it true that every finitely generated Kleinian group has a limit set with 
twodimensional measure zero? 

The most immediate reason for raising the question is that it is easy to prove the 
corresponding property for Fuchsian groups of the second kind, two-dimensional 
measure being replaced by one-dimensional. How does one prove it? If the limit 
set of a Fuchsian group has positive measure one can use the Poisson integral to 
construct a harmonic function on the unit disk with boundary values 1 a.e. on the 
limit set and 0 elsewhere. If the group is finitely generated the surface must have 
a finitely generated fundamental group, and it is therefore of finite genus and connec
tivity. The ideal boundary components are then representable as points or curves. 
If they are all points the group would be of the first kind, and if there is at least one 
curve the existence of a nonconstant harmonic function which is zero on the boundary 
violates the maxium principle. Therefore the limit set must have zero linear measure. 
The proof is thus quite trivial, but it is trivial only because one has a complete 
classification of surfaces with finitely generated fundamental group. 

For Kleinian groups it is easy enough to imitate the construction of the harmonic 
function, which this time has to be harmonic with respect to the hyperbolic metric 
of the unit ball. If the group is geometrically finite this leads rather easily to a proof 
of measure zero. For the general case it seems that one would need a better topolo
gical classification of three-manifolds with constant negative curvature. It is therefore 
not suprising that the problem has come to the attention of the topologists, and 
I am happy to report that at least two leading topologists are actively engaged in 
research on this problem. I believe that this pooling of resources will be very fruitful, 
and it would of course not be the first time that analysis inspires topology, and vice 
versa. 

Some time ago W. Thurston became interested in a topological problem concerning 
foliations of surfaces, and he proved a theorem which is closely related to Teichmüller 
theory. I have not seen Thurston's work, but I have seen Bers' interpretation of 
it as a new extremal problem for self-mappings of a surface. It is fascinating, and 
I could and perhaps should have talked about it in connection with the Teichmüller 
extremal problem, but I am a little hesitant to speak about things that are not yet 



82 Lars V. Ahlfors 

in print, and therefore not quite in the public domain. Nevertheless, since many 
exciting things have happened quite recently in this particular subject, I am taking 
upon myself to report very informally on some of the newest developments, including 
some where I have to rely on faith rather than proofs. 

Thurston has now begun to apply his remarkable geometric and topological 
intuition and skill to the problem of zero measure. I certainly do not want to preempt 
him in case he is planning to talk about it in his own lecture, and I have seen only 
glimpses of his reasoning, but it would seem that he can prove zero area for all 
groups that are limits, in one sense or another, of geometrically finite groups. This 
would be highly significant, for it would show that all groups on the boundary of 
Teichmüller space have limit sets with zero measure. It would neither prove nor 
disprove the original conjecture, but it would be a very big step. Personally, I feel 
that a definitive solution is almost imminent. 

Very recently there was a highly specialized conference on Riemann surfaces in 
the United States, and there was an air of excitement caused not only by what Thurston 
had done and was doing, but also by the presence of D. Sullivan who had equally 
fascinating stories to tell. Sullivan, too, has worked hard on the area problem, and 
he has come up With a by-product that does not solve the problem, but is extremely 
interesting in itself. He applies the powerful tool of what has been called topological 
dynamics. If a Lransfuimatiuii gioup acts on a measure space, the space splits into 
two parts, a dissipative part with a measurable fundamental set, and a recurrent 
part whose every measurable subset meets infinitely many of its images in a set of 
positive measure. This powerful theorem, which goes back to E. Hopf, does not 
seem to have been familiar to those who have approached Kleinian group from the 
point of view of q.c. mappings. The dissipative part of a finitely generated group is 
the set of discontinuity, and nothing more; this is a known theorem. The recurrent 
part is the limit set, and it is of interest only if it has positive measure. But even if 
the area conjecture is true Sullivan's work remains significant for groups whose 
limit set .is the whole sphere. 

Sullivan has several theorems, but the one that has captured my special interest 
because I understand it best asserts that there is no invariant vector field supported on 
the limit set. If the limit set is the whole sphere there is no invariant vector field, period. 
In an equivalent formulation, the limit set carries no Beltrami differential. It was 
known before that there are only a finite number of linearly independent Beltrami 
differentials on the limit set of a finitely generated Kleinian group, but that there are 
none was a surprise to me, and Sullivan's approach gives results even for groups that 
are not finitely generated. Sullivan's results, taken as a whole, give a new outlook on 
the ergodic theory of Kleinian groups. They are related to, but go beyond the results 
of E. Hopf which were already considered deep and difficult, and as a corollary 
Sullivan obtains a strengthening of Mostow's rigidity theorem. I cannot explain 
the proofs beyond saying that they are very clever and show that Sullivan is not only 
a leading topologist, but also a strong analyst. 
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10. Several dimensions. In the remaining time I shall speak briefly about the gene
ralizations to more than two dimensions. There are two aspects: q.c. mappings 
per se, and Kleinian groups in several dimensions. 

The foundations for q.c. mappings in space are essentially due to Gehring and 
J. Väisälä, but very important work has also been done in the Soviet Union and 
Roumania. I have already mentioned, in passing, that correct definitions can be 
based on modules of curve families, and the modules give the only known workable 
technique. Otherwise, the difficulties are enormous. It is reasonably clear that the 
Beltrami coefficient should be replaced by a matrix-valued function, but this function 
is subject to conditions that were known already to H. Weyl, but which are so 
complicated that nobody has been able to put them to any use. Very little is known 
about when a region in «-space is q.c. equivalent to a ball, and there is not even an 
educated guess what Teichmiiller's theorem should be replaced by. On the positive 
side one knows a little bit about boundary correspondence. 

In two dimensions there is not much use for mappings that are locally q.c. but 
not homeomorphic, for by passing to Riemann surfaces they can be replaced by 
homeomorphisms. In several dimensions the situation is quite different, and there 
has been rapid growth of the theory of so-called quasiregular mappings from one 
77-dimensional space to another. It has been developed mostly in the Soviet Union 
and Finland, and this is perhaps a good opportunity to congratulate the young 
Finnish mathematicians to their success in this area. In the spirit of Rolf Nevanlinna 
they have even been able to carry over parts of the value distribution theory to 
quasiregular functions. In fact, less than a month ago I learned that Rickman 
has succeeded in proving a generalization of Picard's theorem that I know they 
have been looking for for a long time. It is so simple that I cannot resist quoting the 
result: There exists q = q(n,K) such that any K-q.c. mapping f:Rn-+Rn — 
{al9 ..., aq) is constant. (They believe that the theorem is true with q=2.) 

As for Kleinian groups, they generalize trivially to any number of dimensions, 
and the distinction between Fuchsian and Kleinian groups disappears. Some pro
perties that depend purely on hyperbolic geometry will carry over, but they are not 
the ones that use q.c. mappings. However, infinitesimal q.c. mappings have an 
interesting counterpart for several variables. There is a linear differential operator 
that takes the place of /- , namely Sf=\{Df+Df) — (\ln) tr Df> 1„ which is a sym
metric matrix with zero trace. It has the right invariance, and the conditions under 
which the Beltrami equation Sf=v has a solution can be expressed as a linear 
integral equation. The formal theory is there, but it will take time before it leads 
to tangible results. 

My survey ends here. I regret that there are so many topics that I could not even 
mention, and that my report has been so conspicuously insufficient as far as research 
in the Soviet Union is concerned. I know that I have not given a full picture, but 
I hope that I have given you an idea of the extent to which q.c. mappings have 
penetrated function theory. 
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Commutators, Singular Integrals 
on Lipschitz Curves and Applications 

A. P. Calderón 

The topics discussed in this lecture had their origin in the theory of linear partial 
differential equations. In order to explain how the problem of the so-called commu
tators and that of the Cauchy integral on Lipschitz curves arose, I will recall and 
analyze some of the modern methods employed in the theory of linear partial dif
ferential equations, and in particular that of the pseudodifferential operators which 
became widely used in the last decade. 

Let us consider the basic idea of the method of pseudo-differential operators. 
Every linear partial differential operator is a sum of monomial operators 

(i) «(.)(£)". 
and the operator (djdxf applied to the function f(x) can be thought of as multipli
cation of the Fourier transform /(£,) of / by the function (— /<!;)", that is, 

a(x)(dldxY = aOc)Ku9 where (Kjy =/«)(- i 'ö"-

Consequently, a linear differential operator L can be expressed as 

... Lf=Zaa(x)KJ,(Kjr=AZK-i®", or 

Lf = j£örf2 aa(x)(-i®"e-ìxiA® dl 

Now, pseudo-differential operators are obtained by replacing the function 

(3) 2a.(x)(r-iQT 

in the preceding expression, which in the case of differential operators is a polynomial 
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in ê, by more general functions p(x, Ç) in such a way that the resulting class of 
operators be closed under composition, adjunction, inversion if possible, etc. One 
should observe here that if the class is to be closed under composition, differential 
operators contained in it should be freely composable. As is well known, a differen
tial operator can be freely composed with itself only if its coefficients are infinitely 
differentiable. Thus, classes of pseudo-differential operators which are closed under 
composition cannot possibly contain differential operators with non-smooth co
efficients. 

Another method, which preceded chronologically the one above and avoids this 
obstacle, is that of the singular integral operators. It consists in writing the poly
nomial in (3) as 

(2^r 2«.(*)(-»'ö" = fe<*. 0+r(x, QMQT 

where m is the degree of the polynomial, <p(Ç) is a positive infinitely differentiable 
function such that <•/>(£)=|<j; I if |£|>1, and 

Then if 

(4) 

?(*,Q = |É|-" Zfl„(*)(-iö". 
|a| = NI 

Kf = f q(x, Oe~ix•« A O dt + Sf, 

Sf = fr(x9Ç)e-t*-tAÇ)dZ9 

we have 
(5) Lf=KAmf, where (A/y = ? « ) / « ) • 

The function q(x, £) is homogeneous of degree zero in £, and, as is readily 
verified, the operators S and S(d/dx) are bounded in L2, or more generally in 
Lp, l</?<°°, provided the coefficients aa(x) are bounded. Now the operators 
K are generalized in the following manner: one replaces q{x, Ç) by a function which 
is homogeneous of degree zero in £ and bounded but otherwise arbitrary, and 
S by any operator with the properties described above. Evidently, q(x, Ç) cannot 
be assumed to be more regular, as a function of x, than the coefficients ôf the 
differential operators we want to be included in the theory. On the other hand, if 
one considers general differential operators whose coefficients have a certain degree 
of regularity, it seems reasonable to exclude those whose terms of highest order 
have coefficients not satisfying at least a Lipschitz condition. This becomes clear 
if one considers the case of first order operators. If one allows the coefficients not 
to satisfy a Lipschitz condition there can arise pathologies such as the nonuniqueness 
of trajectories of the associated vector fields. This suggests restricting the generali
zation to the operators K in (4) to those for which the function q(x, Ç) is bounded 
homogeneous of degree zero and regular in f and Lipschitzian in x. Then every 
differential operator whose coefficients are bounded and Lipschitzian for the highest 
order terms and merely bounded for the remaining ones can be represented as in 
(5) with such a q(x, Ç). However, in order that this description be useful the operators 
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K in (4) thus generalized should form an algebra under composition. This is indeed 
the case, and this algebra becomes an instrument which allows us to manipulate 
effectively general linear differential operators and obtain for them results on exist
ence, uniqueness, a priori estimates, etc. Even in the case of operators with smooth 
coefficients this allows us to obtain estimates which depend only on the bounds of 
the coefficients and the bounds of the first order derivatives of the coefficients of 
highest order terms. But let us return to the generalized operators K as in (4). 
The problem of showing that the composition of two such operators is one of the 
same kind can be reduced without great difficulty to the following problem: let 
A be, in the case of one variable, the operator multiplication by the bounded 
Lipschitzian function a(x) and Hf the Hilbert transform of / . As is well known, 
this transform can be expressed as follows 

(#/)(*) = y fsgte-KfiQdt 
— oo 

and this makes it clear that A, H and AH are operators of the type of the gene
ralized K9 and the simplest of their kind. In order to show that HA is of the same 
type, since 

HA = AH + (HA-AH), 

it would suffice to show that (HA-AH)D, D = d/dx, is bounded in Lp, l<:/><°°. 
This was done in 1965 in [4] with the aid of the theory of analytic functions and 
a result closely related to an old conjecture of Littlewood. If we denote now by 
Ca(K) the commutator of K and A, that is AK—KA, then 

(AH-HA)D = Ca(H)D = Ca(HD)-HCa(D) 

and since the operator Ca(D) is multiplication by a'{x)9 which is a bounded 
function if a(x) is Lipschitzian, HCa(D) is bounded in Lp and the continuity 
of Ca(H)D is equivalent to that of Ca(HD). Now, it is easy to see that 

(6) C.(ffl»/=p.v. Y^[!®=^]mdy. 

The integral on the right, which in the case a(x)=x reduces to the Hilbert trans
form, is the one studied in [4] and is the so-called first commutator. Thus, its role 
in the theory of partial differential equations becomes apparent. 

Next let us consider some generalizations of (6) whose interest we will explain 
later. The first one 

—«a y y 

is the so-called 777th commutator. This equality is not evident but also not difficult 
to prove. Aside from the intrinsic interest of the left-hand side of (7) and the analogy 
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of the right-hand sides of (6) and (7), the integral in (7) is a special case of 

(8> *»• T é - y A ^ r 1 } ™ * * 

where F is an analytic function of its argument. Several classical integrals are 
special cases of (8). Let r be the graph of the real valued function a(x), x£R, 
that is, the range of the function x+ia(x) in the complex plane, and let us regard 
the function f(x) as a function on r. Consider now the Cauchy integral of this 
function on r 

Then the limit of G(z) when z approaches x+ia(x) from above T and non-
tangentially, if it exists, is given by 

and this integral, except for ihe pie^ence of the fctUoi {i-riu(y)] which can be 
incorporated in the function f(y), is of the form (8). Thus, the study of the behaviour 
at the boundary of analytic functions given by integrals of the Cauchy type reduces 
to the study of an integral of the type (8). 

On the other hand, let us consider the derivative at the point x+ia(x) and in 
the direction of the vector (a'(x), — 1) of the logarithmic potential of the mass 
distribution f(y) dy on T. This derivative, if it exists, is given by the following 
expression 
tM\\ . 1 *f \ i 1 T° (x-y)a'(x)-a(x) + a(y) . 

which is also essentially of the form (8). Similarly, the value on T of the potential 
of a double layer distributed on T is given by the transpose of the preceding 
expression. As is well known, these potentials are used to obtain and represent 
solutions of boundary value problems for the Laplace equation such as the Dirichlet 
problem, the Neumann problem, etc. The Neumann problem, for example, reduces 
to the integral equation obtained by equating (10) to the given function on the 
boundary T. The applicability of this method depends on T being such that the 
resulting integrals have reasonable continuity properties. However, it depends less 
on the specific type of boundary value problem or equation under consideration 
than the methods using potential theory which are inapplicable to the Neumann 
problem, for example. For this reason it is natural to expect that the study of the 
integral (8) and its generalizations will yield an effective tool for the treatment of 
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boundary value problems for elliptic equations in domains with nonregular 
boundaries. In fact, some interesting results have already been obtained. 

Having justified the interest of the integral (8), let us see what can be said about it. 
In the first place we observe that if one develops in power series the function F in 
(8), that integral appears as a series of integrals as in (7). Thus, it would suffice 
in principle to study these, which are apparently simpler. As was mentioned before, 
the case m = 1 of (7) could be treated by means of a technique based on the use of 
analytic functions. Unfortunately, this method fails utterly if 777 s> 2, and this case 
resisted all efforts to extend to it the results known for 777 = 1 until 1975, when 
R. Coifman and Y. Meyer [11] settled the case 777=2 with an entirely different 
approach. They succeeded by using simultaneously the Fourier and the Mellin 
transforms and certain real variable methods of M. Cotlar and C. P. Calderón. 
Soon afterwards they extended their results to all 777, and more recently and by 
using a generalization of the theory of the function g of Littlewood and Paley, 
they obtained the continuity in Lp, l</?<°°, of the left-hand side of (7) with 
HDm replaced by a pseudo-differential operator in S™0 in several variables. Un
fortunately, the estimates for the norms of the operators (7) obtained by these 
methods do not allow to sum the series resulting from the power series expansion of 
the function F in (8). However, last year it was observed, [5], that the technique 
of analytic functions used in the treatment of (6), strengthened by the results on 
weighted inequalities between a function, its maximal function and area function 
of B. Muckenhoupt, R. P. Gundy and R. L. Wheeden, [20], and certain results 
on conformai mapping, is applicable to the Cauchy integral in (9). It was already 
known that from results on the Cauchy integral there follow corresponding results 
on the integral in (8). Specifically, it was shown that the integral in (8) re
presents a bounded operator in Lp

9 l</?<:°°, provided that Hff'IL^ga, where 
Q is the radius of a disc centered at the origin where F is analytic, and a is an 
absolute positive constant. By means of the so-called rotation method one can 
extend this result to functions of several variables and prove that, for example, 
if k(x9 z)9 x, z£Rn

9 is bounded, homogeneous of degree —77 and even (odd) 
in z9 F is odd (even) and analytic in a disc of radius Q centered at the origin, 
and a(x) is Lipschitzian and such that ||Vfl||oo<^a, then the operator 

di) p.v. J HX, x-y)F[a(lZa
y\

y)]f(y) dy 

is well defined and continuous in Lp
9 1 </?<°°. Later on we shall outline the proof 

of the results of R. Coifman and Y. Meyer as well as those on this last integral. 
Before proceeding to describe some of the applications of the foregoing results, 

I would like to mention still another result on commutators due to R. Coifman, 
R. Rochberg and G. Weiss, [17], which is of a different character. Let k(x)9 x£R", 
be homogeneous of degree —77, of mean value zero on |x| = l, and sufficiently 
regular in x^O, and K the operator convolution with k, then if a(x) is of bounded 
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mean oscillation the operator 

C - ( * ) / = p.V.f(a(x)-a(y))mk(x-y)f(y)dy ' 

is bounded in Lp
9 l<p<:°°. 

Now let us turn to applications. Let f bea simple rectifiable arc in the complex 
plane. Then the function 

G(z)= i ; / w d 
v ' Ini J W — Z ' 27UZ J w — z 

where f(w) is a function on r which is integrable with respect to arc length, has 
a limit almost everywhere in f as z approaches nontangentially a point of J7. In 
the case of several variables one has similar results about double layer potentials 
and derivatives of single layer potentials of functions defined on graphs of functions 
which are of bounded variation in the sense of Tonelli. This gives an affirmative 
answer to old problems about the existence of such limits. 

Another application is the following result due to D. E. Marshall (personal 
communication) which confirms an old conjecture of A. Denjoy (C. R. Acad Sci. 
Paris 149 (1909), 258—260): the analytic capacity y(E) of a compact subset 
E of a rectifiable arc in the complex plane is zero if and only if its one-dimensional 
Hausdorff measure vanishes. 

Finally, I will mention some applications to the theory of partial differential 
equations which motivated the study of our subject. In the first place, on the basis 
of the preceding results it is possible to construct algebras of singular integral operators 
[6] which allow to extend automatically to equations with bounded coefficients and 
terms of highest order with bounded Lipschitzian coefficients the results on the 
uniqueness of the Cauchy problem and the existence and uniqueness of solutions 
of totally hyperbolic systems obtained in [6] and [7]. On the other hand, results 
such as the ones obtained by E, Fabes, M. Jodeit and N. M. Riviere for the Laplace 
equation, [9], with the method of the integral equations on the boundary described 
earlier, are surely also obtainable for much more general elliptic systems. Let us 
see what these results are. Let Q be a domain in Rn with boundary dQ of class C1. 
Let Ny be the interior normal unit vector at the point y of dQ, and Ay a cone 
with vertex at y9 with fixed height and aperture, and except for its vertex, entirely 
contained in Q. Then, in the case of the Dirichlet problem, one has the following: 
if g(y) is a function in Lp(dQ)9 l</7<:°°, there is a unique function u(x)9 har
monic in Q9 and such that 

u*(y) = sup{|ti(x)| \xeAy}£Lp(dQ), tim{u(x)\xeAy} = g(y) p.p. 

This result was obtained for the first time by B. E. J* Dahlberg with different 
methods which show that if p^*2 the same holds even if dQ is merely Lipschitzian. 
If in addition g(y)^L{(dQ), then [VM|*(JO, whose definition is similar to that 
iof u*(y), also belongs to Lp{pQ)> On the other hand, in the case of the Neumann 
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problem, one h^s that if g(y)£Lp(dQ) there exists a harmonic function u(x), 
which is unique up to an additive constant, such that |Vw|*(.y) is in Lp(dQ) and 

lim {Vw (x) *Ny\xe Ay} = g (y) p.p. 

These results are also valid if dQ is merely Lipschitzian, provided that the local 
oscillation of Ny does not exceed a constant which depends on p but not on Q, 
or only on certain global properties of Q. 

An interesting consequence of the preceding results is the following. Given 
p, 1 </?<:«>, there is a positive c such that if the local oscillation of the normal 
N to the boundary dQ of a Lipschitzian domain Q is less than c, then every 
harmonic measure on dQ is absolutely continuous with respect to surface area and 
has a density in Lp(dQ). 

The method of R. Coifman and Y. Meyer. We shall now outline the elegant way 
in which these authors treat the problem of the commutators by its reduction to the 
continuity of certain multilinear operators. We shall confine ourselves to the bilinear 
case where the ideas and techniques they employ are already apparent. 

THEOREM 1. Let 0(1)(£) and <^(2)(0 be two infinitely differentiable functions 
with compact support in Ru such that at least one of them vanishes in a neighborhood 
of the origin. Let (pt(x) = t~"(p(x/t)9 / > 0 , where <p(x) is the inverse Fourier trans
form of 0(£). Let 

o t 

where m(t) is a bounded function. Then 

llftll<c||/illill/.IUIML 
where c depends only on the functions ^{x). 

In order to show this let us assume first that both functions @U)(0 vanish near 
the origin, that is, they both have support in 0<o«s | £ | < i . It is easy to see that 
if fj(£) has compact support and equals 1 in Ç*^2b, and fj(£)=fj(— £), then 

g = / i»r*[( / i*P, ( 1 ))( / .* V»(,))]ni(/)-^ 

and 

(12) J hg dx = ff (h * ,h) (A * cpl») (.A * pf•>) m (0 - ^ dx. 
0 ' 

If we assume now that f2 is bounded then |(/2*<p|2))|2(d*fifr/0 is a Carleson 
measure, that is, if Q is a cube in R"X{t^0} with base B in / = 0, and denote 
this measure by pi, then ju(0^c||/2lllL|^|- Hence, as is well known, 

f\(h*V,)\*dii^c\\h\\l\\ft 211 co-
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On the other hand, by taking Fourier transforms one verifies readily that 

ff\(f1*cp^^^c\\f1r 2 

and using these inequalities in estimating (12) the desired result follows. 
In case one of the functions <p(l)(£)5 call it simply 0(E), does not vanish near 

the origin while the other vanishes in |£|<fl, one decomposes 0 = $ + §, where 
$ vanishes in \Ç\*^a/8 and § has support in \Ç\^a/4. The contribution of $ is 
treated exactly as is the preceding case. The contribution of § is treated essentially 
the same way, with the difference that now one chooses fj(Ç) so that it equals 
1 in a/4^ |£| ^ 2 b and vanishes near the origin, and then (12) can again be estimated 
as above. 

REMARK. A closer examination of the preceding argument shows that if 0^(0 
is replaced by eiuJ'*0u)(l;), then 

||g|]2 ̂  c(i + K|)'"2(i + \ujr*\\fMfJi\- IMI-

where again c depends only on the function (p^(x). 

THEOREM 2. Let p(x, Q. x = (x1. x2)£RnYRn, £ = (£l3 Ç2)fR
nyRn, he a symbol nf 

class S®0 and p(x9D) the corresponding pseudo-differential operator. Then if 
f(x)—fi(xùA(x2) and g is the restriction to the diagonal xx=x2 of p(x,D)fwe 
have 

Hgll^ciiAiuiAiu. 

For the sake of simplicity we shall only consider the case where p is independent 
of x and vanishes near the origin. We shall show that g is a convergent integral 
of operators like those in the preceding theorem. First we take two infinitely dif
ferentiable functions with compact support 0(C) and $(£), Ç£Rn, one of which 
vanishes near the origin, and such that 

0 l 

Then if 

and 

ft«i, «>) = q(sjt, wow«i)#(a+*({i)«wi 
ft (Si. W = j V U l »J+'«*-*) m(t, «i, «a) duj. du2, 

we have \m(t,u1,u^)\<ck(l + \u1\ + \u2\)~
k, \/k. Now, if xÇ.R", then 
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and replacing p by rq and using the preceding identities we obtain 

g = ïéf 7/^1Mll+*2 ' , , l2~* ^ 
•/i(^i)/2(^2) m (t, Wi, w2) rfwi du2 d^ d£2 — 

= / / ( ( ^ 1 * / i ) W 2 * / 2 ) - / ( ^ , 1 * / i ) ( ^ 2 * / 2 ) ) m ( / , ul9 M 2 ) -^ -
o l 

where <pM is the inverse Fourier transform of eu"*0(C). Now an application of 
the preceding theorem yields the desired result. 

THEOREM 3. Let p(x, D) be a pseudo-differential operator of type S^0 and a(x) 
a function with bounded derivatives. Let Ca denote the commutator of multiplication 
by a(x) and 

g = [CaP(^D)]df/dx1; 
then 

llgBi<c||/llil|Vfl|U. 

We shall assume again that p is independent of x. Then, as is readily verified 

g = ^ r / f i [ p ( 0 - P « + i j ) ] c - ' x ' « + ' ) / ( f i ) f l ( i | ) d { d i î . 

Now we decompose 

€ i [ p t t ) - P « + l)] = 2 <ljtt> rÙflj + PiQrjiZ, ifrlì-ptt + 'ÙSjtt, t,)t,j 

where the qi are functions in the class S^Q multiplied by homogeneous functions 
of degree zero, and the ri and Sj are homogeneous of degree zero and infinitely 
differentiable away from the origin. The preceding theorem applies to these functions 
thought of as symbols. If we denote now by B(u) ( / l 5 /2) the bilinear operator 
of the preceding theorem associated with the symbol w(<i;, rj). Then the following 
identities are readily verified 

B(qjrjj)(f,a) = B(qj)(f,da/dxj), 

B(p(Orj(L ti)fij)(f9 a) = B(rj)(p(D)f, da/dxj), 

Biptf + rtsjtf, 77)77,)(/, a) = p(D)B(Sj)(f, da/dxj) 

and an application of the preceding theorem yields the desired result. 

The method of the Cauchy integral« We will see now how the study of the integral 
(11) reduces to that of (8), this to that of (9), and in turn, this one to that of an 
integral similar to the one which appears in (6). Unfortunately the study of the 
latter is too complicated to allow a brief description and we are compelled to refer 
the reader to the literature in this respect (see [4] and [5]). 
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Let us write the integral (8) as 

g(5) = p.v. / t-^Fy K)
 t

K J-\f(s-t) 

and let us assume that for a given function F and a positive number M we have 
llgHi>^cll/llp whenever the function a(t) satisfies the condition \a(s)—a(t)\^ 
M\s—1\. We also write the integral in (11) as 

and, if v denotes a unit vector and t a real variable, we define 

+ oo 
• x 1 , / r ï f̂ a(x) — a(x—f)l *, g(x,v) = -k(x,v)p.v. J f-if[ t -\f(x-t) dt. 

Given our assumptions on the parities of k and F, integration with respect 
to v on the unit shpere I yields 

fg(x,v)da = g(x). 
s 

Now, on account of our assumptions on the one-dimensional case and bounded-
ness of k(x, y) we have 

/ \g(x+tv,v)\Pdt^c f \f(x+tv)\"dt 
CXI — o o 

and integrating with respect to x on a hyperplane perpendicular to v we obtain 
\\s(x9 v)||J<c||/||J. Integrating g(x,v) with respect to v on the unit sphere Z and 
using Minkowski's integral inequality we find that | |g||p<c||/ | |p . Next let us 
see how the integral (8) reduces to that in (9). Let L denote the operator represented 
by the integral (8) and 

AJ = p.y. f [s-t-z-1(a(s)-a(t))]-^f(s)ds. 
— oo 

Then, if F(z) is analytic in \z\^Q = sup\(a(s)—a(t))/(s—t)\, we have 

\Z\=Q 

Now, the integral defining Az is not of the form (9) because there the function 
a(x) is real, while in general this is not the case in Az. However, introducing the 
new variables i=t—ua(t), s=s—ua(s), where z"1=u+iv9 Az takes the form 
of the integral (9), except for the absence of the factor (1 +ia'(s)) in the integrand, 
which is irrelevant. This makes it possible to estimate the operator L by means 
of integrals of the form (9). 
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Finally, we will show how (9) can be estimated by means of integrals similar to 
that in (6). For this purpose let z(X) = t + iA,a(t), w(X)=s-\-iAa(s), and consider 
the operator 

A(i\t ™ y° f(s)ds 

A (A)j = P.V. / —TTT TTT- . 

This operator has essentially the form (9) for each real value of k, and for A=0 
it reduces to the Hilbert transform. Differentiating with respect to A one obtains 
the operator 

whose analogy with (6) is apparent. As was said before, the method used in the 
study (6) can be applied to B(X) and in this manner one obtains 

d\\A(mid^\\m\\ ^ c[l + \\A(X)\\?, 
where the norms denote operator norms in U and c denotes a constant depending 

on Hflf'lloo- From this differential inequality and the fact that A(0) is the Hilbert 

transform and consequently ||y4(0)||=7E, there follows that 

M(l) | | ^2n(l-\\a/\\00a-1)-1-n, a > 0, 

where a is an absolute constant. This result can be extended to Lp, l</?<°°5 

by means of well known techniques. 

Problems. There still are some basic unresolved problems in the subject we have 
been discussing. Consider the integral in (9). Are the results obtained so far about 
it also valid without restrictions on the norm ||fl'|L? It is natural to expect an 
affirmative answer to this question. However, since the integral depends on a in a non
linear fashion, a negative answer cannot be ruled out. More generally we may ask 
which are the function spaces in which the operator given by the integral (8) is 
continuous with the only condition that the quotient (a(x)—a(y))/(x—y) remain 
in a compact subset of the domain of analyticity of F. A clarification of this question 
would be very important in the study of boundary value problems for elliptic equa
tions in general Lipschitzian domains. The methods employed so far seem to be 
insufficient for the treatment of these problems. 

References 

For further references to the Russian literature on the subject of Cauchy integrals the reader 
should consult the survey article [22] by V. P. Havin. 

1. B. Bajsanski and R. Coifman, On singular intégrais, froc. Sympos. Pure Math., vol. 10, Amer. 
Math. Soc, Providence, R. I., 1967, pp. 1—17. 

2. Pointwise estimates for commutators of singular integrals, preprint. 
3. Bui Doan Khanh, Integrates singulières, commutateurs et la fonction / * , preprint. 



96 A. P. Calderóne Commutators, Singular Integrals on Lipschitz Curves and Applications 

4. A. P. Calderón, Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A. 53 
(1965), 1092—1099. 

5. Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci. 
U.S.A. 74 (1977), 1324—1327. 

6. Algebras of singular integral operators, Proc. Sympos. Pure Math., vol. 10, Amer. 
Math. Soc, Providence, R. I., 1967, pp. 18—55. 

7. Uniqueness in the Cauchy problem for partial differential equations, Amer. J. Math. 
80 (1958), 16—36. 

8. Integrales singulares y sus aplicaciones a ecuaciones diferenciales hiperbólicas, Cursos 
y seminarios de Matemàtica, Fase 3, Univ. Buenos Aires, 1960. 

9. A. P. Calderón, C. P. Calderón, E. Fabes, N. M. Riviere and M. Jodeit, Applications of the 
Cauchy integral on Lipschitz curves, Bull. Amer. Math. Soc. 84 (1978), 287—290. 

10. C. P. Calderón, On commutators of singular integrals, Studia Math. 53 (1975), 139—174. 
11. R. Coifman and Y. Meyer, Le Théorème des commutateurs de Calderón, Sem. Anal. Harm. 

Orsay, 1974—1975, pp. 37—46. 
12. On commutators of singular integrals and bilinear integrals, Trans. Amer. Math. 

Soc. 212(1975), 315—331. 
13. Commutateurs d'intégrales singulières, Sem. Anal. Harm. Orsay, No. 211, 1976. 
14. Commutateurs d'intégrales singulières et opérateurs multilineaires, preprint, Orsay 

1977. 
15. Opérateurs pseudo-differentiels et le théorème de Calderón, Sem. Anal. Harm. 

Orsay, 1976—1977, pp. 28—40. 
16. Multilinear pseudo-differential operators and commutators, preprint. 
17. R. Cûifiiîan, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several 

variables, Ann. Math. 103 (1976), 611—635. 
18. J. Cohen and J. A. Gosselin, On multilinear singular integrals in Rn, preprint. 
19. M. Cotlar, Condiciones de continuidad de operadores potenciales y de Hilbert, Cursos y semina

rios de Matematica, Fase 2, Univ. Buenos Aires, 1959. 
20. R. P. Gundy and R. L. Wheeden, Weighted integral inequalities for the non-tangential maximal 

function, Lusin area integral, and Walsh-Paley series, Studia Math. 49 (1975), 107—124. 
21. V. P. Ha vin, On the continuity in Lp of an integral operator with Cauchy kernel, Vestnik Lenin

grad Univ. 7 (1967), 103—108 (Russian). 
22. Boundary properties of integrals of Cauchy type and harmonic conjugate functions 

in domains with rectifiable boundary, Mat. Sb. (N. S.) 68 (110) (1965), 499—517. 
23. S. Janson, Mean oscillation and commutators of singular integral operators, Uppsala Univ. 

Report No. 5, 1977. 

UNIVERSIDAD DE BUENOS AIRES 

BUENOS AIRES, ARGENTINA 

UNIVERSITY OF CHICAGO 

CHICAGO, ILLINOIS 60637, U.S.A. 



Proceedings of the International Congress of Mathematicians 
Helsinki, 1978 

von Neumann Algebras 

A. Connes 

For every selfadjoint operator T in the Hilbert space H,1 f(T) makes sense 
not only in the obvious case where / is a polynomial but also if / is just measurable, 
and if fn(x)-+f(x) for all x£R (with (/,) bounded) then fn(T)-+f(T) weakly, 
i.e. <fn(T)£9i)+<f(T)£9ti)V£9fiCH. Moreover the set {f(T)9 f measurable} 
is the set of all operators S in H invariant under all unitary transformations of 
H which fix T. More generally, if (Tf), i=\, ..., k, are operators in H then the 
weak closure of the set of polynomials in Ti9 T* is the space of all operators in 
H invariant under all the unitaries fixing the Ti9 as follows from the bicommutation 
theorem of von Neumann (1929): 

A subset M of L(H) is the commutant of a subgroup G of the unitary group 
U(H) iff it is a weakly closed * subalgebra of L(H) (containing the identity \). 

Such an algebra is called a von Neumann algebra (or ring of operators). Any 
commutative one is of the form {f(T),f measurable} for a selfadjoint T, and 
hence is the algebra of essentially bounded measurable functions : L°° (Spectrum T, 
Spectral measure T). In general the center of M is a commutative von Neumann 
algebra and hence an L°°(X,p) for some measure space X, then M={(T(x))xex, 
T(x)£M(x)\/x£X} is the algebra of all essentially bounded measurable sections 
of a family M(x), x£X, of von Neumann algebras with trivial centers, i.e. factors. 
If M=n{G)' is, to start with, the commutant of the unitary representation n of 
the group G, by the above decomposition, n becomes the direct integral of factor 

With infinite countable orthonormal basis. 
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representations nx, i.e. representations with 7ix(G)' a factor. As subrepresentations 
of n correspond bijectively to selfadjoint idempotents of M=n(G)', to say that 
nx(G)' is a factor means that any two subrepresentations of nx have a common 
subrepresentation. In finite dimension this says that nx is a multiple of an irreducible 
subrepresentation, i.e. that nx(G)' is Mn{C), with n —multiplicity of nx, but in 
infinite dimension it is not always true that nx has an irreducible subrepresentation, 
or equivalently that a factor always has a minimal projection. In fact it does iff 
it arises from an honest factorization of H as a tensor product: H=H1®H2 

with Af={r<g>l, TdL(HÙ}. Murray and von Neumann discovered the existence 
of factors M not coming from the above trivial factorizations of H, and translating 
in terms of projections in M (i.e. selfadjoint idempotents e=e2=e*£M) the 
comparison of subrepresentations they obtained the following multiplicity theory: 

THEOREM Let M be a factor, then there exists a unique (up to normalization) 
injection of equivalence classes of projections of M in [0, + oo] such that: 

dimM (e + / ) = dimM (e) + dimM ( /) whenever e±f,2 

and its range is 

{0, 1, ... , n} then M is of type ln, 

{0, 1, . . . , oo} then M is of type I«,, 

[0, 1] then M is of type IIl5 

[0, + oo] then M is of type II«,, 

{0, + oo} then M is of type III. 

The simplest example of a factor not of type I is the group algebra of an infinite 
discrete group T such that the normal subgroup of finite classes is trivial. One lets 
R(r) be generated in l2(r) by the right translations, it is the commutant of the 
left translations, and is a factor. If ^ is the basis vector associated in /a(r) to the 
unit of r then the functional Tracer (A)=(AÇ, Ç) on R(T) satisfies: 

Tracer (AB) = Tracer (BA) \/A, B, 

Tracer (1) = 1 

which is impossible if M was of type 1^, i.e. isomorphic to L(H^) since every 
AdL(H^ is a finite sum of commutators. What is amazing in case 1^ (or 11^) 
is that the relative dimension of projection e£M (or equivalently the relative mul
tiplicity of subrepresentations of n) can be any real number a, even irrational, 
in [0, 1]. Moreover, if one defines for any selfadjoint T£M, its relative trace by 
TraceM(T) = /AdimM(rf^A) (where Je;i=l]_00jA](T) is the spectral resolution 
of T), then, while it is easy to check that TraceM(rr*)=TraceM(r5T)^0 VT^M, 

2 l.G.ef = fe = 0. 
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the additivity of the trace, TraceM(7\ + r2) = TraceM (7\) + TraceM (T2), \/Tl9 T2 

was another striking result of Murray and von Neumann. 
Around 1940 Gelfand and Naimark discovered a remarkable class of infinite 

dimensional algebras over C. Among all * algebras over C the C* algebras are 
characterized by the very simple condition [1]: 

||x|| = |/Spectral Radius x*x is a complete norm. 

The commutative ones (with unit) are canonically isomorphic to the algebra of 
continuous functions on their compact spectrum. Every normed closed * sub-
algebra of L(H) is a C* algebra and conversely every C* algebra has a faithful 
representation in a Hilbert space. If A = C(X) is a commutative C* algebra and 
7t a representation of A in H then each coefficient f-+(n(f)l;, Ç) is a positive 
linear functional on C(X), i.e. a Radon measure on X. In the noncommutative 
situation, positive linear functional (i.e. elements cp of A* with cp (x*x) ̂  0) 
always exist in profusion (thanks to the convexity of {x*x, x£A}) and each deter
mines a Hilbert space : the completion Hv of A with the scalar product (x, y)<p = 
cp(y*x) and a representation n^ of A m H^ by left multiplication. This extends 
the usual construction of L2(X, p) for a Radon measure \i on the compact space X9 

and as in the commutative case the integral extends from continuous functions to 
measurable functions, i.e. here to the von Neumann algebra n^A)" generated by 
A in H,,. 

As an example let us describe the non commutative analogue of the construction 
of the probability space associated with the experiment of coin tossing. Instead 
of the Radon measure p. on the cantor set, X=/J™ Xv9 Xv={a, b}, defined by 

/i(/i®/.®...®/JkOl) = 7?A'(/i) 
l 

one considers on the C* algebra A, inductive limit of the ®\M2(C), the positive 
linear functional Î' such that 

k 

^(jr!®^®...®^®!) = Jl (p(X;) 
1 

where cp is a positive linear functional on M2(C) with cp(])=l (such a <p is 
called a state, because it corresponds to a state of a quantum mechanical system 
with M2(C) as algebra of observables). Up to unitary equivalence cp is always 
of the form 

(p^ = ( T + I J X i 1 + ( T + I J A'22 VX = ̂ Xijie ***(&' 
The corresponding von Neumann algebras ^ = (7^ (A))" are factors of type III 
and R. Powers (motivated by quantum field theory) proved in 1967 that they are 
mutually nonisomorphic. Previously only finitely many nontype I factors were 
known. The problem of classification of von Neumann algebras up to spatial 
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isomorphism (i.e. as pairs (H, M)) was since the beginning of the theory reduced 
to the problem of algebraic isomorphism. (If M is a factor, then the isomorphisms 
of M with von Neumann algebras in H are parametrized up to equivalence by an 
integer «€{1, ...00} in the type I case, a real l€]0, +00] in the type II case and 
are all equivalent in the type III case.) Moreover an abstract * algebra M is a von 
Neumann algebra iff (1) it is a C* algebra (2) as a Banach space it is a dual [31]. 
Moreover the predual of a C* algebra M is unique, if it exists, and is the space 
of (7-additive linear functionals cp on M (i.e. (p(2Ea)=2<P(Ea) f° r anY family 
of pairwise orthogonal projections). A foliated manifold f gives rise in a natural 
way to such an abstract von Neumann algebra jR(f). Let Q be the set of leaves 
of f, a random operator T=(Tf)f€Q is a bounded measurable family of operators, 
Tf acting in L2(f) for all / . Sums, product and * are defined pointwise, and as 
in usual measure theory, one neglects any set of leaves whose union in V is negligible 
(here for the smooth measure class) and any random operator T with Tf=0 for 
almost all leaves. Thus i?(f) plays the role of the algebra of all bounded operators 
in "Z,2 (generic leaf of f)". It is not of type I in general, it is a factor iff f is 
ergodic (i.e. any measurable function on V, constant on the leaves, is a.e. constant), 
and can be of type 11^ or III. If A is a holonomy invariant transverse measure 
for f one can give a meaning to cp(T)=f Trace (Tf)dA(f) for every positive 
random operator T,d and this defines on the von Neumann algebia M of random 
operators (modulo equality A almost everywhere) a functional cp satisfying: 

(1) cp is a weight on M i.e. cp is a linear map from M+ to[0, + H » 9 (Sup TJ = 
Sup cp (Ta) for any increasing bounded family, and there are enough T with 
<p(jT)<œ to generate M. 

(2) cp is faithful: cp(T)>0,\/T>0 in M. 
(3) cp is a trace i.e. is unitarily invariant, cp(UTU~1)=cp(T). 
Here (3) is the translation of the holonomy invariance of A. 
Every von Neumann algebra M has a faithful weight; those which possess a faithful 

trace are called semifinite. The additivity of the trace of Murray and von Neumann 
shows that a factor fails to be semifinite iff it is of type III. Around 1950, Dixmier 
and Segal showed many important consequences of semifiniteness. One can define, 
as in usual integration theory, the Lp spaces by the norms 

||JC||P = ( T r a c e ^ l ) 1 ' * where x£M, \x\ = fx*x. 

Then L1 is the predual M+ , and the representation n of M by left multiplication 
in L2 satisfies the commutation theorem: 

7t(M)' = Jn(M)J, J:L2-+L\J2=l 

where / is the isometric involution x-+x* in L2. As a corollary one gets the 
commutation theorem for tensor products ((M1®M2) /=Mi®Af2

/) for Mx and 

3 This can be finite even if Trace Tf= + °° for all / £ ß , see [8] for more details. 
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M2 semifinite and for any unimodular locally compact group G the fact that the 
right regular representation generates the von Neumann algebra R(G) of left 
invariant operators in L2(G). The natural weight (pG(f)=f(e) (e the unit of G) 
on the convolution algebra R(G) is a trace iff G is unimodular. J. Dixmier obtained 
the above result also for nonunimodular G9 and it was Tornita who succeeded in 
proving the two other results (existence of (n, J) and commutation theorem for 
tensor products) for arbitrary von Neumann algebras — this theory, once supple
mented by the general theory of weights (Takesaki, Combes, Pedersen, Haagerup) 
can be summarized as follows: 

Instead of a trace, one starts with a faithful weight cp on M. The lack of tracial 
property for cp creates two natural scalar products cp(x*x) and cp(xx*) and hence 
a positive (unbounded) operator Av in the Hilbert space Hv of the first scalar 
product. In the group algebra situation H is identical with L2(G) and A^ is 
the multiplication by the module AG of G. In this special case, since AG i sahomo-
morphism (from G to Ä* ) it follows that the one parameter group of unitaries 
Ay normalizes R(G). Themost remarkable result of Tornita is that this is a general 
fact: 

THEOREM. Let M act in H^ by left multiplications, then A^MA~if = M \/t£R. 

This result became central when Takesaki discovered that the corresponding 
one parameter group of automorphisms of M (af(x)=A^xA~u\/t^R) is charac
terized (in its link with cp) by an algebraic form4 of the condition long known in 
quantum statistical physics as the Kubo Martin Schwinger condition. (If A is 
the algebra of observables, cp a statistical state, and crt the time evolution, a group 
of automorphisms of A, then (cp, a) satisfies the Kubo Martin Schwinger condi
tion at inverse temperature ß iff cp(xa_w(y)) = cp(yx) \/x, y£A. When A=L(H) 
and Gt(x) — enHxe~itH where H is the hamiltonian, the unique cp satisfying this 
condition is the Gibbs state x-*-Trace (e~ßHx)/TYa.ce (e~pH).) After the discovery 
of Powers in 1967 of the non isomorphism of the factors RÀ, /l6]0, 1[, Araki and 
Woods analyzed the infinite tensor products of finite dimensional factors by means 
of two invariants, computable in terms of the eigenvalue list, 

r^M) = {h£R\ \M®Rk is isomorphic to M), 

Q(M) = {X£R\\M®Rk is isomorphic to R^}. 

My point of departure was the existence of simple formulae relating, in the special 
case considered by Araki and Woods, those invariants and the Tornita—Takesaki 
theory, namely: 

,-UM) = D Sp A„ Q(M) = {e^T, Te U Ker <r"}. 
<P <P 

This suggested that one ought to study for their own sake the invariants $(M) = 

Identified by Haag Rngenhollz and Winnink in 1966. 
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fip Sp Ay and T(M) = \JV Ker<r^. The first question was computability. In the 
semifinite case, all weights cp are of the form cp(x)=TracçM(Qx) where Q is a 
positive operator and the spectrum of A^ is the closure of the set of ratios 
XJX2,Xi6SpectrumQ while at(x) = QuXQ~u for x£M, taking <p=TraceM, S(M)={\), 
T(M) = R. In the type III case, the one parameter group a* is never inner but the 
following result solved completely the problem of computability of S and T. 

THEOREM. Let M be a von Neumann algebra, Aut M its automorphism group, 
s: Aut M->Out M=Aut M/lnt M the canonical quotient map, and cp a weight 
on M. Then a one parameter group of automorphisms of M, (<xt)t£R is of the form 
a* for a suitable W iff e(oLt) = e(crf) \/t£R. 

In particular together with a type III factor there is a canonical homomorphism 
3: R-+Out M, with ö(t)=s(crf) for any weight cp. Moreover with a suitable notion 
of spectrum for ö one has : 

S(M) = Spectrum Ö, T(M) = Kernel of Ö. 

In particular both are subgroups (of R\ and R). As S is closed and as closed 
subgroups of R+ form a compact interval [0, 1], one gets a finer classification of 
rynp TTT factors: 

M 
M 
M 

is of type III^, 
is of type III0 

is of type IIIj 

A€]0, 1[ if 
if 
if 

S(M) = {0)\JXZ, 

S(M) = {0,1}, 
S(M) = [0, + oo[. 

In the case of foliations the invariant S of the von Neumann algebra coincides 
with the ratio set introduced by W. Krieger in ergodic theory as a generalization 
of the Araki-Woods ratio set. 

Roughly speaking to evaluate the ratio set of a foliation, one travels on the generic 
leaf from the point a to a point b which is close to a in V (but at any distance 
on the leaf) and one compares a unit of transversal volume in a with its transformed 
under holonomy at b; the set of all essential such ratios coincides with S, and 
is thus a natural obstruction to the existence of a holonomy invariant choice of 
unit of volume in the transverse bundle. 

Exactly as in noncommutative algebra where one uses the cross product of an 
algebra by a group of automorphisms, one defines the cross product of a factor 
N by an automorphism 9 (it is characterized as a von Neumann algebra M gene
rated by Nand a unitary U with UxU* = 0(x) \/x£N, so that the equality at(x) = x 
\/x£N9cTt(U) = eitU defines an automorphism of M for all t£R). 

The general theory of factors of type IIIA, /l€]0, 1[ is summarized as follows: 
(a) Let iV b e a factor of type 11^ and 9 an automorphism with mod(0) = A 

(i.e. Trace^oö^/LTrace^); then the cross product N<g>eZ is a factor of type IIIA. 
(b) Any factor of type IIIA is of the form (a), and in a unique way (i.e. if (Nt, 0£) 

give the same M there exists an isomorphism A^-^Na carrying 6± on 02. 
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In case III0 we proved an analogue discrete description but the definitive under
standing and solution of the 11^ case is contained in the following result of Takesaki: 

Any factor of type III is of the form Af(g>0Ä* where N is a von Neumann algebra 
of type 11^ (i.e. in its central decomposition N={(x(u))l(eA,x(u)£N(u) \fu£A} 
every N(u) is a factor of type llj) and where for some trace T on N one has 
To6À = ?a. Moreover this decomposition is unique as above, and: 

The restriction of 0A to A defines an ergodic flow F(M), which is an invariant 
of M. This flow has a very natural interpretation as an abstract flow of weights 
on M. 

One has S(M)={X, Fx = id}; when M is of type 11^ it follows that N is a 
factor so one gets the analogue of (a), (b) with the group Z replaced by R. 

In the II1A case, N={(x(u))iiesi, x(u)€N(u), \fyCS1} so that N "fibers over 
a circle", and the 0 of (a), (b) is 0A. The above structure theorem for factors of 
type III; reduces the problem of classification in this case to 

(1) Classify factors of type 11^. 
(2) Given a factor of type 11^, N, classify (up to conjugacy) its automorphism 

with module X, X£]0, 1[. 
Every factor of type 11^ is the tensor product of a factor of type 1^ by the type 1^ 

factor. In the last of their papers, Murray and von Neumann had shown that, 
though there exists more than one factor of type 1^ (they exhibited 2, in 1968 
D, MacDuff constructed a continuum of them) there is among them, only one 
having the following approximation property: V finite subset F of N, Ve>-0, 3 
a finite dimensional * subalgebra K with distance (x, N)*zs, \/x£F (where the 
distance is in the hilbert space L2 of the trace^). As any other factor of type 1^ 
contains this hyperfinite one, it was hence natural to think it is the simplest of all 
and to consider problem (2) in this case. The answer is the following: 

For AG]0, 1[ there is, up to conjugacy, only one automorphism of R0il=R<S>loo 

with module X. 
If Ì/X is an integer n, one can construct 0A as the shift on R01 built as an 

infinite tensor product of nXn matrices. As another example, if T is the Anosov 
diffeomorphism of the 2 torus R2/Z2 defined by the matrix [* \] then T defines 
an automorphism of its stable foliation, and hence of the corresponding factor 
which is R019 this automorphism has module X where (A, A-1) are the eigen
values of the above matrix. A crucial motivation in the proof of the above theorem 
is that, since the study of automorphisms of abelian von Neumann algebras is 
equivalent to ergodic theory of a single transformation, one would expect many 
results of this theory to have an analogue in the non abelian situation. This turns 
out to be the case in particular for the Rokhlin tower theorem. 

There is however a striking difference with usual ergodic theory, the existence of 
a complex valued invariant for periodic automorphisms. If N is a factor, it can 
happen for oçAutiV that 0fc is inner for some /c>-0, but that no automorphism 
0', E(Q')=S(Q) satisfies 0'fc = l, the resulting obstruction is a /cth root of 1 in C, y(0) 

file:///fyCS1}
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which is invariant by multiplication of 0 by an inner automorphism. This happens 
when N=R, every pair (k, z), fc>0, z£C, zk=l appears from a 0£Auti? and 
moreover the pair (kyz) is the only invariant of fi(0)ÇOuti?, in other words the 
group Outi?=Aut R/IntR has only countably many conjugacy classes para
metrized by (k, z). As a corollary one gets that Int R is the only normal subgroup 
of Aut R. 

Elaborating on the existence of this complex valued invariant, we showed that 
not all factors (even of type IIj) are antiisomorphic to themselves. 

In general if N is a factor of type 11^ one has a lot of non conjugate automorphisms 
with the same module X£]Q, 1[; it was thus very natural to decide when, given 
a factor M oftypeIIIA, the corresponding factor of type 11^ is R01. If one knows 
that it is R0tl then by the above theorem one knows M is isomorphic to Powers 
factor Rx. 

As seen above R is characterized, among factors of type IIl5 by the approximation 
property of Murray and von Neumann. In the general (non IIJ case, a factor M 
is called approximately finite dimensional5 when: 

VF finite subset of M9 V * strong neighborhood V of 0 
3K finite dimensional * subalgebra with K+V. 

As an elaboration on Glimm's theorem characterizing C "-algebra with only type I 
lëpieseiîtatioïïs, it follows from the work of O. Maréchal [22] and Elliott-Woods [13] 
that for any approximately finite dimensional factor M (not of type I„, « < ~ , 
orllj) and any C*-algebra A not of type I, there is a representation n of A which 
generates M as a von Neumann algebra. Thus as soon as one goes beyond type I 
C*-algebras one meets this whole class of factors. Moreover if A is the C*-algebra 
corresponding to the "non commutative Cantor set" i.e. ,4 = (g)~ M2(C), then for 
any representation of A, n(A) is approximately finite dimensional. 

This obviously raises two questions: 
(a) Classify the approximately finite dimensional factors. 
(ß) Characterize the C*-algebras which generate only approximately finite dimen

sional factors. 
In 1968 after trying to characterize R0tl (among factors of type 11 )̂ by the 

approximation property above, V. Ya. Golodets succeeded in showing that this 
class is stable under crossed products by abelian groups. It follows in particular 
that if M is of type IIIA, and M is AFD then the associated 11^ also is AFD. 
This indicated the interest of the problem : is RQs x unique among AFD of type 11^. 
The difficulty is that while any 11^ is Hi®!«, it is very difficult to see what property 
inherited by the IIX would force it to be isomorphic to R. 

In fact the characterization of R, of Murray and von Neumann involves * sub-
algebras, and hence has still some descriptive flavor. The second factor of type 1^ 
which they discovered was distinguished by "property F" which they considered 

5 In short AFD. 
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technical; this property had no reason to characterize R since for any N, N(g>R 
possesses it, and in fact in 1962 J. T. Schwartz distinguished between N, R and N®R. 
But in doing that, he found another property of R which was the germ of many 
later developments. 

Property P. M in H has property P iff for any bounded T£L(H), the norm 
closed convex hull of the uTu*, u unitary of M9 intersects M\ 

He proved that among N, R and N®R only R has property P, and moreover 
that the group algebra JR(JT) of a discrete group has property P iff f is amenable. 
Any AFD factor possesses property P, but it is not clear from the definition that 
if M = N®Q then N has property P if M does. In fact the most important 
consequence of property P is the existence of a projection of norm one E from 
L(H) to Mf, with E(l) = l. By a result of J. Tomiyama any such projection satisfies 
E(aTb) = aE(T)b Ma,b£M', MT£L(H), and the existence of such a projection 
of L(H) on M is independent of the choice of representation. The family of 
von Neumann algebras satisfying it has the following remarkable stability properties: 

(1) It is a monotone class (under decreasing intersections and weak closure of 
ascending unions). 

(2) It is stable under commutant. 
(3) Stable under cross products by amenable groups. 
(4) Stable under tensor product. 

The name used to qualify this class is injectivity, since it characterizes, thanks 
to a noncommutative version of the Hahn-Banach theorem due to W. Arveson, 
those von Neumann algebras which are injective objects in the category of C* 
algebras, with completely positive maps as morphisms. As shown by Choi and 
Effros, it is also equivalent to the existence of a solution in M of the equation 
y<8)a<^b (where a£Mn(C), a = a* and Z>6M® Af„(C) are given) as soon as a solution 
exists in L(H). This is very useful because it allows us to treat direct integrals: 

(5) M={(x(s))seA, x(s)£M(s) \/s£A} is injective iff almost all M(s) are injective. 
So let M be an injective von Neumann algebra, (5) and the reduction theory 

of von Neumann allow to assume that M is a factor, then the corresponding von 
Neumann algebra of type 11^ is injective by (3) and again by (5) one can reduce 
to analysing injective factors of type 11^ and finally of type II15 writing M=N®Ioa. 
Then N is injective of type 1^ and by Tomiyama's theorem any projection of norm 
one E:L(H)^N, with E(l) = ] satisfies E(aTb) = aE(T)b, \/a,b£N, \/T£L(H). 
It follows that cp~TrsiccNoE is a state on L(H) invariant wider all uni taries of N. 
We call such a state an hypertrace. In 1960 M. Takesaki had shown that if Al9 A2 

are simple C* algebras then A^A2 is also simple (here A^A2 acts in H1®H2 

if A1 and A2 act in Hl9H2), his proof involved a characterization of the norm on 
the algebraic tensor product A1®A2 coming from the representation in H1^H2 

as the least of all possible CH norms on A1oA2. The corresponding completion 
Ai®min A2 is called the minimal tensor product of A1 and A2. He showed more
over that (as in Grothendieck theory for locally convex spaces) for certain C* 
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algebras (the nuclear ones by definition), only one C* norm exists on AOB for 
arbitrary C* algebras B ([34], [31]). In 1972 Effros and Lance discovered that some 
factors (all the Araki—Woods factors at the time) give very good factorizations of 
L(H) inasmuch as the natural map rj from M o M ' in L(H) given by r\(]?ai<&bù = 
^taibi is not only an injective homomorphism but is an isometry from M(g)min M' 
to the C* algebra C*(M,M') generated by M and M' in L(H). They called 
this remarkable property semidiscreteness and proved semidiscreteness => Injectivity. 
So we get 

Approximately finite 
dimensional Semidiscrete 

Droperty P 

V .-
Injective 

In fact, these properties are all equivalent. 

Assume first that N is a factor of type 11̂  and is injective, the existence of an 
hypertrace on N implies that it is semidiscrete; then Takesaki's theorem shows that 
C*(N N'i is simnle and hence that it cannot contain a nonzero comnact onera tor 
in H. The following dichotomy then shows that N has property T. Let N be 
a factor of type 1^ in H; then N has property r or C*(N,N') contains all 
compact operators. (This was suggested by fine computations of C. Akemann and 
P. Ostrand showing that for the group algebra of free groups C*(N, N') contains 
all compact operators.) 

Now N has property r iff the group Int N is not closed in Aut N (where 
Aut AT is gifted with its natural topology: 0a-*0 iff 9a(x)-+9(x) strongly for any 
x£N). Moreover in general the closure of IntiV is characterized in terms of 
C*(N, N') by the existence of an extension 9 of 0 on N which is identity on N'. 
As in our case C*(N,N') is N®minN' we see that AutN= lütNClntN. 

The next step is to show that N®R is isomorphic to N. A remarkable result 
of D. MacDuff asserts that this is true as soon as N has a central sequence which 
is not hypercentral, which once translated in terms of automorphisms implies that 

ïïïtNctctN=> N~ N®R 

where et N is the normal subgroup of all automorphisms 0 of N which are trivial 
on central sequences. Here one has ctAf=IntAT because if 9£ctN then 
0®l£ct (N®N) (this is due to a characterization of ct using C*(N,N')) and 
as the symmetry crN(x<g)y)=y<g)x in JV(g)iV is in IntN®N one has 0(g)0_1 

inner (and hence 0 inner), because e(ct) and e (Int) always commute and 
£(0(8)0_1) = [fi(0(8)l), S(CJN)]. From the properties N~N®R and o-^Élnt one 
finally deduces the approximation property of Murray and von Neumann. This 
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can be very simply seen if one assumed N to be a subfactor of R but for the general 
case one uses the existence of an isomorphism of N with a subfactor of the ultra-
product R* where co is a free ultrafilter, which in turn follows from the analogue 
of the Day—Namioka proof of F0lner's characterization of amenable groups. 
The role of the invariant mean is played by the hypertrace and L(H) replaces 
l°°(r) where r is the discrete group. Among those proofs the most technical 
are those relating properties of automorphisms (like OçlntN) with properties 
of C*(N,N') (like the existence of 9). They involve an exhaustion method, allowing 
to pass from some infinitesimal information to a global one, and a probabilistic 
way of taking the polar decomposition of an operator (the usual way x -*u(x)\x\ being 
too discontinuous), based on the inequality /||^fl(A2)-£a(/c2)||^ur^||/7-Är||2||/7+/c||2 

where Ea is the spectral projection l[n +oo[. So we have now that all injective 
factors of type IIX are isomorphic to R. As an immediate corollary, since all von 
Neumann subalgebras of R are also injective, one gets their complete classification 
up to isomorphism. It follows that R is the only factor contained in all others, 
which fully justifies the original belief of Murray and von Neumann that it is the 
simplest. Also if T is a discrete amenable group then its group algebra is isomorphic 
to R as soon as {gCT, class of g finite} = {e}. If M is injective of type 11^ then 
it is isomorphic to RQtl. It follows that if G is an arbitrary connected locally 
compact group then the non type I part of its group algebra R(G) is of the form 
A<g>RQtl where A is an abelian von Neumann algebra. Moreover the type III 
theory, allows to deduce from that, that the above 4 properties are equivalent in 
general. We thus have only one class which has, on the one hand, the nice charac
terization seen after Glimm's theorem, and on the other all the stability properties 
of the injective. 

Furthermore in their work on C* tensor products, Effros and Lance had shown 
that (1) all representations of nucleai C* algebras generate injective von Neumann 
algebras (2) that if all representations of a C* algebra are semidiscrete, then the 
C algebra is nuclear. Hence the C* algebras satisfying condition (3) are exactly 
the nuclear ones (as a corollary C*(G) is nuclear for G locally compact connected). 
Let us mention also that for foliations the injectivity of the associated von Neumann 
algebra is equivalent to the amenability of the foliation, a remarkable and very useful 
property developed by Zimmer for ergodic group actions. (For instance the action 
of the fundamental group T of a compact Riemann surface V on the natural 
Poisson boundary dV of its covering space V is always amenable ergodic and is 
often of type 111̂ .) Let us turn now to injective factors of type III. If M is of 
type I1IA, A£]0, 1[ then M is isomorphic to Powers factor RÄ. Wolfgang Krieger 
has shown in 1973 that for factors associated to a single ergodic transformation of 
a measure space, the flow of weights is a complete invariant and can be any ergodic 
flow. It follows from a very powerful cohomological lemma in his proof, and from 
the discrete decomposition of factors of type III0S that any injective factor of type III0 

arises from a single ergodic transformation of a measure space and is thus one of 
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Krieger's factors. Thus in the III0 case, the classification problem is transferred 
to ergodic theory: there are as many injective factors of type III0 as ergodic (non-
transitive) flows. There is only one injective factor M with roo(M)=[0, +°°], 
it is the Araki—Woods factor Rl9 arising as algebra of local observables in the 
free field, but it is still unknown if it is the only injective of type III l5 (i.e. if roa(M) = 
S(M) for any injective). This factor R± is associated to the Anosov foliation of 
the geodesic flow of a Riemann surface of genus > 1. We have used foliations above 
to illustrate the general theory by examples but von Neumann algebras can be very 
useful for the study of foliations per se. Ruelle and Sullivan have shown how, for an 
oriented foliation f of the compact manifold V (i.e. the subbundle F of TV9 

tangent to f is oriented), the holonomy invariant transverse measures A cor
respond exactly to closed currents C, "positive in the leaf direction". For such 
a measured foliation it is natural to define the Euler characteristic as (e(F), [C]>, 
the Euler class of the bundle F evaluated on the cycle [C] created by the current C. 
Now von Neumann algebras allow to define the Betti numbers 

h =f dim H'(f)dA(f)^ao9* 

where Hl(f) is the space of square integrable harmonic forms on / (with respect 
to some Euclidean structure on F, of which ßt turns out to be independent). 
r\r*t* lnoe +hf*rt NY—1V R — / n( V\ ï/^l\ Ac R ic tfif» mpcKJiiiv» n f thf* ç<=»t o f p n m n f l f t 
wx»w u u u «Aw** ^ V Ay rt \ - V^ /5 L ~ J / ' 4 ~~ rU *- - " - **• — - - w —* - ~ ~ - _ ~ ~ ^ 

leaves with finite holonomy, one gets that for 2 dimensional foliations without 
such leaves, the mean curvature of leaves is negative. The above formula is a special 
case of an index theorem computing for elliptic differential operators on f the 
scalar 

f Dim (Ker Df) dA (/) - / Dim (Ker D}) dA (f) 

as Ch D-z(F®C)[C], where ChD£H*(V, Q) is the chern character of the 
symbol of D, T(F®C)£H*(V,Q) the Todd class of F®C and [C]eHp(V,R) 
the homology class of the Ruelle—Sullivan current. 
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The Topology of Manifolds and Cell-Like Maps 

Robert D. Edwards 

1. Introduction. The focus of this expository article will be on the notion of 
a cell-like set and a cell-like map (definitions below). It will be discussed how these 
notions arise naturally in the study of certain problems in topology, and how some 
solutions to these problems have been achieved. It should be emphasized at the 
outset that the problems discussed here are all topological in nature, and so in parti
cular there will be a minimum of extra global structure on the various spaces at 
hand. 

The principal questions to be discussed (and motivated) are the following: 
1. PoiNfT-LiKE QUESTION. Which compact subsets of the /w-sphere have the prop

erty that their complements are homeomorphic to euclidean /77-space Rml (Such 
subsets are called point-like, for the natural reason.) 

II. POLYHEDRAL MANIFOLD QUESTION. When is a polyhedron a topological 
manifold? In particular, are there any "unexpected" examples of such polyhedra? 
(i.e., examples which do not locally polyhedrally embed in the euclidean space of 
the same dimension.) 

III. MANIFOLD FACTOR QUESTION. When is a space X a factor of a manifold, 
i.e., when is it the case that XXY is a manifold for some space Yl (Usually 
Y is taken itself to be some euclidean space.) 

2. Definitions. All spaces throughout are locally compact separable metric 
(except in §11, where local compactness is dropped). A manifold will always be 
understood to be a topological manifold, either finite dimensional, or else modelled 
on the hilbert cube 7°° (which is the countably infinite topological product of the 
interval [—1,1] with itself). Precisely stated, then, a (topological) manifold is 
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a separable metric space each point of which has a neighborhood homeomorphic 
either to the w-cell Im or to I°°. Our manifolds will always be connected. 

Later we will be talking about the notion of an absolute neighborhood retract 
(ANR) which we will take to mean a (locally compact separable metric) space which 
can be embedded as a closed subset of 7°°X[0, °o) (recall any locally compact 
separable metric space can be so embedded) in such a manner that some neighborhood 
U of the image retracts to the image, i.e., there is a map r: U-+ image such that 
r |image=identity. A basic fact about ANR's is that this retraction property is 
independent of the embedding chosen : if it holds for one closed embedding, it holds 
for any closed embedding (see e.g. [Hu]; the embeddings even need not be closed). 
A finite dimensional ANR is called a euclidean neighborhood retract (ENR) because 
it can be embedded as a closed subset of euclidean space so as to have this retraction 
property. 

The fundamental notion in this article is that of cell-likeness which, as we will 
see, broadens a bit the notion of contractibility. A cell-like space is a compact 
metric space C having the following property of a cell : there exists an embedding 
of C into the hilbert cube / " such that 

(*) for any neighborhood U of C in 7°°, C is null-homotopic in U 

(examples and properties are given in the next section). 
A proper map is a map such that the preimage of each compact subset is compact. 

A cell-like map is a proper surjection such that each point-inverse is cell-like. A near-
homeomorphism is a proper surjection which can \>Q approximated arbitrarily closely 
by homeomorphisms. On compact spaces, this means ordinary uniform approxima
tion. On non-compact, locally compact spaces (which are only of secondary interest 
in this article) we take this to mean "majorant approximate" by homeomorphisms, 
i.e., given / : X-+Y and given any majorant map s: X^(0, °°), there should exist 
a homeomorphism h: X-+Y such that for each x£X, dist(f(x),h(x))<s(x). 
Finally, X^ Y denotes that X is homeomorphic to Y. 

3. Examples and properties of cell-like compacta. There are two basic comments 
concerning the definition of cell-like which should be recalled at this time. 

REMARK. (1) Cell-likeness is an intrinsic property of the compact metric space C. 
That is, if property (*) holds for one embedding /: Cc^7°°, then it holds for any 
embedding j : Cd.7°°. 

(2) In the definition of cell-like, and in (1), if the hilbert cube 7°° is replaced 
by any ANR, the statements remain true. 

Both remarks are a simple consequence of the map extension property of ANR's. 
For example, if i: Cc_7°° is a given embedding satisfying (*), and if j : C e W 
is any embedding of C into an ANR W, and U is any neighborhood of j(C) 
in W, then the fact that W is an ANR implies that there exists some neighborhood 
V of i(C) in 7°° and a map / : V-+U extending jr1: i(C)-+j(C). So if oct: C->V, 
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O^t^l, is a homotopy provided by (#) such that <x,0=i and a1(C)=point, then 
fat:C-+U provides the desired null-homotopy of C in U. 

The simplest examples of cell-like spaces are of course cells, that is, spaces which 
are homeomorphic to the closed unit ball in some euclidean space. More generally, 
any contractible compactum is cell-like, In fact, we have 

REMARK. Suppose C is a compact ANR. Then C is cell-like <=> C is contractible. 

PROOF. To establish the implication =>, suppose that Cc+I°° and let r: U-+C 
be a retraction of a neighborhood, and let a, : C-> U be a null-homotopy of C in U. 
Then mt:C~+C provides a contraction of C. 

Thus the notion of cell-likeness can be regarded as a generalization of the notion 
of contractibility, and this notion is most useful for non-ANR's. An example of 
a noncontractible (hence non-ANR) cell-like compactum is the following planar 
wedge (=one-point-union) of two cones on cantor sets. 

wedge-point 

-conepomts — 

Figure 1. The wedge of two cones on cantor sets 

One can construct many more interesting examples using the following 

REMARK (Operations preserving cell-likeness). 
(1) A countable null (= diameters tending to 0) wedge of cell-like spaces is 

cell-like. 
(2) A product (finite or countable) of cell-like spaces is cell-like. 
(3) The intersection of a countable nested collection of cell-like spaces is cell-like. 
Regarding (3), note that the cell-like set pictured above is an intersection of 

2-cell neighborhoods (when regarded as a subset of the plane). 
In general, a cell-like space embedded in Rm (or Sm or any manifold) is said to 

be cellularly embedded for cellular) if it has arbitrarily small neighborhoods homeo
morphic to cells. This notion of cellularity definitely depends on the embedding. 
For example, the following picture (from [F—A]) shows an arc in B? which is 
not cellularly embedded there. 

Figure 2. The Artin-Fox wild arc in jR8 

©0e~ 
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Another example of a cell-like, noncellular subset of R3 is the familiar horned 
ball of Antoine and Alexander, pictured here (the closed bounded region really is 
homeomorphic to a ball). 

limit 
cantur set 

Figure 3. The Antoine-Alexander horned ball in R3 

These examples show that cells can admit noncellular embeddings in euclidean 
space. In fact, any finite dimensional cell-like set (except a point) can be non-
cellularly embedded in any euclidean space of greater than twice its dimension. 
But more importantly, every finite dimensional cell-like set admits a cellular 
embedding in some euclidean space. In fact, if C is cell-like and CcuRm, then 

. i T 4 - 1 ii> ucllulcii (Jeducible from [McM]). 

This discussion leads to an answer to Introductory Question I (provided by 
M. Brown). 

THEOREM. A compact subset C of Sm is point-like (that is, Sm—C^Rm) <=>C 
is cellular in Sm. 

SKETCH OF PROOF. The easier implication is =>, for letting rBm be an arbitrarily 
large ball in Rm, then S"1—h (int rBm) is an arbitrarily small ball neighborhood 
of C in Sm (where h:Rm-^Sm—C is the hypothesized homeomorphism). (Note: 
It is far from obvious that Sm—h(intrBm) is a ball; in fact, this amounts to the 
Annulus Conjecture, which has been established in almost all dimensions through 
the efforts of many, especially R. Kirby, but remains unresolved for m=4. 
However, the above proof can be modified so as to circumvent this issue.) To 
prove the implication <=, one first establishes, using the converse of the preceding 
argument, that any compact subset of Sm—C lies in the interior of an m-cell in 
Sm—C. Then one shows that any space having this property is in fact homeo
morphic to Rtn. Details of these arguments are in [BrJ and [Br2]. 

Still, this theorem begs the question somewhat. How does one recognize a cellular 
subset of Sml In the 2-sphere (or the plane) this is comparatively simple. A compact 
subset C of S2 is cellular (and hence point-like) <=• both C and S2—C are 
nonempty and connected (i.e., C is a nonseparating continuum). This is an 
instructive exercise in plane topology. In higher dimensions, since being cellular 
always implies being cell-like, let us assume we can recognize when a subset CaSm 
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is cell-like (inasmuch as this property is basically a homotopy property, C is often 
presented as a cell-like subset by the problem at hand). Given that C is cell-like, 
how does one tell whether it is cellular? (Remember the preceding examples.) 
A natural and useful condition to verify is whether Sm—C is "simply-connected 
at infinity", i.e., whether given any neighborhood U of C in Sm, there exists 
a smaller neighborhood V of C such that the homomorphism n^V—C)-^nx(JJ—C) 
is trivial. This condition clearly is necessary when m ^ 3 . It turns out that this 
celfularity criterion is also sufficient, at least when m ^ 4 [McM]. 

This result may be regarded as one of the prototypal theorems in the study of 
tame versus wild embeddings of compacta in manifolds, a subject which has developed 
into a very coherent theory during the last twenty years (e.g. see the brief surveys 
in [La2] and [EdJ). 

4. Examples and properties of cell-like maps. We now move on to cell-like maps. 
Probably the most useful characterization of a cell-like map is the following. 

PROPOSITION (Homotopy characterization of cell-like maps). Suppose f:X-+Y 
is a proper surjection of ANR's. Then f is cell-like & for each open subset U of Y, 
the restriction / | : /_ 1( t /)->-C/ is a (proper) homotopy equivalence. 

Note: The parenthetical word (proper) can be inserted for =>, and deleted for «=, 
to provide the strongest statements. 

To understand this proposition one should initially assume that X and Y are 
as nice as possible, e.g. manifolds. Consider first the implication =>. As a special 
argument, consider establishing that / # : n1(X)-^n1(Y) is onto (which clearly it 
must be, if / is to be a homotopy equivalence). To verify this surjectivity, one 
takes a loop a: S1-^Y, and attempts to find a loop ß: Sr-+X such that fß is 
homotopic to a (basepoints suppressed here). This is achieved by partitioning 
S1 very finely, say by 01 , . . . ,0„, and then arbitrarily choosing a point ß(0^f~x(0^) 
for each /. Now one attempts to join adjacent /J(0/)'s with paths which map under 
/ to paths of small diameter. If the partition {0J was chosen sufficiently fine, 
then each adjacent pair {ß(0i),ß(9ni)} lies very close to some point-inverse f~x(y)-
Hence, by the definition of cell-likeness, ß(0f) and ß(0i^1) can be joined by 
a path lying near f~\y), since the null-homotopy of f~\y) can be assumed to 
carry along a nearby neighborhood. Stringing these paths together gives a map 
ß: S1-^X with the property that fß is (pointwise) close to a, and hence homotopic 
to a. Thus / + is surjective on nx. This argument is a classical lifting argument 
which occurs over and over again topology. The full implication => is a straight
forward generalization. 

To prove the implication <=, we use the hypothesis that y£Y has a (arbitrarily 
small) contractible neighborhood U (assuming still for simplicity that y is a mani
fold). Hence by the hypothesis, / _ 1 ( ^ ) is a (arbitrarily small) contractible neigh
borhood of f~x(y). The general case, where Y is merely an ANR, is only slightly 
more complicated. 
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Cell-like maps are to be regarded as generalizations of homeomorphisms. This 
is a recurring theme. One important advantage that cell-like maps have over homeo
morphisms is that (unlike homeomorphisms) they are closed under the operation 
of talcing limits. 

PROPOSITION (Operations with cell-like maps of ANR's). (1) If a proper map 
f: X-+Y of ANR s is approximable (as in §2) by cell-like maps, then f is cell-like. 

(2) The composition of cell-like maps of ANR's is celt-like. 

The proof is an interesting exercise, using the preceding proposition (one should 
assume X and Y are manifolds, at least initially). See [LaJ and [La2]. 

We close this section by mentioning a classical theorem of R. L. Moore (as refined 
by Roberts-Steenrod and Youngs). The theorem essentially describes all possible 
cell-like maps defined on surfaces. (Those defined on 1-manifolds clearly are just 
those maps having point and interval point-inverses.) 

THEOREM ([MO], [R-S] and [Yo]). Suppose / : M2-+Y is a cell-like map defined 
on a closed surface M2 (i.e. each f~1(y) is connected, and M2—f"1(y) is connected 
and has genus equal that of M2). Then Y is also a surface, and f is approximable 
by homeomorphisms. 

The proof is a lour de foi ce Li plane topology. 

5. Cell-like maps as limits of homeomorphisms. The preceding proposition implies 
that a near-homeomorphism is a cell-like map. When is the converse true? (Certainly 
not always, e.g. the map interval ->- point.) 

It turns out to be natural to restrict attention to the case where the source is 
a manifold-without-boundary (possibly even a hilbert cube manifold). If in addition 
the target is also assumed to be a manifold, then we have the following fundamental 
answer. 

THEOREM (for m ̂ 2 see above; m = 3 Armen trout [Ar2]; 5^m<oo Siebenmann 
[Si]; m=<*> Chapman [Ch2]; m=4 unknown). Suppose f: Mm-*Nm is a cell-like 
map (read cellular if m=3) of m-manifolds-without-boundary, m ^ 4. Then f is 
approximable by homeomorphisms. 

We now arrive at the focal point of this article, which is: What happens in the 
above theorem if N is not at the outset assumed to be a manifold (but M is)? 
Does the rest of the data (namely, that N is a cell-like image of a manifold) neces
sarily imply that TV is a manifold? If dim M^2, then N is necessarily a manifold, 
by the Moore-et-al Theorem. But if dim M s>3, then in fact N need not be a mani
fold, e.g., let N=Ss/Fox-Axtin arc (see §3). So the problem becomes that of 
finding good conditions which ensure that N is a manifold. 

Starting in the 1950's, a great deal of energy was put into understanding various 
special but important cases of this question. Most of the energy and insight was 
provided by R. H. Bing, whose pioneering work opened up the area and established 
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a viable theory. Progress in the area was steady and remarkable, mostly at first 
in dimension 3, and later in higher dimensions. Here we will pass over all of these 
efforts, to concentrate in the next few sections on only the most recent developments, 

6. The Approximation Problem. We cast our problem in the following form. 

APPROXIMATION PROBLEM: Suppose f: M-+X is a cell-like map from a topological 
m-manifold-without-boundary onto an ANR X (possibly m=°° here, i.e., M may 
be a hilbert cube manifold). Find natural and useful conditions on X which guarantee 
that f be approximable by homeomorphisms. 

In light of the Moore-Armentrout-Siebenmann- Chapman Theorem above, this 
can be regarded as asking for conditions which guarantee that X be a manifold, 
at least if dim X^A. However, the reason for formulating it as an approximation 
problem will become clear, especially in §9. 

The assumption here that X be an ANR is one of unfortunate necessity. If 
m=oo9 there exists an example of a cell-like map of the hilbert cube onto a non-
ANR [Ta]. If /77<°o? it is not known whether such an X as in this problem need 
be an ANR. (This is a significant unresolved question ; it is known to be equivalent 
to whether X is finite dimensional. In fact, this question is known to be equivalent 
to that of whether a compact metric space of finite cohomological dimension neces
sarily has finite (covering) dimension [Ed6].) At any rate, in most of the interesting 
situations which arise X is independently known to be an ANR. 

7. The Approximation theorem in finite dimensions ^ 5. In the next three sections, 
we restrict attention to finite dimensions. 

In past years it was most often a certain special case of the Approximation Problem 
which was examined (as a rule), namely the stabilized case, where one asks whether 
/ : MxRï-^XXR1 is approximable by homeomorphisms. Progress on this special 
question was slow but steady, working in general on / ' s with increasingly patholog
ical singularities. For example, one of the cases here which took a long time to 
resolve, eventually affirmatively, was the case where / has only one single nontrivial 
point-inverse. 

A key step in recent years was made by J. Cannon, who turned the focus back 
to the pure, unstabilized question, by introducing in [Ca2] as a workable Z-condition 
the disjoint disc property. A space X has the disjoint disc property if, given any 
two maps f1,fz'-B2-^X, there are arbitrarily close maps g1,g2'- B

2-+X which 
have disjoint images. That is, two maps of the 2-disc into X can be general posi
tioned apart. (Interestingly, a version of the disjoint disc property was used by Bing 
in his fundamental paper [Bi3].) 

Cannon showed in [Ca2] that, with regard to the Approximation Problem, if 
X has the disjoint disc property, and if X is already known to be a manifold except 
on a codimension >>3 subset, then in fact / is approximable by homeomorphisms. 
This in turn inspired the following generalization. 
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APPROXIMATION THEOREM [Ed3]. Suppose f:Mm^X is a cell-like map from 
a topological m-manifold-without-boundary M onto an ANR X, and suppose 
5<sm<:°°. Then f is approximable by homeomorphisms <=> X has the disjoint disc 
property. 

The proof is outlined in §9. For one thing, this theorem provides another proof 
of the Siebenmann Approximation Theorem (§5), inasmuch as that is not an in
gredient. 

8. Applications of the Approximation Theorem to the introductory questions II and III. 
The Polyhedral Manifold Question naturally arose in early attempts to understand 
triangulations of topological manifolds (e.g. see the historical discussions in [Cal9 §2] 
and [Ed2, Introduction]). Given a simplicial complex K which is topologically 
a manifold-without-boundary (i.e., K is topologically homogeneous), it is not 
too hard to establish via basic algebraic topology that K has the following two 
properties. 

(1) For any (closed) simplex a of K, the homology groups of the link of a in 
K (=lk(a,K) = the collection {T} of all closed simplexes such that -cnc>=Q 
and the span T * a is a simplex of K) coincide with the homology groups of some 
sphere (in fact a sphere of dimension dim K— dim a—1), and 

(2) In addition, if a is a vertex and dim K>2, then lk(<r,K) is simply connected. 
Are these conditions sufficient to guarantee that K be a topological manifold? 

Yes, if d i m Ä ^ 3 , but the situation becomes less clear in higher dimensions. The 
essence of this question turns out to be the: 

Multiple Suspension Question. Suppose Hm is a homology /«-sphere (defined 
below). For some 1^*2, is it true that the /th suspension of Hm, IlHm (which is 
the same as the join •S*"1*/?7"), is topologically a manifold? 

(If so, it is known to be a (/ra-f-/)-sphere, since it is necessarily covered by two 
coordinate patches. Hence, if the answer is yes for some /, it remains yes for any 
greater /.) 

A homology m-sphere can be taken to be a topological wz-manifold-without-
boundary whose homology groups coincide with those of Sm. The 1=1 case is 
passed over, because if Hm is not simply-connected (e.g., Poincaré's famous 
homology 3-sphere which has for fundamental group the 120-element binary dodeca-
hedral group), then Z1!!"1 cannot possibly be a manifold at the two suspension 
points. The relation of this question to the preceding question is that Hm can be 
taken to be the link of some simplex a in K, and /=dimcj-r-l, in which case 
a neighborhood of the open simplex h in K is homeomorphic to an open subset 
of IlHm containing part of the suspension (/— l)-sphere. 

An affirmative answer to the Multiple Suspension Question for any nonsimply-
connected triangulated homology sphere would provide a non-combinatorial 
triangulation of a sphere, i.e., a triangulation which cannot be locally polyhedrally 
embedded in the euclidean space of the same dimension (cf. Introductory Question II). 
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How does this tie in with the earlier discussion of cell-like maps? The connection 
is that it can be shown (without too much trouble, at least in most cases) that given 
any homology /w-sphere Hm, and any 1^2, then there is a cell-like map / : S,,,,+l-*-
-+ZlHm from the (w+/)-sphere onto ElHm. Hence, in view of the earlier dis
cussion, the Multiple Suspension Question boils down to whether this map / is 
approximable by homeomorphisms. 

The Approximation Theorem of the preceding section provides an answer. The 
point is, the target space IlHm has the disjoint disc property whenever 7^2 (recall 
without loss w ^ 3 ) . One way to verify this is to show that given any map 
/ : B2-+ZlHm, there is an arbitrarily close map such that f~1(ZI'~1) has all of 
its components of arbitrarily small diameter, where Z 7 - 1 denotes the suspension 
(/—l)-sphere. Hence, if one started with two maps fl9f2: B2-+ZlHm, then one 
could find nearby maps g1,g2: B2-+ZlHm such that g1(B

2)ng2(B
2)nZl-1 = Q9 

by arranging the images of these components to be points and moving them to be 
disjoint. Then it is merely a matter of applying general position in the manifold 
I ' r - l ' - ^ r x i ? ' to achieve that g!(B2)ng2(B

2) = 0. 
Historically, the Multiple Suspension Question was answered affirmatively in 

almost all cases by the work described in [Ed2], and it was completely settled by 
the subsequent work in [Ca2]. The Approximation Theorem [Ed3] came later. For 
the Multiple Suspension question itself, proofs have been improved now to the 
point where they are quite succinct (e.g. see [Ca3]). 

Regarding Introductory Question II, there is now a very satisfactory answer 
which follows as a consequence of the preceding work (excluding the unknown 
dimension 4). 

POLYHEDRAL-TOPOLOGICAL MANIFOLD CHARACTERIZATION THEOREM. A simplicial 
complex K of dimension ^ 4 is topologically a manifold-without-boundary if and 
only if conditions (1) and (2) above hold. 

Note that this theorem includes as a special case an affirmative answer to the 
Multiple Suspension Question, for all 1^2 

It is worth pointing out that the related question of whether a given topological 
manifold is homeomorphic to some simplicial complex (i.e., the triangulation prob
lem, in its broader form) is now known, as a consequence of the preceding work and 
the work of Galewski-Stern and Matumoto, to rest entirely on the question of 
whether certain homology 3-spheres bound acyclic 4-dimensional manifolds (see 
[G-S] or [Ma]). This problem is smack in the middle of an active area of research 
in low dimensional manifold topology. 

Regarding Introductory Question III, the following corollary to the Approxima
tion Theorem offers some insight. 

COROLLARY. Suppose an ANR X is a cell-like image of some topological manifold-
witlwut-boundary. Then XX R2 is itself a topological manifold. 
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This follows by an argument of R. Daverman, who shows that XX R2 has the 
disjoint disc property (assuming without loss that dim X^3; observe that trivially 
XX R5 has the disjoint disc property, by applying general position in the R5 co
ordinate). The corollary remains unresolved with R2 replaced by R1 (even if 
d imZ^4 , i.e., it is unknown whether XXR1 has the disjoint disc property). 

Actually, with regard to Question II, there is a very natural and appealing: 

CONJECTURE: A space JIT is a finite-dimensional-manifold factor <=> X is an 
ENR homology manifold. 

Being a homology /«-manifold means that H*(X,X-x; Z)^H*(Rm,Rm-0;Z) 
for each point x£X. That a manifold factor X has this property is a straightforward 
consequence of Alexander duality. 

There is further discussion of this conjecture in §12. 

9. Sketch of the proof of the Approximation Theorem. The purpose of this section 
is to give some indication of the ideas, and their history, that go into the proof. 
We confine ourselves to the case where M and X are compact. 

The first important point to make is that the proof uses the Bing Shrinking Crite
rion, which is a tool introduced by Bing almost three decades ago in [BiJ for showing 
that a map is approximable by homeomorphisms. We discuss it only for compact 
spaces. This theorem was first stated in the following form by L. McAuley. 

SHRINKING THEOREM. A surjective map f:X-+Y of compact metric spaces is 

approximable by homeomorphisms o the following Bing Shrinking Criterion holds. 
Given any £>0, there is a homeomorphism h: X-^X such that 
(1) dist (/ /*,/)<£ and 
(2) for each y£Y, diam h(f~1(y))^s. 

Our proof will make use of the implication <=. The reverse implication is mentioned 
only for completeness; it is quickly proved by letting A = ^ V i f° r two successively 
chosen homeomorphisms g0,g1 approximating / . Concerning the implication <=, 
it is worth presenting here a slick baire category proof (which is not the way the 
proof was originally discovered and developed). In the baire space <ß(M, X) of 
maps from M to X, with the uniform metric topology, let ê be the closure 
of the set {fh\h: M-+M is a homeomorphism}. The Bing Shrinking Criterion 
amounts to saying that for any e>0, the open subset of s-maps in S (= maps 
having all point-inverses of diameter <e), denoted ^B, is dense in ê. Hence 
^o — rU-o^i is dense in S, since S is a baire space. Since SQ consists of homeo
morphisms, this shows that f£$ is approximable by homeomorphisms. 

As a consequence of this discussion we see that, in order to prove the Approxima
tion Theorem, it suffices to construct, for any given £>0, a homeomorphism 
h\ M-+M as described in the Shrinking Theorem. 

The next basic point about the proof is that it proceeds more or less by induction. 
The idea is to filter the target X as 

X=XW 3 Z<m-1) D . . . D J ( 1 ) 3 Xw 3 Z c - 1 } = 0, 
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where each XU) is a-compact (= a countable union of compacta) and 
âim(X(i)—X{i~1))=0 (hence dimX(0=/). Such a filtration is easy to find, and is 
common in dimension theory arguments. J. Cannon is probably most responsible 
for introducing the filtration method of argument into "shrinking theory". 

Given the filtration, the idea is to take the given cell-like map / , and to approximate 
it by successively better cell-like maps {/J. Each f will have the property that 
it is 1-1 over X(i) (that is, the restriction //|//_1(Jr(,)) is 1-1). Of course, when we 
reach i=m we are done. 

Given a map / : M-+X, the singular set is the set S(f)= u {x^X\f~1(x) contains 
more than one point}. Observe that S(f) is <7-compact, because S(f) = 
= U a > 0 { ^ ^ | d i a m / - i ( A ' ) ^ e } . 

In going from X 0 - 1 * to X{i), we make use of the following: 

O-DIMENSIONAL APPROXIMATION PROPOSITION. Suppose f\M^Y is a cell-like 
map such that S(f) is ^-dimensional (i.e., each compact subset of S(f) is totally 
disconnected) and S(f) is ^-negligible in Y, that is, for each open set U in Y, 
n1(U—S(f))-+n1(U) is an isomorphism. Then f is approximable by homeo
morphisms. 

DISCUSSION OF PROOF. One should consider first the simplest possible case, where 
S(f) is a single point, say y. In tins case f~1(y) satisfies the "cellularity criterion" 
(see §3), and so is cellular in M. Hence Y (^M/{f~1(y)^point}) is a manifold, 
and / is approximable by homeomorphisms. 

The model case of the Proposition, to which the general case is readily reduced, 
is the "countable null" case, in which S(f) is countable (say S(f) = {yr, y2, ...}), 
and diamf~1(yi)-+0 as /-»-oo. In this case the /"^(j*)'15 c a n appear to be quite 
tangled together in M, but in reality they are not (e.g., it turns out that the preimages 
of any two subsets of S(f) whose closures in Y are disjoint can be separated by a 
locally smooth (m-l)-sphere in M—/-1 (£(/)) . In order to show that this / is 
approximable by homeomorphisms it suffices, according to the Shrinking Theorem, to 
find a homeomorphism h:M-+M, with /1% close t o / , such that each h(f~1(yi)) 
has small diameter. Inasmuch as there are only finitely many / - 1 0 , * ) ' s bigger 
than any given size, this at first may seem an easy matter, but the difficulty is that 
in shrinking small a given f~\yi), one may inadvertently stretch larger some of 
the nearby f^iyj)9*. To find the desired homeomorphism h9 we generalize 
a 1950's argument of Bing, who (implicitly) in [Bi2] constructed h for the case where 
each f~x(yò is geometrically a cone in some coordinate patch covering it. With 
a little bit of work, one can show that our more general /^(yd9* have sufficiently 
good conelike structure (after all, they are almost contractible) so that the Bing 
program can be made to succeed. 

In order to be able to apply this Proposition, we assume an additional condition 
on the X ( / ) 's, namely, that JT<m-8>is %-negligible in X, and similarly that X-X™ 
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is ^-negligible in X. This is exactly the point where the disjoint disc property of 
X is used. 

Given these tools, the proof of the Approximation Theorem can be summarized 
quickly as follows. (Note: this is the baire category version of the original argument, 
and so the Shrinking Theorem appears here only implicitly.) Let ^(M, X; Z0) 
denote the space of cell-like maps from M onto X which are 1-1 over X0czX, 
provided with the uniform metric topology (recall M, X are compact). If XQ is 
(7-compact, then %(M, X; XQ) is a Gö (hence baire) subspace of the baire space 
<g(M, X), for if XQ is compact, the set of maps in <€(M, X) which are s-maps 
over X0 is open in %>(M, X). 

Our goal is to show that %>(M, X; X) (= the homeomorphisms from M to X) 
is dense in <&(M, X; 0)=%(M, X). To achieve this, it suffices to show that each 
%(M,X;X(i)) is dense in V(M9 X; AT*1"1*). Write X^ = ]JJ=1Xf\ where each 
Xf is compact. Then ^(M,X; X^) = f]J=1^(M,X; X^-^uXf). By the 
baire property it suffices to show that for each j (and each i), <£(M, X; Z ( £ _ 1 ) u X^) 
is dense in %>(M, X; Z ( i _ 1 ) ) . This in turn is a straightforward application of the 
O-Dimensional Approximation Proposition, thus: Given g^(M,X',X^~1)), 
factor g as 

0 00 91 ' 

where Y and gt are defined by declaring that the nontrivial point-inverses of 
g0 are precisely the nontrivial point-inverses of g which lie over Xf\ That is, 
Y is the quotient space Y=M/{g~x(x) ~ point | x^Xf*}. Then the quotient map 
g0:M->Y has O-dimensional singular set S(g0) which is ^-negligible in Y, since 
either g1(S(g0))c:X{m-3) or else g1(S(g0))czX~Xi2\ Now by the proposition 
g0 is approximable by a homeomorphism, h0 say. Then g1hQ^(M, X; X^'^vXf) 
and it approximates g. 

10. Cell-like maps on hilbert cube manifolds. The preceding sections concentrated 
on cell-like maps of finite dimensional spaces. As already noted, the Approximation 
Problem (see §6) makes perfectly good sense even in the hilbert cube manifold 
setting. We repeat it here. 

APPROXIMATION PROBLEM: Suppose f:M-+X is a cell-like map from a hilbert 
cube manifold M onto an ANR X. Find natural and useful conditions on X which 
guarantee that f be approximable by homeomorphisms. 

Geometric topologists have recognized for several years now, thanks largely to 
the work of T. Chapman, that finite dimensional manifold questions often have 
worthwhile hilbert cube manifold analogues. These analogues are usually more pristine 
and more tractable, largely because of the homogeneity of the hilbert cube ( = for 
all x, yÇ.I°°, there exists a homeomorphism of J°° carrying x to y; in particular, 
the hilbert cube has no "boundary") and the stability of the hilbert cube 
(=I°° xl°° % I°°). A specific example of such a problem is the stabilization problem for 
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cell-like maps (which is a special case of the Approximation Problem): If / : M-+X 
is a cell-like map from a hilbert cube manifold onto an ANR X, is it true that the 
stabilized map fxid (I°°): MXI00-+-XXI00 is approximable by homeomorphisms? 
This question gained significance after R. Miller established in 1974 [Mi] that for 
any ANR X, the product XX[0, °°) is a cell-like image of a hilbert cube manifold 
(following which J. West [We] showed how to eliminate the [0, oo) factor). Con
sequently, to establish the longstanding Borsuk conjecture that an ANR crossed 
with the hilbert cube becomes a hilbert cube manifold, it became sufficient (and 
necessary, by Chapman's Approximation Theorem (§5)) to establish the above 
stabilization problem. This was accomplished in 1975 [Ed4], by making use of a Bing 
ShrinkingCriterionargument(theretoforeunexploitedininfinite dimensional topology). 

The following year H. Toruiiczyk extended this work in striking fashion, to 
provide an attractive answer to the Approximation Problem. Completely inde
pendently of Cannon, Toruiiczyk hit upon the disjoint cells property: A space X has 
the disjoint cells property if, given any two maps from an 72-cell (n arbitrary) into 
X, there are two arbitrarily close maps having disjoint images. (For ANR's, this 
property has many interesting equivalent formulations, e.g., there exist two maps 
i,j:X-+X, each arbitrarily close to id (X), suchthat i(X)nj(X) = @.) Clearly 
for X to be a hilbert cube manifold this is a necessary condition. Torunczyk 
established its sufficiency, again using a Bing Shrinking Criterion argument. 

APPROXIMATION THEOREM (H. Toruiiczyk [ToJ). Suppose f: M-+X is a cell-like 
map from a hilbert cube manifold M onto an ANR X. Then f is approximable 
by homeomorphisms <=> X has the disjoint cells property. 

In light of the Miller-West theorem, one can drop the map / from the theorem, 
and assert the following. 

7°°-MANIFOLD CHARACTERIZATION THEOREM (H. Torunczyk [ToJ). An ANR X 
is a hilbert cube manifold o X has the disjoint cells property. 

The significance of this theorem is in its applications, one of which is a satisfying 
proof of the following old conjecture. 

COROLLARY (Schori-West [S-W], Curtis-Schori [C-S]). Suppose X is a metric 
continuum (= compact and connected). Let 2X [resp. C(X)] denote the space, 
provided with the hausdorff metric, of all closed [resp. closed and connected] subsets 
of(X. Then 
(1) 2X is homeomorphic to the hilbert cube <=• X is locally connected, that is, X is 

a peano continuum, and 
(2) C(X) is homeomorphic to the hilbert cube <=• X is a nondegenerate peano contin

uum and X contains no free arcs. 

The classical case of part (1) of this conjecture, solved by Schori-West, is the 
case X=I. \It is a pleasant exercise to verify that 21 has the disjoint cells property. 
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11. Analogues in hilbert space topology. In this section we mention briefly some 
very recent additional work of H. Torunczyk [Toa], which grew out of his preceding 
work and some earlier work of his on non-locally-compact ANR's. In this sçction, 
all spaces are (possibly non-locally-compact) separable complete metric spaces. 

The appropriate model manifold in the non-locally-compact infinite dimensional 
setting is hilbert space l2 (here we use only its topological structure and so we could 
as well use its homeomorph R^^X^R1, as established by R. D. Anderson). 

Torunczyk found that in hilbert space topology the appropriate analogue of 
the disjoint cells property is the following: A space X has the discrete cells property 
if, given any map f: D-*X, where D= + ~ = 0 D" is the disjoint union of «-cells 
(0<:w<«0, then there is an arbitrarily (uniformly) close map g: D+X so that the 
images of the Z)"'s comprise a disjoint, discrete (hence closed) collection of compacta 
in X. Using this, one has the 

APPROXIMATION THEOREM (Torunczyk). Suppose f: M-+X is a map from a hilbert 
space manifold M onto an ANR X. Then f is approximable by homeomorphisms 
<& f is a fine homotopy equivalence, and X has the discrete cells property. 

Here "approximable by homeomorphisms" means that given any e: X->(0, °°), 
there exists a homeomorphism h: M->X such that for all zZM, dist(/(z), h(z))< 
e(/(z)). The phrase "/ is a fine homotopy equivalence" means that given any 
s: X-+(0, oo), there exists a map g:X-+M such that fg is homotopic to id(Z) 
by a homotopy whose motion is limited by e, and similarly gf is homotopic to 
id (M) by a homotopy whose motion is limited under / by s. We note that in 
this theorem / is not assumed to be any special kind of map (e.g. neither proper, 
nor closed, nor even a quotient map), so that for example the theorem applies to the 
(known) case of the projection map l2Xl2-*l2. The above theorem is proved via 
a Bing shrinking argument. 

Combining the above with his earlier proof that an ANR crossed with hilbert 
space becomes a hilbert space manifold, Torunczyk obtained the impressive 

HILBERT SPACE MANIFOLD CHARACTERIZATION THEOREM (Torunczyk). An ANR 
X is a hilbert space manifold <=> X has the discrete cells property. 

An example of an interesting corollary of this theorem is the following. 

COROLLARY. A countably infinite product of ARs, infinitely many of which are 
noncompact, is homeomorphic to hilbert space l2. 

Recall an AR (absolute retract) is nothing more than a contractible ANR. 
Torunczyk extended these results to frechet manifolds of higher weights, too. 

12. Characterizing topological manifolds. How does one characterize a finite 
dimensional topological manifold? (compare the nice infinite dimensional charac-
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terizations in §§10,11). This is the kind of question to which there can be many 
useful answers. One conjecture in particular that is appealing, and ties in very 
strongly with the material in this article, has been enunciated by J. Cannon. 

MANIFOLD CHARACTERIZATION CONJECTURE. Fix 5^m<°°. A space X is an 
w-manifold-without-boundary <=> X is an ENR homology m-manifold having 
Lhe disjoint disc property. 

This conjecture is a bit stronger than the one at the end of §8 (see the definitions 
there). Again, the forward implication above is well known. Interestingly, an 
affirmative solution of this conjecture was announced recently by F. Quinn. 

13. Dimensions 3 and 4. Almost all of the results above exclude dimension 4, and 
many exclude dimension 3 as well. This is in part due to the lack of an appropriate 
analogue of the disjoint disc property in these dimensions, and also in part due to 
Dur ignorance of the topology of manifolds in these dimensions (particularly di
mension 4). What is a good conjecture to make for the Approximation Problem, 
in either dimensions 3 or 4? 

Dimension 4 is particularly bewildering. The difficulties there tie in with the 
difficulties already encountered by smooth manifold topologists working in that 
iimension on handlebody-structure related problems (e.g. surgery and »s-cobordism 
Jieorems). As an example, it is not even known whether a cell-like surjection 
r:M*-+N* of closed 4-manifolds having exactly one non-trivial point inverse 
is approximable by homeomorphisms (this amounts to asking whether the nontrivial 
3oint-inverse is cellular in M4). Or whether the cellularity criterion (§3) works in 
iimension 4. Questions such as these are in need of answers. 
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The Classification of Finite Simple Groups 

Daniel Gorenstein 

My aim in this lecture will be to try to convince you that the classification of the 
finite simple groups is nearing its end. This is, of course, a presumptuous statement, 
since one does not normally announce theorems as "almost proved". But the clas
sification of simple groups is unlike any other single theorem in the history of 
mathematics, since the final proof will cover at least 5,000 journal pages. Moreover, 
at the present time, perhaps 80% of these pages exist either in print or in preprint 
form. One obtains a better perspective of the subject if instead of thinking of the 
classification as a single theorem, one views it as an entire field of mathematics—the 
structure of finite groups. Then when I say that there are some 4,000 pages in print, 
proving many general and specific results about simple groups, it should sound 
entirely reasonable, since one can make the same claim concerning many areas of 
mathematics. Thus my task is really to convince you that we have established so 
many results about simple groups and have developed sufficient techniques for 
completing the classification. 

There are other reasons for skepticism besides my premature announcement 
of the impending completion of the classification. Indeed, to the nonspecialist, 
simple group theory appears to be in a rather chaotic state. Strange sporadic simple 
groups dot the landscape—26 at last count; and they appear to be widely unrelated 
to each other. The five Mathieu groups, 100 years old, examples of highly transitive 
permutation groups, the four groups of Janko, each arising from the study of 
centralizers of involutions, the three Conway groups, determined from the auto
morphisms of a certain integral lattice in 24-dimensional Euclidean space, etc. 
And now there comes the Fischer-Griess monster, of order over 1053; to be precise: 

2 « 320 59 76 H 2 133 1 7 19 23 29 31 41 47 59 71. 
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And to add to the confusion, we don't even know whether the group exists! If 
it does, it involves, inside of itself, approximately 20 of the 26 sporadic groups. 
But whatever the case may be, it is clear that at present we have no coherent expla
nation of these sporadic groups. How then will it be possible to classify the simple 
groups in the face of this reality? 

There is another troubling problem. Who will accept a 5,000 page proof when it 
exists? For it seems humanly impossible to avoid local errors in very long papers, 
and there is no doubt that there are many such errors in the existing 4,000 pages. 
Most of us have been rushing ahead towards the finish line with little time to look 
backwards; but it is clear that the first major "postclassification" problem will be 
a reexamination of the entire proof. 

The fact is that the chaos in the subject is apparent rather than real. In searching 
for new simple groups, any plausible direction is worth exploring. It is much like 
experimental science and there is an element of the haphazard about the whole 
process. One can compare the discovery of a new simple group with that of an 
elementary particle in physics. 

This is quite the opposite of the idea of classification, which implies something 
systematic. If one studies all simple groups G with some property X: for example, 

Property X: (a) G has odd order. 
n.\ r^ i — A — „4- w~o+ 1 nr\n non 
yu) yj l i a s u i u u a i HIUOL X9\I\J\J9\JU\J. 

(c) G has abelian Sylow 2-subgroups. 
(d) The normalizer of every nontrivial solvable subgroup of G is 

solvable. 
Then the analysis must uncover every simple group having the specified property X. 

The major thrust of simple group theory during the past 25 years has been the develop
ment of methods which enable us to determine all simple groups with some such 
property X. Each of the above listed four problems has indeed been solved. The 
first is, of course, the celebrated Feit-Thompson theorem which asserts that all groups 
of odd order are solvable—equivalently, that every (nonabelian) simple group has 
even order. In fact, it is this landmark theorem which started the whole show! 

Primarily the methods for dealing with such general classification problems 
are internal. They involve the study of the proper subgroup structure of the simple 
group G under investigation. This point of view is fundamental. These methods 
have as their goal the following objective : 

Prove that the internal structure of G closely resembles that of some known simple 
group G*. 

In the extreme, this can be taken to mean that G and G* have identical lattices 
of proper subgroups. However, in practice, one does not require such complete 
similarity. Often it is entirely sufficient for a single subgroup of G to resemble 
the corresponding subgroup of G*—for example, the centralizer of an involution 
(i.e., an element of order 2 in G). 
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We must emphasize that this internal resemblance of G to G* may have nothing 
whatsoever to do with the way that the group G* was initially discovered. For 
example, suppose one of Conway's groups C has the specified property X, Then 
the analysis must yield C as a possible answer. But to assert that, say, the centralizer 
of an involution of G is isomorphic to that of C has no connection with 24-dimen-
sional integral lattices. It says nothing more than that the internal structure of 
G resembles that of the group C. Naturally we would like to be able to conclude 
from the given resemblance that G must, in fact, be isomorphic to C. 

This leads us to the first major chapter of simple group theory, which must be 
resolved before one can attempt to prove any classification theorems whatsoever. 
It is called Recognition Theory and concerns the following general question : 

If a simple group G has an internal structure closely resembling that of a known 
simple group G*, must G be isomorphic to G*? 

If so, we say that the group G* is characterized by the given set of internal 
conditions. 

At the present time, essentially every known simple group possesses such an 
internal characterization. What are the known simple groups? Obviously I have 
no time to do more than simply list them here. They are the trivial groups Zp9 

the 26 sporadic groups, the alternating groups of degree n ̂  5, and the so-called 
groups of Lie type. These last are the finite analogues of the complex Lie groups; 
thus we have finite analogues of the complex linear, symplectic, and orthogonal 
groups, and of the five exceptional Lie groups G2, Fi9EG9El9 E89 as well as finite 
analogues of the unitary groups. In the finite case, it turns out that there are some
what more families than in the complex case. But in any event, we have a complete 
list of the finite simple groups of Lie type. 

We can think of the linear groups as the typical example of a group of Lie type. 

General linear group: GL(n9q) is the group of all nonsingular nXn matrices 
with coefficients in the Galois field GF (q) with q elements. 

Special linear group: SL (/7, q) is the normal subgroup of GL (n9 q) of matrices 
of determinant 1. 

Projective special linear group: Ln{q) = PSL (77, q) is the factor group of SL (/?, q) 
modulo scalar matrices of determinant 1. 

Fact: Ln(q) is simple if n^3 or if n = 2 and q^4. 
We cannot expect to have an internal characterization of the Fischer-Griess monster, 

since we do not even know if it exists. The same is true of Janko's most recently 
discovered fourth group JA. I should say that the problem here of existence and 
uniqueness of these two groups will be dealt with by a high-speed computer. There 
remains perhaps a little more theoretical work to do to set these problems up for 
the computer. However, the main question will be simply whether the present 
generation of computers is fast enough to make the required calculations. 
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Apart from these two groups, every other known simple group with the exception 
of a single family of groups of Lie type discovered by Rimhak Ree has such an 
internal characterization. Ultimately the characterizations of the groups of Lie 
type rests on Tits' geometric descriptions of these groups in terms of apartments 
and buildings or on the so-called Steinberg presentation in terms of generators and 
relations. 

The Ree groups are a troublesome family. They have no complex analogue and 
they exist only in characteristic 3. 

Ree group R(q): order q*(q —l)(q3+l)9 q an odd power of 3. Also R{q) 
is a doubly transitive permutation group on q3+l letters and a subgroup fixing 
three letters has order 2. 

Problem: Prove that the groups R(q) are the only doubly transitive permutation 
groups of this order satisfying the given conditions. 

Let G(q) be an arbitrary such group. With great effort, Thompson has proved 
the following results: 

(1) Associated with any such group G(q) is an automorphism 0 of the field 
GFfe); 

(2) If 02 is the automorphism: x^x\ xÇGF (q)9 then G(q)^R(q); 
(3) For each value of q and 0. there is at most one group G(q). 

Open Question: Must 02 be the cubing map for the group G(q) to exist? 
Theoretically, therefore, there may exist new simple groups corresponding to 

other values of the parameter 0. A recent Ph. D. student of Suzuki has shown 
with the aid of a computer that no other groups than R(q) exist for q=3n when 
n^29. In any event, the ambiguity here does not bother us too much—we simply 
allow for this degree of indeterminacy by speaking of a group of Ree type as any 
group satisfying all the specified conditions. 

Likewise we have groups of monster type. They are simple groups of the order 
I have written above and which have the various properties already established for 
the Fischer-Griess monster. Even though we do not know whether such a group exists, 
we allow for its existence in our analysis. Similarly we have a group of type J4. 

Subject then to these precise indeterminacies, this chapter of simple group theory 
is complete. This means that we are ready to begin the classification of the finite 
simple groups. However, we must emphasize that these ambiguities will remain 
even after our present classification theorem is completed. They should be viewed 
as isolated problems, which hopefully will eventually be settled. 

As the classification has evolved, it has broken down into four major categories, 
as follows : 

A. Nonconnected groups. 
B. Groups of component type. 
C. Small groups of noncomponent type. 
D. The general group of noncomponent type. 
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In the balance of the talk, I shall attempt to outline the results obtained to date 
in categories A and B. This is all that time will permit. Fortunately, Michael 
Aschbacher in his lecture will describe the current state of affairs in categories 
C and D. Taken together, these two talks should give you a good idea of how close 
we actually are to completing the classification of the finite simple groups. 

Let me explain the term connectedness. Given any group X9 consider the col
lection X of Klein four subgroups of X; i.e., of subgroups of X isomorphic to 
Z2XZ2. Construct a graph T, whose vertices are the elements of ûf. Connect 
two vertices A9 B of T, if A and B commute elementwise; i.e., if [A9B] = 1. 
The group X is said to be connected if the resulting graph r is connected in the 
usual sense. It is this degree of freedom which is needed to carry out certain general 
lines of argument. 

The meaning of category A is the following: Determine all nonconnected simple 
groups. This chapter of simple group theory has been completed. However, it 
has taken some 3,000 journal pages to achieve. The proof has been carried out 
in two major parts: 

I. Determine all simple groups which possess a nonconnected Sylow 2-subgroup. 
II. Determine all nonconnected simple groups with a connected Sylow 2-subgroup. 
Subgroups and homomorphic images of nonconnected groups may be connected, 

so nonconnectedness is not a good inductive concept. The solution of I has been 
obtained by treating it as a special case of a more general classification problem 
which is inductive. This is based on the following proposition. 

PROPOSITION. Let S be a nonconnected 2-group. If A is any subgroup of S 
and A is any homomorphic image of A9 then Ä does not contain a subgroup iso
morphic to z2xz2xz2xz2xz2. 

Such a group Ä is known as a section of S and so we rephrase the proposition 
by saying that a group with nonconnected Sylow 2-subgroup has sectional 2-ranlc 
at most 4. Thus I will be solved if we determine all simple groups of sectional 
2-rank at most 4. The advantage of the latter condition is that it is preserved by 
subgroups and homomorphic images and so can be proved inductively. The resulting 
theorem will then stand in its own right, independent of whether the full classification 
is ever achieved. Most of the major results of simple group theory have a similar 
degree of independence. 

I wish to state the sectional 2-rank -< 4 theorem in its entirety, for the answer 
is instructive. You will have to accept the fact that each of the terms I write down 
stands for some specific groups of family of groups. 

THEOREM. If G is a simple group of sectional 2-rank at most 4, then G is iso
morphic to one of the groups on the following list: 

I. Odd characteristic:L2(q)9 Lz(q), U^(q)9G2(q)9
 zDA(q)9 Psp (49q)9 LA(q)9 qt=\ 

(mod 8), Ué(q)9 q^l (mod 8), L6(q)9 qt=3 (mod 4), U5(q)9 q=\ (mod 4), or Ree 
type of characteristic 3 (Note the word "type" here). 
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IL Characteristic 2: L2(8), L2(16), L3(4), £/3(4), or Sz(8). 
III. Alternating: An9l^n^ì\. 
TV. Sporadic: Mll9 M12, M229 M23, Jl9 J29 /3 , Me, or Ly 

Thus, apart from certain families of groups of Lie type of odd characteristic of 
low dimension, there are precisely 19 other groups, half of them sporadic. You 
can see why the proof of this theorem must be a long one. If we think of each family 
as a single type of group, then there are some 30 distinct internal structures that 
can arise, 19 of them corresponding to individual groups. Thus our internal analysis 
of G must branch off into various directions, so that we can eventually show that 
G resembles internally one of these 30 types of groups. Each of these branches 
requires its own analysis. 

Of course, groups of odd order correspond to "Case 0" of the theorem, which 
accounts for 250 pages of the argument! 

To avoid repetition, we state the second part of the nonconnectedness theorem 
as follows : 

THEOREM. If G is a nonconnected simple group of sectional 2-rank at least 5, 
then G is isomorphic to one of the following groups: L2(2

H)9 U3(2
n)9 or Sz(2"). 

Equivalently, G is of Lie type of characteristic 2 and "Lie rank 1." In particular, 
a Sylow 2-subgroup of G intersects its distinct conjugates only in the identity. 

This last statement explains the structure of the graph JH of G: each Sylow 
2-subgroup of G corresponds to a distinct component of T. 

The effect of having a complete solution to category A is that in all subsequent 
classification problems, one can assume at the outset that the group G under 
investigation is connected. I can only give the barest hint of the way this condition 
is used. Basically it helps us to analyze the cores of centralizers of involutions. 

For any group X9 the core of X is the unique largest normal subgroup of X 
of odd order. It is denoted by 0(X). By Feit-Thompson, cores are always solvable. 

Fact. If G* is a known simple group and t* an involution of G*, then 0(CG*(t¥)) 
is a cyclic group. 

Hence in studying arbitrary simple groups G and attempting to show that G 
internally resembles some known simple group, one of the first objectives is to 
prove that cores of centralizers of involutions of G are necessarily "small" (a cyclic 
group being a typical example of a small group). The methods we have developed 
for achieving this goal require G to be connected. This is all I can say here. 

To describe the results in category B, I must now define a group of component 
type. To motivate the concept, let us examine briefly the general structure of the 
centralizer of an involution in a group of Lie type defined over GF(q)9 q=pa

9 

p a prime. As we shall see, we obtain quite distinct answers according as p is odd 
or p=2. This is, in fact, to be expected since in the Lie terminology an involution 
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corresponds to a "semisiraple" element when p is odd and to a "unipotent" 
element when p=2. We shall illustrate the situation using the groups GL (n9q). 

odd characteristic 

Involution t: Centralizer k«-C , : | 0 j j j . 

Here A is nonsingular kXk and B is nonsingular (n — k)X(n—k). 
Structure Ct^GL (k9 q)XGL (n-k9 q). 

characteristic 2 

Involution t: 
0 l 0 

o 
Centralizer Ct: •< 

xn 0 ... 0 

* 2 i : 

; A o 
xnl xu2... xnn 

'1 
x2l 1 

0 ' 
^nl Xn2 • 

tf 

• i> 

and ^ = • 

k 

(1 o... 01 
0 A ; 

: A o lo ...0 lj 

U 0. . .0 1) 

Here A is nonsingular (n—2)X(n—2), x n ^ l , xm9^\ 

Define ß = • 

Q isa2-group, K^GL(n-29q). 
Structure Ct~Q-K\ semidirect product; Q is normal in Ct; K acts faithfully 

on ß by conjugation. 
We see then that when p is odd, the centralizer Ct is a product of groups of 

Lie type of lower dimension. Actually it is the SL («?, q) factors we are interested 
in rather than GL (m9 q)9 for these are closer to being simple. In this example, 
each of these factors is normal, since the product is direct. However, in other groups, 
the centralizer may contain an element interchanging the factors, so these factors 
will only be what we call subnormal. 

In general, a subgroup F of a group X is called subnormal if there exists a chain 
of subgroups Y=X„9 Xn_1? ..., X±=X of X with each Xt normal in Xx_x. 

On the other hand, when p—29 Ct has no such normal or subnormal subgroups 
of Lie type. The subgroup Q is an obstruction to the existence of such subgroups. 
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Only if one considers the factor group CJQ does one obtain a normal subgroup 
of Lie type. 

This dichotomy is fundamental for understanding the general finite simple group, 
for it leads to a basic subdivision of simple groups into two distinct categories, one 
reflecting the odd characteristic phenomenon, the other the characteristic 2 pheno
menon. To make the definition, we must take into account that the groups SL (m9 q)9 

need not be simple. Consider, for example, X=SL(29q)9 q odd, q^5; then 
("o -?) *s ^n element: of X said commutes with every element of X9 so is in 
the center of X. Hence certainly X is not simple. It is the factor group 
X/(d _l))^L2(g) which is simple. Thus X is what we refer to as a covering 
group of a simple group. 

The more precise term is given by the following definition. 

DEFINITION. A group X is said to be quasisimple if X is perfect (i.e., X=[X9 X]) 
and X (center of X) is simple. 

In the study of simple groups G, we have already observed that the core 0(Ct)9 

t an involution of G, also acts as an obstruction to any statement we may wish to 
make about the structure of the centralizers of an involution. Hence the definition 
of a group of component type must be formulated in terms of CJO(Ct) rather 
than of Ct itself. 

DEFINITION. A group G is said to be of component type if for some involution 
t of G, CJO(Ct) possesses a quasisimple subnormal subgroup. In the contrary 
case, G is said to be of noncomponent type. 

Now we see the meaning of category B and the contrapositive categories C and D. 
I shall now state the goal of much of the research of the past ten years. Again 

to avoid repetition, I shall assume that G 'has sectional 2-rank at least 5. 

THEOREM (?). Let G be a simple group] of component type (of sectional 2-rank 
at least 5) and assume that for some involution t of G, C, = Cf/0(Cf) possesses 
a quasisimple subnormal subgroup L which is a covering group of a known simple 
group. Then one of the following holds: 

L G is of Lie type of odd characteristic (of sectional 2-rank at least 5); 
II. G^An9n^\2; or 

III. G^ one of the following 13 sporadic groups: HS, ON, He, Suz, Ru, Conway 
.1 or .3, Fischer M(22), M(23), Af(24)', the baby monster F29 Haradcüs group Fh 

(a subgroup of the monster), or G is of monster type. 

The (?) here is to indicate that the proof is not quite complete. At this time, 
there still exist certain possibilities for L for which it has not been established. 
Here is the present list of open cases: 

characteristic 2. E&*FAÇV9 W ) , n odd, «>1 , FA(2)9 Sp(6,2), £^(2), 08±(2), 
or a covering group of Sp (6,2), UB(2)> 0^(2). 

characteristics. L^U^Qh ^( l ) , L4(3), G2(3). 
sporadic. L 9* Conway .2 and Thompson F3. 
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Thus there is a single family of groups plus 16 individual possibilities for L. It 
should be emphasized that the open list has been steadily shrinking as group the
orists tackle the remaining cases. Moreover, the methods for treating these problems 
are well understood. It is, of course, possible that one or more of these cases may 
lead to a new simple group. If so, each such new group as well as all of its covering 
groups would then have to be "plugged in" for L. The same applies if a new 
simple group of noncomponent type is discovered in the future. However, what is 
possible and what is probable are two different matters. The most likely conjecture 
is that every finite simple group is now known and the remaining cases of the 
component theorem will be finished within approximately a year's time! 

In conclusion, I would like to state a magnificent theorem of Aschbacher which 
characterizes the groups of Lie type of odd characteristic among the groups of 
component type and which is completely proved. 

Suppose, in the above theorem, that the group JL^SL(2, q)9 q odd. Then 
L has a center of order 2. The involution I is certainly in the center of Ct and 
so ? is a possible candidate for the involution in the center of L. If I does lie in 
JL, we say that L is an intrinsic SL (2, q) and we call the involution t a classical 
involution. 

THEOREM. If G is a simple group which possesses a classical involution (and 
G has sectional 2-rank at least 5)9 then G is a group of Lie type of odd characteristic. 

This is a remarkable result because it asserts that the full structure of G is 
completely determined by a "tiny" piece of information in the centralizer of a single 
involution. It also shows the fundamental significance of the subgroups SL (2, q) 
for the structure of a group of Lie type. I think you will agree that the theory of 
finite simple groups must be quite fully developed for us to be in a position to establish 
such a powerful conclusion from so little information ! 

Aschbacher's lecture on groups of noncomponent type will indicate that our 
results for the groups in categories C and D are rapidly approaching the same 
degree of finality as presently exists for the groups of component type in category B. 
In fact, if and when all the present work in progress is completed, there will remain 
only a very few, essentially isolated, problems of the type described above, to complete 
the entire classification of finite simple groups (these do not include the Ree group 
problem and the question of the existence and uniqueness of both the monster and 
Janko's fourth group, which as I have tried to make clear, may very well remain 
unresolved after the classification). 
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Micro-Local Analysis 

Masaki Kashiwara 

We mean by micro-local analysis the analysis of functions and systems of dif
ferential equations on the cotangent bundle. The role of cotangent bundles in 
analysis has been recognized for a long time, but the formulation which we treat 
here started from Sato's introduction of microfunctions around 1970. The book of 
Sato-Kawai-Kashiwara [10] concerned was the systematic work on micro-local 
analysis. One of the most remarkable results in that book is the discovery of three 
types of micro-differential equations: de Rham type du/dx1=09 Cauchy-Riemann 
type {ßldx1

Jti':-idldx2)u=Q and Lewy-Mizohata type (d/dx1 + f^lx1d/dx2)u=0. 
Any system of differential equations (or more generally micro-differential equations) 
is micro-locally equivalent to the mixture of these three types at a generic point. 

They also proved that the characteristic variety of any system of differential 
equations is involutive. (See also [9].) 

Let P(x, D)=2iaaa(x)Da be a differential operator defined on an open subset 
X ofC". Here, a=(a l5 ..., a„) is an «-tuple of non-negative integers, \<x.\=<x1+...+an 

and Da=dM/dx?l1...dxln. The largest m such that aa(x)^0 for some a with 
|a] = 777 is called the order of P(x9D). The function 2\a\=ma*(x)£a *s called the 
principal symbol of P{x9 D). Here, (x, £) = (xl9 ...9x„9 £l9 ..., £„) is the coordinate 
system of the cotangent bundle T*X of X and £a means ^J1, ..., £"». 

Let us consider a system of differential equations 

SW : P±(x9 D)u =...= PN(x, D)u = 0. 

The common zeroes of the principal symbols of linear combinations ^.AjPj with 
differential operators Aj as coefficients is called the characteristic variety of 9W. 
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Let c denote the codimension of the characteristic variety in the cotangent bundle. 
The characteristic variety being always involutive, the codimension c is equal 
to or greater than n. The number n—c indicates, roughly speaking, the number of 
variables on which solutions of SR depend. For example, in the case of the system 
of differential equations du/dx1= ... = du/dxc=Q9 a solution u(x) depends on the 
(n—c) variables xc+19 ...9xn. Hence, when n=c9 we can expect that the space 
of solutions of SR is of finite dimension. In fact, this is a case [3]. We say that 
SR is holonomic if c=n. This notion is a generalization of the notion of ordinary 
differential equations into several variables. As we succeeded to study the properties 
of functions with one variable through their ordinary differential equations, we 
can expect that the study of holonomic systems of differential equations gives many 
properties of their solutions. 

Let P be an ordinary differential operator of the form 2%oaj(f)(t(^MOj with 
0m (0)^0. In this case, t=0 is called the regular singularity of Pu=0. Then, any 
solution of Pu=0 has the form: 

u(t) = 2<pjtV(t)t*j(}ogty 

with holomorphic functions (pjtV(t) defined on a neighborhood of t=0. Moreover, 
A, are the solutions of the equation 

This phenomenon can be generalized to the case of holonomic systems of partial 
differential equations. 

First, we can introduce the notion of regular singularities for holonomic systems 
(see §4). Let SR: P^x, D)u=...=PN(x9D)u=0 be a holonomic system of 
differential equations with regular singularities. Then, we can find a nonzero poly
nomial b(s) of degree m and a linear combination Q—^A3P} suchthat Q is 
written in the form b(x1D1)+x12j+]a^mgjta(x)(x1D1)

JD,<x
9 where a=(aa, ...,aM) 

is an («—l)-tuple of nonnegative integers, |a|=a2+...+«„ and D'a=d^ldx2^...dxfl
n
n. 

This implies that any solution of SR satisfies Qu=0. In the case of ordinary 
differential equation with regular singularities, 

?»><«(4)J=?«'<°>(4)' 
+<^I-(«J(0-%(O))(4J-

The hyperfunction solution u(x) of the system 3JI has an "asymptotic expansion" 

«(*)= 2 2 Ì*w(*0^+kGog*i)v. 
j=l v=0 ft=0 

Here, vJvk(x') are hyperfunctions on the variables x'=(x29 ..., JCJ. Àj satisfies 
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b(Xj)—0. Moreover, the hyperfunctions vJtVtk(x') satisfy holonomic systems 
of differential equations with regular singularities. 

1. Hyperfunctions and microfunctions [10]. Hyperfunctions are generalized functions 
obtained by sum of "ideal boundary values" of holomorphic functions, and micro-
functions are "singular parts" of hyperfunctions. First, we shall remember the 
definitions of hyperfunctions and microfunctions. 

1.1. Tangent cone. Let A and B be two subsets of a differential manifold X. 
For a point p of X9 choosing a local coordinate system around p9 we define the 
subset CP(A; B) of the tangent vector space TpX as the totality of liman(xn— yn)9 

where {xn} (resp. {y,,}) is a sequence of points in A (resp. B) which converges 
p and {an} is a sequence of positive numbers. 

We define C(A; B) as the union of CP(A; B). 
If B is a closed submanifold of X, then C(A\ B) is invariant by translations of 

tangent vectors of B; we denote by CB(A) the subset C(A; B)/TB of the normal 
bundle TBX of B. 

1.2. Let M be an open subset of JR" and let X be a neighborhood of M in C". 
The tangent bundle TX (resp. TM) of X (resp. M) is identified with XXC" 
(resp. MXÄ"), and the normal bundle TMX of M is identified with f^XTM= 
MXÌ^ÌR". The conormal bundle T^X of M is identified with l ^ ï r * M . 
We shall denote by T and n the projection from ]/— 1 !TAf and | /^T T*M onto Af, 
respectively. A subset Q of j / ^T TM (resp. j / — 1 jT*Af) is called convex or 
cone if ßnT_ 1(/?) (resp. Qnn"1^)) is convex or cone. An open set U of X is 
called an infinitesimal neighborhood of a subset Q of } ^ ï TM if CM(X— U)r^Q=Q. 

We denote by 3l(ß) the inductive limit of the space G{U) of holomorphic 
functions defined on U9 where U runs over the set of infinitesimal neighborhoods 
of Q. 

Let V be an open subset of M. Let #"(F) be the set of families {Qi9 <p.}.e/, 
where ß, is a convex open cone of ]^l TM suchthat z(Qj) = V9 cp, is an ele
ment of il(Qt) and J is a finite index set. We say that two members {Qj9 <?,},• e / 

and {&'j,<Pj}j£j of tF{V) are equivalent if there are open convex cones Q.. 
and (pt j^(QitJ) (iÇ_I9jÇJ) satisfying the conditions : fl^ofl/Uß^^^^/^Jfl 

and 9>5=2/€/i>ul0r 
We denote by ^ ( F ) the set of equivalence classes of 3F{y)9 and the element 

of @Ì(V) is called a hyperfunction defined on V. For an open convex cone Q and 
(/>£9f(ß), the hyperfunction corresponding to {Q, cp} is denoted by bn(q>) (or, 
if (p is defined on an infinitesimal neighborhood U of Q9 denoted by bu((p)9 

or simply b(<p))9 and called the boundary value of (p. If bfì((p)=09 then r/>=0. 
^ ( F ) has clearly a structure of vector space, and the equivalence class of {Qi9 <p,}/6/ 

equals 2ibat(Vi)' 
1.3. Let (*o> | / - 1 £o) be a point of the conormal bundle ] / - l T*M=MX 

i— 1 K" of M, and let u be a hyperfunction defined in a neighborhood of x. 
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We say that u is micro-analytic if u can be expressed in the form: u=2ib
Q ((pi) 

with open convex cones Qt of j / ^ ÏTM and ^£91(0,) suchthat T~1(p)r\Qia 
{»c:îueT-10») = P Î J P ; (f^v9f^Q=-(v9ÇQ)>0}. We denote by SS(w) the 
set of points of Y—\T*M where z/ is not micro-analytic, and call it the 
singular spectrum of u. 

A real analytic function u defined on V is considered^as hyperfunction on V; 
in fact, u is a restriction of a holomorphic function <p defined on a neighborhood 
£/ of V. a corresponds to the hyperfunction bv((p). A hyperfunction u is real 
analytic if and only if SS (u) is contained in the zero section {(#, Y^ÏÇ)Ç. J^T T*M; 
£=0}. _ 
1.4. For any open subset W of ]/—1 r*M, we define 

«'(FT) = «(K)/{u6«(K); SS(w)n^= 0}, 

where F is an open subset of M which contains n(W). This definition does not 
depend on the choice of V. Let # be the sheaf on ]/—1 T*M associated with 
thepresheaf W^WiyV). If W is an open cone, we have cé>(W) = 'ê'(W). A section 
of # is called a microfunction, and we denote by sp the homomorphism from 
®(V) to «(»0-

A differential operator P(x9 D) with real analytic functions as coefficients operates 
on the sheaf of hyperfunctions and microfunctions m the iollowing way: 

P(2boj(fPJ)) = 2b0j(P<Pj) and P sp (u) = sp (Pu). 

2. Micro-differential operators. We can construct a class of operators, wider 
than the class of differential operators, which operate on the sheaf of microfunctions. 

2.1. Let X be an open subset of C". The cotangent bundle T*X of X is 
identified with XXC". For a complex number X and an open subset Q of T*X9 

we denote by ê°°(A)(ß) the set of sequences {PA+j(z9 Q}jç_z of holomorphic functions 
satisfying the following conditions: 

(2.1.1) PJi+j(z9 0 is a holomorphic function defined on Q, homogeneous of 
degree X -\-j with respect to Ç; i.e. 

[jbww] Px+J = &+j)Pi+i 

(2.1.2) PA+J-(z,Q satisfies the following growth conditions: 
(2.1.2.1) For any compact subset K of Q and a positive number e, there is 

a positive number CKt such that 

\pi+Az> 01 < - ^ r f i J ' f o r a°y J > ° a n d (*• 0 m *• 

(2.1.2.2) For any compact subset KoiQ, there is a positive number RK suchthat 

|Pa+A0l ** (~JyRïJ for anv •/ < ° and feO in *. 
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We denote by ê(X)(Q) the set of {Px+j} of £°°W(Q) such that Px+J=0 for 
y>0. ê°°{X) and $(X) are clearly sheaves on T*X. We define ${X) as the union 
of S(k+j\ and set ê00=ê00^\ ê=ê®\ 

{P^j(z90}jez will be denoted by 2px+j(z>D)- T h e section of ^°°(A) is called 
micro-differential operator, and the section of ê(X) will be called micro-differential 
operator of order X. 

For a section 2 A + j ( z ' ^ ) °f A ^ X ^ A ^ ' O *S called principal symbol and 
denoted by o^CP). Hence, aA is a sheaf homomorphism from ê(X) onto the sheaf 
(9(X) of holomorphic functions on T*X9 homogeneous of degree X with respect to £. 

2.2. We define a product R=2B^fl+j(z9D) of micro-differential operators 

P=2PA+MI>)
 a n d Q=2Qß+j(*>i>) % 

^+;1+Z(z, o = 2 ^(DJPA+J(Z, 0)(W,+*fr 0), 
I~J+fc-|«l a ! 

where a = (al5 ..., a„) is a set of non negative integers, ^1 = ^ + . . . + ^ , and 
Da

z=d]tt]/dz^...dzt;i". By this law of multiplication, we have (PQ)R=P(QR) for 
P^°°ix\ j 2 6 * " w and P£<T°(e). We have *(A)-tf(ji)ctf(>l+AO. ' " % ' a i l d 

<f(0) are sheaves of rings with the identity l=2Bj(z9D) (Pj=l for j = 0 and 
P , = 0 for^VO). For P££(X) and ße*(/ i) , we have ffA+/l(Pß)=ffA(P)ff|l(ß). 

A differential operator P=2aaa(z)^a *s identified with the micro-differential 

operator 2 ^ ( * > ^ ) with PJ(Z9Q=2J-M°MF> 

The following lemma shows an importance of principal symbols. 

LEMMA 2.2.1. If the principal symbol <rk(P) of P£é>(X) does not vanish at a point 
p of T*X9 then P has an inverse R in $(-X)\ i.e. RP=PR=1. 

The rings ê and ê(0) have nice ring theoretic properties; for example, they are 
coherent rings, any stalk of them is a noetherian ring, etc. 

2.3. Let M be an intersection of R" and an open subset X of C". Then, the 
conormal bundle T*fX=]/^Ä T*M is a closed submanifold of T*X. Let V be 
an open subset of f^ï T*M and let Q be an open subset of T*X containing V. 
Then, ê°°{X>(Q) operates on %(V)9 and we have \-u = u9 (PQ)u = P(Qu) for 
u^(V)9P^ê°°{x\Q)9 ß€<r° ( '0(ß). 

By using this operation of micro-differential operators, the following proposition 
is easily obtained from Lemma 2.2.1. 

PROPOSITION 2.3.1. For a differential operator P and a hyperfunction u, we have 

SS(w)co-(P)-1(0)uSS(Pw)-

In fact, outside o-(P)_1(0)uSS (w), P is invertible as micro-differential operator 
by Lemma 2.2.1, and hence Psp(w)=0 implies sp(w) = 0. 

2.4. Let Po = (z09Co) and P! = (zl9Ci) be two points of T*C" and F a holo
morphic map from a neighborhood of p0 to a neighborhood of p1 such that 
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F(p0)=p±. Assume that F is a homogeneous symplectic transformation, i.e. 
F*(2£jdzj)=2ÇjdZj' Then, we can construct a sheaf isomorphism 
$: F-1^0*)"*00™ on a neighborhood of p± suchthat $(PQ) = $(P)$(Q) for 
P€£°°W and Q€g°°V>9 and that ax($(P)) vx(P)oF for any P££(X). Moreover 
if p0 and px are contained in f-ì T*M and if F maps tf^ÌT*M into f^ÏT*M9 

then we can construct a sheaf isomorphism !P: F"1^)^-^ such that *P(Pu) = 
<P(P)-W(u) for any Peg00™ and w€#. We shall call ($ , P) or (4>, <F, F) the 
quantized contact transformation. 

Quantized contact transformations are effectively used in order to transform 
micro-differential operators into the normal forms. For example, let us consider 
a micro-differential operator P of order 1 such that a^P) A(2CjdZj)^0 and 
that GiiP^yz^T*^] is real-valued. Then, there is a quantized contact transformation 
which transforms P into i~^\djdz1. Hence, we can deduce the properties of P 
from those of d/dzl9 which is easy to analyze. Thus, we obtain the following 

PROPOSITION 2.4.1. Let P be a micro-differential operator such that the restriction 
of the principal symbol p of P to f^ÎT*Rn is real valued and that the differential 
of the principal symbol is not parallel to 2^j^zj- Then, P: ^ - * # is surjective and 
the support of microjunction solution of Pu=0 is the union of bicharacteristics of P, 
i.e. integral curves of the Hamiltonian 

fdCjdzj dzjdCj' 

3. System of micro-differential equations. 
3.1. In this talk, a system of micro-differential equations is, by definition, a coherent 

left ^-Module. Let 901 be a coherent ^-Module. Then, Sol has locally a free resolution 

where P=(PU) is an N^NQ matrix of micro-differential operators and P: êN*--+êN 

is given by (Ql9 ..., QN)^(Ql9 -..,QNl)P=(2QAi> ->2QAN)> 

We have 3RMK,(SR, #)=Ker (»"• V V"i)9 and hence 5Rw, (9W, #) is a sheaf 
of microfunction solutions of a system of micro-differential equations : 

2PUUJ = ° 0 = 1 ^i)-

3.2. The support of a coherent « -̂module is not an arbitrary subset of T*M. 

THEOREM 3.2.1 ([9], [10]). The support of a coherent ê-module is an involutive 
analytic subset of T*X. 

Remember that an analytic subset V of T*X is called involutive if the Poisson 
bracket 

{f,g} 2(K d dCtdzJ 
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vanishes on V for any holomorphic functions / and g vanishing on V. An 
involutive analytic subset has always codimension equal or greater than rc=dim X. 
We say an involutive analytic subset V is Lagrangian if codim K=dimAr, and 
a system of micro-differential equations is holonomic if its support is Lagrangian. 

THEOREM 3.2.2 ([6], [8]). Let 9ft be a holonomic system of micro-differential 
equations. Then, we have 

(1) For any point p of j /^ ï T*R"9 HOOJìIS (SDÌ, %>)p is a finite-dimensional vector 
space. More generally, so is £xtJ# (9ft, %>)p for any j . 

(2) There is a stratification f-i T*R"=n Va of f-ÎT*Rn into subanalytic 
submanifolds Va such that &xt^(^Si9^)\v is a locally constant sheaf for any 
a and j . 

A microfunction which satisfies a holonomic system of micro-differential equations 
is called holonomic microfunction. Theorem 3.2.2 suggests that we have a great 
chance to analyze holonomic microfunctions through their holonomic systems of 
micro-differential equations. 

4. Holonomic system with regular singularities. 
4.1. Let 9ft be a holonomic system of micro-differential equations and let A be 

the support of 9ft. A is therefore a Lagrangian analytic subset of T*X. At a generic 
point p of A9 A is a conormal bundle of a complex submanifold Y of X. Let us 
take a local coordinate system x=(xl9 ...9xn)9 such that Y is given byx1=...=xl=0 
and p = (09dx1). Let S£km be the holonomic system defined by 

Here, ux m is the modulo class of 1. 

THEOREM 4.1.1. There are complex numbers Xj and integers mj (j=\, ...,N) 
such that S°° (g)̂  9M is isomorphic to ®ê°° <&s S£km. (Xj mod Z, mj) are uniquely 
determined by 9ft up to permutation. 

The integer 2mj *s called the multiplicity of 9ft. 
We say that 9ft has regular singularities at /? if 9ft is isomorphic to 0 y £?x m . 

In general, we say that 9M has regular singularities, if 9ft has regular singularities 
at a generic point of any irreducible component of the support of 9M. 

Any holonomic system can be transformed into a holonomic system with regular 
singularities by using micro-differential operators of infinite order. More precisely, 
we have the following 

THEOREM 4.1.2 [7]. For any holonomic system 9M, there exists a holonomic system 
W with regular singularities such that <£'00(g)(?9M is isomorphic to «^ (8)̂ 301'. 
Moreover, 9ft' is unique up to isomorphism. 
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4.2. Let 7 be a complexification of a real analytic submanifold of JR", and let 
J ^ m be as in §4.1. Then, any homomorphism from J5fA1 into the sheaf of .micro-
functions # is given by uk-s^c{D1l^—ì)~k~1ò(x19 ...9x^ for some complex 
number c. Let 9M be a holonomic system with multiplicity 1 (this implies that 
9W has regular singularities), and suppose that 9ft is generated by a section u. 
Then, 9ft is isomorphic to £Pkl for some complex number X9 and the isomorphism 
from 9ft onto ifAjl is given by u*->Puxl with a micro-differential operator 
P££(k) (for some integer k) such that ak(P)\A^Q. Hence, for any irçafo*i,(3R, #), 
F(u) equals cP(D1f']/—l)~x~~1ö(x19 ...,*/) for a complex number c. We define 
the principal symbol a(F(u)) of F(u) by 

regarded as a section of Q1^®(Q1^)®{~Vi. Here ß̂ f2 is the sheaf of half densities. 
on A. For a holonomic microfunction which satisfies a holonomic system with 
regular singularities with multiplicity 1, we can define its principal symbol in this 
manner (see [2]). 

The above observation shows that a solution F:WH*-*^ is uniquely determined 
by the principal symbol of F(u). 

5. Asymptotic expansion of holonomic microfunctions. 
5.1. Let us consider the situation in §4 with 1=1. Then, F(u) is given by 

P(X9D)(D1//^T)~;L~1ö(X1). For the sake of simplicity let us assume that X is 
not an integer. Then, we can show that F(u) equals sp((p(x){x1-\-Y^l 0)") with 
p=X—k and a real analytic function (p(x). We have 

a(F(u)) = j ^ ^ e x p ^ r c i / ^ ) ^ ( ° ' *2 ' ' " ' *n) V\dÇidx2-dxtt\/\dx1...dxn\. 

Since 
<P(x)(x1 + iOY = cp(09x29 ..^xJ^+iOy 

+^(09x29...9xn)(x1-hi0r+1+...9 

a(F(u)) gives the first coefficient of the power series expansion of F(u) with re
spect to jq. 

5.2. Let us consider another example. Let f(x) be a real-valued real analytic 
function. Then, it is known that S(t—f(x)) has the asymptotic expansion 

ô(t-f(x))~ n2 2 i^.v.kW^+ f cdogOva\o). 
v=0 j = l fc=0 

Here, ajvk(x) is a distribution related with the residues of the analytic continuation 
of f(x)s

+ with respect to s. 
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The above asymptotic expansion means the following: for any compactly sup
ported C°°-function <p(x)9 we have the asymptotic expansion 

fö(t-f(x))<p(x) dx~222 if aj.r.t(x)q>(?c) dx) /V*(logOv. 
v j k 

5.3. Let us consider a more general case. Let X be an open subset of C1+". 
We shall denote by (t9x) = (t9xl9 ...9xn) the point of C1+". Let S be the sheaf 
of differential operators on X. A left coherent ^-module is called a system of 
differential equations. Let us denote by n the projection from T*X onto X. 
Then, & contains %~XQ) as its subring. For a system 9ft of differential equations, 
the support of $®n-i& 7r-19H is called the characteristic variety of 9ft. 

We say that 9ft is holonomic if so is $ ^ r i s ^ 1 ^ -
Let 9ft be a holonomic system of differential equations, u a section of 9M, and 

let F be a ^-linear homomorphism from 9ft into the sheaf $ of hyperfunctions 
on M=Xr\ JR1+". 

Suppose that F(u) has an asymptotic expansion 

(5.3.1) m -222aj.v.k(x)tX>+k(lQg0V-
j v k 

We may assume that Xj—Xr is not an integer for j^f and that for any j there 
is v satisfying fl.jV0^0. 

First, let us determine Xj. 

THEOREM 5.3.1. There exist a non zero polynomial b(s) and a differential operator 
P(t9x9tD19Dx) satisfying the following conditions 

(1) b(tDt) = tP(t9 x9 tDt9 Dx)u9 

(2) P(t9x9tDt9Dx) has the form 2 £;,«(', x)(tDtyD%. 

This theorem gives X}. We have 

(5.3.2) b(Xj) = 0 for any ;. 

In fact, by (1) of Theorem 5.3.1, we have 

(5.3.3) (bODd-tPO, x9 tDt9 üxj) 2 2 2 <W(*)'A '+* Oog 0V = 0. 
j v k 

If Oj 0 =0 for v>v0 and 0/,Vo,o^O> then the coefficient of t*j(logt)v° of the 
expansion of the left hand side of (5.3.3) is b(X^)ajv 0(x). Hence, we obtain 
b(Xj)=0. 

We shall call b(s) the b-function of u with respect to the hypersurface *=0. 

EXAMPLE 5.3.2. u = (t2-x3)"9 i.e. 

("2 tE>1+T xD* ~ a) U = (3x2£>'+2tD*)u = 0-
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We have 

(tDt){tDt-2oi-j}[tDt-2a-j)u =-l-t*Ds
xu9 

and hence b(s) = s(s-2a-2/3) (s-2a-4/3). 

EXAMPLE 5.33. u=e~vt; i.e. (t2Dt-l)u=0. In this example, b(s) = l. In 
fact, u=t2Dtu. See §5.4. 

EXAMPLE 5.3.4. Let f(x) lie a holomorphic function. Let b(s) be the ^-function 
of u=ö(t—f(x)). Then, we have 

b(tDt)S(t-f(x)) = tP(x, tDt,Dx)ö(t-f(xj). 

By multiplying /s, we obtain 

b(tDt-s)fd(t-f(x)) = P(x9 tDt-s-l9Dx)t
s+1S(t-f(x)).< 

This implies, with the change of variables (t9x)*-+(t-{-f(x)9 x)9 the following: 

b((.t+f(x))Dt-s)f(xYô(t) = P(x, (t+f(x))Dt-S-l,Dx-(df)Vt)f(xy+1ô(t)-

Comparing the coefficients of o(i)9 we obtain 

b(-s-l)f(x)s = P(x9 -s-29Dx)f(xy+\ 

Hence, b(-s-l) is the ò-function of f(x)9 i.e. b(-s-l)f(xy£@[s]f(x)s+1, 
See[l],[4]. 

5.4. We shall micro-localize the situation of §5.3. Let A be a Lagrangian 
submanifold of T*X and JA the sheaf of holomorphic functions which vanish 
on A. There is f€JAn(9(l) suchthat df==co (==2^jdzj) modulo/^, i.e. df-coZ^Q1. 
The function / is determined modulo JA. Let #A be the subsheaf of ê(\) defined 
by fff 1(/ii) and SA the subring of ê generated by #A. We denote by $A(m) 
the ^-submodule ê(m)*£A=£A'g(m) of ê for m£Z and we define </1>m = 
£Anê(m)=f2. Let $=2&j(x9D) be a micro-differential operator in / ^ 
such that ^ E E / m o d / 2 and ^ 0 4 2 » 3 ^ A ^ E O m o d ^ - Then> * is, 
determined modulo £Ai2(-l)=#l(-\)- Note that t^ ,P]€^ A ( - l ) for any P$.£A. 

THEOREM 5.4*1. Let WU be a holonomic ê-module with regnar, singularities, 
and let u be a section of 9M.( Then, there are a nonzero polynomial b(s) and.P£&A(—l) 
such that b(<P)u=Pu and that ordP^degè. 

,» | 
Consider the quotient ring sé~êA\êA(—\). Then this ring is locally isomorphic 

to the ring of differential operators on A homogeneous of degree 0 with respect 
to £. Let S be the modulo class of #. Then, the center of sä is the polynomial 
ring generated by $. si is embedded (locally) into the ring SA of differential 
operators on A. 
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THEOREM 5.4.2. Let WU be a holonomic ^-module with regular singularities and 
91 a coherent ^-sub-module of 9W. Then, the st-module JR/rf(—1)81 has the follow
ing properties. 

(1) There is a nonzero polynomial b(s) such that b(ff)(9l/S,(—i)<iSt) = 0. 
(2) The @A-module ®A (8> (̂W/< (̂— l)9t) is a holonomic system of differential 

equations on A with regular singularities. 

5.5. Let X be an open subset of C1+" = {(/, x); t£C9xeCn} and A the co-
normal bundle of the hypersurface /=0 . Let ÜW be a holonomic system of micro-
differential equations with regular singularities defined on a neighborhood of 
p0=(Q9f—ldt)9 and w a section of 9ft. Let F be an ^-linear homomorphism 
from 991 into the sheaf # of microfunctions. Then, v(t9x) = F(u) is a holo
nomic microfunction. 

Let b(s) be the polynomial given in Theorem 5.4.1, {Xj}j==i # the set of 
the distinct roots of b(s)9 and let m3 be the number of the set {j';j'?±j9 X},—Xj 
is a nonnegative integer}. Then, v(t9 x) has the "asymptotic expansion" at p0: 

N llij oo 

v(f,x)~ 2 2 2aj.y.*i*)(Ptll/-lY>-1''-k(\ogD,iy-iy6(t). 
j = l v = 0 fc = 0 

Moreover, it is easy to see that ajvk(x) can be calculated from €tj k(x)9s with 
fc<degò by using the equation b($)v=Pv. Each hyperfunction aJvk(x) 
satisfies the system of differential equations derived from 91/<f(—1)91 and hence 
ajvk(x) satisfies a holonomic system of differential equations with regular singula
rities by Theorem 5.4.2. 

EXAMPLE 5.5.1. Let us consider the hyperfunction u — (t*—x3y+... as in 
Example 5.3.2. This hyperfunction has the meromorphic continuation on oc and 
has poles a=—5/6—w, — 1—/?, —7/6-/7 (w = 0, 1,2, ...). This w has the 
asymptotic expansion : 

u = c0 Ì (4 /27)" [ " + 5 / g " IJ?ô(x)(Dt/Y=ï)-»->i>-»6{t) 

Here, 

and 

+ Cl Ì (4 /27)" ["+7/ff" m'+1è{x){D,l)/-\)-^l^'ò(0. 
n=o /7!L^/JJ» 

92a +2/3 
cQ = - = - r ( l / 3 ) r ( a + l ) r ( a + 5/6)sin7c(a-f 1/6) 

92a+ 4/3 

cx = = - r ( 2 / 3 ) F ( a + l ) r ( a + 7/6)sin7i(a-l/6). 
)/37C 

[s]„ means s(s+\)(s + 2)...(s + n — 1). 
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Control under Incomplete Information 
and Differential Games 

N. N. Krasovskii 

Certain problems of control theory under incomplete information may be for
malized within the framework of differential games. This report will be devoted 
to one such formalization developed by the author and his students. The size of 
this report leaves no opportunity for the discussion of many valuable contributions 
due to other authors in this field. I would only like to mention that our investiga
tions are related to those of Bellman, Bensoussan, Boltyansky, Breakwell, Cher-
nousko, Elliot, Fleming, Friedman, Gamkrelidze, Ho, Isaacs, Kalton, Lions, Mar
kus, Mischenko, Nikolskii, Pontriagin, Pschenichnyi, Roxin, Varaiya, Young and 
certain other investigators in adjacent fields. 

1. Let us first give an informal description of our problems. We will consider 
systems formed of the controlled plant, of the controller and of the environment. 
The current state of the plant is determined by its state variable x[t]. The evolution 
of x[t] is described by a differential equation. The action of the controller on the 
plant will be named as the control and denoted by a minor u. The action of the 
environment will be called as the disturbance and denoted by a minor v. The 
accessible information on the current state of the system will be given by a certain 
informational variable y[t] that is related in a certain way to x[t] and v[t]. In 
particular it may be y[t]—x[t]. 

In our case of uncertain information the values of the disturbance v[x] are un
known in advance. At time / we are informed only of the domains Q(x)9 x^t, 
that will contain the future values V[T]. These domains {ß(T)>T^'} may be included 
in the informational variable y[t]. 
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2- We will consider problems of closed-loop control when the desired law of 
control U should assign the current action u[t] on the basis of the accessible 
realization y[t]. 

Assume a certain functional 

7 = y(*[-D, *[•] = {x[t\, h < * < 3}, (2.1) 

for the process to be given. We will say that an optimal law is a law of control 
U° that gives a minimax 

U° : y° = min sup y (2.2) 
u *[•] 

where the minimum is taken over all the admissible laws of control, and the maximum 
over #[•] is determined by all the possible realizations of the uncertain factors, 
namely, of the disturbance v[t]. It is then convenient to treat the situation as a two-
person game. In this game we select the law of control—our strategy U. The 
realization of the uncertain factors is determined by the second player which is in 
general a fictitious one. 

3. Consider a model problem. Assume the plant to be a heat conductor in the 
form of a rod O ^ ^ l on the axis £. Assume the informational variable y[t] 
to coincide with the state variable x[t]. This is the temperature distribution Ç: 

y[t] = x[t] = £(*, •) = {M, Ö, 0 <; £ < 1}. (3.1) 

The control u may be an action of heating concentrated at point £ = v[t]9 so 
that we have the standard heat equation 

§-=a*j^ + u5(l;-m) (3.2) 

under certain boundary conditions. Certain restrictions on the control and on the 
disturbance are also given: 

\u\ < X, v^ ^ o ^ I?*. (3.3) 

The following problem is possible. Suppose the initial condition {tQ9 x0} is 
given. Among the admissible functions U(t9y) that generate the control 

u[t] = U(t9y[t]) (3.4) 

one is to specify a law of control U°9 that ensures a minmax 

U°: min sup max |f (S, Q\ (3.5) 
U o[-] 0 ^ £ g l 

where 9 is a given instant of time. (A precise setting of the problem must of course 
include the description of the admissible functions U9 v9 Ç, etc.) 

4. The problem may be made somewhat more complex. For example assume 
the coefficient a in the heat equation (3.1) and the current distribution Ç(f, «̂) to be 
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unknown precisely. However at each time t the value v[t] turns out to be known. 
Then the informational variable y[t] may be the informational domain 

y[t] = {t*(t, 0 ^ C(U 0 ^ C(t, a a*(0 ^ a ^ a*(t)9 v[t]} (4.1) 

where £*, Ç+ and ö*, a^ are the results of an observation of the system until time t. 

5. Let us return to the general case. The given concept of differential game has 
been developed for both ordinary and partial differential equations. It is natural 
that in the finite-dimensional case the results are more accomplished. We will there
fore discuss the latter case in more detail. At the end of the report I will demonstrate 
how these results may be propagated to the case of infinite dimensions. 

Assume the plant to be described by ordinary differential equation with given 
restrictions 

* = f{U x9 w, v)9 u£0>9 ve Q. (5.Ì) 

Here x9 w, v are finite-dimensional vectors, the function / is continuous, while 
0> and Q are compact. Assume the process to start at time tQ from the state x0. 

The informational variable y[t] may be the history 

y[t] = *[•], = {x[z]9 t0^z^t} (5.2) 

of the motion until time /, or y[t] may be the pair j>|/] = {;*[•],, v[t]}. Very often 
y[t] may be the state x[t] itself or ;;[/] may be the pair {x[t]9 v[t]}. 

6. The motion 
* [ • ] = { * [ ' ] . ' o < ' < S } (6.1) 

will be evaluated by the given functional 

V = ?(*[•]), *[-l€C[f„,»] (6.2) 

Further on, if there is no additional reservation, the functional y will be assumed 
to be continuous in the space C of continuous functions. In many practical problems 
one may encounter for example the functional 

y = min |>(/, x[t])9 te0a[tQ9 £]]. (6.3) 

Here er(/, x) is a continuous function and 0 is compact. 

7. It is well known that one is incapable of presenting a good formalization of 
minmax problems for y if one identifies strategies with functions u(t,x) and 
v(t9 x) while treating x[ • ] as classical solutions of the equation 

x=f(t9x9u(t9x)9v(t9x)). (7.1) 

Indeed in many cases the optimal strategies u°(t9 x)9 v°(t9x) could not be found 
among the functions that are suitable for a direct integration of equation (7.1). 
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8. Therefore we will assume the following generalized formalization. Let us 
name the pair {t9x} as the position. Assume that we have selected a certain 
variety J5f of conditional probabilistic measures 

p = pu(B)9 Bœ0>9 V£Q9 (iv(&) = 1. (8.1) 

A positional closed-loop Jâf-strategy U is a function 

li = pv(du\t9 x) (8.2) 

that transforms the positions into measures from «Sf. 

9- The strategy U generates Euler splines. These are the continuous solutions 
of the step-by-step equation 

XA[t] = f / f a XA[T]9 W, v)p0(du\-ci9 xa[ii])v(dT9 dv) + ^ [ T J , T, *£ f < Ti+l9 (9.1) 
[T„t]X^XQ 

along a certain subdivision A with increment a : 

A = fa}, *o = '<>> Tm = 3, a = max(T i+1-T£). (9.2) 
i 

Here v(rfr, dv) is any measure 

v = v(dt9dv) on [ / O 5 S ] X Ö } V ( K , T * ) X Ö ) = T * - T , . (9.3) 

Here and further on all the measures are assumed to be Borei measures. 
Our main assumption on the function / is that for any initial state xA[xj\ in 

(9.1) and for any certain control ri=[ivXv the solution of the equation (9.1) on the 
interval T | . ^ / ^ T I + 1 is unique. And all such program motions are assumed to be 
equibounded for each given position fa, tfjfa]}. 

The positional motion x[t] is the limit 

x[ - ] = lim x% [ • ], k - - , a<*> .* 0, (9.4) 

of a certain sequence of Euler splines, that converges in the space C with a(fc) 

tending to zero. 

10. In particular, a pure strategy is the measure jt« (8.2) concentrated at point 
u=u(t9 x): 

f.i(du\t, x) — ö(ii — a(t, x))du. 

Therefore it may be identified with a function u(t9 x). A counterstrategy is identified 
with a function u(t9x9v): fj,v(du\t9x)=S(u — u(t9x,v))du. A mixed strategy is a 
function fi=[i(du\t,x) weakly Borei in x. 

11. Similarly but with substitution of u for v9 \JL for v (and vice versa) and with 
a substitution of set & for a certain set K of conditional measures 

v = vtl(B), BczQ, u£0>9 (11.1) 

we may determine the strategies V for the second player. 
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12. Together with such positional closed-loop strategies we will consider the 
more general historical closed-loop strategies 

l*v(du\x[.],), v„(*|*[-],)- (12.1) 

For a transition to these it is necessary in the former constructions to substitute 
position {/, x} for the history x[*]t of the motion until time /. If for any value 
c in which we are interested the inequality y(x['])^c is equivalent to the condition 
fa x[t]}€Jtc9 {t9 x[t]}€Jr

c9 t0^t^r(x[-])^S9 where Mc and Jfc are closed 
sets in the space fa x) we will make use of the positional strategies. In other cases 
we will make use of the historical strategies with no additional explanation what
ever. 

13. The starting position {tü9x0} and the strategy U or the strategy V determine 
certain boundles X(tQ9xQ9 U)9 X(t09x09 V) of motions * [ - ] = { x | 7 ] , / 0 < / < S } . 

Assume the starting position to be given and the classes of strategies to be selected, 
We will formulate the following two problems that form our differential game. 

The first problem is to select an optimal strategy U° that gives a minmax 

C/°: min max y(*[•]) = c°(t0i x0). (13.1) 

The second problem is to select an optimal strategy V° that gives a maxmin 

V°: min max y (*[•]) = c0(tQ9 x0). (13.2) 

14. We will say that the class of J5f-strategies U and the class of /^-strategies 
V are coordinated (with respect to the function / ) if for any possible position 
{/, x) and for any vector s the following equality is true 

min max f (s >f(t, x, u9 v)) pv(du) X v(dv) 

'"* V . (14.1) 
= max min / (s -f(t9 x9 u9 v)) vu(du) X pi(du). 

Here the symbol (s'f) denotes a scalar product. In particular the classes 
{pure strategies—counterstrategies} and {mixed strategies —mixed strategies} are 
always coordinated. 

15. One of the principal results is as follows. 

THEOREM. Assume that the classes of strategies {U} and {V} are coordinated. 
Then the differential game has a value 

y°(t0, x0) = c°(t0, x0) = c0(t09 x0) (15.1) 

and it has a saddle point—a pair of optimal strategies 

{fi(du\t9x)9 vl(dv\t9x)}. (15.2) 

7/7 particular, for any function f the game always has a saddle point in the classes 
of mixed strategies 

{fi°(du\t9x)9 v°(dv\t,x)}. (15.3) 
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16. Assume the functional y to be only lower semicontinuous. Then there exists 
an optimal strategy /z° and in general, only an optimalizing sequence, vjj, k== 1, 2, . t .> 
that approximates the value y°. Such an example is given by certain problems 
with a functional 

7(*[-D = * ( * H ) , *(*[-D = min(f: {t9x[t\}^Jt) (16.1) 

where Ji is a certain given closed set Jt={x£Jl(t)9 t0^t^3}. Naturally in the 
general case of functional y the game may have no value y°. An example is given 
already by certain problems with functonal y (x [•])?= ff (T(*[ - ] ) ,* [T(JC [•])])• Here 
a(t9 x) is a continuous function and the value T(X[ •]) is determined by the equality 
(16.1). In these cases one may indicate some additional sufficient conditions for 
the existence of a value of the game and of a saddle point. 

r 17. The essence of the given formal theorem on the saddle point may be clarified 
with the aid of approximations. Suppose for example that the game is formalized 
in the pair, of classes of positional strategies; {pure strategies—çounterstrategies}, 
Then the pure optimal strategy u°(t9 x) ensures an inequality 

y(*A-])<y°(t09x0)+s , (17.1) 

for any s > 0 selected in advance. This is true for any Euler spline described by the 
equation '»' 

(17.2) 
T| < f < Ti + 1 , v[t]£Q, 

provided the increment a of subdivision A is sufficiently small: T / + 1—r t^a(e) , 
a(s)>0. Here the measurable realization of the variable v[t] is generated by the 
environment on the basis of the one or the other of its laws. In particular if the 
disturbance v[t] will be formed on the basis of its optimal counterstrategy 
v°(t9x9 u) with its own subdivision J + = fa*} that means that the motion xA[t] 
will also satisfy the equation 

xA = f(t, xA[t], u[tl »°(tt, xA[Tfl, u[t]))9 

TÏ^t^Tf+l9 

where u[t] is any measurable realization of the control, then the following in
equality will be fulfilled 

y(xA[<])>y°(tQ9x0)-E (17.4) 

provided increment a* of the subdivision A* is sufficiently small : T*+1 — T*<a*(e). 

18. Unfortunately these approximations are unstable with respect to minor 
informational errors Ax[t]=x*[t]—x[t]. Indeed, the inequalities (17.1), (17.4) 
determined above may be destroyed if the actual realizations xA[t] are determined 
by the equations 

xA = / ( / , xA[tl u°(Ti9 * 3 N ) , »M) (18.1) 
or 

*A* = / f a XA[t]9 U[t]9 V°(Tt, X%[TÎ], m) (18-2) 
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even in the case of arbitrary small errors Ax. And this occurs not only for our 
•concept. An instability with respect to minor informational errors is typical for 
many well-known solutions of differential games. i 

19. However we may offer the following improvement of the approximations. 
To the primary plant SF we add a certain model 3tf whose current state may be 
characterized by a suitable variable w[t]. This model may be materialized in the 
actual circuit of control on some computer. The variable w[t] is a guide that directs 
the motion x[t] to the desired target. The relation between x[t] and w[t] is 
constructed on the basis of the stability theory. The motion x[t] is governed by 
an appropriate substrategy fiv(du\t9 x9 w). The model 3tf is constructed on the 
basis of one of the formal models of the game of which we will speak in the sequel. 
Therefore, if we follow the terminology of a chess game, we will have a game "on two 
boards". In the plant SF we are playing with nature while in the model #£ we 
are playing with ourselves. When this procedure is implemented we always achieve 
a stable procedure of control that ensures a suboptimal result (17.1) or (17.4) for 
the player that uses its guide w[t]. 

20. Let us now discuss an approximation for the case of mixed strategies. A mixed 
positional strategy fi(du\t9 x) in approximation generates already a random motion 
xA[t] that satisfies a step-by-step equation 

XA =f(t> xA[t]9 U[TJ\9 v[t])9 T(^t^ T f + 1 . (20.1) 

Here W[TJ is the result of a random test with probability distribution \i(du) = 
p(du\xi9 XA[T$ on 0>. Such a procedure of control based on anoptimal strategy JU°, 

ensures the inequality 
P(y(xAl-])^f(t09x0) + c)>ß (20.2) 

for any c>0 and /?<1 selected in advance provided increment a of subdivision 
A is sufficiently small: T/+1—T,^a(s, /?), a(e, ß)>0. Here the symbol JP(...) 
denotes the probability of the respective event. 

The disturbance v[t] may be formed in an arbitrary manner that may also allow an 
appropriate statistical interpretation. 

If the disturbance v[t] is formed on the basis of its optimal strategy v°(dv\t9x)9 

with its own subdivision then the following inequality will be ensured 

P(y(xAl-])>y°(t09x0)-c)>ß (20.3) 

provided the increment a* of the subdivision A* will be sufficiently small: 

It is important to note that each of the propositions (20.2) and (20.3) is true 
under the condition that the actions u[t] and v[t] are stochastically independent 
within minor intervals of time or at least that they are sufficiently wçakly correlated. 
If we have a game with nature, then the a priori given assumption on the disturbance 
v[t] in equation (20.2) seems to be a completely tolerable independent postulate. 
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However if we speak of a game between two intelligent players, each of which 
may select its mixed strategy with its own subdivision then this assumption cannot 
be taken as an independent postulate. It should then be founded, Indeed it may 
be well founded if we take that the current realizations xA[t] are available for each 
player with sufficiently small errors Ax. Then the optimal strategies in appropriate 
schemes of control with a guide will ensure the inequalities (20.2) and (20.3) under 
the condition that the informational errors are sufficiently small and that the 
increments a and a* are also sufficiently small. I would like to emphasize that all 
the approximations described here had been formulated and proved in precise 
terms. Here however due to a lack of space I was capable of giving only a partial 
and rather loose presentation of these topics. 

21. The proof for the existence of saddle points for our game and the construction 
of control algorithms for the actual approximations are based on various formalized 
models of the game. One such model based on the limit motions x[t] has been 
already described above. Let us now describe some other model. For determinicity 
we will further restrict ourselves to the case of mixed strategies. Let us consider 
a formalization based on quasistrategies. A quasistrategy % for the interval 
[T, S] is a transformation 

\pt(du)9 x ^ i *& 3} = %t{vt(uv)9 Lj, ^ i *w 3} (21-1} 

that transforms conditional stochastic measures vt(dv) onto conditional stochastic 
measures p,t(du). The transformation °U must satisfy a condition of physical 
realizability. That is for any T* from the given interval [T+ , S] the histories of the 
images ]it9t<x9 coincide provided the histories of the arguments vt9 f<x+, have 
already coincided. 

The starting position fa, w^}9 the quasistrategy and the conditional measure 
vf,T+<f, generate a quasimotion w[t] that is a solution of the equation 

* = / / f a ™> u> v)pt(du) X vt(dv)9 W[TJ '= W+ , (21.2) 
JPXQ 

where \it(du) is defined by condition (21.1). 
The quasistrategy if is defined similarly with appropriate substitutions. 

22. The formal model considered here is formed of two problems. Assume a certain 
initial history W[-]TS|[={W[T], ^O^T^T^} is given. 

The First Problem is to select an optimal quasistrategy <%Q that gives a minmax 

* ° : mmmaxHxH) = cS(w[-]J. (22.1) 

The Second Problem is to select an optimal quasistrategy i^° that gives a maxmin 

rQ: maxminy(*[.D = tf(w[-U- (2?.2) 
TT p 
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It has been proved that this formal game has a value yj and a pair of optimal 
strategies 

y ° * M - U = ct = c%9 {*«, r \ (22.3) 

The main result here is that the value y°(/0,*o) °f the initial closed-loop game 
considered above is equal to the value y*(w[ - ] T ) of this formal game for the same 
starting position w[m],Q=w['Q]=*o• 

23. If the optimal quasistrategy <%° and i^0 has been determined then the closed 
loop strategy fi° and v° is constructed in principle without a great difficulty. More
over this formal model in terms of quasistrategies is very suitable for the construc
tion of an actual model ffi in the control scheme with a guide w[t]. However 
the search for the optimal quasistrategies is complexified by conditions of physical 
readability. Let us omit this condition say for the case of quasistrategies for the 
first player. We will obtain the operators 77: 

fa(du)9 x^t^&} = n{vt(dv)9 T* < / < fl} (23.1) 

that will be named as the programs. Let us formulate the first open-loop problem. 
This problem is to select an optimal program that gives a minmax 

n°: min max y(w(. )) = C,(M>[- U (23.2) 

Here the program motions w(t) are the solutions of the equation (21.2) where 
fit(du) is determined by condition (22.1). 

In general this open-loop problem is not equivalent with respect to the valuê  
c to a similar problem for quasistrategies. However one may indicate certain regularity 
conditions when the equality cl(w[']Ti) = c*(w[']Ti) is true. In these cases one 
may construct a closed-loop strategy pfi(du\t9 x) on the basis of solving some auxiliary 
open loop problems (23.2). 

24. The solution 

W(du)9 T+ < / < 9} = 77°{v?(<fo), T+ •< t < 5 } (24.1) 

of the open-loop problem (23.2) is determined under certain assumptions by a 
minmax condition 

(s(t)-ff(t, M>°(0, u9 v)tf(du)Xv°(dv)) 

= min max (s(t) • Jf(t9 w° (/), u9 v) fi (du) X v (dv)) (24.2), 

that corresponds here to the well-known maximum principle of Pontriagin. Here 
w°(/) and s(t) are the solutions of certain ordinary differential equations, that 
very often turn out to be of the Hamiltonian type. 

The main point in the regularity conditions is as follows. Let S(w[']u) denote 
the set of all vectors S(T^)9 that correspond to all of the possible optimal solutions, 
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of the mentioned equation. Then the condition Will consist in the feature that for 
any selection of the vector / the intersection 

^ + n ( n ^ " ) ^ 0 , *eS(w[-U (24.3) 
s 

would be nonvoid. Here the symbols W+ and W~ denote the semispaces 

Ws
+ = {w: (s'W) s> x}9 W~ = {w: (s-w) ^ x\ 

x = min max J (s 'f)fi(du) Xv(dv). (24.4) 

Beyond such regular cases we have a great deal of very peculiar cases of the games. 
One may give some classification of these cases, and obtain the regular case of the 
first rank, of the second rank, etc., until infinity. 

25. Thus in the regular cases the problem of synthesizing an optimal closed-loop 
strategy may be reduced to the solution of auxiliary open loop control problems 
on the basis of ordinary Hamiltonian equations. We have therefore arrived at 
a typical procedure of analytical mechanics. Another scheme of solving extremal 
problems that is also standard for analytical mechanics is related to the Hamilton-
Jacobi partial equation. In our case this scheme leads to the partial equations of 
dynamic programming. Unfortunately the value yQ that must be a solution of 
t i i i a c q u a u u i i u i L ^ i i t u i n o u u i t u u ^ ci i i v ^ i i ü i l l v ^ i a i t i c i U i v I a i l ^ l i G II \jl LUA, p O o l t i O D {*, •vj 

or of the history *[•], of the motion. It is known however that as a rule a transition 
to related stochastic games for systems with a minor Wiener noise yield a régularisa
tion of the value of the game. Within the given concept this appears in the following 
way. Again for the sake of determinicity we consider only the case of mixed strategies 
and for example only for the functional y of type y=a(x[&]) where time & is 
given, G(X) is a continuous function. 

Consider a plant 2tfk described by the Ito equation 

dw = f hk(t9 w9 u9 v)p(du\ t9 w) 

Xv(dv\t9w)dt + Xdz[f\ (25.1) 
and a functional 

VxM-J> = M{a,(w[S])\t0, w[t0] = *,} (25.2) 

where M{...} stands for the mean value. 
Here z[t] is a nongenerate Wiener process, A>0 is a small parameter, the func

tion cx(x) is bounded and sufficiently smooth. Moreover in a sufficiently large 
domain G uniform limit relations \im hx=f9 limffA=ff, ^ 0 are valid. 

The mixed strategies are identified with conditional probability measures 
p,(du\t9 w)9 v(dv\t9 w) that are weakly Borei in fa w}. The random motions are the 
weak solutions of equation (25.1). 

26. It is known that this game on the minmax-maxmin of the functional yx 

(25.2) has a value y°(tQ9 x0) and a saddle point {p\(du\t9 w)9 v\(dv\t9 w)}. 
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^ + y4yS + mmmax / (J^^x\fi(du)Xv(dv) = 0 (26.1) 

The value y\(t9 x) is a smooth function and satisfies the well-known parabolical 
partial equation 

with boundary condition y°x(S9 x) = aJi(x). 

27. The principal result consists here in the limit relation 

Umy°x(t09x0) = y°(t0,x0). (27.1) 

Unfortunately, in general there are no analogous limit relations for the strategies. 
However if we know the optimal strategies fi°x and vj for the stochastic game with 
minor A>0, it is always possible to construct a control for the given plant with 
a stochastic guide 3tfx so that for any c>0 and /?<1 selected in advance the 
inequality 

P(*{x[8\) < y°(t09 x0) + e)>ß (27.2) 

would be fulfilled for the first player or the inequality 

P{a(x[S]) > y°(t0, xQ) -s)> ß (27.3) 

for the second player, provided the parameter X, the informational errors Ax 
and the increment a are sufficiently small. 

28. We will now pass to the discussion of systems with infinite dimensions. First 
of all, note that with no great difficulty the previous results may be propagated to 
systems with time lag 

i=f(t,xt-Q[-]t9u9v) (28.1) 

where / is a functional of the history of the motion xt_Q[']t={x[x]9 t — Q^r^t}. 
As a specific fact we note that under rather general assumptions the differential 
games for a functional differential system (28.1) are well approximated by appropriate 
games for finite-dimensional systems described by ordinary differential equations. 

29. Further on the results are propagated to certain parabolical and hyperbolical 
systems under standard initial and boundary conditions. Here the assumptions 
on the admissible classes of parameters and spacial and boundary control actions 
are related to the conventional assumptions of the general theory of parabolical or 
hyperbolical systems and in particular, to the theory of optimal open-loop control 
for such systems. Here first of all I have in mind the investigations of the group 
led by Lions. 

Some theorems were proved within the framework of our concept. These theorems 
concern the existence of saddle points for the respective closed-loop differential 
games. Respective formal models as well as algorithms for the construction of 
optimal closed-loop strategies have been developed. In particular these algorithms 
include those that are based on solving auxiliary open-loop problems. In the actual 
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approximations the motions or Euler splines are understood to be the splines formed 
by generalized solutions of the corresponding equations for the intervals x^t*^ xi+1. 
It is natural that the functional nature of the problem yields a lot of additional 
difficulties. However under certain assumptions we may overcome them. Here in 
each case the result depends greatly on the selection of an appropriate functional 
space. In many cases of parabolical systems for example the approximate motions 
are considered in the space X(2) but the respective formal constructions were devel
oped through special transformation in other appropriate spaces, say in the state 
space ^i~1\ 

For the parabolical and hyperbolical systems considered here it is also possible to 
achieve a good approximation by related game theoretic problems for finite-dimen
sional systems. Such problems of approximation sufficient tolerably may be solved 
as on the bases of the method of Galerkin as well as within difference schemes. 

30. Let us return for example to the model of the heat conducting rod at the 
beginning of our report. The respective differential game has a value y°(t09Ç0) 
and a saddle point in mixed strategies 

{pQ(du\t, at, •)), v°(*fc Cfr -))}- (30.1) 

This denotes that in the actual approximation schemes that are based on the 
equations 

| f = a 2 0 + "[^(£-"M), *i <= ' < *i+i. (30.2) 
or 

| f = * 0 + «M*tt-*[*a. < * t < *?+i. (30.3) 

for the first or second player respectively we have that for any £>0 and j8<l 
selected in advance the inequalities 

P{ max [US, 0 | < y°(t09 ÇQ(t09 • )) + e) > ß (30.4) 
flessi 

and 
ptei |us' 0 | " fit°' Co('°5 0 ) " e ) " ß ( 3 0 - 5 ) 

would be fulfilled provided the increments a and a* of the subdivisions A and 
A* are sufficiently small. Here u[xj\ and v[xf] are respectively the results of stochastic 
tests with distributions 

p(du) = p(du\xi9 Ç(xi9 •)) on ^ (30.6) 
and 

v(dv) = v(dv\xt, « i f , . ) ) on Q. (30.7) 

Here the results and the considerations of above that concern the similar finite-
dimensional case still remain true. 

31. Let us now discuss the case when the informational variable y[t] is the 
informational domain y[t] = G[t]9 x[t]€G[t] in the space {x} that includes the 
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actual state x[t]. The problem is now transferred to the one of controlling the 
evolution of these domains. For the construction of the laws for this evolution 
a respective theory of differential games of observation has been developed. This 
theory may be considered as a certain minmax analogy for the statistical filtering 
theory. The combination of dual closed-loop differential games of control and 
observation includes sufficiently general theorems for the existence of saddle points 
as well as certain methods of constructing of optimal strategies of observation and 
control. However a practical realization of the solutions is achieved here for more 
or less simple model problems. The investigations are more effective for the case 
when the domains G[t] are convex. Then the problem may be reduced to dif
ferential games in one or another functional space that includes the support function 
g[t91] of these domains. In this form the problems may be placed within a suf
ficiently general framework of differential games for differential evolutionary systems. 
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L-Functions and Automorphic Representations 

R. P. Langlands 

Introduction. There are at least three different problems with which one is con 
fronted in the study of L-functions : the analytic continuation and functional equation >' 
the location of the zeros; and in some cases, the determination of the values at special 
points. The first may be the easiest. It is certainly the only one with which I have 
been closely involved. 

There are two kinds of /.-functions, and they will be described below: motivic 
L-functions which generalize the Artin L-functions and are defined purely arithmeti
cally, and automorphic L-functions, defined by data which are largely transcendental. 
Within the automorphic L-functions a special class can be singled out, the class of 
standard L-functions, which generalize the Hecke L-functions and for which the 
analytic continuation and functional equation can be proved directly. 

For the other L-functions the analytic continuation is not so easily effected. 
However all evidence indicates that there are fewer L-functions than the definitions 
suggest, and that every L-function, motivic or automorphic, is equal to a standard 
L-function. Such equalities are often deep, and are called reciprocity laws, for 
historical reasons. Once a reciprocity law can be proved for an L-function, analytic 
continuation follows, and so, for those who believe in the validity of the reciprocity 
laws, they and not analytic continuation are the focus of attention, but very few 
such laws have been established. 

The automorphic L-functions are defined representation-theoretically, and it 
should be no surprise that harmonic analysis can be applied to some effect in the 
study of reciprocity laws. One recent small success was the proof of a reciprocity 
law for the Artin L-functions associated to tetrahedral representations of a Galois 
group and to a few other representations of degree two. It is the excuse for this 



166 R. P. Langlands 

lecture, but I do not want to overwhelm you with technique from harmonic analysis. 
Those who care to will be able to learn it at leisure from [6], in which a concerted 
effort was made to provide an introduction to automorphic representations, and 
so I forego proofs, preferring instead to review the evolution of our notion of an 
L-function and a reciprocity law over the past five decades. 

Artin and Hecke L-functions. An L-function is, first of all, a function defined by 
a Dirichlet series with an Euler product, and is therefore initially defined in a right 
half-plane. I will forbear defining explicitly the best known L-functions, the zeta-
functions of Riemann and Dedekind, and the L-functions of Dirichlet, and begin 
with the more general functions introduced in this century by Hecke [19] and by 
Artin [2]. Artin's reciprocity law is the pattern to which all others, born and unborn, 
are cut. 

Although they overlap, the two kinds of L-functions are altogether different 
in their origins. If F is a number field or, if one likes, a function field, although 
I prefer to leave function fields in the background, for they will be discussed by 
Drinfeld [12], then a Hecke L-function is an Euler product L(s9 x) attached to 
a character x of FX\IF. IF is the group of idèles of F. If v is a place of F then 
F* imbeds in IF and % defines a character xv °f F*- To form the function 
T /„ „A , , , « 7 (? -A «.».« take a product over all pla^s of F 

L(S,x) = lIL(S,Xo). 
V 

If u is archimedean the local factor L(s9 xv) is formed from F-functions. Here 
the important point is that whenever v is defined by a prime p and xv is trivial 
on the units, as it is for almost all v9 then 

L(s, Xv) l-a(]))/Nps 

with 
<x(p) = Xv(äp), 

œv being a uniformizing parameter at p. The function L(s, x) can be analytically 
continued and has a functional equation of the form 

L(s9 x) = «(s, X)L(\ - 5 , x~x\ 

s(s9x) being an elementary function [35], 
An Artin L-function is associated to a finite-dimensional representation Q of 

a Galois group Gal (K/F), K being an extension of finite degree. It is defined arith
metically and its analytic properties are extremely difficult to establish. Once again 

L(s9 Q) = J]L(s, Q0), 

QV being the restriction of Q to the decomposition group. For our purposes it is 
enough to define the local factor when v is defined by a prime p and p is un-
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ramified in K. Then the Frobenius conjugacy class #p in Ga\(K/F) is defined, and 

1 d 1 

det (/-e(*p)/^p*) ,ii l-ft(p)/tfp' ' 

if ßi(P)> •••» AI(P) are the eigenvalues of g($p). 
Although the function L(s9 Q) attached to Q is known to be meromorphic in 

the whole plane, Artin's conjecture that it is entire when Q is irreducible and non-
trivial is still outstanding. Artin himself showed this for one dimensional Q [3], 
and it can now be proved that the conjecture is valid for tetrahedral Q9 as well as 
a few octahedral Q. Artin's method is to show that in spite of the differences in the 
definitions the function L(s9 Q) attached to a one-dimensional Q is equal to 
a Hecke L-function L(s,x), where X=X(o) is a character of FX\IF. He employed 
all the available resources of class field theory, and went beyond them, for the equality 
of L(s9 Q) and L(s9 X(Q)) for all Q is pretty much tantamount to the Artin re
ciprocity law, which asserts the existence of a homomorphism from IF onto the 
Galois group Gal (K/F) of an abelian extension which is trivial on Fx and takes 
ö5v to $v for almost all p. 

The equality of L(s9 g) and L(s9x) implies that of x(%) a n d Q($P) for almost 
all p. On close examination both these quantities are seen to be defined by elementary, 
albeit extremely complicated, operations, and so the reciprocity laws for one-
dimensional Q, like the quadratic and higher reciprocity laws implicit in them, 
are ultimately elementary, and can for any Q and any given prime p be verified 
by computation. The reciprocity law for tetrahedral Q seems, on the other hand, 
to be of a truly transcendental nature, and must be judged not by traditional criteria 
but by its success with the Artin conjecture. 

Motivic L-functions. If V is a nonsingular projective variety over a number field 
then, for almost all p, V has a good reduction over the residue field Fp at p and 
we can speak of the number N(n) of points with coordinates in the extension of 
F of degree //. Following Weil [36], we define the zeta-function Zp(s9 V) by 

We owe to the efforts of Dwork, Grothendieck, Deligne, and others the proof that 
2d b> ( a..(»n(~1),+1 2d 

zv(s,v) = n n i ~ i # = n^,vf-»'. 
i=o j = i v yvp / ,-=0 

Here d is the dimension of V9 b( its /th Betti number, and 

M P ) I = tfp,/f. 

It seems to have been Hasse (cf. [18]) who first proposed, in the case of an elliptic 
curve, the problem of proving that the L-function L(s9 V) defined by the Euler 
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product 

nu(s,v) 
V 

has analytic continuation and functional equation. Of course, a solution of the prob
lem involves a reasonable definition of the local factors at the infinite places and 
at the finite places at which V does not have good reduction. 

Since ò1 is generally greater than 1 and LÏ(s9V) is an Euler product of degree 
bl

9 it cannot, except in special circumstances, be equal to an L(s,x)- Sometimes, 
however, L'(s9 V) can be factored into a product of b' Euler products of degree 1, 
each of which is equal to a Hecke L-function. The idea of factoring an L-function 
into Euler products of smaller degree is very important. It led Artin from the zeta-
function of K to the L-functions associated to representations of Gal (KjF). 
Allusions to the same idea can be found in the correspondence of Dedekind with 
Frobenius [9], from which it appears that it was at the origin of the notion of a group 
character. The factorization can be simply interpreted in the context of the /-adic 
representations of Grothendieck. 

The field K is the function field of an algebraic variety of dimension 0 over 
F and the zeta-function of K is L°(s9 V). The variety VF obtained from V by 
extension of scalars to the algebraic closure F has [K: F] points. The Galois 
group Gal (F/F) acts on these points and hence on the /-adic ét̂ lf* mhomology 
group H°(VF). The zeta-function may be defined in the same way as the Artin 
L-function except that it is now associated to the representation of Gal (F/F) 
on H°(VF). The function field of VF is K®FF and the action of Gal (F/F) on 
points is induced by its natural action on the second factor of the tensor product. 
The action of Gal (KjF) on VF induced by its action on the first factor is geometric, 
because the ground field F is fixed, and commutes with Gal (F/F). The group 
Gal (K/F) will then act on the cohomology as well, and so to each G in Gal (KjF) 
we associate an operator T(o) on H°(VF). If some linear combination of the 
T(G) is an idempotent E9 we can restrict the representation of Gal (F/F) to its 
range, and employing Artin's procedure attach an L-function L(s9 E) to the restric
tion. Taking a family of such idempotents, orthogonal and summing to the identity, 
we obtain a factorization of L°(s9 V) or of the zeta-function of K. Since the repre
sentation of Gal (F/F) on H°(VF) is equivalent to that obtained by lifting the regular 
representation of Gal (K/F) to Gal (F/F)9 and the interplay between the actions 
of Gal (K/F) and Gal (F/F) is that between the left and right regular represen
tations, we obtain the factorization of Artin 

L°(s9V) = U(s) = IIL(s9Qy°s°. 
Q 

The product is taken over all irreducible representations of Gal (K/F). 
For a general variety the function L?(s9 V) is obtained from the representation 

of Gal (F/F) on the /-adic cohomology group H^Vp). The algebraic corres
pondences of V with itself which are of degree 0 and defined over F will define 
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operators on H'iVp) which commute with Gal (F/F). Once again, if some linear 
combination of these operators is an idempotent E we may introduce L(s9 E)9 

hoping that it will have an analytic continuation, and that it will be equal to a Hecke 
L-function if the range of E has dimension one. 

In particular, if we can write the identity as a sum of such idempotents which are 
orthogonal and of rank one then we can hope to prove that L'(s9 V) is a product 
of Hecke L-functions, and so has an analytic continuation and a functional equation. 
The major examples here are abelian varieties of CM-type, the relevant endo-
morphisms being defined over F. The idempotents are constructed from these 
endomorphisms. The theorems were proved by Shimura, Taniyama, Weil, and 
Deuring (cf. [33]). ' 

The functions L(s9 E) seem to be the correct, perhaps the ultimate, generaliza
tions of the Artin L-functions. There is no reason to expect that they can be further 
factored. On close examination, it will be seen that the meaning of E has been 
left fuzzy. It should be a motive, a problematical notion, which Grothendieck 
has made precise ([23], [29]). But it cannot be shown to have all the properties 
desired of it without invoking certain conjectures closely related to the Hodge 
conjecture. Indeed, if the Hodge conjecture itself turns out to be false the notion 
will lose much of its geometric appeal. Furthermore there are L-functions arising 
in the study of Shimura varieties which we would be unwilling to jettison but which 
have not been shown to be carried by a motive in the sense of Grothendieck. But 
the notion is indispensable, and if the attendant problems will not yield to a vigorous 
assault then we have to prepare for a long siege. 

If the functions L(s9 E) cannot be factored further then the theorems of Artin 
and Shimura-Taniyama mark the limits of usefulness of the Hecke L-functions in 
the study of the motivic L-functions. Fortunately the Hecke L-functions can be 
generalized. 

Standard L-functions and the principle of reciprocity. If A is the adèle ring of F 
then IF is GL(1, A)9 Fx is Gh(l9F)9 and a character of FX\IF is nothing 
but a representation of GL (1, A) that occurs in the space of continuous functions 
on GL(1, F ) \ G L (1, A). It is the simplest type of automorphic representation. 
GL (n9 A) acts on the factor space GL (/7, 7 0 \ G L Oh A) and hence on the space 
of continuous functions on it. An automorphic representation of GL (/?, A) is basically 
an irreducible constituent n of the representation on the space of continuous 
functions, but the topological group GL (77, A) is not compact and n is, in general, 
infinite-dimensional, and some care must be taken with the definitions [7]. One can 
attach to an automorphic representation it of GL (77, A) an L-function L(s9 n) 
which will have an analytic continuation and a functional equation [17]: 

L(s , 7i) = e(s, 7T)L(1— S, 71), 

with ft contragredient to n. It is possible [14] to write n as a tensor product 
n — ®yrc,,5 the product being taken over all places of F9 and L(s9 n) is an Euler 
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-product JJ0L(s,n0). At a finite place v=p 

" 1 
L(s9ic0)= n , i i l-*t(p)/N? 

Js of degree n9 and for almost all p the matrix 

*i(p) o 
A(nv) = 

{ 0 aB(p)J 
is invertible. 

Since these L-functions, called standard, come in all degrees, there is no patently 
insurmountable obstacle to showing that each L(s9 E) is equal to some standard 
L-functions, thereby demonstrating the analytic continuation of L(s9 E). But the 
difficulties to overcome before this general principle of reciprocity is established are 
enormous, new ideas are called for, and little has yet been done. 

If F=Q an automorphic representation of GL (2, A) is an ordinary auto
morphic form, analytic or non-analytic, in disguise, and the L-functions L(s9 n) 
have been with us for almost half a century. They were introduced and studied by 
Hecke [20], and later defined for nonanalytic forms by Maass [28]. Moving from 
n = i to n = l does not give us much more latitude, but there are two obvious 
kinds of motivic L-functions of degree two. 

If V is an elliptic curve then V-(s9 V) is of degree two and the possibility that it 
would be equal to a standard L-function was first raised by Taniyama and later by 
Weil [37], during his re-examination of Hecke's theory. The numerical evidence is 
good, but no theoretical progress has been made with the problem, except over 
function fields where it is solved [10]. 

If Q is a two-dimensional representation of Gal (K/F) then the Artin L-function 
L(s9 Q) is of degree two. If Q is reducible or dihedral, Artin's theorem can deal 
with L(s9g). Otherwise the image of Gal (K/F) in PGL(2, C) = SO (3, C) 
is tetrahedral, octahedral, or icosahedral. One example of an icosahedral represen
tation with a reciprocity law has been found [8], but no general theorems are available. 
I will return to the tetrahedral and octahedral below, after the principle of functoriality 
has been described, 

The first successful applications of standard L-functions of degree two to the study 
of zeta-functions of algebraic varieties were for curves V obtained by dividing the 
upper half-plane by an arithmetic group, either a congruence subgroup of SL (2, Z) 
or a group defined by an indefinite quaternion algebra ([13], [32]). Here D-(s9 V) 
is a product of several L(s9 n) and the situation is similar to that for curves whose 
Jacobian is of CM-type, except that standard L-functions of degree two replace 
the Hecke L-functions, which are of degree one. The projections underlying the 
factorizations are linear combinations of the Hecke correspondences. 

It is not surprising that these varieties were handled first, for they are defined by 
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a group, and the mechanism which links their zeta-functions with automorphic 
L-functions is relatively simple, similar to that appearing in the study of cyclotomic 
extensions of the rationals. There is a great deal to be learned from the study of 
these varieties and their generalizations, the Shimura varieties, but there are no 
Shimura varieties attached to GL (77) when 77 >2, and we must pass to more 
general groups. 

Automorphic L-functions and the principle of fimctoriality. If G is any connected, 
reductive group over a global field an automorphic representation of G (A) is 
defined as for GL (77). The study of Eisenstein series led to a plethora of L-functions 
attached to automorphic representations. The Artin L-functions and the Hecke 
L-functions are fused in the class of automorphic L-functions, which contains 
them both, but the general automorphic L-function is in fact a kind of mongrel 
object, the true generalization of the Artin L-functions being the motivic L-functions 
and the true generalization of the Hecke L-functions being the standard L-functions. 

To define the automorphic L-functions one associates to each connected, reductive 
group G over F an L-group LG = LGF ([5], [25]), itself an extension 

1 + LGO _ LG _ G a l (K/F) _ ! 

with LG° a connected, reductive, complex group. K is simply a finite but large 
Galois extension of F. To each continuous finite-dimensional representation 
g of LG which is complex-analytic on LG° and each automorphic representation 
n of G(A) one attaches an L-function L(s9 n, g)9 which is an Euler product of 
degree equal to the dimension of g. There is evidence to support the hypothesis 
that each L(s, 71, g) can be analytically continued to the whole plane as a mero-
morphic function with few poles and a functional equation. 

The representation n is again a tensor product n=(g)vnv and 

L(s,n,Q) = [J L(s9nv9 g). 
V 

For almost all finite v the theory of spherical functions, or, if one prefers, of Hecke 
operators, attaches to nv a conjugacy class {gv}={g(nv)} in LG which reduces 
to the Frobenius class when G= {]}. The local factor for these places is 

1 

L(s, nv9 g) 
det(l-e(gy)//Vps) 

if v is defined by p. If G is GL (77) then LG is a direct product GL (77, C)X 
XGal (K/F) and the projection of {g(nv)} on the first factor is the class of A(nv). 
Consequently if g is the projection on the first factor then L(s9 n, g) is the standard 
L-function L(s9 n). 

The automorphic L-functions once defined, their resemblance to the Artin 
L-functions is manifest, and the possibility suggests itself of establishing their analytic 
continuation by showing that when G, 71, and g are given there is a representation 
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n of GL (n9A)9 with n = degg9 such that {A(n'v)} = {g(g(nD))} for almost 
all v and 

L(s9 7T, g) = L(s9 n'). 

For G= {1} this would be the reciprocity law for Artin L-functions. 
More generally, if H and G are two connected reductive groups over F and 

we have a commutative diagram 

LH/ 

/Gal (K/F) 

with <p complex-analytic, then to every automorphic representation n of LG there 
should be an automorphic representation n' of H which is such that {g(n'v)}= 
{<p(g(îO)} for almost all v. There is evidence that this is so, although some 
subtleties must be taken into account. I refer to the phenomenon as the principle 
of functoriality in the L-group. 

Examples. Suppose E is a finite extension of F. Then G is also a group over E 
and the L-group over E9

 LGE9 is a subgroup of LGF. It is the inverse image of 
Gal(Ä/L) in L<JF. Ihe principle ot tunctonahty implies the possibility of making 
a change of base from F to E and associating to each automorphic representation 
% of G(AF) an automorphic representation 77 of G(AE)9 sometimes called 
a lifting of n. For almost all places, w9 of E the class {g(TIw)} must be {g(nv)

f} 
if w divides the place v of F and f=[Ew: F0], 

Ideas of Saito [30] and Shintani [34] allow us to show that base change is always 
possible when (7 = GL (2) and E is a cyclic extension of prime degree [26], arid 
thus, by iteration, a solvable extension. For now extensions of prime degree are 
enough, and for them it is possible to characterize those 77 which are liftings. 
The Galois group Gal (E/F) acts on AE and on GL (2, AE) and thus on the set 
of automorphic representations of GL (2, AE). Apart from some trivial exceptions, 
77 is a lifting if and only if 77 is fixed by Gal (E/F). 

Base change is a first step towards a proof of the principle of reciprocity and 
Artin's conjecture for two-dimensional representations. Suppose, for example, 
that G is a tetrahedral representation of Gal (F/F). Then there is a cyclic extension 
E of F of degree three which is such that the restriction I of G to Gal (F/E) is 
dihedral. Consequently the principle of reciprocity applies to it and yields an auto
morphic representation 77 = 77 (I) of GL (2, AE). The class of I is invariant 
under Gal (E/F) and therefore 77 is too, and is a lifting. There is precisely one 
representation n which lifts to 77 and has central character det er. It should be 
TZ(G)9 the representation whose existence is demanded by the principle of functoriality. 
At first sight this does not look difficult to show, for the eigenvalues of G(<PP) and 
{A(%0)}9 where v is the place defined by p, differ only by cube roots of unity, 
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but it should be a deep matter. However fortune smiles on us, for we can deduce 
some interesting theorems without pressing for a full understanding. 

There are two ways of proceeding. The one used in [26] has the disadvantage that 
it does not work for all fields or all tetrahedral representations, but the advantage 
that it also works for some octahedral representations. It invokes a theorem of 
Deligne-Serre, characterizing some of the automorphic representations attached 
to two-dimensional representations of the Galois group. The other (cf. [15]) employs 
special cases of the principle of functoriality proved by Piatetskii-Shapiro and 
Gelbart-Jacquet. 

One begins with Serre's observation to me that composition of G with the adjoint 
representation <p of GL (2) on the Lie algebra of PGL (2) gives a three-dimensional 
monomial representation g to which, by a theorem of Piatetskii-Shapiro [21], 
the principle of functoriality applies to yield an automorphic representation n(g) 
of GL (3, AF). On the other hand, the L-group of GL (2) is a direct product 
GL(2,C)XGal(Ä:/F) and that of GL (3) is a direct product GL (3, C)XGal (K/F). 
The principle of functoriality should attach to the homomorphism 

(pXid: GL(29C)XGal(KjF)-+GL(39C)xGa\(K/F) 

a map <p+ from automorphic representations of GL (2, AF) to automorphic 
representations of GL (3, AF). The existence of <y>+ has been proven by Gelbart-
Jacquet [16]. 

If the principle of functoriality is consistent and n is TI(G) then q)*(%) must 
be n(g). Conversely, elementary considerations, which exploit the absence of an 
element of order six in the tetrahedral group, show that if <pjji) equals n(g) then 
7T is 7i (G). That (p^(n) equals n(g) follows easily from an analytic criterion of 
Jacquet-Shalika [22]. 

Even for GL (2) base change for cyclic extensions is not proved without some 
effort, the principal tools being the trace formula and combinatorics of the Bruhat-
Tits building. These are being developed by Arthur [1] and by Kottwitz [23], but 
our knowledge of harmonic analysis is still inadequate to a frontal attack on the 
problem of base change for a general group. Nonetheless some progress can be 
anticipated, although it is not clear how close base change will bring us to the Artin 
conjecture. 

For number fields there has been no other recent progress with the principle of 
reciprocity. But we could also try to show that a motivic L-function is equal to an 
automorphic L-function L(s9 n9 g) which is not standard or to a product of such 
functions. This may not imply the analytic continuation of L(s9E) but can have 
concrete arithmetic consequences and the proof may direct our attention to important 
features of the mechanism underlying the principles of reciprocity and func
toriality [31]. 

The immediate examples are the L-functions defined by Shimura varieties [27]. 
These varieties are a rich source of ideas and problems, but once again we must 
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advance slowly, deepening our understanding of harmonic analysis and arithmetic 
as we proceed. For the varieties associated to the group over Q obtained by restric
tion of scalars from a totally indefinite quaternion algebra over a totally real field F9 

the problems are tractable. In [27] no motives are mentioned, but the zeta-
function is expressed as a quotient of products of automorphic L-functions of 
degree 2n

9 where n=[F:Q] is the dimension of the variety. For n=2 the analytic 
continuation and functional equation have been established by Asai [4], and we 
have the first examples of analytic continuation for motivic L-functions which are 
of degree four and, apparently, irreducible and not induced. 
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Introduction. Ladies and gentlemen, look at the emblem of our Congress: 

You will easily recognize the design. This is part of the famous "modular configura
tion" consisting of (a) the Lobachevsky plane modeled on the complex unit disk; 
(b) the set of fundamental triangles for the theta-group bounded by Lobachevsky 
lines. To get the whole picture, draw the central triangle and perform consecutive 
reflections relative to its sides. Of course, the net becomes infinitely thick at the 
boundary ("Absolut"), and the designer wisely stopped not too far from the center. 
But the most interesting things happen far away. To understand them one could 
probe the Absolut as follows. 

Choose two points a, ß on the unit circle, draw the Lobachevsky line from 
a to /?, and try to calculate the number /?(a, /?) of triangles it intersects on the way. 
This 77 (a, ß) will be infinite unless a, ß are cusps. What sort of function is 77 (a, /?)? 
The question might not sound particularly deep, but look at a sample of the number-
theoretic facts obtained with the help of 77 (a, ß) and its more sophisticated versions. 

EXAMPLES, (a) Set 

A(z) = e2niz fj(i-e2ni"z)2\ 
11=1 
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Then (see [M2]) 

|co ,oc ,0° ( 691 £gi \ 
( / J < * ) * : / AV)*dz: f A(Zydz)=(l:-^¥I:-¥¥rT). (1) 

(b) Let p be a prime number. Consider the solutions of the Diophantine equation 
p=AA'+SS'9 where 2lx5>0, J7 ><5'>0 orzi =/?, 0^5 </>/2, J ' = l , <5' = 0; and 
let Mfl (/?) denote the number of such solutions with A/S = ±amod 11. Then for 
p^2911 we have 

N(p)/5 = 2M2(p) + Ms(p)-2M5(p)-Mt(p), (2) 

where N(p) is the number of solutions of the congruence Y2+Y=X3 —X2 — 
1 0 X - 2 0 mod/?, including (oo, oo) (see [M4]). 

(c) Again let p be a prime number. This time consider the elliptic curve Y2+Y= 
X*—X9 and let Np denote the number of its points mod p. Over Q its group 
of points is infinite cyclic with generator (0, 0)=x0. It follows that Npx0 reduces 
to infinity mod/?; hence, the numerator n(Npx0) of the X-coordinate of the point 
NpxQ is a/7-adic unit, and the /?-adic logarithm logp n(NpxQ) is well defined and is 
divisible by p. 

iNow uemic a lunuiiuu L,. jL.fSlz^ KJ \ ^ } - ^ \ U , ± 1 } : 

£(fl) = 1 for a =±59 ±7, ±8 mod 37, 

= - 1 for a = ± 14, ± 15, ± 16 mod 37, 

= 0 for the remaining values. 

For each rational number a/b construct the series of its consecutive convergents 
a/b = a„/bn9 an^/bn-l9 ..., 0/1, 

det 

and set 

±1, 

x+(alb) =n2\(bi/bi+1mod31). 
1 = 0 

With this notation, the last identity I wish to show you is: 

-\ogpn(Npx0)^
P2a 2 *+( f i ( 1+ a j ? )) mod p. (3) 

This is in fact only conjectural and probably quite difficult. It has been numerically 
checked for p = 5, 7,11, 13, 23, 29, 31 by M. Rosenblum (Moscow University), 
who devised this conjecture, as a particular case of a "/7-adic mod p" Birch-Swinner-
ton-Dyer conjecture, and who is now working on a full p-adic version. The primes 
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p^29 3, 17, 19 are omitted because 2 and 3 are too small and 17, 19 are supersjngular, 
so that some modifications are needed for such p's. 

Explanations. Some explanations are now in order to show how all this is connected 
with Lobachevsky lines. First of all, change the model and consider the upper 
half-plane H={z£C\ Im z>0} instead of the unit disk. The boundary is ^u{ /°o} , 
and the cusps are Q u {/oo}, Instead of the theta-group we will consider 

roW = {(" 5) H ° m°d ^ } e SL(2' Z)' 
with the standard action z*-+(az+b)/(cz + d) on H. Lobachevsky lines are semi
circles orthogonal to the real axis (including vertical semilines). Instead of counting 
the intersections of such a line with triangles, we will proceed more invarianlly. 
For each subgroup r c S L ( 2 , Z) of finite index, define the Riemann surface 
X°=r\H and its compactification by the (images of the) cusps: Xr = XpuPr. 
The image of the geodesic joining cusps a and ß determines a homology class 
{a9ß}reffi(Xr9Pr9Z). If r a = rß9 then we may even consider {a, ß)r as an 
element of Hx(Xr9 Z) , since our geodesic projects onto a loop in Xr. 

This "modular symbol" {a, ß}r is a good substitute for our initial n(<x9ß)9 

since a fundamental domain for f is a union of a finite set of triangles, so that 
{a, ß}r also retains some additional information about the geometry of the conse
cutive intersections. 

All of our examples (a), (b), (c) reflect two different ways of calculating {a, ß}r. 
The first method—which gives the right sides of our identities—is quite elementary. 
It is based on two sorts of identities between modular symbols. From the definition 
it is clear that {goc9 gß}r={ot9 ß}r for all g£T; hence, for g£SL(2, Z) the symbol 
{goi9gß)r depends only on the coset gT. The second identity is: {a l 5a 2} r + 
{a2, a3} r +. . . + {ak, a ^ = 0 for an arbitrary sequence of cusps OL19 ..., a/c. 
In particular, if a/b9 cjd^Q are Farey neighbors (that is, ad—bc=l)9 then 
{a/b9cld}r={g(ic~),g(0)}r depends only on rg=r("c

b
d). For r = rQ(N) 

this coset is determined by (c:d) mod N. But for each a/b^Q9 0^a/b< 1, we can 
find a sequence of Farey neighbors a/b = a„/bn9 a„-i/b„_l9 ...90/l9 joining a/b 
to 0, for example, taking the series of convergents. This means that the class 
{a/b9 0} r {N) can be represented as a sum of classes f (fc/:ôH1 mod iVT) = 
W6 | 90 l + i /6/+ i}r (N)- S° you see how convergents enter into the picture in 
example (c). In example (b) they appear in disguise: in fact, the family of pairs 
(A9 ö) taken from our solutions of p = AA' + öö' coincides with the family of 
pairs of consecutive denominators of all convergents to the numbers 0<a/p^Y> 
a£Z (Heilbronn's lemma). No convergents can be seen directly in example (a), 
because it is only a particular case of a series of identities. I will comment upon it 
later (see [M2], [MF], [B], [Mai], [Ma2]). 

To explain the left sides of our identities we have to introduce modular forms at 
last. Let us dualize and consider {a, ß}r as a functional on the 1-cohomology 
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of XT. The (1,0)-part of the de Rham cohomology is represented by everywhere regular 
holomorphic differentials o on I r . So we must calculate the integrals 

CD*-> f co = f (p(z)dz, 
{«,ß}r « 

where cp(z)dz is the inverse image of co on H. Now the T-invariance of <p(z)dz 
implies the functional equation 

• ( • ^ r ) - * w < " + * f o r a U ( " J ) e r ; 

and the regularity of co means that cp(z)dz is a cusp form of weight two in the 
classical sense. 

First consider the integral /{0ilOo} co = fl~cp(z)dz. Suppose for simplicity that 
(J i)er , for example r=r0(N). Then cp(z) = cp(z+l)9 and we have the Fourier 
series (p(z)=27=iane2ninz(ao=Q> s m c e 9 *s a CUSP form). Set L9(s}~27=iann~s-
This series is convergent for Re s^>09 and the classical Mellin transform 

LJs) = -^f\(z)i4-Vdz 

defines the analytic continuation of L(p(s) on the whole j-piane, because the functional 
equation for cp( — \/Nz) (r=r0(N)) shows the convergence of the integral for 
all s. In fact, this functional equation for cp even gives the usual functional equation 
for L^s) relating it to L^l—s). 

In terms of this L-function we can write 

f cp(z)dz= f co^—L^i). 

It is now easy to explain how prime numbers enter into our picture. The point is 
that the whole space of modular forms of weight two, say, for r0(N)9 has a basis 
{cpt} such that each L(p admits an Euler product with factors (1— app~s+p1~s)~1 

(if p\N). Actually, this space is acted upon by the Hecke operators 

T„= 2 ("o"1 §£Z[GL(2,R)l 
b mod il 

and L(p has such an Euler product if and only if TH<p=a„<p9 n=\9 2, ..., where an 

are the Fourier coefficients of <p. So we have 
i 

J Tn(<p)dz = an J <p(z)dz = an J co = f co. 
0 0 {0,1°°} 7**{0,/oo} 
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But the conjugate action of 71* on the space of all modular symbols is easily calcu
lated with the help of our continued fractions technique. By the way, the same 
calculations show that {a, ß}r as a functional on H°(Xr9 Q

1) lies in HX(XT9 Q) 
even if Tu^Tß. 

In the case r = r 0 ( l l ) the curve XT is defined over Q and has genus one; 
hence, there is a unique modular form cp (z) for r normalized by the condition 
a1 = \. This cp(z) is then automatically an eigen-function for all 7^'s, and, after 
some computation, we get 

1 — ap+p = the right side of (2). 

Now comes the main point: 1 —ap+p is equal to the number of points on the curve 
XT mod/?, or in other words, L^s) is the Hasse-Weil zeta-function of XT. This 
is a particular instance of a very important general principle to which I will return 
later. In our example (b) the equation of XT (n ) is just y2+ Y=X3—X2 — 10Z—20; 
hence we get (2). 

The relations (3) arise in a similar setting but are much deeper. We take here 
r=r0(37). Then Xr is of genus two, but has a factor Y of genus one given by 
the equation Y2+Y=X3 —X; and we construct cp and Lv corresponding to 
this factor. Again L(p(s) coincides with the Hasse-Weil zeta of Y9 but this time 
Lp(l)=0! This agrees with the Birch-Swinnerton-Dyer conjecture, according 
to which the rank of the group of rational points of Y should be equal to the order 
of zero of Lv(s) at s=l. Both numbers are 1 in our case. But the conjecture goes 
much farther and also predicts the coefficient A in the expansion Lv(s) = 
A(s— 1) + This coefficient involves such oddities as the order of the Shafare-
vich-Tate group of Y and, moreover, the logarithm of the Néron-Tate height of 
a generator of Y(Q). At the present time, however, we are unable to compare 
A=L/

tp(l) with the Birch-Swinnerton-Dyer expression for even a single curve. 
What we can do is: (a) define a/?-adic version L^p of L^ and (b) calculate L^ p(l) 
mod/?" in this version in terms of modular symbols. So the question arises whether 
the Birch-Swinnerton-Dyer conjecture has a reasonable /?-adic analog. The main 
trouble is how to define the /?-adic height, and Rosenblum's calculations give at 
least a strong indication that a reasonable definition actually exists and fits into 
the /?-adic version of the conjecture. 

We now turn to example (a). The main difference between (a) and the previous 
examples stems from the fact that A(z) is a cusp form of weight 12, not 2, for the 
full modular group SL(2, Z). In general, a modular form cp of weight w>+2 
satisfies the functional equation 

( az + b] 
cp(z)(cz + d)w+2. 

So tp(z)dz is not an invariant differential, only <p(z)(ßfe)0H2)/2 is. One can still 
use the continued fractions technique, properly modified. All the integrals 
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p~ cp(z)zkdz9 O^fc^w, will enter in our formulas, that is, all the values L^k + l), 
l^k + l^w+l; and, using Hecke operators, we will obtain sufficiently many 
linear relations between these values to obtain the identity (1). 

But it is instructive to enlarge the geometric picture in order to be able to interpret 
cusp forms of arbitrary weight as honest differential forms. To do this, recall that 
H parametrizes elliptic curves. More precisely: 

(a) Form the direct product H(l)=HXC and note that its fibre Cz over 
a point z£H contains the lattice Z-\-Zz9 which, after factorization, determines 
the elliptic curve Ez=CJ(Z+Zz); moreover, EZ^EZ. iff gz=z' for some 
g€SL(2,Z) . 

(b) Extend the group T c S L ( 2 , Z) to the group T(l), the semidirect product 
of G and Z 2 : 

r(l)={[g;m9n]\geG; m9n£Z}; 

[g'; m\ n'][g; m, n] t= [g'g\ (m'9 n')g + (m, n)]. 

(c) Extend the action of r on H to the following action of (7(1) on H(\): 

( az+b u + mz+n ) m m 

This action takes Cz to Cgiz) and Z+Zz to Z+Zg(z). 
(d) Take w^O, and form the two fibre products 

r(w) = T(1)X T x r ( l ) and H(w) = H(l)X ». XH(l) (w times). 

This r(w) acts naturally on H(w). 
Now suppose cp(z) is a modular form of weight w+2 on H for T. Then 

in the natural coordinates (z9 nl9 ..., uw) on H(w) the differential form 

cOy = cp(z)dzAduLA ... Aduw 

is G(w)-invariant, and so determines a meromorphic form on G(w)\H(w). If cp(z) 
is a cusp form, then co^ extends to a regular algebraic form on a smooth compac-
Br(w) of r(w)\H(w). This latter variety is called the Kuga variety of weight 
tification w + 2. It is fibered by abehan varieties over Xr9 at least if r is torsion 
free. Over each of the Lobachevsky lines on H connecting two cusps there lies a 
family of (w+l)-chains on H(w) which, after projecting onto Br(w)9 determines a 
family of higher modular symbols 

{a9ß\ m9n}eHw+1(Br(w),Pr(w)9Z)9 m9neZw
9 

where Pr(w) is made up of fibres over cusps. This construction was studied in 
detail in Shokurov ([Shi], [Sh2]), and was generalized to Hilbert modular varieties 
in Manin [M5] (but the definitions given there require some corrections). The 
L-series L(p(s) is intimately connected with the zeta-function of Br(w) for any w. 
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It is time to finish the first round of explanations. I have reversed the history of 
our subject and made a mess of its logic in order to show you some recent and 
beautiful number theory as quickly as possible. Now let me be more systematic 
and review the fundamental structures. Broadly speaking, we have three large 
classes of objects—algebraic varieties, modular forms and L-functions—and a lot 
of interrelations between them, some proved but most conjectural. Most of number 
theory lies in these interrelations, and I will try to concentrate on them. 

L-functions. We now know two great classes of L-functions: "algebro-geometric" 
and "automorphic" ones. The first is connected with schemes, motives and /-adic 
representations; the second with Mellin transforms of automorphic forms and with 
Lie and adelic group representations. Each new equality between two L-functions 
belonging to the different classes brings a list of concrete number theoretic facts. 
Instead of stating current conjectures about these identifications, I will try to explain 
why this is so. The main reason is that by their origin these two classes are equipped 
with complementary (almost disjoint) lists of properties. Namely, for algebro-
geometric L-functions we know: 

(a) Euler products with a down-to-earth interpretation of /^-factors in terms of 
solutions of congruences. 

(b) Deligne's theorem about the absolute values of the roots of these /^-factors, 
which gives precise bounds for many "remainder terms" in classical asymptotic 
formulas, and in particular, for trigonometric sums. 

(c) /-adic and /?-adic cohomological interpretations of those /^-factors, which 
give a good grasp of the divisibility properties of L-series coefficients. 

(d) Very important but still rather scarce connections between the global Dio-
phantine properties of the scheme in question and the analytic behavior of its 
L-function. Here I have in mind such classics as Dirichlet's class-number/regulator 
formula, Riemann's explicit formula for n (x)9 Hardy-Littlewood's "singular 
series" for the Waring problem, and also more recent developments such as Tamagawa 
numbers and the Birch-Swinnerton-Dyer conjecture. 

On the other hand, for automorphic L-functions we can usually obtain : 
(e) Analytic continuation and functional equation. 
(f) Formulas for the values at certain "critical" points. Recently, these values 

have been used for /7-adic interpolation. 
(g) Some information about zeros and poles. 
(h) Asymptotic behavior and exact formulas for the coefficients based on the 

behavior of the automorphic form near the boundary. 

We list some examples of these identifications of algebro-geometric with auto
morphic L-functions and their arithmetic consequences. 

Riemann's C(2s) is the Mellin transform of G(z)=2~=1e
2ni,fl\ which is an 

automorphic form of weight 1/2. This gives one of the most natural classical proofs 
of the functional equation for Ç. 
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Hecke's L-functions with Grössiencharakters are Mellin transforms of special 
modular forms., Hecke used this fact, again for deriving functional equations and 
for obtaining asymptotic formulas for the distribution of prime ideals in "sectors". 

The L-functions of modular curves are (products of) Mellin transforms of cusp 
forms of weight two for congruence subgroups of SL (2, Z). Eichler first observed 
this fact and used it to obtain the best remainder term for representations of integers 
by quaternary quadratic forms. These remainder terms are just the coefficients 
of cusp forms, and, as soon as we know their connection with congruences and the 
Hasse-Weil-Riemann hypothesis for curves over finite fields, we obtain the necessary 
bQunds. Taniyama and Weil conjectured that the L-functions of all elliptic curves 
over Q can be obtained in this way. 

Using this identification and taking for granted the Birch-Swinnerton-Dyer and 
Taniyama-Weil conjectures, the author has been able to derive explicit formulas 
for the order of the highly mysterious Tate-Shafarevich groups of modular curves 
over a tower cyclotomic fields, and also a conditional algorithm for calculating the 
generators of the group of points of an elliptic curve over Q. The algorithm is 
very practical, can be applied to any particular elliptic curve, and always ends up 
giving a finite set of points on this curve. The conjectures are used only to prove 
that this set generates the whole Mordell group (see [M6]). 

Ramanujan's r-function is the sequence of coefficients of A (z) in our example (a). 
The Mellin transform of A (z) is a divisor of the zeta-function of the Kuga variety 
Z?SL(2jZ)(10). Deligne's proof of the Riemann hypothesis for all varieties over finite 
fields resulted in the proof of the Ramanujan-Petersson conjecture: |T(/?)|<2/?11/2. 

Using the /-adic representation of this zeta-function, Serre conceptually explained 
the beautiful Ramanujan congruence z(p) = \-{-p11 mod 691 and vastly general
ized it. 

Deligne and Serre proved that all cusp forms of weight 1 which are "new forms 
of odd character" are inverse Mellin transforms of Artin L-series corresponding 
to irreducible two dimensional representations of Gal(ß/ß) taking complex 
conjugation to (J _J). Langlands used this result to prove Artin's conjecture 
for a new class of Artin L-series (see [DS]). 

All of the examples in this list of identifications are embedded into a vast and 
fascinating program which is called the "Langlands philosophy". Here I cannot 
do more than pay it Up service; see [B], [MF], [D1]-[D3] for thorough and technical 
expositions. My aim was only to underline its number theoretic implications, which 
go beyond the widely advertised and very important "non-commutative class field 
theory". 

Varieties. Algebro-geometric L-functions are defined in terms of varieties and 
schemes, and their cohomology of various kinds forms the main link between these 
L-functions and automorphic L-functions, Two points here deserve the particular 
attention of a number theorist. 
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(a) The varieties carrying modular forms considered up to now have a very special 
structure, and are usually families of abelian varieties like Kuga's Br(w) or Shimura 
varieties. The problem of their universality in the sense of Taniyama-Weil-
Langlands... is arithmetic, not analytic, since it is deeply connected with the arith
metic of global ground fields. The same varieties have recently been studied in de
tail from the Diophantine point of view (see [Ma3]). 

(b) The deepest structure which seems to underlie all number theoretic applica
tions of the theory is that of Grothendieck's "motives". A tentative definition is 
that a motive is a "twisted direct summand" of an algebraic variety : see [M7] and [De]. 
Motives serve as a universal cohomology of algebraic varieties, of which different 
realizations exist, such as de Rham cohomology, Hodge cohomology, /-adic coho
mology, crystalline cohomology, a host of p-adic cohomologies. Each realization 
gives some number theoretic information, and the underlying motive serves as a link 
between them. From this point of view, the modular symbols should be considered 
as a specific structure on the Q- or Z-cohomology of the universal varieties mentioned 
above. This explains their role as a new source of arithmetic facts. 

Finally, I should say that I left a lot of topics untouched. Among the most in
teresting is the theory of Siegel modular forms, which has recently been studied 
in depth by Andrianov. I would also like to mention I. M. Gel'fand's suggestion 
that the {-functions of certain special differential operators should have an arithmetic 
meaning. The first class to consider is that of the Schrödinger operators —d2/dx2 + u(x) 
with algebro-geometric potentials u(x) arising as solutions of the Korteweg-
deVries equation, for example: u(x) = 2p(x)9 where p is the Weierstrass function 
of an elliptic curve over Q. In fact, it seems that the values of this zeta-function at 
negative integers, which can be calculated explicitly, admit a /?-adic interpolation. 
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Linear Operators and Integrarle 
Hamiltonian Systems 

S. P. Novikov 

I. Examples of nonlinear wave systems. (KdV, Schrödinger nonlinear equation, 
Sine-Gordon and others.) The history of the problem: works of the 19th and early 
20th centuries; discovery of the inverse scattering method for the solution of KdV 
(Kruskal, Green, Gardner, Miura, 1967). Lax representation (1968). Hamiltonian 
formalism of Gardner-Zakharov-Faddeev (1971). Zakharov-Shabat (1971). 
Ablovitz-Kaup-Newell-Segur cases (1973) and others. Exact solutions (rapidly-
decreasing case). Toda lattice (Henon, Flashka, Manakov, 1974). Moser-Calogero 
particle systems (1975). 

II. Periodic and quasiperiodic solutions. Works by the reporter, Dubrovin, 
Matveev, Its (1974), Lax, McKean and Van Moerbeke (1975). Equations of the 
zero curvature and KdV. Hamiltonian formalism in stationary problems. Finite-
zone periodic potentials, Hamiltonian systems and classical algebraic geometry 
of the Riemannian surfaces. Baker-Achiezer function. Finite-zone solutions of 
the KdV equation. Particular cases. Elliptical solutions. Rational solutions. 
Theorem by Moser, McKean and Airault (1976). Multi-dimensional analogue 
of the rigid body. Manakov theorem (1976). 

HI. Multi-dimensional problems. Kadomtsev-Petviashvili equation (two-dimen
sional KdV). Zakharov-Shabat method (1974). Krichever solutions (1976). Two-
dimensional solitons of Petviashvili-Its et al (1977). Rational solutions (1977). 
Solutions of the reporter and Krichever depending on functional parameters and 
holomorphic vector bundles over the Riemannian surfaces (1978). 

IV. Commutative algebras of operators. One-dimensional case. Works of the 20s 
(Burchnall, Chaundy, Baker). Krichever theorems (1975-76). Operators of non-rel. 
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prime orders (1977). Holomorphic vector bundles. Algebras related to the two-
dimensional Schrödinger operators (the reporter, Krichever, Dubrovin, 1976). 
Further problems. 
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The Complex Geometry of the Natural World 

Roger Penrose 

This century has seen two major revolutions in physical thought. The first of 
these, relativity, uprooted earlier ideas of the nature of time and space, and provided 
us with our present picture of the world as a real differentiable manifold of dimension 
four, possessing a pseudo-Riemannian metric with a (H — ) signature. The 
second revolution, quantum theory, altered our picture of things yet more radically 
than did relativity—even to the extent that, as we were told, it became no longer 
appropriate to form pictures at all, in order to give accurate representations of physical 
processes on the quantum scale. And, for the first time, the complex field C was 
brought into physics at a fundamental and universal level, not just as a useful 
or elegant device, as had often been the case earlier for many applications of complex 
numbers to physics, but at the very basis of physical law. Thus, the allowable 
physical states were to form a complex vector space, in fact a Hilbert space. So, 
on the one hand, we had the real-manifold picture of space-time geometry, and on 
the other, the complex-vector space view, according to which geometrical pictures 
were deemed inappropriate. 

This conflict has remained with us since the conceptions of these great theories, 
to the extent that, even now, there is no satisfactory union between the two. Even 
at the most elementary level, there are still severe conceptual problems in providing 
a satisfactory interpretation of quantum mechanical observations in a way compatible 
with the tenets of special relativity. And quantum field theory, which represents 
the fully special-relativistic version of quantum theory, though it has had some very 
remarkable and significant successes, remains beset with inconsistencies and divergent 
integrals whose illefTects have been only partially circumvented. Moreover, the 
present status of the unification of general relativity with quantum mechanics 
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remains merely a collection of hopes, ingenious ideas and massive but inconclusive 
calculations. 

In view of this situation it is perhaps not unreasonable to search for a different 
viewpoint concerning the role of geometry in basic physics. Broadly speaking, 
"geometry", after all, means any branch of mathematics in which pictorial 
representations provide powerful aids to one's mathematical intuition. It is by 
no means necessary that these "pictures" should refer just to a spatio-temporal 
ordering of physical events in the familiar way. And since C plays such a basic 
universal role at the primitive levels of physics at which quantum phenomena are 
dominant, one is led to expect that the primitive geometry of physics might be 
complex rather than real. Moreover, the macroscopic geometry of relativity has 
many special features about it that are suggestive of a hidden complex-manifold 
origin, and of certain deep underlying physical connections between the normal 
spatio-temporal relations between things and the complex linear superposition of 
quantum mechanics. 

One of the most striking and elementary of these physical connections appears 
in the geometry of the spin states of an ordinary spin -|-Ä particle (such as an electron 
or proton). Each pure state corresponds to a direction in space, about which we may 
regard the particle as spinning in a right-handed sense. But these states refer also 
to the ravs through the oriCTin of a 2-comnlex-dimensional Hilbert snace. Thus 
we have an unambiguous correspondence between the complex directions of the 
Hilbert 2-space and the real directions of ordinary Euclidean 3-space. The set of 
complex Hilbert-space directions has a natural structure as a complex-projective 
(Kahler) 1-manifold CP1, while the real Euclidean directions constitute the ordinary 
2-sphere S2. The essential identity between these two spaces provides a link between, 
on the one hand, the fact that it is complex linear superposition that occurs in 
quantum mechanics and, on the other, that ordinary space is 3-dimensional ! In 
terms of the symmetry groups involved, this relation finds expression in the special 
local isomorphism 

SU(2)^SO(3) 
(which is a 2-1 map). 

The group SO (3) refers only to spatial symmetry. According to relativity, time 
must be brought in also, and the local symmetry about a point in space-time becomes 
the Lorentz group, whose connected component 0+( l , 3), being a complex group, 
has an even more intimate relation to C than has SO (3), the relativistic version 
of the above local isomorphism being 

S L ( 2 , Q - O i ( l , 3 ) 

(which is again a 2-1 map). We may again think of these groups as acting on 
CP1 ( ^ S2)9 but where now we are concerned with all holomorphic (i.e. complex-
analytic) maps of CP1 to itself (the Kahler structure being now dropped), giving 
precisely 0 | ( 1 , 3). Indeed, we can (literally!) see this CP1 as the celestial sphere 
or "sky" of an observer [1], Two observers who pass one another at the same event 0 , 
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have their skies related, according to the relativistic transformation law, by a con-
formal map, i.e. by a holomorphic map, if we regard the sky as CP1. 

In space-time terms this CP1 is to be regarded as the set of light rays through the 
point 0 . Thus it is in the light-ray structure of space-time that complex geometry begins 
to emerge. (The relation to quantum superposition is, for the moment, less evident, 
but it reappears at a later stage.) Let us explore this further by considering the 
space o<Vof light rays in ordinary Minkowski (i.e. flat pseudo-Euclidean (H — ) 
signature) 4-space M'. Since Jf is 5-real-dimensional it cannot be a complex 
manifold. Nevertheless, it is very close to being one and has the structure of what 
is known as a CTMiypersurface [2], [10]. This structure may be viewed as that which 
is induced on Jf by its imbedding as a real hypersurface in a complex manifold—and, 
in this case, the ambient complex manifold can, in fact [3], [10], be taken to be 
CP3. The tangent space D to a point of Jf can be thought of as the family of 
light rays that lie in the immediate neighbourhood of a given light ray. In D are 
certain real 2-planes, namely those, called holomorphic directions, that are spanned 
by the real and imaginary parts of complex vectors in CP3. Together, these sweep 
out a 4-real-dimensional or 2-complex-dimensional subspace of Z>, called the 
holomorphic tangent space. This represents light rays that are displaced from the 
given one by a small amount orthogonal to the direction of motion. A certain 
1-real-parameter family of holomorphic directions arises from the system of light 
cones of the points of the given light ray. This family provides the directions along 
which the Levi form [2] (which measures the holomorphic convexity properties of 
the hypersurface Jf in CP3) vanishes. The Levi form eigenvalues for Jf have 
signs ( + - ) . 

The space CP3
9 which in this context is referred to as the projective twistor 

space for M'9 can be constructed in the following way [3], [5], [6], [7]. Let CM' 
be the standard complexification of M\ and let (z°, z1

9z
2

9 z3)£C* be standard 
coordinates for a point z£CM'9 the complex metric being ds2=(dz°)2—(dz1)2 — 
(dz2)2 — (dz3)2. Now consider the matrix equation 

(Z°\ i (z^ + z1 z2 + \z (Z*\ _ _j_<z" + zl za + /zBwZB\ 

KZ1) " l/2 lz 2 -7z 3 z O - z O l z 3 ) ' n 
where the ratios Z 0 ^ 1 ^ 2 ^ 3 provide coordinates for the points of CP3. Holding 
these ratios fixed, the solutions of this equation give (provided that Z2 and Z3 do 
not both vanish) a compIex-2-plane along which the induced metric vanishes. Such 
a plane is called totally null, and the particular ones arising, as above, from points 
of CP3 are called v-planes. There is also another family of totally null planes in 
CM', called ^-planes. These arise in a corresponding way from the various planes 
(CP2's) in CP3. Ifana-plane(or a /?-p!ane) has one real point in CM' (i.e., in M'), 
then it has a whole light ray of real points, the light ray then determining the a-plane 
(and its complex conjugate, the /7-plane) uniquely. In this case the Hermitian form 

2I(Za) = |Z° + Z 2 | 2 + |Z 1 + Z 3 | 2 - ] Z ° - Z 2 ] 2 - | Z 1 - Z 3 | 2 
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vanishes. The equation ! ( Z a ) = 0 , in CP3
9 defines Jf (which we take compact 

^S2XS3). 
Now suppose instead that, in the above matrix equation, za is held fixed and 

Za allowed to vary. Then we obtain a 2-complex-dimensional subspace of C4, 
i.e'. a complex line (CP1) in CP3. Therefore, points of CM' are represented as 
lines in CP3. In fact the only Unes of CP3 that do not so represent points of CM' 
are the lines meeting the particular line / i n Jf9 given by Z 2 = Z 3 = 0 . To include 
these lines, we adjoin extra points to CM' to obtain a compact manifold CM, 
this being the standard Klein (or Grassmann) representation [4] of lines in CP3. 
The real points of CM define the compactified Minkowski space M (=>M') and 
this is represented by the family of Unes in Jf. Thus, the light rays through a point 
O of M' correspond, in CP3, to the points of the line in Jf which represents 0 . 
Since this line has the holomorphic structure of CP\ we find agreement with the 
earUer discussion concerning the holomorphic structure of the light cone or sky of 
an observer at 0 . 

Let PT+ and PT~ denote the portions of CP3 for which I(Za) is, respectively, 
positive or negative. Then the group of holomorphic self-transformations of PT+ 
is just the nonreflective conformai group Cj ( l , 3) on M. This is related to the 
appropriate pseudo-unitary group on C4 (preserving Z(Z*)) via the 4-1 local 
ISOffiOipiiiSIii 

ó*£/(2,2)+C|( l ,3) . 

The Poincaré (or inhomogeneous Lorentz) group is a 10-real-parameter subgroup 
of C | ( l ,3 ) preserving / a n d a certain scaling for/ . 

The idea of the twistor programme [7] is to re-express the whole of basic physics 
in terms of the above space CP3 or the space C4 from which it arises. More 
correctly, however, twistor space should not be regarded as C4 (which is the co
ordinate space) but as a more directly physically defined space T whose elements 
(up to phase multipliers) correspond to massless particles with spin. The helicity is 
given by the value \hI(Za). Moreover, it is envisaged that when the space-time is 
curved, or endowed with an electromagnetic field, or a more general gauge field, [8], 
the twistor space should acquire a more complicated complex structure than that 
of C4. Some considerable successes have been achieved, as it turns out, using this 
kind of method to describe such fields, in the cases for which the fields are self-dual. 
The general self-dual solution of Einstein's non-linear vacuum (Ricci flat) equations 
can, indeed, be completely coded [9] into the structure of a deformed version of 
a suitable portion of T. Some recent ideas lead one to hope that it ought to be possible 
eventually to remove the self-dual restriction [11], but as yet this has not been satis
factorily achieved. The present situation with regard to the (non-linear) self-dual 
gauge fields (Yang-Mills fields) is broadly similar [12], [13], [24]. 

A remarkable feature of these constructions, when they have been successful, 
is that the information is not stored locally. The local structure of each of the defor
med spaces is precisely the same as in the particular case when the field to be described 
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is zero! Nevertheless an infinite-dimensional system of inequivalent deformed 
spaces can be constructed and these correspond precisely to the freedom that one 
expects (free functions of three variables) for the fields in space-time. In the weak-
field limit, we are concerned with infinitesimal deformations of complex structure. 
These are described in terms of the first holomorphic sheaf cohomology groups 
of portions of the flat twistor space T9 so it appears that the twistor description 
of linear space-time fields should be described in terms of such cohomology groups. 
Indeed, for massless fields of any helicity this turns out to be the case [14], [10], [15]. 
The situation for massive fields is not so clear, but in any case products of twistor 
spaces are then needed, rather than the single space T. Part of the twistor programme 
is concerned with exploiting the extra freedom that then arises in order to obtain 
a classification of the numerous observed varieties of elementary particles 
[18], [19], [20]. 

One of the major aims of the twistor programme is to find an alternative version 
of quantum field theory which might, one hopes, avoid some of the difficulties of the 
conventional formulation. An aspect of this approach is that wave functions of 
massless fields, are described [11], [16], [17] as the elements of the sheaf cohomology 
groups H1(PT+

9 0(n)) where 6(n) refers to the sheaf of twisted holomorphic 
functions on PT+

9 as defined by homogeneous functions on T of degree n. Here, 
n—— 2s%~1— 2, where s is the helicity of the field. There are many curious 
features of these descriptions which are only just beginning to be explored. For 
example it is known [21] that infinite-dimensional Hvs only arise here because the 
boundary Jf of PT+ has a Levi form with one non-positive eigenvalue. It is also 
known [22], [23] that such infinite-dimensional Hvs then live locally on Jf (and, 
somewhat ironically, arise precisely because of the existence of insoluble differential 
equations of the Hans Lewy type). The space-time interpretation of these local 
Hvs is still somewhat obscure, but they appear to be concerned with the propagation 
of non-analytic behaviour along light rays. There is some hope also, that significantly 
different insights into the somewhat paradoxical nature of quantum-mechanical 
wave functions might eventually arise from the cohomological formalism that 
appears forced upon us in twistor descriptions. 
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Representations of Semisimple Lie Groups 

Wilfried Schmid 

Fifty years ago, at the International Congress in Bologna, Hermann Weyl gave 
a report on representations of compact groups and, in particular, of compact Lie 
groups. Most of the important results had just been proved by him and by others, 
and at the time of his lecture, in 1928, the representation theory of compact Lie 
groups had become a very appealing subject. To a large extent, Weyl's theory has 
served as model and inspiration for the work on representations of noncompact, 
noncommutative groups, which was carried out in the last thirty years. To put the 
subject of my survey into perspective, I shall begin with a discussion of compact 
groups. 

Initially, G will denote a compact topological group, and G its set of isomorphism 
classes of irreducible unitary representations. To avoid complicated notation, 
I shall not distinguish between an isomorphism class and its members: each ii^ô 
s to be thought of as a specific continuous1 homomorphism 

n:G^U(Hn) 

into the unitary group U(Hn) of a specific Hilbert space Hn. The irreducibility 
of 7i, i.e. the nonexistence of a proper, closed G-invariant subspace, implies that 
Hn is finite dimensional. According to the Peter-Weyl theorem [23], [30], there 
exists an isomorphism of Hilbert spaces 

(1) L2(G) ~ © Hn®H% (Hilbert space direct sum), 
T T é C 

1 Continuous with respect to the "weak topology" on U(Hn) — the weakest topology which 
makes the functions T\^- (Tu, v) continuous, for all u, v in H„. 
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which can be described explicitly, and which has the following crucial property: 
the action of G on L2(G) induced by left translation corresponds to the action 
on the left factors Hn9 whereas the right translation action corresponds to the 
dual action on the dual spaces H*. 

The statement of the Peter-Weyl theorem already points to the most fundamental 
reason for studying representation theory: to understand the representations of 
G is to understand L2(G)9 as a left and right G-module. The theorem, an early 
success of "soft analysis", makes only a rather abstract assertion, however; it does not 

(a) describe the set ó, 
(2) 

(b) give information about the structure of the irreducible representations. 

These two problems must be dealt with if the Peter-Weyl theorem is to answer 
concrete questions about L2(G). 

To get a grasp on the first problem, one associates to each finite dimensional 
representation % the function 
(3) xn: g —traceTr(g), 

the so-called character of n. As a formal consequence of the Peter-Weyl theorem, 
/„ determines n up to isomorphism. In particular, the passage from representations 
to their characters establishes a one-to-one correspondence 

(4) ô -<-* set of irreducible characters. 

It is usually easier to describe ô indirectly, via this correspondence: characters, 
as functions on G9 are less complicated objects than representations. 

For only one large and significant class of compact, noncommutative groups does 
one understand the two problems (2) reasonably well—namely compact, connected 
Lie groups. I shall now assume specifically that G belongs to this class. By a simple, 
but ingenious argument, which combines the Peter-Weyl theorem with basic pro
perties of compact Lie groups, Herman Weyl was able to compute the irreducible 
characters of any such G. - Implicitly the resulting Weyl character formula [27], [29] 
provides a parametrization of the set ô, and hence a solution of the problem (2a). 

As for the second problem, the most useful technique is to study representations 
of G by analyzing their restriction to a maximal torus TaG. Any two maximal 
tori are conjugate, and hence the particular choice of T does not matter. Viewed 
as representation of T9 each n^ô decomposes into a direct sum of one dimensional 
representations, which are called the weights of %. Among the weights, one is 
distinguished by being the "highest", in a certain definite sense; the highest weight 
occurs with multiplicity one and, most importantly, it characterizes % up to iso
morphism. This is the essence of Elie Cartan's theorem of the highest weight [26]. 
Virtually all general structural information about representations of compact Lie 
groups follows from it, at least indirectly. The theorem can be proved by infinitesimal 
methods, or alternatively, deduced from Weyl's character formula. 
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In a nutshell, the Peter-Weyl theorem, the Weyl character formula, and the theorem 
of the highest weight constitute the fundamentals of the representation theory of 
compact Lie groups. Taken together, they give a good grasp of L2(G)9 and hence 
also of L2(X)9 for any homogeneous space X on which G operates transitively. 
Indeed, every such homogeneous space X can be represented as a quotient X=G/U9 

with £/=isotropy subgroup at some point of X. Pulling back functions from G/U 
to G, one finds 

(5) L2(X) = space of right G-invariants in L2(G) =* © Hn®(HÌ)v; 
Tree 

here (H*)u denotes the subspace of all J7-invariant vectors in //*. The description 
(5) of L2(X) makes it a simple matter to determine the G-invariant subspaces of 
L2(X)\ they are of the form 

(6) © H%®WK9 

with suitably chosen subspaces Wna(H*)u\ conversely, every direct sum (6) is 
actually G-invariant. 

Let me now consider a linear differential operator D on X, G-invariant and, for 
simplicity, acting on scalar functions. One may extend D to an unbounded operator 
on L2(X), by taking its closure. The kernel of D then becomes an invariant 
subspace of L2(X)\ 

(7) K e r Z ) - © HK®WK. 
nee 

In our particular context, the Wn can be identified as the kernels of a family of 
linear transformations, 

H£ = Ker2>„ 
(8) 

D,:(Ä„T-W)D , 
which are derived from D in quite an explicit manner. Although D was assumed 
to be a scalar operator, these remarks apply—mutatis mutandis—also to invariant 
systems of differential equations. 

The preceding discussion, straightforward and formal as it is, should convey 
one salient point: the Peter-Weyl theorem and its companion statements make it 
possible, at least in principle, to solve invariant systems of differential equations 
on homogeneous spaces. Undoubtedly, this connection with the problem of solving 
invariant differential equations is one of the most important aspects of the repre
sentation theory of Lie groups. 

To give a concrete example, I shall mention the Borel-Weil-Bott theorem [4], [21]. 
As before, TczG denotes a maximal torus. One knows that the quotient G/T 
can be made into a homogeneous complex manifold—a complex manifold such that 
G acts, by left translation, as a group of holomorphic mappings. Moreover, each one 
dimensional representation 

a: T - C * 
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gives rise to a homogeneous holomorphic line bundle 

(9) se. -* GIT, 

i.e. a holomorphic line bundle to which the translation action of G lifts; it is uni
quely determined by the requirement that T should operate on the fibre at the 
identity coset via <r. Since G acts on the bundle (9), it also acts on the cohomology 
groups 
(10) Hk(G/T9 &(<?„)) 

of the sheaf of germs of holomorphic sections 6(£P^). The sheaf cohomology groups 
thus become finite dimensional representation spaces for G—finite dimensional 
because G/T is compact. The Hodge theorem identifies the cohomology group (10) 
with the kernel of the (G-invariant) Laplace-Beltrami operator, acting on the 
j£?ff-valued (0, /c)-forms. In particular, the present example fits into the framework 
of invariant differential equations. 

The Borel-Weil-Bott theorem describes the cohomology groups (10): they vanish 
identically for certain special choices of a; in all remaining cases, they are nonzero 
for exactly one integer k=k(&), and the representation of G on this one non-zero 
cohomology group is irreducible, with a highest weight whose dependence on 
G can be made explicit. Every irreducible representation of G arises in this fashion, 
even with k(a)=0; for fc=0, it should be noted, the group (10) is simply the 
space of holomorphic sections of the Une bundle i?ff. Most proofs reduce the Borel-
Weil-Bott theorem to the theorem of the highest weight, through arguments in the 
spirit of (7)-(8). The theorem serves at least two purposes. It provides a realization 
of every n£G, on a concrete vector space, with a concrete G-action—in contrast 
to the Weyl character formula or the theorem of the highest weight, which enumerate 
the irreducible representations, without giving such a realization. Secondly, it 
computes certain cohomology groups which are of interest in complex analysis, 
and which were not understood before the advent of the Borel-Weil-Bott theorem. 

The statement of the theorem also suggests another possible approach to the 
representation theory of compact Lie groups. One can use methods of differential 
geometry and complex analysis to prove the theorem directly, avoiding any reference 
to the Weyl character formula and the theorem of the highest weight. An application 
of the Atiyah-Bott fixed point formula then leads to the character formula, which 
thus becomes a consequence of the Borel-Weil-Bott theorem. This chain of 
arguments employs rather heavy machinery and may seem merely a curiosity. 
I mention it here because in the case of non-compact groups, analogous arguments 
turn out to be quite efficient. 

So much for compact groups ! The object of interest shall now be a locally compact 
group G, unimodular—i.e. the essentially unique left invariant measure is also right 
invariant— and of type I. The latter is a technical condition, satisfied by all the 
special classes of groups which are considered in this survey; it insures that G has 
a "reasonable" representation theory. Again ô stands for the set of isomorphism 



Representations of Semisimple Lie Groups 199 

classes of irreducible unitary representations. In general, these will be infinite dimen
sional, since G may not be compact. For the same reason, the Peter-Weyl theorem 
no longer applies; even the simplest noncompact examples show that L2(G) cannot 
be expressed as a direct sum of irreducibles. Its place is taken by the abstract 
Plancher el theorem [6], which essentially goes back to von Neumann: L2(G) de
composes into a Hilbert space direct integral, 

(11) L*(G)~ f Hn®HU,i(n), 

with respect to a measure \i on (J, the so-called Plancherel measure. 
Just as in the case of the Peter-Weyl theorem, the isomorphism makes the left 

and right actions of G correspond to the actions on the left and right factors of the 
integrand Hn<g>H*. The tensor product sign refers not to the algebraic tensor 
product, but rather to its completion. The notion of Hilbert space direct integral 
generalizes the notion of Hilbert space direct sum. For instance if G is compact 
after all, the measure ß becomes discrete, and the direct integral (11) reduces to 
the direct sum2 (1). The best known example of a direct integral, which is not 
actually a direct sum, is furnished by classical Fourier analysis on the real line: 
L2(R) may be viewed as a direct integral of a continuous family of one dimensional 
function spaces, namely those spanned by the unitary characters 

x^eixy, y£R. 

These function spaces do not occur in L2(R) discretely, as subspaces, but only 
"infinitesimally". 

Again, the description (11) of L2(G) raises some immediate questions: 

(a) what is the set G? 

(12) (b) what is the Plancherel measure fil 

(c) what can one say about the structure of the irreducible unitary 

representations? 

Reasonably complete answers exist for only two major classes of noncompact, 
noncommutative groups—on the one hand, nilpotent Lie groups, and to some 
extent also solvable groups; on the other, semisimple Lie groups. The techniques 
which are appropriate in these two cases diverge widely, for quite fundamental 
reasons. I shall therefore limit the discussion to the semisimple case. The classical 
matrix groups SI (//, R), SI (/?, C), SO (p, q), SO (//, C), SU (p9 q), Sp (//, R)9 ..., 
which are of special interest in geometry, number theory, and physics, all fall into 

2 The measure /i, which does not show up in (1), has been absorbed into the particular iso
morphism. hi fact, the isomorphism (11), and with it the measure /i, are not uniquely determined. 
Theie is one natural choice, however. 
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this class (as do compact Lie groups with finite center)—ample justification for 
studying semisimple Lie groups in particular detail. 

Let then G be a connected semisimple Lie group, and n an irreducible unitary 
representation of G, on a Hilbert space Hn. Typically^ is infinite dimensional. 
The definition of character, which proved so useful in the finite dimensional case, 
thus loses meaning, at least in its naive form (3) : as unitary operators acting on an 
infinite dimensional space, the operators n(g) do not have a trace in any obvious 
sense. 

There exists a way around this difficulty, first discovered by Gelfand and Naimark 
in their study of the complex classical groups, later fully developed and systematically 
exploited by Harish-Chandra [10]. It proceeds from the following observation: 
for every compactly supported C°° function / on G, the operator-valued integral 

(13) « ( / ) = ff(g)*(g)dg 
G 

is of trace class. In other words, if one represents %(f) by an infinite matrix, relative 
to any orthonormal basis of H%9 the sum of the diagonal matrix entries converges 
absolutely. It then follows that the sum does not depend on the particular choice 
of basis, and one calls this sum the trace. The linear mapping 

which assigns to every f€C°°(G)0 the trace of the operator n(f)9 turns out to be 
a distribution in the sense of L. Schwartz. It determines n up to isomorphism and 
is, by definition, the character of %. If % happens to be a finite dimensional repre
sentation, 0n is given by integration against the ordinary character. Thus Harish-
Chandra's definition of character embraces the usual one. 

Because of its definition in terms of a trace, 0n remains invariant under all inner 
automorphisms of G. A slightly more subtle argument, based on the irreducibility 
of n9 shows that every bi-invariant linear differential operator maps 0n to a mul
tiple of itself. In shorthand terminology, a distribution with these two properties 
is an invariant eigendistribution. 

Distributions are decidedly more complicated objects than functions—more 
complicated to write down, more complicated to manipulate. At first glance, this 
appears to be a serious shortcoming of the notion of character in the infinite dimen
sional case. Fortunately, there is a remedy, Harish-Chandra's regularity theorem 
for invariant eigendistributions [13]-[15], [2]: every invariant eigendistribution, 
and in particular every character, can be expressed as integration against a locally 
L1 function; this function is real-analytic on the complement of a real-analytic 
subvariety of G. Thus characters turn out to be functions, after all. The regularity 
theorem plays a crucial role in the representation theory of semisimple Lie groups; 
without it, the notion of character would be far less useful. 

Let rrie now turn to the problem óf describing G. As a first step, it is helpful to 
consider a certain subset. An irreducible unitary representation n is said to be 
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square-integrdble if the Plancherel measure assigns a positive mass to the single 
point rc£(j, i.e. if n contributes discretely to the Plancherel decomposition (11) 
of L2(G). The isomorphism classes of all such irreducible, square-integrable 
representations constitute a subset ôdsczô, the discrete series of G. 

To state Harish-Chandra's fundamental results on the discrete series [1], [16], 
I select a maximal compact subgroup KczG. Any two of them are conjugate, 
and this fact makes the particular choice of K unimportant. According to Harish-
Chandra's existence criterion, the discrete series of G is nonempty if, and only if, 
K has the same rank as G—equivalently, if any maximal torus TczK is its own 
centralizer in G, or in more technical language, if G contains a compact Cartan 
subgroup. Going back to the list of examples, one finds that SI (/7, J?) has a discrete 
series only for n = 29 SI (/?, C) never does, SO (/?, q) has one precisely when pq 
is even, and finally SU (/?, q) and Sp (n, R) always have a discrete series. 

In case G satisfies the criterion, and subject to a minor restriction which will 
be mentioned presently, Harish-Chandra's parametrization of the discrete series 
establishes a bijection 
(15) tf'-Grfs 

between a subset R' of Ê and the discrete series Gds. It assigns to the character 
X of a representation in R' a discrete series character 09 whose restriction to 
K is given by the formula 

06) 0K = ± £ ; 

here D denotes a universal denominator, independent of i, and itself a linear 
combination of irreducible characters of K. The Weyl character formula for K 
identifies K with a lattice, divided by the action of a finite linear group. In terms 
of this description, K' corresponds to the complement, in the lattice, of a finite 
number of hyperplanes. As was remarked already, the parametrization (15) does 
not apply to an arbitrary semisimple G; however, it does apply to some finite 
covering of any given G. This restriction is quite innocuous, since the discrete series 
for G may be viewed as a subset of the discrete series for the covering group. 

The discrete series provides a basic repertory of representations, from which 
others can be constructed. To be more concrete, I shall need the notion of Cartan 
subgroup. It is most easily defined for a linear semisimple group G: Cartan sub
groups are then Abelian, they consist of group elements that can be diagonalized 
over C, and are maximal subgroups with respest to these two properties. One can 
classify the conjugacy classes of Cartan subgroups [20], [28]; in particular, they are 
finite in number. 

To each conjugacy class, Harish-Chandra attaches a series of irreducible unitary 
representations [17]. If there exists a—necessarily unique—conjugacy class of 
compact Cartan subgroups, the corresponding series is the discrete series. The other 
series are obtained by an induced representation process, starting from discrete 
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series representations of subgroups of G. In this construction, distinct conjugacy 
classes of Cartan subgroups lead to non-overlapping series of representations. 
Although the terminology is by no means standard, I shall call a representation 
generic if it belongs to one of the series, and otherwise special. Both types actually 
occur, unless G is compact, in which case â=ôds. 

The crowning achievement of Harish-Chandra's program is a solution of problem 
(12b). Perhaps the explicit, somewhat complicated description of the Plancherel 
measure p. [17] matters less than the nature of the answer. To begin with, p has 
the set of generic representations as support. Each of the various series is para
metrized, roughly speaking, by the product of a lattice with a vector space, divided 
by the action of a finite linear group. It therefore carries a distinguished measure, 
namely the one derived from the invariant measures on the two factors. The restric
tion of p to the series in question is completely continuous with respect to this 
distinguished measure. The ratio of the two measures reflects the rate at which the 
matrix coefficients of the representations in the given series decay at infinity, a fact 
which is a crucial ingredient of the actual computation of the measure. 

Since the Plancherel measure completely disregards the special representations, 
these become irrelevant as far as the decomposition of L2(G) is concerned. They 
are quite important from other points of view, and I shall come back to them later. 
In any case, L2(G) is made up of generic representations, which are described, 
in Harish-Chandra's construction, in terms of their characters. Thus Harish-
Chandra's theory accomplishes for semisimple Lie groups what Weyl's theory did 
for compact Lie groups. I should point out, however, that the technical difficulties 
are immensely greater. In my very condensed summary, I have broken down Harish-
Chandra's program into three major components: the study of characters, the 
construction of the discrete series, and the determination of the Plancherel measure. 
Each of these is a large and elaborate edifice. 

A brief historical remark: the idea that various series of representations should be 
attached to the conjugacy classes of Cartan subgroups made its first appearance 
in the work of Gelfand and his collaborators on the complex classical groups and 
the real special linear group. In general, it was conjectured—and of course later 
worked out—by Harish-Chandra. His address at the 1954 Congress in Amsterdam 
already gives a glimpse, in very rough outline, of his entire program. 

To understand the structure of representations of compact Lie groups, one in
vestigates their restrictions to a maximal torus. In the context of semisimple groups, 
there is a similar device, namely to break up representations under the action ol 
a maximal compact subgroup KaG. When restricted to K9 every nÇ.ô becomes 
a direct sum of irreducibles, each occurring with finite multiplicity; in symbolic 
notation, 
(17) n\K= © nr(w).T. 

The analogy with the compact case, as well as examples of low dimensional non-
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compact groups [3], [5] suggest that the pattern of the multiplicities nr(n) is an 
important invariant of n. 

Generic representations either belong to the discrete series, or are constructed, 
by a well understood procedure, from discrete series representations of subgroups 
of G. Structural questions about generic representations therefore come down 
to questions about the discrete series. A conjecture of Blattner, now a theorem [18], 
describes the ^-multiplicities nx(n)9 for every discrete series representation n. 
According to the conjecture, of the various z^R which appear in the restriction 
n\K9 one is lowest, in an appropriate sense, and occurs with multiplicity one. The 
theorem of the lowest K-typet counterpart to the theorem of the highest weight, 
asserts that this feature characterizes the discrete series representation n uniquely, 
among all irreducible representp'ions [24]. It can be quite difficult, if not impossible, 
to check directly whether a representation is square-integrable. The theorem of the 
lowest .Tv-type provides a useful criterion, of an essentially algebraic nature. 

The problem of realizing discrete series representations concretely is closely 
related to the theorem of the lowest K-iype. If G has a discrete series, it contains 
a compact Cartan subgroup T9 which is in particular a maximal torus. Just as 
in the compact case, the quotient G/T can be turned into a homogeneous complex 
manifold, noncompact of course, unless G itself is compact. Every character 

a: T-+C* 

again determines a homogeneous holomorphic line bundle 

2* - GIT. 

By tianslation, G acts unitarily on yf(J?a), the Hilbert space of square-integrable, 
holomorphic sections. Long before the discrete series was fully understood, Harish-
Chandra showed that for certain characters 0,2^(3?^ is nonzero; the resulting 
representation is then necessarily irreducible and belongs to the discrete series [12]. 
Unfortunately this construction gives only a relatively small part of the discrete 
series, and for some groups G it even gives nothing at all. To produce a realization 
of every discrete series representation, one must turn elsewhere. 

The first explicit suggestion was made by Langlands: one should consider also 
the higher3 L2-cohomology groups Jf k(J5?ff), i.e. the spaces of harmonic, square-
integrable, J£?ff-valued (0, /c)-forms on G/T. If G/T happens to be compact, the 
Hodge theorem identifies Jt?k(£f0) with the /cth sheaf cohomology group of S£a. 
Such a simple connection between L2-cohomology and sheaf cohomology does not 
exist in general, for noncompact G, but in any case J^k(^a) is a Hilbert space, 
on which G operates as a group of unitary transformation. Guided by the analogy 
with the Borel-Weil-Bott theorem, and also by curvature computations of Griffiths, 
Langlands conjectured that all of the L2-cohomology groups should vanish for 

3 For k = 0, 2te*(Sea) coincides with 2/C{Se^. 
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special choices of o-; in the remaining cases, ^fc(JS?J was to be nonzero for exactly 
one integer k=k(a)9 and G was to act according to a representation of the discrete 
series. In this manner, one would be able to realize every discrete series representa
tion, but usually not with k(<j)=Q. The conjecture has in fact been proved, by an 
argument which reduces it to the theorem of the lowest K-typo [25], 

In order to verify the conjecture, one must somehow exhibit squareintegrable 
harmonic forms. The proof in [25] relies on Harish-Chandra's construction of the 
discrete series to overcome this analytic problem. Instead, one can also base a proof 
on Atiyah's LMndex theorem, in combination with the Atiyah-Singer index theorem. 
An argument, showing that Langlands' conjecture accounts for all of the discrete 
series, goes hand in hand with the existence proof. The outcome4 is an alternative, 
more geometrically oriented approach to the main results on the discrete series [1]. 

I shall conclude with some remarks about special representations. This will also 
give me an opportunity to touch on some important points which have been passed 
over so far. To describe what is known, one must look beyond the class of unitary 
representations. Indeed, techniques which are designed to deal with unitary repre
sentations very often lead naturally into questions about nonunitary representations. 

A representation n of G on a Banach space is said to be admissible if every 
T£Ê occurs at most finitely often in the restriction of n to K. Irreducible unitary 
lepieseiiLaüoiib auLoiuciuually Lave um» piupeiLy, it lcuiciim uiikiiuwii whether 
all irreducible Banach representations are admissible. To simplify the terminology, 
when I speak of an irreducible representation, I shall always mean an irreducible 
admissible representation on a Banach space. 

In the finite dimensional case, there exists a well understood, very useful relationship 
between representations of the group and those of the Lie algebra. Such a relationship 
exists also for infinite dimensional representations, but this involves some subtleties. 
Let n be an irreducible representation, on a Banach space B. The analytic vectors— 
those vectors v£B for which 

g*-+n(g)v 

is a real analytic mapping from G to B—form a dense subspace B^ciB. The Lie 
algebra g of G acts on Bœ by differentiation, but the resulting representation 
of g is "too large"; in particular, it fails to be irreducible. The most natural 
way to pick out an irreducible subrepresentation is to pass to the space of infinite 
vectors B0, i.e. to the linear span of all finite dimensional ^-stable subspaces 
of B. It is contained in Bm, dense in B, g-invariant, and algebraically irreducible 
as g-module. In this manner, one attaches to each irreducible representation of the 
group an irreducible representation of the Lie algebra [9]. 

A side remark is perhaps appropriate at this point. Hermann Weyl repeatedly 

4 For minor technical reasons, the construction in [1] works with harmonic spinors on GIK, 
rather than La-cohomology. 
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emphasized the fact that his methods were purely global; he studied representations 
of the group directly, without reference to the Lie algebra. My very brief account 
of Harish-Chandra's work may have fostered the impression that his approach is 
equally global. Quite to the contrary, infinitesimal arguments play an important 
role in many of his proofs. 

The definition of character (14) seems to depend on the Hilbert space structure 
of the representation space. However, with relatively minor modifications, it makes 
sense also for representations on Banach spaces: every irreducible representation 
n has a character 0n9 which is again an invariant eigendistribution. The characters 
of two irreducible representations %l9 TU2 coincide precisely when the corresponding 
Lie algebra representations are algebraically isomorphic [10]. In this case, n-^ and 
TT2 are said to be infinitesimally equivalent; loosely speaking, they look alike, except 
possibly for the topology on the representation spaces. 

In the case of unitary representations, infinitesimal equivalence implies that the 
representations in question are actually isomorphic [9]. An irreducible representation 
on a Banach space can thus be infinitesimally equivalent to at most one unitary repre
sentation. If it is, one calls the representation unitarizable. To classify the irreducible 
unitary representations—or what amounts to the same, the special representations, 
since one already knows the others—, it suffices to 

(a) classify the irreducible representations on Banach spaces, 

(18) up to infinitesimal equivalence, and 

(b) determine which are unitarizable. 

The first of these two problems has been solved by Langlands [22], and in somewhat 
different form also by Vogan [31]. Langlands classifies representations in terms of 
the growth behavior of their matrix coefficients. This has the effect of reducing the 
problem to the classification of a smaller class of representations, which was worked 
out by Knapp-Zuckerman [19]. Vogan's classification involves a very detailed 
study of how representations break up under the action of K. Each irreducible 
representation has a lowest -K-type, which occurs with multiplicity one. The meaning 
of "lowest", however, is weaker than in the context of the discrete series, and the 
lowest jRT-type alone does not suffice to characterize an arbitrary irreducible represen
tation uniquely. 

In principle, (18b) is a purely algebraic problem, but apparently a difficult one, 
and no solution is yet in sight. If a representation is to be unitarizable, it must 
satisfy certain fairly obvious necessary conditions. This gives at least a partial 
answer to (18b), and hence some information about special representations— 
virtually the only information that is known at present. 

Why is one interested in the special representations? The problem of decomposing 
function spaces on quotients of G reveals perhaps the best explanation. Every 
quotient G/U, by a closed unimodular subgroup UczG, carries an invariant 
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measure, and so G acts unitarily on L2(G/U). Whenever U is compact,-one can 
embed L*(G/U) into L*{G), 
(19) L*(G/U)^L*(G), 

by pulling back functions from G/U to G. In this way, the Plancherel decomposi
tion of L2(G) leads to a decomposition of L2(G/U). If U is non-compact, on 
the other hand, no inclusion (19) exists, and it becomes an entirely separate problem 
to express L2(G/U) as a direct integral of irreducible representations. In particular, 
special representations can and do contribute to the decomposition of L2(G/U). 

The most important case is that of a discrete subgroup f c G , such that G/T 
has finite volume; an arithmetic subgroup, for example. One can then use the 
Selberg trace formula to analyze L2(G/T). Although much work is being done in 
this direction, to understand L2(G/T) remains a distant goal. 
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Absolute Continuity and Singularity of Probability 
Measures in Functional Spaces 

A. N. Shiryaev 

1. Introduction. The exceptional role played in the probability theory by two 
random processes—the Wiener and the Poisson ones—naturally poses the following 
question : What kind of pattern characterises the processes (all of them or a certain 
class) whose measure is absolutely continuous with respect to the Wiener, and, 
respectively, the Poisson measure? In more exact terms, let (C, B) be the measur
able space of continuous functions (Xt)t^09 X0=09 P—the Wiener measure, and 
P—some other measure on (C, B) which is absolutely continuous with respect 
to P (P<z.P). The question is now: What is the structure of the random process 
J?=(X19P)tiÊ.0

rt What is the structure of the Radon-Nikodym derivative dP/dP= 
density of P with respect to PI If (D9 B) is the measurable space of right-
continuous piecewise constant functions (Xt)(^09 X0=09 with AXt=0 or +1 
(AXt=Xt—XtJ)9 P—the Poisson measure, and P—another measure, such 
that P<zP9 find the structure of the random process It = (Xt, P)t^0 and the derivative 
dP/dP. 

Obviously, similar questions arise also for other (not the Wiener or the Poisson) 
random processes (of a simple structure). 

An answer to these and related questions can be obtained within the framework 
of the general theory of absolute continuity and singularity of the probability 
measures (ACS), which has made much progress over the past decade. It makes 
the subject of this paper. It must be stressed that advances in this field are primarily 
associated with the development of the general theory of random processes, parti
cularly its chapter concerned with the notion of the martingale and its various 
extensions. "Local martingales, semimartingales, predictability, stochastic integrals 
with respect to semimartingales and random measures..." that is just a fragment 
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of the list of notions that researchers have been much excited and preoccupied with 
over the past ten years or so. 

2- ACS criteria. The general problem of the absolute continuity and singularity 
of probability measures is stated as follows. Let (Q9 F9 Ft)t^0 be a measurable 
space on which is defined a nondecreasing and right-continuous family of c-algebras 
Ft such that F=\JFt. Let P and P be two probability measures on (Q9 F) and 

Pt = P\Ft9 Pt = P\Ft 

be their restriction on Fr 

We shall say that a measure P is locally absolutely continuous with respect to 
the measure P (P<£ocP)9 if Pt<zPt for every t^O. The question is: When does 
it follow from the local absolute continuity that P<zP (absolute continuity) or 
that P±P (singularity)? 

Let Zt=dPt/dPt be the density of Pt with respect to Pt and Z e o =Em / _ 0 0 Z r 

The process Z=(Zt9Ft9P) is a nonnegative martingale and, therefore, there 
exists (P-a.s.) limt_00Zt (=Zeo). One can show that this limit exists also P-a.s. 

The following proposition is well known. 

PROPOSITION. Let P<ziocP. Then 

P<zP*>EZ00 = l9 

(1) 
P±P<*EZoo = 0. 

The condition EZ^ = 1 is equivalent to the assumption that the family (Zf)t^0 

is uniformly integrable with respect to P and it is the condition which is normally 
used for searching of "convenient" criteria of absolute continuity in a particular 
situation. The new approach to ACS problems, developed with regard to the general 
case in [l]-[4], is associated with the idea of expressing the conditions for P<KP 

and P ±P in terms of the measure P (and not P as in the proposition). That simple 
idea, which is realised in Theorem 1 below, has made it possible to obtain in the 
form of corollaries many of known results and, moreover, to move further sub
stantially and obtain the effective ACS conditions for a broad class of random 
processes (§§4-7). 

THEOREM 1. Let P<^0CP. Then 

P^P<*P(Z00<o0) = i, 
(2) 

P A. P*>P(Z„ =oo) = l. 

The advantage these criteria have over (1) lies with their enabling ACS problem 
to be reduced to investigating the asymptotic properties of the sequence (Zt)t^Q 

at t->°° with respect to the measure P. By way of illustration, let us show how 
the well-known absolute continuity/singularity alternative of Kakutani [5] for se
quences of independent random variables followsfrom (2). 



Absolute Continuity and Singularity of Probability Measures 211 

Let P=p1XfaX ...9P=ß±Xß2X ... be two measures (which are direct products 
of measures) in the space of real sequences x=(xl9 x2, ...) and they are such that 
ßn<zpn9n = l. By Kakutani's result, then the alternative holds: "either P<zP9 

or P±P". This follows directly from (2), since in our case 

and the ^-probability of the event {Z^«*}, by the Kolmogorov's "zero-one" 
law, has only two values—0 or 1. 

From Theorem 1, it is possible also to derive the well-known Hajek-Feldman's 
[6], [7] dichotomy which asserts that if P and P are two Gaussian measures in 
the space of real sequences, then the alternative holds: "they are either equivalent 
(P~P)9 or singular (P±P)". 

The proof of Theorem 1 is simple. Basically, it is a consequence of the Lebesgue 
decomposition of P with respect to P9 which, assuming P<^0CP9 appears as 

P(A) = fzoodP+P(An{Z00=<~})9 A£F. (3) 
A 

(Concerning the proofs of decomposition (3), see [l]-[4]; in [4], applications o 
Theorem 1 are also given to the question of the validity of the "absolute continuity-
singularity" alternative for Markovian sequences.) 

3. "Predictable" ACS criteria. Consider in more detail the "local" density 
Z=(Zt9Ft9P). First of all, having complemented, if necessary, the <r-algebra 
F0 with sets from F of g-measure (Q=^(P+P)) zero, let us choose a variant 
of that density with (P-a.s.) regular trajectories (continuous on the right and with 
left limit). Denote 

TW = inf {t: Zt < l/n}9 T = lim T„ 
n 

and introduce the process 

Mt= f Zf_ dZs (4) 
0 

where a® is a pseudo-inversion of a (i.e., a® = ar1 when a^O and a®=0 when 
0=0). The process M=(Mt9 Ft9 P) is the T-local martingale (i.e., MXn=(Mthx , Ft9P) 
are martingales for any n^l) and, also, AMt>> — 1 and 

1 dP 
Z, = Z0+ / Za_ dMs9 Z0 = - ^ . (5) 

This equation has a solution, which is a unique one, in the class of nonnegative 
local martingales; according to [8], [9], that solution can be written as 

Z, =Z0exp{Mt~(Mc)t+ 2[ln(l+2lM s)-^M5]} (6) 
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where Mc is the continuous part of the T-local martingale M in its decomposition 

M = MC + Md (7) 

into the continuous and the pure discontinuous components and (Mc) is a charac
teristic of Mc (i.e., a predictable increasing process for which (MC)2 — (MC) 
is the T-local martingale). By virtue of (4) and (5), there is a one-one correspondence 
between the trajectories Z and M (for all t<n). Also, since P(infZf>0) = l 
(cf. the Lebesgue decomposition (3)), P(T = °Q) = 1 and, hence, if we consider 
Z and M with respect to the measure P9 there is one-to-one (P-a.s.) correspondence 
between them for every t^O. 

Let now p be the measure of jumps of the process M: 

p((o9t]9r) = zWMser), reB(E), E = R\{O} 

and v the compensator of that measure, [10], [11]. Then decomposition (7) can be 
written as 

t 

Mt = Mf+f fxd(p-v) (8) 
0 E 

„ T i Ct C ~J/.. „ ï : f xd(j.i v) is a stochastic integral with respect to the rando™ "mnrri.._ .\ " 
measure p — v [12], [3]. From (8), it follows that the predictable [9] characteristics 
of M are «Mc>, v), and it is with these notions that the ACS conditions can be 
formulated in a natural way. 

As any T-local martingale, the process M has the property that the square root 
of the increasing process 

[M9M]t~(Mc)t+ 2(AMsf 

is T-locally integratale with respect to the measure P ([M, M]1/2£A£c(z)(PJ)9 i.e., 
there exists a sequence (o-w)«̂ i °f Markov times, an\t and such that 

E[M9 M?£ < - , n^\. 
In particular, 

/ I t ^ ^ i o w t n (M<)eAücix)(p). 

The condition "with a root" is inconvenient to handle, but one can show [3, Lemma 1] 
that in fact 

Therefore, by virtue of M being a T-local martingale, the process 
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or, which is the same, 

where 

l + ixl*11'- J J l + \x\dtl-i,l + \AMs\-
If 

then its compensator [x*/(l + \x\)] * v also belongs to the class 4oC(t)CP)-
Hence, the process 

B(M)£A^(T)(P), (10) 
where 

B,(M) = < M e > r + î ^ j * v f . (11) 

The process ZJ(M) has a fundamental role in the ACS problem since it is its 
properties that are decisive for the question as to the absolute continuity or singularity 
of the probability measures P and P. If one examines the properties of the process 
B (M) with respect to the measure P, the utmost one can do is to give the sufficient 
condition for P<zP. One such condition is as follows ([3, Theorem 12]; see also 
[13], [14]): 

THEOREM 2. Let P Woc P and C be a constant. Then 

P(BX(M) <; C) = 1 =• P « P. (12) 

It is noteworthy, however, that in passing over to the measure P one can obtain 
the necessary and sufficient conditions both for the absolute continuity and the 
singularity of the probability measures ([l]-[3]): 

THEOREM 3. Let ^ « , o c P . 77/é?/? 

P(B00 (M) < oo) = l <* p « p9 
(13) 

P(BM(M) = ~) = 1<=>P±P. 

Let us well on the main points in the proof of that theorem. 
By virtue of Theorem 1, we have only to ascertain that P-a.s. {Z00<°°}= 

ff)<00}- Since P(Zoo>0) = l, so, by (6), this is equivalent to the proof 
that P-a.s. 

{(f>-»}={B00(M)^~>} 
where 

<P, = M-\ <Mc>r+ 21»" (1+AMJ-AMJ 
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and {y-*} is the set of those elementary events for which limt^QO(pt exists and is 
finite. 

If M is a continuous process, then 

<Pt = Mt~(Mt) =(M-(M)t) + j(M)t 

where the process N=M—(M) is with respect to P a continuous local martingale 
with (N)=(M) (P-a.s.). For such martingales it is known (cf., e.g., [3], [15], and 
a more general statement below in Theorem 4) that {N-*}={(#) -*•} (P-a.s.). 
Therefore, {ç>-} = {<M>-} (P-a.s.), i.e., {ZM<co} = {ßW<co} (Aa.s.). 

The general case is somewhat more involved. For considering it, let us introduce 
the function 

(x9 |*| «=1, 
u(x) = 1 . . , 1 

I sign x9 \x\ > 1 
and pose 

tf = M~(Mc)t+2[u(ln(l + AMs))-AMsl 

It must be noted that, while the increaments A<pt=ln(l+AMt) can take on 
arbitrarily great (modulo) values, the increments A<p"=u(ln(l+AMt)) are such 
that \Aq>u

t\^\. 
By a rather simple analysis one sees that P-a.s. 

W" - } = {<P ->}• 

So one must only ascertain that P-a.s. 

Transforming <p", we find that 

9? = Mf+Mt
d~ {M%+ 2 [tt(ln(l +AMS))-AM5] 

*• sat 

= Mt
c-—(Mc)t+x*(n-v)t+[u (In (1 +*)) -*] *f-i, 

= Mt
c—^(Mc)t+u{\n (1 +x))*(ji-v)t+[u (ln(l +*))-*] *vt (14) 

= Mt
c — j <MC),+« (In 7) * (p - v),+[Yu (In y )+Y -1] * v, 

= [Mt
c-(Mc)t+u (lny)*Cu-v)J+[Y<McX+(Fu(lny) + r - l ) * v t ] 

(=iV t+A) 

where we have denoted F = l + x and used the fact that the compensator v of 
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the measure p with respect to P is connected with the compensator v by the 
expression ([16], [3]) 

dv = Ydv. 

At 7^0 , the function Yu(in Y) + Y—1^0 and, since AMt>>—\9 the measure 
v can be chosen so that 7(F<0)*voo=0. Hence, D^O, and the process N is 
(with respect to P) a locally square-integrable martingale with 

(N)t = (Mc)t+Yu*(\nY)*v.-2 \ [Yu(lnY)v({s},dx)Y. (15) 

Hence, and from (14), it follows that the process q>u=N+D is a local submartingale 
with \A<p?\<l. 

Let us now make use of the following result ([3], [17]) : 

THEOREM 4. Let X=M+A9 where M is a local martingale, A is a non-
decreasing process of a locally integrable variation, A0=0 and \AXt\*zC9 t^*0. 
Then (almost surely) 

{A^ + iM)^ <oo}= { X - } . (16) 

From this theorem we find that jp-a.s. 

{/>-+<#>.. < - } = {</>" - } . (17) 
Since 

2 JYu (In Y)v({s}9 dx) = f I(v({s}9 E) > 0) dDs 
s^< E 0 

SO 

{D„+(N)„ < - } = {-|<Jlf%+Ftt«Onr)»v»- [//(v({s}, E) > 0)dZ>J2 

+[yu(lnF) + y-l]*v0„<c0} 

= {<M% +[y«2(ln F)+yu (In F ) + y ~ 1]* v . 

-[//(v({s},i?)>0)dZ>s]
2<oo}. 

0 

But 
oo 

{D„ < co} g {f /(v({s}, E) > 0) dDs < co} 
0 

and hence 
pco+W« <«} =* «M^+rru^Onn+Kian^+y-ii+v. < 4 

At 7^0 , 

FM
2(lnF)+7w(ln7)+y-l X( l -1 /F) 2 

and1 at x^ — 1, 

(i-1/ïT^)2 X ' 

i + W ' 
1 / X g, if there exist nonzero constants cx and c2 such that for all argument values c1g<f<c2g. 
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Therefore (P-a.s.) 

{<p - } = {cp" - } = {(M%+(l-yï+x)2*v„ <oo} 

which, together with Theorem, proves Theorem 3. 
How is Theorem 3 reformulated in the case of discrete time? Let (Q9 F) be 

a measurable space, (Fn)n^0 a nondecreasing family ofor-algebras such that F=\/nFn9 

P and P two probability measures, and P„ and P„ their restrictions on Fn9 

Pn«Pn9n^09Zn=dPn/dPn9 Mn=2LiZk-i^k9 0Ln = \+AMn9 pn(r)=I(AMner)9 

vtt(r)=P(AMuer\Fn_1)9 rtB(E). Then P-a.s. 

BUM)= 2 j{\-ÌU~xfvn(dx) = 2Ei{\~iT+ÄMj\Fn^ 
n—l jß n=X 

= Ì £ [ ( l - ^ D 2 k , - i ] = 2 2E(l-fa\F«-i)-
B = l 11 = 1 

Therefore, if P„<z.P„, « > 0 , then 

^«P^pji^Cl-l/^lF^^ooJ^ 1, 

P±P~p{2iE(}-fa\F»-i) = - } = 1-

In particular, in the case examined by Kakutani the alternative "either P<zP9 

or P±P" holds, and also 

H = l 

P±P*> 2E{\-fiï)=~>, 
B = l 

where ctn=dfi„/dpn. 
We shall now formulate two propositions which follow immediately from Theorem 

3 (for more detail, see [3]). 
Suppose that the t-local martingale has this structure: 

M = y * . m + [ ( y * - l ) + ( l - û ) © ( y * - f l ) ] * ( / i - v ) , (18) 

where p is an integer random measure (not necessarily a measure of the jumps 
of M)9 v— its compensator, m — the T-local continuous martingale, 7* — the 
predictable process with y*-mT<°°9 n^\9 and Y*—a P-predictable process 
such that 0 ^ Y* (t9 x)<~>9 Yt=fE Y*(t9 x)v({t}9 dx)^ 1, a= v({t}, E)=>Y*(t9 x) = \ 
and 

(l_]/y*)a*vt„+ 2 «P. < D ( l - j / ^ J j V - ^ ^ - , n > 1-
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(Hereafter everywhere (H'X)t denotes the stochastic integral J*QHsdXs with 
respect to the semimartingale X9 [9].) 

Now we obtain directly from Theorem 3 this 

CONSEQUENCE 1. Let P<^i0CP and (18) holds. Then 

P«P<=>P{Bt^~>}=l9 

P±P^P{Bt=~>}= 1 
where 

Bï = (7V-<m>> + ( l - j / ï ^ \ v ^ (19) 

CONSEQUENCE 2. Let P<z:]0CP9 Zt=dPjdP19 p is an integer random measure 
with the condensator v, m is the continuous local martingale, and 

Br = (y* *) 2» r+(l -}/r*)2*v,+ 2 (l - ] / r | ^ ) 2 ( l - O 
with as=v({s}9E)9 as = v({s}9E). Then 

JP«P=>^(ßl0*<0°) = l. 

(20) 

We shall now consider the ACS problem for the particular classes of random 
processes with continuous time. The approach presented below and based on a 
combined application of Theorem 2 and Theorem 3 (with its Consequences 1 and 2) 
has the merit of affording a uniform view of the various specific cases. According 
to Theorem 3, the decision as to the absolute continuity or singularity implies the 
ability of finding, in terms of local characteristics, the conditions for local absolute 
continuity. The examples discussed below demonstrate the manner in which this 
is done. 

4. Processes with independent increments. These processes are a natural analogue 
to sequences of independent random variables, so it will be logical to begin at them. 
Under rather general assumptions (cf., e.g., [9], [3]), the process X=(X(9P) with 
independent increments is a semimartingale. 

But every semimartingale X=(X/9P) admits of the canonical decomposition 
(P-a.s.). 

t t 

Xt = X0+at + mt+f fxdp+f f xd(p-v), (21) 
0 | J C | > 1 0 | J C | ä 1 

where a is a predictable process, m is a continuous local martingale, p is a measurt 
of the jumps of X9 and v is its compensator. The set (a, ß9 v), where ß = (m)9 

is referred to as the triplet of predictable characteristics of the semimartingale X. 
When the semimartingale X is a process with independent increments, the triplet 

(a, ß9 v) is nonrandom. What is essential is that for processes with independent 
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increments the triplet defines uniquely the distribution of the probabilities P (in 
the space of right-continuous and left-hand limited functions), [18]. 

Let X=(Xt9 P) be another process with independent increments with the triplet 
(a, ß9 v). We desire to find the necessary and sufficient conditions on the triplets 
(a, /?, v) and (a, ß9 v) for the absolute continuity and singularity of the probability 
measures P and P. 

We shall begin with the necessary conditions. Let P<zzP. Then, evidently, 

(I) P o « ^ o -

In [16], it has been shown that the condition P<zcP entails the fulfilment of the 
following condition : 

(a) dv = Ydv9 

(b) v({t}9E) = l=>v({t}9E) = l9 

(c) <m> = <m>, 
(II) 

with 

(d) &,-«,-J fx(Y-l)dv = fysd(m)s 
0 | x |^ l 0 

y = Z®El(Z\<p)9 y=Z® d("ZC' m>> 

d(m) 

where Zt=dPt/dPt and E*(Z\P) is the "conditional expectation with respect 
to the measure p(dt9 dx)P(dco) and to the o--algebra of the ̂ -predictable events", [10]. 

We now introduce the (deterministic) function (as=v({s}9E)9 äs=v({s}9E)) 

Bt = f .<w>t + (l-}/y)Sv,+^J(a s< l ^ l - j / i ^ î J V - ^ ) (22) 

and formulate the following group of conditions: 

(a) Bt <°°, /<°° , 

(III) (b) Bco^oo, 

(c) BOQ=~. 

The functions B** and B9 introduced into (20) and (22), respectively, coincide, 
and, therefore, by Consequence 2 to Theorem 3, U ^ Q Q 

Thus, 
^ « p = » i , i i , n i b . 

The inverse implication holds as well. Indeed, by virtue of conditions I, II, IIIb, 
the process 

M = y-m+[(y- l ) + (l-fl)e(y-fl)]*Ou-v) (23) 

is defined, which is a local martingale with AM^—l. Therefore, there exists 
a nonnegative solution of the equation dZ=Z_ dM. In the case under consideration, 
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the function B is nonrandom and, hence, by virtue of condition IIIb (ßM<oo) 
and Theorem 2, the family (Zt)tìÈQ is uniformly integrable with respect to the measure 
P. Therefore, EZ00 = \ and the measure P ' with dP/=ZOQdP is probabilistic. 

With respect to the measure P', the process (Xt)t^0 also is a process with inde
pendent increments. Using the specifics of process (23) and the rules of recalculation 
of the local characteristics of semimartingales in the case of an absolutely continuous 
substitution of the measure (cf. Condition II), one can find that the triplet (a', ß'9 v') 
of the process X' = (Xt9 P') coincides with the triplet (a, /?, v). For the processes 
with independent increments, the triplet defines uniquely the probabilities distribu
tion and, hence, P'=P, dP=Z00dP9 and I, II, UlhoP<zzP. 

The same method of proof shows that I, II, HlaoP<zlocP. 
Thus, there takes place the following . 

THEOREM 5. If X=(Xt9 P), %=(Xt9P) are two processes with independent incre
ments, then 

(1) I , I I , I I I a ^ « l 0 C P , 
(2) / / P<zclocP, then the alternative "either P<z:P9 or P±P" takes place and, 

in addition, 
I I I b ^ ^ « P , 
lllcoP±P. 

Note also that from this proof it follows as well that the density Zt=dPt/dPt 

is a solution of the equation dZ=Z_dM9 where M is defined by (23). 

5. Semimartingales. Let X=(Xt9 P) be a semimartingale, i.e., a process admitting 
of being represented as 

Xt = X0+At+Mt 

where M is a local martingale and A is a process of locally bounded variation. 
Each semimartingale admits of the canonical representation (21) in which the triplet 
of local characteristics is, generally speaking, random and does not define uniquely 
the measure P. It is, indeed, because of this non-uniqueness that one has, apart 
from such conditions as I, II, III of the preceding section, to introduce, in order to 
formulate the ACS conditions, one more condition 

"(IV) The measure P is (<7„)-unique", 
first introduced in [16] and meaning that "stopped" triplets (a,Affj, ßtAtr, 
v((0, t A a„)9 dx)) define uniquely the restrictions Pa of the measure P on the 
rr-algebras Pffj, where tr„=inf {/: B,>/z}, and the process B is defined by (22). 

THEOREM 6. Let X=(Xt9P) and %=(Xt9P) be two semimartingales and the 
condition IV be fulfilled. Then 

(1) I, II, I I I a < ^ « l 0 C P , 
(2) / / P<zl0CP9 then 

I I I b ^ ^ « P , 
I I L ^ P J _ P . 
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The proof of the statement I, II, IIIa<=JF«:locP is the same as in Theorem 5. 
The proof of the inverse statement involves a difficulty with the application of 
Theorem 2 (unlike the case of the processes with independent increments); the dif
ficulty is caused by the "randomness" of the function B. However, since ABt^2 
the random variable Bff ^n+2 and, consequently, the corresponding family 
of random variables (ZtNa ) t ^ 0 is uniformly integrable (Theorem 2). As in 
Theorem 5, hence it is derived that then Pff <$:Pff , « > 1 , and, as a consequence 
to this, P<§;locP. 

As in the preceding case, the density Zt=dPt/dPt is also the solution of the 
equation dZ=Z_dM with the process M defined by (23). 

6. Semimartingales with Gaussian martingale part. Let X=(Xt9 P) and X=(Xt, P) 
be two semimartingales, 

Xt = X0 + Mt9 Xt = X0 + At+Mt 

whose martingale parts, M and M9 are Gaussian martingales. The question of the 
absolute continuity and singularity of the measures P and P of such (generally, 
non-Gaussian) processes has been investigated by a great number of authors 
([19]-[27]). The method presented above affords the following results. 

Introduce the conditions : 
(I) PQ«PQ, 

(a) ! = y<M>, 

(II) (b) (M<) = (MC)9 

(c) (iMd) = Q • (Md)9 (Md) = Q-1 - (Md) 

(a) P(flf<oo) = i, f<co , 

(HI) (b) P ^ < o o ) = l , 

(c) P(Bao=^)=l9 

Bt = y*. <jff >t+ 2 A* (M)s > o)(i - Qsy. 
where 

THEOREM 7. The following statements hold: 

(1) l , I I , I I I a = > P « , 0 C P , 

(2) I , I I , I I I b = > P « P 

and if in addition, P0~Po and 

E e x p ^ y - ^ - ^ - f •<#>-) = 1, 

then P~P. 
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THEOREM 8. Let the process Ä be nonanticipative functional of X(Ät=Ät(X)). 
Then 

(1) I , I I , I I I a ^ ^ « l 0 C P , 

(2) if ^« l 0 C P , then 
IIIb <* P « P, 

I l l e s i 5 ! P. 

Consider a special case of these statements (for their proofs, see [3]). 
Let a Gaussian martingale M and a semimartingale X=A+M be defined 

on the probability space (Q9 F9 F19P). Denote their probabilities distributions 
by PM and Px. Then 

A = y. <M>, y2 • (M)^ < oo"=>p* « PM 

and the conditions 

A = y(M), ya-<Af>OB<«», £exp{-y-M«-yy2-<Jlf>»} = 1" 

are necessary and sufficient for the equivalence of the measures PM and Px. More
over, 

dPM(X)/dPx = jçfexp Ly .M»~ya-<M>J Fx\ 

wheie Fx = (r{m:Xt9 / ^0} . 
As to the case when ^4=^4 (A") is a nonanticipative functional of A", the density 

dPx/dPM(X) = exp {-y - MM - y f • (M)««}. (24) 

It is noteworthy that for (arbitrary) Gaussian martingale M the nature of the 
absolute continuity (and singularity) conditions and the expression for the Radon-
Nikodym derivative are the same as when M is a Wiener process [27]. Consider 
this case in a little more detail. If W is a standard Wiener process, then, as follows 
from the preceding results, every semimartingale X=A(X) + W with process 
A(X) such that At(X) = j\ysds9 f™ylds<<*> (P-a.s.) has the measure Px ab
solutely continuous with respect to the Wiener measure. In a certain sense, the 
inverse result also holds (cf. [28], [27]); it is established with the aid of the preceding 
results and, among other things, gives an answer to the question put forward in § 1. 

THEOREM 9. Let a continuous random process X=(Xt9 Ft) and a Wiener process 
W=(Wt9 Ft) such that Px<cPw be defined on a complete probability space 
(Q9 F9 Ft9P). Then there exist such a Wiener process w = (w19 Ft

x) and a nonanti
cipative functional y = y(x) that P-a.s. 

t 

X,= fyk(X)ds + #„ />0. 
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7. Multivariate point processes. Let (Q9 F) be a measurable space with a non-
decreasing family of a-algebras (F^09 F=\Jt^0Ft9 (E9ê) being a Luzin space, 
A an auxiliary point, and EA=E\J{A}9 êA=êv {A}. According to [10], [11], 
a multivariant point process is a term applied to a sequence (Tn9 £„)„== 0, where 
Tn are Markov times with the properties 

(i)r0 = o, r ^ o , 
(2)Tn+1>Tn if r „ < ~ 

Q)Tn+1 = Tn if rn = co 

and £„ are Pr-measurable random elements with values in (EA9SA)9 and XH=A 
if and only if Tn=°°. 

Let 7,=Umn 7), be the point of accumulation. 
Every multivariate point process can be conveniently defined by means of the 

integer random measure p on (0, °°) E: 

P((O9 t]9 r)= 2 i(TH ^ t9 £„er), res. 

Pose F? = a{p((Q9s]9B)9s^t9 B££}9 Gt = F0v F?9 G=\/t^0Gt and assume 
that Ft=Gt9 F=G. Let, further, P and P be two probability measures on (Q9G) 
and v and v be compensators of the measure p with respect to P and P9 re
spectively. 

Let us formulate the conditions to be used in Theorem 10 below: 

(I) Po «Po, 

(a) dv = Ydv (P-a.s.), 
(b) v({t}9 E) = l=*v({t}9 E) = 1 (i*-a.s.). (II) 

Pose 

Bt = (i -/r)"*vf+2/(A, < l) (l - | / } ^ ) 2 ( i ~as) 

where as=v({s}9E)9 äs=v({s}9 E) and let 

(a) P(B,=oo3 / < T ) = 0, 

(III) (b) P(JBT<OO) = 1, 

(c) p(ß T =co) = l. 

THEOREM 10. For multivariate point processes X={(Tn9 <!;„), P} ßwrf Jf= 
{(̂ «5 £n)> P}> the following statements hold: 

(1) I,ll9ma ^P^l0CP; 

(2) if P«^locP9 then 
IIIft <=>P<^P9 

Illc^P±P. 
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The theorem is proved according to the same method as Theorems 5 and 6. We 
shall just mention that in the case under consideration—the multivariate point 
processes—the compensator defines uniquely the probabilities distribution, bearing 
an analogy to the case of the processes with independent increments, where the 
triplets of local characteristics, too, defined these distributions uniquely. 

From the proof it follows also that the density Zt=dPtjdPt9 t^09 is a solution 
of the following equation 

Z, = dPQ/dP0+Z_[(Y-l) + (l-a)®(Y-a)]*(ii-v)t9 

where fs = JE Y(s9 x) v({s}9 dx)9 as=v ({s}9 E). 
An important special case of the multivariate point processes is the so-called 

point or counting processes for which Xn = 1. 
Denote Xt=»((p, t], {1}) ( » ^ / ( r . - s * ) ) , 4 = v((0,r],{l}), At=v((0, t], {1}). 

Then condition I will be fulfilled in an evident fashion and condition II will appear as 

(a) Ät=fYsdAs, 
0 

(H) 
(b) AAt = l=* AA, = 1 (P-&.S.) 

and the function 

Bt = / (1 - iYj dA,+2 W < AAS < 1) (l _|/IJ£Jij (1 -AAS). 

An elementary example of a point process is the Poisson process X=(Xt9P) 
with parameter equal to one (At = t). Now if %=(Xt9P) is another point 
process, then, by Theorem, 

t oo 

P<zP<* "Ät = fYs ds9 f(l- ÌYJ ds < - (£.a.s.)". 
0 0 

From this result, it follows that the question posed in § 1 is answered : If 
%=(Xt9P) is a point process whose measure is absolutely continuous with respect 
to the Poisson measure, then this process inevitably must have the following structure 

Xt= fYsds+Mt 
0 

where M is a local martingale and the predictable process Y is such that (jP-a.s.) 

8. Concluding remarks. Theorems 1 and 3 give general and "predictable" criteria 
of absolute continuity and singularity for two probability measures one of which 



224 A. N. Shiryaev 

is locally absolutely continuous with respect to the other. For the processes with 
independent increments, semimartingales and multivariant point processes, it has 
been shown how these criteria are restated in terms of the local characteristics of the 
processes concerned. As regards the other examples of the efficiency of ACS 
conditions, the reader is referred to [3]. The corresponding results pertinent to 
the case of discrete time have been exposed in [1], [4]. 
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History of Mathematics: Why and How 

André Weil 

My first point will be an obvious one. In contrast with some sciences whose whole 
history consists of the personal recollections of a few of our contemporaries, mathe
matics not only has a history, but it has a long one, which has been written about 
at least since Eudemos (a pupil of Aristotle). Thus the question "Why?" is perhaps 
superfluous, or would be better formulated as "For whom?". 

For whom does one write general history? for the educated layman, as Herodotus 
did? for statesmen and philosophers, as Thucydides? for one's fellow-historians, 
as is mostly done nowadays? What is the right audience for the art-historian? his 
colleagues, or the art-loving public, or the artists (who seem to have little use for 
him)? What about the history of music? Does it concern chiefly music-lovers, or 
composers, or performing artists, or cultural historians, or is it a wholly independent 
discipline whose appreciation is confined to its own practitioners? Similar questions 
have been hotly debated for many years among eminent historians of mathematics, 
Moritz Cantor, Gustav Eneström, Paul Tannery. Already Leibniz had something 
to say about it, as about most other topics: 

"Its use is not just that History may give everyone his due and that others may 
look forward to similar praise, but also that the art of discovery be promoted and its 
method known through illustrious examples."* 

1 "Utilissimum est cognosci veras inventionum memorabilium origines, praesertim earum, quae non 
casu, sed vi meditandi innotuere. Id enim non eo tantum prodest, ut Historia literaria suum cuique 
tribuat et alii ad pares laudes invitent urf sedetiam ut augeatur ars inveniendi, cognita methodo illustribus 
exemplis. Inter nobiliora hujus temporis inventa habetur novum Analyseos Mathematicae genus, Calculi 
differentialis nomine notum..." (Math. Sehr., ed. C. I. Gerhardt, t. V, p. 392). 
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That mankind should be spurred on by the prospect of eternal fame to ever higher 
achievements is of course a classical theme, inherited from antiquity; we seem to 
have become less sensitive to it than our forefathers were, although it has perhaps 
not quite spent its force. As to the latter part of Leibniz' statement, its purport is 
clear. He wanted the historian of science to write in the first place for creative or 
would-be creative scientists. This was the audience he had in mind while writing 
in retrospect about his "most noble invention" of the calculus. 

On the other hand, as Moritz Cantor observed, one may, in dealing with mathe
matical history, regard it as an auxiliary discipline, meant for providing the true 
historian with reliable catalogues of mathematical facts, arranged according to 
times, countries, subject-matters and authors. It is then a portion, and not a very 
significant one, of the history of techniques and crafts, and it is fair to look upon it 
entirely from the outside. The historian of the XIXth century needs some know
ledge of the progress made by the railway engine; for this he has to depend upon 
specialists, but he does not care how the engine works, nor about the gigantic 
intellectual effort that went into the creation of thermodynamics. Similarly, the 
development of nautical tables and other aids to navigation is of no little importance 
for the historian of XVIIth century England, but the part taken in it by Newton 
will provide him at best with a footnote; Newton as keeper of the Mint, or perhaps 
as the uncle of a great nobleman's mistress, is closer to his interests than Newton 
the mathematician. 

From another point of view, mathematics may occasionally provide the cultural 
historian with a kind of "tracer" for investigating the interaction between various 
cultures. With this we come closer to matters of genuine interest to us mathematicians ; 
but even here our attitudes differ widely from those of professional historians. 
To them a Roman coin, found somewhere in India, has a definite significance; 
hardly so a mathematical theory. 

This is not to say that a theorem may not have been rediscovered time and again, 
even in quite different cultural environments. Some power-series expansions seem 
to have been discovered independently in India, in Japan and in Europe. Methods 
for the solution of Pell's equation were expounded in India by Bhaskara in the 
XIIth century, and then again, following a challenge from Fermât, by Wallis and 
Brouncker in 1657. One can even adduce arguments for the view that similar methods 
may have been known to the Greeks, perhaps to Archimedes himself; as Tannery 
suggested, the Indian solution could then be of Greek origin; so far this must remain 
an idle speculation. Certainly no one would suggest a connection between Bhaskara 
and our XVIIth century authors. 

On the other hand, when quadratic equations, solved algebraically in cuneiform 
texts, surface again in Euclid, dressed up in geometric garb without any geometric 
motivation at all, the mathematician will find it appropriate to describe the latter 
treatment as "geometric algebra" and will be inclined to assume some connection 
with Babylon, even in the absence of any concrete "historical" evidence. No one 
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asks for documents to testify to the common origin of Greek, Russian and Sanskrit, 
or objects to their designation as indo-european languages. 

Now, leaving the views and wishes of laymen and of specialists of other disciplines, 
it is time to come back to Leibniz and consider the value of mathematical history, 
both intrinsically and from our own selfish viewpoint as mathematicians. Deviating 
only slightly from Leibniz, we may say that its first use for us is to put or to keep 
before our eyes "illustrious examples" of first-rate mathematical work. 

Does that make historians necessary? Perhaps not. Eisenstein fell in love with 
mathematics at an early age by reading Euler and Lagrange; no historian told 
him to do so or helped him to read them. But in his days mathematics was progressing 
at a less hectic pace than now. No doubt a young man can now seek models and 
inspiration in the work of his contemporaries; but this will soon prove to be a severe 
limitation. On the other hand, if he wishes to go much further back, he may find 
himself in need of some guidance; it is the function of the historian, or at any rate 
of the mathematician with a sense for history, to provide it. 

The historian can help in still another way. We all know by experience how much 
is to be gained through personal acquaintance when we wish to study contemporary 
work; our meetings and congresses have hardly any other purpose. The life of the 
great mathematicians of the past may often have been dull and unexciting, or may 
seem so to the layman; to us their biographies are of no small value in bringing 
alive the men and their environment as well as their writings. What mathematician 
would not like to know more about Archimedes than the part he is supposed to have 
taken in the defense of Syracuse? Would our understanding of Euler's number-
theory be quite the same if we merely had his publications at our disposal? Is not 
the story infinitely more interesting when we read about his settling down in Russia, 
exchanging letters with Goldbach, getting almost accidentally acquainted with the 
works of Fermât, then, much later in life, starting a correspondence with Lagrange 
on number-theory and elliptic integrals? Should we not be pleased that, through 
his letters, such a man has come to belong to our close acquaintance? 

So far, however, I have merely scratched the surface of my theme. Leibniz re
commended the study of "illustrious examples", not just for the sake of esthetic 
enjoyment, but chiefly so that "the art of discovery be promoted". At this point 
one has to make clear the distinction, in scientific matters, between tactics and stra
tegy. 

By tactics I understand the day-to-day handling of the tools at the disposal of the 
scientist or scholar at a given moment; this is best learnt from a competent teacher 
and the study of contemporary work. For the mathematician it may include the use 
of differential calculus at one time, of homological algebra at another. For the 
historian of mathematics, tactics have much in common with those of the genera-
historian. He must seek his documentation at its source, or as close to it as practi
cable; second-hand information is of small value. In some areas of research one must 
learn to hunt for and read manuscripts; in others one may be content with published 
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texts, but then the question of their reliability or lack of it must always be kept in 
mind. An indispensable requirement is an adequate knowledge of the language 
of the sources; it is a basic and sound principle of all historical research that a trans
lation can never replace the original when the latter is available. Luckily the history 
of Western mathematics after the XVth century seldom requires any linguistic 
knowledge besides Latin and the modern Western European languages; for many 
purposes French, German and sometimes English might even be enough. 

In contrast with this, strategy means the art of recognizing the main problems, 
attacking them at their weak points, setting up future lines of advance. Mathematical 
strategy is concerned with long-range objectives; it requires a deep understanding 
of broad trends and of the evolution of ideas over long periods. This is almost 
indistinguishable from what Gustav Eneström used to describe as the main object 
of mathematical history, viz., "the mathematical ideas, considered historically",2 

or, as Paul Tannery put it, "the filiation of ideas and the concatenation of discov
eries".3 There we have the core of the discipline we are discussing, and it is a fortunate 
fact that the aspect towards which, according to Eneström and Tannery, the mathe
matical historian has chiefly to direct his attention is also the one of greatest value 
for any mathematician who wants to look beyond the everyday practice of his craft. 

The conclusion we have reached has little substance, to be sure, unless we agree 
about what is and what is not a mathematical idea. As to this, the mathematician 
is hardly inclined to consult outsiders. In the words of Housman (when asked to 
define poetry), he may not be able to define what is a mathematical idea, but he 
likes to think that when he smells one he knows it. He is not likely to see one, for 
instance, in Aristotle's speculations about the infinite, nor in those of a number of 
medieval thinkers on the same subject, even though some of them were rather more 
interested in mathematics than Aristotle ever was; the infinite became a mathe
matical idea after Cantor defined equipotent sets and proved some theorems about 
them. The views of Greek philosophers about the infinite may be of great interest 
as such; but are we really to believe that they had great influence on the work of 
Greek mathematicians? Because of them, we are told, Euclid had to refrain from 
saying that there are infinitely many primes, and had to express that fact differently. 
How is it then that, a few pages later, he stated that "there exist infinitely many lines"4 

incommensurable with a given one? Some universities have established chairs for 
"the history and philosophy of mathematics"; it is hard for me to imagine what 
those two subjects can have in common. 

Not so clearcut is the question where "common notions" (to use Euclid's phrase) 
end and where mathematics begins. The formula for the sum of the first n integers, 
closely related as it is to the "Pythagorean" concept of triangular numbers, surely 

2 Die mathematischen Ideen in historischer Behandlung (Bibl. Math. 2 (1901), p.l). 
3 La filiation des idées et l'enchaînement des découvertes (P. Tannery, Oeuvres, vol. X, p. 166). 
4 YnaQxovaiv SùOEîOU TZXTJOEI aneigoi (Bk. X, Def. 3). 
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deserves to be called a mathematical idea; but what should we say about elementary 
commercial arithmetic, as it appears in ever so many textbooks from antiquity down 
to Euler's potboiler on the same subject? The concept of a regular icosahedron 
belongs distinctly to mathematics; shall we say the same about the concept of a cube, 
that of a rectangle, or that of a circle (which is perhaps not to be separated from the 
invention of the wheel)? Here we have a twilight zone between cultural and mathe
matical history; it does not matter much where one draws the borderline. All the 
mathematician can say is that his interest tends to falter, the nearer he comes to 
crossing it. 

However that may be, once we have agreed that mathematical ideas are the true 
object of mathematical history, some useful consequences can be drawn; one has 
been formulated by Tannery as follows (Joe. cit.t (footnote 3), p. 164). There is no 
doubt at all, he says, that a scientist can possess or acquire all the qualities needed 
to do excellent work on the history of his science; the greater his talent as a scientist, 
the better his historical work is likely to be. As examples, he mentions Chasles for 
geometry; also Laplace for astronomy, Berthelot for chemistry; perhaps he was also 
thinking of his friend Zeuthen. He might well have quoted Jacobi, if Jacobi had 
lived to publish his historical work.5 

But examples are hardly necessary. Indeed it is obvious that the ability to re
cognize mathematical ideas in obscure or inchoate form, and to trace them under 
the many disguises which they are apt to assume before coming out in full daylight, 
is most likely to be coupled with a better than average mathematical talent. More 
than that, it is an essential component of such talent, since in large part the art of 
discovery consists in getting a firm grasp on the vague ideas which are "in the air", 
some of them flying all around us, some (to quote Plato) floating around in our own 
minds. 

How much mathematical knowledge should one possess in order to deal with 
mathematical history? According to some, little more is required than what was 
known to the authors one plans to write about;6 some go so far as to say that the 
less one knows, the better one is prepared to read those authors with an open mind 
and avoid anachronisms. Actually the opposite is true. An understanding in depth 
of the mathematics of any given period is hardly ever to be achieved without know
ledge extending far beyond its ostensible subject-matter. More often than not, what 

c Jacobi, as a student, had hesitated between classical philology and mathematics; he always 
retained a deep interest in Greek mathematics and mathematical history; extracts from his writings 
on this subject have been published by Koenigsberger in his biography of Jacobi (incidentally, a 
good model for a mathematically oriented biography of a great mathematician) : see L. Koenigsberger, 
Carl Gustav Jacob Jacobi, Teubner, 1904. pp. 385—395 and 413—414. 

G Such seems to have been Loria's view: "Per comprendere e giudicare gli scritti appartenenti alle 
età passate, basta di essere esperto in quelle parti delle scienze che trattano dei numeri e delle figure 
e che si considerano attualmente come parte della cultura generale dell'uomo civile" (G. Loria, 
Guida allo Studio della Storia delle Matematiche, U. Hoepli, Milano, 1946, p. 271). 
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makes it interesting is precisely the early occurrence of concepts and methods destined 
to emerge only later into the conscious mind of mathematicians; the historian's 
task is to disengage them and trace their influence or lack of influence on subsequent 
developments. Anachronism consists in attributing to an author such conscious 
knowledge as he never possessed; there is a vast difference between recognizing 
Archimedes as a forerunner of integral and differential calculus, whose influence on 
the founders of the calculus can hardly be overestimated, and fancying to see in him, 
as has sometimes been done, an early practitioner of the calculus. On the other 
hand, there is no anachronism in seeing in Desargues the founder of the projective 
geometry of conic sections; but the historian has to point out that his work, and 
Pascal's, soon fell into the deepest oblivion, from which it could only be rescued 
after Poncelet and Chasles had independently rediscovered the whole subject. 

Similarly, consider the following assertion: logarithms establish an isomorphism 
between the multiplicative semigroup of numbers between 0 and 1 and the addi
tive semigroup of positive real numbers. This could have made no sense until 
comparatively recently. If, however, we leave the words aside and look at the facts 
behind that statement, there is no doubt that they were well understood by Neper 
when he invented logarithms, except that his concept of real numbers was not as 
clear as ours; this is why he had to appeal to kinematic concepts in order to clarify 
his meaning, just as Archimedes had done, for rather similar reasons, in his definition 
of the spiral.7 Let us go further back; the fact that the theory of the ratios of magni
tudes and of the ratios of integers, as developed by Euclid in Books V and VII of 
his Elements, is to be regarded as an early chapter of group-theory is put beyond 
doubt by the phrase "double ratio" used by him for what we call the square of 
a ratio. Historically it is quite plausible that musical theory supplied the original 
motivation for the Greek theory of the group of ratios of integers, in sharp contrast 
with the purely additive treatment of fractions in Egypt; if so, we have there an 
early example of the mutual interaction between pure and applied mathematics. 
Anyway, it is impossible for us to analyze properly the contents of Books V and 
VII of Euclid without the concept of group and even that of groups with operators, 
since the ratios of magnitudes are treated as a multiplicative group operating 
on the additive group of the magnitudes themselves.8 Once that point of view is 
adopted, those books of Euclid lose their mysterious character, and it becomes easy 
to follow the line which leads directly from them to Oresme and Chuquet, then to 
Neper and logarithms (cf. NB, pp. 154—159 and 167—168). In doing so, we are 
of course not attributing the group concept to any of these authors; no more should 

7 cf. N. Bourbaki, Eléments d'histoire des mathématiques, Hermann, 19604 pp. 167—168 and 174; 
that collection of historical essays, extracted from the same author's Eléments de mathématique under 
a rather misleading title, will be quoted henceforth as NB. 

8 Whether or not Euclid believed the group of the ratios of magnitudes to be independent of the 
kind of magnitudes under study is still a moot point; cf. O. Becker, Quellen u. Studien 2 (1933), 
369—387. 
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one attribute it to Lagrange, even when he was doing what we now call Galois 
theory. On the other hand, while Gauss had not the word, he certainly had the clear 
concept of a finite commutative group, and had been well prepared for it by his 
study of Euler's number-theory. 

Let me quote a few more examples. Fermat's statements indicate that he was in 
possession of the theory of the quadratic forms X2+nY2 for « = 1,2,3, using 
proofs by "infinite descent". He did not record those proofs; but eventually Euler 
developed that theory, also using infinite descent, so that we may assume that Fermât's 
proofs did not differ much from Euler's. Why does infinite descent succeed in those 
cases? This is easily explained by the historian who knows that the corresponding 
quadratic fields have an Euclidean algorithm; the latter, transcribed into the language 
and notations of Fermât and Euler, gives precisely their proofs by infinite descent, 
just as Hurwitz' proof for the arithmetic of quaternions, similarly transcribed, 
gives Euler's proof (which possibly was also Fermat's) for the representation of 
integers by sums of 4 squares. 

Take again Leibniz' notation / ydx in the calculus. He insisted repeatedly on 
its invariant character, first in his correspondence with Tschirnhaus (who showed 
no understanding for it), then in the Acta Eruditorum of 1686; he even had a word 
for it ("universalitas"). Historians have hotly disputed when, or whether, Leibniz 
discovered the comparatively less important result which, in some textbooks, goes 
by the name of "the fundamental theorem of the calculus". But the importance of 
Leibniz' discovery of the invariance of the notation ydx could hardly have been 
properly appreciated before Elie Cartan introduced the calculus of exterior dif
ferential forms and showed the invariance of the notation ydx-^—dx^ not only 
under changes of the independent variables (or of local coordinates), but even under 
"pull-back".9 

Consider now the debate which arose between Descartes and Fermât about tangents 
(cf. NB, p. 192). Descartes, having decided, once and for all, that only algebraic 
curves were a fit subject for geometers, invented a method for finding their tangents, 
based upon the idea that a variable curve, intersecting a given one C at a point P, 
becomes tangent to C at P when the equation for their intersections acquires 
a double root corresponding to P. Soon Fermât, having found the tangent to the 
cycloid by an infinitesimal method, challenged Descartes to do the same by his 
own method. Of course he could not do that; being the man he was, he found the 
answer (Oeuvres, II, p. 308), gave a proof for it ("quite short and quite simple", 
by using the instantaneous center of rotation which he invented for the occasion) 
and added that he could have supplied another proof "more to his taste and more 
geometrical" which he omitted "to save himself the trouble of writing it out"; 
anyway, he said, "such lines are mechanical" and he had excluded them from 
geometry. This, of course, was the point that Fermât was trying to make; he knew, 

Cf. NB, p. 208, and A. Weil, Bull. Amer. Math. Soc. 81 (1975), 683. 
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as well as Descartes, what an algebraic curve was, but to restrict geometry to those 
curves was quite alien to his way of thinking and to that of most geometers in the 
XVIIth century. 

Gaining insight into a great mathematician's character and into his weaknesses 
is an innocent pleasure that even serious historians need not deny themselves. 
But what else can one conclude from that episode? Very little, as long as the distinc
tion between differential and algebraic geometry has not been clarified. Fermat's 
method belonged to the former; it depended upon the first terms of a local power-
series expansion; it provided the starting point for all subsequent developments in 
differential geometry and differential calculus. On the other hand, Descartes' 
method belongs to algebraic geometry, but, being restricted to it, it remained a 
curiosity until the need arose for methods valid over quite arbitrary groundfields. 
Thus the point at issue could not be and was not properly perceived until abstract 
algebraic geometry gave it its full meaning. 

There is still another reason why the craft of mathematical history can best be 
practised by those of us who are or have been active mathematicians or at least 
who are in close contact with active mathematicians; there are various types of 
misunderstandings of not infrequent occurrence from which our own experience can 
help preserve us. We know only too well, for instance, that one should not invariably 
assume a mathematician to be fully aware of the work of his predecessors, even 
when he includes it among his references; which one of us has read all the books 
he has listed in the bibliographies of his own writings? We know that mathematicians 
are seldom influenced in their work by philosophical considerations, even when they 
profess to take them seriously; we know that they have their own way of dealing with 
foundational matters by an alternation between possibly reckless disregard and the 
most painful critical attention. Above all, we have learnt the difference between 
original thinking and the kind of routine reasoning which a mathematician often 
feels he has to spin out for the record in order to satisfy his peers, or perhaps only 
to satisfy himself. A tediously laborious proof may be a sign that the writer has 
been less than felicitous in expressing himself; but more often than not, as we know, 
it indicates that he has been laboring under limitations which prevented him from 
translating directly into words or formulas some very simple ideas. Innumerable 
instances can be given of this, ranging from Greek geometry (which perhaps was at 
last suffocated by such limitations) down to the so-called epsilontic and down to 
Nicolas Bourbaki, who even once considered using a special sign in the margin 
to warn the reader about proofs of that kind. One important task of the serious 
historian of mathematics, and sometimes one of the hardest, is precisely to sift 
such routine from what is truly new in the work of the great mathematicians of 
the past. 

Of course mathematical talent and mathematical experience are not enough for 
qualifying as a mathematical historian. To quote Tannery again (loc. cit. (footnote 3), 
p. 165), "what is needed above all is a taste for history; one has to develop a historical 
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sense". In other words, a quality of intellectual sympathy is required, embracing 
past epochs as well as our own. Even quite distinguished mathematicians may 
lack it altogether; each one of us could perhaps name a few who resolutely refuse 
to be acquainted with any work other than their own. It is also necessary not to 
yield to the temptation (a natural one to the mathematician) of concentrating 
upon the greatest among past mathematicians and neglecting work of only sub
sidiary value. Even from the point of view of esthetic enjoyment one stands to lose 
a great deal by such an attitude, as every art-lover knows; historically it can be 
fatal, since genius seldom thrives in the absence of a suitable environment, and 
some familiarity with the latter is an essential prerequisite for a proper understanding 
and appreciation of the former. Even the textbooks in use at every stage of mathe
matical development should be carefully examined in order to find out, whenever 
possible, what was and what was not common knowledge at a given time. 

Notations, too, have their value. Even when they are seemingly of no importance, 
they may provide useful pointers for the historian; for instance, when he finds that 
for many years, and even now, the letter K has been used to denote fields, and 
German letters to denote ideals, it is part of his task to explain why. On the other 
hand, it has often happened that notations have been inseparable from major theo
retical advances. Such was the case with the slow development of the algebraic 
notation, finally brought to completion at the hands of Viète and Descartes. Such 
was the case again with the highly individual creation of the notations for the calculus 
by Leibniz (perhaps the greatest master of symbolic language that ever was); as we 
have seen, they embodied Leibniz' discoveries so successfully that later historians, 
deceived by the simplicity of the notation, have failed to notice some of the discoveries. 

Thus the historian has his own tasks, even though they overlap those of the mathe
matician and may at times coincide with them. Thus, in the XVIIth century, it 
happened that some of the best mathematicians, in the absence of immediate 
predecessors in any field of mathematics except algebra, had much work to do 
which in our view would fall to the lot of the historian, editing, publishing, reconstruct
ing the work of the Greeks, of Archimedes, Apollonios, Pappos, Diophantos. Even 
now the historian and the mathematician will not infrequently find themselves on 
common ground when studying the production of the XIXth and XXth centuries, 
not to mention anything of more ancient vintage. From my own experience I can 
testify about the value of suggestions found in Gauss and in Eisenstein. Rummer's 
congruences for Bernoulli numbers, after being regarded as little more than a curiosity 
for many years, have found a new life in the theory of /?-adic L-functions, and 
Fermat's ideas on the use of the infinite descent in the study of Diophantine equations 
of genus 1 have proved their worth in contemporary work on the same subject. 

What, then, separates the historian from the mathematician when both are studying 
the work of the past? Partly, no doubt, their techniques, or, as I proposed to put it, 
their tactics; but chiefly, perhaps, their attitudes and motivations. The historian 
tends to direct his attention to a more distant past and to a greater variety of 
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cultures; in such studies, the mathematician may find little profit other than the esthetic 
satisfaction to be derived from them and the pleasures of vicarious discovery. The 
mathematician tends to do his reading with a purpose, or at least with the hope 
that some fruitful suggestion will emerge from it. Here we may quote the words of 
Jacobi in his younger days about a book he had just been reading: "Until now, 
he said, whenever I have studied a work of some value, it has stimulated me to 
original thoughts; this time I have come out quite empty-handed".10 As noted 
by Dirichlet, from whom I have borrowed this quotation, it is ironical that the 
book in question was no other than Legendre's Exercices de calcul intégral, con
taining work on elliptic integrals which soon was to provide the inspiration for 
Jacobi's greatest discoveries; but those words are typical. The mathematician does 
his reading mostly in order to be stimulated to original (or, I may add, sometimes 
not so original) thoughts; there is no unfairness, I think, in saying that his purpose is 
more directly utilitarian than the historian's. Nevertheless, the essential business 
of both is to deal with mathematical ideas, those of the past, those of the present, 
and, when they can, those of the future. Both can find invaluable training and 
enlightenment in each other's work. Thus my original question "Why mathematical 
history?" finally reduces itself to the question "Why mathematics?", which fortu
nately I do not feel called upon to answer. 

10 "Wenn ich sonst ein bedeutendes Werk studiert habe, hat es mich immer zu eignen Gedanken 
angeregt... Diesmal bin ich ganz leer ausgegangen und nicht zum geringsten Einfall inspiriert 
worden". (Dirichlet, Werke, Bd. II, S. 231). 
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In the study of geometric objects that arise naturally, the main tools are either 
groups or equations. In the first case, powerful algebraic methods are available 
and enable one to solve many deep problems. While algebraic methods are still 
important in the second case, analytic methods play a dominant role, especially 
when the defining equations are transcendental. Indeed, even in the situation where 
the geometric abject is homogeneous or algebraic, analytic methods often lead to 
important contributions. In this talk, we shall discuss a class of problems in dif
ferential geometry and the analytic methods that are involved in solving such 
problems. 

One of the main purposes of differential geometry is to understand how a surface 
(or a generalization of it) is curved, either intrinsically or extrinsically. Naturally, 
the problems that are involved in studying such an object cannot be linear. Since 
curvature is defined by differentiating certain quantities, the equations that arise 
are nonlinear differential equations. In studying curved space, one of the most 
important tools is the space of tangent vectors to the curved space. In the language 
of partial differential equations, the main tool to study nonlinear equations is the 
use of the linearized operators. Hence, even when we are facing nonlinear objects, 
the theory of linear operators is unavoidable. Needless to say, we are then left 
with the difficult problem of how precisely a linear operator approximates a non
linear operator. 

To illustrate the situation, we mention five important differential operators in 
differential geometry. The first one, which is probably the most important one, is 
the Laplace-Beltrami operator. If the metric tensor is given by 2ijgijd^®dxi

i 
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then the operator is given by 

"»-issapfie) 
where g=dct(gij) and (giJ) is the inverse matrix of (gtj). 

The second one is the minimal surface operator and is given by 

top] ^)=z^[(i+w)-^] 
where \V<p\2=2i(d<P/M)2-

The third one is the Monge-Ampère operator 

The fourth one is the complex Monge-Ampère operator 

The fifth one is the Einstein field equation which is a nonlinear hyperbolic system. 
If 2jtj Sij dx1 dxj is the Lorentz metric to be determined, then the operator involved 
in the Einstein field equation is 

i t e y ^ - R y - M g y 

where RSj is the Ricci tensor and R is the scalar curvature of the Lorentz metric. 
Both the Laplace-Beltrami operator and the minimal surface operator are elliptic. 

The (real) Monge-Ampère operator is elliptic only at those functions <p where 
<p is strictly convex and the complex Monge-Ampère operator is elliptic only at 
those functions cp where <p is strictly plurisubharmonic. All the above operators 
except the Laplace-Beltrami operator are nonlinear. However, a suitable inter
pretation shows that the linearized operators of the minimal surface operator and 
the Monge-Ampère operators are the Laplace-Beltrami operators of certain metrics. 

To see how these operators arose in differential geometry, we will discuss one 
important problem here. Roughly speaking, this problem is to ask how a space is curved 
globally. In a little more precise form, it can be stated as follows. Given a manifold 
M, find a necessary and sufficient condition for M to admit a metric with certain 
curvature properties. 

To set up the terminology, we remind the reader of some definitions. From the cur
vature tensor, one can extract the following quantities. Given a point in the manifold 
and a two dimensional plane in the tangent space at that point, we can form the 
sectional curvature of the manifold at this plane. Given a point and a tangent at 
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a point, we can form the Ricci curvature in this tangent direction by averaging all 
the sectional curvatures of the two dimensional tangent planes that contain this 
tangent. Given a point, we can form the scalar curvature at this point by simply 
averaging all the sectional curvatures at this point. It is clear from these definitions 
that the sectional curvatures give much more information than the others. For 
example, as the sectional curvature tells us how the manifold curves in every two 
plane, it gives good control of the behavior of the geodesies of the manifold. The 
latter depends on the theory of ordinary differential equations. However, in the 
other cases, the information about geodesies is much less and the theory of partial 
differential equations must be involved. Thus in this talk we will concentrate only 
on the scalar curvature and the Ricci curvature. We begin by discussing the general 
method of obtaining integrability conditions for the existence of metrics with certain 
curvature conditions. 

1. Integrability conditions. The problem of finding complete integrability con
ditions for the global existence of metrics with certain curvature conditions is rather 
difficult. However, for a two dimensional surface, this has a satisfactory answer, 
thanks to the Gauss-Bonnet theorem for compact surfaces and to the Cohn-Vossen 
inequality for the complete open surfaces. (The recent works of Kazdan-Warner [32] 
gave more precise information on the behavior of the curvature function in two 
dimensional geometry.) 

In higher dimension, the situation is much more complicated partly because the 
curvature is a tensor and partly because the link between topological invariants and 
geometric invariants is rather weak at this stage. We list here the major methods 
that were used to find integrability conditions. 

1. Chern's theory of representing Euler class, Pontryagin classes and Chern 
classes by curvature forms gives the most basic integrability conditions for general 
manifolds. The celebrated theorem of Atiyah-Singer can be considered as a glorified 
generalization. Some of their applications will be explained later. 

2. Bochner's method of proving vanishing theorems via Hodge theory will remain 
to be important for a long time. It led to the Kodaira vanishing theorem, I? 
methods in several complex variables, etc. 

3. The variational method has been one of the most classical and most important 
methods in differential geometry. It includes variation of curves, surfaces, maps, etc. 

Naturally, these do not exhaust all the methods. However, for all the results that 
we are going to discuss, they are obtained by suitable combination of the above 
three methods. 

2. Scalar curvature. The simplest problem concerning the scalar curvature is ta 
find those manifolds which admit a complete metric whose scalar curvature has the 
same sign. 

A long time ago, Yamabe [52] was interested in deforming a metric conformally 
to one with constant scalar curvature. The equation that is involved in such a process 
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has the following form 

Au= }?~2l Ru- £~2\ Jti|C+»)/c-») 
4(w —1) 4(w —1) 

where n is the dimension of the manifold, R and R are scalar curvatures of the 
undeformed and deformed metrics respectively. 

As was pointed out by Trudinger [49], Yamabe's method does not seem to work. 
After Trudinger, there were works by Aubin, Berger, Eliason, Kazdan-Warner, 
Nirenberg, Moser, etc. An easy consequence of these results is that every compact mani
fold with dimension greater than two admits a metric with negative scalar curvature. 
Greene and Wu [27], using another method, proved that every noncompact manifold 
admits a complete metric with negative scalar curvature. Hence we conclude that in 
higher dimensions, existence of complete metrics with negative scalar curvature 
poses no topological restriction on the manifold. 

However, complete metrics with nonnegative scalar curvature do give topological 
information. The first result in this direction is due to Lichnerowicz [35] who proved 
that for a compact spin manifold with positive scalar curvature, there are no harmonic 
spinors. Applying the Atiyah-Singer index theorem, the Lichnerowicz vanishing 
theorem then proves that for a compact spin manifold with positive scalar curvature, 
the Xgenus is zero. By pursuing these arguments, Hitchin [30] observed that the 
(mod 2) KO-theory invariant introduced by Milnor is also zero for a compact spin 
manifold with positive scalar curvature. In particular, any exotic sphere which 
does not bound a spin manifold admits no metric with positive scalar curvature. 

While mathematicians were working on problems related to scalar curvature, 
it turned out that physicists, from other points of view, were also interested in similar 
problems. 

Let us describe this problem in general relativity in geometric terms. Suppose 
we are given a Lorentzian metric on a four dimensional manifold. Then under 
a fairly general condition, one expects to prove the existence of a maximal space-like 
hypersurface, i.e., a hypersurface which is locally stable under the deformation of 
the induced area. Usually, we assume that the Lorentzian metric satisfies the weak 
energy condition so that, by the Gauss curvature equation, the scalar curvature of 
the above mentioned maximal space-like hypersurface has non-negative scalar cur
vature. 

Since the maximal space-like hypersurface is three dimensional, we are dealing 
with a three dimensional manifold with nonnegative scalar curvature. On the other 
hand, it is well known that three dimensional manifolds are parallelizable. Hence, 
most of the known topological invariants in higher dimension vanish and the con
sequences derived from the Lichnerowicz theorem and the Atiyah-Singer index 
theorem provided no information. On the other hand, the above mentioned problem 
in general relativity does provide us some guideline. It roughly states [26] that, 
for an isolated physical system, nonnegativity of local mass density implies the 
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nonnegati vi ty of total mass. In mathematical terms, it may be described as follows. 
Let M be a three dimensional manifold with non-negative scalar curvature. (It is 
the maximal space-like hypersurface mentioned above.) SUppose M is diffeo-
morphic to JRS (the situation described below can be generalized to other three 
dimensional manifolds) such that the metric has the form (l+m/lrYdsl+OÇl/r2) 
where ds\ is the standard euclidean metric on i?3, /* is the distance from the origin 
and 0(l/r2) is a tensor which vanishes along with its first two derivatives like 
I//-2 when r tends to infinity. The number m is called the total mass of the manifold 
M. The positive mass conjecture in general relativity says that m is nonnegative 
and is zero iff the metric is euclidean. A special case of the conjecture says that if 
we have a metric of nonnegative scalar curvature defined on R* which is euclidean 
outside a compact set, then the metric is euclidean everywhere. This last statement 
has direct bearing to the questions that geometers are considering. 

This positive mass conjecture was proved by R. Schoen and myself recently. 
(The best previous work on the conjecture was a local result due to Choquet-Bruhat 
and Marsden [21]). Our motivation and method comes out from an attempt to under
stand the topology of three dimensional manifolds with nonnegative scalar curvature. 
Because of the nature of the topology of three dimensional manifolds, it is important 
to understand the fundamental group. In this regard, we proved that if the funda
mental group of the three dimensional manifold with nonnegalive scalar curvature 
contains a subgroup which is isomorphic to the fundamental group of a compact 
surface with genus >1 , then the metric is a flat metric. The method of proving 
this theorem and the above mentioned mass conjecture comes out from the study 
of the minimal surface equation mentioned in the beginning. It describes a surface 
in M which locally has minimal area compared with nearby surfaces. The study 
of such objects has been one of the most important branches in nonlinear elliptic 
partial differential equations and calculus of variations. (It motivated a new important 
subject—geometric measure theory—about which Almgren will talk during this 
Congiess.) The reason that it is useful in studying the topology of the manifold 
is that it tells us how the internal geometry of the manifold behaves. In two dimen
sions, we can control the topology of the minimal surface, thanks to the work of 
C. B. Morrey. In higher dimensions, this remains to be studied. 

It would be nice to give a criterion for a manifold to admit a metric with po
sitive scalar curvature. However, we do not have a good existence theorem 
yet. In this regard, we may mention a theorem of B. Lawson and the author 
[34]. We proved that if a manifold admits a differentiable nonabelian connected 
compact Lie group action, then the manifold admits a complete metric with positive 
scalar curvature. (Combining with the above mentioned theorem of Hitchin, we 
showed that exotic spheres do not admit effective SU (2) action if they do not bound 
a spin manifold. This gives a theorem in topology and illustrates how curvature 
can be used to deal with topological problems.) As a generalization of the above 
work on three dimensional manifold, we mention the following problem. If a compact 
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manifold with nonnegative scalar curvature is covered by the euclidean space 
topologically, is it a flat manifold?1 

3. Ricci curvature. As in the case of scalar curvature, the simplest problem con
cerning the Ricci curvature is to find those manifolds which admit a complete metric 
whose Ricci curvature has the same sign. Since the Ricci curvature is given by 
a tensor and the integrability condition is stronger, the problem of existence is 
considerably harder. The known integrability conditions are not yet complete and 
we shall only mention a few here. 

First of all, Bonnet's theorem tells us that for a compact manifold with positive 
sectional curvature, the fundamental group must be finite and this was later generalized 
by Myers [41] for positive Ricci curvature and by Cheeger and Gromoll [14] to the 
case where we only assume the Ricci curvature to be nonnegative. For a non-
compact complete manifold with nonnegative Ricci curvature, there are also con
ditions on the fundamental group due to Milnor [36], Wolf [51], Schoen and Yau [46]. 
It seems that a complete manifold with positive Ricci curvature should have a finite 
fundamental group. But this has never been proved. Metrics with negative Ricci 
curvature seem to be even harder to understand. For example, in higher dimension, 
we do not even know whether spheres admit such a metric or not. Only recently, 
the author [55] was able to produce such a metric on a compact simply-connected 
manifold. It would be interesting to find some integrability conditions for the exist
ence. It seems possible that for a manifold to admit a metric with negative Ricci 
curvature, it should admit no effective differentiable nonabelian connected compact 
Lie group action. It would also be interesting to see whether a compact manifold 
can admit both a metric with nonnegative scalar curvature and a metric with negative 
Ricci curvature. 

Because of the interest in general relativity, metrics with constant Ricci curvature 
are of particular importance. For a long time, the only known examples were those 
manifolds that are acted transitively upon by a compact Lie group. The first 
necessary condition for the existence was found by M. Berger [6] who proved that 
for four dimensional Einstein manifolds, i.e., manifolds with constant Ricci curvature, 
the Euler number must be positive unless they are flat. This inequality of Berger 
was later generalized by Hitchin [31]. In all these theorems, Chern's representa
tion of the topological invariants by curvature plays a very important role. 

For quite a long time, there was no example of nonhomogeneous Einstein manifolds. 
In particular, it was not known whether there exists a non-flat compact Riemannian 
manifold with zero Ricci curvature. (This attracted people's attention because 
of its analogue with the situation in general relativity.) Partly motivated by this 

1 After the Congress, R. Schoen and the author were able to generalize our work on three di
mensional manifolds to higher dimensional manifolds. This was also achieved by Gromov and Law-
son about the same time. Our works also indicate the possibility of classifying compact simply con
nected manifolds with positive scalar curvature. 
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question, Calabi [9] proposed a way to study the Ricci tensor for some special 
class of manifolds. He observed that in the case of Kahler manifolds, the expression 
for the Ricci tensor is particularly simple. This observation was based on Chern's 
representation of the first Chern's class [17] by the curvature form and can be described 
as follows. Let ^^g^dz^dz* bea Kahler metric defined on a compact complex 
manifold. Then the (1,1) form 

^ £ ^ [ l o g d e l ( g , ) ] ^ A ^ 

is closed, globally defined on the manifold and represents the first Chern class. 
According to Chern [17], this (1,1) form is also the Ricci form of the Kahler metric. 
Hence for a (1,1) form to be the Ricci form of some Kahler metric, it must be closed 
and represents the first Chern class. What Calabi asked was whether this is the 
only integrability condition. This question stimulated a lot of interest partly because 
it could give a complete understanding of the Ricci tensor of a Kahler manifold 
and partly because it would create a lot of examples of compact manifolds with 
zero Ricci curvature. For example, the K— 3 surface is a compact simply connected 
manifold with zero first Chern class. Calabi's conjecture immediately shows the 
existence of a Ricci flat metric on the K— 3 surface. (The simple-connectivity of 
the K—3 surface guarantees that it does not admit any flat metric.) The equation 
that is needed to solve Calabi's conjecture has the following form 

(*) d e t(^+J&) = e F d e t^a) 
where q> is the unknown function and F is a smooth function so that fMeF is 
the volume of M. 

Equation (*) is similar to the real Monge-Ampère operator and can be considered 
as the complex Monge-Ampère equation. In order to make (*) to be elliptic, we 
have to look for functions cp so that (grj-\-d

2(p/dzidzj) is a positive definite metric. 
In order to understand the equation (*), Calabi [11] studied the equation 

det(d2(p/dxidxj) = l where cp is required to be convex. He tried to prove that if 
cp is defined over the entire euclidean space, then it is a quadratic polynomial. He 
generalized Jörgen's theorem [59] from two dimension to dimension <s5. The impor
tant ingredient in his paper is the introduction of the quantity S=^(plr(pjs(pkt(pijk(prst 

where (cpij) is the inverse matrix of ((pu) and cpijk is the third derivative of <p with 
respect to x\ xj and xk. This quantity comes up naturally from affine geometry, 
a geometry where we want to study quantities invariant under the special linear 
group. Affine geometry is very natural in dealing with the Monge-Ampère equation 
because the Monge-Ampère operator is clearly invariant under the special linear 
group. Indeed, the graph defined by the solution of the equation det (d2(p/dxidxJ) = l 
has a nice affine geometric meaning. It is called the improper affine sphere. The 
important contribution of Calabi is that he found a nice formula when the linearized 
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operator of M((p)=det(d2q>/dxidxj) operates on the above quantity S. His 
formula enables one to estimate, in the interior of the domain, the third derivatives 
of the solution of the equation det (d2(p/dxîdxJ)=F(x, <p) assuming that we know 
the lower order estimates of <p. It turns out that a complex analogue of Calabi's 
third order quantity exists and that a nice formula (as was shown by Nirenberg) 
still holds. 

In 1971, Pogorelov [45] was able to push Calabi's method to prove that in general, 
any convex entire solution of the equation det(d2(pfdxidxj)=l is a quadratic 
polynomial. One of the main ingredients of Pogorelov was his interior estimate of 
the second derivatives of the equation det(d2q>/dxidxJ)=F(x). Besides the 
interior estimate, Pogorelov used a lot of convex geometry to prove the completeness 
of the affine metric which was the major point left in Calabi's approach. Later, 
Calabi, Cheng, Nirenberg and the author were able to prove the completeness of a 
large class of affine metrics. These include also the hyperbolic affine sphere where 
the equation is given by det (d2(p/dxldxJ)=(— l/<p)n+2. This last method does not de
pend on convex geometry. It has direct influence on our later work mentioned below. 

Coming back to the equation (*), one notices that Calabi proved that if F is 
close enough to zero, (*) has a unique solution. Assuming a curvature condition 
on the Kahler manifold, Aubin [4] indicated a variational method to prove the 
existence of solution to (*). (It was conjectured, for example, that such a curvature 
condition would imply that the manifold is the complex projective space. This is 
not enough for our later applications in geometry. Furthermore, for the Monge-
Ampère equation, variational methods are still rather difficult.) In 1976, the 
author [55], [56] was able to use the continuity method to prove that (*) has a 
unique solution without any additional assumption. As usual, the basic steps in 
the proof are giving the a priori estimates of (*) up to the third derivatives. 
The third order estimate is essentially a consequence of the fundamental contri
butions of Calabi. The second order estimate is motivated by Pogorelov's work 
in [45]. However, both these estimates depend on the estimate of sup \<p\. This 
was not known for a long time and was the major difficulty in solving (*). In 
case the right hand of (#) has the form etp+F det (gtj), an estimate of sup \<p\ 
follows trivially from the maximum principle. In [56], the estimate of sup |<p| 
depends on a delicate and technically very complicated interplay of the maxi
mum principle and the integration method. Later there was a slight simplifi
cation of this estimate due to Kazdan [60] and Bourguignon. As a consequence 
of the solution of (*) and its proof, one can deduce the existence of a (canonical) 
Kahler Einstein metric on a compact Kahler manifold with zero or negative first 
Chern class. (In the special case where the right-hand side of (#) is e(p+i?det (gfj), 
Aubin [4b] independently announced and sketched a proof which depends on the 
variational method of his previous paper [4a].) 

In a way, the solution of (*), which is commonly known as Calabi's conjecture, 
gives a complete understanding of the Ricci tensor for a compact Kahler manifold. 
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However, when one thinks deeper, a lot of problems still have to be done in this 
direction. One may mention that the solution of Calabi's conjectures gives quite 
a lot of unexpected application in algebraic geometry [55], The most interesting 
one is perhaps the uniqueness of the complex structure of the complex projective 
plane. This comes out from the canonical metrics that we construct on the algebraic 
manifolds. These metrics generalize the Poincaré metric of algebraic curves. -One 
expects that they will be useful in the moduli problem of algebraic geometry. Indeed, 
two years ago, the author was able to use the metric above to prove that if M is 
an algebraic manifold of dimension n whose canonical line bundle is ample, then 
(— l)"2(n -f l)c2c"~~2 ̂  (— l)"nc" and equality holds iff M is covered by the complex ball. 
(For two dimension algebraic surfaces, there were works of Van de Ven, Bogomolov 
and Miyaoka. It was Miyaoka who found the above precise inequality independently. 
However, up to now, their algebraic method cannot be generalized to higher dimen
sion and cannot decide what happens when equality holds.) An easy consequence of the 
theorem is that there is only one Kahler structure on the complex projective space. The 
Kahler metric with nonnegative Ricci can also be used to deal with problems related to 
algebraic manifolds. Up to covering problems and the study of complex torus, one 
san reduce the study of Kahler manifolds with nonnegative first Chern class to the 
study of simply-connected Kahler manifold with nonnegative first Chern class. 
In case the Kahler manifold M has zero first Chern class, then one can prove that 
for any Kahler class œ in HU1(M), U ) " " 2 U C 2 ( M ) > 0 and that equality holds 
only if M is covered by the torus. There are also interesting works of S. Kobayashi 
58] who showed how to use the Einstein metric to obtain new vanishing theorems. 
Bourguignon and Koiso were also able to extend the work of Berger-Ebin [61] to 
study the deformation of Einstein metrics. They generalized the work of Calabi-
Vesentini [63] to Kahler manifolds with negative curvature. Since Einstein metrics 
have nice curvature properties, it may also be used to strengthen the transcendental 
method of Griffiths in algebraic geometry. 

By pushing more the method that the author used above, Cheng and the author 
were able to prove the existence of complete Kahler Einstein metrics on many 
non-compact complex manifolds. For example, if D is a divisor with normal 
crossings in a compact algebraic manifold M so that q(M) — cx([D])<0 (see 
[29]), then we can prove the existence of such a metric on M\D. We can also prove 
the existence of a complete Kahler Einstein metric on any bounded pseudoconvex 
domain with C2 boundary in a Stein manifold. It may be interesting to know that 
it is an easy consequence of the Schwarz lemma given by the author [54] that there 
is at most one complete Kahler Einstein metric with Ricci curvature = — 1 on any 
complex manifold. (This fact was also pointed out by H. Wu.) Therefore, even 
in the case of noncompact manifolds, complete Kahler Einstein metric is canonical 
and deserves more investigation. 

Concerning the Kahler Einstein metric on a smooth bounded domain Q in 
C", the equation that we propose to solve has the form det (d2u/dzidzJ') = e°1+1),t 
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and u is required to tend to infinity on dQ. In order to understand the boundary 
behavior of the metric near dQ, it suffices to study the boundary behavior of the 
function v = e~". 

The function v satisfies another equation of the Monge-Ampère type. This 
equation was studied by other people, especially C. Fefferman [24] who studied 
its relation with the asymptotic behavior of the Bergman kernel. A few years ago, 
he demonstrated how to find the asymptotic behavior of v assuming its existence. 
He expanded v in terms of power series expansion of the defining function of Q. 
His expansion shows that log terms must occur after the (n + l)th stage of expansion 
where n=dim Q. His recent deep work on computing the coefficient of the Bergman 
kernel expansion also shows the importance of this function v. Partly inspired 
by his work, Cheng and the author were able to demonstrate that the actual solution 
is Cn+S/2~Ö(Ü) where <5>0 is an arbitrary small constant. The optimal case 
should be n + 2—d and we believe our method will give it after suitable modification. 
In any case, the information that we obtain is enough to give suitable description 
of the Kahler Einstein metric near dQ. 

Finally, let us come to the question of the existence of complete Kahler metrics 
with zero Ricci curvature. These metrics have considerable interest in general 
relativity. There are more conditions for the existence of such metrics and the know
ledge of them is far less complete than the previous case. We outline here questions 
that may lead to future progress. 

The first question is: Does every four dimensional compact simply-connected 
Riemannian manifold with zero Ricci curvature admit a Kahler structure? According 
to an observation of Hitchin, this is true for the K—3 surfaces where the author 
has constructed Ricci flat Kahler metrics. (In fact, it is true if the compact manifold 
is a spin manifold with nonzero index.) 

The second question is: Can every complete Kahler manifold with zero Ricci 
curvature be compactified in the complex analytic sense? The author [57] proved 
that such a manifold does not admit any bounded holomorphic function which 
gives an indication to support the truth of the statement. 

The third question is: Suppose M is one of the compactifications of our mani
fold M. Does the anticanonical line bundle of M admit a holomorphic section 
which is zero precisely on M\Mt! If the metric on M "grows only polynomially", 
then one can indeed prove that the volume form of M gives rise to such a section. 
This is based on a theorem proved by Calabi and the author [53] that complete 
noncompact Riemannian manifold with nonnegative Ricci curvature has infinite 
volume. 

In any case, the author is able to prove that, for a compact Kahler manifold iCf. 
if the anticanonical line bundle of M admits a holomorphic section with non-
singular zero locus, then the completion of the zero locus admits a complete 
Kahler metric with zero Ricci curvature. The assumption that the zero locus is 
nonsingular seems to be not necessary. In fact, for many negative holomorphic 
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vector bundles over a compact Kahler Einstein manifold whose Chern classes satisfy 
some relation, the total spaces admit complete Kahler metric with zero Ricci curvature. 
(For many special bundles, Calabi also discovered these metrics. For the cotangent 
bundle of CP1, it was discovered earlier by Eguchi-Hansen and Hitchin. They 
even know the metric explicitly.) In these cases, when we compactify the total 
space, the zero section of the anticanonical line bundle has multiplicity greater 
than one. 

In question three, we request M\M to be a divisor because one can use the growth 
of the volume to prove that none of the components of M\M is a subvariety with 
co-dimension greater than one. A theorem of Cheeger-Gromoll [14] also shows 
that the divisor J\d\M is connected unless M is the product of C and other space. 
One can prove that the plurigenera of M is zero because the positivity of Pm(M) 
for some m >0 would imply the existence of a non-zero (n, n) form V= {^lyfdz1 A ... 
Adz"Adz1 A ... Adz" where / ^ 0 and log / is pluriharmonic at points where 

f^O. If dV is the volume form of M, then V/dV defines a function which is 
Z/Mntegrable on M. The condition on V and the fact that M has zero Ricci 
curvature then imply that P/dV is a constant [53]. As M has infinite volume, 
this constant must be zero. This is a contradiction. 

Recall that it is a consequence of the Schwarz lemma proved in [54] that M and 
its universal cover admit no bounded holomorphic function. Specialized to two 
dimensional complex surfaces, one can then use the classification theory to conclude 
that M must be rational at least when M is simply connected. In any case, we 
hope the questions asked above will be answered in the near future. An affirmative 
answer will be very interesting even for complex surfaces. 

4. Applications to partial differential equations. Up to now, it seems that we mainly 
use methods of partial differential equations to deal with problems in geometry. 
It turns out that the reverse procedure is also the case. Very often the geometric 
situation motivates the study of certain quantities in differential equations which 
turns out to be useful. This is true especially for the minimal surface equation and 
the Monge-Ampère equation. Indeed, one can use the metric mentioned above 
to treat the Dirichlet boundary valued problem for the Monge-Ampère equation. 
The procedure does not depend on the concept of generalized solution. For the 
real Monge-Ampère equation, there were works of Alexandrov [1] and Pogorelov 
[43]. Pogolerov [43] sketched a proof for the smoothness of the generalized solu
tion in case the right-hand side is independent of the unknown. (In [16] Cheng and 
the author gave a detailed proof of the smoothness in the general case where the 
right-hand side depends on the unknown. By a different procedure, we were also able 
to take care of several essential points overlooked in [43].) For the complex 
Monge-Ampère equation, the best previously known result was due to Bedford 
and Taylor [5] who proved the existence of C1 generalized solution. (Using a 
different method, Gaveau [62] was able to obtain a generalized solution similar 
to that of Bedford and Taylor.) 
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Nonstandard Number Theory 

Angus Macintyre* 

Ü. Introduction. This paper is intended as an outline of a model-theoretic method 
in diophantine geometry. The foundations, and the most advanced development, 
are due to Robinson and Roquette [RR], [Roq 1], The key idea is to relate the al
gebraic geometry of a number field K to the nonstandard arithmetic of an 
enlargement K*. For example, generic points acquire arithmetical structure. The 
main success of the method till now is a new proof of the Siegel-Mahler-Lang 
Theorem [RR], and new insights into the basic problem of effectiveness in that 
theorem [T]. The role of Hubert's Irreducibility Theorem in diophantine geo
metry is clarified [Roq 1]. 

I concentrate on the Robinson—Roquette formulation of Weil's theory of distri
butions [W]. My only original contribution is a "covering theorem" relating geo-
metiic and arithmetical idèles. This gives another formulation of Weil's theory, 
based on the heuristic principle that "adèles of K become principal in K*" 

1. Foundations. 

1.1. Let Sets be the category of sets and functions. Let I be any sel, and Sets7 

the product (or functor) category. We have the "diagonal functor" A : Sets-> Sets7. 
Let D be an ultrafilter on I. We have the "collapsing functoi" [/D] : Sets7-Sets7/Z>. 

* Partially supported by grant MCS77—07731 from the National Science Foundation of the Uni
ted States. The paper was completed at the Mathematics Institute of Warsaw University. The 
author thanks the administration of that institution for their hospitality and financial suppoit. 
Most of all, he thanks his Warsaw colleagues, especially Dr. Cecylia Rauszer, for their unfailing 
kindness. 
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Let Sets* be the image of the collapsing functor. Sets* is the nonstandard universe 
corresponding to D. Let * : Sets-*• Sets* be[/Z>]oJ. I write x* for *(x). 

Sets, Sets7 and Sets* are topoi. I say this not to annoy, but simply because I believe 
that it is mathematically natural to have categorical foundations for nonstandard 
analysis. The tradition, deriving from Robinson, of converting Sets* locally, to an 
e-structure, leads to a gruesome formalism, is quite unnecessary in practice, and can 
even obscure correct arguments. 

With no assumptions on D, * is an elementary map [CK]. If D is suitably 
good [CK], Sets* has the all-important property of ^-saturation for some x (usually 
x=co1 suffices). To say Sets* is ^-saturated means the following: 

If A^A (XÇ.A) are morphisms, where card (A)<x, and if for each finite subset 
A0 of A there are morphisms 1 - > ^ ; j 0 AÀ (l£A0) so that 

commutes for X, \i in A0, then there are morphisms 1 -*Ak (X£A) so that 

commutes for A, fi in A. (1 is the terminal object of Sets*.) 
1.2. For reasons I do not clearly understand, it is often useful to work in the 

double enlargement Sets**. This is obtained as follows. The objects and morphisms 
of Sets* are sets, so there is a well-defined category (Sets*)*, obtained by forming 
(Sets*)7 and then collapsing modulo D. Sets** is defined as (Sets*)*, and * * : 
Sets ->- Sets** is the obvious composite 

Set- Sets* (Sets*)* 

2. Universal domains. 2.1. Let K be a number field, and K* its enlargement. 
All one needs of * is (^-saturation. I now show K* encodes many important 
infinitistic constructions over K. In this sense K* is a universal domain for K. 

However, varieties over K with no points in K have no points in K*, so my 
sense of universal domain is not that of algebraic geometry. 



Nonstandard Number Theory 255 

2.2. Let SK be the set of those topologies T on K coming from a nontrivial 
absolute value || • || : K-+R. For T€ SK, 71* is a (base for a) topology on K*, coming 
from a generalized absolute value || • ||*: K*-+R*. (SK)* is a set of (bases for) topo
logies on #*, coming from generalized absolute values || || : K*-+R*. The standard 
elements of (SK)* are those of the form J1*, T£SK. 

(a) BT= {xÇ.R*:\x\* < r some /• in R); 

(b) 7 = { x 6 Ä * : | x | * < r all r>0 in R}. 

The local compactness of R implies that B/I is canonically isomorphic to R. One 
has a retraction 

R-+B/I-+R 

where the leftmost map is the natural inclusion, and the other is the fundamental 
standard part map stR. 

Now let TeSK. Consider 

(a) BT={xeK*:\\x\\*£B}; 

(b) IT={xeK*:\\x\\*eI). 

(|| • || is any absolute value for T.) Define || • || on BT/IT by 

iix+/rii = stÄ(n*n. 
Then 

THEOREM 1 BTjIT with ||-|| is canonically isometrically isomorphic to KT, the 
completion of K at T. 

Next consider: 
(a) B00 = {x£K*:x€BT, all standard T, and x is in the unit ball of T for all 

but finitely many standard T}; 

0 3 ) A o = D ^standard ^T • 

Then 

THEOREM 2 BJI^ is canonically K-isomorphic to AK, the ring ofK-adèles. 

It is entirely routine to describe nonstandardly the adèlic topology and supplement 
Theorem 2. Since AKjK is compact [C] there is an adelic standard part map stad 

giving a retraction 

(AK/K) -+ (AKIKf - ^ = U (AK/K) 

II 
(AKTIK* 

3. Product formula, idèles. 3.1. Since Artin—Whaples one knows that the product 
formula is the axiom for number theory. To formulate it one needs a canonical 
choice 11-Hr of absolute value for each T in SK. That choice is explained 
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measure-theoretically [C] and may also be explained in terms of nonstandard 
counting. 

Let the canonical choice be made as in [C]. 

Product formula. If x£K*, JJTZS II*IIT=1-

This presupposes : 

1st discreteness property. lfx£K*, then | |x| |T=l for all but finitely many Tin SK. 
Progressively more subtle are: 

2nd discreteness property. For each c > 0 in fi there are only finitely many x in 
K suchthat ||*||r<<c forali T in SK. 

3rd discreteness propert y (Roth's Theorem). Let S be a finite subset of SK 

and let aT (TÇS) be elements of K. Let fc£fi, k>2. Then there are only finitel 
many elements x in K s atisfying 

/ n * - * T l l r < TTTTyT T£S rt (X) 

(where H(x)=]JTeSR max (1, ||*||r)). 
These properties are exploited in Sets*, via the principle that a set finite in Sets 

has no nonstandard "members" in Sets*. 

3.2. Idèles. The group JK of f idèles is the group of invertible elements of AK' 
topologized to make inversion continuous [C]. Given our discussion of AK, it 'i 
routine to obtain JK nonstandardly. Note that all Â>adèles become principal in K* 

For / € / K (classical definition) one defines 

c(f) = U ll/CDIIr, 
TZSK 

and 
J°K = {f£JK--c(f) = l}. 

One has : 

Compactness property: K* is discrete in j£9 and J£/K* is compact. 

Whence, there is an idelic standard part map 

so that stid(a) is idèlically-infinitesimally close to a. Let 

^jt={«€(/jS) i , : | |«(r)llT€B\/, all T}. 

By unravelling the compactness conditions, one has 

THEOREM 3 (ROBINSON—ROQUETTE). 

(/•)* = K**(FKC)(J«n 

That is, elements of (./£)* are principal, modulo FK. 
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Theorem 3 is a key result of nonstandard number theory. Let 

J K* - (JK)*/FK-

I refer to J K* as the collapsed A^*-idèles. 

3.3. The formulation in F**. In my approach to Theorem 3 I freely mixed standard 
and nonstandard methods. But there is a definite gain in being systematically non
standard. 

AK, an object in Sets, has been identified as BJI^. The latter is not an element 
of (Sets)* (i.e. it is external) but it is an element of Sets, as is the ultrafilter D in
ducing *. That is, BM//M is an element of Sets defined in terms of D. So one 
considers (BJIJf, which is naturally isomorphic to B1 / /1 , and I hope it is 
obvious that the latter is naturally isomorphic to (AK)* (which I may write as 
A% or AK*). 

The appropriate picture is: 

1 must explain (*)* and new*. For the latter, see 1.2. (*)* is got by applying the 
functor * to the map #: K-+K*. It is to be stressed that new *^(*)* . However, 
both maps are elementary. 

4. Nonstandard theory of distributions. 4.1. Embedding function fields in K*. Let 
A be a variety (in affine «-space) defined over K. 

LEMMA 4. Let M be any set. Then A has infinitely many points in KnnM iff 
A has a nonstandard point in M*. 

PROOF. Trivial, by avsaturation. 
So we come to the (at first glance tenuous) connection between nonstandard 

analysis and diophantine geometry. For example, let S be a finite subset of SK, 
and define 0S9 the sel of S-integers, as the set of those y in K suchthat ||^||T<:1 
for all T£ S. Let A be a curve over K. Then : 

THEOREM 5 (SIEGEL-MAHLER-LANG). Suppose A has genus > 1 . Then A has 
only finitely many points in 0%. 

For a proof using algebraic geometry and Roth's Theorem, see [L] or [S]-[DJ. 
The connection with Lemma 7 is made by taking M=Og. One then has the 

immediate reformulation : 
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THEOREM 5*. Suppose A has genus > 1 . Then A< has no nonstandard point in 0$". 

The nonstandard analysis of Theorem, 5 looks at an arbitrary curve A over K, 
and examines the consequences of the 

Assumption. A has a nonstandard point r\ in Of. 
An irhportant consequence, using the fact that A has dimension 1, is that r\ is 

a generic point of A.* But this is a generic point with arithmetical structure. One 
seeks to prove Theorem 5 by confronting the geometry and the arithmetic of//. 

Define K(Y\) as the subfield of K* generated by the coordinates of r\. Then of 
course K(rf) is the function field of A over K. One now considers the general case 

K—^L-^K* • (1) 

where L is a function field of one variable over K and the diagram is a ^-embedding. 
L has thus two divisor theories. The first is the classical "geometric" theory, as 

expounded in [Chev], which studies those absolute values || • |] on L which take the 
constant value 1 on K*. The second is the restriction of the divisor theory on K* 
(based on (SK)*). 

Let SL be the set of the above "geometric topologies" on L. I refer to [Chev] and 
[S] for all details on the product formula for SK, and for the L-adèles AL and the 
Z,-idèles JL. 

4.2. Covering SL by (SK)*. Suppose T£(SK)*. \\-\\T restricts to a "generalized 
absolute value" L-*fi*. If T is nonarchimedean, then the induced topology is 
actually given by a (Krull) valuation. If the valuation is trivial on X x then it is 
either trivial on L or discrete on L [Chev]. In the latter case the induced topology 
is in SL. Our problem is how to handle those T for which the valuation is not 
trivial on X x . (There is also the problem of handling the finitely many archimedean 
T. This will be solved in passing.) 

Let T£(SK)*. Define 

»&(*) = - l o g ||x||r for x£K**. 

Now collapse the additive group Ä* by the convex subgroup B, and consider 

VTAX) = WT(X) + B£R*IB. 

If we put ürB(0)=oo>Ä*/J5, then we have: 

LEMMA 6. vTB is a valuation on K*, trivial on K. 

vTB induces a topology T/B on L. Let 

RL = {T/B: T6(5X)*, T/B nontrivial on L}. 

The next lemma is vital. It depends on the 2nd discreteness property, and the 
Riemann-Roch Theorem. 

LEMMA 7. RL=SL. 
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. This is the most that can be said in general. But if genus ( L ) ^ 1, muòh more is 
true, and this is precisely the Siegel-Mahler-Lang Theorem. Define 

R* = {T/B£RL: Tnonstandard}. 

Then Theorem 5 is equivalent to : 

THEOREM 5**. Rt = SL if genus (L) ^ 1. 

Apparently all known proofs of Theorem 5 involve considering finite algebraic 
extensions Kx of K and the corresponding extensions L1=K1^KL of L. Each 
element of SL lifts to finitely many elements of SL (all conjugate if K± is normal 
over^f). Of central importance is the induced conorni embedding AL~+AL (cf. [C]). 

So it seems appropriate to construct a link 

AL * W 
since we already have Lemma 7. 

Further motivation, and the key in obtaining a correct version of (2), comes from : 

LEMMA 8. Let TQ£SL. Then {T£(SK)*\ T/B=T0} is contained in a *-finite set. 

To get (2), one chases round: 

Make the obvious definition of BT, IT for T in SL9 and then put: 
(a) *oo1L= ={ J c^ s l : j t€Ä r , all standard T9 and x is in the unit ball of T for 

all but finitely many standard T}\ 

(b) ^oo,i=rirstandard-'r-
There is a natural ring embedding (not an isomorphism!) 

AL + B„JI„9L (cf. 2). 

The philosophy is that elements of AL are made principal in L*. 
Now embed B , ^ in K** via /?*. Make the following definitions : 
(c) For T in (SK)**9 

rT={\\ß*(y*)\\T:yeL} 

(i.e. set of values of || • | | r on L); 
(d) For T in (S^)**, 

Bfî = {xÇK**: \\x\\Tis bounded above by an element of B**rT}; 
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(e) Bip=:{x€K**:x€BSp, all T in (SK)*, and x£BT for all but *-finitely 
many T in (SK)*}; 

(f) For T in (SK)**, TjP = set of non units of ß («; 

(g) ^ f W * ) * ^ -
The following is obtained by elementary considerations, unpacking definitions in 

the covering mechanism: 

LEMMA 9. Via /?*, BM Z I is sent to B^\ and 1^^ is sent to l£\ So ß* induces 
an embedding 

B~,LII«,L - BLL)//LL). 

This is the best we can do towards (2). B^JI^^ naturally contains AL. And, 
clearly, B^/I^ is similar to 04*)*, with a distortion factor specific to L. 

It will be shown in detail in another publication that Lemma 9 covers the Robinson-
Roquette version (in terms of nonstandard divisors) of Weil's theory of distributions. 
One formulates an idèlic version of Lemma 9, and obtains a commuting diagram 

l-.L 4." 
I I 
j)L >. (DK)* (finite divisors) 

The left map is the natural divisor map. 
The top map is induced by ß*. 
The bottom map is that of Robinson—Roquette. 
The right map is difficult to construct except by strict use of functoriality. 

5. Concluding the proof of Theorem 5**. 5.1. The main idea is to exploit the 
strange analogy between L->ßK* and a finite algebraic extension L-*LX. One 
considers possible counterexamples to Theorem 5** (so called exceptional primes) 
and exceptional divisors which are sums of distinct exceptional primes. Using the 
above analogy, together with Roth's Theorem, one proves 

degree (A) <z 2-[L:K(x)] 

for A exceptional and x£L\K. 
5.2. One then deduces that deg(/4)=0, if genus (L)^\. The strategy of Ro-

binson-Roquette was to find finite unramified extensions L' of L with commuting 
diagram 

L >L' —+/C* 

For a function field M over K9 define 

dM = min [M: K(x)]. 
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Then by elementary functorial arguments one shows that deg (A)*^2dL,[L': L]. 
So one wants to find V with dh,*z(l/2)[L': L]. By an elementary, but lengthy, 
argument in [Roq 2] Roquette showed that if genus (L)^l then for sufficiently 
large n the maximal unramified semiabelian extension of L of exponent n satis
fies this inequality. Finally, by using Theorem 3, one shows that these semiabelian 
extensions are L-embeddable into X*. This concludes the proof. 

6. The connection with Hilberths irreducibility theorem. In the last part of their 
proof Robinson and Roquette are treating special cases of the following. 

Problem. Given L -+PK* as above, what is the structure of Alg (L9 K% the 
lattice of intermediate fields finite-dimensional over Kl 

By a result of Gilmore-Robinson [Roq 1] Hilbert's Irreducibility Theorem for 
any K (not necessarily a number field) is equivalent to the existence of a pure trans
cendental L=K(x) with Alg (L9 K*) empty. In a beautiful paper [Roq 1] Roquette 
shows that this is a useful result. Yet again one admires Robinson's vision, that 
glimpsed these deep ideas over twenty years ago. 

Another interesting possibility for Alg(L, K*)9 L=K(x)9 is given by Roquette 
[Roq 1]. Namely, there may be exactly one extension of each degree n. This is closely 
connected with the nonstandard analysis of curves of genus 0 [RR]. 

The general problem must be of extreme difficulty. For, if there is an L so that L 
has an unramified abelian extension of exponent 2 and dimension 8 in K*9 then 
Mordell's Conjecture is false, and conversely. 

7. Effective estimates. An outstanding problem of number theory is to find 
effective bounds for the S-integral points on a curve C of genus > 1. It is widely 
conjectured that such a method exists. For integer points, and curves over Q of 
genus 1, Baker [B] found such a method. 

Inspection of the classical proof [L] reveals two nodes of noneffectiveness. One 
is the use of Roth's Theorem, where no effective bounds are presently known. The 
second is the use of generators for the Mordell-Weil group of the Jacobian. Despite 
extensive scrutiny of the proof, and advice from leading authorities, I do not see 
how to eliminate either ineffectiveness. 

An astonishing feature of the Robinson-Roquette proof is that there is no use 
of the generators of the Mordell-Weil group (although there are manoeuvres in the 
proof reminiscent of the proof of the Mordell-Weil Theorem). Robinson's last 
mathematical achievement was to see that the new proof reveals that there is an 
effective bound in the Siegel-Mahler-Lang Theorem, relative to effective bounds 
in Roth's Theorem. This is by no means evident from the Robinson-Roquette proof 
(still less from mine), but a careful axiomatization of what is used in the proof 
will yield the result. Takeuti [T] verified this claim of Robinson, by showing that the 
proof could be done in a suitable fragment of nonstandard analysis. 

[The use of model theory to give effective estimates in algebra is well established. 
See [R] for the first ideas, and [D] for some nice new ones.] 
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As a matter of fact, nurriber theories tçnd to, dismiss this relative recursive estimate. 
I do not understand why. If they are to \be taken seriously in »conjecturing an ab
solute effective estimate, why do they not provide,'by approved methods, (an elimina
tion of the Mordell-Weil Theorem from the classical proof of Siçgel-Mahler-Lang? 

Postscript.' This paper was completed in a mood of deep dismay, after the tragic 
death of my friend and former student George Lòullis. ' I dedicate this work to his 
memory, in fond remembrance of his cheerful presence a't work and at play. 
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ypaBHCHHH B C B O 6 O # H O H I l o j i y r p y n n e 

r. C. MaicaiiHH 

1. TlycTb 77—CBOÔOAna« nojiyrpynna c KOHCHHLïM aji4)aBHTOM o6pa3yioiriHx 

(1) al9...,ak. 

riycTb 

(2) xl9 ..., xn 

aji(J)aBHT nepeMeHHbix, 3naMeHnaMH KOTOpux ABJIHIOTCH' cjiOBa B aji(})aBHTe (1). 

YpaBHeHHeM B CBOöOAHOH nojiyrpynne U Ha3tiBaeTCH paßeiicTBO CJIOB B aJi<l>aBHTe 

(0, (2) 
(3) <p(al9 ...,ak, xl9 ...,x„) = \jj(al9 ...,ak9 xl9 ...,x„). 

CnHcoK CJIOB Ll9...9Ln B aji<})aBHTe (1) Ha3biBaeTC5i peuieHneM ypaBHeHHH (3), 
earn* cjiOBa <p(a19 . . . , ak9 Ll9 . . . , L„) H i//(tf15 . . . , ak, Ll9 . . . , LfJ) ToacßecTBeHHO 
paBHH. 

B nacToameM #OKJiaAe 6y#eT yKa3aH ajiropHTM, KOTopwo no BcaKOMy ypae-
HeiiHK) B cBoöoflHOH nojiyrpynne pacno3HaeT, HMeeT OHO pemeHHe HJIH neT. 

HapH^y c ypaBHeHHHMH B CBOöO/THOO nojiyrpynne paccMaTpHBaiOTCÄ H îcoHen-
Hbie cMCTeMbi ypaBHeHHH B CBOöOAHOH nojiyrpynne. OHCBHAHO, HTO cHCTeMa AByx 
ypaBHenHM 

J<Pi = *>i> 

ifMeer pemeHHe Tor.ua H TOJIBKO Toiyja, Kor#a HMeeT peuienne ypaBHeHHe 

<Pi<*i<Pz<(>ia*<P2 = « A i M ' a «Ai"a^2 

(CM. [1], JieMMa 1.28), Tax HTO sonpoc o pa3peruttMocTH cHCTeM ypaBHeHHH B CBò-

http://Tor.ua
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6oflHOH nojiyrpynne jierKo CBOAHTCH K Bonpocy o pa3peinHMoc™ OAHoro ypaB-
Hemifl B CB060AHOH nojiyrpynne. 

2. Haqajio HccjieAOBaHHio ypaBHeHHH B CBOöOAHOH nojiyrpynne, Ha3btBaeMbix 
TaiüKe ypaBHeHHHMH B cJioBax, HOJIOECHJI A. A. MapKOB B Komje 50-x TOAOB B 
CBH3H c Tor#a eme He peineHHOH 10-OH npo6jieMoö THjiböepTa. Hcnojib3ya pe-
3yjn»TaT LfouibceHa [2J o TOM, HTO MaTpHirjbi BToporo nop^AKa c HaTypajrbHbiMH 
3JieMeHTaMH H onpeAejiHTejieM, paBHbiM eAHHinje, o6pa3yioT CBo6oAHyio nojiy-
rpynny e AßyMH o6pa3yK)iijHMH 

(4) fll = (J j ) , a2 = ({ J) 
H C eAHHHljeH 

« ' = (iî). 
A. A. MapKOB KaacßOMy ypaBHeHHH) 

(6) ^{al9a29xl9 . . . ,*„) = \Kai><*2>Xi> •••,*,,) 

B CB060AHOH nojiyrpynne nocTaBHJi B COOTBCTCTBHC cncreMy AHO(j)aHTOBbix ypaB
HeHHH S Taicyio, HTO Me3KAy peineHMMH ypaBHeHHH (6) H HaTypajrbHbiMH peiue-
HHHMH CHCTeMLI Z CynjeCTByeT B3aHMHO OflH03HaHHOe COOTBeTCTBHC 

CncTeMa I CTPOHTCH H3 ypaBHeHHH (6) cJiçayiômHM o6pa30M: KaaCAoft CJIO-
BapHOH nepeMeHHOH xi CTaBHTCH B cooTBeTCTBHe MaTpnija 

(7) *=IZ*$«=1'-"M)-
'rfle ' Xjj — HeH3BecTHbie, npHHHMaiomHe naTypajibHbie 3HaiieHHH. MaTpmrjbi H3 

' cruacKöB (4) H (7) nepeMHoacaioTCH B nop^AKe, yKa3anHOM cjioBaMH c/> (ax, a2, x1,..., xtt) 

H ìl/(a19a29x19 . . . , * M ) . nojiy^aiOTCH Aße MaTpHijbi 

{Px A Ì (Qi O2Ì 
[PS P4)9 lÖ3 ß j ' 

TAG Pi 9 Qi — MHOrOIJieHM C HaTypajIbHLIMH1 K03(f)(J)HH,HeHTaMH OT HCH3BeCTHbIX 
xtj. HcKOMaH cHereMa I HMeer BHA 

j Pj = Qj 0 = 1,2,3,4), 

{xill
xiià~~xi,2XitZ

 = 1 \l = I9 •••> n)-

• A: A. MapKOB npeAttoiiaraji, Wo 6yAö? AOKa3aHa ajiroptfTMHHecKaa Hepa3-
peniHMocTb ypaBHeHHH B CBO6OAHOH nojiyrpynne, H3 nero cjieAOBajia 6bi ajrro-
pHTMHHecKaa Hepa3peniHMocTb 10-OH npoöjieMbi THjib6epTa. 

AjiropHTM, pacno3HaK)iirjHH pa3peiiiHMocTb ypaBHeHHH B CBO6OAHOö nojiy
rpynne, nocTpoeHHbiH AOKJiaAHHKOM, noKa3aji, HTO npeAJiaraeMbm A. A. MapKo-
BbiM noAxoA K 10-OH npoöjieMe rHJn»6epTa npHBecTH K ycnexy He MoaceT. C Apyroii 
cTopoHbi nocTpoemrbiH ajiroprtïTM BMeere c cöOTöetCTBHeM, yKa3aHHbiM A. A. 
MapKÖBbTMj, n03BOJIJieT paCHQ3JEiaBaTb pa3pemHMOCTb HCKOTOpblX ÇHCHW AHO-
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4)öHTOBbix ypaBHeiiHÄ, a HMemio, TCX CHCTCM, KOTopbie cooTBeTCTByioT ypaß-
HeHHHM B CB060AHOH nojiyrpyrme. 

3. Ha nyra pa3peiuHMOCTH ypaßiieHHÖ B CBO6OAHOH nojiyrpynne 6WJIH nojiy-
MeHW cjieAyiomne pe3yjn>TaTbi: B 1964 roAy K>. H. XMCJICBCKHH [3] nocTpoHJi 
ajnropHTM, pacno3naiomHH pa3pemHM0CTb TaKHx CHCTCM ypaßiieHHH, icaacAoe 
ypaBHeHHe y KOTOpbix coAepÄHT He 6ojiee Aßyx nepeMennbix. B 1967 roAy K>. H. 
XMejieBCKHÄ (CM. [1]) nocTpoHJi ajiropHTM, pa3no3HaioiHHH pa3peuiHMocTb ypaB
HeHHH c TpeMH nepeMeHHWMH. B 1968 roAy K>. B. MaTHnceBHi [4] nocTpoHJi 
ajiropHTM, pacno3HaK>mHH pa3peniHMocTb TaKHx CHCTCM, B KOTopbie icaacAan 
nepeMennaa BXOAHT He 6ojiee Aßyx pa3. M HaKonen,, B 1977 roAy AOKJiaAHHK [5], 
[6] nocTpoHJi ajiropHTM, pacno3HaK>irrHH pa3peniHMocTb npoH3BOJibifbix ypaß-
neHHÖ B CB060AHOH nojiyrpynne. 

4. U,eHTpajibHbiM noiiHTHeM B ajiropiiTMe, pacno3HaioineM pa3peuiHMOCTb 
ypaBHeHECÖ B CBO6OAHOö nojiyrpynne, HBJIHCTCH noHnrae o6o6mëHHoro ypaBHeHHH. 

06o6meHHbiM ypaßneHHeM Q MH na3biBaeM BCHKyio cncTeMy, cocToniuyio H3 

cjieAyiomnx moce nnra naeren. 

1. A/tgSaeum K09gjg3uifueimwe: 

(8) al9...9at0 ( G ) > 0 ) . 

2. Taômya cjioeapimx nepeMeunhix: 

x l • > • • • J x m x n + l 9 • • ' * X 2 n 

'l s • • • 5 'ß 5 '"1 > • • • > r
c s t 

rAe /?>0, g > 2 . I lo onpeAejienHK) 

ecjiH 1 < p < 77, 

ecjiH 77+ 1 *£ p < 2/7. 

nepeMennan xA^ Ha3biBaeTCH ABOHHHKOM nepeMennoH xp. KaacAan napa ABOM-
HHKOB yAOBjieTBopneT paeeucmey deoüimicoe 

(9) xi = xl+„ (i = l , . . . , / / ) . 

ITepeMeuHbie ll9 . . . , 1Q Ha3biBaioTCH rpaiiniiaMH. KaacAon rpannue cooTBeTCTByeT 
zpauuwwe paöencmeo 

0 0 ) /,./-,. = / ( / = 1 , ...,<?). 

3. Taö/iuya cpaenenusi zpaiiutj: 

01) 0 = d(h) < d(h) <...< d(l,-J < d(le) = d(t). 
4. Taöjiuya pacnoAooiceuuji ocnoe: OöoSmeiiHoe ypaBiieiiHc Q coAepacHT <j)ynKUHw 

VK0> a(/) s ß(i) c o6jiacTHMH onpeAejieunn H 3HaHeHHÄ 

!//(/): [277 + 1, ...,277 + 777] - [1, . . . , © ] , 

Ol(i),ß(i): [1, ...9 2/7+777] -> [ l , . . . , r f , 
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npHlieM \j/(i) EfpHHHMaeT pee 3HaneHHH H3 [1, . . . , CU]/a a( i ) H ß(i) yAOBjieTBopnioT 
ycnoBHHM a(î) < ß(i) (i = 1, . . . , 2n + ni). 

IlepeMeHHbie x19 . . . , xn9 xn+l9 ..., x2n H Koa^HiraeHTbi ^ ( 2 n + 1 ) , . . . , a^(2w+m 

Ha3bïBaioTCH ocnoeaMU Q H o6o3HanaioTCH coqTBCTCTBeHHO nepe3 

Wl5 . . . , Wn, WII + i , . . . , Wjto, w2,I+1, . . . ,w2 , l + w l . 

Kâ cAOH ocHOse wf cooTBeTCTByeT paeeucmeo pacno/iootcemin 3TOH OCHOBM 

(12) ^(O^i^co = * O" = ! s •••> 2w + m), 

rpaHmja /a(/) Ha3biBaeTCH jieBOH rpaHHAeH OCHOBH u>f, a rpaHHija lm — npaBOH 
rpaHHu;eH. OAHa H Ta »ce rpaHHija MoaceT 6biTb H JICBOH H npaBOH. 

HeKOTopbie rpammbi lt , . . . , l( (|)HKCHpyioTCH H Ha3biBaioTCH Haw/ibmiMii rpa-
HHAaMH. 

J\.\. BcHKa« jiesan rpamina HBjraeTCH Hanajibiioif rpaiiHMen, 
Bce HaiiajibHbie H Bce npaBbie rpaHHrrbi Ha3biBaiOTCH cyufecmeemibiMu. OcTajibHbie 

rpaHHrxbi necyiviecmeenuhie. 

5. CnucoK zpanuHHbix cen3eü. Q coAepacHT HCKOTopbiH Kone^HbiH (BO3MOäHO, 
nycToìi) cnHCOK rpaHHrabix cBH3en. 

BcHKan rpaHHïfflaH CBH3b HMeeT BHA 

(13) lp, xXl, xX2, . . . , xXk, wA/c+1, lv 

TJX\Q fc>0 H q = ß(Ak+1). rpaHima lp na3biBaeTCH HCXOAHOH ipaHHijeH, rpamma 
lq — 3aKJIK)HHTeJIbH0H rpaHHUfCH. 

J\.2. BcHKan Fiecyu êcTBeinranf rpainiMa mimer w IICXOAIIOîî rpanuMeif neKOTopoii 
rpaHHHHOH CBH3H. 

5. CHHCOK CJIOB B ajicJmBHTe (8) B19\.., Bk, Z?fc+1, Ha3bmaeTCH ebiny/cAbiM, ecjia 
AJIH BCHKOrO i=2, . . . , /c BbinOJTHeHa AH3bK)HKU;HH 

TaGjrarja CJIOB B ajHJmBHTe (8) 

(14) Xl9 ...9 Xn9 Xn+1, ...9 X2n9 Ll9...9LQ9 Rl9...,RQ9T 

yAOBjieTBopneT rpaHHHHQH CBH3H (13), ecjiH cymecTByioT HenycTbie cjiosa B aji-

(j)aBHTe (8) Bl9 . . . , Bk9 Bk+l9 Cl9 ...,Ck TaKHe, mo BbmojmeHbi cjieAyioruHe yc-

JIOBHH: 

1) Jfa.ïJiC, 0 = 1, ...,/c) 
2) ^ H « 
3) CnHCOK Bl9 . . . , Bk9 Bk+1 BbinyKJibiH. 

. 4 ) E ç J I H Xi =•= X j h i ? £ j 9 T O B ^ B j 

5 ) L p j ï L ^ B ! 

6) LaiA(XMBi'oiLa(Xi+l)Bi+1 (i= 1, . . . , & - ! ) 

7) La(A(Ak))BkO_Lq. 
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TaSjiHi^a çJIOB (14) na3biBaeTCH pewenueM o 6 o 6 m e H H o r o ypaBiieiiHH Q, ecjiH 

o H a yAOBjieTBopneT ycjioBHHM (9), (10), (11) , (12) H BceM rpanHHiibiM CBH3HM 

ypaBHeHHH Q. H H C J IO d(T) na3biBaeTC5j AJIHHOH peuienHH (14). 

6. AjiropHTM, pacH03Haiom,HH pa3peuiHMocTb ypaBiieHHH B C B O ö O A H O H noj iy

r p y n n e , cxeMaTHHecKH coçTOHT B cjieAyiomeM: 

I l o 3aAaHHOMy ypaBiieiiHio Y B C B O ö O A H O H n o j i y r p y n n e CTPOHTCH cnncoK 0 6 0 6 -

memib ix ypaBiieHHH Q19 ...9Qr TaKOH, HTO Y HMeeT p e u i e n n e TorAa ir TOjibKo 

TorAa, KorAa HMeeT p e m e n n e nei(OTopoe Qr 3 T O cAeJiaTb i iecj ioacno, nocKOJibicy 

o 6 o 6 i u e m i o e ypaBiieiine HBJIHCTCH n o cymecTBy ypaBnei ineM B C B O ö O A H O H noj iy

r p y n n e , 3anHcainibiM TaicHM o6pa30M, HTO ica^cAOH ocnoBe w, (nepeMeiiHOH HJIH 

KosclxJHimieiiTy) cooTBeTCTByeT paßeiicTBo BHAa la^i''p^) = t, yKa3biBaiomee ee 

pacnojio?icenHe 3 ypaBHeijHH. 

3aTeM n o BcnicoMy oöoömeiiHOMy y p a B n e m n o Q CTPOHTCH cnncoic o o o o m e i n t a x 

ypaBiieHHH fì(1), . . . , Q(g\ napaMeTpbi 3anncH icoTopbix n e npeBocxoAHT C O O T -

BeTCTByioiAHx napaMeTpoB 3 a n n c n Q9 H icpoMe T o r o Q HMeeT p e m e n n e Rjimihi 

d TorAa H TOJibKo TorAa, KorAa neKOTopoe Q^ HMeeT p e m e i i n e AJIMHM Meiibiuen d. 

3 T O T pe3yjibTaT AOcraraeTCH, r p y 6 o roBopn , 3a enei; « n e p e n o c a » cj ießa nanpaBO 

OCHOBM Wj o6o6meHHoro ypaBiieHHH Q B cjrynae, icor/Aä Q coAepaciiT pacr to j io-

ÄeiiHH 

'i*, '>( ,) = >> ii"'j'-p(i) = t, lhxA(i)rg=t n p n ß(j)^ß(i)9 

1 < /?, H 3a cMeT MacTHHHoro coicpamenHH cjießa ocTaBiueHCH B OAHiionecTBe OCHOBM 

wfl c pacnojioHcenneM / i i i y ^ , , ^ / . 

3aTeM AOKa3biBaeTCH, HTO oöoömeHHbix ypaBHeHHH, ynacTByiomnx B «AepeBe» 

3aAaHHoro ypaBHeHHH Y9 MoxceT 6biTb TOJibKo KOHenHoe HHCJIO, H yKa3biBaeTcn, 

Kax no HeKOTopbiM cneimajibiibiM ooooinemibiM ypaBiieHHHM y3HaBaTb, HMeiOT 

OHH pemeHHe HJIH HCT. 

I lpn AOKa3aTejibCTBe KOHCHHOCTH «AepeBa» ypaBHeHHH Y Hcnojib3yeTCH cjieAyio-

HIHH pe3yjibTaT B. K. ByjiHTico [7]. CymecTByeT BbiHHCJiHMan fyyuKUflit y (J) TaKan, 

HTO BCHKoe ypaBiieHHe Y B CBOöOAHOH nojiyrpynne, HMeiomee pemeHHe, HMeeT 

pemeiine, noica3aTejib nepHOAHHHOcra KOToporo ne npeBocxoAHT y(d), rAe d — 

AJiHiia 3anncH Y. (rioKa3aTejieM nepHOAHHHOCTH cnncKa CJIOB LX9...9Ln na3bi-

BaeTCH MaKCHMajibHoe HHCJIO S Taicoe, HTO neicoTopoe Lt coAep>i<HT noACJioBo 

BHAa Ps, Tflfi P—nenycToe CJIOBO). 

7 . nojiyneiiHbiH AOKjiaAHHKOM pe3yjibTaT jierKo o ö o ö m a e T c n j\o c j ieAyiomero 

pe3yjibTaTa. 

CymecTByeT ajiropHTM, HO3BOJIHK)IIIHH n o J H O ö O H <j>opMyjie BHAa 

3 . \ - ! . . . 3x„\ V & <pi,j(a1,...,ak9xl9 . . . , xn) = \l*u(al9 ...,ak9 xlf..., xn)\ 

onpcAeJiHTb, HCTHHHa o n a HJIH Jioacna. 
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riocjieAHHH pe3yjibTaT cMbiKaercn co aneAyiomHM pe3yjibTaTOM B. T. ßyp-
Heaa [8]. 

fljiH BCHKoro « > 4 He CymecTByeT ajrropHTMa, no3BOJifliomero no JIïOOOH 

^opMyjie BHAa 

3*iV*a3*3 - 3 ^ , V & <pUj(aX9 ...,ak, xl9 ...,x„) = $u{al9 ...9ak9 xl9 ..., * f l ) | 
VJ=I j=i i 

onpeAejiHTb, HCTHHHa OHa HJIH jioacHa. 
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Infinite Games 

Donald A. Martin* 

1. Introduction. If G and T are finite or infinite sequences, <T-<T means that T 

extends o. A tree T is a collection of finite sequences such that, if cr£ T and T-<G9 

then T£JT. We will be especially concerned with the tree Seq of all finite sequences 
of natural numbers. If T is a tree, [T] is the set of all infinite sequences x such that, 
for all n£co9 x\n^T9 where x\n is the a of length n such that a<x. [Seq] we 
identify with coœ

9 the set of all functions from the natural numbers to the natural 
numbers. 

Suppose T is a tree such that every element of T has a proper extension belonging 
to T. Let A^[T]. We define a game G, the game with payoff A9 as follows. Two 
players, I and II, take turns moving as follows : 

ZQ %1 Z2 Z 3 . . . 

I I I I II . . . 

Each sequence (z0, ..., z„) must belong to T. I wins & play of G just in case the 
sequence {zt: i^co)£A. The notions of strategy for I (or II) for G and winning 
strategy for I (or II) for G are defined in the obvious way. G is determined if 
either I or II has a winning strategy for G. 

Gale and Stewart [3] introduced the games G and proved, using the axiom of 
choice, that there is an undetermined game with T = Seq. To consider more restricted 
games, they put a topology on [T] by letting the basic open sets be those sets of the 

* This paper was supported in part by Grant Number MCS 76-05525 from the National Science 
Foundation of the United States. 



270 Donald Ai. Martin . » , • , i 

forms {x: <r<x} for G£T. Let us say that G is open, Borei etc., just in case the 
payoff A is open, Borei, etc. 

1.1 THEOREM (GALE-STEWART). All open games are determined. 

After further results by Wolfe [10], Davis [1], and Paris [8], Martin [6] proved the 
following result. 

1.2 THEOREM. All Borei games are determined. 

The method of proof is to associate, with an ^ c [T] of Borei rank a, an A * s [T *\ 
with A* open and to prove that the game G with payoff A and the game G* 
with payoffs* are equivalent: whoever has a winning strategy for one has a winning 
strategy for the other. T* is much bigger than T: if T has size 3fy, then T7* has 
size roughly mß+a. Individual moves in G* represent complex commitments as 
to how the players will move in an associated play of G. Results of Friedman [2] 
showed that, even for r=Seq, some kind of appeal to uncountable cardinals 
would be necessary to prove all Borei games are determined. 

If T is a class of subsets of coœ
9 let Det (T) be the assertion that all games with 

r=Seq and payoff in T are determined. Recent work (see [7]) has shown that 
Det (Projective) is a very powerful hypothesis in descriptive set theory. For example, 
Det (il^)=Det (CPCA) implies that all 2?J sets of real numbers are Lebesgue 
measurable and yields a complete structural theory for levels three and four of the 
projective hierarchy. 

J. Mycielski observed that a result of [1] implies that Det (n\) is not provable 
in the usual set theory ZFC. If one assumes large cardinal axioms, one gets more 
determinacy: 

1.3 THEOREM (MARTIN [5]). If a measurable cardinal exists, Det(17j). 

1.4 THEOREM. If there are 2 (actually 1 \) supercompact cardinals, then Det (A (n\)) 
where A is operation A. 

1.5 THEOREM. If there is a non-trivial iter able elementary embedding of a rank 
Rk into itself, then Det (U^. 

L. Harrington has proved the converse of a slightly sharper version of Theorem 1.3. 
It is known from work of J. Green, Martin, W. Mitchell, J. Simms, and R. Solovay 
that much stronger hypotheses than those of Theorem 1.3 are needed to prove the 
conclusions of Theorems 1.4 and 1.5. 

The rest of this paper is devoted to sketching the proof of Theorem 1.5. Iterability 
will be explained in §2 below. The hypothesis of Theorem 1.5 is strictly weaker 
(barring inconsistency) than the existence of an elementary j : V^M with M 
transitive and j\Rx^identity and j(Rx) = RÀ. Kunen [4] shows that J(^A+I) = ^ + I 

impossible. 
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2. Iterable emfyeddings. For the rest of this paper let j\Rk-+Rk be an elementary 
embedding first moving K. Let xQ=x and KI+1=7(ty)- It follows by [4] that 
A=sup,ty or A = sup / « / +l . We assume the former. 

If Y^RX9 let j(Y) = \Ji j(YnRx). Clearly j(j) is an elementary embedding 
of RÀ into i?A, first moving x1. Let jQ=j and ,/JI+i =./,,(/,,)• L e t 7Will = identity 
and Jntm^i—Jm°Jntm f ° r / 2 ^ ' " - Here o denotes composition. Let Mj = RÀ9 

/ = 0 , 1,. . . . As long as direct limits are well-founded, we can iterate the system 
(Mi9jnm) to get a system (Ma9jpy) for ordinals a, /?, y with /f<y, where 
.fy : Mß-+My is elementary and each Ma is transitive. When this can be done, 
we say that j is iterable. Set 7or=7a>a+1. 

•«—m 2.1 LEMMA. If hi^n, jmu=f 

PROOF. ltzeR^jqojq (z) = (jq(jq))ojq(z) by elementarily, and this is just jq+1ojq(z) 
Applying this fact repeatedly yields the lemma. 

2.2 LEMMA. Suppose j is iterable. Suppose a^ß are ordinals and nZw. 

Ja,P°Ja + n = Jß + n°J«,ß-

PROOF. For z£Ma (=Ma +„), jai^oyll+n(z)=C/ai^a+»))%^(z)- Bu^«,/>0«+w) =./>+,,• 

3. /7-embeddings. If /? is an ordinal, a ß-embedding is an elementary embedding 

fc: .#«+0 -> Ra>+ß. 

first moving a>ß. Set v(k) = a and v'(Z:) = a'. If A: is a ^-embedding and y-fl</? 
define a 0-1 measure /i* as follows: 

rt(X) = l~k\RHk)+7£k(X). 

It is easily checked that ptk
y is v(fc)-complete and concentrates in y-embeddings 

k' with v(k')^v(k) and v'(k') = v(k). The following lemmas are easily verified. 

3.1 LEMMA. If k is a ß-embedding and y + l^ß!^ß2, then ^=/x^i?v(k)+"i. 

3.2 LEMMA. Let k be a ß-embedding and let y i ^ ^ and y2+l<ß. Suppose 
li\(X) = \. Then 

pk
n{z: z\Rv(z) + n£X} = l. 

4. A normal form for III s e t s - F ° r ^ e rest of tliis paper, let A ^ of* be a fixed 
Il\ set. Let Seq* be the collection of nonempty elements of Seq. For o-ÇSeq, 
let lh(<7) be the length of G. Let Seq*2={<<7,T>: G9 i6Seq*&lh((7)=lh(T)}. 
The following lemma is just a restatement of Shoenfield's analysis of Ft] sets [9]. 

4.1 LEMMA. There is a function Q: Seq*2-*Cü such that lh (G) = \ -+Q(G9 T ) = 0 

and lh(o-)>J -+Q(G9 T)H-1 <lh (G) and, for any uncountable cardinal v\ and any 
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x^o)°>, x€A if and only if there are Ft: [itf^-Hf for z^Seq* such that, if 
<3ç0<...<:aIh(T)<^ and %' is a one-term extension of T, then 

^'{«Os •••> alh(r)} < ^t{ a0? •••> ae(xHh(r'),t')> ••• 'a lh(t)}-

Here [rç]n is the collection of all size n subsets of r\. 

4.2 LEMMA. If j is iterable and xÇœ^.xdA if and only if there is an #:Seq*-*Jl 
such that 

(1) lh(T) = l - ^ ( T ) < x 1 ; 

(2) if T' ö ß one-term extension of T, fAe« H(x')^jQij!cnh{:zf)^H{z). 

PROOF. Assume the FT exist with n = n. If lh(T)=«, let 

H(T) = (j0t„(Fxj){x0,...9xn-1}. 

(1) is immediate, and applications of Lemma 2.1 yield (2). 
Now assume that H exists. If « = lh(r) and a0<...<aJ i_1 , set 

Ft{a0, ...,<*„_!} =ja„_2+iia„_1o...o7ao+ljaioj0>ao(/f(T)). 

Apphcations of Lemma 2.2 show that, with suitable rj9 the Fv are as required. 

5. Proof of Theorem 1.5. Let G be the game with payoff A. Let T0, T15 ..., be an 
enumeration of Seq* suchthat T /-<T /-»-I'«I/. Let G* be played as follows : 

(«o, «o) wi ("2 » «i) "a («4, «a) • • -

I II I II I ... 

Let x(i)=n( and ^(r / )=a / . I www G* just in case H obeys the constraints 
of Lemma 4.2. 

5.1 LEMMA. G* is determined. 

PROOF. G* is closed. 

5.2 LEMMA. If I has a winning strategy for G*, then I has a winning strategy 
for G. 

5.3 LEMMA. If II has a winning strategy for G*, then II has a winning strategy 
for G. 

PROOF. Let s* be a winning strategy for II for G*. We define a strategy s for 
II for G. Let o- b e a position in G with II to move. Let ß09 ...,ßm be even 
ordinals such that, if G is extended to a position G* in G* ,by setting a,—/?,, 
then I is not already lost at <r*. We define an iterated product measure on the set 
of all sequences (kQ9...9km)9 where each k( is a ßt -embedding with v'(fc,)<A. 
To do this we assign to each i a measure space, which may depend upon 
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(/r0, . . . J / C ^ J ) . If Hi (T7) = 1, then the measure for / is ^1 , / ?*i + ̂  + 2. If rr is 
a one-term extension of T{9 then the measure for /', is 

pJ
pf'\ where a = Q(tr\lh{i:v)9 ir). 

Let s (er) be the constant value of s* (o* (k0, ..., km)) for measure one of (k0,..., k,„)9 

where <7*(£0, ..., /<rm) is the result of extending G by setting ai=v(ki). Lemmas 
3.1 and 3.2 imply that S(G) is independent of the choice of the /?,.. 

Suppose that x is a play of G according to s and that x£A. Let H witness 
that x£A. Let /?, = 27/(1;,). Using the ßi to compute s, we can find a sequence 
/r0,/rl5 ..., such that, if we set oci=v(ki)9 then we extend x to a play of G* accord
ing to s* which is won by I. This contradiction completes the proof. 
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Recursive Enumerability 

Robert I. Soare* 

One of the fundamental contributions of mathematical logic has been the precise 
definition and study of algorithms and the closely associated study of recursively 
enumerable sets. A subset A £ co is recursive (decidable) if there is an algorithm 
for computing its characteristic function cA and recursively enumerable (r.e.) 
if there is an algorithm for generating its members. Nonrecursive r.e. sets have 
played a crucial role in undecidability results beginning with Gödel's incompleteness 
theorem [2] and more recently in number theory and group theory. Matiyasevic 
showed undecidability of Hubert's tenth problem by proving that every r.e. set 
A is Diophantine (namely there is a polynomial p(x9 y) with integral coefficients 
such that x£A iff (3y)[p(x9 y) = 0])9 and Boone, Clapham and Fridman each 
independently proved that every r.e. degree is the degree of the word problem for 
a finitely presented group (thus generalizing the Boone-Novikov result that the 
word problem is unsolvable). 

For sets A9B^œ (the set of nonnegative integers), A is recursive in (Turing 
reducible to) B9 written A^TB9 if there is an algorithm for computing cA given 
cB9 and A=TB if A^TB and B^TA. The degree of A, dg (A)9 is the equi
valence class {B: B=TA}9 dg (A)^ôg(B) if A^TB9 and a degree is r.e. if it 
contains an r.e. set. The classification of r.e. sets was initiated by Post [10] who 
posed the problem: does there exist more than one nonrecursive r.e. degree? The 
existence of infinitely many such degrees implies for example that there are infinitely 
many genuinely different unsolvable word problems for finitely presented groups. 

* The author was partially supported by grant MCS 76-07033 A01 from the National Science 
Foundation of the United States. 
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Here we describe some recent results on the classification of r.e. sets and their 
degrees. A detailed survey of current developments and bibliography can be found 
in [14], and a complete treatment will appear in the monograph [15]. 

1. The relation of the structure of an r.e. set to its degree. The r.e. sets {lVn}neat 

form a distributive lattice S under inclusion whose complemented elements 
are precisely the recursive sets. The r.e. degrees form an upper semi-lattice R with 
least element O=dg(0) and greatest element O ' ^ d g ^ ) , where K is the complete 
r.e. set {n: n£ Wn}. Post's program for solving his problem was to find a structural 
property of the complement Ä of an r.e. set A which guarantees incompleteness, 
namely &<TA<TK. More generally the program is to relate the ^-structure of 
an r.e. set to its degree. Post believed that a coinfinite r.e. set A with a complement 
Ä sufficiently "thin" with respect to containment of r.e. sets would be incomplete. 
A coinfinite r.e. set A is simple if Ä contains no infinite r.e. set. Post constructed 
simple sets, proved their incompleteness for reducibilities weaker than ^ r , and 
introduced sets with still thinner complements (A-simple and AA-simple) to handle 
jT-reducibility. 

Let <̂ * denote the quotient lattice of ê modulo the ideal #" of finite sets, and 
A* the equivalence class of A in S \ The thinnest possible (infinite) complement 
is possessed by a maximal set M, namely M£ê suchthat M* is a coatom of <£**. 
Friedberg constructed maximal sets and Yates showed they could be complete 
(i.e. M=TK). We give a negative answer to Post's program for a much larger 
class of properties, those invariant under Aut^ , the group of automorphisms 
of S. (A partial positive answer for noninvariant properties is given in [13].) 

THEOREM 1.1. For any nonrecursive r.e. set A there exists «PÇAut^ such that 
$(A)=TK. 

Meanwhile, the existence of infinitely many nonrecursive r.e. degrees was shown 
by Friedberg and Muchnik and their classification under the jump operator was 
carried out by Sacks, Lachlan, Martin and others. For A^co9 define the jump 
of A, A'={n:n£W£} where W* is the rath set which is r.e. relative to A. The 
jump operator is well-defined on degrees, where àg(A)'=çl%(A'). Let a("+1)=(a(w))'. 
For each n^Q define the subclasses of r.e. degrees, 

Hn = {d: d£R and <f(n) = 0<n+1>}, and 

Ln={d: d£R and d(n) = 0™}, 

where d ( 0 )=0 and Ln=R—Ln. The degrees in H^Lj) are called high (low) 
since they have the highest (lowest) possible jump. An r.e. set A is high (low) if 
d g ^ K f f i O a ) . 

In the opposite direction of Post's approach Martin [8] showed that maximal 
sets M (and many others with thin complements) more closely resemble complete 
than incomplete sets since M dominates every recursive function, and this guaran
tees that M has high degree. For <£^£9 let dg (<g) = {dg(W): W^}. 
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THEOREM 1.2 (MARTIN). Let Jf be the class of maximal sets. Then dg(J/)=H1. 

If the sets of high degree resemble complete sets, those of low degree should 
resemble recursive sets. For A^i define the principal filter £?(A) = {W\ W£ê 
and A^W). If J? is a coinfinite recursive set then 5£(A)^ê9 because R is 
recursively isomorphic to œ. 

THEOREM 1.3. If a coinfinite r.e. set A is low (dg(A)eL1) then <£(A)^L&. 

A class C of r.e. degrees is invariant if C = dg (<£) for some class #ç<f invariant 
under Aut<f. Martin asked which other degree classes are invariant besides H1 

(and the trivial classes R9LG9 and L0). In particular, he asked for a classification 
of âgÇ/f^) where J^ is the class of atomless sets, coinfinite r.e. sets with no 
maximal superset. 

THEOREM 1.4 (LACHLAN [4], SHOENFIELD [11]). dg ( ^ # ) = L2. 

It is unknown whether the methods of this theorem can be combined with Theorem 
13 to replace L1 by L2 in the latter. Besides L0, Hl9 L2 it is unknown which 
classes of the form Hn9 Ln are invariant. The case of Lx is particularly interesting. 
A.s a strong generalization of Theorems 1.1 and 1.2 we conjecture that any invariant 
degree class C is closed upward and H1 £ C. 

It was conjectured that every nontrivial invariant degree class C is of the form 
Hn or Ln. This is refuted by the class @ of ^-simple sets, coinfinite r.e. sets simple 
with respect to certain differences of r.e. sets (d.r.e. sets). The latter naturally arise 
in studying the structure and automorphisms of ê because the members of the 
Boolean algebra J ^ generated by & are finite unions of d.r.e. sets. 

THEOREM 1.5 (LERMAN-SOARE [7]). Let D=dg(3>). Then H^D and D 
splits Ll9 so D is not of the form Hu or Ln for any n. 

2. The structure and automorphisms of $. A major goal in studying the structure 
of S is to find complete sets of invariants for classifying the orbit of A(i$ under 
kxxi$. (Since every tf>£Aut<f* is induced by some Y'ÇAut^ one can consider 
either ê or è*) In [12] a new method is introduced for generating automorphisms 
of S and it is used to prove 

THEOREM 2.1. If A and B are maximal sets then $(A) = B for some <2>EAut<f. 

In the proof we as yet know too little of the structure of S to specify $(W) 
immediately given W^ê. Rather we attempt to simultaneously enumerate arrays 
of r.e. sets {W/(w)}„ew and {Wm)H^ such that *{WJ=*Wm and 
4*~1(H/„) =* Wg(t0 (where X =* Y denotes that the symmetric difference XAY 
is finite). For different values of n these requirements generate considerable 
conflicts which are resolved by a complicated machinery. An immediate corollary 
of Theorem 2.1 is that for every k£œ the group Autef" is /c-ply transitive on 
its coatoms. Hence, if £ß*(Ä) is finite then the orbit of A is completely determined 
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by the isomorphism type of J£*(A). When ££*(A) is infinite this is not necessarily 
true even when J£*(A) is particularly well-behaved. We say X^ Y is an r-maximal 
major subset (rm subset) of Y if Y—X is infinite, Y—X is not split into infinite 
pieces by any recursive set, and for any W£.ê9 if WuY=co then WuX= *co. 

THEOREM 2.2 (LERMAN-SHORE-SOARE [5]). There are r.e. sets A and B such that 
££*(A) and ££*(B) are isomorphic to the countable atomless Boolean algebra, but 
A possesses an rm subset while B does not. (Hence, A and B are not automorphic 
or even elementarily equivalent.) 

The proof of Theorem 2.2 relies on a new classification (in terms of A3 functions) 
of which nonrecursive r.e. sets possess rm subsets, a question arising in the extended 
decision procedure of Theorem 3.1. In view of Theorem 1.3 another candidate 
for an easily describable orbit is the class of low simple sets. However, Lerman 
and Soare showed that there are low simple sets which are rf-simple and those which 
are not. 

Thus, the Post style classification of A in terms of Ä or SP(A) which has 
predominated for 30 years is seen to be increasingly inadequate for determining the 
orbit of A. Rather one must examine properties relating Ä to A such as d-simpli-
city and rm subsets. These will give necessary conditions and hopefully the auto
morphism method of Theorem 2.1 (which relies on the fact that maximal sets possess 
a strong ^/-simplicity property) will prove the conditions sufficient. 

3. The elementary theory of S. One of the most important open questions on S 
is the decidability of its elementary theory. Lachlan proved that the theories of 
S and ê* are equi-decidable, and gave a decision procedure for the V3-sentences 
of the theory of S*. Lerman and Soare extended this by adding new relations. 
The aim is to add enough additional relations to give a decision procedure first for 
the § V§-sentences and then perhaps for all sentences. 

Let sé be the Boolean algebra generated by &. Let L be the first order language 
which has function symbols u , n , ', and a constant symbol 0 to be interpreted 
in a Boolean algebra as join, meet, complement, and least element respectively, 
and which has a unary predicate symbol E(x) to be interpreted over sé* as 
"xÇ.&*". An V§-sentence in this language is one of the form (\/x)(3y)P(x9 y) 
with P quantifier free. Lachlan [3] showed there is an algorithm for deciding which 
V3-sentences of L are true in sé* when quantifiers range over ê*. The next 
step in the decision procedure for ê* is to consider the 3 V3-sentences of L. 
The most reasonable attack seems to be to expand L by adding new predicates. 
Let L+ be the result of adding to L the predicates Max (A:) and Hhs(x) t o b e 
interpreted in S* as "A: is maximal" and "x is hh-simple". Many new statements 
become v3 in L+ such as "there exists an atomless /z/z-simple set with an rm 
subset", or "there exists an atomless r-maximal set". Thus, in addition to a more 
complicated version of Lachlan's refinement method new structural theorems 
were required to prove 
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THEOREM 3.2 (LERMAN-SOARE [6]). There is an algorithm for deciding which 
VB-sentences of L + are true in sé* when quantifiers range over ê*. 

Further information is given by classifying the elementary theory of intervals 
^(A9B)={W: Wetf and A^W^B}. Stob [18] has shown that if A is a major 
subset of B then the v3-theory of 3?(A9 B) is decidable and indeed independent 
of A and B. The next structural theorems to be proved about ß will be those 
needed for further steps in the decision procedure and will not be merely random 
facts. 

4. Relative enumerability. For any degree b let R(b) denote the set of degrees 
a^h suchthat a is r.e. relative to h. If b is low then R(b) and R have the same 
maximum element 0' but any r.e. degree b>0 allows us to obtain new relative 
r.e. degrees in R(h). \ 

THEOREM 4.1. For every r.e. degree ft>0 there is a degree a£R(b)—R, and 
a can be found uniformly in b. 

The proof uses a tree of nested strategies construction (as in some recent arguments 
by Lachlan) to combine the strategies for meeting individual requirements. Since 
the construction relativizes to any degree d this negatively answers a conjecture 
of Cooper that for every high degree d any degree as>0' and r.e. in 0' is r.e. in d. 
This raises the question of what special role (if any) 0' plays in R(d) (in the non-
trivial case rf<0' and d'>W). Also open is the homogeneity question of which 
r.e. degrees d satisfy R(d) isomorphic (or even elementarily equivalent) to R. 
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Michael Aschbacher 

We begin with an example that will illustrate some of the concepts which will 
be discussed here. Consider the general linear group C7 = GL„ (/>"'). Recall this 
is the group of all /?-by-/7 nonsingular matrices over the finite field of order pm. 
It will be informative to consider two types of elements in 67, the unipotent and 
semisimple elements. Here a matrix x is unipotent if x — I is nilpotent and x is 
semisimple if it is diagonalizable. The unipotent elements are p-elements; that is 
their order is a power of the characteristic p. The semisimple elements are / / -
elements. Their order is relatively prime to p. 

Let us consider the centralizer of a unipotent element u and a semi simple element 
s in G. 

(alr 0 Ì 

CG(s) = {(g J) : A € G W ) , Be GL;i_r0/")}; 

CG(s)^GLr(p>»)XGLn-r(p'"); 

Ir 0 0 
0 /„_2|. 0 

CGM--

A 0 0 
P B 0 

Iß R A) 
P,Q,R arbitrary, A£ GLr (/>"»), B G GLfl _,(]/") 
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( / 
p 

XQ 

0 
j 

R 

0 
0 

l 
Op(CG(u)) = • P I 0 : P, Q, R arbitrary = unipotent radical of CG(u); 

C(«)/0,(C(u)) s GLf(p»')XGL„_ar(p
m) and 

C(u)nC(Op(C(u))) < Op(C(u)). 

Here 0P(H) is the largest normal /7-subgroup of # . 
This illustrates the dicotomy between centralizers of unipotent and semisimple 

elements. The centralizers of semisimple elements are essentially the product of 
almost simple subgroups while the centralizers of unipotent elements are dominated 
by a large unipotent radical. This is made precise in Professor Gorenstein's talk 
at this Congress. 

We will return to this example from time to time. 
Most analysis of a finite simple group G concentrates on the local subgroups 

of G. Given a prime /?, a p-local subgroup of G is the normalizer of a nontrivial 
/?-subgroup of G. The centralizers of elements of prime order are of particular 
importance. The prime 2 plays a special role. 

The fundamental principal underlying this analysis is that when the centralizer 
H of an element of prime order p is essentially the product of almost simple sub
groups then G can be determined from this centralizer. In this talk such elements 
will be called semisimple. On the other hand if CH(Op(H))^Op(H) then Op(H) 
is large and its structure is probably difficult to pin down. As a result it is usually 
impossible in this case to use H to determine G. 

With these thoughts in mind and recalling the special role of the prime 2, we are 
led to the following definition: A finite group G is of characteristic 2-type if 
CG(02(M))^02(M) for each 2-local subgroup M of G. 

It is use fui to think of GLn (/?'") as the typical finite simple group (even though 
it is not simple). As our examples indicate, GLn(p

m) is of characteristic 2-type 
when/? = 2 but usually not otherwise. If G is not of characteristic 2-type one shows 
that some involution is semisimple and hence determines G. This is discussed in 
Professor Gorenstein's talk. 

We wish to classify the simple groups of characteristic 2-type. With the funda
mental principal in mind we proceed by attempting to show that some element 
of odd prime order is semisimple. It seems however that this is feasible only when 
G is of sufficiently high rank. This rank will be defined in a second. It approximates 
the Lie rank of G when G is of Lie type. The rank of GL„(2m) is usually w —1. 

Let p be a prime. Thep-rank of G, denoted by mp(G), is the maximum dimen
sion of an abelian /7-subgroup of G of exponent /?, considered as a vector space 
over the field of order/?. The 2-local p-rank of G, denoted by m2fP(G), is the 
maximum/?-rank among 2-local subgroups of G. e(G) is the maximum of m2p(G) 
as p ranges over all odd primes. e(G) is the rank of G. 
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It turns out that when G has rank at least 3 that certain methods are applicable 
which do not seem to work for groups of rank at most 2. The latter groups are 
called quasithin. Groups of rank one are called thin. The thin groups are precisely 
the groups in which all 2-locals have cyclic Sylow/^-subgroups for each odd prime/;. 
Thin groups were classified by the author in [3] extending work of Janko [8] and 
Thompson [14]. 

THEOREM. Let G be a thin finite simple group. Then G is L2{q), q a prime 
power, L3(p),p = l+2°3\ U3(p), p=-1+2"3\ pprime, b = 0orl, Sz(2"), U*(2% 
L3(4), 2F4(2)^Z)4(2), M^orJ,. 

Several mathematicians are at present working toward a classification of the 
quasithin groups. 

Let us now turn to groups of characteristic 2-type and rank at least 3. Let Jf be 
the set of all known simple groups. G is said to be Jf-group if the composition 
factors of each subgroup of G are in Jf. We wish to show all simple groups are 
in Jf. In a minimal counterexample to such a theorem, all proper subgroups 
will be ^-groups. We consider such a counter example and assume it be of charac
teristic 2-type. The proof of the following theorem is not yet in final form. The 
case e(G)>3 is due to Gorenstein and Lyons. The case e(G) = 3 is due to the 
author. 

THEOREM. Let G be simple of characteristic 2-type and rank at least 3. Assume 
all proper subgroups of G are ffî-groups. Then one of the following holds: 

(1) G possesses elements of odd prime order which are semisimple. 
(2) G possesses a 2-local M such that 02(M) has no noncyclic characteristic 

abelian subgroups. 
(3) For many odd primes p, G possesses an almost strongly p-embedded subgroup, 

Not much will be said about case (1) here. The fundamental principal suggests 
this case should be doable. 

In our example above if G' = GL„(2) and u is chosen with r — \ (that is u is 
a transvection) then CG(u) satisfies the conclusion of case (2). Indeed most of the 
groups of Lie type over the field of order 2 and about half of the sporadic simple 
groups have a 2-local of this type. The following theorem classifies such groups. 
Probably the largest contribution to its proof is from Timmesfeld [15]. Other 
contributions were made by Aschbacher [1], [2], Dempwolf and S. Wong [4] 
Gorenstein and Harada [6], F. Smith [9], [10], S. Smith [11], [12], [13] and Thompson. 

THEOREM. Let G be a finite simple group possessing a 2-local M such that 
CM(02{M))^02(M) and 02(M) has no noncyclic characteristic abelian subgroups. 
Then G is a group of Lie type over the field of order 2, G2(3), £/4(3), L4(3), fì^(3), 
A^ L2 (2"±1), Mll9 M12, M24, HS, He, Sz, J2, J3, / 4 , Co2, Co l f F24, FB, F3 , F2, 
or Fx. 
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Notice here that Z(M) is of order 2, so that M is the centralizer of an involution 
and 02(M) is large. Still G can be determined because the structure of 02(M) is 
precisely determined by a theorem of P. Hall [7]. 

I will refer to case (3) as the uniqueness case. A subgroup H of G is strongly 
p-embedded if p divides the order of H but not the order of H nH9 for g£G—H. 
H9 is the conjugate of H under g. Almost strong embedding is an approximation 
of strong embedding I will not define. Groups with a strongly 2-embedded subgroup 
have been classified by H. Bender but the proof depends on very special properties 
of the prime 2. For odd primes an approach similar to that used by John Thompson 
in section 13 of the TV-group paper seems to be more profitable. 

Just as the prime 2 plays a special role in the analysis of simple groups the prime 
3 plays a special role in the uniqueness case. In particular in the generic situation 
G has a strongly 3-embedded 2-local of high 3-rank (i.e. 3-rank at least 4). This 
subcase has been handled by the author. Work is in progress on the general case. 
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Cohomology of Infinite Groups 

Kenneth S. Brown* 

This is a survey of recent results in the cohomology theory of infinite groups, 
with emphasis on the theory of groups of finite virtual cohomological dimension. 
(Recall from [24] that if T is a group which has torsion-free subgroups of finite 
index, then all such subgroups have the same cohomological dimension; this common 
dimension is called the virtual cohomological dimension of T and denoted vcd r.) 

1. Euler characteristics. 1.1. If T is a group such that Hf(r, Q) is finite dimensional 
over Q for all / and is trivial for all but finitely many /, then we set x(H~ 
2/ (—1) 'd im/ / , ( r , Q). We will say that a group T has finite homological type 
if (i) vcd r < ° ° and (ii) H^{T\ Z) is finitely generated for every torsion-free sub
group r' of finite index. We then define the Euler characteristic xiD^Q by 
X(r) = x(r')l(r: r ' ) , where r' is any such subgroup; it is shown in [10] that this 
is independent of the choice of r'. It agrees with the Euler characteristic studied 
by Wall [39] and Serre [24] if r is of "type (VFL)". 

1.2. It is immediate from the definition that d*x(r)£Z, where d is the greatest 
common divisor of the indices of the torsion-free subgroups T' of finite index. 
But one can, in fact, prove the sharper result that H7-/(r)£Z, where m is the 
least common multiple of the orders of the finite subgroups of T (cf. [10] or [13]). 
In addition, there are a number of formulas which yield more precise information 
about XÌT) in terms of the torsion in T. For example, let *LJ be a set of represen
tatives for the conjugacy classes of elements of f of finite order, and assume for 

* Partially supported by a grant from the National Science Foundation of the United Slates. 
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each s&Y that the centralizer Z(s) is of finite homological type. Then one can 
prove that V is finite and that 

(*) x(n = 2 x{z(s)). 

(More generally, if f ç / 1 is an arbitrary normal subgroup of finite index, then 
there is a Lefschetz number formula for the action of T\T' on H^(r\Q), cf. 
[14, §6]; (*) is the special case r'=r.) In particular, since x(r)£Z-> we obtain 
X(r) = — 2swX(Z(s)) inodZ, where îff/=ï/—{1}; this can be regarded as 
a formula for the "fractional part" of /(J1) in terms of the torsion in r. 

There is also a formula for the "/^-fractional part" of %(r), where p is a prime 
([11], [23]; see also [13]): Let s/p be the set of nontrivial elementary abelian /?-sub-
groups of r. [An elementary abelian p-group is a group isomorphic to (Zp)

r for 
some r-=:oo5 where Zp=Z/pZ.] If the normalizer N(A) has finite homological 
type for each ^£«ß/p, then #(r)=xr(j^p)modZ( i l), where Z(p) denotes Z localized 
at p and Xri^p) *s a n "equivariant Euler characteristic". Moreover, one can 
show that the latter is given by 

ZrK)=2( - i ry ( r " 1 , / 2 2 X(N(A)), 

where sép is a set of representatives for the conjugacy classes of elementary abelian 
p-subgroups of T of rank r. [Our hypothesis implies that there are only finitely 
many such conjugacy classes.] 

The results described above have applications to group theory and number theory 
([10], [11]), as well as to the study of the finite subgroups of the exceptional 
Chevalley groups over Z [26]. 

1.3. Suppose now that T is a group such that Q, regarded as a module over 
the group algebra QT, admits a projective resolution of finite length, 0^Pn-*—»-
^o-^Q-^O» with each Pt finitely generated. (T is then said to be of type 
(FP) over Q.) We then set (cf. [33]) E(T)=2(-l)ir(Pi)9 where r( ) denotes 
the Hattori-Stallings rank. This "complete Euler characteristic" is a Q-linear 
combination of T-conjugacy classes. We denote by e(T) the coefficient of the 
conjugacy class of 1 ; this is the Euler characteristic of r in the sense of [3], [15], 
and [34]. Like the Euler characteristic x defined in 1.1 above, e agrees with the 
Wall-Serre Euler characteristic if r is of type (VFL). It is not known whether 
e(r)=x(r) whenever both are defined, but this is easily seen to be true if r is 
residually finite [3]; more generally, they are equal if r has a subgroup 7"" of 
finite index such that E(r') is concentrated at the conjugacy class of 1. A related 
question is whether e(r)=x(r) whenever r is torsion-free and of type (FP) over Q. 
This is known to be true by results of Bass [3] if T satisfies a certain "condition D", 
which holds for instance if T is a linear group. 

1.4. Bass's results imply further that E(T) is supported on the conjugacy classes 
of elements of finite order if f is of type (FP) over Q and satisfies condition D. 
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Additional results about E(F) can be obtained by using the methods of [10]. One 
zan prove, for example (cf. [14]), under suitable hypotheses on f, the following 
formula suggested by Serre: 

(**) E(F) = 2 e(Z(s)).[s], 

where !F is as in 1.2 and [s] is the conjugacy class of s. This should be thought 
of as a refinement of the formula (*) above. Indeed, if (* *) holds then one easily 
deduces (#) , but with x replaced by e. 

The hypotheses on T under which (* *) has been proved are quite complicated, 
but we can describe a large family ^ of examples for which (# #) has been proved, 
as follows. Let ^ 0

 De the class of finite groups; assuming ^ r „ - 1 has been defined, 
let &„ be the class of groups T which admit a simplicial action on a complex 
X such that (i) X/r is compact, (ii) the isotropy group Fa is in ^ , _ 1 for each 
simplex ü of X, and (iii) the fixed-point set Xs is contractible for each s£T 
affinité order. Then f o C ^ g ^ ç . . , and we set ^=\J^n. The family & 
includes all arithmetic groups (which are in ^ i as a consequence of [7]), as well 
as the S-arithmetic groups in the reductive case (these are in SF2^ cf. [8, § 6]. I do not 
know an algebraic characterization of J5", nor do I know any examples of groups 
of type (FP) over Q which are not in !F. 

2. Farrell cohomology. F. T. Farrell [17] has shown that the Tate cohomology 
Lheory for finite groups can be extended to the class of groups F such that vcd T < °°. 
Farrell's theory yields cohomology groups H\F) (/€Z), such that fii = Hl for 
r>vcd r. If r is a "virtual duality group", then one can describe tì* for / < — 1 
is a homology functor i?„_I_1 = / /n_ I_1(r , D(g)z — ), where n=vcdF and D 
s the jT-module H"(F, ZF) ; moreover, there is an exact sequence relating {Ai}_1^i^n, 
[H^o^i^n, and {Hi}Q^i^n (cf. [17], [13]). This exact sequence generalizes the 
;equence 0 - > J ? _ 1 - ^ / / 0 - ^ HQ-+H°-> 0 which one has if r is finite, where N is 
;he "norm map". (Note: If F is finite then n = 0 and D=Z, with trivial f-
iction.) The Farrell cohomology groups are all torsion groups. In fact, if d and 
77 are the integers defined in 1.2, then d-fì*(r)=0, but it is not known whether 
)ne always has m>E*(r) = 0. 

It is shown in [12] and [13] that a great deal of information about fì*(F) (and 
ìence about Hl{F) for / > v c d r ) can be extracted from the finite subgroups 
)f F. For example, Ê*(F) is periodic if and only if every finite subgroup of F has 
periodic cohomology in the usual sense. (This improves a result of Venkov [36].) 
Similarly, if /? is a prime then the /^-primary component Ê*(F)(p) is periodic 
f and only if tì*(G)ip) is periodic for every finite subgroup Gçf , i.e., if and. only 
f F contains no subgroups isomorphic to ZpXZp. Another result, analogous 
;o that described in 1.2 on the /7-fractional part of the Euler characteristic, is that 
^*(F\p)^Ê^(j^p\p)i the latter being "equivariant Farrell cohomology". If r 
contains no subgroups isomorphic to ZpXZp (i.e., if ß*(r)(p) is periodic), this 
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isomorphism takes the simple form H*(F)(p)^a JJPe0tH*(N(P)\p), where 0* is 
a set of representatives for the conjugacy classes of subgroups of order p. See [22] 
for earlier results relating the cohomology of F to the elementary abelian p-sub-
groups. 

3. Cohomology calculations. The proofs of the results described in §2 are based 
on the fact, due to Serre [24, 1.7], that if vcd r < °° then there exists a contractible 
finite-dimensional space X on which F acts properly (and hence with finite isotropr, 
groups). The arguments are of a general nature. For a given group T, howeveyl 
one can often get more precise information about H*(F) by choosing X convenienty 
and making a more detailed analysis. 

Consider, for example, the case F = SLn(Z). Classically one takes X to be the 
symmetric space SLn(R)/SOn(R), which can be identified with the space of 
positive definite real quadratic forms in n variables, modulo multiplication by 
positive scalars. This choice of X, however, is inconvenient for calculation 
because r\X is noncompact. One way to remedy this is to replace X 
by its Borei-Serre "bonification" X [7]. This was done, for example, by Lee 
and Szczarba [20], who were thereby able to completely compute the integral 
cohomology of the principal congruence subgroup of level 3 of SL3(Z). The space 
X was also used by Lee [19] in his construction of several families of "unstable" 
elements of H*(SLn(Z), R), i.e., cohomology classes which do not come from 
H*(SL(Z), R). (Recall that the latter was computed by Borei [5]; it is an exterior 
algebra with one generator of degree 4/ + 1 for each integer zs>l.) 

A different approach is to replace X by a contractible SL^ZJ-invariant subspace 
X' with compact quotient SLn(Z)\X'. Soulé ([27], [31]) and Ash([l], [2]; see also 
[13, § 2, Ex. 5]) have shown that there always exists such an X' of dimension 
n(n — l)/2; this had previously been observed by Serre [25] in the case n=2. (We 
remark that vcd SLn(Z)=n(n —1)/2, so X' has the smallest possible dimension 
for a contractible space on which SLn(Z) acts properly.) The most striking result 
obtained in this way is the complete calculation by Soulé [27] of H*(SL3(Z)9 Z). 
This was achieved by using an explicit cell-decomposition of X' in order to compute 
the spectral sequence of equivariant cohomology theory (cf. [18] or [22]) 

Ep = HP(F\X'9 2tf?) => H»+*{F). 

(Here ^ is a certain sheaf on r\X' whose stalks are the groups Hq(Fx), where 
x£X' and Fx is the isotropy group of x.) 

Still a third method was used by Lee and Szczarba [21] to partially compute 
H*(SLn(Z)) for n=4 and 5. They replaced X by an enlargement X* due to 
Voronoi [37], which comes equipped with a cell-decomposition compatible with 
the SLn(Z)-Siction. Their calculations were pushed further by Soulé ([29], [31]). 
Similar methods have been applied in [32] to the group 5L3(Z[]/^T]). 

Further information on the cohomology of SLn(Z) and other arithmetic groups 
has been obtained by Eckmann [private communication] and Soulé ([28], [30], [31]; 
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see also [16], [35]) by studying characteristic classes. In particular, many interesting 
examples of torsion classes in H*(SLn(Z), Z) have been obtained in this way. 

4. Further results. I have, of course, had to omit many topics from this survey. 
In particular, I would like to call attention to : (a) the work of Bieri and others on 
cohomological dimension, duality groups, and related matters (see [4] and the 
references cited there); (b) stability theorems of Quillen (unpublished), Wagoner [38], 
and R. Charney [unpublished] for HjGLn(R)) for suitable rings R; and (c) connec
tions between cohomology and representation theory for discrete subgroups of Lie 
groups ([6], [9], [40]). 

Finally, the reader is referred to the forthcoming proceedings of the 1977 Durham 
conference on homological and combinatorial techniques in group theory (C. T. C. 
Wall, ed.) for additional references and a list of open problems. 
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Cohen-Macaulay Rings and Modules 

Melvin Höchster* 

1. Introduction. The objective of this note is to give some insight into the reasons 
for studying Cohen-Macaulay rings and modules, as well as some recent results 
concerning when rings of invariants are Cohen-Macaulay and the existence of 
Cohen-Macaulay modules. All proofs are omitted. More detailed treatments are 
available in [Ho3], [Ho4], [HRj], [HR2], [Ke4], and [Bou3] while expository versions 
are given in [BouJ, [Ei], and [Ho6]. Both the main results discussed here were first 
proved in char. /?>0 and then established over fields of char. 0 by "reducing" to 
the char. /?>0 case, where one may make use of the Frobenius homomorphism. 

2. What does Cohen-Macaulay mean? In this section we focus primarily on the 
notion of "Cohen-Macaulay (C-M) ring". Suffice it to say that in all cases, analo
gous characterizations exist for modules. 

In the sequel, all rings are commutative, associative, with identity, and all modules 
unital. Let R be a ring and M an i?-module. A sequence xl9 ...9xnÇ.R is called 
regular on M, or an M-sequence if 

(1) 2'UxiM^M a n d 

(2) for each I , 0 < ï < / î —1, xi+1 is not a zero divisor on M/2J^ìXJM. 

For any ring R9 we define dim R (respectively, height P, where P is prime) 
to be supremum of lengths n of chains i>„^...jgP0 of primes (respectively, of such 
chains with Pn=P), When I^R is any ideal, height /=min {height P: IaP9 

P prime}. Note that R is never regarded as prime, while (0) is prime precisely 
when J? is a domain. 

* The author was supported by a grant from the National Science Foundation of the United 
States. 
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This definition of dimension is motivated by the fact that if X is an affine al
gebraic variety over C, then the dimension of C[X] (=Mor (X, C), the coordinate 
ring of X) is the same as the (complex) topological dimension of X. In this set-up 
height corresponds to codimension: if PczC[X] is a prime and YaX is the closed 
subvariety where the elements of P vanish, then height P=dim X— dim Y= codini^ Y. 

The notion of regular sequence leads to a different, homological notion of codimen
sion. If / is an ideal ofaNoetherian ring R and M is a finitely generated IE-module 
with IM^M, then depth7M denotes the length of any maximal regular sequence 
on M contained in J (all have the same length). 

For any ideal I^R, we then have two notions of codimension: height J (or 
ht J) and depth7R. Life turns out to be really pleasant when these two coincide: 

(2.1) DEFINITION. A Noetherian ring R is Cohen-Macaulay if for every ideal 
I^R, height / = depth, R. 

This definition does not convey any intuitive feeling for the meaning of C-M. 
The following list containing consequences of the definition, alternate characteriza
tions, "examples" and theorems is intended to clarify matters. For more information 
see [Ho3], [KaJ, [Ma] and [Se]. 

(1) All zero-dimensional Noetherian rings, one-dimensional Noetherian domains, 
and two-dimensional normal (=integrally closed) Noetherian domains are C-M. 
The C-M property is local, and is unaffected by completing a local ring. 

(2) In a C-M ring R, xl9...9xn is an iÊ-sequence iff height 2?=ixiR=Q> 
q^n in which case RJ2ixi^ *s again C-M. 

A Noetherian ring R is called local if it has a unique maximal ideal m. (The 
ring of germs of functions at a point of an algebraic or analytic variety is local.) 

(3) Recall that a local ring (JR, m) is called regular if, equivalently, m is generated 
by an ./̂ -sequence, or if for every i?-module M, the projective dimension pdfiM 
is finite. (Geometrically, a point of an algebraic variety over C is smooth iff the 
local ring at the point is regular.) A Noetherian ring R is called regular if all its 
local rings are regular. 

Regular rings are C-M. The most important examples are polynomial and 
formal and convergent power series rings over fields and principal ideal domains. 

One may construct C-M rings from regular rings by killing an jR-sequence. 
The rings so obtained are called complete intersections. 

(4) In C-M rings, ideals generated by jR-sequences are unmixed, i.e. all associated 
primes are minimal. In particular, this holds for the zero ideal. 

(5) Let S be either a regular local ring or a polynomial ring over a field and let 
R be a ring which is a finitely generated S-module, local in the first case or graded 
in the second. Then R is C-M iff pdsR is "as small as possible", to wit, 
dim S—dim R. In particular if SœR, then R is C-M iff R is S-free. 

(6) Suppose we are in the graded case above and R=S/I (5 a polynomial 
ring over a field, / a homogeneous ideal). Suppose we have a homomorphism 
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S-+T, where T is C-M, and suppose h t / r = h t / . Then if R is C-M, sois 
T/IT. This is an important stability property of C-M rings. 

(7) There are innumerable applications of the notion of C-M ring in algebraic 
geometry, e.g. a C-M ring is normal (integrally closed) iff the singular locus has 
codimension ^ 2 . Again, in computing the intersection multiplicity of two complex 
varieties Y9 Z in a smooth ambient space X at an isolated point x of YnZ9 

if R is the local ring of X at x and /, J are the ideals of germs at x of functions 
vanishing on Y9 Z, respectively, then if 7, Z are C-M the intersection multiplic
ity is simply dimcR/(I-\-J). (In the general case one needs 2i(~~ *)' dim cTorf 
(R/I.R/J). (See [Se].) 

If XaP" is a projective variety and R is the homogeneous coordinate ring 
of X (i.e. the affine coordinate ring of the cone in /A"+1 which is the union of 
the lines which represent points of A'), then the condition for R to be C-M is 
(under mild hypotheses) the vanishing of the sheaf cohomology of certain line 
bundles on X (to wit, the structure sheaf and all its twistings) in the dimensions 
strictly between 0 and dimAr. 

Moreover, many theorems about curves generalize in a pleasant (e.g. without 
spectral sequences) way precisely to C-M varieties: one such is Serre-Grolhendieck 
duality (see [HRJ for more details). 

(8) Many examples are known of normal and even unique factorization domains 
which are not C-M. See [Be], [Bou2], [FG], [FrK], [HoJ, and [L]. 

(9) Let K be a field, and let A be an abstract finite simplicial complex with 
vertices xl9 ...9xn. View xl9 ...,xlt as indetermina tes over K, let S=K[xl9...9 x„] 
and let IA be the ideal of S spanned as a AT-vector space by those monomials 
x)1 ... x]m, where each ti>0, such that {xt , . . . ,# , }(f A. Let K[A] = S/IA. 
G. Reisner has shown [Rei] that K[A] is C-M iff whenever L is either A itself 
or the link of a simplex <r£A (={cÇ.A: zna = 0 and TUCTÇ^}), H'(L) = 0 for 
O^i^dimL— 1, where H is reduced simplicial cohomology with coefficients 
in K. R. Stanley used this fact to prove the Upper Bound Conjecture in combina
torics (concerning the maximum number of /c-faces in an n vertex triangulation 
of a flf-sphere). See [StJ, [St2] and [Ho5]. A key point is that the values of the Hilbert 
function of a graded Cohen-Macaulay ring must obey certain inequalities: applied 
to K[A] and rewritten appropriately, these yield the Upper Bound Conjecture. 

3. Cohen-Macaulay rings and invariant theory. Suppose that a Zariski closed 
subgroup G of some GL(/w, K), where K is an algebraically closed field, i.e. 
a linear algebraic group (cf. [Bor]), acts (by AT-algebra automorphisms) on a poly
nomial ring R=K[Xl9 ...9X„], Assume also, for simplicity, that the action is linear, 
i.e. induced by a map cp: G-+AutKV, where V—2i^^i is ^ l e vector space of 
1-forms and <p is both a group homomorphism and a morphism of algebraic 
varieties. Hubert's 14th problem (see [Hu], [Ka2], [Mu2]) was motivated by the 
question, when is RG, the fixed ring, finitely generated over Kl 
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We now have a reasonable answer: when G is reductive (i.e. the maximal con
nected normal solvable subgroup is an algebraic torus Gr

m9 where Gm is the mul
tiplicative group of K), and not usually otherwise. See [DC], [Gros], [Hu], [Mu2], 
and [N]. In char. 0 the key point is the existence of the Reynolds retraction 
R->RG, which is a retraction as l£G-modules. (If G is finite, this retraction is 
obtained by averaging over G.) (The char, p case depended on proving Mumford's 
conjecture [MuJ: this was finally done by Haboush [Ha].) 

Once we know that RG is finitely generated it is quite natural to ask, what other 
good properties does RG inherit from Rl It need not be regular, nor a UFD, 
but (and this is easy) it must be normal. Much less obvious is the following result 
from [HRJ: 

(3.1) THEOREM. Let K be field of char. 0, R a Noetherian regular K-algebra, 
and G a reductive linear algebraic group over K acting K-rationally on R. Then 
RG is a Cohen-Macaulay ring. 

A very trivial example is the action of Z2={\, — l}aK— {0} on K[xl9x2] 
by a:x*-+axi9 i = l ,2 . R?—K[x\9 x±x29 x\]. One can see the Cohen-Macaulay 
property easily here, since l9xxx2 is a free basis for RG over its subring K[x\9xl]9 

which is a "polynomial ring". (A non-Cohen-Macaulay subring of K[xl9x2] 
is exemplified by K[x\9x\9x2, x±x2]. This ring is a finite module over K[x\9x2\, 
but is not free: 1, x\9 xxx2 is a minimal basis, but x2(ptf) + (— xl)x±x2=0.) 

A much more interesting example comes out of the action of GL (t, K) on the 
polynomial ring R in (r-\-s)t variables, which we think of as the entries of an 
r by t matrix X=(xij) and a t by s matrix Y=(yjk). The matrix A acts by 
sending the entries of X, Y to the corresponding entries of XA~X

9 AY9 respectively. 
RG is generated by rs elements, the entries of the product matrix XY, and if we 
map the polynomial ring T in rs variables ztj onto RG, the kernel is generated 
by the t + 1 size minors of the matrix W=(zij). See [W]. Once again, from (3.1) 
it follows that RG is C-M. 

The key point in the proof is the existence of the Reynolds retraction R-+RG, 
which makes RG a direct summand of R as jRG-modules. The original argument 
then makes use of reduction to char, p > 0 and the action of Frobenius on local 
cohomology. (Cf. [HRJ, [BouJ.) A different argument along the same lines is 
given in [Ke4], where the group action is discarded completely: it is shown that if 
R is essentially of finite type over a field of char. 0 and regular, and S is a direct 
summand of R as IE-modules, then S is C-M. (This is shown in char. /?>0 
in [HRJ: in fact, one only needs that R is Noetherian regular.) Quite recently, 
J.-F. Boutot [Bou3] has improved the theorem in the geometric case as follows: 

(3.2) THEOREM (BOUTOT). Let R be a ring essentially of finite type over a field 
of char. 0, and suppose S is a direct summand of R as S-modules. Then if R has 
rational singularities, so does S. 
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If X-+fSpecR is any desingularization, where R is normal and the field has 
char. 0, then R has rational singularities means R}f^Gx=09 i^l. Having rational 
singularities is a property intermediate between regularity, which is stronger, and 
being normal, C-M, which is weaker. For more information, see [KKMS], [KeJ, 
[Ke2], [Ke3], and, of course, [Bou3]. Boutot's argument is quite short, but rests on 
some deep and difficult results: resolution of singularities [Hi] and the Grauert-
Riemenschneider generalization [GraR] of Kodaira vanishing. 

In char. p>0, Theorem (3.1) sometimes fails, and there is no satisfactory result 
which accounts for the many cases where (3.1) is known to be true. The proof 
breaks down because the reduclivily of G is not enough to insure that RG is 
a direct summand of R. 

4. Cohen-Macaulay modules. It is much harder to understand the behavior of 
a local Noetherian ring (R9 m) if it is not C-M. It turns out that many problems 
are quite a bit easier if one knows, at least, that there exists a module E, not neces
sarily finitely generated, such that some system of parameters xl9 ..., x„ for R is 
a regular sequence on E. (Recall that this implies (xl9 ..., xr)E^E or, equivalently, 
mE^E.) Eis then called a big C-M module for R. In fact, the question of whether 
such modules exist is a central issue in the theory of local rings. Their existence 
yields proofs for a large number of conjectures. We shall not detail these conjectures 
here: see [AuJ, [Au2], [Ba], [EE], [Gri], [HoJ, [Ho3], [Ho4], [HoJ, [Ho7], [Iv], [PSJ 
and [Ro] for further background. We do mention that M. Auslander was responsible 
for a number of them, and initiated their study. Some are related to Serre's conjecture 
on multiplicities [Se]. Later, Peskine-Szpiro made tremendous progress via reduc
tion to char, p [PSJ, [PS2]. 

The result we do want to discuss a little bit here is : 

(4.1) THEOREM. Let (R,m) be a local ring which contains afield. Then R has 
a big C-M module. 

(It suffices that R/P, where P is a minimal prime such that dim R/P=dim R, 
comtain a field.) 

This result is proved in [Ho3]. First one shows that there exists an jR-module 
E on which xl9 ..., x„ is a regular sequence iff for each of countably many systems 
of polynomial equations 

f Fi(*i, ...,*., ri, ...,r,) = o, 

l^mt^l» ••> Xn-> Yl-> •••> Yq) = 0 
over Z, the system ê has no solution in R suchthat X1=x1, ..., Xn = x„. 

One reduces the case where R contains a field of char. 0 to the char. /?>0 case 
by proving: 

(4.2) THEOREM. If a system S as above has a solution in a local ring R containing 
a field of char. 0 such that the values xl9 ...,x„€R for Xl9 ...9Xn form a system 
of parameters, then it also has such a solution in a local ring of char. />>0. 
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(The proof of Theorem (4.2) makes essential use of the approximation- theorem of 
M. Artin. See [ArJ, [Ar2],) 

In char p one shows that the systems ê arising from the big C-M modules 
problem have no solution by applying high powers of the Frobenius endomorphism 
of R. 

If R is a well-behaved local ring, e.g. a complete local ring, there is some hope 
that one might be able to obtain C-M modules which are finitely generated. This 
problem is virtually completely open if Dim R ^ 3, as is the question of existence 
of big C-M modules if R does not contain a field. 

We note the following result of P. Griffith [Gri] : 

(4.3) THEOREM (P. GRIFFITH). Let A be a complete regular local ring and R a 
domain module-finite over A. Then if R has a big C-M module, it also has one 
which is countdbly generated and A-free. 

We conclude by giving an example of the type of equational obstruction to the 
existence of big C-M modules encountered in (4.2). The single equation 

{xi...x,\-2 :r,27+1 = o} 

is such an example. It is not known (even for n=39 t=2) whether this equation 
has a solution in a local ring such that the values of the Xi form a system of para
meters: impossibility follows, however, if the local ring has a big C-M module. 

This equation is related to the question : given a regular Noetherian ring R and 
a module-finite extension S, is R a direct summand of S as i£-modules? This is 
known if R contains a field, but seems to be open even for R=Z[X, Y]9 the poly
nomial ring in two variables over the integers. 

Finally, we note that [Ho7] introduces a conjecture apparently weaker than the 
existence of big C-M modules, yet which seems to have the same consequences. 
This new "canonical element" conjecture is more functorial and seems to be easier 
to study. 
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Highest Weight Representations of 
Infinite-Dimensional Lie Algebras 

V. G. Kac 

1. Introduction. In [1], in connection with the Cartan classification of infinite-
dimensional primitive pseudogroups the following result has been obtained. 

THEOREM 1. Let g = 0 / € Z 9 / be a complex infinite-dimensional simple Z-graded 
Lie algebra of finite Gelfand-Kirillov dimension (i.e. lim^^lndim g,/ln |/|<oo). 
If in addition 

(*) Ô-i©9o©9i generates g and the ^-module Q_X is irreducible, 
then g is isomorphic (without taking into account the gradation) to one of the follo
wing Lie algebras: (a) Cartan type algebras W„, Sn9H„9Kn9 (b) algebras C(p,v) = 
©iez''Pi mod*» where p is a simple finite-dimensional Lie algebra, v is an auto
morphism of order k, induced by an isometry of the Dynkin diagram (k = 1,2 or 3), 
defining the Zk-gradation p = ©p / 9 and t is an indeterminate. 

My conjecture is that if one throws away hypothesis (#) , then only one extra 
example occurs: the Witt algebra with commutation relations 

K ß j ] = (ì-j)et+j> UJ€Z. 

Recent achievements in the computation of the cohomology of Cartan type Lie 
algebras and their applications are well known (see survey [22]). Interest in the 
second type of infinite-dimensional Lie algebras rose lately when Macdonald's 
identities [2] were interpreted as Weyl denominator formulas for the universal 
central extension <?(p, v) of the Lie algebra C(p, v) [3]. More generally, in [3] 
a character formula was obtained for any irreducible representation L(A) with 
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dominant highest weight X of the so-called Kac-Moody Lie algebras g (A) (their 
study was started independently in [1] and [4]). Macdonald's identities correspond 
to the case g(/4)^<?(p, v) and >l=0. Finally the representations of the universal 
central extension of the Witt algebra (the so-called string algebra) have become 
recently a topic of interest in physics in the context of dual models [5]. In this article 
I want to discuss some results on the structure of highest weight representations 
of the Lie algebras Q(A) (§ 2) and of the string algebra (§ 4). The case of Cartan 
type Lie algebras has been studied in [6]. In §3 I discuss some applications of 
algebras g 04). 

2. The Lie algebras Q(A). Let A=(atj) be a complex («X«)-matrix, r be the 
free abelian group with free generators ai9 i£l= {1, ..., «}, and T + be the subsemi-
group of r generated by ai9 /Ç/. We define a complex T-graded Lie algebra 
9(A) = ffi«er9« by ^ e properties: (a) every graded ideal which intersects g0=ï) 
trivially is zero, (b) Q(A) is generated by elements ei9 fi9 hi9 *£/, such that 
Sa=Cel9 Q-a=Cfi9 hË

9s form a basis of I), and: [hi9 hj] = 09 K,/}]=5yA i,[A l,«y] = 
aijej9[hi9fj]=—aijfj9 i9j£L We denote by A+ the set of a£r+\0 such that 

EXAMPLES. Let p b e a simple finite-dimensional Lie algebra with Chevalley 
generators Ei9 Fi9 Hi9 i= 1,..., n. (a) If A is the Cartan matrix of p, then Q(A)^P 

and the F-gradation is the root decomposition V^^Bv^- (b) Let 9 be the highest 
root of p and A be the extended Cartan matrix of p. Then the homomorphism 
$(A)-+C[t9t-

1](g)cy = C(Tp9 id), defined by et^Ei9 ff+Fi9 i=\9...9n9 eQ^tE_B9 

/ o ^ f _ 1 l s 0 , is the 1-dimensional universal central extension, rank r=n-\-\9 and 
T-gradation is the pull-back of the decomposition C{p9 id) = 0 a k tkpa. 

We ca l l age -modu le V a module with highest weight X £1)* if: (a) ^ = © l / € r V_n 

and 9 a(F_ l /)cF a_ / / , and (b) VQ=Cv09 vQ is a cyclic vector of V and h(u0)=X(h)v0 

for Agì). We set ch V=®n (dim F_f/) e
n (e11 is a "formal" exponential). For each 

X there is a Verma module M(X) such that the modules with highest weight X are 
the quotients of M(X). M(X) has a unique irreducible quotient L(X) = M(X)/I(X). 
The function P(fj) = dimM_tJ is called Kostant partition function. One has 
chM(X) = Q-\ where Q=H^A+ (\-e«fim*«. Let co be the involutive anti-
automorphism of g (/I) defined by co(e^=fi9 co(f^)=ei9 co(h^=hl9iÇ.I. M (A) 
carries a bilinear form F which is uniquely defined by the properties: F(u09 ô) — 1 
and F(g(x)9y) = F(x9co(g)(y)) for x9y^M(X)9g^(A). In particular Ker F=I(X) 
and F(M_ti9M_tf)=0 if n^n'. We set Ft=F\M_ir 

From now on we assume that A is a symmetrisable matrix i.e. A=D>B9 where 
D = diag(rfl9 ...,4i)s detZMO, and B={bij) is a symmetric matrix. To ri=kiaiÇ.r 
we assign a linear function on Ì) by nifi^^i^i61^ w e s e t K^^O^T^K^ We 
introduce a bilinear form ( , ) on T by (a/5 0L^=btj and define ££E)*by ö(^)=T ß »-
The following theorem generalizes the well-known results of Sapovalov and Bern-
stein-Gelfand-Gelfand in the ease of finite-dimensional semisimple Lie algebras. 
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THEOREM 2 [7]. (a) For the g (A)-module M(X) one has: 

vP(»7-Ha)dimfla 

a£A+ u€7VV ^ ' 

In particular M(X) = L(X) iff 2(X + Q)(hu)^n(a9oi)9 for any <x£A+9 n£N = {l9 2, . . . } . 
(b) Any simple subquotient of M(X) is of the form L(X—tf)9 where n£r+ is such 

Jhat there exist ßl9 ...9ßkdA + and nl9 ...9nk£N such that 

2{X+Q-n1ß1-...-nl-1ßi_J{hß) = w,(ft, ft) 

for z = l, ...9k9 and ^ = 2 ? = i " i ß -

Theorem 2 and its analogue for Lie superalgebras provides a new proof of character 
formulas from [3], [8], [9] and their generalizations. 

THEOREM 3 [3]. Suppose that an=2 and —a}j€Z+9 i9j£.I9 and /LCI)* is such 
that X(hi)£Z+9 i£l. Let W be the subgroup of GL(t)*) generated by reflections 
ri9i£l9 defined by ri(X)=X—X(hl)ai. Then for the §(A)-module L(X) one has: 

chL(X) = Qrx 2 (deU0e*+e-™(A+e>. 

In particular, for X=0 one has the "denominator" identity: 

Q= 2 (detw)ee-M,(e). 
we IF 

PROOF. It is easy to see that e~*~e'Q'cl\L(X)=2icne~tl> where cA+e = l and 
cfl^0 only for the fi's such that L(JJL — Q) is a subquotient of M (A). Since for 
a£A+9 a$ (J f^ ( a i ) iff ( a , a ) ^ 0 we obtain from Theorem 2 that these \i have 
form W(X+Q)9W€W. Now the theorem follows from W^-skew-invariance of e"Q>Q 
and rF-invariance of e~AchL(A), which are provided by the hypothesis of the 
theorem. 

3. Applications. One of the first applications of the Lie algebras g(^4) was the 
proof of Theorem 1 (§ 1), where they play the role of "test" algebras. In particular 
this gives a simple proof of Cartan classification of primitive filtered Lie algebras 
[1], [23]. Another application is a simple method of classification of symmetric 
spaces [1]. More generally let o be an automorphism of finite order m of a simple 
Lie algebra p. We consider the corresponding Z„,-gradation p = ©p f and construct 
the "covering" Z-graded Lie algebra C(p, o-) = 0 , / 'p / m o d j l I . The algebra C(p, cr) 
is isomorphic (without taking into account the gradation) to a certain C(p, v) 
from Theorem 1. This gives the classification of finite order automorphisms of 
p [12] and in particular the description of the p0-modules px; the corresponding 
to these modules connected algebraic linear groups are called c-groups. These 
linear groups have many nice properties : (a) the algebra of invariant polynomials 
is free, (b) any level variety of invariant polynomials consists of a finite number 
of orbits, etc. [14], [13], Moreover it turns out that almost all the connected algebraic 
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linear groups acting irreducibly which satisfy (b) or those which are simple and 
satisfy (a) are cr-groups [13], [24]. These results and the dimensions of the corres
pondence between the root system A+ of §(A) and indecomposable representations 
of the corresponding graph [17] (see survey [18] for the background) indicate a deep 
connection between the Lie algebras g(̂ 4) and invariant theory. In [25] the Lie al
gebras g(A) provide infinite families of examples of simple finite-dimensional Lie 
algebras in characteristics 2 and 3. Recently the cohomology of the Lie algebras 
C(p9 a) was applied to the study of the topology of various loop spaces [15], [26], 
[16]. The "infinite-dimensional" groups corresponding to the Lie algebras g (.4) are 
discussed in [21], [19], [20], [8]. Finally, various specializations of the formulas of 
Theorem 3 (§ 2) for g(^4)=^^(p, v) produce a number of //-function identities, 
Rogers-Ramanujan type identities, etc. These and other applications to combinato
rics are considered in detail in s urvey [10]. Here I discuss briefly a few examples 
taken from [8]. 

Setting deg e~ —degft=si9 deg ht=09 i£l9 s^Z+, define a Z-gradation ô04) = 
— ©it gfc(̂ 5 *); w e consider the corresponding specialization <ps(e

ai)=X\ i£L For 
the Z-graded Lie algebra q(A) = C(p9 o) the corresponding specialization of the 
denominator formula produces a theta-series type expansion of the product 
J]i(p(Xi)ni. Here (p(X) = JJk^1(l—Xk) and the sequence nt is the Möbius trans
form of the sequence dimp/modwi, i£N. This product is finite iff the automorphism 
G has a rational characteristic polynomial. In this case we obtain as a consequence 
the "very strange" formula [8]: 

"* k\m 

where Q is the half-sum of the positive roots of p, p. is an element of the dual 
to the Cartan subalgebra defined by ([i9ai)=si/2m9 i=\9...,«, and ( , ) is the 
Killing form. The simplest case tr=id gives Macdonald's decomposition for 
rçdimp p] a n d the Freudental- de Vries "strange" formula: ||ö|]

2=(l/24) dim p. 
The specialization (pj9 where I=( l , ..., 1), factorises the character formula: 

9 ï(chL(X))=nk^(1 ~Xky^\ where rk(X)= dim $k(A
T

9 s+T)-dim Qk(A
T

91) 
and Si=X(hi). This allows us to obtain new multivariable identities [8]. Let p be 
a simple Lie algebra of type An9 Dn9 2s6, E7 or E89 R be the lattice generated by 
the roots, h be the Coxeter number, Ä be the extended Cartan matrix. Let 
X0^i)* be defined by X0(h0) = l9 ^0(/zl)=0, i = l, ...,« = rank p and let <5=ao+0. 
Then for the g(JT)-module L(XQ) one has: 

chL(x0) = (2™vW\y\\2s+y))/<p{esy. 

A construction of g (^-modules L{X0) in terms of differential operators is given 
in [11] (in certain sense L(XQ) contains almost all simple g(^î)-modules with domi
nant highest weight). 



Highest Weight Representations of Infinite-Dimensional Lie Algebras 303 

4. The string algebra S is by definition a complex Lie algebra with basis e'Q9 ei9 

i£Z9 with the following commutation relations: 

[ei9 ej] = (/—J)CI+J + -J2" 'C2— !)*#. -j«fi. fo> «fl = 0. 

We set l)^=Ce0CBCe'09r=Z. In the same way as in §2 we define ^-modules 
M(X) and L(X)9 X€l)*9 and bilinear forms Fn9n£Z+; we set X(e0)—h9 X{e^ = c. 
For k9s£N9k?±s9 let (pkt&(h9c) denote the quadratic polynomial in h with the 
roots : 

-^-((13-c)(/c2 + s2)±l/c2-26c + 25(/c2-s2)-24/c5-2 + 2c) 

and let <pKk(h9 c)=h + (l/24)(k2-l)(c-l). Weset^H(Ä» c) = /7s|n <Ps>n/*- In particular, 

* . ( * . 0) = tf (* -^ ( (3s-2 W /s ) 2 -1 ) ) . 

THEOREM 4. (a) del Fa(h9 c)=77"E=1 ^f ("~°, w/te/'e /?(,y) w //?<? classical partition 
function. In particular the S-module M(X) is irreducible iff cpks(h9c)^0 for any 
k9s£N.(b)L(h+n9c)9n£N9 is a subquotient of M (h9c) iff there exists nl9 ..., nk£N 
such that \l/rJ(h+n1+...+ni^l9c) = 0 for /= l , . . . , / c , and n=2!?1i-

COROLLARY, (a) The module M(h9 0) over the Witt algebra is irreducible iff 
A^(l/24)(w?2-l), m £ Z + . (b) (Goldstone conjecture). The S-module M(h,l) is 
irreducible iff h^\m*9 m£Z+. One has chL(~m\ 1) = ^ " 1 ( 1 — e,,I+1), where 
<P=JJi^i(\~~e1)' F°v lhc^R9 A>05 o l , the S-module M(h9c) is irreducible. 

Added in proof. For p = 2i8 the specialization e3 = X9 e
y= 1, y£R, of chL[^0] give 

[Xj(X)]lj3
9 where j(X) is the modular invariant. This is related to recent discoveries 

about the Monster simple group. 
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Generators and Relations in Algebraic Ä-Theory 

Wilberd van der Kalten 

Despite the transformation of algebraic AT-theory by the introduction of higher 
algebraic /C-theory, it still makes sense to look at matrices in order to get a better 
understanding of K^ and K2. I will discuss a sample of results in which this classical 
approach plays a role. If anything, this sample should give a fair idea of my own 
interests. For a more balanced overview of algebraic /^-theory and some 
motivating background I may refer to the proceedings of the two previous Inter
national Congresses. (See the talks of Quillen, Bass and Gersten at Vancouver and 
the talks of Swan, Tate, Karoubi at Nice.) 

The approach I have in mind can be illustrated with the Bass-Milnor-Serre 
solution of the congruence subgroup problem for SL„. This is the problem to 
decide if each subgroup of finite index in SL„(6?) contains a subgroup SL„(0, /) = 
ker (SLn(0)-+SLn(ß/I)) for some ideal / of 0 when 0 is, say, the ring of integers 
in a number field. To answer this question (for n^3) they had to compute the 
relative X-group SK1(fi9I) for every ideal / of 6. (Definitions of Kx and K2 

groups will be recalled below.) The computation of SK1((99I) involved several 
steps. First a stability theorem was proved stating that the stabilization maps 
SKi(r9(99I)-+SK1(ß)9I) are surjective for r^2 and injective for r^3. Next the 
prestabilization problem was solved, i.e. generators were given for the kernel R of 
SK± (2, 0,1) + SKi (3, 0, /) . By choosing generators and relations for SK± (2, 0,1)/R9 

which is thus isomorphic to SKX{G)9I)9 a presentation for SK1{69I) was then 
obtained, the presentation by Mennicke symbols and their "universal" relations. 
Test maps were found (with values in the group of roots of unity in Q)9 yielding 
lower bounds for SKt{(991). Finally, the arithmetic of the ring was further exploited 
to compute SK1(&9I) exactly. Thus, finding the presentation for SK^&.I) was 
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an important step, but it was by no means the final step. I will ignore this observation 
and mainly look at stability for Kx and K2 and presentations for K2. I should 
remark that if stability sets in later than in the situation above, one tends to get less 
concrete information, when trying the same approach. 

1. Basic notions. Let A be a ring (always associative with unit). We embed the 
group GLn(A) into GLn+r(A) by means of the stabilization map M •-•(J* J), 
where 1 is the identity in GLr{A). The direct limit or union of the GLn(A) we 
call GL(A) or GL^^) , the stable general linear group. For a£A9 zVy, the 
elementary matrix ei}(d) has ones on the diagonal, a at the intersection of the ith 
row and the jth column, and zeroes elsewhere. The subgroup of GLn(A) generated 
by the elementary matrices is called En(A)9 the elementary subgroup. We again 
have stabilization maps En(A)-+En+r(A) and we put E(A)=E„(A)=1in\„ EJA). 
It turns out that E(A) = [GL(A)9 GL (A)] and we put K1(A) = GL(A)/E(A)9 

which is thus abelian. A transvection in GLn(A) is a linear transformation of the 
form \+vaw where l=id, v is a column of length n9 a£A9 w is a row of length 
n with wv=09 and w is unimodular (i.e. there is a column y with wy=l£A). 
Let T„(A) denote the subgroup of GLW(,4) generated by transvections. More 
generally, if / is a two-sided ideal in A9 let En(A91) be the smallest normal sub
group of En(A) containing the elementary matrices etJ(t) with t£I9 and let 
Tn(A9I) be the group generated by the transvections l+vaw with a£l. (So Tn(A, I) 
contains En(A9I).) If ws>3, then EH(A9I) is generated by the ^•ï(fl)eÏJ(0^j,(— a) 
with t£l9 a£A9 and, as always, zVj (cf. [3, Appendix 1]). If, moreover, A is 
almost commutative (i.e. finitely generated as a module over its center), Suslin 
has shown by a localization technique that En(A9I) = Tn(A9I)9 so that En(A9I) 
is a normal subgroup of GLn(^). (This usually fails for n=29 even if A=I.) 
We put K±(n9 A) = GLn(A)/En(A). This pointed set is thus often a group, though 
not always abelian. (I have been told that it is not abelian for « = 15 when A is 
the ring of continuous real valued functions on the product of two 7-spheres.) 
The stabilization maps for the GLm and Em induce stabilization maps Kx(n9 A)^ 
Kx(n+r9A). Note that such a map is injective if and only if GLn(A)nEn+r(A) = 
En(A). Similarly we have K1(n9A9I) = GLn(A9I)/En(A9I)9 where GLn(A9I) = 
kev(GLn(A)-+GLn(A/Ij)9 and we write KX{A9I) for K^A.I). If A is 
commutative, the group SK1(n9A9I) is the analogue of K^{n9A9I) with GL„ 
replaced by SL}I. 

While K± measures when matrices differ by a product of elementary matrices, 
K2 measures those relations between elementary matrices which depend on the ring. 
(And KQ measures relations between relations, cf. [3], as is illustrated nicely by K. 
Igusa's recent concrete description of an element of order 16 in K3(Z). So the 
approach with generators and relations even seems to penetrate K3 a little.) For 
«s>3 the Steinberg group St„(^l) is defined by the following presentation. Take 
a generator xu(a) for each ey(fl) in i?BC4). Take as defining relations the following 
universal relations between elementary matrices (the Steinberg relations) 
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xij(a)xij(b)=xiJ(a+b); [x^a), xjk(b)]=xik(ab); [x^a), xkI(b)] = l when j^k9 iV/. 
There is an obvious map from St„(/4) onto E„(A) and its kernel is called K2(n9 A). 
(For n=2 one more type of relation must be added to the list.) As usual we have 
stabilization maps and we write St(A) = St00(A)9 K2(A)=K2(<x>9A) for the respective 
limits. Then K2(A) is the center of St(v4) and St (A) -+• E(A) is a universal central 
extension so that K2(A)=H2(E(A)). (If G is a group H2(G) stands for H2{G9Z) 
with trivial action on the coefficients.) One can define an analogue, St*(A)9 of 
St„(A) by taking a generator for each transvection in GLn(A) and taking defining 
relations which mimic certain universal relations between transvections. This has 
the advantage that ker (St*(A)-+T„(A)) is automatically central in St*(y4). More
over, if A is almost commutative and n ̂  4 it can be shown that the isomorphism 
E„(A)-+T„(A) induces an isomorphism St„(A)-+St*(A). So then K2(n9A) is also 
central. But I don't know if it is central for n = 39 even for a polynomial ring in two 
variables over F2. For n = 2 counterexamples are known. 

If / is a two-sided ideal in A9 the double D is defined as the subring of AXA 
consisting of the (a9b) with a—bÇ.1. The relative Steinberg group St(A9I) is 
obtained as follows. (See Keune and Loday, References [4]-|5J.) The projection 
onto the first factor, D-+A9 induces a homomorphism St (D)-+ St (A). Take its 
kernel. It contains commutators [x12((t9 0)), x21((09 u))~] for t9u£l. Divide by the 
(central) subgroup generated by them. The result is St (A91). (One can also define 
St {A91) in St*-style, without passing to the double.) Put K2(A9 7) = ker (St (A91)-+-
E(D)). Recall that in higher algebraic AT-theory there is a long exact sequence 
... K3(A/I)^K2(A9I)+K2(A)+K2(A/I)-+K1(A9I) ...9 which is the long exact 
homotopy sequence of the map BGL+(A)-+BGL+(A/I). The above definitions 
are compatible with this. 

2. Stability theorems. Conjecturally such theorems exist in a wider context but 
here we look only at K2(n9 A) and Kx{jt9 A, I). (Special case A=I.) So we ignore 
K0. For special rings there are special results such as Dunwoody's theorem that, 
when A is euclidean, K2(2, A)-+K2(r9 A) is surjective for any rs>3. We now 
discuss the general results. The basic tool to prove them is Bass's stable range 
condition SRW. We say that A satisfies SRH if, for any unimodular row 
a=(al9 ..., a„) of length n over A9 there are tl9 ...9t„_1 G A such that 
(a1-]-antl9 ...9a„-1+ant„^1) is unimodular. Let me say that A satisfies SR* 
(fe-fold SR„) if, given unimodular rows a(1), ...,a(fc), each of length n9 there are 
tl9 ....tn-^A which do the job for all k of them simultaneously. (There also 
exist stable range conditions for ideals. We ignore them here.) Recall that, for 
a right ideal / of A9 a unimodular row (al9 ...,fl„) is called J-unimodular if 
a1 — \Ç.J9ai€J for />1 . Two such rows are J-equivalent if one can be obtained 
from the other by a finite sequence of steps in which ai is replaced by a^a^t 
with 7V/ and t£A if j>l9t£J if 7 = 1. For n^ 2 consider the following conditions: 

(A„) A is finitely generated as a module over a central subring R9 and this R has 
a noetherian maximal spectrum of dimension ^n—2. 
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(B„) A satisfies SRH. 
(C;I) A satisfies SR*, 
(DJ For any right ideal J of A9 all/-unimodular rows of length n are /-equi

valent. 
(D^) Same with principal right ideals J=aA. 
(EH) For all two-sided ideals / of A, K^r, A9I)-^K1(A91) is surjective for 

r^n—l and injective for r^n. 
(F„) K2(r9 A)-+K2(A) is surjective for r^n and injective for r^n + l. 
Obviously, (D„)=>(D,',) and (CJ^B, , ) . 

THEOREM (BASS, VASERSTEIN, DENNIS, SUSLIN, TULENBAYEV, VAN DER KALLEN). 

For n^29 (A„)^(BW)^[(CW+1)&(D„)]^E„ and [(Cw+1)&(D0]=>(FH). 
For n^\ (A„)=KQ). 

So under the quite natural condition (A„) we have the stability results (E„), (F„) and 
I have indicated possible technical intermediate results. Using [(C/1+1)&(D^)]=>(F„), 
which is new, and the work of Bass, Milnor, Serre and Vaserstein on the 
congruence subgroup problem for SL2, I can now show the following. Let A be 
a subring of the algebraic closure of Q. Then if A is not contained in the ring 
of integers of its field of fractions or if this field is not totally imaginary, K2 (2, A) -*• 
K2(A) is surjective and K2(39 A)^K2(A) is an isomorphism. This should be 
contrasted with a result of Dennis and Stein saying that K2(29A)^K2(A) is not 
surjective when A is the ring of integers in Q{fd) where d is a squarefree rational 
integer, rf< —11, d congruent to —1 mod 8 or to —3 mod 9. Let me finish this 
section by mentioning that Vaserstein has solved the pre-stabilization problem for 
K± when A sa tisfies condition (A„) of the theorem and A /Rad (A) has no zero di visors 
(Rad = Jacobson radical). That is, he gave generators for ker (K^n — 1, A, / ) - * 
KX(A,I)). 

3. Presentations for K2. Presentations for K2 have been obtained in two cases 
where stability is very strong, namely for commutative local rings and for relative 
K2 of a radical ideal in a commutative ring. 

(More precise results will follow.) 
For a division ring D stability is also very strong but we do not know in general 

how to get explicit generators for K2{D). However, the pre-stabilization problem 
has been solved quite satisfactorily by Rehmann. He describes K2(D) as the kernel 
of a map UD-+[D*9 D*]. Here UD may be viewed as St^D^R where St^D) 
is some sort of rank 0 Steinberg group and R stands for ker (S^ (Z>) -^St (D)). 

Let us restrict ourselves from now on to commutative rings. If R is semilocal 
we know by the above that K2(29 R)-+K2(R) is surjective. In fact K2(R) is generated 
by the Dennis-Stein symbols (a, b)12. Here 

<fl, b)12 = A:2i(-fc(l+flb)~1)^i2(^)x21(b)^12(-a(l-r-ab)~1)(fe12(l-r-ab))-:L 

is defined for a9b£R when l+ab£R* = GL1(R). One has (ab9 1 >12 = 1, which 
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might be used as a definition of A12(l+fl6). Anyway, recall that hu(t) is defined 
when t£R*9 and that its image in E(R) is a diagonal matrix. If t9u£R*9 the 
Steinberg symbol {/, u}12 is defined by h12(t)h12(u)={t9 u}12h12(fu). (If both 
1-ftffi and b are units, then (a9 b)12={l+ab9 b}12.) Let US(R) denote the 
group of universal Steinberg symbols, which has a generator {t9 u} for each pair 
t9u£R* and which has as defining relations (as an abelian group) {t9uv}= 
{/, u}{t9 v}; {tu9v}={t9v}{u9v}; {x9 1— x}=l . (As the relations have to make 
sense, one needs that x and 1 —x are units.) 

THEOREM (MATSUMOTO). For a (commutative) field F9 {t9 u} »->{/, u}12 defines 
an isomorphism US(F)-+K2(F). 

I have shown that this result also holds for a ring satisfying SR2, e.g. a local 
ring whose residue field contains at least 6 elements. But if one is not working 
with fields it is often better to use Dennis-Stein symbols. 

Following Maazen and Stienstra let us define the group D(R) as follows. Take 
a generator (a9 b) for each pair a9b£R with l+ab€R*. Take defining relations 
(as an abelian group) 

(Dl) (a9b)(-b, -*> = 1. 

(D2) (a9 b)(a9 c) = (a9 b + c + abc). 

(D3) (a9 be) = (ab9 c)(ac9 b). 

(Stienstra now tells me I should use a different sign convention with (a9 b) replaced 
by (—a9b).) For any commutative ring we have homomorphisms US(R)-+ 
D(R)-+K2(R) sending {t9 u} to <(f- l )w-\ u) and (a9 b) to (a, b)12. 

THEOREM. If R is a commutative local ring, D(R)-+K2(R) is an isomorphism. 

The full proof of this theorem depends on work of Maazen-Stienstra, Dennis-Stein 
and myself. (Dennis and Stein in turn use the work of Matsumoto.) I have proved 
the same result for a commutative ring satisfying SR2. 

Now consider an ideal / with 7çRad(jR). (R is still commutative.) The group 
D{R9I) is then defined just as D(R), with the following modifications. Take 
generators (a9 b) only if a or b is in /. Take relation (D3) only if a or b or c 
is in /. (And, as before, only consider relations that make sense.) 

THEOREM. D(R9I)-+K2(R9I) is an isomorphism. 

Here one sends (a9b) to {{a9 d)9 (0, b))12 or to ((09a)9(b9b))12. (When both 
make sense they are equal.) If R-+R/I splits, the theorem is due to Maazen and 
Stienstra. The present form was noted by Keune. 

4. An example. Let J? be a 1-dimensional commutative ring, finitely generated 
over a finite field. Let A=R[T]. We ask when GL4(/4) is finitely presented. 
Solution: Let cpn denote substitution of T" for T. Let / > 0 . Put V„=Ki((p„). 



310 Wilberd van der Kallen: Generators and Relations in Algebraic ^-Theory 

As cpn makes A into a free module of rank n over itself, we also have a transfer 
mapF„: K^Äj^K^A), such that ^ „ ^ « ( i d ) . Further, if aÇ.NKi{R) = 
ker (£j 04)-^(2?)), there is a natural number M such that jF„(a)=0 for 
n^*M. (This is clear in BQ(Nil) context.) From these properties of Fn9 Vn it 
follows (cf. Farrell) that NK^R) is either zero or not finitely generated. By Vaserstein 
A satisfies SR3, so that Kt(49 A)c*Ki(A) for i = l, 2. 

Now suppose R is regular. Then Ki(A)^Ki(R) is finitely generated by Quillen, 
so KX(49A) and K2(49A) are finitely generated. It follows, cf. Soulé and Rehmann, 
that GL4G4) is finitely presented. (For smaller matrices such an argument would 
fail. Behr has shown that SL3(FJT]) is not finitely presented, despite the fact 
that SK1(39Fq[T])=K2(39Fq[T])=0. Now if q=2 note that SL3(FJT]) = 
GL3(F„m).) 

Conversely, suppose GL±(A) is finitely presented. Then Kx(49 A) is finitely 
generated, so NK±(R) is finitely generated and thus NK1(R)=Q. By Dennis there 
is a "noncanonical" homomorphism p: H2{GL^{Aj)^K2{A) whose composition 
with H2{E±(A))-*H2{GLM)) is the usual map H2{E^A))-^K2{A). So p is 
surjective. Now H2 of a finitely presented group is finitely generated so NK2(R) 
must also be zero. By Vorst this can only happen if R is regular. 
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Algebraic Groups and Reduced ^-Theory 

V. P. Platonov 

Introduction. This report is an exposition of the main results of reduced X-theory, 
which was developed by the author in 1974-1976, and its applications to arithmetic, 
structural, and geometric problems in the theory of algebraic groups. 

Originally, the main stimulus for the development of reduced jK-theory was the 
old Tannaka-Artin problem (see [1] and [2]): suppose A is a finite-dimensional 
simple algebra of degree n with center K and SL(\9A) is the subgroup of elements 
of the multiplicative group A* for which the reduced norm Nrd^/Jçr has the value 1 ; 
is it true that SL (1, A)=[A*9 A*]l Then it was discovered that the Tannaka-
Artin problem is of great significance in the theory of classical groups, and 20 years 
later Kneser and Tits put forth a more general conjecture in the theory of algebraic 
groups : for a simple, simply connected, jK-isotropic, algebraic group G9 the group 
GK/c(GK)9 where c(GK) is the center of GK9 is an abstract simple group ([3]; discus
sions of this conjecture can be found in [4]-[6]). Still later, in the development of 
algebraic ^-theory, there appeared other connections with the Tannaka-Artin 
problem, which in contemporary terms is formulated as the question of the triviality 
of the reduced Whitehead group SK^^SLQ.A)/^ A*] (see [7]). 

Rather unexpectedly, in 1975 this author showed [8] that S K ^ ) can be nontrivial; 
hence the Kneser-Tits conjecture was also resolved negatively. Then there naturally 
arose the problem of investigating and calculating the group SK^A) depending 
on the field K and the structure of the algebra A9 and this is responsible for the 
content of the reduced ^-theory constructed in [9]-[13]. 

Of central importance here is the investigation of S K ^ ) for division algebras 
A over complete, discretely valued fields K. The main tool is a new method, developed 
in [10], based on the deep dependence of S K ^ ) on properties of the ramification 
(singularities) of A over formally analytic fields. 
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1. The reduced Whitehead group over local fields. Suppose A is a division algebra 
of degree n over a complete, discretely valued field K. Let 0K and 0A denote 
the ring of integers of K and A9 respectively, pK and yA the prime ideals correspond
ing to <SK and 0A, and let Ä be the residue division ring @A/pA and K=0K/pK. 
If a£(9A9 we denote by ä its image in Ä. In what follows we will assume that the 
center of Ä is separable over K. 

Let Z{A) be the center of Ä. Then [Z(Ä):K) = e(A)9 where e (A) is the 
ramification index of A9 and Z(Ä) is a cyclic extension of K9 n — re{A)9 where 
[Ä:Z(Ä)]=r*. 

Our aim is to reduce the calculation of S K ^ ) to the calculation of SKx(yl). 
An important role here is played by the 

CONGRUENCE THEOREM [10]. (1 + p j n SL(1, A)cz[A*9 A*]. 
We must now describe the images of SL(1, A) and [A*9 A*] under reduction. 

PROPOSITION 1. SL (1, A) = {a^Ä/Nz^/K(NvdÄ/ZiÄ)(a)) = l} . 

PROPOSITION 2. If b£[A*9 A% then 

NvdÄ/m)(b) = ßi-° 

where ß^rdÄ/Z(Ä)(Ä) and a generates Gal(Z(Ä)/K). 
Put M=NrdÄ/ZiÄ)(Ä*) and Mx = Mr\Nz^A)IR(\)9 and let Ma_x be the image 

of M under the homomorphism a-^G{a)a"1. From the Congruence Theorem and 
Propositions 1 and 2 we immediately obtain the following 

COROLLARY. We have an exact sequence 

SKi(^) - S K ^ ) - Mj/M^,! - 1. 

The group M1/M<T_1 is exactly the group of special projective conorms of [10] 
and [16]. If SK1(Z) = 1, then SK1(A)^M1/M(T_1. In many cases the group of 
special projective conorms is effectively calculable and admits various cohomological 
interpretations. This is discussed in more detail in the next section. 

2. An explicit construction and exact formulas. Let k(x9 y) be the field of rational 
functions in x and y with an arbitrary constant field, and K=k(x,y) the field 
ofiterated formal power series, i.e. K=k(x)(y). If Rx and R2 are cyclic extensions 
of k9 they induce cyclic extensions of the fields k(x9 y) and K9 for which we use 
the same notation. Similarly, if GX and a2 are automorphisms generating the 
Galois groups Gal (RJk) and Gal (R2/k)9 we use the same notation for the 
extended automorphisms of the Galois groups Gal (RJk(x, y)) or Gal (RJK)9 etc., 
since it will always be clear from the context what we mean. 

Consider the cyclic algebras A(x9Ri) = (x9 Rl9ax) and A(y9R2) = (y, R29<r2) 
over the field k(x9 y). Form their tensor product A (R± 9R2) = A (x9 RJ (g)fe A (y9 R2). 
It is natural to ask: When is A(Rl9 R2) a division ring? A necessary condition is 
obviously that L=R±<g)k R2 must be a field, i.e. R± and R2 must be linearly disjoint 
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over k. It turns out that this condition is also sufficient and we have the following 
main theorem (Br (T/k) denotes the subgroup of the Brauer group Br (k) consisting 
of the elements that split over the field T). 

REDUCTION THEOREM [10]. Suppose that L=RX (g)fc7?2 is a field; then A(Rl9 R2) 
is a division ring and 

SK^A&u R2)) - Br(L//c)(Br(^//0Br (R2/k)). 

COROLLARY 1. For the field of rational functions k (x9 y) we have 

Card SKj (A (x, 7^) ® A (y, R2)) ^ Card [Br (L/k) Br (RJk) Br (R2/k)]. 

If k is a locally compact or global field, then the Reduction Theorem and the 
main results of class field theory enable us to calculate SKj (A (Rx, R2)) exactly. 
We mention some corollaries. 

COROLLARY 2. If k is a locally compact field, then SHL1(A(Rl9 R2))^ZfmZ9 

where m = ([Rj : k]9[R2: k]). 

COROLLARY 3. If k is a global field and [R1: k] = [R2: k]=p9 where p is a prime, 
then SKjL^fl?!, R2))^(Z/pZ)d~1

9 where d is the number of inequivalent valuations 
v19...9vd of k for which [Lv\ kv^ = [L: k]. 

Draxl [17] suggested another interpretation of the group MjMff_19 which 
replaces Br(L//c) Br^Rjlc) Br(R2/k) by the more conveniently calculable group 
J ï -^Gal (L/k9 L*), namely, 

S K ^ t o , R2)) - J Ï -^Gal (L//c), L% 

and gave the Reduction Theorem a somewhat more general form. 
We should mention that the construction of the tensor product in the Reduction 

Theorem arises rather naturally in connection with the well-known result of Witt [18] 
to the effect that, over a complete, discretely valued field K9 any algebra A modulo 
an algebra which is unramified over K is similar to a cyclic algebra. It is shown 
in [12] that, analogously, we can construct cyclic algebras A over the fields k(x, y) 
and k(x9y) for which SK^A)^!. It can be shown that such algebras over 
k(x9 y) account for all algebras with nontrivial reduced Whitehead group, i.e. the 
constructions under consideration are sufficiently universal. 

3. Infiniteness of SK^ and the inverse problem of reduced Â^-tlieory. A priori, the 
group SKi is Abelian of finite exponent. There arises a very natural problem, 
called the inverse problem of reduced jK-theory: which Abelian groups of finite 
exponent are realized in the form SK.!^)? It follows from the results of § 2 that 
S K J X ^ ) can be an arbitrarily large finite group; hence we must first clarify the 
question of the existence of algebras A for which SKj (A) is infinite. We do this 
by exploiting the odd behavior of S K ^ ) under extension of the ground field. 
Namely, we have the following constructive theorem [13]. 
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INFINITENESS THEOREM. Suppose Rx and R2 are cyclic extensions of degree 
n of a global field k such that [(Rl9 R2)v: kv]=n2 for some valuation v of k. 
Then for any Galois extension F/k contained in kv we have 

CardSKx^CRx, lQ®F(x9 y)) ^ rf*«-1; 

in particular, if F is an infinite extension of kt then S¥L1{A{Rl9R2)^F{x9yj) 
is an infinite Abelian group of exponent n. 

COROLLARY. For the field of rational functions F(x9y) we have 

C a r d S K ^ O c i y ® A(y9 BJ) > vF***-1. 
F(x,y) 

In the next section we will show that the Infiniteness Theorem actually provides us 
with all the machinery we need for establishing infiniteness of SKX (̂ 4). 

From the Reduction Theorem, the Infiniteness Theorem and from class field theory 
we obtain the following 

REALIZATION THEOREM. For any countable Abelian group M of finite exponent 
there exist an algebraic number field k and cyclic extensions R± and R2 such that 

SK^AiR^R^^M. 

4. Existence Theorem and stability in reduced Ä -̂theory. The results of the pre
ceding sections show that SKj £4) depends weakly on the structure of A as an 
algebra and that the calculation of SK^ (A) for an arbitrary algebra A is not 
a real problem. Therefore, it is natural to regard as the main problem the charac
terization of fields K for which the question of the triviality of SKX {A) can be 
answered positively or negatively. 

For finitely generated fields K (more precisely, for algebraic function fields of 
finite degree over a purely transcendental extension of the prime subfield) the 
solution of this problem is given by the following theorem [10]. 

EXISTENCE THEOREM. Suppose K is a finitely generated field. If the transcendence 
degree of K over the prime subfield is greater than 1 if char K=0 or greater than 
2 if char Ä^>0, then for any number m there exists a division ring A with center 
K such that Card SKX {A)>m. 

For a global field K we always have SK^ (A) = l (see [2] and [10]). Hence to 
obtain the final bound in the Existence Theorem we must settle the question of the 
triviality of SKX (A) for division rings A over fields of algebraic functions of 
one variable with global constant field. At present, even for K=Q(x)9 where 
Q is the field of rational numbers, the question of the triviality of SKX (̂ 4) is still 
open. 

Thus, the class of fields K for which we always have S K ^ ^ l , where A is 
a division ring over K9 is very restricted, and we are now close to a complete de
scription. 

For reduced Ä-theory itself, but particularly for its applications, a very important 



Algebraic Groups and Reduced TT-Theory 315 

question is that of the behavior of the reduced Whitehead group SKj under exten
sion of the ground field. It follows from the results of §§ 2 and 3 that SKX (A) 
can grow "pathologically" both under a large extension of K and, for example, 
under a quadratic extension of K9 and also under an extension F/K9 where the 
degree [F:K] is relatively prime to the degree of the algebra A. Nevertheless, for 
a purely transcendental extension of K we have the following key theorem. 

STABLITY THEOREM [11]. For a purely transcendental extension F of an arbitrary 
field K we have 

SK 1 ( i4®F)ssSK 1 ( i l ) . 

We should mention that the proof of our Stability Theorem is connected in a natural 
way with the principal stability theorems in algebraic J£-theory and is obtained by 
direct application of those theorems. 

5. Applications of reduced AT-theory. Most published applications pertain to the 
weak approximation problem and the problem of the rationality of algebraic varieties 
of simply connected groups. They are based on the Reduction Theorem and the 
Stability Theorem of reduced Ä-theory. 

Let VK = {v} be the set of all inequivalent valuations of a field K9 and Kv the 
completion of K relative to v. For a connected i£-defined algebraic group G and 
a finite set SaVK we consider the topological direct product Gs=JJoesGK . The 
group of i^-points GK is diagonally embedded in GS9 and in this sense we may 
regard GKczGs. If the closure GK = GS9 then we say that G possesses the weak 
approximation property relative to S. The concept of weak approximation in 
an algebraic group does not depend on the field K. In this connection, Kneser 
[19, pp. 51-52], posed the problem of investigating weak approximation in simply 
connected algebraic groups over arbitrary fields, and conjectured that the group 
GK = SL(r9 A)9 where A is a finite-dimensional division ring with center K9 

possesses the weak approximation property. 
Since SL (r, A ®K Kv) SL (r, A) ^ SL (1, A (g)K Kv) SL(1,^), we may limit our

selves to the case r=l. It turns out that the following unexpected assertion solving 
the above-mentioned problem of Kneser negatively is true. 

WEAK APPROXIMATION THEOREM [11]. There exist division rings A of arbitrary 
degree m=n2 over a suitable field such that for an infinite set W={wt} of discrete 
valuations of K the closure SL (1, ^4)^SL(1, A®Kw^m

9 in addition, the orders 
of the groups SL(1, A®KW)/SL (1, A)9 which express the deviation from weak 
approximation, are finite, but are not bounded in the aggregate. 

Indeed, in [11] this theorem is given in a more explicit form and from the proof 
one can obtain an effective construction of W. 

Ever since Serre showed in 1961 that the variety of a semisimple, multiply connected, 
^-defined algebraic group G need not be rational over K9 it was the general 
opinion that the variety of a simply connected group G is rational. First it was 
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necessary to settle this question for the normed varieties defined by the group 
GK = SL(l9A)9 where A is a division ring over an arbitrary field K. It turns 
out that the Stability Theorem directly implies the following two propositions. 

PROPOSITION 1 [14]. If GK=SL(l9A) defines a rational K-variety, then there 
exists a number m such that each element of SL (1, A) is a product of at most 
m commutators in A*; in particular, SK1(A) = 1. 

Recall (see [20]) that points a9b^GK are called ^-equivalent if they can be joined 
over K by a finite number of rational curves. Let GK/R denote the set of ^-equi
valence classes, on which a group structure is naturally induced. If [1] is the identity 
class in GK/R9 then obviously [A*9 A*]^[l]9 and it follows from the Stability 
Theorem that [A*9.4*] = 1, i.e. we have 

PROPOSITION 2 [21]. SK^ (A) s SL (1, A)/R. 

It follows from the results of sections 2-4 that SK^ (A) is nontrivial in most cases 
hence, in view of Proposition 1, the varieties of simply connected groups defined 
by SL (1, A) are very seldom rational. At the same time, as noted in [14], there 
already exist algebras A over rational function fields K such that SKX (A) = 1, 
but the variety of SL(1,^4) is not rational. 

Several rather natural questions should be solved within a short time. The most 
important and difficult among them is: when does SK1(A)=\ imply the 
rationality of SL(1,^4)? The answer is unknown even for the case where K is 
an algebraic number field. We note also the case of algebras A of prime index; 
here we always have S K ^ ^ ^ l , and we can conjecture that the variety of SL(l,v4) 
is rational. 

6. Other types of algebraic groups. From the viewpoint of the Kneser-Tits conjec
ture there naturally arises the problem of extending results the obtained for SL(«, A) 
to the groups of ^-points GK of arbitrary simple, simply connected, j^-defined 
algebraic groups. First, of course, we must solve the main question of the validity 
of the Kneser-Tits conjecture for other types of simple algebraic groups, the most 
interesting of which are the unitary groups. By analogy with the calculation of 
SKX (A)9 it is shown in [22] that for unitary groups the Kneser-Tits conjecture 
has, in general, a negative solution, and from the viewpoint of characterizing fields 
the fine between a positive and negative answer turns out to be the same as for the 
group SL (n, A). There also arises the problem of constructing the reduced unitary 
X-theory associated with the calculation of the reduced unitary Whitehead group 
SUKj (A) defined for any division ring A with an involution of the second kind 
(see [10] and [22]). This problem has been essentially solved in the new paper of 
Jancevskii [23]. 

On the other hand, for a number of classical fields (locally compact, global func
tional) the Kneser-Tits conjecture has a positive solution in the general case (see 
[6]). A more detailed discussion of these results can be found in Tits [15]. 
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Matrix Problems 

A. V. Roiter 

The subject I shall talk about may be discussed on several different levels. I shall 
start from a very naive point of view. 

If we have a matrix over an arbitrary field, we can reduce it by the elementary 
transformations of its columns and rows to the form (-ff^), where E is unit. 

But assume that we have a matrix divided into n parts by n — 1 vertical lines, 
and the question is: to which form we can reduce this matrix by all elementary 
transformations of its rows and by elementary transformations of its columns only 
inside of each part but not across the lines. 

For n=2 this problem is trivial, for n = 3 it is not difficult, for n=4 such 
classification was done independently in different ways by Nazarova [1] and by 
Gelfand, Ponomarev [2]. For 77 >4 this problem is not solved and contains the 
classical unsolved problem of the classification of pairs of linear operai ors. 

Of course we may divide a matrix into blocks not only by vertical, but also by 
horizontal lines. Furthermore we may allow addition of columns of different 
blocks for example from left to right but not in the other direction, and so on. 

Everybody can construct as many such matrix problems as he wants. 
Such problems very often arise in all branches of representation theory. For 

example the problem we shall talk about, for n=49 first came up in connection 
with the classification of integral representations of the noncyclic group of order 4 
(Klein 4-group). 

Representations of quivers which I shall define below was introduced by Gabriel [3] 
to describe finite dimensional algebras with radical square 0, having finitely many 
indecomposable representations. Representations of partially ordered sets (posets) 
was introduced by Nazarova and myself [4] in connection with the second Brauer-
Thrall conjecture which was proved by us [5] in the case of perfect field. 
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This conjecture was: if a finite dimensional algebra over an infinite field has 
infinitely many indécomposables then there exist an infinite number of dimensions 
such that for each of them there are infinitely many indécomposables. Bondarenko, 
Drozd, on one side and Ringel on the other side recently have independently given 
final answer to the question for which finite groups it is possible to classify all its 
modular representations. They use methods similar to the methods I discuss 
here. 

But matrix problems arise not only in representation theory. First of all I must 
mention here the remarkable work of Szekeres [6] who already in 1949 enumerated 
all finite groups which contain a normal abelian subgroup of prime index, really 
by solving a very important and difficult matrix problem. This problem may be 
formulated as the problem of classification of pairs (A9 B) of linear operators 
such that AB=BA=0. 

It is very interesting that the same matrix problem arose and was independently 
solved (in a somewhat more general situation) by Gelfand and Ponomarev [7] 
to describe the Harish-Chandra modules of the Lorentz group. In his report to 
the Congress in Nice Gelfand stated that the classification of the Harish-Chandra 
modules of SL (2, R) is equal to some matrix problem, which was solved by 
Nazarova and myself in [8]. I. N. Bernstein, I. M. Gelfand and S. I. Gelfand have 
recently proved that the classification of Harish-Chandra modules for every group 
is equivalent to some linear algebra problem. In some cases matrix problems may be 
invariantly defined in very natural and beautiful form. First of all I mean the notion 
of quiver representations. Quiver is a set of points connected by (directed) arrows. 
Representation of a quiver over a field k is given if to each point i is assigned a finite 
dimensional vector space Vi9 and to each arrow going from i to j there is assigned 
a linear mapping afj- from Vt to Vj. As is known, quivers having finitely many 
in decomposable representations correspond to Dynkin diagrams without double 
arrows [3], [9], and quivers such that their representations may be classified correspond 
to extended Dynkin diagrams without double arrows [10], [11]. Another class of 
matrix problems having good invariant definition is representations of posets. 
We have a representation of a poset S over a field k if there is some finite dimen
sional vector space V over k and to every element s£S corresponds a subspace 
VsaV such that if i^j then V^ Vj. Posets having finitely many indecomposable 
representations are described in [12] and such posets that all their representations 
may be classified are described in [13]. 

But it is not so easy to give nice definitions of all matrix problems. Kleiner and 
I have attempted to give a general definition of a matrix problem by introducing 
the concept of representations of a differential graded category (DGC) [14]. 

A graded category U over a field k is a category where for every pair (a9 b) of 
objects the set H(a9 b) is a set theoretical disjoint union |J?10 Hi(a9 b) of k vector 
spaces Hi9 and if a£/7£(fl, è), ß£Hj(b9c) then aß€Hi+j(a9c). 

We shall say that this category is DGC if for any (a9 b9 i) there is a linear operator 
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d from Hi(a9b) to Hi+1(a9b) such that the Leibnitz formula 

d(aß) = rf(a)/?+(-l)dcs*arf(j3) 

holds, and d2=0. We say that DGC is semifree if it is freely generated by its 
morphisms of degree 0 and 1. 

For every semifree DGC U in [14] is constructed the category R(U9 k) of 
representations U over a field k. 

The objects of R(U9 k) are functors from the category U0 (contains only 
morphism of degree 0 from U) to the category V of all finite dimensional vector 
spaces over k. 

The definition of morphisms of R(U9 k) is not so short but I shall try to give 
a sketch of this construction. 

If DGC U has only a finite set $ of objects (it holds for real matrix problem) 
we may construct a differential graded algebra U9 whose elements are all linear 
combinations of morphisms in U. The multiplication in Ü is induced by the 
composition of morphisms in U when such composition is defined, and by setting 
a/?=0, if a and ß are morphisms in U such that the composition aß is not 
defined in U. Then Ü0 will be finite dimensional algebra. 

We may construct U0 bimodule A which as right module is Ü1^Ü0 and 
left multiplication is defined by the formula 

a(ft y) = (aß + d(a)y9 ay) where a, y£ Ü09 ß£ L^. 

Every functor S: U0-+V induces some homomorphism from Ï70 to algebra 
of all matrices which acts on the vector space Vs=(B2Ii£iS(i)' If T is another 
functor from U0 to Kthen set Hom(K s , VT) of all linear operators from Vs to 
Vt may be considered as Ï70 bimodule. 

Now we may define the set of morphisms H(S9 T) in the category R(U9 k) 
as the set of ÜQ bimodule homomorphisms from A to Hom(F 5 , Vt). To define 
the multiplication of morphisms in R(U9k) we must mention that d: U1-^U2 

induces some Î70 bimodule homomorphism <3 from A to A®A. Now if a£A 
and @(a)=2\=1aï®a'i9 we define aß{d)=2!l

t
i=1a{ai)ß{a!) where a, ß are morphisms 

is R(U9k). 
In some sense the notion of representations of DGC may be considered a 

generalization of the notion of natural equivalence of functors. 
It seems to me that DGC language may be convenient to consider several 

ideas playing the main role in this theory. 
Fiist of all in this language may be formulated some algorithm which for every 

DGC having finitely many indecomposable representations gives after a finite 
number of steps the classification of all these representations. By this algorithm it is 
very easy to prove (see [14]) the first (but not the second !) Brauer-Thrall conjecture. 

Furthermore for every DGC may be defined some quadratic form similar to 
the quadratic form introduced for quivers by Gabriel and Tits (see [3]). As it is 
known there is a correspondence between indecomposable representations of 
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a quiver of finite type and the roots of its quadratic form, It may be proved on one 
hand by using Coxeter functors [9] and on the other hand it immediately follows, 
as was shown by Gabriel, from that fact, that for every indecomposable representa
tion its endomorphism ring has dimension 1 (over the field k). DGC with this 
condition we called Shurian and proved [15] some necessary and sufficient condi
tions for a free DGC (see [14]) to be Shurian. 

I shall finish by mentioning that Nazarova and I recently have proved for every 
triangular regular free DGC U of tame type [14], that if f(x) = l9 where / is 
quadratic form of DGC U9 and x is vector with integer coefficients, then in 
dimension X there is some indecomposable representation of U9 and if f(x)=09 

then in this dimension there are infinitely many indécomposables. 
I am very thankful to Idun Reiten for her useful advice in mathematics and 

English. 

Bibliography 

1. L. A. Nazarova, Representations oj a tetrad. Izv. Akad. Nauk. SSSR. Ser. Mat. 31 (1967) = 
Math USSR, Izv. 1 (1967), 1305—1322. 

2. I. M. Gelfand and V. A. Ponomarev, Problems of linear algebra and classification of quadruples 
of subspaces in a finite-dimensional vector space, Coll. Math. Soc. Janos Bolyai 5 Hilbert Space 
Operators, Tihany, Hungary, 1970. 

3. P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math. 6 (1972), 71—103. 
4. L. A. Nazarova and A. V. Roiter, Representations of partially ordered sets, Zap. Naucn. Sem. 

Leningrad. Otdel. Mat. Inst. Steklov. 28 (1972), 5—31. 
5. Categorical matricialproblems and the conjecture of Brauer-Thrall preprint, Institute 

of Math, of the AN USSR, Kiev, 1974. 
6. G. Szekeres, Determination of a certain family of finite metabelian groups. Trans. Amer. Math. 

Soc. 66 (1949), 4—43. 
7. I. M. Gelfand and V. A. Ponomarev, Indecomposable representations oj the Lorentz group, 

Uspehi Mat. Nauk 23 (140) (1968), 3—60. 
8. L. A. Nazarova and A. V. Roiter, On a problem of I. M. Gelfand. Funkcional. Anal, i Prilozen. 

7 (1973), 54—69. 
9. I. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, Coxeter functors and Gabriel quivers. 

Uspehi Mat. Nauk. 28 (170) (1973), 19—33 = Russian Math. Surveys 28 (1973), 17—32. 
10. L. A. Nazarova, Representations of quivers of infinite type, Izv. Akad. Nauk. SSSR 37 (1973) = 

Math. USSR Izv. 7 (1973). 
11. P. W. Donovan and M. R. Freislich, The representation theory of finite groups and associated 

algebras, Carleton Math. Lecture notes, 1973. 
12. M. M. Kleiner, Partially Ordered sets of finite type. Zap Naucn. Sem. Leningrad. Otdel. 

Mat. Inst. Steklov. 28 (1972), 32—42. 
13. L. A. Nazarova, Partially ordered sets of infinite type. Izv. Akad. Nauk. SSSR 39 (1975), 

963—991. 
14. M. M. Kleiner and A. V. Roiter. Representations of differential graded categories, Matrix 

problems. Kiev, 1977, pp 5—70. 
15. V. M. Bondarenko, N. S. Golovashuk, I. A. Ovsienko and A.V. Roiter, Shurian Matrix prob

lems, preprint, Kiev, 1978. 

KIEV, U.S.S.R. 



TpytfM Me^c^yHapoAHoro Konrpecca MaTeiwaTHKOB 

XejibCHHKH, 1978 

npOÖJICMa CoKpaiHeHHÎÏ «AH IIpOeKTHBHblX 
Mojiyjieû H E;iH3KHe Bonpocbx 

A. A. Cycjiini 

KjiaccH(J>MKaî iiK KOHCHHO nopo>KAënHbix npoeKTHBHbix MOAyJieH naA 3a^,anHWM 

KOJIMJOM A9 icax npaBHJio, pa3ÖHBaeTCH na ABe BecbMa pa3jiifuiii>ie 3aAaiiH. IlepBafl 

H3 HHX, KJiaCCH^HKaiHW C TOHHOCTbK) AO CTaÔHJlbHOrO H30MOp4)H3Ma, CBOAHTCJI 

K M3yiienHK) rpynnbi rporeHAHKa K0(A) KOJibija A M üBjmeTCJi TpaAHijHOHHOH 

AJiH ajireöpamecicoH Ä'-TeopHH. BTopaa H3 B03HHKaiomnx 3aAaii5 npo6jieMa COK-

pameHHir, H3yHena B 3naHHTeJibHO Memmen CTenem*. EojibiuHHCTBo pe3yjibTaTOB 

B 3TOH oöJiacTH, nojiynennbix ßo 1972 ro^a, OTpa^ceno B o63ope Bacca [2]. Ha-

CTOALUHH AOKjiaß nocBaïuën HeicoTopbiM i o He^aBnnx pe3yjibTaTOB, cBjnaHHbix 

C 3TOH npo6jieMOH. OßHOH H3 OCHOBHblX TeopeM O COKpameHHH ̂ BJUieTCÄ 

TeopeMa 1 (Bacc [1]). Ec/iu A — KOMMymammnoe uëmepoeo Ko/ibyo, P —• 
KoneMHO nopoDtcdehHbiü npoemmieubiu A-Mody.nb9 npmëM rank P e d i n i Max A-{-\9 

mo P ydoß/ierneopxem yc/ioewo coKpaujeimji. 

OcHOBHaa 3a#a iia, paccMaTpHBaeMaa m«Ke, — nojiyiienHe ycHJiemibix TeopeM 

o COKpameHHH AJia cnen,HajibHbix KjiaccoB Kojieu;. 

I. Kojibqa MiioroHJieiioB. IIpo6jieMa coicpamenHH RJIK npoeicTHBHbix MOAyjieii naß 

KOJibî aMH MHoroiijienoB TecHO cB#3aHa c H3BecTHOH npoöJieMOH Ceppa o CBOöOA-

HOCTH npoeKTHBHbix MOAyJieii naß KOJIMJOM MHoro^JienoB naß nojieM. OcnoBHbie 

pe3yjibTaTbi B 3TOM nanpaBJienHH 6RJIH nojiyiienbi B nauajie 1976 r. ,3,. KßHJiJieHOM 

[14] H AOKJiaAHHKOM [20] (CM. TaiOKe [7], [9]). 

TeopeMa 2. Tlycmb A — KOMMymamußuoe uëmepoeo Ko/ibìjo, B=A[Xl9 . . . , X„]9 

P — KoitevHo nopootcdeHHbiü npoeKinuemiu B-j\iodyjib9 npimëM rank P e d i n i A + \9 

mozda 
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a) ec/iii P paciuupen c A9 mo P ydoßnemßopnem ycAOßUto coKpa\juenun\ 

6) ecmi Ko/ibi}o A pezyAnpno, mo P paciuupen c A (u cnedoßameAbuo ydoß/iem-

eopnem ycAOßuw coKpaufenun). 

3 T O T pe3yjibTaT pa3BHBajic£ H o6o6maJicfl p W M aBTopoB. OTMCTHM TOJIBKO 

cjieAyioiirjae pa6oTbi: 

CyoH [18] noKa3aji, HTO TeopeMa 2 ocTaneTca cnpaBeAJiHBOH, ea rn Kojibijo 

MHoroMjieHOB 3aMeHHTb Ha KOJibUio jiopanoBCKHx MiioroHjieHOB A[Xl9 ..., Xk, 
y ± l V i 1 ! 

ABTopy [26] npHHaAJie^cHT o6o6meHHe TeopeMbi 2 Ha HeKOMMyTaTHBHbrfi 

cjrynaH: 

T e o p e M a 3. IJpednoAODicuM, nmo KOAbuo A Kouevno nopoDicdeno KaK ModyAb 

Had ceouM ifenrnpoM A, xomopuu HßAnemcn {KOMMyrnamuenuM) uemepoßbiM KOAb-

uoM. EcAii P —Koneuno nopoMcdemmu npoeKmuenmi A[Xl9 . . , , Xki X^19 ..., X^1] 

— ModyAb poma >max (dim A9 1), mo 

a) ecAii P pacuiupeH c A, mo P ydoßAemßopnem ycnoßwo compauiemin 

6) ecAu KOAbuo A pezyAnpno, mo P pacuiupeH c A. 

3aMeTHM, HTO AonojiHHTejTjbHoe orpaHOTeHHe r a n k P > l , nojiBJiaiomeecfl B Teo-

peMe 3, Bbi3BaHO cymecTBOM Aejia: OnaHrypeH H IIIpHAxapaH [13] noKa3ajiK, HTO 

AJifl Jiio6oro HeKOMMyraTHBHoro TeJia A cymecTByioT HecBoGoAHbie (H oieAOBa-

TejibHO Hepacmapeifflbie c A) npoeKTHBHbie A[Xl9 ZJ-MOAym paHra OAHH. 

OCHOBHbM H3 HepeUlëHHHX BOHpOCOB B TeOpHH HpOeKTHBHblX MOAyJieH HaA 

KOJibij.aMH MHoroHjienoB HBJiaeTc^ cjieAyioiijHH, nocTaBJieHHbiH BaccoM [2]: nycTb 

A — peryjitfpHoe KOMMyTaTHBHoe KOJibUio, Bepno JIH, HTO BCHKHH KOHCHHO nopox-

AëHHblH npoeKTHBHblH MOAyJTb HaA A[X] ÄBJIHCTC5T paCHIHpeHHbIM C Al B CHJiy 

npHHi^nna ji0KajiH3airjHH KßHjuieHa [14], STOH npoöJieMe MOECHO npEwaTb cjieAy-

IOIUHH BHA: nycTb A — peryjiapHoe noKajibnoe icojibijo, BepHO JIH, HTO BC5IKHH 

KOHCHHO HOpO^KAëHHblH HpOeKMHBHblH A[X]-MOflyjlh cBo6oAeH? RJIX AByMepHblX 

Kojien; npoôJieMa Bacca—KBHJUieHa HMeeT nojioECHTejibHoe pemeHHe corjiacno 

TeopeMe XoppoKa—MypTH ([27], [28]). MOSKHO TaK^ce noxa3aTb, HTO ecjiH OTBCT 

Ha Bonpoc Bacca—KBHJUieHa nojioECHTejieH AJra Bcex (peryjiapHbix) Kojien; pa3-

MepnocTH ^d, TO, 6ojiee O6IHHM o6pa30M, RJIX Jiioöoro peryjiflpHoro KOJibn;a 

A pa3MepHOCTH ^d npoeKTHBHbie A[Xl9 . . . , XJ-MOAyjiH pacmnpeHbi c A npn 

JH060M n. B nacTHocTH, npoeKTHBHbie A[Xl9 ...9 XJ-Mopyjw pacnmpeHbi c A, 

ecjiH A peryjiapHoe Kojibijo pa3MepH0CTH 2. MoxaH—KyMap [11] H nesaBHCHMo 

JlHHAeJi H JTioTKeöoMepT [10] A^JIH nojioacHTeJibHoe pemeHHe npo6neMbi Bacca— 

KBHJUieHa AJM cjiynaa KOJibija <|>opMajibHbix cTeneHHbix P#AOB: 

TeopeMa 4. ECAII A=k \[Tl9 . . . , TJ] —KOAbuo (ßopMaAbnux cmenenmixpndoß 
Had noAeu k, mo ecHKiiü Koneuno nopootcdeuHbiü npoeKmuemiii A[Xl9 . . . , Xn]-ModyAb 
cßoßoden. 
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HeAaBHO aBTOpy yAajiocb AOKa3aTb, HTO A ^ TpëxMepHbix icojieij ajireöpo-

reoMeTpHHecKoro npoHcxoacAeHHfl OTBCT Ha Bonpoc Bacca—KBHJUieHa nojio-

5iciiTeJieH: 

T e o p e M a 5. ECAU A — Koopdunamuoe KOAMJO zAadiwzo agSgSunuoao aAzeö-

pauuecKoso Muozoo6pa3un pa3Mepnocmu d Had HOACM k u P — KOHCMHO nopootc-

denubiü npoeKmußHbiü A[Xl9 . . . , X,]-ModyAb9 mo P nejwemcn pacwupenHbiM c A 

e KaotcdoM U3 cAedywujux cAyvaee: 

a) rank P^d; 
6) d^3 u char k^2. 

IL AiJïcJHfHHMe ajireôpbi. Xopomo H3BecTH0, HTO B KaTeropiiii Bcex KOMMyTaTHBHbix 

Kojien, TeopeMa Bacca HeyjiynmaeMa. Bojiee TOHHO: npn JHO6OM n > 1 cymecTByioT 

w-MepHbie KOMMyTaTHBHbie HëTepoBbi KOJibija A9 A M icoTopbix MOAyJH, A" He yAOB-

jieTBopfleT ycjioBHio coicpameHHsr. ITpHMepbi Taicnx icojien; BnepBbie 6HJ IH nocTpoenbi 

CyoHOM ([16], CM. Taoce [17]). 3 T H npHMepbi HMeioT TonoJiorHHecKoe nponcxo-

>KAeHHe H B KanecTBe 6a3HCHbix KOJien, B HHX BbicTynaioT ac[)(])HHHbie ajire6pbi 

HaA nojieM R BemecTBeHHbix HHceji. EcTecTBeimo cnpocHTb, HMCIOTCH JIH TaKHe 

npHMepbi cpeAH a(j)4)HHHbix ajxreôp HaA ApyrHMH nojiffMH. OKa3biBaeTCH, HTO HMeeT 

MeCTO 

T e o p e M a 6 ([22], [24]). ECAU A—acßgjUHHax aAzeôpa Had aAzeöpauuecKU 3a M-

KuymbiM noACM k u P — Konemio nopooicdenHUü npoeKmußHbiü A-ModyAb pama 

^dimA, mo P ydoßAemßopnem ycAOßuw coicpaujeHun. 

TeopeMa 6 TecHO cB*i3aHa co cjieAyioinHM juooonbiTHbiM pe3yjibTaTOM 06 yHH-

MOAyJMpHbix cTpoKax (CM. [21], [22]): ecjiH v=(a0, . . . , ar) — yHHMOAyJitfpnaji 

cTpoica c 3JieMeHTaMH H3 KOMMyTaTHBiioro icojibH,a A H n09 ...9nr — iiaTypajibHbie 

HHCJia TaKHe, HTO /7 ì=O 7 2 * ACJIHTCH na r\9 TO yHHMOAyJiapHaji cTpoKa (an^9 . . . , a11/) 

AonojiHÄeTca AO oôpaTHMOH MaTpnijbi. B cjiynae r=2 3TO yTBepacAeHHe 6biJio 

He3aBHCHMo nojiyneno CyonoM H TayöepoM [19], Te »ce aBTopbi noKa3ajiH, HTO 

ycjioBHe «JJri=oni AeJiHTCÄ Ha r!» HCOöXOAHMO AJHI ero cnpaßeAJiHBocTH. 

B cjiynae AByMepHbix ajire6p, coeAHmifl TeopeMy 6 c xopomo H3BecTHbiM 4>aKTOM, 

HTO MOAyJiH paura OAHH BcerAa yAOBJieTBopjnoT ycjioBHio coicpamenna, nojiynaeM 

TeopeMy MypTH—Cyona: ecjin A — AByMepnaa a<j)(}>HHHafl ajireôpa naA ajireô-

paHHecKH 3aMicnyTbiM nojieM, TO BCAKHH KOHCHHO nopoECAërnibiH npoeKTHBHbiâ 

A-Mopyjib yAOBJieTBopaeT ycjioBHio coicpameHHfl. 

B CBH3H C TeopeMOH 6 B03HHKaeT BOnpOCI RJ15L KaiŒX nojieË k npoeKTHBHbie 

MOAyJiH naA a4)^HHHbiMH /c-ajire6paMH yAOBjieTBopaioT ycHjieHHOH TeopeMe o 

coKpameHHH? OKa3biBaeTca, HTO OTBCT 3aBHCHT OT apH4)MeTHHecicHx CBOHCTB nojur. 

Xopomo H3BecTHO (CM. HanpHMep [6]), HTO MOAyJifc A" (n=dimA) yAOBJieTBop-

5reT ycjioBHio coicpameHHfl B TOM H TOJibico TOM cjiynae, KorAa rpynna SLn+1(A) 

TpaH3HTHBHO ACHCTByeT Ha MHOHCeCTBe UmnH ! (A) yHHMOAyJHipHbix eTpoK. fljM 
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AByMepHbix Kojien, MHoacecTBo opôHT Um 3 C4)/SL3 04) HMeeT ecTecTBeHHyio rpyn-
noByio CTpyKTypy: 

T e o p e M a 7 (BacepniTeEH [6]). ECAU A — KOMMymammme nemepoßo KOAòUO 

pa3Mepnocmu dea, mo cyujecmßyem KanoHunecKan óueKuun Mewcdy MHoatcecmßOM 

Um 3 04)/SL3 {A) u aöeAeßoü epynnoü V(A)=kcr(K0SpA-+K0A). 

fljM npoH3BOjibHoro nojifl k o6o3HaHHM nepe3 A=Ak a4)4>HHHyio /c-ajire6py 

k[X9 Y, Zi/(X2-X)(Y2-Y)(Z*-Z). 

ITpH noMom,H CABHra pa3MepHOCTH H TeopeM o Bbipe3aHHH MOECHO y6eAHTbca, HTO 

V(A) = ker (K2 Sp k - K2k) = G(k). 

ByAeM nepe3 W{k) o6o3HanaTb KOJibijo Barra KBaAparaHHbix $opM nojia k H 
nepe3 I(k) — MaKCHMajibHbiH HAeaji B W(k)9 cocTOflmHH H3 nëTHOMepHbix 4>opM. 
TeopeMa MaTcyMOTO AaëT oimcamae rpynn K2Spk H K2k B TepMHHax o6pa3yio-
mHX H COOTHOmeHHH, H3 3TOTO OHHCaHHÄ BHAHO, HTO CymecTByeT KaHOHHHeCKHH 
3nHM0p$H3M K2Spk->I2(k) H o6pa3 rpyrmbi G(k) npn 3TOM H30Mop4>H3Me 
coBnaAaeT c P(k). B HTore nojiynaeM KaHOHHHeCKHH 3nHMop4>H3M 

<p:\Jm3(A)ISU(A)-+P(k). 

MO3KHO nposepHTb, HTO, ecjiH a,/?, y£/c, TO 

? ( ( ! - « ) * + « , (\-ß)Y+ß, (l-y)Z+y) = <1, -«>.<! , -j8>.(l , -y) = «a, ß, y». 

TeopeMa 8 (CM. [24]). ffAn moeo, vmo6u yHUModyAnpmie cmpom 

( ( l -a 0 )X+a 0 , (1-J80)F+J80, ( l -y 0 )Z+y 0 ) 

((1 -aòX+*L, (1 -ßuY+ßi. (1-7ÙZ+7Ù 

jieacajiH B OAHOH op6HTe OTHOCHTCJIBHO SL3(i4), HCOGXOAHMO H AoeraTOHHO B H -

nojmemie cjieAyiomnx paBHocajibHbix ycjioBHE: 
a) KBaApaTHHHbie cfropMbi « a 0 , ß09 y0)) H ((a l 5 ßl9 y^}) H30MeTpHHHbi; 

6) 3JieMeHTbi /(a0) •/(/?o) '/(To) H / ( a j • / ( f t ) •/(ft) rpynnbi K3(k) cpaBHHMbi no 
MOAyJIK) 2-jK"3(fc). 

B HaCTHOCTH CJieAyiOIUHe yCJIOBHH paBHOCHJIbHbi: 
a) MOAyjn> A2 yAOBJieTBOpüeT ycjioBHio coKpameHHa; 

6) V(4)=0; 
B) l*(k)=0; 
r) K3(k) — 2-AeJiHMaa rpynna. 
ITpeAHOJioacHM, HTO nojie k coBnaAaeT c JR. TorAa, KaK xopomo H3BCCTHO, 

W(k)=Z9 I(k)=2Z9 I*(k)=8Z^Z, KpoMe Toro MOäHO npoBepHTb, HTO B 3TOM 
cjiynae paccMOTpemibiH Bbime 3HHMOP4)H3M G(fc)-*/3(/c) ÄBJiaeTca H30M0p-
4)H3MOM. TaKHM o6pa30M, Um 3 (Aj^/SL^ (A^) ^ Z. Bo3HHKaioirj[HH HHBapnaHT 
<p: Um3(AR)->Z HMeeT npocToii TonojiorHnecKHH CMHCJI: o6o3HanHM nepes r 
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nosepxHOCTb B R3, onpeAejiëHHyio ypaBHenneM (X2—X){Y2— Y)(Z2—Z)=09 Torjiß, 

r HMeeT roMOTonHHecKHH THH AßyMepHOH c4)epbi H BcaKaa yHHMOAyJiflpHafl cTpoKa 
t;ÇUm3(^4w) onpeAeJHieT nenpepHBiioe oTo6paaceHHe r-+R*—0 H cjieAOBaTejibHO 
3JieMeiiT roMOTonHHecicoH rpynnbi 7r2(Ä3—0)=Z. 3 T O T TonojiorHnecKHH HH-
BapnanT coBnaAaeT c nocTpoeHHWM panée ajireôpaHHecKHM. 

OHCBHAHO, HTO 7 3 ( / C ) ^ 0 AJHI 4>opMajibHO BemecTBemibix nojien, icpoMe Toro, 
HCnOJIb3yH rOMOMOp4)H3MbI aCCOIJHHpOBaHHbie C ABfCKpeTHbIM HopMHpoBanHeM 
nojisr, Moreno noKa3aTb, HTO 7 3 ( / C ) ^ 0 B icâ cAOM H3 cjieAyiomnx cjrynaeB: 

a) k HMeeT noAnojie, HaA KOTopbiM KOHCHHO nopoacAeHO H HMeeT CTeneiib 
TpaHcr̂ eHACHTHOCTH He Meiibme Tpëx; 

6) k KOHenHO nopoMCAeno, HMeeT HeHyjießyio xapaKTepncTHKy, OTJiHHHyio OT 
Aßyx, H ero CTenem, TpaHcrjeHAeiiTHocTH HaA npocTWM noAnojieM ne MeHbme 
Aßyx; 

B) k KOHenHO nopoxcAeHO H TpaHCu;eHAeHTHo HaA Q. 

flaace B Tex cjiynaax, KorAa 73(fc)=0, TeopeMa 8 no3BojweT cTpoHTb npHMepbi 
MOAyJieii, He yAOBJieTBopaiomHx ycjioBHio coicpameHHH. 

T e o p e M a 9. a) ECAU 72(Z:)^0, mo cyujecimywm mpëxMepnue agjgSuHHbie 

k-aAee6pbi9 dAn Komopwx ModyAb A2 He ydoßAemeopnem ycAOßuw coKpavuenun. 

6) ECAU noAe k ne wAnemcR KßadpamuuHo 3aMKHymbm9 mo cyvuecmeywm uembip-
exAtepmie agjgSuHHbie k-aAze6pbi9 dAn Komopbix A2 He ydoßAemeopnem ycAoeuio 
coKpaufenun. 

B) ffAM Aio6o2o noAH k cyujecimywm nnmuMepnbie agSgjuHHbie k-aAee6pw9 dAH 
Komopbix A2 He ydoßAemßopnem ycAOßuw coicpaujeHun. 

CjieACTBHe. IJycmbk—npou3ßOAbnoe noAe9 A=k[X19 ...9X^/(X1'Xé+X2'X5-\-

Xs*Xß— 1) u P —npoeKmußHbiü A-ModyAb9 onpedeAeuHbiü ynuModyAnpnoü cmpo-

KOü v=(x19x29x^. Toeda P^A^AZ
9 HO P^A2. 

ECJIH char k ^ 2 , TO nocjieAHee yTBep̂ KAeHHe cjieayeT Taoce H3 pe3yjn>TaTOB 
PeHHO [15]. 

III. CTaÖHjibHbifi paiir icojieu MiioroHJienoB. OAHHM H3 Ba^cneHiuHx HHBapnaH-
TOB KOJibija, cBÄ3aHHbix Kaie c npo6jieMOH coKpameHHü, TaK H C ApyrHMH npo6-
jieMaMH cTa6HJiH3airHH, ^Bji^eTca ero cTaÖHJibHbrii paHr (CM. [1], [4], [5], [6], [23]). 
CTaÖHJibHbiH panr ÄBJuieTCfl copTOM pa3MepH0CTH icojibija, HanpHMep, ecjiH X 

— TonojiorHHecKoe npocTpaHCTBo H A — KOJibn.0 HenpepbiBHbix 4)yHKii,HH Ha X, 

TO (CM. [4]) s.r. A=ôimX+l9 TRG d i m Z onpeAejureTCfl npn noMoinH cymecTBeH-
Hbix oTo6paxceHHH B c4)epbi. CßH3b cTaÔHjibHoro paura H Gojiee TpaAHijHOHHbix 
noHHTHH pa3MepHOCTH ycTaHaBJiHBaeTca: cjieAyiomjaM HepaBeiicTBOM Bacca [1]: 
ecjiH A — HëTepoBo KOMMyTaTHBHoe icojibijo, TO s.r. A^äimMaxA + l. Toniioe 
3HaneHHe cTa6njibHoro paHra HiiorAa MOSKHO BbiHHCjiHTb npn HOMOIHH Tonojio-
THHecKHxcooôpaaceHHH, HanpHMep, BacepiirreHH [4] AOKa3aji, HTO s.r. R[XV ..., X^ = 

72+1, OAHaico yace AJH* HOJIJI C TonojiorHHecicHe MCTOAM no3BOjHnoT jiHiiib yc-
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TaHOBHTb HepaBeHCTBo s.r. C[X19 ..., A
rJ>l+w/2. ToHHoe 3HaneHHe cTa6HJibHoro 

pairra KOJibija MHoroHJieHOB OT Aßyx nepeMeHHbix H3BecTH0 pjw HOHTH Bcex nojien 
6jiaroAapa pe3yjibTaTaM Kpy3eHMenepa [8] H BacepnrreHHa [6]. HMCHHO, Kpy-
3eHMeHep noKa3aji, HTO s.r. k[X19 X2]=39 ecjiH TOJibKo K2(k)^09 a BaceprnTeHH 
noica3aji, HTO s.r. k[Xl9 X2]=2, ecjiH k — ajireöpannecKoe paciHHpeHHe KOHeHHoro 
nana. HaKOHen;, corjiacHO pe3yjibTaTaM Bacca H TeËTa [3], K2(k) o6pamaeTCfl 
B HOJib TOJibKo jsjiK ajrre6paHHecKHx pacmHpeHHH KOHeHHbix nojieâ H HeKOTOpblX 
6ecKOH6HHbix pacmHpeHHH rjioôajibHbrx nojien (neMy paBHO TOHHoe 3HaneHHe 
cTaGHJibHoro paHra AJIH 3THX nojien, HeH3BecTHo). ITpn BbiHHCJieHHH CTa6Hjn>Horo 
paHra Kojien, MHoroHJieHOB OKa3biBaeTca HOJie3HMM cjieAyiomee yTBepxcAeHHe: 

JleMMa (CM. [6], rjiaBa 3). ECAU r^3, mo CAedywußue ymeepwcdemiR paeno-
CUAHbll 

a) s.r. k[Xl9 . . . ,XJ<;r . 
6) JJAH AWöOü (n—i)-MepHOü acßcßuHHoü k-aAzeöpbi A u AWöOZO udeaAa 9Ic>4 

zpynna Er{A9 91) mpamummno deücmeyem Ha Um/^ , 91). 

ECJIH A — KOMMyTaTHBHoe KOJIMJO, 9t — HAeaji B Avar — HaTypajibHoe HHCJIO, 

TO nepe3 MS£A9 9Ï) 6yAeM o6o3HanaTb rpynny 3HaneHHH yHHBepcajibHoro T-CHM-

BOJia MeHHHKe. B TOM cjiynae, KorAa HAeaji 91 rjiaBHbiH H r^39 jierKO BHAeTb, 
HTO AencTBHe Er{A9 91) Ha JJmr(A9 91) He MemieT 3HaneHHH CHMBOJIOB MeHHHKe 
H, cjieAOBaTejiBHO, KaHOHHHecKoe OTo6pa»ceHHe 

m.s.: UmP(^, 91) - MSr04, 91) 
nponycKaeTca nepe3 

Urn, (A, W)IEr{A, 90 - MSP (A, 91). 

TeopeMa 10 (CM. [25]). JJAR AWôOZO HOAR k cyu^ecmeyem KanommecKuii 3nu-

Mopcfiu3M 
MS,«(k[X l f . . . , Xnl {X?-XJ.....Ä2-Z„)) - £1I+1(/c), 

zde Rn+1{k) — gjaKmopzpynna zpynnu MiiAHopa Kn+1(k) no nodzpynne KpyuenuR. 
ECAU noAe k aAzeópamecKu 3aMKHymo u «s>l, mo Kn+1(k)=Kn+1(k) upaccMom-
pueaeMbiü snuMopcßu3M RßARemcR u30Mopg5u3MOM. 

CjieACTBHe. ECAU ras>3 u Rn(k)?±09 mo s.r. (k[X19 ..., XJ)=n+l. 

TeopeMa 11 (CM. [25]). Ilycmb pa3Mepmcmb KponeKepa HOAR k paena d. Tozda 
s.T.k[Xl9 ...,X^=n-\-l npu n^d u ss.k[X19 ..., Xn]^[(n+d)/2] + l npu n>d. 

AnajiorHHHbie pe3yjn>TaTbi cnpaBeAJiHBbi Taœe RJIX CTaGnjibHoro paHra a4)4>™-
Hbix ajire6p. 

TeopeMa 12 (CM. [25]). ECAU Rn+1(k)^09 mo cmaöuAbHbiüpam AWöOü n-Mepmü 
ag5g5uHHoü k-aAzeöpu A paeen n +1 , e nacmmcmu, ecAU noAe k UMeem oecKoneHnyw 
cmeneub mpancueHdeHmnocmu Had npocmbiM nodnoAeM, mo s.r. A=dimA + l dAR 
AIOöOü ag3g5uHHoü k-aAzeöpu. 
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C ApyroH CTopoHbi, A^a a4>4>™Hbix ajireöp HaA KoneHHbTMH nojiflMH 3HaneHHe 
CTaÔHJibHoro paHra naAaeT: 

TeopeMa 13 (BacepuiTeHH [6]). ECAU k — aAzeöpamecKoepacutupenue KOHCH-

HOZO no AR u A — agjgSuMiaR k-aAzeôpa9 mo s.r. /4 «s max (2, dim>4). 
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1. Geometric theories. Roughly speaking, a mathematical argument is intuitionis-
tically valid if it does not use a deduction of the form 

-]-\q> -+ cp 

or, equivalently, if it does not use the law of the excluded middle 

true -• cp v ~] cp. 

Without being more precise about the rules of intuitionistic deduction, we simply 
point out that whereas anything intuitionistically valid is a fortiori classically valid, 
the converse is not true. This presents two problems. The first is one of nomen
clature: consider, for example, the following three conditions on a nontrivial com
mutative ring: 

(1) Vx.(-i(x=0)-+3y.xy=l), 

(2) Vx.(-i{3y.xy=l)+x=0), 

(3) V*.(true+*=Ovaj;.;tj; = l). 

In classical logic all three are equivalent, and define the notion of field. Intuitionisti
cally they are inequivalent, and so we must distinguish the notions of field (1), 
field (2) and field (3). 

The second problem is that of lifting classically valid proofs to intuitionistically 
valid ones. There is a convenient metatheorem which provides us with a short 
cut in certain cases. To describe it we introduce some terminology [8] : 

A first order formula is positive if it does not involve universal quantification (V), 
implication (-*) or negation (n ) ; it may involve existential quantification (3), 
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equality ( = ) , finite conjunctions ( A , true) and arbitrary disjunctions ( v , false). 
A sentence is geometric if it is of the form 

Vx.((pGc)-^fe)) 

where cp and if/ are positive formulae in the variables x Thus, field (3) is a geo
metric notion, but field (1) and field (2) are not. A geometric theory is a theory 
whose axioms are geometric sentences. 

METATHEOREM. If a geometric sentence is deducible from a geometric theory in 
classical logic, with the axiom of choice, then it is also deducible from it intuitionistically. 

This metatheorem allows one to conclude the intuitionistic validity of many 
theorems, but at the expense of showing that the hypothesis and conclusion are 
expressed by geometric sentences. As a very trivial example, consider the notion 
of aflat module M over a ring A; this is expressed by sentences of the form 

\/g.\/m.(a'm = 0-> 3B. 3n.a'B = 0Am = Bn) 

where a is a vector of elements of A9 m and n are vectors of elements of M> 
and B denotes a matrix of elements of A, each of appropriate size (there is a 
countable disjunction concealed here). Since in classical logic all modules over 
fields are flat, it follows from the metatheorem that in intuitionistic logic all modules 
over fields (3) are flat. This is not true of fields (2). 

A local ring is generally defined as a commutative ring with precisely one maximal 
ideal. This is a higher order definition, so we discard it for the classically equivalent 
definition given by 

(i) 0 = 1 - f a l s e , 

(ii) Vx . ( t rue - (3 j / . xy = l)v (3^.(1 -x)y = l)). 

In the absence of the axiom of choice we cannot say that a local ring has a maximal 
ideal or a residue field. 

Classical definitions often have to be inverted in some manner to give an appro
priate intuitionistic notion. For example, as well as equivalence relations we may 
have to deal with apartness relations; as well as ideals in rings, we have anti-ideals. 
Our local rings have a unique minimal anti-ideal, namely the set of invertible elements, 
but not necessarily any maximal ideals. In the same spirit, J. Kennison [4] has 
shown that to have a good Galois theory for extensions of fields (3) one should con
sider nonconjugacy over the base field as the positive notion. He describes a gadget 
which he calls a profinite action, which in classical logic reduces to the notion of 
a profinite group acting continuously. Intermediate extensions of a Galois extension 
correspond to subactions, not to subgroups of the Galois group, in general. 
It is not always clear when a classical notion has a geometric axiomatization. For 
example, consider the notion of a Henselian local ring. If A is a local ring with 
maximal ideal 7, it is called Henselian if 

Vf.Va.(f(a)eiA-if'(a)£l->3x.x£lAf(a+x) = Q)9 
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where / denotes a monic polynomial over A. We will call a local ring separably 
(resp. real-) closed if it is Henselian and its residue field is separably (resp. real-) 
closed. The Henselian condition is not geometric; however, the notions of separably 
closed local ring and real closed local ring are both geometrically axiomatizable 
[5 (iii)], [11]. 

2. Classifying toposes. Why should we consider intuitionistic validity, and hence 
geometric axiomatizability, in the first place? Part of the answer comes from the 
wider notion of model of a theory which category theory makes possible. By now 
it is common procedure to use the word "semigroup", for example, to mean not 
only a set equipped with an associative binary operation, but also a pair (G9 m) 
where G is an object in a category C with finite products and m is a map GXG-+ G 
for which 777(wX l) = /w(l Xm). Of course, any equational structure can be defined 
in C, with axioms expressed by commutativity of appropriate diagrams. We may 
say that the language of equational theories admits interpretation in categories 
with finite products. If we want to extend this idea to richer languages we must 
impose more conditions on the category C. If we go the whole way, and ask for 
interpietability of full higher order logic, then C must be a topos. The penalty 
we pay for this extra generality of interpretation is that unless the topos satisfies 
special conditions, only intuitionistically valid deductions survive the interpretation. 
One of these special conditions is the axiom of choice, that epic maps have sections. 

To summarize, by restricting ourselves to intuitionistic logic we earn the bonus of 
a wider concept of model—in the suggestive language of Lawvere [7] we use variable 
instead of constant sets as carriers for our structures. To avoid tedious qualifications, 
I shall suppose that by topos we mean Grothendieck topos. For further details 
about toposes I recommend the book by P. T. Johnstone. 

A map of toposes (geometric morphism) 8F' -+J 8 is given by a pair of functors 

j * 

& * 7 S 

with f* preserving finite limits and left adjoint to f. It follows that / * preserves 
finite limits and arbitrary colimits, and hence any structure defined in terms of 
these; but these are precisely the structures defined by geometric sentences. If 
f* reflects isomorphisms we say that / is surjective. The metatheorem above is 
a direct consequence of: 

THEOREM (BARR). If S is a Grothendieck topos, there is a surjective map of toposes 
3F-+s£ with !F satisfying the axiom of choice. 

A topos is to be thought of as a category of generalized sets and functions. So if 
S is a given topos, we introduce the relative notion of an S-topos; this turns out 
to be the same thing as a topos map to S9 S -+7 S. We have an evident notion of 
map of £-toposes, and so on. A geometric structure M in S gives rise to a similar 
structuie y*(M) in ê; it will be convenient to drop the y* and to talk simply 
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of M in ê. This abuse of language is just like that which identifies an element of 
a ring with a constant polynomial over the ring. Indeed, if ê is the topos of sheaves 
on a topological space and M is a set, then M in ê is the constant sheaf whose 
stalk is everywhere M. 

From the absolute notion of geometric theory we get a relative notion of geo
metric S-theory, whose models live in S-toposes and whose structure is preserved 
by inverse image parts of maps of S-toposes. This is a notion which has been around 
for some time implicitly, and is most easily explained by examples. If A is a com
mutative ring, the theory of ,4-algebras has for its nullary operations the elements 
of A. If A is a commutative ring in a topos S9 we cannot talk of the theory of 
y4-algebras—but we can talk of the S-theory of y4-algebras. 

THEOREM. Let T be a geometric S-theory. Then there is an S-topos S[U] (the 
classifying topos of T) together with a T-model U in S[U] (the generic T-model) 
such that for any S-topos ê the functor 

Tops (*, S[U]) - r-mod {è): f - / * ( £ / ) 

is an equivalence of categories. 

In some sense the notion of classifying topos is a generalization of the notion of 
Lindenbaum algebra. If T is single-sorted the lattice of sub-objects of Un in the 
classifying topos of a geometric theory T is isomorphic to the lattice of equivalence 
classes of «-variable positive formulae, where equivalence means provable equi
valence within T. 

3. Examples, (i) Let A be a commutative ring in S9 and let T be the geometric 
S-theory of localizations of A, whose models are local rings of fractions of A. 
We call the classifying S-topos of T Spec (A), and we denote the generic T-model 
by Ä. 

When S=Sets, Spec(/4) is the topos of sheaves on the prime ideal space of 
A with the Zariski topology. For a full discussion see [10]. A. Joyal has a neat 
constructive way of defining Spec (A) in terms of what he calls a universal support 
notion on A, which is a distributive lattice in S. In the case S=Sets, this is the 
lattice of compact open subsets of Spec (A). The point is that this lattice is construc
tively definable from A9 so that we can bypass higher order and irrelevant notions 
like the set of prime ideals of A. 

(ii) Let L be a local ring in S. By a separable closure of L we mean a formally 
étale local homomorphism L-+L' where V is a separably closed local ring. These 
are models of a geometric S-theory whose classifying S-topos we call the étale 
spectrum of L. 

If X is a scheme, Ox is a local ring in the topos Xzar of sheaves on the under
lying space of X. The étale spectrum of Ox is Xét9 the étale topos of X. In 
particular, if L is a field in Sets the étale spectrum of L is the topos of sets with 
continuous Gal (L)-action, where Gal (L) is the Galois group of L with the Krull 
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topology, and the generic separable closure of L is just the separable closure of 
L in the ordinary sense, but thought of as an object with continuous Gal (L)-action. 

(iii) A real-closed local ring has a natural structure of ordered ring given by 

x> 0++ 3y.xyz = 1. 

Call an ordered ring Archimedean if it satisfies the geometric sentence 

Vx. (x >• 0 -> V w. x > 1). 

Again, let L be a local ring in S. An Archimedean real closure of L is defined 
to be a formally étale local homomorphism L-+L' with L' an Archimedean real-
closed local ring. They are models of a geometric S-theory whose classifying 
S-topos we call the Archimedean real étale spectrum of L. 

If X is a smooth JR-scheme of finite type, the Archimedean real étale spectrum 
of Ox in X2aT is the topos of sheaves on the underlying real manifold of X9 with 
Euclidean topology. The generic Archimedean real closure of Ox is the sheaf 
of Nash functions. It is instructive that in this example the Euclidean topology 
arises for reasons just as "algebraic" as those giving rise to the Zariski topology. 
If we throw away the condition of smoothness on X we get a "Nash space" rather 
than a Nash manifold. 

In much the same vein there is a classifying topos description of the different 
sorts of crystalline topos to be found in [2]. The co-Zariski topology and the construct
ible (patch) topology also arise for classifying topos reasons [3 (ii)]. 

S. Schanuel has recently used the notion of atomic topos [1] to prove a theorem 
about combinatorial functors. Let Inj denote the category of finite sets and injections, 
and let Linj denote the category of finite linearly ordered sets and monotone 
injections. We have an obvious forgetful functor u: Linj-*Inj. On both Injop and 
Linjop the nonempty sieves define Grothendieck topologies, and u induces a sur
jective map of toposes 

sh(Linjop) - ^ sh(Injop). 

The topos sh (Injop) classifies infinite decidable sets, that is models of the theory 
given by a predicate x#j> with axioms 

VA', X^FX-*-false, 

\/x. Vj;. true-»-j£=j> v * # j>, 

Mx. 3yx... 3yH(Ai<jyi#yj) A ( A , - * # J ' / ) -

The objects of sh (Injop) are the combinatorial functors, that is the functors Inj -* Sets 
which preserve injections and intersections. The topos sh (Linjop) classifies dense 
total orders; the map of toposes u corresponds to the map of theories given by 

* # y ** (x < y) v (y < x). 
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SchanuePs theorem asserts that if Fl9 F2 are combinatorial functors such that for 
any finite set S, F^S) and i^CS) are finite and have the same cardinality, then 
F±u is naturally isomorphic to F2u. 

A. Kock has pointed out [5 (ii)] that the generic local ring satisfies the nongeo-
metric sentence 

V*i... V%„.(n(A (*, = 0)) - V Oy- xty = 1)) 
i i 

which in classical logic defines a field! The problem of characterising all the non-
geometric properties of a generic model appears to be difiicult. If the generic model 
of a geometric theory T satisfies a sentence a then any geometric consequence of 
T-r-(a) has to be a consequence of T. We might call a 7-redundant. Does the 
generic T-model satisfy all T-redundant sentences? 

4. Formal differential geometry. Suppose that A is a commutative ring in a topos, 
and let 

D = {a£A\a* = Q}. 

We say that A is of line type [5 (i)] if the map 

AXA -+AD
9 (fll5fl2)H-(rfh> ax-\-a2d) 

is an isomorphism. We naturally think of D as an infinitesimal neighbourhood 
of 0 in the affine line over A) if we identify A with the first axis of the affine 
plane AXA9 then D is the intersection of the axis with any circle touching the 
axis at the origin. The condition of line type can be thought of as stating that any 
graph looks linear when restricted to lie over D. If we regard D as a "tangent 
vector object" we can push forward quite a lot of formal differential geometry, 
and we can talk about tangent bundles, vector bundles, connections, vector fields, 
differential equations, and so on [6]. The impetus for these ideas came originally 
from a lecture given by Lawvere at Chicago in May 1968. It was Kock's notion 
of ring of line type which provided the breakthrough. 

There are no rings of line type in Sets. However, Coste, Kock and Reyes in
dependently produced different proofs of the following theorem. Call a geometric 
theory of commutative rings infinitesimally stable if whenever a ring B is a model, 
so is ^(e), the ring of Grassmann dual numbers over B. 

THEOREM. A geometric theory T of commutative rings is infinitesimally stable 
if and only if the generic T-model A is of line type and D={a£A\a2=0} is internally 
projective, i.e. (—)D preserves colimits. 
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and Elliptic Functions 

G. V. Chudnovsky 

0. Only one Congress separates us from 1982, the centenary of Lindemann's 
theorem on the transcendence of %. Many things have changed since 1882 in 
Transcendence Theory. For the last years especially there has been considerable 
progress in understanding the fundamental problems of Transcendence Theory. 
Although the analytic part of proofs looks like 40 years ago the algebraic arguments 
have changed completely. Now Transcendence Theory uses a lot of modern mathe
matics (algebra, algebraic geometry, complex analysis) and also has its fields of 
application. We'll try to describe the new situation with the theory of transcendence 
and algebraic independence for the exponential, elliptic and Abelian functions. 

Let p{z) denote the Weierstrass elliptic function with algebraic invariants 
g2>#3 a nd C(z) the (-function, £'(z)= — p(z). Let co, ri denote any pair of periods 
and quasi-periods of g>(z): Ç(z+co)=Ç(z)-l-rç, and let (X)i9r\i denote fundamental 
periods and quasi-periods of p(z). We call point u as algebraic for p(z) if 
p(ü)€Q. For a finite set SaC9 # S denotes the maximal number of algebraically 
independent (a.i.) elements in S. 

1. Linear independence of algebraic points of elliptic and Abelian functions. Linear 
independence is often the first, very important and useful for applications, step in 
the investigations of algebraic independence. This becomes especially clear from 
the works of A. Baker [1], [2], on estimates of linear forms from logarithms 
of algebraic numbers and applications of these estimates to diophantine equations 
and the class-number problem. The report of R. Tijdeman contains a survey of 
such results. 

It was realized long ago that estimates for linear forms in algebraic points of 
elliptic and Abelian functions are extremely important for effective determination 
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of integer points on curves of positive genus (see Lang's [13]). Only in 1974 
D. Masser [3] has proved a linear independence result for the algebraic points 
of elliptic curve with complex multiplication. Later S. Lang and D. Masser [4], 
J. Coates-S. Lang [5] obtained more general results for CM-varieties and lower 
bounds for linear forms of algebraic points of Abelian varieties of CM-types with 
algebraic coefficients. The proof of [3] uses analytical arguments, while [5] 
uses Kummer theory for CM-variety (K. Ribet's theorem). 

Let A be an Abelian variety defined over Q of dimension d. Then we have 
Abelian functions Ax{z)9 ..., Ad(z)9 B(z)9 where A±(z)9 ..., Ad(z) are algebraically 
independent and B(z) is algebraic over Q[Al9 ...9Ad]. The functions A^z), ..., 
Ad(z)9 B(z) we suppose regular at z=0; these functions are 2tf-periodic with 
common periods œl9 ..., oj2d^Cä. There are also d quasi-periodic functions 
#i(z), ...9Hd(z) algebraically independent over C(z)9 with quasi-periods i/j(c5|)=i/y: 

(1) Hjiz+œù = Hj(z)+tij(Sd = Hjizì+titj, j = 1,..., d9 i = 1,..., 2d, 

and such that d/dzj maps Q[Al9 ...9Ad9 B9 Hl9 ..., Hd] into itself: y=l , ..., d. We 
call A CM-variety if for endomorphism ring End (A) we have End (A)®Q=K-fie\d 
of degree 2d. We may assume that End (4) is represented in A by diagonal 
matrices. 

Let UaCd be the set of algebraic points of CM-variety A9 i.e. such that 
ü£Cd and A^ü), ..., Ad(ü) are algebraic. Let ül9...9Üm be algebraic points of A9 

linearly independent over End (4) and u0 be the column vector all of whose 
components are unity. 

The following result was proved for elliptic curve with complex multiplications 
(d=l) by Anderson and in general CM-case by D. Masser [1], [4]. 

THEOREM 1. For CM-variety A9 any K>dm-\-\ and any integer N^l there 
exists Cx>0 depending only on K, N,ul9 ..., um and A such that for 

A = BQüQ+B1ü1+...+Bmüm9 

we have 
(2) \Ä\ > Qtf-*108108^* 

for any diagonal matrices B09Bl9 ...9Bm with algebraic entries of degrees at most 
N and heights at most H9 suchthat B09...9Bm are not all singular. 

This result can also be partially generalized for the case of singular matrices 
BQ9 ...9Bm (see [1], [4]). However still there are no linear independence results for 
Abelian varieties or even for elliptic curves without complex multiplication. We 
propose this problem as one of the most attractive in the near future. 

The natural JBeld for applications of linear forms is, of course, diophantine 
«equations. E.g., there is a 
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Problem. To effectivize Siegel's theorem on finiteness of the number of integer 
points on algebraic curve # of genus g>l. 

We call the curve # of genus g^\ CM-curveif ^ admits a nonconstant rational 
map (defined over Q) into a CM-variety. As an application of the bounds of 
\Ä\ to CM-curves, we have D. Masser's [4] result. 

THEOREM 2. Let <& be CM-curve defined over the number field K. If P is the 
point from ^(K) of height H(P) and denominator D(P) then 

#( />)< C3exp(logE />(/»)) 

for C3>0 depending only on K, <&, e>0. 

In this direction the/7-adic results give stronger corollaries. Since 1976, D. Bertrand 
[8], has developed methods to estimate linear forms of algebraic points of elliptic 
curves and Abelian varieties of CM-type on/?-adic domain. E.g. 

THEOREM 3. [8]. Let <€ be CM-elliptic curve defined over K. If P is the point from 
W(K)9 H(P) is the height of P and pr D(P) is the greatest prime factor of the de
nominator D(P) of P, then 

pr£(p)>Q(logi/(P))Cß 

for some C4>0, C 5>0 depending on %> and K. 

Such results would be extremely useful if it were possible to make them completely 
effective in terms of # and K. There are two obstacles on the way : (a) the absence 
of an effective bound for generators of Mordell-Weyl group of the Jacobian J(^)(K) 
in terms of # , K\ (b) the need for a lower bound for \Ä\ in terms of heights of 
wl5 ..., wJH. In the direction (b) first results were already obtained by Coates-Lang 
[5] but the bound we really need has not been proved in general. We'll formulate 
it as a 

Conjecture. In the previous notations, let wf- be an algebraic point of A of 
degree ^M and height <:£/,•: j = l , ...,«?. Then for any e>0 

_ "' 
(3) \A\ > exp (-C8(logH- fl log U,)1+% 

1 = 1 

where C6>0 depends on M9N and e>0 for matrices B09 Bl9 ..., But9 being 
not all zeroes, with algebraic entries of degrees *^N and heights •<//. 

We have proved this conjecture for m=2 [7]. 
Even assuming the Birch-Swinnerton-Dyer (B-Sw-D) conjecture it is not so 

easy to obtain a bound for JJïLi ï°ê Ut > where ül9 ..., üm are generators of Mordell-
Weil group of A (K). According to the general form of B-Sw-D conjecture (see 
report of J. Coates) we need the bound for \L%°(1)\9 where LA{s)=^ann~s is 
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a properly .defined L-function of the Abelian variety A defined over if. Only for 
an elliptic curve A=E defined over g of conductor N we have 

(4) W l K i ^ 4 

assuming Weil conjecture for E and we have 

(5) \L%»(l)\«m,*N° 

assuming also Riemann hypothesis for LE(s). 
In the CM-case the bounds (4)-(5) together with estimate (3) fot m=2 give bounds 

for integer points on certain curves of positive genus, 

THEOREM 4. Let k be an integer^ such that \k\ is the power of one prime p and 
E be the curve 
(6) y2 = x*+k. 

If LE{s) satisfies the Riemann hypothesis and the B-Sw-D conjecture, then for 
integer solutions x9 y of (6) we have 

m a x f l x U ^ e x p ^ p 1 ' 6 * ' ) 

for C 7>0 depending only on a>0. 

This is a considerable improvement of general H. Stark's bound. 
Now, we shall deal with the "transcendental" aspect of linear independence 

results. The first such results were obtained by A. Baker [2], and later by J. Coates 
and then by D. Masser [3] for the product of two elliptic curves. 

THEOREM 5. (D. MASSER [4]). Let A be an Abelian variety of dimension 2. If 
cö=(col5 CO2) is a nonzero period of A then the linear combination 

OLX (o2+a2 co2+ß± Y\X (S)+j82 fg («O 

with algebraic al5 a2, ßl9 ß2 is either zero (then A is not a simple variety) or tran
scendental provided that [ax [ + |a21 + \ßi I + W21 > 0 . 

In the particular case of CM-variety it follows from Theorem 5 that the dimension 
of the set 

{5(m/5,n/5): for m^-n (mod 5)} 

over Q is exactly five. 

2. Algebraic independence. For a long time (since first applications of Gelfond-
Schneider method) we know that many numbers connected with exponential and 
elliptic functions are transcendental, e.g. log a, a?9 log a/log /?, co, rj9 n/co9 u, £(w), ... 
(for a,ßC.Q9u algebraic of p(z)) [13]. The main problem is now the investiga
tions of algebraic independence of these numbers. 

The situation with algebraic independence for numbers connected with exponential 
and elliptic functions was very poor to latest time. Besides the Lindemann-Weier-
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strass theorem (1882) and Gelfond's example of the algebraic independence of 
é and ap* for algebraic a 7*0, 1 and ß cubic irrationality (1949) there were no 
concrete examples of a.i. numbers. We can now say that lack of knowledge in this 
field is determined by the methods used for analysis of algebraic independence. 
The introduction of nontrivial algebraic (algebraico-geometrical) and multidimen
sional considerations gave us some ideas of how to develop Transcendence Theory 
and also supplied us with many new examples of algebraically independent numbers. 

A. Elliptic case. In the elliptic case, we have, since 1975, constructed several 
pairs of algebraically independent numbers connected with algebraic points of 
p(z) or periods of p(z) [Ch 6], [Ch 7] [MW15]. Historically the first result was the 
following 

THEOREM 1. If col9 co2 are fundamental periods of p(z) and r\X9 n2 are correspond
ing quasi-periods, then 
(1) # { û > I , co29nl9n2}^ 2. 

The most interesting case is that of complex multiplication. 

COROLLARY 2. If OJ is the period of p (z) with complex multiplication, then 
CD and n are a.i. 

Thanks to Selberg-Chowla formula we can see exactly what co is. We get from 
this formula and corollary 2 that for m9 the discriminant of quadratic imaginary 
field, and %(n) = (iilm)9 

M I — 1 

(2) JJ r(i/m)xii) and n are algebraically independent. 

Since that we have improved (1) considerably [7] : 

THEOREM 3. For any pair co9rj of period, quasi-period of p(z) (i.e. t){z-\-oS) = 
C(z) + n) the two numbers 

(3) n/co9 nfco are algebraically independent. 

Moreover we have Theorem 3 in the case when p (z) has no algebraic invariants. 
When p(z) is arbitrary, we have 

(4) #{g 2 ,g3>nM rç/û)}s* 2. 

From (4) it can be deduced e.g. that for the modular invariant J(q)9 q=e2niz; 
if J(q)^0\ 1728 is algebraic and 0=qd/dq9 then 0J(q) and 62J(q) are a.i. The 
last result as well as (5) was generalized by D. Bertrand to the/7-adic case [8]. 

We can present an interesting generalization of (3) for the case of algebraic non 
periodic points of p (z) [7] : 

THEOREM 4. Let u be an algebraic point of p (z) linearly independent with œ 
over Q. Then 

(5) C(u) — urj/(o and rj/co are a.i. 
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We cite two more of the author's results on algebraic independence for the case 
of complex multiplication. 

THEOREM 5. Let p (z) have complex multiplication and let u be an algebraic point 
of p (z); then 
(6) u and Ç(u) are a.i. 

This is the natural generalization of corollary 2. 

THEOREM 6. Let p(z) have complex multiplication by ß. Then for period OJ ofp(z) 

(7) n/co and entfi are a.i. 

Also we have elliptic (and Abelian) analogues of the Lindemann-Weierstrass 
theorem (see below). 

Let's see how our results can be interpreted in terms of some problems of partial 
differential equations. We'll present one application. Let u(x) be a periodic 
(with period T) potential that is an «-band, or, in other words, a solution of stationary 
«th order Korteweg-de Vries equation (S. Novikov, [17]> McKean): 2"=o c*jR*M=0. 

Then the spectrum for the Schrödinger L=—d2/dx2+u(x) has «-band structure. 

( 8 ) A Q • < A x * < X 2 - < A 3 ^ A 4 < . . . = s s X 2 n < + o o , 

where Xt are first 2w-f 1 points of T-periodic or T-anti-periodic spectrum of 
Lil/=A.\j/. All Xj9 y=0, ...92n9 are called "algebraic eigenvalues". However 
there are infinitely many (degenerate) points ki9 i=2n+29..., of periodic and 
antiperiodic spectrum. They are sometimes called "transcendental", but it is possible 
to give precise sense to this word and to prove that such numbers are indeed transcen
dental. Let's take the most known example of an «-band potential, the Lame poten
tial u(x)=n(n+l)p(x)9 where p(x) has algebraic invariants. 

COROLLARY 7. For the Lame potential u(x)=n(n + l)p(x) the first 2« + l 
points of periodic and antiperiodic spectrum are algebraic, while the others are trans
cendental. E.g. all eigenvalue pt of Lil/=p\j/ with periodic boundary conditions 
il/(0)=\l/(T)=0 for i=n+l9 «+2, ... are transcendental. 

Another problem arises from Abelian varieties associated with Fermât curves. It 
is the problem on the transcendence öf the values of T-function at rational, but not 
integer points. Of course, r(l/2) = |/7c is transcendental. From Corollary 2 we see 
also that 
(9) r(i/6), r(i/4), r(i/3), r(2/3), r<3/4), r(5/6) 

are transcendental (and each of the numbers in (9) is a.i. with ii). 
These examples correspond to elliptic curves of CM-type, but in order to study 

general points r(m/n) we must investigate arithmetic nature of the periods and 
quasi-periods of Abelian varieties of CM-type in the Shimura sense. This problem 
turns out to be the most important and difficult in Transcendence Theory. It is 
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very interesting that the analytical difficulties in transcendence proof in this situation 
are tied up with algebraic difficulties. 

Let A=(Al9 ..., Ad9B) be Abelian variety over Q of dimension d9 Hl9 ...9Hd 

be its quasi-periodic functions and let <5, ..., a>2rf be periods of A (see supra). 
We put 

/ i m Vi = 0hj)j=i rf> 
(10) _̂  / = ! , . . . , 2d. 

<*>i = (°>u)j=i i> 
The main question for Abelian functions can be formulated as follows : to deter

mine the number D of algebraically independent elements among entries of Q u H= 
{àj^j : 7 = 1 , ...,2tf}. 

For general Abelian varieties there is not even a conjecture expressing this number 
D=D(A) in terms of A (for the same dimension d9D may vary). Moreover, 
even the CM-case is extremely nontrivial. 

For general Abelian variety we only have results on algebraic independence of 
two numbers. 

THEOREM 8. Let A be defined over Q. Then deg tr Q(QuH)^2. Moreover 
for the numbers (10) we have 

(H) #[{û) f / : f = l9...92d;j = l9...9d}u{nij0: i = \9...92d}]^2 

for any jQ<d9 etc. 

The difficulties on the analytic proofs of a.i. for more than 2 numbers (found 
in 1975-1976) suggest that there may exist some algebraic mechanisms responsible 
for them. Approximately at the same time (1976-1978), people working with Abelian 
varieties of CM-type have found new algebraic relations between periods (Deligne, 
Shimura, Gross, ...). Now we can formulate the problem precisely. Let A be 
CM-variety over Q of dimension d for CM-field K of degree 2d (as in § 1). 
We have representation of K in Cd by direct sum J£" = 1 ^ , where T,- runs through 
a set of representatives of pairs of complex conjugate embedding of K in C. 

Then (K9 $) is called the CM-type of A for #=2?"=iTi- According to Shimura, 
Taniyama and T. Kubota we introduce the notion of the rank of CM-type (K9 $). 
Let IK(Q) be the module of all formal linear combinations \l/=2T

cri: ^or cr^Q 
of the injections T of K into C suchthat cx-\-cXQ does not depend on T (Q is the 
complex conjugation). If M is the Galois closure of K over g , then the rank 
r(K9 #) of CM-type (K9 <!>) is defined as the dimension of the subspace of I^iQ) 
generated over Q by <Py forali y £ Gal (M/g). 

Then r(K9 $ ) < r f + l and r a n k r ^ , $) is the main invariant connected with 
the division field Ax. Results of Shimura and Deligne show that for the CM-variety 
A and for corresponding CM-type {K9 0) (which is then primitive) 

(12) the number D(A) of algebraically independent elements in Qu H is at 
most the rank r(K9 <P) of (K9 $). 
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E.g. Shimura gives examples of primitive CM-types (L9 \j/) such that [L: g]=2* 
(L9 iff) is primitive and for the corresponding CM-variety B9 the dim(2J)=2flf~1 

there are at most g+1 algebraically independent periods and quasi-periods. 

Conjecture 9. For any CM-variety A and its CM-type (K9 #) the number 
D(A) is exactly the rank of (K9 #): 

(13) degtrg(ßutf) = r(K9 &). 

As a particular case of the conjecture (13) we see that for prime /^3 the numbers 
rc,r(l//), ...9r(n/l) for «=(/- l ) /2 are a.i. 

B. Exponential case. In the exponential case, instead of general results, we have 
at least the general 

Schanuel Conjecture. Let al9 ..., an be complex numbers linearly independent 
over g. Then among 

a19 ...,a„, e*i, ...,**" 
there are at least n algebraically independent numbers. 

For many years the most important case of conjecture was the case of numbers 
of the form 

where a and ß are algebraic, a^O, 1, and ß of degree d. 
Since 1949 the main target for investigation becomes the following sets of numbers. 

Let otl9 ..., % and ßl9 ..., ßM be two sequences of complex numbers linearly inde
pendent over g satisfying natural conditions on their measure of linear indepen
dence [9] : 
(1) Si = {C-M. S2 = {ßj9e*ih}9 Ss = {oci9ßj9e-ißj} 

(j = l, ..., N9 7=1, ...9M). Gelfond's method gives us the possibility to examine 
the case degtr g(5^^1,2, z = l,2, 3. In the work of Tijdeman, Waldschmidt 
and Brownawell all the cases of one or two algebraically independent numbers in 
Si were examined. 

The situation with three or more algebraically independent numbers was more 
difficult. The main obstacles, as usual, are algebraico-geometrical. More precisely 
at the end of analytic proof of algebraic independence, we obtain a system of poly
nomials Pt(xl9..., x„)ÇZ[xl9 ..., x„]9 i = l, 2, 3, ..., satisfying 

(2) I P ^ , . . . ^ « ) ! ^ ^ - ^ , 1 = 1,2,3,.. . , 
for fixed (9l9 ..., 0fJ) and v>« (and some additional conditions). Using resultants 
it is possible to treat the case v>2"—1. These considerations enable the author 
to show, e.g. [9], [15], the following results : 

(3) if |$|/(M+i\0^2w , then degtr g(Sf) ^ n + 1 
Since then we have found new methods for the investigation of problems like (2). 

These methods are based on some investigations of singularities for intersections 
of hypersurfaces Pt=0, Pi+±=0, ..., Pi+k=0. 
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We have some effective versions of Hörmander-Lojasiewich inequality and based 
on them we can improve (3) considerably: namely to change from 2" to n + l in 
general [61, [7]. Recently we found an even more elementary method of con
sidering problems (2) for low n [11]. The most precise are the results for three 
or four a.i. numbers. 

THEOREM 1. Let St be as before and 2^d^4. If 

(4) \Si\/(M+N) ^ d (and \S^\/(M+N) > d for i = 3), 
then 

(5) there are d algebraically independent numbers among elements in St. 

Results most close to the Schanuel conjecture are proved for example for algebraic 
powers of algebraic numbers : 

THEOREM 2. Let a?^0, 1 be algebraic number and ß be algebraic number of 
degree d^2. Then among 
(6) < j = l9...9d-l9 

there are 

(7) [(rf+1)/2] algebraically independent numbers. 

This is the "half" of SchanuePs conjecture. 
[In order to go further, we must change our analytic Gelfond-Schneider method: 

now algebraic part of the proof is very advanced, so we need new analytic, probably 
multidimensional, consideration.] 

The number of problems connected with simplest cases is really unbounded, e.g. 

Problem 3. Let ß be quadratic irrationality and loga^logaa logarithms of 
algebraic numbers, linearly independent over g. One should try to prove that 
Ioga! and <xPx are a.i. and to prove that af,a£ are a.i. 

Present techniques give us the possibility of only adding to numers 6l9 02 from 
Problem 3 a third number 03 (connected with exponent or elliptic function) and 
then showing # {9l9 629 03}^2. We present one such result to show what kind 
of monstrous things it is possible to get. 

THEOREM 4. Let p (z) have complex multiplication by /?, OJ be a period of p (z) 
and u be an algebraic point of p(z). In the notations of Problem 3 we have: 

(8) # { }r j f | - ' <* a 4 ^ 2; (9) #f logen af, a ß ^ 2; 

(10) #{TU, n", **} ^ 2; (11) #{co, af, 4} > 2; 

mon 
(12) # { ^ , a f , a ^ 2 ; (13) # { ^ , ^ , a f } ^ 2 ; 

(14) # | ^ , loga l5 af J ^ 2; (15) # {«, loga l5 af} ^ 2. 
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Only result (8) is classical, (9), (10) were proved by the author by Baker's method, 
(11M15) were obtained in 1975-1977 [9], [7]. 

3. We present here another type of results that were recently obtained by the 
author again using algebraico-geometrical approach. This is an analogue of Linde-
mann-Weierstrass theorem for elliptic and Abelian functions. The most simple 
results we get in CM-case [12]. 

THEOREM 1. Let p(z) have complex multiplication in g(r). If al9...9an are 
algebraic numbers, linearly independent over g(r), then, for n^69 p{(x^)9 ..., #?(a„) 
are algebraically independent. 

THEOREM 2. Let A = (Al9 ...9Ad9B) be CM-variety of dimension d. If oil9 ...9\ 
are algebraic vectors (from Qd) linearly independent over End (A)9 then among 

Aifij), i = l,...9d; j = l , . . . ,fc for k ^ 6 

there are ^k a.i. numbers. 

When many coordinates of 5̂  are zeroes we have better result: 

THEOREM 3. Let A = (Al9 ...9Ad9E) be CM-variety. If al5 ...,afe6Qrf are 
linearly independent over End {A) and all coordinates of a. but k0th are zeroes 
(k0^d) z = l, ..., fc, then for kd^6 the numbers 

Aiföj), i = 1, ...9d, j = 1, ...,/c, 
are a.i. 

This result can be applied for the algebraic independence of / ( a^ , ...,/(a„) 
for solution/(z) of differential equation P(f,f')~0 when the curve V: P(x9y)=0 
is CM-curve of genus ^ 1 corresponding to the field K and a14 ..., a„ are linearly 
independent over K algebraic numbers (the generalization of Bombieri conjecture 
for CM-case). 

4. The problem of transcendence is closely related to the problem of diophantine 
approximations of transcendental numbers by algebraic ones. We consider briefly 
new achievements in this direction. It is convenient to use the notion of type of 
transcendence T of « numbers (6l9...99n). This means that for 

P(xl9 ...9xn)eZ[xl9 ...9xtt]9P^09 \P(019 ...90n)\^cxp(-C(logH(P)+d(P)y) 

with C >0 . Of course, T ̂  # 4-1, but for concrete numbers it is extremely difficult to show 
thatT<°o and to find T. Only in the case n = \ for numbers connected with Gelfond-
Schneider method we have now complete information, thanks to... Cijsouw, Wald-
schmidt (exponent), Reyssat (elliptic case). For ws>2 the first examples of two 
numbers with finite type of transcendence were giveri in 1975 (these kare numbers 
from Corollary 2, Theorem 3, §2). We have proved for them r ^ 6 - f e for any 
£>0. Now the analysis of singular points of intersections of curves [11] gives 
us already the best possible result. 
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THEOREM 1. For a.i. numbers n/oj9rj/oj (see (3), §2A), the type T=z(n/oj9rj/oj) 
is 3^T^3-hc for any e>0. Moreover for P(x9 y)£Z[x9 y]9 P ^ O ; 

(1) \P(n/œ9ti/œ)\ > exp(-C l( log7/(P) + rf(P))d(P)2log3(d(P)log^(P))). 

Other numbers in §2A have also finite type T. For numbers C(u)—urf/oj9rj/œ 
from Theorem 4 we have T < 9 + £ for any £>0; for n/a> and enip from Theorem 6 
T=^7 + C for any 8>0. 

New (algebraico-geometrical) methods can give also good results for numbers in § 3 
in the case when the height is much more than the degree [12]. 

THEOREM 2. Let p(z) have complex multiplication by g(u) and al9 ...9un 

be algebraic numbers linearly independent over g(r) and 72 = 1,2. If 

P(xl9...9xn)eZ[xl9...9x„]9P^O and loglog/7(P) ^ c2rf
2l,+1, 

then 
\P(H^9...9p{ait))\^H-^n. 

5. Methods of proof in Transcendence Theory are now very sophisticated algebraic 
or multidimensional. One of the most difficult problems in the one-dimen
sional case is the problem of estimates of the number of zeroes of functions 
F(z)=P(f1(z)9 ...9f„(z)) for P(xl9 ..., x„)ÇC[xl9 ..., x„] and entire functions 

7i(z), ...9fn(z). [E.g. this problem is responsible for difficulties of generalization 
of a.i. results in §2B for elliptic case; for elliptic analogue p(uß)9 p(uß2) of 
Gelfond's example of 2 a.i. numbers etc.] Recent very important progress in this 
direction belongs to D. Brownawell-D. Masser; their investigations are based on 
analysis of primary ideals in polynomial rings. Their results are complete for n=2 
and fl9f2 satisfying algebraic differential equation. 

In the multidimensional case we still need general form of Schwartz lemma. Previous 
results by E. Bombieri, M. Waldschmidt and author [1], [16] giving such lemma 
for many cases, show that Schwartz lemma depends on "singular properties" 
of hypersurfaces in Cn. We propose one problem: let Q(S;K) = 
min {degP:P(x)£C[x]9dkP(w) = 0 for all k£N"9 \k\^K9 w£S} for finite SaC". 
For a given | »S* | to describe all values of ß0(S')=lim^^oo Q(S; K)jK. 

Using properties of Q0(S) [14] we find e.g. that for meromorphic transcen
dental function f(z) in Cn of order <:Q the set S(f) of w£Qn with dkf(w)£Z 
forali k£Nn is contained in a hypersurface of degree *ZIIQ [16]. 

I would like to thank M. Waldschmidt, D. Bertrand, D. Brownawell and 
D. Masser for helpful discussions. 

Added in Proof (1) We have a proof of the conjecture in § 1 in the case of the 
CM-variety A and arbitrary m^2. This enables us to prove explicit upper bounds 
for the K-integer points on CM-curves <€ using the B-Sw-D conjecture and bounds 
(4) or (5) in § 1 in terms of the conductor N of J(%>){K). For an elliptic CM-curve # 
over g the corresponding bounds have the form H(P)*& exp(c(e)N1,12+E)9 c(e)>0. 

(2) The result of Corollary 7 is generalized for any w-band potential u{x) satisfying 
the algebraic differential equation over Q[x]. 
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Introduction. Although it has occupied a central place in number theory for almost 
a century, the arithmetic of elliptic curves is still today a subject which is rich in 
conjectures, but sparse in definitive theorems. In this lecture, I will only discuss 
one main topic in the arithmetic of elliptic curves, namely the conjecture of Birch 
and Swinnerton-Dyer. We briefly recall how this conjecture arose (for more detailed 
accounts, see [1] and [5]). For simplicity, we shall only consider elliptic curves defined 
Dver the rational field Q. Let E be an elliptic curve defined over Q, which we can 
suppose to be given in Weierstrass normal form 

[I) yz = 4x*-g2x-g3 

with giigz^Z. By the celebrated theorem of Mordell and Weil, the group E(Q) 
rf Q-rational points of E is finitely generated. Write gQ for the rank of E(Q) 
nodulo torsion. It is well known that the proof of Mordell and Weil yields no 
ilgorithm for determining gQ9 nor even for deciding whether gQ is positive. In 
ittempting to attack this problem by using the idea of a quantitative local to global 
principle as in Siegel's work on quadratic forms, Birch and Swinnerton-Dyer were 
ed to study the Hasse-Weil L-series L(E9s) of E. This is a complex L-function, 
vhich is defined in the half plane 7?(J)>- | , by the Euler product 

L(E9s)= If (l-app-*+p*-**ri; 
p good 

ìere the product is taken over all primes p where E has a good reduction, and 
ip=p + l—Np9 where Np is the number of solutions (including the point at 
nfinity) of the congruence y2=4x3— g2x—gsmodp. It is conjectured that L(E9s) 
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can be analytically continued over the whole complex plane, but this is unknown in 
general. 

Conjecture of Birch and Swinnerton-Dyer. Assuming the analytic continuation 
of the L-series, then L(E9s) has a zero at s=l of order precisely gQ. 

They also gave a conjectural formula for the coefficient of (s—\)9Q in the ex
pansion of L(E9s) about s=l9 but we shall not discuss this here. Now Tate's 
work [5] on the geometric analogue suggests that, in order to attack this conjecture, 
one must relate L(E9 s) to the characteristic polynomial of some canonical element 
in a representation of a certain Galois group. In the rest of my lecture, I want to 
discuss some joint work with A. Wiles, which goes 3 little way in this direction for 
the special case in which E admits complex multiplication. 

Thus we assume from now on that the endomorphism ring of E is an order in 
an imaginary quadratic field K. Let Etoc be the group of all torsion points on E9 

and p, the group of all roots of unity. The theory of complex multiplication grew out 
of the analogy, perceived by Kronecker, between the elliptic extension K(EtoJ)fK 
and the cyclotomic extension Q((i)/Q. It establishes that K(EtoI)/K is an abelian 
extension, and gives an explicit description of the action of the Galois group on 
Etor (see [4]). Deuring and Weil deduced from this latter fact that L(E9s) can be 
identified with a Hecke L-function L(i/r, s)9 where \j/ is a certain Grossencharacter 
of K9 which we call the Grossencharacter of E. In particular, the analytic conti
nuation of L(E9s) follows. Eisenstein seems to have been the first to envisage 
pursuing more deeply the analogy between the arithmetic of the extensions K(EtQ^jK 
and Q(p)/Q9 but his brief life did not allow time for developing the idea. The 
work of Wiles and myself is entirely within the spirit of Eisenstein's idea, and has 
been inspired by Iwasawa's work on cyclotomic fields. 

At present, it is only plausible to relate L(E9 s) to a representation of a Galois 
group via its /?-adic analogue, whose existçnce had been proven earlier by Katz, 
Lichtenbaum, and Manin-Vishik. We recall their definition. For simplicity, we 
assume from now on that the endomorphism ring of E is the full ring O of integers 
of K (this can always be achieved by replacing J? by a curve isogenous to it over Q). 
Let S be the set consisting of 2, 3, and all primes where E has a bad reduction. 
We now choose p to be an arbitrary rational prime satisfying (i) p$S9 and (ii) 
p splits in K9 say Q?)=pp. Let L(ijjk

9s) be the Hecke L-function of the Grossen
character of $k. Let Q^ be a generator of the period lattice of (1) as an O-module. 
It is well known that the numbers Q~kL(iJ/k

9k) (fc=l,2, ...) belong to K9 and 
consequently they can be viewed as lying inside the completion Cp of the maximal 
unramified extension of the completion of K at p. Let Jp be the ring of integers 
of Cp. Let fÇK be a fixed generator for the conductor of ij/. By definition, the 
p-adic analogue of L(E9s) is the unique continuous function Lp{E9 s): Zp-+<fp 

satisfying 

LP(E9 k) = vkQl-"QzkLWk, fc)(l - Ä j 
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for all integers t > 0 with k=\ mod(/?-l); here vk=12(-l) fc-1(fc-l)!/-*, 
and Qp is a certain unit in *^, which should be viewed as a p-adic analogue of 
ßM . Not only is Lp (E9 s) continuous, but it is in fact an Iwasawa function. Fix 
a topological generator u of the units in Zp which are = 1 mod p. Then there 
exists J§?{E9 T) in the ring Jp [[T]~\ of formal power series in T with coefficients 
in Jp such that, for all s in Zp9 

(2) Lp(E9s) = &(E9u
s-l). 

Iwasawa modules. We now describe two Iwasawa modules which are related to 
Lp(E9s)9 one conjecturally and the other demonstrably. For each n^09 let Eptl+i 
be the group of pn+1-division points on E9 and put Ep- = \Jn^QE n+i. Define 

Fn = K(Epn+ì)9 Fao = KÇEpoo). 

We write G^ for the Galois group of F^ ovorK, and x'.G^-^Z* for the canonical 
character giving the action of GM on Ep00m Note that G !

e o=^xr, where A — 
G(FJK) and r=G(FjF0). Let % denote the restriction of * to A. 

Let M^ be the maximal extension of F^ such that (i) MJF^ is an abelian 
/^-extension, (ii) MJF^ is unramified outside p, and (iii) MJK is Galois (so 
that G^ operates on G{MJFJ) via inner automorphisms) and A operates on 
^(^co/^oo) via X- It is easy to see that such a field exists, and we put 

An analysis of the proof of the Mordell-Weil theorem shows that the G^-modüle 
I M is deeply connected with the arithmetic of E. In particular, let N^ be the 
field obtained by adjoining to JFM the coordinates of all pw+1-division points 
(/7 = 0, 1,...) of all points in the group E(K) of X-rational points of E. Let 
Tp=]imEpn+i be the Tate module, viewed as a G^-module in the natural way. 

LEMMA. We have N^ciM^, and G(NJFJ) is isomorphic as a G^-module 
to Tp

ffQ. 

It is easy to interpret this lemma as asserting the existence of a zero at s=l of 
multiplicity ^gQ of a certain /?-adic function. Let y be the unique topological 
generator of r such that to(y) = u. Then, if 4 =Zp [[!"]] is the ring of formal 
power series in T with coefficients in Zp9 the T-module X^ has a unique /1-module 
structure satisfying (1 + T)x=yx. It can be shown using class field theory that 
X^ is a finitely generated /1-torsion /l-module. Hence, by the structure theory, 
we have 

X. ~ © A/(fj)9 

where r is an integer ^ 1 , and fl9 ...9fr are nonzero power series in A (also 
A~B means that there is a A -homomorphism from A to B with finite kernel 
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and cokernel). The power series f=fl9..*9fr is then uniquely determined by 
X^ up to multiplication by a unit in A. One sees immediately that the above lemma 
implies that /(M*—1) has a zero at s=l of order ^gQ. 

Main Conjecture. The power series f(T) and £ß(J£9 T) generate the same ideal 

in jrQrn. 

This conjecture undoubtedly lies very deep. Its truth would imply (i) that Lp(E9 s) 
has a zero at s=l of order z»gQ9 and (ii) the/?-part of the more refined conjecture 
of Birch and Swinnerton-Dyer when gQ=0. The cyclotomic analogue is still 
unproven in general, and is perhaps the most important open problem in the theory 
of cyclotomic fields. 

In view of the difficulty of the Main Conjecture, it is a little surprising that one can 
solve the analogous problem for a closely related G^-module. To motivate this, 
let JLM be the maximal unramified extension of F^ contained in MM. Then 
global class field theory provides the following explicit description of Z00 = 
G (Md Lao)* F° r e a c r l « > 0 , let Un be the local units =1 in the completion 
of Fn at the unique prime p„ above p. Let En be the closure in Un of the global 
units of Fn which are =1 modp„. Write (UjE„)m for the eigenspace of UjEn 

on which A acts via %. Then 

Z„ = ]m<PJEJ*, 

where the projective limit is taken with respect to the norm maps. Now let C„ 

be the closure in Un of Robert's group of elliptic units of F„ (see [2] or [3] for the 

precise definition). Define the G^-module 

where again the projective limit is taken with respect to the norm maps, and the 
superscript 1 denotes the eigenspace on which A acts via %. 

THEOREM. We have Y^^Aftg), where the power series g(T) and &(E9T) 
generate the same ideal in *fp\\T]\. 

This is proven in [3] when p is not anomalous for E9 and similar arguments 
give the result in general. Iwasawa had previously established the cyclotomic analogue 
of this theorem, but his methods do not carry over to the elliptic case. The proof 
in [3] is based on a refinement of Kummer's notion of the logarithmic derivatives 
of a /7-adic number. 

We can use the above theorem to derive a partial result about the zero of Lp (E9 s) 
at j = l . It can be shown (see Theorem 11 of [2]) that G(N00L00/LCO) is isomorphic 
as a G^-module to Tp if gQ^l. Note that it is not isomorphic to T*<*9 as one 
might naively expect (we owe this remark to R» Greenberg). Thus, since the natural 
map from Y^ to ZM is surjective, it follows that Y^ has a (/^-quotient isomorphic 
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to Tp when gQ^*\. We conclude from the above theorem that Lp(E9s) vanishes 
at s=l if gQ^l. Since the values of the complex and p-adic L-series of E are 
essentially the same at s=l9 we have proven the following. 

COROLLARY. Let E be an elliptic curve defined over Q, with complex multiplication. 
If E(Q) contains a point of infinite order, then L(E9 s) vanishes at s=l. 

The present proof is slightly different from that given in [2], in that it uses a single 
prime p rather than infinitely many primes. 
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1. Introduction. In the early twenties of this century Viggo Brun [4] introduced 
a method which proved to be one of the most fruitful tools in elementary number 
theory. Since the power of his sieve method was realized the latter began developing 
rapidly engaging the attention of many prominent number-theoreticians of the 
past years. We now have a great number of variations of the method, the most 
remarkable being Selberg's /l2-method and the combinatorial sieve of Rosser. 
Of particular interest is also the recent asymptotic sieve of Bombieri [3] (see also [7]) 
which rests on an entirely different concept, called by Selberg "local sieve". The 
large sieve is in a sense not a sieve. Nevertheless these three topics are intimately 
related through the similarity of the arithmetical applications. 

In view of the diversity of different sieve techniques it is clearly impossible to 
give a complete presentation of the theory in a short time. I wish to devote my 
lecture rather exclusively to the combinatorial sieve of Rosser for two reasons; 
the first is the number of strong results it originated recently; the second reason is 
my personal interest. There is also no need to describe the A2-method since Selberg 
himself did it at the Harvard Congress. A complete exposition of the theory based 
on Selberg's sieve can be found in the book [10] of Halberstam and Richert; the 
Lheory of the large sieve is presented in [2] and [28]. 

2. Background. Let me first introduce some principal notions of sieve theory. 
We consider a finite sequence of integers #0 and a set of primes @>. For a given z>2 
let F(z) = JJp<zpePp. One of the fundamental problems in the sieve theory 
is to estimate from above and below the so-called sifting function 

S(^9z) = \{ae^l ( J / , P ( Z ) ) = 1 } | 
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which represents the number of elements in sé that have no prime factors /?<z 
in P. In any sieve method the relevant information about the sequence sé is 
furnished by the quantities \sé^ where 

\séd\ = \{a£sé\ a = 0 (modd)}|, 

i.e. \séd\ is the number of elements in sé that are divisible by d with d\P(z). 
Letting p(d) be the Möbius function one has the exact formula of Legendre 

(1) su*,z)= 2n(4)W| . 
d|P(z) 

This, however, is of rather limited use because, unless z is very small the right-
hand side contains a number of terms \séd\ about which we know very little (but 
see [21]). The essence of the combinatorial sieve consists in truncating the function 
fi(d) so that every integer sequence sé might satisfy 

(2) 2 Kd)M^s(sJ9z)^ 2 Kd)M 
d|P(z) d|P(z) 
d € 0 - d<£0 + 

Instead of the exact formula (1) we have now a two-sided estimate for S(sé9 z) 
and this is the cost of reducing the number of terms \séd\ that need be considered. 

Let us consider the relation of Buchstab and Legendre 

(3) S{sé9z)^S{sé9z^- 2 S{sép9p){Zl^z). 

This formula plays an important role in each of the two known ways of introducing 
Rosser's sieve. For Buchstab this formula furnished a way of improving the result 
of Brun. From a given pair of upper and lower estimates of the S-function, he 
gets, on introducing it in (3), another pair that in some range of the involved para
meters proves to be better than the initial one. It is then possible to repeat this 
procedure until the resulting estimates become invariant under the substitutions. 
Neither Buchstab nor anybody else has ever reached the last step. Recently it has 
been recognized that essentially the same results may be obtained more directly 
through the inequality (2). In the latter approach, due to Rosser, the subsets @+ 

and $}~ are constructed as follows 

^+ = {d = p1...p/9pr<...<pl9p1...p2l-1pil_1~<D for all 1 ^ J<(r+l) /2}, 

Sf~ = {d = Px-.-PriPr^...^ pl9p1...p2iPÌi^D for all 1 ^ / ^ r/2} 

where the two parameters ß 0>1) and D (?>2) are to be chosen according to a 
principle we describe later. Although such a construction may look somewhat 
mysterious a reasonable motivation can be given (based on the Buchstab-Legendre 
formula). For the lack of time let me remark only that the concept of a sieving 
limit (first treated in detail by Selberg [32]) plays a decisive role in the truncating 
operation on fJi(d)9 the limit being related to the exponent ß. 

AU the concepts so far described provide us with a general setting of the theory. 
In order to go further it is necessary to make some hypothesis about regularity of the 
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sequence which is to be sifted. We assume, which frequently happens in practice, 
that every \séd\ may be written in the form 

(4) \séd\ = œ(d)Xld+r(sé9d) 

where co(d) is multiplicative with 0< co (/?)</>, X is a large enough parameter 
independent of d and r(sé9 d) is considered as an error term, small on average 
(so X approximates to \sé\). This means that for some a>0 and all e>0, ^ > 0 
we have 
(5) R(sé9X"-*)= 2 \r(sé9d)\^X(logXyA 

d\P(z)td«zX«-E 

provided Z>Z(a, e, A). As for the function œ(d) we assume that for all z>ws>2 
and some fc>0 and K>\ the following holds 

<6) n (,_-&)-«("s£r(,+Ti_). 
wJp^zy p ) U o g w M logw>J 

pee» 
Comparing the formula with Mertens' prime number theorem one can read x as 
an average estimate of œ(p) over the primes from (P. 

These two parameters a and x are the most important in the theory; % is called 
the dimension and a, for obvious reasons, may be called the level of uniform distri
bution of sé in arithmetic progressions. Let me give an example. If our interest 
is in the Goldbach problem, then we may lake 

sé = {N-p; p^N} and P = {p; p\N}9 

where N is an even integer. We have \séd\ = n(N9 d9 N)9 so that the prime number 
theorem suggests setting X=LiN and co(d)=d/cp(d). Therefore we find that fc = l 
and a^- | by the Bombieri-Vinogradov theorem. 

3. General results. Two problems arise when approximation (4) is introduced 
into the basic estimate (2). The first one which deals with the error terms r(sé9 d) 
is easy to handle. Since ß^l we immediately deduce that every d in ®+ or 
$)- is less than D so the total error term does not exceed R(sé9 D)<XQogX)~A 

provided D<Xa~E. The problem of evaluating the sum of the main terms is much 
more intricate. After having rearranged the order of summation we get a sum of 
a number of terms, each of them of the same order of magnitude as 

V(z)= /7(l-œ(p)/p). 
P\P(Z) 

The assumption (6) is then sufficient to determine their asymptotic bounds and to 
sum all quantities together. The problem of convergence is very difficult and 
a number of sophisticated questions from the field of differential-difference 
equations have come into prominence. The speaker succeeded in finding the following 
estimates : 
(7) S(sé9 z) ^ XV(z){F(s)+E(z9 D)}+R(sé9 D)9 

S(sé9z) ^ XV(z){f{s)-E(z9D)}-R{sé9D)9 
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where s=log D/log z9 E(z9 D) = c(x)eK~~s(logD)~1/3 and f(s)9 F(s) are continuous 
functions to be determined by the differential-difference problem ' 

s*F(s) = A if s^ jS+1 and (s"F(s))'= xs*~1f(s-l) if s> j8+ l ; 

s*f(s) = B if s^ß and ( ^ / ( J ) ) ' = H S * " 1 ^ - - ! ) if s > ß-

The optimal /? (sieving limit) should be equal to inf {/?; f(s)>0 for all .s>/?} 
(or /?= 1 if/(.s)>0 for all s) and the correct choice of A and B is to be inferred 
from the behaviour f(s) = l + 0(e~s) and F(s) = l + 0(e~s) as J approaches «>. 

In his very important paper [32], Selberg proposed the technique of the Laplace 
transform. Another method has been developed by the speaker [22] (see also [17]). 
It rests on a certain relation between two equations of the type 

(8) sp'(s)=-ap(s)-bp(<s-l) 
and 
(9) (sq(8)Y = aq(3) + bq(s+l)9 

the latter being in a sense conjugate to the former. Of great importance are the 
solutions g(s) and h (s) of the equation (9) with coefficients (a9b)=(x9x) and 
(a9 b)=(x9 — x) respectively. It is shown that if x> 1/2 then ß — 1 is the largest 
zero of g(s)9 A = (ß-iy-1/h(ß-i) and B=0. If x = l/2 then ß=l9 A=2(ey/n)1/2 

and B=0. The case K < 1 / 2 is somewhat complicated, so we only mention that 
in this case ß=l and 0< i?< l<^ . 

There is strong evidence that in the range 1/2^«^ 1 the estimates (7) are opti
mal. This means that for particular sequences one of the two bounds (7) coincides with 
the asymptotic value of S(sé9 z). As yet Selberg [32] constructed such examples 
only with x—\ and ^ = 1/2. Several asymptotic formulas for the half dimensional 
sieve are given in [19]. 

In large dimensions Selberg's A2-method gives stronger upper bounds than the 
method of Rosser. Consequently, Selberg's upper bounds, when used to start the 
Buchstab iteration procedure, must lead to better lower bounds as well. Ankeny 
and Onishi [1] carried out the first iteration, getting results that are better indeed. 
It is best visible when comparing their sieving limit vx with our ßx 

vx~r\x as x-*o° where r\=—-—^explj" du\ = 2.44..., 

/?„ ~ ex as K->°° where clogc = c + l (c = 3.5911...). 

One further iteration was executed recently by Porter [30]; the relative improvement 
is however very slight. 

4. Refinements of the method. The general estimates of the sifting function can be 
enhanced in particular applications by other methods. One of such refinements due 
to Kuhn [27] was presented to the Congress in Amsterdam. 
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Let Pr denote an almost-prime of order r, i.e. a number having at most r 
prime factors counted with their multiplicity. For r=\9 Px is simply a prime. 
It is not difficult to show that if sé is a sequence of integers bounded by c(e)Xy+e 

and a, ß have the same meaning as in section 2 then, whenever X is sufficiently large 
and r>ßy/u9se contains at least one Pr of order r. Kuhn was the first to observe 
that by me^ns of weights of a certain kind attached to the elements of the sequence 
in question one can obtain much stronger results concerning almost-primes. Let 
r(x9 y/a) stand for the least integer r such that every sequence sé long enough 
and pertaining to the parameters x9 a and y must necessarily contain an almost-
prime of order r. It would be very interesting, and useful, to find weights enabling 
one to compute the optimal order r(x9 y/a). Nowadays we are at the stage of 
experiment. Richert's logarithmic weights [31] received much attention. A recent 
modification [11], which represents a simplification and refinement of Buchstab's 
weights, seems to be very close to the objective. For example it yields r(l, 15/8)=2. 
The result r(l,2)=2, however, seems rather unlikely. 

Recently Chen [5] caused a sensation by his proof of the following result, 
the last but one approximation to the solution of the Goldbach problem : 

THEOREM 1. Every sufficiently large even number N is a sum of a prime and an 
almost-prime of order 2. 

Chen's argument is applicable to binary problems of the type 

(10) N=p + q 

where p and q run independently over two prescribed sequences both obtained 
from arithmetic progressions by sieving. The idea may be described very vaguely 
as follows. At first one sifts the sequence (N—p), getting a positive lower bound 
for the cardinality of the sequence which will survive the sieving. Suppose that the 
resulting sequence is bigger than the required (q), let us say by (q'). Therefore, 
we must subtract from the lower bound in question the contribution of unwanted 
solutions of JVr=p + q/. Then one applies another sieve to the sequence (N—q'), 
getting some upper bound. If the latter does not exceed the preceding lower bound 
then there must be a solution of (10). It is worth noting that the sieving of (N— q') 
may be very crude; the efficiency of the method is rather due to the fact that (q') 
is quite thin. In Chen's result either sieve is linear. Much the same idea was used 
in [18] in the context of Hardy-Littlewood's problem N=p+x2+y2

9 where the 
corresponding sieves are of dimensions 1/2 and 1. For other applications of the 
above method, sometimes enriched by new innovations see [8], [9], [15], [16], [20] 
and [23]. 

In the speaker's opinion, a real revolution in the sieve theory has been initiated by 
another achievement of Chen [6]: 

THEOREM 2. If x is sufficiently large then there must be a P2 in the interval 
(x9x+x1/2). 
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The basic novelty may be outlined as follows. When expanding the sifting func
tion S(sé9z) into Buchstab's formula 

S(sé9 z) = S(sé9 Zi)- 2 S(sép9 p) (Zl < z) 
Z±^ip-<Z 

and applying estimates (7) to S (sé, z j as well as to each S(sép9p) one comes back 
to (7) for S(sé9 z) and gains nothing. Chen, however, pressed the matter further. 
What he gained by this apparently useless operation is the fact that he needs after 
all not the individual estimates of S(sép9p) but estimates on average (over primes 
p€[zl9z)) which can be improved because the error terms r(sé9pd) may cancel 
quite often. In other words he takes into account the fact that the subsequences 
sépCZsé are somehow correlated contrary to an a priori assumption that was made 
when constructing Rosser's subsets D+ and/)". 

A similar conclusion can be drawn from the result of [24]. It is shown there 
(in the case of the linear sieve) that the estimates similar to (7) hold with a more 
flexible form of the error term 

(H) R(sé;M9N)= 2 2cimbnr(sé9mn) 

instead of the traditional R(sé9D) subject to D=MN9 M^2 and JVs>2. There 
are several methods for working with the double sum R{sé\M9 N) leading to 
R(sé;M9 N)<zX(\og X)~A with values of MN larger than those possible for the 
usual R(sé;MN). Sometimes one gets MN=Xa with a > l which is never attain
able in the conventional approach. 

Let me remark that Hooley [13] and Motohashi [29] were the first who considered 
error terms in sieves in a nontrivial fashion. The work [24] was just inspired by 
Motohashi's pioneering paper on the Brun-Titchmarsh theorem. 

One way of treating R(sé\ M9 N) is related to an idea of expanding every single 
error term r(sé9 mrì) into Fourier series. On application of Cauchy-Schwarz's 
inequality one arrives at trigonometric sums which are then estimated by means of 
exponent pairs or by van der Corput method. This is actually what Chen did. Hal-
berstam, Heath-Brown and Richert rearranged his argument somewhat getting 
remarkably large improvement (unpublished). 

THEOREM 3. For every sufficiently large x the interval (x9x-\-x9) with 9=.454791... 
contains a P2-number. 

Also, Heath-Brown [12] extended the arguments to the problem of almostprimes 
in arithmetic progression, proving 

THEOREM 4. If (a9q)=l then the least P2=a (modq) is <zq2~n with rç>0. 

Heath-Brown's value of rj was equal to 0.035. The method of proving Theorem 
3 will give improved values of rj. 

Another approach to R(sé9 M, N) is offered by Linnik's dispersion method. 
When attacking the problem n2+l=P2 we take sé={n2+l; n^x} and express 
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the quantities \séd\ in terms of incomplete Kloosterman's sums (an idea of Hooley). 
From Weil's result we derive an estimate for the dispersion 

m I m n '"« J 

which leads to a satisfactory bound for the error term R(sé; M9 N) with M=x1~e 

and N=x1/15~e. The latter can be interpreted as saying that the sequence sé is 
uniformly distributed in arithmetic progressions with modulus d<x?~e where 
a = 16/15. This together with Richert's /-(l, 15/8) = 2 led the speaker to the result 

THEOREM 5. The polynomial «2 + l represents almost-primes of order 2 for 
infinitely many integral n. 

Still another approach is of an analytic character. One expresses r{sé9 d) as the 
Perron integral of Dirichlet's generating function for sé. The double sum 
22ambnr(sé9 imi) is then the integral of the product of three generating functions 
for the sequences sé9 (am) and (bn) respectively. An application either of the mean 
value theorem or of the Halâsz-Montgomery inequality for Dirichlet's polynomials 
yields the required estimate of R(sé; M9 N). This method combined with Jutila's 
idea about weighted density estimates for the zeros of Riemann's ([-function has led 
Jutila and the speaker to the result 

THEOREM 6. The difference p„^.1—pn between consecutive primes is <sc/?J8/23. 

Quite recently Heath-Brown and the speaker have proved that Pn+1—pn
<^p1nß{i+E' 

5. Concluding remarks. The earliest applications of sieve methods were limited 
to questions involving almost-primes. There are, however, a number of instances 
when the sieve can be used to produce other conclusions, as for example the solvability 
of diophantine equations (see [8], [23]) or diophantine inequalities as in [20]: 

THEOREM 7. Let 6 be any positive irrational number. Then, for each e > 0 there 
exists an integral vector (xl9 x29x39 x4) such that 

0^\xl+xl-0(x2+xî)\^s. 

An impressive number of applications in other unfamiliar directions were established 
by Hooley. His tract [13] may be an excellent source of inspiration for further studies 
of the possibilities of sieve methods. 
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7>adic L-Functions, Serre-Tate Local Moduli, and 
Ratios of Solutions of Differential Equations 

Nicholas M. Katz 

Introduction. In recent years, there has been considerable progress in the construc
tions of /7-adic L-functions attached to various sorts of "classical" L-functions. 
Unfortunately, the use of these /?-adic functions to solve preexisting problems in 
number theory has so far met with less success; despite the recent work of Coates-
Wiles [1] and Ferrero-Washington [4], conjectures remain more numerous than 
theorems. It may be hoped that a better understanding of the genesis of various 
p-aâic L-functions will lead to progress in their exploitation. In that hope, we give 
yet another construction of the "two-variable" p-adic L-function attached lo an 
elliptic curve with complex multiplication by a quadratic imaginary field in which 
p splits. This construction is based on the remarkable fact, discovered by Serre-Tate 
some fifteen years ago, that the local p-adic moduli space of such an elliptic curve 
has a canonical structure of one parameter formal group of height one. A rewriting 
of this construction in terms of ratios of local solutions of the associated Picard-
Fuchs equations leads to universal formulas for the "algebraic part" of the classical 
L-values, which may shed light on the still mysterious situation when p is no 
longer assumed to split. 

I. Let KaC be a quadratic imaginary field, with ring of integers &(K). Viewing 
(9{K) as a lattice in C, we may form the elliptic curve E=C/0(K). Because E has 
complex multiplication, it is definable over the ring 0(Q) of all algebraic integers 
in C, with everywhere good reduction. Further, we may choose a nowhere-vanishing 
invariant differential co on E over 0(Q)9 so that the pair (E9 co) has everywhere 
good reduction over 0(Q)9 i.e. for any place & of Q, "co mod &" is nonzero 
on "Is mod ^" . Such an co is unique up to multiplication by a unit in 0(Q). 
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The period lattice of (E9 co) is necessarily of the form Q0(K) for some ß€Cx„ 
For variable co of the sort discussed above, this period Q is well defined in the 
group C*/G(Q)*. 

We will denote by a the area of (a fundamental parallelogram of) the lattice 
<S(K). In terms of the discriminant d of K9 we have 

a=\V\d\-

For integers k^39 rs*0, consider the absolutely convergent series 

A{k9 r) = 2 TI+F-
y£<3(K) Il 

75*0 

According to a fundamental result of Damerell [2] the product 

(-^(fc+r-DlTE-
(̂fc> r) 2ar-Qk+2r ( ' ' 

lies in Q; in fact it lies in the field obtained by adjoining to K the Weierstrass 
invariants g29g3 of (E, co). Further, for any integer 6^1, the product 

bk(b*-l){Y=\d\)rB(k9r) 
is an algebraic integer. 

The arithmetic of these numbers, and of their more sophisticated analogues 
("with conductor", and extended to include k=l or 2) is of interest because of 
their occurrence 

(1) in the Birch-Swinnerton-Dyer conjecture for certain elliptic curves with 
complex multiplication (cf. [1]). 

(2) as periods of cusp forms on congruence subgroups of SL (2, Z) (cf. [8]). 

(3) as special values of holomorphic and nonholomorphic Eisenstein series on 
congruence subgroups of SL (2, Z) (cf. [6], [11]). 

(4) as special values of Hecke L-series attached to grossencharacters of type 
AQ of quadratic imaginary fields (cf. [7], [8]). 

It would be of great interest to understand the link between (2) and (3) "directly"; 
both have been used to get information about occurrences (1) and (4). 

U. At present, we have a reasonable understanding of the p-adic properties of 
the B(k9 r) only for primes p which split K. More precisely, fix a finite extension 
K'/K over which (E, co) is defined and has everywhere good reduction. Let p 
be a prime of K\ K^ the p-adic completion of K'9 and W the ring of integers 
in the completion of the maximal unramified extension of K^. Denote by p the 
rational prime lying under p. 
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THEOREM. If p splits in K, there exists a unit c£W* and, for all rational integers 
b prime to p} a W-valued p-adic measure ii(c9b) on ZpXZp9 whose moments 
are given by the formula, valid for integers fcs>3, rs>0, 

/ xk-*yrdp(c9 b) = 2.ck+2r(bk-l)B(k9 r). 
zp*zp 

In [6] we used the global theory of "p-adic modular functions" to construct 
this measure. Here we will outline a new construction, based on the Serre-Tate 
theory of local moduli of elliptic curves in terms of their /7-divisible groups. This 
construction also leads to a universal computation of the B(k9 r) which may yield 
valuable information when p does not split in K. 

Step I (Interpretation of measures). Over any /radically complete and separated 
ring W9 Cartier duality gives a canonical isomorphism between the convolution 
algebra of Revalued/?-adic measures on (Zp)

n and the coordinate ring W][X1,..., XN]] 
of the «-fold self-product (Gm)n of the formal multiplicative group over W. Let 
xl9 ...9xn denote the standard coordinates on (Zp)"9 and let Dl9 ...9Dn be the 
standard invariant derivations Di=(l+Xi)d/dXl on (Gm)n. Given a function 
f(Xl9..., Xn)€W[[Xl9 ...9X„]]9 the moments of the corresponding measure \is are 
given by 

fxï.-.x\rdtif=DÏ...DHf)\o-
(zPr 

Given a measure \i9 the corresponding function fß(Xl9 ...9Xtl) is given by 

fß(Xl9 ...9Xn) = / ( 1 + X ^ . . . ( l + ^ r » 4 u . 
(zpr 

Thus to construct our measure fi(c9 b)9 we need a function / on a group GmXGm. 

Step II (Construction of GmXGm out of E and its local moduli). Returning 
to (£", co) over (D(K')9 we extend scalars to W. Because p splits in K9 E has 
ordinary reduction at p, and hence, the formal group Ê of E is non-canonically 
isomorphic to Gm over W. Fix one such isomorphism 

cp:Ê^Gm (over W). 

The inverse image of the "standard" invariant differential .dX/(l+X) on Gm is 
necessarily of the form c^co for some unit c£W* ; this is the "c" occurring 
in the statement of the theorem. 

Now consider the universal formal ^-deformation 2iuniv of E9 over the formal 
moduli space Jt. The chosen isomorphism cp extends uniquely to an isomorphism 

jguniv X Gm over M9 i.e. £univ ^ JxGm. 

The Serre-Tate theory [9] gives an explicit isomorphism of the space M with 
the formal group Gm over W\ the origin of this Gm is the FF-valued point of 



368 Nicholas M. Katz 

Ê»*"2!JlXGM5îGmXGmv 

Here are three equivalent descriptions of this isomorphism M ^ Gm. 
(a) Because E has complex multiplication by 0(K)9 and has ordinary reduction 

at p, its /7-divisible is necessarily a product 

E(JT) - ÊXE(p~)«*l° -^-+ GmxQp/Zp. 

Let W be a /radically complete and separated augmented W-algebra, with nilpotent 
augmentation ideal, and let EjW be a deformation of EjW. Then the /^-divisible 
group of E sits in an extension 

0-+Gm-+E(p~)-»Qp/Zp^09 

and so determines an element of ExtjV(QpfZp9Gm)^ôm(fV). (Explicitly, let Pt be 
the point of order pl in E(W) corresponding to "1/p'" in the Qp/Zp-factor of 
J?0°°). Let Pt be ûHJ; point in E(W) lifting Pf; then pîPi lies in jßflF) J ^ Gm(FF), 
and as i-+°° these points tend to a /JIWIY in Gm(W)). The resulting morphism 
Jt-+Gm is an isomorphism. 

(b) Consider once again the universal formal deformation £umv over Ji. Via 
the Kodaira-Spencer isomorphism 

K- iv M ? )® 2 = &JììW 

the square of <p*(dX/(l -{-X)) corresponds to a basis Ç of ß^/^ . The isomorphism 
e/#-^<jm is the unique morphism of pointed functors under which dX/(l-\-X) 
pulls back to £. 

(c) There is a unique basis u9 v of HQR(E/W) such that 

(1) u=c~1co9 

(2) (w, p) = 1 (de Rham cup product), 

(3) for y€0(K) acting, as [y]*9 on HlR(E/W)9 we have 

[y?(u) = yu9 [y]*(v) = yv. 

Now consider H^R(Euniw/^)9 with its Gauss-Manin connection. Let Div(o#) 
denote the ring of all "divided" power series centered at the marked W-point "E[W" 
of Jt. In terms of a parameter T for Jt centered at "E/W"; this is the ring 

W((T))=\2am£\amZw\i 
l n aO W! I J 

intrinsically, it is the topological "divided power envelope" of the marked point 
"EfW" in JÏ. On HlR(E*™IÂ)®T)iv (J£)9 the connection necessarily becomes 
trivial, so we can find a horizontal basis J7, K which extends the given basis u9 v 
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of H^R(E/W). In terms of this basis, the invariant differential q>*(dX/(l+XJ) 
on Emiv

9 viewed as a de Rham cohomology class is expressed as 

cp(dX/(l+X)) = U+LV with LeDivO^). 

The isomorphism J(^Gm is the unique morphism of pointed functors under which 
L becomes the logarithm on Gm: 

L(Z) = log(H-X) i.e. dL = dX/(l+X) = Ç. 

That these descriptions are in fact equivalent may be seen as follows. By "general 
principles", the function L must be a (divided-power) isomorphism from Gm 

to Ga9 i.e. we must have L{X) = w log (1+X) for some w£W*. To see that 
w = 1, it suffices to compute L mod (X2)9 and this amounts to explicitly computing 
the description (a) for deformations of E over the dual numbers W[e]/(e2). This 
last computation becomes routine if we exploit the autoduality of elliptic curves 
by systematically interpreting points on elliptic curves as (isomorphism classes of) 
line bundles. 

A more sophisticated proof of this and more general equivalences has been an
nounced by Messing [10]. 

S7e/? J/J (Construction of a function / on Êuniv=*GmXGm). Given an integer 
Z?s>l prime to p9 the function / on £univ to be taken is, in "transcendental" 
notation, 

f(z) = b*p'(bz)-p'(z)= 2 *>'(* + £)• 
C€Ker[6] 

This has purely algebraic meaning, as follows. Given any (E9 co) over any ring R9 

pick any parameter Z for Ê so that co=(l + ...)dZ. The functions on E with 
at worst double poles along the 0-section (i.e. H\E9 J(O)""2)) which begin Z~2 +. . . 
all differ from each other by additive constants. If we apply to any of them the 
invariant derivation dual to co9 we get a well-defined p'. If è is invertible in R9 

then all nontrivial points of order b are disjoint from Ê, so the ^-expression for 
/ shows that it's well-defined on Ê. We apply this universal construction to 
(Euniv, <p*(dX/(l +X))) over the coordinate ring of JT. 

Step IV (Universal computation of the moments). We now return to the original 
(E9co) over <9(K')9 with complex multiplication by 0(K). Let W be any over-
ring of ®{K') in which the discriminant d of K is invertible, and let c£W* 
be any unit of W. It still makes sense to take a basis w, v for H^R(E/W) as in 
Step 11(c) and then to find the horizontal basis U9 V of i7^(Euniv/.#)<g)Div (Â) 
which extends w, v. There is no longer a preferred invariant differential on £univ, 
but we may simply choose one which extends co/c. Its expression in terms of U9 V 
will be 

OLU+ ßV9 öi9ße Div (JT), a(0) = 1 , 0(0) = 0. 
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Because a(0) = 1, it is invertible in Div (Jt). Therefore there is a unique invariant 
differential co on Euviw®T)iv(Jt) whose expression in U9 V is 

(L = ßla£T>ivC4); 
" = t / + L F l L ( 0 ) = 0. 

This function L£Div(^) is simply the direction (i.e. the Plücker coordinate) 
of the subspace Hlt0(zH^R9 measured with respect to the horizontal basis U9 V. 
It is a "divided-power uniformizing parameter", in the sense that the natural map 

J^«L»-*Div(.#) 
is an isomorphism. 

Let b be any integer invertible in W9 and apply the construction of Step III 
to (£univ®Div (Jt)9 co), to produce a function / on £univ®Div {Jt). It follows 
easily from the cohomological analysis of ([7], 2.4.8) that we may compute the 
B(k9 r)'s as follows. 

ALGORITHM. Let D± be the invariant derivation of JÊuniv<g>Div(c//Ô over 
Div(o#) which is dual to co. For all integers /cs>3, r^09 we have 

2ck+*(bk-\)B{k9 r) = (d/dL)"(J)ì-3(/)|0)|0. 

i n . When p splits in K9 and W and c are as in Step II, the theorem follows 
immediately from this algorithm and Steps I, II, III. When p stays prime in K9 

this algorithm gives the known integrality results, and focuses attention on the 
very special role played by the divided power parameter L on the moduli space Jt. 
Arithmetic information about L should yield arithmetic information about the 
numbers B(k9 r). Is it conceivable that L is always the logarithm of a formal 
group structure on the pointed (by EjW) functor Jtl 

IV. In this final section, we give an "elementary" description of L, valid over 
any ring containing 1/2, as the ratio of two particular local solutions of the Gauss 
hypergeometric equation with parameters (1/2, 1/2, 1). From this point of view, 
the function L has been studied extensively by Dwork, at least in the case when 
p splits in K9 under the name "T" ([3], [5]). 

Consider the Legendre family of elliptic curves y2=x(x — l)(x—X) over 
«/#=Spec(Z[A][l/(2A(A — 1))]). Let A0 be any value of X at which this curve 
acquires complex multiplication by the ring of integers 6{K) in a quadratic imaginary 
field. The formal moduli space Jt is simply the formal completion of Jt at X=XQ. 

Let D denote the derivation 2XCk—\)d\dX of M. The H\R for the Legendre 
family is free over Jt with basis 

co = dx/2y9 D(co) = (x—X) dxjly 
with 

(co, D{co)) = 1 (de Rham cup-product), 

D2(co) =—X{X—\)co (Gauss—Manin connection). 
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At /l0, a basis w, v of HQR which is adapted to the action of 0(K) is given by 

M = n]XBXo9 v = (D(co)-eco)Uf=Ao 

for some unique constant e in (l/|/--|tf|)-0C8r')[V2]. Let oc(X)9ß(X) be the local 
solutions near A=A0 of the hypergeometric equation 

D*f = -k(k-\)f9 

normalized by the initial conditions 

a (/L0) = 1, (Da) OU = e, 

/*(A0) = 0, (Z)/?)(A0) = 1. 

The horizontal basis U9 V passing through u9v at A = A0 is given by 

U = D(ß)co~ßD(co)9 V = -D(ot)-co + (xD(co). 
Thus we find 

a) = <*U+ßV9 

whence 
L = j8/a, co = co/oc9 d/dL = oc2-2X(k-l)d/dk9 

A = a • 2y<//d*, / = 2a3(&3[Z>]*G>)-J')-
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On Some Problems of Algebraicity 

Goro Shimura 

1. As every mathematician knows, the parallelism between algebraic number 
theory and transcendental number theory exists only in their appellations and not 
in their contents. Indeed, the aim of the latter theory is to prove the transcendence 
of a given number, while algebraic numbers are there from the beginning in the 
former. Therefore, if one proves the algebraicity of an analytically defined number, 
it cannot be viewed as a theorem of either theory. It belongs to a new area of investi
gation for which this lecture is intended and to which I can give no good designation. 
Although the problem of algebraicity has not attracted much attention until 
recently, there are at least two classical and well-known examples. 

(1) The values of Riemann's zeta function. If C(s)=27=in~s> ^Qn "̂""'"COw) 
for an even positive integer m is a rational number. 

(2) Complex multiplication of elliptic modular functions. If / is an elliptic modular 
function with rational Fourier coefficients, then the value f(z) at an imaginary 
quadratic irrational z is algebraic. 

In each example, one can go beyond the algebraicity. In (2), for example, one 
can actually prove that /(z) generates an abelian extension of Q(z); also in both 
cases, the /?-adic nature of the numbers is an interesting topic. In this lecture, how
ever, I will concentrate only in the algebraicity, without touching on more delicate 
questions. It should be noted that the question of algebraicity can be naturally 
asked for various mathematical objects. For instance, one can ask whether a given 
complex manifold V is an algebraic variety. Supposing it is so, one may still ask 
whether V has a model defined over an algebraic number field. This question, 
when V is an arithmetic quotient of a bounded symmetric domain, is fundamentall 
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in our investigation. However, as I talked on this in a previous Congress ([6], see 
also [2], [4], [5]), I take the algebraicity of such V to be a starting point rather 
than a goal in the following discussion. 

Now what kind of numbers should be offered for their algebraicity? As a genera
lization of example (1), a natural choice falls upon the values of an L-function of 
a number field F with, say, an abelian character x- If % is of finite order, the problem 
is reduced, for some natural reasons, to the case where F is totally real and % is 
totally ramified or unramified. The results, due to Siegel and Klingen, being well 
known, will need no detailed description here. Beyond this, one may attempt to study 
the values of zeta functions obtained from various algebraic groups, say GL„ (F). 
If F is totally real and n=29 we can again obtain a certain algebraicity theorem 
for the values of the Mellin transform of a holomorphic Hilbert cusp form [11]. Some 
results have been obtained also by Sturm [13] for the zeta functions of GL3 (Q) 
related to cusp forms of GL2 (Q). These results suggest some general principles of 
algebraicity, but without making any speculation, let us narrow down our subject 
to the case in which the values of some zeta functions occur as the special values 
of Eisenstein series. The simplest example is the zeta function of an imaginary quad
ratic field with a Hecke character of infinite order. That such a coincidence occurs 
in this case is rather obvious, but its nontrivial generalization (still in the quadratic 
case) was given by Damerell [1]. Subsequently a different approach was taken by 
Weil [14]; these results have been generalized to the case related to the Eisenstein 
series of the Hilbert modular groups [7]. We now propose to extend this to a more 
general framework, by considering automorphic forms of a Q-rational reductive 
algebraic group G. We assume that the semi-simple part of GR modulo a maximal 
compact subgroup is a bounded symmetric domain S9 and take, for simplicity, 
a power of the jacobian as the factor of automorphy. We then lay out our program 
by asking the following series of questions: 

(I) Can one define the notion of arithmetic automorphic functions? 
(II) Can one define the notion of arithmetic automorphic forms? 

(III) Are (holomorphic) Eisenstein series arithmetic? 
(IV) Is there any explicit way to construct arithmetic automorphic forms, similar 

to Eisenstein series, in the case of compact quotient? 
(V) Supposing the answers to these questions are affirmative, is there any inter-

pretation of the values of such explicit arithmetic automorphic forms at CM-points 
as the values of zeta functions? 

The arithmeticity should be defined relative to certain number fields. But without 
seeking the sharper results, we simply take the algebraic closure Q of the rational 
number field as the basic field; so arithmetic forms may be called Q-rational forms. 
The first question is essentially the same as the problem of finding the (canonical) 
Q-rational models of the quotients S\T for congruence subgroups f of GQ. 
As we said above, we start by assuming their existence. This means that we can 
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speak of Q-rational automorphic functions, whose values at CM-points are algebraic. 
As to (II), if Sjr is not compact, we can consider Fourier expansions of auto
morphic forms with respect to a group of translations J1 contained in r. Ingenerai, 
the Fourier coefficients are theta functions; they become constants if T is sufficiently 
large. The characterization of the Q-rationality by means of some properties of 
such Fourier coefficients are treated in [9], [10] and Garrett [3]; so let us now consider 
a more general method applicable even to the case of compact quotient. The idea 
is: first define a certain constant p(w) at each CM-point w on S; then call an 
automorphic form / Q-rational if f(w)/p(w)£Q for every CM-point w. The 
constant p(w) is given as a period of an abelian variety. Let us first discuss its 
definition and basic properties. 

2. Let K be a totally imaginary quadratic extension of a totally real algebraic 
number field F of finite degree. We call such a K a CM-field. Let IK denote 
the Z-module of all formal sums J£TCTT of embeddings T of ^ into C with 
cx£Z. Such a sum with cx^0 defines an equivalence class of representations of 
K by complex matrices. An element $ of IK is called a CM-type of K if $-\-4>Q 
represents the regular representation of K over Q. Here and henceforth Q denotes 
the complex conjugation. Given a CM-type # of K9 there is an abelian variety A9 

defined over Q, such that: (i) 2 dim (A)=[K: Q]; (ii) there is an injection 
7 of K into End (A)<g>Q; (iii) # is the class of representation of K on the space 
of holomorphic 1-forms on A. Let [K: Q] = 2g and * = ^ J = 1 T V . For each v, 
there exists a Q-rational holomorphic 1-form cov9 ^ 0 , on A satisfying covoi(d) = 
aTvcov for all a£K suchthat 7(A)ÇEnd (A). 

PROPOSITION 1. There exists a nonzero complex number p(rv9 $) depending 
only on K9$9 and TV such that /CCOV/[TC-/?(TV, #)]£Q for all l-cycles c on A 
(i.e. elements c of H1(A9Z)). 

For the proof, see [8]. We put p(x9 <1>)=P(TQ9 $ ) - 1 for an embedding T of Ĵ  
into C not belonging to {cl9...9Tg}. 

THEOREM 1. Let $l9 ..., $m be CM-types of K, and T an embedding of K 
into C. Then 

m 

(2.1) npi*,*,)-' 

with rt£Z depends, up to algebraic factors, only on ^L^'t^i aiqd T- Moreover, 
let W be a CM-type of a CM-field L containing K9 and suppose the restriction 
of ¥7 to K is 2iri^i- Then the product of p(cr9 W) for all embeddings a of L 
into C which coincide with T on K differs from (2.1) by an algebraic factor. 

We denote by p(i9 2!t
 rt$i) ^ e number (2.1) which is determined up to algebraic 

factors. Assuming KczC, put <PK=QK-\-s—BQ9 where £ is the identity embedding 
of K into C and QK the sum of all embeddings of K into C. Then /?(T, 4>K) 
is meaningful for every embedding T of K into C. 
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THEOREM 2. Let $ be a CM-type of K and (K'9 $') the reflex of (K9 #). 
Then, for every embedding a of K' into C, p(cr9 4>')2 is an algebraic number times 
the product of pfa9 $K) for all z belonging to, <Pa. 

Note that 4><r is a well-defined CM-type of K. This relation yields an upper 
bound for the number of algebraically independent elements among p(c>9 $'). 
The details of these results will be given in [12]. 

3. We now use /?(T, #) for the definition of arithmetic automorphic forms. 
Though the idea is expected to work in a more general case, we consider here the 
case of arithmetic subgroups of Sp («, JR)r. Let B be a quaternion algebra over 
a totally real algebraic number field F of degree g. Define a Q-rational algebraic 
group G so thaj 

GQ = {a6GL„(J3)|'a'a = v(a)l„ with v(a)6F}, 

where i denotes the main, involution of B. Let 0l9 ..., 9„ be the embeddings 
of F into JR, and suppose that B is unramified at 0l9 ..., 9r and ramified at 
0r+l9 ...99g. Then there is an isomorphism 

(3.1) GRc /7 Cv, 
v = l 

_ f{a€GL2B(Ä)|'a7a = v(a)J with v(a)Çfi} (v = 1,..., r), 
Gv ~ j {aÇGLB(fl)|'«'a = v(a)l„ with v(a)€fi} (v = r+1, ..., g), 

where H denotes the Hamilton quaternions, i the main involution of H, and 

HM?]-
Let GQ+ denote the subgroup of GQ consisting of all a suchthat v(a) is totally 
positive. For each aCG^let (al9...9ag) be the corresponding element of n9v=iGv 
We fix an isomorphism (3.1) so that a15 . . . ,ar have algebraic entries for every 
OL^GQ. If a£GQ+ , we define the action of a on the product 9fn of r copies of 

§„ = {z£M„(C)Yz = z, Im (z) > 0} 

by a(z l5 ...,zr) = (a1(z1), ..., ar(zr)), ccv(zv) = (avzv+bv)(cvzv+dv)-
1 where 

A factor of automorphy %v(a, z) can be defined by 

Zv(a,z) = cvzv+dv (z = (zl9 . . . ,zr)6§J; v = 1, . . . ,r). 

Also we consider a Q-linear embedding /v: M„(5)-*M2|1(Q) suchthat / „ ( A I ^ û M * , 

for v = r + l , . . . ,g . 
As shown in [5], we can construct canonical models of Sjfjr for congruence 

subgroups f of GQ+5 so that the field of Q-rational T-automorphic functions 
is meaningful. We denote by 9I0(Q) the union of such fields for all T. Our task 
is to study the Q-rationality of automorphic forms defined relative to %l9 ...9%g 
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in connection with their values at the CM-points of (?Q+ on §£, which can be 
obtained as follows. Let 7 = 7 1 © . . . 0 y , with simple F-algebras Yf; suppose 
Y has a positive involution ò and there is an /^linear embedding h of Y into 
Mn(B) such that A(fl)a=,Ä(ûr)^ Let L{ be the center of Yt and put 
L ^ e . ^ e L , , ql=[YÊ: LJ, 2wl=[Ll: F], 7[<5] = {*eiV;*;e,F}, L[c5] = 
y[(5]nL. Then A(7[^])c(?Q + . Suppose n=2[sslgimi. Then A(Y[(5]) has 
a unique common fixed point w=(wl9 ..., wr) on §J|. It is this type of fixed point 
where we examine the values of automorphic forms. For each v^r9 we can define 
a representation 3V: Y-+Mn(C) such that 3v(a)=xv(h(a)9 w) for all a£Y[ö]. 
Then m{ embeddings o]19 ...,(j[m of Lf into C can be determined by tr(Sv(a))= 
ai2jGlj^P) f ° r fl^Lj. F ° r v>r, t a k e mf embeddings ^19...9aJm of L. into 
C which extend 0V so that 2l=i ^jLitfj is a CM-type of Lx. Consider these 
d]} homomorphisms of L into C, and call !FV the diagonal representation of 
L of degree n composed of 

d i a g K , . . . ^ J ® ^ 

for i=\9 ...9t. Define also an element #, of 7L by 

j = l l v = l v = r + l J 

Then /?(o-̂ ., $f) is meaningful. We can find Ev£GLn(Q) for v<=r and LV6GL2||(Q) 
for v>r so that 

^ Z ^ W - w ) ^ - ^ ^ ^ ) for all a£L[ö] (v = l, . . . ,r), 

^ ^ ( f t ^ L - ^ d i a g t ^ , ^ , ^ , ^ ) ] forali a€L (v = r+1 , ..., g). 

Put p].=p(<fij9 ^.)1/2 and define diagonal matrices Pv(w) by 

fdiag[Pvl®l f l l,...,Pw®lJ (v<r) , 

^ ^ " I d i a g t P ^ ® ! ^ , . . . , ^ ^ ® ^ , ^ ^ ® ! ^ , . . . , ^ 1 ® ^ ] (v>r), 

Pvi = diag\p}l9...9p}m}. 

Here we denote by diag [Pl9 ..., Ps] the square matrix with square matrices P19...9PS 

in the diagonal blocks and 0 in all other blocks. 

THEOREM 3. Given an arbitrary point z0 of $£>r
n9 there exists, for each v^g9 

a meromorphic function Sv on §Jj, with values in Mn(C) or in M2n(C) according 
as v^r or v>/% such that: (i) Sv is holomorphic at z0 and det (*S*v(z0))^0; 
(ii) Sv(y(z))=xv(y9z)Sv(z) for all y in a congruence subgroup of GQ+ , where 
we understand that Xv{y^z)=xv{y) if v>r ; (iii) if w is the fixed point of h (Y[ö]) 
as above and Sv is holomorphic at w9 then Pv(w)~1L'v5v(w) is a Q-rational matrix. 

This theorem enables us to define Q-rational automorphic forms of a general 
type. Take a Q-rational representation co: (GLn)rX(GL2„)0~r-*GLd, and consider 
a Cd-valued meromorphic function / on 9fn. For every aÇGQ+ and z€ojj, put 

co(a, z) = co(zi(a, z), ..., xr(a, z), %r+1(a), ..., /ff(a)), 

(fU)(z) = co(a9z)-if(a(z)). 
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We denote by 91^ the set of all Cd-valued meromorphic functions / such that 
/ L y = / . f o r a U y in a congruence subgroup of GQ. Taking Sv as in Theorem 3, 
we denote by 91^(0) the set of all elements / of 91^ such that co(Sl9 ..., S^)"1/ 
has components in 9l0(Q). This does not depend on the choice of 5V. Moreover, 
if / ëSÏ JQ) and a£GQ+9 then / L a € « Ä ( ® . The derivatives of elements of 
ytQ(Q) are Q-rational in the sense described by 

THEOREM 4. For a meromorphic function f on 9fn9 define an Mn(C)-valued 
function Avf on §)r

n by 

(A,f){*x, ...,zr) = $±ÈìLJL\ (v = 1, ...,r). 
V L ^ ä V V - , I , J = 1 > . . . ,B 

where zvij is the (i, j)-entry of the matrix variable zv on §„. If /€9t0(Q) and 
Sv is a function of'Theorem 3, then the entries of n~1S~1Avf'

tS~1 belong to 9I0(Q). 

The proofs of these theorems will be given in [12] in the case n — \. The general 
case can be proved in exactly the same fashion. 

4. Finally we give new examples of affirmative answers to questions (IV) and (V). 
The notation being as in § 3, let E be a subfield of F such that [E: Q]=r and 
the restrictions of 9l9 ..., 9r to E are all different. Denote by RE the maximal 
order of E and by U the group of all totally positive units of RE. Take a Hilbert 
modular form 

r 

<p(z) = 2 c(a) exp (2ni 2 a""*») (* = (*i> - » z,)€ Si) 
a v = l 

of weight (hl9 ...9hr) (Ç2~1Zr) with respect to a congruence subgroup of SL2(£> 
Specialize the group CQ of §3 to the case « = 1. Then GQ=B* and GV=GL2(K) 
for v^r. For k=(kl9 ...9kr)£Zr

9 a£B and z=(zl9 ...9 zr)e§>[9 put Tfe(a,z) = 
/7v=itr([zv]av)-*v, where 

[&] = [? Ife2] for 66C. 

Given a totally negative element Ç of .F and an ^-lattice Y of {ß£B\ßl=— ß}9 

define a function / on 9)\ by 

(4.1) / ( z ) = ^ c(TrF/EKaaO)rfc(a, z), 

where the sum is extended over all different cosets CLU with (Ma£ Y. 

THEOREM 5. Suppose k1—h1= ...=kr—hr=t with an element t of 2_1Z greater 
than 3[F: E] and cp is either a constant or a cusp form. Then (4.1) is convergent and 
defines an automorphic form of weight (2k±, ..., 2kr). Moreover, if 2t=[F: E] (mod 2) 
and the coefficients c(a) are algebraic, rc~w/ is Q-rational in the sense of § 3, where 

This result holds even when cp is not a cusp form, provided that t is sufficiently 
large. Series of the same type can be defined also for orthogonal groups and unitary 
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groups; they include Eisenstein series as special cases. Closely related to these 
are the series of type 

(4.2) W(s) = 2 c(TrF/E(yxx°)) f[ (***)-** \^\" (*€ C), 
OjéxeX/U v = l 

where X is an ^-lat t ice of a totally imaginary quadratic extension K of F; 
y is an element of F suchthat y°v>~0 or < 0 according as v < r or > r ; crl9 ...9ar 

are embeddings of K into C suchthat crv = Ov on F. Now W can be continued 
to a meromorphic function on the whole plane. If F=E and cp is an Eisenstein 
series, W is essentially the product of two L-functions of K with Hecke characters. 

THEOREM 6. Suppose h£Zr and k1—h1=...=kr—h,,>-[K:E]. Define ¥'€7^ 
by iF = &K+2rv=i((Tv~(TvQ)> where QK is the sum of all embeddings of K into C. 
Then n-{k]W(0)~nr

v=1p(°v, V)-**£Q. 

The subject of this section will be treated in more detail in a forthcoming paper. 
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Exponential Diophantine Equations 

R. Tijdeman 

1. Historical introduction. Many questions in number theory concern perfect powers, 
numbers of the form ab where a and b are rational integers with <7>1, 6>1. 
To mention a few: 

(a) Is it possible that for /zs>3 the sum of two 77th powers is an /7th power? 
(b) Is 8, 9 the only pair of perfect powers which differ by 1 ? 
(c) Is it possible that the product of consecutive integers, (x+l)(x + 2) ... (x+m), 

is a perfect power? 
(d) Does a given polynomial with integer coefficients represent (infinitely many) 

perfect powers at integer points? 
(e) Can a number with identical digits in the decimal scale be a perfect power? 
A common feature of these problems is that they can be restated in the form of 

a diophantine equation in which exponents occur as variables. Problem (a) leads 
to the equation x"+yn=zn in integers 77^ 3, x>\9 y>\9 z > l which is still 
unsolved in spite of Fermat's claim and all efforts thereafter. Problem (b) was 
posed by Catalan in 1844 and corresponds to the equation xm— y"=l in integers 
77/>1, 77>1, x > l , 3^>1. Problem (c) goes back to Liouville who gave a partial 
solution in 1857. The complete solution was obtained by Erdös and Selfridge in 
1975. They showed that /7"=i (*+./)— )'" l ias n o solutions in integers m >1, 
77>1, x^l9 y>l. Problem (d) is stated here in a general form, but special cases 
were investigated long ago. In 1850 V. A. Lebesgue proved that x2-l-l is never 
a perfect power for integral x. It follows from a more general result of Legendre in 
1798 that x3—ys is not a power of 2 for x>y>l. Ramanujan conjectured in 
1913 that 23, 24, 25, 27 and 215 are the only powers of 2 assumed by the poly
nomial x2 + l for integral x. In 1948 Nagell proved that the corresponding 
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equation x2+7=2n in integers n>l9 x^l indeed has no further solutions. 
Problem (e) is still open. In 1810 P. Barlow stated that no square has all its digits 
alike. It follows from the work of Ljunggren, Obläth, Shorey and Tijdeman that 
the corresponding equation a(lOm —1)1(10—l)=y" in integers 1 ^ A < 1 0 , m>ly 

«>1, J>>1 has no solutions unless a=l and «^23. 

2. Methods for solving exponential diophantine equations. We consider equations 
/ (A^ 1 , X%2

9 ..., x%k)=0 in positive integers ml9m29 ...9mk9 xl9x29 ...9 xk subject 
to certain conditions, where / is a polynomial with integer coefficients. In this 
section we distinguish three différent approaches to such equations and give some 
examples of results obtained in that way. The most elementary attack to find all 
solutions of an exponential equation is the use of 

(i) Divisibility properties of rational integers. The solution of Problem (c) by 
Erdös and Selfridge belongs to this type. In 1952 LeVeque proved that for fixed 
a9b the equation ax—by=l has at most one solution x^l9 y^*l except for 
the case a = 3, b=2. In this case there are exactly two solutions, as was proved by 
Lewi Ben Gerson (1288-1344). It was only in 1964 that Chao Ko proved that 
x2 — 1 is never a perfect power if x>3. The corresponding results for jc2-f-l and 
xs ±1 had been proved by V. A. Lebesgue in 1850 and Nagell in 1921 respectively, 
but in their methods certain irrational numbers play a role. 

(ii) Algebraic methods. Divisibility properties of numbers in certain algebraic 
number fields are used in several solutions of exponential equations. Most proofs 
of Ramanujan's assertion on the equation x2+7=2" are based on properties of 
numbers in Q(Y— 7), a field with unique factorization. Another useful tool is 
the /7-adic method of Skolem. It was exploited by Skolem, Chowla and Lewis in 
1959 to give another solution of the equation jt2+7=2n and in 1945 by Skolem to 
give an algorithm for determining all solutions of certain equations of the form 
a™1...ak

nk—b"1...bni = c in positive integers ml9 ..., mk9 nl9 ..., nl9 where al9...9ak9 

b19 ...9bl9 c are given positive integers. The finiteness of the number of solutions 
had been proved by Pólya in 1918 who applied a third type of methods. 

(iii) Approximation methods. Pólya showed that his assertion is an immediate 
consequence of a result of Thue on binary forms. Thue's work was improved by 
Siegel in 1921. In 1933 Mahler proved a/7-adic analogue of Siegel's result and deduced 
that the equation x+y=z in coprirne integers x9y9 z composed of fixed primes 
has only finitely many solutions. In 1955 Roth improved upon Siegel's work and 
this was generalized by W. M. Schmidt in 1970. Six years later Dubois and Rhin 
and Schlickewei showed that a /7-adic analogue of Schmidt's result implies that the 
equation x1+x2+...+xn=0 in integers which are pairwise coprirne and composed 
of fixed integers, has only finitely many solutions. A disadvantage of the method is 
that it is ineffective; no upper bounds for the solutions can be obtained by the Thue-
Siegel-Roth-Schmidt method. 
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Siegel, and later Baker, developed work of Thue based on hypergeometric func
tions. Their results were applied by Inkeri in 1972 and by Shorey and Tijdeman in 
1976 to the equation (xm—l)/(x—l)=yn. Very recently Beukers obtained a further 
extension, which enabled him to prove that the equation x2 + D=pn in integers 
n>1, x^l has at most four solutions when ZMO and p is a prime, p\D9 and 
at most one solution when p=29 D > 0 , Z>^7, 23, 2*—1 for some /c^4. This 
method is effective only if an exceptionally large solution of a related equation is 
known. 

An important effective method in transcendental number theory was developed by 
Gelfond and Schneider. It was applied by Gelfond in 1940 to the equation ax+ßy=yz 

in integers x9 y9 z9 where a, ß9 y are fixed real algebraic numbers. In 1961 Cassels 
used it to give an effective proof of Pólya's result mentioned at the end of (ii). In 
1968 Schinzel gave several other applications, for example to the equation x2+D = p". 
About at the same time A. Baker found an ingenious generalization of Gelfond's 
method, which led to important new results on diophantine equations. They will 
be discussed later, but we note that it was used to prove that there are only finitely 
many solutions to problems (b), (e) and, under suitable conditions, problem (d). 
As to problem (a) no more than a partial result has been obtained. 

3. Linear forms in logarithms of algebraic numbers. All presented applications 
of Baker's method to diophantine equations can be deduced from the following 
theorem and its/?-adic analogue proved by van der Poorten in 1977. 

THEOREM 1 (BAKER 1973, 1977). Let 0<<5<|. Let a, denote an algebraic 
number, not 0 or 1, with height at most Aj (s>4) for j=l9...9n. Put Q' = 
JJ"Z\iogAj. Let d denote the degree of the field generated by the of s over 
the rationals. Let bl9 ...9b„ be nonzero rational integers with absolute values at 
most 5 ( ^ 4 ) . Put A=b± log ô  + . . . + &„ log a„, where the logarithms have their prin
cipal values. If A^09 then 

(b) \A\ => (ô/\btt\)
ci°^e-s», 

where C>0 depends only on d9n and Al9 ..., An-X. 

There are numerous results which give refinements, often under suitable condi
tions. I may refer to recent work of van der Poorten, Loxton, Waldschmidt and 
Mignotte. For our purpose it is important to note that in (i) the best present methods 
yield an exponent not better than, say, - 1 0 6 (1077ûO"fl' log Q' log An. 

4. Applications to polynomial diophantine equations. Baker, Coates, Feldman, 
Sprindzuk and others have used estimates for linear forms to give upper bounds 
for solutions of polynomial diophantine equations. In these cases it was already 
known by the Thue-Siegel-Mahler method that there are only finitely many solu-
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tions. We restrict ôur attention here to two results Which are important for the 
applications to exponential equations. 

THEOREM 2 (BAKER, 1968). Let f(x9 y) be an irreducible binary form with degree 
«s>3 and with integer coefficients having absolute values at most H. Let c denote 
any positive integer. Then all solutions of / ( * , y)=c satisfy 

max (|*|, \y\) < exp {(ntf)(10n)5+(logc)2B}. 

For our purpose later improvements are not significant, since the dependence on 
n is not better than exp {«"} because of the faòt noted at the end of § 3. Cóates 
and Sprindzuk have given /7-adic analogues óf Theorem 2. 

THEOREM 3 (BAKER, 1969). Let m be an integer, m^3. Let f(x) be a polynomial 
with degree ns>2 and with integer coefficients having absolute values at most H. 
Suppose that f has at least two simple zeros. Then all solutions of f(x)=ym satisfy 

max (|*|, M) < exp exp {(5m)10nWn*Hn2}. 

Moreover, if f has at least three simple zeros, then all solutions of f(x)=y2 satisfy 

max (|*|, |j;|) < exp exp exp {n10n*Htt2}. 

Improvements of the last inequality were obtained by Sprindzuk in 1976 and by 
Choodnovsky (to appear). 

5. Applications to exponential diophantine equations. The ^-adic analogues of 
Theorem 2 given by Coates and Sprindzuk already deal with exponential polynomials, 
namely with the equation / (* , y)=cpZl...pz,s in integers *, y9zl9 ...9zS9 where 
/ and c are as in Theorem 2 and pl9 ...9ps are fixed primes. It follows that under 
the conditions of Theorem 2 the greatest prime factor P[f(x9 y)] of / (* , y) tends 
to oo when max(|*|, |j>|)-*°°5 (x9y) = l. Completing results of Sprindzuk and 
Kotov, Shorey, van der Poorten, Tijderrian and Schinzel obtained the following 
estimate. 

THEOREM 4 (SHOREY et. al., 1977). Let f(x9y)£Z[x, y] be a binary form such that 
among the linear factors in the factorization of f at least three are distinct. Then 
for all pairs x9y with (*, y) = l 

P[f(x, y)] » / l o g log (max (|*|, \y\)). 

(G :»fl H means that there is a constant c > 0 depending only on a such that G ̂  cH.) 
It is an almost trivial consequence of Theorems 1 and 2 that for fixed integers 

a9b and c^O the equation axn—byn=c in integers * > 1 , j>>l and n>2 has 
only finitely many solutions. A much stronger result was established by Stewart. 

THEOREM 5 (STEWART, 1976). P[axîl-bf] ^>a b j/w/log n 
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The following result can be used in combination with the proof of Theorem 3 
to determine all polynomials /(*) £ Z[x] which represent infinitely many perfect powers 
at integer points. 

THEOREM 6 (SCHINZEL AND TIJDEMAN, 1976). If a polynomial f(x) with rational 
coefficients has at least two distinct zeros, then the equation ym=f(x) in integers 
m9x9y with |j' |>l implies that m is bounded. 

A generalization is given by Shorey et al. in 1977. 
It turned out that in certain cases it was even possible to prove that two exponents 

with unrestricted bases are bounded. So one has in connection with problem (b) 

THEOREM 7 (TIJDEMAN, 1976). The equation *"'— y"=l in integers m>l9n>l9 

x > 1, y > 1 has only finitely many solutions. 

kp-ad\c result was given by van der Poorten in 1977. 
To problem (e) only a partial answer could be obtained. 

THEOREM 8 (LJUNGGREN, 1943, SHOREY AND TIJDEMAN, 1976). The equation 
(*"' — l)l(x — l)=yn in integers m>29 ??>1, * > 1 , J>>1 with mn>6 has only 
finitely many solutions if at least one of the following conditions holds: (a) * is fixed, 
(b) m has a fixed prime divisor, (c) y has a fixed prime divisor. 

An application of Baker's method dealing with sums of equal powers of consecutive 
integers was obtained very recently. 

THEOREM 9 (VOORHOEVE, GYöRY AND TIJDEMAN). Let f(x)£Z[x] and let a9 m£Z 
with a^09 777:̂ 2. If the equation 

f(x) + lm + 2m + ...+xm = ay" 

in positive integers n>l, * , y > l has infinitely many solutions, then 

(m,n)€{(3,2),(3,4),(5,2)}. 

The difficult part of the proof is the demonstration that the zeros of the polynomial 
/,(*) + r"+2 l" + ...+*1" have certain properties. Then Theorem 6 and a generaliza
tion of Theorem 3 can be applied. 

With respect to problem (a) only partial results have been deduced. For example, 

THEOREM 10 (STEWART, 1977, INKERI AND VAN DER POORTEN, to appear). Let 

C be fixed. The equation x"+y"=z" has only finitely many solutions in integers 
77^3, *s»l , j>^ l , z^X with y—x<C. 

In both papers more information about the differences y—x and z—x is given. 

6. Indications of some proofs, (a) The equation xm—aym = b in integers 777 > 1 , 
* > 1 , J > > 1 . Note that xm/aym is very close to 1 and hence |logff-f/77logO>/*)| is 
extremely small. It follows from Theorem 1 that 777 is bounded and hence, from 
Theorem 2, that * and y are bounded. 
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(b) The equation x2 — l=yn in integers «>1, * > 1 , J>>1. By factorizing the 
left side we find that both 2(*±1) and -|(*q:l) are nth powers, This leads to 
an equation of the form yl=4y"+4 in integers n>l9y1>l9y2>l. By (a) n and 
y=y1y2 are bounded. 

(c) The equation xm—yn=l in integers m > l , H > l , * > l , J>>1. By factorizing 
xm — l and yn+l we find that x—l = oy" and y+l = ax™9 where Q and o- are 
restricted in size. Hence (,Qyi)m/(<rx™)n *s c l ° s e to 1. It follows that 
|ralog Q—nloge+mnlog^yjxi)] is small. Now Theorem 1 can be applied to 
show that m and n are bounded. 

7. Upper bounds for solutions. An important feature of all proofs of the results 
mentioned in § 5. is that they are effective. Only in very few instances have upper 
bounds been computed effectively. Langevin proved that if xm—yn=l, then 
* m < exp exp exp (250). The best we can hope for with the present methods is a 
bound of the order of exp exp exp (10). I think that with the present methods 
the effective solution of an exponential equation by Baker's method is nigh to 
hopeless, unless the bases of all exponential variables are fixed. In those cases it 
might be possible. For example, Hunt and van der Poorten determined all solutions 
of * 2+7=2" and * 2 - l l = 5 * by Baker's method. The application of Theorem 1 
gives «<1020 and the remaining values have been checked, Beukers proved by 
using hypergeometric functions that if *24-I>=2w, IMO, then 72 < 500+15 log \D\ 
and even /2<20+3 log |Z>| when |D|<1012. The method works, since 1812 is 
exceptionally close to 215. It is not applicable to base 5, since no square is excep
tionally close to a power of 5. Baker's method is applicable to any equation 
x2+D=an in integers n9x. 

8. Related results. In many cases results stated here for rational integers can actually 
be proved for algebraic integers in a given number field. This has been worked 
out by Sprindzuk and Kotov. 

It is a straightforward application of Theorem 1 that in a given number field 
there are only finitely many units s such that 1—e is a unit. Such units were 
used by Lenstra in 1977 to determine Euclidean number fields. 

Sprindzuk, Györy and Papp dealt with applications to norm form, discriminant 
form and index form equations. Györy also gave estimates for the degree of monic 
polynomials /(*)£Z[*] with a given discriminant ZMO. 

Schinzel, Stewart and Györy and Kiss applied Baker's method to Lucas and Lehmer 
numbers. Stewart proved, for example, that there are only finitely many Lucas 
and Lehmer numbers of index «>12 which do not have a primitive divisor. 

An exponential equation with algebraic integers was solved by Baker's method 
in order to determine all elliptic curves over Q of conductor 11 (Agrawal, Coates, 
Hunt and van der Poorten). 

I thank A. J. van der Poorten for his helpful comments while I prepared this paper. 
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Recent Work in Additive Prime Number Theory 

R. C. Vaughan 

I shall concentrate xny attention on matters related to Goldbach's problem, since 
this exemplifies the whole of this subject. 

Goldbach wrote two letters to Euler in 1742 in which he conjectured (a) that 
every integer greater than 2 is the sum of three primes, and (b) that every even 
natural number is the sum of two primes. He included unity as a prime, and since 
(a) then follows trivially from (b) it is the latter with which Goldbach's name has 
become associated. The modern form of this question excludes unity, of course, 
and asks that every even integer greater than 2 be the sum of two primes. 

It is perhaps of some historical interest that Descartes had earlier made the 
same conjecture (essentially), but his comments were only published much later [7]. 

Not until the early 1920s were any serious contributions made to the subject, 
and then there were two important developments, namely the Brun sieve and Hardy-
Littlewood method. These have resulted in three principal lines of attack. 

1. Direct applications of sieve methods. There are excellent surveys of earlier work 
in Halberstam and Roth [14] and Halberstam and Richert [13]. Let P(x) = Up<xp. 
Then the sieve enables us to estimale the number of elements in 

{n — p: [n—p9 P(n°)) = 1, p < 77} or {nv. m < n9 (m(n — m), P(n0)) = 1} 

provided that 0 is fairly small. It thereby enables us to conclude that if n>n09 

then 2n=Pk-\-Pl with k + l*^C9 where P3 denotes a number that is square 
free and has at most j prime factors. The most recent result is Chen's theorem 
[2], [3] that C=3. 
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To understand Chen's contribution we must have a little more notation. Let, 
for large even n9 

£& = {n—p: (n—p, P(n1,1Q)) = 1, n—p square free, p < w}. 

Si = i , 2 , \{bta:p)b}\, 

s2 = ~2 \{b€@- b = pxp2p*9 P i < n1/3 ^ p2 < p3}|, 

Both \âi\ and 5^ can be estimated directly by the sieve, which gives a good positive 
lower bound for \âi\ — Sx. Elements of & with at least two prime factors in 
[rt1/10, «1/3) will make a non-positive contribution to \&\ — Sl9 and no element of 
& can be of the form mpxp2pz with n1/3^p1^p2^p3. Thus the only positive 
contribution to S can arise from those elements which are Pa 's. 

The expression S2 as it stands is not entirely suitable for an application of the 
sieve. However, Chen obtains, by applying the sieve in a novel manner, an upper 
bound for S2 which is smaller than the lower bound for \&\ — S1 and thus secures 
5 > 0 and so the existence of a p<n for which n—p=P2. In fact he uses the sieve 
to estimate 

— {{n-p^p*: PiPzPs < n, n1/10 < Pi < «1/3 < P2 < jp8. (»-PiPaPai P(w1/2)) = l}| . 

This requires, among other things, a new form of the Bombieri-Vinogradov prime 
number theorem. 

Simpler proofs have been provided by Ding, Pan, Wang [10] and Ross [24]. 
Graham [12] has shown that the n0 is effectively computable and Ross [25] has 
shown that it is possible to restrict the prime variables in various ways. 

2. Indirect applications of sieve methods. This stems from Shnirel'man [26], [27] 
and was largely superseded by Vinogradov's work (see § 3). However, it is always 
useful to have alternative lines of approach to difficult problems. His idea was to 
use the sieve to show that 

A(x) = \{n ^ x: 2n = px+p2 or n = 1}| 
satisfies 

(1) A{x)?>x ( x > 1). 

This is readily obtained from upper estimates for 

*(»):= 2 1 
Pi+Pa=n 

provided by the sieve. For instance one may use Cauchy's inequality in the form 

(2R(n))2^(2R(n)2) 2 1, 
n^x n^x n^jc;u(n)>0 
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the left hand side being easily estimated by means of the prime number theorem. 
Then one can use theorems about the addition of sets $9 # of natural numbers, 

J>-f# = {n: n = b + c9 be@9 c£<$ or ne@ or n£<#} 

and their Shnirel'man density 

inf— \{a ^n: ae^}\, sé = @9 <g or ^ + # 
nel n 

combined with (1) to show that there exists a C0 such that for every ws>2 one 
has n=Pi + ...-|-/>j with j^C0. The most recent work in this direction has been 
due to Klimov, C0 = 6X 109 [18]; Klimov, Pil'tai, Sheptitskaya, C0 = 115 [19]; 
Deshouillers, C0=75 [8]; Vaughan, C0=27 [32]. This last paper discusses two 
variants of the method, in one of which the calculations are easier and give C0=27. 
The alternative variant, provided certain calculations can be carried out, does 
better than this, and thereby Deshouillers [9] has obtained C0=26. 

If instead one only asks for a constant C such that every sufficiently large n is 
the sum of at most C primes, then the method can be further refined. The most 
recent values for C have been C= 10 due to Chechuro, Kuzjashev [1] and Siebert [28] 
and C=6 due to Vaughan [31]. 

Of course, if the calculations could be carried out in the 

3. Hardy-Littlewood-Vinogradov method, then we would have C0=4. This method 
has its genesis in the work of Hardy and Littlewood [15], [16]. They showed, in 
particular, on the assumption of the generalized Riemann hypothesis that (a) 

*B00 = 2 i 

satisfies 

and (b) 
(3) E(x) = \{n ^ x: 2/7 7* p+p'}\ 
satisfies 

E(x) = 0E(x1/2+E). 

Of course, (2) implies that for n odd and large, n =px +p2 -f-/?3 is soluble in primes 
Pl>P2,Pf 

Vinogradov [35], by obtaining nontrivial estimates for the sum 

(4) 2 e2niap when 
p^N 

a 
<1 

q-\ (a9 q) = l9 (log N)c < q < N{iog N)~c 

was able to give an unconditional proof of (2). Later Linnik [20], [21] (see also 
Chudakov [5]), Montgomery [22] and Vaughan [33] have given different ways of 
estimating (4). 
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Immediately following Vinogradov's work, Chudakov [4], van der Corput [6] 
and Estermann [11] all showed that 

E(x) = 0A(x(\ogx)-A). 

This was later improved to E(x) = 0(x exp (— c l/log x)) in Vaughan [29], [30] 
and then to E(x)=0(xL~ö) in Montgomery and Vaughan [23]. 

One of the fascinating aspects of additive prime number theory is the continual 
interraction between it and other areas of analytic number theory. For instance, 
the ideas contained in [33] have recently been used. 

(a) to give [34] a new short proof of the Bombieri-Vinogradov prime number 
theorem, 

(b) by Heath-Brown and Patterson [17] in their recent resolution of the Kummer 
problem regarding cubic Gaussian sums (to the effect that the arguments are uniformly 
distributed modulo 2n). 

Let me explain the underlying ideas of [33]. Many theorems in analytic number 
theory depend on estimates for 

2Mn)f(n) (or equivalently 2 f(p)) 
n p 

where f(x) when x£[l9X] is of the form eiFix}
9 F real valued, or is a Dirichlet 

character x(x)9 and f(x)=0 otherwise. These in turn often depend on estimates 
for bilinear forms of the type 
(I) 22*mf(mn) 

m n 

and 
(II) 22*mynKmn). 

m n 

The known bounds for these sums are often 'good' when in (I) m is restricted 
to an interval[l,w] with u fairly small compared with X and in (II) m is restricted 
to an interval [v9 X/v] with v tending to infinity with X. 

Vinogradov relates sums over primes to such bilinear forms via the sieve of 
Eratosthenes in the form 

(5) /(1)+ _2 f(P)= 2_ 2 Km)f(mn), P(Y) = ft p. 
1/X<PIêBX m\P(l/x) n^X/m P^Y 

The sum on the right is of type I but has the unfortunate defect of including m's 
that are close to X. He overcomes this by a combinatorial argument which says 
in effect that those m close to X with all their prime factors small occur relatively 
rarely and so can be neglected. The terms corresponding to the remaining m can be 
rearranged into the form 

2 __ 2 xPykf(pk), 
V<p^yx k^Xfp 

which is a good bilinear form of type (II). However, in its sharpest form the combi
natorial argument is rather complex and not well understood. 
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In [33], this is overcome by using instead the fundamental identity 

(6) So := 2M00/00 = Si-s'.-s'a + s; 
n 

where 
«51= 2 2>("0(log»)/(m"); 

m Su n 

S,= 2 2c,„f(nw), cm= 2 2»(d)A(k); 
mSuu n dSU k^v 

dk=m 

ss= 2 Z-tmAWim»), T » = 2 A*(<0; 

Si=2Mn)Kn). 

For suitable choices of u and v9 S2 is a good sum of type (I), S3 is a good sum 
of type (II) and SA is trivial. Moreover, in Sx the log is easily .removed by partial 
summation, whence it also becomes a good sum of type (I). 

The proof of the fundamental identity (6) is very simple. It is an immediate 
consequence of the observation that 

Thus 

r l (ii 

lO (1 
1 (m = 1), 

m =s£ u). 

SQ-SA + St = 2 2*mMn)f{mn) 2' 
III M>!> 

: 2Kd){22Mn)Kdkn)-2Mn)2Kdkri)) 
dSu k II H^O k 

— ST —So. 
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Homogeneous Solutions of the Einstein Equations 

O. I. Bogoyavlensky 

Foiir-dimensional space-time manifolds Jt* with the Einsteinian metric 
Sij (Uj=Q> 1, 2, 3) with the signature + — — — are studied in the general theory 
of relativity. These manifolds satisfy the Einstein equations: 

Rv~giiR = TtJ (1) 

where R.. is the Ricci tensor of the metrics giJ9 R=R{jg
1J is the scalar curvature, 

T. is the stress-energy tensor of matter. The solution of the Einstein equations 
is called homogeneous, provided the manifold Jt* allows the Lie group of iso-
metries acting with three-dimensional orbits. Most important are the homogeneous 
solutions for which the manifold JV* = GXR1

9 where R1 is the axis of time, 
G is the three-dimensional Lie group. In this case the metric gu on the manifold 
Jt* is invariant with respect to shifts to the elements of the group G and the restric
tion of the metric on the group G is determined negatively. Such homogeneous 
solutions are classified by nonisomorphic types of the corresponding Lie algebras. 

The three-dimensional Lie algebras have been classified by Bianchi in 1^98. It 
has been shown that there exist nine types of the three-dimensional Lie algebras, 
one of which (type I) is commutative (Rz)9 another (type II) is nilpotent, five types 
(III-VII) are solvable Lie algebras and two types are semisimple Lie algebras; 
type VIII is SL (2, R) and type IX is SO (3). The homogeneous solutions fall 
into two classes: in class A commutators of the corresponding Lie algebras have 
the form : 

[Xi9 Xj] = sijknkXk9 f, j , k = 1, 2, 3. 
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In class B commutators are reduced to the following form: 

[XZ9XJi = aX1+n2Xi9 [Xl9X2] = 09 [X29 X3] = nxXx-aX2. 

On the manifold Jt*=GXR1 one may choose the basis of the right-invariant 
at the action of the group G vector fields X°9 X

1, X2
9 X

s (X° is tangent to the 
axis R\ and X\X\X* are tangent to the group G9 here [X°9 X

l]=0), in 
which the metric g.j has the form: 

fl 0 0 0 

|0 ~gij(t) 

lo 
As usual, investigated are the homogeneous solutions with hydrodynamical stress-
energy tensor of matter 

Tu = (p+e) Mi UJ - pgij (3) 

where s is the energy density, p is the pressure, p=ks (0<:fc<l), ul is the vector 
of the 4-velocity of matter and the matter is assumed not to move on the average, 
i.e., w°=l, wf = 0. 

With these assumptions the well-known lemma is valid: at some value of / 
det (gij(t)) turns to zero, i.e., the metric has a singularity. This singularity of metric 
may be so to say fictitious, connected with the given choice of coordinates and vani
shing in other coordinates, as, for instance, in the well-known Taub-NUT solution. 
Of greater interest, however, are the real singularities of the metric connected with 
divergence of its geometric invariants. In particular, such singularities are in all 
homogeneous solutions at the presence of matter, i.e., at e^O, since all the homo
geneous solutions have the first integral 

H = fi(det gi7)
(1+fc)/2 = Const (4) 

and the invariant scalar curvature R is connected with the density of energy e by 
the expression R=— (1— 3k)s (consequently, |i*|-^°° at det (g^)-*0). 

While studying the homogeneous solutions it is convenient to use the Hilbert 
variational principle which states that on the Einstein equation solutions (1) the 
first variation 

ô f(R + A)(-gy'*dx = 0 (5) 

where variations of the metric are finite. It is easy to conclude that the homogeneous 
solutions with the compact Lie groups of isometries, for instance, SO (3), satisfy 
the corresponding homogeneous variational principle (since the homogeneous 
variations for compact groups are finite): 

All the homogeneous solutions of class A satisfy the same variational principle. 



Homogeneous Solutions of the Einstein Equations 397 

For these homogeneous solutions the Einstein equations are, consequently, the 
Lagrangian ones and after certain Legendre transformation pij=dLldgij they 
turn into the Hamiltonian system in the twelve-dimensional phase space p^igy. 
The dynamical systems describing homogeneous solutions of class B are not 
Hamiltonian. 

Thus, the investigation of any type homogeneous solutions is reduced to that of 
the corresponding dynamical system in the 12-dimensional phase space pij9gu. 
The order of these dynamical systems may be diminished, since: first, each system 
is considered only on the level of the constraints determined by the Einstein equa
tions R0o[=T0ûl9 and then, the dynamical systems obtained are invariant relative 
to the action of the group of internal automorphisms of the corresponding Lie 
algebra. 

As a result of such a decrease of order the dynamical system for homogeneous 
solutions of types I and V is reduced to two-dimensional systems. Special homo
geneous solutions of types II-VII possessing an additional symmetry may be also 
reduced to the two-dimensional systems. The investigation of such solutions by 
traditional methods of the Poincare-Bendicson two-dimensional qualitative theory 
has been carried out in [1]. 

However, the dynamics of general homogeneous solutions of types II-IX is 
not reduced to two-dimensional systems; therefore, for their investigation the author 
and S. P. Novikov [2], [3] have applied modern methods of multi-dimensional 
qualitative theory of dynamical systems. The new method of maximal non-degene
rated compactification of dynamical system is the main method in these papers. 
Further this method has been effectively applied by the author in the investigation 
of the dynamics of perturbations of some integrable systems [4] and in the astro-
physical work [5]. Let us describe the essence of this method on an example of 
studying homogeneous solutions of the Einstein equations. 

1. Homogeneous solutions are described by dynamical systems with polynomial 
right-hand sides. These dynamical systems are defined in a noncompact region 
Si of the phase space, isolated by physical conditions of positivity of the density 
of energy e and of metric g^ft). The dynamical systems under consideration have 
very degenerated singular points in which ^ = 0. 

2. To investigate the dynamical system in the region Sx it is necessary to com-
pactify this region at infinity and resolve as much as possible strongly degenerated 
singular points of the dynamical system. Compactification at infinity is realized 
by means of transition to projective coordinates. In order to resolve degenerated 
singular points it is required that successive cr-process should be performed, in 
this case polynomiality of the right-hand sides of the dynamical systems are used. 

As a result of these transformations the dynamical system in region S1 turns 
into an equivalent dynamical system, defined on some compact manifold S with 
the boundary T, the dynamical system being smoothly continued to the boundary 
r. The manifold S is a cell complex, and the boundary r consists of several compo-
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nents rt intersecting in the corners of the boundary. The components of the bound
ary rt correspond to compactification of the region S± at infinity and to resolution of 
degenerated singular points, and also in the physical region at e=0. The construc
tion of the manifold S is realized so that the resulting dynamical system on S 
should have maximal non-degenerated singular points. In this case the singular 
points form some manifolds and are non-degenerated (in the transversal directions), 
provided the number of their non-zero eigenvalues is equal to the codimension of 
these manifolds. 

3. The dynamics of homogeneous solutions is studied on the basis of the above 
construction of the compact manifold S and of the dynamical system on it. 
The dynamical systems under consideration have a monotone function 
F=d(det(giJ))1/6/dt9 due to the system dF/dz^O. At the compression of space 
F-+ — œ, and all the trajectories of the dynamical system approach the components 
of the boundary r which correspond to the metric singularity. The dynamical 
system at the boundary r is very much simplified and allows detailed investigation, 
as a result of which we get a complete enumeration of all the regimes of the metric 
behaviour in the neighbourhood of the singularity det(gfj.)=0. 

The singular points with séparatrices passing inside the manifold S define all 
the different power (with respect to t) asymptotics of the metric under compression 
of space (and in some homogeneous solutions at the infinite expansion of space). 

Some unstable singular points lying in the corners of the boundary r have no 
séparatrices passing inside the manifold S. All their séparatrices lie on different 
components of the boundary r and, as the direct integration shows, they pass 
from one singular point to another. All the available séparatrices transitions between 
the singular points form a separatrix diagram of the dynamical system. The sépa
ratrices connecting the singular points form successions which may terminate only 
at the attracting singular points. For the homogeneous solutions of the types I-VII 
the dynamical system on the manifold S has attracting singular points and for 
such solutions only the final successions of the separatrix transitions are realized, 

The dynamical systems on the manifold S for the homogeneous solutions of 
the types VIII and IX possess only unstable singular points (no attracting singular 
points at all). In this case there arise infinite successions of séparatrices passing 
between the singular points. These séparatrices fill some closed manifold which is 
an attracting manifold of the dynamical system due to the presence of monotone 
functions of the type of function F. Recently such manifolds have been called "strange 
attractors". It is essential that the dynamics arising on a strange attractor in the 
general theory of relativity allows a complete investigation. The trajectories approach
ing this strange attractor describe the oscillation regime of the metric behaviour 
in the neighbourhood of singularity which has been discovered earlier in [6], [7] 
with the help of some other methods, 

As a particular example we consider homogeneous solutions of the type IX pos
sessing a group of isometries SO (3). These solutions are described by the 
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Hamiltonian system in the six-dimensional phase space pi9q{\ 

p§=-dHfdqi9 4t = dH/dpi9 (7) 
with the Hamiltonian 

H = ( ? I < M 3 ) - ( 1 - * ) / 2 U 2 P i Q i P j O j - 2 rfsî+4- U 2 g a j - 2 « f i l • 

Here the coordinates gt are eigenvalues of the matrix gtj(t). The constant value 
of the Hamiltonian H is connected with the density of energy e by the relation (4) : 
/T=e(^1^2^3)(1+fc)/2- The system (7) is considered in the non-compact region 
isolated by the conditions H>09 <7,>0. The system (7) is invariant with the actioti 
of a group of scale transformations 

qt^kqu Pi^pi9 T»A ( 1-3 f c ) /2T 

and therefore it admits the lowering of the order. In this case the compact manifold 
S is a five-dimensional cell complex and is covered by the coordinate system 

yi = qi/G9 S^PM/P, w = G*/P\ 
G = (ql + ql + q!)11*, P = (vWi +plql +plqlY12 

and by the coordinate system y^s^p^JG. The coordinates si9w9sny. cover 
the manifold S2XD\ where S2 is a unit sphere in the coordinates yi9 Z>3 is 
a three-dimensional ball covered by the coordinates si9w and sr The cell complex 
S is isolated on this manifold by the conditions yt^09 iv^0, and with the compres
sion of space, by an additional condition ^H-^+^^O. 

All the singular points of the dynamical system on the manifold S lying on the 
boundary r are unstable and form the following manifolds: a two-dimensional 
triangle of singular points #, nine segments of singular points Ai9 Bi9 T- (z=l,2, 3), 
three isolated singular points Nt and three circumferences of singular points (i//9 i) 
(0*^i//*^2n). The séparatrices entering the singular points cp9Ti9Ni define all the 
power asymptotics of the metric available in the solutions under consideration. 
The séparatrices leaving the singular points on the circumference (\j/9 i) lie on the 
boundary r and then again enter the singular points on some other circumference 
(i/f, k). These séparatrices fill some manifold which is a strange attractor in the 
dynamical system under consideration. 

The trajectories moving along successions of séparatrices on the strange attractor 
appear from time to time in the neighbourhood of the circumferences (\j/9 i). Each 
of these circumferences (\j/9 i) lies in the corner of the boundary T and on it we 
have j;f = l, J>/=J;fc=0. Therefore in the neighbourhood of the circumference 
(i/f, /) we have q^qj, qk, and, thus, while the trajectory moves in the neighbourhood 
of the strange attractor one of the qf from time to time happens to be much greater 
than the other two, i.e., the eigenvalues of the metric gtJ(t) oscillate in a very compli
cated manner. These oscillations describe the oscillatory regime of the approaching 
of metric to the singularity which is the most general regime of the metric behaviour 
at the compression of space. 
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Minimal Surfaces: Stability and Finiteness 

Manfredo P. do Canno 

The last ten years have seen an intense activity on certain questions that arise in 
connection with the study of minimal surfaces. Among such questions one should 
mention those of regularity, embeddability, stability and finiteness of the number 
of minimal surfaces spanning a given boundary. In this lecture I would like to describe 
a few ideas, results and problems related to the questions of stability and finiteness. 
For simplicity, I will restrict myself to minimal surfaces of the topological type 
of the disk in a Riemannian manifold. 

Let M" be an 77-dimensional Cfc-Riemannian manifold, /c>3, B will be the 
open unit disk in R2 with closure E and boundary dB. Let y c M be a closed 
rectifiable Jordan curve. A generalized minimal surface bounded by y is a map 
/ : E-+M that is C2 in B9 C° in E and satisfies: 

(1) The restriction f\dB is a homeomorphism onto y. 
(2) / is conformai in B9 that is, 

\L\ = \fy\, </*>/,> = 0, (x9y)eB9 

where ( 9 ) denotes the Riemannian metric of M. The points where 1̂ 1 = 1^1=0 
are the (interior) branch points of / in B. 

(3) / is a critical point of the area function for all variations that leave dB fixed. 
When such a critical point is a relative minimum, / is stable. 

The most significant, and historically the first, example of a generalized minimal 
surface occurs for the case M"=Rn. A version of the classical Plateau problem 
asks whether given yczRn there exists an / satisfying (1) and: 

(4) / minimizes area for all geC2(B)n C°(E) that satisfy (1). 
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The answer, given by Douglas and Rado around 1930, can be stated as follows 
(for general references see [8]). 

THEOREM 1. Let Mn=Rn. Given yczRn
9 there exists a generalized minimal 

surface bounded by y which satisfies (4). Such an f is called a Douglas solution 
to the Plateau problem. 

For the purpose of fixing the notation, let us recall the ideas of the proof. One 
observes initially that it suffices to minimize the Dirichlet integral (=the energy 
o f / ) 

D = 1/2 f \grad f\2dxdy. 
B 

For that, we first minimize D among all maps with finite energy that restricted 
to dB is a given continuous map g:dB-*y. The solution g is the harmonic extension 
of g and the space of all such harmonic extensions is denoted by H(y). By noticing 
that D is invariant under conformai transformations, we normalize all elements 
in H(y) by requiring that three fixed distinct points of dB are taken in three fixed 
distinct points of y ; the resulting space is denoted by H(y). The crucial point is 
now to prove that HN= {g£H(y); D(g)^N} is compact in the topology of uniform 
convergence. The theorem follows from the lower semicontinuity of D in H(y). 

Through the work of several mathematicians (see [8]), the following regularity 
theorem has been obtained the first part of which allows us to introduce the notion 
of boundary branch points. 

THEOREM 2. Let yaRn be of class Ck and let f satisfy (1), (2) and (3). Then 
f is of class C*"1 in E. Furthermore, for n = 39 Douglas solutions have no interior 
branch points. 

From now on, we will denote by M (y) the space of generalized minimal surfaces 
bounded by y and normalized as in H(y). The immersed surfaces (i.e., those 
with no interior or boundary branch points) will be denoted by Mi(y)czM(y). 

It is natural to ask how the geometry of y influences the properties of M(y). 
For instance, what properties of y imply that M (y) contains only one element? 
For a long time the only known conditions for such a uniqueness, due to Rado 
(see [8]), were: (i) y is a plane curve, (ii) y has a one-to-one convex projection 
onto a plane PaRn. Recently, J. C. Nitsche found a further condition for n=3. 

THEOREM 3 ([12], [6]). Let yczjR3 be of class C3 and assume that the total curvature 
of y is smaller than An. Then M(y) contains a unique element. 

The idea of the proof is as follows. From a formula of Gauss-Bonnet type that 
holds for fÇ.M(y)9 we conclude that / has no branch points in E and jB\K\do<2ii 
(here and always K is the Gaussian curvature of the induced metric). From a 
theorem of Barbosa and Carmo [1], this implies that / is stable and nondegenerate. 
The crucial point is then to prove that / is a strict relative minimum for the energy 
D in the space H(y) with the topology of uniform convergence. A theorem of 

file:///grad
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Shiffman [14] states that two such relative minima imply the existence of a third 
critical point of Z>, not a minimum. Thus M{y) contains only one element. 

Actually, the result of [1] states that if y^M^y), yczR3
9 and fE\K\dcr<2n 

then the first eigenvalue of the problem 

(1) Au-XKu = 0 in B9 u = 0 in dB, 

is greater than 2 (A is the Laplacian in the induced metric). This can be used to 
show that if M(y)=Mt(y) and fy\k\ds<6n9 then M(y) consists of isolated 
points. 

The argument is again due to Nitsche [13] and goes as follows. If f£M(y) is not 
isolated, one can prove the existence of a function u satisfying 

Au-2Ku = 0 in B9 u = 0 in dB. 

Thus 2 is an eigenvalue for the problem (1). In fact, 2 is the first such eigenvalue. 
Otherwise, u changes sign in B and is the first eigenfunction of a subdomain 
BmciB9 where fB \K\da^\jB \K\dcr. By the above quoted Gauss-Bonnet 
formula, the condition on the total curvature of y implies that fB \K\da<4n. 
This leads to a contradiction with the result of [1] and shows that u is a first eigen
function of the problem (1). Since the space of such eigenfunctions is 1-dimensional, 
it follows from the work of Böhme and Tomi [3], [15] that a connected component 
of M(y) that contains / is a compact 1-dimensional manifold. This leads again 
to a contradiction, essentially because Jacobi fields in R* cannot "turn around" 
without changing sign. 

The last part of the above argument had been previously used by F. Tomi [15] 
to show that the set of Douglas solutions bounded by yczR3 that have no boundary 
branch points is finite (see also [16]). 

A generic approach to the question of finiteness has been developed by A. Trombe 
[17] and later, with different methods and less differentiability requirements, by 
L. P. Melo Jorge [10]. The idea is to give H(y) a structure of a Hilbert manifold 
so that D: H(y)-+R is differentiable and the critical points of D are the (non-
normalized) elements of M(y). A crucial point is then to find a notion of non-
degeneracy for elements in M{y) that is invariant under small perturbations of 
y in the space T of embeddings of S1 into R". This is obtained in [17] from the 
transversality properties of a certain vector field defined on the space \Jy^rH(y) 
and in [10] from the ellipticity of a certain operator associated to the second derivative 
of D. With such methods it can be proved, for instance, that if all f€M(y0) are 
nondegenerate, then M(y0) is finite and this number is constant for y in a neigh
borhood War of y0. Since it can be shown that plane curves are nondegenerate, 
it follows that curves close to a plane curve bound a unique minimal surface. A related 
result has been obtained by W. Meeks [9]. Uniqueness also holds for curves nearby 
those satisfying the second of the above Radó's conditions [10]. 

Recently, Böhme and Tromba [4] proved that there exists an open dense subset 
tar with the C°° topology such that if yçf then M(y) is finite. 

file:///K/dcr
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Now, Theorems 1 and 2 have complete generalizations for a Riemannian manifold 
M if one assumes that either: (i) M is well behaved at infinity [11] (for instance, 
if M is compact) and y is contractible to a point, or (ii) the sectional curvature 
KM of M satisfies KM^b2

9 b real or pure imaginary, and y is contractible to 
a point in such a way that the length / of the longest transversal curve of the contrac
tion satisfies 4l2b2^n2 [5]. 

This raises the question of extending the above finiteness theorems to such a situa
tion. For instance, it has been proved in [2] that if f:E->H3(a) is a minimal 
immersion into the hyperbolic 3-space H\a) with constant curvature «<0 , and 
fB\K\do<2n9 then / is stable. By a result of Kaul [7], if the total curvature of 
a curve yaH3(a) is smaller than An9 we still obtain that M(y)=Mi(y) and 
fB\K\da<2n. It is likely that one can extend Nitsche's arguments as well as 
Shiflfman's theorem to hyperbolic spaces, and this would imply that Nitsche's 
47c-theorem holds true in H\a). Actually, it may well happen that most of the above 
finiteness theorems have natural extensions to three-dimensional, simply-connected, 
Riemannian manifolds with negative curvature. 

Stability for immersed minimal surfaces is in itself an interesting question; it is 
strongly related to the question of estimating the eigenvalues of the Laplacian of 
bounded domains in terms of the geometry of the domain. Recently Barbosa and 
do Carmo developed a general method to attack this question [2], and obtained 
stability results for minimal surfaces in various classes of Riemannian manifolds. 
In fact, there are reasons to believe that the following general statement may be true. 

Let R be the curvature tensor of Mn and let VR be its covariant differential. 
Assume that there are numbers Cx and C2 such that \\R\\-<Cl9 | |VJR||<C2 . Let 
f:B-+M" be a minimal immersion and denote by K the Gaussian curvature of 
the induced metric ds2. Then there exists a nonnegative function T{K9C^) on E 
and a number >4>0, depending only on n, C± and C29 such that if fsrda<A9 

then f is stable. 

This conjecture has been verified for Riemannian manifolds with constant curvature, 
and sharp bounds have been found for R3 and the three-sphere [1], [2]. The critical 
point in the proof is to estimate, in terms of n9 Cx and C2, the Gaussian curvature 
of a new metric da2=Tds2 on B. Once this is obtained, a comparison theorem for 
eigenvalues, as developed in [2], could be used to complete the proof. Whether 
or not the above statement is true, the search for specific and interesting stability 
bounds still leaves much room for investigations. 

I would like to conclude with a few specific questions: 
(1) Is a complete globally stable minimal immersion in R3 flat? Here globally 

stable means that any bounded domain is stable. 
(2) Let f:B-+Rn9 ra>3, be a minimal immersion with fB\K\da<2n. Is / 

stable? This is true if we replace 2n by 47c/3 [2], 
(3) Let M3 be a simply-connected Riemannian manifold with KM^0. Let 

/ : B-+M3 be a minimal immersion with fB\K\da<2n. Is / stable? 
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Conjectures and Open Questions in Rigidity 

Robert Connelly* 

I. Introduction. The study of the rigidity of frameworks and surfaces is fairly old, 
going back at least to the time of Euler, but progress has been slow and painful. 
Even today knowledge is meager, and many basic simple questions are still un
answered. One gets the feeling that in the past these questions were considered 
more a source of embarrassment than a source of conjectures or goals for future 
study. My feeling is that reasonable conjectures and problems are useful and essential 
to progress in mathemtics. Even if such questions turn out to be poorly stated, 
ambiguous, or ultimately uninteresting, they usually have been useful, at least for 
inspiration if nothing else. 

Rigidity is a subject very close to the reality of our world. If a structure is proved 
to be rigid one can always build it and see if it collapses. Theorems had better 
hold up. The opportunities for beneficial interaction among engineers, architects, 
and mathematicians seem very attractive. The subject is versatile and sufficiently un
developed that contributions can be made at all levels. 

I have chosen five categories of questions about which I think it would be nice 
to know more information. Naturally, some are ambiguous and not too detailed. 
If I knew the answers, I would not be asking. 

H. Definitions and history. It is useful to state rigidity in terms of things called 
frameworks. The name is probably inspired from structural engineering, and 
physically one should think of a framework as a gadget constructed out of dowel 
rods with their ends stuck in small flexible rubber connectors. Mathematically, 

* Supported by a grant from the National Science Foundation of the United States. 
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a framework F is just a finite ordered collection of points p = ( P i , ...9pv)9 p, in 
Euclidean «-space (n is usually only 2 or 3), together with a collection of certain 
pairs of points ê called the rods. For example, 

Pi • -

a triangle a square 

' = {(Pi> P2), (P2> Pi), (Ps, Pi)} S = {(pl9 p2), Q?2, j>a), (p3, P4), (p4, Pi)} 
A yfoc of F is a continuous motion of all the vertices p(t)=(p^t), p2(t), •••,/?„ (t))9 

0 < f < l , so that p(0)=p and the length of any rod (pi9Pj) in jp, 
|Pi(0—Pj(0l> is constant for all t. The flex p(t) is ngzrf if a// the distances 
\Pi(t)—pj(t)\ are constant. In the latter case it turns out that p(t) is obtained by 
applying a common rigid motion of all of En to each pt{0). Thus p(t) = 
(gtPi(Q)>8tPo(P)> •••> gtPv(P))> ^=r igid motion of En. The framework F is rigid if 
every flex of it is rigid. In the examples above, the triangle is rigid, and the square 
is not rigid, even in the plane. 

The natural question at this stage is to determine what frameworks are rigid. The 
first nontrivial result in this direction was by Cauchy in 1813 [6]. 

THEOREM 1. If a framework F is obtained from the natural edges and vertices of 
the boundary of a convex polyhedral surface in E\ then F is rigid under the more 
restrictive condition that every flex holds each natural face rigid. 

Here a natural vertex, edge, or face is a 0, 1 or 2 dimensional intersection of 
a support plane with the convex surface. Note that if all the natural faces are 
triangles, then they are automatically "held" rigid. Actually Cauchy tried to prove 
a bit more than this theorem and his proof had a gap, but his proof was essentially 
correct and the gap was closed by Steinitz. (See Steinitz [25], Stoker [26], Lyus-
ternik [20].) 

In any case this very nice result reinforced the notion ("the rigidity conjecture") 
that any triangulated two-dimensional closed surface in E3—convex or not—was 
rigid, where the framework consists of the vertices and the edges of the triangulation. 
Bricard [5] in 1897 "classified" all flexible octahedra and it was clear that none of 
them were embedded. Cauchy's techniques were applied and transformed to dif
ferential geometry and in the 1940s and 1950s A. D. Alexandrov and A. V. Pogorelov 
extended and applied Cauchy's techniques (see [1]). In 1973 Gluck [13] blatantly 
stated the rigidity conjecture. After showing that certain embedded surfaces were 
rigid [7], I found a counterexample. Thus a flexible triangulation of an embedded 
sphere exists [8]. 

So the question remains: If the rigidity conjecture is false, what is true? 
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III. The questions. 

1. The bellows conjecture. Although I do not know of any spectacular consequences 
of the following conjecture, I find it one of the most intriguing in the subject. The 
problem is to construct a mathematical bellows. This is a closed, polyhedral, flexible 
surface which flexes so that the volume changes. In fact we can generalize this as 
follows: For any piecewise-linear (or smooth) map / : M2-*JE3 of a closed oriented 
piecewise-linear (or smooth) two-manifold into three-space there is a welldefined 
notion of the volume enclosed by / , whether / is an embedding or not. In case 
/ is an embedding this number is ± the usual volume enclosed by f(M) depen
ding on the orientation chosen. In every case of a flexible framework coming from 
a "map" of a triangulated oriented two-manifold, which I know of, this generalized 
volume is constant during the flex (see [7] and [8]). Thus we have: 

Conjecture. Every orientable, closed, polyhedral flexible surface (even with self-
intersections) flexes with constant volume. 

As far as I know this conjecture is essentially due to Dennis Sullivan. 

2. Classifying flexible surfaces. Although it may seem ambitious, one way of 
determining when a polyhedral surface is rigid is simply to classify all the flexible 
surfaces. (Where the triangulation gives the framework.) Here things get a bit 
vague. My feeling is that a flexible surface is the "union" of two kinds of pieces. 
The first is in some sense "prime" and has a "volume" of zero. The second is "rigid" 
and so flexes with constant volume. So in particular the whole surface flexes with 
constant volume. 

If the above is confusing, the reader is referred to the case of the suspension of 
a polygonal circle (see [7]). One takes a polygonal circle in JE3 and connects two 
additional points, the north and south poles, to each vertex on this equatorial circle. 
It is easy to see that this gives a triangulated surface, topologically a sphere. It is 
my opinion that the above "conjecture" holds for this surface. In fact if the distance 
between the north and south poles moves during a flex of such a surface, all the 
pieces turn out to be "prime" and the surface has zero volume. This theorem is the 
only way I know of showing all such embedded suspensions are rigid. 

One natural starting point here might be to classify all flexible triangulations of 
a sphere with 8 vertices. It is conceivable one of these could be embedded. If not 
then Klaus Steffen's very pretty example with 9 vertices would be the best possible. 
(See [24] or [9].) 

3. Algorithms. Short of complete success for the previous problem and also for 
other similar problems, it would be very nice to have precise and hopefully efficient 
algorithms for deciding various rigidity problems. In particular one is "given" 
a framework and one wishes to know: 

A. Whether it is rigid or flexible. 
B. Whether it is infinitesimally rigid. (Infinitesimal rigidity will be defined shortly.) 
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C. How many mutually noncongruent embeddings there are of this framework. 
Recent work of Peter Kahn demonstrates that there are at least in principle 

algorithms for A and estimates for problems like C (see [15]); and it is well-
known (see [13]) that problem B is equivalent to a large determinant being nonzero. 
This is encouraging and a good first step, but all these processes are much too un
wieldy for practical use, even with a very efficient computer. 

It would be pleasing to apply an algorithm for problem A to several examples 
that are known to be embedded but not known to be flexible. In this respect many 
of the surfaces of stellated regular solids seem to be very "sloppy" when made out 
of cardboard, and it would be interesting to know if they are really flexible, (e.g. 
Charles Schwartz has pointed out the stellated rhomboid dodecahedron, see 
Coxeter [11]). 

Problem B would be of great interest to those concerned with the actual construc
tion of structures, since generally (but not always) infinitesimal rigidity is what is 
desired. In this respect the "groupe de recherche" in Montreal has made some 
progress and can efficiently determine infinitesimal rigidity in many interesting 
cases. 

Infinitesimal rigidity is roughly, a linearized version of ordinary rigidity. It is 
defined as follows: First we define an infinitesimal flex of a framework F in 
E3 as a sequence of vectors p=(Pi, ..., pv) such that (P/—P/)'(pj~~P/)=0 
for all edges i9 j in ê. p is called trivial if there are vectors r9 t (in E3) such that 

p. = (rXpt) + t for all i (1 ^ i ^ v). 

r and t can be regarded as an infinitesimal rotation and translation. F is infini
tesimally rigid if all infinitesimal flexes are trivial. 

THEOREM 2. If F is infinitesimally rigid, then it is rigid (see Gluck [13]). 

The converse is false as one can see by the example of a triangle with a point 
inside and all possible edges. 

Pi 

Pi = p2 = p3 = 0, 

p4 is perpendicular to the plane of the triangle. 

(It is interesting and useful to know that infinitesimal rigidity is preserved under 
projective collineations of E3 (see [12]).) 

A framework is generically rigid if when we consider all possible positions 
P = (Pii --iPv) of the vertices (we regard p now as a point in E3°) keeping the 
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same pairs of vertices as edges, then an open dense set of these positions is rigid. 
We ask: 

D. What frameworks are generically rigid? Namely is there an algorithm for 
determining this or some reasonable characterization? 

It turns out that, for JB2, Leman [19] (see also Asimow and Roth [4]) has 
essentially solved this problem, but it remains open in E3 and seems quite difficult. 
Also, the main theorem of Gluck [13] (see also Kuiper [18]) is that triangulated 
spheres are generically rigid. In fact, any triangulated convex surface with all the 
natural faces as triangles is infinitesimally rigid. (More generally if the triangulation 
has no vertex in the interior of a natural face, then it is infinitesimally rigid. See 
Alexandrov [1] or Asimow and Roth [4].) 

4. Exotic rigidity. Despite the attention payed to the infinitesimal rigidity of 
convex surfaces, there are many other situations that are also interesting. For 
instance, even for a convex polyhedral surface, if a triangulation has a vertex in 
the interior of a natural face, then the associated framework is not infinitesimally 
rigid; but it turns out to be rigid nevertheless. In fact we have the result (see Connelly 
[10]): 

THEOREM 3. The framework associated to any triangulation of any convex poly
hedral surface is second order rigid and thus rigid. 

Note that vertices are allowed anywhere in the surface. Second order rigidity is 
defined as follows : A second order flex of a framework F is a first order flex 
P = (Pi» •••> Pv) together with another sequence p = (pl9 -..,pv) of vectors such 
that for each rod of JF, 

(Pi-Pj) • (Pi - Pi) + (Pt- Pj) • (Pi- Pj) = 0. 

F is second order rigid if every nontrivial infinitesimal flex p fails to extend to 
a second order flex p9 p. 

As indicated in the theorem, second order rigidity implies rigidity. It is not hard 
to see how to generalize the above definition to higher order rigidity and we have the 
question for n^3 

A. Does /7th order rigidity imply rigidity? 
Note that Efimov in [12] mentions a very similar problem. 
If the answer is affirmative, this could possibly provide a method for doing 3A, 

since if one has an nth order flex, the problem of finding the n + \ order flex is 
entirely linear. 

If we turn to the rigidity of surfaces other than the sphere we have the very basic 
conjecture : 

B. Every triangulated closed surface in E3 is generically rigid. 
Due to methods of Gluck [13], see also Asimow and Roth [3], this amount^ to 

finding one infinitesimally rigid framework corresponding to each abstract triangula
tion of the surface. At this point I can show that many triangulations of such surfaces 
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have one infinitesimally rigid framework but I am not sure this includes all possible 
triangulations. This result is inspired by similar results in the smooth category 
by L. Nirenberg [21], and A. D. Alexandrov [2]. Also Stoker [26] has methods for 
showing that certain non convex surfaces are rigid. 

Also related to the proof of Theorem 3 is the idea of "cabled" frameworks. 
Here, in addition to the rods there are certain pairs of vertices designated as cables, 
which can decrease but not increase in length during a flex. In Griinbaum's notes 
[14] there are many very interesting examples of such rigid cabled frameworks, 
and this idea is very helpful in Theorem 3. See also Whiteley [27] for similar results. 
It seems that many of these examples can be thought of as having springs for the 
cables and allowing the framework to move to a position of minimum energy. It 
would be very nice to have information as in 3A or 3B about such frameworks. 

There is one other natural question concerning the rigidity of piecewise-linear 
surfaces, for n^3. 

C. Is every piecewise-linear closed «-dimensional manifold, which is embedded 
in En+\ rigid? 

This is the higher dimensional analogue to the rigidity conjecture. The construction 
of my example works if the ambient embedding space is S3, the standard round 
3-sphere, and the cone over this example from the center gives a nontrivial flexible 
surface in E4, but with boundary. Thus in E4, counterexamples exist locally at 
least. 

5. Rigidity for smooth surfaces. The basic question for smooth surfaces seems 
to be: 

A. Are there flexible, closed, smooth surfaces in E3? 
Here the surface (and the flex) are to have at least two continuous derivatives 

(to be of class C2), since methods of Kuiper [16], and [17], following Nash, give 
a flexible C1 embedding of any C1 surface in E3. (All the above must preserve the 
metric of course.) In particular even the standard round two-sphere can be embedded 
strangely and flexed in a C1 fashion in E3. 

Even for immersed C2 surfaces, the answer to the above question is unknown. 
The methods of my counterexample do not apply in the C2 case. 

The notion of infinitesimal rigidity carries over into this category as well, and the 
theorems about the uniqueness of convex surfaces and their infinitesimal rigidity 
hold here as well. Spivak, vol. 5, [23] is a good reference for what is known here. 
Unfortunately, even the following very basic questions are unanswered. 

B. If a smooth (of class C2 say) closed surface is infinitesimally rigid, is it rigid? 
It is not inconceivable that the methods of piecewise-linear surfaces may be applic

able to problems in the smooth category via the appropriate sort of approximation, 
somewhat in the spirit of Pogorelov's work [22]. Thus we have the following ques
tions : 

C. If a piecewise-linear manifold approximates a closed smooth surface "closely 
enough", is the associated framework rigid? 
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Here it seems appropriate to say at least that the normal to each of the triangular 
faces must approximate the normals to the surface, as well as the points approximat
ing the points on the surface. In fact it may be enough that the dihedral angles are 
not too sharp in some sense. 

Once again the author would like to thank the Institut Des Hautes Etudes 
Scientifiques, and in particular N. H. Kuiper, for their kind support and encourage
ment. 
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Synthetic Geometry in Riemannian Manifolds 

M. Gromov* 

1. We measure deviation of a map / : X-+X' from isometry by 

suVx,ytx N ( d i s t (/(*)> /Ù0)/dist fa y))[ 

For Riemannian manifolds V9 V we define dev(F, V) to be the "inf" of the 
deviations of all diffeomorphisms V-* V. We treat "dev" as a metric in the set 
of isometry classes of Riemannian manifolds, though "dev" takes infinite values 
(say, when V and V are not diffeomorphic). 

The sectional curvature K=K{V) is solely responsible for the local deviation 
of V from Rn: when | J£ |<H each point v£V has an arbitrary small 8-neigh-
borhood Ue such that its deviation from the e-ball in Rn (n = dim V) does not 
exceed XB2. (The converse is true up to a constant.) 

A priori localization. Start with choosing a very small but fixed number e. Neigh
borhoods UE can look very different from usual balls, no matter how small the 
curvature is. 

Split tori. Take the product of n circles of lengths /^/gs* . . .^/„>0. This is 
a fiat manifold (i.e. K=0). Look at the e-neighborhood Ue of a point ^-neigh
borhoods of different points are, obviously, isometric). Suppose that the ratio 
y'fc+i *s ve ry ' a r ê e (about nn) and s is just in the middle between lk and lk+1. 
Such a Uc looks approximately as the product of an (n—A)-dimensional torus 
(product of the "short" circles of lengths /k+1, ..., ln) by the fc-dimensional e-ball. 

* Partially supported by the National ScienceFoundation of the United States. 
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When l^e/n then UE coincides with the whole torus; thus tori (and flat mani
folds in general) must be viewed as local geometric objects. 

Nontrivial local geometry is always accompanied fli^l is kept small) by nontrivial 
local topology: one defines the injectivity radius rad„ V as the maximal number 
r such that the e-neighborhoods UE of v£V with £<r have smooth boundaries. 
These Us are automatically smooth topological balls and their deviation from 
Euclidean balls depends only on 6 and \K\. 

When [jfiT| and (rad)-1 are kept bounded the sheer size of V (say volume or 
diameter) determines the overall geometric and topological complexity of V as 
follows. 

Strong compactness. The set of all closed «-dimensional Riemannian manifolds 
satisfying (a) \K\*zx9 (b) rad5>g>0, (c) Volume^C, (X9Q9C are arbitrary 
numbers) is compact with respect to metric "dev". (A short proof can be found 
in [4].) 

This fact generalizes the Mahler compactness theorem for flat tori (see [2]) and 
sharpens Cheeger's theorem (see [3]) on the finiteness of the number of topological 
types under conditions (a), (b), and (c). 

2. Flat manifolds are the simplest nontrivial local objects. Our understanding 
of their structure is based on the following classical theorems of Bieberbach and 
Hermite (see [8]). 

(a) there are finitely many topologically distinct flat manifolds of given dimension ; 
(b) every compact flat manifold can be covered by a torus; 
(c) every flat torus T stays close to a split torus, i.e. there is a split torus T' 

such that dev (7", T)^ const (<;«",«=dim T). 

Further examples of manifolds Ve with rad^s and \K\^ const can be obtained 
by multiplying a fixed VQ by a flat manifold with diameter <se, say, by the circle 
of length e. This phenomenon can also be observed (Berger, see [1]) on general circle 
bundles: realize VQ as a totally geodesic manifold of codimension 2 with prescribed 
normal bundle in W and take for VE the boundary of the e-neighborhood of V. 

Iterating this construction we arrive at an inductive definition of nilmanifolds 
of dimension n as circle bundles over (n—l)-dimensional nilmanifolds. Each 
nilmanifold carries a family of Riemannian structures with \K\*zconst, Diam-*0. 

Nilmanifolds are characterized homotopically as manifolds with nilpotent funda
mental groups and contractible universal coverings. 

The above Ve do not "dev"-converge to V0 but there is a coarser metric which 
provides such convergence. This is the Hausdorff metric defined in the set of isometry 
classes of all metric spaces as follows : H(X9 X') is the lower bound of the numbers 
ö satisfying the following property: there are isometrical imbeddings X9 X'-*Y 
into a metric space Y such that X is contained in the ^-neighborhood of X' 
and X' is contained in the ^-neighborhood of X. 



Synthetic Geometry in Riemannian Manifolds 417 

Convergence VE -+• V0 in our examples is not surprising in view of the following fact. 

Weak compactness. Let be given a sequence of «-dimensional closed Riemannian 
manifolds satisfying (a) | J £ | < K , (b) Diameter <;C (x9C are arbitrary). Then there 
is a subsequence which //-converges (i.e. relative to the //-metric) to a metric 
space X0 (which is in general not a manifold). 

Condition (a) can be relaxed to Kz> — x9 x^09 and in this more general form 
weak compactness follows directly from the Toponogov comparison theorem (see 

[1]. [3])-
The following theorem discloses the geometry of the convergence VE-+X0 in the 

simplest case when XQ is the single point. 

3. Near flat manifolds. A closed Riemannian manifold is called e-near flat if 
its sectional curvature K and diameter satisfy \K\ (Diam)2«^e. 

If V is fi-near flat with e^e,, (?««~""), « = dim V then there exists a /c-sheeted 
covering V-+V with k*^if" such that V is diffeomorphic to a nilmanifold and 
the induced metric in V is "dev"-close to a locally homogeneous metric, i.e., there 
is a locally homogeneous V' with dev (V'9 V)-+0 as e-^0. (See [4].) 

Probably V itself is diffeomorpliic (and "dev"-close) to a locally homogeneous 
manifold. When the fundamental group n^V) is Abelian V is known to be dif
feomorpliic to a flat manifold. 

Observe that the fundamental group of a near flat manifold contains a nilpotent 
subgroup of finite index. This property is probably shared by all near elliptic mani
folds, i.e., when i£(Diam)2^ — e, 0 < e ^ e „ . It is known that rank/f^K, R)*zn = 
dim V9 when V is near elliptic. 

EXAMPLES. Products of near flat and elliptic (i.e. with nonnegative curvature) 
manifolds are near elliptic; circle bundles over elliptic manifolds are near elliptic. 

4. Micromanifolds. Consider the set JKX of the isometry classes of the «-dimen
sional Riemannian manifolds with curvature bounded by x i.e. with | J £ | < K . 

Manifolds from Jtx display their most interesting features when rad->0. We are 
tempted to introduce new objects—manifolds M with infinitely small injectivity 
radius. We view every such M as an element from an ideal boundary dJfx. Each 
M is represented by a sequence of VBÇ.J(X9G-+Q9 converging relative to the//-metric 
to a metric space X0. Our M is "fibered" over XQ; the fibers look like "infinitely 
small" near flat manifolds, but geometry and topology of the "fibers" can, in general, 
jump when x(LXQ varies. In physical terms, M carries not only the macroscopic 
structure of X0 but also additional microscopic information hidden in the "fibers". 

When this description is made precise it yields the following "macroscopic" 
theorems I, II and III. 

THEOREM I. ESTIMATES FOR BETTI NUMBERS. Suppose that the sectional curvature 
of a closed n-dimensional Riemannian manifold V satisfies \K\^\. Denote by 2o^i 
the sum of the Betti numbers of V (with any coefficients). 
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(a) 2l°i^Cm* m = 2 + « + Diam V9 « = dim V9 Cm^mm'n. 
(b) If V is homeomorphic to a connected sum of manifolds of constant negative 

curvature then 2o *J ̂  ^« " Volume V9 (Cn^nnn). (See [5].) Probably, the word 
"constant" can be omitted. 

Problem. What happens to (a) and (b) when condition |Ä"|^1 is replaced by 

THEOREM II. HYPERBOLIC MANIFOLDS (Sectional curvature nonpositive). There are 
only finitely many topologically different manifolds satisfying: (a) 0^*K>>— x9 (b) 
D i a m ^ C (x9 C are arbitrary). When x=0 this is the Bieberbach finiteness theo
rem, §2. 

THEOREM III. NEAR HYPERBOLIC MANIFOLDS. When s^K^—i9 s^O, and e is 
small compared to diameter (say &^m~mn\ m=«+Diam) then the fundamental group 
nt(V) is infinite. (I am certain that V is covered by Rtt but the proof is not completed 
yet.) 

When « ̂  3 the restriction K^—l can not be omitted (see [4]). 

Locally homogeneous manifolds constitute a very rare set in M but the amount of 
the related mathematics is enormous (Lie groups etc.). The study of manifolds 
that are locally near homogeneous is conducted in the disguise of the Pinching 
Problem. In the heart of the problem we find again "rad" ->0. (See [1J [7] for 
further information.) 

5. Noncompact manifolds and their ends. Let F be a complete noncompact 
connected manifold with bounded curvature, i.e. |2£|<°°. When rad y ^0 as 
u-^oo5 for example, when the total volume is finite, V carries at infinity nontrivial 
"microstructure", but only in very few cases is this structure completely understood. 

Pinched negative curvature. Let —px^K^—x9 and p9 x^O. If volume of 
V is finite then V can be exhausted by compact manifolds Vt such that each 
inclusion V^V is a homotopy equivalence and each component of the boundary 
dVi (with the induced metric) is e-near flat with e-*0 as z-*°°, and its degree of 
nilpotency (i.e. the nilpotency degree of the fundamental group of the associated 
nilmanifold) does not exceed ip. In particular, when /?<4 each component is 
diffeomorphic to a flat manifold. 

The complex hyperbolic space forms provide examples with p=4 and with 
non-Abelian nilpotent ends. 

Incompressible ends. The next theorem provides us with many examples of non-
compact manifolds supporting no complete metric with bounded curvature and 
finite volume. 

THEOREM IV. If |J£|<°°, Volume <°° and V is diffeomorphic to the interior of a 
compact manifold with boundary B then B has no metric of negative curvature. In 
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particular when n = 3 and B is a closed surface the Euler characteristic of B must 
be nonnegative. 

It is unclear whether Ä2"+1, «>0, supports complete metrics with bounded cur
vature and finite volume. 

6. Manifolds with boundary. We must take into account the norm of the second 
quadratic form Kd of the boundary (Say, for the Euclidean e-ball ||JC*||=c-"2.) 
We measure the interior size of V by Int = supüeK dist (v9 dV). Lower estimates 
for "Int" by ||Ä^|| were established in [6] for domains in R". In general we have: 

THEOREM V. J/" Inta ( |X|+ ||-Ä:a||) <ßfI (<«-"") then V is diffeomorphic (and dev-close) 
to the product of a manifold V' without boundary and an interval [0, <5], or V can be 
doubly covered by such product. 

There are further relations between topology and the interior size of V. The 
following simple example points in the right direction: 

THEOREM VI. Let VaR" be a compact domain with \\Kd\\<zl. If n is even then 
]x(K)|<;C„ Vol (V) (Ctl^n"9 x is the Euler characteristic, "Vol" means volume). 

When V is the complement of the union of distinct unit balls, C„ is equal to the 
packing constant (see [9]). 

An acknowledgement. The final version of this paper owes a lot to the critique 
by Professor N. Kuiper. 
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Tpyflbi MeîKflYHapo.HHoro KoHrpecca MaTeMaTHKOB 

XeJTbCHHKIT, 1978 

BemecTBeHHBie AjireöpairaecKHe 
ÎIOBepXHOCTH 

B. M . XapjiaMOB 

TonojiornnecKoe HccJieflOBaHHe BemecTBenHHx HJIOCKHX ajireöpannecKux Kpji-
BHX, a Talché ajireGpaHHecicax KPHBMX H noBepxHocTeö B BemecTBeHHOM Tpex-
MepHOM npocTpancTBe, äBJMCTCH KJiaccHnecKHM pa3#ejioM Tonojiornn BemecT-
Bemibix aJire6pannecKHx MHoroo6pa3HÌi H 6HJIO HanaTo TapnaKOM H KJICHHOM. 

OcnoBHBie 3a.zjaHH 3Toro nccjie#0BaHira 6LIJIH BKjnoHeHH THjiboepTOM B ero 3Ha-
MeHHTbm criHcoïc npo6jieM (16 npo6jieMa). 

B nocjieflHue roffbi B 3TOH o6jiacTH ^ocTErrayT 3Hawrejii>HLiH ycnex. 3TOT 
nporpecc Bti3Ban paôoTaMH B. H. ApHOJib#a H B. A. Poxjinna, yKa3aBiiiHMH 
HOBtie nyra nccjießOBaHira BemecTBeHHtix ajrreGpaiïHecKHx MHoroo6pa3iiH. On 
oTpaxceH nacTHHHO B o63ope fl. A. Ty^KOBa [1], r,n;e H3JiaraeTca cocTOjurae npe#-
MeTa Ha 1974, H Hacrarao B o63opax T. BHjicoHa [2] H B. A. Poxjimra [3], iyje 
H3JiaraeTc$r coBpeMeimoe cocToimiie Tononoran HJIOCKHX KPHBMX.1 Ilo TonojiornH 
noBepxHOCTeË, icoTopaa B HacToamee BpeMji npH6jiH3HJiacb no cBoeMy COCTOH-

IïHIO K TonojiorHH KpHBbix, coBpeMeHHoro o63opa noKa HeT. LJejib nacTOffruero 
AOKJiâ a — BocnojiHHTb B HeKOTopoH cTeneHH 3TOT npoôeji. 

B flOKJiaß ne BKJTJOHeBUbi MHoroo6pa3iM c OCOöCHHOCTHMH, XOTA O HHX HMeeTca 
ooiuHpnaa HeTpHBHajitHaa HH<J)opMan,Hji. 

B AaJTbHeiimeM cHHTaeTca 3aßaHHbiM w-Mepiioe BemecTBeHHoe MHoroo6pa3He A9 

ABjimomeecK MHOJKCCTBOM HenoABHHCHbix Toneic aHTHrojioMop^HOH HHBOJIIOIJ.HH 

conj neocoôoro KOMnjieKcuoro ajireöpamecKoro MHoroo6pa3na CA. TjiaBHoe 
BHUManne yflejweTca icjiaccHHecKOMy cjiyqaio, icor.ua CA — noBepxHocTh B CP8,. 

1 BHÔjraorpa^HH ance o63opoB co#ep3KaT Bce paccMaTpKBaeMtie B flOKJiaae paöoTti . 

http://icor.ua
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HHBapHaHTHaa oTHOCHTejibHO KOMHjieKCHoro conp5DKeHH*r, H conj HH^yrrHpyeTca 
3THM COnp5l5KeHHeM. 

1. HepaeeHCTBO rapüaica H ero ofîoSiqeime. KjiaccHHecKaji TeopeMa TapHaKa 
(1876) yTBep»CAaeT, HTO npn n = \ HHCJIO KOMHOHCHT KPHBOH A He npeBocxoAHT 

g(CA) + l9 r#e g — pofl KPHBOH. 3Ty ace orjemcy flaeT HepaBeHCTBo 

(1) dimH^A; Z2) =< aimH*(CA; Z*), 

npHMeHeHHoe K n=\. HepaBeHCTBo (1) ecTb H3Becraoe HepaBeHCTBo TeopHH 
CMHTa, HanncaHHoe ^JIH HHBOJIIOIJHH conj. K rmiepnoBepxHocTaM B npoeKTHBHOM 
npocTpaHCTBe OHO 6bijio BnepBbie npHMeHeHo P. TOMOM (1965). HepaseHCTBo (1) 
cHJibHee flpyrax H3BecTHbix orjeHOK HHCJia dim H^(A;Z2) (npHHafljieacarrrHx JL 
BH6ep6axy (1939), O. A. OJICHHHK (1951), fl». MnjiHopy (1964), P. ToMy (1965)), 
HTO AeJiaeT ero Hanôojiee BepoaTHbiM npeTeHfleHTOM Ha pom, npaBHjibHoro 06-
oörneHHH HepaBeHCTBa TapHaKa Ha npoH3BOjrbHbie MHoroo6pa3Ha. 

fljifl HOBepxHOCTH A creneim m B RPB HepaBeHCTBo (1) #aeT oijeHKy 

(2) dim H* (A ; Z2) ^ m3 - 4 m 2 + 6 m 

(B nepsoM HeTpHBHajibHOM cjiynae m=4 3Ta orjeHKa öbijia c(j)opMyjiHpoBaHa 
rHjn>6epTOM (1909) Ha ocHOBe HccjieflOBaHHH PooHa (1886)). flonoJiHirrejibHyio 
HH4)opMan;HK) .ctaeT .opyroe H3BecTHoe HepaBeHCTBo TeopHH CMHTa 

dim H*(RF*9 A; Z2) < dim H^(CP\ CA ; Za), 

HanHcaHHoe AJUI TOH ace HHBOJIIOITHH. H3 Hero cjie/jyeT, HTO B cjiynae 
dimH^A; Z2)=m*—4m2+6m roMOMop<j)H3M BKjnoHeiiHJi H^{A\ Z2)-*H1(RPS'9 Z2) 

HeTpHBHajien. 

2. 3KCTpeMajibHbie cpasHeimsi. IlepBoe TaKoe cpaBHeHHe 6buio Bbicica3aHO TyA-
KOBblM B KaneCTBe rHHOTe3bI AJIfl HJIOCKHX KpHBblX npOH3BOJTbHOH HeTHOH creneHH 
m, a B nepBOM HeTpHBHajibHOM cjiynae m=6 OHO 6HJIO H flOKa3aHO TyAKOBbiM 
(1969). OHO yTBepacjuaeT, HTO B cjiynae, Kor^a HHCJIO KOMHOHCHT KPHBOH MaKCH-
MajTbHO no TapHaicy, BbrnojmfleTCJi cpaBHeHHe P—N=(m/2)2 mod8, r^e P — 
HHCJIO HeTHLIX (jieECaiJTHX BHyTpH HeTHOrO HHCJia ApyTHX KOMHOHCHT) H N — HHCJIO 
HeneTHbix (nponnx) KOMHOHCHT KPHBOH. BaacHbm mar 6bui c#ejiaH ApHOJibflOM 
(1971). O H npHBjieK K nccjieAOBaHHio KPHBOH AByjiHCTHoe pa3BeTBJieHHoe HaKpbiTHe 
njiocKocTH c BeTBJieHHeM BAOJTb KPHBOH H AOKa3aji cpaBHeHHe2 P—N= (m/2)2 mod 4. 
B HOJIHOM o6i>eMe cpaBHeHHe Ty^KOBa 6biJio AOKa3aHO PoxjiHHbiM (1972) c no-
MomBK) Toro ace HaKpbiTHe. 3aTeM POXJIHH (1972) O6O6HIHJI cpaBHeHHe FyAKOBa 
Ha cjiynan npoH3BOJibnoro MHoroo6pa3Ha A; B o6o6meHH5rx pojib rapHaKOBCKoro 

2 3 T O cpaBHeime ApHOJEbfla ABJiaeTca, B fleöcTBHTembHOCTH, He 3KCTpeMaJibHLiM cpaBHeHaeM, 

a cpaBHeHHeM, BbmojniHK>nn*MCfl npn 6onee nrapoKHX roMonorHnecKHx ycjiOBunx. O H O JierKO 

nepeHOCHTCÄ Ha npoH3BOjn»HLie MHoroo6pa3H$i, HO STOT Kpyr BonpocoB BLIXO^HT 3a npe^ejiti 

«mero BemecTBeHHOH T o n o n o r m . 
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ycjioBHü HrpaeT paBencTBO dim H^(A; Z2) = dimH^(CA; Z2), HTO cjiyacHT eme 
OAHHM apryMenTOM B nojib3y Toro, HTO HepaBeHCTBo (1) cjieAyeT cHHTaTb npa-
BHjibHbrM o6o6meHHeM HepaBeHCTBa Tapnaica. BcjreA 3a TeM necKOJibKo poACT-
BeHHbix cpaBiienHH 6biJio HaHAeno fl. A. ryAicoBbiM H A. ^ . KpaxHOBMM (1973) 
H MHOH (1973, 74). 

C4)opMyjiHpyio ocnoBHbie 3iccTpeMajibHbie cpaBneiiiw AJ«i w=2: ecjiH 

dimH^(A\ Z2) = dimH^(CA; Z2), 

TO %{A)=o(CA) mod 16, TJ\Z G — cHraaTypa MHoroo6pa3H5i; ecjiH 

dim Ht {A ; Z2) = dim H^ {CA ; Z2) - 2, 

TO x(A) = o(CA)±2 mod 16; 

ecjiH dim H^ {A ; Z2) = dim H^ (CA ; Z2) - 2 , 

CA — nojmoe nepecenenne cTeneHH m B CPq
 H TOMOMOP4)H3M BKjironeiiHH 

H±(A\ ZB)-+Hx(RPq\ Z2) — HyjieBOH, TO «7 = 2 mod 4 H 

yXA)^a(CA)+{ 
2 mod 16 npH m = 2 mod 8, 

2mod 16 npH m =—2mod8. 

IlepBbie Asa cpaBHeHHH 6HJIH Bbicica3anbi TyAKOBbiM B KanecTBe THnoTe3bi A M 
noBepxHOCTen creneHH 4 B JRP3, nepBoe AOica3aHO PoxjiHHbiM (1972), a BTopoe H 
TpeTbe — B MOHX pa6oTax (1972, 73, 74). 

3. Oueinca suJiepoBoii icapaicTepucTwcH. ECJIH n nerao, TO BbmojiHueTCfl ABOHHoe 
HepaBeHCTBo 
(3) -hn!2>nl\CA) + \ ^ x(A)-\ ^ hn^n^(CA)~\ 

Tßß ha,b — pa3MepnocTb npocTpaucTBa GHOAHOPOAHMX KjiaccoB KoroMOJiornu 
CTeneHH (a9 b). AHajiornHHoe HepaBeHCTBo ecTb B neneTHOH pa3MepH0CTn; Ha-
npHMep, AJi« rnnepnoBepxHOCTH HCTHOH creneiiii B npoeicTHBHOM npocTpancTBe 
(neTHOH pa3MepH0CTH) OHO coBnaAaeT c HepaBeiiCTBOM (3), npHMeneHHbiM K pa3-
BeTBjieHHOMy HaKpbiBaiomeMy npocTpaHCTBa c BeTBJieHHeM BAOJib ranepnoBep-
XHOCTH. 3TH HepaBeHCTBa, 3aMeneHHbie MHOH B 1974, äBHJIHCB HTOTOM A-raTejibHoro 
nyTH. fljHt rnnepnoBepxHOCTH B RPq HepaBeHCTBo (3), npHMeHeHHoe npn HCTHOM 

q K pa3BeTBJieHHOMy HaKpbiBaiomeMy H npn neneTHOM q K caMOH rnnepnoBep-
XHOCTH, A^eT npn q=2 HepaBeHCTBa 

( 4 ) _ ^ ( - _ I ) < , _ w . ^ ( - _ I ) + I . 

BbicKa3anHbie B. PSTCACHU B 1906 cpeAH Apyrnx 6ojiee CHjibHbix THnoTe3 H Aoica-
3aifflbie H. T. IleTpoBCKHM B 1933, H npH q>2 HepaBeHCTBa, AOKa3annbie H. T. 
IleTpOBCKHM H O. A. OjieËHHK B 1949. OopMyjiHpoBKa H AOKa3aTejn>CTBo ne-
paBencTB (4) na 5i3buce roMOjiorHH (6e3 cTpyKTypw XoA^ca) pa3BeTBjieHHoro na-
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KpbiBaiomero GHJIH BnepBbie HaHAeHH A P H O J I B A O M B 1971; STO oTKpbiTHe A p -
HOJibAa H npHBejio Memr K HepaBeHCTBaM rana (3) . 

3aMeHaTeju>HO, HTO AJIH noBepxHocTen HepaBeHCTBo (3) 6 H J I O HaËAeHO A . K o -
MeccaTTH erne B 1932. O H cJopMyjinpoBaji pe3yjn>TaT B BHAe HepaßeHCTB, KOTopbie 
M O ä H O npeACTaBHTb cjieAyiompM o6pa30M 

-h^(CA) + ha ^ x(A)-2-tv ^ h^(CA)-ha9 

rAe ha — pa3MepHOCTb npocTpaHCTBa Hac:H2(CA; C ) , nopoacAenHoro ajire6-
panHecKHMH KjiaccaMH, H tr — cjieA HHBOJHODìHH" Ha-+Ha9 HHAyAHpoBaHHOH 
HHBOjnoHjaeH c o n j . MHe HeH3BecTHO, npHMeHHJi JIH KoMeccarrH 3 T H HepaBeHCTBa 
K KJiacCHHeCKHM CJiyHaJTMI HJIOCKHM KpHBBIM, KpHBblM B RPZ H HOBepXHOCT^M B RP3. 

KaK oÔHapyacHji ApHOJTbA (1971) , jieBoe HepaBeHCTBo (4) ocTaeTca cnpaBeAJiHBbiM 
n p n 3aMeHe HHCJia P HHCJIOM rHnep6ojiHHecKHX (coAepacaurHx BHyTpH c e 6 a He 
Menée AByx KOMHOHCHT) HCTHBIX KOMHOHCHT, a npaBoe HepaBeHCTBo (4) ocraeTCH 
cnpaBeAJiHBbiM n p n 3aMeHe HHCJia N HHCJIOM ranep6ojiHHecKHx HeneTHbix KOM
HOHCHT. 3 IIoAOÔHbie ycHJieHHfl HepaßeHCTB (3) AJIä « > 2 noKa OTcyTCTByioT, a 
AJM n=2 H3BecTHO TOJIBKO cj ieAyiomee ycHJieHHe jieBoro HepaBeHCTBa (CM. MOK> 
paGoTy (1976) ) : nycTb k09k_9k+ — HHCJIO opneHTHpyeMbix KOMHOHCHT noBepx-

HOCTH A COOTBeTCTBeHHO C HyjieBOH, OTpHIUaTejrbHOH H HOJIOaCHTeJTbHOH 3HJie-
poBOH xapaKTepHCTHKOH H nycTb /c' — HHCJIO HeopHeHTHpyeMbix KOMHOHCHT; 
TorAa JTH6O BbmojmaioTCK cooTHonieHHü J f c ' = 0 9 k _ = 0, k+ = 0, k0=-| A1 ,1 (CA) 
H 1 hlil(CA)*szl-\-h2'0(CA)9 JIHGO BbmojnnreTCfl HepaBeHCTBo 

\-x(A)+2k0+2k+ ^ h^(CA)-l. 

B HaCTHOCTH, eCJIH A — HOBCpXHOCTb CTeneHH m B RP3, TO JIHÖO m = 2 R A — 

rnnep6ojiOHA5 JIHöO 

, , x ^ , ,x „, ^, 2m3—6m2+7m —3 
(5) l ~ / ( ^ ) + 2 f e 0 + 2fe+ ^ . 

4. OqeHKa HHCJia opaeHTHpyeMbix KOMHOHCHT HeHyjiesoro poAa. ApHOJibA (1971) 
Hameji orjeHKy HHCJia HenycTbix (coAepEcanrHx BHyTpn ce6« xora 6 H OAHy KOM-
noHeHTy) nerabix H HHCJTa HenycTbix HeneTHbix KOMHOHCHT HJIOCKOH KPHBOH HCTHOH 

CTeneHH.4 AHajiorn 3THX orjeHOK RJIX H > 2 noKa OTcyTCTByioT, a RJISL n—2 H3-
BecTeH TOjrbKo cjieAyioHTHH nx aHajior (CM. MOK) paöoTy (1976)): BcerAa JIH6O 
BbinojiHÄiOTCH cooTHomeHHH k'=0, k_ = 0, k+ = 0, k0 = 1 + A2' ° (CA) H 1 + h2' °(CA) ^ 

^hltX(CÄ)9 JIH6O BbinojiHÄeTCH HepaBeHCTBo 

/ c 0 + / c _ ^ h2>\CA). 

3 HMeiomnecA y ApHOJn»fla orpaHHHeHHfl, KaK 6BIJIO yicasano POXJIHHBIM (1974), He nym&i. 
4 ApHOJIbfl (JjOpMVJIHpOBaJI 3TK OHCHKH npH HeKOTOpHX OrpaHHHCHHflX. <DopMVJIHpOBKa 6C3 

3THX orpaHHHeHHÄ 6mia yKa3aHa POXJIHHHM (1974); onraoïca Ha enHHHny, flonymeHHaH HM B Oä-
HOM H3 HepaBeHCTB, 6wjia 3aTeM HcnpaBJieHa B. M. 3BOHHJIOBMM (jiHHHoe cooömeHHe) H T. 
BHJICOHOM (1978). 
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B nacTHOCTH, ecjiH A — HOBepXHOCTb CTeneHH m B RP3
9 TO JIHöO m Herao, 

k'=09 k_ = 09 fr+=0 H /<-0=(m3-6m2+llm)/6, JIHöO 

, ^ . . m3—6m2+llm — 6 
(6) fe0 + / c _ ^ - . 

5. MeTOAM nocTpoemm. CymecTByioT KjiaccHHecicne MCTOABI nocTpoeiiHH 

BemecTBeHHbix ajireGpanHecicHx MHoroo6pa3HH c 3aAaHHHMH TonojioniHecicHMH 

CBOHCTBaMH, HO HX OHCHb MajIO H OHH OTHOCflTCfl, rJiaBHbIM o6pa30M, K ICpHBblM 

B RP2 H B RP3 H K HOBepxHOCTJiM CTeneHH < 4 B RP3. 

IIocTpoeHHe BemecTBeHHOH noBepxHocTH CTeneHH 3 3aAaHHoro TonojiornHecicoro 

THna CBOAHTCH K nOCTpOeHHK) BemecTBeHHOH nJIOCKOH KPHBOH CTeneHH 4 c 3a-

AaHHbiM pacnoji03KenHeM KOMnoHeiiT. 3Ta peAyicAHfl ocnoBbiBaeTCfl Ha TOM, HTO 

jiioöan HJiocKaK icpHBaa CTeneHH 4 cjiyacHT KPHBOH BCTBJICHHH (BHAHMHM KOH-

TypoM) y npoeKriHH noBepxHocTH CTeneHH 3 H3 TOHICH noBepxnocTH Ha njiocKOCTb. 

3 T H M MeTOAOM jierKO cTpoHTca BemecTBeHHLie noBepxnocTH CTeneHH 3 TonoJio-

THHeCKHX THHOB 
SQ]LS(l)9S(l)9S(3)9S(5)9S(l), 

rjaß S0 — cc{)epa H S(p) — ccj)epa cp njieHKaMH. JIioGaa (HeocoGaa) BemecTBeHHan 

noBepxnocTb cTenenn 3 npHHaAJieacHT OAHOMy H3 STHX THHOB (STO cjieAyeT Kaic H3 

(3jieMeHTapH0H) H3OTOHHHCCKOH icjiaccH^HKan.HH BemecTBemibix njiocKHx icpHBbix 

CTeneHH 4, TaK H H3 OöIHHX TeopeM nymcTOB 1—4). 

Heoco6bie noBepxHocTH CTeneHH 4 TpaAHAHOHHO crpoHjiH MajibiM B03Myme-

HweM noBepxHOCTen c npocTOH ABOHHOH TOHKOH. IIpoeKTHpoBaHHe nOBepXHOCTH 

CTeneHH 4, HMeiomeìi npocTyio ABOHHyio Tonicy, H3 ABOHHOH TOHKH Ha njiocicocTb 

AaeT B KanecTBe KPHBOH BCTBJICHHH (BHAHMOTO KOHTypa) njiocicyio KpHByio CTenenn 

6. 06paimeHHe STOTO nepexoAa OT noBepxHocTH K KPHBOH JICECHT B ocnose Kjiaccn-

necKoro MeTOAa, cBOA^mero nocTpoenne BemecTBeHHOH noBepxHocTH 3aAamioro 

TonojiorHHecKoro rana c npocTOH ABOîîHOH TOHKOH K nocTpoeHHio BemecTBeHHOH 

njiocicoH KPHBOH CTeneHH 6, HMeiomefi 3aAannoe pacnojioaceHHe KOMnoneHT H 

onpeAeJDieMOH ypaBHeHHeM BHAa al~a2aA=09 rjiß ar — BemecTBeHHbifi OAHO-

pOAHHH MHoroHJieH CTeneHH r OT 3 nepeMeHHbix. 3 T H M MCTOAOM TnjibôepT (1909), 

POOH (1912, 13) H T. E. YTKHH (1969, 74) nojiynnjiH oGmnpHyio HHc])opMaiTHio o 

Bem.ecTBeHHbix noBepxHOcrax CTenenn 4, oAiiaKo TonojiornnecKaH KJiaccHc})HicaiTHfl 

ocTaBajiacb He3aBepmeHHOH KaK B nacra 3anpeTOB, Taie H B nacra nocTpoeHHH. 

MHe (1976) yAajiocb 3aBepniHTb KJiaccHf^HKarrHio, AOCTPOHB noBepxnocTH CTeneHH 4 

Bcex TnnoB, ne 3anpemeHHbix OöHTHMH TeopeMaMH nymcTOB 1—4, HTO noTpe6oBajio 

HOBbrü MeTOA nocTpoeHHH. BapnaHT 3Toro MeTOAa, HaHAeHHbm MHOH B 1978, 

onnpaeTCfl Ha cjieAyiomHe pe3yjibTaTH o KOMnjieKCHbix K3-noBepxHocrax: TeopeMy 

Topejijra [4] H 3HHMopc])HocTb oTo6pa»ceHHH nepnoAOB (CM., nanp. , [5]). CxeMa 

MeTOAa 3aKjiioHaeTCH B TOM, HTO nocTpoeHne noBepxHocTH A CTeneHH 4 B RP3 

3aAaHHoro TonojiorHHecKoro THna CBOAHTCH K nocTpoeHHio AJifl HeKOToporo 

cTaHAapraoro Kojibn,a K (nMHrapyiomero H*(CA;Z)) TpoÏÏKH, cocTojrmeö H3 



(7) 

(8) 

(9) 
(10) 

>SpJLfl5o c a s= 0, p 

Sp JL aS0 c a > 0, p 

Sp JL aS0 c a > 0, p 

SiJLSi; 0; 
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HHBOJHOAHH K~>K (HMHTHpyiOIIjeH COnj*), OHrpaAynpOBKH KOJIbAa K®C (HMH-

THpyiomen ÖHrpaAyapoBKy XoA^Ka Kojn>n;a H*(CA; C)) H sjieMema l£K (HMHTH-

pyiomero Kjiacc rHnepnjiocKoro cenemia) H HMeiomeii 3aAaHHbie apnc^MeTHnecKHe 

CBOHCTBa. ToHOJIOTHHeCKyK) KJiaCCH(J)HKarJiHK) MOaCHO npOBeCTH 3THM MeTOAOM 

BOBce 6e3 npHBjieneHHfl KjTaccHHecicoro MeTOAa. CHHCOK TonojiorHHecKHX THHOB 

(Heocoöbix) noBepxHocTeii CTeneim 4 HMeeT BHA 

0, a+jp < 9; 

0, a+p=\Q9 a-p = 0, - 2 mod 8; 

0, fl+p = l l , a—p= — l m o d 8 ; 

rAe Sp — cc^epa c p pyHKaMH. 

HeAaBHO O. Ä. Bnpo Hanieji MCTOA nocTpoeHHH noBepxHOCTea npoH3BojibHOH 

CTeneHH, flBjunomracH pa3BHTHCM KJiaccHHecKHx MCTOAOB nocTpoeHHH KPHBBIX. 

O H nocTpoHJi npHMepbi noBepxHOCTen, HOKa3biBaioirrHe, HTO orjeHKH (2), (5) TOHHH 

npn Bcex m (TOHHOCTB oijeHKH (2) ecTb eme OAHH apryMeHT B nojib3y TOTO, HTO 

HepaBeHCTBo (1) cjieAyeT CHHTaTb npaBHJibHbiM oooGmemieM HepaBeHCTBa Tap-

HaKa). IIo-BHAHMOMy, MeTOA Bnpo AonycKaeT AaJibHeHinne o6o6meHHa. 

IIoKa AJi^ m^5 HeH3BecTHO, KaKOBo MaKCHMajibHoe HHCJIO KOMHOHCHT no-

BepxHOCTH CTeneHH m B RP3. ITpn m = 5 H3 HepaßeHCTB (2), (3) cjieAyeT, HTO STO 

HHCJIO ^ 2 5 . MHe yAajiocb AOKa3aTb cymecTBOBaHHe B RP3 noBepxHocTH CTeneHH 

5 e 21 KOMnoHeHTOH (a HMeirao, noBepxHocTH TonojiorHHecKoro THna 20SQ]iS(9); 

A0Ka3aTejibCTBo ncnojib3yeT pe3yjrbTaTbi E. XopHKaBbi [6] o AecJ)opMarrHHx KOM-

njieKCHOH cTpyKTypbi noBepxHocTeH CTeneHH 5 B CP3.) 

6. H30TODHH. B 3TOM nymcTe npeAnojiaraeTCH, HTO y paccMaTpHBaeMbix icpHBbix 

H HOBepXHOCTeH HCT BemeCTBeHHblX, HO, B03MOECHO, eCTb MHHMbie OCOÖeHHOCTH. 

CjieAy^ PoxjiHHy [3], 6yAeM Ha3biBaTb BemecTBeHHbiMH H3OTOHHäMH KPHBOH 

(noBepxHocTH) creneHH m B RP2 (B RP3) ee TonojiorHnecKHe H3OTOHHH B RP2 (B RP3) 

H aceCTKHMH H30TOnHHMH — ee H30TOHHH B KJiaCCe KpHBblX (noBepxHOCTen) CTeneHH 

m B RP2 (B RP3). 3KecTKHe H30TOHHH AonycKaioT noüBJieHHe HJIH Hcne3HOBeHHe 

MHHMblX OCOÔeHHOCTeH. 

B cjiynae KPHBBIX BemecTBeHHafl H30TOHHHecKaa KJiaccH4)HKaiTHH H3BecTHa npH 

m^6 (npn m^5 OHa 3JieMeHTapHa, npn m = 6 HaHAeHa TyAKOBbiM B 1969), 

ÄecTKaH KJiaccHcjjHKaiijafl coBnaAaeT c BemecTBeHHOH H30TOHHHecKOH npn m^4 

(npn m ^3 STO oneBHAHO, npn m = 4 AOKa3aHO KjieimoM B 1876) H He coBnaAaeT 

c Hen npn ms>5 (POXJIHH [3]). 

B cjiynae noBepxHOCTen BemecTBeiraafl H30TOHHHecKafl KjiaccH^mcaiTHfl: H3BecTHa 

npn m*^4. B nepBOM HeTpHBHajibHOM cjiynae m=3 OHa HBJWCTCH KjiaccnnecKOH 

H coBnaAaeT c TonojiorHnecKOH KJiaccH4>HKaH,HeH — jnoôaa noBepxHOCTb THna 

S0 JL S(l) H30TonHa o6beAHHeHHK> sjuinncoHAa H HPOCKTHBHOH HJIOCKOCTH, a jno6an 

nOBepXHOCTb THna S(p) H30TOHHa HpoeKTHBHOH HJIOCKOCTH CO CTaHAapTHblMH 

pyHKaMH. 
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IToBepxnocTH CTenenn 4 AEJIHTCH Ha Aßa BHAa: noßepxHOCTb A nepBoro BHAa 

HMeeT HenyjieBOH, a BToporo BHAa — HyjieBOH TOMOMOP4)H3M BICJUOHCHHH 

H1(A\>Z2)-^H1(RP3\Z2). BemecTBeHHaa iraoTonHHecicaH KJiaccH^HicaiJHH noBepx-

jiocTefi CTeneHH 4 COCTOHT B cjieAyiomeM: (a) noBepxnocTH nepBoro BHAa peajni-

3yioT Bce TonojiorHHecKHe ranw (7), (8), (9), (10), KpoMe aS0 (a^O); (6) noBepx-

HOCTH BToporo BHAa peajiH3yioT Bce TonojiorHHecicne THnbi (7), (10) H He peajin-

3yioT THnw (8), (9); (B) AJIH noBepxHOCTen nepBoro BHAa H30TonHHecKan KJiaccn-

<})HKaiiH5i coBnaAaeT c TonojioniHecKOH — noBepxHocTH THna S± JL S± H30TonHbi 

oöbeAHHeHHio rHnep6ojioiiAOB, a noBepxnocTH THna Sp]iaS0 (a^0,p^l) — 

oöbeAHHenHK) a sjuinncoHAOB, JiexcaurHx Bue Apyr Apyra, H rnnepöojioHAa co 

cTaHAapTHbiMH pyHicaMH, coAep>icamero BnyTpH OAHOïî H3 KOMnoneiiT AonojineHHH 

Bce 3JiJiHncoHAti; (r) AJiH noBepxHocTei* Bioporo BHAa, neroMeoMop4)Hbix S ^ J L ^ , 

H30TonHHecicaH icjiaccH4)HKaiTH5r TaKxce coBnaAaeT c TonojiorHHecicoii — 3TH no

BepxnocTH COCTOHT, C TOHHOCTblO AO H30TOHHH, H3 JieHCaiHHX B a(l)4)HHHOH HaCTH 

npocTpancTBa cTaHAapTHbix KOMnoHenT, pacnojio^ceHHbix BHe Apyr Apyra; (A) 

noBepxHocTH, roMeoMop(J)iibie ^ J L ^ , peajiH3yioT ABa H30TonHHecicHx THna — 

oAiia c(J)epa BuyTpn Apyron H c4)epbi BHe Apyr Apyra. 3Ta KJiaccH4)HicaiTiiH 6biJia 

nanaTa THJiböepTOM (1909), POOHOM (1912, 13) H YTKimbiM (1969, 74). C noMOinjbio 

MeTOAa nocTpoeHHH, ocHOBannoro Ha TeopeMe Topejuin H 3nnnop4)iiocTH OTO6-

paaceHMfl nepiioAOB (CM. n. 5), MHe (1978) yAajiocb 3aBepmHTb 3Ty KJiaccH4)HKam«o, 

AocTpoHB noBepxnocTH CTeneHH 4 Bcex neAOCTaioiiTHx ranoB (3Aecb Baacno, HIO 

H30TonHHecicHH THn noBepxnocTH A CTeneHH 4 onpeAejineTCH apn4)MeTHHecKHMH 

cBoficTBaMH KJiacca rHnepnjiocKoro ceneHHH H HHBOJHOII;HH conj* KOJibija 

H*(CA; Z) ; peajiH3yeMocTb Bcex yica3aHHbix B KJiaccH4)HKarTHH H3OTOHHHCCKHX 

THnOB MOHCHO AOKa3aTb 3THM MeTOAOM BOBCe 6C3 npHBJieHCHHH KJiaCCHHeCKOTO 

MeTOAa). 3anpeTbi yTBepacAeiiHH (B), (r) AOKa3biBaioTCH 3JieMeHTapHbiMH cpeACTBa-

Mii e noMom^io TpaAHiiHOHHoro nepexoAa ic B03MymeiiHHM noBepxHocTH c npocTOH 

ABOMHoii TOHKOH, B HeKOTopbix cjiynaHx AonojiHHTejibHO Hcnojib3yeTCH HepaBeHCTBo 

(6), npHMeHeHHoe ic B03MymenHbiM noBepxnocTHM. 3anpeTbi yTBepacAeHHH (6) 

cjieAywT H3 oömnx TeopeM nymcTOB 1—4. 

3KecTicaH KjiaccHcJiHicaiTHH noBepxHOCTen npn 777 <= 3 coBnaAaeT c BemecTBeHHOH 

H30TonHHecKOH KjiaccH4)HKau;HeH (npn /77 = 3 STO AOica3ano JL IIIJI34)JIH (1864)). 

IIpH «7=4 McecTKan H BemecTBenHan H30TonHHecKiie KJiaccH4)HKaiTHH yace ne 

coBnaAaioT (MCTOA nocTpoeHHH, KOTopbiH H HcnoJib30Baji AJiH BemecTBeHHOH 

H30TonHHecicoii Kjiacciic^HicaAHH, AaeT npHMepbi BemecTBenHo H30Tonnbix no-

BepxHOCTen A9 Ax CTenenn 4 Taicnx, HTO CA9 CA1 neocoôbi, A peajiH3yeT B H2(CA) 

icjiacc a, AeJiHuj,HHCH na 2, a A1 peajiH3yeT B H2(CA^) KJiacc a l s ne ACJIHIUHHCH Ha 2; 

>KecTKan ace H30TonHH, coeAHiiniomaH A c Al9 AaJia 6bi H30Mop4)H3M H2(CA)-* 

H2(CA^)9 nepeBOAHmra a B O^). 

IIo-BHAHMOMy, B 6jiHxcaHinee BpeMH 6yAeT AOCTynna acecTKan KJiaccii4)HKau,HH 

acpHBbTx CTeneHH 5, 6 H noBepxHOCTen CTenenn 4. 
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Recent Results in Convexity 

D. G. Larman 

In this talk I shall try to give some of the important results in convexity and related 
topics which have been obtained since the last congress in 1974. The emphasis 
will naturally reflect my own interests and due to my own lack of background 
knowledge, some results will not be adequately treated. 

1. Cross sections and volume. It is, perhaps, appropriate to begin with an old 
problem of H. Busemann and C. M. Petty [8] which was offered as an excercise to 
the audience by C. A. Rogers [36] at his talk in Vancouver 1974: 

Consider two convex bodies K9 K' in E" which are both centrally symmetric 
aboi^it the origin. Suppose, for each n — \ dimensional linear subspace L9 KM _!(£„£)< 
V^K^L). Is it true that Vu(K)^Vn(K')l 

It is important that the bodies K9 IC are convex, see H. Busemann [6] and that 
both are centrally symmetric about 0. In E2 the problem is trivial since the con
dition then ensures that K<^K'. Also, if K9 the apparently smaller body, is an 
ellipsoid then the answer is affirmative. The problem still remains unresolved 
in E3. However in E"9 77^12, C. A. Rogers and myself [25] were able to give a 
negative answer in which K' was the unit n ball. The counter example consists 
of an 77 ball with small caps removed in a disjoint and a homogeneous manner. 
Is there still a counter example when 77 —1 dimensional subspaces are replaced 
by 2-dimensional subspaces? By modifying the methods of [25] it is possible to 
replace 77 —1 by [77/2]+ 5 dimensional subspaces. 

I might also mention the solution to another problem of H. Busemann [7] by 
Larman-Mani-Rogers [29]. However, it turns out that the problem may have 
already been solved, within the context of lie groups, by Vinberg [40]. We do not 
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claim, however, to understand exactly what was proved by Vinberg and, even less, 
his proofs. Anyhow, within convexity the problem was: 

Characterise those convex bodies K such that for any two points x9 y in the 
interior of K there exists a projective transformation %, permissible for K, such that 
nK=K (set-wise) and nx = y. 

In E2, K must be an ellipse or a triangle. In E3
9 K must be an ellipsoid, tetra

hedron or a cone on an elliptic base. However, the obvious conjecture, i.e. the 
convex hulls of disjoint ellipsoids lying in independent subspaces whose union 
spans E"9 fails in j£4. An example is the convex hull of two touching ellipses 
in E* which lie in two orthogonal 2-dimensional subspaces. The complete descrip
tion of possible K is algebraic and rather technical. 

2. Characterisations of the sphere and ellipsoid. Although it falls outside my time 
scale, the recent interest in this subject stems from the solution, by P. W. Aitchison, 
C. M. Petty and C. A. Rogers [1], of the false centre problem: say that a convex 
body K in En has a false centre x in K if JC is not the centre of K but every 
two dimensional section of K through x is centrally symmetric. Clearly every 
ellipsoid has this property and C. A. Rogers [37] had conjectured that any convex 
body with a false centre must be an ellipsoid; D. G. Larman [23] extended this result 
to where x was not necessarily in K. Recently G. R. Burton and P. Mani [5] have 
proved a more general result which was conjectured by P. Gruber [14] : 

Suppose that a convex body K in En contains two distinct points a and b such 
that parallel 2-sections of K through a and b are directly homothetic. Then K 
is an ellipsoid. 

It is not difficult, assuming that the convex body K has a false centre x to show 
that K is centrally symmetric, around 0 say. Then x and — JC play the roles 
of a and b in the Gruber property. 

It is well known that a convex body in En with all its n — \ dimensional sections 
centrally symmetric is an ellipsoid. G. R. Burton [2] has shown that it is enough 
to assume that all n — 1 sections of sufficiently small diameter are centrally symmetric. 

Suppose that K is a convex body in En and that M is a unit vector. Then the 
scalar product < - , M ) has a maximum m(u) on K. Suppose also that for each 
u in S",_1 there exists A(n)>0 such that the section 

K(p; n) = Kn{x: (x9 u) = p} 

is centrally symmetric whenever m(u)—X(u)^p^m(u). 
Then K is not necessarily an ellipsoid as can be seen from the example of a cir

cular cylinder with hemispherical ends but, see G. R. Burton [3], K must be the 
sum of an ellipsoid and a finite number of line segments. 

Finally in this section I mention the proof by G. R. Burton [4] of a conjecture 
of Klee: 
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If the geodesies between any two points of a closed bounded convex surface dK 
in E" are flat then K is a sphere. 

3. Polytopes. Whilst work has declined in the study of convex polytopes in recent 
years, there have been two outstanding results produced since 1974, both of which 
involve mathematicians of at least 70 years of age! 

The first is due to B. Jessen and A. Thorup [21]: 
Say that two polytopes P and Q are equivalent in E" if Q can be obtained 

from P by cutting, translating and glueing. A difficult problem has been to give 
necessary and sufficient conditions for P and Q to be equivalent. 

The conditions are (roughly), take k(xl9 ..., *„_,) any odd real valued function 
of xl9 ...9x„_r, Let wl5 ...,wH_r be 77 —/• orthogonal vectors in En and (with 
a finite number of exceptions) form the /• face P(ul9 ...,»„_,.) by first finding 
the 77 — I face P(ux) of P in direction ul9 then the 77 — 2 face of P(ul9u2) of 
P within P(ux) and so on. Then form 

(1) Z * ( « i , ...9U„_r)Vr{P(ul9 ...,M„_r)) 

where Vr denotes /'-dimensional volume. If (1) is equal to a similar sum for Q, 
for all choices of ul9 ..., u„_r9 r = 09 1, ..., 77, then P is equivalent to Q and conversely. 

This was proved previously by Hadwiger and Glur [19] for 77 = 2 and by Hadwiger 
[18] for 77 = 3. 

The second result is due to Hadwiger [17]: consider the usual square lattice in 
E„ and a lattice polytope K (i.e. all of the vertices of K are lattice points). Let 
G(K) denote the number of lattice points inside K. 

In 1971 J. M. Wills [41] conjectured that 

G(K)<z Je-**b>K)dx 

where d(x9 K) denotes the distance of x from K. It is easy to prove this conjecture 
for 77 = 2 using the well known result G (./£) = (Area of K)+\ (perimeter of K) + l. 
In 1974 T. Overhagen [35] proved it for 77 = 3. However, recently Hadwiger has 
proved that it is false for a certain simplex in E"9 n>*44l. 

Finally in this section I shall mention a result of P. McMullen [31] on tiling space 
with zonotopes (i.e. finite sums of line segments). A zonotope Z in Ed

9 which 
is the sum of 77 line segments, is the orthogonal projection of a cube C in En. 
Of course, there is an associated zonotope Z formed by projecting C orthogonally 
into E"-d (where E" = Ed + E"-d). McMullen proves that if Z tiles Ed by 
translation, with adjacent zonotopes meeting facet to facet, then Z tiles E"~d 

in the same way. 

4. Collision of convex bodies. Suppose two convex bodies K, K' in E" have parts 
of their surface painted. Given that the two bodies collide one can ask for the pro
bability that the two bodies collide paint to paint. The forerunner of this type of 
problem was the solution by P. McMullen [30] of a problem of W. J. Firey : What is 
the most probable encounter of two unit cubes in E31 
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It is intuitively clear that the only encounters which occur with a positive proba
bility are edge to edge and vertex to face. In fact the proportion is 3TC:8 so that the 
edge to edge collision is more likely. 

This work has been extended by W. J. Firey [11] to convex bodies K9 K' and 
a formula derived for the probability of impact paint to paint in terms of the surface 
area functions of the two bodies. Firey insisted on painting whole faces but this 
restriction has been removed in the recent work of R. Schneider [38]. The reader 
is also referred to Schneider's excellent survey article [39]. 

5. Helly's theorem. The famous theorem of E. Helly [20] asserts that if $F is a 
family of compact convex sets in E" with any subfamily of « + 1 sets having 
a non-empty intersection then the family £F has a non empty intersection. 

As an extension of this result B. Grunbaum and T. Motzkin conjectured the 
following: 

Suppose 3* is a family of sets, each the union of at most j disjoint compact convex 
sets in En such that the intersection of any k sets in 2F, k^j, is also expressible 
as the union of at most j compact convex sets. Then, if any j(n+\) sets in $F has 
a nonempty intersection then the intersection of all the sets of & is nonempty. 

They proved this conjecture for j=2 and I proved it for 7 = 3. It was finally 
proved in general by H. C. Morris [34]. 

6. Distance problems. Say that a set A in En realises the distance d if there are two 
points of A at a distance dawart. An old result of H. Hadwiger [16] is the following: 

If 77+1 closed sets cover E" then at least one of the sets realises all distances. 

Hadwiger did not believe that n +1 was the best possible number but even in 
E2 it is still not known whether or not 4 sets will ensure the same result. However, 
for large n improvements have been made and, to explain these, let us define the 
concept of a configuration : 

A configuration is any finite sequence of points xl9 ..., xM9 not necessarily distinct. 
The number of points in the configuration will be M, not necessarily the number of 
distinct points in the configuration. We say that for a given distance d, the number 
D is critical (for d and the configuration) if any sub-configuration of D + l points 
realises d and D is the smallest number with this property. 

THEOREM (D. G. LARMAN AND C. A. ROGERS [26]). Suppose that there is, in En, 
a configuration of M points with critical distance 1 and critical number D. Then, 
if E" is covered by less than M/D sets, there is a set of the covering within which 
all distances are realised. 

Using this result, D. G. Larman and C. A. Rogers [26] extended Hadwiger's 
result to \n(n — 1) sets (not necessarily closed). Recently P. Frankl [12] has used 
this result to prove: 
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THEOREM. Given a natural number k there is an integer n0 such that, provided 
n^n09 any nk sets which cover En contain a set which realises all distances. 

CONJECTURE (LARMAN [24]. If E" is covered by less than | - ( | ) 4 n / 3 sets then 
there is one set of the covering which realises all distances. 

Finally we mention the work of D. G. Larman, C. A. Rogers and J. J. Seidel [27] 
which almost resolves the old two distance problem: Any set in En which realises 
only two distances has cardinality at most \(n-\-\)(n-\rA). 

7. Tilings in the plane. Let me briefly mention the forthcoming book of B. Grun-
baum and G. C. Shephard [15]. This study gives rise to some interesting problems. 
For example, can any tiling of the plane by bounded tiles be realised as a convex 
tiling? This, in some sense is a generalisation of the result of Steinitz which asserts 
that any 3-connected planar graph can be realised as the set of vertices and edges 
of a convex 3-polytope. 

8. Dyoretsky's theorem. It has passed almost unnoticed by geometers that some 
outstanding work has been done recently, mainly by functional analysists, in 
shortening and extending the work of A. Dvoretsky [9]. In this work Dvoretsky 
shows, for e>0 and a positive integer k the existence of a positive integer n(k9 e) 
such that any centrally symmetric convex body in En

9 n^n(k9 e), contains a central 
k section which is, to within e, a /c-ball. In [28], Larman and Mani show that 
K need not be centrally symmetric, which although interesting geometrically, is 
not so useful to a functional analyst. The audience is referred to T. Figiel [10], 
V. D. Milman [32] and Milman and Wolfson [33]. 
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Isoperimetric Inequalities and Eigenvalues 
of the Laplacian 

Robert Osserman 

Given a domain D in euclidean space or on a Riemannian manifold, one naturally 
associates with it such fundamental geometric quantities as its volume, the measure 
of its boundary, various curvature functions and their extremes or integrals. One 
can also associate with the domain D the set of eigenfunctions and eigenvalues of 
the Laplace operator, subject to given boundary conditions. Recent work has revealed 
many connections between these two sets of quantities. We shall illustrate just a 
few of those connections, by concentrating in § I on isoperimetric inequalities 
between the geometric quantities, and in § II on the Dirichlet boundary value 
problem. We shall indicate some of the most striking ways in which isoperimetric 
inequalities are related to the distribution of eigenvalues. For a more detailed 
account of many of the subjects outlined here, we refer to the author's papers [30], [31]. 

I. Isoperimetric inequalities. There are many ways in which the classical iso
perimetric inequality 

(1) L2 ^ AnA 

has been refined and extended in recent years. Most important have been extensions 
to domains on surfaces and on higher-dimensional manifolds, or more generally to 
integral currents and varifolds. Before discussing those, let us note some refine
ments of (1) for curves in the plane. We shall use the following notation : D denotes 
a domain, C its boundary, A the area of D, and L the length of C. Further, 
let Q be the inradius of D9 the maximum radius of open disks lying in D9 and let 
R be the circumradius of D9 the radius of the smallest disk including D. 
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THEOREM 1. Let D be a simply-connected bounded plane domain. For g^r^R, 
one has the following three (equivalent) inequalities: 

(2) rL^A + nr2, 

(3) L2-4TZA ^ (L-2nr)\ 

(4) L2 - 4% A ^(A- 7cr2)2/r2. 

Inequality (3) is due (in the case of convex domains D) to Bonnesen. For a detailed 
account of Theorem 1 and related results, see a forthcoming paper of the author [30]. 

The point of inequalities (3) and (4) is that they strengthen the basic isoperimetric 
inequality (1), and further imply (by choosing, in particular, r=o)9 that equality 
can hold in (1) only when D is a circular disk. 

For our purpose, the case r=Q of (2), and its consequence 

(5) L/A > 1/e 
will be most important. 

A more recent refinement of (1) is due to Sachs [34]. Let / denote the moment 
of inertia of the curve C with respect to its center of gravity. Then Sachs showed 
that 
(6) L2-4nA ^ 4n2\I/L-A/n\. 

We turn next to domains on surfaces. A general observation is that if one considers 
domains D of fixed area A, then the length L of the boundary tends to increase 
as the Gauss curvature K decreases. Thus one has the following results. 

THEOREM 2. Let D be a simply-connected domain of area A bounded by a curve 
of length L. Let K denote Gauss curvature, and let M = supDK. Then 

(7) L2^4nA-MA\ 

with equality if and only if K=M and D is a geodesic disk. 

THEOREM 3. Under the same hypotheses, one has 

(8) L^4nA[l-±ffK+] 

where f+(p) denotes max {/(/?), 0}. 

For historical comments concerning these theorems see [31]. A more general 
inequality is the following. (See Ionin [23] and Burago [7],) 

THEOREM 4. Let D be a domain with Euler characteristic %. Let X be any real 
number, and 

coi=ff(K-X)+. 
D 

Then 

(9) L2 ^ 2A(2nx-œï)-XA\ 
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When x=\9 (9) induces to (7) for X=M and to (8) for A=0. 
Burago and Zalgaller [8] proved the inequality 

(10) QL^A + \TI-±CD+}Q2 

for simply-connected domains, where Q is the maximum distance to the boundary 
from points of D. In the plane case, Q is just the inradius, and (10) stands in 
exactly the same relation to (8) as does (2) (for the case r=o) to (1). In particular, 
it implies that (5) continues to hold for simply-connected domains on arbitrary 
surfaces, provided ffDK+^2n. 

For surfaces that lie in a larger manifold or in euclidean space, one has other 
inequalities taking into account the mean curvature of the surface rather than its 
Gauss curvature. Many of them are based on the formula 

(11) A =-ff(x-c)-HdA+-i- f(x-c)-vds 

where D is a domain on an oriented surface in R!\ A is the area of D9 C its 
boundary, v the exterior normal to D, H the mean curvature vector of the surface, 
and c is an arbitrary point in JR". If C consists of a single curve, then one can 
choose c to be the center of gravity of C, which we may take to be the origin, 
and estimate the right-hand term of (11) by 

L 

f X'Vds ^ L2/2n9 
o 

so that (11) yields 

(12) L2 ^ 4n (A+ffx • HdA) 
D 

where the origin is at the center of gravity of C. In particular, for minimal surfaces 
one has H=09 and the classical isoperimetric inequality (1) holds for minimal 
surfaces in Rn bounded by a single curve. Chakerian [12] showed that Sachs' 
refinement (6) is also true. 

For minimal surfaces whose boundary consists of several curves, one conjectures 
that (1) continues to hold, but that is not known except for doubly-connected surfaces 
(Osserman and Schiffer [32] for n = 3, Feinberg [17] for arbitrary n). However, 
one may still obtain useful inequalities from (11) in the general case. For example, 
if D lies in a ball of radius R9 then choosing c to be the center of the ball, one 
obtains from (11), 

(13) L^^A-ff\H\dA 

where equality holds for a plane circular disk of radius R. 
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We consider next higher-dimensional domains. For a domain D in Rn
9 the 

analog of (1) is 
(14) S,l^nnconV

n-1 

where V is the volume of D9 con the volume of the unit ball in Rn
9 and S the 

(n — l)-dimensional measure of the boundary of V. Equality holds only for a ball. 
It was conjectured by Wills [38] that inequality (2) (for the case r=g) should 
generalize to 

(15) oS^V + (n-l)conQ
n 

for convex domains D in Rn
9 where Q is the inradius of D. Inequality (15) was 

proved by Diskant [16], and a stronger form of (15) was given by Osserman [30, 
Theorem 12] from which it follows that for «s>3, equality can hold in (15) only 
for the sphere.1 

For domains on Riemannian manifolds of dimension «s>3, the analog of (7) is 
known only for the case of constant sectional curvature (Schmidt [35]) and for 
geodesic balls in manifolds of variable curvature (Aubin [23]). For many purposes 
it is sufficient to have weaker inequalities, which although not sharp, give useful 
upper bounds for the volume of a domain in terms of the area of its boundary. Such 
inequalities for general Riemannian manifolds and submanifolds have been proved 
by Schoen [36] and Hoffman and Spruck [22]. 

The two most interesting open questions seem to be: 
1. Does the analog of (7) hold for domains on a Riemannian manifold of variable 

curvature? 
2. Does (14) hold for domains on an arbitrary «-dimensional minimal variety 

in RN for any 7V>w? 

II. Eigenvalues of the Laplacian. Let D be a plane domain with smooth boundary 
C. The eigenvalue problem 
(16) Au+Xu =0 in D, 

(17) u\c = 0 

is known to have a complete system of eigenfunctions u=(pn9 with corresponding 
eigenvalues Xn9 where 

0 -< X1 -< X2 =< X3 =ss ... ; Xn -*- oo. 

The basic question is: how are properties of the domain D reflected in the set of 
eigenvalues {Âfc}? Some of the early results are 

THEOREM 4 (WEYL). 

<18) l i m ^ = ^ 

where A is the area of D. 

1 Added in proof (2/24/19). Professor Wills has called my attention to the fact that his conjecture 
(15) was also proved independently by J. Bokowski (Elemente der Math. 28 (1973), 43—44). 
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THEOREM 5 (FABER-KRAHN). Among all domains D of fixed area A, X± is 
minimum if and only if D is a circular disk. 

Since X± fora disk of radius r is known to be (j/r)2
9 where y is the first positive 

zero of the Bessel function J09 one can state the Faber-Krahn result as 

(19) X1 ^ nj2/A. 

In 1957, Peelre [33] showed that inequality (19) holds more generally for domains 
on a simply-connected surface with K^O. The following year, Nehari [28] con
sidered vibrations of an inhomogeneous membrane of density p, which leads to 
the equation 

(20) Au+Xpu=0. 

Nehari showed that among all domains of fixed total mass: ffDpdA9 if log/? 
is subharmonic, then the minimum of X1 for the eigenvalue problem (20), (17), 
is attained for a circular disk of constant density. 

In fact, Peetre's and Nehari's results are exactly equivalent. If we think of p not 
as a density, but as defining a new conformai metric ds2=p(x9 y)(dx2-\-dy2) on Z>, 
then the total mass ffDpdA corresponds to the area of D in the new metric, 
while the Gauss curvature is given by K=—(A\ogp)/2p9 so that log/? subharmonic 
is equivalent to K^O. Finally, the Laplace-Beltrami operator As with respect 
to the new metric is given by As = A/p. Thus (20) is just Asu-\-Xu=Q9 so that the 
value of Xx in Nehari's theorem is the same as Xx in Peetre's. 

Recently, Bandle has expanded on the common link in Nehari and Peetre, and 
has obtained a whole series of results including the following [3, p. 205]. 

THEOREM 6. Let D be a simply connected domain of area A, and let M=supDK. 
Incase Af>0, assume further that A-<.4njM. Let DQ be the geodesic disk of area 
A on a surface of constant curvature M. Then X1(D)^X1(D0). 

This theorem was also later derived by Chavel and Feldman [13]. All the above 
results, starting with Faber and Krahn, make use of the various isoperimetric 
inequalities given above in §1. For example, Theorem 6 uses (7), while Peetre 
[33, p. 16] also derived from (8) the inequality 

generalizing (19). 
One might think from (19) that X± tends to zero as A tends to infinity. However 

one has the result: 

THEOREM 7. Let D be a simply-connected plane domain with inradius Q. Then 

Thus, for simply-connected domains, Xx behaves like the square reciprocal of 
the inradius. 

(22) < A l < 2 _ > _/~2.4. 
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The right-hand side of (22) follows from an elementary comparison argument. 
The left-hand side is proved in Osserman [29], using the inequality (5). The first 
proof of an inequality of the form (22) is due to Hayman [20] who uses a different 
method and gets a much weaker constant on the left. 

By using inequality (10) one can show that the left-hand inequality in (22) holds 
more generally for simply-connected domains D on a surface, provided ffDK+^2n. 
The same method can also be used to obtain results for domains of higher connectivity. 

THEOREM 8. Let D be a plane domain of inradius Q and connectivity k^2. Then 

(23) X± ^ 1/fcV-

Recently, Michael Taylor [37] showed that there exists some positive constant 
c > 0 such that 
(24) Ax ^ c/kg2 

for all plane domains D9 where k is the connectivity of D. 
A basic link between isoperimetric inequalities and bounds on Xx is provided 

by a result of Cheeger [14] : 

THEOREM 9. Let D be a domain on a Riemannian manifold. Set 

(25) h = M | 1 

where D' is a relatively compact subdomain of D9 V the volume of D', and S' 
the surface area of dD\ Then 

(26) X±(D) ^ h2\4. 

Theorem 7 follows from Cheeger's Theorem and inequality (5), and Theorem 8 
follows from a suitable extension of (5). Other inequalities from Part I yield further 
bounds on X±. For example, using (15), one can show [30, Theorem 13] that the 
left-hand side of (22) is valid for convex domains in Rn for all n. Similarly, using (13), 
one finds 

THEOREM 10. Let D be a domain on a minimal surface in Rn. If D lies in a ball 
of radius R9 then 
(27) XX(D) ^ l/R2. 

For w-dimensional minimal submanifolds of Rn
9 one has an exact analog of (13) 

which yields 
(28) X±(D) ^ (mj2R)2. 

Another consequence of Cheeger's result is a theorem of McKean [27]. 

THEOREM 11. Let D bea domain on an n-dimensional simply-connected Riemannian 
manifold whose sectional curvature is bounded above by —a2

9 a>0. Then 

(29) Xx(D)^[(n-\)0Ll2}2. 
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This uses the inequality (7) in the case n = 29 and an isoperimetric inequality 
of Yau [39, p. 498] when w>2. 

Incidentally, inequalities (26) and (29) are both optimal in the following sense. 
On a surface whose Gauss curvature satisfies K>>—ß2

9 ß>09 a geodesic disk 
Dr of radius /• satisfies according to Cheng [15] 

(30) Xx(Dr) ^ [ß/2]2+[2n/rf. 

(See also Buser [11] and Gage [19] for sharper versions of (30).) Letting r-+°° 
on a complete surface shows that (29) is a sharp bound. Since (29) was deduced 
from (26), it follows that the constant -| in (26) is best possible. (See also Buser [9].) 

As a last application of isoperimetric inequalities, we mention that inequality 
(1) is used to prove the only known case in which the isospectral problem is solved. 
The problem is: if two plane domains have the same set of eigenvalues {Xk}9 are 
they necessarily congruent? (Can one hear the shape of a drum?) The answer so 
far is unknown except in the case when one of the domains is a circular disk. In 
that case one can use Weyl's Theorem (Theorem 4 above) to deduce that both 
domains have the same area, and then Faber-Krahn (Theorem 5 above) to conclude 
(from Xx alone) that the second domain must also be a disk. For further discussions 
of tins subject, see Berger [6], Fisher [18], Kac [25], [26]. 
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Convex Sets and Convex Functions on 
Complete Manifolds 

Katsuhiro Shiohama 

The aim of this paper is to show how convex sets and functions give strong restric
tions to the topology of a certain class of complete Riemannian manifolds without 
boundary. The idea of convexity plays an essential role for the proofs of "finiteness 
theorems", which give a priori estimates for the number of topological types of a 
certain class of compact Riemannian manifolds characterized by geometric quantities. 
Small convex sets such as strongly convex balls are used in the proofs of finiteness 
theorems. Weinstein's theorem [18], which is the first attempt in this direction, 
states that given n and (56(0, 1), there are only finitely many homotopy types 
of 2/7-dimensional simply connected <5-pinched manifolds, and the number of homo
topy types depends on ô and n. Then it has been developed by Cheeger [3], 
Margulis [13] and Gromov. 

On the other hand, large convex sets (such as a closed hemisphere of standard 
sphere and hyperplanes at infinity on the projective space with standard metrics) 
are useful in the proof of "uniqueness theorem". Well known examples of such 
theorems are the sphere and rigidity theorems investigated by Berger [1], Klingen
berg [12] and the author [17]. A sphere theorem states that a (5-pinched connected 
M is a topological sphere if ö = 1/4 and the diameter d(M) of M is greater than n. 
The rigidity theorem due to Berger states that an even dimensional (l/4)-pinched 
simply connected M is isometric to a compact symmetric space of rank 1 if its 
diameter d(M)=n. Under the assumptions of both the sphere and rigidity theorems, 
M admits large convex sets which I want to discuss in § 1. As is seen there large 
convex sets enable us to generalize the sphere and rigidity theorems, which are ob
tained by K. Grove and the author [11], [16]. 
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In the next place I shall deal with convex functions on complete and noncompact 
Riemannian manifolds and generalize the theorems obtained by Gromoll-Meyer [10] 
and Greene-Wu [8]. Let y: [0, <*>)-> M be a ray emanating from a fixed point p. 
A Busemann function F : M->R with respect to y is defined by 

Fy(x)= lim[/-d(jc,y(f))], x£M. 
/-»-co 

If the sectional curvature K of M is nonnegative everywhere, then it follows from 
Toponogov's triangle comparison theorem that Fy is convex. Obviously it is not 
constant on any open set of M. Moreover the function F: M^R defined to be 
F(x) = sup[Fy(x); y(0)=p] is convex and exhaustion, where the sup is taken over 
all rays emanating from p. Gromoll-Meyer proved that a noncompact M is dif
feomorphic to Rn if Ä>0. Then Cheeger and Gromoll proved that there exists 
on a noncompact M with K^O a compact totally geodesic submanifold S without 
boundary which is totally convex. Furthermore M is diffeomorphic to the total 
space of the normal bundle v(S) over S. Recently Greene and Wu showed in [7] 
that the above F can be replaced by a convex exhaustion function whose second 
difference quotient along every geodesic is bounded away from 0 on every compact 
set provided K>0. And in [8] they approximated a convex function with positive 
second difference quotient along every geodesic by a smooth convex function with 
positive second derivative along every geodesic. Therefore if M admits a convex 
exhaustion function with positive second difference quotient along every geodesic, 
then M is diffeomorphic to Rn. These results are generalized in § 2, which I worked 
with Robert E. Greene. (See [6].) 

1. Convex sets. Throughout this section let M be a compact and connected 
Riemannian manifold of dimension n^2. Assume that the sectional curvature 
K and the diameter d(M) of M satisfy K^ S >0 and d(M)^n/2fô. Let p, p£M 
be such that d(p9 p)=d(M)9 where d is the distance function. A large convex 
set is defined to be Ap={x£M; d(p9 x)^nj2io?\. Ap is clearly a nonempty closed 
convex set, and has a nonempty boundary if the diameter assumption is inequality. 
More generally if a closed convex set in a complete manifold of positive sectional 
curvature has a nonempty boundary, then the soul of it is a single point and hence 
it is homeomorphic to a closed disc (see [5]). We next define B=f} {Aq\ q€Ap}. 
Then B is a nonempty closed convex set. It turns out that if M is not simply 
connected then both Ap and Ap have no boundary (see [15]). In any case we can 
choose for a closed convex set C a neighborhood of C which is either an embedded 
open «-disc with smooth boundary (if C has a nonempty boundary) or else a normal 
disc bundle over C (if C has no boundary). In order to see what happens in 
between Ap and B9 we define a function / : M—R by 

id(p9x)-d(p9x) if d(M)>Tzl2fö 
fM = \d(Ap9x)-d(B9x) if d(M) = n/2fô. 
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/ is continuous on M and smooth outside a closed set Q of measure zero. Choose 
neighborhoods U and F (of p and p if d(M)^7i/2]fô and of B and Ap if 
d(M) = n/2yS) which have the properties stated above. By a smoothing convolution 
process we can approximate / by a family {fQ:M-+R; Q£(09Q0)} of smooth 
functions so that if QX is taken to be sufficiently small then V/ e^0 in M—Uu V 
and Vfe is transversal to dl/udV for any e€(0, gt). Thus we can prove the 
following 

THEOREM 1. Let M be a connected and compact Riemannian manifold and let 
K^S>0. 

(a) (see [11]). If d(M)>7i/2fô9 then M is a topological sphere. 
(b) (see [17]). Assume that d(M) = n/2]/ô. Then we have 
b-1. IfAp has nonempty boundary or d im^ p =0 and if B has nonempty boundary 

or dim B=09 then M is a topological sphere. 
b-2. If one of the Ap and B has no boundary and its dimension is greater than 0 

then M has the same cohomology structure as that of a symmetric space of compact 
type of rank 1. 

b-3. If both Ap and B have no boundary and if dim Ap and dim!? are positive, 
then M is exhibited as a union of two normal disk bundles over Ap and B joined 
along their common boundary. 

REMARKS (1). Note that the condition in (a) is the best possible one for a compact 
manifold of positive sectional curvature to be a topological sphere. (2). In case 
b-2, M admits a complete metric and a point on the convex set with nonempty 
boundary with respect to which the tangent cut locus at that point is a sphere. 
Then the result follows from [14] or [2]. (3). If M is not simply connected, then 
b-3 occurs. 

In the case where M is not simply connected, we have the 

THEOREM 2. Assume that M is not simply connected and K^o>0 and d(M) = 
7i/2]/(5. If dim Ap=2 and if there exists a pair of points x£B and y£Ap such 
that there are at most finitely many minimizing geodesies joining x to y9 then M 
is of constant curvature S and its fundamental group has a fully reducible represen
tation. 

2. Convex functions. Throughout this section let M be a complete, noncompact 
Riemannian manifold without boundary. We want to investigate the topology 
of M which admits a convex function. A function cp: M-+R is said to be convex 
if for every normal geodesic y:R-+M and every tl9 t2Ç:R9 and /l£[0, 1], 

p°y((i-A) ' i+A'«) < 0-A)p°y('i)+Apoy(f«)-

If the above inequality is strict for X 6(0, 1), then <p is called to be strictly convex. 
It does not necessarily follow that a strictly convex function has positive second 
difference quotient along a geodesic. In order to investigate topology of M which 
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admits a convex function, it is natural to restrict ourselves to consider the case where 
it is not locally constant. Let cp: M-+R be a convex function which is not locally 
constant. A convex function is continuous and Lipschitz continuous on every com
pact set. Let M^((p) = (p~1(a) and Ma(<p)={xÇ:M; cp(x)^a}. Then Ma((p) is totally 
convex. Since a monotone increasing bounded convex function defined on [0, ~) is 
constant, we have the 

LEMMA 1. If M^(q>) is compact for some a£<p(M)9 then so is Mjj(<p) for all 
b^a. 

A perpendicular geodesic from a point to a closed convex set is uniquely deter
mined if the point is close to the set. This fact together with the Lipschitz continuity 
of a convex function on a compact set will imply the following 

THEOREM 3. If M"(cp) is not connected for some a£(p(M)9 then we have the 
following statements. 

(1) (p attains its minimum, say, m0. 
(2) Mm (cp) is a complete totally geodesic hypersurface without boundary and has 

a trivial normal bundle. 
(3) M%((p) has exactly two components for all b>m0. 

As a direct consequence of the above theorem, we have 

COROLLARY TO THEOREM 3. Let \I/:M-+R be strictly convex. Then every level 
set is connected. 

The existence of a strictly convex function gives a strong restriction to the Rie
mannian metric. For instance there is no compact totally geodesic submanifold 
without boundary if M ? Jmits a strictly convex function. Moreover we can prove 
the following 

THEOREM 4. Let \j/: M-+R be strictly convex. Then the exponential map 
expp: Mp-*M at every point p is proper. 

As a consequence of Theorem 4, we have 

COROLLARY TO THEOREM 4. If there is a compact level set for a strictly convex 
function, then every level set is compact. 

In the case where the sectional curvature of M is nonnegative mor egenerally if 
the Ricci curvature of M is nonnegative, then M has at most two ends. We can 
also discuss the ends of M which admits a convex function. 

THEOREM 5. If M admits a strictly convex function, then M has at most two 
ends. 

Finally we shall state a structure theorem as follows. 
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THEOREM 6. Let \j/: M-+R be a strictly convex function. If there is a compact 
level set of xj/, then M is diffeomorphic to either Rn (if \j/ attains its minimum) 
or else a cylinder NXR, where N is a compact hypersurface homeomorphic to 
a level set of xj/. 

In the case where M admits a convex exhaustion function, we have 

THEOREM 7. Let cp\M-+R be a convex exhaustion function. Assume that there 
is a level set which is not connected. Then M is diffeomorphic to a cylinder Mm (q>)XR. 
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The Characterization of Topological Manifolds 
of Dimension n > 5 

J. W. Cannon* 

That rich, unkempt world of wild and tame topology, born in the minds of Antoine 
and Alexander, recalled from obscurity by Fox, Artin, and Moise, and brought 
to full bloom by Bing, has spawned a conjecture on the nature of the topological 
manifold having as one of its minor corollaries the famous double suspension 
theorem for homology spheres. F. Quinn in the Saturday morning topology seminar 
of this congress expressed confidence that he has the right conceptual and technical 
framework to complete the final step in its proof. Whatever the result after Quinn 
has had opportunity to verify his intuitions, the result is at the very least almost 
true; and we wish to discuss it. As is often the case, much of the visualization and 
example which gave the conjecture birth will surely disappear in the powerful 
application of engulfing, local surgery, etc., which should constitute its final proof. 
And so, for those of us who have always savored the interplay among point set topology, 
taming theory, decomposition space theory, and other visual aspects of geometric 
topology, we record here the milieu in which the conjecture became reasonable 
and the pressures leading to its formulation. 

But first we summarize the conjecture itself and its most recent history. In the 
early spring of 1977 we conjectured, 

Characterization Conjecture. A generalized «-manifold having the disjoint disk 
property, 77 > 5, is a topological /7-manifold. 

A generalized /7-manifold M is an ENR satisfying H*(M9M—x;Z) = 

* The author's work, reported in this paper, was supported in part by the National Science Foun
dation of the United States. 
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H*(En
9 E

n—0; Z) for each x£M. The space M satisfies the disjoint 2-disk 
property if maps / , g: B2-+M can be approximated by maps/7, g'\ B2-+M having 
disjoint images. 

We proved the conjecture for generalized manifolds having nonmanifold set of 
trivial dimension k^(n—2)/2 in the spring of 1977, and now, less than two years 
later, its proof appears on the verge of completion in two steps : 

Resolution Conjecture (to be proved by? Quinn?). A generalized «-manifold 
of dimension n >• 5 is a cell-like quotient of a topological «-manifold. 

A cell-like subset of an ENR is a compactum contractible in each neighborhood 
of itself. A quotient map / : M-+N of ENR's is cell-like if it is a closed map and 
each point preimage is cell-like. 

Quotient Conjecture (proved by R. D. Edwards, late spring, 1977). A finite-dimen
sional cell-like quotient of an «-manifold, « >= 5, is a manifold if and only if it has 
the disjoint disk property. 

In addition to our own earlier weak versions of the Resolution and Quotient 
Theorems, early spring, 1977, Bryant-Hollingsworth and Bryant-Lacher had 
proved early versions of the Resolution Theorem. 

As recently as four years ago no one dreamed that a useful characterization 
of topological manifolds was possible; all proposals ran afoul of the delicate, fiend
ishly manifold-like nonmanifolds of R. H. Bing and his school. That the notions 
of the generalized manifold and disjoint disk property were precisely appropriate 
for a characterization conjecture appeared only slowly from considerations of the 
taming and decomposition space theory pioneered by R. H. Bing. We give here 
an abbreviated exposition of Bing's work relevant to the characterization conjecture. 

Bing, examining E. E. Moise's work on the triangulation theorem and Haupt-
vermutung for 3-manifolds in the early 1950s, was led to a profound study of the 
embeddings of polyhedra and compacta in the 3-dimensional sphere S*. Bing 
set himself the problem of understanding the phenomenon called wildness. While 
it was clear that a simple closed curve can be knotted in S3

9 it is not at all obvious 
that the Cantor set or 2-sphere can be knotted in S3. Nevertheless, such knotting, 
necessarily infinite in nature, does occur and was discovered in the 1920's by M. L. 
Antoine and J. W. Alexander. An infinitely knotted set is called wild; other more 
standardly embedded sets are called tame. One of Bing's many beautiful discoveries 
was that the wildness of a 2-sphere or Cantor set in S* can be traced to a simple 
homotopy theoretic failing in dimension one: the complement of a wild set in S3 

is not 1-ULC; that is, there exist arbitrarily small simple closed curves in the comple
ment of the wild set that are not contractible in small subsets of the complement. 
Extensions of Bing's results came to be known as taming theory. 

Decomposition space theory as developed by Bing obtained its early impetus 
from the following remarkable theorem of R. L. Moore, Bing's teacher: if/: S2-+X 
is a surjection from the 2-sphere S2 onto a Hausdorff space X such that, for 
each x£X9 S2 —f~\x) is nonempty and connected, then X is also a 2-sphere. 
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Bing studied the extent to which Moore's theorem extends to closed subjections 
g: S3-+Y. G. T. Whyburn, another Moore student, had already suggested an 
appropriate condition on point inverses g~Hy)9 y£Y: S3—g~1(y) was to be 
homeomorphic with S3 — (point) and such a set was to be called pointlike or cellular. 
(The notion of cell-like set occurring in the Resolution and Quotient Conjectures 
is a generalization of Whyburn's notion of cellular set slightly more appropriate 
than cellularity in general.) But even among cellular quotients of S3 Bing found 
nonmanifolds, such as his dogbone space—nonmanifolds because they failed to 
have a certain appropriate 3-dimensional variant of the disjoint disk property. 

For the purposes of this paper we shall occasionally call the nonmanifold cell-like 
quotients of a manifold M wild spaces and the manifold quotients tame. The 
corresponding decompositions of M into point preimages of the quotient map 
are called nonshrinkable (wild) or shrinkable (tame) decompositions, respectively, 
for important technical reasons. Both shrinkable and nonshrinkable decompositions 
are important for the theory, a nonshrinkable decomposition always yielding a wild 
space, but an interesting shrinkable decomposition often yielding an unusual wild 
subspace or wild embedding. 

From the middle of the 1950s until the early 1970s mathematicians of the Bing 
school developed the two theories in parallel. As years passed it became more and 
more apparent that, especially in high dimensions, wild subspaces and wild spaces 
were but two aspects of the same phenomenon and that 1-ULC properties on the 
one hand and variants of the disjoint disk property on the other played analogous 
and decisive roles. To demonstrate just how closely the theories were related, we 
will now explain two major areas in which one theory was used to further the other: 

The construction of wild examples. B. J. Ball recognized Bing's wild dogbone 
space as the result of sewing together two subspaces of S3 bounded by wild 
2-spheres. On the other hand, N. Hosay and L. L. Lininger proved that wild 2-spheres 
in S3 are always the image of tame 2-spheres under interesting cellular quotient 
maps from S3 onto S3. W. T. Eaton and R. J. Daverman established high 
dimensional analogues of the Ball and Hosay-Lininger results, respectively. M. A. 
Stan'ko proved results about codimension-three compacta which, R. D. Edwards 
pointed out, could be used to prove that wildly embedded codimension-three 
compacta are images of tame compacta under tame or shrinkable quotients. W. T. 
Eaton mixed wild compacta to create wild quotients. In other words, interesting 
examples in each of the theories spawned interesting examples in the other. 

The characterization of tame subspaces and tame spaces. M. Brown, R. Kirby, 
and A. V. Cernavskii all proved various 1-ULC taming theorems for « — 1 spheres 
in S" by decomposition space techniques. On the other hand, W. T. Eaton, R. J. 
Daverman, and J. W. Cannon proved shrinking theorems for decomposition spaces 
by using 1-ULC properties, and taming theoretic techniques. Particularly in W. T. 
Eaton's work, a variant of the disjoint disk property was connected with certain 
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1-ULC taming properties and was used not just as a method of recognizing non
manifolds but as a tool in recognizing tame quotient spaces. And finally R. D. 
Edwards began his marvelous work on the double and triple suspension problems. 
At this point L. C. Glaser should be recognized for popularizing the decomposition 
space approach to the double suspension problem. Edwards made the key observa
tion that intrinsic to the decomposition spaces associated with the double suspension 
problem were certain natural finite approximations to wild spheres of Alexander 
horned sphere type. Edwards had been led to expect such objects in decompositions 
by his study of M. A. Stan'ko's work on taming compacta. 

In addition to the direct aid given one of the theories by the other in the two 
areas just mentioned (as in others), one noticed a number of parallel and analogous 
results, connections not well-understood but highly suggestive. Particularly striking 
were the results obtained upon stabilization (multiplication by some number of 
lines). A wild embedding f : Sk->S=f(Sk)aE" into Euclidean «-space became 
tame in En+1 (that is, SaEnŒEnXE1=En+1 is a tame topological /c-sphere). 
This fact may be deduced as a consequence of the various known 1-ULC taming 
theorems. Furthermore, although the product SXE1aEnXE1 is wild when S is 
wild, it has the mildest possible form of wildness in terms of its 1-ULC properties 
according to R. J. Daverman's analysis of the same. On the other hand, no cell
like quotient Q of En was known to fail to be a factor of En+1 (QXE1 and EnXE1 

were almost always known to be homeomorphic). In particular, Bing had shown 
that his dogbone space was a manifold factor. And largely due to the impetus 
given the subject by some clever arguments and ideas of L. Rubin, a number of 
mathematicians began to prove that large and very general classes of manifold 
quotients were manifold factors—the best results issuing from C. Pixley, W. T. 
Eaton, R. T. Miller, and R. D. Edwards. J. L. Bryant and J. G. Hollingsworth 
considered the converse problem: is a manifold factor a manifold quotient? and 
proved the first weak resolution theorem. Pursuing the analogy between the 1-ULC 
taming properties and the decomposition space disjoint disk property further we 
note that though many decompositions failed to have the disjoint disk property, 
products with a line generally did (and as Daverman noticed in 1977, the product 
with two lines always had the property). 

By the early to mid 1970s the interconnections between taming and decomposition 
space theory had become so numerous and obvious that we attempted to formalize 
the interconnections. We began a program to prove that 1) every taming theorem 
had a decomposition space analogue and 2) every decomposition space theorem 
had a taming theoretic proof. What emerged was first the realization that if some 
decomposition space theorems were to admit a taming theoretic proof, then one 
would have to extend taming theory to allow consideration of general manifold
like objects. We discovered early in 1975 that the properties of the generalized 
manifold introduced decades before by R. L. Wilder were precisely those amenable 
to 1-ULC taming theory and as a consequence proved by taming theoretic methods 
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that every generalized (« —l)-manifold which embeds in an «-manifold is at least 
stably a cell-like quotient of a manifold. We were so struck by the discovery that 
an algebraically defined class of spaces (the generalized manifolds) should have such 
strong geometric properties that we immediately began to advertise the possibility 
in private discussions and in lectures that topological characterizations of manifolds, 
contrary to all appearances, might indeed be possible. When we were able to prove 
by the same taming techniques in the spring of 1976 that the double suspension 
of every homology sphere is a cellular quotient of a sphere, a result anticipated 
a few months by Edwards, we became even more convinced that the generalized 
manifold was exactly the right candidate for resolution theorems of the type suggested 
first by Bryant and Hollingsworth. Furthermore, we felt that the completion of 
Edwards' program of proving the double suspension theorem was at that point 
assured. A second consequence of our program was that we began consciously 
to concentrate on the 1-ULC properties of cell-like quotients. The realization 
came that the possible wildness of the double suspension quotients depended at 
worst on the 1-ULC wildness of the suspension circle and that, in 1-ULC taming 
theoretic terms, the wildness of the circle was of the simplest known type. After 
explanations by Edwards of his double suspension work, we saw that the looseness 
of the 1-ULC structure allowed us to find, actually embedded in the decomposition 
space in a very simple way, the wild spheres of Alexander horned sphere type whose 
finite approximations Edwards had noted. A complete proof of the double suspension 
theorem followed quickly from results on taming theory. We explained our work 
to Bing. He was not excited. He found the proof obscure. In frustration we sought 
the simplest possible conceptual framework encompassing the mildly wild 1-ULC 
properties of the examples. The appropriate property proved to be the disjoint 
disk property. Suddenly the connections between the various 1-ULC taming 
properties and the disjoint disk decomposition properties became clear in our minds 
and the characterization conjecture immediately took its present form. 

Almost immediately after receiving our initial applications of the disjoint disk 
property, Edwards was able to prove the quotient conjecture. The disjoint disk 
property allowed one to embed the (infinite) 2-skeleton of the domain of the quotient 
map in the quotient space, and 1-ULC taming theory for decompositions allowed 
one to make the quotient map one to one over that infinite skeleton. Edwards 
noted that the embedding process forced the remaining nondegenerate point pre-
images of the quotient map to have 1-ULC complement, even low geometric embed
ding dimension, hence to be essentially tame or untangled in the decomposition 
space sense. Edwards was able by a clever engulfing type induction to untangle 
and shrink the remaining elements to points. 

On the other hand, again using insights suggested by our use of the disjoint disk 
property, we, and Bryant and Lacher independently, were able to prove vastly 
improved versions of the known resolution theorems. Our versions depended on 
certain 1-ULC taming theorems of Cernavskn and Seebeck. Since the results just 
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described were proved early in 1977, Ferry, Quinn, and Chapman have proceeded 
to generalize and strengthen those 1-ULC taming theorems to generalized manifolds 
in more and more general settings. Quinn suggests that the appropriate taming 
problems are exactly suited to the completion of an early dream from his graduate 
school days of establishing local versions of surgery. The proof of the resolution 
conjecture, and with it the characterizations of topological «-manifolds, «s>5, 
may soon, therefore, be complete. 
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Submanifolds of Small Codimension 

Sylvain E. Cappe»* 

Some of the most interesting examples and important phenomena in the study 
of submanifolds occur in codimension one and codimension two. The study of 
submanifolds in each of these small codimensions involves distinctive problems 
and theories with rich interrelations with varied areas of geometry; they are very 
différent from each other and from the study of submanifolds of codimension greater 
than two. For example, the study of submanifolds of codimension two encompasses 
knot theory and its general role in the understanding of both smooth and singular 
embeddings and immersions. 

The main part of this report, section one, is an outline of one aspect of a series 
of joint investigations by Julius Shaneson and the author in the general existence 
and classification problem for codimension two embeddings and immersions (see 
[CS1]-[CS13]). These works present new methods in the study of smooth or locally-
flat submanifolds as well as in the study of singular or nonlocally flat submanifolds 
and their singularities. Here, only the problem of the existence of embeddings, 
with or without singularities, and of immersions, in Euclidean space is discussed. 
These are related to characteristic classes. 

The second section is an example of one of the author's results on existence and 
classification of submanifolds of codimension one [C1]-[C7]. These results have 
many applications to the study of invariants of manifolds with infinite fundamental 
group. For example, for manifolds whose fundamental groups lie in a very large 

* This work was supported by Grant NSF-MC S76-06 974 from the National Science Foundation 
of the United States. 
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class of groups, they prove the generalized Novikov higher signature conjecture [C5]. 
They also lead to computations of the surgery groups of many infinite groups 
[C5], [C6]9 [CI] and they give wide generalizations of results of Wall [W] and 
Shaneson [S]. All these applications will not be discussed here. 

Topologists are familiar with a host of geometrical results which are valid for 
submanifolds of codimension greater than or equal to three. Basically, this is because 
in the complement of a codimension three submanifold there is enough room left 
to carry out all the needed constructions; this reflects, in particular, that the removal 
of a subset of codimension greater than or equal to three does not affect the funda
mental group. Thus, the well-known challenging difficulties in studying submanifolds 
of small codimension can only be overcome by new understanding of the role of 
the fundamental group. 

1. Codimension two submanifolds. As a first step towards the general study of 
submanifolds of codimension two, consider the problem of determining which 
closed orientable «-manifolds embed (or immerse) in Euclidean space Rn+2. For 
« = 0 , 1 , 2 the existence is obvious. 

Note, however, that already for «=1 , these embeddings are far from unique—e.g. 
the classification of embeddings of S1 in R3 (or S3) is the subject of classical knot 
theory. This lack of uniqueness will shortly be seen to have large implications, for 
higher «, for the existence problem under discussion here. This is suggested by 
a familiar construction. If a: S1 -+SS is a knot, then the cone pair on this embedding 
is an embedding ga:D

2-+Di. When a is piecewise-linear (P. L.) so is ga. 

EXAMPLES. For a the unknot Qa is just the standard linear inclusion. For 
a the trefoil knot, Qa arises classically as a neighborhood of the origin in the solution 
set of z\+z\=Q in C2. 

unknot Ç j trefoil knot 

The knot a can be recovered from ga9 in the usual way, by intersecting a neigh
borhood of the origin (or cone point) of D2czD* with a small ball 2J4 and considering 
S1=(dBnD2)czdB=S*. The knot a is called the link of the origin of Qa. Clearly 
the link of a point in a submanifold pair locally P. L. homeomorphic to a linear 
subspace is just the unknot. In general, P. L. embeddings in any dimension, at 
which all points have link the unknot are called locally-flat. The set of points at 
which a nonlocally flat P. L. embedding (or immersion, that is, a map which is 
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locally an embedding) is not flat1 is called the singularity set of / , S(f). In the 
above examples, S(QJ was at most one point. In general, S(f) is a subcomplex 
of Mn of dimension at most «—2, equipped with a natural stratification.2 

Recall now that every orientable M3 embeds smoothly8 in JR6. We proceed 
to consider which M 4 embed in RG. Here there is a remarkable bifurcation of the 
problem. Embeddings (or immersions) can be considered with or without the con
straint of local flatness. For embeddings, we have the following contrasting results. 

THEOREM [CS9]. Let M* he an orientable closed P. L. manifold of dimension 4. 
(Recall that M then has a unique differential structure.) 

(1) The following are equivalent: 
(i) M embeds smoothly in RG. 

(ii) M embeds P. L. locally flat in R6. 
(iii) M is stably (i.e. MXR is) parallelizable. 
(iv) The Pontijagen class px(M) and Stiefel-Whitney class w2(M) are zero. 
(2) The following are equivalent: 

(i) M embeds P. L. in R*. 
(ii) M embeds P. L. in RG with at most one non-Iocally flat point. 

(iii) M embeds in RG
9 smoothly except at one point. 

(iv) M is almost (e.g. M— {a point} is) parallelizable. 
(v) The Stiefel-Whitney class w2(M) = 0. 

Thus, it is a great deal easier to P. L. fit MA into SG if the local-flatness restraint 
is dropped. The parallel contrast for P. L. immersions (maps which are locally P. L. 
embeddings) is also striking. The first part of this result is just a specialization of 
the Smale-Hirsch criteria for smooth immersion. 

THEOREM [CS9]. Let M* be an orientable P. L. manifold. 
(1) The following are equivalent: 

(i) M immerses smoothly in RG. 
(ii) M immerses P. L. locally flat in RG. 

(iii) There is an x£H2(M\Z) with x = w2{M) (mod 2) and x2=-3 I(M\ 
I(M) = index of M. 

(2) The following are equivalent: 
(i) M immerses P. L. in R6. 

(ii) M immerses P. L. in R6, locally flat except at one point. 
(iii) The Euler-characteristic of M9 %(M)9 is even. 

1 As a consequence of P. L. unknotting in higher codimension this notion does not exist in 
codimension greater than two. 

2 The link pair of a nonisolated nonlocally flat point will itself be nonlocally flat. For example, 
the product of #a with a variety Khas points with link the kih suspension of a. Yet more complicated 
examples arise and a full understanding of these is related to interpreting P. L. Pontrjagen classes. 

8 This result is easily recovered using the present methods. 
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A comparison of the tangential geometry of M and of a neighborhood of it 
WG in SG will explain how dropping the restraint of local flatness helps in fitting 
M into Euclidean space. Clearly, as a codimension zero subset of RG

9 the tangent 
bundle of W is trivial. Moreover, if the embedding of M in RG

9 and thus of 
M in W9 is smooth, it is easy to see4 that the normal bundle of M in W is 
trivial; hence the stable tangential structure of an orientable smooth submanifold 
MnczRn+2 is trivial. Now when the embedding of M4 has a nonlocally flat point 
the relationship between the tangential structure of M and W is more complicated. 
At the nonlocally flat point, M fails to have a normal bundle; there, the pair M-+W 
is locally P. L. homeomorphic to a cone pair, and will be identified with, ga: D*-+DG 

where a: S*-+Sò is a P. L. locally flat knot. To understand the tangential geometry 
of W at the cone point, we will replace the disc Z>4 by a P. L. locally-flat sub
manifold V5 with boundary the knot a (S4). For this, we employ a Seifert surface 
of a. 

A knot a: Sn~1-Sn+1 is always the boundary of some VnaSn+1=d(Dtt+2) 
called a Seifert surface of a. When «=0 (4), the signature or index of a, <r(a), 
is defined as that of the intersection pairing on Hnp(V)9 that is, of the signature 
of V. In view oftheThom-Hirzebruch formula, this invariant of a can be computed 
from the tangential geometry, in fact from the Pontrjagen characteristic classes, 
of Vyjsn-iD\ 

Now, replacing M in W by the locally-flat closed submanifold (M— Qa(D
n)) Us«-1 Vn 

(here «=4) with VttczdDn+2
9 the tangential geometry of W9 and in particular 

its Pontrjagen class is seen to have a contribution from M and from a(<x). As 
Ma W and as WGaRG is to have trivial tangential structure, a recipe for the needed 
W is now apparent. Choose W to be a regular neighborhood of M with a single 
nonlocally flat point, chosen with link having signature the negative of that contri
buted by M. Using this choice of W9 the results on immersions will follow. 

Results on embeddings require in addition the construction of the "outside" 
of a neighborhood of M9 S

n+2— W. In general, the fundamental groups of comple
ments of codimension two submanifolds of a manifold can be rather large; con
sequently their homotopy types can be very complicated. It is therefore very difficult 
in codimension two to construct embeddings with prescribed homotopy type arising 
as the complement. This problem is generally obviated by using the homology 
surgery theory adapted to codimension two embeddings in [CS2]. 

Next consider, for «>4, the general problem of embedding orientable Mn in 
Sn+2. Such M can have very rich tangential structure. In fitting such manifolds 
into Euclidean space, simultaneous contributions from knot theory in many dimen
sions to the normal singularities of M in its neighborhood are needed to account 
for the characteristic classes of M. Thus the singularity set S(f) will often be 

4 Precisely, this R2 (or C1) bundle is determined by the Euler-class (or Chern-class) which is 
easily seen to vanish. 
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a large subcomplex. Moreover, the construction of the neighborhood cannot be 
"dimension by dimension" as this would only give integral invariants, and thus 
not the P. L. Pontrjagen classes. The construction of the needed neighborhood 
is done by using a classifying space BSRNZ for oriented codimension two manifold 
regular neighborhoods of manifolds, that is, of normal "2-plane bundles with 
singularities". The construction and analysis of this space uses some delicate P. L. 
topology [CS11]. The analysis also uses many results on the relation of homology 
surgery to codimension two problems [CS2], [CS11] as well as homotopy theoretic 
methods. As before, completion of the results on embeddings also uses the homology 
surgery methods to construct the outside of a neighborhood of a submanifold. 
There is an obstruction to doing this, but we show that, quite generally, it vanishes 
for odd-dimensional submanifolds. In even dimensions we kill the obstruction, 
when the target manifold is simply connected, by introducing more singularities 
in the neighborhood of the submanifold. This again illustrates the close relation 
between knot theory, singularities, and homology surgery.5 

Specializing the general consequences of this approach to Euclidean space yields 
the following result. Call the P. L. oriented closed connected manifold M /c-reducible 
if the Hurewicz map 

nn+k(Z
kM)-+Hn+k(Z

kM)^Z 

is onto. This clearly depends only on the homotopy type of M ; k reducibility 
for any (or equivalently all k)9 k>n9 is called stable reducibility. Any manifold 
homotopy equivalent to a stably parallelizable manifold is stably reducible. 

THEOREM [CSI 1], [CS14]. If M" is l-reducible, it embeds P. L. in S'l+2; if 
M embeds in S"+2

9 it is 2-reducible. If M is stably reducible, it P. L. immerses 
in Sn+2; if H2(M;Z) = 0 and MP. L. immerses in S"+2

9 it is stably reducible. 

In the construction of such embeddings, singularities S(f) were used to account 
for tangent bundle invariants. Quantitatively, this leads to lower bounds for the 
dimension of S(f). Precisely, let / : M"-+Wn+2 be a P. L. embedding. Set 
L(f)=L(M)L(x)-f*L(W) where L(M) and L(W) denote total Thom-Hirzebruch 
classes and L(x) is that class in x9 x=f*Df*[M]9 D being Poincaré duality; 
in Euclidean space, L(f)=L(M). Then it is easy to see that D(L(fj) is carried by 
S(f)9 the set of nonlocally flat points [CS11]. 

EXAMPLE. Let M"9 n >» 4, be a simply-connected P. L. manifold which embeds P. L. 
in S"+2 with H*(M\ 0 5 * 0 ; there is then a P. L. manifold M' homotopy equivalent 
to M with nonzero first Pontrjagen class. Then thereisaP.L. embedding f: M'-+Sn+2; 
but for any such f « — 4 ̂  dim (S(f)) < « — 2. 

5 When the target manifold is even dimensional but not simply-connected it may be impossible 
to kill the obstruction. This leads to the construction of totally spineless manifolds [CS6]. 
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More generally, in the odd-dimensional or simply-connected cases our methods 
reduce to homotopy theory the general question of whether a map / : Mn^WnV2 

is homotopic to a P. L. embedding, with S(f) of given prescribed codimension. 
In view of the above discussions, the criteria for reducing the size of S(f) can 
often be stated in terms of the vanishing of certain characteristic classes. As an 
application of these ideas, we give the following example on equi variant embeddings 
in spheres. 

THEOREM [CS 11]. Let G be finite cyclic or S1. Let Q and % be arbitrary free 
actions of G on Sn and Sn+2

9 in the P. L. category. Assume « ^ 4 , 6 , and n^5 
if G=SX. Then there is an equivariant embedding of Sn~2 in Sn; i.e., there is 
a one to one P. L. map f: Sn^Sn+2 with f(-c(t9x))=Q(t9f(x))9 t£G9x£Sn~2. 
Moreover, for G=SX or Z2 , «>4 , for every Q (respectively, x) there is a z 
(resp. Q) such that for any such equivariant f, dim (S(f))=n—2. 

As our most general results, applicable to any Wn+2
9 show, a regular neighborhood 

of a P. L. embedding or immersion / : Mn-+Wn+2 frequently must carry many 
nonzero characteristic classes. There is a formula for the Pontrjagen classes, or 
the Z*-classes, in terms of the simplices of S(f)\ an intriguing problem, closely 
related to obtaining a general P. L. geometric understanding of characteristic classes, 
would be to find out what the coefficients are. 

2. Submanifolds of codimension one. To simplify notation, we consider here only 
orientable closed, connected, smooth (or P. L. and P. L. locally flat, or topological 
and topologically locally flat) manifolds and submanifolds. The central problem in the 
study of codimension one submanifolds was to reduce the question of their existence 
to homotopy theory, i.e., to show that the existence of a (simple) homotopy theoretic 
model r c 7 B + 1 , with « ^ 5 and ^X-^n^Y injective, for a codimension one 
submanifold implied the existence of an actual geometrical submanifold. Precisely, 
one takes a homotopy equivalence / : Wn+1-+Yn+1 with W a manifold6 and 
asks if / is homotopic to a map g transverse to X with g_1X-^X a homotopy 
equivalence. When g exists, / , or its homotopy class, is said to be splittable. 
As this implies that (W—f"1(X))-^(Y—X) is also a homotopy equivalence, such 
results on codimension one submanifolds can be used to decompose manifolds 
into pieces of prescribed homotopy type; in view of Van Kampen's theorem and 
its generalizations, these pieces will have smaller fundamental group. 

For important earlier results on this problem, see [BL], [Bl], [B2], [BL2], [F], 
[FH], [L], [N], [S], [W]; the much more general results of [CI] apply equally whether 
(Y—X) is connected or not and to manifolds with fundamental group in a large 
class. For example, they assert the existence of g whenever Xn is simply-connected 
and %y w + 1 has no 2-torsion (and sometimes, when there is 2-torsion). The follow

er' and X could be manifolds or even just Poincaré complexes. 
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ing example showed that this could not be pushed much further. The connected 
sum of MwH"1 and Nn+1 is formed by deleting a ball from each and pasting together 
the results along the boundary Sn to get a closed manifold, containing Sn as 
a codimension one submanifold. 

EXAMPLE [C2]. There are infinitely many different smooth closed WAk+1
9 each 

(simple and tangentially) homotopy equivalent to the connected sum Y of two copies 
of projective space RPûk+1

9 but which are not nontrivial connected sums. 

Thus there is no codimension one splitting result for the SAk in this Y. In view 
of this, we apply further the methods of [CI] to get results applicable to any Xna Yn+1 

with ftiX-^iti Y injective. In [C4] we define an algebraic functor UNilJ+2 (n1Xcin1 Y) 
of groups of unitary nilpotent matrices. For brevity, we here describe a result only 
in the case when the reduced projective class group of Z\nlX\ is 0. See [C4], [C3], 
[C7] for a general discussion. Let S(Y) denote the set of manifolds with given 
homotopy equivalences to 7"+1, «^=5, classified up to A-cobordism, and let S%(Y) 
similarly denote homotopy equivalences split along X. 

THEOREM. S(Y) is canonically in one to one correspondence with S'(Y)X 
U N i i ^ ^ x c ^ y ) . 

There are similar results for j-cobordisms. The UNil groups are always 2-groups 
but, when not zero are often not finitely generated. Our earlier splitting theorems 
are interprétable as vanishing theorems for UNil in various cases. 
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Linearization in 3-Dimensional Topology 

A. E. Hatcher 

The message from Thurston is clear: geometry dominates topology in dimension 
three. Our title refers to one important aspect of this geometry, linearity in various 
forms. We shall consider here linearization of automorphisms of 3-manifolds. 
Specifically, we ask, does Diff(M), the group of self-diffeomorphisms of the 
3-manifold M (with the C°° topology), have the homotopy type of the subgroup 
of diffeomorphisms which preserve a given "linear" structure on Ml If so, this is 
strong evidence that the linear structure is really intrinsic to the topology of M. 

EXAMPLES (M closed, orientable). 
(I) M=S3. The linear diffeomorphisms of S3 are the isometries, Isom(»S3) = 

0(4), the orthogonal group. 

The Smale Conjecture. 0(4)a+Diff (S3) is a homotopy equivalence. 
We shall indicate some of the ideas which go into a proof of this below. Previously, 

Cerf had shown that n0 Diff (S3) ^n0O(4). He also proved that the Smale Conjecture 
implies that Diff (M)-^Homeo (M)9 the natural map to the homeomorphism 
group, is a weak homotopy equivalence for all 3-manifolds M. 

(II) M=S3/r, J T C S O (4) acting freely on S3
9 the so-called spherical or elliptic 

3-manifolds. One expects Diff (M) ^ Isom (M)9 but this is known only for RP3. 
(III) M=H3/T9 Tczlsom (i/3), hyperbolic 3-manifolds. Again, one expects 

Diff ( M ) ^ Isom (M), and this is known when M is Haken (= "irreducible, 
sufficiently large" in the older terminology). By a theorem of Mosto w, Isom (M) ^ 
Out(7c1M), the outer automorphism group of %XM (automorphisms modulo inner 
automorphisms), which is not only discrete but finite. 

(IV) M=E3IT,rczlsom(E3)9 euclidean or flat 3-manifolds. Here the linear 
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diffeomorphisms are the afline diffeomorphisms (i.e., affine in the universal cover E3). 
Such an M is Haken, so one can show Diff (M)^AS(M). For example, 
Diff(T3)^GL(3,Z)XT3 (semidirect product). This is considerably larger than 
Isom (T3), which is compact. 

(V) M=SXXS2. This is best regarded as a bundle S2^M-*S1 with linear 
structure group 0(3). Then Diff(S1XS2)c^O(2)X0(3)XßO(3), the bundle 
automorphisms (Rourke-César de Sä). 

(VI) M= jT2-bundle over S1 with gluing map in SL (2, Z) having distinct 
real eigenvalues. Again Diff (M) has the homotopy type of the bundle automorp
hism group. 

(VII) M Seifert fibered, S1^~M-+B9 over a closed surface B. These include 
the manifolds of I, II, IV, V, but none of those in III or VI. Excluding the manifolds 
in I, II, IV, and V, the Seifert fiber structure is unique, and Diff (M)^{fiber-
preserving diffeomorphisms} except perhaps when B=S2 and there are only three 
singular fibers (the non-Haken cases). Incidentally, the linear structure in a Seifert 
fibering is in the base B9 which is naturally a quotient of the spherical, euclidean, 
or hyperbolic plane by a discrete group G of isometries (perhaps with torsion). 
For example, M could be the unit tangent bundle of such a B9 which has singular 
fibers arising from the elements of G with fixed points (rotations of finite order). 

(VIII) M having a torus decomposition, i.e., a splitting of M into submanifolds 
Mj which are the components of the complement of a finite collection (perhaps 
empty) of disjointly embedded tori Tt in M, such that 

(1) nxTi-^Ti1 M is injective for each i (to rule out the possibility that T. bounds 
a solid torus in M). 

(2) Each Mj is either 
(a) the interior of a compact Seifert fibered manifold, or 
(b) a hyperbolic manifold H3jr of finite volume (having finite volume is almost 

as good as being compact). 
(3) {ÜTj} is minimal, with respect to inclusion, among collections {Tt} satisfying 

(1) and (2). 

Small Exception. For the T^-bundles in VI above it seems better to choose 
{7 .̂}=0 rather than a single fiber T2

9 which is what (l)-(3) would yield. (The 
other T2-bundles over S1 are Seifert-fibered.) 

Perhaps the deepest result in 3-manifolds to date is: 

THEOREM. Every Haken manifold has a torus decomposition which is unique up 
to isotopy. 

This is due to Johannson and (independently) Jaco-Shalen for the Seifert part, 
and to Thurston for the (much harder) hyperbolic part. As far as is known, all 
prime 3-manifolds (i.e., indecomposable as a connected sum) have torus decomposi
tions, since all known prime 3-manifolds are either Seifert, hyperbolic, or Haken. 
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THEOREM. Diff(M) deformation retracts onto the subgroup of diffeomorphisms 
leaving \JtTt invariant. 

If {Tj^P, the components of Diff(M) are contractible. So the content of 
the preceding theorem is to reduce n0Ditt(M) essentially to the n0 Diff(Mj)'s. 
For example, one can say that n0 Diff (M) is generated by: 

diffeomorphisms which permute the 7Vs and the M/s, 
Dehn twists along the TVs, 
isometries of the hyperbolic M/s, 
fiber-preserving diffeomorphisms of the Seifert M/s. 
This is reminiscent of Thurston's normal form for diffeomorphisms of surfaces. 
(IX) M nonprime. Rourke and César de Sa have largely reduced Diff (M) 

iii this case to Diff(My) for the prime factors Mj of M9 plus the homotopy 
theory of certain "configuration spaces". This seems to be rather complicated in 
general. 

THE SMALE CONJECTURE: Diff (S3)^0(4). 

There are many statements well-known to be equivalent to this, e.g., 
(1) The space of unknotted smoothly embedded circles in R3 deformation retracts 

onto the subspace of round (i.e., planar, constant curvature) circles. 
(2) The space of smoothly embedded 2-spheres in R3 deformation retracts onto 

the subspace of round (i.e., constant curvature) 2-spheres. 
Of these, (1) seems hopeless: there appears to be no canonical way of unknotting 

the unknot. At first glance, (2) seems even harder if one looks at embedded 2-spheres 
with apparent knots, like the following: 

Nonetheless, (2) can be proved, using only elementary (but complicated) dif
ferential topology. Intuition suggests there ought, also, to be an analytic proof of (2), 
based on some physical model for 2-spheres in R3. However, somewhere the 
topology or geometry of three dimensions will have to enter, since the analog of (2) 
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either for 3-spheres in Ä4 or for 4-spheres in R5 is definitely false (this is directly 
traceable to the existence of exotic 7-spheres). 

What one actually proves is the following technical variant of (2): a smooth 
family gt\ S2a+R3 parametrized by t£Sk extends to a smooth family gt: B3a+R3. 
For fc=0 this is essentially due to Alexander, and for k= 1 this is what Cerf showed 
to calculate nQ Diff (S3) ^ Z2. 

The good property of 2-spheres in R3 is that they can be sliced into simpler and 
simpler 2-spheres by surgery on horizontal circles: 

Ü Ü Ö 
(Note this fails for S^cuR", n^4.) 
The process can be iterated: surger all the circles of intersection of the given 

2-sphere with more and more horizontal transverse planes. Eventually a point is 
reached when further surgeries no longer yield significantly simpler 2-spheres. 
We call such 2-spheres, somewhat loosely, "indecomposable". 

It is easy to reverse the surgery process, gluing together extensions gt. So the 
problem becomes to construct gt on the "indécomposables". This must be done 
in a canonical way, which works for fc-parameter families of "indécomposables". 

A further problem is that one cannot choose the same horizontal slicing planes 
for all t£Sk

9 but only locally in t. That is, one covers Sk by balls Bi9 associated 
to each of which is a finite collection of horizontal planes Ptj transverse to gt(S

2) 
for t€Br One surgers gt(S

2) using the planes Ptj for t£Bt. So on intersections 
of B.'s9 the "indécomposables" are being further surgered (subdivided), and one 
must take pains to make the extensions gt on "indécomposables" invariant under 
such subdivision. 

Thus the heart of the problem is understanding the "indécomposables". For small 
values of k9 one can perturb the family gt so that the height functions on gt(S

2) 
form a generic fc-parameter family, and then write down a complete catalog of the 
types of "indécomposables". This is how Cerf proceeded for k=l. But for general 
k this approach fails (because smooth singularities are classified only for small 
codimensions k). 

So one must forget height functions, and instead look at "indecomposable" 
2-spheres from the top. This viewpoint leads to the following basic definition: 
The contour of a 2-sphere laR3 is the quotient space of the 3-ball laR3 bounded 
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by I, obtained by identifying points x and y in I whenever there is a vertical 
line segment in Ë joining x and y. 

EXAMPLE. 

Contour = 2-disc with a "flap" or "tongue" 
i 

In general, the part of gt(S
2) between two adjacent slicing planes Pfj has the 

following key property (after a preliminary normalization): Each vertical line in 
R3 meets this part of gt(S

2) in a connected set (perhaps empty). Using this, one 
proves that the contour of an "indecomposable" is always a disc with finitely many 
tongues attached successively, either to the disc or to previously attached tongues. 
("Attaching a tongue" means attaching a disc D along a subdisc which meets 
dD nontrivially.) 

To get the canonical extensions gt on "indécomposables", the procedure is: 
Shrink each tongue in turn down to the arc along which it attaches. This lifts to an 
isotopy of the "indecomposable", ending with a 2-sphere whose contour is a disc. 
For this, gt is easily constructed. Then reversing the isotopy which shrank the 
tongues, one obtains gt on the original "indecomposable" by isotopy extension 
(which is canonical). This uses Smale's theorem Diff (S2)c* 0(3), to make gt 

canonical. 
The hard work comes in making this shrinking-of-contours process mesh with 

the subdivision (slicing) of "indécomposables" mentioned earlier. 
One might well ask if shrinking of contours could be applied to the original 

gt(S
2). Unfortunately, one can easily construct examples of 2-spheres in JR3 whose 

contours cannot be continuously shrunk, within themselves, to any subdisc. (Such 
contours are contractible but not collapsible, in the sense of PL topology.) So the 
slicing process is necessary. 

APPLICATION. 

THEOREM (C. B. THOMAS). If the Smale Conjecture is true, then: A 3-manifold 
M with universal cover S3 has the homotopy type of one of the spherical manifolds 
S3/T (for some r e : SO (4) acting freely on S3 as isometries). 
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In particular, ^M&T. To classify such Af's there remains the problem of 
showing that T can act on S3 only in the standard linear ways. This is known 
for some T's e.g., Z29 Zi9 Z69 Z89 generalized quaternion (of order 2k)9 binary 
tetrahedral and octahedral. (See the article of Rubinstein for references.) It is 
unknown, in particular, for r cyclic of odd order (e.g., Z3!), and for the binary 
icosahedral group. 
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The Topology of Finite //-Spaces 

James P. Lin* 

The following question could be considered the central problem in the theory 
of finite //-spaces : 

What homological and homotopical properties of Lie groups can be derived 
solely from the existence of a nontrivial product with unit? 

This question has generated many interesting solutions. For example, 
Let G be a Lie group 
1. Hopf [S]: The rational cohomology of G is a finite dimensional Grassmann 

algebra. 
2. Borei [2]: The mod/? cohomology of G is a finite dimensional tensor product 

of exterior and truncated polynomial algebras. 
3. Browder [4]: n2(G)=0. 
4. Hubbuck-Kane [6], Lin [12]; n3(G) is torsion free. 

Results 1-4 depend only on the fact that G is a finite H-space. We say a space 
X is finite if for each prime p9 H^ (X; Z(p)) is of finite type and Hj(X; Z(p))=0 for 
/ greater than some integer N. We say a pointed space X9 * is an H-space if 
it supports a map u: XXX-^X such that the two compositions 

XX*-+XXX-±+ X, *XX-+ xxx-±-+ X 

are homotopic to the identity. 
Given a finite //-space X9 H* (X; Q) and H* (X; Zp) become commutative 

Hopf algebras. The results of Hopf and Borei follow from the basic theory of 

* Partially supported by the National Science Foundation of the United States and the Sloan 
Foundation. 
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Hopf algebras. Results 3 and 4, however, follow from deeper considerations about 
the action of the Steenrod algebra on H*(X; Zp). I will briefly outline these methods 
and summarize the results that are presently known. 

If / : X-+ Y is an //-map between two //-spaces X and Y the induced maps 

H*(Y;Zp)-^H*(X;Zp) and U H*(X; Zp) -> / / ,(F; Zp) 

are maps of Hopf algebras. We can extend this idea to //-spaces with added structure. 
If X and Y are //-spaces that admit An structures and / : X-+Y is an An map 
in the sense of Stasheff [13], then /* is a map of Hopf algebras with an additional 
induced map Bnf: BnX-+BnY of n fold projective spaces. There is an analogous 
statement for an //-map / between Hn spaces in the sense of Kudo-Araki [10] 
and Browder [3]. An Hn map would not only preserve the //-structure but also 
the higher homotopy commutativity of X and Y. 

At present we consider only the most elementary case—a map / : X-+Y between 
//-spaces X and Y. Suppose there is an element u in Hn(Y;Zp) with z/'VO. 
If / is an //-map with f^(t) = u, then 

It follows that tp^0. This is a way of detecting pth powers in H^(X; Zp). The 
problem can be divided into three parts: 

1. Constructing //-spaces Y that have elements uÇ.Hn(Y; Zp) with up^0. 
2. Constructing maps f:X-+Y with f^(t) = u. 
3. Studying the deviation of / from being an //-map. 
Problem 1 has several solutions. It is well known that H*(QZZ) is a tensor 

algebra on IH^(Z), hence contains many /?th powers in homology. The problem 
with using QIZ is that it is very difficult to map finite //-spaces X into QIZ 
in a nontrivial manner. Fortunately, there are other candidates that are stable 
two stage Postnikov systems. Because a two stage Postnikov system has /c-invariants 
given by primary operations, the vanishing of primary operations on elements of 
H*(X;Zp) allow us to construct maps f:X-+Y. Finally, the //-deviation of 
/ for a two stage system often (but not always) turns out to be primary (see [17]). 

Here is an example of the type of theorem we can prove : 

THEOREM 1. Let tePH2fl(X; Zp) with (t, x)^Q, x£H2n(X\ Zp). Suppose 
ßx0>n factors as ß!^n=2aibi and btx=0 for all i. Then if t®t®---®t belongs 
to the kernel of ^iai then tp^0. 

Through a great deal of hard work using this theorem it was shown (Kane [8]): 
If X is a finite //-space and t£PH2n(X; Zp) then *p=0. This implies 

THEOREM 2. Let X be a finite H-space and let tÇPH^X; Zp) with (t,x)^Q, 
x£H2n(X; Zp). Suppose ß1^

>n=2aibi with bix=Q for all i. Then 2ai does not 

vanish on t<8t®--'®t. 
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Because the conclusion of Theorem 2 tells us Steenrod operations act nontrivially 
on homology classes, we can use this theorem to collect information about H*(X; Zp) 
as a module over the Steenrod algebra. The following theorems are proven by 
analyzing variations of Theorem 2 [12]. We assume p is an odd prime and X is 
a finite //-space. 

THEOREM A. QH™n(X; Zp)=2ßi^lQH2l+1(X; Zp). 

This theorem tells us every even generator is in the image of Steenrod operations. 

THEOREM B. H*(X; Z) has no p2 torsion. 

This follows from the Bockstein spectral sequence and the fact that every even 
generator is in the image of ß±. 

THEOREM C. H*(QX; Zp) is even dimensional; therefore H^(QX\Z) has no 
p torsion. 

This follows because the suspension map a*: QH™n(X; Zp)-+PHodd(QX; Zp) 
is an epimorphism. Hence by Theorem A, PHoàd(QX; Zp)=0 which implies 
//* (QX; Zp) is even dimensional. 

THEOREM D. The Hurewicz map 

/7„(g>Z(p): nn(X)®Z{p) - PHn(X\ Z(p)) 

has the property kernel h„(g>Z(p)=/; torsion nn(X). 

This follows because of the commutative diagram 

nn^(QX)^Zip) ""-1®z<"^ Hn_x(flX; Z(p)) 

<7u ® Z , . ff+®2Ti ( p ) 

n„{X)®Zu>) — PHn{X; Z(p)) 

with o-#(8)Z(/3) an isomorphism. Given z, a torsion class in 7ü(1(A')(g)Z(p),z = 
u#®Z{p)(w) where w is a torsion class. Hence /7„_i<8)Z(p)(w)=0 by Theorem C. 
Therefore /?/l{g)Z(p)(z)=0. We have p torsion nn(X)^ker /7fI(H)Z(p). The other 
containment follows from the Cartan-Serre Theorem which states that the rational 
homotopy is isomorphic to the rational primitives of X via the Hurewicz map. 
For more theorems of this type we refer the reader to [12]. 

When one attempts to prove analogous theorems for the prime two there are 
some fundamental obstructions that prevent one from simply following the proofs 
for odd primes. First, the mod two Steenrod algebra and the mod/; Steenrod 
algebra have different coalgebra structures. For example ^ 1 is a primitive but 
Sq2 is not. This makes it much more difficult to analyze the action of the Steenrod 
algebra on t®t in Theorem 2. The second hindrance is that for mod two commuta
tive Hopf algebras, the square of an odd degree element is not necessarily zero. 
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This presents technical difficulties in the analysis of primary obstructions to 
constructing maps / : X-* Y. The problem is described in detail in [12]. As a result 
of these difficulties, our knowledge of the mod two cohomology of a finite //-space 
is very limited. Perhaps the most significant work is due to Adams [1], Thomas [15} 
and Hubbuck [7], all restricted to //-spaces whose mod two cohomology is primitively 
generated. 

In the remainder of this paper, we will present a few conjectures. Most of these 
conjectures that are well known appear too awesome to tackle. For this reason 
I include some "subconjectures" which I feel are interrelated and hopefully are more 
manageable. 

I. The Loop Space Conjecture. H^(QX; Z) is two torsion free. Recent work 
of Kane [9] is relevant. The basic goal is to eliminate all possible elements in 
0*QHewGn(X; Za). Work of Zabrodsky [16] on the "c" operation appears to be 
useful. There is a duality between Browder operations, the first Dyer-Lashof 
operation and Zabrodsky's c operation. For this reason I feel the following sub-
conjectures about the commutativity of X and X are important: 

Subconjecture 1. The Browder operation Xx vanishes on 

H*(QX; Z2)®H*(QX; Z2). 

Subconjecture 2. The sub-Hopf algebra of H^(X; Z2) generated by the image 
of (7̂  is commutative. 

II. The Generalized Thomas Conjecture. In 1963 Emery Thomas [15] published 
a paper that described a recipe for the action of the Steenrod algebra on H*(X\ Z2) 
in the case that H*(X; Z2) is primitively generated. It is very simple: Given an 
odd primitive x in degree n9 then if « + l=2/+2/+1Ä:, fc>0, then x=Sq2ly. 
Unfortunately this simple rçcipe is not true when H*(X; Z2) is not primitively 
generated; when /=1 , this recipe does not hold for some of the exceptional Lie 
groups. However, the following is true for all known finite //-spaces: 

Conjecture. For />1 , QH*t+*+lk-\X; Z2)ç= image Sq2'. 
For 1=1 we can write 2l+2l+1k — 1 in the form 2'm+l where /*>1. Then 

QHrm+1(X; Za) <= imSq2+ ^ i m S q ^ ^ - . - S q ^ ' S q 2 . 
5 = 1 

III. The Connectivity Conjecture. The first nonvanishing homotopy group occurs 
in dimension 1,3,7 or 15. 

Thomas [14] proves this in the primitively generated case. 

Subconjecture 1. The Thomas conjecture implies the connectivity conjecture. 

Subconjecture 2. The loop space conjecture implies the connectivity conjecture. 
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Spherical Space Forms 

lb Madsen 

Classically, a space form L" - 1 is a complete Riemannian manifold with constant 
curvature. If the curvature is also positive L"_ 1 has finite fundamental group n, 
and the universal cover of Lw_1 is the sphere S"'1 with its standard metric. Since 
the isometry group of 5" ' - 1 is the orthogonal group, L"_ 1 is the orbit space of 
a free orthogonal action of n on 5"'"1. We call Z/ ' - 1 an orthogonal space form. 

Generally, a spherical space form MM_1(7r) is a closed manifold with finite 
fundamental group n and universal cover S"I_1. We shall be primarily interested 
in the smooth case, where we require in addition to Mn~1(n) being smooth that its 
universal cover is the standard smooth S"'_1. Thus smooth spherical space forms 
are orbit spaces of free representations of n in the group Diff (S" -1) of diffeo
morphisms of 5"' -1. 

In this article we discuss the structure of smooth spherical space forms. This 
includes classification of the groups n which can occur, and a partial characteriza
tion of space forms M"~1(n) whose coverings M"~1(y) are diffeomorphic to 
orthogonal space forms for a certain class of subgroups y an. 

The work is part of a collaboration with C. B. Thomas and C. T. C. Wall. Other 
accounts of this collaboration can be found in [6], [7], [14]. 

Throughout the article space forms will be assumed oriented, hence odd dimen
sional, and of dimension at least 5. 

1. A finite group is said to satisfy the ^-condition if each subgroup of order 
pq is cyclic. Here p and q are primes, not necessarily distinct. If a finite group 
7T admits a free orthogonal representation (i.e. a representation (p:n-+0(n) 
where +1 is not an eigenvalue for any cp(g)9g^\)9 then n must satisfy all 
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/«/-conditions. These conditions are also sufficient if n is soluble, [15]. In contrast 
we have 

THEOREM 1.1. A finite group can act freely on a standard sphere Sn~x as a group 
of diffeomorphisms if and only if it satisfies all p2- and 2p-conditions. 

The necessity of the p2- and 2/?-conditions even for topological actions is due 
to P. A. Smith and J. Milnor [9]. Special cases of 1.1 were proved earlier by T. Pétrie 
and R. Lee. 

Groups satisfying all p2~ and 2/>-conditions have been completely classified into 
six types, namely according to the structure of n/0(n)9 where 0(n) is the maximal 
normal subgroup of odd order. The six types of njO(n) are: I. Zj2k (cyclic), 
II. Q2k (quaternion), III. T* (binary tetrahedral), IV. 0* (binary octahedral), V. 
Sl2(Fp) and VI. Tl2(Fp)9 and 0(n) is itself metacyclic (cf. [6], [15]). 

A group n satisfies all /^-conditions if and only if it is periodic in the sense that 
there exists rf>0, so that H^Bn; Z)^Hi+d(Biz; Z) for z>0 [3]. The minimal 
such d is the period of n9 denoted d(n). If % acts freely on Sn~x then n=rd(n) 
and we can ask which integers r can occur. From [14] we have 

THEOREM 1.2. One can take n = rd(n) with any r such that rd(n)^69 except 
for certain groups n of type II, where r must be even. 

For groups of type II it is in general difficult to decide whether r must necessarily 
be even, cf. [5] and 2.3 below. 

The previous theorems contain little information about the nature of the asserted 
free representation of % in DirT^71""1). One can seek to remedy this by attempting 
to set up 'Brauer induction'. Our next result is a step in this direction (see also 3.3. 
below). 

Let Jöf (7c) consist of all 2-hyperelementary subgroups of n. Each element yÇ.J?(n) 
satisfies all /^-conditions and hence admits free orthogonal representations. 

THEOREM 1.3. Let n and n be as in 1.2. 

(i) There exists a free representation $: n-*DiS(Sn~1) whose restriction to each 
y€J&(n) is conjugate to an orthogonal free representation. 

(ii) If the order of n contains no odd squares, then the conjugacy class of a # from 
(i) is determined by its restrictions $\y, y£j£?(7c). 

For each group n in the classification list one can list explicitly at least one 
family of orthogonal representations {$7|y€-S?(w)} which lifts to a free representa
tion # : n^I)iS(Sn~'1). At present, however, I do not know any explicit charac
terization of which families {#y} can occur. This requires knowledge of the image 
of Res: K1(Zn)->U{K1(Zy)\y^^(n)}. The uniqueness in 1.3 (ii) is equivalent 
to the injectivity of Res. The only result I know in this direction is from [4]. 

The theorems above are listed in the language of representations, but their proofs 
proceed by constructing the associated space forms, following the usual scheme of 
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surgery theory. This is done in the next two sections which together outline a proof 
of 1.3. 

2. Our first task is to exhibit suitable finite cell complexes which may serve as the 
underlying simple homotopy types of the asserted space forms. The invariants one 
encounters are the Swan obstruction in ^0(ZTC) and the Reidemeister torsion 
in K^Qn). 

Let d=d(n) be the period of n. Then Hd(Bn\ Z) = Z/\n\ and there is a one 
to one correspondence between generators e of Hd(Bn; Z) and homotopy types 
of (possibly infinite) cell complexes X(n) with fundamental group n and universal 
cover identified with S"1-1 up to homotopy. The class e(X(n)) is called the 
/r-invariant; if X(n) is an orthogonal space form, then e is the Euler class of the 
associated representation. 

According to Swan [11], e can be represented by a finite cell complex if and only 
if a certain element 0(e)C.Ko(Zn) vanishes. 

Each homotopy type X(n)9 corresponding to a generator with vanishing Swan 
obstruction, divides into a number of simple homotopy types Y(n)9 in one to one 
correspondence with Wh (Zn)=K1(Zn)l{±g\g^n}. Our use of surgery theory 
in the next section requires that we partly specify a simple homotopy type. To this 
end we can employ the Reidemeister torsion invariant A(Y(n))^^Wh (Qn)9 [10]. 
It determines the simple homotopy type up to finite ambiguity, namely modulo the 
torsion subgroup of Wh (Zn)9 which according to Wall [13] is precisely SK^Zn). 

The complexes Y(n) satisfy Poincaré duality, in fact they are weakly simple 
Poincaré duality spaces, [13]. For the arguments in § 3 we need Y(n) to be an 
actual simple Poincaré duality space. The obstruction to achieve this is an element 
of #o d d(Z/2, SK^Zn)). This group vanishes for /?-hyperelementary groups with 
p odd. 

Denote by L(n; V) the orthogonal space form associated to the free representa
tion V9L(n; V) = S(V)/n. If Y(n) is as above, let Y(y) be the covering associated 
to the subgroup y an. 

PROPOSITION 2.1. Suppose n and n satisfy the requirements of 1.3. There 
exists a simple Poincaré duality space Y(n) with Y(y) simple homotopy equivalent 
to certain orthogonal space forms L(y; Vy)9 y £-^(71). 

The proof of this proposition is quite involved, and a few comments are in order. 
For the special case where n is hyperelementary the argument is essentially given 
in [7], and is based on the ideas of Wall [14, Theorem 2]. The general case uses 
induction techniques. First, one can exhibit, for each (maximal) hyperelementary 
subgroup Han a simple Poincaré duality space YH(H)9 and a family of zz-dimen-
sional representations Vy9y£.£P(rì)9 such that 

(i) {[K7]}eimage {Res: RO(n)-+U{RO(y)\ye<?(n)}9 

(2.2.) (ii) YH(H) = L(H; VH) if H is 2-hyperelementary, 
(iii) A(YH(y)) = A{L(y;V7)) for y£<Z(H). 
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Now, (i) implies a unique class e€H"(Bn; Z) which restricts to e(L(y; Vy)) for 
each y€S£(n)9 and 0(e)=0 since elements of K0(Zn) are detected on the hyper
elementary subgroups of n. Choose any simple homotopy type Y'(n) realizing e. 
The distinct maximal hyperelementary subgroups of n intersect in elements of 
£?(%). This together with the calculational fact that Wh (Z[Z/m\) is torsion free, 
and hyperelementary induction for Wh(Z7c) implies that one may change Y'(ri) 
by an element of Wh (Z%) to obtain the required Y(n). 

The 2-hyperelementary groups of type II have cohomological period 4, but the 
minimum degree of a free orthogonal representation is sometimes 8. This happens 
e.g. for the groups denoted Q($p9 q9 1) in Milnor [9]. For such groups the Swan 
obstruction depends on intricate number theory. The recent advances here are due 
to Milgram [8]. For example, 

PROPOSITION 2.3 (Milgram). (i) Let p = 3 and q any prime congruent to 13 
(modulo 24). For each integer k^O there exist generators ek£H8k+é(BQ(24; q9 1); Z) 
with 0(ek)=0. 

(ii) For p = 39q=59 any (Sk+4)-dimensional generator has nonvanishing Swan 
obstruction. 

3. The general theory for converting a (simple) Poincaré duality space into a mani
fold has a purely cohomological part, namely the choices of normal invariant. 
To exploit this we set up induction techniques for generalized cohomology theories. 
Group cohomology as treated in [2] is a special case. 

Suppose Y(n) is a finite cell complex as in § 2, and let E(—) be any cohomology 
theory, represented by an infinite loop space. Let <&(%) be the category whose 
objects are all subgroups of n and whose morphisms are inclusions which extend 
to inner automorphisms of n. We can consider E(Y(y)) as a bifunctor on @(n). 
The contravariant part is obvious, the covariant part is induced from the transfer. 

Each cohomology theory is a module over the stable cohomotopy functor co(—), 
represented by Q°°S°°. In fact, using the terminology from [3], E(Y(y)) isaMackey 
functor over the Green functor œ(Y(y)). The defect category for co(Y(y)) is the 
subcategory ^(TC)(=^(7C) consisting of all /7-groups [7], and it becomes formal to 
deduce 

PROPOSITION 3.1. The covering projections i\ Y(y)-+Y(n) induce an isomorphism 
lim i*: E(Y(n))^hm {E(Y(y))\y£&(%)}. 

The space Y(%) has a Spivak fibration, classified by a map Y(n)-+BSG. Anormal 
invariant is a homotopy class of liftings Y(n) -+BSO. According to Boardman-Vogt 
BSO and BSG are infinite loop spaces and the map BSO-+BSG is an infinite 
loop map. Thus there is a fibration BSO-+BSG^B(G/0)9 where also B(G/0) 
is an infinite loop space. The obstruction to the existence of a normal invariant 
is an element <r(Y(n))e[Y(n)9 B(G/0)]. But <r(Y(yj)=0 for ye^(n) by 2.1 and as 
0>(n)a$e(n)9 <7(F(7r))=0. 
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After an arbitrary choice of normal invariant for Y(n) the main exact sequence 

of surgery becomes (cf. [12]) 

(3.2) Un(n) - ^ <?*(Y(n)) - [Y(n)9 G/O]^ L^n). 

In [3] Dress proved that Ll(n) -+-\im{Ll(y)\y£&(n)}. Thus three of the terms 

in 3.2 satisfy £P(^-inductions and it is not surprising that we have 

PROPOSITION 3.3. Taking coverings define a bijection 

y*(y ( 7 I))_JU Jim (S«(y(y)) | y €•*(*)}• 

The proof is not just a 5-lemma argument since &s(Y(n)) is not a group. It uses 

the partial splitting of the map fi provided by the g-invariant (cf. [12]), and the 

calculational facts that Ls
Q(y) is torsion free when y is cyclic or the quaternion 

group of order 8. 

Theorem 1.3 follows from 2.1 and 3.3. Indeed, the simple homotopy equivalences 

of 2.1 define an element of Jim {^s(Y(y))\y^^(n)}9 and 3.3 gives an element of 

S^s(Y(n)) whose domain is the required manifold. 

We end with an obvious open question. Do the generators ek in 2.3 (i) represent 

spherical space forms? 
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1. Introduction. Shape theory is a new area of topology whose aim is the same as 
that of homotopy theory, i.e. to study the global behavior of spaces. However, ite 
tools are different and are applicable to rather general spaces. This is not the cas-
with the standard tools of homotopy theory, which are designed primarily for study
ing such locally nice spaces as CW-complexes and ANR's. E.g., all homotopy 
groups of the Warsaw circle or of the dyadic solenoid vanish, although these spaces 
are not contractible. Realizing this, K. Borsuk undertook the task of developing 
shape theory, a modification of homotopy theory, which agrees with homotopy 
theory on nice spaces, but yields relevant information even when applied to such 
general spaces as arbitrary metric compacta. Such spaces appear naturally, e.g., 
as fibres of maps between nice spaces, and therefore cannot be ignored. 

Borsuk's ideas on shape proved to have a bearing on several areas of topology, espe
cially geometric topology, and to have also applications outside of topology. Borsuk's 
work has triggered an avalanche of research resulting in over four hundred papers 
written since 1968, when his original paper appeared. It seems therefore appropriate 
to attempt to survey here the development of shape theory over the past ten years. 

Clearly, limitation of space prevents any extensive analysis as well as full attribus 
tion of results to all the authors who made relevant contributions. We merely list 
some major areas and illustrate their nature by a few key theorems. In many cases 

* This paper was prepared while the author was visiting the Department of Mathematics, Uni
versity of Kentucky, Lexington, Kentucky, U.S.A. 
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these are not the best results known. Not being able to include a relatively complete 
bibliography, we just name authors. The reader will easily trace their papers using 
the extensive shape theory bibliography, compiled by J. Segal, University of Washing
ton, Seattle. 

2. The shape category. Originally, Borsuk considered compact metric spaces 
X9 Y embedded in the Hilbert cube Q. Instead of homotopy classes of continuous 
maps / : X-+ Y9 he considered homotopy classes of certain sequences of maps 
fn'-Q-^Q called fundamental sequences. By definition, for every neighborhood 
V of Y, there is an integer nv such that all fn9n^nV9 map some neighborhood 
U of X into V and all fn\U9n^nV9 are homotopic in V. Compacta in Q and 
homotopy classes of fundamental sequences form Borsuk's shape category Sk. 
Compacta X and Y have the same shape, s h Z = s h Y9 provided they are iso
morphic objects of Sk. Similarly, X is shape dominated by Y9 s h Z ^ s h F , 
provided there exist shape morphisms f.X-^Y and g: Y-+X such that gf=l 
in Sk. 

Subsequently, the shape category Sk has been extended to more general spaces 
by several authors including S. Mardesic and J. Segal, R. H. Fox, S. Mardesic 
G. Kozlowski, J. Le Van and C. Weber, and to other categories by W. Holsztynskr 
T. Porter, A. Deleanu and P. Hilton. One should also mention that a 1944 pape 
by D. E. Christie contains already several ideas of shape theory. 

In particular, in 1971 Mardesic and Segal described the shape category Sk 
for compact Hausdorff spaces using inverse systems of compact ANR's over cofinite 
directed sets. If X = (XX9pxy9 A) and Y=(Yß9 qm,9 M) are such systems and 
Z=l imX, r = l i m F, then a shape morphism X-+Y is given by a homotopy 
class of maps of systems (fß9 <p): X-+Y9 i.e. by an increasing function <p: M-+A 
and maps fß: Xviß)-*Yß satisfying f^p^^^^q^f^ whenever /x<=fi'. By 
definition, (fß9 (p)^(fß9 cp") if each p admits a X^(p(p)9 cp'di) such that f^p^x^ 

fßP<p'(ß)X-
A further generalization of this approach to shape for arbitrary topological spaces 

was given by K. Morita in 1975. With every topological space X one can associate 
certain inverse systems X in the homotopy category lö&iü of spaces having the 
homotopy type of CW-complexes (or equivalently of ANR's for metric spaces). 
Such a system is the Cech system based on numerable coverings. The set of shape 
morphisms Sk(X9 Y) can be interpreted as the set of morphisms X—Y in the 
pro-category pro-^gX* of A. Grothendieck, i.e. as lim/£cohmA [XX9 Yß]. Several 
useful results on pro-categories were developed by M. Artin and B. Mazur in their 
etale homotopy theory (1969). 

If the spaces X9 Y have the homotopy type of CW-complexes, (or equivalently of 
ANR's), then one can take for X and Y systems which consist of single terms X 
and Y respectively. Consequently, Sk(X9 Y) = [X9 Y]9 i.e. on such spaces shape co
incides with homotopy. Another interesting case when shape yields nothing new is 
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given by the category of compact connected Abelian groups. Their shape morphisms 
are in a one-to-one correspondence with group homomorphisms. This result, due 
to J. Keesling, has proved very useful in constructing various counter-examples 
in shape theory. 

3. Homotopy and homology pro-groups. In shape theory the role of the homotopy 
groups 7T„ is taken by the homotopy pro-groups pro-rc,,. If (X9x) is a pointed 
7/5êX>-system associated with (X9x)9 then pro-rc,,^, x) is the inverse system 
of groups (n„(XX9Xi)9pu>*9 A). The corresponding inverse limit 7in(X, x) is the 
«th shape group of (X9 x). For nice spaces, e.g. for ANR's, one can replace the 
homotopy pro-groups by the shape groups. However, in general much information 
is lost by passing to the limit and one must consider the whole pro-group as a new 
and important shape invariant. 

This point of view is well illustrated by the following Whitehead theorem (K. Morita, 
[26]): Let f:(X9x)-+(Y9y) be a shape morphism of pointed connected finite-
dimensional topological spaces (covering dimension based on numerable coverings). 
If / induces isomorphisms of homotopy pro-groups in all dimensions, then / is 
a shape equivalence. The first result of this type was established by M. Moszyiiska 
[27] and improved by Mardesic and by Morita. D. A. Edwards and R. Geoghegan 
and also J. Dydak have obtained several theorems of Ihis type weakening the 
condition that both X and Y be finite-dimensional. However, this condition cannot 
be completely omitted. Indeed, D. Handel and J. Segal have shown that a certain 
continuum constructed by D. S. Kahn has non-trivial shape although all of its 
homotopy pro-groups vanish. Kahn's example, just as some other counter-examples 
in shape theory, depend on J. F. Adams' map A: E2rY-+Y from the 2/vfold sus
pension of a certain finite CW-complex Y to Y. The crucial property of A9 

established using ^-theory, is that for all s9 the composition 

AoZ2rAo...oZ2r(s-»A: Z2rsY-+ Y 

is an essential map. Alternatively, one can use results of H. Toda. 
Some other standard theorems on homotopy groups also carry over to shape 

theory and homotopy pro-groups. E.g., this is the case with the van Kampen 
theorem (A. Kadlof, §. Ungar) and the Blakers-Massey theorem (S. Ungar). 

Homology pro-groups are defined in an analogous way and their limits are the 
Öech homology groups. In distinction from homology groups, homology pro-groups 
are exact under very general assumptions. Several versions of the Hurewicz theorem 
in shape theory have been proved (K. Kuperberg, T. Porter, S. Mardesic and 
§. Ungar, K. Morita, §. Ungar, J. Dydak, T. Watanabe). 

4. Stability theorems. An important question in shape theory is to decide when 
is a pointed space (X9 x) stable, i.e. has the pointed shape of a pointed CW-complex. 
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L. Demers (1975) and Edwards and Geoghegan [9] have shown that a pointed 
connected space (X9 x) is stable if and only if it is pointed shape dominated by 
a pointed CW-complex. Furthermore, Edwards and Geoghegan have obtained 
the following algebraic stability criterion: A pointed connected space (X9 x) of 
finite shape dimension is pointed stable if and only if each of its homotopy pro-
groups pro-7in(X9 x) is stable, i.e. is isomorphic as a pro-group to a group (which 
has to be the shape group nn(X9 x)). 

(Pointed) metric compacta (pointed) shape dominated by (pointed) CW-complexes 
are called (pointed) FANR's and are the shape theoretic analogues of ANR's. 
Pointed FANR's are stable, i.e. have the shape of ANR's However, this is not 
known in the unpointed case. Are there FANR's which are not pointed FANR's, 
has proved to be a very delicate question. It is known that a connected FANR 
X is a pointed FANR if and only if the first derived limit lim1 pro-rc^X, x) vanishes 
(this does not depend on the choice of x£X). Some group-theoretic results of 
J. Dydak and P. Mine indicate that FANR's might prove to be different from 
pointed FANR's. 

With every pointed FANR (X9 x) Edwards and Geoghegan have associated an 
intrinsically defined Wall obstruction w(X9 x)9 which takes its values in the reduced 
projective class group KQ(%1(X9 x)) of the first shape group. The vanishing of 
w(X9 x) is a necessary and sufficient condition for X to have the shape of a finite 
CW-complex (or equivalently of a compact ANR). All possible obstructions occur 
among 2-dimensional FANR's. 

5. Movability. One of the most interesting new concepts, which originated in 
shape theory is the notion of (pointed) movability. A system X=(XX9pxx>9 A) 
in T6&Ì0 is said to be movable provided each X £A admits a k'^X such that for 
any CW-complex K9 any homotopy class of maps f\K^-Xx.9 and any X"i^l 
there is a homotopy class of maps / ' : K-+Xx„ such that Pxx»f'=Pxx'fi X is n-movable 
if this holds for complexes K with dìmK^n. A space X is movable («-movable) 
if the associated systems X are movable («-movable). Movability has proved to 
be especially useful in the case of metric compacta X9 where the vanishing of the shape 
group %i (X9 x)=0 implies the vanishing of the homotopy pro-group pro-T^ (X, x)=0. 
For metric continua (X9 x)9 (Y9 y)9 which are pointed movable, the Whitehead 
theorem assumes this simple form: If X and Y are finite-dimensional and 
/ : (X, x)^(Y9 y) induces an isomorphism of shape groups, then / is a shape equi
valence (J. Keesling, [16]). Let us also mention that pointed connected FANR's 
are characterized as pointed movable continua (X, x) having finite shape dimension 
and countable shape groups nn(X9 x) (J. Dydak, T. Watanabe). 

J. Keesling has obtained interesting results concerning integral Cech cohomology 
groups Hn of movable compacta X. In particular, he has proved that Hn(X)/TorHn(X) 
is an Ki-free Abelian group, i.e. each of its countable subgroups is free Abelian. 
Since metric LCn"x continua (of dimension <s«) are always «-movable (movable) 
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(MardeSié, Borsuk, Kozlowski and Segal), the above results have provided new infor
mation concerning cohomology of locally connected continua. 

6. Shape dimension. A space X is said to have shape dimension (also called defor
mation dimension) SdA'^w provided X admits an associated system X whose 
members Xk are CW-complexes of dimension <« (Dydak). It is readily seen that 
Sd X^dim X, where dim is the covering dimension based on numerable coverings 
of X. Moreover, sh X-< sh Y implies Sd X<; Sd Y. The main contributions 
concerning shape dimension are due to S. Nowak. For metric continua X, which 
are shape 1-connected, i.e. pro-^ (X, x)=0 for all x£X9 and for which dim X<°° 
(or more generally Sd X< °°), Nowak has characterized Sd X as the greatest 
integer « such that Hn(X)^0. He has also given a characterization theorem for 
the case when pro-^ (X, x)?±0. Instead of integer coefficients one has to use local 
systems of groups on members of polyhedral expansions X of X. 

7. Shapes of Z-sets in the Hilbert cube. In [4] T. A. Chapman discovered 
a profound relationship between shape theory and infinite-dimensional topology. 
He associated with every Z-set X in the Hilbert cube Q its complement ß \ X 
and with every shape morphisms of Z-sets / : X-* Y a class of weakly properly 
homotopic proper maps Q\X-+Q\Y in such a manner that one obtains an iso
morphism of categories. Using this isomorphism one can translate notions and 
problems from shape theory into notions and problems concerning weak proper 
homotopy of separable locally compact spaces. This program has been pursued 
and extended by Z. Cerin. 

Chapman has also proved this remarkable complementation theorem: Two 
Z-sets X, y ç Q have the same shape if and only if their complements are homeo
morphic. Chapman's proof has been simplified by L. Siebenmann. 

Stimulated by Chapman's work, D. A. Edwards and H. M. Hastings have intro
duced a strong (Steenrod) shape theory, which for Z-sets in Q transforms under 
complementation into the more familiar proper homotopy theory. Their approach 
consists in first organizing inverse systems of semisimplicial complexes and maps of 
such systems in pro-SS into a closed model category in the sense of D. Quillen (in a 
way different from the one used by A. K. Bousfield and D. M. Kan). Then, they 
invert the weak equivalences (in the sense of the calculus of fractions) and obtain a 
homotopy category Ho (pro-SS) of such systems. With every space X they associate 
its Vietoris system V(X). Morphisms V(X)-+V(Y) in Ho (pro-SS) are the strong 
shape morphisms X-* Y. For compact metric spaces a purely geometric description 
of strong shape is based on the contractible telescope C Tel X of an inverse sequence 
X of compact ANR's. A strong shape morphism / : X-+ Y between metric compacta 
is just a proper homotopy class of proper maps/: C Tel X -• C Tel Y where X=lim X, 
7= lim Y. A systematic study of strong shape of metric compacta, avoiding Quillen's 
theory, was carried out by Dydak and Segal. Further contributions to strong shape 
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were made by T. Porter, by Y. Kodama and J. Ono, by F. W. Bauer, by Yu. T. 
Lisica and by A. Calder and H. Hastings. 

Beside ordinary shape and strong shape one should mention at least one more 
shape theory. This is proper shape for locally compact metric spaces, developed 
by B. J. Ball and R. B. Sher in 1973. Proper shape is the shape analogue of proper 
homotopy. Among other results Ball and Sher have proved that a proper shape 
equivalence X^Y induces a shape equivalence FX-+FY between the Freudenthal 
compactifications, provided these are metrizable. This equivalence reduces to 
a homeomorphism EX-+EY on the sets of ends. 

8. Finite-dimensional complementation theorems. These are theorems having the 
following form: If X and Y are compacta of dimension ^k embedded in a nice 
way in Rn

9 «^2fc+2, «^5 , then shX=sh7 if and only if Rn\X and Rn\Y 
are homeomorphic. The first theorem of this type was proved by Chapman. R. Geo
ghegan and R. Summerhill have improved Chapman's result. Their requirement is 
that Rn\X and Rn\Y be 1-ULC. This result was further improved, first by D. Coram, 
R. Daverman and P. Duvall, and then by J. Hollingsworth and B. Rushing. They 
have replaced the condition 1-ULC by the small loop condition (SLC). Finally, 
replacing SLC by the inessential loop condition (ILC), G. Venema has proved the 
complementation theorem under the weaker assumption that SdX^k, Sd Y^k. 
We recall that X^Rn has ILC provided each neighborhood U of X admits 
a smaller neighborhood V of X such that every loop in V\X9 which is null-
homotopic in V9 is also null-homotopic in U\X. Some of these theorems were 
preceded or supplemented by results dealing with special cases when Y is Sk or 
a manifold (Duvall, Siebenmann, Daverman, Hollingsworth and Rushing, V. T. 
Liem). 

A related problem is the problem of embedding a compactum X in Rn up to 
shape, i.e. of finding a compactum Y^Rn such that shX=sh Y. The first results 
of this type were obtained by I. Ivansic. An extensive study of this problem was 
carried out by L. S. Husch and I. Ivansic. Here is one of their results. Let X be 
an r-shape connected metric continuum with SdX=k^3. If X is pointed (r+1)-
movable, then it embeds up to shape in R2k~r. This generalizes a result of J. Stallings 
dealing with embedding of polyhedra up to homotopy. Duvall and Husch have 
recently exhibited a ^-dimensional continuum which does not embed up to shape 
in R2k

9 k = 2m
9 in>l. 

Recently, A. Kadlof has answered in the negative the following problem of Borsuk. 
Let shX^sh Y9 Y^R", does X embed in Rn up to shape? Husch and Ivansic 
give an affirmative answer under rather restrictive additional assumptions. 

9. Cell-like maps. A map/: X^ Y between metric compacta is cell-like (or CE-map) 
provided each fibre f~\y\ y£Y9 has the shape of a point. These maps have proved 
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to be extremely important in geometric topology.1 E.g., J. West has shown that 
every compact ANR Y is the image of a compact ß-manifold X under a CE-map. 
If X and Y are finite-dimensional (or arbitrary ANR's) then a CE-map / : X-> Y 
is a shape equivalence. However, in general cell-like maps fail to be shape equiva
lences. The first counter-example was exhibited by J. L. Taylor (using the Adams 
map). G. Kozlowski has shown that Y is an ANR provided X is an ANR and 
/ : X-+ F i s a hereditary shape equivalence. An example of J. Keesling shows that 
one cannot replace this condition by the weaker condition that / be a CE-map. 

Siebenmann and Chapman have proved that CE-maps between «-manifolds, 
«;>5, and g-manifolds respectively, can be approximated by homeomorphisms, 
i.e. are near-homeomorphisms. 

10. Approximate filiations and shape fibrations. Motivated by R. C. Lacher's 
work on cell-like maps, D. Coram and P. Duvall have introduced approximate 
fibrations. These are maps p: E-+P between compact ANR's satisfying an approxi
mate homotopy lifting property (AHLP). Cell-like maps between ANR's are always 
approximate fibrations. Many properties of fibrations are also properties of approxi
mate fibrations. In particular, one has an exact homotopy sequence where the 
homotopy groups 7r„(F, e) of the fibre must be replaced by the shape groups nn(F9 e). 

Uniform limits of fibrations between compact ANR's are readily seen to be 
approximate fibrations. However, the converse is not true. Husch has considered 
approximate fibrations p'.M-^S1, where M is a closed connected «-manifold, 
«^6, and he has proved that p is a uniform limit of fibrations if and only if the 
Siebenmann obstruction F(M) in the Whitehead group Wh(7i1(M)) vanishes. 
Recently, F. Quinn and Chapman have obtained interesting results concerning the 
problem of approximating approximate fibrations by block bundles. Further con
tributions to approximate fibrations were made by S. Ferry and R. E. Goad. 

Recently, Mardesió and Rushing have generalized approximate fibrations to 
a class of maps between metric compacta called shape fibrations. Even in this 
generality one has a homotopy exact sequence. However, all homotopy groups 
must be replaced by homotopy pro-groups. Cell-like maps between finite-dimensional 
compacta, and more generally, hereditary shape equivalences between arbitrary 
metric compacta, are shape fibrations. The Taylor CE-map is not a shape fibration. 
However, every cell-like map is a weak shape fibration. Further contributions to 
shape fibrations were made by T. McMillan, A. Matsumoto, M. Jani and Z. Cerin. 

11. Shape theoretic properties of the Stone-Cech compactification. Recently, 
A. Calder and J. Siegel have obtained important new information concerning the 
homotopy classification of maps from the Stone-Cech compactification ßX of 

1 Cf. addresses to this Congress by R. D. Edwards and by J. West. In view of their papers there is 
no need here for a more detailed exposition concerning CE-maps. 
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a normal finite-dimensional connected space X into a finite polyhedron P. In 
particular, they have shown that [ßX9 P]=[X9 P] provided n^P) is finite. However, 
if 7rx(P) is infinite and X fails to be pseudocompact, then there is no bijection be
tween [ßX9 P] and [X, P]. Stimulated by this work, Keesling and Sher have obtained 
a series of shape theoretic results on ßX9 which shed new light on the geometric 
structure of ßX. E.g., Keesling has proved that if X is Lindelöf and K^ßX\X is 
a continuum, then sh £"=() implies that K is a point. More generally, SdK=dimK. 
If X is real compact, ifK^ßX\X is a continuum and if/: K-+Y is a surjection, 
which induces an isomorphism of È\ then / must be a homeomorphism. 
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Complex Cobordism and its Applications 
to Homotopy Theory 

Douglas C. Ravenel* 

In the past few years, the application of complex cobordism to problems in 
homotopy theory through the medium of the Adams-Novikov spectral sequence 
has become a lucrative enterprise. We will give a brief survey of some of the 
foundations and results of this theory, offering nothing new for the experts. See [9] 
for a more detailed account, including references for some of the statements made 
here. 

The history of the subject begins with Thorn's definition [10] of cobordism. 
Roughly speaking, 2 closed manifolds are cobordant if their disjoint union is the 
boundary of a third manifold. In the complex case, we require that these manifolds 
possess compatible complex structures on their stable tangent bundles. Cobordism 
is easily seen to be an equivalence relation and the set of equivalence classes is 
a ring (the complex cobordsim ring MUJ under disjoint union and Cartesian 
product. Thorn proved that this ring is canonically isomorphic to the homotopy 
of the complex Thorn spectrum MU. Milnor [5] and Novikov [6] showed that 
MU^=n^MU=Z[xl9x2, ...] where dhnjtf=2?. Brown-Peterson [3] showed 
that when localized at a prime p9 MU splits into an infinite wedge of isomorphic 
summands known as BP with n^BP=BP^<=Z(p)[xpi_1]. 

Since homotopy theory is essentially a local (in the arithmetic sense) subject 
we shall concern ourselves primarily with the smaller spectrum BP. Once its basic 
properties have been established, its relation to complex manifolds becomes irrelevant 
to the applications. Our understanding of these properties rests on a remarkable 
observation due to Quillen. 

Partially supported by the National Science Foundation of the United States. 
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Let MU*( ) be the generalized cohomology theory represented by the spectrum 
MU. Then MU*(CP°°)=MU*[[x]] where xeMU2(CP°°) and MU* is the 
coefficient ring n^MU negatively graded. We also have MU*(CP00XCP00) = 
M£/*[[x<g)l, l®*]] and the tensor product (of complex line bundles) 
m a p / : CP^XCP^-^CP00 induces/*: Mtf*(CP~)-Mtf*(CP~XCP~) withf*(x) = 
F(x®l9l®x)=2iaijXi(8>xJ with a^MU20-"1'-0. The 2-variable power series 
F has 3 obvious properties: F(x9 0)=F(09 x)=x (identity); F(x9 y) = F(y9 x) 
(commutativity); and F{F(x9 y)9 z) = F(x9 F(y9 z)) (associativity). We define 
a formal group law G over a commutative ring JR to be a power series 
G(x9 y)£R[[x9 y]] having the three properties of F. Quillen's observation was 

THEOREM 1 [8]. The formal group law F over MU* is universal in the sense 
that for any other formal group law G over R9 there is a unique ring homomorphism 
9:MU*-+R such that G(x9y)=Z0(aij)x

iyJ. D 

THEOREM 2 [8]. There is a map s: MU^BP^ such that any formal group law 
G over a Z^-algebra R is canonically isomorphic to a formal group law G' induced 
by O's where 6':BP^R (i.e. there is a power series f(x)£R[[x]] with leading 
term x such that f{G(x9y)) = G\f(x)9f(y))). • 

Quillen was able to use these results to determine the structure of BP*BP9 the 
algebra of cohomology operations for the theory represented by the spectrum BP. 
This algebra, the BP analogue of the Steenrod algebra, is difficult to work with 
because it does not have finite type and cannot be readily described in terms of 
generators and relations. Instead we will describe its dual BP^BP=n^BP ABP9 

the analogue of the dual Steenrod algebra. 
First, we described the formal group law eF9 which we will denote simply by F. 

Define logx£(Q®BPJ[[x]] by l o g x = Z W o ^ ' w h e r e /<=ß[CPpI"1]/pl- Then 
F(x9 y) is defined by 

(3) log F(x9 y) = F(log x9 log y). 

THEOREM 4 ([8], [1]). As an algebra BP^BP=BP^[tl9129...] with dim ^ = 2 ( ^ - 1 ) . 
The Hurewicz or right unit map rfR: BP^BP^BP (induced by BP=S°ABP-+ 

BP A BP) is given over Q by 

(5) ui* = 2*^-1. 

This map defines a right BP ̂ -module structure on BP^BP and the coproduct (dual 
to composition of cohomology operations) is a map A: BP^BP^BP^BP®BP^BP^BP 
defined over Q by 

(6) 2^gA(td= Z logfo®/ft 

where t0=l. D 
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The lack of a more explicit formula for A (tt) was for some time a psychological 
obstruction to computing with BP. (6) can be rewritten as 

(7) 2A(td=2ti®tf> 

(where log(2Fxi)—2l°£xi> i-e- 2F*i *s ^ e formal sum of the xt)9 but this is 
of little help due to the complexity of F. Another difficulty is that the elements 
y/ /=e[CPp '~1] do not generate BP^. This problem was surmounted first by 
Hazewinkel and later by Araki. 

THEOREM 8 (ARAKI). BP^=Z^p)[vl9 v2i ...] where vn isdefinedby pln
=2^^i^nhvn-i 

with v0=p. D 

THEOREM 9. i]R(Vj) is given by 

2 »it? = 2 un^vjY. D 

This completes our survey of the foundations of the subject. We turn now to 
some applications in the homotopy groups of spheres. Novikov first formulated 
an MU analogue of the Adams spectral sequence. His main result can be restated as 

THEOREM 10 (Novncov [7]). Let X be a connective spectrum. There is a spectral 
sequence converging to Z(p)®7r+Z with E** = Extlp^BP(BP^9 BP^X). D 

For the definition of this Ext, see [9]. In it, BP^X can be replaced by any BP^BP-
comodule M. From now on we will abbreviate this to Ext M. 

For X=S° the j£2-termis Ext BP^ which has the following convenient sparseness 
property. 

PROPOSITION 11. ExtSitBP^=0 if t^O mod2(/?- l ) . Consequently, in the 
Adams-Novikov spectral sequence for S°9 £2**2r(p-i)=^2*p*-i+2r(p-i) for r^O. 
In particular, the first nontrivial differential is d2p_1 so all nontrivial elements in 
Elft for t^2(p — l) which are permanent cycles are nontrivial in E**. • 

This spectral sequence has fewer differentials and extensions (at least for p odd) 
than the classical Adams spectral sequence based on mod p cohomology, i.e. its 
j&a-term is a closer approximation of stable homotopy. For example, for />>2, 
Ext1 BP^ is isomorphic to ImJ, the image of the Hopf-Whitehead /-homo
morphism, and for p = 3 there are no differentials below dimension 33. 

An unstable form of this spectral sequence has recently been constructed and 
used by Bendersky-Curtis-Miller [2]. It appears to be a very promising device. 

In studying the classical Adams spectral sequence one learns that elements in 
Ext^(Z//?, Zip) correspond to generators of the Steenrod algebra sé while elements 
in Ext^ (Zjp9 Z/p) correspond to relations among these generators. However, 
this point of view appears not to be helpful in understanding Ext1 BP^ and Ext2 BP^. 
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We will now describe the Greek letter construction, which is an entirely different 
method of manufacturing elements in Ext BP^. 

An ideal IaBP^ is invariant if BPJI is a if/^ÄP-comodule, i.e. if 
flRIdIBP^BP. Invariant ideals are rare as the following result shows. 

THEOREM 12 (MORAVA, LAND WEBER), (a) The only invariant prime ideals in 
BP^ are I„ = (p,vl9 . . . , ü „ _ I ) for 0^n^°° (I0 is the zero ideal). 

(b) Ext0 BP^=Z{p) and Ext0 BP JI„=F p[vn] for 0<«<oo. 
(c) The following is a short exact sequence of BP^BP-comodules. 

(13) 0 - Z^-^BPJh — BPJI, - BPJI„+1 - 0. D 

Now let 
ön: Exts>'BPjIn+1 -> Ext*+^-^n-»BPjIn 

be the connecting homomorphism associated with (13). Then we can define the 
following elements, commonly known as Greek letters, in the Adams-Novikov 
jEa-term Ext BP^. 

a* = «WiKExt^-^ÄP*, 

(14) ßt = öoö^vüZEx&W-V'-^-VBP^ 

yt = ô o ^ ^ ^ ^ E x t 3 ' 2 ^ 3 - « ' - 2 ^ - 1 ^ 2 ^ 2 - 1 ) ^ ^ . 

Of course, this definition generalizes to rj^9 where j / ( n ) denotes the wth letter of the 
Greek alphabet. 

In order to apply this construction to homotopy theory one must prove two 
things: that the elements so defined are nontrivial in Ext i î i^ and that they are 
permanent cycles in the Adams-Novikov spectral sequence. It will then follow 
from Proposition 11 that the resulting elements in E^ are nontrivial, so they detect 
nontrivial homotopy classes. 

THEOREM 15 (SEE [9] FOR REFERENCES), (a) The elements at (t >0) are nontrivial 
for p^*2 and are permanent cycles for p^3. (They detect the elements of order 
p in ImJ.) 

(b) The elements ßt (f>0) are nontrivial for p^3 and are permanent cycles 
for p^5. 

(c) The elements yt (/>0) are nontrivial for p^3 and are permanent cycles 
for p^l. • 

The nontriviality result is an algebraic computation, while the construction of 
the corresponding homotopy elements, due to H. Toda and Larry Smith, is as 
follows. One constructs finite complexes V(n — 1) (n^4) with BP^V(n —1) = 
BPJIn by means of cofibrations (n^3) 

22ipn-1)V(n-l)-^-> V(n-1)-+V(n) 
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realizing the sequence (13), with V(—\) = S°. Then i$l) is the composition 

£2f(p»-i)_U 2 , 2 ' ^ , , - 1 ) F ( / 7 - l ) - ^ - v(17-i)-L^sk 

where / is the inclusion of the bottom cell, j is the collapsing onto the top cell, 
and k=20^„(2p>»-l). 

One can generalize the Greek letter construction by replacing the invariant prime 
ideals /„ by invariant regular ideals. Regularity is precisely what is needed to get 
short exact sequences generalizing (13). For p^3 it is known that all elements 
in Ext1 BP^ and Ext2 BP^ arise in this way. 

However, not all elements in Ext3 BP^ come from Ext0 BP/I for an invariant 
regular ideal / with 3 generators. For example, the elements o /̂?, arise from 
elements in Ext1 BPJI2 which are free under multiplication by v2> so they cannot 
come from Ext0 BPJ(p9 vl9 v%) for any k. What is true is that every element in 
Ext BP^ is the image of some element in Ext BPJI (where / is an invariant 
regular ideal with n generators) which is free under multiplication by the powers 
of v„ belonging to Ext0 BPJI. 

Hence in some sense every element of the Adams-Novikov ii2-term is a member 
of an infinite periodic family of the type exemplified most simply by the i]\'l) of (14). 
Whether a similar statement can be made about stable homotopy itself is still an 
open question. In light of this situation, one would like to classify these periodic 
families. A machine for doing this known as the chromatic spectral sequence was 
set up in [4]. One begins by looking at the Fp[>M]-free summand of Ext BPJI„, 
which maps monomorphically to i ;~ 1 ExtBPJI^Ex tv" 1 BPJI„. This group 
is surprisingly easy to compute, due to some farsighted work of Jack Morava. 
His results indicate a striking connection between homotopy theory and local 
algebraic number theory. We can only give the barest description here. 

Ext v'1 BPJIn is a free module over K(n)^ = Ext° v~* BPJIn=Fp[vu9 v'1]. 
We make Fp„ a nongraded K(n)^-modu\e by sending vn to 1. Then we have 

THEOREM 16. F^,, (g)^(/;)+Ext u"1 BPJIn=H*(S„9Fp„)9 the continuous cohomology 
(with trivial action on FpU) of the compact p-adic Lie group Sn9 which is the p- Sylow 
subgroup of the automorphism group of the (height n) formal group law over Fp„ 
induced by BP^-+K(n\-+Fp„. D 

For example H*Sn has the following Poincaré series f(t)=2($ini HcS^t*: 

2 

3 

^ 5 

1 

(1 +/)/(!-/) 

1+/ 

14-/ 

2 

(l + /)"(l-/»)/(l-/)(l-r*) 

(i-w)a(i-w2)/(i-0 

(l + /)2(l + /-f/2) 

3 

7 

7 

(l + /)3(l + / - f6/2+3/3 + 6f4-W5+/°) 
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Hilbert Cube Manifolds—Meeting Ground of 
Geometric Topology and Absolute 

Neighborhood Retracts 

J. E. West 

1. Introduction. Over the past fifteen years the study of (topological) infinite-
dimensional manifolds has developed strongly. Previous reports to the Congress 
were given in 1970 by R. D. Anderson and in 1974 by T. A. Chapman, and there 
have now appeared excellent monographs by Bessaga and Pelczynski [1] and by 
Chapman [3]. (These reports should be consulted in conjunction with the present 
one.) The principal, but by no means the only, development of the field since 1970 
has been in the direction of Hilbert cube manifolds (g-manifolds; Q=]J7=i $> ^i» 
with metric d(x9 y)=2\xï~yi\fi~i)- ^ n a s been motivated in large part by 
Chapman's use of them to demonstrate the topological invariance of Whitehead 
torsion for CW-complexes and the concomitant result that as they are classified by 
simple homotopy type, rather than by homotopy type as is the case with Hilbert 
manifolds, they are more complex and more closely related to finite-dimensional 
manifolds. This development has been dramatic in the extreme and has led to the 
emergence of g-manifolds as a rich and interesting theory in its own right which 
is situated between the areas of zz-manifolds, manifolds modelled on infinite-dimen
sional vector spaces, and the topology of metric compacta and ANR's and has strong 
interrelations with these disciplines. I shall try to outline this development, necessa
rily all too briefly and incompletely and with apologies to those whose frequently 
important and interesting contributions must be slighted for reasons of economy of 
time and space. (By ANR is meant locally compact, separable, metric absolute neigh
borhood retract for metric spaces.) 

Enunciated in primitive form as early as 1970, it has been a growing conviction 
that g-manifolds should be regarded as a simultaneous stabilization of the theories 
of w-manifolds, locally finite CW-complexes, and ANR's having as a salient charac-
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teristic the combination of local compactness with an extreme general position 
property, and it is this theme which I have taken for my talk. 

2. General position ANR's. The main line of development of g-manifold theory 
from almost the first recognizable theorem has been toward the recognition and 
exploitation of g-manifolds as general position ANR's, i.e., those ANR's X such 
that any mapping into X of an n-cell of any dimension may be approximated, arbitrarily 
closely, by embeddings. This is amply demonstrated by the following table of 7 
selected theorems, which unfortunately omits, because of its format, the extremely 
relevant work of Anderson on Z-sets. See also §§ 3 and 4 for comments on Chapman's 
work in this light. In the table, if X is as in the first column, then either Y in the 
second column is a g-manifold or the indicated homeomorphism (^) exists. The 
third column gives authors and approximate dates of appearance. 

Y or ^ Author 

1 infinite-dimensional convex com
pactum in I2 

2 dendron 
3 o_manifold 

4 locally finite CW-complex 

5 Xx a ô-factor, i = l, 2, . . . 

6 ANR 
7 general position ANR 

X^Q Keller (1931) 
XX Q = Q Anderson (1964) 
X^ XX Q Anderson—Schori (1969) 

XXQ West (1970, 1971) 

nXt^Q Anderson (1964), West (1969) 

XX Q R. D. Edwards (1976, in [2]) 
X Torunczyk (1979)"1 

Thus, we have been led to the above topological characterization of Q-manifolds 
by Torunczyk, which answers in stunning form the call by Anderson in his 1970 
report. (Torunczyk* has a more recent similarly striking characterization of Hilbert 
manifolds of all weights.) 

3. Stabilization of ANR's. Two natural methods of stabilizing ANR's to obtain 
g-manifolds have been employed repeatedly: products and hyperspaces. 

The product stabilization. The sequence O^I-^P^... -+Itt->... -*g with I=[0, 1] 
and inclusions x^(x9 0) presents g as the completion of u /" and with the projec
tions Q-+F provides an extremely useful functor exhibiting XXQ as the limit 
of the stabilization sequence X-+XXl-*...-+XXl"-+... . This structure lies at 
the heart of much g-manifold theory. For example, Chapman used it repeatedly 
in his work on triangulating g-manifolds (Theorem 15) and the topological invariance 
of Whitehead torsion (Theorem 14) to reduce surgery on g-manifolds to general 
position surgery. Another cogent example of the role of g-manifolds as stable 
/z-manifolds is Chapman's work on concordances. (See Hatcher's introduction to 
"Higher Simple Homotopy Theory" for an enlightening discussion.) 
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The hyperspace stabilization. The hyperspace 2X of nonvoid, compact subsets 
of X equipped with the Hausdorff metric is functorial. Combined work of D. W. 
Curtis, Schori, and the author yielded 

THEOREM 8. For each nondegenerate Peano continuum X9 2X is a Hilbert cube. 

Affirming Wojdyslawski's conjecture, this provides a wealth of new examples 
of g-manifolds, e.g.9 if t is the translation action of S1

9 then the orbit space 
(2S1 — {S1})^ is a g-manifold K(Q, 2), where Q is the rational numbers 
(Torunczyk-West)*. See related work by Curtis, Schori, and N. Kroonenberg. 

4. Connections with 77-manifolds. From the product stabilization, we expect sub
stantial connections here. They exist, and their elucidation is one of the most active 
and fruitful areas of current research. In addition to concordances, mentioned 
above, are the following. (See also § 5.) 

THEOREM 9 (WEST). If f: K-+L is an (infinite) simple homotopy equivalence 
between (locally) finite CW-complexes, then its product stabilization is (properly) 
homotopic to a homeomorphism. 

THEOREM 10 (CHAPMAN). If f: KXQ-+LXQ is a homeomorphism, then the 
composition f'\ K-+KX{0}czKXQ-+LxQ-+L is a simple homotopy equivalence. 
(Here K and L are locally finite CW-complexes and the last map is projection.) 

THEOREM 11 (CHAPMAN). Every Q-manifold is homeomorphic to the product 
with g of a locally finite simplicial complex. 

Theorem 10 encompasses the topological invariance of Whitehead torsion, and 
Theorem 11 shows that all g-manifolds are "triangulable" (general position). 

THEOREM 12 (CHAPMAN). The homeomorphism groups of compact Q-manifolds are 
locally contractible. 

(See Theorem 20.) A. Fathi and Y. Visetti have provided the full analog of the 
Cernavskii-Edwards-Kirby Deformation Principle, which is much more powerful 
but, under space restrictions, less quotable. 

THEOREM 13 (CHAPMAN). Cell-like mappings between Q-manifolds are uniform 
limits of homeomorphisms. 

THEOREM 14 (CHAPMAN-SIEBENMANN). If M is a Q-manifold which is tame at 
°o and has finite type, then there is an element ß(M)^Sr°(M)/Wh(7z1(M)) which 
vanishes if and only if M admits a boundary (i.e., there is a compactification M' of 
M into a Q-manifold such that M'—M is a Z-set. Sf(M) is the simple types on M; 
Z-sets, identified by Anderson, are vital in the theory and may here be thought of 
as closed subsets of collared submanifolds). 
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THEOREM 15 (CHAPMAN). There is a locally flat embedding h: S3XQ-+S2XQ 
such that neither h nor any (finite) stabilization ioh: S*XQ-*S3XQXRn of 
h has a tubular neighborhood. 

(In his University of Kentucky thesis* W. Nowell shows that locally flat, co-
dimension 2 g-submanifolds have tubular neighborhoods.) Theorem 15 is particularly 
interesting, as it exhibits a stable pathology not present in «-manifolds. 

The shrinking of cell-like decompositions is a most important aspect of this 
branch, entering fundamentally in Theorems 6, 7, and 13. Work has been done 
by Anderson*, J. Bryant*, Z. Cerin, W. Eaton*, Fathi and Visetti, M. Handel*, 
Kozlowski*, J. Mogilski* and R. Sher, among others. Handel's work was parti
cularly important in stimulating R. Edwards to prove Theorem 6. 

Interesting initial work on transformation groups by Vo Thanh Liem* should 
also be mentioned in this section. 

5. Connections with ANR's. Already mentioned are Theorems 2, 4, 5, 6, and 7 
in the table which should be noted here, g-manifolds provide a bridge between 
the theories of «-manifolds and CW-complexes and that of ANR's across which 
it has been possible to transport several fruitful notions, providing a more unified 
approach. The next result proved instrumental in establishing Theorem 17. 

THEOREM 16 (R. MILLER). The cone on every compact ANR is the image of g 
under a cell-like map. 

THEOREM 17 (WEST). For every compact ANR X there is a Q-manifold M and 
a cell-like mapping f: M-+X the mapping cylinder of which is a Q-manifold; conse
quently, every compact ANR is homotopy equivalent to a compact polyhedron. 

Theorem 17 answered a question posed by Borsuk in his 1954 address to the 
Congress. It should be remarked that this homotopy result does not extend even 
to fundamental ANR's (pointed), as S. Ferry* has realized all of Wall's obstructions 
to finiteness in the three-dimensional members of this class; however, R. Geoghegan* 
has shown that it does extend to the finitely dominated inverse limits of compact 
ANR's under fibrations. 

An immediate consequence of Theorem 21, recognized independently by Chapman 
and R. D. Edwards, was the extension, full-blown, to ANR's of simple homotopy 
theory. Chapman had previously done this for g-manifold factors by assigning to 
X the simple homotopy type of any CW-complex K(X) triangulating XX Q 
(unique by Theorem 10) and to a (proper) homotopy equivalence / : X-*Y the 
torsion of the mapping / ' : K(X)-*K(Y) obtained as in Theorem 10. In light of 
Theorem 6, this remains the "proper" way. From Theorem 13 and Theorem 14, it 
follows immediately that cell-like mappings are simple homotopy equivalences; 
they play the role of collapses. 

From this and Theorem 6 has followed an important body of work by Chapman 
and Ferry on fibrations of ANR's, from which the next two theorems are selected. 
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(See also the earlier work by Chapman and R. Wong on bundles and that of Wong 
on the contractibility of the homeomorphism group of g.) 

THEOREM 18 (CHAPMAN-FERRY). Let p: E-+B be an Hurewicz fibration. (a) If 
the fibers p~*(b) are compact Q-manifolds and B is locally path-connected and 
locally finite-dimensional, then p is a locally trivial bundle; (b) // B and E are 
ANR'^ and the fibers of p are compact, then po(pjn): EXQ-+E-+B is a locally 
trivial bundle, and (c) if B, E, and the fibers are ANR's, then the composition 
po(pjn): EXQX[091)-*E->B is a locally trivial bundle. 

THEOREM 19 (CHAPMAN-FERRY), (a) For each map f: M-+B of a Q-manifold 
to an ANR, the composition fo(pjn): MX[0, 1)-+M-+B is homotopic to a fibration 
(Hurewicz) ; (b) if M and B are compact and connected, B is simple homotopy 
equivalent to an n-complex, and the homotopy fiber of f is n-connected and of finite 
type, then there is an obstruction in Wh^xCM)) which vanishes if and only if f is 
homotopic to a fibration (Hurewicz), (Weaker conditions for the existence of the 
obstruction if n = l92.) 

The following outstanding result was obtained independently by Ferry and 
Torunczyk. 

THEOREM 20. The homeomorphism groups of compact Q-manifolds are Hilbert 
manifolds. 

(The essential contribution here is that they are (non-locally compact) ANR's. 
The analog for «-manifolds remains a major open problem, « > 2 ; for n—2 it is 
due to R. Luke and W. Mason.) From Theorem 21, Ferry easily drew the following 
useful corollary by deforming the product stabilization to a homeomorphism. 
(Motivated by Theorem 21, he and Chapman* have obtained the analogous un-
stabilized deformation result for maps of «-manifolds.) 

COROLLARY TO (21). For every ANR Y there is an open cover I with the property 
that any map f : X-+ Y between ANR's with a homotopy inverse g such that fog^ly 
and gof^lx by homotopies with tracks refining I and f~1(E), respectively, 
is a simple homotopy equivalence. 

6. Connections with compacta: Ends of g-manifolds and Tychonov cubes. 
Let SP be the shape category of metric compacta, regarded as lying in g x { 0 } d g x / . 
The assignment X-+QXI—X yields contractible g-manifolds. Proper maps 
f9g: A -+B of local compacta are weakly properly homotopic if for each compactum 
D in B there is one C in A such that the restrictions of / and g to A — C are 
homotopic in B—D. Let W& be the category of all QXI—X above and weakly 
proper homotopy classes of proper maps. 

THEOREM 21 (CHAPMAN). The assignment X-+QXI—X determines a category 
isomorphism SP-^'W^, 



502 J. E. West 

Theorem 21 defines the relationship between g-manifolds and shape theory. Many 
open problems revolve about this phenomenon and the closely related proper homo
topy theory, with information flowing in both directions. (See S. Mardesic's report 
to this Congress, the Chapman-Siebenmann paper, [3], and [1]. There is highly 
relevant work by J. Dydak, Dydak and J. Segal, D. Edwards and R. Geoghegan, 
Kozlowski*, and Mardesic and Rushing.) Certain questions involving the lack 
of an adequate Whitehead theorem in these categories, fibrations, and the preserva
tion of movability at'ends are closely linked with the study of compact Lie group 
actions on g-manifolds, which has been initiated by Wong, I. Berstein, Vo Thanh 
Liem and the author. A sample result is the following: Let g ' = i7lLi[~~l> 1L> 
0 = the zero element, and A(x) =—x. Let T be any involution of g ' with 
unique fixed point 0. 

THEOREM 23*. T is conjugate to A if and only if (a) (Berstein-West) the inverse 
system of deleted neighborhoods of 0 in Q'\T is movable, or (b) (West-Wong) 
Q'lT is an AR. 

For nonmetrizable compacta, E. V. Scepin* has made a beautiful application 
of the fibration theory of g-manifolds to prove 

THEOREM 24 (SCEPIN)*. A weight-homogeneous retract of a Tychonov cube is 
a Tychonov cube if its weight is at least $±. 

7. Connections with manifolds modelled on vector spaces. Anderson's proof that 
I2 is homeomorphic to the countably infinite product s of lines, which completed 
the topological classification of separable Fréchet spaces, was a direct outgrowth 
of his study of g as a compactification of s. Torunczyk's topological characteriza
tion of Hilbert manifolds of all weights* followed the philosophical lines of his 
analogous work on g-manifolds and completed this ancient problem of Fréchet. 
R. E. Heisey's proof that manifolds modelled on I2 with the bounded-weak topology 
are homeomorphic if homotopy equivalent was based on his recognition that this 
space is a direct limit of Hilbert cubes. There are major connections between g-
manifolds and function spaces, especially spaces of differentiable functions, which 
are suggested by 

THEOREM 25 (GEOGHEGAN). Let Mm and Nn be connected Riemannian manifolds, 
with Mm compact and Nn flat. For each /c>0, the closure in C°(Mm

9 Nn) of 
{f^C1(Mm

9N
n)\f/(x)^k for all x} is a Q-manifold. 

A. Jones, in his Cornell University thesis*, has related work employing an energy 
bound. (In this context, see R. Palais' report to the 1970 Congress.) This is one 
of the most promising areas for future research, and with the availability of Torun
czyk's characterization of g-manifolds, it is wide-open. 
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