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Algebraic ^-Theory and Zeta Functions of Elliptic 
Curves 

S. Bloch* 

The classical regulator formula [6, Chapter 5] 

hm (s-l)C*(s) = — 7 = 

computes the residue of the zeta function of a number field at s=l. Various genera
lizations have been proposed [19], [2], [20]. Lichtenbaum, noting that h= #Ko(0K) 
and 7M=#Ä1((PK)tors suggested a formula relating ^ ( m + l ) to $rKitn((!)K)9 

#^2m+i(^x) a n d a higher regulator Rm. Borei [4], [5], studied a regulator map 

where 
r2, m = 2n + l > 0 | 

k= order of zero of £x at s — —m. dm = Ti+ri9 m = 2n>-0 

^i + ?*2-l> m = 0 

He showed that r2m+1 embedded K2ni+1(G^)liovsiori as a lattice of maximal rank 
with volume a rational multiple of 

7i-*m lim ÇK(8)(8 + m)-^£n-*to+v\D\ti*ÇK(m + l)'Q. 
S-»- —Ml 

In another direction, let E be an elliptic curve defined over a number field K, 
and let L(E/K9 s) be the "Hasse-Weil zeta function". Birch and Swinnerton-Dyer 

* The author gratefully acknowledges research and travel support from the National Science 
Foundation of the United States. 
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have conjectured [2], [20], [21] that L(E/K9s) should vanish to order rk E(K) 
at ,s=l and they have proposed a regulator formula for the first nonvanishing 
coefficient in the Taylor expansion. 

One can envision an amalgated sum of conjectures: 

f *#? ! ! ?#* , l 
/lL(Zp:,m + l)JN 

Lichtenbaum conjecture,] f Birch-Swinnerton Dyeri 
Borel's work, [ \ Conjectures, [ 

Ww+1) * I L(E/K9l) J 
^/Classical regulator formula,! ' 

\ CrO) i 
Oddly enough, the fireworks at the top may be easier to deal with than the right 
hand side. I will sketch the construction of a regulator map Rq: K2(E)-+C (q=e2izh), 
and relate in special cases the values of Ra with L(E/K9 2). As an example, con
sider E/Q with complex multiplication by the full ring of integers 0 A = Z + Z T , 

k imaginary quadratic. Assume for simplicity the conductor N of E lies in Z. 
Let %Gross denote the Grössencharakter associated to E so L(E/Q9S)=L(XGTOSS

9S)9 

and let % be the corresponding Dirichlet character on 0k with conductor N9 

so XGl0S&(V) = h(h) if p = (A). Write 

THEOREM. There exists U^K2{E) such that 

(More generally, if N£k, % is replaced by a more complicated character sum.) 

For any E over a number field K9 one might 

CONJECTURE, rk K2(E)=order of zero of L(E/K9s) at^=0. 
The conjecture, of course, presumes analytic continuation of L(EfK9 s). 

REMARK. There is a basic analogy between Ki+1(k) and Kt(E) where k is 
a field and E is an elliptic curve. In fact, Ki+1(k) is contained in the relative 
jK-group Kt(Pl9 {0, oo}) which can be thought of (perhaps not too literally as 
I do not know if excision holds in this case) either as Kt of the degenerate nodal 
elliptic curve or as "Kt with compact supports" of Gm. To use this dictionary 
to formulate a Birch-Lichtenbaum-Swinnerton-Dyer conjecture is perhaps pre
mature. A more accessible problem might be to formulate and prove an analogue 
for K^E) of the exact sequence due to Moore 

*a(fc)- II A . - A - Û . 
places of ft 
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Let E be an elliptic curve over C, A an abelian group, Given divisors 
S=2!ni(ßi) a n ( l S'=21mj(bj) o n E> define 

C(Ef®C(ET + IIZ> f®g"(f)-*(g). 

A set theoretic function D\E-+A extends to X>: ]Jx£EZ^A. D is a Steinberg 
function if / ) ( ( / ) - * ( l - / ) ) = 0 for any f€C(E)*9f&0,1. A Steinberg function 
induces a map JCa(C(.E))-»\4. 

Let i? be the semilocal ring at {0, °°} on P^> ^ c ^ ^ radical. Using the 
group structure on PX-{Q9 °°} one defines (/)"~*fe) 6 IIxeC*z fo r /€ 1+7, g G C(PX)*. 
A function D:C*-+A is a relative Steinberg function if Z>( ( / )~# ( l - / ) )=0 
for / 6 1 + J . Using work of Keune [10] one shows that a relative Steinberg symbol 
induces a map K2(R91)-+A. 

The key transcendental object is the single valued(!) function 

D(jc) = l o g | x | - a r g ( l - A ) - I i n / l o g ( l - 0 - T 
o ' 

first discovered by D. Wigner. The functional properties of D(x) seem unbelievably 
rich: ((i) and (ii) below are joint work with Wigner) 

THEOREM, (i) D ( J C ) ^ - D ( J C - 1 ) = - D ( 1 - J C ) = - ì ) ( 5 0 . D(0)=Z>(1)=/>(-)t=0. 
(ii) For gZSLz (C), let g£SL2 (Q/B^P^. Let {gu .,., g4} tferofe */?e cross ratio. 

Then D({gl9..., gA}) is a measurable 3-cocycle on SL2(C). If V(gl9 ..., g4) denotes 
the volume of the geodesic tetrahedron in the Poincaré upper half space with vertices 
g^P1 lying at ~ , then D({g19..., gA}) = ±%V(gl9 ..., &). 

(iii) D(;x;) fe « relative Steinberg function and so induces 

D: K,(C) ~> K^PX
C> {0, oo}) _ # 2 (* , / ) + fl. 

(iv) Write E=C*\qz with | ? |<1 . TAe je r te 

converges. Dq is a continuous Steinberg function on E and induces a map K2(E)-+ 
K2(C(E)yR. 

Given a number field k and an embedding o:k-+C one gets Z>ff: JSr3(/c)-^fi. 
One builds in this way the Borei regulator for Ks. The function J(x) = 
logJJC| -log jl — ĉ| is also a relative Steinberg function, although the map on 
KZ(R9I) factors 

and hence is trivial on K3(C). 
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In the elliptic case define 

«=0 tf=l 

Given divisors (f)=2ni(ad^ (f)=2w,,/(*i) o n E w e c a n c h ° o s e lifting ( / )= 
2ni(ai)9 (s):=2mj(ßj) io divisors on C* such that 2 n i = = 2 m j = = 0 , 

THEOREM. 77ie expression 

is well defined independent of the choices. Moreover, 

/ j / , i - / } = o 

JO fAere w AW induced map Jq\ K2(C(E))-+R. 

Define, finally 
Rq = / , + ü)f : #2(£) - K2(C(Ej) - C. 

Assume now E defined over an arbitrary field k of characteristic 0. Recall 
that the sequence 

KtÇS)-*Kt(k(E))-lss-* UH*T 
symbol X^E 

is exact. To study the image of Rq we construct elements in Ker (tame) as follows : 
let / , g be functions on E and assume the divisors (/), (g) are supported on the 
points of order N of E. Assume for simplicity these points of order N are defined 
over k. Then there exist ci£k*9fi£k(Eyt' suchthat 

Sf,g = {/, g f • ÏÏ {fi, CfHKer (lame). 

Rq is trivial on symbols with one entry constant, so when k(-+C9 Rq(Sfg) is well 
defined. Let Q have a pole of order 1 at every x£EN9 x^09 and a zero of order 
N2—1 at 0. Let x£EN and let fx have a zero of order N at x and a pole of 
order N at 0. Define Sx=SßJ. If, for example, E=C/Z-\-ZT9 one finds 

, _ ( I m i ) W - rin(2ic((awfcm)/jy)) 
*.lA(.+*)/*J mß_ (m+nT)2(m + nf) -

REMARKS, (i) The AS}>ff are analogous to cyclotomic units. They are available 
when certain torsion points of the curve are rational over k. I do not expect they 
generate Ker (tame) in general. 

(ii) The techniques discussed in this report are ad hoc. One could try to give 
a general regulator construction by interpreting the higher IE-groups of a variety 
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as relative algebraic cycles, e.g. KX(C)^ picard variety of Pj, relative to {0, °°}. 
The Akel-Jacoby map would associate to these cycle points in a relative Griffiths 
intermediate jacobian. Factoring out by the maximal compact subgroup of this 
torus yields invariants in a real vector space which frequently inherits a complex 
structure from Hodge theory. 
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Unstable Vector Bundles and Curves on Surfaces 

F. A. Bogomolov 

In this article I will describe some results on the structure of vector bundles over 
projective varieties. All of these are obtained by investigating the sections of tensor 
bundles associated to the given bundle. For simplicity we work over the complex 
field. 

1. Consider a projective variety V and a left principal fibre bundle Gy over 
V with reductive algebraic group G as fibre. For R an algebraic variety with 
right G-action we set Ry=RXGG (the associated fibre bundle). If h: R-+Q is 
a regular G-rnorphism of G-spaces then there is a corresponding bundle morphism 
h:Ry-+Qy. Every linear representation Q of G defines a vector bundle EQ over V. 

There is a natural correspondence between irreducible representations of the 
group G and characters % of a fixed maximal torus T of G. Namely, for each 
nonzero % in the character group f of T there exists a unique parabolic sub
group P c G containing T and such that % extends to P, with the induced line 
bundle E on G/P positive. So for every x^f we define a bundle (G/P,EX) 
and a representation QX of G on H°(G/P, EX)=WX. Consider in Wx the sub-
variety Ax defined as the closure of the orbit of a vector of highest weight, This 
is isomorphic to the line bundle (G/P,EX*) with the zero-section blown down. 
As a G-space Ax consists of two orbits, 0 and Ax\0. For each parabolic subgroup 
Pa G we define the associated fibre bundle G/Py=GyXG G/P. The principal bundle 
Gy over G/Py induced by the projection n: G/Py-+V has P as a structure group. 
Every positive character % on P defines a line bundle Lx on GjPy and a vector 
bundle R0

n(Lx) on V, with Rl(Lx)=EQ. Since i^(Z,z)=0 for />0 we have 
H«(V,Ee)=H«(G/Py9Lx). 
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EXAMPLE. If S*E* is the ith symmetric power of the vector bundle E* then 
Hq(V9 S

lE*)=HQ(P(E)9 0(0), where P(E)-+V is the projectivisation of E. 

2. Assume that G=GL(n). Parabolic subgroups of G are in 1-to-l corres
pondence with flags in «-dimensional vector space C". For F: E cE^c.c: Ea^ c C" 
the parabolic group PF is the stabiliser of F. Every positive character of the sub
group PpCiG can be written as x=JEïLiwfZi» where %t(A) = àttA\E , dim Et=i 
and n^O forali /<«, i£{al9 a29 --,ak}. 

If G=PGL(«) then the parabolic subgroups correspond to proper flags in Cn. 
The bundles EQ with det£ß=0, where Q is an irreducible representation of 
GL(H) are associated to representations induced from PGL(«) via the natural 
homomorphism p: GL(n)-+PGL(n). The corresponding characters can be 
written as X^ZiZl^iiXi-kM with w,>0 for all i. 

Now fix a principal bundle Gy over V with group G = G L ( / î ) , and let E be 
the associated vector bundle, corresponding to — Xi- Then we call a bundle EQ 

a cotensor bundle for JE if xe—2niXi with W/̂ O. Every cotensor bundle is a direct 
summand of the tensor power E*®k for some k. We denote by h(g) the number 
h(o)=max{i, w,->0}, where the cotensor representation g corresponds to X~2ni1i-

3. If ï: CkcCn is a vector subspace we can define for every flag F in Cfc the 
flag LFin C". So we have a natural morphism /: G/PF-*G'lPiF9 where G=GL(fc), 
G'=GL(w). The character xa

 o n ĵ? *s induced from the character x'a
 o n

 PìF> 

and the line bundles LXa on G/P^ are also induced. If the character X~2n\li 
with /7f>-0 for all i^k then the bundles Lx on GjPF and G'/PiF are positive 
and the induced homomorphism /: H°(G/PiF, L^)^H°(G/PP9 Lx) is onto. 

For a subbundle z : Exc:Ez we define an imbedding of the flag bundles i : G/PE Fy-+ 
G'/PEiFiy, by a similar procedure. For any character x of -Pj? which is induced 
from a / ' on P//7 we have Llz,=z*L2^. Soifis1>e is a cotensor bundle for J?! then 
/ induces a linear map i: iy°(F, J ^ / K f f 0 ^ , £1>e). 

Note that for a proper flag Ea <z.Ea c . . . c£ f l n cC k we can define two different 
proper flags in C". The first is iF and the second is iFaCkŒCn. 

4. DEFINITION. A vector bundle E over a projective variety V is called improper 
if E is induced from a bundle 2?' on some variety V of smaller dimension by 
a regular morphism. In the opposite case we say that E is proper. 

THEOREM 1. Let V be a projective variety of dimension n, and let E be a vector 
bundle of rank k over V, with E proper and not containing a trivial subbundle. 
Suppose that E is a subbundle of a trivial bundle Cn

V9 and not contained in any 
smaller trivial bundle. Then 

(i) if N-k^n then H\V9 S*E*)=H*(V, SPCty; 
(ii) if N=k-\-l then for every representation Q of G with A(g)<min (k9 n) 

we have 
H»(V9 EQ) = H*(V, (CN)e). 
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PROOF. Set G=GL(fc), G'=GL(A0; for every parabolic subgroup P^cG 
we have a bundle morphism GjPFy-+G'lPiFy, and the projection of the trivial 
bundle G'/PiFy onto its fibre G'/PiF so that any line bundle Lx over GfPFy 

is induced by the composite pi from a line bundle on GfJPFy. If pi is surjective 
with connected fibres then the result follows, 

We can interpret the projection of the general fibre of pi onto V as a pull-back 
of some complete intersection in the Grassmanian Gr(Af, k) under the canonical 
morphism h: V-+Gr(N9k), and the result follows from the conditions of the 
theorem. 

COROLLARY 1. Suppose that i; V-+Tn is an immersion of a smooth projective 
variety V into an Abelian variety Tn; assume that i(V) does not lie in any proper 
Abelian subvariety of T"9 and that it is not a fibre space with Abelian subvariety 
TkaTn as fibre. Then 

(i) if dim V>n/2, H\V9 SlO^)=H%T,
9 S

1®1^) [3]; 
(ii) if dim V=n-l then H°(V> TVe)=H°(Tn

9 TTnJ for every cotensor bundle 
TV9 such that A(g)<w—1. 

Here the imbedding of TY into the trivial bundle is induced by the differential di. 

COROLLARY 2. Suppose that i: V-+Pn is an immersion of a smooth V into Pn. 
Define the bundle E on V as the extension 0-+O(—l)-+E-+Tv<g>O(—l)-+0 by 
the class c1(0K(l))cJ?1(F9 ß^). The differential di defines an imbedding of E into 
a trivial vector bundle. Assume that V is not isomorphic to a projectivised variety 
P(1F)9 for a coherent sheaf IF of rank^l over some V', and assume that i(V) 
does not lie in a hyperplane of P". Then E satisfies the conditions of the theorem, 
and we obtain: 

(i) if dim V^n/2 then H°(V, 5,î£*)=J9r0(F, SlCn+1); 
(ii) //* dim V=n-1 then H°(V9E*)=H°(V9 (C

n+1)e) for every cotensor repre
sentation Q with h(o)<n—l. 

From (ii) we get the theorem of Brückmann for smooth hypersurfaces of 
P«:H°(V9TVte)=0 if /z(e)<77-l [4]. 

5. Suppose that s^H\V9 TVQ) is a cotensor section, For a surjective morphism 
p:V'-+V we have the pull-back p*s on V. If H0(V\Q^)^0 then V has 
some special cotensors which are constructed from holomorphic 1-forms on V\ 

CONJECTURE. For every cotensor s on a smooth projective variety V there 
exists a projective variety V and a surjective morphism p: V-+V such that the 
cotensor p*s on V is a polynomial expression in holomorphic 1-forms of V\ 
In other words there should exist a regular morphism h: V-+T to an Abelian 
variety, and a cotensor s' on T such that h*s'—p*s. 

It can easily be seen that for each cotensor s there exists a k such that the sym
metric power sn of s satisfies this condition for all n>k; however, the most 
interesting problem is to investigate the case for s£H°(V9 Qy) for z>0. 
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6. Assume now that V is a smooth projective surface. As usual K denotes 
the canonical class of V9 and x=ci(Tv) the second Chern class of V. Consider 
a vector bundle E on V of rank n9 and let Ci=Ci(E) be its Chern classes. The 
following proposition is a sort of converse to a theorem of Kleiman [7]. 

LEMMA 1. Assume that c*-c2>0 then h\V9 5^)+A°(F, S*£*)>a/w+1+& 
for some constants a>0, b9 and all i. 

The proof is by computing the Euler characteristic of SlE [1], 

REMARK. If r k £ = 2 and, for some «>0, H°(V9n dot E)^0 then h\V9 SlE)> 
a'i3+b' with a'>0. 

For c\—c2>0 some positive multiple of the tautological bundle 0(1) on the 
projectivisation P(E) defines a birational map, [6]. 

7. The group NSQV=NS(V) ®%Q ^ a s a natural intersection form with signature 
(1, «). So the subset {x2>0} is divided into two components; we denote by ÜT+ 

the component which contains positive elements of Pic K, and K~=— K+. 
Every element LÇPic V whose class %€J£+ has H°(V,nL)>an2+b for some 
ß>0 and all «>0. 

For a vector bundle E of rank n define the reduced c2 as the rational number 
c°(jE,)=c2(iO—(n — 1) cl(E)/2n; this invariant is unchanged on multiplying is by 
some line bundle L. 

THEOREM 2. Assume that E is a vector bundle over a smooth surface with cl(E)-<0. 
Then there exists a bundle F and an infective homomorphism h: F-+E for which 

f = (det P — ^ - det E) e NSQ V 

lies in K+, andp^-c\{E). 

We describe the main steps in the proof. 

8- The reductive group G and the standard models Ax are as in § 1. 

THEOREM 3. Let Q be any representation of G in C"9 and let X be an affine 
G-invariant subvariety of unstable points in C'\ with dimA's^l. 

Then there exists a regular geometrically surjective G-morphism f: X-+Ax for 
some x-

REMARK. The proof for G=SL(2) follows from Mumford's description of the 
unstable forms in 2 variables. The general case is contained in [2], 

9. DEFINITION. A vector bundle E over V of rank n is T-unstable if there 
exists a representation Q of PGL(«) and a nonzero section s£H0(V9EQ) which 
vanishes at some point of V[2]9 [12]. 
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LEMMA 2. If E is T-unstable then there exists a flag of coherent subsheaves 
&r

1c:&r
2c:...c:0(E)9 locally direct summands outside a finite subset of V, and a 

vector (al9 ..., ak) of positive integers such that the line bundle 
k 

F(a1,..., ak) = 2 ai(" det P} - n, det E) 

has a nonzero section. 

The proof of this lemma follows from Theorem 3 applied by means of the transfer 
morphisms indicated in § 1 to the models AX9 together with an explicit description 
of these models for G=PGL (n). Remark that every PGL (w)-invariant polynomial 
on the representation space transfers s into the 0-section of 0V9 so that s is 
unstable at every point. 

10. From the inequality c°2(E)<0 and Lemma 1 we get that h°(V9 S
inE®iàeiE) + 

h°(V9 S
inE<g>iàetE)>ai"+1+b. Since both these bundles are constructed from 

representations of PGL (n) we obtain the jf-instability of E. 
We prove Theorem 2 starting from the flag constructed in Lemma 2 using an 

inductive procedure based on the formula 

c2(E) = c2(F) + c2(F') + c1(F)(c1(E)-c1(F)) + N 
where 

0 -+@:-+E-+&' -^0 

is an exact sequence of sheaves, locally split outside a finite number of points, and 
JV^O is a measure of the extent to which #*' is not locally free. 

REMARK. Theorem 2 was proved for V=P2 and vector bundles of rank 2 in [14]; 
the general proof can be found in [2], 

11. DEFINITION (TAKEMOTO-MARUYAMA). A vector bundle £ on a surface 
V is //-unstable for H£K+ if there exists a subsheaf ^ a 0(E) such that 

c i ( j r ) , 7 / > S c i ( E ) , Ä 

Using Lemma 2 and the Nakai-Moishezon ampleness criterion we prove the 
following proposition : 

LEMMA 3. If a vector bundle E on a surface V is H-unstable for each H£NSRV= 
NS(V) (g)zJR in the closure of the cone generated by polarisations then E is 
T-unstable. 

12. Let X be a smooth curve on the surface V9 and let h: P|x-+Pbe a surjective 
bundle morphism on X. The sheaf J5f=ker (hi: $— 3?) is locally free, so cor
responds to a vector bundle L [13]. The Chern classes c,(L) are easily computed 
in terms of those of P, P and the class of X: 

c±(L) — c±(E) — rX9 where r = rkP, n = rkP, 
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If E\x is unstable and 
degP Cx(E)-X 

r n 
then 

cl{L)^cl{E)-r-^.X\ 

and L is unstable if Xz is large enough. As follows from Theorem 2 L contains 
a special subsheaf F with corresponding f^K* (see §7). If we consider P as 
a subsheaf of E we get some information about E. 

For simplicity consider the case rkP=2. 

LEMMA 4. For V a smooth surface with dimQ NSQV=l suppose that the restric
tion of a rank 2 vector bundle E to a curve X with JT2>(2c2(P))2 is unstable; 
then E is unstable on V. 

This result generalises to vector bundles of arbitrary rank over any surface. 

13. In this section we describe some results on subsheaves of cotensor bundles 
for the tangent bundle of projective varieties. 

THEOREM 4. Let V be a smooth projective variety, and consider a rank 1 subsheaf 
^aQy, then there exist constants a and b such that for all n 

h°(V9nF)<ani+b. 
Furthermore, if for all n>~0 

h°(V,iiF)>a0n
i' + b0 

for some i'*^i and constants a0>0 and b0 then there is a dominant rational map 
p: V->V for some variety V with dim V' — i' such that 3F lies in the ideal of 
the exterior algebra /\ Q\ generated by a rank 1 subsheaf S£CL Qy containing 
PW<). 

The proof can easily be reduced to the case dim V=i+l when P defines a 
1-dimensional foliation Fs on V. If s-i and s2 are sections of f c ß j , then the 
meromorphic function sjsz is constant on the leaves of Ps, as follows from the 
fact that dSf=0. By an argument using branched covers of V the same is true 
for sections of ^®n. The theorem follows. 

The same result holds for rank 1 subsheaves of the sheaf of logarithmic forms 
Ql (log D). In fact by a theorem of Deligne [5] we have that sections of Qf (log D) 
are closed forms. 

COROLLARY 1. For V a surface of general type Tv is stable, so that c\^Ac2. 
Moreover Tv is H-semistable for some nonempty cone of polarisations in NSRV. 

COROLLARY 2. If V is a smooth projective variety with Pic V=Z and Kv^0 
then the tangent bundle Tv is stable. All tensors s£H°(V9 Te) are locally constant 

for Q any representation of PGL(/?). 
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The same is also true if Z < 0 and — K is a generator of Pic V. In both cases 
we have the inequality 

where H is an ample generator of Pic V. 

THEOREM 5 (Y. MIYAOKA [8]). For a surface of general type we have c*^3c2. 

The theorem follows from the following assertion, which strengthens Theorem 4 
for the case of surfaces: 

Let F be a minimal surface of general type, and let ^czSmQy be a rank 1 
subsheaf; then c± (P) • Kv =< max (nw% ( V)9 0). 

Corollaries 1 and 2 above, and Miyaoka's Theorem 5 can be proved in stronger 
forms by the differential-geometric methods of S. T. Yau [9], [10]. 

14. We consider some applications of these methods to the study of curves on 
smooth projective surfaces, 

We define a subset RaA2(V) of the set of algebraic homology classes by the 
condition that z£R if there exists a smooth curve X and a birational imbedding 
f\X-+V such t h a t / ( Z ) realizes z. On R we define the function g(z)=infxg(X), 
where g(X) is the geometric genus of X. There is an obvious upper bound for 
g(X)9g'(z) = (z2-\-Kz)/2+l; we are interested in giving a lower bound. 

For every nontrivial morphism / : X-+ V we define the regular tangent morphism 
tf\ X-+P(TY) into the projectivised tangent bundle. 

LEMMA 5. The degree ofthe restriction of 0(\) to tf(X) is bounded by 2g(X)—2. 

Note that H°(P(TV)9 0(i))=H\V9 S^), so that if h\V9 S^^aP+b for 
ö > 0 then for some i 0(i) induces a birational imbedding ht\ P(T)-+PN. If B is 
the proper subset of P(TV) where ht is not a regular imbedding then all curves 
JSfin V for which tf(X)dpB have degree ht(tf{X))^2g(X)—2. So all curves such 
that g(X)=<g0 lie in an algebraic family. The curves with tf(X)aB aro tangent 
to a 1-dimensional foliation on B if B projects surjectively on V; all these curves 
lie in an algebraic family (of dimension =<1), as follows from the following result: 

LEMMA 6. If Fs is a 1-dimensional foliation on a surface V then either 
(i) there are only a finite number of algebraic curves tangent to Fs; or 

(ii) there is a rational map p: V-+Y of V to a curve Y suchthat Fs is tangent 
to the fibres of p. 

We conclude: 

THEOREM 6. Suppose that for some a>~09b and every i we have h°(V9 SlQy)>-
ai3+b; then for every ample class h£NS(V) there exists a constant a=a(Ä) 
such that 

g(z)>- ah'Z 
for all but a finite number of z€R. 
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REMARK. The condition of the theorem is automatically satisfied by any surface 
of general type with c\>c2. 

Using symmetric tensors with coefficients in a line bundle we can prove the 
following analogous result for any surface of general type: 

THEOREM 7. Suppose that V is a surface of general type with Q=rank N S (V)^ 2. 
Define the subcone KD F in NSRV by the equation 

E(Kx)\ where ocL = ^ _ g 2 - ß j . 

Then the subset of R\KDe defined by g(z)«x.(h)h*z is finite, for h£K+ and 
suitable a(A)>0 [1], [11]. 

COROLLARY. There are only a finite number of curves affixed geometric genus and 
negative self-intersection on any surface of general type. 
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Some Applications of Geometric Invariant Theory 
to Moduli Problems 

D. Gieseker* 

The geometric invariant theory of Hilbert and Mumford provides a general 
method for constructing quasi-projective moduli spaces for certain types of objects 
in algebraic geometry. After reviewing geometric invariant theory, we will discuss 
the construction of moduli spaces for surfaces of general type, and for stable bundles 
on a smooth projective variety. 

1. Let G be a reductive algebraic group over an algebraically closed field fc, 
and let V be an «-dimensional representation of G. Assume G acts through 
SL(F). Let x6F*. 

DEFINITION 1.1 (Mumford [6]). x is stable (resp. semistable) if the stabilizer 
of x is finite and the orbit 0G(x) is closed in K* (resp. 0$OG(x)). 

Unstable is the opposite of stable. Let P(V)S (resp. P(V)^ denote the image 
of the stable (resp. semi-stable) points in P(V), the set of hyperplanes in V. 

PROPOSITION 1.2. Let Z=Projfc[F]G. Then there is a diagram 

P(V) 2 P(V)SS 2 P(V)S 

-! I 
X 2 xs 

For each xÇ:Xi%~1(x) contains a unique orbit of G closed in P(V)S!i. If x^X^^n~1(x) 
is exactly an orbit. 

* Partially supported by the National Science Foundation of the United States. 
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Let X:k*-+G be a one-parameter subgroup. 

DEFINITION 1.3. x£V* is unstable (resp. not stable) with respect to X if 
lima^0xA(a)=0 (resp. lima_0 x

A(a) exists in V*). 

PROPOSITION 1.4. x is unstable (resp. not stable) if and only if x is unstable 
(resp. not stable) with respect to some nontrivial one-parameter subgroup of G. 

Propositions 1.2 and 1.4 are due to Mumford in characteristic zero, and in general 
to the efforts of Nagata, Haboush, Seshadri [8], and for G~Sh(n), Procesi and 
Formanek. 

Kempf [3] has shown that if x is unstable, there is a one-parameter subgroup 
X so that xx(-a) approaches 0 faster than x^ for any other suitably normalized 
subgroup \i and that X is unique up to conjugation. (Rousseau has established 
a similar result.) This result gives a proof of the stability of the Hilbert point of 
abelian varieties embedded by complete linear systems. 

2. Let I b e a subscheme of P(V) with Hilbert polynomial Px(m)=%(px(m)). 
For each m € Z + , there is a natural map 

<Px.m: Sm(V) = #°(P(K), <P(m)) - H*[X9 &x(m)). 

Thus we have a map for m»0, 

P(wi) P(HJ) 

tor.*: A S»>(V) - A H»{X9(9x(m)) = k. 

Thus \I/Xm can be considered as an element of P(/\F°7Û S'"(V))9 and may be 
called the iwth Hilbert point of X. Let G=SL(V) which acts on AP("0 Sm(V). 

Let X:k*-+G be a one-parameter subgroup. There is a basis vl9...9vn of 
V* so that v}(-*> = aLr'Vi. If M=v{1...vj»Ç.Sm(V) is a monomial in the z;'s, we 
define wA(M)=^7 ir . . The following is an easy consequence of Proposition 1.4: 

PROPOSITION 2.1. \I/Xim is stable with respect to X if and only if there are monomials 
Ml9 ..., Mp(1J}) in Sm(V) so that their images form a basis of H°(X90(m)) and 

The following is the key step constructing a quasi-projective moduli space for 
surfaces of general type modulo birational equivalence with fixed K2 and %(0X) [1]. 

THEOREM 2.2. Let X be a surface of general type. For any sufficiently large n, 
there is an m so that the mth Hilbert point of the n canonical image of X is stable. 
Further, m and n depend only on K2 and x(@x)-

Let Vf and rf be as above. Let Ff be the subsheaf of 0(nK) generated by 
vl9 ...9v{. We may blow up X9 n: %-+X9 so that n*(Fi) = (9x(Di) is invertible. 
We define 

D(i,j) = i(P*+DrDj+ti*). 
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PROPOSITION 2.3. For n»0 and for each X, there is a sequence l = it-<:..,^il=z 
h\X9Q(nK))=L so that 

i 
2&(h> h+i)(rik+1-rik) > rLn2K2. 

k=l 

Propositions 2.1 and 2.3 imply Theorem 2.2 without difficulty. Lower bounds 
for D(i9j) used to prove Proposition 2.3 involve estimates for A1^, 0(A))« Chow 
points may be used instead of Hilbert points. 

3. Let X be a smooth projective variety of dimension d and let &(H) be a very 
ample divisor on X. Let E be a coherent sheaf on X9 and let r be the rank of 
E at a generic point of X. We define PE(n)=%(E(n))/r. 

DEFINITION 3.1. E is JY-stable (resp. //-semistable) if E is coherent torsion free 
and whenever F is a proper subsheaf of E9 then PF(n)<PE(n) (resp. PF(n)^PE(n)) 
for n»0. 

There is an alternate definition which compares the coefficients of nd~x in PE 

and PF. The above is more closely tied to geometric invariant theory than the 
alternate definition as is seen in : 

PROPOSITION 3.2. E is H-stable (resp. H-semistable) if and only if there is an 
N so that if n^N, then the map 

TE>n: /\H°(E(nj)-+H°(àeiE(nj) 

is stable (resp. semistable) with respect to the action of SL(HQ(E(n))) on 
Horn (Ar H°(E («)), H° (det E(n))). 

Here det (E(n)) is the unique line bundle which agrees with /\r E(ii) wherever 
it is locally free. 

One can show that any H semi-stable sheaf has a filtration 0=E0^E1^ ...^Ek=E 
so that F—EJEi^ is H stable with PF=PE- Set GtE=@Fi. GY E depends 
only on E9 and E and E' are said to be S equivalent if Gr E^Gr E\ 

THEOREM 3.3. A coarse moduli space Us for H stable sheaves with fixed numerical 
characters exists. For d^29 Us is quasiprojective and its compactification consists 
of H semistable sheaves modulo S equivalence. 

Theorem 3.3 is due to Mumford, Narashiman and Seshadri for d=l. For d=29 

Proposition 3.2 was established and used to prove Theorem 3.3 [2]. For d>29 

both are due to Maruyama [4]. The main obstacle to establishing the quasi-projec-
tivity of Us in higher dimensions is that it is unknown if the N in Proposition 3.2 
can be chosen to depend only on the numerical characters of E. 

The following theorem of Morrison [5] indicates an interesting connection between 
two different notions of stability. 
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"THEOREM 3.4 Let X be a curve of genus >1 , and E be a bundle on X of large 
degree. Then E is stable (resp. semistable) if and only if P(E) embedded by 
®p(E) 0) has stable (resp. semistable) mth Hilbert point for m^>0. 

4. One of the interesting questions in geometric invariant theory is the nature 
of the compactification by semi-stable elements of the moduli space. Theorem 3.3 
answers this question for bundles. It has also been answered for the case of curves. 
A projective curve is stable in the sense of Mumford-Deligne if it has only nodes 
as singularities and has ample dualizing bundle. For n ̂  5, Mumford [7] has shown 
that the «-canonical image of a curve stable in the sense of Mumford-Deligne has 
stable Chow point. This result is used to construct a projective moduli space 
Wg for stable curves. (F. Knutsen has given a different construction of Wg.) 

In general, we have the following definition : 

DEFINITION 4.1. X^P" is asymptotically stable if the Chow point of X re-
embedded by 0x(m) is stable for m»0. 

Thus the «-canonical images of Mumford-Deligne stable curves are asymptotically 
stable, as are 77-canonical images of surfaces of general type. An asymptotically 
stable singular surface has many good properties. For instance, X is reduced and 
has normal crossings in codimension one. Shah [9] has classified the Cohen-
Macaulay singularities which can occur on such an X if the embedding dimension 
e of the singularity is equal to its multiplicity, or if e^3 (provided char /c=0). 

The nature of the singular schemes arising from the compactification of surfaces 
of general type is unknown. It is hoped that they will be asymptotically stable, or 
at least have good local and global properties. 
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Homogeneous Spaces Associated to Certain 
Semi-Universal Deformations 

Eduard Looijenga 

It is believed that the discriminant variety of a semiuniversal deformation of an 
isolated hypersurface singularity has nice properties, both from the algebro-geo-
metric and homotopy theoretic point of view. Until now, complete results have 
only been obtained for rational double points. The aim of this lecture is to report 
on recent progress concerning this question in the case of a unimodular singularity, 
which supports this belief. 

1. The discriminant variety and related notions. We begin with recalling the defini
tion of a semi-universal deformation. 

Let XQ be a complex space with an isolated singular point x0£X0. A deformation 
of the germ (X09 x0) is a flat morphism (3£9 xQ) -+(S9 s0) of complex spaces together 
with an isomorphism of (XQ9x0) with the fibre over £0. We say that a deformation 
( ^ ^ • ^ ( ^ ^ o ) is semi-universal, if for any deformation ($f', xQ)^(S\ s'Q) of 
(XQ9 X0) there exist a morphism #: (9£\ x0)-^(^9 x0) respecting the identification 
of (X09 x0) with the special fibres and a morphism cp: (S'9 s'Q)-+(S9 s0) such that 
the resulting square is cartesian and d(p(s'0) is unique with respect to these pro
perties. 

Following Grauert [9], semi-universal deformations exist and are unique. In the 
case we will consider, namely, when Â  is a complete intersection at x0€X09 this 
was proved earlier (but in a somewhat weaker form) by Kas-Schlessinger and in
dependently by Tjurina. Then (ß£9x0) and (S9 s0) are smooth and ($", x0)^(S9 s0) 
is a stable map-germ in the sense of Mather. 

For a good representative F'.2£-+S of the semi-universal deformation, any 
fibre X0 has at most isolated singular points, the discriminant D:={s£S: Xs is 
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singular} is an irreducible hypersurface in S and the restriction of F to the union 
of smooth fibres: 6C—F~1(D)-^S—D is a C°°-locally trivial fibre bundle whose 
typical fibre has the homotopy type of a finite bouquet of «-spheres, where 
n:=dimc(X09xQ). We put S':=S—D9 fix a base point * £ £ " and write V for 
the lattice Hn(X^\Z) endowed with its intersection form {, >. Then TC^S", *) 
acts on V via monodromy transformations; the subgroup fczAut (V) so obtained 
is called the monodromy group. The group 7^(5", *) is generated by simple loops 
around simple points of the discriminant and the monodromy transformation along 
such a loop is given by the Picard-Lefschetz pseudo-reflection: sô(x) = 
x—(—iyKli~1)/2(x9ö)ö where 6 £ V is a so called vanishing cycle which satisfies 
^ ,^> = (-l)H("+1)/2-j-(-l)H("-1)/2. So r is generated by the ^ ' s . As the non-
singular part of D is connected, the s6

9s are all in one T-conjugacy class. Moreover, 
the vanishing cycles generate V [4]. Note that for even n9 (, ) is symmetric 
and sô is a reflection with respect to ( , > mapping <5 to — S. 

Arnol'd introduced an effective way to measure the complexity of the germ 
(X09x0); define an equivalence relation on % by putting x~x' iff the germs 
(XFMx) and (XF(x,)x) are analytically equivalent. Then the modality of (X9 x0) 
is the smallest dimension of an analytic subvariety of 9C meeting each equivalence 
class. The classification of the 0-modular (or simple) and 1-modular (or unimodal) 
hypersurface singularities is due to Arnol'd [2]. We are going to discuss the discrim
inants of these germs. For technical reasons it is convenient to take 
n=dimc(XO9x0)=2. 

2. Rational double points. The two-dimensional simple germs are the rational 
double points [3], [2]; they are characterized by the fact that ( , ) is negative 
definite. Then T must be finite. Since T is generated by reflections which are 
all conjugate in T and stabilizes a lattice, T has to be a Weyl group of type 
A, D or E. Each of these occurs [1]. The discriminant admits a very neat 
description in terms of (V9 T) which we proceed to describe. First recall that the 
T-invariant expressions in the symmetric algebra of VQ form a polynomial algebra 
(this is true for any finite reflection group). So the orbit space VQ\F is as an affine 
algebraic variety isomorphic to Crk(F). The canonical map VQ-^VQ\T is a T-
covering, whose branch locus Dr is the image of the union of reflection hyper-
planes in VQ. The following result was conjectured by Grothendieck and proved by 
Brieskorn [5]: 

THEOREM. The germs (S9 D9 sQ) and (K£/r, DP9 0) are isomorphic. 

A generalization of this theorem to the other rational singularities is due to Lipman 
[14]. There is also an analogue in the real case [18]. Brieskorn's proof is very compu
tational and has been greatly simplified by Slodowy [24]. 

Both proofs depend on a detailed analysis of the unipotent variety of a simple 
Lie group/C. As this has little chance to generalize; we sketch an alternative proof 
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which generalizes at least to the unimodal singularities. It involves a period mapping 
which, loosely speaking is part of the period map for K3 surfaces. 

Choose nowhere vanishing holomorphic forms of maximal rank on both % 
and S. Then their "quotient" determines on the nonsingular part of each fibre 
Xs a holomorphic 2-form m(s). So for any s'9s£S' we get a cohomology class 
[co(s)]eH2(Xs; C). There is a well-defined map P'\ S'-+V%/r which assigns to 
s£S' the T-orbit of the class [co(s)] displaced along a path in S' connecting s' 
with #. It can be proved [15] that P' extends to a map P: S-+ V^/F which is a local 
isomorphism at s0 and maps (D, s0) to (Dr9 0). 

Alternatively, we could pass to the unramified T-covering §' -+S' of (S\ *). 
The above result comes down to that near s09 (i) §'-+S' extends in a unique way 
to a normal T-covering §~+ S ramifying over D and (ii) the canonical lift S' ->• VQ 
of D'P' extends to a local isomorphism B-+Vç, This suggests a similar construc
tion in the general case. Let SfaS denote the Zariski open set of s£S such that 
Xs has at most rational double points. Then we may form the T-covering §f-+Sf 

of (Sf9 #) which ramifies over DnSf. It has the property that Sf is smooth, 
r acts on §f as a reflection group and the period mapping, defined in the same 
way as above, extends to a T-equivariant mapping Sf-^V^. A period mapping, 
thus defined is not unique. But the philosophy is that its "limit behaviour" is 
independent of the choices involved. 

We now consider the unimodal singularities. They fall into three classes: the 
simple elliptic, the hyperbolic and the exceptional singularities. All are minimally 
elliptic in the sense of Laufer [13]. 

3. Simple-elliptic singularities. A simple-elliptic singularity is obtained by taking 
an elliptic curve C, a line bundle / over C of negative degree and collapsing the 
zero section of / to a point. The result is an affine surface X0 with an isolated 
singular point x0. Following Saito [23]; X0 is a hypersurface iff deg(/) £ {— 1, —2, —3}. 
The form (, ) is then negative on V with kernel V1- of rank two. It follows 
from work of Gabrielov [8] that the set of vanishing cycles in V map onto a root 
system RaV/V1- of type £0+deg(/) and thai F acts on VjV1- through the Weyl 
group W(R) of R. This yields a semi-direct product decomposition for T: 

0 - V^^V/V^- - ^— r + W(R) - 1, 

where exp (a<g>b)(x)=x+a(b9x). 
In order to describe the discriminant of (X0, xQ) we construct a certain homogeneous 

space out of the pair (V, T), but where R is allowed to be any irreducible root 
system. Fix an ordered basis (a9 b) of Vx and put 

Q = {û)(EHom(F,C): ïm[co(b)/œ(a)] > 0}/C*. 

There is a canonical projection n : Q -^ffl (= upper half plane) given by œ\-+co(b)/m(a). 
The algebraic group rR:={gÇ.Aut ( ^ ) :^ |F x =id} acts transitively on each fibre 
of n and gives it the structure of a riemannian affine space. 
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THEOREM [16]. There is an (essentially unique) F-line bundle S£ over Q such 
that ©r=o(7C* ,^0fc)r is a polynomial 6^-algebra on rk (F) — 1 generators. 

Spec of this algebra may be described as follows: identify two points in the total 
space of the dual ££ * if they lie in the same T-orbit or when both lie in the zero 
section and have the same image in «If. The resulting space Sr is analytic and the 
canonical map 77: Sr-+3tf is smooth. Mumford pointed out in a letter to Brieskorn 
(May 76) that «£? naturally turns up along certain rational boundary components 
of a symmetric domain of type IV. In particular, he observed that Sr may be 
viewed as a partial compactification of Baily-Borel type of the arithmetic quotient 
(£t?*-zero section)/7"\ 

How this pertains to our problem is expressed by the following result, most of 
which was independently obtained by Pinkham [21]. 

THEOREM [17]. Let (XQ9xQ) be a simple elliptic singularity coming from the 
elliptic curve C\(Z + %Z) with T £ ^ and line bundle 1 with deg( / )£{- l , - 2 , - 3 } . 
Then for a suitable representative of its semi-universal deformation the fibres of F are 
affine surfaces (generically del Pezzo surfaces) and there is a F-equivariant isomorphism 
of §f onto (S£*-zero section) \n~x(JJ') where U is a neighbourhood of % in ffl. 
Moreover the induced map *S'/-̂ 77""1(C/) is defined by the period mapping and extends 
to an isomorphism S-+I1~X(JJ). Finally, the induced map S' -+Sr classifies the 
mixed Hodge structure on H2 (fibre). 

In view of Mumford's interpretation, we may think of Sf as an arithmetic 
quotient and S as a partial compactification of it. This point of view turns out 
to be also very fruitful for the study of the discriminant of the other unimodal sin
gularities. 

The above theorem also enables us to classify the topological types of the fibres 
of F. 

4. Hyperbolic singularities. The hyperbolic germs are characterized by the pro
perty that ( , > has only one positive eigenvalue; the kernel V1 of ( , ) is 
then of rank one. According to Karras [10], they are just the two-dimensional cusp 
singularities of embedding dimension three. More explicitly, a hyperbolic germ 
is given by an equation xp+y9+zr+xyz with l/p + l/#+l//-<:l (we take p <: q ̂  r)9 

which we denote by Tp qr. The structure of F in this case is also due to Gabrielov 
[8] and is best described as follows. There exists a basis B of V/V1- consisting 
of projections of vanishing cycles such that the intersection diagram of B is given by 
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(Here each element B is represented by a vertex and two vertices are (not) connected 
if the corresponding elements have inner product equal to one (zero).) The reflec
tions sô: x*-+x+(x9 ô)ô (ô£B) generate a Coxeter group W for which 
C:={x£VRIVR: (X9ö)^0 for all ö£B} is a chamber. This Coxeter group is 
hyperbolic iff (/?, q9 r) is one of the triples (3, 3, 4), (2, 4, 5) or (2, 3, 7). Now 
r acts on V/V1 via W9 yielding a semi-direct product decomposition 

Q^Vx^V/v±^2^r^w- l. 

The following construction and the subsequent theorem will be in terms of the 
pair (V9 r). (For this purpose the assumption that the intersection diagram of 
B is of type Tpqr may be weakened to (S9<5')s>0 if ö9ö'£B9 unless S=ö' 
for then ((5, <5)=—2 and the group W generated by the s^s is irreducible.) 

The set {xC.C:x^= 2ö^BXö^ W ^ ^ ^ 0 } *s convex nonvacuous and contained 
in precisely one of the two components of {x£VR/VR: (x9x)^0). We denote 
this component by H+. Choose a generator a for Vx and put 

Q := fa £ Horn (V, C): œ/œ(a) maps H^ +VX onto the upper half plane}/C*. 

We may (and in fact, will) identify Q through the assignment a>y-+œ/œ(a) with 
the set of 6o£Hom(F, C) with œ(a) = l and Im (GO) positive on H+ + V1-. In 
this case, Im (co) factorizes over V/V^ and we shall therefore think of Im (co) 
as an element of Horn (VlVA~9 R) (which is positive on / / + ) . It is not hard to see 
that Q is a Siegel domain of the first kind. The group r acts properly and discretely 
on Q. We shall describe a partial compactification of Q/r. Let B"C:VQ/VQ 

denote the dual basis of B and put for any N£R 

Q(N) := {œeQ: Im(co)(<5) ^ 0 for all Ö£B and Im(co)(c) > N for all s^B"}. 

A result of the following kind has been independently conjectured by Mumford. 

THEOREM. The set of F-invariant holomorphic functions which converge on (the 
r-orbit of) some Q(N) form a convergent power series algebra in rk(V)~ 1 in-
determinates. This algebra defines a smooth partial compactification Q/r -+(Q/ry', 
which as a set is obtained by adjoining for each subdiagram Br ofB, having no connec
ted component isomorphic to a Dynkin diagram, a connected manifold SB, of dimen
sion \B-B'\. 

This partial compactification describes the semi-universal deformation of (some of) 
the Tpqr singularities: 

THEOREM. If (p9 q9 r) is a Dolgachev triple [2], then for a suitable representative 
F:!%-+S of a semi-universal deformation of a Tpgr singularity the period mapping 
determines a F-equivariant isomorphism of §f onto the F-orbit of some Q(N). 
The induced map Sf-+Qjr extends to a map S-^Q/r which yields a local isomorphism 
(S9So)-+(Q/r9SB). 
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Most likely, this theorem holds for all T singularities but we haven't been 
able to remove the first condition yet. The result also permits us to determine which 
singularities may occur on a degenerate fibre of F. 

5. Exceptional singularities. A normal surface singularity is called exceptional 
with Dolgachev triple (/?, q9 r)(p*^q<zr) if it admits a resolution whose exceptional 
divisor consists of four smooth rational curves E9 El9 E29 Ea such that E'Et=l9 

ErEj=0 if 1V7, E2=-l9E?=-p9E%=-q and E$=-r. In order to satisfy 
Grauert's criterion we must have l/p+l/q + l/r^l. With this condition there are, 
according to Laufer [12], precisely two exceptional germs with Dolgachev triple 
(P> q*r) (up to analytic isomorphism) : one with C*-action and one without. 
Following Dolgachev [7], for only fourteen of these triples we get hypersurface 
singularities. We only consider the fourteen hypersurface singularities with C*-action. 

For a suitable representative F: &-+S of the semiuniversal deformation of such 
a singularity the C*-action on X0 extends naturally to one on W and S such that 
F becomes equivariant. The union <& of the C*-orbits in $ having x0 in their 
closure is of the form F~1(T) where <& and T are smooth and of codimension 
one in % resp. S. Following Pinkham [21], the smooth fibres of F:&-+T are 
then affine K3 surfaces which admit a common compactification by adjoining at 
infinity a divisor with normal crossings which consists of nodal curves intersecting 
each other according to a T diagram. In fact, Pinkham shows in [22] that 
Tn S' is a moduli space for marked K3 surfaces endowed with a Tpqr configura
tion of nodal curves as described above. Using the global Torelli theorem for K3 
surfaces, he then obtains a good description for r. In Brieskorn's reformulation 
it amounts to the following: if r c K Q denotes the dual of V9 then r consists 
of the g£A\xt(V) which act trivially on V"/V and leave each of the two components 
of the space of oriented positive 2-planes in VR invariant. 

Pinkham's compactification of X determines a primitive embedding of V in 
the 2nd homology lattice L of a K3 surface (following Nikulin [19] such an em
bedding is unique) and a distinguished base B of the orthogonal complement of 
V in L (the elements of B are the classes of the nodal curves). We say that a set 
of linearly independent elements, B'aL disturbs the polarization ifTor any ô9ô'£B 
we have (<5, S')^0 unless ò=ò'\ (ô, ô)= - 2 , each element of B is a positive 
linear combination of the elements of B/ and B^B'. (If B'aL disturbs the pola
rization and consists of algebraic cycles, then at least one of the elements of B is 
necessarily represented by a reducible curve.) 

We now let Q denote one of the (two) components of {co 6 Horn (V9 C) : (œ9 co)=0 
and (co, èïï)>0}. This is the total space of the canonical C*-bundle of a symmetric 
domain of type IV. We further put Q'={co£Q: <D\VnZ*B' is nonzero for any 
subset B'aL which disturbs the polarization}. The difference Q — QÏ is a union 
of hyperplanes which is locally finite. 

THEOREM. The period mapping for K3 surfaces determines an isomorphism ff-*Q'. 
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The main ingredients of the proof of this theorem are Laufer's characterization 
of rational double points [11] and the local Torelli theorem for K3 surfaces. On 
the whole it is fairly elementary (we do not use the global Torelli theorem). Still 
lacking is a description of the partial compactification Q'jr ^ Tfa T. There is 
a canonical extension QjF-^T9 but this map blows up over the set of t£T where 
Xt contains an exceptional singularity. It is almost certain that we must add the 
classifying space of the mixed Hodge structure on H2 (fibre less its singular points) 
for each occurring fibre type. For the three cases of lowest dimension (where ß=ß ' ) , 
Brieskorn [6] verified that QjFtzT is topologically of Baily-Borel type. 

Added in proof The theorems in sections 3 and 4 describing partial compactifica-
tions admit a very natural common generalization in the framework of generalized 
root systems (in the sense of Kac and Moody). Details are forthcoming. 
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Young Diagrams, Standard Monomials and 
Invariant Theory 

Claudio Procesi 

The topics I want to treat have various sources: (1) the fundamental theorems of 
invariant theory of the classical groups, (2) the representation theory of classical 
groups, (3) the geometry of the Grassmann and flag varieties. 

The initial interest in these questions came for me from the solution given by 
Formanek and myself, [8], of Mumford's conjecture for the linear group, [25], 
obtained independently from the general solution due to Haboush [9]. 

Our approach consisted in relating the geometric reductivity of the group Gl (V) 
with a property of the symmetric group Sm acting on the tensor space F®MI. 

In fact, in characteristic zero, one classical approach to the representation theory 
of Gl (V)9 and in particular to the proof that it is linearly reductive, is the following 
[27], [291: 

The algebras of operators spanned by the symmetric group and by Gl (V) on 
V®m are each the full centralizer of the other. In characteristic zero then one can 
apply the theory of semisimple algebras. 

In positive characteristic, if we consider the algebra Sm spanned by Sm on 
V® n\ we have that Im is no more semisimple but nevertheless the limit r=limwl^00 Im 

is semisimple in the sense of Jacobson and this suffices to prove the geometric 
reductivity of G\(V). 

This analysis led naturally to the question of extending the classical relations 
between G\(V) and Sm to all characteristics; in particular to prove that Sm = 
EndG]00(F®'»). 

It was well known that this equality is a simple consequence. of a statement in 
invariant theory, the so-called first fundamental theorem, to which it is equivalent 
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in characteristic zero. Similar questions arise for the other classical groups which 
require a similar (or sometimes more complicated) analysis [29]. 

The relation with invariant theory comes from the identification End(F®wl) = 
(V*m®V**ny and hence the identification of EndG1(F) (V®m) with the multi
linear invariant polynomials in m vector and m covector variables. 

It turns out, in positive characteristic, that it is possible to study first all the 
invariant polynomials and then deduce the form of the multilinear ones. 

1. Fundamental theorems of classical invariant theory. Let us state, in a form 
slightly different from the usual one, the fundamental theorems of invariant theory 
of the classical groups, (see [29] for the theory in char 0). 

(i) G=G\(n9 k). Consider multiplication of matrices n: Mkt„XM„th-+ 
Mkth{{A9B)-+AB}9 with image the variety V„ of kXh matrices of rank ^n. 

FIRST FUNDAMENTAL THEOREM. The coordinate ring of Vn is the ring of invariants 
of G acting on Mkt1lXMlith by X>(A9 B) = (AX~1

9 XB). 

SECOND FUNDAMENTAL THEOREM. The ideal of functions on Mkh vanishing on 
V„ is generated by the n +1X n + 1 minors. 

We should remark that there exists now in characteristic 0 a beautiful theory 
of the higher syzygies due to A. Lascoux [15], [22], [23]. Similar theorems hold for 
the other classical groups. 

These theorems, with the exception of the very last, are all classical in charac
teristic zero and can be found in H. Weyl's book [29]. 

The second fundamental theorems and various qualitative results on the deter-
minantal varieties have been the object of intensive study by many authors both 
in positive and zero characteristics [10], [11], [21], [26]. 

In a joint paper with De Concini [5] we attacked all these problems in the spirit 
of Igusa's proof of the projective normality for the Grassmann variety [14], again 
a classical theorem of invariant theory for SI (n9 K). His approach was through 
a careful analysis of the projective coordinate ring of the Grassmann variety. Such 
ring, as the one for the flag variety, were always fundamental objects in invariant 
theory [1] (the classical primary covariants of the Capelli-Deruyts expansion), 
the explicit bases (standard bases) for such rings were popularized by Hodge [12], 
[13] (although they seem to have been known to Young [30]). 

They give, in algebra, very explicit descriptions of the irreducible representations 
of the linear groups and the symmetric group (in characteristic zero), in geometry 
a very thorough understanding of the cellular decomposition of the Grassmann and 
flag varieties (by Schubert cells). 

In char 0 the theory is based on the fact that the irreducible polynomial represen
tations of G\(V) can be indexed, as La(V)9 by partitions o. One has the classical 
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plethysm formulas : 

S[V®W] = ®La(V)®La(W)> 

S[S2V] = © La(V)9 o has even columns, 

S[A2V] = © La(V)> a has even rows 

(nevertheless the space La(V) is defined over Z!). 

2. Standard bases. If Y—(yij) is an nXm matrix, we indicate by 
P=Qk'~hh\JiJ*'--Jk) the determinant of the minor with rows //s, columns ju's. 
If ^ J ^ J ' - J A

 a r e minors of size o\h1^h^...^hk9 we display their product 
M as a double tableau with rows the /?/s. We say that AT is a standard monomial 
(of shape o) if the indices are strictly increasing on each row, non decreasing on 
each column, (separately on the right and on the left) [4], [7]. A similar definition 
holds for Y symmetric or antisymmetric. 

THEOREM. The standard monomials (in each case) are a Z basis of Z[y.j]. (Cf. 
[4], [7], [12].) 

The theorems stated are very convenient to study the coordinate rings of the 
various determinantal varieties appearing in the fundamental theorems of invariant 
theory, in fact such theorems can be proved in a characteristic free way [5], precisely 
by using such standard bases. 

In fact the previous form of the theorems contains explicit algorithms, by use of 
quadratic equations, to express a non standard product in terms of standard ones. 

To a partition a : kt >* k2 ̂ . . . >= kr associate the dual partition o : hx ^ hz ^ . . . ^ hi 

with h^faj'lkjT&i} and a sequence yi(p)=2jmi^J» ^ i e n se* °"^T ^ ^M^V/CO 
for all 7. 

A filtration of Z[y.j] is defined setting 4̂ff = span of all standard monomials of 
shape ^cr. It has the following geometric interpretation [3]: A0 is exactly the ideal 
of functions vanishing, for each /, on the variety Pi of matrices of rank i to order 

>Vi+i(ff)-
The graded space of this G invariant filtration has again the direct sum de

composition as in the Plethysm formulas. 

3. Admissible pairs. More or less at the same time that these standard bases were 
studied for the invariant theory of classical groups, Musili [26] and Seshadri [28] 
analyzed the relationship between standard bases and Schubert cells having in 
mind a better understanding of the vanishing theorems (proved in general by 
Kempf [16] ; see also [17]) for the cohomology of line bundles in the positive chamber 
on a variety G/P9 G a reductive group, P a parabolic subgroup, 

If the parabolic P is associated to a fundamental weight co9 with Lm the cor
responding line bundle, the purpose of the analysis is first of all to understand 
H°(GjP9 L'"). This was done, first of all, when m is minuscule. In this case one has 
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a basis of H°(G/P9 Lœ) by extremal weight vectors which index the Bruhat cells 
of GIP. 

The face ordering of Bruhat cells induces a partial ordering on these generalized 
Plücker coordinates which also satisfy quadratic equations, so that: 

THEOREM. The standard monomials of degree m in such coordinates are a basis 
of H°(GIP9L'»). 

This theorem includes, by suitable interpretation, the standard basis theory for 
S[V®W] and S[AW]. 

The case S[S2V] can be interpreted as a theorem on H°(G/P9L™) (G the 
symplectic group) but it is related to a non minuscule weight. 

From this example Lakshmibai, Musili and Seshadri have been able to formulate 
[20] and prove [19] a general theorem. The hypothesis is that co is a "classical 
weight", this means that intersecting a Schubert variety (closure of a Bruhat cell) 
with the hyperplane class one obtains the Schubert varieties ai faces of a with 
multiplicity < 2 . We can draw a diagram of the ordered set of Bruhat cells, with 
a double bond each time that the intersection multiplicity is 2. 

One defines an admissible pair of cells as one which can be joined by a sequence 
of double bonds. The pairs (T, T) are considered admissible and called trivial pairs. 

THEOREM. (LAKSHMIBAI, MUSILI, SESHADRI [19].) 

(a) There is a basis Pxa of H*(G\P9L^ indexed by admissible pairs. Pxa is 
a weight vector of weight — ^(T(CU)+O(O)). 

(b) Define a product Px a Px^n... Px a tobe standard if%1^<T1^t2i^G^^...^%k^ak. 
The standard monomials of degree m are a basis of H°(G/P9 L™). 

A similar but more complicated analysis gives, for classical groups, standard 
bases of H°(G/B, L)9 B a Borei subgroup and L any positive line bundle. 

4. Combinatorial theory of invariant ideals. We go back to the decomposition 
A = S[V®W]= ®La(V)®Lff(W). The module Ma=La(V)®La(W) is irreducible 
under G = G1 (F)XG1 (W). Any invariant subspace / of A is thus of the form 
0 f f€ i fM f f for some set J> of partitions. In particular one may study G invariant 
ideals; this has been accomplished in joint work with De Concini and Eisenbud [3], 
We summarize the results. 

DEFINITION. A set J of partitions is an "ideal" if: &£*? and T 2 J implies T£« / . 

(If a:k1^k2^...^kr9z:m1^...^mr we say T 3 ( 7 if mt^kf forali / . ) 

THEOREM. The decomposition 7=©ff€^Af0. establishes a 1-1 correspondence 
between G-invariant ideals of A and "ideals" of partitions. 

DEFINITION, G • T is the partition having as columns the sum of the corresponding 
columns. 
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DEFINITION, (a) An "ideal" J of partitions is prime if GZ£J9 G^J implies T é . / . 

(b) l/y={o-|<Tfc6J^ for some k}. 

(c) J* is primary if o r6 . / , G$fö implies i£j. 

THEOREM. The 1-1 correspondence previously given preserves the notions of prime, 
primary and radical. 

As an example let us define Ia as the (G-invariant) ideal generated by Ma. Ia cor
responds to the "principal ideal" of partitions (GT) = {T]T2CT}. Then Ia has a nice 
primary decomposition : e.g. 

a = 

i . ! 
. . i . . . i 

1 
1 

ff1}ff2,cr3, GA the diagrams of maximal rectangles in o9 then: Ia—Ia nla nlff r\Ia . 

THEOREM, (i) Aa=IkL..\ (fr:kx^k^...^kr). 
(ii) Aa=/<*<*» n /2

(V2(ffJ) n . . . n /,(/»(ff)) 

(where P (m) meûM fAe symbolic power) is a primary decomposition. 
(iii) Aa is the integral closure of Ja. 

THEOREM. An integrally closed G-invariant ideal is of the form ZAff with the 
restriction: 

If V ( T ) ^ convex combination of yfo), then y(z)>> some y (off). 

We want to mention a last result which can be obtained by using all the ingredients 
of the theory [4]: Let Ifp denote the nth symbolic power of Ih. The algebra 
#~©w/fc")/Jr/c,,+1) has a very explicit theory of standard monomials and: 

(i) B is a finitely generated algebra; 
(ii) B is normal and Cohen-Macaulay; 

(iii) B is the ring of global functions on the normal bundle (in the affine space 
of matrices) of the variety of matrices of rank k—1. 

References 

1. A. Capelli, Lezioni sulla teoria delle forme algebriche, Xibr, Sci, Pellerano, Napoli, 1902. 
2. C. De Concini, Standard symplectic tableaux, Advances in Math, (to appear). 
3. C. De Concini, D. Eisenbud and C. Procesi, Young diagrams and determinantal varieties-

(preprint). 
4. Algebras with a straightening law (preprint). 



542 Claudio Procesi; Young Diagrams, Standard Monomials and Invariant Theory 

5. C. De Concini and C. Procesi, A characteristic free approach to invariant theory, Advances in 
Math. 21 (1976), 330-354. 

6. D. Desarmenien, J. P. S. Kung and G. C. Rota, Invariant theory, Young bitableaux, and com
binatorics, Advances in Math. 27 (1978), 63—92. 

7. P. Doubilet, G. C. Rota and J. Stein, On the foundations of combinatorial theory : IX, combinatorial 
methods in invariant theory, Studies in Appi, Math. 103 (1974), 185—216. 

8. E. Formanek and C. Procesi, Mum ford's conjecture for the general linear group, Advances in 
Math. 19 (1976), 292—305. 

9. W. J. Haboush, Reductive groups are geometrically reductive, Ann. of Math. 102 (1975), 375— 
376. 

10. M. Höchster, Grassmannians and their Schubert varieties are arithmetically Cohen-Macaulay, 
J. Algebra 25 (1973), 40—57. 

11. M. Höchster and J. A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic per
fection of the determinantal loci, Amer. J. Math. 93 (1971), 1020—1058. 

12. W. ,V. D. Hodge, Some enumerative results in the theory of forms, Proc. Cambridge Philos. 
Soc. 39 (1943), 22—30. 

13. W. V. D. Hodge and D. Pedoe, Methods of algebraic geometry, Vol. II, Cambridge Univ. 
Press, London, 1952. 

14. J. Igusa, On the arithmetic normality of the Grassmann variety, Proc. Nat. Acad. Sci. U. S.A. 
40(1954), 309—313. 

15. T. Jozefiak and P. Pragacz, Syzigies de Pfaffiens (preprint). 
16. G. R. Kempf, Linear systems an homogeneous spaces, Ann. of Math. 103 (1976), 557—591. 
17. V. Lakshmibai, C. Musili and C. S. Seshadri, Cohomology of line bundles on G/B, Ann. Sci. 

École Norm. Sup. 7 (1974), 89—138. 
18. Geometry of G/P. Ill (Standard monomial theory for quasi-minuscule P), Proc. 

Indian Acad. Sci. (to appear). 
19. Geometry of G/P.IV (Standard monomial theory for classical types) (to appear). 
20. V. Lakshmibai and C. S. Seshadri, Geometry ofG/P.ll (The work of De Concini and Procesi 

and the basic conjectures), Proc. Indian Acad. Sci. 87A (1978), 1—54. 
21. D. Laksov, The arithmetic Cohen-Macaulay character of Schubert'schemes, Acta Math. 129 

(1972), 1—9. 
22. A. Lascoux, Syzygies of determinant al varieties, Advances in Math. 30 (1978), 202—237. 
23. Syzygies pour les mineurs de matrices symétriques, preprint, Paris 1977. 
24. D. E. Littlewood, The theory of group characters and matrix representations of groups, 2nd 

ed., Clarendon Press, Oxford, 1950. 
25. D. Mumford, Geometric invariant theory, Springer-Verlag, New York, 1965. 
26. C. Musili, Postulation formula for Schubert varieties, J. Indian Math. Soc. 36 (1972), 143— 

171. 
27. I. Schur, Gesammelte Abhandlungen, Springer-Verlag, Berlin, 1973. 
28. C. S. Seshadri, Geometry of G/P.l (Standard monomial theory for a minuscule P), C. P. 

Ramanujan: A tribute, Tata Institute of Fundamental Research (to appear). 
29. H. Weyl, The classical groups, Princeton Univ. Press, Princeton, N. J., 1946. 
30. A. Young, On quantitative substitutional analysis (third paper), Proc. London Math. Soc 2 

(1927), 255—292. 

UNIVERSITY OF ROME 

00100 ROME, ITALY 



Proceedings of the International Congress of Mathematicians 
Helsinki, 1978 

Vector Bundles over Algebraic Curves 

S. Ramanan 

1. The subject of vector bundles over curves goes back, as much else in algebraic 
geometry, to A. Weil. In his famous Generalization des fonctions abeliennes [18] 
which appeared in 1938, he was principally motivated in his study by the possibility 
of creating a "non-abelian class field theory" for function fields. From this point 
of view, Drinfeld's recent solution of the Langlands conjecture and the Ramanujan 
conjecture is one of the high points. In [18], Weil realized the importance of vector 
bundles obtained from unitary representations of the fundamental group. He was 
no doubt puzzled by the fact that the equivalence classes of unitary representations 
of the fundamental group have the same number of parameters as a generic vector 
bundle, but is, on the other hand, a compact variety. However, he remarks that 
every vector bundle ("without restriction") does not necessarily come from a 
unitary representation. 

2. Despite Atiyah's results on vector bundles over elliptic curves [2] and a slight 
dent on the genus 2 case [1], matters stood still more or less until Geometric Invariant 
Theory gave a clue to Mumford [7] why all bundles are not classifiable and more 
significantly, what bundles can be classified, in the sense of providing a variety 
whose points correspond to isomorphism-classes of vector bundles. These were 
called stable vector bundles by him after his concept of stability of points under 
action by reductive groups. (See Gieseker's talk in these Proceedings.) If E is 
a vector bundle of rank n>09 let us denote by det E the wtli exterior power of E. 
Now det E is a line bundle and hence has the notion of a degree, namely the sum 
of multiplicities of zeros or poles, of any of its nonzero meromorphic sections 
(which exist). We will write deg£,=deg(det£') and jji(E)=degE/rkE. Astable 
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bundle E is a vector bundle such that for every proper subbundle F9 we have 
li(F)^ii{E). 

3. Mumford [7] showed that the equivalence classes of stable vector bundles 
of a given topological type form a quasiprojective variety with reasonable universal 
properties. These results were completed by Seshadri [15] in an essential detail 
which we will now describe. A vector bundle £ on I is semistable if every sub-
bundle F satisfies ii(F)^}i(E). If E is any semistable vector bundle with ß(E)=fi9 

then it is easy to see that there exists a flag 

(3.1) 0 = E0aE1c:...c:Er = E 

of E with p(Ei)=ii and EJEi^1 stable for 7 = 1, ..., r. Although such a flag 
is not necessarily unique, we nevertheless have, as in Jordan-Holder 

THEOREM. 2^tl^i-i 1S uniquely determined by E. 

Let us call this bundle Gr E. We say 
(3.2) £is S-equivalent to E' if G r £ ~ G r E\ Notice that if E is stable, £-equi-

valance is the same as isomorphism. Then Seshadri proved that the ^-equivalence 
classes of semistable vector bundles of fixed rank n and degree d form a projective 
variety M(n9 d). When «=1, this is the classical Jacobian. 

4. I must point out here that a stable bundle E is indecomposable in the sense 
that E is not a direct sum of proper subbundles Fx and F29 for, we cannot have 
/j(i<i)</*(£) and ii(F2)<fi(E) since degj£=deg jPx+deg F2. On the other hand, 
a semistable vector bundle could well be decomposable. Secondly, if the rank 
n and degree d are coprirne, then there is no difference between the requirements 
}i(F)-<ii{E) and fi(F)^fi(E) so that the Mumford variety is itself projective. 

5. We will now discuss in what sense the structures on M(n9 d) are natural. 
If T is any variety and E is a vector bundle on TXX with E/txX semistable of 
rank n and degree d for every t£T9 then the map /w(^-equivalence class of 
EjtxX) of T into M(«, d)9 is a morphism. Actually, one might also like to get 
a vector bundle P/TXX with P/tXX a semistable bundle in the ^-equivalence 
class of t9 for every t^M{n9 d). In the case of Jacobians, such a bundle does exist 
and is known as the Poincaré bundle. However, in general this turns out to be too 
optimistic. I showed [13] that actually the existence of such a bundle is equivalent 
to the assumption that n and d are coprirne. Thus if n and d are coprirne, 
M(nf d) is a projective, nonsingular variety which is the solution of an obvious 
universal problem. Incidentally, except for the case «=2, rf==0 (mod 2) and the 
curve is of genus 2, M(n9d) is nonsingular if and only if n and d are coprirne [8]. 
Since bundles given by unitary (resp. irreducible unitary) representations of the 
fundamental group (or other Fuchsian groups) can be easily proved to be semistable 
(resp. stable), it can be deduced [11] that M(n9 d) is the same as the space Weil 
had in mind and one may say that the puzzle is satisfactorily solved. 
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6. Regarding a study of these varieties, consider the morphism det; M(n9d)-+ 
M(l9 d)9 the latter being the classical Jacobian variety. This is actually a fibration 
and hence one might restrict oneself to a study of the fibre S(n9 Ç) over £(E.M(1, d). 
Since the dependence of S(n9 0 on Ç is minimal one might also write S(n9 d) 
for this fibre. 

7. A crucial advantage in the point of view that M(n9 d) is a space of semistable 
bundles rather than unitary representations of a Fuchsian group is that the construc
tion works over fields of any characteristic. In particular, if X is defined over 
a finite field Fa9 one might expect (at least after replacing Fq by a finite extension 
and when n and d are coprirne) that M(n9 d) is also defined over Fq and that the 
/^-rational points of M(n9 d) are the same as /^-rational vector bundles over X. 
In this regard, there is an interesting melange which uses the Weil conjectures for 
S(n9 Ç), the computation of Tamagawa measure for SL (n) over function fields 
and the topology of S(n9 £). This was pointed out to us several years ago by Weil 
and has been exploited by G. Harder, M. S. Narasimhan, U. V. Desale and myself 
[5], [6]. Indeed, the fact that the Tamagawa measure is 1 can be interpreted to mean 
that the expression 

det£=e # A u t £ 

where the summation is taken over all /^-rational bundles over X with fixed deter
minant, is actually gdim5(w»d)fx(2) ...£*(«), where £x is the zeta function of X. 
Note that in the above expression, bundles E with no nontrivial automorphisms 
are counted only once, so that the contribution from the stable bundles alone would 
give the zeta function of M(n9 d). On the other hand, the nonsemistable bundles 
can bé written uniquely as extensions of semistable bundles of lower rank of a definite 
type and this enables one to get a recurrence formula for the zeta function of M(n9 d). 

8. If S(n9 f) is considered the nonabelian Jacobian-Weil calls it the hyper 
Jacobian—then one might ask for analogues for the classical theorems on Jacobians. 
For example, is the Torelli theorem valid? In other words, if the hyper Jacobians 
of two curves are isomorphic, are the curves themselves isomorphic? (By the way, 
since S(n9 £,) can be proved to have a unique polarisation, one need not talk of 
polarised isomorphisms). The answer is yes, as first noticed by Tjurin [17]. But the 
surprising fact found by M. S. Narasimhan and myself [9] is that any deformation 
of S(n9 Ö arises from that of the curve. This is in marked contrast with the classical 
case, where the moduli Jl of curves interpreted as principally polarised Abelian 
varieties satisfying some conditions (such as the Matsusaka criterion) is a sub-
variety of the Siegel Half space ffl modulo the modular group T9 of high codimen-
sion. 

9. As far as the generalisation of theta functions to S(n9 Ç) is concerned (if, 
by that one means a study of linear systems on S(n9 £)), not much is known. Unlike 
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the case of the Jacobian (indeed, any abelian variety) where the space of theta func
tions is a representation space for a rather simple nilpotent group (a Heisenberg 
group), the only group that operates on linear systems of S(n9 Ç) is the group of 
/7-division points of the Jacobian. The only other "structure" of the variety S(n9 Ç) 
that has been exploited is the Hecke transformation at a place of the curve. This 
consists in changing the fibre of a vector bundle at a given point to get a new vector 
bundle. Although the correspondence is "non-flat", this has proved to be a good tool 
in our proof of the theorem mentioned in § 8 above, and also in the construction of 
a desingularised model for S(29 0) [10]. As a matter of fact, the latter is a rather 
difficult exercise in the flattening of the Hecke correspondence mentioned above. 
For an alternate description, see Seshadri [16]. 

10. The varieties £(2, ^) have been explicitly determined [5] in the case when 
X is hyperelliptic. Since this is a very simple description, I shall give it in full. 
Consider in p20+1 the equations 

2 ^ = 0, 2kxf = n 

where V s are distinct scalars determined by X. The linear subspaces of dim(g —2) 
contained in both the quadrics above, form a variety isomorphic to £(2, 1). 
I have obtained further results recently [14] interpreting linear subspaces of other 
dimensions contained in these quadrics as /-invariant "spin bundles of odd type" 
over X. In particular, the intersection of quadrics is itself a moduli space of some 
kind over X. This was proved by Newstead [12] and Narasimhan and Ramanan [8] 
in the case of a curve of genus 2. Curiously, in a short note, Weil [19] while verifying 
his famous conjectures for the intersection of quadrics, raises the question of the 
relationship between the pencil of quadrics and the hyperelliptic curve. 

11. Besides the intrinsic interest of the study of vector bundles, it may be pointed 
out that a deeper understanding of these varieties have thrown light on apparently 
unrelated questions, One such has been mentioned in § 10 above. The Schottky 
relations defining Ji (at least as a component) in 3tf\T with the notation in § 8 
and the behaviour of the 20-linear system on the Jacobian where 0 is the principal 
polarisation are examples of this kind. A particularly interesting result due to 
Atiyah and Bott [3] ties the moduli of vector bundles with the Yang-Mills fields 
and actually yields topological results, making fascinating interconnection between 
algebraic and differential geometry. 
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Classification of Algebraic Manifolds 

Kenji Ueno 

0. Introduction. By the classification theory, we mean the birational classification 
of algebraic manifolds which is the generalization of the Enriques classification of 
algebraic surfaces. Namely, we classify all algebraic manifolds of a fixed dimension 
into a finite number of classes and study general properties of manifolds in each 
class. It also includes the numerical characterization of special algebraic manifolds. 
For example, if S is a surface with x(S)= — °°9 q(S)=09 then S is birationally 
equivalent to P2 and if x(S)=09 q(S)=29 then S is birationally equivalent 
to an abelian surface. 

The classification of algebraic surfaces was done by Italian algebraic geometers, 
especially Enriques and Castelnuovo more than sixty years ago. For the classification 
of higher dimensional manifolds, in spite of several efforts, except few results, there 
was no essential progress until the middle of the 1960s. In 1964 Hironaka [2] proved 
the resolution theorem of singularities and rational mappings and gave us the founda
tion of the birational geometry. Kodaira [5] studied the structure of analytic 
surfaces and succeeded to generalize the classification of algebraic surfaces to that 
of analytic surfaces. Inspired by Kodaira's work, in 1965 Kawai [4] succeeded to 
prove the theorem that a compact complex manifold of dimension 3 whose mero-
morphic function field is of transcendence degree 2 has a structure of fibre space 
over an algebraic surface whose general fibres are elliptic curves. The result of 
Kawai is of nonalgebraic nature. But this was the first general statement concerning 
the structure of higher dimensional manifolds and his success encouraged us to 
build the classification theory. 

The first definite step toward the classification theory was taken by Iitaka [3] 
in 1971. He introduced the notion of Kodaira dimension and proved the funda-
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mental theorem for pluricanonical fibrations. The main purpose of the present 
paper is to report the recent development in this direction. 

In the present paper, all algebraic varieties are assumed to be complete, irreducible 
and defined over the complex number field C. A non-singular algebraic variety is 
called an algebraic manifold. By a fibre space cp: V-+W of algebraic varieties, we 
mean that cp is a surjective morphism between algebraic varieties and general 
fibres of cp are connected. 

1. Kodaira dimension. Let V be an algebraic manifold and Kv the canonical 
line bundle (or a canonical divisor). For a positive integer m9 we put Pm(V) = 
h\V9 ®(mKv)) and call it the w-genus of V. PX(V) is often written as pg(V) and 
called the geometric genus of V. Put N(V)={m^l\Pm(V)^l}. Assume N(V)^0. 
Then, for each integer m£N(V)9 we define a rational mapping (the mih canonical 
mapping) as 

z^(cp0(z): cpx(z):...\cpN(z)) 

where {cp09 cpl9..., <pN} is a basis of H°(V9 @(mKv)) and P° is, by definition, 
a point. The Kodaira dimension x(V) of V is defined by 

f max dim$H ,x0O, if N(V) ^ 0, 

I - - , if 2V(F) = 0. 

Thus H(K) takes one of the values — °o, 0, 1, ..., dim V. Pm(V) and H(K) are 
birational invariants. Therefore, for a singular algebraic variety V9 the m-genus 
Pm(V) and the Kodaira dimension x(V) of V are defined by 

w ^ . n x(v) = x(v*) 
where V* is a nonsingular model of K. 

The Kodaira dimension has the following important properties. 
(1.1) For an algebraic manifold V9 with x(V)y*09 there exist positive numbers 

a,/? such that for any integer m£N(V) we have 

am**'') ^ Pm(V) ^ ßm*<y\ 

(1.2) If x(V)^0 for an algebraic manifold V9 we have 

^([/) = t r d e g c i ? [ ) / ] - l 1 

where R[V] = ®^0H°(V9 (9{mKv)) is the canonical ring of V. 
(1.3) If cp: V-+W is a surjective rational mapping with dim V= dim W9 we have 

x(V)^x(W). Moreover, if <p is étale, we have x(V) = x(W). 

1 Because of this fact, some mathematicians use x= — l instead of x— — °°. But this is quite 
inconvenient to write the formulas (1.4) (1.5), Conjecture C„ below, etc. 
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(1.4) x(VXW)=x(V) + x(W). 

(1.5) Let cp; V-+W be a fibre space. Then we have 

x(V)^dimW+x(VM) 

where Vw is a general fibre of cp. 

EXAMPJLE 1. (a) For a nonsingular curve C we have the following table, 

MC) 

•— oo 
0 
1 

genus 

0 
1 

>2 

structure 

P1 

elliptic curve 
Kc is ample 

- o o ? 

o, 
», 

if 
if 
if 

d < 11+2, 
d = n+2, 
d> n + 2. 

(b) Let VI be a nonsingular hypersurface of degree d in P"+ 1 . 

x{V$) -

(c) Suppose that there is a surjective rational mapping from an abelian variety 
A to an algebraic variety V. Then we have 

x(V) ^ 0. 

Another important birational invariance of an algebraic manifold V is the first 
irregularity q(V) defined by q(V)=h1(V9@v). Since F i s algebraic, we have 
q(V)=g1(V) = àimA(V)9 where g1(V)=hQ(V9 Q],) and A(V) is the Albanese 
variety of V. 

2. Pluricanonical mappings and Albanese mappings. The following theorem is 
important for our classification theory. 

THEOREM 1 (IITAKA [3]). Assume x(V)^0. Then there exist algebraic manifolds 
F*, W and a surjective morphism cp: V* ~+W which satisfy the following conditions. 

(1) dim W=x(V). 
(2) cp has connected fibres. 
(3) There exists a dense subset U of W in the complex topology sud} that for 

each u£U9 Vv-cp~1(u) is smooth and x(Vti)=0. 
(4) cp: V* -+W is birationally equivalent to &mK: V^i¥in==$mK(V) for a sufficiently 

large m£N(V). 

EXAMPLE 2. Let F be a subvariety of an abelian variety. Then there exists 
an abelian variety A and an algebraic variety Y such that V has a structure 
n : V-+ Y of a fibre bundle over Y in the sense of étale topology whose fibre is an 
abelian variety A and that dim Y=x(V) = x(Y). n: V~+ Y is birationally equivalent 
to the above fibration cp : V*-* W. 
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An algebraic variety V is said to be of elliptic type (resp. parabolic type, hyperbolic 
type (general type)) if x(V)=—°° (resp. x(V)=09x(y)=dimV). The above 
theorem shows that the study of the birational structures of algebraic manifolds is 
reduced to the following problems. 

Problem A. Study the structures of algebraic manifolds of elliptic, parabolic and 
hyperbolic types. 

Problem B. Study the fibre spaces whose general fibres are of parabolic type. 

From the above theorem we infer that if V is of parabolic type, then $mK is 
birational for sufficiently large m. 

Let us recall the classification of algebraic surfaces. 

X 

2 

1 

0 

_ o o 

a 

2 

1 

0 

>1 

0 

Structure 

0wK is birational for m^5. 
(surface of general type) * 

general fibres of &mK are 
elliptic curves for 7W»0. 
(elliptic surface) 

abelian surface 

hyperelliptic surface 

K 3 surface, Enriques surface 

ruled surface 

rational surface 

In this table, the cases x=29 0, — » give the solutions to Problem A and the 
study of elliptic surfaces due to Kodaira [5] gives the solution to Problem B. Surfaces 
of general type are being studied by several mathematicians. 

The classification theory of surfaces of parabolic or elliptic type shows us the im
portance of Albanese mappings The following theorem plays an important role for 
the classification of higher dimensional algebraic manifolds. 

THEOREM 2 (UENO [8,1]). Let a: V-+A(V) be the Albanese mapping of V. Then 
we have x(u(V))>>0. Moreover, the equality holds if and only if a is surjective. 

The fibres of the Albanese mapping a: V~*a{V) is not necessarily connected. 
Hence we take the Stein factorization ß: V-*W9 y: rV-»(x(V) such that a = y-/?, 
ß has connected fibres and y is finite. Then we have x(W)TS»X(a(V))^0. ß:V-+W 
is called the fibre space associated with the Albanese mapping. 

Concerning the Albanese mapping of algebraic manifolds of parabolic type, we 
have the following conjectures. 
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CONJECTURE A„ . Let V be an n-dimensional algebraic manifold of parabolic 
type. Then the Albanese mapping is surjective. 

CONJECTURE Bn. If X(V)=09 q(V) = dim V—n, then the Albanese mapping of 
V is birational. 

More generally we have 

CONJECTURE Kn, Let V be an n-dimensional algebraic manifold of parabolic 
type. Then the Albanese mapping a: V-+A(V) is birationally equivalent to an étale 
fibre bundle over A(V) whose fibre is an algebraic manifold of parabolic type. 

The converse is true by virtue of Theorem 3 below. 

3. Conjecture Cn>TO and algebraic threefolds. To attack the above conjectures, 
it is important to consider the following 

CONJECTURE C„>m. Let cp: V~+W be a fibre space with dim V=n9 dim W~m. 
We have the inequality 

x(V)^x(W)+x(Vw) 

where Vw is a general fibre of cp. 

For several applications, the following weaker conjecture is sufficient. 

CONJECTURE C'nm. Let cp: V-+W be the same as above. Assume, furthermore, 
that W is of hyperbolic type and x(Vw)^09 for a general fibre Vw of cp. Then we 
have x(V)>0. 

Combining Theorem 2 and Example 2, we can prove the following 

PROPOSITION 1. Assume that C,„iJn holds for any m~<n. Then the Conjecture 
An holds. 

Similarly we show the following 

PROPOSITION 2. Let V be an n-dimensional algebraic manifold of elliptic type. 
Assume that C„tm holds for any m<n. Then general fibres of the fibre space ß: V-+W 
associated with the Albanese mapping of V are of elliptic type. 

We have the following affirmative answers to the above conjecture C„tm. 

THEOREM 3 (NAKAMURA-UENO [6]). Let cp : V-+ W be an analytic fibre bundle 
over a compact complex manifold W whose fibre is an algebraic manifold F with 
structure group Aut (F). Then we have 

x(V) = x(W)+x(F), 

Note that for a compact complex manifold we can define the Kodaira dimension 
similarly. The proof is based on the following interesting observation. 

As Aut(F) operates on H°(V96(mKF))9 we have a natural representation 

Qm: Aut (F) - Aut (H°(V9 (S(mKF))). 
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Then the image of Qm is a finite group, provided F is algebraic. This fact does 
not necessarily hold for a nonalgebraic manifold. Hence Conjecture C„tJn does 
not necessarily hold for an analytic fibre bundle whose fibre is a non-algebraic 
compact complex manifold [6]. 

THEOREM 4 (VIEHWEG [11]). <?„,„_! holds. 

The proof is based on the moduli theory of stable curves. That is, we need a good 
compactification of the moduli space of curves. The next theorem is also proved by 
using the moduli theory of polarized abelian varieties. Though there is no good 
theory of stable abelian varieties, we can use the toroidal relative compactification s 
of families of polarized abelian varieties due to Namikawa [7]. 

THEOREM 5 (UENO [10]). If general fibres of a fibre space cp: V-+W of algebraic 
manifolds are birationally equivalent to abelian varieties, then C„tm holds. 

THEOREM 6 (FUJITA [1], UENO [8, II]). Assume that W is a nonsingular curve of 
genus g^2. Assume, moreover, pg(Vw)^l for a general fibre of cp: V-+W9 or 
x(V)^0. Then C M holds. 

For the proof we use the theory of variations of Hodge structures and the duality 
theorem. We also have partial results when g(W) = l. 

The above theorems show that the conjecture C„t m is deeply related to the moduli 
theory of polarized algebraic manifolds. 

From these theorems and a generalization of Theorem 6, we infer the following 

THEOREM 7. If dim V^39 x(V)=09 then the Albanese mapping is surjective and 
has connected fibres. Hence, a fortiori we have q(V)^dim V. 

Moreover, we can show 

THEOREM 8. Let V be an algebraic threefold of parabolic type. 

(1) q(V) = 39 if and only if the Albanese mapping is birational. 
(2) q(V)=29 if and only if pg(V)=0 and the Albanese mapping a: V-+A(V} 

is birationally equivalent to an étale fibre bundle over A(V) whose fibre is an elliptic 
curve. 

(3) If q(V)=l9 then a: V-+A(V) is birationally equivalent to an étale fibre 
bundle over A(V) whose fibre is a surface of parabolic type, or general fibres of 
a are surfaces of general type with pg^l. 

If C3jl is true, in (3) we can exclude the last case. 
For algebraic surfaces the similar theorem is a part of the Enriques classification. 

In this case the proof relies heavily on the theory of relatively minimal models of 
surfaces. To prove Theorem 8, we need not use the theory of relatively minimal 
models of algebraic threefolds, which is rather complicated and incomplete at the 
moment. We remark that there are several examples of algebraic threefolds of 
parabolic type with 0 = 0 whose properties are different from those of surfaces 
of parabolic type. 
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As a generalization of Theorem 8 (2), we have the following 

PROPOSITION 3. Let %: V-+A be a fibre space over an abelian variety A whose 
general fibres are birationally equivalent to abelian varieties. If x(V)=09 then 
n: V-+A is birationally equivalent to an étale fibre bundle over A whose fibre is an 
abelian variety. 

As for algebraic threefolds of elliptic type, we have the following 

PROPOSITION 4. Let V be an algebraic threefold of elliptic type with q(V)>0 
and ß: V-+W the fibre space associated with the Albanese mapping. Then, dim W^2, 

(1) If dim W~29 then general fibres of ß are P1. 
(2) If dim W^=\9 then general fibres of ß are rational or ruled surfaces, or sur

faces of general type with p0=O and nfë={e}. 

If C3>1 holds, in (2) the last case does not occur. If this is the case, then all algebraic 
threefolds of elliptic type with gr>0 are uniruled, where an algebraic variety V is 
called to be uniruled if there is a finite ramified covering of V which is birationally 
equivalent to P^XW. It is interesting to know whether all algebraic threefolds of 
elliptic type with <7=0 are uniruled or not. 

Finally we rewrite the above results in the following tables. 
dimF=3, x(V)>0. 

*(T) 
3 

2 

1 

Birational structure of V 

$mK is birational for m»0 

fibre spaces of elliptic curves 
over a surface 

fibre space of surfaces of para
bolic type over a curve 

dim V=3, x(V)^0. 

*{V) 

0 

— oo 

q(V) 

3 

2 

1 

0 

1 

0 

Birational structure of V 

abelian variety 

étale fibre bundle over A (V) whose fibre is an 
elliptic curve 

étale fibre bundle over A(V) whose fibre is a surface[ 
of parabolic type (or fibre space of surfaces of 
general type withjpfl<l) 

? 

uniruled (or fibre space of surfaces of general type 
mthpgz=0,7i?*={e}) 

uniruled? 
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Added in proof. Recently Viehweg succeeded to prove C3|1. Hence, in the above 
table, dimV =3 , k(V)^0'9 the exceptional cases do not occur. 
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Jacquet Modules for Real Reductive Groups 

W. Casselman 

In the past few years work of several people has established a precise relationship 
between the behaviour at infinity of matrix coefficients of admissible representa
tions—of both real and ^-adic reductive groups—and embeddings into representa
tions induced from parabolic subgroups, as well as the relationship of both to charac
ters. Historically, these ideas were already implicit in Harish-Chandra's theory 
of the "constant term", and one might consider the new results as an algebraic 
elaboration of this theory. One crucial observation was made by Jacquet [10] 
concerning the j^-adic case, and indeed this case has had a strong influence on the 
development of the other. For /?-adic groups the relationships established are fun
damental and perhaps indispensable to the whole theory of admissible representa
tions (see [1], [3], {8]). For real groups they seem to me somewhat more technical, 
and I must admit that it is not clear to me how important they will turn out to be 
in the long run. At any rate their present interest lies mainly in the light they shed 
on the nature and significance of the series expansions of matrix coefficients, a no
toriously obscure matter up to now. They also offer a new approach to old results 
on the algebra of representations; have been applied to a problem in cohomology 
of arithmetic groups; have been used to formulate and prove some striking analytical 
properties of intertwining operators among principal series. 

The ̂ -adic case is simpler than the other in both statements and proofs, and if 
only for that reason I would have liked to say something about it here. It was not 
possible because oflimitations on time and space but I would like to call attention — 
as Harish-Chandra is fond of doing—to the continuing suggestive parallels in the 
two theories* 

Most of what I will say should appear soon in joint papers \vith Dragan Milicic 
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and Nolan Wallach. It represents to some extent independent work on their part 
and to some extent joint work with them. I also include some recent and not yet 
published results of Henryk Hecht and Wilfried Schmid. 

1. Let 

G=R-valued points on a Zariski-connected reductive group defined over R, 
K—& maximal compact subgroup of G, 
P=a minimal parabolic subgroup of G, 
AT^the unipotent radical of P9 

M=a reductive component of P stable under the Cartan involution associated 
to K9 

y4=the (topological) neutral component of the maximal split torus of G con
tained in M. 

Let g, I, etc. be their complexified Lie algebras. 
I call a Harish-Chandra module of the pair (g, K) a representation (7c, V) of 

g and K simultaneously on the same space such that (1) the representation of K is 
the direct sum of continuous finite-dimensional irreducibles; (2) the representation 
of ï as a subalgebra of g agrees with the differential of the representation of K; 
(3) for all Zeg, k£K9 n(Ad(k)X)=n(k)n(X)n(k)-1; (4) it is Z(g)-finite—i.e. 
every v£V is contained in a finite-dimensional subspace stable under the centre 
Z(g) of the universal enveloping algebra f/(g). It is well known that condition (4) 
is superfluous if the representation has finite length and that ^-representations 
occur with finite multiplicity if it is finitely generated. 

If (n, V) is a continuous representation of G (on a reasonable topological 
vector space) then g and K act on the dense subspace of smooth infinite vectors. 
Frequently—for example if n is unitary and irreducible—this yields a Harish-
Chandra module. In fact, almost all interest in such modules arises in the intimate 
relationship with G-spaces. It is only recently, however, that one knows: 

LEMMA (PRISCHEPIONOK). Every finitely generated Harish-Chandra module is 
the canonical representation on the K-finite vectors in some smooth representation of G. 

As will be seen, one may even choose this to be on a nuclear Fréchet space. 
There are available two rather different proofs of this—see [5] and [15]. Prische

pionok even constructs a canonical extension to G. 
Of course when % is irreducible the Lemma follows from an old and famous 

result of Harish-Chandra (which is proved nicely in [13]). 
If (7T, V) is a finitely generated Harish-Chandra module, its contragredient is 

the natural representation on the ^-finite linear functional on V. It is again a 
Harish-Chandra module—although not obviously finitely generated, but at least 
with finite JK-multiplicity. The importance of the above Lemma for my purposes 
is that to each pair v£V9 v£V9 one may associate the function (n(g)v9 v) on G, 
the matrix coefficient of the pair. It is smooth and annihilated by some ideal of 



Jacquet Modules for Real Reductive Groups 559 

differential operators in Z(g) of finite codimension, hence even real-analytic. 
(In [5] I construct the matrix coefficients directly as solutions of a system of dif
ferential equations on G9 and deduce the Lemma from that.) 

2. Let (n> V) be a finitely generated Harish-Chandra module. For each n£N 
define n"V to be the subspace of V spanned by {n(v1)...7z(vn)v\vi€n9 v£V}. 
For n^m9 nnV^nmV so that there is a canonical projection V/nnV-*V/nmV. 
Define the Jacquet module V[ti] of V associated to P to be the projective limit 
of these spaces. Each V/xiHV is naturally a (g, Kn P)-module, and so is the limit. 
In fact, since V is finitely generated over U(xx) (see [6]) each F/n"F is finite-
dimensional; this implies that each Vj\\nV9 hence F[lt], is a P-space. There is 
a canonical map from V to K[tt]. 

The construction of V[u] is motivated by an analogous /?-adic definition. The 
reason that things here are more complicated is that in the /?-adic case all finite-
dimensional P-spaces are trivial on JV, so that one need only consider the analogue 
of V\\W9 while here one only knows that a finite-dimensional P-space is nilpotent 
on ii. 

The most immediate result about V[n] is a version of Frobenius reciprocity. 
Recall that the Harish-Chandra module Ind (o\P, G) induced from the finite-
dimensional representation (cr, U) of P is the right regular representation on the 
AT-finite f:G-+U such that f(pg)=oö^(p)f(g) for all p£P9g£G. (Here Ö is 
the modulus character of P.) Let Q: Ind (p)-+U be the (g, Ä'nPJ-morpliism 
from Ind (a) to the P-module aö1/2

9 f-+f(l). Composition with Q gives a map 

H o m ^ O 7 , Ind (tr)) + Uom(QiKnP)(V9 trS*). 

Since it acts nilpotently on U, any »-map from V to U must factor through 
V/n"V for /7»0, hence through V[it]. It is elementary to see: 

PROPOSITION (FROBENIUS RECIPROCITY). Composition with Q induces an iso
morphism 

Hom(QtK)(V, Ind (<r)) - HomP (F w > ad^). 

In other words, p-morphisms from V into induced representations are determined 
by the structure of V[ui as a P-space. In particular, maps into principal series are 
determined by the M-module V/nV: if V is irreducible, any non-zero M-morphism 
V/nV-+aö1/z gives an embedding of F i n t o Ind(tr). (Incidentally, it is important 
to realize that V/nV may not be M-semisimple.) 

Although each finite quotient V/n"V is only a P-space, something more can be 
said about the limit. 

LEMMA. There exists d^O such that for every n^d and X€$ 

Xn"U($) ç u"-rf(7(g). 

As a consequence, the element X induces a sequence of maps V/nnV-+V/nn~dV9 

hence an endomorphism of V[ni. Thus V[n] becomes a module over (g, P) . 
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3. A g-module is p-finite if every element in it is contained in a finite-dimensional 
p-stable subspace. If it is in addition finitely generated over U(Q) then it is a quotient 
of some U(Q) ®U(P^ U9 U a finite-dimensional p-module (this is called a generalized 
Verma module). Recall that if U is irreducible then £/(g) <g)u(p) U has a unique 
irreducible g-quotient X(U). 

PROPOSITION. Let X be a ^-module. Then it is finitely generated and p-finite if 
and only if it satisfies these two conditions: (si) every x£X is annihilated by some it"; 
(b) the subspace of x£X annihilated by n is finite-dimensional. In this case it has 
finite ^-length and every composition factor is of the form X(U) for certain U. 

Continue to let (rc, V) be a finitely generated Harish-Chandra module. Define 
f[n] to be the subspace of the linear dual of V consisting of functionals annihilated 
by some n"—i.e. trivial on some nnV. The Lemma in § 2 implies that it is a g-module. 
It is in fact simply a sort of dual of V[n]9 the topological dual if VM is assigned 
the n-adic topology. And it is not hard to see that V[n] is the entire linear dual of 
^ M . In other words, V^+ V[n] is a functor from the category of finitely generated 
Harish-Chandra modules to that of linear duals of finitely generated p-finite 
g-modules. 

4. Let R for the moment be the ring U(n)91 the two-sided ideal of R generated 
by it. The module V[n] is nothing but the completion of the finite P-module 
V with respect to powers of /. When n is abelian this construction is standard, 
but it turns out that even for general nilpotent it something can be said about it. 

LEMMA, (a) The completion P /=]im R/I" is a Noetherian ring. 
(b) (ARTIN-REES). If A^B are two finite R-modules then there exists d^O such 

that for n^>0 
F'BnA c p-*A. 

In fact this is true for any two-sided ideal of R. (There is a large literature attempt
ing to extend results of commutative algebra to rings like R—see [7], [14] for example.) 

PROPOSITION. The functor V^+ VM is exact. 

Again, the motivation for expecting such a result comes from something similar 
for/7-adic groups. 

What one would really like to do is apply general results about modules over 
R to obtain something about the structure of V as an P-module. For example, 
if it is abelian then in [6] Osborne and I were able to show that the associated prime 
ideals of V are rather restricted, and obtain (implicitly, I am afraid) a useful 
filtration of V as a p-module. But for general u the known results on associated 
primes are not sufficient to say anything. This is reasonable in light of the fact that 
pathologies can occur even for finite P-modules which are at the same time p-modules 
(as Wallach has described to me). 
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5. I have given no reason so far to expect that V[n]5*0. An easy non-commutative 
version of Nakayama's Lemma shows that Viti]^=0 if and only if V/nV=09 but 
even this apparently simple possibility is hard to rule out. The first proof of this fact 
involved looking at the asymptotic expansions of matrix coefficients at infinity; 
this is no accident, and in fact the deepest results about V[ni are related to these 
expansions. 

For simplicity, assume G for the moment to be semisimple. Let A be the set 
of simple roots of g with respect to A determined by the choice of P (so that 
it is the sum of positive root spaces). Embed A in CA: a~*(a(a)). For each s£CA 

define functions which are single-valued on A9 multivalued on the complement of 
coordinate hyperplanes in CA : 

aslog"' a = JJ a(a)s« log'"« a(ö) (aë A). 

LEMMA. There exist finite sets S^CA
9J(^NA such that for every v£V9 v£V9 

there exist functions fStin (s€S9m€Ji£) holomorphic in the region |a|<l with 

<7t(a)M> = ^/s>l l l(«Klog'»a 

on {aÇ.A\a(a)<l for all a£A}. 

The possible sets S9 Ji depend on V9 but are not unique. 
This is a restatement of results of Harish-Chandra (see the Appendix to [16], 

also the forthcoming paper with Milicic). 
Let 

Um = 2Um.n*m (" Ê ^ ) 

be the Taylor's series expansion of / at the origin. 

LEMMA. For vennV or tf€(n")"F,/s>m>Il=0 whenever ^n^n. 

Here it" is the opposite of it. 
Neither is this much different from what Harish-Chandra has shown; it depends 

on the expression of elements of nwJ7(g) in so-called radial coordinates in terms of 
the Cartan decomposition G=KAK (see Chapter 9 of [16], also again the paper 
with Milicic). 

Let v£V be given, v^O. Choose v£V with (v9 v)^0. Then the restriction of 
the corresponding matrix coefficient to A is not trivial. Since it is analytic, its 
expansion around the origin (as in the above Lemma) must not be trivial. The 
second Lemma implies the existence of some n with v$nnV. 

THEOREM. The canonical map from V to V[n] is an injection. 

The kernel of this map, after all, is the intersection of the u"K. 
As one consequence, V/nV^O. If V is irreducible, then, earlier remarks show 

that V occurs as the subspace of at least one principal series representation. As 
another, since Vl"] has finite length one sees immediately that V does too. 
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For 72»0, these two facts imply that V embeds into Ind (V/n"V'ô~1/2). Wallach 
has been able to show recently that the closure of the image of V in the correspond
ing space of smooth functions is as a topological vector space independent of n. 
One defines in this way a canonical extension of V to G which should play an 
important role. 

The statement that V embeds into V[n] is purely algebraic, and one might like 
to see a purely algebraic proof. For abelian it this follows from the result in [6] 
mentioned earlier, and indeed from a very niuch easier argument. Recently Wallach 
and Stafford have constructed a satisfactory algebraic proof of this whenever G has 
real rank one, and also when G=SL„. Still, one should keep in mind that part of 
the charm of V[u] lies in the link to matrix coefficients. This link is even stronger 
that I have so far said; Hecht has been able to show that not only do matrix co
efficients imply something about V[n]9 but that one has a converse as well. (He 
uses a result of Milicic [19] which is a special case of what I have in mind.) Thus 
one has criteria for whether V is square-integrable, or tempered, or lias matrix 
coefficients vanishing at infinity, all purely in terms of the M-module V/nV. 

If one considers parabolic subgroups which are not necessarily minimal, one obtains 
results about the asymptotic behaviour of matrix coefficients in directions other than 
the origin in CA (in Harish-Chandra's terminology, "along the walls"). 

6. A few other applications and related ideas : (1) The n-homology of V is the 
same as that of V[n]9 and dual to the cohomology of Vln]. What my remarks in 
§5 amount to is that in some sense the M-module V/\xV=HQ(n9 V) determines 
the leading terms of the symptotics matrix coefficients. These observations have 
been joined to an ingenious sequence of arguments by Schmid to obtain a new proof 
of the cohomology vanishing theorem of Borei-Wallach [2] and Zuckerman [17], 
which in fact relates the extent of cohomology vanishing to the rapidity of matrix 
coefficient decrease of a unitary representation. 

(2) One can obtain a new proof of some of Zuckerman's results in [18] concerning 
tensoring Harish-Chandra modules with finite-dimensional ones, and perhaps 
even to recover some information about certain extensions which arise in his construc
tion (he is able to say something only about semisimplifications of the modules 
occurring, but one may be able to combine the two techniques to say more). 

(3) What may seem most amazing, one obtains a proof that any Q-morphism 
between K-finite induced representations extends continuously to the corresponding 
smooth representations of G. (In certain cases, Kashiwara has also proved this.) 
The proofs involved in these results are to some extent a generalization of those in 
Bruhat's thesis, and illuminate Langlands' arguments in [12] as well. (In my talk 
I asserted that all intertwining operators have closed images but I was overconfident. 
Some delicate points remain to be shown.) 

(4) Hecht and Schmid have proven Osborne's conjecture concerning the restric
tion of characters to noncompact tori. (Refer to [4] for a statement of the conjecture 
as well as a proof of the />-adic analogue.) This involves n-homology, and in view 
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of the relationship between that and matrix coefficients gives what seems to nie the 
most satisfactory proof of the relationship between the asymptotics of matrix 
coefficients and those of characters (see [9]). 

(5) One may define the completion of V with respect to other maximal ideals 
of L7(H), and this is related to results of Kostant (and, in weaker form, of Zuckerman 
and myself) on Whittaker models for Harish-Chandra modules (see [11]). 
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Langlands9 Conjecture for GL (2) 
over Functional Fields 

V. G. Drinfeld 

Introduction 

0.1. Let k be a global field of characteristic p>09 91 its adele ring, W the Weil 
group of k (W consists of elements of Gal (Jc/k) whose image in Z belongs to Z, 
the topology on W being induced by the embedding W cz+Gal (k/k)XZ). If v is 
a place of k9 kv will denote the completion of k at v and Wv will denote the Weil 
group of kv. 

For each number field E denote by S^E) the set of isomorphism classes of com
patible systems of absolutely irreducible 2-dimensional A-adic representations of 
W (A belongs to the set of places of E which do not divide °° and p). Compatibility 
of a system {QX} means, by definition, that for every place v of k and every A£ Wv 

Tr Qx(h) belongs to E and does not depend on A. Put 

Zx=z l ini^fjg) . 
EcQ 

Denote by S2 the set of isomorphism classes of irreducible representations of 
GL (2, 91) over ß which occur in the space of cusp forms. 

Let EaQ9 [E: ß]<°°, Q={QX}£Z1(E)9 nÇ.Z2- n is said to be compatible with Q 

if for some A and almost all places v of k L(s~\9 7c„)=[det (1—JF„ q~s
9 öA)]"1 

where L denotes Jacquet-Langlands' L-function, Fv£ W is a geometric Frobenius 
•element of v9 qv is the order of the residue field of v (of course, the words "for some 
A", can be replaced by "for all A"). Now let Q£Z19 n£Z2- 7c is said to be compatible 
with g if there exists a subfield EczQ of finite degree over Q and an element 
QE^Z^E) such that Q is the image of QE and n is compatible with QB. Denote by r 
the set of pairs (Q9 TE) €2^X2^ such that n is compatible with Q. 

0.2, In this report I shall sketch a proof of the following theorem, 
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THEOREM A (LANGLANDS' CONJECTURE), r is the graph of a bijection Z^Z^. 

The following theorems are easy consequences of the proof of Theorem A. 

THEOREM B (PETERSSON'S CONJECTURE). Let % be an irreducible unitary representa
tion of GL (2, 91) which occurs in the space of cusp forms. Then for everyplace v ofk 
nv does not belong to the complementary series. 

Recall that the complementary series for GL (2, kv) consists of unitary representa
tions of GL (2, kv) having the form %{n9 v), where /* and v are quasicharacters of 
Zr* and not characters. 

THEOREM C. Let % be an irreducible unitary representation of GL (2, 91) which 
occurs in the space of cusp forms. Suppose that either one of the local components 
ofn belongs to the discrete series, or every field finitely generated and of transcendence 
degree 3 over Fp has a smooth projective model. Then all the zeroes ofL(s9 n) are on 
the line Re,y=-|. 

Recall that the discrete series for GL (2, kv) consists of supercuspidal and special 
representations. 

0.3. Let us show that theorem A is implied by the following proposition. 

THEOREM A'. For each n£Z2 there exist a number field E containing the field of 

definition of n and 2-dimensional X-adic representations QX of W (for all places A of 

E except those dividing °° and p) such that for almost all places v of k and all A 
M*--!). ^=td e t0~Fv<lv\QÙY - i 

First of all, the representations Qk in Theorem A' are absolutely irreducible (be
cause for every quasicharacter co of 9l*/fc* L(s9 n <8> co) is holomorphic). In order 
to prove that {QA}£ZI(E) it remains to show that for everyplace v of k the restric
tion of the character of QX to Wv belongs to E and does not depend on A. In fact 
the results of [1] imply that it is enough to show this for almost all v9 which is trivial. 
We have shown (using Theorem A') that the projection r~+Z2 is surjective. 

The surjectivity of the projection T^Z1 was proved by P. Deligne [1] using the 
results of [5] (he also proved that if QÇZ^E) is compatible with n£Z2 then for all 
places of k the local L- and e-functions of Q and it coincide). 

The projection T-+Z1 is injective because an irreducible representation of 
GL (2, 91) which occurs in the space of cusp forms is uniquely determined by almost 
all of its local components. The injectivity of the projection r~+Z2 is an easy con
sequence of Chebotarev's density theorem. 

0.4. The proof of Theorem A' can be considered as a noncommutative generaliza
tion of Lang's theory [10]. On the other hand it is closely connected to Eichler-
Shimura's theory. 
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1. F-sheaves and their moduli schemes 

1.1. Let Fq be the field of constants of k9 denote by X the smooth projective curve 
over Fq corresponding to k. We shall write Y®Z9 YXZ instead of Y®FqZ9 YXFZ. 

If S is a scheme over Fq, Frs will denote the Frobenius endomorphism of S (over Fq). 
Instead of FrSpecB we shall write FrB. 

DEFINITION. Let S be a scheme over Fq. A left (right) F-sheaf over S of rank d 
is, by definition, a diagram 

,(id,XFrs)*^ (idxXFrs)*JSPv 

(respectively \ J5") 
xse se' 

where 3? and «F are locally free sheaves of ^X(S-modules of rank d9 Coker / is the 
direct image of an invertible sheaf on the graph of a morphism a: S-+X, Coker j 
is the direct image of an invertible sheaf on the graph of a morphism ß : S-+X. a 
is called the zero of the F-sheaf, ß is called the pole of the F-sheaf. An (a9 ß)-F-sheaf 
is an F-sheaf whose zero equals a and whose pole equals ß. 

The role of rank 2 F-sheaves in the proof of Theorem A' is similar to that of 
elliptic curves in Eichler-Shimura's theory. 

REMARK. Suppose that a and ß are disjoint (this means, by definition, that the 
graph of a doesn't intersect the graph of ß). Then a left (a, /?)-F-sheaf is, in fact, 
the same as a right (a, /?)-F-sheaf. In this situation the word "left" or "right" will 
be omitted. When a and ß are disjoint an (a, /?)-F-sheaf can be imagined as an 
"isomorphism" from (id^XFr^)*^ to S£ which has "singularities" (a "simple 
zero" at a and a "simple pole" at ß). 

REMARK. Instead of "F-sheaf (id^XFrs)*Jöf->^^J^" we shall often say "F-
sheafJSf". 

Let JSf be an F-sheaf (left or right) over S of rank d. Suppose that the zero and 
pole of S£ are disjoint of D (this means, by definition, that the zero and pole are 
morphisms from S to X—D). Denote by ££D the restriction of J5f to DXS. The 
F-structure on ££ induces an isomorphism / : ( id^XFr^)*^^«^. In this situa
tion the notion of level D structure on JS? is introduced. 

DEFINITION. A level D structure on j£f is an isomorphism h: &D~®éxs such 
that the diagram 

(idDxFrs)*A 

(idDXFr s)*^ — ^ . o*xS 

is commutative. 
Let us agree that there are no level D structures if the zero or the pole is not dis

joint of D. It is easy to show that a level D structure always exists if S is replaced 
by an étale covering of S (provided the zero and pole are disjoint of D). 
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It is quite natural that 2-dimensional vector bundles appear in the proof of Theo
rem A': the set of isomorphism classes of 2-dimensional vector bundles over X can 
be identified with U\GL (2, 9Ï)/GL (2, k) (where U is the standard maximal compact 
subgroup of GL (2,91)), while GL (2, 9l)/GL (2, k) can be identified with the set 
of isomorphism classes of 2-dimensional vector bundles over X whose restrictions 
to all finite subschemes of X are compatibly trivialized. 

1.2. THEOREM 1.1. For every finite subscheme DaX and positive integer d, the 
coarse moduli scheme of left (right) F-sheaves with level D structure exists. 

These schemes will be denoted by »Jt (for left F-sheaves) and Mé (for right 
F-sheaves). &M and Mß are schemes over (X—D)2=(X—D)X(X—D); the structure 
morphism M$>-+(X-D)2 or &M-+{X-D)2 maps an (a,/?)-F-sheaf to (oc9ß). 

THEOREM 1.2. There exist open subschemes UiCiMé (/—l, 2, 3,...) such that 
UidUî+l9\JiUi=Mé and for every i U{ is a quotient of a quasiprojective smooth 
scheme over (X—D)2 of relative dimension 2d—2 by a finite group. This is also 
true for &M. 

1.3. We shall define some natural morphisms between the moduli schemes con
structed above. 

(1) Let 7u: &M -+X2
9 n: M&-+X2 be the structure morphisms, denote by A the 

diagonal in X2. Then n^iX2—A) can be identified with n^ÇX2 —A); this follows 
from the remark in 1.2 (after the definition of F-sheaf). Moreover ^M can be identified 
with^jj. 

(2) If «5? is an F-sheaf with level D structure then det Se is an F-sheaf with level 
D structure. Therefore we have morphisms det: M&-+M}>9 det: »M^M—M^. 

(3) If Se is a left (right) (a, j8)-F-sheaf then SP* is a right (left) (ß, a)-F-sheaf; 
level D structure on Se induces level D structure on if*. Therefore we have an 
isomorphism * : M^DM such that the diagram 

M$ <===^- •- &M 

I ! 
(X-Df • (X-Df 

is commutative. 

(4) If jSf-i-^-MidxXFrsfjS? is a left (a,ß)-F-s\\es£ then 

(idxXFrs)*^ tid*xFrs)*'' , (idxXFrs)*J§? J- SF 

is a right (Fr^oa./O-^-sheaf. If (idxXFr s)*i?-^ y **- & is a right (a, ß)-F-sheaf 
then 

(idxXFrs)*^ • t , d * * w (idxXFrs)*if - L y 
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is a left (a, Fr^o/?) F-sheaf. In both cases level D structure on Se induces level D 
structure on &. Therefore we obtain morphisms Fx: &M-+M& and F2: M&-+&M 
such that the diagrams 

are commutative. Note that FXF2=Fr(^)? F2F1=Frß1/Ä). 

Moral. M^ looks like a product of two schemes over X(in fact it is not a product). 
(5) If D'ziD there are obvious morphisms $M-+i>M9 M^^M». 
(6) GL (^,91) acts on limP jM and ]imDMp. We shall not give the precise 

definition. The definition is based on the following construction. Let j£? be an F-sheaf 
over S of rank d with level D structure, let P be a quotient module of @£, Put 
JP=i\n*P where % is the projection DXS-+D and i is the embedding DXS(+XXS. 
The level X) structure on JS? induces an epimorphism S£-+P whose kernel has a 
natural F-structure. 

REMARK. The action of GL (d9 91) on the set of isomorphism classes of rf-dimen-
sional vector bundles over X compatibly trivialized over finite subschemes (recall 
that this set can be identified with GL (d, 9I)/GL (d9 k)) is described by a similar 
construction. 

2. Lang's theory 

2.1. Let us consider the case d=l. Denote by PicnX the moduli scheme of 
invertible sheaves on X whose restriction to D is trivialized. Recall that (1) Picn X 
is a group scheme over Fq; (2) there is an exact sequence 0->Picï> X-*Picn X^deßZ->0, 
where PiCp X is the connected component of PicB X; (3) Pic?) X is an algebraic var
iety (i.e. of finite type); (4) PicJ, X is called the generalized Jacobian variety of X 
of conductor D. There is a natural mapping X—Z>->PicnX (the image of 
ue(X-D)(Fq) in PicDZ(Fg) will be denoted by w). 

There is a Cartesian square 
Ml=lM -+ PicnX 

Let yeMi(Fq);y = (a9ß9l), where a9ße(X-D)(Fq)9 l£(PieDX)(Fq)9 Fv(l)-J=ß-Öt. 
Then *;/ = (/?, a, - / ) , Fx(^) = (Fr (a),/?, / - a ) , j F , ^ = (a,Fr(]8), 1+ß). PutKc,, JT= 
= (PicD JT)(Ffl). Picj3 X acts on .4$: if (a, ß9 l)£Mb(Fq)9 mel?icD X9 then/77 • (a, /?, /) = 
= def(a,/?, / + w). Therefore 9l*//c*=limZ)PicJ?X acts on }imPM}i. We have desc
ribed the action of 91* on lim^ Mp mentioned in 1.3. 

2.2. Theorem A' follows from a more precise statement (Theorem 4.1) describing 
the cohomology of the compactified moduli space of F-sheaves of rank 2. We are 
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going to discuss a similar theorem for d= 1 (Theorem 2.1), which is a rather awkward 
reformulation of a part of Lang's theory. 

Let DaX be a finite subscheme. Recall that Picjo Xacts on M& (see 2,1). Choose 
a splitting of the exact sequence O-^Pic^Z^Pic^ J*"->deßZ-0: P i c I ) Z=Pic ï ) i r x / , 
/c*Z. Denote by 7c the natural morphism M^/J-^(X—D)2. Consider rc^öj (in the 
étale sense). The action of Pic^ X/J on M^/J induces an action of Picj, X/J on n^Qt. 
The action of Ft on M^/J induces an isomorphism (Frx_DXidx^.Dy n^Qi^n^Q^ 

2.3. DEFINITION. A PF-sheaf of sets on (X— Z>)2 is an étale sheaf of sets & on 
(X-D)2 with an isomorphism ÇFrx-.DXidx-D)*&r~& 

REMARK. Note that (Frx_1)XFrx_I))*J5 '=«^' for any étale sheaf & on (X-D)2. 

THEOREM 2.1. The category of constructible locally constant PF-sheaves of sets 
on (X—D)2 is equivalent to the category of finite n1(X—D)Xn1(X—D)-SQts. 

REMARK. The category of constructible locally constant étale sheaves of sets on 
(X—D)2 is equivalent to the category of finite ^{(X— Z>)2)-sets. But the natural 
morphism->n1((X—D)2)-+7i1(X—D)Xn1(X—D) is not an isomorphism: if D = 0 it 
is injective but not surjective (for instance, Tü1(P

1XP1)=Z^ZXZ); if ZM0 it 
is even not injective. 

2.4. Let us return to the situation of 2.2. 7c*ß/=(7i;*Zj)<g>z,ßj> n*Zi = 
lininTi*(Z//nZ) and n*(Z/lnZ) is a constructive PF-sheaf of sets. Therefore 
n*Qi corresponds to an /-adic representation of n1(X—D)X7i1(X~D). Y\cDXjJ acts 
on 71*6;, therefore we have, in fact, a representation of 

denote it by Vx. 

THEOREM 2.2. 

n1(X-D)Xn1(X-D)X(PicD X/J); 

Vj (g) Ql = © QzQQ^QX 
Qj z€ Horn (PicD X/J, Q*) 

where QxÇ.Hom(n1(X—D)9Qi) is compatible with % (this means that for every 
closed point v£X—D Qx(Fv)=%(v)9 where F^n^X—D) is the geometric Frobe
nius element of v and v is the canonical image of v in Y\cD X/J). 

3. Compactification 

3.1. Denote by Kthe fraction field of k®k9 put Ar
D=M^®xy>xK=ßM®x^xK. 

We are going to describe the nature of nonquasicompactness of JfD. 
For every n£Z denote by JTrf the open subscheme of JfD corresponding to 

sheaves of degree /?; then ^ = I L I ^ D " - For every m9n£Z denote by J/S1*11 the 
open subscheme of Jfj}9 corresponding to F-sheaves if which do not contain invert
ible subsheaves of degree more than m\ J^^czJ^1*7' and ^ i " = U»j^/Dm,n-
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THEOREM 3.1. Jf$un is a quasiprojective surface. If 2m—n^2 then (*#S®KR) — 
( ^ D W , " ® K K ) is isomorphic to the countable disjoint sum of affine lines. 

3.2. If 2m—n^29Jf^iiX has a canonical compactification dff>n. We are going 

to describe its properties. 

(1) J/n'n is a proper algebraic space over K (I don't know whether it is a scheme), 

Jfm*n is an open dense subspace of J/$'n. 

(2) J%n'n is normal. If Y is a fibre of a singularity resolution of J^'^^KK then 
H°(Y9Qi) = Qi9 H*t(Y9Qi)=0 (in other words, YTed is either a point or a curve 
whose irreducible components are rational and whose intersection graph is a tree). 

(3) If m'^m there is a commutative diagram 

(4) Put Fg'w = Jg , l ' w ->3 H ' " (Fg'" is considered as a reduced subspace). The 
morphism r s + 1 ' " - r g ' " induced by jfr+1>n-^Jg1*» is radical; this means that it 
is finite and its geometric fibres contain exactly one point (but they may not be 
reduced). 

(5) Let m'^m. The morphism o¥gx'tn®KK-^J/gìtìl^KK maps each irreducible 
component of J/g'*n C^xR-Ag1*" ®>KK onto a point of rngn®KK (different com
ponents correspond to different points). 

(6) If D'r>D the morphism J/g>"->Jfgx>n is the restriction of a finite morphism 

(7) The action of GL (2, 91), F l 5 F2 and * on limP J/^ is the restriction of an 
action of GL (2, 91), Fl9F2 and * on jj„limp .̂yfff1'" (the projective limit is under
stood formally). 

3.3. DEFINITION. The .R-category is the category of schemes localized by radical 
morphisms. 

rngn considered as an object of the J?-category will be denoted by rn
D (because it 

doesn't depend on m). We are going to describe Fg. 

Denote by Y*'3 the fibred product of XXXXX by Pic* XXPtâ X over 
Piç°ZXPiç°X, the morphisms XXXxX^Piç0 XX&ç0 X and Pic* XXPiç' X-+ 
Pic°XxPiç°A' being given respectively by (oL9£>9ß)y-^(Z—ÖL9ß—l) and F r - 1 . 
The morphism yW-yM-LJ-i given by (a, t,ß9 a9 &)-(a, Fr(£), ß, a+l9 b-Ç) 
(where a, £, ß£X(Fq)9 ae^X(Fq)9 Z>£PiçJ* X(Fqj) is radical, therefore in the 
JÊ-category y'-"- ' doesn't depend on /. The result is: rn

0 — Yiin'~i®x^xK9 the mor
phism YUH-t-+XXX being given by (a9l;9ß)>-+{<x9ß). 

The description of F£ for 2)^0 is more complicated; the main difference from 
the case Z)̂ =0 is that Tn

D is not ^-isomorphic to a smooth curve. 
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3.4. The construction of J/g*n is based on the notion of degenerate F-sheaf 
Let F be a field, a£X(F), ß€X(E)9 oc^ß. 

DEFINITION. Let S£ be a 2-dimensional locally free sheaf on X®E. An (a, /?)-
transform of Se is a subsheaf Se'aSffß) such that Supp JSf (jß)/i?' = {a,0} and 
aimEH°(Sf(ß)/Sf')=2 (we identify a and ß with the corresponding points of 
X®E). 

DEFINITION. A degenerate (a, ß)-F-sheaf over E of rank 2 is a triple (S£9 S£'9 <p) 
consisting of a 2-dimensional locally free sheaf S£ on X®F, its (a,/?)-transform 
S£' and a morphism 9 : (idxXFr£)*JS?-^i?' such that (1) cp has rank 1 at each 
point of Jf<g>F, (2) I m p e t i , (3) p|(idxxFr£mnim</0^0. 

In this situation put ^=j£?nlm<p. <p induces an injection <p': (idA-XFrx)^-^ 
Im <p — A(ß). Supp Coker p ' consists of a single point £. 

DEFINITION. £ is called the degenerator of Se. 

REMARK. The third projection r'gn-+X is given by the degenerator. 

4. Proof of Theorems A, B and C 

4.1. Choose a subgroup Jc:9I* such that the composition J-+$t*/k*-+dcgZ is 
an isomorphism. Let /^/? be a prime number. The action of GL (2, 91) on 
Ilncz limo,». ^S" , B induces an action of GL(2, 91) on II„ l i m ^ i ^ * (J£"'M <g>* X, Qt); 
put f?=[n f I HmD> in Hìt ÇAg"' "<g)KK9 Qi)]J. Note that the representation of GL (2, 91) 
on V2 is not admissible, 

Put F Gal(X/^) = {y€AutK|3m,w6Zy|k0fc = Fr2'(g)FrX}/{F4|«€Z}. The acti
on of F1 and F2 on UHhmDf„l.yf'g"'" and the action of Gal (K/K) on K induce an 
action of F Gal (K/K) on Pf1'. There is a canonical homomorphism / : F Gal (JK/iQ-»-
Gal(£//c)XGal(/c//c): an element of F Gal (K/K) represented by y £ Aut K is 
mapped to (y F r ^ e i , yF r f l i ax ) , where y|*®fc=Fr?®Frj[. The image of / 
contains WX W. One can deduce from theorem 2.1. that the action of FGal(K/K) 
on Vi is trivial on Ker/. Therefore we have a representation of WX J^XGL (2, 91) 
on Vf. 

Denote by Vjcusp the greatest GL(2, 9ï)-invariant subspace of V* contained in 

0nMliigD^5(^ ( l I+8 ) /BLniQi)] J r- *ï0UBp i s »^X R^-invariant. The representation of 
GL (2, 91) on Vf™* is already admissible. 

THEOREM4.1. PîCU8p®GIGj=©w€2£e*®£*®rc> where Z( = {7ieZ2\ the restriction 
of 71 to J is trivial}, it denotes the representation contragradient to n, Qn is a 2-dimen
sional representation of W over Qx compatible with n. 

Theorem A' follows from Theorem 4.1. 
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REMARK. The proof of Theorem 4.1. gives in fact a complete description of Vt 

for all i. It turns out that V?=V?=0, V? is the direct sum of K,cusp and its orthogonal 
complement J^Eis, Vfis has an explicit description, the description of Vf and Vf 
follows from the fact that the fibres of det: ^ ® x f - > ^ ( g ) X x ; f K are connected. 

4.2. The proof of Theorem 4.1. is based on Lefschetz formula, Selberg trace 
formula and an explicit description oîJ/j>(Fq) similar to Deuring's results on elliptic 
curves over Fp. This method was used in [6] and [8]. It turns out that the structure 
of the spaces Jfg^n is closely related to the structure of Selberg trace formula. For 
instance, the fact that Tn

B is a scheme over XXXXX (not only XXX) corresponds 
to the fact that Selberg trace formula involves integrals of the form ff(s)dIn L(s)9 

where L(s) is an abelian Z-function (so that in order to compute the trace of the 
Hecke operator corresponding to a place of k one has to use Z-functions containing 
information on all places of k). 

4.3. Let v and w be closed points of X9 v^w. The proof of Theorem 4.1 uses the 
computation of the (-function of an open subscheme of J£ßXx*(vXw) (this 
(-function is expressed in terms of cusp forms). Theorem B follows from the fact 
that the poles of the (-function of a surface over Fq are on the lines Re,y=0, j 9 

1, 2. This fact is a consequence of Weil's conjecture proved by Deligne and Abhyan-
kar's theorem (resolution of singularities for surfaces). 

If every field finitely generated and of transcendence degree 3 over Fp has a smooth 
projective model, the zeroes and poles of the (-function of a 3-dimensional scheme 
over Fq are on the lines Res=n/29 n£Z. Applying this to a suitable open sub-
scheme of Jd%Xx*{XXv) for some closed point v^X—D9 we obtain the second 
part of Theorem C. 

In [2], [3] Theorem A' was proved assuming that n^ is in the discrete series. In 
[3] the representation of W corresponding to n appears as a part of Hlt(F ® *£, QÌ) 
for some scheme F over X of relative dimension 1. The zeroes and poles of ((F, s) 
are on the lines Rts=n/29 n£Z9 because Fis a surface. This enables us to prove 
the first part of theorem C. 

4.4. The surface F mentioned in 4.3 is the moduli scheme of elliptic modules 
(see [2]) with some additional structures. Elliptic modules are functional analogues 
of elliptic curves, and the result of [3] mentioned in 4.3 is analogous to Eichler-
Sliimura's Theorem. 

On the other hand, elliptic modules are, in some sense, F-sheaves of special type 
(this is not an obvious consequence of the definitions of elliptic module and F-sheaf). 
The precise statement and proof can be found in [4], [9]. The method use 4] 
is analogous to the method used by Burchnall, Chaundy, Baker and Kricever in 
order to describe the commutative rings of differential operators (see [7], [9]). 
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Algebraic Representations of Reductive Groups 

George R. Kempf 

My original interest in this area arose from an effort to prove the following state
ment. 

THEOREM. Let X be a complete homogeneous space under a reductive algebraic 
group G. If ££ is an invertible sheaf on X with a nonzero section, then the cohomology 
groups Hl(X93?) are zero whenever i is positive. 

When the characteristic of the ground field is zero, this theorem was originally 
proven by A. Borei and A. Weil in the early 1950s. They deduced it from Kodaira's 
vanishing theorem. In positive characteristics, the result seems more difficult to 
prove. Under the assumption (A) that the stabilizer group scheme of a point of 
X is reduced, I was able to prove the theorem in the paper [8] (with an argument 
which made no reference to the characteristic). It would be interesting to know to 
what extent this theorem remains true when the assumption (A) is dropped. 

For the reader who is not interested in cohomological vanishing theorems, I will 
explain some of the significance of the theorem. The theorem implies that the vector 
space r(X9£P) has the right dimension, i.e., A\m.r(X9 S£) equals 
2(— l)1 dim Hi(X9 S£)9 which is the easily computed Euler characteristic of the sheaf 
££. Also it implies that dimJTpf, JS?) is locally constant (better yet, T(X9Sß) 
varies continuously with the parameters) when X and «£? are varied in an algebraic 
family (see [9, § 13]). The most important case of these variational consequences 
is when one is actually changing the characteristic of the ground field. 

One main reason for looking at invertible sheaves J5f on the homogeneous space 
X is that they provide standard representations of the group G. If we are given 
a (/-linearization of JSf [10], then r(X9 S£) has a natural action of G and is called 
an induced representation of G. Another classical result of Borei and Weil is that, 
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in characteristic zero, the induced representations are irreducible. This irreducibility 
fails in characteristic p. A current topic of interest is to determine to what extent 
it fails. Some information on this problem may be found in [4], [5], [6] and [3]. 

In some sense the truth of the theorem seems to be a miracle. In characteristic 
zero, Bott generalized the theorem as follows. He proved that, for an arbitrary ££9 

there is only one level / for which Hi(X9 S£) is not zero. Unfortunately, Bott's 
form of the theorem no longer holds when the characteristic is finite. In his thesis 
[2] and, also [12], Mumford's student W. L. Griffith systematically determined when 
Bott's formulation fails in the case where X is the variety of flags in a three dimen
sional vector space. 

One wants to know as much as possible about the representations of G on the 
cohomology Hl(X9 S£) of a (^-linearized •£?. In characteristic zero, Bott settled 
this over twenty years ago. In characteristic p9 this difficult problem is currently 
being attacked by Griffith and H. H. Anderson [1]. 

When I was working on proving the theorem, I first tried to prove it G-equi-
variantly. This approach never achieved any results. I only made progress with 
a J9-equivariant approach where B is a Borei subgroup of G. One may filter the 
vector space r(X9 ££) in a 2?-equivariant way and get better control on what is, 
or is not, in T{X9 S£). One would like to have some standard ways of writing a 
T-eigenbasis for T(X9 S£)9 which are compatible with the natural infiltrations of 
r(X9 ££)9 where T is a maximal torus contained in B. 

This problem about the internal structure of the induced representations is quite 
interesting. One approach to it, which has been developed by a multitude of authors, 
attempts to generalize Hodge's standard monomial theorem for the Plücker co
ordinate ring over the Grassmann varieties. Currently this approach is being 
developed by Seshadri and his associates [11]. Also see Processes talk in these 
PROCEEDINGS for his work on standard monomials and the group ring T(G, 0G) for 
classical groups. 

In closing, I want to mention two topics which I would like to see better developed. 
One involves the singularities of Schubert varieties, i.e., the closure of a 5-orbit 
in X. For an initial problem, determine the singular locus of a Schubert variety. 
The other problem asks for a different proof of the theorem. Can anyone prove 
directly with Lie algebra methods that the Grothendieck-Cousin complex of S£ 
[7] and [9] is exact when G is a Chevalley group over Z? 
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Lie Algebras and Combinatorics 

J. Lepowsky* 

One of the most intriguing of combinatorial formulas is the Rogers-Ramanujan 
identity 

(i) n (i-q^iyi(i-q^-^-i = i^ 2 qm-g)(^q2) •••(i-^ 

where q is an indeterminate. See [1] for the history, proof,- combinatorial inter
pretation and generalization of (1) and its companion identity. I shall describe 
the evolution of a program, just completed, for understanding such identities as (1) 
in terms of Kac-Moody Lie algebras. This program is related to topology, and prob
ably physics,1 as well as combinatorics.2 

A Kac-Moody Lie algebra ([9], [16]) is defined by a generalized Cartan matrix 
(GCM)—an nXn integral matrix A such that the diagonal entries are 2, the other 
entries are <=0, and there is an nXn positive definite rational diagonal matrix 
D such that DA is symmetric. Consider the complex Lie algebra defined by 3n 
generators hi9 ei9ft (z'—l, ..., n) subject to the relations [hi9 hj]=09 [hi9 ej\=Aijej9 

[hi,fs\ = -AiâfJ,[ei.fA=àu*i and for t*j9 ( a d ^ - ^ + 1 ^ = 0 = ( a d / / ) " ^ + 1 / J . . 3 

The Kac-Moody (or GCM) Lie algebra 1(̂ 4) is the quotient of this algebra by 
a certain radical, conjectured to be zero. If A is the Cartan matrix of a finite-dimen-

* Partially supported by a Sloan Foundation Fellowship, 
1 and finite group theory (see footnote 4). 
2 Also, surprising connections have been found between certain non-Euclidean Kac-Moody Lie 

algebras and certain cusps on Hilbert modular surfaces [191. 
3 Cf. N. Jacobson, Lie Algebras, Interscience, New York, 1962, Chapter VII and J.-P. Serre, 

Algèbres de Lie semi-simples complexes, Benjamin, New York, 1966, Chapter VI, Appendice. 
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sional semisimple Lie algebra g, then I (A) = Q.3 Otherwise, 1(A) is infinite-dimen
sional. See also [9 (e)]. 

Let A correspond to a simple g of rank /. Then Aij=2(<xi9<x,j)l(<xi9oci)9 

7,7 = 1, ...,/, where the af are the simple roots and ( •, • ) is the usual inner product. 
Let a0 be minus the highest root, and define Äu=2(ai9ocj)j(ai9oLl) with i9j=09...9l. 
ThenJf is an (/+1)X(/+1) GCM. Denote 1(A) by g. The algebras g are "most" 
of the "Euclidean" Kac-Moody Lie algebras ([9(a)], [16 (a)], [16 (b)]). The center 
c of g is 1-dimensional, and g/c=g, which is defined as g(g)cC[£, f"1]. (C[t9 f

-1] 
is the algebra of Laurent polynomials in t9 the <g> is ring extension, and g is the 
corresponding complex Lie algebra.) 

Let q>(q) = ]jjììi(l—qj) and let q(q) = qlß*(p(q) (Dedekind's 77-function). Euler's 
formula 

(2) ;K )̂ = 2(-l)V1 / 2 4 ) ( 6 i + 1 ) 2
? 

jez 

Gauss' formula ^(#)7'Ktf2)=2jez(~iyV2 a n ^ Jacobi's formula q(q)3 = 
2i^o (~~ iy (?/+l)*/178^-7"1 1)2 follow by appropriate specializations of Jacobi's 2-vari
able "triple product identity" (cf. [1]). Also, (2) is equivalent to Euler's recursion 
for the classical partition function (cf. [1]). For each simple g, Macdonald found 
a remarkable multivariable power series identity [15(a)] generalizing Jacobi's 
triple product identity, the case g=sl(2, C). Suitable specialization gave a formula 
for i](q)dimfi [15(a)], generalizing Jacobi's formula for 77 (qf. Dyson [unpublished] 
independently found these multivariable and 1-variable formulas for g classical 
(cf. [3]). Macdonald in fact found a somewhat broader family of identities, corres
ponding to the "affine root systems" [15 (a)]. 

Kac [9 (c)] and Moody [16 (c)] independently recognized Macdonald's multi-
variable identities as precisely the assertions of Weyl's denominator formula (the 
product expansion of the denominator in Weyl's character formula) for the Euclidean 
Lie algebras. Kac [9 (c)] at the same time reproved and considerably generalized 
these identities by proving the assertions of Weyl's character and denominator 
formulas for all Kac-Moody Lie algebras using a refinement of the method of Bern-
stein-Gelfand-Gelfand [2 (a)]. (For an exposition, see [12 (f)].) Kac's generalizations 
of finite-dimensional irreducible g-modules are called standard modules. 

Now g = g<8>*° behaves like the reductive part of a parabolic subalgebra of g, 
with the subalgebra u = g®{/(0£C[f]|/(0) = 0} playing the role of the nilpotent 
part. By determining H*(u) as a graded g-module, Garland [5] reinterpreted 
Macdonald's identity for g via the Euler-Poincaré principle. This determination 
and Kostant's classical analogue for parabolics of semisimple Lie algebras [11 (b)] 
are together generalized to Kac-Moody Lie algebras, and in fact the "weak Bernstein-
Gelfand-Gelfand resolution" [2 (b)] is proved in the same generality, in a joint paper 
with Garland [6]. This gives a new proof of the Dyson-Macdonald-Kac formulas. 
The possibility of using a resolution to prove the Dyson-Macdonald identities was 
conjectured by Verma [18]. 
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Let G be the compact simply connected Lie group associated with g. Garland 
empirically observed [5] that the number of irreducible g-module components in 
Hj(\\) equals dim Hzj(Q(G)9 C) (which had been determined by Bott). Now 
g may clearly be viewed as the Lie algebra of algebraic functions from the circle 
into g. In a formal sense, this is the complex Lie algebra of the free loop group 
A(G) of G. Since Q(G) = A(G)jG (G acting by translations on A(G))9 g/g is formally 
the tangent space at the origin of Q(G). It is thus plausible that #*(g, g)^ 
H*(Q(G)9 C) as graded vector spaces, and this is proved in [12(d)], by gene
ralization to Kac-Moody Lie algebras of Kostant's work [11 (c)] on generalized 
flag manifold cohomology. The general results on relative Lie algebra cohomology 
in [12(d)] uniformly "explain" both Garland's empirical equality and Bott's 
analogous classical "strange equality", which Kostant [11(c)] had previously ex
plained a different way. For Euclidean Lie algebras, these results are combined 
in [12 (d)] with Kac's classification [9 (b)] of the automorphisms of finite order 
of semisimple Lie algebras to illuminate additional work of Bott on path space 
cohomology. In particular, Q(G) and certain more general path spaces studied 
by Bott turn out to be good analogues for Euclidean Lie algebras of generalized 
flag manifolds [12 (d)]. (Cf. also [7].) 

The method of combining relative homological algebra with generalized Verma 
modules in [12 (d)] applies also to a couple of aspects [12 (a)], [12 (b)] of the broad 
problem of constructing a purely algebraic theory of Harish-Chandra modules. 

It is natural to choose as power series variables in the Weyl-Macdonald-Kac 
formulas the exponentials of minus the simple roots of the corresponding Kac-
Moody Lie algebra [12 (d)], and this leads to the interpretation of Dyson's and 
Macdonald's identities as multivariable vector partition theorems [13]. Combining 
this choice of variables with ideas from [9 (b)] and [15 (a)], one can naturally as
sociate a 1-variable specialization [12 (c)], [12 (d)] of a multivariable Macdonald 
identity to every automorphism 6 of finite order of g, in such a way that the 
Dyson-Macdonald identities for i](q)àìmQ come from 0=1 (cf. also [9 (d)], [15 (b)]). 
Choosing 6 to be regular instead, we get interesting "regular specializations": 
The "principal" automorphism [11 (a)] of order equal to the Coxeter number 
h of g produces the principal specialization [12 (d)]—the setting of the exponentials 
of minus the simple roots of g (or by extension of the terminology, any Kac-Moody 
Lie algebra) all equal to q. For example, principal specialization for $\(n9 cy 

gIVeS n (qfh (q") = 2 (sgn <r)<7(1/2) ̂  ™ - ' W , 

the sum being over G in the symmetric group of {1, ...,77} and over fil9 ...9fi„£nZ 
subject to 2 ^ = 0 . This generalizes and "explains" Gauss' formula, and by (2), 
it gives a formula for ri(q)n. The (essentially unique) inner regular automorphism 
of g of order A + l gives 

;j(g)rank9 = £ (Sgn w)#(1/4)(/,+1) II***«)-«'/(* + 1 )" 2 , 

where the sum is over w in the affine Weyl group of g, Q (resp., Q') is half the sum 
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of the positive roots (resp., co-roots), and || -||2 is the canonical quadratic form 
([12(c)], [12(d)]; the same specialization had already been used in [15(a)]). This 
includes and "explains" (2) as the case g=$1(2, C). One thus gets formulas for 
arbitrary positive powers of r\(q)9 and hence several new formulas for Ramanujan's 
T-function different from Dyson's [3]. 

To pass from formulas for (p(q)àìmQ to formulas for ri(q)ûimù
9 Dyson and Mac

donald had invoked the Freudenthal-de Vries "strange formula" ||^||2=(dim g)/24. 
The analogous transition from ç>(^)rankô to rj(q)raT,ka uses a new type of strange 
formula [12 (c)], [12 (d)] : 

(l/4)(Ä + l)||2^eV(ft + l)P = (rankg)/24. 

There is a similar new strange formula associated with principal specialization 
[12 (c)], [12 (d)]. Kac (using ideas of Deligne and Kazhdan) and Macdonald have 
independently generalized these strange formulas and ^-function identities ([9 (d)], 
[15(b)]). 

These identities all come from specializations of the denominator formula for 
Euclidean Lie algebras. In joint work with Milne [13], a link was discovered between 
the Weyl-Kac character formula and the Rogers-Ramanujan identities: Principal 
specialization of the character of a certain standard module, say V9 for $1(2, cy 
equals F times the left-hand side of (1), where the "fudge factor" F is 
IJj^l— ^2 j_1)~1 . This surprising finding was illuminated by the recognition 
[12 (e)] that principal specialization of the numerator in the Weyl-Kac character 
formula for any standard module of any Kac-Moody Lie algebra has a certain 
product expansion, the "numerator formula" ; see also [9 (d)]. Stanley [17] has observed 
that for finite-dimensional simple Lie algebras, this numerator formula, which was 
essentially well known, simplifies Hughes' proof [8] that the polynomial J7"=i (1 +0*)> 
and certain other polynomials, are unimodal. Using the numerator formula, one 
also obtains from the Dyson-Macdonald identity for sI(/7, C) a formula [12 (e)] 
for the reciprocal of the generating function for 77-rowed plane partitions, generalizing 
Euler's recursion (2), the case 77 = 1. 

In a first attempt to prove (1) by Lie-algebraic methods, the characters of V and 
of other standard modules were "directly" computed in a joint paper with Feingold 
[4], leading not to (1), but to two new formulas equating the left-hand side of (1) 
with expressions involving interlocking recursions. It was also unexpectedly found [4] 
that the weight multiplicities of the "basic" $1(2, C)"-module V0 are precisely 
the values of the classical partition function; this led (using the numerator 
formula) to a Lie-algebraic interpretation of a second Gauss formula, (p(q2)2l<p(q) = 
ZjezqKZi*iy' These first character computations for Euclidean Lie algebras have 
been extended by Kac, giving new multivariable identities [9 (d)].4 

4 These turn out to be related to the modular function/ [20], suggesting the striking possibility 
of a connection between the "monster" sporadic simple group and Euclidean Lie algebras, in view 
of recent empirical discoveries of McKay, Thompson, Conway and Norton. 
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Let g=$1(2, C). A "construction" of g is accomplished in joint work with 
Wilson [14] : The occurrence of the partition function in the character formula for 
V0 suggested trying to realize V0 concretely as a space of polynomials in infinitely 
many variables and to construct g as an algebra of differential operators on V0. 
The result is that g acts faithfully on C[xl9 xS9x59...], this algebra being graded 
by setting àtgx~—j9 and g is spanned by the identity, the multiplications and 
differentiations by the xj9 and the homogeneous components of 

exp (2 2xjfj) exp {-% 2(d/dxj)/YJ)9 

where the sums are over all positive odd integers j [14]. This construction gives the 
central extension g the appearance of a "quantization" of the function space g. 
The "exponential generating function" for § is strikingly similar to the vertex 
operator in the string model in quantum field theory, as Garland has observed. 
In [10], this construction is generalized to all Euclidean Lie algebras (using at one 
point the numerator formula together with, coincidentally, exactly the two "regular 
specializations" discussed above). 

The realization of g depends on the presence of a "principal" infinite-dimensional 
Heisenberg subalgebra of g [14], which at the same time turns out to "explain" 
the fudge factor F. It has now been shown that (1) "counts" the dimensions 
of certain spaces of polynomials associated with the concrete realization [14] of g 
and that (1) has a Lie-algebraic interpretation and proof (current joint work with 
Wilson and Kac). 
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J. Tate in his famous thesis introduced L and e factors and showed that the 
classical global L and s are products of local ones. R. P. Langlands [2] conjectured 
that a similar theory is true for an arbitrary reductive group G. More precisely, 
he conjectured that it is possible to attach to each (or almost each) irreducible 
representation np of Gk L and s factors in such a way that for each irreducible 
automorphic representation %=Ç§np of GA the function 

L(n,s) = n *<,{*„*) (1) 
p 

has a meromorphic continuation (with a finite number of poles) to the whole complex 
plane and a functional equation 

L(n, s) = L(n91 — s)e(n9 s)9 (2) 
where £(ii,s)=]Jps(np9s9\l/p)9 \//p being the local components of a character \j/ 
of k\A9 and fi is the contragredient representation. He also conjectured that 
for a given reductive group G there are many constructions of L and e, which 
can be labelled by irreducible representations of some complex reductive group LG. 
We are still very far from a solution of this problem. 

For classical modular forms of one variable there are three different constructions 
of L-functions due to (I) E. Hecke, (II) R. A. Rankin and A. Selberg (independently 
and about the same time), (III) G. Shimura. These constructions give different 
L-functions. The aim of this talk is to describe generalizations of these constructions 
to the case of automorphic forms on adeles of a reductive group G. 

* Partially supported by the NSF. 
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(I) Hecke construction. Assume that there exists a subgroup HaG and a homo
morphism H^k* and that X(h) is an automorphic form on HA such that 

J((p9s)= f <p(h)\ii(h)\*X(h)dh (3) 

has the following properties for every cuspidal automorphic form <p on GA: 
(1) it converges in some half-plane, (2) it has a meromorphic continuation to the 
whole complex plane, and (3) for a decomposable cp lying in an irreducible repre
sentation n9 J(q>9 s) can be written as an Euler product. The simplest example 
of such a situation is for (7=GL (2) [1]. In this case we can take 

H = {(o ?)»«€/c*}, ju(g ?) = a. A(fc)Sl. 

The second known example is < J = G L (/?)XGL (m)9 n>m. Here we lake 

H 
x 0 y] 
0 1 u\ 
.0 0 zi 

9 x£GL(m)9 yeMmxl
9 u£Mlxl

9 z£Z} (4) 

li(x) = detx, k(h) = iA(zi2+... + Z/-u + Wi), 

where l=n—m — \9 Zt is the unipotent upper triangular group in GL(/), and 
]// is a nondegenerate character on /c. The case 72=3, m=l was considered in 
a paper by Jacquet, Shalika and myself (submitted in Annals). The general case 
has not yet been worked out in all details; we are working on it now (see also [8]). 
Some examples of subgroups H in the orthogonal and symplectic groups were 
obtained by M. Novodvorsky [9]. But in Novodvorsky's examples there exist 
irreducible cuspidal automorphic representations n of GA such that the integral 
(3) is zero identically for all q>£n. It is plausible that the only examples of G and 
H such that 'for every % the integral (3) is non-zero for some (p£n (and then 
in fact equals L(n9s) for suitable cp) are the groups GL (ri) itself and 
GL (77) X GL (/??), 72>777, with H as above. 

It is well known that for G=GL(77)XGL(77?)?
 LG=GL (119 C)XGL(m9 C). 

It is possible to show that the L-functions constructed using the subgroup (4) cor
respond to the representation of LG which is the tensor product of the standard 
representations of GL (72, C) and GL (777, C). How to construct L-functions for 
other representations of LG is almost unknown. 

We now describe the local L and e factors, following the pattern given by 
J. Tate. We consider a set of integrals and we claim that all these integrals converge 
in some half-plane and can be meromorphically continued to the whole complex 
plane. We define L(%9 s) in such a way that L(n9 s) times any of these integrals 
is an entire function. For the definition of e we should consider another set of 
integrals. There is a natural one-one correspondence between these sets such thai 
the corresponding integrals are proportional, and the coefficient of proportionality 
is the e-factor. 
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For GL (2), for instance, we put 

L(jV98) = fw§,ì)\xr-V'iPx9 

L(W9s) = fW^xty\x\W-*d*x9t 

where W belongs to the Whittaker model. (Recall that a Whittaker model for an 
irreducible representation n of GL (77, kp) is a right invariant space W(n9 \ji) of 
smooth functions on GL (77, kp) satisfying W(zg)=\j/ (z12 +... + zn _ x „) W(g)9 

\/z£Z„9 such that the representation of GL (ri9kp) on W(n9\j/) is equivalent 
to 7T.) Then we have the following theorem: 

(1) Both integrals converge absolutely in some half-plane Re s>cQ. 
(2) They are rational functions of qs. 
(3) There exist two Euler factors L(%9 s) and L(n9s) suchthat L~1(n9s)L(W9&) 

and Z~1(n9s)L(W9s) are polynomials in qs
9q~s. 

(4) There is a function e (TI, S9 ij/) which is of the form aqm and such that 

L-\n9 l-s)L(W91 -s ) = 8(n9 s9 $)Ir*(n, s)L(W9 s) 

for all WeW(n9\l/). 
(5) If n and ^ are unramified, WQ is invariant under the corresponding maximal 

compact group and W0Q J)=l, then 
L(W09s)=L(n9s). 

For GL (72) X GL (777) we have to consider the following integrals. Let % and 
T be irreducible representations of GL (77, kp) and GL (777, kp). We put for 
W£W(n9\l/) and W^W^x//-1) 

[x 0 0) 
L(W9 W\ s) = fw\y h 0\W1(x)\dGtx\s-1/2d(x9 y)9 

J lo 0 1) 

L(W9 W\s)=jW^x ^O^WIdetJcl - '+ '+^rf ' jc . 

Then for the integrals L and L the same theorem as in the case GL (2) holds. 
(H) Rankin-Selberg construction. R. Rankin and A. Selberg gave a method of 

analytic continuation for the convolution of Dirichlet series relating to classical 
modular forms. The reformulation of their construction in the language of repre
sentation theory was considered by H. Jacquet ([10] for GL (2) X GL (2) with 
explicit computation) and Piatetski-Shapiro [7] in generality, but without explicit 
computation). We will outline [7]. Assume that H is a reductive subgroup of 
G and P a maximal parabolic subgroup of H. For simplicity we assume that the 
center of G is trivial. We put P=MN9 where M is a reductive group and N its 
unipotent radical. Let $ be a nice function on NA\HA and \i a homomorphism 
P-+kx and set 

/(g, #> s) = f$(mg) \fi(m)I~s dm, 
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It is easy to show that this integral converges in some half-plane and has mero-
morphic continuation to the whole plane. Now we introduce our main hero "Eisen
stein series" 

E{g,*9s)= 2 f(yg>*,s). 

It is known that this Eisenstein series converges in some half-plane and we know 
due to R, Langlands [5] that this series can be meromorphically continued to the 
whole complex plane. In this case the global L function can be written in the form 
J(cp9 s)9 where for any cuspidal automorphic form cp on G we put 

J(<P,s)= f <P(g)f(g,$,s)dg= f q>(g)E(g9$9s)dg. 
Pk\HA PHWA 

It is known that q>(g) rapidly decreasing and E(g9 &9 s) slowly increasing implies 
that J(cp9 s) is a meromorphic function. We will give now a partial list of cases 
when we can use the Rankin-Selberg construction. In all details it was done only 
for G=GL(2)XGL(2) by H. Jacquet [10]. In this case H=GL(2)9 diagonally 
embedded. H. Jacquet also considered the case GL (2, K)9 where K is a quadratic 
extension of a global field k9 and H=GL(29 k)9 embedding induced by the natural 
embedding k-+K. The cases GL(TZ)XGL(T7) and GL(T7?JRT) can be considered 
similarly, but many difficult problems have not been solved yet. The case 
G=GSp (49 k)9 H= {g€GL (29 K)9 deigtk*} can be considered [7]. Some cases 
where G is an orthogonal or sympletic group were considered by M. Novodvorsky [9]. 

(Ill) Shimura's method. This was developed for modular forms of one variable 
by Shimura. Here we will give a general construction. Let G be a reductive group 
over k. For simplicity, we assume that the center of G is trivial. We will call an 
irreducible automorphic representation cr distinguished if for a maximal parabolic 
subgroup P9 we have 

(1) For any automorphic form 6£n we have that 

0Q(g)= f 9(zg)dz= f 9(iig)dn 
Z*\ZA Nk\NA 

where N is the unipotent radical of P and Z the center of N. 
(2) All nontrivial characters \j/ of Zk\ZA for which the Fourier coefficient 

0*(g)= f 9(zg)il,-\z)dz 
Zk\ZA 

is not identically zero have the form z-^\j/Q(pzp~1) for some p£Pk and some 
fixed \jj0. 

(3) Denote by R the stationary subgroup of \J/0 in P, viewed as an algebraic 
subgroup over k. It is clear that 0ìj,(rg) = QìJ,(g)9 \/r£Rk. Our third assumption 
says that for every 0£<r the restriction of 0^ to RA belongs to a fixed irreducible 
automorphic representation T of Ä^. 

We define Eisenstein series E(g9 $, s) as above, with the additional assumption 
that the homomorphism fi is trivial on R. Then for any cuspidal automorphic 
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form q>9 lying in any irreducible representation % of G9 the integral 

J(q>98)= f <p(g)Hg)E(g9<l>9s)dg 
Gk\GA 

has an analytic continuation. Moreover, if $=IJP &P
 anc^ ^ w e assume that for 

all p there is at most one map from np to %p (this assumption is similar to the 
uniqueness of Whittaker models in the classical case), then J(<p9 s) has an Euler 
product. Since the proof is short and has not been published, we give it here. 

First, replacing E by the series defining it, we have 

J(cp, 5) = / <p(g)9(è)f(g, *> ') dg (Re (s) » 0). 
P*\GA 

From the definition of a distinguished representation it follows that 

9(g) = 90(g)+ 2 0*.(W). 

Hence 
J(cp9s)= f <p(g)Üg)f(g,<P,s)dg+ f <p(g)9^)f(g9^9s)dg. 

Pk\GA Ru\GA 

Since 0O is left NA -invariant and <p is cuspidal, the first term is zero. Since \i is 
trivial on R we have f(rg9 $,s)=f(g9 $9s)9 Vr£RA9 and therefore 

J(cp9s)= f ((p(g%9(g))f(g9$9s)dg9 

RA\GA 

where 
(<P(g),9(g))= f 9(rg)9^i)dr. 

*h\*A 

Denote by L a map from n to x. By our assumption this map is unique and 
equals the tensor product of the corresponding local maps Lp. This immediately 
implies that 

(<p(g), 0(g)) = 77 (L,(n(g)<p,), L,(c(g)6,)) 
P 

and hence that J((p9 s) has the Euler product 

J(<P> s) = II f (Lp(n(gp)<PP)> Lp{o(gp)dp))f(gp9 $p9 s) dg. 
p 

In many situations Weil representations are distinguished. For instance, this 
is the case when G is the split three-dimensional unitary group. Here we can also 
prove the local assumption made above (uniqueness of %p-+xp). Details were given 
by the author in lectures in Yale University (1977-1978).1 

1 During the congress I have learned that T. Shintani has considered independently afterwards 
(1978) a similar construction in the special case of the holomorphic modular forms in the two 
dimensional ball. He did not give a definition for local L and e factors. He found remarkable 
necessary and sufficient conditions for holomorphic modular form in the two-dimensional ball to 
be an eigen function of Hecke operators in terms of its Fourier—Jacobi series. 
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We can also apply this method to a group G which is a central extension of G9 

for instance the metaplectic covering of GL (2). Here again Weil representations 
are distinguished (Gelbart) and the local uniqueness assumption is a theorem (joint 
work with S. Gelbart and R. Howe). The main result which was obtained in this 
case is the construction of L-functions; it will be published in a forthcoming paper 
of S. Gelbart and the author (see also [11]). The main application is the proof of 
the existence of a Shimura correspondence. This says that there exists an injective 
map Sp from the set of irreducible admissible representations of Gp into the set 
of irreducible admissible representations of Gp which preserves L and e and has 
the following property: if 7r=(g) np is an irreducible automorphic cuspidal repre
sentation, then S(n)=(g) Sp(np) is an irreducible automorphic representation and 
is cuspidal iff n does not come from a Weil representation. 

Unfortunately, the image of S or Sp is unknown. Despite lack of evidence 
I dare to conjecture that the analogous map exists for any central extension of 
any reductive group. 

I am very grateful to D. Zagier for reading this talk and for his help in its pre
paration. 
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On Special Values of Zeta Functions of Totally Real 
Algebraic Number Fields 

Takuro Shintani 

1. Hecke presented two different approaches to the Hilbert twelfth problem. One 
is the study of higher dimensional complex multiplication which is now developed 
to a magnificent theory by Shimura. Another is the study of Kronecker limit formula 
for general algebraic number fields [4]. Namely he proposed that the study of analytic 
expressions for values at s=l of the Hecke L-series for a given field k could lead 
to a discovery of analytic functions suitable (natural) special values of which generate 
abelian extensions of k (the author is indebted for the present view on Hecke's 
works to Siegel [15] and Honda [7]). In the present talk we review our papers [11]-[14] 
in the context of Hecke's second program. 

Notation. For an algebraic number field k9 let hk9 dk and Oft be, respectively, 
the class-number, the discriminant and the ring of integers of k. For each ideal 
a of k9 N(a) is the absolute norm of a. The group of units (resp. totally positive 
units) of k is denoted by E(k) (resp. L(/e)+). The 777th Bernoulli polynomial in 
x is Bm(x). 

2. Let k be an algebraic number field of degree n. For an integral ideal f of 
k9 we denote by Hk(\) the group of narrow ideal classes modulo f of k. For 
each c^Hk(\)9 Çk(s9c) is the ray class zeta function corresponding to c. For any 
character % of Hk(\)9 Lk(s9x)=2%(c)£k(s>c) is the Hecke L-series associated 
with %. For the arithmetic nature of Lk(l9x), Stark [20] conjectured that, if the 
number of infinite primes of k where % splits is a(%)9 Lft(l,;t)7ia(*)""w would be 
a homogeneous form of degree a(x) with algebraic coefficients in logarithms of 
units of a certain abelian extension of k. In view of the conjecture, one may say that 
an analytic expression for Lk(l9 %) of "desirable nature" should have a natural 
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interpretation as a homogeneous form of degree a(x) in logarithms of special values 
of certain analytic functions. In particular, if a(%)=Q9 "good formula" for Lk(l9x) 
should be an elementary arithmetic one. Recall, when k is either rational or ima
ginary quadratic, classical formulas for Lfc(l, x) are all of "desirable nature" and 
that special values of exponential or elliptic modular functions are involved in these 
formulas. We will show that for a totally real field k9 an analytic formula of 
"desirable nature" is available for Lk(\9x) if ct(x)=0 or 1. 

3. Let A (resp. x) be an nXr (resp. lXn) matrix with positive entries. Denote 
by Lm(z)=2am*zu (a=l> •••>r) ^ e linear form in r variables corresponding to 
the mt\\ row of A and set 

(1) Us9A9x) = 2 È {Lm(z)+xm}-\ 
Z Wl = l 

where the summation with respect to z is over all the Muples of nonnegative 
integers. The Dirichlet series (1) is a natural generalization of the Riemann-Hurwitz 
zeta function. It is convergent if Res>r/n and is extended to a meromorphic 
function on C. Our starting point is that, if k is totally real, £>k(s9c) is a finite 
linear combination of Dirichlet series of type (1). In the following we always assume 
k to be totally real. Let x*-+(xa\ ...9x

in))9 where *(1), ..., x{n) are n conjugates 
of x9 be a natural embedding of k into Rn. By componentwise multiplication, 
the group E(k)+ acts on R\. It is shown that a fundamental domain for Rn

+ 

With respect to the action of E(k)+ is realized as a disjoint union of finite number 
of open simplicial cones with generators in Ofc. In more detail, for r linearly inde
pendent vectors vl9 ...9vr of R"9 we call the set of all positive linear combinations 
of vl9 ..., vr the r-dimensional open simplicial cone with generators vl9 ..., vr. It is 
proved (cf. Proposition 4 of [11]) that there is a finite system of open simplicial 
cones {Cj'9j£J} with generators in £)knR+ such that 

(2) Ä+ = U U uCj (disjoint union). 

For each j£J9 we denote by r(j) the dimension of Cs and choose and fix a system 
of generators vjl9 ..., vJHj)^Dk of Cj once and for all. For each xÇCj we set 

x = 2 z(x)«Vj« (z(x)a£R+). 
a = l 

Note that if x£Cjnk9 z(x)l9 ...9z(x)r(j) are all rational. Choose and fix integral 
ideals a^ ...,aAtf of k so that they form a complete set of representatives for 
narrow ideal classes of k. For each c£Hk(\)9 there uniquely exists an index i 
(1</<A0) such that c and 0,-f are in the same narrow ideal class of k. For each 
jfê/, put 

(3) R(c9 Cj) = {xeCjnfaf)-1; (x)û,fec, 0 < z(x\ < 1 (a = 1, ...,r(J))}. 

Note that the set R(c9C}) is always finite. Let Aj be the nXr(j) matrix whose 
(a, jS)-entry is given by i ^ . Then (2) and (3) imply the following formula for 
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W,e) (cf. [11]): 
(4) N(*ifrtk(s, e) = 2 2 C(s,Aj,x). 

j£J x£R(c>Cj) 

Note that a formula of type (4) was first introduced by £agier [24] in the case of real 
quadratic fields. 

Hence, evaluations of special values of £t(j, c) are reduced to those of £(s, Aj9 x). 
Now, at non-positive integers, Ç(s9Aj9x) is evaluated in an elementary manner. 
In more detail, let Lf(t)=2aait« (a=l> —>w) be the linear form in n variables 
corresponding to the rth column of A and let Bm(A9 x)^/(m\)n be the coefficient 
of f/1 "̂"1 !̂... tß_t tß+1... /j,)"

1"1 in the Laurent expansion at the origin of the following 
function in t and w: 

[expf-ff 2Ux\ / 7 { l - e x p ( - M L * ( 0 ) H 

Furthermore, set Bm(A9 x)=^2ßtslBm(A9 x)mjn. We may regard Bm(A9 x) as a gener
alization of Bernoulli polynomials. Applying a modification of the classical method 
of contour integrals due to Riemann, Hurwitz and Barnes [2], we can prove (cf. 
Proposition 1 of [11]) that 

(5) Ç(l-m9A9x) = {-lY<m-»m-Bm(A9x) (m = 1,2, ...). 

Combining (4) and (5), we obtain an explicit formula for ttk(\—m9 c) (w=l, 2, ...) 
(for real quadratic fields, such a formula was given in [17] by a different method) 
which yields a simple proof of the Klingen-Siegel theorem [19] that £k(s9 c) is 
rational valued at non-positive integers (cf. Theorem 1 of [11]). When f=Ofc, 
an explicit formula for £fc(l —m9 c) of entirely different nature was established 
in [18] (cf. [6]). Note that, when k is real quadratic, Cassou-Noguès [3] and Zagier 
[25] also calculated Çk(l— m9 c) starting from the formula (4). 

Now let x be a primitive character of the group Hk(f) which ramifies at all 
infinite primes of k. Then the functional equation for Lk(s9 x) implies that 

Lk(l, x) = Lk(09 X^Hx^/VdM), 
where w(x) is the root number. Applying our formula for Çfc(0, c)9 we obtain 
the following (cf. Theorem 3 of [11]): 

THEOREM 1. The notation and assumptions being as above, 

(6) Lfc(l, x))/dkN(dl(n»w(x)) = 2 Z"1 (c)22 *i(C„ x) 
c j X 

(ceflikd), j£J> xeR(cj9c))9 

where 

H l V«=l ' a = l ' a ! J 

where I ranges over all the r(j)-tuples of non-negative integers such that 
!i+.-+Ir(» = r(j). 
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In particular, assume x t 0 be of order 2. Then x corresponds, in class field 
theory, to a totally imaginary quadratic extension K of k with relative discriminant 
f and the left side of (6) is equal to 2n-lhK/hk[E(K)9 E(k)]. Thus, the formula (6) 
gives an affirmative answer to the Hecke conjecture [5] that the relative class number 
of K with respect to k would admit an elementary arithmetic expression. For 
real quadratic fields k9 a formula equivalent to (6) was given by Hecke [5] and was 
further studied by Meyer [8] and Siegel [16]. 

4. Next, we assume that % is a primitive character of LTfc(f) which splits at only 
one of n infinite primes of k. Then the functional equation implies that 

Lk(h x) = w(x)K(o9 z-WM-yiW®. 
Thus, in the present case, the evaluation of Lk(l9 x) is reduced to that of £'(0, A9 x). 
Fora lXr matrix A and a variable x9 Barnes ([1], [2]) introduced multiple gamma 
function rr(x9 A) with modulus A by setting 
(7) C'(0, A9 x) = log {rr(x9 A)lQr(A)l 
where Q^A)"1 is the residue at x=0 of exp £'(0, A9 x). He established various 
properties of Tr analogous to the ordinary gamma function. For a general nXr 
matrix A with positive entries, £'(0, A9x) is also evaluated in terms of multiple 
gamma functions. 

In more detail, let Am be the /77th row of A and set, for each r-tuple / of non-
negative integers, 

where (a, ß) ranges over all pairs of positive integers such that l ^ a , ß^n9 oc^ß. 
Furthermore, for *x=Az (z£Rr

+)9 set 

where / ranges over all /'-tuples of nonnegative integers such that J-^+.^ + l^r. 
Then it is proved (cf. Proposition 3 of [12] and Proposition 1 of [13]) that if *x=Az 
(z£R\)9 Ç'(0, A9 ;c)=log T(x9 A). Thus, we are led to the following expression for 
Lk(l>x) a s a linear combination of logarithms of special values of multiple gamma 
functions (cf. Theorem 1 of [13]) : 

THEOREM 2. The notation and assumptions being as above, 

(8) w(x)-^dkN(VLh(l, x)/(2n-i) = 2 JTHC)log TXc), 

where m = n ij nx>A}). 

Note that T(c) does depend upon the choice of representatives a l5...,a, for 
narrow ideal classes of k. For x of order 2, (8) yields a generalization of Dirichlet 
class number formula for real quadratic fields. 
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Formula (8), together with conjectures of Stark, seems to suggest that multiple 
gamma functions may play a significant role in construction of class fields over totally 
real fields. In more detail let 5(f) be the subgroup of iffc(f) generated by those 
principal ideals (x) with x=\ mod(f). Assume that there exists a character 
X of 5(f) given by ^((x))=J7JL2

sgn*(l)- In P2], Stark introduced invariants 
•finite) (m£Z> c^Hk(\)) by setting 8m(c)=exp{m2ses®*(s)C\0>cs)}- H e conjectured 
{[21], [22], [23]) that cm(c) would be a unit of the abelian extension of k correspond
ing to the kernel of X and that the mapping c\-+sm(c) would be compatible with the 
Artin canonical isomorphism. We can show 

<9) cm(c) = 77 W w " . 

Thus, the Stark invariants are described in terms of values at conjugates of k of 
multiple gamma functions with modulus belonging to conjugates of k. 

Stark's conjectures, which are strongly supported by his numerical experiments, 
suggest also that Hecke's second program (mentioned in the introduction) would 
ultimately work for totally real fields if a really good analytic formula for sm(c) 
is available. At present one can only say that (9) may be a candidate for such a 
formula. 

5. For a real quadratic field /c, Theorem 2 is described in a simpler manner. 
Take a fundamental totally positive unit e of k. Then we may put (cf. (2)), 

\JCj = {x+ye; x>09y^0}. 

Set 
od) (I e(1)i 

= (l c«J-

Hence we may put (cf. (3)) 

UR(c,Cj)=:R(89c) 

= {z = x+3;eÇ(a/.f)-
1,(z)a/fGc, O^x^ì, O^y^ 1, x9y£Q}. 

Then (4) is simplified to 
tf(û,D*Ckte, c) = 2 Us,A,z). 

zeJR(e,c) 

Assume that the group LTfc(f) has a character x which splits at only one of two 
infinite primes of k. Take v£k such that v(1), v(2)>0 and v = - l (mod f). 
Denote by the same letter v the element of #fc(f) represented by (v). Then 
X(v)=~L Set 

F(z9 (1, a)) = r2(z9 (1, £))/r2(l +£ -z , (1, e)) 

(cf. (7)). The function F is, up to a constant factor, the unique meromorphic 
simultaneous solution of the difference equations F(z +1) = F(z)2 sin (TIZ/B), 

F(z+e) = F(z)2 sin nz. It is shown (cf. Theorem 1 of [14]) 

C/(09c)-C(09cv) = logX1(c)9 
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where 
W = 77 F{z^9(l9^))F(z^9(l9B^)). 

Let G be the kernel of x and put ^(c9G)^=JJgeGX^(cg). Then we have, if 
X is primitive, the following simplified version of (8) : 

L(h x)HxY1W;mi{2n) = 2 X-Kc)\ogX^(c9 G)9 
c<Efffc(f)/<G,v> 

where (G9 v) is the group generated by G and v. 
Let KG be the class field over k corresponding to the subgroup G of Hk(\). 

If KG is a quadratic extension of its maximally absolutely abelian subfield, Lk(s9 x) 
coincides with an L-function of a suitable imaginary quadratic field. Applying 
results of Ramachandra [9] on the arithmetic nature of Ljl9 x) for x imaginary 
quadratic, we obtain the following result (cf. Theorem 2 of [14]) which is consistent 
with the Stark conjecture. 

THEOREM 3. If KG is quadratic over its maximally absolutely abelian subfield, 
then for a suitable positive integer m9 X^(c9 G)m is a unit of KG and the mapping 
c\-+X^(c9 G)m is compatible with the Artin canonical isomorphism. 

Theorem 3 implies that suitable multiplicative combinations of special values 
of the function F(z9 (1, e)) at k do generate certain non-trivial abelian extensions 
of k. However it remains quite mysterious why they do. It seems that most signi
ficant properties of the double (or multiple) gamma functions remain to be discovered. 
We wonder if our results are related to Shimura's theory [10] on construction of 
class fields over real quadratic fields. 

Finally, we present a numerical example for Theorem 3. Set k=Q(Y2l)c:R. 
The fundamental totally positive unit is given by e=(5 + ]/21)/2. Put f=(e— 1). 
Then the group Hk(f) is isomorphic to the direct product of two copies of a cyclic 
group of order 2. There uniquely exists the character x of Hktf) with a(x) = l 
which splits at the infinite prime corresponding to the prescribed embedding of 
k into R. Then KG=k(ye — 1). We may put a1=Dk9 a2=f. For this example, 
Theorem 3 is valid for m= 1. We have 
(10) A't(l) = {F(l/3)F(l +8/3)F((2+2C)/3)}2 

= (e-2+l/c~^I)/2, 

where we put F(z)=F(z9 (1, c)) (cf. example 3 of § 3 of [12]). It would be quite 
interesting if one could prove the equality (10) directly. 
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TpyflM MeaKflyHapoAHoro KoHrpecca MaTeManncoB 
XeJILCHHKH, 1978 

McTOfl YcpeAHeHHH B TeopHH 
OpToroHajibHbix PH#OB 

C. B. EoHKapee 

MeTOA ycpeAHeHHÖ B Bonpocax pacxo^HMoc™ pflßOB <Dypbe no O6IIJHM opTo-

ronajiBHbiM CHCTeMaM COCTOHT B TOM, HTO KaxcflOMy BH#y CXOAHMOCTH conoc-

TaBJuieTCfl HeKOTopBiH cnoco6 ycpe^HeHMH, T. e. cipoHTCfl cjryqaHHbiH o6i>eKT, O^HH 

H TOT »ce flJifl Bcex opToroHaJibHbix CHCTCM. 3 T O T cjiyHaifflbiH o6teKT ßOJDiceH 

AaBaTb Hy»cHoe HBJICHHC pacxo^HMocra B cpe^HeM, He3aBHCHMo OT CUCTCMM. 

Tor^a fljia Kaxc^oH opToronaJibHOH CHCTCMH nai^eTca peajiH3an;HÄ cjiyqairaoro 

oSbeicra, Ha KOTopon RJIZ flaimoH CHCTCMM ßocTHraeTca TpeSyeMaa pacxo^HMocTb. 

TaiciiM o6pa30M, iconcTpyKipm cjiyHaHHOH ^yHKicHH onpeAeJifleTCÄ BH#OM CXO#H-

MOCTH, a TpaeKTOpHH, Ha KOTOpblX flOCTHraeTCÄ paCXO^HMOCTb, 3aBHCÄT OT opTO-

rOHajIbHOH CHCTeMbl. 

MeTOfl ycpe^HeHHH no3BOJuieT ycTanoBHTb, HTO Bee ociiOBHbie 4>aKTbi, OTHOCA-

inneca K pacxo^HMocra TpHroHOMeTpHiiecKHx pÄ#0B OypLe, no cBoen npnpo^e 

ne jiBJitfioTCfl TpHroHOMeTpiiHecKHMH, a MoryT 6biTb e,n;HHoo6pa3HO nojiynepbï 

ßjia scex opToroHaJibHbix CHCTCM. 

KpoMe Toro, yKa3aHHbriî MeTOfl ycpeßHeHHH ycTanaBjiHBaeT cBoero po^a 

ABOHCTBenHocTb Meac^y np^MbiMH H oöpaTHbiMH yTBep^KßeHHHMH B Bonpocax 

CXOßHMOCTH pÄ^OB OypbC fleHCTBHTeJIbHO, ßJIfl KOHKpeTHHX OpTOHOpMHpOBaHHblX 

cHCTeM npjiMoe yTBepxcfleiiHe o CXO#HMOCTH p*m,a <E>ypbe ôHJIO O6HJHM (JmKTOM, 

OTHOC5HH;HMC5I IC onpe^eJienHOMy KJiaccy ^yHKiijHH, a oôparaoe yTBepamenne o 

pacxoAHMOcTH HocHJio xapaKTep KOHTpnpHMepa. I l pn yKa3aHHOM no^xo^e H 

npjiMoe H o6paTHoe yTBep^KAeinm HBJIäIOTCä OOIIJHMH (jmicTaMH, H o6a 3TH yr -

Bepxc^eHHa cBH3anbi onpeflejieHHbiM oTHonienHeM ^BOHCTBCHHOCTH. Taie, ecjin 

npjiMoe yTBep)KAeHHe OTHOCHTCA K npoH3BOJibHOH tyyiwiijm H3 onpe^enemioro 

Macca H K KOHKpeTHOÊ opTOHopMHpoBaHHOH cncTeMe, TO oôparaoe yTBepÄfleiiHe, 
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nojiyneHHoe MCTO^OM ycpeflHeHHH, OTHOCHTCH K KOHKpeTHofi cjiynaHHOE <j>yHKijHH 
H3 onpe^ejieHHoro Kjiacca H K npoH3Bojn>HOË opTOHopMHpoßaHHoä CHCTCMC 

PaccMOTpHM Bonpoc 06 a6cojiK)THOH cxoflHMocTH pflflOB Oypte. OKa3bIBaeTCH, 
HTO AJHI a6cojnoTHOH CXO^HMOCTH pÄAOB <Dypte cymecTByeT oômaa TeopeMa 
nepeHOca, OTHocHmajicfl ic flByM npoH3BOJibHbiM opToroHajibHbiM cncTeMaM [1], 

TeopeMa 1. Tlycmb {fn}—opmonopMupoeamtan cucmeMa u {<pn}—opmonopMupo-
eaunan, no/tuan e L2(0,1) cucmeMa. ECAU 

jl al •< o«, 2 \an\p == °° nPu n&comopoM 0 -< p < 2, 
n = l n = l 

mo òAH novmu ecex x£[Q91] (fiywcyuH 

zde {vn(x)} — cucmeMa PadeMaxepa9 ydoejiemeopnem coonmovueimw 

2 \K(FX)\ = c», rie bn(Fx) = fFx(t) - cpn(t) dt. 
« = i o"7 

Bo3bMeM B KanecTBe CHCTCMH {fn} cncTeMy Opamcjuma. Tor#a fyynKujisL 

rxV) ZJ „a + 1/2 
n = l " 

npH Bcex #6[0,1] npHHa#jie»cHT Kjiaccy Lip a H B cHJiy TeopeMbi nepeHoca npH 
noHTHBcex x€[Q91] 

•=1 

T. e. oflHa H Ta »ce anynaHHafl 4)yHKijH5i Fx(t) pp.er oôparaoe yTBepacfleHHe K Teo-
peMe BepiffliTeiiHa—Caca 06 aôcojiioTHOH CXO^HMOCTH TpnroHOMeTpiwecKHx 
p f̂lOB <Dypbe OflHOBpeMeHHO flJM BCeX IlOJIHblX OpTOHOpMHpOBaHHblX CHCTeM. 

^pyrne paiera Taxoro »ce Tnna, a Taicace HCTopmecKHe cBCfleHHa, oTHOcamneca 
K TeopeMe BepHHiTeHHa—Caca, co^epacaTCK B [1]. 

CncTeMa OpaHKjiHHa nrpaeT Baacnyio pojib B TeopHH 6a3HcoB. CncreMa Opamc-
jiHHa Hcnojib3yeTCa npH nocTpoeHHH 6a3Hca B npocTpaHCTBe <})yHKii;HH, aHanHTH-
HecicHx B icpyre H HenpepbiBHbix Ha rpaHHije [2]. KpoMe Toro, #Ji5i pajjoB no cnc
TeMe <DpaHicjiHHa cnpaBeAJiHBbi HepaBeHCTBa [1], [2] 

mes 2 "M') 
fc = l 

ft=l 

dt, 

dt, 
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H3 KOTòpbix, B HacTHocTH, cjie#yeT, HTO cHcTeMa ^pamcjiHHa ecTb 6e3ycjioBHbiH 
6a3HCBLp5 1 < / 7 < : O O . 

Bonpoc 06 aôcojiioTHOH CXO^HMOCTH paflOB <&ypbe <J)yHKijHH orpanHneHHOH 
sapnaijHH ocTaßaJiCÄ oTicpbiTbiM H B TeopHH TpnroHOMeTpHliecKHx pa^oB. A. 3nr-
MyHÄ [3] ycTaHOBHji, HTO ycjioBHe 

H = i « 

ßOCTaTOHHO RJIX aÖCOJIIOTHOH CXOßHMOCTH pilflOB Oypbe <j)yHKIJHH fÇH^nV. 

OflnaKo nojiyHHTb neoSxoflHMoe H #ocTaTOHHoe ycjioBHe #o nocjie,nHero BpeMeHH 
He yflaBanocb. Pa3JiHHHbie Heoôxo^HMbie ycjioBHa 6bijiH nojiyneHbi P. CajieMOM 
[4] (2rBSi(1/w)[®0/")]VÉ+" < 0 0> £ > 0 ) Ä-n. KaxaHOM [5] (Hm^_ja.a>(2--0<~), 
H, BHKOM [6] 

2fû>(l/n) log n/n < « . 

fljifl pemenHH 3Toro Bonpoca cjie#yeT npoH3BecTH ycpeflneHHe no neKOTopoMy 
KOHTHHyyMy cHHryjiapHbix 4>yHKijHH [1], [7]. 

T e o p e M a 2 . Tlycmb {f„} —no/man opmoHopMUpoeannaH cucmeMa,ydoßjiemeopnw-

ujan ycAoewo | | / , I L ^ M , 72 = 1, 2, . . . . Tteda òAH AWóOZO ModyAn Henpepuenocmu 

(ù(ò) cyujecmeyem maKoe ceMeücmeo $yHKipiü Fx(t)9 F^tyÇH^nV npu ecex 

x£[0> 1], vino 

/ Ì l« , (Wx > 5 (M). i -MM, 

*<fe tf,(ig = ( ^ ,<?/)• 

H3 TeopeMbi 2 cjieflyeT, HTO o6paTHoe yTBepacßemie K TeopeMe 3nrMyHAa 

AeHCTBHTejIbHO CnpaBeAJIHBO, H HC TOJIbKO ßJIÄ TpHrOHOMeTpH êCKOH CHCTCMbl, 
HO H flJIÄ JII060H OrpaHHieHHOH nOJIHOH OpTOHOpMHpOBaHHOH CHCTCMbl. 

CeMencTBo $yHKn;HH Fx(t) HMeeT cjie^yiomHH BHA: 

- 1 tfm + l 2" + l 

*«(') = ft(0+ 2 *BTT 2* 2 A(*)-ft(0, 
m = 0 ^ M=2Vm+l fc=2»+l 

r#e {<pfc} — CHcTeMa Hlay^epa, 2"m~1^œ(2~n)^2~~m npn Nm^n<Nm+1 n 

WOO} — HeKOTopbie nojiHHoMbi no CHcreMe Xaapa, KOTopbie onpeßenaioTCÄ 
no HHflyKH,HH. 

OTMeTHM, HTO Bapnanita BHyTpeHHeö cyiviMbi 3Toro pÄ#a y^oBJieTBopaeT COOT-
IIOHieHHIO 

• ^ T î V 2 A W ' f t ( 0 = 2 
^ 0 k=2»-{- l 

npH /w=0 ,1 , . . . , Nm*zn<Nm+19 xe [0 ,1 ] , HO 6jiaroflapa cnei^najibHOMy CJIO-
sKemttb \/lFx=2 npH BCex x£[091], T. e. o6maji Bapnanna ocTäCTca nocTóannoo. 
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AHajiHTHHecKHM annapaTOM npn ycpeflHemra no cHHryjrapHHM $ymsnp*M 

HBJiflioTCK HOBbie HepaBeHCTBa, ^aiomne oijeHKy cHH3y HopMH B LX [1], [7|. 
ITycTb 

2* •> 1 an +1 

*n(*)= 2 **&(*) = 2 ^ ' W 4 
k=2"+l k = 2 » + l 

rÄ e {Xu) H {^k} — CHCTeMbi Xaapa H Varuna. 

TeopeMa 3. ECAU cyufecmeyem nocAedoeameAbnocmb noMepoe {Rm} u nocAe

doeameAbnocmb MUCCA {qm}9 òAH Komopbix 

( R™+i V/2II 
2 àl(x)\ 

W*m+1 / Il 
^Qm* 2qn^Bm<Im> 

mo cnpaeedAueo nepaeencmeo 

1 t R 1 I I 

f J — jT «(*) «** -= -s / J *»(*) dx. 
Q wi=0 &« n=Rm+l o ln s = 0 I 

3 T O ecTb HeKOTOpoe HOBoe HepaBeHCTBo o MyjibTHnjimcaTopax. OTMCTHM, HTO 
ycjioBH« TeopeMbi 3 BbinojiraKvrar, ecjin HanpHMep, \\Sn(x)\\co^d„ H 27=i^n^°°' 

ECJIH >Ke 27=i^n = 009 TOMo»ceTcymecTBOBaTb Hyjib-pjifl H Tor#a Hejib3Ä nojiynnTb 
on;eHKy cHH3y AJIH Z^-HOPMH. 

^acTHbiM cjiyqaeM ycpe#HeHHH no CHHryjuipmjM 4>yHKijHjiM HBJIäCTCä ycpe#-
HeHHe no c^BHraM [8]. Ilpn STOM HcnoJib3yeTCÄ cjie^jyiomnH nacTHbrii cuynaö 
06meH OÎ eHKH CHH3y HopMbi B Lx: 

l 

o n=° 
/ 22».ôî(x)dx^B f 2Sn(x) 

n=0 
dx9 

ecjiH || 5 ( ^ I L ^ 1/2". 3#ecb B03HHicaeT MyjibTHnjiHKaTop CTenennoro BH#a {n1/z}. 
^0Ka3aTejibCTB0 OIIPHKH cHH3y B STOM BecbMa nacraoM cjiynae 3HawrejibHo 
npome, neM ßoicasaTejibCTBo o6men oilmen. 

ECJIH cyMMa pa^a 27=o^n(x):=f(Pc) — a6cojiioTHo HenpepHBHaa $yBKnpx> 
TO H3 npe.zjbi.nymero HepaBeHCTBa, BBH^y oijeHicn 

cjie^yeT HepaBeHCTBo 

ECJIH al9a2, .. 

HepaBeHCTBo 

I IWIL < iMI/1~/2", 

2(f'.<pù%*wi--\\ni. 
k=0 

npoH3BOJibHa>i nocjieflOBaTejibHOCTb nnceji, TO nojiynaeM 

max 
l^k^2" 

rpp Ak —ABOHHHbie nopijHH nocjieAOBaTejibnocTH al9...9a2n9 B3flTbie c JIH-
HCHHHMH cpe3KaMH (4)ymao(HflMH HIay,a;epa)5 H cyMMHpoBanne cnpaBa npoH3-
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BO^HTCä no BceM ABOHHHbiM nopijHÄM. HHTerpnpyfl HHCJioBoe HepaBeHCTBo, nojiy-
naeM, HTO cnpaBe^JiHBa 

TeopeMa 4. Tlycmb {ak} — npomeoAbnan nocAedoeameAbnocmb nuceA u {fk} — 
npou3eoAbnan opmoHopMupoeanuan cucmeMa. Tozda 

max \\akfk\\J 2 J 2<>M)\àt+n J 2<*kM*)\dt\ 

>>B-logn- 2al. 
k=l 

TaKHM o6pa30M, HacTHbm cjiynaii omemCH cHH3y Z^-HopMbi #aeT HOBoe racjioBoe 
HepaBeHCTBo, H3 KOTOporo cjie^yeT BaacHoe HepaBeHCTBo RJIX opToroHajibHbix 
cHCTeM. OTMCTHM, HTO 6ojiee cjiaöoe HepaBeHCTBo fljia opToronajibHbix CHCTCM, 

c 3aMeHOH cpe^HHx apH^MeTHHecKHx Ha MaKCHMyM, SbiJio 6e3 Hcnonb30BaHHa 
HHCJioBoro HepaBeHCTBa #oica3aHO A. M. OJICBCKHM [9]. H3 TeopeMbi 4 cjieayioT 
jiorapH^MH^ecKHH pocT cpeflHHx apH$MeTHHecKHx OT $yHKn?iH JIe6era paBHo-
MepHO orpaHHraeHHbix opTonopMHpoBaHHbix CHCTeM H cnpaBe#.JiHBOCTb B cpe^HeM 
rHnoTe3bi JlHTTJiBy^a. 

^TOÖbl HOJiyHHTb #JM npOH3BOJIbHbIX orpaHHHeHHblX OpTOHOpMHpOBaHHblX CHC
TeM o6o6r^eHHe H3BCCTHOH TeopeMbi A. H. KojiMoropoBa [10] o cymecTBOBaHHH 
pacxo^amerocji noma Bcio^y TpHronoMeTpHHecicoro p*ma <Dypbe cjie^yeT npoH3-
BecTH ycpe^HeHHe no HOCHTCJIAM (5-4)yHKijHH B «-MepHOM npocTpaHCTBe. 3,n;ecb 
Heo6xoflHMo 6biJio ycTpaHHTb CBfl3aHHoe c pacnpe#ejieHHeM 3HaKOB B3aHMOflencT-
BHe K^ep flHpnxjie, cooTBeTCTByiomnx pa3JiHHHbiM <5-4>yHiopuiM. Ka3ajiocb, HTO 
3To HeB03MoacHo c^ejiaTb, He 3Haa äBHOTO BH#a Jiflep flnpHXJie. TeM He MeHee 
y^ajiocb HaHTH BecbMa o6mmi cnocoô npeo^ajieTb yKa3aHHyio Tpy#nocTb [1], [11]. 

TeopeMa 5. Tlycmb {fk} — opmoHopMupoeaHHan9 oepanunennan e coeoicyn-
Hocmu cucmeMa gjywofuu. Toeda OAR AWôOZO JV=1,2, ... cyujecmeywm maKoe 
MHooicecmeo Q moueK (t96l9 ...90N) edunumozo Ky6a e R^+1

9 m e s ß ^ y > 0 , w 
matcan nocAedoeameAbnocmb namypaAbnux nuceA {mp(t)}9 Np*^mp(t)<N(p + l)9 

3aeucnuiaH om t9 umo òAH ecxKoü IWOHKU (t90l9 ...90N)£Q eunoAHnemcn coom-
HOtuenue 

ns 2 2 A(0-/k(öI-)^5-iv.iog .̂ 
P-+o° / = i k=Np 

H3 TeopeMbi 4 cjie^yeT cymecTBOBanne AJifl npoH3BOjn>HOH orpaiiHHeHHOH opTO-
HopMHpoBaHHOH CHCTeMbi p^ma Oypbe, pacxo^merocH na MHO>rcecTBe HOJIOHCH-

TejibHOH Mepbi. fljifl TpHTOHOMeTpHHecicoH CHCTeMbi H CHCTeMbi YoJinia oTcio^a 
aBTOMaTBraecKH MoaceT 6biTb nojiyneHO cymecTBOBaHHe pacxoAmijHxcK noHTH 
Bcio^y pflflOB Oypbe. 
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B 3aKJiioHeHHe H npuBe^y nosyio oijemcy cinny MaacopaHTM lacTHbix cyMM RJIH 

nepecTaBjieHHOH CHCTCMH Yojiina [12]. 

TeopeMa 6. JJAR AJOôOZO /7 = 1,2, .., cyufecmeywm IIOAUHOM Pn(t) = 

2l=\akxi/k(t)> Il-Pj2=l> w nepecmauoßKa a(k)9 òAR Kçmopbix UMeem Mecmo 

nepaeeucmeo 

mes {ml? Èa<T(k)'^<*>^ ^ a V l ° s n \ ^ y» 
zde a u y — noAODtcume/ibmie nocmoRiimie. 

H3 TeopeMbi 6 cjieflyeT, HTO nocjießOBaTejibHocTb Q (n) = o (log n) He flBjiaeTca 

MHO^HTejieM BeHJiH ^JIä 6e3ycjioBHOH CXO^HMOCTH noHTH BCK>Ay p5moB Oypbe-

yojinia. B HaHjiyqmeM npe^bmymeM pe3yjibTaTe, npHuaijjieEcameM C. HaicaTa [13], 

nocjie^oBaTejibH ocTb 

Q 00 = / l °g » • log log n ... log ... log n. 

/Vpa3 
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Contractive Intertwining Dilations and 
Waves in Layered Media 

Ciprian Foiaç 

1. The aim of this talk is to present some old and new developments in the dilation 
theory of contractions on Hilbert spaces, which, because of their abundance in 
open questions and of their potential connection with other branches of science, 
seem promising for further research.1 

2. The beginning of our story is the following well known dilation theorem of 
B. Sz.-Nagy [31]: For any contraction T on ffl there exists an isometric operator 
U on some 3f containing ^ f a s a subspace, such that 

P#U = TPœ9 y<r= V U"M. 
n = 0 

The operator U9 uniquely determined up to an "isomorphism", is called a 
minimal isometric dilation of T. Minimal isometric dilations though their construc
tion is now very simple (see e.g. [33, p. 11]), were connected with fruitful develop
ments in Operator theory (see e.g. [23], [33], [17], [32], etc.); essentially, because 
they provide an adequate geometrical frame (actually meaningful also in Systems 
theory; see [8], [20], [21])2 for studying and understanding problems involving 

1 In the sequel, all «paces will be complex Hilbert spaces, all operators are linear and bounded 
Hilbert space mappings, all contractions are operators of norm < 1 and finally the orthogonal 
projection of any space on its subspace Jf will be denoted by P#\ also for a contraction T, we shall 
denote DT=(I-T*T)1/2

9 ^T=(Range DTy, where / denotes the identity operator (on any 
Hilbert space). Otherwise the terminology is that of [33]. 

2 For the connection of operator theory to systems theory see also the pioneering work of M. S. 
Livsic [25]. 
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contractions on Hilbert spaces. This will be illustrated by our discussion on the 
following dilation theorem for intertwining contractions: 

(I) Let T on 3tf and 7" on ffl' be two contractions and let U on ^ and 
U' on W be minimal isometric dilations of T and T', respectively. Let A be 
a contraction from ffl to ffl' intertwining T and T (i.e. T'A=AT). Then there 
exists a contraction B (called, in the sequel, a contractive intertwining dilation 
of A) from C/f to Jf' such that 

U'B = BU9 PjrB = APJ(r. 

This theorem was established early in 1968 [34]. Although it had, as paradigm, 
an illuminating discovery made, shortly before that date, by D. Sarason [29] (namely, 
its particular functional case: U'=U= the canonical multiplication unilateral 
shift on H2, T=T'; see also [35]) and could be also inferred (see [27], [37]) from 
an older theorem of T. Ando [6] (on the existence of isometric commuting dilations 
of two commuting contractions; see also [33, p. 20]), its proof in [34], recurrently 
exploiting the geometry of minimal isometric dilations, was genuinely new (see also 
[16] and [13] for variants of this proof).3 

3. Theorem I proved to be a useful tool in Operator theory, particularly in the 
study of the commutant of a contraction, of the generalized Jordan models for 
C0-contractions and of the similarity of certain operators (see [36], [11], [38], [39], 
etc.). Moreover it is an abstract generalization of several extremal problem theorems 
in classical and modern interpolation theory. Such theorems are, for instance, 
those answering the classical interpolation problems of Nehari, of Caratheodory-
Fejér and of Nevanlinna-Pick, as well as their generalized operator versions ([29], 
PL [4L [5L P6]). Indeed if any of these problems is solvable, then the set of its 
solutions can be identified with the set of the contractive intertwining dilations of 
a contraction A suitably given together with the operators T, T'9 U and U' 
([29], [5], [26]). The first complete description of the set of all solutions of an inter
polating problem (namely the Caratheodory-Fejér one, in the case 

(3.1) Mil - 1) 

was given by I. Schur [30]. The operator generalization of Schui's description was 
obtained much later by V. M. Adamjan, D. Z. Arov and M. G. Krein [2], [3], [4], [5]. 
These descriptions label the solutions by arbitrary contractive analytic functions 
{ê9 ê9v(z)\9 where S and 8' are some suitable fixed spaces (see footnote one). 
(In Schur's case: dim^=dim<£" = l.) Therefore the labelling by contractive 
analytic functions of the contractive intertwining dilations of a contraction A (given 
together with T9 T'9 U and U' as in (I)) constitutes a natural generalization 

8 Let us also note that in case T= T" the theorem, formulated for the adjoint operators UX~U* 
and A^A*, is currently referred to as the "Commutant Lifting Theorem" (see e.g. [16], [26], [19], 
[12], [22], etc.). 
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of all these descriptions. In order to give such a general labelling (valid, in the 
former particular cases, even if ||-d|| = l (see (4.1)) let us introduce the spaces 

jsf = ((u-T)œ)-9 se' = ( ( t / ' - r ) ^ ' ) - , se% = ((i-uT*)œ)-9 

(3.2) ^ = {DTh + (U-T)h: hesT}-, 9 = (a+&)eP, 

&> = {Dh®(U'-T')Ah: heJ4?}-9 <$' = (ß®&*)Qf 

(where ^ = ^ , D=D^) and the unitary operator co from #" to #"' defined by 

co(DTh+(U-T)h) = Dh®(U'-T')Th (ft€^). 

Also we shall denote by j and / the canonical identifications of ^ and JS? ' with 
^©{0} and {0} ©«£?', respectively (where the last two spaces are viewed as sub-
spaces of ^ ® S£'). The existence of the general labelling is given by the following 
theorem [13] : 

(II) Let T9 T'9 U9 U' and A be as in (T). Then there exists a one-to-one corres
pondence between the set of all contractive intertwining dilations B of A and the 
set of all contractive analytic functions {@9 @'9 (T(Z)}. 

Consequently there exists exactly one contractive intertwining dilation of A if 
and only if at least one of the space 0 and <êf reduces to {0}; thus (II) contains 
the uniqueness theorem given in [7]. The correspondence yielded by Theorem II 
is made explicit in [9], in the following way: 

(III) Let T9 T\ U9 W and A be as in (I). For any contractive intertwining 
dilation B of A9 set 

B(z) = B0+zB1 + z*B2 + ... ( | z | < l ) 
where 

(3.3) Bn = U'*"PMB\^9J£=U'»£e' (n = 0, 1, 2, . . .). 

Then B is uniquely determined by the function B(z) (and also can be easily recovered 
from B(z)) and 

(3.4) B(z) = j'*(a>P*+<rB(z)P9) • (I-zj* (œP^aB(z)P^))^ 

where {&9 <&'9 &B(z)} is the contractive analytic function corresponding to B by 
virtue of (II). 

The involvement of these results in problems of electrical engineering (as those 
of V. M. Adamjan, D. Z. Arov and M. G. Krein were in J. W. Helton's exciting 
paper [20]) as well as the connections to the Sarason type representations given 
in [29], [35] and to the Schur type descriptions given in [3], [4], [5] will be reported 
elsewhere. 

4. The general Schur type labelling given by (II)—(III) was obtained (see [13], [9]) 
by means of another labelling (actually new, since it is only implicitly present in the 
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Schur-Adanyan-Arov-Krein theory). This new label, called choice sequence (see 
[13, Definition 3.1]) is any sequence qf contraction R„ from % to ^ ( / ? = Q , 1 , 2 , . . . ) 
where 

(4.1) % = *, % = * ' (see (4.2)), 9n = 0 ^ , *„' - ^ (n = 1, 2,...). 

We have (see [13, Propositions 2.2 and 3.1]): 

(IV) Let T9 T'9 U9 U' and A be as in (I). Then there exists a one-to-one cor
respondence between the set of all contractive intertwining dilations of A and the set 
of all choice sequences. 

The explicit formulae for the correspondence yielded by (IV) were established 
in [9], though they are already implicitly used in [14]. The next theorems exhibit 
them: 

(V) Let T9 J", U9 U' and A be as in (I), let B be any contractive intertwining 
dilation of A and let Bn (77=0, 1, 2, ...) be the operators defined by (3.3). Let also 
{jRw}y7=0 be the choice sequence corresponding to B9 by virtue of (IV). Then 

(4.2) Bn = Bl+C'nRnCt (if = 0 ,1 , 2, . . . ) . 
where 

ci=rw, C; = C£DRî...DFî_1W (11 = 1,2,...), 
C0 = P^iDPr+I-PrWf» Cn = C0DRl...DRnJ9n (n = 1, 2,...) 

and Bl depends only on T9 T\ U9 U\ A and R09 Rl9 ... , Ru_1 (n = 09 1, 2, ...). 

For the computation of i?° we introduce the following definition: For 
JV=0,1,2, ..., the Nth. interface operator VN of any choice sequence {R„}Z=o 
is defined as the operator from 

^ _ 1 0 . . . © ( ^ N _ 1 © ^ ) e ^ J V + 1 ® . . . 

» - !©. . . ©(^- . i©ar w )eaf N + i©. . . 

(where &_1=&'_1=&'; see (3.2), (4.1)) acting like the identity on all components 
except those in brackets on which it acts as the matrix 

[ ivr*-JWI*I rorN=Q 

[ö**_1*H fOT^=i'2 

(VI) Under the same conditions as in (V), let XJ
n 0 = 0 , 1, ...9n; n=09 1,2, ...) 

be the operator from HP* to &J-! defined by the following recurrent procedure: 

(4.4) XS^P^DPjr+I-JPJM 
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and, for n—\,2,,.., 

(4.5) JCi,ffi^i+©...©^%œc,ri,eo©o®... 

©Jìzji^ec.iueoffioeo©...) (i*e^) 
where {V„}^LB is the sequence of the interface operators of {Rn}%L0. Then 

(4.6) « ^ 
QmXS for n = 0, 

û)Z0°+C^0A^+...H-C^1i?^1A^ / ö r n = l ,2, . . . . 

In spite of their complicated appearance, the formulae (5.2)-(5.5) provide an 
algorithm for the computation of either the contractive intertwining dilation or the 
corresponding choice sequence if the other is given. The algorithm can, at least 
in some interesting particular cases, be efficiently programmed on the computer. 
Such programs can be used for the synthesis of artificial seismic traces and, endowed 
with some stabilizing tricks, even to the analysis of real seismic traces. Our further 
discussion will also offer an explanation of this possibility. 

5. We shall give now the simplest general model occurring in the discretization 
of the scattering of plane waves by layered media and of their multiple reflection 
through these media (see [15, Chapter 8]). For A9 l'£A(Rd)9 let A(X9 X)9 and 
E(X9 A')=>0 be some operators on 8 such that 

E(X9X')8 = 89 
(5.1) 

((A(X9 A')£(A, A') + £(A', X')B(k'9 A")K)~ = 8 (A, A', A"€/l) 

and that for any sequence X. = {X}JL_00czA9 the scheme 

(5.2) 113+1 = B(Xj9 XH1)u^x+A(Xj9 AJ+1)«3+i 

where j , n = 09 ±1 , ±2, , . . , explicit for n^O and implicit for H ^ O , enjoys the 
property ||wi;±1|| = ||w:,|| (/?=0, ±1 , ...), where for u.^={uj}r=_oo we set 

Let 3tf(X) be the space of all sequences u. enjoying ||w.||<:°°, and let t/(A.) 
be the unitary operator on 3tf(X.) defined by (5.2) (i.e. U(X.)un. ^u1!*1). We take 
now two sequences X. = {Àj}9 A? —{Aj} such that A°=A° 0=0 , ±1 , ±2, ...) and 
JLj=X> for j^s and set J7=J7(A.), *=*(*..) and l/°=I7(A?)f JT0=Jf(A?). 
Moreover set £+(X°)=(A(X°9 A°K)~ (=A(X°9 A°K), <f_(A°)=<f ©^+(A°), and define 
(5.3) SI = {u. = (uj)eœ°9 tij£*±M (j < s)9 uj = 0 (j > s)}. 

The operators U9 C/Q and the spaces jtf9 2/C°, Q}\ constitute an Adamjan-Arov-
Lax-Phillips type scattering model with discrete time [24], [1] (see also [8], [18]) 
and therefore we can consider its Lax-Phillips scattering operator S. Taking T 
and T' as the null operators on 0° e ( t / 0 ) - 1 ^ - and on @>\&W®\ and U and 
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U' as the restrictions of (t/0)-1 to &*__ and to (Vr=-oo U°"9l)eU0&l9 respectively, 
the operator S is a contractive intertwining dilation of the null operator from 
g»9(iyo)-i0o t 0 0 o e i 7 o 0 o Therefore, by virtue of (IV), (V) and (VI) we 
obtain a unique computable choice sequence {/^(S)}^-

(VII) We have 

(5 3) r^S) = ° / ^ 7 = 0, 1,2,... 

Ay+iOS') — ß^tts-i, As)... œ^(Xs+j-l9 Xs+j) 

'R(Xs+j9 As+j+1) 

.o)(As+J._l5 XS+JT... co(Xs-l9 XSY for j = 0, 1, 2,..., 

where for any A, A'£/l, i?(A, A') is the operator A (A, A) 5 (A, A') regarded as operator 
from <f_(A°) to <̂ +(A°) tfwtf co (A, A') tffltf <0*(A, A') ore ^ome adequate canonical 
unitary operators from SR(kXf) and SR^^ to <f_(A') and £+(k')9 respectively. 

Since if AS+1=AS+2=...=A1 we have 

i \ = û),(A°, A°)i?(A°, X)a>{k\ A0)*, r,. = 0 for j * 1, 

it is natural to consider that the parameter A is scattering discernible if 

(5.9) R(X°9 A
1) = R(X°9 A

2) implies A1 = A2 (A0, A1, A2<E A). 

In this case from the choice sequence {r/(i£)}JL0 we obtain the parameters As+1, 
As+2 9 •••• 

6. Here is an illustration of the above approach: Consider the system 

/ Ä 1 v , > da I da dv 
(6.1) «<*>*- = * ? • £ M ' a T = äP 
where (?(#) and £"(x) are piecewise constant, left continuous, functions >0, and 
constant for x^O. 

We replace in (6.1), the differential operators y(x)d/dt and d/dx by the following 
"difference operators" (with y(x) representing some adequate "slight modifications" 
of Q(X) and l/E(x)) 

C(x)y(x) , _ , . v 

and 
_ O)(X+C(X+0)T. Q-a>(s-C(x)T, <) 

JJxC0{X' ° (C(x)+C(x+0))r 
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respectively, where T > 0 and C(x)(=YE(X)/Q(X)) denotes the speed. The 
"difference" equations (with variable space mesh) established in this way are of the 
form (5.2) with ^ = C2 and 

^(A,A0 = (A+A/)-1[//A J ] , A(A,A0 = (A+A0"1[_iL/ " £ ] , 
where the parameter A is represented by the impedance I(x) (=Q(X)C(X)).4 

Setting also 

E(X,X') = -t-{0 ljxk\ 

all the conditions required in the preceding section are fulfilled. This yields that 
r2j+1(R) is the multiplication by râ from the space C{1, -1(0)} (aH*(C2)) to 
the space Cz{l,/(0)} (c#2(C2)), where 

rj = [I(xJ)-I(xj+1)]/[I(xj) + I(xj+1)] 

with xo=0and XJ+1=XJ + C(XJ+0)T (y^O). Thus, the impedance I(x) is a scatter
ing discernible parameter. Recalling that 

r(x) = [I(x)-I(x+0)]/[I(x) + I(x+0)] 

represents the reflexion coefficient at point x (see [15, p. 173]), it follows that if 
T is small enough, our procedure5 "yields correctly" all the "layers". 

7. Unhappily, in a very important practical case involving the preceding parti
cular example, the "experimental" values 2?jj, i?J, ... are with respect to the "real" 
values R29 RA9 ... in the following relation 

(7.1) Ì | i ? 2 j . - ^ . | ^ 1 , % \R2j-Rlj\=ö«l. 
J=0 j=k + l 

In order to overcome the difficulties implied by (7.1), one has to provide answers 
to a number of questions, which have natural formulations in the general frame
work discussed in §§ 4 and 5. For instance: with the same notations as in Theorem 
III, find a way to construct all A compatible with fixed BQ9Bl9 ..., BK-k. (This 
will yield a solution to the idealized case when d=0 in (7.1).) 

We conclude with the hope that the interplay between the dilation theory of 
contractions and the search for effective formulae in the scattering inverse problem 
for layered media, we sketched above, will be fruitful for both sides. 

4 T h u s ^ = ( 0 , oo). 
5 Which is different from that of [10], [15], or [28]. 
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Some Combinatorial Methods in Real Analysis 

Adriano M. Garsia 

Introduction. I shall speak of some work carried out over a period of some years 
(1970-1976) by a number of people including myself, E. Rodemich, H. Rumsey, Jr., 
H. Taylor, S. Milne, P. Deland and T. W. Park. A fairly complete account of the 
results obtained appears in [2]. 

The setting can be roughly described as follows. We are given that a generalized 
modulus of continuity of some function / (of one or more variables) has certain 
integrability properties and we conclude that / has a certain degree of smoothness. 

These conclusions are expressed in the form of analytic inequalities between a 
"norm" of the function and a "norm" of its modulus of continuity. 

A number of applications of these inequalities have been obtained in several 
areas of real analysis. For instance results have been obtained on 

(1) Continuity of sample paths for certain stochastic processes. 
(2) Sobolev type inequalities. 
(3) Convergence of Fourier series. 
(4) Continuity of local times for certain Markov processes. 
All these results are consequences of a single purely "combinatorial" inequality 

whose significance may very well transcend the applications that so far have been 
made of it. 

In [2] a brief description may be found of the path that led us to the discovery 
of this inequality; a proof of it may be found in [5]. Today we shall limit ourselves 
to stating it. 

Time permitting we shall also state some of the analytic inequalities that follow 
from it and give a description of the applications. 

1. The combinatorial inequality. We shall describe this result in the simplest possible 
setting. For each integer 77 >- 1 let Gn denote the set of pairs {(/, j) : i9 j = 1, 2, ..., 77 ; 
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/</}• We introduce a partial ordering on G„ by setting 

(1-1) « = (U)<«' = 0',/) 
if and only if 
(1.2) i'^i^j^f. 

In Figure 1 we illustrate the Hasse diagram of Ge. 

s\ 
/ \ / \ / \ 

/ \ s\ s\ s\ 
X\ / \ / \ ,/\ / \ 

• • • • • « 

1 2 3 4 5 6 

FIGURE 1 

This given we shall say that a certain subset AaG„ is "below" another subset 
BczGn and write 
(1.3) A ^ B 

if and only if we can find an injection 6 of A into B which satisfies the condition 

(1.4) a ^ 6(a) \/a£A. 

In other words A^B means that each point a£A can be "matched" to a point 
a'Ç.B that is above it in a one-to-one manner. 

Now for each permutation a=((jl9 CT29 ...,<rn) of 1,2,...,« and each M-^n let 

®M(o) = {(i,J)'-\Gi-<rj\^M}. 

For instance in Figure 2 we illustrate the set S2(2 4 6 1 3 5). 

Let us also denote by RM the set of elements in the first M rows of Gn. In 
Figure 3 we have R2 (when n = 6). 

i: 
a{: 

H E 
H H H 

• • • • 
B H • H H 

1 2 3 4 5 6 
2 4 6 1 3 5 

FIGURE 2 

O © 0 © 
© © © © © 

1 2 3 4 5 6 

FIGURE 3 
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Clearly RM=@M(B) where s denotes the identity permutation. 
This given, the combinatorial inequality can be stated as follows 

THEOREM 1.1. Forall M^n and all permutations ff=(o,
1,o

,
2,...,(rN) we have 

(1.5) RM < auto-

Iti Figure 4 we have illustrated an instance of this result by superimposing the 
diagrams 9^(2 4 6 1 3 5) (squares) and i?a (circles) and indicating a possible 
map 9 (arrows) satisfying the condition (1.4). 

/ 

. M. 
/ 

1 
2 

2 
4 

B B 

è (à <à 

3 4 5 6 
6 1 3 5 

FIGURE 4 

1 2 3 4 5 6 

FIGURE 5 

It can be shown that given S)M(o) a map 6 of RM onto 3fM{p) satisfying 1.4 
can always be constructed by matching each a£RM in a "lexicographic" manner. 
That is we go from "left to right" in RM following the lexicographic order of the 
pairs (i9j) and match each a£RM with the first available pair in @M(o) that is 
in its "right diagonal", or in the right diagonal immediately to the left of @9 or 
in any of the right diagonals that are found progressively further and further left. 

This procedure is best illustrated by an example. In Figure 5 we give the search 
paths for finding the match to the point (3,4) in G6. 

Theorem 1.2 has a ^-dimensional analogue which may be stated as follows. 
Let Ià(ri) be the set of ^-tuples of integers (il9 i29 ..., ia) taking the values 1,2, ...,/*. 
For each one-to-one map a of the set of integers [nd]—[\929 ...9n

d] into Id(n) let 

^ M W = {Ö, j) €<?„-: w> < M) 

where for X=(il9 ..., id)9 Y=(jl9 ...9jd) we set 

-a 
This given it can be shown that there is a constant cd depending only on the dimension 
d such that 

THEOREM 1.2. For all M^nd and all one-to-one maps cr of [nd] onto Id[n] 
we have 
(1.6) % d < ^ W -
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We do not know what is the best possible cd but we can show that we can take 

cd = 3d(d+3)d'2. 

2. The basic analytic inequalities. Let now q> be a function on Gn that is non-
negative and nondecreasing with respect to the partial order (1.1) of Gn. We see 
that if A is below B then we must have 

(2.1) 2 9(a)* 2 9(b). 

Indeed, using the map 9: A-+B we can write 

2 9(b) = 2 <P(0(a)) 
bCB a£A 

but then the monotonicity of q> and (1.4) give cp (9 (a)) >= cp (a). Thus (2.1) is immediate. 
It is not difficult to show (using the marriage theorem) that the validity of (2.1) 

for all such cp is actually equivalent to the combinatorial inequality A^B. 
Let now $(u) be a real valued nondecreasing function of the absolute value 

of u. That is 

(2.2) #(«) = #( -M)t as \u\\. 

Let X^X^...^Xn be reals and set for a=(i9j) 

(2.3) cp(a) = Vft-Xj). 

Note that for i'<zi^j*^j' we have 

^ßi-^^H^-tj')-

In other words, the function q> in (2.3) is nondecreasing with respect of the partial 
ordering of Gn. Thus by Theorem 1.1 we must necessarily have (2.1) with A=RM 

and B=2M(a). 
This gives 

(2.4) 2 #(V-A,)< 2 «0,-A,). 
I/-JÏ3SM \at-<Tj\^M 

Note now that if n = (nl9 n29 ..., n„) is the inverse of the permutation a then 
(2.3) can also be written in the form 

2 ff(V-A,)< 2 Hk-K)* 
\i-j\^M \i-j\^M 

We have therefore established the following result. 

THEOREM 2.1. Let A,/2> •••>/» be arbitrary reals and f*^f£^-.^f» denote 
their nonincreasing rearrangement. Then for all 4> satisfying (2.2) and for all M^n 
we have 

(2.5) z #c/r-/;)< 2 *Vt-fj)-
\i-j\^M |i-j|3SM 

This inequality has a continuous analogue which can be obtained by a suitable 
passage to the limit (see [5]). To state it we need some further notation. 
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Given a measurable function / on [0,1] let us denote by / * the non-increasing 
rearrangement of / . • That is /* is the unique right continuous non-increasing 
function such that 
(2.6) m{x: f*(x) > X) = m{x\ f(x) > X} \/X. 
We then have 

THEOREM 2.2. For any measurable function f on [0,1] and any # satisfying 
(2.2) we have for 0 •< S ̂  1 

(2.7) / / #(f*(x)-f*(y))dxdy* ff ®{f(x)-f(y))dxdy. 
\x-y\&6 \x-y\-Sze 

It can be shown that conversely (2.7) implies (2.5) and that in turn (2.5) implies 
the combinatorial inequality in (1.5). We shall refer to it as the basic analytic 
inequality. 

Theorem 2.2 has a /̂-dimensional analogue which can be stated as follows. For 
a given f(xl9 x%9 ..., xd)9 measurable on the rf-dimensional cube 

h = t0,1]X[0,1]X ... X[0,1] (d times), 

we let again f*(x) denote the unique non-increasing right continuous function 
on [0,1] which satisfies 

m{xe[09 1]:/*(*)< X}^m{(xl9 ..., xd)eid: f(xl9 ...9xd) ^ X}. 

Then we can show that for some constant cd depending only on d we have 

THEOREM 2.3. For any measurable f on Id and any $ satisfying 2.2 and for 
0«£<5^1 
(2.8) J J *CT (*)-/* 00) dxdy ^_JJ ${f(X)-f(Y)) dXdY 

\x-y\^& XY^cdô
l/d 

where X=(xl9 ..., xd)9 Y=(yl9 ..., yd) and XY denotes the Euclidean distance 
between X and Y. 

Of course, we could obtain (2.8) by passing to the limit in (1.6) in the same way 
(2.7) is obtained from (1.5). However, it develops that both (1.6) and (2.8) are 
immediate consequences of (2.7) via the existence of Peano curves satisfying certain 
special conditions. 

To see how this comes about we shall derive (2.8) from (2.7). 
It can be shown (see [8]) that there exists a map $F\ [0, l]-+Id satisfying the 

following conditions 

(a) lF(x) is measure preserving. 

(2.9) (b) ^(x) is Lipschitzian of order \\d. That is for some constant cd we have 

P(x)f{y) ^ cd\x^-y\^d V*, J>€ [0,1]. 
It is interesting to point out that unbeknown to Peano himself the original Peano 

curves do satisfy both these conditions. 

file:///x-y/-Sze
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Now, given / as in Theorem 2.3, let us apply (2.7) to the function g(x) =f(^r(x)). 
Observe that since 3F is measure preserving we must necessarily have 

f{x) =/*(*), 
and (2.7) then gives 

ff *(f*(x)-f*(y))dxdy«: ff *(f(*(x))-f(*(y)))dxdy. 
\x-yfêô \x-y[^ö 

Now, using (2.9) (b) we see that the right hand side is no bigger than 

ff *{f{*(à)-f(?{y)))dxdy. 
&(x)F(y)^caöV« 

Making the substitutions X=^(x)9 Y—$F(y) and using again the measure preserv
ing property of 3F we see that this integral is equal to 

_ff 4>(f(X)-f(Y))dXdY. 

Thus (2.8) follows as asserted. 

3. Applications. To give a flavor of the uses that the basic inequality (2.7) can be 
put to we shall state some of its consequences. 

Let W and p be restricted as follows 

(a) W(u) is defined and continuous in (—°°, +«>) and 
W(u)=\l/(-u)\ as |w|t. 

(3.1) (b) W(ex) is convex in ( - °o, -f oo). 

(c) p(u) is defined and continuous in (0,1) and p(u)=p(—«)|0 as \u\\0. 

Then it can be shown [5] that (2.7) implies that 

THEOREM 3.1. For any f measurable in [0,1] and any pair p9 W satisfying the 
conditions in (3.1) 

i i \ p(x-y) ) J J J I p(x-y) ) 
This inequality has several remarkable consequences. For instance by a suit

able choice of Y and p we get [5] that 

0
J
 0

J (x-yy 
implies 

where mf denotes the median of / and Q=pl(p—l). 
Set now for f£Lp(091) 

ß,(*/) = [4- ff \f(x)-f(y)\'d*dy]". 
1 0 \x-y\^â J ' » 
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This is perhaps the most natural way to define the Lp modulus of continuity of 
a function on [0,1]. Indeed we see that (2.7) with p(u)^=\u\p gives 

Q,(S,f*)*Qp(S,f) Vd<=l. 

Now, upon a suitable integration of this inequality we get the following remark
able result [4]: 

THEOREM 3.3. If Qp(ô9f)/ô
1+llp is integrable then f is essentially continuous and 

at all points of the Lebesgue set of f we have 

(3.2) | / W _ / O 0 H _ _ / 0 , 0 5 , / ) ^ . 

In general we always have 

/*(*)-/*0/2)i A"* r1^,*^ do ,n 

/* ( l /2 ) - /* ( l -x ) J log3/2 / *pK 'J,&+1i> v ' J 

This inequality can be used to derive the convergence of certain Fourier series. 
To see how this comes about observe that (3.2) need not be restricted to functions 
defined on [0,1]* By a change of scale argument it can be established [4] for periodic 
function of period 2n. 

More precisely if cop(S9f) denotes the customary Lp modulus of continuity 
of such a function, that is 

cop(ô,f) = [ / \f(x+S)-f(x)ÌTdxfp. 
o 

Then from 3.2 we can derive 
\x-y\ j ? 

\f(x)-f(y)\^cpf a>p(fi,f)-s^ 
0 ° 

where cp is a constant depending only on p. In particular if Sn(x9f) denotes 
the nth. partial sum of the Fourier series of / , we must also have (using the theorem 
of M. Riesz) 

\x-y\ j x 

\Sn(x9 f)Sn(y9 f)\ ^c'pf cop(5, f) ^ ^ 

where cp is another such constant. 
We see then that if cop(S9f)/S

1+llp is integrable the partial sums Sn(x9f) are 
necessarily equicontinuous and therefore uniformly convergent. 

Now, this result for l^p<^2 can be considerably improved [4], (the Fourier 
series of / converges absolutely then). However, for p >2 it does not appear to be 
a consequence of any of the well-known criteria assuring uniform convergence. 

As a last application we shall show how a combination of (2.8) and (3.3) can be 
used to derive Sobolev-type inequalities. To this end set for f£Lp(Id) 

r i li/p 

Q,(*> /) = ^ "4 fu i/(*w(nif dxdY i 
l XY-ëîô 
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and note that if the gradient v / of / is in Lp(Id) then we must have 

(3.4) QP(*,f)*cS 

where c is a constant depending on p9 d and the Lp norm of v / . Now (2.8) 
for $(w) = |w|p yields 

(3.5) QP(à,f*)^cdJpQ(cdôVd
9f). 

Combining with (3.4) and substituting in (3.3) we get then 

r(*)-/*q/2)i » ^ 
/* ( l /2 ) - /* ( l -* )J / <51+1/p 

and that shows that / is in "weak" L4 where 

1 
^ - l / p - l A T 

Of course for p=d we get that / is exponentially integrable. It can also be 
shown, using the rf-dimensional analogue of (3.2) that (3.4) when p>d forces 
/ to be Holder continuous with exponent 1 — d/p. 
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The Pade Approximants 

E. M. Nikishin 

In the last few years a new interest has developed towards Pade approximants. 
This subject is fairly old but is not still sufficiently studied. The object of the present 
paper is to outline the problems with which the Pade approximants are connected 
and applied to. We shall restrict ourselves to diagonal Pade approximants. 

1. Definitions and some elementary properties 

1°. The main definition. Let/(z) be a function, analytic at infinity and /(oo)=0. 
Find a polynomial A(z)?â09 deg A(z)^n suchthat 

A(z)f(z) = B(z) + ̂ r+^ß-+... (1) 

where B(z) is another polynomial. The condition (1) gives us n linear equations 
in n+l unknown coefficients of the polynomial A(z). Thus A(z) exists but is 
not necessarily unique. The rational fraction 

n„(z) = B(z)/A(z) 

however, is determined uniquely. It is called the 72th Pade fraction. All such indexes 
A = {7il9n29 ...} that degree of A(z) is exactly«, are called normal. If w/c^w</7fc+1 

then 
rc„00 = n„k(z) 

Let 

/(*) = -*-+-*•+... 
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index n is normal if and only if the so-called Hankei determinant 

Hn 

L0 c l ••• cn-l 
cl c2 • • • cn 

cn-l cn ••• c2n-2 
does not vanish. 

2°. Relations with continued fractions. For a function 

where Q(z) is a polynomial we denote [f(z)] = Q(z) by analogy with real numbers 
and call it a whole part of the function f(z). By the same analogy with continued 
fractions for real numbers, we may relate each function with a pole at infinity to 
a functional continued fraction 

f(z)~Ql(z)+l * (3) 
Ö2OO + Q3(Z) + ... 

where Ql9 Q29... are polynomials. We may note here that all the calculations 
are purely formal and so we put each formal power series (2) into correspondence 
with the Pade apprpximants, as wçll as with a continued fraction (3). 

It turns out that if çleg Q^dH then the set of normal indices for / is 
A = {dl9d1+d29d1+d2+dB9 ...} and 

J_ _1_ 
ß. + - + ß*" 

* n » = ßi+-

The Pade approximants could be constructed at any point. We choose infinity 
merely for the convenience reasons. 

2. Calculations in physics and mechanics. In some problems of physics and mecha
nics the investigator has often to deal with the following question. Given a power 
series expansion of q. function, find the location of pplps and branch points. The 
Pade approximants happen to be of a great use here. Although the general theorems 
embrace but some special classes of function, it became clear nevertheless that the 
poles of Pade fractions nn(z) in some sense well imitate the poles of the given 
function and some cuts joining the branch points. We shall not dwell at these 
applications but direct the interested reader to the works [1] and [2] containing 
an extensive bibliography. 

3. Number theory applications. This is one of the most important fields of applica
tions of Pade approximants. Besides the definition given earlier the notion of 
approximation forms is of a great importance here. Let f(z)9 ...9fm(z) be functions, 
analytic in a neighbourhood of zero. For a set of nonnegative integers (nl9 ..., nm) 
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there exist polynomials Pi(^), ..., Pm(z) not all identically zero of degree no greater 
than nk respectively such that 

2AW t (z ) = cZ'+... 

where cr^^LM^)^-
These approximation forms turn out to be very useful in the proofs of trans

cendency of certain numbers. The first to apply these to the proof of transcendency 
of e was Hermite [3]. See also a work by Siegel [4] providing the further development 
of the method. Baker [5] shows by the help of Pade approximants of the function 
(l+x)1 '3 that 

10" 
^2,055 

for each pair of integers p and q. The entire lists could be compiled of the works 
on diophantine approximations which employ the approximation forms Pade 
fractions. We also point out a work by Stepanoff [6], who by employing Pade 
approximants ideas in analytic number theory obtained some strong results. 

4. Algebraic aspects. Let f(z)=2k=ocklzk^1 ^e a n algebraic function. Uchiyama 
[7] showed that for every e:>0 there exists a constant cE such that if A(z) ^ 0 and 
B(z) are polynomials of degree not greater than n and 

A(z)f(z)-B(z) = dz~*+... (d^O) 

then X^(l+£)n + cE. This provides in fact some characteristic of the set A = {nk} 
of normal indices for algebraic functions. We see in particular that 

]im!h±± = L 
k-~ nk 

This theorem is a functional analogue of Thue-Siegel-Roth theorem on rational 
approximations of algebraic numbers and enjoys as well as the latter a prolonged 
prehistory. The analogy becomes obvious by the respective formalization of the 
problem with its strongly algebraic features (see [7]), The proof of Uchiyama is 
also somewhat analogous to the proof of Thue-Siegel-Roth theorem. However in 
recent years some new considerations have been proposed here apart from the 
algebraic number theory ideas (see [8], [9]). 

The similar questions, on the structure of A as a matter of fact, were not only 
for algebraic functions (see [10], [11], [12]). 

5. Moment problem. The origins of the theory dating as far back as Chebyshev, 
the relations between Pade approximants and moment problem are as follows. 

Let \i be a measure on ( - °o9 oo) with infinitely many growth points. Consider 
the function 

dfi(x) m=f^ 
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which will be called hence forth Markoff function. To this function a power series 
is put into correspondence, namely 

f(.*)~2-?k, ck= fx*d». 

This is the formal expansion of f(z) in the powers of z"1 which ceases to be 
formal if ii vanishes outside some compactum. Construct Pade approximants for 
f(z). The Hankei determinants (see §1) are distinct from zero as they are the main 
determinants of positively determined quadratic forms 

m ~ r m i â 

Thus all the indices are normal: A={0, 1, ...}, and we see that 7c„=P„/Q„ where 
deg Q„=n and formal continued fraction for / is of the type 

A1z+B1 + A2z-\-B2 +.. ." 

Here, a remarkable fact is that the polynomials Qn(x) coincide with the sequence 
of orthogonal polynomials for the measure pt. Indeed, 

DO OO 

Hence 

p ç ß.(*)-ß.(g)d (jc) a n d J xkQm(x)dp = Q, 
- oo X — Z ^ 

/c=0,1, ..., n—\. 
We owe to Markoff the following theorem. If the measure \i vanishes outside 

some finite segment A then n„ =£/ uniformly on every closed set K disjoint from A. 
The study of Pade approximants for Markoff functions is reduced in essence to 
the study of moment problem and orthogonal polynomials. The main contributors 
here are Stieltjes and Carleman. Their works illuminate the connections between 
the problems of convergence of Pade approximants and the problem of deter-
minateness of moment problem. We indicate here the work [13] which, apart from 
formulation of the classical results contains some other interesting reports. 

2°. A concrete moment problem could be given by either of the three data: the 
measure, the moments, the Akz+Bk in the expansion (2). One of the parts in moment 
problem is to define the rest of the elements given one of the three. The most serious 
part is probably to reconstruct the measure given the moments. More specifically, 
it remains unknown which conditions on moments could guarantee the measure 
to be of one or another functional class. The problems of interest are perhaps as 
well those of reconstruction of (Ak9 Bk) by the given moments {Ck}. Although there 
are some formulas connecting Ak9Bk and Ck9 employing some expressions via 
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determinants similar to Hn9 the connection is a very obscure one and does not 
yield any satisfactory qualitative picture. The same is true for the reverse problemj 
i.e. reconstruction of Ck by (Ak9 Bk). 

One of the important problems in the theory of orthogonal polynomials is the 
problem of Stekloff which is conceived in a broader sense recently than it was origin
ally. Given the properties of the measure \i define the behaviour of the orthogonal 
system of polynomials {Qn}. Even in its original version the problem still stands 
unsolved. Namely, let M ^ ) > C > 0 on [a9b). Prove that the system {Q„} of 
orthogonal polynomials on [a9b] with respect to measure w(x)dx satisfies the 
inequality 

\Qn(x)\ •< C£9 x£[a+89 b-e]. 

We will not detain the reader on the other aspects of the problem here* See in 
this connection [14]. 

The similar matters are dealt with in the recent theorem of Rakhmanoff [15] which 
states that if 

dfi/dx > 0 (4) 

almost everywhere on [—1,1] then for a system of orthogonal polynomials Q„(z) 
we have 

_|^4( z + y ?rp (5) 

uniformly inside the C\[— 1,1] (the branch of the root is chosen in such a way 
that ]/z2— 1 >0 while z>l) . The formula (5) follows from Szegö asymptotics 
but the latter is true by the stronger suppositions than (4). 

3°. Special weights. The problem of finding the properties of orthogonal poly
nomials given the specific weights and measures is in the domain of classical analysis. 
We will make so bold as to observe that in the recent times the investigations in the 
field of special systems of orthogonal polynomials are unduly underestimated. 
It could prove to be of a great use to expand the list of those weights which permit 
concrete formulas for orthogonal polynomials. The main reason for this is that 
as a rule the applications of concrete systems in physics as well as in other branches 
of mathematics itself pretty often predominates over the applications of the general 
results. As a matter of example we point out the following interesting problem. 
Obtain explicit formulas if possible for orthogonal polynomials to the weight 

dfi = dt/(e2"VT-l), te[0, oo). 

Although this problem does not seem to promise any immediate applications right 
away, nevertheless it would be very useful to have a clearer notion of the properties 
of the said weight in detail. Its Mellin transformation can be expressed through 
the Riemann (-function, its moments are closely connected with Bernoulli numbers 
and as pointed out in [16] the function (et — \)~x is employed in Planck formula 
for equilibrium emission, the same function appears in the solutions of some dif-
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ference equations. At the first glance this function seems to be very like the func
tion e~x but the analytic properties of the former however, are much richer than 
those of the latter. 

4°. Some results on multidimensional moment problem are contained in [17] and 
[18] where further references are to be found. It should be noted that in multi
dimensional moment problem a vast number of uncertainties occur, even in such 
a simple for one-dimensional case question as the solvability of moment problem. 
We formulate here one problem of the multidimensional moment problem. Let 
k=(kl9 ...9kN)9kj^09x!c=xk

1
1...x1$. For the given number {ck}9 \k\=k1+...+kN<n9 

let the contracted moment problem be solvable, i.e. there exists a measure \i such 
that ck—§RnoPd\i for each k9 |/c|<«. The set 501 of these measures is convex 
and closed in the corresponding space of charges. The problem is to give a descrip
tion of the set of extreme points of 9M. Is it possible as in the analogical problem 
for N= 1 to state that there exists for every extreme point \i a polynomial P such 
that 

P(supp/*) = 0? 

It seems that the greatest nuisance in the multidimensional case is the absence of 
any representation of positive polynomials through the squares of polynomials. 

5°. We omit here the well-known applications of orthogonal polynomials in the 
theory of probabilities. Of certain interest are the relations of orthogonal poly
nomials with difference method which immediately leads us to recurrence relations for 
orthogonal polynomials. In this connection see [19, p. 219]. 

6. Complex analysis. This part deals mainly with the recent works on Pade approxi
mants carried out in the U.S.S.R. The present survey could be supplemented by [20]. 

One of the most difficult problems in Pade approximants theory is the convergence 
problem. As far back as at the beginning of the century different examples of 
entire functions were constructed of which the Pade approximants were diverging 
in every point of the plane. Perhaps precisely these counterexamples coupled with 
the general difficulties of the object of investigation caused the decay of interest on 
the part of complex analysis towards the Pade approximants. For a pretty long 
time the only positive result on the convergence of Pade fractions had been the 
above formulated Markoff theorem. In 1970 Nutall [21] proved that if f(z) is mero-
morphic in C then its Pade approximants constructed in the zero point converge to 
/ in measure. Pommerenke substituted the convergence in measure in the result of 
Nutall by convergence in capacity. Goncar noted that if we have also the correspon
ding information on the poles of Pade fractions and the poles of f(z) the conver
gence in this theorem could be proved to be uniform in the corresponding domains. 
Goncar [23] considered the functions of the type 

dß(x) 
z—x M-f^+rto^X, 
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where r(z) is the rational function with poles outside A and r(°°)=0. He showed 
that if the measure /x satisfies the condition (4) then n„(f,z)-+f(z) uniformly 
inside C\A\Pf where Pf is the set of poles of r(z) inside C\A. 

The next result in the same direction is due to Rakhmanoff [24], Let p. be restricted 
to two intervals Ax and A2 and let it satisfy on each of these the Szegö condition, i.e. 

/ laiï(x) 
/ . ax >— °° 

i )f(x-«)(ß-x) 
where a, ß are the extreme points of either of A. Let r(z) be a rational function 
with poles outside A1vA2 and r(°°)=0. Then there exists an analytic curve 
rczCX^U/dg) whose extreme points belong respectively to Ax and A29 and such 
that the Pade approximants for the function 

'<*>= f^x-+'^ 
converge uniformly to f(z) inside 

C\Ax\A2\r\Pf 

where Pf is the set of poles of r(z). The curve r converts into a finite set of points 
if the harmonic measure of the interval Ax with respect to C\(A±u A2) in infinity 
is a rational number. Some negative statement is also given with respect to the 
behaviour of %n in the neighbourhood of any point of T. The interesting fact is 
that F depends on the set A1uA2 but not on the measure fi. It should be noted 
that the work of Rakhmanoff employs some delicate questions of complex analysis 
extensively studied by Widom [25]. 

It would be very interesting to investigate the convergence of Pade approximants 
for algebraic functions. The results available at the present are scarce. The work [26] 
shows that even for the simplest algebraic functions convergence or divergence of 
its Pade fractions depends essentially on the point where these are constructed. It is 
note worthy that the conditions emerging here as well as those of Rakhmanoff 
theorem are of arithmetic character. The following conjecture seems to be reason
able. For every algebraic function there exists a point converging outside some cuts 
of the complex plane which permit to pick up a single-valued branch of f(z). 

In the present survey of restricted space we were bound to omit a vast number 
of investigations on Pade approximants. At all events it is clear that the Pade 
ractions are a very important and interesting object of mathematical analysis. 
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What Problems Do Spectral Theory and Complex 
Analysis Solve for Each Other? 

N. K. Nikolskii 

0. Very old and close relations join the branches of mathematics mentioned in the 
title. Every sufficiently complete description of these relations must contain the 
full history and perspective of mathematical analysis as a whole. The aim of this 
report is much more definite : I shall try to trace the interplay between spectral theory 
and complex analysis during the last, say, ten years and only in the following two 
domains: 

1. Generalized spectral decompositions and the Corona Theorem, the functional 
model of Sz.-Nagy and Foia§ and the free interpolation by analytic functions. 

II. Spectral synthesis, divisor ideals and the factorization of analytic functions. 
The rapid progress in these directions during the last years is based upon : 
A. The Beurling Theorem (and its generalizations) on invariant subspaces of the 

shift operator f-+zf in the Hardy space if2, a fundamental fact connecting geo
metric (spectral) objects with the multiplicative structure of analytic functions; 

B. The clear realization of the method of dilations of linear operators making 
the shift operator a universal operator and giving rise to the model mentioned in I; 

C. The Carleson Corona Theorem, its generalizations and the methods connected 
with it. 

Similar ideas have played a role earlier (before the last 10-15 years); the same 
features appear already in the theory of elementary divisors in Linear Algebra 
(compare with A) and in the Hilbert-von Neumann spectral theorem (compare 
with B). A new feature is the essential widening of modern tools (Nevanlinna-
Hardy classes and the whole corresponding analytic machinery) and of the circle 
of problems under consideration including now many of the principal problems 
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of Function Theory. Our bibliography is not exhaustive but we hope it can help in 
finding many other publications concerning topics we are discussing below. 

1. Model, interpolation, corona. These comprise the right ordering of the three 
remarkable domains of analysis inside spectral theory. I am going to explain the 
relations between these matters in their simplest manifestation, namely in the context 
of the one-dimensional model of Sz.-Nagy and Foia§ [1], This model covers, however, 
certain operators occurring in applications (having a "physical meaning"), and 
its investigation leads to the separation of technical difficulties inherent in spectral 
decompositions in their purest form, without any influence of the non-commutative 
matrix structure inevitable in the study of operators of more general form. It is 
important also that all assertions concerning the one-dimensional functional model 
can be interpreted as theorems in the spectral function theory which are of independent 
interest. 

Thus, let H be a Hilbert space, T a linear continuous operator in H of class 
C00, i.e. lim„ T"x=Q9 lim„ T*nx=Q9 \/x£H. Then T is unitarily equivalent to its 
model, namely to the operator PKS\K9 where K=H^Q0H^9 /f| being the Hardy 
class of all E- valued and holomorphic functions / i n D = {C: [Ç|<1} such that 

11/115= SUP fll/(™*)IIW-=~, 

S the shift-operator in /7 | (Sf=zf) and 0 an inner operator function (holo
morphic in D96(Q:E-+E9 ||0(£)||<1 for |Ç|<1 and 0(Q a unitary operator in 
£ for almost all Ç, |C| = l); PK an orthogonal projector onto the subspace K. The 
"one-dimensionality" discussed above is the case dim£=l , all functions being 
the usual complex functions in the disc D. 

One of the aims of the spectral theory is the construction of tools enabling us to 
answer questions traditionally put to operators in the widest possible set of situa
tions. One such question is the computation and the estimation of functions of 
operators (especially of characteristic functions), the description of the spectrum, 
the computation of its multiplicity, of the ind, the spur, etc. The answer to the 
above question can yield the Spectral Theorem if it remains true (in a sense) for the 
operator under consideration. We are going to consider a variant of such a Spectral 
Theorem, generalizing the Dunford speciality condition: @Q will be a subalgebra 
of the Borei cr-algebra of C, ^ a projector-valued measure on ^ 0 such that 
S(G)H (V^Ç^o) is a spectral subspace (in the sense of Bishop and Foia§) of the 
operator T (with the spectrum clos a). We shall discuss the case when 0$o is 
spanned by a countable decomposition {cr/}/€r of the spectrum, i.e. the case when 
the ^0-spectrality means the family of spectral subspaces {S(cr^H}ia forms 
an unconditional base. The Jo-spectrality coincides with the Dunford speciality 
if all a. are points and V (^O7/)^ i£l) = H> 

The spectral subspaces corresponding to the scalar functional model (T=PS\K9 

K=H2Q0H2) are Ka=»'(H2em*)9 where S' = 05, S being inner relatively 
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prime (disjoint) factors of 0. Let E be a family of such (disjoint) factors of 0. 
Since we are interested in whether the family {iQ^es forms an unconditional 
base, we are led to spectral projectors $(a)\ $(o)\Ka=09 $(a)\Ka,—I9 a denoting 
a finite product of elements of S, a'—Oa"1. A key to the problem of the criteria 
of generalized speciality gives the following remarkable 

Theorem of Sarason. Let T be a model operator, A£{T}' (le. AT-TA), 
Then there is a function f9f€H°°9 satisfying f(T)=A9 | | / L = M||. 

Here H°° denotes the class of all functions analytic and bounded in D endowed 
with the sup-norm || - II00- Simple computations show that the functions fff corres
ponding to S(G) have the following properties : 

f.teH-, 1 - / . € • # - («r'^fl/a). (1) 

These properties admit a clear interpolatory interpretation and are closely connected 
with Carleson's Corona Theorem. Indeed, the existence of fa is equivalent with 
the solvability (with respect to g^gfiH00) of the equation 

Further, if 0 is a Blaschke product, 

x 

the corresponding subspaces Kx =
def J^a) are the root subspaces corresponding 

to the eigenvalue A, and (1) leads to the interpolation with multiplicities:^/o$(A)€-öro°, 
X£a; (l—fa)/b

1f?k)Ç.H00
9 X$a (here a is a subset of the point spectrum of T). It is 

convenient to remember now the Lorch-Grinbljum theorem (an unconditional 
base = any bounded family {cÄ}Äes of numbers defines a continuous operator 
C with C\Ks>=c&I9 V#6£), and to introduce the following turn of speech: the 
family of numbers c={c^eE is interpolated (by definition) by a function f9f£H°°9 

with respect to the family E of inner functions if (/— cJ&£H°°9 #Ç£. 

THEOREM. Let 0 be an inner function, and E a family of its inner factors such 
that the least common multiple of E is 6. The following assertions are equivalent: 

1. {ATÄ}Ä€S forms an unconditional base. 
2. Vtr, GCIE9 Bf^H00:^ interpolates the characteristic function xa w/fA respect 

to g. 
3. \fc9cel°°(E)9 3fc€H°°:fc interpolates c with respect to E. 
4. V/*, /*€#- , supft||AIU<co, 3/6 H~: (f-fa)ß£H-9 \/9eE. 
5. inf«„inflcl<1(|ACOI + |(0/«)(O|)>O. 
6. |0(C)|^const. inf,€Ä|Ä(ö|, |C|<1. 

The connections between 1,2,3,4 can be understood by means of Sarason's 
Theorem and other considerations mentioned above. The equivalence of 6 and 
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of the first four assertions is a deep result of V. I. Vasjunin [2], [3]. It means in 
particular that a family of T-invariant subspaces forms an unconditional base 
ifiTsupÄ€iS||^({o})||<oo, i.e. iff it is uniformly minimal. It is worth noting that for 
general families of subspaces (or vectors) these two properties are quite far apart. 
In the particular case 9=JI\bx (a Blaschke product with simple zeros) the condition 
6 turns out to be the well-known Carleson condition 

inf n I&AOOI > o. 

The same is still true if the multiplicities of zeros are bounded, otherwise there 
arises a new condition imposed on the zeros of the Blaschke product 0 (and on 
their multiplicities) and not reducible to other known conditions occurring in inter
polation theory (see [3]). The most general interpolatory corollaries can be deduced 
from assertion 4: if 9=JJÄbk^ is a Blaschke product, the theorem asserts the 
equivalence of the generalized Carleson condition 6 and of the existence of a bounded 
analytic function / with prescribed germs of height k(X) (supA||j^||00<o0; 
(f-fùW»ZH~9 VA). 

The well-known theorem of N. K. Bari enables us to use also assertion 1 of the 
theorem to obtain interpolatory corollaries. 

COROLLARY. Let 0=JJ^bk^X) be a Blaschke product. The following assertions 
are equivalent: 

1. |0(O|^const.inf,|fe;k(OP, |C|<1. 
2. lff>£H\ 

ZWPJAl—, (2) 
A 

where Pk is the orthogonal projector onto the subspace H2Qb)^H2
9 then there 

is a function ffeH\ such that (f-fJ/tfPZH*, VA. 

Taking into account the magnitudes of the germs fK in the form (2) we can 
dispense with the construction of special combinations of |/W(A)|, 0^/c-</c(A) 
(as is very often the case in Hermitian interpolation). Moreover, it is possible to 
show that in the case sup^ /c(A)= °o it is impossible in principle to give a condition 
of this kind equivalent to the true condition (2) imposed on the interpolation data 
(see [4]). 

2. The nonfree interpolation can differ not too much from the free one considered 
in § 1 (as is the case, for instance, with the Nevanlinna-Pick or Carathéodory 
interpolation when the space of data is essentially an ideal space, and the freedom of 
interpolation is lost only because of the location of the interpolating function within 
a distinguished convex set), but can be also connected with some new singularities 
of the family {K9}^3 of subspaces. We could discuss here the bases with respect 
to a matrix summation method by which it is possible to express (as in § 1) in 
terms of multipliers ([4], [5]) of the family {A^}Ä€iS (compare with the assertion 3 of the 
theorem). Avoiding precise statements, let us remark only that the answer has 
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not been found even for the simplest summation methods. For example, in the 
case of Abel's method we have to describe the sequences {A,,},,̂  of points of the 
disc D serving as knots of interpolation for the family of powers : 

|EKoinf{||/ r |U:/,(^) = /», n > l H - ; 

moreover, sup,, f ^ A , ) ! " ^ 0 0 , W (0^ /< l ) , where Bn=JJk9,nbÀ . It seems natural 
to apply to this problem the recent interesting theorem of Garnett [6]; unfortunately 
computations show it gives only obvious results in this problem. 

A more detailed discussion of the relations existing between the summability 
of spectral decompositions and interpolatory problems can be found in [4]. 

3. Methods of summing and the hereditary completeness. Any topologically free 
family of subspaces {Xn}1lel of the space X has non-orthogonal ("spectral") 
projectors é>ìì9$n:X-+X9 Sn\Xk—ònkI. This fact enables us to construct formal 
Fourier series 2n^i^»x corresponding to an arbitrary element x of X: x~]?£nx. 
This representation is a useful tool in problems connected with the family {< ,̂}Mi£1 

if it is complete {\J(inX\ n^l) = X) and total (<f„x=0, Vn>l=**=0). These 
properties are however very far from the real possibility of reconstituting vectors 
x9 x£X9 from their Fourier series, i.e. from the inclusion x£\/(<fnx: n^\)9 \/x£X. 
If the last property holds, the family {A',},,^ is called hereditarily complete. It is 
known [7] that the hereditary completeness is equivalent to the possibility of spectral 
synthesis (see below) for every operator with eigen subspaces Xn and with suf
ficiently "thin" spectrum (for example, compact operators). It is clear that the 
hereditary completeness is necessary for the existence of a general method of summing 
of Fourier series (i.e. of a sequence {-P„}„̂ i of operators such that Pnx£ 
\j($kx\ 1 ^k^n)9 Pu(ik=0 (k>n)9 limfc Pkx=x9 \/x). If the Z„'s are proper or root 
subspaces of an operator T9 the summing aggregates are usually constructed as 
functions of the operator T (Pn=f„(T))9 and such a construction gives rise (as 
in § 2) to interpolatory problems with knots in the eigenvalues of 7". We shall 
return to this discussion in the next paragraph and shall now note only one unsolved 
problem: is the hereditary completeness sufficient for the existence of the above-
mentioned method of summing? There are three concrete families of interest in 
connection with this question: (1) the family {eim\n^Z} in the space L2(T9fi)9 

p being a finite measure on the circumference T={Ç£C: |C| = 1}; (2) the family 
{/c(-, A): A G or} of vectors of a Hilbert space of functions analytic in D with the 
reproducing kernel /c, where a is a countable subset of D ; (3) the family of trig
onometric binomials spanning the subspace of LP(T)9 p^29 without the approxi
mation property (as in examples by Enfio, Fiegel and others). There are a number 
of facts concerning methods of summing for the first family (Helson, Szegö, M. Ro
senblum, Muckenhoupt, Hunt and others, see [8]). 

4. Rational expansions (expansions in eigen- and root-vectors of the left shift 
operator f-+s*(f—f(0))/z) give the dual form of generalized canonical Weierstrass 
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products. The last term is understood for example in the sense of Rubel [9] and 
thus the above-mentioned duality can be stated as follows. The operator S* is 
considered in a space Y of functions analytic in Z>, Y being in a natural duality 
with another space X of the same kind ((x9 y)=2jn±0£(n)$(n) on polynomials 
x9x=^nSQ£(n)zn). For a nontrivial ^-invariant subspace E of Y the principal 
question about the spectral synthesis for S* is whether E is spanned by the root-
vectors of 5* contained in E. The answer is yes if the formal Fourier series (as 
in §3) is summed (as in §3) to its defining element of E. Just in this way the pos
sibility of spectral synthesis is proved in the works of L. Schwartz, A. F. Leontjev 
and their successors, the Summation method being chosen after the investigation 
of "the characteristic (or minimal annihilating) function" of S*\E9 i.e. of the 
function 0 satisfying (in an appropriate sense) the equation 0(£*|ls')=O, see 
[8], [10]. Analogous considerations (lower estimates of 0 on corresponding contours) 
were used by V. B. Lidskii [11] in a different situation connected with the summing 
of spectral expansions of abstract nonselfadjoint operators. 

The dual form (in the space X) of the problem of synthesis is the problem of 
divisorial character of ^-invariant subspaces (Sf=zf) i.e. the problem of finding 
conditions ensuring the implication 

SE c E(E aX)=>E= Xk = {f£X: kf ^ k}9 

kf(X) being the multiplicity of the zero of the function / at the point A, k an 
integer valued function in D. It is clear that the summability of root-vector series 
of S* corresponds to the representability of functions of X as generalized Weierstrass 
products which is sufficient for the divisorial character of ^-invariant subspaces [9], 
[12]. All that needs, of course, more precise formulations. They can be found in works 
already cited and in [5], [10]. 

5. The divisorial character of ^-invariant subspaces, arising in §4, needs for its 
proof a variety of tools in modern function theory, from the factorization theorems 
(à la Weierstrass, Nevanlinna, etc.), interpolation theorems, to the theory "of the 
common spectrum with estimates" for the elements of a topological algebra (Corona 
theorems). This theme is too large and difficult to be presented in just a few pages, 
so I shall outline briefly some directions related to my own work. 

The main idea, described in detail in [13], can be expressed as follows: the 
divisorial character of all S-invariant subspaces implies a considerable "softness" 
of the topology of the space X under consideration (for every continuous seminoma 
it is possible to find another one which is much stronger), and without such a property 
the only subspaces defined by a much smoother element than the general one 
are of divisorial character. Thus we remove from our consideration all Banach spa
ces of analytic functions in advance (conjecture: any such space contains an S-invar-
iant subspace of nondivisorial character) together with certain Banach-like spaces, 
although by using an appropriate modification of the*notion of a divisor (taking into 
account the information concerning boundary zeros), one could possibly also obtain 
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a positive answer in this case. See the bibliography in [8] about this very interesting 
case, as well as [14], [15]. 

The softness of the topology of the space X must (first of all) ensure the stability 
of X with respect to the division (f£X9 f(X)=0=*f/(z—X)C:X) and even the 
following uniformity of this property: ({ /J is a bounded family in X9fA(X)=0)=> 
({fj(z—A)} is a bounded family in X). This condition is essentially weaker than 
the representability by means of generalized Weierstrass products from §4 and 
does not imply the divisorial character of S-invariant subspaces of X. The following 
two principal methods need certain new assumptions about X (still weaker than 
those needed by the method of decomposition into elementary factors) but they 
give the desired divisorial character of invariant subspaces : (1) the method of compen
sated division by Schwartz; (2) the method of the factor-operator. 

The first is an improvement of the method of elementary factors mentioned in 
§4 and can be described more precisely as follows. 

Let / be an ideal in the algebra X of analytic functions, g€X9f£I9 kg^kr To 
prove the divisorial character of / let us approximate g by reconstructing / into 
g: g=^mng»f/nn9 7T„ being finite Weierstrass-type products for / (so fglnnÇ.I9 \/n9 

because of the assumed stability). The weakness of this method is just the consequence 
of the universal character of this "reconstruction". The method of the compensated 
division is to pick out (possibly infinite) subproducts for / but in a manner imposed 
by / itself. One of the possible variants is to prove that f0i)g/f€X9 n^l (then 
f(,i)g(il9n^l)9 and then to approximate 1 by linear combinations 2!anf00' The 
first part of this reasoning (i.e. the inclusion f(rf)g/f£X) is proved by induction 
(with respect to n) using the convergence of the series (for the case k^kf) 

J k(X)>f0 Z — A 

in the topology of X (under certain assumptions concerning X). The second part 
(i.e. the approximation of 1 by linear combinations of derivatives /( l , ), or, using 
the z-invariance of /, by linear combinations of Weyl derivatives 2!k^o^"f(Jc)zk) 
is reduced to the weighted approximation (in the sense of S. N. Bernstein) by poly
nomials on the set of integers. 

The method of the factor-operator stems from Waelbroeck (and even from Carle-
man) and also splits the problem of divisorial character of the ideal J (or of the sub-
module / i f X is not an algebra) into two parts: to construct (for a given g9g£X9 

kQ^kj) a bounded (in X) subset B9BczI with the upper envelope 9B(X) =def 

sup6€B|ft(A)| majorizing g (\g\^0B) and then to deduce the inclusion g£l. This 
last deduction provides the name of the method: it consists in proving "the emptiness 
of the spectrum" of the factor-operator z/I in the space XJI9 k=kji see the details 
in [10], [16], [17], [18]. The construction of the desired set B needs some delicate 
lower estimates of modules of analytic functions [5], [19], [20]. The implication 
\g\*zOB=>g£I is a topological variant of the Carleson Corona Theorem (consider 
finite sets B and g=T). 



638 N. K. Nikolskii: What Problems Do Spectral Theory and Complex Analysis Solve for... 

References 

1. B. CeicetfraJibBH-HaÄb, H. Oooaui, rapMOHHHecicHìi anajnra onepaTopoB B rnjibôepTOBOM 
npocTpaHCTBe. «Map», MocKBa, 1970. 

2. B. M. BacioHim, AOKJI. AH CCCP, 227 (1976), 11—14. 
3. B. M. BacioHErir, TpyflH MaTeM. HH-Ta HM. B. A. CTeKjioBa A H CCCP, 130 (1978), 5—49. 
4. H. K. HHKOJIBCKHH, Tpyflw MaTeM. HH-Ta HM. B. A. CTeKJiOBa A H CCCP, 130 (1978), 

0—123. 
5. H. K. HHKOJJBCKHH, M36paHHwe 3an,anH BCCOBOH annpoKCHMainiit H cneicTpajibHoro anajnt3a. 

TpyÄbi MaTeM. HH-Ta HM. B. A. CreicjioBa AH CCCP, 120 (1974), 1—271. 
6. J. B. Garnett, Lecture Notes in Math., vol 604, Springer-Verlag, Berlin and New York, 1977. 
7. H. K. HiiKOJibCKHH, B KH.: TeopH« onepaTopoB B <J>yHicu;HOHajrbHbTx npocTpaHCTBax. Ho-

BOCHÖHpCIC, 1977. 
8. H. K. HHKOJibcicHH, B ICH.: MTOTH navKH H TCXHHKH. MaTeMaTHHecKHH aHajm3. 12, 

M3A-BO BHHHTH, MocKBa, 1974, 199—412. 
9. Rubel L. A., B ICH.: CoBpeMeHHwe npoöJieMbi TeopHH aHajniranecKHx (frvHKHHH. MocKBa, 

1966. 
10. H. K. HHKOJIBCKHH, C. B. Xpymes, Tpyflbi MaTeM. HH-Ta HM. B. A. CreKJiOBa AH CCCP, 

153 C1979). 
11. B. B. JlHflCKHH, TpyÄbi MOCK. MaTeM. o-Ba, 1962, II, 3—35. 
12. B. A. Taylor, Entire functions and related parts of analysis, Proc. Sympos. Pure Math., vol. 11, 

Amer. Math. Soc., Providence, R. I., 1968. 
M 13. H. K. HHKOJIBCKHH, Te3HCbi floicnaflOB Bcec. KOH<j)ep. no TeopHH (IïVHKHHH icoMnji. nepe-

eHHoro. XapbicoB, 1971. 
14. H. A. IÜHpoKOB, TpyAbi MaTeM. HH-Ta HM. B. A. CreioioBa A H CCCP, 130 (1978), 

196—222. 
15. B. Korenblum, Acta Math., 138 (1977), 265—293. 
16. H. K. HHKOJibCKHH, floKJi. A H CCCP, 240 (1978), N° I, 24—27. 
17. J. P. Ferrier, Spectral theory and complex analysis, New York, 1973. 
18. M. ci>. KpacHHKOB-TepHOBCKHH, H3B. AH CCCP, 1979. 
19. H. O. KpacHHicoB, HSB. AH CCCP, cep. MaTeM. 32 (1968), Ks 5, 1024—1032. 
20. C. A. AnpecflH, MaTeM. c6opH., 1978. 

C C C P , 1 9 1 0 1 1 , J l e H H H r p a f l O o H T a H i c a , 2 7 
J I . O . MaTeMaTHHCCKHH HHCTHTyT HM 

B . A . CTeKJiOBa A H C C C P 

STEKLOV MATHEMATICAL INSTITUTE OF THE ACADEMY OF SCIENCES OF THE U.S.S.R. 

LENINGRAD 191011. FONTANKA. 27. ILS S R 



Proceedings of the International Congress of Mathematicians 
Helsinki, 1978 

How the "-Function Solves Extremal Problems* 

Albert Baernstein II 

Let u(z) be a real valued integrable function defined in the plane annulus 
A\i\<\z\<rz. We define a new function w*, whose domain is the upper half 
A+ of A, by the formula 

u*(re1*) = sup ju(re^) dq>9 0 < 0 ^ n9 
E 

where the supremum is taken over all sets Ecz[09 2n] with Lebesgue measure 
\E\=29. An alternative formula for w* is 

e 
u*(reie)= fü(reu)dt9 

-e 

where we use ü to denote the symmetric decreasing rearrangement of u on circles 
| zH-[4 , p. 149]. 

r\ 
-.* / 1 J ̂  

A " 
' \ ? 

r ^ 
r 

-n 

1 
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7T 

The passage from M to w* has been the crucial step in the recent solution of 
some extremal problems from various areas of complex function theory. The prob-

* This research was supported by a grant from the National Science Foundation of the United 
States. 
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lems have in common the circumstance that subharmonic functions play a role. 
The solutions have in common reliance on the following basic result, proved in [4], 
or on some variation of it. 

THEOREM A. If u is subharmonic in A9 then w* is subharmonic in A+. 

In this article I will discuss three situations in which *-functions have been of 
use, and hope to convey the main idea of how they are used in proofs. As we shall 
see, although the problems originated in different parts of classical function theory, 
the principal feature of their solution is pretty much the same: The contending 
functions all have subharmonic *'s, whereas the extremal function has a symmetry 
which imparts to it a harmonic *. 

I will consider here only problems in R2. There are also "^functions in Rn. 
One version is studied in [9], where further references may be found. Also in [9] is 
a proof of Theorem A which is based on an analogue for circles of F. Riesz's triple 
convolution inequality 

OO CO OO CO 

f Hy) ff(y-x)g(pc)dx< f E(y) f J(y-x)g(x)dx. 
OO — OO — O O OO 

1. A simple form of the spread relation. The *-function was first used in [2], in the 
solution of a problem in Nevanlinna theory, about functions / meromorphic in the 
plane, which had been posed by Edrei. He needed to obtain a certain sharp lower 
bound, depending on the lower order X of / and the defect <5(T,/), on the size 
of the set where / is close to the value T. This bound, which had been conjectured 
independently by Teichmüller [17], is now called the spread relation. Edrei's 
application of it to obtain a sharpening of Nevanlinna's defect relation is in [12]. 
Hayman's book [15] contains a good general introduction to Nevanlinna theory» 

Here we will prove what amounts to an idealized version of a special case 
(A=l, T=OO) of the spread relation. Let & denote the set of all entire functions 
f which satisfy the conditions 

T(r9f)^r for 0 < r < o o and T(l9f)=h 
where 

T(r9f) = (27T)-1 / log+ \f(rei&)\ dO. 

Let a(f)={6e(092n): \f(eie)\^l}. Following Edrei, we call <r(f) the "spread of 
/ over oo". The problem is to minimize \(r(f)\ as / runs through the class S. 

Note that g(z)=enz£tf9 and that T(r9g)=r for every r. Also, \g(rew)\ is a 
symmetric decreasing function of 0, so that its spreads are all in one piece and 
pushed up toward the front. This leads us to suspect that g might be extremal, 
and, in fact, it is. 

SPREAD RELATION (Simple form). If f£S9 then |tr(/)|>7r. 
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PROOF. Let's first assume that the set a(f) is a single interval, o(f)=[—009 90]y 

say. Form a new function F(z) in the upper half plane C+ by 
e 

(1) F(rei0) = f log \f(re^)\ dq>9 O^e^n. 
-o 

Then 
(2) F(ei0°) = 2nT(\9f) = 2%. 

Now, if A is a harmonic function in C, a simple computation shows that the 
indefinite integral f9_0h(rei(p)d(p is harmonic in C+ . The function log | / | is 
subharmonic in C, and with just a little more trouble, it can be shown that F is 
subharmonic in C+ . 

Let G(z) be the function obtained in (1) when f=g. Then G is harmonic in C+ . 
For r>0, we have F(r) = G(r)=09 and also F(ir)^2nT(r9f)^2nr=G(ir). Hence 
F^ G on the boundary of the first quadrant Q. The functions do not grow too 
fast at «>, so, using the maximum principle, we conclude that F ^ G throughout Q. 
In particular, if 0£(O, |TT) then jp(ew)«<G(e/0)<27r. Comparing with (2), we deduce 
i«<|f lol=ÌK/)l- Q.E.D. 

How can we adapt the proof to take care of the general case when a(f) is no 
longer a single interval? The idea occurs that we should replace the "fixed" integral 
defining F by a "maximal" integral over the set where log | / | is large. This 
leads us to form (log |/|)*. The argument with (log | / | )* in place of F works 
exactly as above, the only questionable point being the subharmonicity of (log |/|)*. 
But this turns out to be true, as asserted by Theorem A, and the spread relation is 
now completely proved. 

In the proof just given, the extremal function u=log \G\ is both symmetric 
decreasing on circles and harmonic in C. As a result of the former, its ^-function 
is given by Q 

v*(reiB)= f v(re^)d(p9 

-e 
which, combined with the latter, shows that u* is harmonic in C+. This harmo-
nicity of the extremal *, sometimes on just a subset of C+, is typical of *-function 
proofs. It is quite to be expected, since harmonicity is an extreme form of sub
harmonicity. 

Extensions and analogues of the spread relation appear in [1], [3], [6\9 and [13]. 
The idea of integrating a subharmonic function and using the subharmonicity of 
the result appears implicitly in the proof of the Edrei-Fuchs "ellipse theorem" 
[15, p. 109] and also in Petrenko's proof of an extended form of Paley's conjecture 
(See, e.g., [14]). Conversely, these latter two results are quite easy to prove using 
subharmonicity of the *-function together with Edrei's notion of "Pólya peaks". 

2. Univalent functions. In this section / will denote a function analytic and uni
valent in the unit disk |*|<1, and S will denote the class of all such / which 
satisfy the normalizations /(0)=0, / ' (0) = 1. 
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An important role in S is played by the Koebe function k(z)=z(\— z)~2
9 

which maps the disk onto the plane with a single slit along the negative axis from 
— | to — °° removed. In some sense k has the largest possible image of any 
function in S9 and this suggests it should be extremal for many problems about S. 
In [4] I showed that this is the case for a large class of problems about integral means. 

THEOREM. If f£S and $ is a convex function, then 
It 71 

(3) f 0 (log |/(re")|) dd^ J $ (log \Jc(reiO)\)d0, 0 < r < 1. 
— It —71 

In particular, the LP norm for 0-</?^oo on circles \z\=r is largest for k. 
Previously this sharp bound was known only for p = oo. The paper [4] also contains 
results for some other classes of univalent functions, as well as results about what 
happens to Green's functions and harmonic measures under circular symmetriza-
tion. More related results appear in [5], [8], and [16]. 

PROOF OF THEOREM (OUTLINE). First of all, the validity of (3) for all convex $ is 
equivalent to the validity of the inequalities T(r9 Q~Y)^T(r9 Q~xk) for every 
£>0 [4, p. 150]. Here T denotes the Nevanlinna characteristic, as in the preceding 
section. Next, we move the problem from the z-plane to the £=f(z) plane, where 
we can see the geometry. This is accomplished by Cartan's formula [15, p. 8], which 
in the special case of functions in S asserts that 

<4) T(r9 Q-if) = -L / [ t t (C^)+logr]+ dcp9 
—it 

where w(Q denotes the Green's function of the range of / with pole at Ç=0, w=0 
outside the range. 

Thus, our theorem is equivalent to the assertion that the right hand side of (4) 
does not decrease when u is replaced by v9 the Green's function of the slit plane, 
which, in turn [4, p. 150] is equivalent to the majorization u**^v* throughout C+. 

Now u is subharmonic in C-{0}, so, by Theorem A, w* is subharmonic in C+ . 
On the other hand, the symmetry of the slit plane causes v(gei0) to be a symmetric 
decreasing function of 0, so that v*(Qei6) = f6_ev(Qei(p)d(p9 which is harmonic 
in C+. Thus to deduce u**zv* throughout C+ it suffices to prove it on the real 
axis. This final step in the proof is not difficult, but it takes a bit of writing, and so we 
refer the interested reader to [4, p. 155]. 

Write f(z)=z+^i2aa2^. The most famous unsolved problem about univalent 
functions is BieberbacHs conjecture, which asserts that |dj is largest when f—k9 

i.e., that \an\^n. So far it had been verified for w<;6, and the best known bound 
in general is \an\<l.Q7n9 due to D. Horowitz. The survey article [11] contains an 

• extensive discussion and bibliography. 
The integral means theorem with p=2 shows that 2\an\2rn^2n2r11 f°r 0< / , < : l5 

while from p = l together with Cauchy's estimates one obtains \an\<len. Using 
the full strength of the theorem it is also possible to deduce Loewner's theorem that 
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the coefficients of the inverse function are largest when f—k. However, to obtain 
sharper bounds for the |aH| themselves I think it will be necessary to combine the 
*-function techniques, which are essentially potential theoretic, with some kind of 
Fourier analytic ideas which make effective use of orthogonality. 

3. Conjugate functions. In this section,/will denote a real valued function on the 
unit circle T9 and / will denote its conjugate function. Thus, f+if is the boundary 
function of a function analytic in the unit disk, which we also denote by f+if. 

If f£Lx(T) it is not necessarily true that feL^T). However, Kolmogorov 
proved in 1925 that f£Lp(T) for 0 < p < l , and that WfWp^CpWf^. The problem of 
finding the smallest possible Cp has been solved only very recently, by Burgess 
Davis [10]. Davis's proof is probabilistic. He manages, by means of a beautifully 
imaginative argument, to deduce the function theoretic result from the solution to 
a certain optimal stopping problem for sums of independent random variables. 

The extremal "function" in Davis's theorem is actually a singular measure, the 
two point measure on T with mass \ dit z=l and mass —j at z=—l. The 
associated analytic function conformally maps the disk onto the plane with two 
symmetric vertical slits removed. This picture-suggests that there might also be 
a way to prove Davis's theorem with *-functions. In [7], I succeeded in doing this, 
and also proved some related results which do not seem accessible by Davis's methods. 
It is not clear what the connection is, if any, between the probabilistic and ""-function 
techniques. 

Here is one result from [7]. Let g denote the symmetric decreasing rearrange
ment of /. 

THEOREM. \\f\\p<\\g\\p for l^p^2, and \\f\\p>\\g\\p for 2<p<~. 

The second inequality is not stated in [7], but was pointed out to me later by 
M. Essén and D. Shea, who have studied uniqueness questions associated with 
these results. 

To prove the theorem, we once again start by moving the problem to the Ç-plane. 
For l < p < ° ° the formula is 

<5) f\f(ei0)\pdO = p(p-l) f fN(Z + iti)\ii\*-*dZdri 
- O O OO 

where N(t)=N(l9ìl>9f+if) is Nevanlinna's weighted counting function. Letting 
N denote the counting function for g+ig9 one proves that 

(6) fN(Ç + is)ds ^ fN(Ç + is)ds9 £ e ( - ~ , »), t, > 0, 
- i / -t) 

with equality for n = °°. The theorem then follows from (5) by an integration by 
parts argument. The main ideas in the proof of (6) are to consider this time 
"vertical" *-functions of N and N9 

N*(Ç + iri)= sup [N(Ç + is)ds9 Ea(-~9~>) 
\E\=*nE 
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g+ig 
• 

D 

and to make use of the fact that g+ig maps the disk univalently onto a domain 
D with strong vertical symmetry. A theorem of Lehto's asserts that N is sub
harmonic in C— {/(0)}, and so, by a variant of Theorem A, JV* is subharmonic 
in C+ , except for a certain correction term. The symmetry of D causes W to be 
harmonic in Z)+, except for the same correction term. Now one uses the maximum 
principle, together with some other facts, to prove the majorization N**^N*9 

which implies (6). 
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Some Problems in Complex Analytic Geometry 
with Growth Conditions 

Phillip A. Griffiths* 

The purpose of this talk is to raise a few questions in the general area of complex-
analytic geometry with growth-conditions. 

1. Notations. We shall be concerned with a complex manifold M of the form 

M = M-N 

where M is an «-dimensional compact complex manifold and N is a /c-dimensional 
complex submanifold. We assume given a metric on M and an exhaustion function 

T: M^R 

such that near N we have approximately 

T ( P ) ~ -log ö(p9N) 

where ö(p9N) is the distance from M to N. If we set M[r] = {pM : T(p)^logr) 
then the Levi form 

L(T) = Y^lddT/2 

in the holomorphic tangent spaces to dM[r] will, for large /•, have ^n—k—1 
negative eigenvalues in the directions normal to N. The sign of the remaining 
eigenvalues will depend on the curvature in the normal bundle to N. 

A prototypical example is when 

M = P"9 N=Pk and M = P"-Pk. 

* Research partially supported by Grant MCS 77-07782 from the National Science Foundation 
of the United States. 
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Setting n=m+k + l we may consider P" as the join 

(1) pn = p»+pk 

corresponding to the direct sum decomposition C"+1=C/"+1©Ck+1, and use 
homogeneous coordinates 

[z9w] = [zQ9 ...9zm; w 0 , ...9wk] 

on P". Then we may take 
z([z9 w]) = log||w/z|| 

for an exhaustion function. For k=n — 1, M is C" with Euclidean coordinates 
(d, ...,Cn)=(wJz09 ....W^/ZQ) and <Q=log ||£||. 

We will be interested in the asymptotic growth properties of analytic and mero
morphic functions, holomorphic vector bundles and their sections, analytic sub-
varieties, etc. as we go to infinity in M9 cf. [4] and [12]. Thus we are studying the 
behavior of essential singularities of analytic objects along an analytic subvariety, as 
opposed to the rather différent and more difficult questions of singularities along the 
real (2n — l)-dimensional boundary of a domain. 

2. The Bczout problem. The growth of an analytic subvariety Va M will be meas
ured by 

p(V9r) = vo\(V[r]) 

where V[r] = VnM[r] and vol(V[r]) is the volume of V[r] relative to the given 
metric on M. We recall that 

vol (V[r]) = - 1 - fcp 
*• V[r] 

where cp is the (1,1) form associated to the metric (Wirtinger theorem). It is a basic 
theorem due to Bishop and Stoll (cf. [10]) that V has a removable singularity 
along N; i.e., V is an analytic subvariety of M9 if and only if p(V9 r) is bounded. 
The transcendental Bezout problem is to estimate the growth of the intersection 
VH W in terms of the growth of the analytic subvarieties V and W of M. 

The problem arises already when M is Cn. By the diagonal construction we 
may reduce to the case where W is a linear space (cf. [6]). Then the Bezout estimate 
holds in case V is a hypersurface, but fails when codim V^2. Thus, for an analytic 
curve in C2 the growth of the number of points of intersection with a line is estimated 
by the growth of the area of the curve, but Cornalba and Shiffman [5] gave an 
analytic curve V in C3 where the corresponding statement is false. If we let 

r = vDP2 

be the limits ol the asymptotic directions Op as p£ V tends to infinity, then the in
tuitive reason for the failure of Bezout seems to be the somewhat arbitrary character 
of T; in any case, it certainly need not be evenly distributed. The Bezout estimate 
is concerned with the intersection properties of a neighborhood of F with lines in 
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the P2 at infinity in C3, and there have been estimates on this intersection in terms 
of \x(y9 r) for almost all lines (cf. Carlson [3] and Gruman [8]), and in terms of 
\i(V9 r) together with the growth of the osculating spaces associated to V (cf. [6] 
and Stoll [11]). 

In his Harvard thesis [2], Moshe Breiner has clarified the Bezout problem and 
to some extent shed light on the general character of essential singularities of analytic 
varieties. To explain what he did we take 

M = P»-Pl 

and recall that for a ^-dimensional analytic subvariety VczM the Remmert-Stehr 
theorem [9] implies that V is algebraic if either 

fe> Z, or k = I and Vf]Pk omits an open set. 

We take the case k—l and set n—m+k+l so that the decomposition (1) holds. 

For each point q£Pk the linear span Pm;q of Pm and q is a Pn~k(q) and a 
special case of the main theorem in [2] is: Given a:>l there exists Cff>0 such that 
for any VkaPn—Pk and any q£Pk 

(2) fi(VnPa-k(q),r)^Cap(y9OLr). 

For k—1 we recover the aforementioned Bezout theorem for analytic hypersurfaces 
in C". We may informally paraphrase his result by saying that the analytic Bezout 
theorem holds in the first dimension in which the Remmert-Stein theorem allows 
an essential singularity. 

Breiner's proof uses integral formulas from Nevanlinna theory and we would like 
to discuss intuitively what he does. For each point q we define the attraction of 
V to q to be measured by the area of V[r] fl U where V is a neighborhood of 
q in M. Then Breiner's argument gives that the attraction to any particular q is 
bounded by the average attraction to all points of Pk

9 and by integral geometry 
this average attraction turns out to essentially be the area of V[r]. In particular 
it follows that the attraction of V to q is the same for almost all points of P\ 
and so the erratic behavior encountered in the set of asymptotic directions to a curve 
in C3 is precluded (this erratic behavior is even more evident for points in C2), 
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Now lois result about the attraction of V to points q£N is undoubtedly true 
for general situations VaM=M—N provided that dhn Fs>dim N. Still likely 
but somewhat less evident is the 

Question. Is the attraction of Vk to q£N equidistributed provided that for 
large r the Levi form L(%) has ^n—k—l negative eigenvalues in the holomorphic 
tangent spaces to dM[r]l 

For example, if we let M be the usual quadratic transformation of P" along 
Pk and N the total transform of Pk

9 then N is the projectivized normal bundle 
to Pk in P", and the question asks not only about the attraction of V to points 
of Pk but also about the normal component of the tangent spaces to V. 

Another question we should like to discuss briefly arises from the use of curvature 
integrals to measure growth. For an entire analytic set VkczCn we consider the 
Gauss map 

y: V-G(k9n) 

that assigns to each smooth point p£V the complex tangent plane TP(V) viewed 
as lying in the Grassmannian G(k9 ri) of /c-planes through the origin in C". Clearly 
y extends to a meromorphic mapping on all of V9 and at the smooth points the 
usual curvature matrix Qv of V is the negative transpose of the pullback under 
y of the curvature in the universal subbundle over the Grassmannian. The Chern 
forms ck(Qv) are defined by 

dei[tI+LlQv) = 2>(-l)'tk-'cl(_Qr). 

We denote by <p the standard Kahler form on C", and recall that (l//c!) fvlrj(p
k 

is the Euclidean area vol (F[r]) of V[r] and 

1 j y _ v o l ( T M ) 

is an increasing function of r with 

limfi0(V9r) = mult0 (V) 

being the multiplicity of V at the origin. In [7] it is proved that the expressions 

VW* r) = (fc-/)|ra(fc-o / c ' (ß") A cpk~l 

are well defined and increasing in r, and whose limits as r->0 have to do with the 
singularity structure of V at the origin. On the other hand, the quantities 

.are the coefficients in the expansion in powers of c of the volume of the e-tube 
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Ta(^'"):=fe€C": ö(q9 V[r])^c} around V[r]. These integrals may be thought 
of as measuring the growth of the currents obtained by the standard smoothing of 
the current defined by integration over V9 and as such may be expected to play 
a role in such questions as extending functions from V to C" preserving growth 
conditions. Here we should like to pose the 

Question. Is there a Bezout estimate for the refined growth indicator 

We remark that the analogue of Crofton's formula 

Vo(V9r)= f fi0(AnV9r)dA 
A£G(n-k+l,n) 

ts provided by the kinematic formula given in [7], so that an affirmative answer to 
ihis question would follow from plurisubharmonic properties of the elementary 
symmetric functions of the 2nd fundamental form of V in C". 

3. Representing homology classes by analytic cycles. Recall that an analytic cycle 
Z on a complex manifold is a locally finite formal sum 2,/7fZf °f irreducible 
analytic varieties with integer coefficients. The growth of Z will mean that of the 
analytic variety \Z\~^ii\n\Zi. If Z has pure dimension n—lc there is the fun
damental class (Ö-coefficients) 

nzeH2n_2K(M)^H*k(M). 

A long-standing general problem is how much of H2k(M) is represented by such 
fundamental classes? When M is a compact algebraic variety there is the famous 
Hodge conjecture. At the opposite extreme, when M is Stein a theorem of Grauert 
implies that all of H2k(M) is represented by analytic cycles. Here the natural 
analogue of the Hodge conjecture is to impose growth conditions on the cycles, 

In general we may look for restrictions on rjz imposed by Hodge theory. Suppose 
we denote by H^K(M) the complex deRham cohomology and recall the Hodge 
filtration FPH^K(M) that may be defined as follows : 

We consider the usual double complex 

A*(M) = © AP>«(M) 

obtained by decomposing the C°° forms into (jp9 q) type and writing d=d+d. 
The associated total complex is the deRham complex, and the Fröhlicher spectral 
sequence has 

Ef>* - Hi(M9 Q>)9 En =• mK(M). 

The Hodge filtration is that induced on the abutment of the E^ term. When M is 
a compact Kahler manifold, E1=E00 and the Hodge filtration is 

FPH2k(M) = H2k>Q(M)®...®HP>2k-P(M) 
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where HbK(M) = ÇBr+s:=IH
r's(M) is the Hodge decomposition on cohomology. 

When M is Stein Ep>g=0 for q>0 and all FpHgR(M)==HgR(M). 
Alternatively, we consider the holomorphic deRham complex 

0 + C -+ QQ-±-+ fì1-^- . . . - i - * Qn ->- 0. 

By the holomorphic Poincaré lemma this complex separates into short exact sequences 

0 - C - Q0-^ Q\ - 0, 

0-+QI-+Q1— - O*-*0, 

0 - ß ' r 1 - ß " " 1 - ^ ß " - 0 , 

where Qq
c is the sheaf of closed holomorphic g-fonns. In cohomology we have 

H2k"1(M9 Q]) -> H2k(M9 C) - H2k(M9 Of) 

H2k~2(M9 Ql) - H^-^M, Ql) - H2k~1(M9 Q1) 

(3) H°(M9 Qf) - J Ï W ß f " 1 ) -* ^" (M, ß2*"1) 

A class ndH^iM) is in FpHgK(M) if it is in the image of H2k~p(M9 QP) in (3). 
A basic fact is that nz^FkH^K(M) for any analytic cycle Z. When M is Stein 
this imposes no conditions and Grauert's theorem provides the existence theorem. 

Suppose now that MczPN is a projective algebraic manifold, N=M'PN~~k 

is a linear section of M9 and M=M—N. For example, when /c = l, Af is an affine 
algebraic variety and hence a Stein manifold. If n^H^R(M) restricts to ?/Ç#£fc

R(M) 
then we have seen that *7=?7Z for a generally transcendental analytic cycle Z in M. 
In fact, it is possible to provide a lower bound on the transcendence level of Z 
as follows [4]: If fj is primitive and fjk+l'k"!^0 in the Hodge decomposition, 
then 

(4) ix(\Z\9 r) ^ C'T1 

where Cte is a positive constant. In other words \Z\ must be of finite order s»/. 
It was also proved in [4] that the estimate (4) is sharp in case k= 1. Intuitively the 
reason that we were able to establish this had to do with the fact that the analytic 
Bezout theorem is valid in the codimension one case, and consequently the analytic 
formalism goes well. 

Now, recalling that for general k9 

M = M-M-PN~k 

a theorem of Andreotti-Grauert [1] gives 

Hp(M9Q
2k"p)-^0 for p>k9 
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so that 
Hk(M9Q

k)^Hèì(M) 

is surjective; i.e., FkH^R(M)=H^R(M) in this case. Consequently there are no 
Hodge-theoretic objections to representing all of H2\M) by analytic cycles in this 
particular dimension ; note that this is exactly the dimension where the Remrnert-Stein 
theorem first allows transcendental analytic varieties. We we may ask the 

Question 3. For M^=M—M'PN~~k as above, is all of H2k(M) represented by 
analytic cycles? Can we choose these c}'cles to have finite order ^kl 
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1. Introduction. The classical representation and factorization theory due to 
R. Nevanlinna [1] permits a very satisfactory understanding of functions regular 
and bounded in D = {z£C\ |z|<l} (these functions constitute the algebra H°°) 
and of meromorphic functions belonging to the quotient field N of H°°. It is 
well known that the Nevanlinna representation theorem is based on the application 
of the Poisson-Jensen formula to smaller disks |z|«<r<:l and on a subsequent 
transition to the limit as rfl involving use of the Riesz-Herglotz formula. In fact, 
the definition of the Nevanlinna characteristic itself is based on the following simplest 
version of the Poisson-Jensen formula : 

log |/(0)] = - 2 logrj-H- 2 logjfr + ~~ / log \f(re")\ d09 (1.1) 
K\^r K\ |/g<r iPvl l% o 

where av and ßv are the zeros and the poles of meromorphic function f(z). 
All this shows that there are some inherent limitations to the described classical 

approach: 
(i) Since (1.1) involves only the moduli of av and ßv9 it hardly can be the basis 

for an understanding of those classes of analytic functions in D whose possible 
zero sets are characterized not just by the moduli of the zeros, but depend on the 
distribution of their arguments as well. This observation also applies to some 
generalizations of the Nevanlinna theory (see [2] and [3]). 
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(ii) The Riesz-Herglotz theorem is indispensable for the theory. Until quite 
recently no such theorem involving more general classes of harmonic functions was 
available. 

(iii) The real-analytical tool of Lebesgue-Stieltjes integration is good for N9 

but it may be inadequate for larger classes of meromorphic functions. 
In what follows we consider algebras A^ of regular functions f(z) in D that 

satisfy the relation 
\f(z)\^Cf exp {afk(\z\)}, (1.2) 

where k(r) is some nondecreasing continuous function on [0; 1), k(0)=09 /c(r)-+°° 
(rtl). We also consider the quotient field N^ of A^kK It is known [4] that 
jfoi always contains some functions whose zeros do not satisfy the Blaschke con
dition ; therefore A® <£ N. Given some regularity conditions and growth restric
tions on k(r)9 the A^ coincide with (topological) algebras introduced by A. 
Beurling [5]. The results of A. Beurling imply that, as regards the structure of 
closed ideals of A^k\ there exists a critical rate of growth for k(r): if 

/m»- (1.3) 

then the (closed) ideals of A^ are completely characterized by the set of common 
zeros of their elements, whereas for 

m*< (1.4) 

there exist some proper ideals in A*® whose elements have no common zeros in D. 
The structure of ideals in A^ (in the latter case) is probably similar to the structure 
of invariant subspaces in H2

9 as described by a classical theorem of A. Beurling [6], 
but there is little hope to solve the ideal problem for A^ without a meaningful 
extension of the Nevanlinna theory to the classes A^k\ 

The case 

fc(r) = l o g - f i 7 (1.5) 

may be of some special interest, because the corresponding algebra, which we denote 
by A~°°9 consists of analytic functions having power rate of growth: 

\m\*Afl(l-\z\Yr. (1.6) 

The class A~°° is the smallest extension ring of H°°9 which is invariant un del-
differentiation ; A~~°° contains (in fact, is the union of) the Bergman classes 
•Ö* (0</><«>), where Bp consists of those analytic functions f(z) in D for which 

ff\f(x+iy)\pdxdy<->. (1.7) 
D 

Now, the problem of describing the so-called "weakly invertible", or "cyclic", 
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elements / of B2 (for which clos {f0>}=B2
9 0* being the set of all algebraic 

polynomials) has been outstanding (and almost completely at a standstill) for over 
40 years. Clearly, any progress in the closed-ideal problem for A~°° would mark 
at the same time some progress in the above-mentioned problem for B2. 

In what follows we describe some recent results in the study of A~°°9 of its 
quotient field Jf and of the corresponding class 2f{ of harmonic functions. These 
results include a complete characterization of possible zero sets Z of functions 
in A~™9 representation of harmonic functions of the class ffl by means of a gene
ralized Poisson integral involving so-called "prenieasures" (distributions of the 
first class), a factorization for the class Jf9 and a complete description of closed 
ideals in A~°°. Finally we discuss some results indicating possible extensions of the 
theory to more general Beurling algebras. 

2. Zero sets of A~°° [7]. 

DEFINITION 2.1. The entropy x(F) of a finite set FczdD is 

* ^ = i#l+loB^). (2.1) 

where Iv are the complementary arcs of F and |/J are their (angular) lengths. 

DEFINITION 2.2. For each (£dD the Stoltz domain Sç is the interior of the 
smallest convex set containing the disc {|z|<|-} and the point f. For each finite 
set FczdD 

SF=\JSz. (2.2) 

DEFINITION 2.3. Let a={av}~ be a sequence of complex numbers, 0 < | a x | < 
|a 2 |< : . . .< l , l i m ^ ^ [av| = l. For each finite set FczdD the corresponding partial 
Blaschke sum is 

°(x;F)= 2 (i-KD- (2.3) 
avesr 

THEOREM. For an a={av}~ to be the zero set of a function f£A~°° it is necessary 
and sufficient that 

o"(a; F) s~ A^ 

"sp-^r^-- (2-4) 

where sup is taken over all finite FczdD. 

3. Harmonic functions and prenieasures [7], [8]. 

DEFINITION 3.1. (i) ^f+ is the class of (real) harmonic functions u(z) in D 
satisfying 

v(z)^Aulogl^+Bu. (3.1) 
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(ii) $e=2/e+-#e+9 i.e. «6^f means that 

u = «! —w2 (3.2) 
for some W 1 , M 2 £ ^ ? + * 

DEFINITION 3.2. Let 3f be the set of all open, closed and halfclosed arcs of dD9 

including all one-point sets, dD itself and 0. A function p: Jf-^R is called 
a premeasure if 

(i) p(Ixul2)=p(/i)+p(Jz) for all IX9I^X such that 

IXKJI^X9 Ixr\Ii=- 0; 

(ii) limv^oo^(/v) = 0 whenever I^^I^I^,.., n / v = 0. 

DEFINITION 3.3. (i) A premeasure \i is called x-bounded if there exists a positive 
constant C such that 

p(I)^C\I\log-^ (V/ÉJO (3.3) 

(for | / ]=0 that means ^(7)^0). The set of all ^-bounded premeasures will be 
denoted xB+. 

(ii) The ^-variation of a premeasure \i is 

%Var^ = sup 2v^v)K (3.4) 
F X\£) 

where sup is taken over all finite sets FadD (Iv are the complementary arcs of F). 
The set of all premeasures of bounded H-variation will be denoted xV. 

THEOREM, (i) Each premeasure p£xV defines a harmonic function UÇL^C by 
means of the generalized Poisson integral 

If p£xB+9 then ueœ+. 
(ii) Conversely, for each u^ff there is a p^xV such that (3.5) holds; pi is 

(uniquely) determined by 

IfrW + fxd)] = lim fu(rO\ d(\9 (3.6) 
2 r f l f 

where IczdD is an arbitrary open arc. 
If ue^+

9 then p£xB+. 

4. Factorization [7J. If/G^Kand a = {av}, /? = {/?v} are the sets of zeros and poles 
of f(z)9 then a and ß satisfy condition (2.4). There are many ways of constructing 
quasi-Blaschke products B(z9 a) and B(z9 ß) which belong to A~°° and have 
zeros precisely at a and ß. Then f(z)B(z9 ß)jB(z9oi)=g(z) also belongs to / 
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and has no zeros or poles. Using Theorem 2 we get the following factorization 

where |A| = 1 and p is a premeasure of bounded «-variation. 

'«^HtH/f̂ *»}- <4I) 

5. Closed ideals in A~°° [8]. Each premeasure \i of bounded «-variation generates 
a finite Borei measure on Carleson sets, i.e. on closed sets FczdD9 which have measure 
zero, and whose complementary arcs Iv satisfy the relation J5?|/v|log(27ce/|/v|)<«>. 
This Borei measure (defined on every Carleson set) is called the x-singular part 
of ii and denoted by <rß. Although fi in (4.1) may depend upon the particular 
way of constructing quasi-Blaschke products B(z9 oc) and B(z9 ß)9 its «-singular 
part erM does not and is intrinsically linked to the function / . If f£A~°°9 then 
li in (4.1) is «-bounded and its «-singular part crfl is nonpositive. 

A description of all closed ideals in A~°° is given in [8]. Each such ideal is 
uniquely characterized by its zero set and its «-singular measure which is completely 
analogous to the classical result of A. Beurling [6]. For the sake of brevity we confine 
ourselves here to the case of weakly invertible elements. 

THEOREM. An element f€A~°° is weakly invertible if and only if 
(i) f(z) has no zeros in D ; 

(ii) The x-singular measure associated with f is zero. Clearly, these conditions 
remain necessary for an f£B2 to be weakly invertible in B2. 

CONJECTURE. The same conditions are necessary and sufficient for an f£B2 

to be weakly invertible in B2. 

6. Possible generalizations. Should we try to generalize the above approach to 
other Beurling algebras A&\ then the following class 3/Pfo of harmonic functions : 

u(z)^au + buk(\A){^J>) (6.1) 

whould have to be considered with the view to extending the Riesz-Herglotz formula 
to 3f?Q^ using premeasures. The first step in this direction is to find out what are 
the conditions on k(r) under which the limit 

lim Ju(rO\dC\ (6.2) 

exists for each « £ ^ k > and for each arc/czSD. 

THEOREM [9]. The limit (6.2) exists for each uZtffa and for each IczdD if and 
only if k(r) satisfies condition (1.4). 

In view of the cited result of A. Beurling [5], the above theorem shows that the 
method of prenieasures may be available exactly when it is needed in the closed-
ideal problem, i.e. when the "boundary singularities" should play a role in the 
description of ideals in A^k\ 
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Turning now to the problem of zero sets for A{k\ let us observe that under (1.4) 
each nonzero/(z) belonging to A^ has the following property: 

^ ( l - e v H - , (6.3) 

where Q„ are the positive zeros of f(z); moreover, if (1.3) holds, then there exists 
functions in the class A^ for which (6.3) fails [10]. 

It was in a paper by H. S. Shapiro and A. L. Shields [11] that the property (6.3) 
was first noted and proved for some special classes of functions. 

Finally, let us note that condition (1.4) seems to be of crucial importance in many 
other (but unmistakably related) problems (see [12] and [13]). 
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The Holomorphic Equivalence of Real Hypersurf aces 

J. Moser* 

1. We are concerned with the mapping problem in several complex variables. 
In its simplest form it amounts to deciding which domains Dl9D2czCn+1 (n^l)1 

can be mapped biholomorphically into each other and to determine the group 
Aut (D) of biholomorphic selfmappings of such a domain. More generally we seek 
invariant quantities or geometrical objects of such domains. As a rule we will con
sider domains of holomorphy and even domains with smooth strictly pseudo-
convex boundary. The answers are in stark contrast to the results in one complex 
variable where any two bounded simply connected domains are biholomorphically 
equivalent. 

In several complex variables one has much more rigidity. For example it was 
known to Poincaré that the polydisc Dx: \za\~<l (a = 1,2, ...,77 + 1) is not biholo
morphically equivalent to the ball D2: 2lti IZJ 2 <1; ^ s *s most- easily seen by 
showing that the groups Aut (DJ) (7=1, 2) have different dimensions. 

However, it is only quite recent that it was possible to decide which ellipsoids 

n+1 

(E) 2 <*a*l+Kyl = 1, A« => K > o, n => ], 
« = i 

with zff=xa+iya are biholomorphically equivalent. S. Webster [20], [22] showed 
with interesting arguments 

* Partially supported by Grant MCS77-01986 from the National Science Foundation of the Uni
ted States. 

1 The choice of C , ,+1 in place of C" is a habit which was adhered to in order to conform with 
notation in §§ 2—3. 
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THEOREM 1. Any two such ellipsoids are biholomorphically equivalent if and only 
if the ratios (aj—bj)/(aj+bj) (up to ordering) agree. Moreover, in that case the 
biholomorphic mapping between such ellipsoids is necessarily birational. In particular, 
for distinct (uj—b^ftaj+bj) the group Aut (E) of the above ellipse is given by the 
2»+i trivial maps 

(zl9 ...9zu+1) ~+(±zl9 ±z29 ..., ±zn+1). 

Another interesting result characterizing holomorphic balls (i.e. domains which 
are biholomorphically equivalent to the ball J ^ k J ^ l ) was proven (see [5]) by 
Burns and Shnider, Klembeck and Wong; the latter gave a very simple proof in [26]. 

THEOREM 2. If for a strictly pseudoconvex domain DczC1l+1 (n^l) with smooth 
boundary the group Aut (D) is not compact then D is holomorphically equivalent 
to a ball. 

There are only few isolated results of this specific nature. It is the purpose of 
this lecture to report on some recent work attempting to attack this equivalence 
problem more systematically. We will assume in the following that the boundary 
is smooth (C°°) and the Levi form nondegenerate. 

The first observation is that this equivalence problem—at least for strictly pseudo-
convex domains—can be reduced to an equivalence problem of the boundaries 
dDj=Mj. For this purpose we note that the complex structure of C / H 1 induces 
a so-called CR-structure (Cauchy Riemann structure) on M. If / : z -*- iz defines 
the complex structure in C"+1 we denote the holomorphic tangent space by 
Hp(M) = Tp(M)nJTp(M) which is of real codimension 1 in TP(M).2 Thus H(M) 
is the maximal complex subspace of TP(M). A CR-structure on M is given by 
H(M) together with J\H{My 

For two CR hypersurfaces (MJ9H(Mj)9 Jj)9 j=l929 one calls a mapping 
f:M1-»M2 a CR-mapping if dfH(M^=H(M2) and dfoJx=J2odf A CR 
equivalence is a diffeomorphism for which / and / - 1 are CR mappings. 

The basic theorem in this connection is due to Fefferman [12] : A biholomorphic 
mapping cp:D1-^D29 where Dl9D2 are bounded strictly pseudoconvex domains 
with smooth boundary, can be extended to C°°— map q> of D1-+D2* According 
to an argument of H. Lewy [16] the extended map is real analytic if dDl9 dD2 are 
real analytic. 

Clearly the induced mapping f=q>\dD of M1=dD1 into M2—dD2 is a CR-
equivalence. 

THEOREM 3 (SEE [4]). Let Dl9D2 be bounded, strictly pseudoconvex domains in 
Cw+1 (n^l) with C°° (or Cw)3 boundaries. Then Dl9D2 are biholomorphically 

2 We will only consider CR structures of codimension 1. For more general CR structures 
which are irrelevant in our context — see R. O. Wells, Jr. [25]-

* A simplified proof of Fefferman's theorem is contained in Webster [31]. 
3 CM refers to real analytic mappings. 
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-equivalent if and only if dD±=Ml9 dD2 = M2 are CR-equivalent via a C°° (or Cm) 
diffeomorphism. 

Having reduced the problem to an equivalence of the boundary dD we turn 
to the local problem. Given two real hypersurfaces Ml9M2 with distinguished 
points PjdMj we seek conditions for the existence of a holomorphic mapping 
/ taking p±-+p29 M1nU1-+M2nU2 where XJ} are neighborhoods of pjm 

This problem turns out to be of differential geometric nature. We describe briefly 
the main results of the paper [8] which contains two different approaches : One is 
extrinsic and refers to real hypersurfaces in C,,+1—or in any n + \ dimensional 
complex manifold—and the other intrinsic, and refers to abstract CR manifolds. 
In the following two sections we outline the main results of these two approaches. 
For a fuller description we refer to the excellent survey article [3]. In §4 we collect 
.a number of related studies which have been published recently. We supply references 
primarily of the last four years; the earlier literature is carefully cited in [3] and in 
the quoted references. 

1 want to express my appreciation to D. Burns, S. Webster, S. T. Yau for discussions 
on this subject and, in particular, to K. Diederichs who made his unpublished lecture 
notes on the invariants for CR hypersurfaces available. 

2. Normalform, (a) We consider a real analytic hypersurface M in C"+ 1 with 
.a distinguished point p£M. Without loss of generality we assume that p is given 
by * != . . .= zB + 1=0 and TpM by Imz H + 1 =0. Writing zn+1 = w=u + iv and 
z=(zl9z29 ...,zH) we can represent M locally by v = F(z9z9vi) where F is real 
analytic and F(0)=09 dF(0)=0. 

We subject M to the group 0 of biholomorphic transformations z*=f(z9 w)9 

w*=g(z,w) with / (0 ,0 )=0 , g(0,0)=0, gz(090)=0 preserving 0 and TP(M). 
The aim is to find a simple normalform for the transformed hypersurface v* = 
JF*(Z*, Z*, W*) and to study the isotropy group of these normalforms. 

(b) We assume that the hermitian form 

is nondegenerate, having p positive and q negative eigenvalues, hence p+q=n. 
Strict pseudoconvexity amounts to p=0 or #=0 . The construction of a normalform 
can be viewed as approximating M to high order by the holomorphic image of the 
hyperquadric Q: v=(z9z). In projective coordinates 

CaCo = za> Cii + lCo = Wî 
this equation becomes 

1 ^ 

Here the left-hand side is a hermitian form of type p + \9 q + \. Thus Q admits 
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SU (p + l9 q+l) as its automorphism group. To obtain an effective action we 
consider the group, 

G = SU(p+l9q+l)/K 

where K9 the center of SXJ(p+\9q+\)9 is given by the mappings £->e£ where 
Bn+2=1. The isotropy group H of G consists of all those transformations in 
G leaving Ç=(Ç0,0, •••»0) fixed. Thus Q = G/H is a homogeneous space. 

(c) We subject v=F(z9z9u) to a transformation (p = (fg)€& and characterize 
a normalform in the orbit {q)*F\(p£@}. We say that v=N(z9z9u) is in normal-
form if 

N(z9 z, M) = <z, z) + 2 Nkl(z9 z, u) 

where NkI(tz9 sz9 u) = f ViVÄ/(z, z, w) and 

JVM = 0 for min (/c, /) =< 1, 

trJV22 = 05 (tr)WM = 0, ( t r ) 3 ^ = 0; 

here "tr" denotes the contraction with respect to the form (z, z>. 

THEOREM 4. The real analytic manifold M can be transformed into a normal-
form v=N(z9z9u) by a transformation cp^. This normalizing transformation 
cp is not unique; but the most general such transformation (p = q>h depends on h£H; 
and the map <pb: M-+& is injective. 

The above result (see [15], [8]) holds also for formal series expansions and can be 
used to construct holomorphic invariants for C°°-manifolds. 

The above normalform still depends on h£H as cph does. On account of this 
action of H the coefficients of N are not holomorphic invariants.4 Moreover, 
it is a nontrivial problem to decide when two normalforms are equivalent.** 

(d) S. Webster [21] as well as Burns, Shnider and Wells [4] used this extra freedom 
to construct a "restricted normalform" under the assumption A/^^O at the origin 
(hence n^2). They showed that one can achieve that the function 

d*N 
*= 2 

satisfies 
dza dzp dz y dzô 

\jj = 1, grad \jj = 0 at z = z = u = 0. 

The transformations into this restricted normalform are—in the pseudoconvex 
case—unique up to (z, w)-+(Uz9 w)9 (JJz9Uz) = {z9z). This remark can be used 
to construct infinitely many invariant functions on M by forming unitarily invariant 
polynomials from the coefficients of the restricted normalform. 

4 The construction of such invariants is the object of a forthcoming paper by C. Fefferman, 
Parabolic invariant theory in complex analysis. 

** A normalform for the differential equations describing an abstract CR-structure was found 
by Luk [28]. 
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In this restricted normalform d/du defines a distinguished invariant vectorfield 
on M for which Webster [18] gave an elegant description. 

(e) The explicit nature of the normal form shows that along the w-axis the manifold 
v=N(z9z,u) and the hyperquadric Q osculate to third order (and for 77 = 1 
even to fifth order). This means that on the given manifold M there is a curve 
through p along which M osculates the holomorphic image of Q to third or 
fifth order. The action of H on the normal form gives rise to a family of curves 
through p transversal to the complex tangent space of M at p. These distinguished 
curves are governed by a second order system of differential equations which is 
equivalent to (tr)W32=0 provided Nkl=0 for min (k9l) < 1 . These curves are 
called the chains of M. For example, for the hyperquadric Q the chains are simply 
the intersection of complex lines in Cn+1 with Q. 

Similarly the conditions tr N22=09 (tr)3Ar33=0 have geometrical interpretations. 
If the osculation of the hyperquadric is one order higher than generic, i.e. if 

N22(0) = 0 for « ^ 2 or N42(0) = 0 for 77 = 1, one calls the origin an umbilical 
point—in a geometrical analogy. 

3. Chern's connection, (a) The construction of a normalform referred to an 
embedded real hypersurface. Instead one may consider an abstract CR manifold 
and study CR equivalences between them. This approach can be viewed as an 
analogue to the intrinsic description of Riemannian manifolds using Cartan's 
formalism of frame bundles, connections, structure equations and curvature forms. 
This program was carried out by S. S. Chern [8] after E. Cartan had settled the 
case 77 = 1 and after further studies by Tanaka (see [3] for references). 

An abstract CR manifold (of codimension 1) is a (2Tî+ l)-dimensional real manifold 
M with a subbundle H(M) of codimension 1 of the tangent bundle carrying 
a complex structure J9 i.e. J2=—7. This CR structure is required,to satisfy an 
integrability condition: If Q£T*M annihilates H(M) and 0X02, . . . , 0" are 
chosen so that 0, Re0a , Im0 a form a basis for T*M and satisfy J0a=z0a then 
it is required that 

d69d0* = 0 mod(0,01, ...,0"). 

The CR structure is called nondegenerate if the hermitian matrix (hap) defined by 

dB = 77za?0
aA0^ (mod0) 

is nondegenerate. It is called strictly pseudoconvex if (ha0 is positive or negative 
definite. We define the real form 0W+1 such that 

J0 = /Äap0aA0^ + 0A0"+1 . 

Clearly every strictly pseudoconvex real hypersurface M of Cn+1 carries a CR 
structure which is strictly pseudoconvex. However, it is not known whether every 
strictly pseudoconvex CR manifold can be locally embedded in C n + 1 in this way. 
While this is true for real analytic CR structures it is false in the C°° case, at least 
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if 77 = 1. The relevant counterexample was found by L. Nirenberg [16], [17]. However, 
for 77^2, such counterexamples are not available since the integrability condition 
imposes severe restrictions. Therefore the embedding problem of CR manifolds 
of 277 + 1^5 dimensions remains open (except for the result of Boutet de Monvel [6], 
for compact strictly pseudoconvex CR manifolds). 

Therefore a CR manifold is to be considered as a more general object than a real 
hypersurface of C"+1. The advantage of Chern's construction is that it refers 
to such abstract CR manifolds and that it proceeds intrinsically. It provides intrinsic 
invariants for the CR equivalence problem which in the analytic case are also suf
ficient to distinguish all different CR structures. 

(b) In Chern's approach a principal bundle Y is constructed over M which 
has as fiber group the isotropy group H of G9 defined in the previous section. 
We recall that the hyperquadric Q is given as homogeneous space G/M. With 
0,1) we denote the Lie algebras of G9 H. Moreover, a connection of this principal 
bundle which is a g-valued one-form co is defined in an invariant manner. 

The principal bundle Y is of the same dimension as G, and the fiber dimension 
agrees with dim 77. For an JT-principal bundle Y-+M a Cartan connection is 
a g-valued one-form defined on Y which defines an isomorphism co: TyYc~g 
for all y£Y9 satisfies Rft co = (Ad h"1)co for all h£H9 where Ra is right action 
of H on Y. Finally, if £* is the vertical vectorfield on Y induced by ££l) then 
o>(f*) = «. 

The curvature of this connection is defined as usual as 

Q = dco + (co) A (co). 

For the hyperquadric case M~Q one has O=0, the flat case. Conversely, if 
for the above connection co on Y one has ß = 0 then M is locally biholomorphic
ally equivalent to the hyperquadric g. 

The basic result concerning this connection is the following which shows that at 
least for real analytic CR-manifolds the equivalence problem is solved: 

THEOREM 5. Two real analytic manifolds Ml9 M2 are CR equivalent if and only 
if the corresponding bundles Yl9 Y2 with their connections col9co2 are locally 
isomorphic. 

The terms of the g-valued curvature tensor can be related to the lower order 
terms of the normalform N2t29 N3t29 N3tS °f the previous section and in this way 
provides a geometrical interpretation of the latter [8], [3]. See also Jacobowitz [27]. 

4. Applications. We summarize briefly various applications of this theory. 
(a) Rigidity results [4]: It is to be expected that for most pseudoconvex domains 

Aut (D) consists of the identity only. The proof of such statements has become 
feasible via the above theory. Burns, Shnider and Wells [4] proved the following 
result: Let D0 be a compact, strictly pseudoconvex domain in a complex manifold 
X with smooth boundary M. If U=U(M) is some neighborhood of M let 
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M=DQ be defined by the equation r(z9 z)=0 where r is a real smooth function 
on U. Given any positive integer k and a closed ball BczRk one can construct 
C°°-functions gt(z9z): BXU-^R near r such that the domains Dt6 bounded by 

Mu6 = {zeU9Ql = S} 

are biholomorphically distinct, i.e. 

Ai,*~A2 ,a2 only if h = h9 <5i = <52. 

Moreover, AutDr^=(id). In other words the number of "moduli" for this equi
valence problem is infinite. 

The proof is based on the local invariants provided by the previous sections and 
a transversality argument which allows one to distinguish two boundaries at any 
two points. For 77 ̂  2 the invariants used in this connection are the ones mentioned 
in §2(d). 

(b) Variational principle for the chains [13], One of the most interesting geometrical 
objects holomorphically invariantly attached to a hypersurface M is the family 
of chains defined above. In § 2 they appeared as curves along which one can osculate 
M by holomorphic spheres and in the intrinsic theory of § 3 they appear as curves 
along which the tangents are parallel in the sense of the connection. 

In 1976 Fefferman [13] gave an entirely different description of these curves and 
showed that they are governed by Hamiltonian systems of differential equations. 
Surprisingly the relevant variational principle is not defined on the boundary 
M but on a circle bundle over M. 

If M is locally given by r(z9 z)=0 then the pseudoconvexity amounts to the 
condition 

where r~drjdzj etc., if r>0 refers to the interior of D. 
Motivated by the boundary behavior of the Bergman kernel Fefferman required 

the function r to satisfy the Monge-Ampère equation 

4(r) = l and r = 0, dr^O on dM.5 

In terms of such a defining function (which is needed only locally) Fefferman intro
duced the metric ds2 on M X S1 : 

ds2 = (rj dz3—rk dzk) dy + r^ dzj dzk) 

for (z9 e^ÇMxS1. If one extends a biholomorphic map 

z -+ q>(z) 

6 Recently S. Y. Cheng and S. T. Yau established the existence of smooth solutions of the corres
ponding global problem. 
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(z, <P) - (cp(z)9 |det pz|(det cp^-H») = (z*, e*) 
then 

(rfs*) = \dct cpz\-
2t("+1)ds2

9 

i.e. both metrics are conformally equivalent. The metric so defined is indefinite and 
has type (77+1,1). The nullgeodesics of this problem are clearly invariant under 
holomorphic transformations. The chains are the projections of these null geodesies 
into M9 which provides a third characterization of the chains. 

One shortcoming of this approach is the need of a solution of the complicated 
Monge-Ampère equation. However, obviously it suffices to satisfy the above 
equation only to second order, i.e. solve 

A(r) = l+0(r2) 

and Fefferman gave a simple algebraic procedure to obtain such a function. 
(c) Intrinsic description of chains [1], [19]. While Fefferman's metric refers to 

embedded hypersurfaces one may seek an intrinsic description of such a metric 
on a circle bundle of a CR-manifold. This was carried out in [1], [19]. The circle 
bundle is obtained as a subbundle of the frame bundle Y of Chern. 

It is interesting that this approach [1] relates the equivalence problems for CR-
structures to that for conformai structures on the above mentioned circle bundle. 

(d) In § 1 we mentioned Theorem 1. It is an example of a result which did not 
require the theory of §§ 2, 3; its proof [26] is simpler and more direct. An earlier 
result due to Webster refers to abstract CR manifolds [18] : Let M be a compact, 
connected strictly pseudoconvex CR manifold. If the group of CR-equivalences 
of M is connected and noncompact then M is locally equivalent to the hyper
quadric Q. 

The proof of this theorem uses the connection of § 3, though in a rudimentary 
way. For a study of spherical hypersurfaces see also [2]. 

(e) We mention some indirectly related work. In connection with Theorem 1 
Webster was led to study CR immersion of a 277 — 1 dimensional CR manifold not 
in C" butin S2n+\ the unit sphere in C"+1. A 277-1 submanifold M of S2"*1 

is called a CR-hypersurface if the complex tangent space T(M)nJT(M) has 
complex dimension 77—1. An example of such a CR hypersurface is the intersection 
of S2n+1 with a complex hypersurface in Cn+1 transverse to S2w+1. 

Let / : M-+M' be a CR mapping of one such CR hypersurface of S2n+1 into 
another. M is called rigid in S2n+1 if any such mapping is the restriction of a frac
tional linear map of S2n+1 into itself. 

Webster [23], [24] established the following interesting results: 
(i) If 77 > 3 the image of a local CR immersion of M—S2n~x in 5'2n+1 is rigid, 

i.e. itis contained in a hyperplane section of S2"4"1. 
(ii) If 77>4 any CR hypersurface in S2"*1 is rigid. 
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For 77=2 the statement (i) is false as the example (due to H. Alexander) shows: 
The holomorphic mapping 

(zl9z2) -^(z|, ilz^ztj 

induces a CR immersion of S3: |z1|
a + |za|

a=l into S5 which clearly does not 
lie in a hyperplane section. 

(f) Segre families. If a real analytic hypersurface is locally described by an equation 
r(z9 z)=0, zCC"*1, where r is real analytic one can extend this manifold into the 
complex and define the complex manifold 

il? = {(z,C)€C2«+2, r (z ,0 = 0}. 

Alternately, one can view M as constituted ofthe77-dimensional complex manifolds 

ßc = {z€C»+1, r(z, 0 = 0} 

the so-called Segre family. In generalization of the above one can seek the equi
valence problem for such Segre families, where z and Ç are separately subject 
to biholomorphic transformation. 

This problem was solved by Faran [11] extending earlier work by Chern [7]. 
Faran also derived a normalform for Segre families and studied their relation to the 
normalform for real hypersurfaces. 

(g) Concerning the boundary behavior of proper holomorphic mappings of pseu
doconvex domains with real analytic boundaries, see Pincuk [29], [30]. 
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Extension Problems in Several Complex Variables 

Yum-Tong Siu* 

One of the features that distinguish the theory of several complex variables from 
that of a single variable is the extension property of analytic objects in the case of 
several variables. We give here a survey on some of the important, especially recent, 
known results and unsolved problems concerning such extension properties. 

1. Holomorphic and meromorphic functions. Let A be the open unit disc in C. 
For k9 77^1 and 0<c<:l let H be the "Hartogs figure" consisting of all points 
z=(zl9.. .9zk+1ù£Ak+n such that max fl^l,..., |zfc|)>l - c o r max(|zfc+1|,..., |zfc+n|)<c. 
We say that an analytic object is Hartogs k-extendible if it can always be extended 
from H to Ak+n. Hartogs [6] (respectively Levi [11]) proved that holomorphic 
(respectively meromorphic) functions are Hartogs 1-extendible. 

2. Analytic subsets. Rothstein [16] obtained the Hartogs /c-extendibility for 
analytic subsets whose every branch has codimension </c. 

By the Thullen k-extendibility of an analytic object we mean its extendibility 
across any analytic subset A of codimension k if it is assumed to be extendible 
across some point of every fc-codimensional branch of A. Hartogs /c-extendibility 
implies Thullen /c-extendibility but not Thullen (k—l)-extendibility. Analytic 
subsets of pure codimension k are Thullen /c-extendible. The special case of 
1-dimensional subsets in C2 was proved by Thullen [34] and the general case by 
Remmert-Stein [14]. One corollary is that an irreducible /c-dimensional analytic 

* Research partially supported by a grant from the National Science Foundation of the United 
States. 
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subset can be extended across an analytic subset of dimension <fc. As a generaliza
tion of this corollary Shiffman [17] obtained the extendibility of irreducible fc-dimen-
sional analytic subsets across closed subsets of zero Hausdorff (2fc—l)-rneasure. 

Bishop [2] proved that a pure-dimensional analytic subset of finite volume can be 
extended across another analytic subset. A special case was earlier obtained by 
Stoll [31]. We call this property the Bishop extendibility. 

For analytic objects on domains in C"9 Hartogs (n — l)-extendibility implies 
extension across JR" (see e.g. [27]). Hence irreducible analytic subsets of dimension > 1 
can be extended across R". Alexander [1] proved that pure 1-dimensional analytic 
subsets which are stabilized by the conjugation of the coordinates are also extendible 
across Rn. 

3. Coherent analytic sheaves and subsheaves. For a coherent analytic sheaf F9 

the /cth gap-sheaf F[k] of F is the sheaf defined by the presheaf which assigns 
to an open subset U the inductive limit of T(U—A9 F) as A goes through all 
analytic subsets of dimension <</c in U. A coherent analytic sheaf F on a domain 
in C" is Hartogs (/?—/c)-extendible if F=F[k]. A coherent analytic subsheaf F of 
a coherent analytic sheaf G on a domain in C" is Hartogs (n—/c)-extendible if 
F= Flk] n G. The sheaf extension result yields a new proof of the theorem of Grauert-
Remmert that every a-space is a /?-space [22]. The subsheaf extension result spe
cializes to Rothstein's result on analytic subset extension when the subsheaf is the 
ideal-sheaf of the analytic subset. The theory of coherent analytic sheaf and sub
sheaf extension is due to Thimm [32], [33], Trautmann [35], Frisch-Guenot [4], 
Siu [21]-[24], and Siu-Trautmann [29]. 

Positive holomorphic vector bundles, when regarded as coherent analytic sheaves, 
are Thullen 1-extendible [25]. The line bundle case was earlier proved by Shiffman [19]. 

4. Complex spaces. A strictly k-pseudoconvex function / on an open subset U 
of C" means a smooth real-valued function whose complex Hessian has at least 
n—k+l positive eigenvalues at every point of U. A boundary point x of a domain 
D is said to be strictly /c-pseudoconcave if for some open neighborhood U of x9 

Dn £/=£7n {/>0}. For analytic objects, extendibility across strictly /c-pseudo
concave boundary points is equivalent to Hartogs (77 —/c)-extendibility (see e.g. [27]). 
Rossi [15] obtained the following result on extending complex spaces across pseudo-
concave boundaries. If I is a complex manifold (or even a connected normal 
complex space) of dimension ^ 3 and g is a strictly 1-pseudoconvex function 
on X such that g\X-+(a9b) is a proper map for some ~^>^a^b^°°9 then 
X is an open subset of a normal complex space X such that (X—X)u{g^c} 
is compact for a<c<b. This extension result was generalized by Ling [12] to the 
case with holomorphic parameters. It is conjectured that Rossi's result remains 
valid if dimJ£Wc+2 and g is strictly/c-pseudoconvex. 

5. Holomorphic and meromorphic maps. Griffiths [5] and Shiffman [18] independ
ently obtained the Hartogs 1-extendibility of holomorphic maps into complete 
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Hermitian manifolds with nonpositive holomorphic sectional curvature. Recently 
Shiffman [20] proved the Hartogs /c-extendibility of holomorphic maps into compact 
complex manifolds whose bundles of holomorphic /c-vectors in a certain sense 
carry metrics with nonpositive curvature. 

Meromorphic maps (in the sense of Remmert) into compact Kahler manifolds 
are Thullen 1-extendible [28]. Certain special cases were proved earlier by Griffiths [5] 
and Shiffman [19]. This result was used by Sommese [30] to obtain extension theorems 
for reductive group actions on compact Kahler manifolds. For target manifolds 
without curvature conditions meromorphic maps and Kahler conditions are needed 
respectively because of the examples C+1—0-HPK and Cn—0-*- the quotient 
of Cn—0 by the action of the group generated by multiplication of the coordinates 
by 2. 

Meromorphic maps from complex manifolds of dimension n into compact 
Kahler manifolds can be extended across closed subsets of zero Hausdorff(2w—3)-
measure [28]. It is conjectured that meromorpliic maps into compact Kahler mani
folds are Hartogs 1-extendible. There are pieces of evidence that support such 
a conjecture. For example, if E is a nowhere dense closed subset of a Stein manifold 
D which does not locally disconnect D and if / is a holomorphic (or even mero
morphic) map from D—E to a compact Kahler manifold M with Kahler form co9 

then / can be extended to a meromorphic map from D to M when D is the 
envelope of holomorphy of D—E and when the pullback of co by / admits a closed 
positive (l,l)-current on D as an extension (or even only a superextension). A se
cond example is that meromorphic (and also holomorphic) maps into compact 
Kahler manifolds with zero second homotopy group are Hartogs 1-extendible. 
The second example can rather easily be proved by using Bishop's theorem on limits 
of analytic subsets. According to Yau it can also be proved by using results from 
the theory of minimal surfaces. 

6. Closed positive currents. The meromorphic map extension obtained in [28] 
depends heavily on two results on closed positive currents proved in [26]. The first 
one is that the set of points where the Lelong number of a closed positive (k9 k)~ 
current does not exceed any fixed positive number is an analytic subset of co-
dimension s>/c. A shorter proof of this result was later given by Lelong [10]. The 
second one is the Thullen /c-extendibility of closed positive (k9 /c)-currents. A closed 
positive (/c, fe)-current can be regarded as the generalization of an analytic subset 
of pure codimension /c, because integration over the regular points of such an analytic 
subset defines such a current. Generalizing Shiffman's result on analytic subset 
extension, Harvey [7] proved that closed positive (k9 /c)-currents on open subsets 
of C" can be extended across closed subsets of zero Hausdorff (2w—2/c—1)-
measure. It is conjectured that closed positive (/c, /c)-currents are Bishop extendible, 
with the total variations of currents taking the place of volumes. The special case 
of the conjecture where the analytic subset across which the (k9 /c)-current is to be 
extended is of codimension k has been proved [9], [28]. 
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7. Extension from boundaries. There is a theory dealing with the extension of 
analytic objects defined only on boundaries of domains. Bochner [3] proved that a 
smooth function on the smooth connected boundary of a compact subset K of 
Cn with n^2 which satisfies the tangential Cauchy-Riemann equation can be 
extended to a smooth function on K holomorphic on the interior of K. Polking-
Wells [13] generalized Bochner's result to the case of hyperfunction boundary values. 

Recently Harvey-Lawson [8] obtained the following important generalization 
of* Bochner's result. For /cM, a compact oriented smooth submanifold M of 
real dimension 2/c—1 in a Stein manifold X bounds, in the sense of currents, 
a positive integral linear combination of analytic subsets of pure dimension k in 
X—M if the complex subspace of the tangent space TXM of M at every x is 
of real codimension 1 in TXM. This yields Bochner's result when one considers 
the graph of the function there. It is conjectured that the result of Harvey-Lawson 
remains valid if instead of the Steinness of X one assumes that X is complete 
Kahler with negative holomoiphic sectional curvature. This is related to the con
jecture that a complete simply connected Kahler manifold with negative holomorphic 
sectional curvature is Stein. In conjunction with this conjecture it should be men
tioned that the result of Griffiths-Shiffman can easily be shown to reamin valid in 
a Bochner type formulation. 

In Bochner's result, since holomorphic functions are harmonic, it is clear that the 
extension function must be the solution of the Dirichlet problem for the given 
boundary values. Therefore a consequence of Bochner's result is that the solution 
of the Dirichlet problem must be holomorphic. From this point of view, Bochner's 
result is related to the problem of affirming the following conjecture of Yau on rigid
ity by proving that certain harmonic maps are automatically holomorphic. Two 
compact Kahler manifolds of equal dimension ^2 with negative sectional curvature 
are biholomorphic or conjugate biholomorphic if they are of the same homotopy 
type. 

Added in proof. Meanwhile I succeeded in proving a modified version of Yau's 
conjecture, which was announced in Proc. Nat. Acad. Sci. U.S.A. 76 (1979), 
2107—2108. 
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Integral Methods and Zeros of 
Holomorphic Functions 
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Introduction. The entire functions are so closely related with the theory of systems 
of partial differential equations with constant coefficients and of convolution equations 
(cf. [1], [27], [29]), that about 1950 a deep study of their properties seemed neces
sary to many mathematicians. Especially, the connection between the growth of 
entire functions and the growth of the sets of zeros appeared of great interest. For 
one variable, it is easy to deal with the Jensen formula and with the Weierstrass 
canonical products, in a very classical way. For several variables there is no trivial 
extension of the Weierstrass products but we are able to build entire functions with 
a given set of zeros and whose growth is connected with the growth of zeros. Working 
on these problems, the mathematicians were led to use more systematically tools 
of complex analysis as positive closed currents, plurisubharmonic functions, L2 

estimates or integral methods for the d operator. 

1. The current of integration and the Lelong—Poincaré equation. Let X be an analytic 
subset of dimension p in a complex manifold of dimension n. In 1953, P. Lelong [23] 
has proved that it is possible to define a current [X] using integration over the regular 
pari RegZ of X: 

0) <Ifl,?)= f<P, 
RegX 

where cp is a form of total degree 2p. Besides [X] is closed, of bidegree (n—p9 n—p) 
and positive; a current 0 of bidegree (n—p9 n—p) is said to be positive if: 

PO A OCj A ä]L A . . . A 0Cp A ttp S> 0 , 

for all (1, 0) forms a,- (the orientation of the manifold is defined by the (n9 n) form 
i"dz1 A dz1 A ... A dzn A rfz„). 
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Let in Cn be: a=/##log \z\2/29ß=idd\z\2/29 let er and v be the positive measures 
associated to 0 by : 

(2) G = —QABP
9 v = n-p0Acx.p. 

pi 

Let a(r) be the measure a supported by the closed euclidean ball of radius r. 
If 9=[X]9 a is the 2/j-dimensional area of A'. The significant growth of 0 (resp. [X]) 
is measured by the projective indicator: v(r)=n~pp\ r~2pa(r). 

The growth of an entire application F of C" in Ck will be described by : 

MF(r) = snp\\F(z)\\. 

When X is a hypersurface which is defined by only one equation F9 then X and 
F are connected by the Lelong-Poincaré equation of currents : 

(3) Ì-ddlog\F]=2nj[Xj\ = 6 

(where ns is the multiplicity of F on the irreducible branch X} of X). 
With the Poisson-Jensen formula, it is possible exactly as in the case of one 

variable, to obtain a bound for v(r)\ 

v (r) =< C(e, /?) log MF(r + er), 

for all fi>0 (and supposing |F(0)| = 1 for the simplicity). Conversely, if V is 
a solution of the equation : 
(4) iddV/n = 0, 

then P. Lelong observed in [24] that necessarily K=log \F\9 for some entire function 
F such that F~1{0}=X. 

When 0 is of finite order (i.e. lim supr_+00 r~ev(r)< + °° for some Q^0)9 

P. Lelong [24] has built in 1953 an explicit canonical potential V9 using a modi
fication of the kernel — \z—x\~~2n+z by harmonic terms, which is a solution of (4). 
This potential exactly generalizes the canonical Weierstrass product. The difficulty 
is to prove that V9 which is already a solution of AAV—G9 is in fact a solution of (4). 

Therefore, using V we can define a given X by an entire function of the same 
order as X. W. Stoll, using H. Kneser's work [21], reaches the same result in [39], 
but does not obtain a globally convergent representation for log |JF|. 

In 1970, in [33], [34], we dealed with the general case, without restriction about X. 
We resolved the equation (4), using a regularization of 0, the classical Cartan-
Poincaré homotopy formula for d=d+d and the Hörmander's L2 estimates 
for d. We dealt also with the case where F verifies the weaker condition F~1{0}DX9 

but not necessarily F~1{0}=X. 
E. Bombieri in [2] (1970) has given a beautiful application of Lelong's results 

to the arithmetical properties of entire functions. This work will be pursued by 
M. Waldschmidt [43]. * 
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2. The case of analytic sets of codimension > 1. When the analytic set X is a complete 
intersection, defined as the set of zeros of a holomorphic map F=(Fl9 F29 ..., F„-p) 
of C (or of a manifold) in Cn~p

9 P. A. Griffiths and J. R. King [10] proved in 
1973 the following "Poincaré-Martinelli" equation of currents: 

(5) (2n)-ki dì [log ||F||»(/Wlog llil2)*"1] = [X], 

where k=n—p9 where the form in the brackets has locally summable coefficients, 
and where each irreducible branch of X is counted with the appropriate multiplicity 
of F (this multiplicity is defined for example in [7]). But the relation (5) is less 
useful than the Lelong-Poincaré equation, as well to obtain a bound of v(r) when 
a bound of MF(r) is given, as well to try to build the functions Fj when X is 
given. 

A counterexample of M. Cornalba and B. Shiffman, in 1972 [5], shows that it is 
not possible in general to obtain a bound of v(r) when a bound of MF(r) is given. 
Precisely, they proved: 

THEOREM 1. Let s: R+-+R+ be an increasing function. There exists a holomorphic 
map F of C2 in C2 such that X=F~1{0} has dimension 0, such that MF(r) is 
of order zero, but such that v(r) grows faster than s(r)9 that is: 

r-+~ s(r) 

lim sup r~e Log MF(r) = 0, for all Q > 0. 

This means that the Bezout theorem over the algebraic curve has no transcendental 
equivalent. Nevertheless, different works have been done by W. Stoll [41], P. A. 
Griffiths [11] and L. Gruman [13] in order to obtain weaker forms of bounds of 
"transcendental Bezout theorem" type. 

It is therefore surprising that the inverse problem, which seems at first more 
difficult, received a positive general answer, given by the author in 1972 in [35]. 
We have: 

THEOREM 2. Let X be an analytic subset of C"9 suchthat 0§_X9 let e and ô£R+. 
Then there exist n+1 entire functions F=(Fl9 F29 ..., i^+i) such that F~1{0}=X 
and such that for all r>0, F verifies one of the following bounds: 

1. logMF(7-)^C(c)v(r+cr).log2r, 

2. logMF(r)^C(e9g)r* fr
0t-

ö-xv(t+ßt)dt, 

where C(s) and C(e9 S) are independent from r. 

Particularly, if v(r)< C1r
e
9 then we are able to find F such that logMF(r)^C2r

e
9 

for some constant Cx and C2 (choose ô<Q). We obtained in [35] different technical 
bounds which we do not reproduce for simplicity and which especially give the 
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following result of W. Stoll [40] and E. Bishop [1] (1966) about algebraic subset 
of Cn. 

THEOREM 3. X is algebraic if and only if r*-> v(r) is a bounded function. 

We shall now briefly talk about the methods of the proof. We do not use (5) 
which supposes that X is a complete intersection. We begin to build a plurisub-
harmonic function U which behaves intuitively as log||jF||, where F is the requested 
map. At first, we locally build U as an explicit negative potential, by integration 
of the kernel —\z—x\~~2p over X. Then using a partition of unity, we obtain a global 
^ 0 potential U0 which is nearly plurisubharmonic (i.e. modulo C°° strictly 
plurisubharmonic functions). We estimate the lack of plurisubharmonicity of 
U0 and we add to UQ SL strictly plurisubharmonic function with controlled growth 
to get U. When X has a low growth, such that fî°°t~2v(t) <#<-f°° and when 
0(£X, we can take very simply (and globally): 

(6) U(z)= f[-\z-x\-2p+\x\-2p]ßpA0(x)9 
cn 

where 9=[X]. The difficulty is to prove that U is plurisubharmonic. To be sucess-
ful we represent U as a direct image of a current on CnXCn. Let %1 and n2 be the 
projections of CnXCn over C", % the diagonal map (x9 z)-+z—x9 and K= — \x\~2pßp. 
We prove that choosing a convenient C°° function % ̂  0, which is equal to 1 on a 
neighbourhood of the diagonal of CnXC"9 we have: 

U = 7i2*(xz*KA n*9)-\-technical terms, 
jQdU — p7i2*(xt*0Lp+1 A 7rj0)+technical terms, 

such that the positivity of iddU is a consequence of the positivity of a and 0 and 
of the fact that positivity is invariant through the direct and inverse image (modulo 
precise estimates for the technical terms, cf. [34] and [35]). Now we build the func
tions Fl9 F29 . . . ,JF I I+1 using a theorem of Hörmander-Bombieri ([2], [1]) which 
gives (because of the plurisubharmonicity of U) the existence of a non trivial 
entire function / such that 

(7) / | / | 2 exp ( - /C / ) ( l + | z | 2 ) - » - 2 ^ ( z ) < + oo5 

cn 

where />0 and where dk is the Lebesgue measure. 
U were built such that for some />0, exp (—/C/) is not locally summable in 

all points of X. Therefore the estimates (7) imply that / is null over A'. Besides 
the estimates (7) give bounds for the growth of / . We repeat a classical argument 
of H. Grauert in order to obtain n+1 functions satisfying (7) such that JF

,"1{0}=JST. 
The results of Theorem 2 seem the best from the point of view of the comparison 

of growth of F and X. There is still an open problem, that is to reduce the number 
w+1 of functions defining X in theorem 2 without loss of growth. According to O. 
Forster and K. J. Ramspott [9] n functions are always sufficient to define X (with-
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out controlled growth). When X is a submanifold of Cn
9 topological conditions 

which were shown in [10] gives the insurance that X is a complete intersection 
(for instance in codimension 2, the necessary and sufficient condition is the vanishing 
of the first Chern class of X). New ideas are requested to obtain the equivalent of 
Theorem 2 in these cases. 

The construction of the potential U associated to X in the proof of the Theorem 
2 is much generally valid for an arbitrary positive, closed current 0. Therefore 
to each such (n—p9 n—p) current is associated a plurisubharmonic function 
U and a positive (1, 1) current iddU9 whose properties are intimately connected 
with the properties of 0. The density or Lelongs number of 0 at z is defined by: 

v(z) = lim %-pp\ r~2p f ßp
 A 0 

(B(z9r) is the euclidean closed ball of radius r centered at z). v(z)=0 if 0 is 
C° in a neighbourhood of z. If 9=[X]9 v(z) is an integer at each point z£X 
and v(z) = l if z€RegX Conversely, the following result of Y. T. Siu [32] (1974), 
whose particular case is solved by Bombieri [2], King [15], Harvey [14], Skoda [38] 
says how much of a given 0 is an analytic set. 

THEOREM 4. Let 9 be a positive, closed, (k9 k) current on a complex manifold 
Q. Forali c>0, the set Ec={z^Q\v(z)^c} is an analytic subset of Q (of smaller 
dimension than n—k). 

The proof heavily depends on the Hörmander-Bombieri result (7). 
Recently, P. Lelong [25] has proved that the (1,1) current iddU9 locally associated 

to 0 as in (6), has the same density as 0 in all points. Therefore, it is sufficient to 
prove Theorem 4 for a (1, 1) current. In this last case, the proof of Y. T. Siu 
in [32] is particularly elegant. 

The result of Theorem 2 has easy extensions to an open pseudoconvex subset of C" 
and to Stein manifolds (cf. H. Skoda [35, Proposition 9.1]) but the precision of the 
bounds is limited by the L2 estimates and is not always the best. Therefore new 
methods were necessary. 

3. Fine results for strictly pseudoconvex open sets in C". Let ß be a bounded, strictly 
pseudoconvex, open set in C", of class C2, that is: ß={z|g(z)<0}, where g is 
a real function, defined, of class C2, strictly plurisubharmonic in a neighbourhood 
of Q and verifying dg^O on dQ. Let Qe be the set {z|g(z)< — c}. 

The Nevanlinna class N(Q) (resp. the space HP(Q)9 0</?<-}- °°) is the set of 
holomorphic functions / o n ß such that: 

(8) lim sup / log+ | / | r fS f i < + oo, 
e>0 dar 

resp. 
lim sup [\f\pdSe< + ~>9 

«>o ali-
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where dSE is the euclidean area of dQe. We trivially have 

H°°(Q)czHp(Q)czN(Q)9 

for all p9 where H°°(Q) is the space of bounded functions. An hypersurface X 
verifies the Blaschke condition if by definition : 

(9) f\g(z)\da(z)^ + ~9 
x 

where da is the area element on X. For one variable, it is classical that the Blaschke 
condition (9) characterizes the set of zeros of functions of N(Q) and of all Hp(Q) 
0<p<s+oo. For several variables, it is easy to prove using the Poisson-Jensen 
formula (cf. [4]) that the zero set of f£N(Q) verifies (9). But W. Rudin [31] has 
proved [11] that the characterization of zeros of functions in HP(Q) for the euclidean 
ball must necessarily depend on p9 so that such a characterization is probably 
much more complicated as in the case w=l. Nevertheless, in 1975 G. M. Hen-
kin [17] and the author [37], [38] have independently but by very similar methods 
proved the following: 

THEOREM 5. Let Q be a strictly pseudoconvex open set such that H2(Q9 Z)=0 
and let X be an hypersurface of Q verifying the Blaschke condition, then X is the 
zero set of some f£N(Q). 

More generally, we solved the Lelong-Poincaré equation iddV=69 where 0 is 
a given (1,1) positive, closed, current verifying: 

(io) /le|0A/î»-1< + - J 
ß 

and where V is built so that 

lim sup fv+dSe< + < 
dnE 

Partial results were obtained by L. Gruman [13] and G. Laville [22]. In fact, 
Theorem 5 is a consequence of an existence theorem for the d which is especially 
conceived for the theory of Hp spaces. For simplicity, we only consider the (0,1) 
form. 

THEOREM 6. If fisa (0,1) current on Q9d closed and if the coefficients of f and 
of the current \g\~1/2d"g A / are bounded measures on Q9 then there exists u^L^Q) 
such that 

du =f in Q9 

and such that u has a boundary value in L\dQ) in the sense of Stoke's formula: 

fuAcp = f fA(p+ fu AÔq)9 
dß fl ß 

for all (n9n — i) forms cp of class C1 in Q. 
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Theorem 6 was obtained by explicit integral formula for differential form of 
Cauchy-Leray-Poisson-Szegö type, which are closely related with the kernels 
for d already built in order to obtain L°° estimates for d (cf, [26], [15], [20], [30]). 

Theorem 5 follows from Theorem 6 using classical splitting of dd in d and d, 
homotopy formula for d. The new argument is that (10) implies very strong restric
tion on the tangential coefficients of 0, for instance: 

; 9 A 9 , A V A > " _ ' - + ' 
ß 

(found in another more restrictive form by P. Malliavin [28]). 
In another direction, Theorem 6 is closely connected with the "corona problem" 

for H°°(Q) (i.e. the determination of the spectrum of H°°(Q)) and with Carleson-
Hörmander measures on Q (cf. N. Varopoulos [42] and [4], [38], [18]). 

Other results for hypersurfaces with polynomial growth: 

f\g(z)\«+1d(i(z)< + °o ( a > 0 ) 
x 

where recently in 1977 obtained by similar methods by G. M. Henkin [6] (cf. also [44]). 
All results of this section are in fact a consequence of an existence theorem for d. 

Perhaps, methods which will be more specific to the real idd operator, will 
permit us to reach better results concerning for instance zeros of HP(Q). Besides, 
there is no result similar to Theorem 5 for analytic sets of codimension >1. 
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A Survey of Quasiregular Maps in Rn 

Jussi Väisälä 

1. Introduction. Classical complex analysis is concerned with analytic functions 
/ : G-+C9 where G is an open set in the complex plane C. Since C is equal to the 
two-dimensional euclidean space JR2, it is natural to ask whether we can get anything 
similar if we consider maps / : G-+Rn

9 G open in Rtt. It is fairly obvious that we 
cannot get everything, and the purpose of my lecture is to give some idea of what 
we can get 

We start at the following well-known characterization of analyticity: A map 
/ : G-+R2 is (complex) analytic if and only if it satisfies the conditions 

(1) / is C1 in the real sense, 

(2) \f'(x)\*=Jj(x) forali x in G. 

Here the derivative f'(x) is the linear map Rz-+Rz satisfying f(x+h)=f(x) + 
f/(x)h+o(h)9 and Jf(x) = detf'(x) is the jacobian of / . The partial derivatives 
of / are given by 

(1.1) 9jf(x) =/ '(*)«, 

where el9e2 are the standard basis vectors of R2. Geometrically, (2) means that 
f'(x) maps every circle onto a circle or to a point. 

This definition can immediately be extended to higher dimensions. However, 
we obtain a surprisingly small class of maps. Indeed, if n>>3 and G is open in Rn^ 
then a map / : G-+Rn satisfies the conditions 

( 1 ) / î B C\ 

(2) \f'(x)\n=Jf(x) for all x£G9 
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if and only if / is either a constant or a sense-preserving Möbius transformation. 
For C3-maps this was already proved by Liouville in 1850. It implies that the maps 
satisfying (1) and (2) cannot have any branch points. In order to get a more interesting 
theory we relax these conditions. First observe that (2) is equivalent to the inequality 
|/'(a)]" <•//(#), since the opposite inequality is automatically true. We replace 
this by the weaker inequality \f'(x)\n«^KJs(x)9 where K>*\ is a constant. Geo
metrically, this means that the image of a ball under f'(x) is an ellipsoid E such 
that if B is the ball circumscribing E9 then m(B)^Km (E). Thus E cannot 
be arbitrarily flat or thin. We must also allow some non-differentiability to get 
interesting maps. In fact, a C3-map / : G-+Rn

9 «>=3, satisfying |/'(*)|B <£/}(*) 
is always a local hoineoniorphism. It has turned out that the most convenient class 
is the Sobolev space W$9 also denoted by ACL". This consists of all functions 
which have generalized first order partial derivatives which are locally L"-integrable. 
Such a map / : G-+R" has almost everywhere the ordinary partial derivatives 
dff(x)9 and we use (1.1) to define the linear map f'(x): Rn-+Rn for almost every 
x£G. We have now obtained the class of quasiregular maps: 

DEFINITION. Let G be open in Rn
9 let / : G-+R" be continuous, and let K^l. 

Then / is K-quasiregular if 

(!)/€»?, 
(2) \f'(x)\n^KJs(x) a.e. in G. 

The smallest constant K for which (2) is true is called the outer dilatation of / . 
In the literature it is customary to use a slightly different definition of jfiT-quasi-
regularity which also involves the so-called inner dilatation, but in order to keep 
the presentation simple I ignore that. A map is quasiregular (abbreviated qr) if 
it is jRT-qr for some K>* 1 ; it is quasiconformal if it is a qr homeomorphism onto 
some open set. 

The definition of qr maps has nothing to do with complex numbers, and in fact, 
tliis theory does not belong to complex analysis at all, but it is usually classified 
in the section "complex analysis" in the review journals and in this congress, because 
its roots are in complex analysis, and no better place has been found. The theory 
has nothing in common with the analytic functions of several complex variables, 
except that both classes include the analytic functions of one complex variable. 

Historical remarks. The two-dimensional qr maps were introduced by H. Grötzsch 
[3] in 1928. Higher dimensional maps were first mentioned by M. A. Lavrentiev [4] 
in 1938, but a systematic study only began considerably later, in 1966, by Ju. G. 
ReSetnjak [11]. 

2. Example. Let (r9cp9z) be the cylindrical coordinates of Rs; thus x1 = rco^(p9 

x2=r sin (p9x3=z. Let f:Rs-+Rs be the map defined by f(r9(p9z)=(r92(p9z). 
It keeps all points of the axis Z={(r9 <p9 z)\r=0} fixed and maps every circle 
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{(r9 q>9 z)|r=r0>-0, z=z0} onto itself by a two-to-one covering map. As a Lipschitz 
map, / is in W*. It is differentiable outside Z, and an easy computation shows that 
|/'(*)|8=4J/(*) forali x in R*\Z. Thus / is 4-qr, 

Tliis map is a local homeomorphism outside Z, but not at any point of Z. Thus 
Z is the branch set of / . The branch set Bf of a map / : G-+Rn is defined as the 
set of all x£G such that / is not a local homeomorphism at x. It is clearly always 
closed in G. If / : G-+R2 is a nonconstant analytic function, Bf is the set of all 
zeros of f'(x)9

 a nd *s discrete. In higher dimensions Bf never contains isolated 
points. 

3. Properties. I shall give a survey of some of the most interesting properties of 
qr maps. Before that, I remark that the following properties of analytic functions 
cannot be extended to qr maps: (1) power series; (2) algebraic structure (the sum 
of two qr maps is not usually qr); (3) unique continuation. 

In the rest of this section we assume that f:G-+Rn is a given nonconstant K-
quasiregular map. 

(3.1) / is open, that is, / maps open sets onto open sets. Hence / satisfies the 
maximum principle. 

(3.2) / is discrete, that is, f"1^) is a discrete set for every yÇ.Rn. 
(3.3) dimBf=dimfBf*zn —2, where dim is the topological dimension. This 

result is purely topological, since it is true for every discrete open map / : G-*Rn. 
It has been conjectured that dim Bf=n—2 whenever Bf=&9 but in the topological 
case, this has recently been disproved by P. T. Church and J. G. Timourian [2, 5.6] 
with the aid of the double suspension theorem of J. W. Cannon and R. D. Edwards. 
However, I do not know whether it is true for qr maps. 

(3.4) If Bf7*&9 then dimHfBf>>n—29 where dimH is the Hausdorff dimension. 
(3.5) m(Bf)=m(fBf)=0. In fact, àìmH Bf^n9 dimH fBf<n. 
(3.6) / is differentiable a.e. 
(3.7) / maps every set of measure zero onto a set of measure zero. 
(3.8) (Liouville's theorem in Rn.) If G=Rn

9 then / is unbounded. 

All these results are at least seven years old, except the Hausdorff dimension 
result of (3.5), which was proved by J. Sarvas [16] in 1975. For proofs and some 
other results, see [5], [6], [7], [12], [13]. 

For analytic functions / : R2-+R2 we have the Picard theorem, which is much 
stronger than (3.8), It states that CfR2 contains at most one point, where C denotes 
complement in R2. This is known to be true also for twodimensional qr maps, 
but for 77̂ =3 it is an important open problem. However, there are intermediate 
results, which lie between Liouville and Picard. For a long time, the best result 
was that CfRn is of «-capacity zero. However, a few montìis ago, S. Rickman 
proved that this set is in fact finite: 

(3.9) If G=R\ then card CfRn*zq(n9K)<~>. 
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An isolated singularity of a map / : G~+Rn is an isolated boundary point b of G. 
We say that b is a removable singularity, a pole,-or an'essential singularity according 
as / has a finite limit, an infinite limit, or no limit at all at b. Corresponding to the 
big Picard theorem, the result (3.9) has&lso a local version: 

(3.10) If b is an essential isolated singularity of / , then cardC/[*7\{/3}]^ 
q(n9K) for every neighborhood U of b. 

(3.11) (Iversen's theorem in Rn,) if b is an essential isolated singularity of / and 
if / omits z9 then z is an asymptotic value of / . 

Here z can also be the point at infinity. In fact, one can easily introduce quasi-
meromorphic maps, but for simplicity, I consider only finitevalued maps. 

This result means that there is a path a: (0, 1]->G such that <x(t)-+b and 
f(oi(t))-+z as t-+0. I shall outline its proof in §4. 

If / : B2-+R2 is a bounded analytic function in the unit disc B2 and if / has an 
asymptotic value z at a boundary point b9 then, by a theorem of Lindelöf, / has 
also the angular limit z at b. The result is also true for two-dimensional qr maps, 
but S. Rickman has recently proved that the corresponding result is false in higher 
dimensions: 

(3.12) For every 77>3, there exists a bounded quasiregular / : Bn-+R" and 
a point b£dBn such that / has an asymptotic value but no angular limit at b. 

(3.13) If G=Rn
9 2^=0 and «^3 , then / is a homeomorphism onto Rn. 

This is due to V. A. Zoriö [19]. For related results, see [1], [8], and [20]. The 
result is not true for n=29 as is seen from the counterexample f(z)=ez. We see 
from (3.12) and (3.13) that there are essential differences between the cases «=2 
and «s>3. 

I stop the list here, because I also want to say a few words on the methods and 
tools used in this theory. For some further properties of qr maps, especially for 
value distribution theory, we refer to the expository article of Rickman [15] and to 
the references given there. 

4. Tool. The most important tool in the theory of qr maps is the modulus of 
a path family, introduced by Ahlfors and Beurling in 1950. By a path in Rn we 
mean a continuous map a: A-+Rn where A is a real interval, which may be open, 
half open, or closed. If T is a family of paths in Rn

9 its modulus is defined by 

M(r) = inf f Q" dm 
Q Rn 

where the infimum is taken over all nonnegative Borei functions Q: Rn-^R1u {«>} 
such that 

f gds >> 1 

for all agr. Here Hie line integral is defined using the Hausdorff linear measure 
for all paths a, but we obtain the same modulus if we only consider the rectifiable 
paths in T. 
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The modulus M is an outer measure in the space of all paths in Rn. For the 
basic tlieory ôf the modulus, we refer to fl7, Chapter 1]. As an important example, 
consider the family r of all paths joining the boundary components of the annulus 
A = {x€R*\a-<\x\<b} in A. Then 

JI/(J0 = ûw(log-£) 

where <»„_! is the area of the unit sphere 5"""1. The formula is also true in the 
limiting case 0=0, from which it follows that given a point x0 in R"9 the family 
of all paths through x0 or converging to x0 is of modulus zero. 

Suppose that / : G-+R? is a nonconstant K-qr map, and let T be a family of 
paths in G. Then / maps T onto the path family /T={ /a | a£ r} . The moduli 
of these families satisfy the important inequality 

(4.1) M(fr) •< Kn-xM(r)9 

proved by E. A. Poleckii [10] in 1970. In the literature, the factor K"'1 is usually 
replaced by K9 because of a different definition of K-qtty. Conversely, a sense-
preserving discrete open map / : G-+Rn satisfying (4.1) for all path families r in 
G is qr. 

This inequality and some related inequalities [5, 3.2], [18] have turned out to be 
extremely useful. I shall illustrate the use of (4.1) by giving a sketch of the proof 
of (3.11), the w-dimensional Iversen's theorem. 

So let b be an essential isolated singularity of a qr map / , and let / omit 
a point z. Choose a ball U centered at b such that / is defined in ET\{/3}. Choose 
another ball B(z9 r) such that (1) S(z9r)nfdU=9 and (2) Unf~1(y)^& for 
every y^dB(z9r). The condition (2) holds for almost every /% because of (3.10) 
or the older capacity result. We may assume r = l . For every y£dB(z9r)9 we 
define a path ßy: (0,1]-+Rn by ßy(t)=z+t(y—z). Furthermore, we choose a point 
XyZUnf^y) and a maximal lifting ocy: (ry9 l]-+U of ßy9 terminating at xy. 
This means that ay(l)=xy9fxy=ßy\(ry9l]9 and av has no extension to ry. For 
topological reasons, uy(t)-+b as t-+ry. If ry=09 then ocy is the sought-for path 
for which f(<xy(t))-+z as t-+0. We show that ry=0 for almost every y£dB(z9 r). 
It suffices to show that for every j9 the set Ej={y\ry>l/j} is of (n— l)-measure 
zero. Since all paths of the family r={ay\yÇ.Ej} converge to b9 M(r)=0. By 
(4.1), this implies M(fr)=0. On the other hand, easy modulus estimates yield 
M(fr)^mn„x(Eâ)(\ogjy-\ which implies mn^(Ej)=0. 

This proof is also valid for complex analytic functions. In fact, it gives the stronger 
result due to W. Gross that almost every line segment from z can be chosen to be 
the image of an asymptotic path. In 'general, the path family method gives new 
proofs for many classical theorems. The new proofs are often more complicated 
but sometimes simpler than the old ones, and they usually give new geometric 
points of view to the questions. There are also some results in the non-integrated 
value distribution theory of qr maps [14] which are new also for analytic functions. 
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In the above proof, (4.1) was not used in its full strength. In fact, with some 
extra care to verify the property (2), the proof is also valid for weakly quasiregular 
maps. A map / : G-+Rn is weakly qr if it is sensepreserving, discrete and open, 
and maps every path family of modulus zero onto a family of modulus zero. 

5. Open problems. 

(5.1) Is the Picard theorem true for 7?s>3? 
(5.2) Is it possible that O^dim Bf^n — 3 for some qr map? 
(5.3) Let / be qr and C1, and let 77 ̂ »3. Is Bf=01 The answer is yes if / is 

C3 or C2 for 77 > 4. 
(5.4) In the definition of qrty, can one replace JF* by W\ ? 
(5.5) Let / : G~+Rn be sense-preserving, discrete and open, and let f\G\Bf 

be qr. Is / qr? 
(5.6) Can every analytic function/: R2-+R2 be extended to a qr map g: R?-+R31 
(5.7) Let / : Bn-+Rn be bounded and qr. Does / have a radial limit at some 

boundary point? It is known that / has an asymptotic value at every point of 
a dense set in dB". 

(5.8) What are the analytic properties of weakly qr maps? For example, 
is a weakly qr map differentiable at some point? 

(5.9) Given a discrete group G of Möbius transformations of Bn
9 does there 

exist a quasimeromorphic map / : B"-+Rnu {°°} which is automorphic with respect 
to G? Cf. [8]. 

(5.10) Let G be the half space xw>0, and let / : G-+R" be qr such that the 
cluster set C(f9x)c:Rn~1 for all xÇ.B""1. Can / be extended by reflection to 
a qr map of !T\(iP ,-1\JJ , ,-1)7 

(5.11) Let E be closed in an open set GczR", and let 777„_2CE)<:o0- Does 
every bounded qr map of G\E have a qr extension to G? 
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Algèbres Enveloppantes 

J. Dixmier 

1. Introduction. 1.1. Soil G un groupe de Lie réel connexe d'élément neutre e. 
Pour la convolution, les distributions sur G concentrées en e forment une algèbre 
U sur C. L'ensemble des vecteurs tangents complexes à G en e est une sous-
algèbre de Lie g de U9 et g est l'algèbre de Lie coniplexifiée de G. 

1.2. On peut construire U à partir de g de manière algébrique: soient T 
l'algèbre tensorielle de g, / l'idéal bilatère de T engendré par les x®y— y®x—[x9 y] 
où x9y(iQ; l'algèbre T/I9 notée U(Q)9 s'appelle l'algèbre enveloppante de g. 
Le plongement naturel de g dans E/(g) est le plongement universel de g dans 
une algèbre associative, d'où la notation E/(g); et U s'identifie canoniquement 
à U(çj). Si (xl9 ...9x,ù est une base de g, les x^x^—x^ où al5 ...,a„£iV forment 
une base de £7(g), d'où une vue assez concrète de 17(g). Beaucoup de problèmes 
relatifs à g ne se comprennent bien qu'après passage à t/(g). On note Z(g) 
le centre de U(Q). 

1.3. Toute représentation (=rep.) linéaire TU de g se prolonge de manière 
unique en une rep. n' de £/(g). L'application m-+n' est une bijection entre rep. 
de g et rep. de c7(g), qui conserve l'équivalence et la simplicité. 

1.4. Les démonstrations des résultais ci-dessous font appel à l'algèbre non com
mutative, à la théorie des représentations, à la géométrie algébrique, et à des méthodes 
analytiques (groupes de Lie). 

1.5. L'algèbre 17(g) est utile dans d'autres contextes: corps de base quelconque, 
àlgèbres de Moody-Kac, superalgèbres de Lie. Nous n'en parlerons pas. 

2. Représentations de G, de g, de C/(g). 2.1. Soit C/(g)" l'ensemble des classes 
de représentations simples de C/(g), ou de g. La recherche de £/(g)~ a longtemps 
paru impraticable. Pourtant, E/fg)" vient d'être calculé quand par exemple g est 
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l'algèbre de Heisenberg de dimension 3 [2], [2 bis]. L'ensemble 17(g)" est très 
gros, et a peu de liens avec les rep. de G. 

2.2. N. Jacobson a associé à tout anneau, par exemple à 17(g), l'espace topo
logique Prim L7(g) formé de tous les idéaux primitifs de 17(g). (Un idéal primitif 
est le noyau d'une représentation simple). On a une surjection évidente 27(g) ~-^ 
Prim 17(g); bien que C7(g)" soit énorme, Prim 17(g) est raisonnable. 

2.3. Soit n une rep. continue de G dans un espace de Banach H. On lui associe 
une rep. %' de g, donc de 27(g): soit H' l'ensemble des Ç£H tels que la fonction 
g*-+n(g)Ç sur G soit C°°; H' est un sousespace vectoriel dense de H; tout 
x£g (réel) définit, par dérivation de tt-+iz(exptx)9 un endomorphisme n'(x) 
de H\ d'où une rep. %' de g dans Hf. Supposons n simple, au seul sens intéres
sant, i.e. topologiquement: tout endomorphisme continu de H est limite forte de 
combinaisons linéaires des n(g)9 g£G. Alors, malheureusement, n' n'est pas 
algébriquement simple. Mais Ker rc'g Prim 27(g) [10]. 

En particulier, notant G" l'ensemble des classes de rep. unitaires simples de G9 

on a une application canonique 0: G"-^Prim 27(g). Soit Primfl 27(g) l'ensemble 
des idéaux primitifs de U(Q) qui sont autoadjoints, i.e. invariants pour l'involution 
canonique de t/(g). Alors 0(G~)c:Prima 17(g). Si G est nilpotent simplement 
connexe, l'application G's-^Prima C/(g) est bijective [8]; en général, elle n'est ni 
injective, ni surjective, mais les espaces G~ et Primfl 27(g) ont quelque ressemblance. 
Conjecture: si G est algébrique, les fibres de 6 sont finies. 

2.4. Pour prouver que % simples Ker n' primitif, il faut certaines caractérisa-
tions des idéaux primitifs. Soit dans J7(g) un idéal bilatère I9 premier (i.e. tel 
que U9V£U(Q)9 UU(Q)VCZI=ïU€I OU v€I; un idéal primitif est premier), et con
sidérons les conditions suivantes : (a) I est primitif; (b) soit A l'anneau de fractions 
de 27(g)// (qui existe et est un anneau de matrices d'après Goldie); alors le centre 
de i est C; (c) l'intersection des idéaux primitifs qui contiennent strictement 
/ est distincte de I. Alors (c)=>(a)**(b) [10]. Si g est résoluble (et probablement 
en général), (c)o(a) [9]. Ces propriétés cessent d'être vraies en algèbre non com
mutative générale [16], [24]. 

3. Recherche de Prim £7(g). 3.1. Pour calculer Prim 27(g), on cherche à imiter 
pour 27(g) les théorèmes de Mackey concernant les rep. induites [10], et la méthode 
des orbites de Kirillov. 

3.2. La méthode des orbites réussit pour g résoluble. Soit g* l'espace dual 
de g. Soit /dg*. On appelle polarisation de g en / une sous-algèbre de g qui 
est un sous-espace vectoriel totalement isotrope maximal pour la forme alternée 
(x9 y)*-*f([x9 y]) sur gXg. Il existe des polarisations de g en / . Soit I) l'une 
d'elles. La forme f\ï) est une rep. de dimension 1 de I). Soit Q la rep. "induite 
tordue" de g, i.e. associée au 27(g)-module 27(g) (8)^) C, où C est considéré 
comme l)-module via la forme x»->/(x)+(l/2)trad^x sur I). Alors: (1) 
Ker g £ Prim £7(g); (2) Ker Q ne dépend que de / et non du choix de I); posons 
Ker Q=/(/); (3) l'application J: g*-^Prim t/(g) est surjective; (4) soit r le 
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groupe adjoint algébrique de g, i.e. le plus petit groupe algébrique d'automorphismes 
de g dont l'algèbre de Lie contient ad g; alors I(f)=I(f')of'£rf. On a donc 
défini une bijection $*/r-+Prim 27(g) [9]. Cette bijection est même un homéo-
morphisme pour g nilpotente [5]; on ignore s'il est de même pour g résoluble. 

3.3. Pour g non résoluble, il y a de sérieuses difficultés, (a) Certains éléments 
de g* sont non polarisables. Toutefois, disons que /6 g* est régulier si son sta
bilisateur dans g est de dimension minimale; l'ensemble x des éléments réguliers 
est ouvert dans g* pour la topologie de Zariski. Si /€*, / admet une polarisation 
résoluble, (b) Si /£g* admet 2 polarisations P i , ^ , les idéaux obtenus comme 
en 3.2 par induction à partir de ^ et p2 peuvent être distincts. Toutefois, si Tp± et 
p2 sont résolubles, l'idéal obtenu est le même pour px et p2, et est primitif. On 
a donc défini une application I: r->Prim 17(g), constante sur les orbites du groupe 
adjoint algébrique r [9]. (c) Les idéaux / ( / ) précédents sont complètement pre
miers [6] (un idéal I de 27(g) est complètement premier si u9 v£ 27(g), uv£l=>u(il 
ou v£l). Un idéal premier de 27(g) est complètement premier si g est résoluble 
mais pas pour g quelconque. Soit Prime t7(g) l'ensemble des idéaux primitifs 
complètement premiers de 17(g). La méthode des orbites, sous la forme précédente, 
ne peut donner au mieux que Prime 17(g). 

3.4. Supposons g=sl(w). Alors tout /6 g* est polarisable [25]. L'idéal obtenu 
comme en 3.2 est indépendant du choix de la polarisation, et est primitif; notons 
— le / ( / ) . L'application I: g*-> Prime 17(g) est constante sur les T-orbites, d'où 
une application de g*/r dans Prime 27(g) qui est injective [3], [4]. On ignore si elle 
est surjective. Elle l'est pour «=<5[20]. La situation est moins bonne pour g semi-
simple quelconque. 

3.5. Après ce qu'on a dit en 3.3 (c), on peut tenter d'induire à g des rep. simples 
de dimension finie >1. Cela ne suffit pas, hélas, pour obtenir Prim 17(g) tout 
entier: même pour g=si(n)9 les idéaux primitifs «non induits» sont assez nombreux 
[4]. Nous reviendrons sur le calcul de 27(g) au § 6. 

4. Le centre de 27(g). 4.1. Soit Z(g)~ l'ensemble des caractères de Z(g) 
(=homomorphismes de Z(g) dans C). Si n est une rep. simple de 17(g), rc|Z(g) 
appartient à Z(g)~ et ne dépend que de Ker n9 d'où une application canonique cp : 
Prim 27(g)->Z(g)~. Il importe donc de bien connaître Z(g). 

4.2. Soit £(g) l'algèbre symétrique de g. Il existe une bijection linéaire ß de 
S(g) sur C/(g), la symétrisation, telle que n\ß{x1xr''Xn)=2^sn

xamxa(^'''xa{n) 
quels que soient xl9 ..., x„£g (Sn: groupe symétrique); et ß est un isomorphisms 
de g-modules pour les représentations adjointes. En particulier, notant 7(g) 
l'ensemble des invariants de 5(g), on a/?(7(g))=Z(g). Si g est nilpotente, /?|7(g) 
est un isomorphisme d'algèbres de 7(g) sur Z(g). Pour g quelconque, considérons 
la fonction ^i-*(dét (sh -| ad^/-| adx))~1/2 sur g au voisinage de 0; elle définit 
un opérateur de multiplication dans l'algèbre de séries formelles S "(g*) donc par 
transposition un opérateur différentiel d d'ordre infini dans £(g). L'application 
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u\-+dß~1(y)9 où u parcourt Z(g), est un isomorphisme d'algèbres de Z(g) sur 
7(g) [12]. Cela ramène l'étude de Z(g) à celle de 7(g). 

4.3. Il peut arriver que Z(g) ne soit pas de type fini. Mais supposons g semi-
simple. Soient I) une sous-algèbre de Cartan de g, r=dim l), Wie groupe de Weyl, 
SQL))W l'algèbre des éléments J^-invariants de S(lj). H y a des isomorphismes 
connus 7(g)-+S(l))w (Chevalley) et Z(çl)^S(l))w (Harish-Chandra); ils sont 
liés à l'isomorphismç Z(g)-*T(g) de 4,2 par un triangle commutatif. On sait que 
S(l))w est une algèbre de polynômes à /' générateurs, donc il en est de même de 
Z(g); on sait même décrire dans chaque cas des générateurs explicites de Z(g). 

Les caractères de S(l))w s'identifient aux ^-orbites dans t)*. Compte tenu de 
l'isomorphisme de Harish-Chandra, on obtient une surjection Xy-*-Xx de I)* sur 
Z(g)", et une bijection de l)*/W sur Z(g)". 

4.4. Revenons au cas général. Soit C°°(G) l'ensemble des fonctions complexes 
C°° sur G. Si «6 27(g) et feC°°(G)9 on a w*/,/*s/£C°°(G), et / ->w*/ (resp. 
/ * u) est un opérateur différentiel (OD) invariant à droite Du (resp. à gauche D'u) 
sur G; l'application uy-+Du (resp. D'u) est un isomorphisms (resp. antiisomorphisme) 
de l'algèbre U(Q) sur l'algèbre des OD invariants à droite (resp. à gauche) sur G. 
Si w£Z(g), on a DU=D'U et u\-+Du est un isomorphisme de Z(g) sur l'algèbre 
des OD biinvariants sur G (exemple: les OD à coefficients constants sur R"). 
Grâce à 4.2, on montre que si A est un OD biinvariant sur G, et si /€C°°(G), 
il existe g^C°°((j) telle que Ag=f au voisinage de e [12]. 

5. Modules de Verma. 5.1. On a dit que 27(g)" est énorme. Mais pour g semi-
simple, on sait construire des sous-ensembles intéressants de 17(g)" : on définit 
des «séries» importantes (Q^)^A de rep. de g, qui sont simples pour les valeurs 
génériques de X, et seulement de longueur finie pour certaines valeurs exceptionnelles 
de X; même pour ces valeurs, la considération des sous-quotients de QX fournit 
bien entendu des éléments de 27(g)". Parmi ces séries, citons les modules de Verma 
[26], les modules de Verma généralisés [23], les modules de Whittaker [21], les modules 
de Harish-Chandra et parmi eux les modules de la série principale algébrique [22] 
(liés à la série principale de G), les modules d'Enright-Varadarajan [13] (liés 
à la série discrète de G), généralisés par Enright-Wallach [14]. Cf. [15] pour les 
modules de Harish-Chandra indécomposables sur certaines àlgèbres g. 

5.2. Parlons seulement des modules de Verma (qui servent d'ailleurs à étudier 
les autres modules de 5.1). Soient I) une sous-algèbre de Cartan de g, bz>ï) une 
sous-algèbre de Borei, n—[b, b], A€t)*, Q la demi-somme des racines >0. On pro
longe X par 0 sur n, d'où une rep. de dimension 1 de b. Par induction tordue 
à g, on obtient le Q-module de Verma M(X)9 qui admet le caractère infinitésimal %x. 
En tant que I)-module, M(X) est somme directe de sous-espace poids de dimension 
finie; c'est le module universel parmi les modules engendrés par un vecteur de plus 
grand poids X—Q. Avec les notations classiques, M(X) s imple^A^J^ {1, 2, 3, ...} 
pour toute racine positive a. Donc M(X) est en général simple. Pour les valeurs 
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exceptionnelles de X9 les multiplicités des sous-quotients simples de M(X) ne sont 
pas entièrement connues. [7], [17]. 

5.3. Pour tout X9M(X) admet un plus grand sous-module distinct de M(X); 
soit L(X) le module quotient. Quand X est dominant entier, L(X + Q) est le module 
simple de dimension finie bien connu de plus grand poids X. La théorie des modules 
de Verma permet de retrouver bien des résultats classiques : formule des caractères 
de Weyl, formule de Kostant pour la multiplicité des poids, théorème de Bott-
Kostant sur la cohomologie 77*(u, L(X))9 homomorphisme de Harish-Chandra, 
y compris dans le cas sphérique, etc. [1], [22]. 

6. Recherche de Prim 27(g) (suite). 6.1. Conservons les notations de 4.3. et 5,3. 
Pour tout XÇ\f9 l'annulateur J(X) de L(X) appartient à Prim 17(g). L'application 
composée 

I)* - ^ U Prim 17(g) - ^ - Z(g)" — + If/W 

est la surjection canonique. L'application J est surjective [11]. 
6.2. L'ensemble Prim 27(g) est donc «intermédiaire» entre I)* et l)*jW. Soient 

A£f)*, et A" la J^-orbite de X ou le caractère correspondant de Z(g). Si X(H^^Z 
pour toute racine a, on a #<p~~1(A") = l. Mais la situation est beaucoup plus 
subtile quand par exemple X est entier régulier; on a alors 2r<: #<p~1(A")=<f, où 
7 est le nombre d'involutions de W; ces inégalités sont strictes en général, mais 
#. (p~~1(X") = i quand Q=sl(n) [19]; cf. [19] pour des conjectures quand g^sï(/7). 

6.3. Fixons X entier dominant. Quand w parcourt W9 l'annulateur de L(wX) 
parcourt cp~1(X")9 d'où une surjection W-^(p"1(X"). L'inclusion dans ç~1(X") 
définit par image réciproque un préordre et par suite une relation d'équivalence 
intéressants sur W [18]. 

6.4. Supposons g simple. L'ensemble Prim 17(g) n'est complètement connu 
que pour g=$l(/?) ou g de rang-^2. Il est presque complètement connu pour 
g de rang 3. 
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Extensions of C*-Algebras and Algebraic Topology 

Ronald G. Douglas* 

Ever since the creation of Ä-theory and its appearance in index theory, one has 
been aware of the close connection between certain aspects of operator theory and 
of algebraic topology. In particular, Atiyah [5] and Janich [14] showed that the set 
of Fredholm operators on a complex separable Hilbert space is a classifying space 
for complex Z-theory. As we know ^-theory is a generalized cohomology theory. 
In this talk I want to report on some results proved over the last five years by myself 
and others concerning operator theory and ̂ -homology. I do not have time to develop 
all the motivations but will allow the results to speak for themselves. 

We shall consider extensions of C*-algebras, that is, short exact sequences 
of the form 

One says that @l is an extension of sé by #. Now there is not much that one 
can say in this generality. We shall restrict attention to cases where sé is the 
C*-algebra X(2tf) of compact operators on the complex separable Hilbert space Jf. 
Also we shall require ^, and hence also 3&9 to be separable. Two extensions 
(^i> <Pi) a n d (^25^2) a r e strongly equivalent if there exists a *-isomorphism 
a i ^ - ^ 2 suchthat a o ^ ^ ^ . 

There is an equivalent definition of extension obtained by considering the com
mutative diagram: 

11 n !T 

0 - J T - J ^ - ^ J - 0 

* Research supported in part by a grant from the National Science Foundation of the United 
States. 
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where the Calkin algebra £(3/f) is defined to be the quotient of all bounded linear 
operators S£(ffl) by J fp f ) and % is the quotient map. By diagram chasing 
one can show the existence of the *-monomorphism T : # - > J and conversely, 
given T one can recapture the extension by defining $=n~1[i;((£)] and ^ = T " 1 O 7 ü | ä . 

Two *-monomorphisms il9 T2: <%-+£ are strongly equivalent if there exists a unitary 
U on 3tf such that T ^ a ^ o T a , where aw(c/) is the automorphism defined in 
ü by conjugation by %(U). In this context it might be more natural to allow inner 
automorphisms. We call the resulting notion simply equivalence and let Ext (#) 
denote the collection of equivalence classes. For # commutative the two notions 
of equivalence coincide. One could allow all automorphisms of â in defining 
equivalence, but it is not known whether J has outer automorphisms. 

An extension T: %>-+& is said to be trivial if it lifts, that is, if there exists a: %>-+<£ 
such that the following diagram commutes: 

se 

£ 

We define addition on Ext (#) such that for T15 T2 in Ext (#), we let [ T ] = [ T J + [ T 2 

where T ( ^ = T I ( / ) ® T 2 ( / ) € ^ ( ^ ) © ^ ( ^ ) = â(M®yf). 

One easily shows that Ext (#) is a commutative semigroup. Moreover, we have] 

THEOREM. For % a separable C*-algebra, Ext(^) is a commutative semigroup 
in which trivial extensions define a unique element which acts as the additive identity. 

For (£=C(X) and XczR9 this is essentially the Weyl-von Neumann theorem 
[30], [20], while for XczC it is Berg's generalization [8]. For <£=C(X)9 X compact 
metrizable, this result was proved by Brown, Fillmore and myself in [10] and in [11], [12] 
we extended it to a class including the «-homogeneous C*-algebras. A further 
extension was obtained by Pearcy and Salinas [22], [23]. Finally, in a surprising 
paper [29] Voiculescu proved this result for general separable C*-algebras. A nice 
exposition of his proof was given by Arveson [4]. 

Voiculescu obtains many results in operator theory and the theory of C*-algebras 
as a consequence of his work. We ofier two examples. First, he answered a question 
of Halmos by showing that the reducible operators are norm-dense in jSfpg"). 
Secondly, he showed that the double commutant theorem holds for separable 
C*-subalgebras of M9 where one means relative commutant. 

On the basis of the examples of Ext which we were able to compute in our early 
work, Brown, Fillmore and I began to suspect Ext (C(X)) might be a group for 
general compact metrizable X and finally by quite indirect means, we established 
this in [10]. A direct proof of this was given by Arveson [3] who observed by using 
a dilation theorem of Naimark that to show T: të-^â had an inverse it was sufficient 
to exhibit a completely positive lifting or: <€-+$£ such that T=TTOCT. (Recall 
a map a: sé-+8$ is said to be completely positive if a ® l : sé®MtJ-+3ï<g>M„ is 
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positive for each 77.) For # = C ( Z ) this lifting was supplied by results of Andersen 
[1], and Vesterstem [28]. More recently, Choi and Effros [13] established this 
lifting result for # a separable nuclear C*-algebra. In [4] Arveson also gave an 
improved exposition of this result. Thus we have by virtue of these results 

THEOREM. For %> a separable nuclear C*-algebra, Ext(#) is an abelian group. 

Unfortunately, Ext (#) is not always a group. Anderson has produced an example 
[2] of a C*-algebra #0 closely related to the free group on two generators such 
that Ext(^0) is not a group. He exhibits a *-monomorphism T : # 0 - * ^ having 
no completely positive lifting. 

In [12] Brown, Fillmore and I showed further that X»->Ext (C(X)) defines a 
homotopy invariant covariant factor. Our proof involved considerable use of 
techniques from algebraic topology. More operator theoretic proofs of homotopy 
invariance have been given by O'Donovan [21] and Salinas [25] with the latter 
covering the case of Ext(#) for # a separable quasi-diagonal nuclear C ^-algebra. 
Finally, in a recent paper by Pimsner, Popa, and Voiculescu [24] prove 

THEOREM. The correspondence ^WExt (#) is a contravariant homotopy functor 
rom the category of separable type I C*-algebras to the category of abelian groups. 

By homotopy invariance we mean the following: If cp: [0, l ] X # i - ^ 2 is 
continuous and a homomorphism for each t in [0, 1], then the maps 9*, <p*: 
Ext (#2)-^Ext (^2) are equal. This agrees with the usual notion when ^ a n d ^ g are 
commutative. 

We now discuss one of the applications. An operator T on Jf is said to be 
essentially normal if its self-commutator [T9 T*] = TT* — T*T is compact. One 
seeks to classify such operators up to unitary equivalence modulo the compacts and 
to indicate the possibilities. A necessary condition for a unitary U to exist such 
that U^T-JJ—T^ is compact is for o^e(T1)=ae(T2)9 where the essential spectrum 
ae(T) is defined ae(T) = oJ(ji(T)). The theorem of Weyl-von Neumann-Berg 
shows that for T—Ni+Kf, i=l929 Ni normal and Kj compact, that this con
dition is also sufficient. For general essentially normal operators the Fredholm 
index is also important. Recall that an operator T is said to be Fredholm if n(T) 
is invertible in £ and the index of T is defined by ind (T) = dim ker J1—dim ker 71*. 

THEOREM. For essentially normal operators Tx and T2 on J^9 there exists a 
unitary operator U suchthat U^T^JJ—T^ is compact if and only if (Y) cre(T'1) = cre(T2) 
and (2) md(T1—X) = 'md(T2—X) for X in C\ac(T^. Moreover, for each compact 
subset X of C and continuous function m : C\X-+Z there exists an essentially 
normal operator T such that <re(T)=X and ind(T—X)=m(X) for X in C\X. 

This result was proved in [10] as a consequence of our characterization of Ext (X) 
for XczC. The relation between Ext and essentially normal operators is established 
as follows. 

If T is essentially normal, then the CH-algebra <fr generated by T and Jf 
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gives rise to an extension, since é>Tjiï^C(ae(Tj) by the spectral theorem. The 
theorem on essentially normal operators follows from the fact that there exists an 
isomorphism yx: Ext (X)-^Hom(n1(X)9 Z) for XczC. Actually, this is one aspect 
of the relation between Ext and i£-theory and for general X one considers 
?co- Ext (X)-^Hom {KX(X)9 Z) which is onto and has kernel equal to the "torsion 
subgroup". We also show in [12] that Ext (X) is a K°(X)-moâu\o. If one defines 
higher Ext groups using suspension, then one obtains 

THEOREM. Ext defines a generalized Steenrod homology theory E^ of period two 
which is dual to K-theory. 

The fact that the homology theory has period two requires proving a periodicity 
theorem analogous to Bott periodicity for jßT-theory. This theorem extends to the 
category of separable type I C*~algebras using the results of Pimsner, Popa, and 
Voiculescu [24]. 

The relation of Ext to ^-theory can be used to solve a problem posed by Atiyah 
in [6], where he considered a generalization of the notion of elliptic operator. For 
X a finite complex he let Ell (X) denote the collection of triples (al9 <r2, T)9 where 
<7l5 a2\ C(X)~^Se(^9 £ß(#e2) are *-homorphisms and T: ^-+3^ is a Fredholm 
operator for which 0i(f)T—T(r2(f) is compact for each / in C(X). Addition 
is defined by direct sum and after defining a pairing of Ell (X) with Z-theory, 
Atiyah established an onto map Ell(X)-+KQ(X)9 where K0(X) is defined using 
Spanier-Whitehead duality. Atiyah asked that the equivalence relation on Ell (X) 
defined by this map be determined. 

Assuming C1=(T2 (which one can reduce to) let T=UH be the polar decomposi
tion; then setting i equal to the C*-algebra generated by the range of G and 
U9 we obtain an element of Ext (7), where YczXXS1, which projects to 0 in 
Ext (X). Such an element lies in the zeroth homology group E0 (X) and hence we 
have the commutative diagram 

Ell(Z) 

E0(X) *K0(X) 

We show in [12] that the bottom line is an isomorphism and therefore we can answer 
Atiyah's question using properties of equivalence on Ext. 

In [18], [19] Kasparov also solved Atiyah's problem in a related way. In our 
terminology Kasparov considers for arbitrary # the maps T: <ß-+a which have 
inverses and he allows homotopy as well as conjugation in his equivalence relation. 
He also obtains a generalized homology theory and establishes periodicity. He 
further claims applications to Novikov's higher homotopy conjectures. Kasparov 
considers the real and quaternionic case as well as the complex and allows the action 
of a compact group. He makes use of indexing by Clifford algebras in the manner 
ofKaroubi[17]. 

More precise results on the relation of Ext to ^-theory have been obtained by 
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Kahn, Kaminker and Schochet [16], [15]. They show that for every cohomology 
theory defined by spectra, there is associated a canonical Steenrod generalized homo
logy theory on the category of compact metrizable spaces and that if one starts with 
iT-theory, then the homology theory defined by Ext is obtained, 

We conclude with an index theorem in the context of Ext first formulated by Singer 
[26] and a couple of specific examples. Recall that for X compact the Chern 
homomorphism is defined ch*: K1(X)-^HoAd(X9 Q). Analogously, there is a homo
morphism defined ch^: Ext (JO ̂ ^ ^ ^ ß) (cf. [16]). Thus for (&9cp) in Ext(Z) 
there is an "index class" o\($9 cp) in Hodd(X9 Q) for which 

ind (F) = yoo(£9 cp)(n(T)) = [ch,(^, q>)nch*(n(T))-] 

for T in S <g>Mn(C)9 where [ ] denotes the natural pairing between homology 
and cohomology. If X is an oriented connected /2-dimensional manifold, then we 
reformulate using Poincaire duality D: Hi(X9Q)-+Hn-i(X9Q) to obtain: 

THEOREM. If X is an oriented connected compact manifold and <f(i9 cp) = 
D_ 1 (ch* (ê9 cp)) is the index class in H*(X9 Q)9 then 

ind (T) = \JP(S9 cp) u ch* (n (T))~\ [X] 
for T in £®Mn(C). K J L ^ ' YJ v v JJAl 

To use this result one must calculate J(&9 cp) concretely for explicit extensions. There 
are two general cases where this has been done. For M a smooth compact manifold, 
the pseudo differential operators of order 0 define bounded operators on the L2 

space of some fixed smooth measure. The C*-algebra &M generated by these 
operators and ffî together with the classical symbol map crM determine an exten
sion in Ext (Sph* (M))9 where Sph*(M) denotes the cosphere bundle of M. 
The Atiyah-Singer index theorem [7] yields that ^(^M, oM) is the Todd class in 
/7*(Sph*(Af), Q). For Q a strongly pseudo convex domain in a Stein manifold 
one considers the compression of the continuous multipliers on Q to the closure 
of the analytic functions to II of volume measure. The resulting C*-algebra 
«̂ 2 generated by these operators and Jf determines an element of Ext(#ß), 
closely related to Toeplitz operators. Again the index class «/(^) is the Todd 
class. This was proved for Q=BnczCn by Venugopalkrishna [27] and in full 
generality by Boutet de Monvel [9]. 
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1. Representation theory for infinite dimensional groups does not exist as a theory 
although such groups occur long ago in several branches of mathematics and its 
applications. Among the most important examples are: 

(a) groups of automorphisms of infinite dimensional vector spaces with some addi
tional structures (unitary, symplectic, Fredholm etc.); 

(b) groups of diffeomorpliisms of smooth manifolds (also with extra structures) ; 
(c) continuous products of finite-dimensional groups (so called "current groups" 

in mathematical physics); 
(d) gauge groups in field theory; usually they are constructed as semidirect 

products of groups of the two preceding types. 

2. One gets a possible approach to representation theory of infinite-dimensional 
groups by applying the method of orbits. All groups mentioned above have a natural 
structure of infinite-dimensional Lie group G. Hence there is a corresponding 
Lie algebra g, the dual space g* and the coadjoint representation of G in g*. 

In the cases investigated until now (there are rather few of them) one observes 
a satisfactory correspondence between unitary irreducible representations of G and 
its orbits in g*. This correspondence is especially clearly visible in the case of 
orbits of finite dimension of finite codimension. 

3. Orbits of finite dimension in g* correspond to those unitary irreducible 
representations of G which have finite functional dimension, i.e. can be naturally 
realized in spaces of functions of a finite number of variables. (A variant of the 
exact definition of functional dimension can be done in terms of the image of g and 
its enveloping algebra 17(g) under the given representation.) 



706 A. A. Kirillov 

The classification of all finite-dimensional orbits for some groups of types (c) 
and (d) as well as the description of the corresponding representations were obtained 
in [1], [2]. We remark an interesting phenomenon which makes representation theory 
of infinite-dimensional groups somewhat similar to the classical character theory 
of abelian groups; the product of two irreducible representations is, as a rule, also 
irreducible. 

4. Much more difficult and more interesting case is that of orbits of infinite 
dimension. The corresponding representations have infinite functional dimension. 
The analysis of known examples shows that in the construction of such representa
tions the role of the "universal object" is played by the representation of the (in-
homogeneous) isometry group of a Hilbert space H in the Vock space exp M 
(see [3], for example). In contrast, the method of induced representations—the 
main tool in the representation theory for locally compact groups—does not work 
in the infinite dimensional situation due to the absence of quasiinvariant measures 
(see, however [4]). 

5. An interesting class of infinite-dimensional orbits which can be thoroughly 
investigated arises in representation theory of certain groups of type (a). Namely, 
let G be one of the Banach-Lie group 0(p9 °°), U(p9 °°), Sp (p9 °°) (i.e. the group 
of all bounded invertible operators in a Hilbert space over R9 C or H which 
preserve an indefinite hermitian form with p negative squares and differ from 1 
(unity operator) by a compact one). 

Here g* is the space of all skew hermitian operators of trace class and the collec
tion of all integral (?-orbits in g* can be easily described. 

In the representation theory this circumstance is reflected by the following un
expected fact: the group G is tame (belongs to the type J in the Dixmier-von 
Neumann sense) and the dual object G admits an explicit description. For the 
case p=0 this result was obtained in [5], the general case is treated in [6], where 
the corresponding motion groups are also considered. 

6. The study of the relation between orbits and representations involves many 
interesting and difficult problems of different kinds. In particular, the definition 
of the natural symplectic structure on the orbits leads to the notion of local Lie 
algebra. 

Let E be a vector bundle over the smooth manifold M. By a local Lie algebra 
we mean a Lie algebra L such that: (1) the underlying vector space is r°°(E)— 
the set of all smooth sections of E over M ; (2) the Lie operation is bicontinuous 
in the C°°-topology on r°°(E) and (3) is local in the natural sense: supp [sl9 s2]cz 
supp s1n supp J2-

It turns out that for the linear bundles (=vector bundles with one-dimensional 
fiber) the complete classification of local Lie algebras can be obtained [7]. In fact, 
every local Lie algebra splits into the so called transitive ones and every transitive 
local Lie algebra is determined up to an automorphism of E in the neighbourhood 
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of the given point by dimension of M. For even dimensional manifolds this is the 
Poisson algebra and for odd dimensional manifolds—the Lie algebra of contact 
(Lagrange) brackets. This result explains the necessity of the appearance of the 
symplectic and contact geometry in the mathematical models of mechanics. 

The decomposition of g* on (7-orbits illustrates the general theorem about the 
decomposition of a local Lie algebra into transitive ones. Many interesting questions 
about local Lie algebras (for instance, their stability) are not answered yet. 

7. The main result of the preceding section says that each Lie algebra structure 
on the function space is induced by the natural bracket operation on vector fields. 
This fact suggests to rise once more the old problem of the classification of natural 
operations on geometric objects (in classical terms—of finding of all differential 
concomitants). The algebraic formulation reduces this problem to looking for 
the invariants of some non-semisimple Lie groups (that of jets of diffeomorphisfms) 
acting on certain category of modules. 

All unary linear operations are now known ([9], [11]); there are essentially only 
two of them: the multiplication by a scalar and the exterior derivative of a dif
ferential form. 

As for binary bilinear operation, their list was essentially replenished by J. Schouten 
and A.Nijenhuis (see [8]) and now contains five types of operations ([13]): (1) Lie 
operator and the "Lagrange concomitant" of Schouten, (2) symmetric concomitant 
of Schouten (=Poisson bracket for function on the cotangent bundle which is 
polynomial on each fibre), (3) generalized commutator of fc-vector densities, 
(4) Nijenhuis' bracket for vector-valued differential forms, (5) binary operation 
arising from unary ones and the tensor product. Some recent results of A. N. 
Rudakov [10], P. Ja. Grosman [11] and the author [13] give a hope that the complete 
classification of bilinear invariant operations over tensor fields will be obtained in 
the near future. The list given above is complete in the case n=2 [11]. 

Rather interesting combinatorial problems arise in the study of multilinear 
invariant operations on the real line. For example, the invariant 77-linear operations 
on functions correspond to the polynomial solutions of the following system of 
partial differential equation (which of course can be reduced to the linear algebraic 
system): LkP=09 /c = l, 2, ..., where L^^x^/dx*/1. 
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Recent Developments in the Theory of Unbounded 
Derivations in C*-Algebras 

Shôichirô Sakai* 

1. Introduction. The study of derivations in C* -algebras is making great strides 
in recent years. It is divided into two major steps. The first is for bounded deriva
tions ; the second for unbounded derivations with dense domain. At the early stage, 
mathematicians devoted their effort to the study of bounded derivations. This is 
understandable, because bounded derivations can be more easily handled than 
unbounded ones so that one can expect a beautiful theory as mathematics and also 
knowledge on bounded derivations may contribute to the study of unbounded deriva
tions. In fact, the study of bounded derivations is now attaining maturity. On the 
.other hand, the study of unbounded derivations occurred much later and was 
initially motivated by the problem of the construction of dynamics in statistical 
mechanics. Soon it became apparent that the work of Silov [26] also has strong 
influence on the study of unbounded derivations in commutative C*-algebras. 
For bounded derivations, the main theme is when they are inner. On the other 
hand, for unbounded ones, it is rich in variety, because they are closely related to 
dynamical systems in quantum physics and differentiations in manifolds. 

In this, I would like to give a very brief survey of recent developments in the theory 
of unbounded derivations in C*-algebras. Let 91 be a C*-algebra. A linear 
mapping b in 91 is said to be a ""-derivation in 9Ï if it satisfies the following 
conditions: (1) The domain 9(b) of b is a dense *-subalgebra of 91; (2) b(ab) = 
ô(a)b+ab(b) (a9be@(b)); (3) S(a*) = S(a)* (ae9(8)). If 9(S) = % then b is 
closed so that by the closed graph theorem it is bounded [20]. Therefore the study 
of everywhere defined derivations on 91 is equivalent to the study of bounded deri
vations. 

* This research was partially supported by the National Science Foundation of the United States. 
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2. Closability. If 9(b)Ç^% then b is not necessarily closable [5]. An element 
x of the self-adjoint portion 9(b)s of 9(b) is said to be well-behaved if there is 
astate cpx on 91 suchthat !?,(*)! = ||x|| and q>x(b(x))=0. Let W(b) be the set 
of all well-behaved elements; then it is dense in 9ÏS. b is said to be well-behaved 
(quasi well-behaved) if W(b)=9(b)s (the interior W(b)° is dense in 9(b)s). 
Any (quasi) well-behaved ""-derivation is closable and its closure is again (quasi) 
well-behaved [3], [11], [25]. b is well-behaved if the positive portion of 9(b) is 
closed under the square root operation [19]. A closed ""-derivation is bounded if 
the positive portion is closed under the square root operation [15]. b is well-behaved 
if there is a sequence of self-adjoint elements (h„) in 91 such that b(x)=lim i [hn9 x] 
(x£9(b)) [18]. One can easily see that the (infinitesimal) generator b of a strongly 
continuous one-parameter group of ""-automorphisms on 91 is always well-behaved 
and the differentiation djdt on the unit interval is quasi well-behaved. 

3. Domain of closed derivations. In mathematical physics, unbounded derivations 
are often defined by Hamiltonians. In those cases, it is easily seen that the deriva
tions are closable. If 91 is commutative, b is closed and f^C^R) (continuously 
differentiable), then f(a)£9(b) for a£9(b)s. For a noncommutative 91, one 
has to replace C\R) by C\R) [6], [14], [17]. 

4. Differentiations. Let / be the unit interval and b0=d/dt. If b is a derivation in 
the commutative C ""-algebra C(I) such that 9(b) = C"(I) (77-times continuously 
differentiable) for some n (n=°°91,2,3, ...), then there is a unique continuous 
function X on J suchthat b=XbQ. In particular, b is closable [25]. Suppose that 
b09b are two ""-derivations in C(K) (K9 a compact Hausdorff space), b0 is closed 
and 9(b)=9(bQ) or (XLi^O^o)' ^Gn ^ e r e *s a uni<lue continuous function 
X on K such that b=XbQ. In particular, b is closable [3]. It is an open question 
whether the result can be extended to n = 29 3, ... . 

CONJECTURE. Let b0 be a closed ""-derivation in 91 and let b be a ""-derivation 
in 91 with 9(b)=9(bQ). Then b is closable. It would be an interesting problem 
to study the relationship between closed ""-derivations in C(K) and differential struc
tures in K. 

5. Generators. Let {g(t)} (t£R) be a strongly continuous one-parameter group 
of *-automorphisms on 91 with identity. The system {91, Q (t)} is said to be 
a C ""-dynamics. It is said to be approximately inner if there is a sequence of uniformly 
continuous one-parameter groups {#„(0} of inner ""-automorphisms on 91 such 
that \\Qn(t)(a) — Q(t)(a)\\-+0 uniformly on every compact subset of R for each 
fixed #£91. We shall denote this by strong lim gn(t) = g(t). All C""-dynamics appear
ing in quantum lattice systems and Fermion field theory are approximately inner. 
In mathematical physics, we are often concerned with a C"-algebra 91 containing 
an identity and an increasing sequence of C*-subalgebras {9t„} of 91 such that 
lç9t„ and the uniform closure of Ur=i^n *s ^- *n addition, we are given a 



Unbounded Derivations in C*-Algebras 711 

"•-derivation ö in 91 satisfying the following conditions: (1) S(S) = \J^ssl^ln; 
(2) there is a sequence of selfadjoint elements (h„) in 91 such that b (a) = i[hU9 a] 
(fl€9I„). We shall call such a derivation a normal ""-derivation in 91. If a normal 
"'-derivation b satisfies the following conditions: (1) A„£9ï7l+p for a fixed p; 
(2) there is an element kn in 9I„ such that \\h„-k„\\ = 0(n)9 then the closure 
5 of b is a generator and strong limexprô,.,, =exp tb9 where bih(x) = i[hn9x] 
(x69t) [4]. (This includes the case of two-dimensional quantum lattice systems 
with finite range interaction.) If a normal ""-derivation b satisfies \\hn—kn\\ = 0(1) 
for some /c„£9I„, then b is a generator and strong lim exp tbih =exp tb [11]. (This 
includes the case of one-dimensional lattice systems with bounded surface energy.) 
A normal ""-derivation b is said to be commutative if one can choose the sequence 
(/?„) such that hnhm=hmhn (m9 n = l9 2, 3, ...). If b is commutative, then it has an 
extension b± suchthat b± is a generator, strong lim exp tbih = exp tbl9 and more
over exptb1(a)=Gxptbih(a) (tfE9I„) [21]. This result is applicable to all classical 
lattice systems. There are generalizations of these results to dissipative operators 
in Banach spaces [3], [4], [9]. 

6. Ground states. We introduce a class of states of some importance in quantum 
physics. Let {9t, g(t)} be a C ""-dynamics and let <5 be the generator of {g(t)}. 
A state cp on 91 is said to be a ground state for [g(t)} if —icp(a*b(a))^Q for 
a£9(b). A ground state is invariant under {g(t)}. If a C"-dynamics is approxi
mately inner, then it has a ground state [18]. There is a nontrivial example of a 
C "^dynamics without ground state [13]. 

7. KMS states. We introduce another class of states on a C* -dynamics which is 
important in quantum physics. For a real number j?, a state cpß on 91 is said 
to be a KMS state for {91, g(t)} at inverse temperature ß if for a, è £91, there 
is a bounded continuous function F0)b on the strip 0^1m(z)^ß (0^lm(z)^ß) 
in the complex plane which is analytic on 0<Im(z)<j3 (0>lm(z)>/?) so that 
Fa,bQ)=<Pß{aQ(t)(b)) and Fatb(t+iß) = cpß(Q(t)(b)a). The KMS condition gives 
every evidence of being the abstract formulation of the condition for equilibrium 
of a state [8]. A KMS state is invariant under {g(t)}. If {91, g(t)} is approxi
mately inner and 91 has a tracial state, then it has a KMS state at each inverse 
temperature ß (-«></}<-foo) [18]. If a C ̂ dynamics {91, exp tb} has a KMS 
state cpp at ß and there is a sequence of bounded ^-derivations (b„) on 91 suchthat 
b„(a)-+b(a) for a£99 where 9 is a dense subset of 9(b)9 then {9I,exprô} 
has a tracial state [10], [12]. There is a C""-dynamics {9In, Q„(t)} which has a 
KMS state at ß=logn only (n=29 3, ...) [16]. Let <pßn be a KMS state at ßn for 
{91, Q(t)} and ß„-+ß'9 then any accumulation point of {cpß^ is a KMS state for 
{9Ï, ç(t)} at ß; if j8„H-oo5 then any accumulation point of {cpßi^ is a ground 
state for {91, g(0}. 

8. UHF algebras. A C*-algebra 91 is said to be a UHF algebra if there is an 
increasing sequence {9Ï„} of finite type 7-subfactors such that K9I„ and the 
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uniform closure of \J7=i^n—^- Such algebras are appearing in quantum lattice 
systems and Fermion field theory. Let b be a closed ""-derivation in a UHF al
gebra 91; then there is an increasing sequence {9I„} of finite type 7-subfactors in 
9(b) suchthat l£9I„ and U^i8*« is dense in 9(b) [5], [21]. We define a normal 
""-derivation in a UHF algebra more restrictively than general cases. A ""-derivation 
b in a UHF algebra 91 is said to be normal if there is an increasing sequence 
{9I„} of finite type 7-subfactors such that l£9l„ and @(b) = \J7=1Mn- Let ô be 
a normal ""-derivation and let {e1!j\i9j=l9 2, ...9p„} be a matrix unit of 9ÏH. Set 
^7H=^=i^(e,ji)eijj the*1 ö(a)=i[hU9a] (fl£9I„). It is easily seen that h„ is a self-
adjoint element. All derivations appearing in quantum lattice systems and all quasi 
free derivations in the canonical anticommutation relation algebra have normal 
""-derivations as their cores. Let b be a generator; then there is a normal ""-deri
vation § such that Sczb and 9(h) is contained in the *-subalgebra A(b) of 
all analytic elements with respect to b [21]. 

CONJECTURE. Any C""-dynamics {91, g(t)} with a UHF algebra 91 is approxi
mately inner. 

PROBLEM. Let b be a generator in a UHF algebra. Then can we find a normal 
""-derivation 8 suchthat S is the core of b (i.e., the closure of §=b)l 

9. Bounded perturbations. Let b be a normal ""-derivation in a UHF algebra 
91 with 9(b) — \J™=1

<&n. Then for e>0, there is a normal ""-derivation bE such 
that 9(b)=9(bE)9 bE(@(b))cz9(b) and b-be is a bounded ""-derivation with 
II^—<y<£ 17] > [25]. This implies that an infinite range interaction may move to 
a finite range interaction by bounded perturbations. Next suppose that <5(̂ (<5))c 
9(b); then by choosing a suitable subsequence of {9Ï„}, we may assume that 
<5(9I„)<z9In+1. Then we have the following decomposition: b=b1~\-b2t9 where 
bl9b2 are normal ""-derivations with 9(b)=9(b^=9(b^9 <5i(9I2„)c:9I2„ and 
<52(9I2n+1)c9I2„+1. In particular, b± and <52 are commutative normal ""-derivations 
17] » [25]. Generally, let {91, exp tb} be a C ""-dynamics and let b0 be a bounded 
"-derivation on 91; then a C""-dynamics {9Ï, exp t(b+b0)} has a ground state 
(a KMS state at ß) if and only if {91, exp tb} has a ground state (a KMS state 
at ß) [1]. 

10. Phase transition. Let {91, Q(1)} be a C*-dynamics. Suppose that it has a KMS 
state at every ß (-oo<i8<-|-oo), if it has only one KMS state at /?, then we say 
that the dynamics has no phase transition at ß. If it has at least two KMS states 
at ß9 then we say that it has phase transition at ß. If {91, exp tb} has no phase 
transition at /?, then {91, exp t(b+b0)} has no phase transition at ß for a bounded 
""-derivation b0[l]. Let b bea normal ^-derivation in a UHF algebra with 9(b) — 
Uf7=19I„. Let Pn be the canonical conditional expectation of 91 onto 9I„ such 
that i(xa) = T(Pn(x)a) (flG9t„), where % is the unique tracial state on 91. Let 
(An) be a sequence of self-adjoint elements in 91 such that b(a) = i[hn9 a] (flG9ï„). 
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Then, if \\hn—Pn(hn)\\ = 0(l)9 then b is a pregenerator and the approximately 
inner C""-dynamics {9Ï, exp iS} has no phase transition at every ß (—«></?<+ «>) 
[2], [11], [23], [24]. This implies that a quantum lattice system with bounded surface 
energy has no phase transition at every ß and quasi free C ""-dynamics in the 
canonical anticommutation relation algebra has no phase transition at every ß. To 
develop the theory of phase transition for normal ""-derivations more deeply, wc 
need to find how to construct all KMS states at each ß. For commutative normal 
""-derivations, we have a fairly detailed description of the construction of all KMS 
states at ß. Let b be a commutative normal ""-derivation in a UHF algebra 9Ï such 
that b(9(b))cz9(b). Then there is a sequence (h„) of self-adjoint elements in 
Ur=19tw such that b(a)=i[hn9 a] (fl69tn) and hnhm=hmh„ (m9 n=l9 2,3, ...). 
Let fßH be a ""-subalgebra of 9Ï generated by 9In,Art. Since 93„c9lm for some m9 

93„ is finite-dimensional. Set &n
:=2j'Li^nzn,j> where znJ is the minimal central 

projection of 33„. Now let cpß be a KMS state at ß for the C ""-dynamics {9Ï, g(t)} 
with Q(t)(a)=oxp t bih(a) (ö 6 9ÏW) ; then there is a unique family (h„) of mutually 
commuting self-adjoint elements in 91 such that hnÇ.SB„, b(d)—i[ìtn9 b] (&€$„) 
and q}ß(b)=z(bcxp(-ßHn)) for ft£9ï„ (n=l, 2,3,...) [24]. This result can be 
extended to commutative normal ""-derivations with infinite range interactions [24], 

PROBLEM. Can we find how to construct all KMS states at each ß for normal 
""-derivations? 
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1. Introduction. Let G be a Lie group and let G denote the set of equivalence 
classes of irreducible unitary representations of G. One of the basic problems of 
harmonic analysis on G can be expressed (rather imprecisely) as follows : 

If (n9 H) is a unitary representation of G express n in terms of G using some 
soit of explicit formula. 

Examples of the solution of this problem are: 
(A) G=R with the additive group structure, H=L2(R)9 n(x) translation for 

x£R. The solution to the problem is the Z,2-Fourier transform. 
(B) G compact, H=L2(G)9 n(x) right translation for x£G. The solution to the 

problem is the Peter-Weyl theorem combined with the theorem of the highest 
weight. 

In this lecture I will be concerned with the following situation : G a Lie group, 
rczG a co-compact discrete subgroup of G. H=Hr=L2(r\G) and n=nr the 
right regular representation of G on H. 

The problem has a qualitative answer (Gelfand, Graev, Piatetski-Shapiro [6]) 
nr = 2 N(T> œ)œ> N(r9 co) a nonnegative integer. 

coÇÔ 

This means that Hr=@T=1Hì a Hilbert space direct sum, Hi is 7cr(G)-invariant 
and irreducible and precisely N(r9 co) of the Hi are in the class co. 

To complete the answer to the problem we need only compute the integers N(T9 co). 
To date there is no closed formula for these numbers unless co is a fairly special 
type of element of G. 

In this lecture we will give a discussion of a few techniques that have been developed 
to study the numbers NQT, co). We will also indicate some implications of the results 
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to the structure of r. For a systematic account of the relationship between the 
N(r9 co) and the cohomology of r the interested reader should consult [2]. 

2. The trace formula. Let G9 r be as in the introduction. Fix dg a Haar measure 
on G. If y£r let [y] denote its T-conjugacy class. Let [r] denote the set of 
jT-conjugacy classes in r. 

If co£Ô let 8^ denote the character of co. The trace formula says 
(1) If f£C~(G) then nr(f)=fGf(g)nr(g)dg is of trace class and 

2 N(r9 co)e(û(f) = 2 vol (r7\G7) f f(g^yg)d(Gyg) 
«eô ween GY\G 

here Gy= {g£G\gyg~1=y} and the Haar measure on G and the G-invariant 
measure on Gy\G are normalized so that Fubini's theorem is true. 

(1) was originally pointed out by Selberg [13]. As Mackey (and others) have 
pointed out: if G=R" and r is a lattice in G then (1) is just the Poisson summation 
formula. It is also clearly a special case of the induced character formula. 

We now specialize to the case when G is a connected, linear, semi-simple Lie group. 
(1) can be applied to a more general class of functions than C~ (G). We denote 

the class by ^\G). It is an analogue of the Schwartz space of JRM, except that it is 
based on L1 rather than U. 

Let KczG be a maximal compact subgroup of G. Let (n9H)£coÇ.ô. A vector 
v£H is said to be K-finite if n(K)v spans a finite dimensional subspace of H. 
co is said to be of class L1 if there is a nonzero ^-finite vector v£H so that f:g-+ 
(n(g)v9v) is in ^(G). If co is of class L1 then co is square integrable. We denote 
by d(co) the formal degree of co. 

Harish-Chandra has shown that if y£r and y is not G-conjugate to an element 
of K then 

ff(g-1yg)d(Gyg) = o 
GYG 

for / as above [7], cf. [17, 9.3.17]. 
If r is torsion free then the only y£r, G-conjugate to an element of K, is 1. 

Thus for / as above the formula (1) becomes 

(2) N(T, œ)0M) = vol ( r \ G ) / ( l ) . 

Now f(l)=d(co)0Jf) (cf. [17]). Hence we have 

THEOREM 2.1 (LANGLANDS [9]). If co is of class L1 and T is torsion free then 

N(r,o)) = vol(r\G)d(m). 

If G is SL(2, R) and f c S L ( 2 , JR) is a co-compact discrete subgroup of G 
then properly interpreted, Theorem 2.1 is the classical formula for the dimension 
of the space of automorphic forms of weight k >2. 
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The formula in Theorem 2.1 for co^ô square integrable but not of class L1 is 
false in general. For example, if G=SL(29 R) and co£G is square integrable 
but not integrable the compact formula is 

(3) N(r9 œ) = d (co) vol (r\G) +1 . 

This corresponds to the fact that the dimension of the space of automorphic forms 
of weight 2 on r\H (H the upper half plane) is g9 the genus of r\H. Whereas 
vol (r\G)d(co)=g—l=-|-vol(r\iy) for the corresponding square integrable repre
sentation. 

Langland's formula has been extended to a larger class of square integrable 
elements of ô by Schmid [12] and Hotta-Parthasarathy [8] using fixed point theorems 
or index theorems and vanishing theorems, 

When the vanishing theorems break down they do so for the following reason : 

PROPOSITION 2.2 [3]. Let coÇÔ be square integrable. Then there exists col9 ...9cor£Ô9 

cot nonsquare integrable and a^Z9 j~l9 ..., r9 such that 

N(r9 co)+2<ijN(r9 coj) = d(co) vol (r\G). 

((3) above for SL(2, R) corresponds to r = l , a±= — l and co1 in the class 
of the trivial representation.) This formula has been computed explicitly for 
G=SU (2,1) in [16] and G=SO (4,1) in [11]. Also in [3] the a3 and coj are given 
group theoretic interpretations. 

3. Uniform distribution theorems. Let r ^ r i 3 r 2 = ) . . . , P | j n y = {l} and suppose 
that Tj is a normal subgroup of r with finite index. Such a family { r j will be 
called a tower for r. Towers for r always exist (see [1]). Fix one. 

If co£Ô set k(co) equal to the eigenvalue of the Casimir operator on a represen
tative of co. We will say that Saô is bounded if the following two conditions are 
satisfied: 

(a) |A(Cü)|^C<OO9 co£S. 

(b) There is a finite subset TczÊ such that 

[co\K: T] ^ 0 for z£T9 CO£S. 

Put for Sa G abounded subset 

(1) fij{S) = vol (J7\G)-i 2 N(rj9 co). 
&es 

It is natural to ask: 
Does lim,^«, Hj(S) exist? If lim^« fij(S) exists what is its relationship with \i9 

the Plancherel measure of G relative to dgl 
The simplest case of these equations is if S= {co}. Notice that if co is of class. 

L1 then 
^ ( H ) = <*(©) = J"(M). 
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THEOREM 3.1 [3]. If co^G then 

{ 0 if co is not square integrable, 

d(co) if co is square integrable. 

THEOREM 3.2 [4]. Assume that G has R-rankl. If SczG then 

lim ii,(S) = pt(S) 
with \x the Plancherel measure of G. 

Theorem 3.2 can be looked upon as a uniform distribution theorem for the 
N(rj9 co) for co contained in the continuous series for G. 

These results do not compute N(r9 co); however they do give qualitative informa
tion about these numbers. 

We give an application of Theorem 3.1 to the Eilenberg-Mac Lane cohomology 
of r with coefficients in an irreducible finite dimensional representation of G. 

COROLLARY 3.3. Let F be an irreducible finite dimensional representation of G. 
Suppose that G has a compact Cartan subgroup. Set 2d=dim (G/K). Let TczG 
be discrete and co-compact. Then 

(1) There exists a normal subgroup Tt of finite index in T so that 

Hd(ri;F)^0. 

(2) //" rz)T 1z)r 2 , ... is a tower for T then there is a constant C9 depending 
only on dg and G9 so that 

(C(dimF) if q = d, 
Urn vo l^ -d im^r , F) = { Q ^ ^ 

4. The heat equation method. In this section we look at a circle of ideas initiated 
in [6] and [5], centering on the heat equation. 

Fix y£Ê and T as above. Consider 

(1) gy.r(0= 2N(r9co)[y:co\K]e^; 
to£G 

here k(co) is the eigenvalue of the Casimir operator of (n9H)£co9 and [ y : ^ ^ ] 
is the multiplicity of y in co as a ^-representation. 

The theory of the heat equation and a proportionality principle implies that 

(2) g„r (0 ~ vol(r\G)(47tO-" / 2 ( 2 «*., A, ' - 0 + 

where w = dim G/K. The numbers ak depend only on y and not on r. 
The results of [6], [5], [15] imply that 

(3) a0ty = (dimy). 

The main question is: How can we compute the aktYl 
In his thesis, Miatello computed the akt y for G of split rank 1 and y satisfying 

a technical condition (that is automatically satisfied for G locally SO (/?, 1) or 
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SU (n9 1) but is not satisfied for Sp (n9 1) or the Ä-rank 1 real form of .F4). His 
formula has as its first step 

(4) |gy .r(0-vol(r\G) fenico: y]d/i(co)\ ^ CGtre~hG,r/t for 0 < t ^ T 

with CGr and hGr positive constants. 
He then computed the asymptotic expansion of 

Jetk^[co:y]dfi(œ) 
G 

for G of tf-rank 1. 
Using an idea of Donally, De George and I have recently shown that (4) is true 

for all connected semi-simple, Lie groups with finite center. This implies that Miatello's 
formulas are true for all G of jR-rank 1. 
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Coherent Translation of Characters of Semisimple 
Lie Groups 

Gregg J. Zuckerman* 
Dedicated to the memory ofRufus Bowen 

By a character of a connected semisimple Lie group G we will here mean an 
element 6 of the Grothendieck group Ch(g, K) of virtual Harish-Chandra modules 
(see [Zl]) over the pair (g, K)9 g the complexified Lie algebra of G9 K a maximal 
compact subgroup of G. The ring R(G) of virtual finite dimensional characters 
operates on Ch(q9K) via tensor product [ZI]: Q-+F&B. If I) is a Cartan sub-
algebra of g, fy*==Hom(ï), C), then Act)* determines in a canonical fashion 
a C-valued character %x of the center of the enveloping algebra of g. In turn, 
X determines a projection operation 0-+QX9 where 0A is the ^-primary component 
of 0. Tensoring and projecting in general do not commute. 

Let Lçï)* be the lattice of weights occurring in finite dimensional representations 
of G. For any F£R(G) let m(F:v) be the multiplicity of weight v in F. 

DEFINITION ([SI], [H-Sl], [S2], [Sp-V]). A coherent family of characters is 
a function 

0 ( ) : L - C h ( g , # ) 

such that 
(a) O(X)Ao+Ji=0(X) for all k£L and for some fixed base point A06l)* (but not 

necessarily in L). 
(b) For any FeR(G)9 F®0(X)=2veMF>v)W + v)-

* Research partially supported by grant MCS77-02051 from the National Science Foundation of 
the United States. 
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EXAMPLE 1 [L^W]. Suppose G is real split, with split Cartan subgroup H and 
Borei subgroup B=H nilradical (B). Each X^L^lf determines a continuous 
character Ç(X) of B into C x . Fix an arbitrary continuous character Ç0;B-+C*. 
Let Oço(X) be the element of Ch(g, K) corresponding to the induced representa
tion Ind^(£0<i;(A)). 0^ ( ) is a coherent family of characters with base point 
A0=log^0. In this example 0^(X) is always a true character. 

EXAMPLE 2 (Any connected G). Fix a system A+ of positive roots for I) in g. 
If A£L, let 

sgn (A) = ff sgn (A, a), 

and let Q=^2aeA+a- For each k£L let 

GA+(X) = sgn(X+Q)FwU+^e9 

where Ffl is the irreducible finite dimensional character with highest weight \i9 

and w is an element of the Weyl group such that W(à+Q) is dominant. Then 
0A+( ) is a coherent family based at A0=0. 

AN ALGEBRAIC LEMMA. Suppose Xelf is regular {(k9 a ) ^ 0 Va€J + ) , 0€Ch(&9K)9 

and 0 = 0 k . Then there exists at most one coherent family 0( ) : Z,->Ch(g, K) 
such that 0(O) = 0. 

THEOREM A. ([H-Sl], [Sp-V]). For 0 with 0 = 0\ and A0 regular, there always 
exists a coherent family 0( ) : L ^ C h ( g , K) suchthat 0(0)=0. 

DEFINITION. In Theorem A we call 0(A) the (unique by the lemma) coherent 
translate (also called coherent continuation) of 0 from A0 to A0+A. 

The original proof of Theorem A used Harish-Chandra's analytical theory of 
distributional characters [HCl]. Hecht and Schmid [H-Sl] defined and studied 
the coherent families generated by the distributional discrete series characters 
[HC2] and they obtained a proof of a formula conjectured by Blattner for the 
^-multiplicities of these characters. Not long afterwards, Enright [E] proved 
Blattner's formula for a series of algebraically constructed Harish-Chandra modules 
which can be identified with the infinitesimal discrete series. However, Enright did 
not find an algebraic construction of the coherent families generated by the discrete 
series characters. 

We have recently presented [Z2] a new homological algebraic method for simul
taneously constructing the discrete series characters and all of their coherent 
translates. We suppose that G has a compact Cartan subgroup T9 and we choose 
any Borei subalgebra b in g with b=i-f nilradical (b), t the complexified Lie 
algebra of T. Each character i\ of T determines a line bundle JS^ over G/T; 
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b gives rise to a Dolbeault complex of (0, *) forms with values in jSf̂ . We pass 

to the new complex of ^-finite °°-jets of (0, *) forms at the coset eT9 and show 

that the cohomology Hj? of this complex is a graded Harish-Chandra module. 

THEOREM B. Let 0 b ( O = 2 ( - ! ) W -
(a) Af->0b(^o^(A)) is the coherent family generated by 0b(C). 

(b) The K-muftiplicities of 0b(Ç) are given by Blattner's formula. 

(c) Every discrete series character is equal to ±0b(£) for some b and some 

Ç positive relative to b. 

Combining a more general version of our homological methods with techniques 

from D. Vogan's [VI] homological algebraic classification of irreducible Harish-

Chandra modules, we have, jointly with Vogan, obtained enough characters to span 

Ch (g, K). As an immediate consequence we obtain an algebraic proof of the existence 

of coherent translation (Theorem A.) 

We conclude by noting that additional interesting and powerful applications 

of the existence of coherent translation can be found in references [H-S2], [HI], 

[J], [K-Z], [M], [Sp-V], [VI], [V2], [V3], [V4], and [Zl]. 
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Rate of Convergence and Large Deviations 
in Invariance Principle 

A. A. Borovkov 

The paper is devoted to the recent investigations connected with the well-known 
Donscer-Prokhorov's invariance principle. This principle is one of the main results 
in the theory of the summation of random variables. 

Let £lfII9 ..., £„>7I5 n=l929..., be the double sequence of independent random 
variables, 

k 

Sk,n — 2 £j,n> $0,n = o, 
J = l 

k 

J'=l 

We denote s„=s„(t) the random continuous broken line on the interval [0, 1] 
with basic points (tkt„9 Skt1i), /c=0, ..., 1. 

Let Pn be the distribution of s„ in the space C(0,1) with cr-algebra ffl of 
Borei sets and W be the distribution of standard Wiener process w=w(t) in the 
same space. If Ljapunov condition holds 

A= 2E\tkJs-+09 s>29 
fc=i 

as n-+°° then Pn=>W. It is the invariance principle. We can write it in the equi
valent form 

L(Pn9W)-0 as h-*«*, 

where L(P9 Q) is the Levy-Prokhorov's distance. The latter is defined by relations: 
L(P9 0 < c iff 

P(GE(B))>Q(B)-e9 Q(GE(B))>P(B)-8 
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for any B£K9 where GE(B)={y£C(09 1): Q(Z9y)<89 z£B}9 K and Q are a given 
class of sets and a metric. 

For the sake of accuracy we would write LKQ(P9 Q)9 but we omit K and Q if 
K=^9 Q is a uniform metric. 

I. Rate of convergence. What can we say about the difference 

A„(B) = \P„(B)-W(B)\ 

if we estimated the distance L(P„, W)l 
We call the set B£ 88 a Lipschitz set with respect to metric Q and measure 

W ((c, W)-Up. set), if 
W(G.(PJS)) < ce, 

where c—const, 'dB is the boundary of B. 
It is easy to see that for (Q, W)-Lip. sets 

A„(B) ^ {c + \)L(P„,W). (1) 

The similar question can arise about the nearness of the distributions of f(sn) and 
f(w) for some functional / , that is, about the difference 

An(f,u) = \P(f(sn) < u)-P(f(w) -< u)\. 

If I/O') -/(z)l< ciö(z
5 J>) a nd the distribution of f(w) has the density, then the 

set B={y:f(y)<u} will be (Q9 W)-Lip. and, hence, 

A„(J,u) ^ {c+\)L{P„,W). 

Thus, the estimates for L(Pn9 W) allow us to estimate the values important 
for us An(B) and An(f9u). 

The first and rather exact (as it became clear later) estimate for L(Pn9 W) was 
obtained by Prokhorov (1956) 

L(Pn9W) = o(AV*\n*A3). 

This estimate was improved in the i.i.d. case by Rosenkrantz (1967), Heyde (1969) 
and Dudley (1972). In 1973 Borovkov proved that 

L(Pn9 W) ^ cA^s+1\ 2 < s ^ 3. (2) 

Sahanenko (1974) and Arale (1975) showed that this estimate is unimprovable. 
At about the same time it was shown that An(B) and A„(f9 u) admit stronger 

estimates than (1) : if B is (Q9 H^-Lip. set, then 

An(B) ^ c4i'MnM„ 3 < s ^ 4, ß > 0 (3) 
(Sahanenko, 1974). 

There exist the examples constructed by Nagaev and Nevsorov (Borovkov 1973) 
for which the boundary cA]ls is achieved. 

We consider now i.i.d.-case. 
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In this case è^n — ̂ k/^h where fk are i.i.d, random variables and we have 

As = E\^\sn^-^2. 

Our unimprovable estimates give us the boundaries 

^l/Cs-r-l) _ cw(2-s)/(2s + 2) jp/s _ C77(2-s)/2Si 

For instance, if £|^fc|
3<°° (<s=3), we obtain 

L(P1I9 W) ^ cn"1'8, An(B) ^ cn-Wln'n. 

These results arouse suspicions that As is not the best value for the estimations 
in i.i.d.-case because we do not know a single example of functional / (even merely 
continuous) for which the rate of convergence would be worse than cn~112 if 

£|&IS<~. 
We have here a large break between n 1/G and n 1/2. 
On the other hand, the use of the value As is connected first of all with the method 

of investigation and with the central limit theorem, where it is very natural. The 
second point is that all the examples of unimprovement of estimates (2), (3) are based 
on not i.i.d. random variables. 

For some examples of sets B or functional / there exist instead of A]js functions 
of summands (for estimation An(B) or An(f9 u))9 which are transformed in i.i.d. 
case into c/i~~1/2. 

We have, for instance, 

for f(y)=sup/G[0 3]y(t) and A„(B)*zcAs for cylindrical sets B. 
The whole problem on final estimates in i.i.d. case is not solved yet. 
If 2?|£fc|*<oo and s is large, then the break between the right hand side of (3) 

and cn"112, becomes narrower. If the Cramer condition holds 

jggHkl < oo for some / > 0 (C) 

then it follows from the recent papers of J. Komlos, P. Major and G. Tusnady 
(1975, 1976) that 

L(Pn9W)^^-. (4) 
yn 

We remark, that the estimates (2), (4) were obtained for other metrics Q in 
(Borovkov 1973). 

We have already mentioned that for some special classes of sets B or functional 
/ it is possible to find stronger estimates for A„(B) and An(f9 u). 

For instance, for the band B between two smooth boundaries g^t) and g2(t) 
we have 

yn 
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(Nagaev, (1970), Sahanenko, (1974)), where c(gl9g2) depends only on gl9g2. 
The same estimate holds for linear functionals / (Borisov (1976)). It is easy to 
see that these results are final. 

For functionals 
i 

/00 = / <p{t,y(f))dt, q>£Cx 
0 

under condition J£|<yj<°°, and some conditions on cp holds 

4 ( f , i i )<^ r - ln^ i i , ß>0 
yn 

(Borisov (1976)). There are also some results about integral functionals in more 
complicated situations (see Borisov (1976), Sawyer (1972), O'Relly (1974), Nikitin 
(1974)). 

We cited the principal results related to the estimation of the speed of convergence. 
What are the further possibilities here? 
The main method of investigation in this area is the one of common probability 

space (c.p.s.). At the moment there are three different ways to construct s„ and 
w on the c.p.s. 

Prokhorov method. For special points ul9u29 ...5wfc the increments sn(uk)—sn(uk^ 
are defined as the function of w(uk) —w(uk_x) with the help of quantile transforma
tions. The remaining increments of s„ are not essential. 

Skorokhod method. The values sn(tk) are defined as w(%k) for special random 
points ?!, T2 , .... 

Method of Major, Tusnady, Komlos. This method is more delicate and in some 
sense unimprovable. But it is developed so far only for i.i.d. case. 

All these three methods were essential for the development and advance in in
variance principle. 

The third method allows us to construct the trajectories sn and w with the minimal 
possible (in some sense) distance between them. The following assertion of Major, 
Tusnady, Komlos (1975) is true. 

Let there exist increasing function H(x)^>x*+Ô
9 <5>0, H(x)^c1e

ax
9 a>0, such 

that EH(\Çk\)<°°. Then for the constructed trajectories and for x^c2YnJnn9 

H(x)^n holds 

( x \ cn 

«^»)>^)<W^ fl"°- (5) 

Assertions (2), (4) follow from this inequality almost immediately. 
Inequality (5) almost completely expresses the possibilities of c.p.s. methods. 

It is unimprovable in the following sense 
P(Q(sn9w)>cx„/fn)-+l 
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for any c.p.s. method, where x„ is the solution of equation cn/H(ax) = l which 
we obtain if we put the right hand side of (5) equal to 1 (Borovkov (1973), Komlos, 
Major, Tusnady (1975)). 

Since x„^lnn-+°° it is impossible to obtain by c.p.s. methods the estimate for 
L(Pn9W) and A„(B) of the form cn~112. 

There is also another shortcoming of c.p.s. methods: all these three mentioned 
methods at the moment are very difficult to generalize for the case when Çk take 
values from space Rm and the more so for £k from arbitrary Banach space Y. 

It was rather unexpected to discover that there exists another, rather rough ap
proach suitable for the spaces of general nature and giving results close to (2). For 
the sake of simplicity we consider only i.i.d. case. 

Let Y be a Banach space with Borei <r-algebra ^ , and let Çj£Y9 E£j=09 T~T 
be the corresponding to ^ covariation operator, 

fn j=i 
Sk,n — 77= 2%j-

We denote rT and pn respectively the gaussian distribution in Y with the same 
operator T and the distribution of Sn>n. 

As before, we can construct in the space 7X[0, 1] the broken line sn=sn(t) and 
gaussian process w=w(t) with independent increments and FT as the distribution 
of w(l). Pn and W as before will denote the distribution of sn and w in the space 
YX[091]. 

The above-mentioned approach arises from the following statement of the problem : 
we suppose that we know the behaviour of L(pn9 rT)-*0 in Y. Then we can esti
mate the rate of convergence of distributions of vectors (sn(u^)9 ...9sn(uk)) and 
the large deviations of the processes sn and w on [uJ9uj+1]. This allows us to 
estimate by direct calculations the behaviour of L(Pn9 W) in 7X[0, 1]. 

Here is the result (Borovkov, Sahanenko) : if L(pn9 rT) = (p(n)-+Q as n-+°°9 then 

L(Pn9W) ^ cnq>(k)lk9 

where k is defined from equation 

(n//c)V(fc) = ln«. 

For instance, if cp(n)=cn~112 (that is true for Y=R9E\Çj\5<~>)9 then L(Pn9 W)< 
cn'11* lnß n9 ß>0. 

If (p (n)=cn~llè lna n (that is true for separable Hilbert space Y9 if ^Q^lêi,/!)^00» 
where £M are coordinates of ^ (Senatov (1977)) then 

L(Pn, W) <; cn-1'26 In' n, ß > 0. 

We note that instead of L(pll9rT) we can consider LK(pn9rT) for some class 
K of sets in Y (K may be, for instance, class of all the convex sets) and investigate 
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the behaviour of LR(Pn9 W) for class R of sets B in FX[0,1] with the cuts 
B{t=t0}eK. 

n. Large deviations. We consider in this section only i.i.d. case. 
The object of investigation here is the asymptotic behaviour of P(Sn£xB)9 

where J5c7X[0, 1], *+°° as w+oo9 0$B. 
We shall say that invariance principle for large deviations (i.p.l.d.) for the set 

Bcz 7X[0,1] takes place if 

P(sn£xB) ~ P(w£xB). (6) 

For the case Y=R9 Ee^"^^ a>0, *>0 the following assertion holds. If 
B contains at least one interior point and for y=o(x"1) 

W(Gy(dxB)) = o(W(xB)) (7) 

then for x=o(n"l*a+2)) the i.p.l.d. is true. 
If a= l (Cramer condition (C)), then the admissible region of deviations is 

x=o(nllß). For a < l the region ö(rca/2(a+2)) may be extended. Condition (7) 
is essential. 

If B is the exterior of the band between two smooth functions g±(t) and g2(t)9 

the asymptotic behaviour of P(Sn£xB) under condition (C) was found in an explicit 
form for all x=0(ri) (Borovkov (1964)). But i.p.l.d. is true only for x=o(nllQ). 

We also consider the so-called rough invariance principle for large deviations 
(r.i.p.l.d.): 

InP(sn£xB) ~ InP(w£xB) (8) 
or, which is the same, 

lnP(snexB)~-?Ç i n f / ( ^ i * (9) 

On the right-hand side here is the so-called action functional for Wiener 
process. 

The r.i.p.l.d. is true under condition (C) for a broad class of sets B for all x=o(n112) 
(Borovkov (1967), Mogulsky (1970)). 

The generalization of i.p.l.d. (6) on the case ^ € 7 for Banach space Y is appar
ently a difficult problem. At the same time the generalization of r.i.p.l.d. (8), (9) 
may be extended very far. I present only one recent assertion of Borovkov, Mogulsky 
which is connected with the recent results of R. R. Bahadur, S. L. Zabele. 

Let Y be a Hilbert space and Cramer condition be fulfilled Eeti^Ji9)^<^9 Vg£Y 
for sufficiently small \t\. Further, let T be the covariation operator generated 
by Çj: (Tg9 h)=E(Çj9 g)(Çj9 h). We denote by D the domain of values of Tg9 g£ Y. 
We can formulate now the following assertion. For a broad class H of sets B in 
7X[0,1] and for x=o(n112) 

lnP(sn£xB)~-x2A(B)/2 
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where 

il (10= inf U&\dU v ' vtBn^J \dt) 

HW) \E(T-^9 Q2 if ij,eD. 

In particular the convex sets B with property A(B—dB) = A(B+dB) belong 
to H. This result can be extended on the arbitrary local convex space Y with tight 
distribution of £x. 
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Un Survol de la Théorie de l'Integrale 
Stochastique 

C. Dellacherie 

Je voudrais présenter ici, de manière compréhensible pour un lecteur n'ayant 
que quelques notions de théorie des processus (stochastiques), les principaux résultats 
d'une part importante du calcul différentiel stochastique en temps continu (plus 
précisément, de la part où la probabilité de base P ne joue que par la classe des 
ensembles négligeables qu'elle définit): après quelques préliminaires sur la théorie 
des processus, nous aborderons le problème de la définition de l'intégrale stochastique, 
puis celui du calcul d'une différentielle stochastique, et enfin celui de la résolution 
d'équations différentielles stochastiques. Vu l'espace qui m'est imparti, je ne parlerai 
pas de l'historié de la théorie, hors quelques indications sommaires à l'occasion 
de la bibliographie, elle-même rudimentaire, et je n'aborderai pas non plus des parts 
importantes de la théorie, comme tout ce qui touche à la notion, pourtant fonda
mentale de martingale locale. 

Préliminaires. Nous fixons ici notre terminologie en rappelant quelques données 
de base de la théorie des processus, et introduisons la notion fondamentale de 
semimartingale: nous verrons, au paragraphe suivant, que les semimartingales 
forment la classe naturelle des processus «intégrants» dans la théorie de l'intégrale 
stochastique. 

On se donne un espace probabilisé complet (Q9 <F9 P)9 muni d'une filtration 
&t)teR vérifiant les conditions habituelles: (#*,) est une famille croissante de sous-
tribus de #" (la tribu !Ft étant la collection des événements connus à l'instant t>>0)9 

continue à droite (on a ^^Cls^t^s)* t e^e clue &o contienne tous les ensembles 
négligeables. On suppose de plus, pour simplifier, que ^r=^r

00 = \/t^
r
t. 

Un processus X= (Xt)teR
 s e r a P o u r n o u s c e Q11'011 appelle en général un processus 

mesurable et adapté, i.e. une application mesurable (t9œ)-+Xt(co) de 
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(tf+Xß, ^(R+ÌXS?) dans (R9ÓS(R)) telle que, pour f fixé, la v.a. Xt soit 
^-mesurable. Deux processus X et Y sont dits indistinguables si l'ensemble 
{co: 3tXt(có)^Yt(có)} est négligeable. Dans toute la suite, nous travaillerons 
«à l'indistinguabilité près»: c'est en particulier ainsi qu'il faudra entendre les 
assertions d'unicité. On dira qu'un processus est càdlàg (resp. càglàd) si, pour tout 
co6ß, la trajectoire t->Xt(co) est continue à droite, et pourvue de /imites à gauches 
(pour />0) (resp. continue à gauche, pour f >0, et pourvue de limites à droite). 
Un processus càdlàg V est dit à variation finie si toute trajectoire de V est une 
fonction à variation bornée sur tout intervalle fini. 

Un processus càdlàg M est une martingale (resp. surmartingale, sousmartingale) 
si Mt est une v.a. integrable pour tout t et si l'on a, pour s<t9 Ms=E[Mt\^s] 
p.s. (resp. >, <;)• 

En général, les trajectoires d'une martingale sont bien trop oscillantes pour 
être à variation finie (il en est en particulier ainsi pour le mouvement brownien 
unidimensionnel, qui est l'exemple fondamental de martingale continue): c'est 
ce qui fait tout le charme de l'intégrale stochastique, qui ne peut être réduite à une 
intégrale de Stieltjès trajectoire par trajectoire. 

Voici maintenant la définition d'une semimartingale, «combinaison linéraire 
locale » d'une martingale et d'un processus à variation finie 

DEFINITION 1. Un processus càdlàg X est une semimartingale s'il existe une suite 
croissante (J1,,) de v.a.^0, tendant vers +°°, vérifiant la condition: pour tout n, 
il existe une martingale Mn et un processus à variation finie V" (non uniques \) 
tels que Von ait Xt(co)=Mlt(co) + Vt

n(co) pour tout t£[09 Tn(co)[. 

Si la filtration est triviale, i.e. si !Ft=-SF pour tout t9 les semimartingales sont 
exactement les processus càdlàg à variation finie. 

REMARQUE. Pour le développement de la théorie, il est important de savoir 
qu'on peut choisir les Tn9M

n et Vn de sorte que les Tn soient des «temps d'arrêt» 
de la filtration, et que Mn soit bornée et Vn à variation bornée (la borne ne 
dépendant pas de co). 

La classe 9?=9>{Q9(^9P) des semimartingales vérifie de nombreuses pro
priétés de stabilité. En voici deux, très importantes (et non triviales!); nous en 
verrons d'autres, encore plus importantes pour le calcul différentiel, plus loin 

THéORèME 1. (a) 9?(Q9 (3F^9 P) est une algèbre, et aussi une lattice, qui contient 
évidemment les martingales et les processus à variation finie, mais aussi les surmar
tingales et les sousmartingales. 

(b) Si Q est une probabilité sur (Q9 8F) équivalente à P, alors ïf(Q9 (^t)9 Q) 
est égale à £?(Q9 (&t)9 P). 

Noter, en contraste avec (b), que la nation de martingale dépend fortement de la 
probabilité de base P, tant par la condition d'intégrabilité que par la prise 
d'espérances conditionnelles. 
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L'integrale stochastique. Nous dirons qu'un processus càglàd borné Y est 
élémentaire s'il existe des instants 0=/0<f1<...<r„ et, pour z=0,1, ...9n9 une 
v.a. bornée TJi 8Ft -mesurable tels que Yt=Ut pour t£]ti9 f/+1] (avec /7|+1= + oo). 
Si Y est un tel processus, on définit « l'intégrale triviale » de Y par rapport à X9 

processus càdlàg quelconque, en posant, si j est le plus grand entier tel que ts<t9 

JYsdXs = ZUt(Xt„-Xlt)+Uj(X-Xtj) 
o t^J 

l'intégration ayant lieu sur ]0, t]. Mais, une intégrale «digne de ce nom» doit 
vérifier des propriétés de continuité par rapport à la chose intégrée. Or, on a le 
résultat suivant 

THéORèME 2. Munissons l'espace ê des processus élémentaires de la topologie 
de la convergence uniforme et l'espace L° des (classes de) v.a. finies de la topologie 
de la convergence en probabilité. Alors X étant un processus càdlàg fixé, l'intégrale 
triviale Y-+f*0 YsdXs définit, pour chaque t9 une application continue de ê dans 
L° si et seulement si X est une semimartingale. 

si bien qu'on ne peut définir une «véritable» intégrale qu'en intégrant par rapport 
à une semimartingale. 

Dégageons maintenant la classe des processus que Ton saura finalement intégrer 
par rapport à une semimartingale, en étendant de manière naturelle l'intégrale 
triviale. Soit 0* la sous-tribu de âg(R+)XQ, sur A+Xfì, engendrée par les pro
cessus élémentaires: les processus mesurables par rapport à cette tribu sont dits 
-prévisibles; tels sont, par exemple, les processus càglàd (mais, en général, pas tous 
les processus càdlàg!). Nous désignerons par 77 l'ensemble des processus pré
visibles Y vérifiant la condition de « bornitude locale » suivante (satisfaite par tout 
processus càglàd): il existe une suite croissante (Tn) de v.a.>>0, tendant vers+°o, 
et une suite de constantes (c„) telles que l'on ait \Yt(co)\^cn pour tout t£ [0, Tn(co)[. 
La construction de l'intégrale stochastique aboutit finalement au résultat suivant 

THéORèME 3. Soit X une semimartingale. Il existe, pour tout t, une unique 
application linéaire Y-^ft

0YsdXs de II dans L° vérifiant: 
(a) pour Y£$9 f*0 YsdXs est égale à l'intégrale triviale; 
(b) si (Yn) est une suite d'éléments de U, majorée en valeur absolue par un élément 

de II, et convergeant simplement vers Y (£J7), alors f*0 Y"dXs converge en proba
bilité vers P0YsdXs. 

De plus, pour tout Y£ 17, il existe une unique semimartingale Z telle que Von 
ait Zt=ff

Q YsdXs p.s. pour tout t9 si bien que l'ensemble des semimartingales est 
stable pour la formation d'intégrales stochastiques. 

Quoique l'intégrale stochastique «Z=fYdX» ne peut, en général, être définie 
trajectoire par trajectoire, elle se comporte souvent «comme si». Par exemple, 



736 C. Dellacherie 

(a) si T est une v.a.>»0, pour presque tout co9 le saut AZt(co)=Zt(co)—Zt_(co) 
en t=T(co)>0 est égal à Yt(co)AXt(co); 

(b) si, pour AÇL$F9 la trajectoire t-*Xt(co) est à variation finie pour tout co 6 A9 

alors, pour (presque) tout co £A9 la trajectoire correspondante de Z est égale 
à l'intégrale de Stieltjès de la trajectoire de Y par rapport à celle de X; 

(c) si Z'=f Y'dX' est une autre intégrale stochastique et si, pour presque 
tout coÇA (A£ßF)9 les processus Y et Y' (resp. X et X') ont même trajectoire, 
(fonctionnelle) il en est de même de Z et Z'. 

La formule de changement de variables. Notons d'abord que, si une semimartingale 
n'est pas, en général, à variation finie, elle a, en un certain sens, une 2-variation finie: 

THéORèME 4. Soit X une semimartingale. Il existe un unique processus càdlàg 
croissant, que Von note [X9 X]9 vérifiant la condition: pour tout t, la v.a. [X9 X\ 
est la limite en probabilité des sommes X2+2!i(^i ~^t)

2
9 où (tt) est une sub-

divion finie de [0, t]9 lorsque le pas de la subdivision tend vers 0. De plus, pour tout 
t>09 on a A[X9X]t=(AXt)

2. 

Si X est à variation finie, on a [X9 X]t=X2+2o^s^t (AX^\ Q™ e s t donc nul 
si XQ=0 et si X est de plus continu. Mais, par exemple, si X est un mouvement 
brownien unidimensionnel, issu de 0, on a [X9X]t = t pour tout t. Par ailleurs, 
le «en un certain sens» résulte du fait que les subdivisions que l'on prend de [0, t] 
ne dépendent pas de œ: prise trajectoire par trajectoire, la «vraie» 2-variation du 
mouvement brownien est p.s. infinie! 

Ceci dit, si V est un processus continu à variation finie et si / est une fonction 
de classe W1 sur R9 il est bien connu que f(V) est encore à variation finie et que 
f(Vt)—f(V<ù=ft

Qf'(VJdVs;
 c'est» trajectoire par trajectoire, la formule classique 

de «changement de variable», qui se visualise bien en écrivant, pour une subdivision 
finie (0 de [09t]9 f(Vt)-f(V0)=2i(AVu+1)-f(Vtj) et en développant chaque 
paranthèse par la formule de Taylor à l'ordre 1. Si F, à variation finie, est seulement 
càdlàg, on obtient la formule 

f(Vt)-f(V0)=ff'(Vs„)dVs+ 2 (f(Vs)-f(Vs-)-f'(Vs_)AVs) 

moins classique, où, dans la famille sommable qui tient compte des sauts, on re
connaît un avatar du développement de Taylor à l'ordre 1. Dans le cas d'une 
semimartingale, on a une formule analogue — appelée souvent formule d'Ito9 Ito ayant 
été le premier à établir une telle formule, dans le cas du mouvement brownien —, 
mais il y apparaît un développement de Taylor à l'ordre 2 (cf. Théorème 4): 

THéORèME 5. Soient X une semimartingale et f une fonction de classe W2 sur R. 
Alors f(X) est encore une semimartingale et Von a 

fW-fiXo) = jnx^dx^ //"(zs_) d[x, x]s+ 2 us 
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où V = {f(X^-f(XsJ)-f\XsJ)AX-\f'\Xsy}9 la première intégrale étant une 
intégrale stochastique et la famille (Us)s^t étant p,s. sommable. 

Bien entendu, si X est à variation finie, on retrouve la formule citée plus haut. 
La formule de changement de variables qui, malgré son air un peu rébarbatif, 

est d'une grande efficacité dans le calcul différentiel stochastique, admet une extension 
aux fonctions de classe %2 à plusieurs variables. Mais, avant de formuler cette 
extension, il nous faut définir le «crochet mixte» [X9 Y] de deux semimartingales 
X et Y: on pose tout simplement, par polarisation, 

[X, Y) = j([X+Y9 X+Y]-[X9 X]-[Y9 Y]) 

et [X9 Y\ est encore limite en probabilité de sommes du genre XQYQ+ 
2iiXt —Xt)(Xt ~Yt)'> de Plus> s* l 'une des semimartingales X ou Y est 
à variation finie, on a [X9 Y]t=X0YQ+2!0<s^t AXsAYs9 et, de manière générale, 
on a A[X9Y]t=AXtAYt pour f>0. Soient maintenant X1

9...9X
n n semi

martingales et / une fonction de classe #2 sur R"9 admettant les dérivées partielles 
Djf au premier ordre et DtDjf au second ordre. Alors, posant ï£=(X1

9 ...9X
n)9 

f(î£) est encore une semimartingale et l'on a 

/(£,) =f(x0)+2 / A / Ä - ) dx>+±2 / A ^ / Ä - ) d [X>9 XJ]S 

+ 2 {f(xs)-ftfs-)-2»if&-)Axi~^ 
0<s?ât i ^UJ 

En appliquant cette formule au cas où f(x9 y)=xy9 on obtient la formule importante 
d'intégration par parties: si X9 Y sont deux semimartingales, alors 

XtYt = fYs„ dX&+ f Xs-dYs+[X, n 
0 0 

et, en particulier, pour X= Y, Xf=2 f*0 Xs_ dXs+[X9 X\. 

Equations différentielles stochastiques. Nous nous bornerons à énoncer un théorème 
d'existence et d'unicité «global», sous des hypothèses analytiques analogues à celles 
du théorème classique de Cauchy—Lipschitz. 

THéORèME 6. Soient X une semimartingale et H un processus càdlàg. Alors 
l'équation intégrale stochastique 

Zt(co) = Ht(co) + ff(s9 co9 Zs_ (a>)) dXs(co) 
o 

admet une solution unique Z, processus càdlàg, lorsque la fonction f(s9 œ9 x) sur 
JR+XßXÄ satisfait aux conditions suivantes 
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(1) pour x fixé, (s9 œ) -*f(s9 co9 x) est un processus càglàd, 
(2) pour (s9 co) fixé, x-+f(s9œ9x) est une fonction lipschitzienne, avec une 

constante de Lipschitz ne dépendant pas de s. 

Trois remarques au sujet de l'énoncé du théorème: 
(a) Pour Z càdlàg, le processus (s9co)-+f(s9co9Zs_(co)) est càglàd, et peut 

donc bien être intégré «stochastiquement» par rapport à une semimartingale. 
(b) L'équation considérée est plus générale que les usuelles en ce sens que le 

processus H9 qui joue le rôle de «condition initiale», peut évoluer au cours du 
temps. Ce gain de généralité permet en fait de simplifier les démonstrations! 

(c) Si H est une semimartingale, la solution Z en est aussi une. 
L'énoncé que nous avons donné ne fait intervenir qu'une seule semimartingale 

mais, en fait, il est possible de remplacer l'unique intégrale dans l'équation intégrale 
par une somme finie d'intégrales du même type et, plus généralement, de considérer 
des «systèmes» d'équations. 

Une équation particulièrement importante est celle définissant «l'exponentielle 
d'une semimartingale, au sens des semimartingales » 

Zt = l + fza_dX. 

Sa solution, notée e(X)9 admet une représentation explicite: si X est continu, 
on a 

e(X)t = cxp[xt-±[X9X]^ 

où «exp» est la fonction exponentielle ordinaire; dans le cas général, on a (avec 
un produit infini p.s. absolument convergent) 

e(X)t = exp [xt~ [X9 Z],) o j 7 ^ (1+AXS) exp {-AXs + ±(AXS)*). 

Par ailleurs, X et Y étant deux semimartingales, l'exponentielle e vérifie l'équation 
fonctionnelle e(X)s(Y)=c(X+Y+[X> Y])-
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Dirichlet Spaces and Additive Functionals 
of Finite Energy 

M. Fukushima 

1. Introduction. In 1959 A. Beurling and J. Deny [1] introduced the notion of the 
Dirichlet space and revealed all essential substances of the theory, most of which 
were amplified and proven later in a fine exposition of J. Deny [3]. 

The link connecting this theory to the Markov process is in the following remark
able fact ([3], [5]): there is a one-to-one correspondence between the family of all 
Dirichlet forms ê on an L2-space and the family of all strongly continuous semi
groups {Tt9 f >0} of Markovian symmetric operators on the same L2-space, the 
correspondence being specified by 

| = |w£.L2: lim —(w, u — Ttu)L2«x>\9 

m 
ê(u9 v) = lim —(w, v — Ttv)L2. 

v J
 M O t 

If the semigroup {Tt9t>0} happens to be transient, then the domain @\ê\ can be 
extended by completion with respect to the 0-order form ê to a Hilbert space which 
is continuously embedded into a certain weighted Z^-space. The Dirichlet space 
in the original sense of [1] can be obtained this way ([3], [15] and Appendices of [5]). 

Owing to such connections, the author [4], H. Kunita [11], J. Elliott [10], M. L. 
Silverstein [15] and Y. Le Jan [13] were able to use the Dirichlet forms on L2-spaces 
quite effectively in resolving the so-called "boundary problem of Markov processes", 
which had been formulated and studied before by W. Feller, A. D. Wentzell et al. 
mainly in the framework of the semigroup theory on the Banach space C of con
tinuous functions. In the meantime it has been shown that every regular Dirichlet 
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form S admits a Hunt process M and moreover potential theoretic notions 
relevant to ß (quasi-continuity, sets of capacity zero, reduced functions and so 
on) can be interpreted in the language of the Hunt probabilistic potential theory 
relevant to M (see [5], [6], [15] for symmetric cases and [2], [13] for nonsymmetric 
cases). 

Two different Hunt processes may correspond to the same regular Dirichlet 
form but their restrictions outside a certain Borei set of capacity zero have the same 
transition probability [6]. At present we are content with this sort of loose uniqueness 
of the associated process since the potential theory of the regular Dirichlet form 
alone can not control inside a set of capacity zero. However it is still important 
to know whether one can select a nicest version (for instance a Hunt process with 
a Holder continuous resolvent). Probably some methods of E. De Giorgi, G. Stam
pacela et al. must be brought in before this point is made clearer. See [7] for some 
related information. 

Now we utilize the above mentioned probabilistic potential theory relating the 
form S to the process M and study the structure of some important classes of 
additive functionals of M, namely the class A+ of positive continuous additive 
functionals (PCAF's) and new classes of additive functionals of finite energy. 

We first characterize the class A+ by means of the family S of smooth measures. 
Since we relax the definition of AF of M slightly by admitting exceptional sets 
of capacity zero, the family S becomes wider and simpler than the families specified 
by H. McKean-H. Tanaka, D. Revuz et al. In fact S contains all positive Radon 
measures charging no set of capacity zero. As an application, H. Nagai [14] has 
been able to relate the optimal stopping problem of AF's directly to a variational 
inequality involving the form S and measures in S. 

The energy e (A) of a (not necessarily positive) AF A is introduced by 

(2) e(A) = lim±Em(A2). 

The space M of martingale additive functionals (MAF's) of finite energy is then 
seen to be complete with metric e. This makes it possible to define the stochastic 
integrals based on MAF's more simply than M. Motoo-S. Watanabe. Further
more this leads us to a unique decomposition 

(3) ü(Xt)-ü(X0) = Jlfpfl+jVfM, M^eJ, N^eJr, 

for any function u in the Dirichlet space êF—3)\S\9 Jfc being the class of CAF's 
of zero energy. 

The novelty of this decomposition lies in that each AF in Jfc is of quadratic 
variation zero in a weak sense but not necessarily of bounded variation. Thus we 
are out of the range of semi-martingales and consequently the generalized Ito formula 
due to H. Kunita-S. Watanabe does not apply in general. Nevertheless we get the 
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following variant of the Ito formula with the help of a transformation rule of energy 
measures due to Y. Le Jan [12] : 

(4) M&W = 2 ®Xi (w) • ̂ C"'3 

for a composite function $(u) = <!>(ul9 w2,..., un)9 Ui£&\*c9 l^i^n. For simplicity 
we assume here that the process M is a diffusion or equivalently that the form S 
possesses the local property. 

Formulae (1), (2) and (3) tell us that the resurrected Dirichlet space ($F9 &
TCS) 

introduced in § 4 is isometrically embedded into the Hilbert space (Jt9 e). Thus 
we essentially reduce the study of the Dirichlet space to the study of the space of 
MAF's of finite energy. In particular a calculation of the energy of the both-hand 
sides of (4) by setting Ui(x)=xt (the ith coordinate function) immediately gives 
us the Beurling-Deny formula [1] 

(5) #™(u9v)= 2 J^^ij(dx)9u9veC0-(R
n) 

Uj=l£n OXi OXj 

h olding when the underlying space is the Euclidean «-space and ^"possesses CQ(R!1 

as its core. 

2. PCAF's and smooth measures. Let Zbe a locally compact separable Hausdorff) 
space, m be a positive Radon measure on X with Supp[m]=X ans} 
M=(Q9J(9 Xt9Px) be a Hunt process on X which is m-symmetric in the sened 
that the transition function pt of M satisfies 

fptKx)g(x)m(dx) = ff(x)ptg(x)m(dx)9 f9 g£@+(X). 
X X 

{/?,,/>()} then decides uniquely a strongly continuous semigroup {Tt9 f>0} 
of Markovian symmetric operators on L2(X9 m) which in turn defines a Dirichlet 
form ß on U(X9 m) by the formula (1). We call S (resp. ^ = 0 [£]) the Dirichlet 
form (resp. Dirichlet space) of the Hunt process M. 

Our basic assumption is that S is regular in the following sense: ^rnC0(X) 
is c -̂dense in !F and uniformly dense in CQ(X). Here C0(X) is the space of all 
continuous functions on X with compact support and &a(u9v)=S(u9v)+u(u9v)9 

a>0, u9 vÇ.SF9 (u9 v) being the LMnner product. 
We call a set BczX properly exceptional if B is Borei, m(B)=0 and the 

complementary set X—B is M-invariant: Px(Xt or Xt_£B9 3f>0)=0, Mx£X—B. 
It is known that a set is of capacity zero (evaluated by the form ê^) if and only 
if it is contained in a certain properly exceptional set [6]. 

By an additive functional (AF) of the process M, we mean an ordinary (perfect, 
right continuous, possessing left limits, finite up to the life time Ç) additive functional 
A of the Hunt process M\X_B9 B being some properly exceptional set depending 
on A in general. Two AF's Aa) and A™ are identified if V^0P3C(^{1)=^2))=1 
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for q.e. x£X9 that is, for every x except on a set of capacity zero. The set of all 
nonnegative continuous AF's (PCAF's) is denoted by A+. 

Let us call a nonnegative Borei measure fi on X smooth if \i satisfies the follow
ing conditions : fx charges no set of capacity zero and there exists an increasing 
sequence {F„} of compact sets such that 

(liA) Px (lim GX_F < oo) = 0 q.e. x£X9 

//-•-DO " 

(fx.2) p(Fn)^~9 /7 = 1,2,..., Jx-{JFn) = 0. 
V « = i / 

Denote by S the family of all smooth measures. 

THEOREM 1 [8]. The equivalence class of A + and S are in one-to-one correspondence 
by the relation 

l i m i ^ , , „ ( ( / - A ) = </-/i,/i>, A£A+9 p£S9 

for any y-excessive function h (y^O) and fÇ.^(X). 

The following inequality holding for A£A+ and the associated measure fiA£S 
plays an important role in the sequel: 

(6) W ) < ( i + O i M - ' M i W ( < - ) , veSoo, 

where S00 is the set of all probability measures on X of finite energy integrals 
possessing bounded 1-potentials U-^y. It is known that a set B is of capacity zero 
if and only if v (B)=0, V v £S00. 

3. Completeness of (J49 e) and the stochastic integrals. An AF M is said to be 
a MAF if V*>0, EX(M2)^ oo9 Ex(Mt)=0 q.e. The family of all MAF's is denoted 
by JST, Each M^Jt admits its quadratic variation (M)eAf: t>0 EX((M\)=EX(M?) 
q.e. Let the energy e of AF be defined by (2), then we easily see 

(7) e(M) = jRM>(X)9 MÇJI. 

Furthermore e defines apre-Hilbertian structure in the space Jt= {MÇJiï: e(M)< oo}. 
Actually (6) and (7) lead us to 

THEOREM 2 [9]. (M9 e) is a real Hilbert space. 

Consider the family J(x—{M^Jt\ \i^ (Ç.S) is a Radon measure} (z>Jt). 
We have then for M9 L£Jtl9 f£L2(X\ ii(M)) and g£L2(X; fi(L)) 

(8) {f\f-g\\dfi(M,L)\)2^ ff*diHM> fg2dm. 
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In view of (7), (8) and Theorem 2, there exists for M£Jtx and f£L2(X; fi^) 
a unique / • M£ M such that 

(9) *(/«M9L) = \ ff(x)li{M,L)(dx)9 VLtJ. 
x 

f»M is called the stochastic integral of f£L2(X; /i<M>) with respect to M£MX. 
Using the inequality (6) again, we can reduce our stochastic integral to the ordinary 
one due to Motoo-Watanabe relevant to the Hunt process M\X_B9 B being a suitable 
properly exceptional set. This identification justifies the rule / • (g • M) = (fg) • M. 

We now extend the above stochastic integral to a wider class *#lfloc. We say 
that an AF M is locally in Jt-y {M£Jtx^ if there exist a sequence of relatively 
compact open sets Gn such that GnczGn+l9 GJX9 and a sequence of MAF's 
Miri)£Mx suchthat Mt=Ml"\ V*<flrx_Gn, PÄ-a.s. for q.e. x£X. The quadratic 
variation {M)£A+ of M is then well" defined by (M)t=(Min))t9 Vt<ax_Gn9 

n = \9 2, .... By making use of Lemma 10 of [8], we further see 

(10) ff(x)l*(M) (dx) = ff(x)fi(Mw) (dx) if Supp [/] c <?„_! 

for a bounded Borei / . In particular ^M> is Radon and (8) extends to the present M. 
Therefore the stochastic integral f*M£Jl is still well defined by (9) for M£Jt1)lQC 

and f£L2(X; p(M)). 
Finally we can define the stochastic integral f'M£Jiïliloc for any locally bounded 

Borei function / and M£Jilt loc by the formula 

(11) g-(f'M) = (gf)-M9 

g ranging over all bounded Borei functions of compact support. 

4. A decomposition of the AF A\u] = ü(Xt) — ü(XQ)9 w€^". Denote by ff a quasi-
continuous version of u£!F. The formula (1) means that the AF Alu] for uÇ.SP 
is of finite energy and 
(12) e(ALul) = <Tes(w, w) 
where 

£T**(u9v) = i(u9 v)- Jü(x)v(x)k(dx)9 u9v£&9 
x 

k being the vague limit of ?""1(1— ptl)>m as t\0. k is called the killing measure 
and indicates the killing inside X of the sample paths of M. 

THEOREM 3 [9]. (i) For each u£SF9 the AF A[u] admits a unique decomposition (2) 
where JTC={N\N is a CAF9 e(N)=09 Ex(\Nt\)<<™ q.e.}. 

(ii) N\U^Ç.JTC is of bounded variation in t if and only if there exist two smooth 
measures v(1) and v(2) such that 

(13) $(u9 v) = f v(x)(v™(dx)-v(2)(dx)) 
x 

for any v£êF vanishing outside some Fk9 {Fk} being a common nest for v(1) and v(2\ 
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When M is the one-dimensional Brownian motion, 

&r=H1(R1)9 œ(u9v)=±- fu,(x)v,(x)dx 

and the condition (13) reduces to the condition that uf is of bounded variation. 
From (2) and (12) we get the isometry from (#", <f?Tes) into (M9 e): 

(14) e(M[u]) = <Tes(«, u)9 u£&. 

Put J^={we^r: u is bounded}. Theorem 1 then implies the formula 

(15) ff(x)ix{Mw)(dx) = 2$™(u •/, u)-S™(u\f)9 / , ue^b. 
x 

5. A stochastic calculus related to the Dirichlet space. For simplicity we assume 
that M is a diffusion or equivalently that $TCS(u9v)=0 whenever v is constant 
on a neighbourhood of u [6]. The integral in (15) then vanishes when u is constant 
on a neighbourhood of Supp[/]. Hence we have M\Ul^=M\u^9 V*<o"x-G> ^Va.s. 
for q.e. x£X9 if ul9 u2£S^b and u±—u2 is a constant on an open set G. 

A function u is said to be locally in SFh («6«^) K ^ere exists for any relatively 
compact open set G a function w£3Fh such that u=w on G. By the above 
observation, we can see that each w€^j0

b
c admits uniquely an AF Mlui£Jfltloc. 

If ul9u2£&£c and u±-u2=constant, then M[Ki]=M[ttal. 

THEOREM 4. The generalized Ito formula (4) holds for any ul9u29 -^,u„Ç.^c 

and ËÇC^R") with bounded first derivatives. 

Especially when w/s are in !F and # vanishes at the origin, <P(i*)Ç.F and the 
following equation holds for feC0(X)9ve^b [12]: 

r n 

(16) jfdli{MWW\MW) = 2 ff' ®Xi(«) ^<MM,MM)• 
x , = 1x 

This combined with (9) gives formula (4) since {/-MM; /£C0(Z), v^^h} is dense 
in (ĉ ?, e). Then Theorem 4 readily follows in view of (10) and (11). 

If M is an w-symmetric diffusion on Rn and $F possesses C^(Rn) as its 
core, then x^BF^ and we get from (4) 

(17) MM = 2 uX{ • M ^ u 6 C0°° (.R"). 

Now (9), (14) and (17) give formula (5) with v 0 — y ^ i * , ] ^ ^ , l^Uj^n. 
When vtj vanishes for i^j, we have the expression 

(18) J= { 2frM^: ft£L2(Rn
9 vH)9 1 < i < «}. 
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Strong Theorems on Coin Tossing 

P. Révész 

I. The number of heads in short blocks. 

1.1. The length of the longest head run. The length of the longest head run in a coin 
tossing sequence was investigated in the very early days of probability theory (see 
e.g. [10]). A teaching experiment of T. Varga originated a new attack on this problem. 
His experiment goes like this: 

A class of school children is divided into two sections. In one of the sections each 
child is given a coin which they throw two hundred times, recording the resulting 
head and tail sequence on a piece of paper. In the other section the children do not 
receive coins, but are told instead that they should try to write down a "random" 
head and tail sequence of length two hundred. Collecting these slips of paper, he 
then tries to subdivide them into their original groups. Most of the times he succeeds 
quite well. His secret is that he had observed that in a randomly produced sequence 
of length two hundred, there are, say, head-runs of length seven. On the other 
hand, he had also observed that most of those children who were to wiite down an 
imaginary random sequence are usually afraid of writing down runs of longer than 
four. Hence, in order to find the slips coming from the coin tossing group, he simply 
selects the ones which contain runs longer than five. 

This experiment led T. Varga to ask: What is the length of the longest run of 
pure heads in n Bernoulli trials? 

Introduce the following notations: 
Let Xl9 Z2,... be a sequence of independent and identically distributed random 

variables with P(X1=0)=P(X1=l) = l/29 let S0=0, Sn=X1+Z2+...+Ar„ 
(«=1,2,...) and 

I(N9K)=QjmxK(Sn+K--Sn) (N^K). 



750 P. Révész 

Define the r.v.'s ZN (N=l9 2,...) as follows: let ZN be the largest integer for 
which I(N9ZN)=ZN. This Zn is the length of the longest head-run. 

A characterization of the behaviour of Z„ was given by Erdôs and Révész. It is 
presented in this section. 

THEOREM 1.1 [7]. Let s be any positive number. Then for almost all co£Q (the 
basic space) there exists a finite NQ=N0(CO9ë) such that1 

ZN ^ [log JV—log log log ÌV+log loge—2—ß] = ai(A0 = ô  
ifN^N0. 

This result is quite near to the best possible one in the following sense : 

THEOREM 1.2 [7]. Let e be any positive number. Then for almost all co£Q there 
exists an infinite sequence Ni=Ni(co9 c) ( J = 1 , 2,...) of integers such that 

Zni < [log Nt - log log log Nt+log log e - 1 + e ] = a2(N) = a2. 

Theorems 1.1 and 1.2 together say that the length of the longest head-run is larger 
than <*! but in general not larger than a2 <;<*!+2. Clearly enough, for some N the 
length of the longest head-run can be larger than a2. In our next theorems the lar
gest possible values of ZN are investigated. 

THEOREM 1.3 [7]. Let (a3(w)} be a sequence of positive numbers for which 

2'2-a3^=co. 
«=1 

Then for almost all (D£Q there exists an infinite sequence N^N^co, {a3(«)}) 
(/= 1,2,...) of integers such that 

ZNi ^ a.W)-

This result is the best possible in the following sense: 

THEOREM 1.4 [7]. Let {a4(«)} be a sequence of positive numbers for which 

Then for almost all co£Q there exists a positive integer N0=N0(co9 {a4(«)}) suchthat 

ZN < a4(JV) 
if N^NQ. 

1.2. The length of blocks containing at most T tails. Theorems 1.1-1.4 are charac
terizing the length of the longest run containing no tails at all. One can also ask 
similar questions about the length of the longest run containing at most T tails. 

1 Here and in what follows log means logarithm with base 2; [x] is the integral part of x. 
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In order to formulate our results, we introduce the following notations: Let Z^(T) 
be the largest integer for which 

/(i\r,zN(D)>zw(7Vr. 
This ZN(T) is the length of the longest run containing at most T tails. Theorems 
1.1-1.4 can be generalized as follows: 

THEOREM 1.1* [7]. Let s be any positive number. Then for almost all œÇQ there 
exists a finite N0=N0(co9 T9e) such that 

ZN(T) >> [logN+TloglogN-logloglogN-log (Tl) +loglog e-2-e] = ax(i\T, T) 

if N^N0. 

THEOREM 1.2* [7]. Let e be any positive number. Then for almost all co£Q there 
exists an infinite sequence Ni=Nt(co9 T9 e) of integers such that 

ZNt < [logiVr+rioglogiVr-logloglog^-log(r!)+logloge-l+e] = a2(AT, T). 

THEOREM 1.3* [7]. Let {aa(N9 T)}^^ be a sequence of positive integers for which 

Then for almost all co 6 Q there exists an infinite sequence Ni=Ni(œ9 T9 {ua(N9 T)}) 
of integers such that 

ZNi(T) ^ *Q(Ni9 T). 

THEOREM 1.4* [7]. Let {^(N9T)}^=1 be a sequence of positive integers for which 

N=l 
2(**(N9T))T*' 

Then for almost all co£Q there exists a positive integer N0=N0(co9 T9 {^(N9 T)}) 
such that 

ZN(T) < «t(N9 T) 
if N^N0. 

1.3. A result ofErdos and Rényi. Erdös and Rényi were the first ones who inves
tigated the problem proposed by T. Varga, proving strong theorems. One of their 
results goes like this: 

THEOREM 1.5 [6]. We have 

N^OO clogN 2 v ' 
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with probability 1 where a(l) = l and, if o l then it is the only solution of the 
equation 

with 
h(x) =—xlogx—(l—x)log(l-x) (0 < x < 1). 

77?e herewith defined a(-) wo decreasing function with 

lim a(c) = 1 «m/ lim a(c) = 0. 
CSU ' C^foa v ' 

1.4. T/ze number of head runs. In Theorems 1.1 and 1.2 we have seen that for all 
N9 big enough, there exists a block of size o^(N) containing only heads but it is 
not true with <x,2(N). Now we ask what is the number of disjoint blocks of size 
ai(iV) containing only heads. 

Let vN(k) be the number of blocks of size k (in the interval [0, N]) containing 
only heads, that is to say vN(k)=j if there exists a sequence 0</1</1+/c<</2< 
l2+k*^...^lj<lj+k^n suchthat 

Sìi+k-Sh = k(i = l929...9j) 
but 

sm+k-sm^k i f h+k^m^lw (i==l929...9j). 

At first we study the case k=a1(N) and prove 

THEOREM 1.6. For any 8>0 there exist constants 0^c1=c1(s)^c2=c2(s)<oo 
such that 

Cl = H m M Ä ^ Km sup ;*fo(iVff = c2 1 tf-~ log log N tf-~ log log N 2 

with probability 1. 

This theorem says that in the interval [09N] there are 0(loglogAO blocks 
of size OL^N) containing only heads. This fact is quite surprising, knowing that it 
does happen for infinitely many N that there is not any block of size a1(N)+2>> 
a.2(N) containing only heads. 

Theorem 1.2 also implies that 
lim inf vN(kN) = 0 

with probability 1 if kN>>a,2(N). However, Theorems 1.3 and 1.4 imply that 

x f = ° Ì f 

limsupviV([logiv'+(l + 5)loglogiV])|^1 . f 

= 0 if (5>0, 

Now we are interested in 

and formulate our 

lim sup Vjy([log N+log log N]) 
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THEOREM 1.7. We have 

lim sup Vjv([log N+ log log N]) ^ 2 

with probability 1. 

II. The number of heads in longer blocks. 

ILL The most irregular blocks. As we have already remarked, Theorem 1.5 
stated that for any c>0 there is a block of size [c log TV] whose density is more 
than 1/2. This Theorem also says that in any block of size aN»logN the density 
of heads is equal to 1/2. That is to say we have 

A CONSEQUENCE OF THEOREM 1.5. 

lira ZWM = 1/2 
w-~ aN 

with probability I, provided that 

lim % - -
AT-«, logN 

Clearly, in order to get more precise results, we have to investigate the properties 
of the sequence 

J(N9aN) = 2I(N9aN)-aN. 

Introduce the following notations : 

7, = 2 ^ - 1 , rn = Ì 7 i = 2S„-n, 
f=i 

J(N, K) = max (Tn+K-T„) = 2I(N, K)-K, 

JHN9K)=QmIx_K\Tn+k^n 

J+(N9K)= max max \Tn+l-T± 

The limiting behaviour of these sequences was studied in [3], where the main 
result says: 

THEOREM 2.1 [3]. Let {aN}^=1 be a nondecreasing sequence of positive integers 
for which 

(i) 0^aN^N(N=l929...)9 
(ii) aN/N is nonincreasing9 

(iii) l i m ^ o » [fljv/log N] = ~ . 

Then 
lim sup ßNJ(N9 aN) = lim sup ßNJ+ (N9 aN) 

yy-+• oo jy -*- oo 
= lim sup ßNJ(N,aN) 

JV-*-oo 

= Urn sup ßNJ+(N9aN) = 1 
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with probability 1, where 

ßN = (2aN)[ln N/aN+\n In N])~1/2. 
If we also have 

(iv) lim^oo [In N/aNfln In N~\ = ~ 

then 
lim ß„J(N9 aN) = lim ßNJ+(N9 aN) 

= lim ßNJ(N, aK) = lim ßN J+ (JV, %) = 1 
N-*- oo N -*• oo 

with probability 1. 
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Some Problems of Large Deviations 

S. R. S. Varadhan 

1. Introduction. The problem of large deviations arises naturally in probability 
theory in different contexts. We shall first look at some typical examples. 

If Xl9X29..., Zn , . . . is a sequence of independent and identically distributed 
random variables with mean zero, then for any a>0 

(1.1) l i m f f ^ " ' ^ ^ g1=0 

by the law of large numbers. Under the assumption that for every real 0 

M(0) = E[eexi] < oo 

Cramer [3] showed that the probability in (1.1) has the specific behavior: 

(1.2) s i ' p ± = ± s » r - * 
exists and is given by 

Qa = mf M(8)e-0a. 
0fcO 

For the second example we consider the process xe(t)=eß(t) defined in the time 
interval O ^ / ^ l , where /?(•) is the standard one-dimensional Brownian motion. 
We denote by Pe the measure corresponding to xE(t)9 which lives on the space 
C0[0,1] of continuous functions vanishing at f=0. As c-*0, xE(t) tends to the 
zero function uniformly and therefore 

(1.3) lim Pe(A) = 0 
e-»-0 
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for sets A that are disjoint from some neighborhood of the zero function. One 
can again show that for a large class of sets AczCQ[091] 

(1.4) lim2e2logPfiG4) = -h(A) 
G-+-0 

exists where 

(1.5) W = j n f / [ / W * 

and the infimum is taken over absolutely continuous functions in / in A with 
a square integrable derivative. Such a result in a slightly different form can be found 
in [14]. 

For the third example we will consider a Markov chain on a finite state space 
X and transition probabilities n^. For simplicity we shall assume that 7fy>0 
for all i and j . Let ?={#/} be the unique invariant probability vector. If 
X09 Xl9..., Xn9... is a realization of the Markov chain, we denote by / / ^ the fre
quency of occurrence of the state i during the first n steps of the Markov chain 
and by pf° the proportion of visits to the state i during the same time. The vector 
p{n) with components {pf0} is a random probability distribution on X and is the 
empirical distribution based on the first n steps. By the ergodic theorem, for large 
values of n9 the vector j?(n) is close to the invariant probability vector q with 
a very high probability. The theorem on large deviations states in this context 
that for suitable sets A in space of probability distributions on X 

(1.6) lim —logP{pweA} =-h(A) 
n-*-oo n 

exists, where 
(1.7) h(A)= inf/(p) 

and the function I(p) is defined for probability distributions p on X by 

(1.8) KP) = - inf 2 Pi log P e f " " j ) 

where the infimum is taken over vectors u={ut} which have strictly positive 
components. The function /(•)> while it is not explicit, is a nonnegative convex 
function of p which vanishes only when p equals the invariant probability q. 

The first example can be generalized by allowing the random variables to take 
values in more general linear spaces. The second can be generalized to cover pro
cesses xe(t) governed by stochastic differential equations of the form 

dxB(t) = sa(xe(t))dß(t) + b(xe(t))dt9 

xE(0) = x. 

Actually one can even combine the two classes in a single large class of problems 
of large deviations for Markov processes. See for instance [15]-[20], fl], [2], and [13]. 
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As I am hoping that Professor Ventcel will cover this ground in some detail I shall 
proceed to a discussion of the ideas connected with the third example. 

2. Large deviation for occupation times. Let the state space X of the Markov 
chain be a complete separable metric space instead of a finite set. Let the transition 
probabilities be given by n(x9 dy). We shall denote by n9 the corresponding ope
rator on the space B(X) of bounded measurable functions on X9 defined by 

(2.1) (7tf)(x)=ff(y)n(x9dy). 

We denote by Jt the space of all probability distributions on X and we will view 
Jt as a complete separable metric space with weak convergence as the underlying 
convergence notion. We make the following assumptions on %(x9 dy). 

(HI) (Feller Property). If / is bounded and continuous then so is %f 
(H2) (Strong transitivity). There is a reference measure oc(dy) on X such that 

a(dy) and n(x9dy) are mutually absolutely continuous for every x£X. 
(The above condition can be relaxed somewhat.) 
For pÇ^Jt we define I (pi) by 

(2.2) m = -inf /log (Hj (x)Kdx) 

where U consists of functions in the space C(X) of bounded continuous functions 
which have a positive lower bound. One can verify that /( • ) is a convex, nonnegative, 
lower semicontinuous functional on Jt which vanishes only at invariant proba
bility distributions. The chain of course may not possess an invariant probability 
distribution in which case /(•) is never zero. 

We shall denote by co, a realization X09 Xl9 ..., Xn9 ... of the chain and by 
Ln(co9 •) the empirical distribution based on the first n steps 

(2.3) Ln(co9 E) = ±- 2XE(XJ), ECZX. 

Fixing an arbitrary starting point x£X for the chain we have the measure Px 

corresponding to the process on the space Q of all possible realizations. One can 
view £,„(•,•) as a map of Q into Jt and this induces a measure Qn x on Jt 
which is the distribution of the empirical distribution. If A is a subset of Jt then 
we are interested in the asymptotic behavior of Q„tX(A) as n-+°°. We have the 
following results: 

If CczJt is compact, then 

(2.4) lim sup-ilogß^tC] ^ - inf/Ou). 

If GczJl is open, then 

(2.5) limsup-ilogßHj:c[G] ^ - inf I(fi). 
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The reason that (2.4) can be established only for compact sets is that we have no 
assumption of positive recurrence. Perhaps the measures Q„x are dissipative and 
(2.4) really measures the rate of dissipation. It is even possible that inf^/(/x)>0 
and in that case (2.4) cannot hold when C is taken to be the whole space Jt. 
However when X is not compact, we can impose a strong positive recurrence 
condition that will enable us to prove (2.4) for closed sets. 

There are continuous time analogs to these results for Markov processes x(t) 
with transition probabilities p(t9 x9 dy) on a state space X. We have the correspond
ing operators 
(2.6) (Ttf)(x)=ff(y)p(t9x9dy) 

we make the following assumptions regarding the semigroup {Tt}. 
(HI*) Tt maps the space of bounded continuous functions into itself. 
(H2*) There is a reference measure oc(dy) such that cn(dy) and p(t9x9dy) are 

mutually absolutely continuous for every *>0 and x£Z. 
(H3*) The strongly continuous center of the semigroup Tt is sufficiently large. 
We denote by L the infinitesimal generator acting on the domain @aC(X). 

We denote by ®+ those functions in 3) with a positive lower bound. We define 
the /-function as the analog of (2.2) by 

(2.7) m = -M+f{^.yx)n(dx). 
We look at the occupation distribution 

(2.8) Lt(a>,E) = \fxE(x(s))ds 
1 0 

as the analog of (2.3) and the distribution QttX of Lt(*, •) as the analog of Qnx. 
We then have the exact analogs of (2.4) and (2.5). 

For C compact in Jt9 

(2.9) lim sup—log Qt X(C) ^ - inf I(p). 

For G open in Jt9 

(2.10) liminf4-logß/x(G) > - inf I(p). 

Again if X is not compact one can impose a strong recurrence condition and obtain 
(2.9) for closed sets instead of just compact sets. 

If the transition probabilities p(t9x9dy) are such that they have a symmetric 
density with respect to the reference measure a(dy) then the semigroup Tt is 
a family of self adjoint contractions in the Hilbert space of functions that are square 
integrable with respect to the measure <x,(dy). Then the infinitesimal generator 
L can be thought of as a nonpositive self adjoint operator. Therefore the operator 
Y^L is well defined. In such a context one can show that I(p) is finite if and 
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only if \i is absolutely continuous with respect to a and the square integrable 
function (dfi[doi)1/z is in the domain of "}/—L. In such a case 

(2.11) m =*(£) 
1/2112 

where || || is the mean square norm with respect to a. For the Brownian motion 
in Rd this becomes 

(2.12) 1(f) = l(ll) = ±J^dx=±f\VYf\*dx 
where fi(dx)=f(x) dx. 

The details of these results can be found in [4], [5], [21]. 

3. Connections with the principal eigenvalue. Let us consider the case when X 
is compact. If x(t) is the Markov process corresponding to the generator L and 
/(•) is the corresponding /-functional defined by (2.7) then one can show [see [15]] 
that 

(3.1) X(V) = lim - l o g ^ [exp { / V{x(s))dx}] 

= sup [fV(x)p(dx)-I(p)] 

for all V£C(X). The quantity k(V) can also be identified as the principal eigen
value (i.e. the point in the spectrum with the largest real part) of the operator L+ V. 
From the maximum principle for L one can conclude that X(V) is a convex 
functional of Fand /(•) is its conjugate convex functional. This is the explanation 
of why /(•) is readily computable in the self-adjoint case. The variational formula 
(3.1) in that case reduces to the classical Rayleigh-Ritz variational formula for 
the principal eigenvalue of self adjoint operators. See in this context [6] and [12]. 

4. Applications. If ß(s) is the rf-dimensional Brownian motion then the Wiener 
sausage Cl(co) for the trajectory co=jS(«) up to time t is the set 

Cl(œ) = {y:MJy-fi(s)\^8}. 

A problem that comes from statistical mechanics [11] is the behavior of 

E[exp{-v\Cl(co)\}] 

where \A\ stands for the Lebesgue measure of the set A. Using the techniques 
developed in the preceding section (see [7], [8]) one can show that 

C4'1) ÎS7^1ogA[«p{-v |C; (cD) |} ] = -fc(v, d) 
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exists and compute k(v9 d) as 

(4.2) k(v9 d) =fmîRd)[v\x: f(x) > 0| + /(/)] 

where / ( / ) is given by (2.12). 
One can consider a random walk on the lattice Zd in Rd of points with integral 

coordinates. If the distribution of the single step has mean zero and covariance 
identity then under mild irreducibility assumptions the number D(n) of distinct 
sites visited by the random walk in the first n steps can be shown to satisfy 

(4.3) J m - ; ^ ^ d) 

where k(v9 d) is again given by (4.2). There are analogs when the Brownian motion 
is replaced by a symmetric stable process (see [9] for details). 

Another application is to derive laws of the iterated logarithm for local times. 
Let co=/?(•) be one dimensional Brownian motion. Let 

i(t,y) = fo(ß(s)-y)ds 
0 

be the local time of the Brownian path as a function of t and y. We define 

We can view L(t9 y) as a random probability density on the line. One can show 
that the set of limit points of L(t9 •) as t-+°° coincides as functions of y (in the 
topology of uniform convergence on compact sets) almost surely with the set of 
subprobability densities / ( • ) satisfying 

Jf(x)dx^l and lJM^dx ^ 1. 

These results and similar ones for certain stable processes can be found in [10]. 

5. General remarks. In the case of continuous time processes the /-functional 
plays the role of the Dirichlet integral to which it reduces in the self adjoint case. 
For instance GaX is an open set with compact closure and one is interested in the 
exponential decay rate of Px[x(s)£G9 O^s^t] as t-+°°. One can under mild 
conditions compute it as 

A(G) = mf m 



Some Problems of Large Deviations 761 

There is a close connection, at least in spirit, to the theory developed by Lanford 
in [13] in the context of statistical mechanics. 

If we start with a Markov process and reverse it in time using an invariant proba
bility distribution then the new reversed Markov process has the same /-functional 
as the old one. It is an interesting question to examine how much information about 
the process can be recovered by a knowledge of its /-functional. 

In case the process is transient one can consider the total occupation time i.e. 

L(œ9E) = f xE(x(s))ds 
o 

which will be a tr-finite measure on the state space. The tail behavior of its distri
bution on the space of all c-finite measures on the state space should again be related 
to the /-functional. The details of the connection are being currently worked out. 
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Tpyflw MeacflyHapoflHoro Konrpecca MareMaTHKOB 
XejibCHmai, 1978 

Bojibiirae YKJIOHCMMH 

RJìSI CjiyqairaMx npoiieccoB 

A. R. Beimjejib 

1. IlycTB £}' — ceMencTBO cjiyqaHiibix npon;eccoB, 3aBHCjimee OT napaMeTpa 
h9 H nycTb, cicaxceM, npH h-+0 peajnraaijHH gt

l CXO^äTC^I no BepoirraocTH ic necjiy-
nairnon ^ymajym xt (pent H^eT o CXO^HMOCTH B HeicoTopoM MeTpunecKOM 4>VHK-
HHOHajibHOM npocTpaHCTBe). 

npocTeaiiiHH npHMep Taicoro ßeTepMHHHpoBaHHoro B npe^ejie ceMencTBa 
cjiynaHHLix npoijeccoB. IlycTb £t9 0 ^ f < ° ° , — HenpepbiBHbiH cnpaBa cjiyHaimbiH 
npon,ecc, Taicon, HTO Ç0=X HecjiyHaiiHO. IIojiaraeM fljia / Z > 0 : ^=^htl npn /z->0 
CeMeHCTBO £{' CXOßHTCfl K HeCJiyHaHHOH KOHCTailTe x. 

3a^aHH o 6ojn>HiHx yKJiOHeHHjrx AJUT ceMeiicTBa npoijeccoB £[' — STO samara 
o npe^eJibHOM noBe#eHHH BepojrraocTeH P{Çh£A} fljia MHoacecTB A9 naxo,zj5iiH,Hxc5i 
Ha nojioHCHTeJiLHOM paccTOHHHH OT necjiynaHHOH npeAejibHOH ^yniciüHH x. 3 T H 
3a,n;aHH aHajiornrabi sa^anaM o GOJIBHIHX yicjioHeHHflx RJISL cyMM He3aBHCHMbix 
cjiynaOHbix BCJIHHHH. 

B ßoicjiaße 6y,o;eT roBopHTbCJi o neicoTopbix pe3yjiLTaTax B 3TOH oôjiacra, no-
jiyrçeHHBix B MocKBe. 

2. Bonpocti o TOM, KaK nojrynaTb npeßejibHbie TeopeMbi o 6ojibiiiHx yKJiOHeiiHHX 
AJia cjryqaiiHbix nporjeccoB, H O TOM, icaicne npHMeneHHa OHH MoryT HMeTb, B 3ira-
HHTejibHOH CTeneHH He3aBHCHMbi Apyr OT Apyra. IIoroBOpHM o nepBOM. 

CpeAH pe3yjibTaTOB o 6ojibniHx ymioHeHHax MOECHO BbiAejiHTb .npa npora-
BonojioHCHbix rana: THn I, anajiorH^Hbiii cjiynaio cjioaceHHH He3aBHCHMbix cjiy-
HaHHblX BeJIHHHH, oGjiaßaiOIirHX ICOHeHHblMH SKCnOHeHUHaJIbHblMH MOMeHTaMH; 
H Tun II, aHaJiorHHHHH cjiyqaio cjioxcenHH cnynaHUbix BCJIHHHH, cKaxceM, npnra-

rroaiomHxcK K neHopMajibHOMy ycTOHHHBOMy pacnpeAejieHHio. Bo II rane Be-
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pOÜTHOCTH MajIOBepOflTHblX COÔbITHH P{£,h£A} 06pa3yK)TCÜ B OCHOBHOM 3a cneT 
peajiH3an;HH fJ, coBepmaroiipix OAHH HJIH Hecicojibico 6ojibuiHx cicanKOB, TorAa 
icaic B I rane OHH o6pa3yiOTC*r B OCHOBHOM 3a cneT peajiH3an,HH, 6JIH3KHX K nenpe-
pblBHblM H Pß.yKQ TJiâ KHM $yHKn;HHM. B HaCTHOCTH, ecjiH £f — AH^y 3 1 1 0 ™™ 
npon,ecc, jyix êj=£ /rt HMeioT MecTo pe3yjibTaTbi o 6ojibHiHX yKJiOHeHHjix I THna; 
a ecjiH £t — MapKOBCKHH nporjecc, icoTopbrä B6JIH3H TOHKH x Mo>iceT coBepniaTb 
cKaHKH, TO NUL £?=£/„ MoacHO nojiywrb pe3yjibTaTbi II THna. 

IIOHTH Bee nojiyneHHbie pe3yjibTaTbi OTHOCüTCJI K rany I; npHBeßeM $opMyjin-
poBicy OAHoro pe3yjibTaTa THna II, nojiyneHHoro B [1]. 

IlycTb Çl9 £2 , . . . ,£„, ... — nocjieAOBaTejEbHOCTb He3aBHCHMbix OAHnaicoBo pac-
npeAejieHHbix cjiynaHHbix BejiHHHH c (JyincnHeH pacnpeAeJieHHji F(x)9 oojiaAaioirjen 
acHMiiTOTHTcoH BHAa F(x) = l — y+x~a-\-o(x~~") npn x-+°°9 F(x) = y__ \x\~* + 
o(|;c|~a) npn x-+ — «o, rAe 0 < a < l HJIH l < a < 2 ; B nocjieAHeM cnynae npeA-
nojiaraeTca, HTO M^=0. BßeAeM na OTpe3ice [0,1] cjiynaHHyio <J)yHKn,HK> 

Sn,x(t) = (%!+...+ÇM)/x. 

3Aecb BMecTo OAHOTO HHCJIOBOIX) napaMeTpa h penb HACT O A^yx, n H X. Jlerico 
AOica3aTb, HTO npn «-»-oo, xn~1/a-+°° cjiynaHHaa <J)yHicnH5i S„ CXOAHTCA Kf(t)=0. 
IlycTb A — MHoacecTBo B npocTpancTBe ^HKIüHH, HaxoAtfmeecii Ha nojioECHTejib-
HOM paccTOflHHH OT ToacAecTBemioro Hyjifl. 3aAana o Haxo>i<AeHHH acHMnTOTHKH 
BepoKTHOCTeii BHAa P{Sn X£A} — STO saAa^a o 6ojn>HiHx ymiOHeHHJix. 

Oica3biBaeTc ,̂ npn 6ojibiHHx n H xn~1/a cpeAH peajiH3an;HH cnynaHHOH ̂ yHKn,HH 
SntX9 AajieKHX OT ToacAecTBeHHoro Hyjia, HanGojiee BepoflrabiMH 6yAyT Te, KOTopbie 
6JIH3KH K cTyneHHaTbiM $yHicn;HKM, ACJiaiomHM OAHH cica*ioK MeacAy 0 H 1; cpeAH 
ocTajibHbix — peajiH3an,HH, 6jiH3icHe ic cTyneHHaTbiM «jjymaniJiM c AByMfl cicaHKaMH; 
H T. n. 

^Toôbi Tonno c^opMyjiHpoBaTb 3TO, BßeAeM cjieAyiomHe 0603Hâ ieHHÄ fljia. 
f6(0, 1] H ACHCTBHTejibHoro w^O nepe3 ftu o6o3HanHM cTyneHHaTyio <J)ymcn;Hio 
co cKaHKOM BejiHHHHbï u B TOHKe t:ftu(st)=0 npn 0*^s<t9 ftu(s)=u npn f ^ J ^ l . 
BßeAeM na nojioce (0,1]XCRX\{0}) Mepy v, onpeAeji^eMyio cooTHonieirajiMH: 

v(dsdu) = ds-y+ d(-u~a) na (0, 1]X(0, oo), 

v(dsdu) = dï-y_rf|w|-a na ( 0 , l ] X ( - ~ , 0). 

ßjifl MHÔ icecTBa A B npocTpancTBe 4>yHKn,HH 6e3 pa3pbiBOB BToporo poAa Ha 
[0,1] oôosna^HM nepe3 [A] ero 3aMbiicaHHe, (A) — MnoxcecTBo ero BHyTpeHHHX 
ToneK, dA — rpaHHiiiy B cMbicjie paBHOMepHOH CXOAHMOCTH (cooTBeTCTByioiiryK) 
MeTpnicy 6yAeM o6o3HaxiaTb Q). PaccMOTpHM cjieAyiomne noAMHoacecTBa nojiocbi 
(0,1]X(A{0}): 

C+ = {(t, u) : / „ € [A]}, C_ = {(/, ti) : / „ 6 (A)}, 

Ds = {(t,uy.Q(ftu,dA)*=ö}. 

IlycTB BBinojiHeHbi cjieflyKHipre ycjioBHa: paccToanne OT A RO ToacflecTBeHHoro 
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Hyjiü nojioacHTejibHo; MHoacecTBa C+9 C__ H3MepHMbino DKopAany oraocHTejibno 

Mepbi v, H v(C + ) = v(C_); v-Mepa 3aMbncaHH5i MHoacecTna D3 CTpeMHTca K 0 

npn <5|0. 

TorAanpH «-»-oo, xri~v*-><*>, 

P{Sn,x£A} ~ w e - - v(C+) (= nx-«- v(C_)). 

ECJIH A HaxoAHTca na nojioacHTejibHOM paccrojiHHH OT MHoacecTBa BCCX 4>ynK-

IJHH ftu9 MOHCHO paccMOTpeTb Bee cTynemaTbie ^ymmyia. c AByMa cicanicaMH 

/ , „ , „ , > nonaAaiomne B [A]9 (^4), H npn onpeAejieHHbix ycjioBHKx nojiy^HTb, *rro 

P{SnxÇ.A} 3KBHBajienTHo icaKOH-To KOHCTaHTe, yMHOHceHHOH Ha (nx"a)2; H T. A. 

3 . EojibiiiHHCTBO nojiyqeHHbix pe3yjibTaTOB I THna — rpy6bie, T. e. e TOHHOCTBIO 

AO AorapH^MHHecKOH SKBHBajieHTHocTH. OAHH H3 B03Moacnbix nyreii nojryqeHra 

TaKHx pe3yjibTaTOB — cjieAyœiijHH. flJia cjiy^aHHbix nponeccoB £r onpeAejieH-

Horo KJiacca, He3aBHCHMO OT Toro, BXOAäT OHH B icaicne-Jinôo ceMencTBa HJIH neT, 

BBOAHTC5I 4>yHKAHOHaJI I((p)9 KOTOpblH npH3Baiî HOKa3bIBaTb CTeneHb TpyAHOCTH 

npoxoxcAeiiHa peajiH3an;HH npoijecca B6JIH3H (frymanm cp. BbiBOA^Tca on;eHKH 

Taicoro THna: 
P{Q(Ç9 cp)^ô}^ exp {-I(q>) -R^cp, 8)}9 

P{e(t, *(0) > 0} ^ exp{-/+i?2(/, ö)}9 

iyje Q — MeTpHKa B (JDyHiajHOHajibHOM npocrpaHCTBe, $(i) —MiioacecTBO $ym<isyi&. 

q>9 AJia KOTOpblX I((p)^i. 

Rm ceMencTBa npoijeccoB {J fyymŒyioiiSLJi / H ooraTOHHbie HJieiibi Rl9 R2 6yAyT 

3aBHceTb OTnapaMeTpa h:Ih((p)9 R![(q>9 S)9 R\(i9 8). MoxceT oica3aTbcji, HTO $yHK-

UiHOHaji Ih acHMnTOTHHecicH pa36HBaeTC5i Ha MHoacHTejin: Ih(<p)~f(h)*S((p). 

ECJIH npn STOM ocTaTOHHbie HJienbi R![(<p98) H Rl(f(h)'S9 S) ôecKOHerao Majibi 

no cpaBHeHHK) c /(A), TO oTcioAa nojiynaioTCK rpy6bie npeAejibHbie TeopeMbi 

o 6ojibHiHx yicjioHeHHflx AJiH ceMencTBa ^ . 

Or̂ eHKH yKa3aHHoro THna AJM onpeAejieHHoro Kjiacca MapKOBCKHx cjiy^aHHbix 

nporjeccoB nojiyqeHbi B nepBoii H3 CTaTen [2]. IIpH HX BbiBOAe Hcnojib3yeTCK 0606-

meiiHe TCXHHKH, npeAJioaceHHOH B [3], Bo BTopoii CTaTbe [2] H3 STHX orjeHOK 

BbiBeAeiibi rpy6bie TeopeMbi o 6ojibHinx yicjioneHMx AJIH HeKOToporo Kjiacca 

ceMencTB AOTepMHHHpoBaiiHbix B npeAejie MapicoBCKHx npon,eccoB; HO OHH MoryT 

6biTb npHMeHeHbi K nojiyqeHHio rpyôbix npeAejibiibix TeopeM H B Apyrnx cxeMax. 

H3 neMapicoBCKHX cxeM, B KOTOpbix 6buiH nojiynenbi rpy6bie pe3yjibTaTbi o 

6ojibHiHx yicjioneHHHx, cjieAyeT ynoManyTb cxeMy, CBH3aHHyio c npHHiinnoM ycpeA-

HeHHfl. ECJIH Çt — cKaaceM, cTaijHOHapHbiH nporjecc c AooraTOHHO xoponiHMH 

CBOHCTBaMH nepeMeniHBauM, TO penienne ypaBHemïa 

Xf = b(x*9 £tjB) 

npn e-*0 cxoAHTCfl ic HecjiynaHHOMy penieHHio ypaBHenna xt=B(xt)9 rp& B(x) 

onpeAeJweTCK icaic MaTeMaranecicoe oacHAaHHe b(x9 {s). Pe3yjibTaTi>i o ÇojibHjHX 

yKjiOHeHHHx x\ OT xt nojiyHeHbi B [4], 
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HeicoTopbie TOHHbie pe3yjibTaTbi AJI* MapicoBCKoro cjiynan nojiyneHbi B [5]. 3Aecb. 

TaKace npHMeHaeTca o6o6menHe TCXHHKH [3]. 

4. CpeA» npHMeHeiiHH TeopeM o ôOJIMHHX yicjioHeHHjix A M cjiyHaHHbix nporjec-

COB M03KHO yHOMüHyTb OÔlHHpHyK) OÔJiaCTb, CB5I3aHHyiO C HOBeAeHHeM OAHOpOA-

Hbix no BpeMeHH npoijeccoB c Majion cjiynaHHOCTbio Ha 6ojibiHHX 0Tpe3Kax Bpe-

MeiiH; AJifl AHtJxfrysHOHHbix nporjeccoB c MajioH A H ^ y 3 1 1 ^ (CM. [6]). 3 T H saAa^H 

CBH3aHbI C aCHMnTOTHHeCKHMH 3aAaHaMH AJM ypaBHeHHH B HaCTHblX npOH3BOAHbIX 

sjijinnTHHecKoro THna, 3aBHcnni;Hx OT napaMeTpa. 

HiiTepecuaÄ HOBaa oôjiacTb npHJioxceiiHH — npHJioaceHHu ic BonpocaM CXOAHMOCTH 

c Bepo£THOCTbK> 1 npoijeAyp CTOxacranecicoH annpoiccHMan,HH [7]. A. I I . Kopoc-

TejieB nojiynaeT neoöxoAHMbie H AooraTorabie ycjioBM CXOAHMOCTH c BepoüT-

HOCTbK) 1 B HiHpoKOM KJiacce cxeM cToxacTH^ecKOH annpoKCHMaüiHH B cjiynae, KorAa 

y «noMexH» ecTb siccnoHenijHajibHbie MOMCHTH, C Hcnojib30BaHHeM orjeHOic [2] 
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Minimal Surfaces: Tangent Cones, Singularities, 
and Topological Types 

F. J. Almgren, Jr. 

This article reports on some recent contributions of geometric measure theory 
[FH1], [FH2] to the study of minimal surfaces and several questions in nonlinear 
partial differential equations. 

Some new regularity results. (1) The most massive (in terms of pages of exposition) 
of the new regularity results is that k dimensional mass minimizing integral currents 
in R" have supports which are almost everywhere regular [AF2]. The methods 
are the first which have successfully treated higher dimensional generalized branching 
behavior. In particular, the proof contains strong estimates on the branching of 
functions taking values in the ß-fold symmetric product of a vectorspace and 
minimizing a generalized Dirichlet integral as well as a new generation of approxi
mation estimates in terms of the "area excess" parameter of [AFI], [FH1]. 

(2) New integral curvature estimates were used in [ASS] to show that the singular 
sets of n dimensional oriented hypersurfaces minimizing the integrals of elliptic 
integrands have zero n—2 dimensional Hausdorff measure; in particular, for 
2 dimensional surfaces in Rs there are no singularities. Additionally, the maximum 
Hausdorff dimension of singular sets corresponding to a particular integrand is 
upper semicontinuous as a function of the integrand, a fact exploited in [SL] to 
obtain a Bernstein type theorem (that global nonparametric solutions are affine) 
for the Euler-Lagrange equations associated with integrands close to area in dimen
sions up to 7. 

(3) Solutions to the constant coefficient problems of (2) are regular near any 
extreme boundary point according to [HR], while by [HS] area minimizing hyper-
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surfaces are everywhere regular at the boundary—a new result even in dimension 2 
and leading to other a priori estimates. 

(4) A novel decomposition technique in [WB] shows that for even integrands 
any minimizing hypersurface modulo 4 locally can be written as the sum of two 
intersecting oriented minimizing hypersurfaces of the type to which the results 
of (2) and (3) apply. 

Uniqueness of tangent cones to minimal surfaces. Although minimal surfaces long 
have been known to have tangent cones at all points, the general uniqueness of such 
cones remains an open question. However, for the case of an m dimensional 
stationary surface V in Rp+1 having an isolated singular point at 0 it is shown 
in [AA] that: 

(a) If one of the tangent cones to F at 0 is of the form 0 ^ M where M is 
an m dimensional minimal submanifold of Sp and if also for each Jacobi normal 
vectorfield Z of M in Sp there is a one parameter family of minimal surfaces 
in Sp having velocity Z at M9 then 0 % M is the unique tangent cone to V 
at 0 with V converging to 0 % M for small radii /• with rate r*. 

(b) In case M is the cartesian product of two standard spheres of appropriate 
radii then each Jacobi vectorfield on M arises from isometric motions of Sp and 
the Jacobi vectorfield hypothesis in (a) is satisfied. The example of [BD] shows 
this hypothesis is not satisfied for some M. 

Relations between boundary curves and minimal surfaces. For a uniformly extreme 
smooth simple closed boundary curve C there is always a minimal embedding of 
a surface S with k handles anytime adding the last handle decreases area [AS] 
(with similar results for collections of boundary curves). For S with no handles 
(i.e. a disk) embedding S minimizes area among immersions as well [MY], although 
this is false in general for minimizing oriented elliptic integrals [TJ4]. Examples 
show that total curvature restrictions on C cannot dominate the genus of absolutely 
minimizing S. 

For C not necessarily extreme the "convex hull genus" of [AT] provides a lower 
bound for the genus of any minimal S with boundary C. The convex hull genus 
is computed explicitly in [HJ] for "almost convex" C, while for general C [KF] 
suggests a clever experimental procedure for obtaining an upper bound. 

In case C bounds two surfaces, each locally of least area, variational methods 
in the large [PJ] show it must also bound a third, generally unstable, embedded 
minimal surface, possibly of different topological type than either of the first two. 
Although there are infinite parameter families of curves for which surfaces of least 
area are not unique, the chance of picking such a curve of nonuniqueness at random 
is zero according to [MF]. 

Modeling of physical phenomena. (1) Soap bubbles, etc. The partitioning hypersur
faces of [AFI] realistically model soap bubble configurations. The possible local 
geometries of this model were analyzed in [TJ1] providing a mathematical verifica-
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tion of the century old observations of J. Plateau. Higher differentiability of singular 
soap film curves is shown in [NJ] while various boundary regularity estimates appear 
in [TJ2]. 

(2) Grain boundary migration. A mathematical analysis [BK] has been made in 
general dimensions of configurations of surfaces of no inertial mass driven by 
surface tension and opposed by frictional forces proportional to velocity. The 
motion of grain boundaries in an annealing pure metal exhibits such behavior, 
and appendix B of [BK] corrects a calculation in the metallurgy literature. 

(3) Crystal growth. The normal growth velocity functions S2->R+ which are 
possible for a general time parametrized family of solids are characterized in [FJ] 
resulting in a constructive model for the growth of physical crystals under conditions 
of near thermodynamic equilibrium and arbitrary initial shape. Variational problems 
modeled on crystal phenomena are also a central theme of [TJ3]. 

(4) Turbulent fluid flow. Corresponding to initial conditions for any finite energy 
divergence free velocity vectorfield there is a fluid flow weakly satisfying the Navier-
Stokes equations of viscous incompressible fluids with velocity which is continuous 
in 4 dimensional space-time except on a closed set of Hausdorff dimension at most 2 
[SV2]. Furthermore, the closed set of times at which velocity discontinuities can 
occur has Hausdorff dimension not exceeding 1/2 [SVI]. 

(5) Elastic deformation of solids. In deforming a general nonlinearly elastic body, 
the amount by which the motion differs from an isometry is dominated by the non
linear elastic work done (expressed only as a weak volume integral with no point-
wise hypotheses) according to [KR]. 

(6) Explicit computation of solutions. Significant progress towards methods 
of explicit geometric computation is being made [PH], [TJ3]. 
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Propagation of Singularities of Solutions of 
Symmetric Hyperbolic Systems 

V. Ya. Ivriï 

1. We report certain results about the propagation of singularities (WF's) of 
solutions of symmetric hyperbolic systems of the first order in a "free space" as 
well as near the boundary on which adequate (e.g. strictly dissipative) boundary 
conditions are given. Here two analytic theorems are of primary importance; 
all the other results are their corollaries though by no means simple ones; the proofs 
of these corollaries are based on the examination of bicharacteristics, bicharacteris-
tical billiards and on the construction of auxiliary functions; they do not refer to the 
theory of pdo's. The proofs of the main theorems are based on energy estimates. 
Our results do not depend on lower terms and boundary conditions; they are deter
mined only by the symplectic geometry of the characteristic variety or the pair 
comprised by the characteristic variety and a boundary. Moreover, we will report 
a number of finer results about the propagation of WF's of solutions of a wave 
equation near the boundary; the latter results are based on special analytic theorems 
which we are obliged to leave out because of a lack of space. 

1.1. Let us first consider the case of the "free space". Let P be a classical dXd-
matrix pdo of the first order, Pt being its principal symbol, g=detP1. It is 
known that WF(w)\WF(Pw)cChar P={g=0} and if g is real then WF(w) 
is invariant of flow along pieces of bicharacteristics of g anti-crossed with WF (Pu). 

THEOREM. Let P1 be a selfadjoint matrix, Q be an open conic with respect to £ 
bounded with respect to x set, cp be a real smooth function positively homogeneous 
of degree 0 with respect to Ç whereby 

({Pl9 cp}(g)v9 V) > 0 Vve Ker i>i(e)\0, V Qt Char Pn Q. (1) 
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Then if u£D'9 WF (Pu)nQn {<p<O}nCharP=0, WF(w)n3fln{(p<0}n 
Char P=0, then WF(u)nQn {ç?^0}nChar P=0. 

The same holds true for WFS. 
We will assume that P± is a self-adjoint matrix and that (1) is true with <p=xQ. 

Then (1) is equivalent to the condition 

(H*Hx;
kg)(Q)(HXog)(Q)>09 fc = l,...,r(c), geCharPnO, 

where Hf is a Hamiltonian field generated by / , r(g)=dimKer P^(Q). 

It follows from here that if microlocally g=ehr
9 e is the elliptic symbol, h is 

a real symbol of the principal type then WF's are flown along the bicharacteristics 
of A. 

1.2. Let g be microlocally factorised, g=ehr
1
1...hr/9 e is the elliptic symbol, 

hl9 ..., hs are real symbols of the principal type. It is natural to expect that WF's 
propagate along broken lines composed of pieces of bicharacteristics of hl9 ..., hs 

and that the closure of the union of all such broken lines radiating from Q makes 
up the influence set of Q whose structure can vary widely depending on the symplectic 
structure of hl9 ...9hs. This hypothesis is confirmed in a number of cases. Let 
s=29 {hl9hs}^0 when ä 1 = ä 2 = 0 , or let s=29 {hl9 {hl9h2}}*{hZ9 {hl9h2}}>0 
when h1=h2={hl9 h2}=09 or finally let J > 2 and {hi9hj}>0 when f>j. In all 
these cases as well as in some others WF's propagate along "trees" composed of 
pieces of bicharacteristics of hl9..., hs. If, on the other hand, co-multipliers are 
in involution, i.e. {hi9hj}=0 when ht=hj=0 and Hhi (i—\9...,s) are linearly 
independent modulo fflldl; then the influence set of g€n{Af=0} will be an 
•s-dimensional bicharacteristical leaf—a piece of a variety tangent to vector fields 
Hh (i=l9...9s) and bounded by (s—l)-dimensional varieties fj tangent to Hh 

(i— 1, ...9s9Ì7±j). In case the comultipliers are divided into groups so that the 
comultipliers of the same group are in involution whereas the comultipliers of 
different groups are not, and {hi9 A/}>0, if ht belongs to a group with a smaller 
number than hj9 then WF's propagate along the "trees" composed of bicharac
teristical leaves corresponding to different groups. 

However, as the example of J. Ralston shows, this hypothesis is not always true, 
and WF's may propagate not only along bicharacteristic broken lines; in this 
example s=29h2 has 0 of the infinite order along the bicharacteristics of hx. Other 
examples of this sort are also possible; the comultipliers in these examples are not 
in involution but an infinite number of switchings from bicharacteristics of one to 
the bicharacteristics of another comultiplier on a limited piece of a broken line is 
still possible. 

1.3. If the characteristic symbol is not completely factorised then the study is 
considerably complicated. The analysis of the behaviour of bicharacteristics consti
tutes here one of the principal difficulties. Nevertheless, it is possible to investigate 
the propagation of WF's in the situation of a locally general position when the 
characteristics multiplicity is no higher than 2. The same situations are those of 
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a locally general position in the cases of crystal optics and the theory of elasticity 
in heterogeneous anisotropic médias systems. 

Let Z={g=Hg=0}. Suppose that Z is C°°-variety, contraction on Z of 
a symplectic form has a defect 0 or 1 and TeZ=KerF(g)9 Ker P2(e)nImP2(e)=0 
in every point Q£Z9 where F(Q) is the fundamental matrix of g in Q. Then, 
either F(Q) has two real proper numbers different from 0, and the other proper 
numbers are purely imaginary, or all the proper numbers are purely imaginary. 
The latter case can only occur if codim Z is odd. In the former case, Z is a sta
tionary variety of the saddle type: there exist the C°°-varieties Zl9 Z2czCha.r P9 

Z1C\Z2 — Z9 dim ^ = dim Z2=àim Z+l9 Zx and Z2 are transversally crossed 
such that the bicharacteristics of g crossing Zj are contained in Zj and have 
the limit points belonging to Z9 bicharacteristics lying in Char P\(Z1 u Z2) have 
no limit points in Z. Into every point Q£Z there enter two bicharacteristics 
parametrised by x0 and two bicharacteristics leave it. In this case WF's propagate 
along the bicharacteristics lying in Char P\(ZX u Z2) and along the bicharacteristics 
lying in Z± u Z2 with a branching to Z. 

In the second case Z is a stationary variety of the centre type. The simple bi
characteristics of g have no limit points in and are continually at a distance of the 
same order from Z9 "winding" onto curves lying in Z along which dQJdteiv^F(o). 
(This condition in our assumption defines the family of curves covering Z only 
once; we will call them limit bicharacteristics.) In this case WF's propagate along 
bicharacteristics and limit bicharacteristics. 

Thus the conical refraction can only occur in the situations of ungeneral position. 
In particular, it takes place when Z is an involutive C°°-variety. The question 
of the propagation of WF's where Z changes type (centre for saddle or vice versa) 
remains unsolved. 

2. 2.1. Let us come now to the discussion of boundary value problems for 
symmetric hyperbolic systems. Let X={Xi>*Ö}=R+XX''9 Y={x1=0}9 

x'=(xQ9 ...,xz_1), j : T*X\Y-+T*Y is a natural map. Let P=K(x9 D/)D1+A(x9D
/)9 

K9A are classical rfX^-matriced pdo's of orders 0 and 1, respectively; P9K9A 
consist of diagonal blocks P(v), K(v)9 A^y Suppose that K0\Y is invertible, K09 Ax 

are selfadjoint matrices. Let B(x\ D') be a classical d+ Xfif-matrix pdo of order 
0 on Y9 d+9 the number of positive eigenvalues of K0\y. We assume that B is 
a strictly dissipative boundary operator for P, i.e. (K0(Q)V9 U><0 Vt^Ker BQ(Q)\0. 

Assuming that B is dissipative the results obtained will not be true, generally 
speaking. In fact there exist conditions intermediary between dissipativity and 
strict dissipativity under which our results hold true. Many boundary value problems 
relate to the ones described here, in particular, the problems for wave equation 
meeting the Sapiro-Lopatinskii condition, also the Neumann problem, some 
problems for the Maxwell system etc. 

To describe the singularities let us introduce WFb(u)czT*Y\0; ^WFft(w) if 
there exists q(x9 D')9 i.e. a classical scalar order 0 pdo such that q^Q)^ and 
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qu£C°°(X). Let us introduce a full wave front WFf(u)=WF(u)uj-1WFb(u). 
Thus here already we glue up T*X on Y equalizing the points Q9Q'€T*X\Y 

such that JQ—JQ'. 

THEOREM. Let the assumptions described above be fulfilled in the neighbourhood 
of Q*. Let q>v (x9 Ç') be real smooth positively homogeneous functions of degree 
0 with respect to {' coinciding on T* Y such that <7>v(n*) = 0, ({P^u<pv}(Q)v9v)>-0 

V e € r V Vi>€KerP(v)1(e)\0 Vv. (2) 

Then if uÇ.C°°(R+9D'(X'))9 e*$WF6 (Pw)uWF (Bu\Y)9 

WFy (w(v)) n {cpv < 0} n Q n Char P = 0 V v 

where w(v) are blocks of u9 Q is a sufficiently narrow neighbourhood of j^Q* in 
T*X then e*$WFb(M). 

The same is true for WFS. 
We will assume that (2) is fulfilled with cpv=x0. Then (2) can be reformulated in 

terms of g as in the case of (1). 
As seen from the theorem, if B is a suitable boundary operator then its choice 

does not influence the propagation of WF's although in some cases this can result 
in a poorer propagation. Nevertheless the description of the propagation of WF's 
near the boundary is considerably more complex than in the free space since the 
symplectic geometry of the pair {Char P, 7} is more complex than the geometry 
of Char P, and the analysis of the behaviour of (branching) bicharacteristics 
billiards is more complex than that of bicharacteristics. 

2.2. Let us first consider systems with the characteristics of constant multiplicity 
assuming for the sake of simplicity that the multiplicity equals 1. Let in the region 
that is of interest to us there be no WF/(Pw), WF (Bu\Y). 

From the theorem there follows the well-known result that if there exist only the 
transversal bicharacteristics then WF's come to Y along the incoming bicharac
teristics and go away from Y along the outgoing ones and propagate along bi-
characteristic billiards branching on Y. In general transversal bicharacteristics 
of constant multiplicity can be excluded from the microlocal analysis which we 
will do for simplicity. 

Let over Q£T*Y there lie one tangent bicharacteristic and the polynom g(g9 7̂) 
have a double root lt. Then if X is strictly bicharacteristically convex in ^ = (Q9^) 
i.e. if (HgXj)(§)^0 then WF's propagate (near Q) both along bicharacteristic 
billiards of g and along boundary bicharacteristic, i.e. those of the boundary symbol 
gb(o)=g(Q,Çi(Q)) given on T*Y where ^(Q) is the root of the equation 
£ç (£> ^i)==0- In the case of X being bicharacteristically concave in §9 (i7|Xz)(ê)>0 
the principal theorem does not give a precise description of the propagation of 
WF's; here the results are likely to correspond to those of § 1.1. 
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Now let over Q there lie several tangent bicharacteristics each of which meets 
the assumptions given above. Then there may occur various effects depending on 
the interaction of the boundary symbols of gbJ. We have only managed to analyse 
the case when gbj are in involution and HQh are linearly independent modullo 
Ç'd/dÇf; then there appears the propagation along boundary bicharacteristic leaves 
constructed according to the set of gbj. 

Finally, let over Q there lie one tangent bicharacteristic, and the multiplicity 
of ll9 i.e. the root of g(g9 ^) is equal to 3, g^ (ê)>0. Then if g^^CÖ^O and 
(HgXj)(@)>0 one tangent bicharacteristic comes into $ and if WF(w) does not 
come along it then Q$WFb(u). In the case of g ^ C o ^ O and (HgXj)(§)^0 
there are no bicharacteristics coming into $ and ^WFb(w). Unfortunately 
we have not managed to analyse the two other cases. It should be noted that in the 
case of (HgXi)(§)>0 (X is strictly bicharacteristically concave) we have only 
obtained the results for the points with the multiplicity of the root of g(g9 f̂  
equal to 3, but not for those lying near the points where there is one simple and 
one double root. 

2.3. The propagation of WF's of the solutions of boundary value problems for 
systems with the characteristics of variable multiplicity is rather poorly investigated 
(we do not discuss the case of systems with constant coefficients in a half- or quarter-
space). 

As before, let there be no WF (Pu)9 WF(Pw|Y) in the region which is of interest 
for us. 

Let the characteristic symbol be factorised, g=eh[1... hr
s
s
9 e is elliptic on y -1^, hj 

are real symbols of the principal type such that the equation /*/(£, £i)=0 has 
only one root, hj^^O and the bicharacteristics hj are transversal to Y. Suppose 
that if h j =...=ht =0 then Hh ...Hh are linearly independent modulo Çd/dÇ9 Hx 

and that the comultipliers are in involution. Let us first assume that ht(Q9 £0=0 
for all i. Then WF may come into Q along a P"-bicharacteristic leaf constructed 
according to hl9...9hs (more precisely along its intersection with T*X) if there 
are symbols with incoming bicharacteristics among the comultipliers. If among 
them there is one and only one symbol with incoming bicharacteristics (hs9 for 
example) then jT~\Y itself is a bicharacteristic leaf constructed according to 
Zi, •••9/s-i> where /} are symbols on T*y, fj^ajhj+ßjh,, o,>-0, fJt^=0. 

Now let the comultipliers hl9 ..., hs be broken into groups so that in every group 
there is not more than one symbol with an incoming bicharacteristic and only the 
symbols belonging to the same group may vanish simultaneously. Let all the bound
ary symbols fl9 ...,/„ collected from all the groups be in involution and Hfi,..., Hfm 

are linearly independent modulo Ç'd/dÇ'. Then WF may come into Q either along 
a bicharacteristic leaf corresponding to any group of comultipliers or along a 
boundary bicharacteristic leaf constructed according to fl9 . . . , /„. 

Now let s=2, the bicharacteristics of hx(h2) are incoming (outgoing) and 
{{hl9 A2}

2
9/}<0 where / is a boundary symbol. Then WF may come into Q along 
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the bicharacteristic of h-y or along the boundary bicharacteristic of / . It is not 
known whether WF may really come along the boundary bicharacteristic. 

Finally, let g be a polynom of the 2 degree with respect to £l9 Z—{g—Hg=Q) 
is involutive C°°-variety, T ^ K e r F(g)9 Im F(Q)n {aCd/d£+ßHXj}=09 X be 
bicharacteristically strictly convex in the neighbourhood of Q9 J"XQ n Char P^'""1^ n Z 
consist of one point Q. Then the influence set for Q will be that for $ constructed 
in the free space intersected with P*Z. This result allows us to describe the propaga
tion of WF's for the systems with constant coefficients in strictly convex domains 
such that the polynom g(g9 Q has not more than one multiple root and its mul
tiplicity is equal to 2. 

3. For a wave equation in cylindrical domains with respect to x0 we have obtained 
more precise results. If the boundary operator B meets the Sapiro-Lopatinskii 
condition and Y9 the boundary is not degenerated then WF's propagate along 
generalised billiards containing both pieces of bicharacteristics and boundary 
bicharacteristics. Here such effects are possible as the entrance of WF's into the 
boundary and their exit from it. 

If the Sapiro-Lopatinskii condition is violated then the mixed problem is, generally 
speaking, incorrect and one should use not the energetic method but the pseudo-
convexity method. Let P= —Dl^-^ D)9 B=D„+\i9 Dn = — idfdn, n be a unit 
normal to Y9 \i be a classical 1 st order pdo on Y. Then out of Z=Char PnT* Y 
the study of the propagation of WF's is reduced to that for some /^-equations 
on Y. Let us discuss the propagation of WF's near Z9 more precisely near 
A = {Q£T*Y9 D=v=a=0} where the Sapiro-Lopatinskii condition is violated. 
If f0{P, 0-}>O, {P, v}<0 then WF's propagate as before along generalised bil
liards. Let cr=0, {P, v}<0; then WF's propagate along generalised billiards 
into which however new boundary pieces-bicharacteristics of the symbol 
(— ]/— Psign^0+v) are being involved. Let v=0 (then B is dissipative but not 
strictly dissipative), {P, cr}^0. Then WF's propagate along generalised billiards 
containing also boundary pieces-bicharacteristics of the symbol (fp+o). 

For a two-dimensional wave equation we have managed to study the propagation 
of WF's in regions having angular points with angles other than 0, n9 2% whose 
smooth pieces of boundary are not degenerated. Let Pu=09 u\Y=0. Then WF's 
propagate along generalised billiards containing pieces of bicharacteristics; in 
corners these billiards may reflect from sides or simply continue, or they may diffract 
as well. When diffracting the smoothness of the solutions increases by 1/2. 
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Algebraic Curves of Infinite Genus Arising 
in the Theory of Nonlinear Waves 

H. P. McKean* 

1. Introduction. The study of nonlinear waves on the circle leads naturally to very 
special classes of algebraic curves of infinite genus g=<*>. § 2 describes the general 
scheme whereby the original flow is converted into a straight-line motion at constant 
speed on the Jacobi variety of the curve. §§ 3-5 describe how the scheme is applied 
to three examples: (1) Korteweg-de Vries dq/dt=3qdqldx-(l/2)d*q/dx*; (2) 
sine-Gordon d2qldt2~d2q/dx2+sinq=0; and (3) Boussinesq d2q/dt2= 
(d2/dx2)(q2+d2q/dx2). (1) is completely understood; see Dubrovin-Novikoff [4], 
Its-Matveev [12], McKean-van Moerbeke [16], and Novikoff [23] for g< °°, and 
McKean-Trubowitz [17] and [18] for g=°°. (2) is discussed for g<=°° in JVIcKean 
[19]; g=°° offers difficulties not yet overcome. (3) is in a very primitive state: see 
Zakharov [24] and McKean [14]. The purpose of this talk is two-fold: (a) to describe 
the state of the art, and (b) to try to interest geometers in these particular curves 
and their Jacobi varieties. It seems too difficult at the present time to form any very 
general conception of curves of infinite degree or of varieties in an infinite number 
of dimensions. It is my hope that the present curves and Jacobi varieties may be 
sufficiently manageable as to provide some hints in that direction; see §6. I must 
not neglect to mention the existing literature on curves of infinite genus : Ahlfors-
Sario [2] is for general reference. I cite, particularly, Heins [6], Hornich [8]-[ll]; 
Myrberg [20]-[22] ; and Accola [1] as being very close to the concerns of § 6. 

* The work presented in this paper was carried out at the Courant Institute of Mathematical 
Sciences under grant No. NSF—MCS76—07039 of the National Science Foundation of the United 
States. 
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However, with the exception of Hornich who studied the curve i)2=cosl, it 
is my belief that the curves envisaged are not sufficiently special as to be really 
algebraic, though, naturally, I must leave vague the actual meaning of this phrase. 

2. Multiplier curves. The nonlinear wave equations I have in mind may be 
expressed in the form1 Q'=[Q,K]9 in which Q is, e.g., a differential operator of 
degree 1 with 2X2 infinitely differentiable matrices as coefficients, and K is a skew-
symmetrical operator of the same type. This fact has the consequence that the flow 
of Q is isospectral9 meaning that it preserves the spectra of Q determined by 
fixing a number w^O, °° and solving Qf—Xf in the class of vectorial functions 
/ : [0, 1)->C2 müxf(x+l)=mf(x). The matter can be described alternatively as fol
lows: Let M(\) be the (2X2) elementary solution of Qf=Xf evaluated at x=l9 

i.e., the monodromy matrix of Q. The possible values of the multiplier m for fixed X 
are the roots of det [M(l)—mI]—0. The vanishing of the determinant suggests loo
king at m as a several-valued function of X; in fact, it defines a curve 9ft, with points 
n = (2, m)9 usually of infinite genus and with numerous singularities. The desingula-
rization ft of 9ft is the so-called multiplier curve of Q9 and isospectrality requires 
that it is preserved by the flow. The fiber Q of the map Q-+R is the isospectral class 
of Q. The experience is that 9ft can be recovered from ft so that no information is 
lost by desingularization. The next ingredient of the recipe is a correspondence bet
ween Q and a divisor of ft of degree h closely related to the genus g of ft. The 
divisor comprises those points p = (A, m) of ft such that, e.g., M12(\) vanishes. The 
divisor p, (i=l9..., h) so produced is now mapped over to the Jacobi variety of ft. 
This involves a careful choice of differentials co of the first kind [DFK]. Then the sum 

5* 
f & = 2 f œ = x(4 

n 7 = 1 n_ 

# 
with base points o, ( i=l , . . . , h) selected so as to control the tail of the sum and 
paths o/p/ (z = 1, ..., h) not winding too much on ft, is viewed as an element of the 
dual space (DFK)' of DFK and construed modulo the lattice L of images of 
closed paths. The divisor is mapped thereby into the Jacobi variety 3=(DFK)'/A 
and the experience is that if this recipe can actually be carried out, the image in 
3 of the flow Q'=[Q, K] will be a straight line traversed at constant speed. The 
map S-*3 is not always 1:1. The experience is that (a) the cotangent bundle of 
Q is spanned by the vector fields X: Q-+J(dH/dQ)9 in which the Hamiltonian 
H is a convenient multiple of sp M(1), dH/dQ is the gradient in function space, and 
/ is a skew-symmetrical operator; (b) the different values of H employed are 
involutive relative to a symplectic structure associated with J so that the correspond
ing flows Q*=J(dH/dQ) commute; and (c) the map to the Jacobi variety converts 

--d/dt. 
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the flows into straight-line motions at constant speed; in particular, the original 
flow Q=[ß, K] is seen to be integrable in the sense of the Hamilton-Jacobi theory. 

3. The Korteweg-de Vries equation. The equation is dq/dt=3q dq/dx - (1/2) d2q/dx3. 
This may be put in (nonclassical) Hamiltonian form as q'=D(dH2/dq) with the 
Hamiltonian 

H2 = J [(\l2)q" + (mWf\àx. 
o 

The symplectic structure is derived from the skew-symmetric operator J=D9 the 
associated (nonclassical) symplectic 2-form being o)[d/dq(x)9d/dq(y)]=±(l/2) 
according as x<y or not. 

The associated differential operator2 Q is the Hill's operator — D2+q(x)9 the 
expression of the flow by commutators being Q'—[Q,K2] with K2=2D3— 
(3/2)(qD-\-Dq). The multiplier curve 9ft; m2—2Am+l=0 is defined by a single 
transcendental integral function A of order 1/2 and type 1 : the so-called3 discrimi
nant of g, alias 1/2 the spur of its monodromy matrix M(l). The roots of A = + l 
[—1] determine the periodic [anti-periodic] spectrum of Q: the ground state X0 is 
simple and periodic, while the remainder of the spectra comes in alternately anti-
periodic and periodic pairs X2j-x^X2j (j=l9 2, ...) tending to +°o5 the equality 
X2j-1=X2J signifying a 2-dimensional eigenspace. The multiplier curve \in = 
A ± j/yd2 — 1] exhibits simple ramifications over the simple spectra, plus double points 
over the double spectra. The existence of double spectra is exceptional, and I leave 
this possibility out, so that ft=9ft is a nonsingular hyperelliptic curve with infinitely 
many branch points accumulating to °°, which must also be considered to be ramified. 
The ramifications are well controlled by virtue of the expansion X2J_l9 X2j = 
j2n2+c0+c1j~

2+c2j~*+...; in particular, the length of the so-called lacuna 
[X2j-l9X2j] vanishes rapidly as ji°o9 so that, while ft has an infinite number 
of handles [g=°°], the distant ones are placed in a very special way and, besides, 
are very small, i.e., ft is doing its best to be compact. The divisor is now formed 
from the points p=(A, m) of ft for which Q has an eigenfunction, with eigen
value X and multiplier m9 vanishing at x=09 and it is a fact due to Borg [3] that the 
map from Q to the divisor so produced is 1: 1. The location of the divisor is very 
precise: it contains just one point pf on the circle of ft covering the lacuna [X2i_l9 X2i] 
(i=l929 ...), so that the degree of the divisor is precisely h=g=°°. The choice of 
DFK is more technical: what works well is the class of differentials co = 
(p(X)dX/yA2(X) - 1 with integral q> of (a) order 1/2 and (b) type < 1 , such lhat (c) 
(p(X*)={q>(X)]*9(à) f~\(p(X)\2Xs/2dX^°o, and (e) the values of <p(X) in the lacuna 
[X2j-l9 X2J] vanish rapidly as jt°°. Then the recipe 

oo Vi 

Q-^Vi 0 = 1,2, ...)-+2 j co = x(o) 
' L °t 

2 D=d/dx. 
8 A is actually 1/2 the conventional discriminant. 
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with base points ot covering /L2£-i (/=1,29...) maps the isospectral class Q 1:1 
onto the, so to say, real part of the Jacobi variety 3 of ft and straightens out the 
flows, as advertised in §2. The details may be found in McKean-Trubowitz [17] 
and [18]. 

4. The sine-Gordon equation. This is more complicated: d2q/dt2 — d2q/dxz + 
sin (7=0 is equivalent to the system q'=p9 pm—q" — sin q. This is already in (clas
sical) Hamiltonian form (qm

9p
t)=J(dH2jdq9dH2jdp) with -/=(_J J) and 

H% = f [(l/2)pH(l/2)(?')2-cos q] dx. 
o 

The associated symplectic form is the classical JJ dq A dp. Faddeev-Takhtadzhyan-
Zakharov [5] introduced the associated differential operator 

o~(óSM2Ó) 

the flow being expressed by commutators as Q'=[Q9 K2] with 

K* = [ 0 / J ^ - 2 ! ^ , / 0 J-
The 4-dimensional problem Qf=Xf reduces to a 2-dimensional one: 
(-JD+A+B2jX)f=Xf. The multiplier curve 9ft is defined by m2-2Am + l = 09 

as before, A being 1/2 the spur of the monodromy matrix of the reduced problem. 
A is integral in the punctured plane C—0 and of exponentual type 1 [1/16] in the 
vicinity of °° [0]. The ramifications and singularities of 9ft are specified by the 
roots of A = ±l9 as before, only now these come in quartets of simple roots 
±a±Y— \b(a9 b^O) or pairs of double roots ±a (a^O) over which lie, respectively, 
the simple ramifications and double points of 9ft; it is also possible to have a quartet 
of simple or a pair of double imaginary roots, but I will ignore this possibility. The 
roots now accumulate both to o° [a~nn9 b=o(l)] and to 0 [a~l/16nn9 b=o(l)]. 
The desingularized curve ft is of genus g=2n—l9 « being the number of quartets 
of simple roots. The chief complication arises from the fact that the projection of 
the divisor is not so precisely located as before. The divisor contains a point p for 
each pair a±^—\b and a point - n for the reflected pair — a±i — \b9 these 
being trapped at ±a if è=0, i.e., if the root is double, so that the degree of the 
active part of the divisor is h=2n=g+l. Now it is unfortunate that the projections 
of the active points of the divisor do not move along preassigned \-dimensional loci, 
such as the lacunae of§ 3, under, e.g., translation or the flow Q' — [Q, K2]\ indeed, it 
can be proved that if a single active point of the divisor projects onto a fixed curve, 
then g= 1. This raises technical difficulties in the choice of DFK which I have not 

file:///-dimensional
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overcome for g=°°9 though I can prove that if g<°°, then the isospectral class is 
a g-dimensional real torus and that the map into the Jacobi variety is 2:1 and straight
ens out the flow. The case of the sinh-Gordon equation d2q/dt2—d2q/dx2+shq=0 
is simpler. Now the ramifications of ft come in real pairs and their reflections, 
and the projections of the points of the divisor are confined to the intervening 
lacunae, as in § 3. This simplification enables a complete working out of the infinite 
genus case closely parallel to the results reported in § 3; see McKean [15]. 

DFK is now the class of differentials co = cp(X)(A2 — l)~1/2dX/X9 much as before, 
where cp is entire of exponential type (a) 1 at °° and (b) 1/16 at 0, such that (c) 
cp(X*)=[cp(X)Y9 (à) ftlX-2\(p(X)\2dX+(fzl + fï)\(p(X)\2dX<~9 and (e) the values 
of <p(X) in the lacunae vanish rapidly upon nearing 0 or oo. The 2 :1 character of 
the mapping to the Jacobi variety suggests some connection with Prym varieties, 
but I have not looked into that. 

5. Boussinesq's equation. The equation is taken in the form 

d2q/dt2 = (d2/dx2)[(4/3)q2+(l/3)d2q/dx2]. 

The Hamiltonian form is (q-9p-)=J(dH2/dq9dH2/dp) with J=(% °) and Hamil
tonian 

H, = f [(l/2)pH(4/9)^+(l/6)(^')2]^. 
0 

The associated differential operator introduced by Zakharov [24] is Q= — DB+qD + 
Dq+p9 the flow being expressed by commutators as Q'=[Q9K2] with K2= 
—D2+(4/3)#. The multiplier curve 9ft is now defined by the cubic m3—3Am2-\-
34+/77 + l=0, in which A is 1/3 the spur of the 3X3 monodromy matrix of g, 
while J1" is the same thing for ß t=the dual of Q. 9ft is ramified or has a 
singular point over the simple [double or triple] roots of the discriminant of the 
cubic. The latter is an integral function of order 1/3 and type 1 with roots ~ &n3n*/3 ]/3 
(/7-^±oo), These far roots are always real and are either double or come in simple 
pairs ; in addition, 9ft may have an indefinitely large number of triple points. 
9ft is no longer a 2-sheeted but rather a 3-sheeted covering of the complex line, and 
very little is proved about it even if g< °°. The function theory for g< oo may be 
found in Hensel-Landsberg [7]. The papers of Zakharov [24] and McKean [14] 
contain a little preliminary information. 

6. Questions of function theory. The present section is devoted to function-theoretical 
questions raised by the examples of §§ 3-5. 

DFK. The proper choice of DFK was explained in the Korteweg-de Vries 
case [§ 3]. This class is not the same as the differentials of the first kind with 
— ]/— 1 / co A co*<oo, though it is closely related. The following desiderata are em
phasized: (a) the map from divisors into 3=(DFK)' modulo periods should be locally 
1:1 or close to that; and (b) (DFK)' should be so large as to contain the images of 
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the interesting cotangent vectors to O, e.g., the image of qm = 3qq'—(ll2)q'". This 
all works out nicely in the case of § 3 for divisors pt (i^g=oo) in real position, 
i.e., with projections falling in the lacunae, and gives rise to an isomorphism between 
the isospectral class Q and the so-called real part of the Jacobi variety 3> the latter 
being a highly compact (g= oo)-dimensional real torus. The same can be said about 
the sinh-Gordon equation of §4: everything works out nicely except that the map 
from Q to 3 is now 2:1 which is not so nice. 

Complex Jacobi variety. The complex Jacobi variety awaits investigation : for the 
case of §3, it is always unbounded if g=°°. The Mathieu case [q(x)=co&2iix'\ 
is probably a nice example to begin with; see McKean-Trubowitz [18] for more 
information. 

The function field. The proper class of meromorphic functions on K is not yet 
settled: for the case of § 3, the cheap half of Abel's theorem, stating that for the 
roots c\t (i=\9 ...9n) and poles n, (? = 15 ..., n) of a meromorphic function. x(co) = 
2i=ifli(0 *s a Peri°d> is discussed in McKean-Trubowitz [18] but the converse 
is left open. 

Riemann-Roch. The theorem of Riemann-Roch is also open. The only aspect 
which is nailed down is that, in the case of § 3, every differential of the first kind 
with a root of finite multiplicity 2m at oo has 2g—2—2m additional finite roots 
on ft in a very special and precise sense, i.e., it has 2g—2 roots in all. m from DFK 
can have a root of infinite multiplicity at oo and not vanish identically, but that is 
not possible if, e.g.9 the lacunae vanish exponentially fast: X2j — X2j_1^ a exp(-bj) 
(y'foo); see McKean-Trubowitz [18]. The most elementary difficulty about Riemann-
Roch is that all the dimensions and/or codimensions involved may be infinite, and 
it is unclear how to rephrase the statement to give it a sufficiently precise content 
as to be useful. 

The theta function. The Jacobi variety of § 3 has a nice theta function © in in
finitely many variables; in particular, the Riemann period relations, upon which 
the quadratic form in the G-sum depends for its positivity, hold, and 0 itself 
satisfies a Riemann-type vanishing theorem. © plays an important role in inverting 
the map ö-*3 ; see Its-Matveev [12] for g-<oo and McKean-Trubowitz [18] for 
g=oo. The existence of such a theta function for the examples of §§4-5 awaits 
investigation. 

3 eis a variety. The Jacobi variety of § 3 may be expressed as the intersection of 
a countable number of quartics4; it also carries a sufficient number of theta functions 
to embed it, in the manner of Lefschetz, into an oo-dimensional projective space, 
so it seems to be doing as well as it can to be a variety, naturally, I leave the meaning 
vague. 

4 Moser-Trubowitz [191. 
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Singularities of Solutions to Boundary 
Value Problems 

Richard B. Melrose 

In this talk some of the recent results on the behavior of the singularities of boundary value 
problems are reviewed in a somewhat more general setting than is usual. 

We shall introduce a space of pseudodifferential operators which is coordinate 
free on M9 a given manifold with boundary. 

First, for Z=R+XR"9 the elements of L$(Z) are maps 

(1) Au = (2n)-n-1fff e^x~x,)^i{y-y,)^a(x9y9x\y\x^n)u(x\y)dx,dy,d^dn 
o 

where a(x9 y9 x\ y'9 X9 ^)6*S""(ZXZXÄH+1) is a properly supported symbol. The 
important point to note here is the form of the ^-dependence of the symbol ä= 
a(x9y9x\y\x£>9n) in (1)—only through the product x£>. The operators in L™(Z) 
enjoy many of the properties of pseudodifferential operators on closed manifolds. 
As oscillatory integrals they map the space é'(Z) of distributions supported by 
Z into @'(Z)9 the space of distributions extendible from Z to JR"+1, and reduce 
to the usual type of pseudodifferential operator away from the boundary. Most 
importantly for the applications to boundary value problems, the elements of L™(Z) 
preserve regularity in the normal variable: 

(2) A : C°°(R+ ; ®'(R1)) -> C°°(R+ ; @'(R% 

in the sense that Au\z extends to be in C°°(R+9 @'(Rn)) and if aÇ.S~°° is properly 
supported, then a(z9Dz)C°°(R+'9 ^(R!i))ciC00(Z). We shall denote by a(z9D2) = 
a(x9y9xDx9Dy) the operator with symbol ä in (1), where z=(x9y). 
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(3) DEFINITION. Let ^(Z)cCc°°(fi+; <T(Ä")) u (T(Z) be the subspace of those 
distributions u for which there exist ö9 £>0 suchthat if a(x9 y9X9n)=0 when 
|A |<(1 + |JJ|)/5 then ä(z9D2)u€C°°([09 e)XRn); we denote by J^(Z) the subspace 
of those distributions locally in Jfc(Z). 

(4) THEOREM. L'P(Z) acts on Jf(Z) as a filtered ring of operators with complete 
symbol map, <rF9 satisfying the usual symbol calculus. Jf(Z)9 and L™(Z) acting 
upon it, are coordinate-free so L™(M)9 acting on Jf(M)9 is well defined for any 
paracompact manifold M. If A£.L™(M) and u£Jf(M) then Au\dM—(dA)(u\dM) 
(mod C°°(dM)) where dA£Lm(dM) is a properly supported pseudodifferential ope
rator with principal symbol satisfying 

(I*)* vm(dA) = &(A)\dT*M9 ?dT*M - T*0M 

being the natural projection. 

For distributions uÇ.Jf(M) we introduce an invariant notion of wavefront set 
(used in special cases in [1], [2], [11]). Put 5M=T*M\0ur*<9M\0, with topology 
given by the identification map /*: dT*M-+T*dM. The symbol S JA) of A£L$(M) 
is well defined (and continuous) on RM; we define Z(A) = {Q£BM; om(A)(o) = 0} 
and say that A is elliptic outside this characteristic set. Then, set 

(5) WFft (w) = f]{I(A);Ae L? (M) and Au <E C°° (M)} c BM. 

From Definition 3, in local coordinates, WFò(w) is always contained in a cone of the 
form {(x9 y9 £, ij); if 0< :K<S then |É|<[rç|/#fi for some e>0}. The usual results 
on wavefront sets hold, WFb(u)\^A)czWFb(Au)c:1WFb(u)9 WFb(u) = & exactly 
when ueC°°(M) and moreover, WF(Au\BM)c:yNFh(ji)nT*dM. 

If P£Diïïk(M) is a differential operator of order k on M and x£C°°(M) 
vanishes simply on dM then xkP£Lk(M). This suggests the following notion of 
a characteristic boundary for these pseudodifferential operators. 

(6) DEFINITION. A£Lp
l(M) is said to be characteristic of (exactly) order k 

at Q£T*dM\0 if, in any local coordinates at Q = (y°9rj°)9 aF(A)=[ä] with 
a(x9 y9 X9 n)eSm(ZXJRn+1) satisfying dr

xd^ra(09 y9 0, n) = 0 near Q if / < /c, 
d\a(09y°9 0 ,^)^0. 

We shall give results below for operators of this type. Of course, if P€Difffc(M) 
and dM is non-characteristic for P, then xkP£LP(M) is characteristic of order 
k at all boundary points. To complete the connection between the differential 
boundary value problems usually considered and the pseudodifferential problems 
discussed here we note the following extension of a well-known theorem of Peetre 
(see Hörmander [5, Corollary 4.3.1]). 

(7) THEOREM. If P6Difffc(M) is noncharacteristic on N*(dM) and u^(M) 
is such that Pu^Jf(M) then u^Jr(M). 
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From now on, for simplicity, we shall consider only classical operators, the ring 
L'cl(M)c:LP(M) of those A for which the symbols aeSm(ZXZXRn+1) defining 
A in local coordinates have complete asymptotic expansions with integral steps 
in order. Thus, A£L"[(M) has a homogeneous principal symbol am€§m. We 
shall suppose that 

(8) am is real and dam9 a are linearly independent on am=0. 

If A is characteristic of order k at g£T'*dM\09 then the polynomial 

ad>k(y, n; 0 = 2Hdk^'am(09 y9 0, n)&/dla(09 y9 0, n) 

is easily seen to be well defined in z*_1(y) n T*M\N*dM9 for y a conic neighborhood 
of Q in T*dM\0. We shall further suppose 

(9) ad*k has simple zeros, except possibly for one double zero, in I*-1(Q)®C. 

Assuming, as we may, that (9) holds for all Q'£y9 let G'adT*Mbt the set of double 
zeros (all real), in i*"1^). We assume that 

(10) ab>k
9 a are linearly independent on TJdT*Mn {ad>k = 0}) V/*€<?', 

the glancing surface G=i*G' is then a conic hypersurface. 
We proceed to various results on the propagation of singularities for operators 

characteristic of order one or two; r' will always be a sufficiently small conic 
neighborhood of the base point Q£BM. Using factorization arguments, these results 
apply to A satisfying (8), (9), (10). 

(11) THEOREM. If AeL%(M) is characteristic of order 1 at Q£T*dM\0 and the 
boundary form ad'1=l; + e(y9n) has lme>0 then 

(WFb(u)\WFb(Au))nr = & V«G^(M); 
if lme<0 then 

(WFft(w)\WF604w)) nF = WF(u\dM) n P ' n T*dM\09 \/u£JT(M). 

When A is characteristic of order 1 at Q and (8) holds, the characteristic set 
1(A) czBM has a natural foliation by the (closure of the) integral curves of the 
Hamilton field H~ in T*M, the bicharacteristics, which are transversal to T*dM 
near Q. Hörmander's theorem [6] then extends as follows. 

(12) THEOREM. If A£L%(M) is characteristic of order 1 at Q€T*8M\0 and 
(8) holds then F' n(yfFb(u)\ytFb(Au))c: Z(A) is a union of maximal bicharacteristic 
segments with 

(WFb(u)\WFb(Au))nr'n T*dM = (WF(u\dM)\WFb(Au))nr'n T*dM 
forall u£jr(M). 

These two theorems are extensions of the results of Chazarain [2] and Lax-
Nirenberg [14], see also Lax [7]. 
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When AeL2
cì(M) satisfying (8) is characteristic of order 2 at Q£T*8M\0 and 

essentially so, i.e., Q£G9 and (10) holds, there is a symplectic curvature invariant 
at Q. To see this directly we note that A = CxzP where C£lPcX(M) is elliptic at Q9 

P is a differential-pseudodifferential operator in local coordinates, 

P = Dl+a(x9y9 Dy)Dx+b(x9y9 DJ9 a£C~{R+9 L\,(R!% btC~(R+; L^R»)) 

and the equivalence means that WFb(Au—Cx2Pu)nr'=$ for all u£jf(M). 
That Q=(y°9 if)£G means that the discriminant (a2—4b)(y°9 if)=0. Then n(y9rf) = 
dx(a

2—4b)(09 y9 if) is invariantly defined on G up to a nonvanishing smooth factor. 
The surface G is divided into the subsets Gd where n>0 (diffractive points or 
points of bicharacteristic concavity) Gg where %<0 (gliding points or points of 
bicharacteristic convexity) and Gh where x=0 (points of higher order bicharac
teristic tangency). Near Q£G we define the closed surface Zb(A)=(Z(A)nT*M)v 
(HuG)c:BM9 and note that the open subset Ib(A)\G has a natural 1-foliation 
by "broken bicharacteristics" obtained by joining the two bicharacteristics, one 
from each factor, through each point of H9 where the zeros of aB,z are real. 

(13) PROPOSITION. The broken Hamilton foliation of Ib(A)\G extends by conti
nuity to a l-foliation of I^A^G^, where G^ is the set of points of infinite order 
bicharacteristic tangency. 

The new curves added through the points of G can be locally free bicharacteristics, 
gliding rays (i.e., curves in the Hamilton foliation of G) or, at points of bicharacteristic 
inflexion, half one and half the other. Near (JM the obvious extension of Propo
sition 13 is not always valid (see Taylor [15] for the original example); there may 
not be a unique broken bicharacteristic through each point. Even so, by examining 
the differential equations satisfied by the broken bicharacteristics near G one can 
define, in a natural invariant way, generalized bicharacteristics, such that through 
each point of Ib(A) there is at least one such curve, with local uniqueness through 
points of I^Ä^G^. Moreover, if Q[-^Q in Ib(A) then for a subsequence k(ii)->• oo? 

the generalized bicharacteristic through g£(w) converges to a generalized bicharac
teristic through Q. 

(14) Open question. Is every compact segment of generalized bicharacteristic 
in Ib(A) the limit of a sequence of bicharacteristic segments completely within 

(15) THEOREM. If A£L^(M) is characteristic of order 2 at Q£T*8M\0 and 
(8)-(10) hold with Q£G then for all u£Jf(M)9 

r n (WFb(u)\(WFb(Au) u WF(u\dM)))czSb(A) 

is a union of maximally extended generalized bicharacteristics. 

This result, proved in nearly this generality in Melrose Sjöstrand [12], contains 
earlier results near Gd (Melrose [9], Taylor [15]) and GQ (Andersson-Melrose [1], 
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Eskin [3]), but is not quite as precise as Theorem 12 and the main significance of the 
question posed above is that its affirmative resolution would allow one to show 
Theorem 15, the "generalized Huygens principle", to be essentially optimal. To
gether, Theorems 11, 12 and 15 provide a reasonably complete description of the 
singularities of the solution to the Dirichlet problem for P a differential operator 
of second order (see [11]). 

Before proceeding to outline the proof of Theorem 15 we note that similar results 
are also available for a large class of other boundary conditions. (See Melrose-
Sjöstrand [15], and for results near Gd9 Taylor [16].) 

The main results, Theorems 11,12 and 15 can all be proved using a transformation 
theory based on the Fourier integral operator analogues of the pseudodifferential 
operators (1) (an outline of which is given in [11], see also [10]). This is the advantage 
of introducing the general operators of Theorem 4. The "normal forms" to which 
theoperator A can be reduced at (09if)£T*dZ97f=(09 ..., 0,1) are: for Theorem 11, 
following work of Friedlander [4] and Ludwig-Morawetz [8], x(Dx±iDy); for 
Theorem 12, xDx; near Gd9 x2(D2

x-xD2
yn+DyiDy); near Gg9 x2(D2

x+xD2
yn+byDy) 

and near Gh9x
2(D2

x+xa(x9y9Dy,9xDx)+DyDyj where y' = (y29 ..., jw). 
The last three forms occur in Theorem 15, the first two allow a constructive 

approach and the last direct energy estimation because of the differential nature of 
the dependence on )\—one can also arrange that da/dX vanishes to infinite order 
at x=0 so that a is actually a classical pseudodifferential operator vanishing to all 
orders at #=0 (cf. [1]). In reducing P microlocally to this form one has sufficient 
freedom in choice of the canonical transformation involved to place the "time" 
surfaces y1=const, so that global regularity from the energy esimates implies the 
microlocal regularity stated in Theorem 15. 
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Critical Points of Indefinite Functionals and Periodic 
Solutions of Differential Equations 

Paul H. Rabinowitz* 

We shall describe a method for finding periodic solutions for a class of differential 
equations. The underlying existence mechanism is provided by minimax theory from 
the calculus of variations. Thus the solutions are obtained as critical points of real 
valued functionals defined on an appropriate Hilbert space. These functionals are 
indefinite in a highly degenerate fashion as will be seen later. 

We begin with two examples illustrating some of the problems in which we are 
interested. First consider a boundary value problem for a semilinear wave equation: 

u1t-uxx+f(x9 u) = 09 0 < x < 19 

u(09t) = 0 = u(l9t)9 

where / is smooth and f(x9 0)=0. Then w=0 is a solution of (1). The problem 
we pose is are there nontrivial time periodic solutions of (1), i.e. so-called free 
vibrations. Since the period, T, of any such solution is a priori unknown, it is 
convenient to make the change of time variable t-^2nT~1t=X"1t. This trans
forms (1) to 

utt-X
2(uxx-f(x9 u)) = 0, 0 < x < l9 

u(09t) = 0 = u(l9t) 

and we now want a real number X ̂ 0 and a 2n periodic function u suchthat (X9u) 
satisfies (2). 

* This research was sponsored in part by the Office of Naval Research of the United States under 
Contract No. N00014-76-C-0300. 
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As a second and related example, consider a Hamiltonian system of ordinary 
differential equations : 

(3) i = SH.{z), / = ( i ~ o ) 

where p9q£R"9 z=(p9 q)9> denotes d/dt9 H:R2"-+R9 and J is the identity matrix 
in JR". Scaling time as with (1) leads to 

(4) i = XfHz(z) 

and we again seek a pair (X9 z) satisfying (4) where z is 2n periodic. In this setting, 
there are two further natural constraints which we can try to impose on our problem, 
namely either the energy H or the period T can be prescribed. Of course the same 
observation can be made about (2) but unlike (4), thus far the fixed energy problem 
has proved to be intractable for (2). 

The connection between (2) or (4) and the calculus of variations is that solutions 
of (2) or (4) can be obtained as critical points of corresponding functionals. For 
example if X is prescribed, formally solutions of (2) are critical points of 

(5) f [(p,q)R»-lH(z)]dt 
0 

where ( •, • )RJ denotes the usual Rj inner product. Likewise solutions of (2) are 
critical points of 

(6) 
2n I * 

/ f fc(ut-Pul)-PF(x9vy]dxdt 

where F(x9 r) = f[ f(x9 s) ds. Similar observations can be made for (4) if the energy 
is prescribed. E.g. if H(z(t)) = l9 then any critical point of the action integra 

2TC 

(7) A(z) = f(p,q)li»dt 
0 

subject to the constraint 
1 2TC 

(8) 1-fH(z)dt=l 
0 

and having a nonzero Lagrange multiplier X provides a nontrivial solution (X, z) 
of (4). 

All of the above functionals are indefinite in the following sense: if e.g. H and 
/ are smooth, (5), (6), and (7)-(8) are not bounded from above or from below. 
Indeed there are infinite dimensional submanifolds of any reasonable underlying 
function space on which each of these functionals is positive and on which it is 
negative. Moreover if f(x9 0)=0 or Hz(0)=09 the corresponding functional 
(5) or (6) possesses the trivial critical point, 0, which must be avoided in any existence 
proof. Hence finding a critical point for these variational problems is a subtle 
matter. We do not know a direct way in which to do this; instead we employ 
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a variant of the time honored recipe of replacing the given problem (in an infinite 
dimensional function space) by an approximate finite dimensional one, solving 
the new problem, and obtaining strong enough estimates for its solution so as to be 
able to pass to a limit to solve the original problem. 

Before describing our procedure more fully, we state an existence result for the 
fixed period problem for (3). We will present our method in this setting since it 
involves the smallest number of technicalities. 

THEOREM 9 [1]. Suppose H^C1(R?n
9R) and satisfies (HJ H(z)^0\ (H2) 

H(z)=o(\z\2) at z=0, and (H3) 0<H(z)*^Q(z9 Hz(z))R2n for large \z\ where 
06(0, ~). Then for any T>0, (3) possesses a nonconstant T periodic solution. 

REMARK 10. Integrating the inequality (H3) shows 

(11) H(z)^a1\z\1f°-ai 

for some constants al9 az>0. 

SKETCH OF THE PROOF OF THEOREM 9. (A complete proof of the theorem can be 
found in [1] or [2].) Let E=(W1'2(S1))2u

9 i.e. E is the Hilbert space of 2«-tuples 
of 2% periodic functions which together with their first derivatives are square 
integrable. We seek a solution of (4) in E. Our procedure essentially consists of 
five steps. However the fact that (H3) does not imply an upper bound for the rate 
at which H(z)-+°° as [z|-*°° creates technical problems which we bypass by adding 
a preliminary step 0° and final step 6° as indicated below. 

StepO0: Modify the problem. We replace H(z) by 

(12) HK(z) = X(\Z\)H(Z)+(ì-X(\Z\))Q(K)\Z\' 

where x(s) = l if s^K; =0 if s^K+l; ;e'<0 if s£(K9K+l)9 and Q(K) is 
a constant chosen so that (among other things) HK satisfies (H3) with a new constant 
0 independent of K. The choice of |z|4 in (12) is not crucial but the power of 
\z\ must be larger than two and small enough so that the argument of step 3° (c) 
below can be carried out. We now replace (4) by 

(4)* z = X/HKz(z) 
and (5) by 

271 

(5)K IK(Z) = J Kp, q)R» - MfK(z)] dt. 
0 

Step 1°: Make a finite dimensional approximation. Instead of seeking critical 
points of IK in E9 we do the same for IK in Em9 a finite dimensional subspace 
of E. Since E consists of 2/2-tuples of Fourier series, a natural choice for Em 

is a truncation thereof at order m. Then Em+1^Em and Um£NEm=E. 

Step 2°: Find a nontrivial critical point of the approximate problem. This is achieved 
via a minimax argument. Lack of space prohibits providing much detail here. 
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Therefore we will merely give a characterization of a positive critical value, cm9 

of IK\E . Let E+9E~9E° denote respectively the (Z,2 orthogonal) subspaces of 
Em on which A(z) is positive definite, negative definite, and null. Select any 
cp£E+\{0} and set Fm=.£-©£0espan {cp}. By (H3), R=R(m) can be chosen 
so that IK^0 outside the (IF) ball of radius R. If 

rm = {heC(BRnVm9Em)\h(z) = z if IK(z) < 0}, 
then 

(13) c « = Â n / ,eff%r J*(*(*)) 

is a positive critical value of IK\E . Let zw denote a corresponding critical point. 
The motivation behind (13) lies in the qualitative properties that IK possesses, 
in particular as provided by (H^-tHg). 

Step 3°: Estimates. Three types of estimates are obtained in a typical P.D.E. 
bootstrap fashion. One novelty is that the first estimate exploits (13) to get: 

(a) An upper bound for cm independent of m and K. This is obtained by 
choosing h(z)=z£rm and using the definitions of cm and Vm9 the form of IK9 

and (H,). 
(b) A weak bound for zm independent of m and K. Here we mean an upper 

bound for \[[zm9HKz(zìì))R2nlLl independent of m and K. This estimate follows 
from the fact that l^(zm)zm=0 (where I'K denotes the Frechet derivative of IK)9 

(a), and the choice of Q(K). 
(c) A bound for \\zm\\E independent of m. It is at this point that the replacement 

of (4) by (4)K is crucial for otherwise we do not know how to get (c) from (b). The 
form of HK and (b) give an m independent but K dependent bound for ||zJ|L4. 
Then (4)K projected on Em with z=zm combined with the L4 bound and an 
interpolation argument using the Gagliardo-Nirenberg inequality yields the bound 
for \\zm\\E. 

Step 4°: Pass to a limit. The bounds on \\zm\\E imply, via standard compactness 
and simple regularity arguments, that a subsequence of zm converges to zK9 a 
solution of (4)K. 

Step 5°: Show the solution is nontrivial. This is achieved by a comparison argument. 
By (HJO and the definition of (H^), for all s>0 and z£R2n

9 

HK(z)^8\z\2+Ae\z\*^GK(z) 

where Az is a constant depending on s and K. Therefore 

hi*) » f KP, q)R»-XGK(z)] dt = JK(Z) 
0 

for all z£E. Arguing as in 2° yields a critical value bm of JK\E with correspond
ing critical point wM and such that 0^bm^cm. If ẑ -EEConstant, then cm-+cK= 
Ifc(zK)=0. Hence £w->0 and by an easy argument, ||w>J|jj-*0. However an analysis 
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of (4)^ with H replaced by G shows ||wj|£ is bounded away from 0. Hence 
zK is a nontrivial solution of (4)^. 

Step 6°: Solve the original problem. It suffices to obtain a bound for HzjJ^.. 
independent of K for then HK(zK)=H(zK) for large K. By (H3), 

(14) HK(z) ^ 6(z9 HKz(z))R*n+a*. 

Integrating (14) over [0, 2K] with z=zK9 using 3°(b), the fact that HK(zK)~ 
constant since (4)^ is a Hamiltonian system, and (11), the desired estimate follows 
and the proof is complete. 

Essentially the same procedure can be used to obtain existence theorems for (1). 
A more complicated modification is needed in step 0° and of course the estimates 
involved are considerably more intricate especially in 3° and 6°. The direct analogue 
of Theorem 9 for (1) (with f=f(u)) is: 

THEOREM 15 [3]. Let f£C(R9 R) and satisfy (fyfis strictly monotonically increasing 
and /(0)=0, (f2)/(r)=0(M) at r=®> and (f3) 0<F(r)*zOrf(r) for large \r\ where 
0€(O, y). Then for any T which is a rational multiple of I, (1) has a nontrivial 
classical T periodic solution. 

The reason for the restriction 77~16Q *s that in the course of the proof we invert 
the linear wave operator in the class of functions satisfying the periodicity and 
boundary conditions. If Tl~1£Q9 this operator has a compact inverse on the ortho
gonal complement of its null space while if 77"1 $ Q9 one gets involved in small 
divisor problems which we do not know how to handle. There are versions of 
Theorems 9 and 15 which cover cases where H or f depend explicitly on / in 
a T periodic fashion. 

Modifications of our procedures also suffice to treat (3) in the fixed energy setting. 
A major change is required in step 2° since we now consider a functional subject 
to a constraint. The new minimax argument relies heavily on the index theory intro
duced in [4] by Fadell and the author. To illustrate our results for this case we have: 

THEOREM 17 [1]. Suppose HeC1(R2n
9R) with #_1(1) a manifold diffeomorphic 

to S2""1 under radial projection. Then (3) possesses a periodic solution on H"1^). 

REMARK 18. A proof of Theorem 17 for H _1(1) convex has been given by A. Wein
stein [5] using arguments from differential geometry. The theorem can also be 
obtained as a simple consequence of Theorem 9 [2]. Other variants of Theorems 9 
and 17 can be found in [2] and [6]. 

Much work remains to be done on these problems especially for (1) and its higher 
dimensional analogues. 
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Eigenvalues for Hypoelliptic Operators 
and Related Methods 

Johannes Sjöstrand 

If one wants to study a pseudodifferential operator P it is often useful to try 
to construct the exponential exp (—tP). For instance, if P is of order 1 with real 
principal symbol on a compact manifold, then for t£R9 exp(-itP) is a Fourier 
integral operator, and when P is elliptic and selfadjoint, one can get the asymptotic 
distribution of eigenvalues by studying the trace for small t (Hörrnander [3]). When 
P is of real principal type microlocal paramétrées can be obtained formally as 
±ift°°exp(±itP)dt. 

When P is of order 1 with complex principal symbol p9 it is still possible to 
construct exp(—tP) for *>•(), by using Fourier integral operators with complex 
phase, provided that Re/?s>0 (Kucherenko [5], Maslov [7], Melin-Sjöstrand [9]). 
If in addition P is of principal type, a microlocal parametrix may be obtained as 
f*°° exp (—tP) dt ([6], [9]). In the note [6], Kucherenko also states some results 
when P is no more of principal type, then the singularities of exp (—tP) may be 
stationary and the behaviour when t-+ + <*> has to be studied carefully, in order to 
define the integral. Naturally the subprincipal symbol of P now plays an essential 
role. See also Helffer [2]. The same difficulty is encountered already in the construc
tion of exp(—tP) for small t9 when P is of order >1 and we shall discuss 
such a situation for a selfadjoint operator. Most of the following is joint work 
with A. Menikoff [10], [11], [14]. (See also Metivier [12] and Bolley-Camus-Pham [1] 
for related results.) 

Let I bea compact manifold of dimension n. All inner products and L2-norms 
will be defined using some fixed positive smooth density on X. Let ? bea classical 
pseudodifferential operator of order w>l , whose symbol in local coordinates 
can be written ~pm(x> Ö+AH-i(*> £) + •••> where pm_j is homogeneous of degree 
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m—j. We shall always assume that p=pm^0 and that P is formally self-adjoint. 
Next after the elliptic case, the simplest possibility is that P is hypoelliptic with 
loss of 1 derivative. We also want P to be semibounded: 

(Pu9u) > -C||w||2, u£C°°(X). 

It follows from Melin [8] and Hörmander [4], that these two properties hold if and 
only if 

Sp+—tr>0 on p-1(0). 

Here SP=pm^1—(2i)'~1^ld
2pldxJd^j is the subprincipal symbol and tr =J£/i/, 

where fij^O and ±i/ij are the nonvanishing eigenvalues of the Hamilton matrix 
of p (which is defined as the matrix of the linearization of the Hamilton field at 
/>-x(0)). 

Under this assumption P becomes a self-adjoint operator on L2(X) with domain 
[u£L2; PuÇ.L2}9 and the spectrum is discrete and bounded from below. Let N(X) 
be the number of eigenvalues ^X. 

In the case when l=p~1(0) is a submanifold and p vanishes precisely to the 
second order on E (i.e., C~1d2^p^Cdl locally if dx is the distance to E in 
some Riemannian metric), we have obtained the following result ([10], [11]). 

THEOREM 1. Let fc=codim E: 

(1°) If mk-2n>09 N(X) = (l + o(l))C1^ ,"5 A - + oo, 

(2°) If mk-2n = 0, N(X) = (l + o(l))C2A"/mlog^ X -* + ~, 

(3°) / / ro/c-2n<0, N(X) = (l + o(l))C8A("-*^0"-1), X - + 00. 

Here Ct is the same constant as in the elliptic case, C2 can be expressed as the 
integral over the image of E in S*X of a certain density which only depends on p. 
Cs also depends on the subprincipal symbol: 

Ca = _ fç-fti/g+gprc & m(dO') 
(2n)n-V2r((n-k/2)/(m-l)+ï) J " ( l -* -*)® 1 ™ * 

Here co(d6') is the invariant density on E9 defined as (detp^i)"112 dO' in local 
coordinates 0=(0'90") suchthat E is given by 0"=O and dd=dxdÇ. In all 
three cases N(X) and 

/ dxdÇ 

are of the same order of magnitude. Hörmander suggested to us to express the 
theorem in a unified way by using some modification of the measure dx dÇ. 

This way of formulating the result becomes important when we drop the assumption 
that />-1(0) should be a manifold and we shall now consider this case. Consider 
for simplicity S*X as a submanifold of T*X\0 and fix a Riemannian metric on 
S*X. Let (xQ9 £0) be a point where p vanishes and let k be the rank of p" at 



Eigenvalues for Hypoelliptic Operators 799 

(x09 £0). Let ö be the smallest non-vanishing eigenvalue of p//(x09 £0) and choose 
e>0, £«54. Choose a fc-dimensional foliation g of £*X in an ^neighbourhood 
of (xQ9ÇQ)9 such that the leaf through (x09Ç0) is orthogonal to kcTpff(x09 ^0). 
We extend g by homogeneity to a fc-dimensional foliation in T^XXO and write 
p=pa+qQ, where <7fl is constant on each leaf and pQ^0 and vanishes at precisely 
one point on each leaf. The set where pQ vanishes is a submanifold EQ of codimen
sion k. Choose local coordinates (r96)=(r90'90") such that r is homogeneous 
of degree 1 and equal to 1 on S*X9 0 is homogeneous of degree 0, (r9 6') is constant 
on each leaf of g and pQ=rm0"2. Write k=2d or k=2d+l and let ±/>/(r, 0'), 
l*^j*szd9 be the eigenvalues of the Hamilton matrix of pq on EQ arranged so that 
O « ^ ! ^ . . . ^ / ^ . (If there are fewer than 2d nonvanishing eigenvalues, we allow 
some of the ji/s to be 0.) Write 0"=(9"9..., Q'£) and define the map y by 
y(r9 0'9 9")=(r9 8'9 0"), where (ö^_19 ö^)=Cj(r9 0)(0^._1, 0j), 1 <=/<* and 
^rf+i—^d+i ^ ^ *s °^d. Here c~l when ixj(r90

,)=0 and otherwise the non-
negative number such that rm(ö^f_1-\-8^f)=^kjpj(r9Q

/)9 where fc, is the integer 
defined by 

kjßj(r9 0') « ^ ( 0 ^ + 0 $ < (fc,+ l )^(r , 00-

Now define the measure QQR to be dxdÇ in the region rm0"2^Rrm~1 and to be 
the direct image of dxd£ under y in the region i^O^^Rr™"1. (The measure 
also depends somewhat on the choice of the coordinates 0".) For a>0 (small) 
we can finally define a measure QaR on T*Z\0 (nonunique) by piecing together 
dxd£ outside p~H0) with various local measures as above: &QtR9 l^j^M9 

by means of a partition of unity. Each measure OflfÄ is here defined in a conic 
^-neighbourhood of some point (Xj.C^Cp^O) and Sj^a. 

THEOREM 2 [14]. Under the assumption (1) : 

N(X) = (l + 0(a3/8" + l/i*)) jf QatR(dxdO, X - + 00. 
J>+Sp+tr/2=e;i 

Here iSp+^ir is defined outside p"1^) to be some continuous homogeneous 
extension of degree m — \. 

REMARK 3. N(X) and fp+\ç\m-imdxdÇ are still of the same order of magnitude. 
The term a3/8n is certainly not the smallest possible. 

In the proof we first want to construct exp (— tP) by solving at least approximately 

\-^+p}v(t9x) = 09 t^09 

v(09x) = u(x). 

In local coordinates we try the "Fourier integral operator" 

v(t9x) = AMx)=fei^x^a(t9x9n)û(n)dn/(2n)\ 
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where the phase should satisfy Im cp ;> 0 and with some negligible error : 

(3) dç/dt+r1p(x9 <p'x) = 0, H-o = <x, IJ>. 

Although we only want to construct exp (— tP) for small positive times, the quasi 
homogeneity properly 
(4) cp(t9 x9 Xn) = Xcp(tXm~\ x9 n)9 X > 0, 

leads us to a global problem in / with |f/| = l. The results of [9] (together with 
an easy reduction to the case when p is homogeneous of degree 1) permit us to 
solve (3) on arbitrarily long finite time intervals with an error which is G (Im cpN) 
for all N (when |f/| = l), but the constants involved in these estimates of the error 
may depend on the length of the interval. (The factor i~x in (3) is essential, without 
that factor the phase becomes real but will in general only exist for small times, 
because of the appearance of caustics.) 

A more careful application of the methods of [9] shows however that (3) can be 
solved for \n\ = l9 0*^t<T(x9n)9 with an error which is ß((l + t)tt*Im <pN) for 
every JV^O, and such that cp and its derivatives grow at most polynomially in t. 
Here T is a certain lower semicontinuous function with values in Ä+ u {+ oo}5 

suchthat Im cp(t9 x9 i])^(C(\ + T(x9 rç))~4 when t is close to T(x9n). It is then 
rather easy to extend cp to a solution with the same properties, defined for all t. 

The transport equations can be solved similarly and one finds a symbol 
a^^o* ak(f>x> *?)» where ak(t9x9Xrj)=X~~kak(tX

m~1
9x9rj) and tbe ak are exponen

tially decreasing in t for |rç| = l. (Here is where the assumption (1) is used.) This 
exponential decrease compensates for the powers of (1 + 0 in the estimates for the 
error term in the characteristic equation and we get a smooth family of operators 
At\®'(X)+Q)'(X)9 f>0, such that 

(5) (d/dt+P)At: ®'(X) - C°°(R+ ; 9'(X)) has C°° kernel and A0 = Id. 

The proof is then completed by computing (approximate expressions for) the trace 
and using the identity tr (exp (—tP)) = f e~a dN(X). 

In the proof of Theorem 1 one can work more directly with Taylor expansions 
on E and this case is particularly interesting because one can see a little more 
explicitly what is going on. In particular when E is symplectic, (p(t9x9rj) con
verges exponentially fast with all its derivatives to a limit cp(+ », x9 n) as t-> + °° 
[10], while in general we only have polynomial bounds on the derivatives [11]. In 
the symplectic case Treves [13] has used the heat equation approach (after reduction 
to a model) to establish the analytic hypoellipticity. 

REMARK 4. The construction of At also gives a new proof of Melin's inequality 
and it also gives a direct construction of a parametrix. 

REMARK 5. It can be shown, using the general results of [4], that (1) is also a 
necessary condition for hypoellipticity with loss of one derivative, except where 
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p"\0) is a symplectic manifold and p vanishes to precisely second order on p'^O). 
We hope to*be able to treat this remaining symplectic case in the near future and 
then obtain a general result for selfadjoint operators of order >1 , hypoelliptic 
with loss of one derivative, and with nonnegative principal symbol. 
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Eigenvalues of the Laplacian Plus a Potential 

Alan Weinstein 
To Rufus Bowen, in memoriam 

0. Introduction. We report here on some recent work concerning the spectrum of 
operators of the form A + V9 where A is the (non-negative) laplacian on a compact 
riemannian manifold X9 and V:X-+R is a C°° "potential" function. Such opera
tors arise, for example, in the quantum mechanics of rigid bodies and rotators. 

1. Does the spectrum determine the potential? We shall denote by Spec (X9 V) the 
sequence X^Xz^cXz^... of eigenvalues of A + V9 repeated according to their 
multiplicities. In this section, we discuss the inverse problem: if Spec (X9 Fi) = 
Spec (X9 V2)9 is there an isometry / : X-+X such that V2= V-iofl 

The answer to our question in full generality is no. If X is the circle S\ then the 
flow of the Korteweg-de Vries equation gives nontrivial 1-parameter families 
Vt: SX-^R such that Spec (S\ Vt) is independent of t. On the other hand, it is 
known that a constant potential is determined by its spectrum: if Spec (S1, Vì) = 
Spec (S1

9 V2)9 and Fi is constant, then V2=V1. (See [M-vM] for a discussion of 
this 1-dimensional case.) 

Attempts have been made to find isospectral deformations of Korteweg-de Vries 
type for potentials on higher dimensional manifolds, with no success as yet (except 
for direct products with S1). Some uniqueness results have been obtained, however. 

THEOREM 1.1. Let X be a negatively curved surface such that no two periodic 
geodesies on X have the same length. If Spec(Jif, F1) = Spec(Ar, V2)9 then V2=V1. 

This is due to V. Guillemin and D. Kazhdan [G-K]. Note that the only isometry 
of such a surface can be the identity. 
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THEOREM 1.2. Let X be a symmetric space of rank 1. If Spec(Z, Fj) = Spec(Ar, V2)9 

and V-i is constant, then V1=V2. 

Most of Theorem 1.2. is the work of V. Guillemin [Gl], [G2], with the finishing 
touch in the case X=S2 provided by H. Widom [WM2]. 

2. Integrals around periodic goedesics. An important ingredient in Theorem 1,1 
is the following theorem of Guillemin [Gl]. 

THEOREM 2.1. If y:R-+X is a nondegenerate periodic geodesic of least period 
L such that no other periodic geodesic has period L9 then Spec (X9 V) determines 
fL

0V(y(t))dt. 

If the periodic geodesies of period L form a smooth non-degenerate family, then 
the parameter space F of the family has a natural volume element [D-G], and 
it is the integral fF [/£ V(y(t))df\ dy which is determined by Spec (A", V). 

When all the geodesies on X are periodic with the same least period L, then 
we can go further. Denote by F: G-+R the function on the space G of closed 
geodesies defined by 

ny) = ~fv(y(t))dt. 

Then not only is the integral fG V(y) dy determined by Spec (X9 V)9 but so is 
fG<p(y(y))dy for any C°° function (p:R-+R; i.e. the spectrum determines the 
measure pv on R defined by 

liv([a9 b]) = ii{y\a ^ V(y) ̂  b}9 

where \i is the measure on G. 
In fact, as was first suggested to the author by the numerical experiments of 

G. Chachere [CH], the measure pv can be "seen" quite clearly in the spectrum 
if X is a symmetric space of rank one. We recall that the eigenvalues of A in this 
case are of the form v/c=(/c+a)2—ß2

9 /c=0, 1, 2, ...; the multiplicity mk of vk is 
a polynomial in k of degree (dim A') — 1. Since the potential V is a bounded 
operator, the addition of V to A causes the multiple eigenvalues in Spec (X9 0) 
to split into clusters of bounded width about the vfc's. The structure of the clusters 
is related to V according to the following theorem. 

THEOREM 2.2. Let X be a symmetric space of rank 1, VÇ.C°°(X9 R). 
(a) For any e>0, all but finitely many of the eigenvalues of A + V lie in the intervals 

h—[vfc+min F—e, v/c+maxFfe]. For k sufficiently large, the number of eigen
values in Ik is precisely mk. 

(b) If a and b are regular values of V, then 

#{AeSpec(Af, V)\vk + a ^X^ vk + b} = ii{y£G\a ^ V(y) ^ b} 
mk fl(G) 

In other words, the probability, for a randomly selected eigenfunction of A + V9 
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that the contribution of V to the eigenvalue lies in [a, b] is asymptotically equal 
to the probability, for a randomly selected periodic geodesic on X9 that the average 
value of V lies in [a9 b]. 

In its present form, Theorem 2.2 is due to Y. Colin de Verdière [CL], based on 
earlier versions by Guillemin [Gl] and the author [WE]. (See also [WM 1].) 

3. Methods. Although Theorem 2.2 has the flavor of classical perturbation theory 
(see, for example, pp. 86-89 of [WL] for a discussion of the role of time averages), 
a proof with a good remainder estimate requires tools which are more precisely 
adapted to differential operators on manifolds. 

All of the results described above rely on the theory of pseudodifferential and 
Fourier integral operators to give a geometric description of the eigenfunctions 
of A which may be used for analyzing the effect of adding V. Another possible 
approach is via Lie group theory. In his thesis [L], W. Lichtenstein has used purely 
algebraic methods to find, for any compact symmetric space X9 eigenfunctions 
of A which are concentrated near the maximal totally geodesic flat tori in X. 
Using such eigenfunctions as a basis, one can analyze the effect of V in terms of 
integrals of V over the tori. 
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Formal and Analytical Integral Sets 

A, D. Bruno 

Introduction. Let the analytical system of ordinary differential equations have 
an invariant irreducible fc-dimensional torus T9 filled with conditionally-periodic 
solutions (k^O). There are many methods for investigation of the solutions of 
the system in a neighbourhood of the torus T. The most general and perspective 
one is apparently the investigation of the system by means of its normal form. Here 
we shall indicate some new results obtained by the method. For simplicity all for
mulations are given only for the case k=09 when T is a fixed point; the formula
tions for the cases k=l (T is a periodic solution) and / o l are similar. 

1. The normal form. So we consider the analytical system 

xt = (pt(X9 M)9 i = 1, ...9n9 (1) 

in a neighbourhood of the fixed point ^=0 , M=0. Here X=(xl9 ..., *„) are the 
local coordinates and M=((il9 . . . , / 0 are the small parameters. Let (Xl9 ...9Xn) = A 
be eigenvalues of the matrix (d^Jdxj) for X=09 M=0. 

THEOREM 1 [1]. There exists a formal invertible transformation X=E(Y9 M) 
which reduces the system (1) to the normal form 

yt = MY, M) = yt2 gÌQ{M)Y*9 i = 1, ..., n9 (2) 

Q = (li,.»,gn), Y<>=yp...y«»9 

where coefficients giQ(M) are power series in M9 they do not vanish only for such 
integral values of Q for which the scalar product 

(Q,A) = q1X1+... + qnXn = 0. 
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The normal form (2) has resonance terms only and is equivalent to a system of 
lower than n order [2]. It can be further simplified and reduced to an integrable 
system [3]. If the system (1) is real, then real values of the coordinates X correspond 
to such complex values of the coordinates Y9 which satisfy the specific real con
ditions [4]. Methods of Delaunay and von Zeipel and many averaging schemes are 
the versions of (complete or partial) reducing into the normal form [5]. 

Usually the normalizing transformation is divergent in each neighbourhood of 
the torus T [2]. Therefore a correspondence between the solutions of the system 
(1) and (2) requires a further investigation. The results of such investigations can be 
classified in the following way: 

(1) The investigation of the stability of the torus T. (a) Instability of the system (1) 
is deduced from instability of the system (2). 

(b) Asymptotic stability of the system (1) is deduced from the asymptotic stability 
of the system (2). 

(c) Neutral stability of the system (2) involves formal stability of the system 
(1) [6], and in some cases it also involves Ljapunov's stability [7]. 

Results of this kind are applied, for example, for investigation of stability of 
Lagrangian solutions of the restricted threebody problem [8]. 

(2) Estimation of the instability effects of the system (1) by means of such effects 
of the system (2). Examples: the influence of nutation's oscillations on the drift 
rate of a gyroscope in the Cardan suspension was calculated [9] ; the mechanism 
of formation of the gaps in the asteroid's belt was considered [10]. 

(3) Determination of periodic and quasi-periodic solutions of the system (1) from 
the system (2). We shall consider this question in detail assuming for simplicity 
that all eigenvalues are pure imaginary, i.e. Re>4=0. 

2. Sets of periodic and quasi-periodic motions. Let functionsyi(Z, M)9 ...9fr(X9 M) 
be analytical in point X=0, M—0 and equal to zero in it. Then the system of 
equations 

fj(X9M) = 09j = l9...9r9 (3) 

determines the analytical set Jt9 which contains the point X=09M=0. lffl9...9fr 

are the formal power series, then we shall say, that the system of equations (3) 
determines the formal set Jt. 

Problem. What formal invariant sets of the system (1) are analytical? 
The matter is that formal invariant sets can be calculated comparatively simply 

for the normal form (2). We have only to select from them those sets which are 
analytical for the initial system (1). 

For the normal form (2) we define the formal set 

sé = {Y9 M: xj/i = Xiyta9 i = 1,..., n} (4) 

where a is a free parameter. It may be excluded from these equations; then set 
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sé will be written in the form of (3). We shall say that the coordinate subspace 
[Y9 M:yt—Q9 i=il9 ..., is} is rational, if the corresponding eigenvalues Xj9j^il9m..9 is 

(l^j^n) are mutually commensurable. Let Jf denote the union of all rational 
subspaces. We denote sé = sén3f. 

THEOREM 2 [11]. In the system (1) the formal set sé is analytical. 

On set sé we consider the matrix 

B = (dil/j/dyt-oijXia), ij = 1,..., n9 

where öfj is the Kronecker symbol and a is the same parameter as in equations (4). 
We define the formal set 3$ as a subset of set sé such that the matrix B is nil-
potent. That is 3&= {7, M: Y9 Mesé9 Bn=0). 

THEOREM 3 [11]. In the system (1), the formal set 38 is analytical if eigenvalues 
A satisfy "small divisor" condition: 

\{Q9A)\>c\\Q\\-v 

for all integral vectors Q (c and v are some positive constants). 

Properties of sets sé and 33. 
(1) All solutions from set Re sé are conditionally periodic (including periodic 

and fixed solutions). Indeed, the value of parameter a for each solution is constant 
and 

y{ = y? expX{at9 i = 1, ..., n. (5) 

(2) Set Re sé consists of fixed and periodic solutions only. 
(3) The value of parameter a for the conditionally periodic solution (5) from set 

33 determines its basis of frequencies and its eigenvalues. 

EXAMPLE. Let a Hamiltonian system with s degrees of freedom and with no para
meters have /c-dimensional torus T9 and all its eigenvalues are purely imaginary. 
In the case of general situation set 33 can have the real part, which differs from 
torus T. Then torus T lies on the analytical one-parameter family R e ^ of 
invariant ^-dimensional tori. It is a refinement of Arnold's result [12], that there 
are many invariant ^-dimensional tori near torus T. 

If Re A T^O, then the normal form (2) has an invariant coordinate subspace 
corresponding to all pure imaginary eigenvalues. As above we determine sets 
sé9 sé and 3S in that subspace; in this case Theorems 2 and 3 are valid. For 
investigations of the analytical perturbations and bifurcations of periodic and 
conditionally-periodic solutions it is sufficient to consider sets sé and S& in the 
systems with small parameters M. 

[13], [14] show that set sé contains periodic solutions found by H. Poincaré, 
A. M. Ljapunov, C. L. Siegel, J. Henrard and others; and set 33 contains quasi-
periodic solutions found by A. N. Kolmogorov, V. I. Arnold, J. Moser, N. N. 
Bogolubov and others. For some generalisations and applications see [15]-[18J. 
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Résultats Récents sur la Conjugaison Differentiable 

Michael Robert Herman 

1. Introduction. On pose Tn=Rn/Zn et on désigne la mesure de Haar de Tn par m. 
1.1 Si M est une variété compacte connexe Ä-analytique, on désigne par 

Diffr (M) (resp. DifPJ. (M)) le groupe des difféomorphismes de classe Cr de M 
(resp. qui sont Cr-isotopes à l'identité). 

On munit Diffr (M) de la Cr topologie et Diff+ (M) est alors la composante 
connexe de Pld. Ici rG{0, +«>, co}u {x£R\x^l}; si /-=0, c'est le groupe des 
homéomorphismes de Tn; si r > l , r£Ä*—N9 c'est le groupe des difféomorphismes 
de classe C vérifiant une condition d'Hölder d'exposant r—[r] sur la [r]èmo 
dérivée; si r=co c'est le groupe des difféomorphismes jR-analytiques de M. Si 
rÇiVu{+a>} alors Diffr (M) est un groupe topologique Polonais pour la Cr-
topologie. 

1.1 Problème 1. Etudier la structure de groupe de Diffr (M). 

Par exemple. Quand / et g sont-ils Cr-conjugués (i.e. il existe h6Diff£ (M), 
tel que f=h~1ogoh)l 

Quelle structure peuvent avoir les C-centralisateurs 

(i.e. Centp(/) = {g£TXÎP(M)\gofog-i=/})l 

1.2 REMARQUE. Si / et ggDiff00 (M)9 il y a une infinité de problèmes: à quelles 
conditions / et g sont-ils C°, C\ ... etc conjugués? 

1.3. EXEMPLE. Soient T2=R2/Z2 et /(^1,^2)=(x1+a,^2 + ç)(A:1)) modZ2, 
avec a e ^ - ß / Z et pGC00^1) vérifiant fT1<p(0)dO=Q. On montre (voir [H]) 
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q u e / e s t C'-conjugué à Riat0): (xl9 ^2)^(^1+^ ^2) dans Diff £ ( J2) si et seulement 
s'il existe xj/^C^T1) vérifiant \l/—\l/oRa=(p (considérer (xl9 x2)-+(xl9 ^2+^(^1)))-

Si a est un nombre de Liouville (i.e. a est irrationnel et pour tout entier i^\9 

il existe pilqi£Q,(pi9qi) = l9 q^Z vérifiant |a —(/V^Htff"') et si r£N est 
donné, on peut choisir cp tel que xj/ soit de classe C mais non Cr+S. Dans ce 
cas on peut montrer que Cent00 ( / ) contient un sous-groupe fermé pour la C°°-
topologie, qui est monothétique, non localement compact et totalement discontinu. 

1.4 Pour le problème de la simplicité des groupes DifFj. (M), voir [MaJ, [HJ, 
[HJ, [Th]; pour les applications aux feuilletages voir [Ma2], [Law]. 

1.5 Une question importante est la suivante: 

Problème 2. Soit /ÇDiff °° (M)9 à quelles conditions sur M et f existe-t-il un 
C°°-voisinage ouvert de l 'IdO, tel que l'ensemble 0£v={g-1ofog\geVc:Diiï~ (M)} 
soit localement fermé et de codimension finie au voisinage de f (le tout pour la C°°-
topologie) ? 

On posera dans la suite: C^0 = {g"1o/og|^€Diff^ (M)}. 

2. Cas de T". Nous allons rapidement décrire les exemples connus sur 
Tn=R"/Z"; on considère les translations RK: x-+x+a9 a6T". 

2.1 DéFINITION. La translation Ra de Tn satisfait à une condition diophantienne, 
s'il existe jß>0, C>0, tel que pour tout (kl9 ..., kn)£Zn — {0} on ait 

Sb* 
i=l 

^ C(sup |/cJ)-0 

avec a=(a l 5 ...,a„) et si x£T1
91|#|| est la distance à l'entier le plus proche d'un 

relevé de A: à JR. 

2.2. THéORèME (KOLMOGOROV [KoJ, ARNOLD [AJ, MOSER [MoJ.). Soit Ru 

une translation de Tn satisfaisant à une condition diophantienne. Il existe un voisinage 
VR de Ra dans D i f f e r ' ) tel que si f e VR , il existe X£Tn et g£Dift~(Tn

9 0) = 
{fivifff (T")\f(0) = 0} vérifiant 

De plus (voir [MoJ) cette décomposition est localement unique. 

2.3. Pour démontrer le Théorème 2.2 Kolmogorov [KoJ, [Ko2] a proposé 
d'utiliser la démonstration des fonctions implicites en remplaçant la méthode 
d'itération de Picard par la méthode de Newton et en utilisant des opérateurs de 
lissage (pour pouvoir continuer l'itération); ou, ce qui revient au même en JR-
analytique, en diminuant les domaines de convergence des complexifies. Nash [N] 
a utilisé une idée semblable pour résoudre le problème du plongement isomét
rique en C°° (les principales) références pour ce problème sont dans [GR]). 
Pans [MoJ, Moser à la suite de J. T. Schwartz [Schi], [Sch2] a donné une forme 
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abstraite à la version de Nash. Ceci a suscité de nombreux travaux, par exemple 
Sergereart [Se], Hamilton [Ha], Hörmander [Hor J et [Hör J. Plus proche des travaux 
d'Arnold [AJ, [AJ, [AJ, [AA] et de Moser [MoJ, [Mo3] sur les tores invariants 
(voir aussi [J]), on trouvera une très belle simplification due à Rüssmann [RJ. 
L'idée de Rüssmann [RJ a été reprise dans Zehnder [ZJ, [ZJ et [RJ. On trouvera 
une démonstration de 2.2 en suivant [RJ dans [H, annexe]. 

La difficulté de la démonstration est la suivante: Soit l'application 

$RK: (X9 g)eT-XDffirCn -ÄAOg-ioJ^oggEHffrCr). 
la «dérivée» de $R pour X=0 et g=ïd est l'application linéaire 

(X9 cp)6RnXC00(T\ Rn)-+X + cp-cpoRa£C°°(Tn
9 Rn). 

Si on donne 
*l(x) = 2 f\(k)e^^x)C.C°°(Tn

9R
n)9 

k£Zn 

on peut résoudre l'équation 
cp-cpoRa+X = rj 

formellement par 
X = fj(0) et 

<p(x) ~ 2 ,^( f c)(1"ß W <* ,">)"1«w (* , x > . 

(Ra est une translation ergodique de J"oVA:^0,1—e27t /^ , aM0). On montre 
que si Rx satisfait à une condition diophantienne, alors (p£C°°(Tn

9R
n) et si 

rj€C(Tn
9R

n)9 r>/?, alors cp est «en général» seulement Cr~ß~8 pour tout e>0. 
Si Ra est une translation ergodique de Tn ne satisfaisant pas à une condition 

diophantienne «en général», (pour la catégorie de Baire) pour fi€C00(Tn
9R

n) il 
n'existe pas de cp dans ^(m) ni même /w-mesurable (voir [HJ). La perte de 
dérivabilité en C (r fini) est une des sources principales des difficultés de 2.2. Il 
est aussi indispensable pour un Théorème des Fonctions implicites dans les Fréchet 
que les applications satisfassent des conditions restrictives (cf. [LZ]) mais dans 
le cas considéré, l'action venant du groupe des difféomorphismes, une suite d'in
égalités se trouve automatiquement vérifiée pour $R (voir [Se], [ZJ). 

2.4 Problème 2 (suite). Si 0£v est localement fermé et de codimension finie 
pour un C00-ouvert V9 est-ce-que M est dijféomorphe à Tn? Une question analogue 
se pose pour Véquation linéarisée de la conjugaison. 

2.5. En utilisant 2.2 on peut montrer (voir [H], [HJ et l'unicité locale de [Mo2]): 

PROPOSITION. Si Ra est une translation de Tn satisfaisant à une condition dio
phantienne, alors il existe un ra€R* tel que si /6DifFj°(Tw) est C«-conjugué à Ra9 

f est C°°-conjugué à Ra. 

2.6 Problème 3. Déterminer le plus petit réel ra>*0 tel que 2.5 soit vraie. 
Nous nous proposons dans ce qui suit d'aborder ces problèmes dans le cas parti

culier du cercle T1; c'est-à-dire le seul cas que l'on sache étudier à l'heure actuelle. 
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3. Nombre de rotation des homeomorphismes du cercle [P] (voir aussi [H]). 
3.1 On considère i)r(J1) = {/6Diffr(JR)|/-Id=ç)6Cr(J1)} où C^T1) est 

identifié aux fonctions de JR dans R9 Z-périodiques. 
On a Diff;(J1)=i) r(r1)/C (ou encore Dr(T*) (modi)) où C=Centre de 

D'(T*)={Rp\p£Z}. 
3.2 Si feD^T1) avec/=Id+ç> (cptC^T1)) et si n£N on a / w = I d + 2 ? r o > o / 

(f" dénote l'itérée w-ième de / ) . 
On montre que si «-> + «), (fn—Id)/n converge uniformément vers une constante 

Q(f)£R. La fonction Q(J) est appelée nombre de rotation de f. 
3.3 On montre les propriétés suivantes (qui sont dues à Poincaré): 
(a) L'application Q de /^(T1) dans R est continue pour la C°-topologie. 
(b) Q(f+l) = Q(f) + l. 
(c) QÌ.f)=zQÌS'~lof0s) pour tout élément g de D*(TX). Q est donc un invariant 

de conjugasion. 
(d) 8 ( i y = a . 
D'après la propriété (b), Q définit par passage au quotient sur Differ1) = 

D^J^/C un invariant de conjugaison à valeur dans T\ que l'on appelle nombre 
de rotation (et que l'on note encore Q). 

(e) Soit fç.Diff\ (T1)'. les deux propriétés suivantes sont équivalentes: 
Q(f)œ-Qiz. 
f n'admet pas de point périodique sur r1 . 

En outre Q(f)=p/q (mod 1), (p9q) = l9 est équivalent à: q est le plus petit entier > 0 
tel que f9 ait un point fixe. 

(f) Soit /gDiff£ (T1) et supposons que / soit conjugué à une rotation Ra9 

avec a irrationnel (mod 1), par deux homeomorphismes h± et h2 (i.e. 
f=hf1oRaohi9i=l92)9 alors il existe XÇ.T1 tel que h1=RAoh2. (Le centralisateur 
d'une rotation irrationnelle est le groupe des rotations.) 

(g) Si ueP-Q/Z et si Q(RJiof) = Q(f)=a alors X=0. 
Si /=A""1oi?ao/2 alors o(/)=a. On est ainsi amené à voir dans quelle mesure 

Q caractérise la conjugaison à une rotation. 

4. Cas Q(f)=p/q (mod 1). 

4.1 PROPOSITION. Les deux affirmations suivantes sont équivalentes. 
/ÇDiffJ. (T1) est Cr-conjugué à la rotation Rp/q. 
fq=ldTl. 

Considérons Ur={f£Diiï^(T1)\Q(f)=p/qeQ/Z et / * - I d change de signe}. 

4.2 PROPOSITION [H]. Si O^r^co Ur est un ouvert C-dense de DiffJ. (J1)«! 

De plus on montre (voir [AJ) que si r > 1, Ur contient l'ouvert dense Vr= {/€ Ur 

les points périodiques de / sont hyperboliques} et tout g£Vr est structurellement 
stable. 
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4.3 Par 4.1 et 4.2 on voit que la fonction Q nombre de rotation ne caractérise 
pas «en général» la conjugaison à une rotation rationnelle. On peut montrer (cf, 
[MaJ) que si /ÇDiff~(J1) vérifie Q(f)=p/q£Q/Z alors Ö~ (l'adhérence de 
OJT dans Differ1)) est de codimension infinie dans Diff~ (T1). 

5. Cas ^(/)=aÇT1— Q/Z. A. Denjoy a démontré le théorème suivant (voir 
[H] pour plusieurs remarques) : 

5,1 THéORèME DE DENJOY ([DJ, [DJ). Soit/G Diff* (J1). Supposons que g(f) = 
aer1—Q/Z alors il existe A£Diff°. (T1) tel que f=h~1oRaoh. De plus pour tout 
OLZT^—Q/Z il existe /eDiff*. (T1) tel que f ne soit pas C°-conjugué à Ra. 

5.2. Le problème qui se pose est le suivant (voir 3.3 f): 

Problème 4. Soit fÇX>ift+ (T1) vérifiant Q(f)=a£T1-Q/Z9 quelle est la classe 
de dijférentiabilité de Thoméomorphisme h du théorème de Denjoy? 

5.3 Arnold [AJ a montré qu'il existe un difféomorphisme jR-analytique de 
nombre de rotation irrationnel tel que Thoméomorphisme h du théorème de 
Denjoy soit singulier par rapport à la mesure de Haar m de T1 (la dérivée de 
h existe wi-presque partout et on a Dh=Dh~1=0 presque partout). On peut 
monter [H] qu'un tel exemple existe dans la famille de difféomorphismes JR-analytique 
x-+x+asin2nx+b (modi) 0<fl<l/2rc, beT1. 

5.4 On montre [H] que pour tout nombre de Liouville a il existe un difféo
morphisme / de classe C°°, de nombre de rotation a, qui ne soit pas Cx-conjugué 
à Ra. Pour l'étude du cas C avec perte de différentiabilité (voir [H]). 

5.5 II résulte de 2.2 et 3.3 (g) que si a satisfait à une condition diophantienne et 
si /eDiff~ (T1), g(/)=a, et si / est «suffisamment» C°°-proche de Ra9 alors 
/ est C°°-conjugué à Rx. 

5.6 Problème 5. Si fÇDiff™ (T1) et Q(f)=a satisfait à une condition diophantienne 
alors f est-il C°°-conjugué à Ra? 

6. Le résultat principal de conjugaison. 

6.1 Soit A l'ensemble des nombres de T1 qui satisfont à la condition A suivante: 
a,£A si a est irrationnel et si le développement en fractions continues de a= 
«o+l/fai +1/(^2 + — vérifie 

lim lim sup ( 2 Log(l+flf)/ 2 Log(l + flf)) = 0. 
at^B 

On montre que l'ensemble A est de mesure de Haar égale à 1 (voir [H]). 

6.2 THéORèME [H]. Soient 3<szr*zco et a satisfaisant à la condition A. Si 
/ÇDiff^r1) vérifie e ( / )=a alors f=h-1oRaoh avec heDiff^-PÇT1) (pour 
tout /?>(ty si f est un difféomorphisme de classe C°° (resp. C°°) alors h est de 
classe C°° (resp. C"). 
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6.3 COROLLAIRE [H]. Soit a£A (par exemple un nombre algébrique de degré 2). 
Alors tout /€Diff~ (T1) s'écrit de façon unique 

® / = ^ o g " - i o j R a o g 

où XeT1 et geDiff~(T\Q). De plus la décomposition 0 dépend de façon C°° 
de paramètres variant dans une variété C°° de dimension finie. 

6.4 Conjecture. Le Théorème 6.2 reste valable si a satisfait à la condition du 
théorème de Roth: Pour tout e>0, il existe Ce>0 tel que pour tout p/q^Q on ait 
\x-(p/q)\>Ceq-*-°. 

6.5 La démonstration de 6.2 se fait en deux étapes. On commence par démontrer 
que / est C1-conjugué à Ra\ pour cela on cherche à appliquer la proposition suivante 
(ceci est la partie la plus difficile de la démonstration) : 

PROPOSITION. /ÇDiff* (T1) est conjugué à une rotation si et seulement si la suite 
{f%c.N est bornée dans la ^-topologie (i.e. si Sup/€JV||Z>//||co< + «> où ||2>/'||co 
est la norme C° de la dérivée de l'itérée Même de f). 

Noter que / est ^-conjugué à une rotation s'il existe \j/C.C0(T1)9 i/f>0, tel que 
l'on ait \j/of-Df=\l/. 

La démonstration de 6.2 suit d'une version en C de 2.2 et 2.5. Pour tout ceci 
voir [H], on peut aussi consulter [Del]. 

7. Mesure de Lebesgue et nombre de rotation. 
7.1 Kolmogorov [KoJ puis Arnold [AJ, [AJ, [A3], pour surmonter les difficultés 

des mesures sur les groupes de difféomorphismes, ont proposé d'étudier la mesure 
de Lebesgue sur des «sous variétés différentiables» de dimension finie de ces groupes. 
C'est, me semble-t-il, la partie la moins étudiée et la plus prometteuse de la théorie 
des «petits dénominateurs». Voir à ce propos l'article de Lazutlcin [Laz]. 

7.2 Soit pour /ÇDiff^OT) la fonction M(f) égale à la mesure de Haar de 
l'ensemble {X£Tn\Rxof est C°°-conjugué à une translation ergodique}. Le théorème 
suivant généralise un théorème d'Arnold [AJ : 

THéORèME [H3]. Si f-+Id dans la C°°-topologie, alors M(f)-+l. 

7.3. Soit t£[091]-+/, e Differ1) un chemin de classe C1. On pose M(/,)=la 
mesure de Lebesgue de l'ensemble {*£[(), l]\Q(f)£A}. 

Le théorème suivant montre que la conclusion de 4.3 «oublie» que la mesure d'un 
ouvert dense peut être petite. 

THéORèME [HJ. Pour tout chemin ft9 tel que ö(/o)^ö(/i) alors M(ft)>0. 
En s'inspirant de [C] on peut en un certain sens «calculer» une minoration de M(ft). 

8. Nombre de rotation et categorie de Baire. 
8.1 Considérons 000(T1) = {g-1oRaog\ueT1

9 g£Diff+ (T1)} et D°° l'adhérence 
de O^r1) dans Differ1) (pour la C°°-topologie). Il suit de 6.2 (voir [H]) que 
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Ö00 est l'adhérence de l'ensemble {/eDiff; (T1)]^/) e l^-Q/Z}; par 4.1 et 4.2 
5°° est un fermé sans point intérieur dans Diff; (T1) et par 7.3 Ö°° est néanmoins 
«assez» gros. 

8.2 En contrepartie on a la proposition (très simple) suivante: 

PROPOSITION [H]. O^ÇT1) est maigre dans Ö°° pour la C°°-topologie induite (Ö00 

est un espace de Baire). 

8.3 REMARQUES, (a) Noter que l'ensemble {<x,£T"\Ra satisfait à une condition 
diophantienne} est de mesure de Haar égale à 1, mais c'est un ensemble maigre 
de ri 

(b) Pour l'équation linéarisée de la conjugaison C°° à une rotation on a une 
situation tout à fait semblable (cf. 2.3). 

8.4 La situation que l'on vient juste de décrire est tout à fait générale. Le point 
important est de noter que 000(QlZ) = {goRp/qog-1\p/qeQ/Z9 gÇDiff; (ÜT1)} 
est dense dans 0°° pour la C°°-topologie. 

8.5. Situation générale. On se donne un espace topologique Z non vide, localement 
compact, à base dénombrable et sur X une mesure ^>0 de Radon (p pouvant être de 
masse infinie). On suppose qu'un groupe topologique G9 homéomorphe à un espace 
métrique complet, agit continûment et effectivement à gauche sur X (GXX-+X est 
continue) et de plus, tout g£G préserve p. On suppose aussi que G possède un 
tore de dimension 1 et que t^T1 <z+Rt£G est continue. On suppose que G satisfait 
à la condition suivante : 

Pour tout p/q£Q/Z9 pour toute fonction cp continue à support compact 
vérifiant Jxcpdp=0 et pour tout £>0, alors il existe h £ G vérifiant: 

(a) ...hoRp/q = Rp/qoh. 
^ ' i r i 

(b) / cp o h oRt dt\mrì < e. 

On pose 0G(r1) = fepoÄfo^-1|/6r1
s g£G} et DG est l'adhérence de 0G(T) 

dans G avec la topologie induite de G. 

THéORèME. Soit G satisfaisant aux conditions précédentes. Alors l'ensemble 
{/ÇÔG|/ est jLt-ergodique} est un Gô dense de 0G (cet ensemble est donc non vide). 

Nous démontrerons ultérieurement ce théorème [HJ qui est d'ailleurs très simple. 

8.6 Applications [HJ. (a) On peut ainsi démontrer à nouveau un Théorème 
d'Anosov et Katok [An], [AK], [Ka]: 

THéORèME. Toute variété M9 C°°9 compacte, connexe, admettant une action 
effective C°° de T1 préservant une mesure /x>0 de densité C°° (i.e. dans chaque 
carte p a une densité C°° et >0 par rapport à la mesure de Lebesgue) admet un 
difféomorphisme C°° f préservant ji et p-ergodique. 
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G est ici le groupe des difféomorphismes C°° de M préservant la mesure fi 
agissant sur (M9p). 

(b) On retrouve aussi le résultat de Krygin [KR]: On prendra pour le groupe 
G={/eDiffoo(r1XA)|/(0,^)=(0+a,3;+ç)(0)) avec aeT\ cpeC00^1)} agissant 
sur (PXRtdOi&dy). 

On peut généraliser (voir [HJ) ce résultat de la façon suivante: 
Si H est un groupe de Lie, connexe, continûement moyennable (cf. [G]) et m 

une mesure de Haar invariante par les translations a gauche de Pxff, alors on 
peut prendre G=T1 X C00^1, H) agissant sur (T1 X H9 m) par (0, g) +(0-fa, ge • g) 
avec(a,g0)(EG et i*,(0,g)=(0+*,g). 

(c) Soit M une variété C°° paracompacte connexe et v>0 une mesure (de 
Radon) de densité C°°. 

DéFINITION. Un difféomorphisme f de classe C°° de M est de type 
IIIx si le difféomorphisme S(f):MXR-*MXR9 défini par S(f)(x9y) = 
(f(x)9 y+^Logd(f~1v)(x)ldv) (S(f) préserve la mesure e~ydv®dy=p) estp-ergodique. 

On montre qu'il existe /£G=Diff;(T1) (agissant sur TXXR par S(f)) tel que 
/ soit un difféomorphisme se type IIIj. de T1. / n'admet pas de mesure c-finie^O 
invariante absolument continue par rapport à la mesure de Haar de T1. On retrouve 
ainsi un résultat de Katznelson [Kat] (les théorèmes sont incorrectement énoncés 
dans [Kat] par oubli de 4.2 et 4.3). 

On peut montrer que toute variété C°° paracompacte connexe de dimensions3 
admet un difféomorphisme de classe C°° de type IIIX. 

8.7 Morale. Si M est une variété C°° compacte connexe de dimension s i 
admettant une action effective C°° de T1 et G=Diff00 (M) alors, bien que DG 

soit un fermé sans point intérieur dans G9 par une propriété analogue à 8.4, on 
peut souvent construire des difféomorphismes dans 0G ayant des propriétés «chao
tiques» (voir [FH], [AK], [Kat]). Ceci est l'idée fondamentale des théorèmes de 
catégorie d'Oxtoby et Ulam [OU], Halinos et Rohlin, voir [Hal], [KASJ et [KASJ. 

Néanmoins, en classe C°°, la théorie de Kolmogorov—Arnold—Moser nous 
amène à poser la question de nature globale: 

Question. Est-ce que tout nombre de rotation (à définir) peut être réalisé*! 
Donnons un problème précis. 

Problème 6. Existe-t-il un difféomorphisme C°° de D2 ou T2 préservant la 
mesure de Lebesgue m, qui soit m-ergodique et métriquement conjugué à la rotation 
R^deT1 où a=21/2? (Pour le cas où a est super-Liouville voir [AK]), 
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Global and Local Aspects of the Theory of Complex 
Differential Equations* 

Ju. S. IPiasenko 

In this report we deal with three related subjects: absolute rigidity of algebraic 
differential equations over C, the topology of their foliations near a singular point, 
and reasons for the divergence of formal powerseries linearization. 

1. Absolute rigidity. We study the set sé^ of differential equations on Cn 

defined by 
Z = P(Z), (1) 

where P(Z) is polynomial in Z=(z l 9 . . . , z„) of degree ̂ N. The vector field 
P(Z) determines a complex line element field, and therefore a cross-section (with 
singularities) in the projective tangent bundle PT(CP") of CP", which is the 
projective «-space obtained by completing C" with a CP""1 "at infinity". Such 
a birational cross-section for CPn, or in general for an algebraic «-manifold X9 is 
called a differential equation on X. 

DEFINITIONS. The solutions of differential equations on X form in the comple
ment of the singular set the leaves of a foliation.1 

Two analytic differential equations on a manifold X are called topologically 
(respectively analytically) equivalent, if the corresponding foliations are conjugate 
by a homeomorphism (resp. holomorphism) X-+X. 

The topological classification of analytic differential equations in the real domain 
is rather rough in comparison with the analytic one. For the equations in the neigh-

* Delivered by N. Kuiper. 
1 So the leaf does not contain the singular points, even if adding such points to the solution 

would give again a holomorphic curve. 
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bourhood of the singular point 0£Rn, this follows from the classical theorems of 
Andronov-Pontrjagin and Grobman-Hartman. 

For the complex differential equations these classifications are often near to 
each other and they may even coincide. 

DEFINITION. Let A be some class of differential equations on a complex mani
fold X. An equation a£A is called absolutely rigid in A, if there exists a neigh
bourhood UczA of a and a neighbourhood 2tf of the identity in the space of 
all homeomorphisms X-+X with the topology of uniform convergence on compact 
sets, such that if the equations a and u'£A are conjugate by a homeomorphism 
H£34?, then they are analytically equivalent. 

THEOREM [9]. Almost all equations a g ^ , aÇ^ 2 , are absolutely rigid. 

2. Common properties. In spite of the absolute rigidity, almost all equations 
of the class J ^ may possess some similar, "common" properties. 

A. Density. 

DEFINITION. An analytic differential equation on the manifold X has the "density 
property", if each of its leaves except a finite set is dense in X. 

THEOREM [17]. Almost all the equations ocÇ.^ have the density property. 

THEOREM [13]. There is a domain Qcz^ such that almost all equations a£Q 
have the density property. 

B. Cycles. 

DEFINITIONS. A cycle on a leaf cp of an analytic differential equation is any non-
trivial element of the fundamental group ^((p). 

The cycles yl9 ..., yn,... on the solutions of an analytic differential equation 
are called homologically independent, if any finite set of these cycles, belonging 
to the same leaf, is homologically independent on this leaf. 

Let y be a cycle on the solution q>, let (T, P) (P£cp) be a germ of a manifold 
at P, transversal to q>. By the general theory of foliations, there is a germ of 
holomorphic map (T,P)-+(r,P) corresponding to the cycle y, called the holo-
nomy of y and denoted by Ay, and defined like the classical Poincaré mapping 
in the case of real differential equations [14]. 

The germs {̂ y|y £%(<?>)} with superposition as operation form a group called the 
"monodromy group" of the leaf <p, and it is a natural homomorphic image of 

The cycle y is said to have identity holonomy in case Jy=id; otherwise y is 
called a limit cycle. 

THEOREM [9]. Almost all equations a € ^ have a countable set of homologically 
independent limit cycles. 
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3. Commentary, For almost all ag^2/ the straight line CP1 "at infinity" in 
CP2 contains N+\ singular points of the equation a. After deleting these we 
obtain the "leaf at infinity" which is denoted by Fa. The fundamental group 
%1(F0) is free with N generators. The existence of this leaf with such a rich funda
mental group makes the study of the class stf^ possible. The monodromy group 
of the leaf Fa is called the monodromy group of the equation a at infinity. The 
complexity of this group (action) is the cause of the intertwining of the solutions. 
It involves the density of the solutions and the existence of countably many homo
logically independent limit cycles for almost all equations from J ^ . These cycles 
may be found in arbitrarily small neighbourhoods of the leaf at infinity. Further
more, the monodromy group at infinity is the topological invariant which distinguishes 
those equations that have no solutions with compact closure a real 2-manifold, 
except the solution at infinity. This is the reason for absolute rigidity. 

4. Conjectures. 
A. Almost all equations from sé^ possess the density property, are absolutely 

rigid and have countably many homologically independent limit cycles. 
B. Almost all equations from #/£ have limit cycles only. 
Together with the theorem about a countable set of limit cycles this conjecture 

means, that for almost all equations from stf^ all the solutions, besides, perhaps, 
a countable set, are simply connected, and the sum of the one dimensional Bett 
numbers of the solutions, which are not simply connected, is equal to infinity. 

Now we shall discuss some topics of local theory. 

5. The topology near a singular point in Cn. 
A. The linear case. Contrary to the real case, the topological classification of 

autonomous linear systems with complex time has complex moduli, even if we 
restrict the study to equations of "general type". This fact was discovered inde
pendently by C. Camacho, N. H. Kuiper, J. Palis [10], [18], and by N. N. Ladis [12]. 
Here we recall some definitions. 

The point A=(Als..., A„)Ç.Cn belongs to the Siegel domain, if the convex hulli 
Jf (Aj, ..., X„) contains 0€C; otherwise it is said to belong to the Poincaré domain. 

A linear equation Z=AZ, Z£Cn, is of strict Siegel type, if the convex hull of 
the spectrum of A has 0£C in its interior. 

A singular point of a differential equation is of strict Siegel type, if the linear 
part at that point is of that type. 

Even the class of linear differential equations contains absolutely rigid ones 
as we see in the 

THEOREM (N. N. LADIS). If two nondegenerate linear differential equations in the 
strict Siegel domain whose matrices have at least one nontrivial Jordan cell are topo-
logically equivalent, then they are linearly conjugate. 

THEOREM ([10], [12], [8]). If two linear (diagonalisable), differential equations 
of strict Siegel type: Zj=XjZj and Wj=PjWj, j=l, ..., n, are topologically equivalent 
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then the sets of inverse eigenvalues {Aj"1} and {pj1} are linearly equivalent.2. The 
converse also holds. 

The topological classification of complex linear differential equations is at present 
almost complete [6], [8], [10]-[12]; only the degenerate equations and those lying 
on the boundary of the Siegel domain are not yet classified. 

B. The nonlinear case. The first statement of the last theorem (the topological 
equivalence of two equations of strict Siegel type in the neighbourhood of a singular 
point involves the linear equivalence of the inverse spectrums of their linear parts) 
is valid also for nonlinear systems (V. A. Naisul'). Consequently, the topological 
classification problem near singular points of nonlinear equations of strict Siegel 
type yields at least 72 — 2 complex moduli. 

We were informed that for «=3 the topological classifications in the nonlinear 
and the linear (strict Siegel domain) case are the same [18]. 

C. Siegel singular points of algebraic differential equations. I have no proof of 
the statement that almost all equations from sf^ have at least one singular point 
of strict Siegel type for w>2. Nevertheless we propose the following conjecture. 

CONJECTURE. There is a constant 9 (perhaps, 9 = -|), such that each equation 
a £ ^ , that has in Cn the largest possible (equal to N") number of singular points, 
has at least 9Nn singular points of strict Siegel type. 

This conjecture is a transcendental question about an algebraic variety. A point 
of this variety is the set of spectra of the linear parts of all singular points of the 
equation a. 

D. Some reasons for the conjecture about the absolute rigidity of almost all equations 

We shall fix the equation a 6 ^ . Let the equation a ' g j ^ be topologically equi
valent to the equation a. 

According to NaisuPs theorem, each singular point of strict Siegel type of a 
imposes n—2 (complex) conditions on a', for being topologically conjugate. 
If the conjecture is true, then a' satisfies W=(n—2)9Nn conditions. For large 
n then W^dim^. Independence of the conditions will yield the absolute rigidity 
of almost all a £ j ^ . 

6. Convergence and divergence of normalizing series. The general theory of normal 
forms and invariant manifolds of analytic differential equations in the neighbourhood 
of a singular point was developed by A. D. Bruno. Here we discuss some geometric 
questions. 

The formal change of variables, for reducing a given equation to the linear normal 
form near a singular point (briefly—the normalizing series) may be divergent only 

8 This means the existence of g£GL(2, R)9 which maps the set {Xj1} onto {vj1}. 
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if the eigenvalues of the linear part of the equation is closely approximated by the 
resonances [7]. V. I. Arnold [1] gave a geometric picture, which explains the 
divergence of the normalising series for small n (w-<3), Some conjectures from [1] 
are proved by A. S. Pjartly and A. D. Bruno [15], [16], [4]. Recently V. I. Arnold 
discovered a parallelism in the "geometric" linearization theories of the singular 
points of analytic differential equations, of the fixed points of holomorphic mappings, 
and of the zero type embeddings of elliptic curves. The Arnold's program was 
carried out by A. S. Pjartly and the author. It appears that the theorems, proved 
in one theory, may be immediately transferred to the two others. In the next section 
we shall sketch the third theory mentioned above. 

7. Imbeddings of elliptic curves. An elliptic curve is a Riemann surface of genus 1. 
In what follows T is an elliptic curve, M,MX and M2 are analytic surfaces. 
For any imbedding / : T-*M there is a normal bundle Vf over T. 

DEFINITIONS. 1. Two imbeddings f: rt-+M, i=l,2, are said to be (analytically) 
equivalent, if two holomorphically equivalent neighbourhoods UiaMi of ftT 
exist, such that the holomorphism XJX-^IJ2 maps fT on f2T. 

2. The imbedding / : T-+M is of zero type, if fT has zero index of self inter
section in M. 

3. The linear bundle N over T is said to be 
(a) Resonant, if it may be trivialised over some finite covering of the base; 
(b) A bundle of zero type, if the imbedding T-+N as zero section is of zero type; 
(c) Rigid, if every imbedding / : T-+M with normal bundle Vf=N is equivalent 

to the zero section imbedding T-+Vf. 
The space of all linear bundles over elliptic curves is an analytic manifold; we shall 

fix some smooth measure on it (all such measures are equivalent). 

THEOREM. Almost all linear bundles over T are rigid. 

Nonrigidity of a linear bundle over an elliptic curve has the following geometric 
explanation : 

THEOREM. Let f. T-+M be an imbedding of zero type, and let the corresponding 
normal bundle be pathologically near to countably many resonant bundles. Then each 
tubular neighbourhood UczM of fT with the smooth projection %\U-^fT contains 
a countable set of elliptic curves, which form finite branch coverings fT by the projec
tion n, and which are the obstruction to the equivalence of the imbedding f and the 
imbedding T-+Vf as zero section. 

The proofs use the traditional techniques for differential equations: small de
nominators, invariant manifolds and so on. 

8. Where is seen the algebraicity of algebraic differential equations? There are tri
vial algebraic answers e.g. the number of isolated singular points of the equation 
a£.ß^J does not exceed some constant which depends only on n and N. 
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A "transcendental" answer is the conjecture, dealt with in Hubert's sixteenth 
problem: 

CONJECTURE. For the real equations of class ^ there exists a constant, depending 
only on N, such that the number of limit cycles of any equation a g j ^ does not 
exceed this constant. 

The analogue of this conjecture in the complex case is not yet formulated. The 
following conjecture seems to be related to the preceding. 

CONJECTURE. There exists a constant C, depending only on N such that every 
cycle of any complex equation agja^ has multiplicity less than C (the stable points 
of the corresponding monodromy transformation have multiplicity less than C), 
unless it has holonomy identity. 
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Singularities in Classical Celestial Mechanics 

Richard McGehee* 

Consider the motion of n point masses in a v-dimensional Euclidean space under 
the laws of Newtonian physics. Denote the mass of particle i by mf>0 and its 
position by q^R*. The gravitational potential energy can be written 

U(q) =-Zrz—TT> 
i^j\9i"Qj\ 

where q=(ql9..., tf„)€0Rv)n> a n ^ where | - | denotes the Euclidean norm. The 
motion of the particles is determined by the system of equations 

(1) irii'ii = -gradiU(ql9 ..., qn), i = 1, ..., n, 

where gradf denotes the gradient with respect to q(. Thoughout this paper we use 
a single dot over a variable to represent its derivative with respect to time t and 
a double dot to represent its second derivative with respect to t. 

The potential energy U has a singularity whenever q(=q^ We write this sin
gular set 

^v = {€€(«?: *, = *,}, 

A = U Au. 

The function U is real-analytic on (Rv)n—A. Applying the standard existence and 
uniqueness theorems for systems of ordinary differential equations to (1), we obtain 

* Partially supported by Grant MCS-78-00907 from the National Science Foundation of the 
United States. 
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the following result: Given q(0)£(Rv)n—A and q(0)€(Rv)n
9 there exists a unique 

solution q(t) defined for t£[0, a), where G is maximal. A similar statement 
can be made for negative t. 

If <7=°°, then the solution exists for all positive time. However, if er<oo9 then 
the solution is said to experience a singularity at time a. Henceforth we assume 
that o-<oo. 

The singularities of the solutions must correspond to the singularities of the poten
tial function. In fact, a classical result shows that q(t) approaches A as t-*a[13]. 
An important special case occurs if q(t) actually approaches a particular point 
in A, i.e. 

q(t)-+Qa£A as t-+cr. 

Such a singularity is called a collision and has the property that each of the particles 
approaches a limiting position. It is called a "collision" because at least two of the par
ticles must coincide in the limit. 

We can now state a question which has remained unanswered to this date. Does 
there exist a solution with a non-collision singularity? The work of Painlevé [8], 
von Zeipel [20], and Sperling [15] shows that, if q (t) is such a solution, then q (t) -+ <*> 
as t-+c. Thus an equivalent question may be stated. Does there exist a solution 
which becomes unbounded in finite time? For n = 3 Painlevé [8] showed that the 
answer is no. Saari [9] has shown that, for n=4, the set of singular solutions must 
have zero measure. The proof depends strongly on the result that, if a noncollision 
singularity exists, all four particles must lie asymptotically along a fixed straight 
line [9], [12]. We shall return to the above question at the end of this paper. 

Even the singularities due to collision are not fully understood when more than 
two of the particles are involved. Double collisions, however, are completely 
understood. From a variety of viewpoints it makes sense to extend a solution 
through a double collision by what is most easily described as an "elastic bounce" 
[2], [3], [6], [13], [17], [19]. It should be noted, however, that this extension depends 
strongly on the interaction between the particles. For potential functions other 
than gravitational, such an extension may not be possible [1], [7]. 

We shall now describe a technique which can be used to understand collisions. 
We shall discuss the behavior of the system when all n particles approach a si
multaneous collision at their common center of mass. Such a collision is often 
called "total collapse". A similar technique can be applied when a subset of the 
particles approaches a common collision. For other examples where this technique 
has been applied, see [1], [7], [10], [11], [14]. 

We digress momentarily to discuss some notation. Let ß be a finite dimensional 
real linear space with inner product (•>•). Let ß* be the dual space of ß . We 
shall use a star to denote both the natural map from ß to ß* and the natural 
map from ß* to ß . In other words, for any »€ß*, let p* be the unique element 
of ß which satisfies 

(P*,<l) = pq V(Z€ß. 
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The star also denotes the inverse map, i.e. 

(«r*)* = *. v«e<2. 
We then define the induced inner product on ß*, 

<P,IO = <P*.(PO*>, Vp,p'eß*. 
We use || • || to denote the norm induced by the inner product (•>•), both in 
ß and in ß*. 

We now return to the system of particles. Let 

ß = {«e(Ä7,:/imlft = o}, 

the subspace of (Rv)n determined by fixing the center of mass at the origin. We 
define the inner product on ß whose norm corresponds to the moment of inertia: 

where (•>•) denotes the Euclidean inner product on J?v. Introducing the momentum 
p=q*9 we can write (1) as a first order system on ß X ß * 

(2) q = P*,p=~DU(q). 

The total energy is a constant of motion and can be written 

H(q9p) = \\W+U(q). 

A solution (2) is confined to the set 

E(h) = {(<Z,/>)eßXß*: H(q,v) = h} 

for some fixed real h. For most values of h9 E (li) is a smooth submanifold of 
ß X ß * of codimension 1, and (2) is a vector field on E(h). 

Although we do not use here the Hamiltonian structure, we note in passing that (2) 
is a Hamiltonian system with Hamiltonian function H. 

Since the center of mass is fixed at the origin, total collapse can occur only at 
q=0. System (2) is of course undefined at 0=0. We now introduce new variables 
so that the transformed equations can be extended to points corresponding to total 
collapse. Let 

r = M , s = \\q\\-iq, 

v = WqW-^pq, w = UglI^iHlïll-^Cw)«*-
Note that r>0, v£R\ ||s|| = l, and ws=0. Let 

S = {«€0:11.11 = 1}, 
rs*S = {weß*: ws = 0}, 
T*S = {(s, w)€QXÖ*: s£S, w<iT?S}. 
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Then equations (3) define a real analytic difFeomorphism from (ß—{0})Xß* to 
(0, «>)X(— °°, °°)xr*S. The inverse of this diffeomorphism can be written 

q = rs9 p = r~1/2(w+vs*). 

We further introduce a time transformation 

dt = r^dz 

and use a prime to denote differentiation with respect to T. Let V be the restriction 
of U to S, let 

rcto:ß-faeß:<$,s> = 0} 

be orthogonal projection, and let 

TT(S)*: T?S-+Q* 

be the dual of n(s). Now (2) can be written 

r' = TT, s' = w*, 
(4) 

t/ = ^v*+\\w\\2+V(s), w' = - y W-| |W||2S*-7ü(*)*Z)F(S). 

The computation is facilitated if one notes that U is homogeneous of degree — 1 
and if one recalls the Euler formula DU(q)q= — U(q). 

The energy relation H(q, p)=h transforms to 

(5) ^(v*+\\M\2)+V(s) = rh 

which determines an invariant manifold for (4), 

M(h) = {(r, v, (s, w))e[0, c«)x(- - , oo)xr*S: (5) holds}. 

Note that this manifold contains points with r=0, but that the manifold E(h) 
contains no points with g=0. Transformation (3) defines a diffeomorphism between 
E(h) and 

M°(h) = {(r, v, (s, w))eM(h): r > 0}. 

This diffeomorphism carries the vector field (2) on E(h) to the vector field (4) 
on M°(h). 

Points of total collapse now correspond to the manifold 

N(h) = {(r, v, (s, w))£M(h): r = 0}. 

Note that N(h) forms the boundary of M(h). Letting r=0 in (5) we have 

(6) ±(v*+\\M\2) + V(s)=0. 
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Thus N(h) is independent of h9 and we may write 

N = {(v, (s, w))e(-~, -)XT*S: (6) holds}. 

The vector field (4) extends to N, with N as an invariant set. 
We have now accomplished the following. We have pasted a boundary correspond

ing to total collapse onto the constant energy manifold. We have scaled the vector 
field so that it can be extended to the boundary. The scaling acts to slow down 
orbits ending in total collapse so that they now take an infinite amount of time to 
reach collision. By studying the flow on the boundary we can draw conclusions 
about the flow near the boundary and hence about orbits near total collapse. 

Using (6), we rewrite the vector field on N. 

2 

(7) s' = w*9 

* = -jM\ 

w' =~vw-\\w\\2s*-n(s)*DV(s). 

First note that the critical points occur when w=09 DV(s)=0. Values of s for 
which DV(s)=0 are called "central configurations" [13], [19]. Next note that the 
value of v strictly increases except at these critical points. Thus the flow on N is 
"gradient-like". These observations correspond to Sundman's result that solutions 
beginning or ending in total collapse asymptotically approach central configurations 
[13], [16], [19]. 

A thorough analysis of the flow on N has been performed only for v = l and 
n=3, i.e. for the collinear three-body problem [5], [6]. In this case, ß is two-dimen
sional, M (li) is three-dimensional, and N is two-dimensional. 

Although S is now a circle, it breaks naturally into six segments, corresponding 
to the permutations of the three particles. As mentioned above, orbits can be ex
tended through double collisions. Since the extension does not change the order of 
the particles, we may restrict our attention to one of the six segments. After this 
extension and this restriction N becomes homeomorphic to a two-sphere with 
four points removed, as illustrated in Figure 1. (For details, see [5].) 

The coordinates labeled in Figure 1 are analogous to those of system (7). In fact, 
v is exactly the same, corresponding to radial velocity in the plane ß . Thus v 
measures the rate at which the particles are moving away from each other. The 
coordinate s is a parametrization ofthe segment of S described above and measures 
the configuration of the system. Suppose that the particles are numbered so that 
(71^(72<08- Then s= — 1 corresponds to a configuration with qx=q^ while 
s= +1 corresponds to one with q2=qz- The saddle points in Figure 1 occur at a value 
of s corresponding to the collinear central configuration with qi<q2<q$. The 
coordinate w corresponds to tangential velocity in the plane ß and measures the 
rate at which the configuration is changing. 
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The only two rest points for the flow on N are the saddles. Orbits in M(h) 
ending in triple collision are asymptotic to the lower saddle, while orbits beginning 
in triple collision are asymptotic to the upper saddle. An application of the stable 
manifold theorem to these rest points yields the result that the set of orbits beginning 
or ending in triple collision forms a smooth immersed submanifold of M (li). This 
result is a special case of a theorem of Siegel [13]. 

FIGURE 1 

Now recall that v increases along orbits in N. Therefore most orbits on N 
move up one of the two arms. Consider an orbit passing close to triple collision. 
The continuity of the flow implies that this orbit must remain close to N for a long 
time. It therefore must move up the arm a large distance and emerge from a near-
collision with large v. The coordinate s is near ±1 , which means that two of 
the particles form a very tight binary pair while the third is some distance away. The 
fact that v is large corresponds to a high velocity of the third particle away from 
the binary pair. 

This last observation yields a somewhat unexpected result. By passing close 
to triple collision the system may transfer an arbitrary amount of energy from potential 
to kinetic. This new kinetic energy resides in the motion of the third particle with 
respect to the binary pair. Note that the system of particles with v = l forms an 
invariant set for the system with v>2. Thus the same result holds for arbitrary v, 
as was proved independently by Waldvogel [18]. Since for vs>2 the set of orbits 
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encountering a double collision has positive codimension, orbits as described above 
exist without double collisions. 

As a final remark, let us return to the question of whether there exist orbits which 
become unbounded in finite time. For v=l and w=4 an uncountable number 
of such orbits was constructed by Mather and McGehee [4]. What follows is 
a description of one of these orbits. 

Consider the four particles on the line with q^^q^q^^q^ Think of particles 1 
and 2 as forming a binary pair. Particle 3 first moves toward the pair, coming close 
to triple collision. After interacting with the binary, it emerges with such a large 
velocity that it travels over to particle 4 and bounces back to the binary in time less 
than tx. The process is repeated infinitely often, the /cth occurrence taking time tk. 
Choose the times tk so that t1+t2-\-t3+ ...=o-<°°. This orbit becomes unbounded 
as t-+a (Figure 2). Note, however, that the orbit experiences an infinite number 
of double collisions through which the solution has been extended and therefore 
does not provide a final answer to the question of the existence of a noncollision 
singularity. 
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Moduli of Stability and Bifurcation Theory 

J. Palis 
To Rufus Bowen, in memoriam 

Bifurcation theory of dynamical systems goes as far back as Poincaré. One aims 
at describing the changes in the phase portrait (space of orbits) of a system 
depending on parameters when such parameters vary. This lecture concerns a line 
of recent developments in this direction, especially on bifurcations of one parameter 
families of vector fields and diffeomorphisms. A relevant role, in this context, 
is played by certain differentiable invariants of topological equivalence for systems 
that exhibit non-transversal saddle connections. Such invariants bring up, in a natural 
way, the notion of moduli of stability in dynamical systems. They also imply, 
as explained in one of the topics below, the existence of moduli of stability for 
holomorphic vector fields near a singularity. 

We begin with some simple examples of such invariants. Let X, X' be vector 
fields of class C2 of R2

9 each with two hyperbolic singularities of saddle type and 
trajectories y and y' connecting them. Let \JL9 \L' and X9 X

f be the eigenvalues 
of dX9 dX' at the saddles along transversal directions to y9 y'. Then [13], there 
is a flow conjugacy between X and X' near y and y' if and only if fi/X=fif/X\ 

We recall that, for a flow conjugacy, we require a homeomorphism h such that 
hXt—X[h9 where Xt and X[ for t£ R are the flows generated by X and X'. 
For a topological equivalence, we just require a homeomorphism sending orbits 
of X into orbits of X'. 

We say that, up to conjugacy, the modulus of stability of X near y as above is 
one, since there is one parameter family of different conjugacy classes for the vector 
fields C2 near X. It follows that, up to topological equivalence, the modulus of 
stability of X near y is zero. 

This fact can be generalized to higher dimensions as follows. We now require 
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the connecting orbit y to be a quasi-transversal (second order contact) intersection 
of the unstable manifold of a saddle p± and the stable of a saddle p2, contained 
in the "weak" parts of both these submanifolds. We assume that the eigenvalues 
of dX at p1 and p2 are real. If fil9 fi29 ...,jus are the negative eigenvalues of 
dX at pl9 we also assume that iit<iil9 2^i^s. Similarly, X^kj for 2-<j^u9 

where Xl9À2, ...,AH are the positive eigenvalues of dX at p2. Then, up to con
jugacy, the modulus of stability of X near y is one, given by the ratio / W 
Up to topological equivalence, it is zero. 

Let us see the role of these invariants in the study of one parameter families of 
gradient flows. Let M be a smooth compact manifold and Grad (M) its C°° 
gradient vector fields, with the C°° topology. Consider the set of C1 arcs 
<p: J-*Grad(M), 7=[0,1], with the C1 topology. Two such arcs cp and cp' are 
conjugate, resp. equivalent, if there are a homeomorphism Q: I-+I and a continuous 
map h: 7->Homeo (M) such that, for each s£l9 h(s) is a conjugacy, resp. a topo
logical equivalence, between <p(s) and (P'(Q(S)). An arc <p has finite modulus 
of stability if we can parametrize all equivalence classes of arcs near cp with finitely 
many real parameters; the minimum number of parameters is called the modulus 
of (p. Very recently, in a work still in production, Newhouse, Takens and the author 
proved the following result. 

THEOREM [11]. There is an open and dense subset B of one parameter families 
in Grad (M) such that if q>£B then the modulus of stability of <p9 up to conjugacy, 
is finite. The modulus is given by the number of values s£I for which cp(s) has a 
saddle connection. 

As a corollary we have 

THEOREM. There is an open and dense subset of stable one parameter families of 
gradient vector fields, up to topological equivalence. 

One of the main motivations for pursuing the ideas above was to obtain this 
result. It implies the stability of the simple arcs constructed by Newhouse-Peixoto 
connecting Morse-Smale vector fields, (see [14]). Note that, for dimM=2, it is 
a consequence of the work of Sotomayor [16]. The following are, in my opinion, 
very pretty questions in this direction. Are the stable /c-parameter families of gradient 
flows dense for / o l ? If not, are the ones with finite modulus of stability dense? 

There are analogous invariants for saddle connections of diffeomorphisms. Let 
/ and / ' be C2 diffeomorphisms of R2

9 each with two fixed saddles and orbits 
y and y' of parabolic contact between their unstable and stable manifolds. As 
before, we indicate by /i, // and A, X' the eigenvalues of df, df at the saddles 
taken along transversal directions to these invariant submanifolds. Then, there 
exists a conjugacy between / and / ' near y and y' if and only if log |/̂ |/log |A| = 
logM/log|A'|. 
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That such a relation among the eigenvalues is necessary for a conjugacy is in [13] 
and the converse in [7]. Earlier, Newhouse had pointed out that a conjugacy as 
above does not in general exist. We remark that a similar invariant can be obtained 
in higher dimensions [11]. Some global results for dimM—2 are in [7]; for higher 
dimensions, Melo and the author believe it is possible to describe all Axiom A 
diffeomorphisms (see definition in [12]) with modulus of stability one. An inter
esting question is to obtain invariants of conjugacy for saddle connections with 
higher order contact, We also remark that all these facts and questions can be 
considered for saddle connections of closed orbits of vector fields. A particularly 
interesting case is discussed in the next topic. 

We now describe a parallel development for holomorphic flows near a singularity. 
Let F be a holomorphic vector field near the origin 0 of C"9 with 0 as a sin
gularity. Consider the real flow F induces by intersecting its orbits with a small 
sphere S2"-1 centered at the origin. We assume that any two eigenvalues of dF(0) 
are independent over the reals. If the convex hull of these eigenvalues does not 
contain the origin of C, Guckenheimer showed that the real flow on s2'1'1 is 
Morse-Smale, hence stable. It follows that F is locally stable. In the other case, 
the real flow on S211"1 has pairs of closed orbits with nontransversal saddle connec
tions, which persist under small perturbations of F. This fact implies the existence 
of moduli of stability : the modulus of stability of such F in Cn near the singula
rity is at least 2/2—4. For linear flows, it was shown in [2] and independently by 
Ladis (see [5]) that the modulus of stability is precisely 2n—A. We conjecture that 
the same is true for non linear flows; for 72=3 this is proved in [2]. Using the re
sults for linear flows on Cn+1, a complete classification of holomorphic vector 
fields on the complex projective space CP11 is also carried out in [2]. 

Another interesting example of moduli is in [3], where the Lorenz attractor is 
proved to have modulus two of stability. 

Let us mention some results of a global nature on bifurcations of diffeo
morphisms. See [1], [12], [14], [17] for background, related accounts and references. 
In [9], [10] we studied how a family of diffeomorphisms depending on a parameter 
bifurcates from the Morse-Smale ones, these forming the best known class of 
stable diffeomorphisms. Consider C1 families {<pß} of diffeomorphisms, ju6[0, 1], 
suchthat (p0 is Morse-Smale. Call b=inf {/i;<p is not Morse-Smale} the first 
bifurcation point. The problem is then to describe the phase portraits of cpb and 
(pß, 6<jU<ô+e for some e>0. We assume the limit set L(cph) to be a finite 
number of orbits. This is true in many examples and we conjecture that it is so for 
a Baire (residual) subspace A of arcs. We prove that A contains an open subset 
of all arcs, the remaining part of the conjecture being its density. The other results 
can be briefly summarized as follows. For a residual (generic) set of arcs, we have 

(i) if L((ph) has no cycles, then for some e>0 q> is Morse-Smale for pi in an 
open and dense subset of (b9 b+s); 

(ii) if L(cpb) is hyperbolic and has an equidimensional cycle, then for some 
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£>0 there are infinitely many distinct classes of stable ep̂ 's with L((pß) infinite, 
1*6(6, 6+e). 

In case (ii), the subset of (b, b+e) for which cp^ is stable has a large measure 
relative to e. However, on its complement there are residual subsets of small intervals 
for which q>ß exhibits infinitely many sinks [8]. We remark that some of the above 
questions were also treated by Afraimovic and Silnikov (see [12] for references). 
In his forthcoming thesis [6], M. Levi shows that several of the above facts occur 
in a model, previously introduced by Levinson, of the forced van der Pol equation. 

As for the stability of such arcs, a characterization is given in [11] of the stable 
ones up to and beyond the first bifurcation point. In doing so, we provide universal 
models for the unfoldings of the elementary bifurcations, the novelty being the 
surprising rigidity of the saddle-node case. From our previous discussion on moduli 
of stability, we conclude that arcs of diffeomorphisms going through nontransversal 
saddle connections are not stable. One of our results, proving the stability of a 
certain class of arcs, has been generalized by C. Robinson [15]. 

In our analysis, a specially interesting question is the stability of arcs of diffeo
morphisms going through a saddle-node with cycle. In some cases, there appears 
an invariant circle and using Herman's results [4], it is shown that such arcs are 
not stable. In many other cases (in fact, we conjecture: in all other generic cases), 
nontransversal homoclinic orbits and horse-shoes appear. We succeeded in showing 
this fact for normally attracting (repelling) saddle-node. In this case, the saddle-
node is contained in a normally attracting annulus. Through projection, the question 
is reduced to the study of a class of endomorphisms of degree one of the circle, 
with varying rotation "interval". Such a concept is similar to that of rotation num
ber for a homeomorphism of the circle. 
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On the Structure of Optimal Feedback Systems 

Pavol Brunovsky 

The basic optimal control problem is given by a system 

x=f(x,u), xeR\ u£Rm
9 (1) 

a control domain 
UaRm (2) 

a performance index 
T 

J(u) = ff°(x, u)dt (/°: R"XRm - R)9 (3) 
o 

initial and target states x0,x± respectively. By an admissible control we understand 
a piecewise continuous function, defined on some interval of the real line with values 
in U. Under suitable regularity conditions on f°9f every admissible control 
u: [0, T]-*U when substituted into (1) defines a unique solution x(t, u) starting 
at x0 for t=0 (called the response of w). Substituting the control and its response 
into (3) for u, x respectively, gives a real value to /. One is interested in finding 
and studying the properties of the optimal control which steers the system from 
x0 to x1 (i.e. its response x(t) called the optimal trajectory satisfies x(T)=x^) 
for some T>0 and minimizes the performance index J. 

From the very beginning of the optimal control theory one of the approaches 
to study this problem has been to imbed it in a family of problems with a varying 
initial state x0. This approach is based on the simple observation (frequently called 
Bellman's optimality principle) that if u is an optimal control on [0, T], then its 
restriction to any interval |70, T]9 t0^09 is an optimal control for the initial state 
x(t09 u). If for each initial state x in some region G the optimal control ux (and, 
consequently, its response £x starting at x) is unique, from the optimality principle 
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we obtain immediately that the optimal control can be expressed, independently 
of the initial state, as a function of the present state of the system, i.e. there exists 
a function v:G-+U suchthat ux(t)=v(£x(t)) for x£G. Therefore the optimal 
trajectories satisfy in G the differential equation 

x =f(x,v(x)). (4) 

Let us note that in many applications the ultimate goal of solving the optimal 
control problem is to find the function v, which is called the closed-loop optimal 
control, the optimal feedback law or the synthesis of optimal control. 

Formally, one can consider (4) as an equation for optimal trajectories. In order to 
utilize it, it is important to know something about the properties of the function v. 
For example, for the classical existence and uniqueness theory of ordinary differential 
equations it would be useful if v were continuous. However, simple examples in 
which v can be constructed explicitly (cf. [1, Chapter III] or [11, Chapter 2]) show 
that due to unilateral constraints, which are typical for the optimal control theory, 
v is frequently discontinuous. 

A deeper reason for studying the structure of v is the problem of sufficiency 
of the variational necessary conditions of optimality, in particular of the Pontrjagin 
maximum principle (PMP). Assume that for every initial state x£G there exists 
a unique control steering the system from x to x± and satisfying PMP, thus 
being the unique candidate for the optimal control. If we define v(x)=ux(0)9 we 
may ask whether u is the closed-loop optimal control, i.e. whether (4) yields optimal 
trajectories (and only optimal trajectories) as its solutions. As it is shown in [1], [2] 
this problem is closely connected with the problem of the sufficiency on the dynamic 
programming equation (which corresponds to the Hamilton-Jacobi equation of the 
classical calculus of variations). 

When trying to resolve this question one is again confronted with the problem 
of the regularity of the behaviour of v. Bolt'anski observed that one can work also 
with a discontinuous synthesis, provided its set of discontinuities is sufficiently 
regular. This led him to introduce the concept of regular synthesis for the time-
optimal control problem (/° = 1) (cf. [1], [2]). By a regular synthesis for the time-
optimal control problem in a region G we understand a pair (Sf9 v)9 where «9" is 
a locally finite partition of G into C1 connected submanifolds of G (called cells), 
v is a function G-+U satisfying the following conditions : 

A. The set G' (where G' is the union of the cells of dimension </?) admits 
a stratification in G. (By a stratification 0* of a subset if of G we understand 
a locally finite partition of H into C1 connected submanifolds of G (called 
strata) such that FnQ^0 implies FczQ and dimP<dimg for any 
F,Q£0>,F?±Q.) 

B. The function v is C1 on each 56 Sf and can be extended to a C1 function 
in some neighbourhood of S. The cells of £? are of type I and type II. If S is 
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of type I, then f(x, v(x))£TxS (the tangent space of S at x) for every x£S and 
there is a uniquely defined cell n(S) such that every solution of (4) starting at any 
point x£S enters n(S) transversally for some T > 0 (after staying in S on (0, T)) 
which is a continuous function of x. If S is of type II then f(x, v(x))$TxS for all 
x€S and there is a unique cell E(S) of type I such that v is C1 on SuZ(S) 
and every solution of (4) starting in S lies in S(S) for sufficiently small positive 
times. 

C. Every trajectory x(t) of (4) starting at some point x£G (which is by B 
uniquely defined until it stays in G) eventually reaches xt in finite time T(x)^0 
passing through a finite number of cells only and together with the control u(t) = 
v(x(t)) satisfies PMP. 

D. T(x) is continuous in G. Let us note that this definition differs somewhat 
from Bolt'anski's one as well as from that of [3]. (For details, cf. [3] and the forth
coming Erratum to [3].) 

In [2] (cf. also [1]) Bolt'anski proved that if (9>, v) is a regular synthesis, then 
v is the closed-loop optimal control in the following sense: 

The trajectory £x (in the Carathéodory sense) on [0, T(x)] of equation (4) 
starting at x£G is the optimal trajectory and ux(t)=v(â,x(t)) is the optimal control. 

Virtually in all the simple examples in which it has been possible to construct 
the synthesis explicitly, the latter has satisfied the conditions of regularity. However, 
except for some studies of the local structure of v near xx (cf. e.g. [14]) no attempt 
has been made to prove that a more general class of problems would globally admit 
a regular synthesis. Such a result has been made possible by Hironaka's theory 
of subanalytic sets [7], [9], [10]. It concerns linear control systems 

x = Ax+Bu (5) 
with 

U = co{wl9 ...,wp} (6) 

being a convex polytope. Such a problem is called normal if for every /Vy\ K 

detfafa-w^Ab^Wi-Wj), ....A^b^Wi-Wj)) ^ 0 , 

where B=(b1, ...,&,„). Let us note that normality is a generic property (cf. [11, 
Chapter 2, Theorem 11]). 

THEOREM 1 [3]. Assume that the control system defined by (5), (6) is normal and 
that U contains 0 in its interior. Then the time-optimal control problem with the 
target point x1=0 admits a regular synthesis in the domain G of points that can be 
steered to 0. 

As mentioned above, the proof of this theorem makes use of the theory of sub-
analytic sets. A subset M of an analytic manifold is called subanalytic if it can be 
locally (in A) expressed as a finite union of sets of type f(Y)\g(Z), where Y9 Z 
are analytic manifolds and / , g are analytic proper. By the central theorem of the 
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theory of subanalytic sets, every subanalytic subset of A admits an analytic strati
fication, the strata of which are subanalytic (cf. also [13]). 

The cells of the synthesis are obtained by an inductive construction. The sets of 
continuity of v are shown to be subanalytic and the synthesis cells are obtained by 
a sequence of partitions of these sets into connected analytic submanifolds. In 
addition to the standard theory of subanalytic sets one needs the following 

LEMMA. Let M be a subanalytic subset of an analytic manifold A and let Xl9 ..., Xr 

be analytic vector fields on A. Then M admits a locally finite partition 0 into con
nected analytic submanifolds of A9 which are subanalytic in A9 such that for every 
FÇL& and i=l, ...9r9 Xt is either everywhere or nowhere tangent to P. 

This lemma, an improved version of which has been proved by Sussmann, appears 
to be crucial also for other application of the theory of subanalytic sets in control 
theory (cf. [12]). From this theorem it immediately follows that the minimum steering 
time to xl9 T(x), is analytic in G everywhere except for a stratified set (G') of 
dimension n — 1 (= maximal dimension of the strata). 

If one tries to extend the concept of regular synthesis to problems where PMP 
yields controls with corners which are not jumps (like time optimal control problems 
with control domains having piecewise analytic curvilinear boundaries, or linear-
quadratic problems with linear constraints), one immediately sees that the trans-
versality assumptions as well as the C1 extendability of v to the neighbourhood 
of S in B cannot be required. Instead, one has to assume their consequences, 
namely that the time z(x) at which Çx(t) enters n(S) for S of type land n(l(S)) 
for S of type II, the trajectory Çx(t) and the control ux(t) are C1 functions 
of x91 for x£S9 t£[0, x(x)) and can be extended to C1 functions of x9 t for 
t^z(x) close to T(X). With this difference, the definition of regular synthesis can be 
literally extended to control problems with other performance indices (7" in D 
replaced by / , the performance index). Bolt'anski's proof can be extended easily 
to yield an extension of his sufficiency theorem to general performance indices. 

Employing essentially the same induction techniques as in the linear time-optimal 
problem case, one can prove an abstract existence theorem. However, due to the 
lack of transversality mentioned above, in order to obtain the C1 dependence of 
the required quantities one has to construct auxiliary partitions in the product 
space of the state and adjoint space. By suitable partitions one can achieve that the 
product flow of the system and its adjoint enters the cells in the product space 
transversally, thus yielding analyticity of the required quantities. 

Because of lack of space we desist from introducing this theorem, which has 
a rather cumbersome formulation. This is due to technical assumptions, which are 
needed for the extendability of the solutions of certain vector fields to sufficiently 
long intervals. Rather we note that the most serious requirements (in addition to 
analyticity, of course) for a system to admit a regular synthesis in some region 
G are the following ones; 
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1. For every initial state x£G, there has to be a unique control ux satisfying 
PMP which steers the system from x to x±. 

2. The number of switchings (which are roughly speaking the points of non-
analyticity) of the controls ux has to be locally uniformly bounded. 

The first requirement makes the range of applications of such a result rather 
limited. Indeed, although singular controls (not minimizing the Hamiltonian 
strictly), which are quite typical for nonlinear control problems, are not excluded 
in principle, when they appear the first requirement is usually not satisfied. On the 
other hand the second requirement, the validity of which is difficult to prove for 
more general classes of systems, is virtually always satisfied in particular problems. 

The following theorem concerns a model class of problems in which these difficulties 
can be overcome—linear-quadratic optimal control problems with linear constraints. 

THEOREM 2. Consider the optimal control problem 

x = Ax+Bu, 
T 

J = f [x*Qx+u*Ru] dt (R > 0, Q ^ 0), 
o 

U={u£Rm\(lj,u)^mj, j = l,...,p}, 

x(T)=0, T fixed, and assume that this system is normal. Then the problem admits 
a regular synthesis. 

The normality assumption here consists in the non-vanishing of certain polynomials 
involving the entries of A,B, Q, lj9mj9 as in the case of the linear time-optimal 
control problem it is a generic property. 

Of course, this theorem has a similar impact on the regularity of the minimal 
value of the performance index as Theorem 1 had on the regularity of the minimal 
steering time. 

Let us note that neither Theorem 1 nor Theorem 2 contribute anything to sufficient 
conditions of optimality (the sufficiency of PMP in both cases can be proved by 
other, simpler means). Their value lies rather in the insight they give into the structure 
of the closed-loop optimal control. 

Finally let us note that in Bolt'anski's sufficiency results one understands the solu
tions in the classical Carathéodory sense. However, it has been demonstrated 
by several authors in the fifties that this concept is inadequate in the case of equations 
with discontinuities in the dependent variable. Because of the discontinuity of 
v this is the case for equation (4) in many control problems. Several concepts of 
solutions for such equations have been proposed, the most elaborate being that 
of Filippov [6]. Therefore it is natural to ask whether the optimal trajectories (which 
are the usual solutions of (4)) coincide with the Filippov trajectories or not. This 
problem is related to the problem of stability of the behaviour of the solutions of 
(4) with respect to perturbations (cf. [8], [4]). Using a slight improvement of Theorem 
1 this question can be answered positively for the linear time-optimal control problem 
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with dim M=1 (cf. [3], [5]). However, the results of [4], where the problem is com
pletely solved for the two-dimensional linear time-optimal control problem, show 
that there is a non-exceptional class of problems for which the optimal trajectories 
do not coincide with the Filippov trajectories of (4). 

The author is indebted to H. Sussmann whose comments on [3] have been of great 
value for the present paper. 
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1. Introduction. The title of this talk refers not to the mere existence of nonsmooth-
ness in analysis and optimization, which is of course not new, but to the attempts 
to consider differential properties of functions that are not differentiable in the usual 
sense(s) of the term, and tangential properties of sets that are not smooth. Precedents 
for such a study do exist: the classical Dini dérivâtes provide an early example, and 
the study of convex sets and functions a more recent one. Convex analysis (as the 
latter is called) is an excellent illustration of how such a study can lead to new insights 
and inspire new methods. The present discussion concerns the systematic develop
ment of a calculus for functions that need be neither differentiable nor convex, 
and the applications of the ideas involved to analysis and optimization. 

Sometimes we are led quite directly to consider differentiation of nonsmooth 
functions. The norm in a Banach space, for example, is a function which may or 
may not be differentiable (away from the origin), and the question of whether or 
not it is proves to be highly interesting. As another example, consider the following 
design problem: a system in state x is subject to distortion f(x). In manufacture, 
the state x can only be specified up lo a possible error (tolerance) e£E. We wish 
to choose the specified state x so as to minimize the worst distortion that might 
ensue; i.e., to minimize 

F(x) = max{f(x+e): e£E}. 

The function F so defined will generally not be differentiable, so if one would like 
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to apply numerical minimization techniques analogous to the familiar ones that 
employ derivatives of F9 then a substitute for the derivative must be found. 

To illustrate a more indirect way in which such considerations arise, suppose 
we are given a family of optimization problems depending on a parameter w: 

minimize f(x) subject to g(x) = u. 

Let <x(u) be the minimum in the above problem for parameter value u. In applying 
Lagrange multiplier techniques to this mathematical programming problem, an 
informal argument suggests that the multiplier is related to the derivative of a when 
it exists (such interpretations are important in mathematical economics). However, 
a(«) cannot be guaranteed differentiable by any reasonable hypotheses, so that any 
attempt to give a precise meaning to this relationship must be couched in a generali
zation of derivative (see for example [3] and [37]). 

Extended real-valued functions (i.e., ones which may attain infinite values) may 
seem far removed from differentiability. Yet (as first shown in convex analysis) 
there is much to be said for being able to calculate their "derivatives". Consider 
for example, for a fixed w, the optimization problem of the preceding paragraph. 
It amounts to minimizing L(x)9 where L is defined via 

L(x) =f(x) if g(x) = u, 

= + oo otherwise. 

If a point minimizing L must be a "stationary point" (in a generalized sense), 
then a necessary condition for optimality ensues. As another example, consider 
the situation in which one wishes to minimize a functional which admits a restricted 
domain of definition (such as certain integrals). Calculating a "derivative" relative 
to this domain can be viewed as differentiating an extended real-valued function. 
It has been pointed out to me by J. F. G. Auchmuty that this problem arises for 
example in deriving variational principles in astrophysics [4], as well as in several 
other physical contexts, where ad hoc methods were found for its solution. 

2. Generalized gradients. We begin with a real-valued function / , defined on a 
Banach space X9 that we suppose to be locally Lipschitz, which is to say that 
every point x in X admits a neighbourhood Nx and a scalar Kx such that, for 
every y and z in Nx9 \f(y)—f(z)\^Kx\y—z\. Given v in X9 the generalized 
directional derivative of / at x in the v direction, denoted f°(x; v)9 is defined by 

f°(x; v) = limsup \f(y+M)-f(y)]/L 
y-+x; A I 0 

Note that this is a finite quantity. It is easy to see that f°(x; •) is positively homo
geneous and subadditive, which suggests the following definition. The generalized 
gradient of / at x9 denoted df(x)9 is given by 

df(x) = {C£Z*: f°(x; v) ̂  <£ v) for all v in X) 

where Z* is the continuous dual of X. Of course, / may not admit a derivative 
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in a customary sense, but it turns out that df(x), in spite of being a set, behaves 
very much like a derivative of / . There are other ways of associating to various 
classes of nondifferentiable functions a concept of derivative, and many others 
have done so. Some prominent examples are the Dini derivatives mentioned above, 
and also approximate derivatives (see [40]), the subdifferential of convex analysis [37] 
the semidifferential of Neustadt and Halkin (see for example [36]). Other, more 
recent work in this direction has been done by J. Warga [41], [42] and H. Halkin 
[26], [27]. 

We believe that in general the generalized gradient is the most useful concept 
for the analysis of nonsmooth, nonconvex functions. This is due to several factors: 
its generality, the fact that it is intrinsic, and, especially, the fact that a satisfactory 
calculus can be developed (formulas for sums, compositions, mean values, etc.). 
The wide application that it has found tends to confirm the impression that very 
often the properties of the generalized gradient are "right". 

Since space limitations do not permit a discussion of the calculus of generalized 
gradients, we refer the reader to [9], [14], [16], and also to [3], and to the references 
therein. Before going on to the uses of generalized gradients, we mention some 
recent significant work dealing with the case in which / is not necessarily locally 
Lipschitz, but extended real-valued, as in the example of § 1. It is possible to define 
df for such / indirectly from the Lipschitz case, as was done in [9] in finite dimen
sions. Now, R. T. Rockafellar [38] has shown how an extended definition may be 
given which unifies the two (see also related work of Hiriart-Urruty [30]). This is 
based upon an alternate (and necessarily more complicated) definition of f°(x; v)9 

which reduces to the one given here when / is locally Lipschitz. 

3. Some uses of generalized gradients. 

(A) Tangents and normals to arbitrary sets. Let C be a nonempty subset of X 
and let dc(») be its distance function: dc(x)=mf {\\x~c\\ : c£C}. It is not hard 
to prove that dc is locally Lipschitz, so that its generalized gradient as defined in 
§ 2 is available to us. One use we may make of it is to define the normal cone [9] 
Nc(x) to C at any point x£C; we define Nc(x) as the closed cone in X* gene
rated by ddc(x). We then define the tangent cone Tc(x) as the dual of Nc(x); 
i.e., the set of all v in X such that (v, ()«s=0 for all (Ç.Nc(x). An equivalent 
characterization of Tc(x) would describe it as consisting of all v such that 
rfcfcy)<0. Here is a direct definition bypassing generalized gradients [9, Pro
position 3.7]: v belongs to Tc(x) iff for every sequence xn of points in C con
verging to x and Xn converging to 0, there is a sequence vn converging to v such 
that xn-\-Xttvn belongs to C for each n. This approach has recently been clarified 
by R.T. Rockafellar [39]. 

(B) Mathematical programming. Consider the problem of minimizing f(x) 
subject to x£C,hj(x) = Q C/Ĝ X ^ W ^ O (/£/), where the functions involved are 
locally Lipschitz and /, / are finite index sets. The following is proven in [14]: 
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THEOREM. If x solves the above problem, then there exist scalars X^O,Sj (j^J), 
r^O (i£l) not all zero such that rigi(x)=0 and such that 

Mf(x)+2 Sjdhj(x) + 2ridgi(x)e-Nc(x). 
J i 

The proof of this very general Lagrange multiplier rule uses nondifferentiability 
in a fundamental way, as well as the theorem of Ekeland cited below. Alternate 
approaches to multiplier rules with generalized gradients have been developed by 
J. Hiriart-Urruty [30], [31], who has also applied them to stochastic programming 
[29] and "marginal functions" [28]. Numerical methods using generalized gradients 
have been developed by A. Feuer [23], A. A. Goldstein [25], R. Mifïïin [35] and 
A. Auslender [6]. They have been employed in sensitivity analysis by J. Gauvin [24], 
by A. Auslender [5], and by J. P. Aubin and F. H. Clarke [3]. 

(C) Analysis. A question that has attracted much interest is the following: 
under what conditions and to what extent is a convex function defined on a Banach 
space differentiable? A more general question concerns the differentiability pro
perties of locally Lipschitz functions. G. Lebourg [34], using generalized gradients 
as the basic tool, has made significant progress in this area in the case of separable 
Banach spaces. 

Given a locally Lipschitz function / : Rn-+Rn
9 we define the generalized Jacobian 

[15] df(x) to be the set of nXn matrices given by 

co {limDf(xi): xt -+ x} 

(i.e. we consider all sequences xt converging to x such that / is differentiable 
at xt and such that the sequence Df(xt) of Jacobians converges, and we take the 
convex hull of all such limits). For various reasons, this is one of the natural ways 
of extending the definition of generalized gradient to vector-valued functions. 
No completely satisfactory definition is known; see however A. D. Ioffe [33] for 
a new approach. We say df(x) is nonsingular when every matrix in df(x) is non-
singular. 

THEOREM [15]. If df(x) is nonsingular, then in a neighbourhood of x9 f is one-to-one 
and onto, and its inverse is Lipschitz. 

Just as in the classical case, this result immediately yields an implicit function 
theorem, as has been noted by Hiriart-Urruty [30, Theorem 11]. Further generaliza
tions of this and other classical results appear in J. Warga [43] and H. Halkin [26]. 

An interesting approximation result on solutions of equations has been given 
by A. D. Ioffe [32] in terms of generalized gradients and normals. This result, as 
well as a fixed-point theorem couched in derivate terms [19], make use of an elegant 
theorem of I. Ekeland [21] (see also these Proceedings). Ekeland's theorem, which 
has been found to have wide application in analysis and optimization, is useful 
in conjunction with generalized gradients, since nondifferentiability intervenes in 
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it in a fundamental way. Our disappointment in not being able to include a look 
at this topic is assuaged by the opportunity to refer the reader to the discussion 
in [22]. 

4. Optimal control and the calculus of variations. Consider the "basic problem" 
of minimizing j\L(x,x)dt over the absolutely continuous functions *(•) with 
bounded derivative satisfying x(0)£CQ9 x(l)€Cl9 and where L is locally Lipschitz. 

THEOREM [10], [20]. If x solves the above problem, then there exists /?(•) such that 
(a) p(') is absolutely continuous; p(t)-x(t)—L(x,x) = constant; 
(b) L(x9x+v)— L(x9 x)>>V'p(t) for all v9 for almost all t; 
(c) p(t)edxL(x9x); p(t)edxL(x9x); 
(d) p(0)eNCo(x(0)); -P(l)eNCi(x(l)). 

We discern in this theorem the analogues of all the first-order necessary condi
tions of the classical calculus of variations : the two Erdmann conditions, the con
ditions of Legendre and Weierstrass, the Euler-Lagrange equation, and the natural 
boundary (or transversality) conditions. In [18] generalized gradients were used 
to prove a strengthened form of the variational multiplier rule for inequality con
straints, and in [17] the case of multiple integrals was broached. 

A variety of control and constrained variational problems can be cast in the form 
of the above basic problem by the device of allowing the integrand L to assume 
extended real values (i.e., +oo) (see [10]). We define the Hamiltonian in this general 
setting via H(x, /?) = sup {p >v—L(x, v) : v£ Rn}. It is possible to obtain an analogue 
of the classical Hamiltonian equation in the form of a Hamiltonian inclusion [12], [13]. 
Space permits only a sample result; we choose one that pertains to the "differential 
inclusion" x(t)£E(x(t)), where E is a given "multifunction". We define sé(C), 
the attainable set, as the set of all values x(l), where x is a solution of the differen
tial inclusion satisfying x(0)£C. We assume that E is compact-valued and locally 
Lipschitz. 

THEOREM [20]. If x is a solution of the differential inclusion with x(0)£C such 
that x(l) lies on the boundary of stf(C)9 then there exists a nonzero /?(•) such that 
p(0)€Nc(x(0J)9 (~p,x)edH(x,p) a.e., H(x(t)9 p(t)) = constant. 

The above controllability result yields necessary conditions for optimality [13], [20] ; 
in this connection see also V. G. Boltjanskii [8] and V. I. Blagodatskih [7]. An 
existence theorem for the differential inclusion in which the trajectory is invariant 
with respect to a given set and monotone with respect to a given preference ordering 
is given by J. P. Aubin and F. H. Clarke [1]. Necessary conditions for nondifferen-
tiable problems in standard form have been proved by F. H. Clarke [11], J. Warga [42] 
and H. Halkin [27]. 
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Problèmes Variationals Non Convexes 

Ivar Ekeland 

dédié à mon ami Alexandre Ioffe 
„Solch ein Gewimmel möcht ich sehn, 
Auf freiem Grund mit freiem Volke stehn". 

Goethe, Faust II, 11579-80 

Ceci est un bref compte rendu des progrès réalisés depuis mes travaux de 1972 sur le 
principe variationnel. De nombreux mathématiciens y ont prêté la main, et les 
applications se sont étendues pratiquement à toutes les branches de l'analyse non 
linéaire. Je devrai me contenter d'en esquisser quelques-unes, renvoyant pour plus 
de détails aux articles originaux ou à une publication ultérieure [15]. 

L Les résultats de base. Voici le point de départ ([11], [12]): 

THéORèME A. Soit V un espace métrique complet, et F: V-*-Ru {+°°} une 
fonction semi-continue inférieurement, ̂  + °°, bornée infèrieurement. On se donne 
e>0 et un point u£V tel que: 

F(u) ^ inf F+8. 

Alors pour tout A>0 il existe un point v£V tel que: 

F(v) < F(u), 

d(u,v) < X, 

Vw ^ v9 F(w) > F(v)-ed(v, w)/L D 

On a immédiatement le corollaire ([11], [12]). 

THéORèME B. Soit F: V-*Ru {+°°} comme ci-dessus. Pour tout c>0, il existe 
un point v£V tel que: 

F(v) < infi^+e, 
y 

VweV, F(w) ̂  F(v)-sd(v, w). D 
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Il existe enfin de ces résultats une version locale [16]. Je dirai qu'une fonction 
F'. V-+Rv {+°°} est £-soutenue au point v si F(v)< + °° et s'il existe v*Ç.V* 
(dual topologique) et rç>0 tels que: 

||w—w|| ^i]=> F(w) ̂  F(v) + (v*9 w —v)—e\\w—v\\. 

THéORèME C. Soit V un espace de Banach. On suppose qu'il existe sur V une 
fonction Frèchet-differentiable à support borné, non identiquement nulle. Alors, 
pour toute fonction s.c.i. F: V-*-R et tout ê > 0 , l'ensemble des points où F est 
s-soutenue est dense dans V. D 

Ces diverses situations sont illustrées par les diagrammes suivants. 

v 
d^=X 

Théorèmes A et B 

v | u 
Théorème C 

La démonstration du Théorème A introduit une relation d'ordre sur VXR, 
et trouve dans l'épigraphe de F (qui est une partie fermée) un élément maximal. 
Ce genre d'argument est dû à Bishop et Phelps ([1], [2]), et a été utilisé dans d'autres 
circonstances par Br0ndsted et Rockafellar [3], et par F. Browder [5]. 

Je vais classer les applications, non pas dans l'ordre chronologique, mais suivant 
le théorème auquel elles se rattachent. 

II. Les applications. 1. Version faible (Théorème B). Caristi [6] a démontré 
un théorème de point fixe qui ne requiert pas de continuité. Soit V un espace 
métrique complet, et / une application de V dans lui-même vérifiant 

Vu£F, d(u,f(u)) ^ ç(u)-q>(f(u)) 

ou <p: V-+R est s.c.i. Alors / admet un point fixe. 
F. Clarke [9] a également démontré un théorème de point fixe, sur lequel je ne 

m'étendrai pas. 
Brézis et Browder [4] se sont servis de ce genre d'arguments pour étudier un semi-

groupe non linéaire S(t), rs>0, agissant sur un espace métrique complet V où 
l'on a isolé un fermé F. En particulier, s'il s'agit d'un semi-groupe de contractions, 
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ils montrent que la vitesse maximum à laquelle les trajectoires quittent F est plus 
grande que la vitese moyenne à laquelle elles s'en éloignent. 

J'ai moi-même [12] utilisé le théorème B pour montrer, dans les problèmes 
d'optimisation non convexes, l'existence de solutions presque minimisantes qui 
vérifient presque les conditions nécessaires du premier ordre. Par exemple, si 
F est une fonction Gâteaux-différentiable et bornée inférieurement sur un Banach 
V9 il existe une suite v„ telle que F(v„)—inf F et F'(vn)—0. 

Ceci jette un jour nouveau sur la fameuse condition (C) de Palais-Smale [18], qui 
implique que la suite vn converge vers une limite, ou que l'un des F'(vn) est nul. 
Elle suffit à assurer l'existence d'un minimum v£V9 sans qu'il soit besoin pour 
cela que F soit continûment differentiable [12]. 

2. Version forte (Théorème A). L'intérêt de la version forte est qu'elle permet 
de localiser le point v par rapport au point u (prendre /L=|/e par exemple). 
F. Clarke l'a utilisée, en théorie de la commande, pour démontrer le principe du 
maximum sous des hypothèses extrêmement faibles ([7], [10]) et en programmation 
mathématique, pour démontrer des conditions nécessaires à la Fritz-John en présence 
de liaisons [8]. Ses démonstrations, fort élégantes, reposent sur l'idée suivante. 
La conclusion du Théorème A (avec !=]/£) signifie que la fonction G(w) = F(w) + 
]/êd(w,v) atteint son minimum en v, avec d(v9u)*^fë. Il ne reste plus qu'à écrire 
les conditions nécessaires d'optimalité pour G en v, et à faire tendre e vers 0. 

A. Ioffe [17] a démontré un théorème de la moyenne en plusieurs dimensions, et 
l'a utilisé en programmation mathématique. Soit F une function de classe C1 

sur Rn
9 et E l'ensemble de ses zéros; pour tout u, il existe v tel que 

\\v-u\\^d(u9E) et \\F'(v)\\^\F(u)\/d(u9E). 

3. Version fine (Théorème C). En collaboration avec Lebourg [16], j'ai étudié 
les fonctions du type F(u)=mtxexf(u9 x)9 où, pour chaque xZX, la fonction 
u-*f(u9x) estC1 sur un Banach K Si V satisfait au théorème C, et si la famille 
{/(• ,x)\x£X} est équi-difFérentiable, la fonction F sera Fréchet-différentiable 
en chaque point d'un Gô dense. Par exemple, si V possède une norme équivalente 
Fréchet-différentiable (sauf en 0), et si F est une fonction convexe continue sur 
V (enveloppe supérieure de fonctions affines continues), alors F est génériquement 
Fréchet-différentiable. Ceci résout la conjecture d'Asplund dans un sens. 

On peut également adopter un autre point de vue, et s'intéresser, pour chaque 
u£V, à la fonction x-+f(u9x) sur X. Moyennant certaines conditions supplé
mentaires, dire que F est Fréchet-différentiable au point u£V impliquera que 
la fonction f(u9 • ) atteint son minimum sur X en un point unique. C'est en parti
culier le cas pour les fonctions 

f(x9 u) = g (x)+(x9 u), ou 
f(x,u) = g(x) + a\\x-u\\p, 

ou V est un Hilbert, XaV est fermé borné, g\X-*R est s.c.i., a£R et l</?<°°. 
En dépit de l'absence de compacité, même faible, l'ensemble des u£ V pour lesquels 
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le problème d'optimisation infx^xf(x, u) admet une solution unique contient 
un Gô dense. 

En analyse globale, j'ai donné une version du théorème de Hopf—Rinow en 
dimension infinie ([13], [14]): si V est une variété riemannienne forte, complète 
et connexe, l'ensemble des points de V qui peuvent être joints à un point donné 
par une géodésique minimale et une seule contient un Gô dense. Des contre-
exemples montrent que ce résultat est le meilleur possible. 
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Control of the Diffusion Type Processes 

N. V. Krylov 

1. Introduction. The application of mathematics to the study of a real system 
subject to imperfectly known disturbances begins frequently by considering the 
differential equation 

xt = b(s + t, xt) + <j(s+t9 xt)£t9 t^O, xQ = x (1) 

where the vector xt describes the system state at time t9 the random vector £t 

corresponds to the disturbances. It is convenient to write (1) in the integral form 

t t 

xt = x+ fb(s + r9 xr) dr+ j a(s + r, xr) d£r. (2) 
o o 

One usually tries to choose the parameters xt so that for every tQ^0 the evolu
tion of xt for t>t0 should be independent of xt for t<t0 if the value xt is 
known. If this condition is satisfied then xt contains all sufficient current informa
tion about our system and xt is a Markov process. In that very case, as a rule, 
one can take the Wiener process wt instead of Çt in (1), (2) and consider the second 
integral in (2) as Ito stochastic integral. Note that the derivative wt does not exist 
and equation (1) has no direct sense if £=w\ 

We say that xt is a diffusion process if it satisfies an equation of type (2) for 
£=w. We have a controlled diffusion process if b and cr in (2) are dependent on 
parameters whose values we can change during the evolution of the system. The 
theory of controlled diffusion processes is discussed in many books and articles 
(cf. [1], [2] and references cited there). In this report we shall be considering extensions 
of the results of [2]. 
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2. Controlled process definition. Classes of policies. Let (Q, F, F) be a complete 
probability space, {Ft,t^0} an increasing family of complete c-algebras Ft<zF. 
Let (wt9Ft) be a ^-dimensional Wiener process, A a separable metric space, 
Ed a /̂-dimensional Euclidean space with a fixed orthonormal basis. Suppose that 
for x£A,t^0,x(zEd there are defined a dxd1 matrix <r(oc,t9x) and b(<x9t9x)£Ed. 
Suppose that a, b are Borei functions of a, t, x are Lipschitz continuous in x with 
the Lipschitz constant independent of a, t and <r(a, t9 0), ô(a, t9 0) are bounded. 
An A -valued process cn=at=0Lt (co), t^09co^Q9 is called a policy if it is progressively 
measurable with respect to {Ft}. Let 81 be the set of all policies. For every 
j ^ O , A;6j^, a621 there exists a solution of 

t t 

xt = x+ J o(ar, s + r, jcr) dr+ J o(ocr, s + r9 xr) dwr. (3) 
o o 

Denote this solution by x**s'x. We shall also consider classes of policies other 
than 21. 

Let C([0, oo), Ed) be the space of all ^-valued continuous functions Ç = {xt91^ 0} 
defined on [0, oo) with the topology of uniform convergence on bounded subsets 
of [0, oo). A function ß=ßt(£): [0, «>)XC([0, °°)> Ed)^A i s c a l l e d a natural policy 
admissible for the point (s, x) if it is Borei measurable, for every t^0, ßt is in
dependent of xu for u>t and there exists at least one ^-measurable solution 
of (3) where ßt(C) for £ = {xt9t^0} is taken in place of at. The set of all natural 
policies admissible for s9 x is denoted by Sl^fo x); $lM(s9 x) is its subset consisting 
of all functions ß for which ßt(0=ßt(xd- F*x s o m e solution xjl's>x of (3) 
(where at=ßt(C)) for every s, x, ß£,$XN(s, x). Then the formula at(co)==ßt(ß(coj) 
for Ç(œ) = {xP's>x(m), t^0) defines an embedding $lN(s9 x)c2l such that 
xP,s,x=xats,x ^ a s ^ Le t SQî(^) be the set of all stopping times T<f. 

3. Performance indices. Define real Borei functions c"(t, x)^0,f*(t, x), g(t,x) 
for <*eA, t£[0, ~>), x£Ed. Fix T£(0, oo) and for se[0, T], cc£% -ceWltf-s) put 

t 

(p«'s>x = f ^ ( s + r, x%>s>x)dr9 
o 

T 

t**(s, x) = EftX [f e-*f*(s+t, xt) dt+e-«><g(s+i, xxj\ 
0 

where a, s9 x near E mean that OL,S,X must be written in the interior of the brackets 
in all the places where a, s, x have been omitted. If the suppositions of §4 (below) 
are satisfied then va'x(s, x) is well defined. If we measure the quality of the policy 
a on the time interval [0,T] by means of va'z(s,x) then four problems arise: 
to find a maximizing va,T~s(s9x), to find a,T maximizing v**x(s9x) and to 
find the functions 

v(s, x) = sup v*>T~s(s9 x)9 

(4) 
w(s9 x) = sup sup va'x(s, x). 

çcçsi t carter-s) 
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If 21 in (4) is replaced by 2tJV(,y, x) (2ÏM(s9 x)) then the left sides are denoted 
by vm(s9 x), w(N)(s, x) (vm(s9 x), w(M)(s9 x)). The embeddings 2IM(j, x)a%(s9x)a 
21 imply v(M) ̂  viN) ̂  v9 wm <; wm <; w. 

4. Sufficiency of natural and Markov policies. From now on we suppose that 
a9 b9 c9f are continuous in (a, x) and continuous in x uniformly with respect to 
a for every t9 g is continuous in (t9x) and c + | / | + |^|^J^(H-|x|)m forali a, t9 x 
where K9m are constants. Define HT=(09T)XEd. 

THEOREM 1. (a) v9w are continuous in HT9 lül + M^A^l + lxl)"', v(T9 x) = 
w(T9x)=g(T9x), (b) v(N)=v, wm = w. (c) For s^O let T8 be the exit time of 
(s+19 xt) from QB = {(t9 x)£HT'.w(t9 x)>g(t9 x) — e}. Then 

sup v*' XE (t, x) = sup v*> XB(t9x)^ w (t9 x)—s 
«69Ï a69ïw(f,x) 

in HT for ß>0. 

It is not known whether v(M)=v9 w(M)=w or not in the general situation. The 
next example shows the typical difiiculties. 

EXAMPLE 1. Let d=d1=T=l9b=c=f=09g=x2
9 c(x) = sgnx for \x\^l9a(x)=x 

for |* |<1, tr(a, t9 x)=c((x,+x)9 A = {—l}v {+1}. It is easy to see that v=x2+l — s 
and an optimal policy, if it exists, must be the Markov policy af(^)=sgn x. This 
policy is not admissible if Ft=F™ and it is not clear whether the equality v=v(M) 

is valid. 

THEOREM 2. Suppose (EL) the first and second order derivatives in x of the functions 
Gij\ b\ c9f9 g exist, are continuous in x and can be estimated by K(l + \x\)m in 
HT. (b) The same is true for the first order derivatives in t. (c) A is a convex set 
in a Euclidean space, a and b satisfy Lipschitz condition in a uniformly in (t9 x) 
and either (d) crtr* does not depend on x or (e) supaeJ<r*(a, t9 x)/l|>0 if (t9x)£HT9 

X?±0. Then v(M)=v9 w(M) = w in HT. 

5. Smoothness of the value functions. From now on we also suppose that the 
condition (a) of Theorem 2 is satisfied. 

THEOREM 3. (a) The first order derivatives of v9 w in t and the second order 
derivatives in x in the sense of distribution theory are measures which are finite on 
compacts rczHT9 (b) Sobolev derivatives vxi9wxt exist and can be estimated by 
N(l + \x\fm (a.e. HT)9 (c) Sobolev derivatives dv/dteL2tloo(HT)9 dw/dteL2tloc(Q0). 

EXAMPLE 2. Let d±=d9 T=2, A=[—1,1], a be a unit matrix for t£[0,1), <7=0 
for f€[l,2], b = 0 for f£[0,1), b=oce1 for *€[1,2] where e1 is the first basis 
vector. Let c=f=09 g=(xrf. Here v=(\x1\+2-t)2 for fe[l, 2], v^EQw^+x1] + l)2 

for *6[0,1]. It is easy to check that dv/dt£L2+Biloc(H2) for e£[0, 1) butnotfore = l. 
The functions v9 w have classical derivatives. 
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THEOREM 4. The classical derivatives dv/dt9 dw/dt9vxi9wxi exist a.e. in HT. 
The classical derivatives vxixj9 wxixJ exist also a.e. in HT if in the process of calculat
ing vxixj9wxixj one does not consider the points where vxi9wxi do not exist. 

To formulate stronger results about the derivatives of v9 w let 

ix(l) = inf sup |o-*(a, t, x)X\2, 
A:/A=l a£A 

li = inf sup |<r*(a, t, x)X\2. 
|A|«1 *£A 

THEOREM 5. Let a domain QaHT and /x(/)s>e on Q for some l£Ed, e>0. 
Then the second order Sobolev derivatives of v, w in x with respect to the direction 
of I are of class L2>loc(g) respectively (forw) of class L2floc(QnQQ). If \i>>z 
on Q then v£Wl$oc(Q)9w£Wli?oc(QnQO- If condition (Jo) of Theorem 2 is satisfied 
then one can take LM, W^ instead of L2, W2 in the present theorem. 

6. Bellman equation. Denote a=-§-0Y7*, 

F[u] = sup(a,-/Mx*^+o'w;,i-CM+/+-^-J. 

THEOREM 6. F[v]=09 F[w]^0 (a.e. HT)9 F[w]=0 (a.e. QJ where the classica 
derivatives are used in F. 

By using classical derivatives one cannot characterize v uniquely as a solution 
of the Bellman equation with the boundary data v(T9 x)=g(T9 x). 

EXAMPLE 3 (cf. [3]). Let d=T=l9 a=c=g=09 6=2a, / = - a 2 , ^ = [ - 2 , 2 ] . 
In this case v=0. But the function (1 — t— \x\)+ also is equal to 0 for t=l and 
satisfies the Bellman equation a.e. 

In Example 3 the Bellman equation is a Hamilton-Jacoby equation. There already 
is a theory of such equations (cf. [4] and references cited there) and in this theory 
a unique solution is characterized by the requirement of being representable as 
a sum of a convex function and a smooth function. 

THEOREM 7. There exists a constant N such that for u(x)=N(l + \x\2)3m!2 

the functions v+u9w+u are convex in x. 

In the general case the described requirement does not provide the uniqueness of 
the solution. 

EXAMPLE 4. Let h(x) be the Cantor function on [0,1], h(x)—0 if x*z09 h(x)=\ 
if x > l , u(t9 x)=h(l—t)<p(x) where 

q)(x) = j h(r)dr. 

Then du/dt+uxx=0 (a.e. (09l)XE1))9u(l9x)=0. At the same time w^O and 
u is convex in x. 
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THEOREM 8. For every CL^A a measure with the differential 

aiJ(oc91, x)vxixj(dtdx) (a1J(<x91, x)wxixj(dtdx)) 

is absolutely continuous in HT (in QJ. 

This property of v9 w resembles a property of the solutions of degenerated quasi-
linear equations, introduced in [5]. 

7. Bellman equation solution uniqueness. 

THEOREM 9. Let z be a function for which the statements (a), (c) of Theorems 1, 3 
and the statements of Theorems 7, 4, 6, 8 are valid if there v is replaced by z. Then 
v~z. 

An analogous result is valid for w. 
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Analytic Stratifications and Control Theory 

Hector J. Sussmann 

Optimal control problems often have closed-loop (i.e. feedback) solutions which 
fail to be smooth, but whose non-smoothness exhibits a substantial degree of regu
larity. The solution is smooth on an open, dense set, whose complement is, locally, 
a finite union of submanifolds. Such submanifolds—known as "switching loci" 
if the solution is actually discontinuous there—occur in the simplest problems, 
but the really surprising fact is that, for fairly general classes of problems, no wilder 
behaviour occurs. At least, this is the natural conclusion to be drawn from the 
vast amount of existing knowledge of particular problems. However, no general 
"existence and regularity theorem" is known which enables us to prove that this 
type of behavior is indeed necessarily found whenever reasonable conditions are 
satisfied. 

Recently, progress in the direction of proving such theorems has been made thanks 
to the discovery, by P. Brunovsky, of the possibility of applying the theory of sub-
analytic sets to the study of this question. In this paper, we report on recent results 
along similar lines. 

Roughly speaking, a semianalytic subset of K"—or of a finite dimensional analytic 
manifold—is a set which is locally defined by finitely many equalities or inequalities 
involving real analytic functions. (See [2] or [4] for the precise definition.) The 
family of subanalytic sets is the smallest one that contains the semianalytic sets, 
and is closed under the operations of locally finite unions and intersections, comple
ments, inverse images under analytic mappings, and under the operation of taking 
the image of a set S by an analytic mapping which is proper on the closure of S. 
The useful facts about such sets are (a) that they have a nice structure, and (b) that 
almost anything reasonable that one may define using analytic functions ends up 
being subanalytic. 
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Let us first make (b) more precise. Consider an arbitrary formal expression 
F that involves certain variables xl9..., xn9 and which is obtained from "atomic 
formulae" of the type (*/(1), • ••>*/(„,(,/))) ££./ by the logical operations of conjunc
tion, disjunction, negation, universal or existential quantification. Suppose that 
x1,..., xk are the free variables, i.e. those that are not under the scope of a quantifier. 
Then if Ml9 ..., Mn are analytic manifolds, and the symbols Sj are interpreted 
as subanalytic sets, the set of those (xl9 ...,xfc) for which F holds is necessarily 
subanalytic, provided only that the quantifications are locally bounded (i.e., that every 
time a quantifier Qxi occurs, with 0 = 3 or ß = V5 then, if SQ(xny) is the 
scope of Qxi and y are the other variables that are free in SQ9 it follows that for 
every compact set K of the y domain there is a compact J of the xt domain 
suchthat, for each y £ K,ti(Qxi)SQ(xi, y)" happens if and only if cl(QxJ£J)SQ(xi, y)"). 
This is easily seen to be a restatement of the properties of subanalytic sets that were 
described before, since disjunction, conjunction and negation correspond to union, 
intersection and complementation, existential quantification to the operation of 
taking the image of a set A by the projection (xi9y)-+y9 universal quantification 
can be expressed in terms of negation and existential quantification and, finally, the 
boundedness of the quantifiers implies that, before projecting, one can replace 
A by a set Ä such that the projection is proper on Clos A'. Therefore, the proof 
that a set A of interest to us is subanalytic will, in general, reduce to the tedious 
task of exhibiting a definition of A which is of the desired form, and showing that 
the quantifiers are bounded. 

On the other hand, subanalytic sets have nice properties, of which the most 
important one is that they make it possible to stratify analytic maps. Precisely, 
a stratification of a smooth manifold M is a locally finite partition 0* of M such 
that (SI) each P g ^ is a regular smooth submanifold of M ("regular" means that 
it is a topological subspace of M) (S2) the frontier F r o n P of each P^gP is a 
union of members of & (here Fron P=(Closure P)-P)9 and (S3) if P£&>9 Q£@9 

g c F r o n P , then dim g < dim P. A family sé of subsets is compatible with 
a set B if every A £ sé is either contained in or disjoint from B. We call sé com
patible with another family $ if sé is compatible with each B(i&. Let us use 
the abbreviation "CASA" to refer to a connected analytic submanifold which is 
a subanalytic set. Let us write Hs to denote the restriction of H to S9 whenever 
H is an object for which this makes sense (e.g. a function, or vector field, or strati
fication compatible with S). If M9N are analytic manifolds, and g:M-+N an 
analytic map, a stratification of g is a pair (£f9ST) such that: (i) £f is a strati
fication of M, (ii) y is a stratification of N, and (iii) for every SÇS?, the image 
g(S) belongs to 2T9 and gs: S-+g(S) is a submersion. 

The main result of interest to us is : 

THEOREM 1. Let g: M-+N be an analytic map between analytic manifolds. Let 
sé9 $ be locally finite families of subanalytic subsets of M, N9 respectively. Let 
L be open, subanalytic, and such that gclosL is proper. Then there are stratifications 
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^ST of M9 N by CASA sets, such that (i) Sf is compatible with sé and with 
L, (ii) F is compatible with $9 and Qxi) (SfL93T) is a stratification of gL. 

This result is essentially Corollary 4.4 of Hardt [2]. (Hardt proves the existence 
of a stratification (&"9&~) of gL, compatible with sé and 8&. Apply this to some 
open subanalytic V such that g is proper on Clos L' and Clos L ç Z / , and with 
sé replaced by sé' = séu {Fron L}u {L}. Let (£f', 2T) be the resulting stratification 
of gh,. Let Sf" be a stratification of M compatible with ^^^TOTìL- Le* 
^ = 5 L U 5 M - L -

 T h e n (ftf) satisfies the desired conclusion.) 
A simple but useful consequence of Theorem 1 is as follows. Let / be a partially 

defined map into N9 with domain D(f)^M. Call / subanalytic if its graph 
G(f) is a subanalytic subset of MXN. Call / locally bounded if f maps relatively 
compact sets into relatively compact sets (we are not assuming that / is continuous). 
Let / be subanalytic and locally bounded. Let g: MXN-+M be the projection. 
Then g is proper on Clos G(f)9 so we can find an open subanalytic L such that 
gciosL *s proper, and that G(f) £ L. Apply Theorem 1 to this case, with sé = {G(f)} 
and & arbitrary. We get: 

COROLLARY 2. Let f: M-+N be subanalytic and locally bounded. Let <% be 
a locally finite family of subanalytic subsets of M. Then there exists a CASA strati
fication of M which is compatible with $ and is such that f is analytic on each 
stratum. 

A particular example of a subanalytic function is obtained by minimizing with 
respect to a parameter. Suppose that N, M are analytic manifolds, F: N-+M 
and cp : N-*R are analytic mappings. Let C be a subanalytic subset of N such 
that F is proper on Clos C. Define a function <p with domain D((p) = F(C) 
by <p (ni)=inf {cp (n) : F(n)=m}. 

COROLLARY 3. (p is subanalytic and locally bounded. 

PROOF. The point (m, t) belongs to the graph of <p if and only if 

( V 7 î ) ( " é C A F ( H ) 

= m => (p(n) ̂ t)/\ (Vc)[_c > 0 => (37i)(n£C A F(n) = m /\cp(n) < 7-fe)]. 

The conclusion follows if we prove that the quantifiers are locally bounded, and 
this is trivial for the e-quantifier (we can take e^l) and is a direct consequence of 
the properness of F for the /î-quantifier. Q.E.D. 

Now, if a control problem is given with dynamical law x=f(x9u)9x£M9 and 
Lagrangian L(x9 w), we get a situation that closely resembles the one that gave rise 
to the definition of cp. Fix a terminal point x0 and consider, for each initial x9 

the problem r(x,x0) of minimizing f L(x(t),u(t))dt among all trajectories that 
go from x to x0. Let $(x) be the optimal cost for r(x,x0) (assuming it exists). 
Let N be the class of open loop controllers u={u(t): a*^t^b},a,b arbitrary. 
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Let F be the map which to each u, with domain [a, b], associates £,u(a), where 
t-+£Jf) is the trajectory for which Çu(b)=xQ. Let (p(u) = fb

aL(Çu(t)9u(t))dt. Then 
$(x) is the infimum. of cp(u) as u ranges over F~~1(x). So # is very much like 
a function <p to which Corollary 3 applies. 

There are, however, substantial differences, of which the most important one is 
that N is not a finite dimensional analytic manifold. However, this difficulty can 
be overcome whenever the class N of all controllers can be replaced by a smaller 
class NQ (in the sense that it is known a priori that inf {cp(u)\ u£N9 F(u)=x} 
equals inf {<p(u)\ u£N09 F(u)=x})9 and that JVo can be parametrized by a finite 
dimensional variable a. In this case (and if, in addition, the necessary analyticity 
is established, and a C^N0 is found such that F is proper on Clos C and that the 
infimum of cp(u) for u£N09 F(u)=x remains unchanged when the constraint 
"w£C" is added) Corollaries 2 and 3 can be applied to get the conclusion that $ is 
"piecewise analytic", i.e., that there is a locally finite partition 0* of D(<P) into 
CASA's such that $ is analytic on each member of SP. 

The simplest situation where this can be done is the case of a calculus of variations 
problem defined on Rn

9 whose Lagrangian L(x9 x) satisfies: 
(Al) L is analytic on ÄnXÄw. 
(A2) L is bounded below by a positive constant. 
(A3) The matrix (fß2L/dxidXj)(x9x)) is positive definite for each (x9x)9 and 
(A4) Lim1^i_v+oo [L(x, x)/|x|]= + oo uniformly in x. 
Let M = J R W X ( 0 , oo). Let x06Ä" be fixed, and, for 7>0, let $(x91) be the 

infimum of /%!,(<!;(%), t(%j)d%, taken over all C1 curves T-^^(T) such that 
£(— i)=x, £(0)=xQ. Then one can limit the search for the infimum to the class 
of extremals, i.e. of those trajectories t-+Ç(t) that satisfy the Euler-Lagrange 
equations. But this class is "finite dimensional", the parameter being £(0). On 
the other hand, it is not hard to show that, for each compact K^ M9 there is a c > 0 
such that, for (x9 Ì)CLK9 the minimizing extremal satisfies |<f(0)[«<c. This gives 
the necessary properness, and one gets: 

THEOREM 4. For a calculus of variations problem whose Lagrangian satisfies 
(Al), ...,(A4), the value function $ is piecewise analytic. 

It is also possible to prove that # is piecewise analytic whenever there exist 
a priori bounds on the number of switchings. Precisely, consider a problem x =f(x, u)9 

with Lagrangian L(x, u), and suppose that 
(Bl) L is bounded below by a positive constant, 
(B2) / and L are analytic functions of x and u, and 
(B3) there exists a family $F of analytic functions u(x) such that, for every 

C>0, there are (1) a finite family #"(C), (2) a positive integer N(C), and (3) a 
compact set K(C) with the property that, whenever x can be steered to x0 with 
cost^C, then x£K(C) and x can be optimally steered to :x;0 by a concatenation 
of at most N(C) trajectories of members of tF(C). 
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Now let Ac(x0) denote the set of points that can be steered to x0 with cost^C, 
and let A(xQ) be the union of all the Ac(x0). Then we have: 

THEOREM 5. If (Bl), (B2), (B3) hold, then there is a countable partition SP of 
A(xQ)9 such that each Ac(xQ) meets finitely many members of SP9 and that each 
PÇ.SP is a CAS A on which <P is analytic. 

To prove Theorem 5, one reparametrizes trajectories using the cost as the new 
parameter, thereby reducing the general case to the time-optimal one. If u=u(x) 
is analytic, and K compact subanalytic, let F(K9 u) denote the set of all triples 
(x9y9t) suchthat t^09 that y=y(t)9 where y is the integral curve of / ( • ,« ( • )) 
which passes through x when t=09 and that y(T)£K for % between 0 and t. 
Then F(K,u) is subanalytic. If U is a finite sequence (ul9 ...,*/,„)* define F(K9 U) 
by declaring (x9 y91) to be an element of F(K9 U) if and only if 

(3*i,..., tm9 yQ9..., J>IH)(0>/-i,tt, ti)£F(K9 M,) 

for i = l9 ...9mAx = y0Ay = ymAt = h + ... + Q. 

Then F(K9 U) is subanalytic. Now let %(C) be the set of all finite sequences 
of w's in 3F(C) of length at most N(C). Define G±(C) by choosing a compact 
subanalytic J(C) that contains K(C), and declaring (x91) to belong to G±(C) 
if (x9x0,t)£F(J(C),U) for some V01(C) and if t^C. Then G±(C) is sub-
analytic, since SF(C) is finite. Finally, let 

(*, t)eG(C) <* (x, OeG^C) A (VT)[T < t => (x, T^G^C)]. 

Then G(C) is subanalytic, and it is clear that G(C) is the graph of the restric
tion of # to Ac(xQ). The conclusion follows from Corollary 2. 

The method of analytic stratifications can also be used to prove piecewise regularity 
of closed-loop solutions of the optimal control problem. Let M be an analytic 
manifold. Suppose that P9 Q are regular analytic submanifolds of M such that 
Pn ß = 0, and that X is an analytic vector field on P. We say that Q is a nice 
exit manifold for (P9X) if: (I) for every p£P, there is a 7>0 such that y(T-) 
exists and belongs to g, where y is the integral curve of X such that y(0)=p 
and (II) for every q£Q there exists a neighborhood V of q in g, an e>0, and 
an analytic diffeomorphism H from VX(— e, ß) onto a submanifold W of M9 

such that, if q'£V9 then 
(a) t-+H(t,q')9 — e<*<0, is an integral curve of X (hence, in particular, con

tained in P)9 

(b)H(09q')=q'. 
A piecewise analytic vector field on a subset S of the analytic manifold M is 

a 6-tuple (SP9 SP^9SP^919 iJ, X) such that 



870 Hector J. Sussmann 

(PAVF1) 9 is a finite or countably infinite partition of S into connected regular 
analytic submanifolds of M. 

(PAVF2) SP = SP1^j02t9 ^ 0 ^ 2 = 0 . 
(PAVF3) 2: &i+9x and 77: 9 ^ 0 are mappings. 
(PAVF4) X={Xp:P£0>1} where, for each P£&l9XP is an analytic vector 

field on P. 
(PAVF5) If Pe0>z then P is a nice exit manifold for (S(P)9 -XS(P)). 
(PAVF6) If P£0l9 then II(P) contains a regular analytic submanifold Q 

which is a nice exit manifold for (P9 Xp). 
If V=(SP, SPI,SP<L, I, II, X) is a piecewise analytic vector field, then there is an 

obvious definition of trajectories of V. We say that x0£S is a terminal point 
for K if {xQ}£9 and if, for every /?££, the trajectory of V that starts at p reaches 
x0 in a finite time, after going through a finite number of manifolds PÇ.SP. 

THEOREM 6. If conditions (Bl), (B2), (B3) hold, then there exists a piecewise analytic 
vectorfield V, on A(x0) with terminal point xQ, such that, for each x£A(x0), 
the trajectory of V that starts at x solves the optimal control problem T(x,xQ). 

For a proof, see Sussmann [6]. Brunovsky proved this result in [1] for normal 
linear time-optimal problems with a polyhedral control set. Since conditions (Bl), 
(B2), (B3) hold for such problems even without the normality assumption, we see 
that this hypothesis is not needed. More generally, any problem for which a bang-
bang theorem holds, with a priori bounds in the number of switchings, satisfies 
the conditions of Theorem 6. A particular example is as follows : consider a system 
x=f(x)+ug(x), where / and g are analytic vector fields, and the control u is 
restricted by |w|<l. Suppose that, for each j9 the vector field [g9 (ad/) J(g)] can 
be written as a linear combination of the fields (ad/)'(g), 0 < f * £ / + l with analytic 
coefficients, in such a way that the coefficient a of (ad/) J + 1(g) satisfies |a(x) |<l 
for all x. Then it is proved in Sussmann [7] that conditions (Bl), (B2), (B3) hold 
for the associated time-optimal problem, so that a piecewise analytic feedback 
solution exists. 

It is often the case that conditions (B1), (B2), (B3) hold if certain "singular controls" 
are added to the bang-bang ones. Whenever this happens, we can still conclude 
that a piecewise analytic feedback solution exists. 

It is known from the study of many particular problems that the open loop solu
tions can often be expressed as finite concatenations of bang-bang trajectories and 
singular arcs. It should be possible to prove a general theorem giving reasonable 
conditions under which this is true, and the proof will probably yield bounds on the 
number of switchings. However, no such theorem seems to be known at the moment. 

There is an even more challenging question for the future. Situations are known 
where bounds in the number of switchings do not exist. A typical example is Fuller's 
problem, whose solution involves infinitely many switchings. Despite the fact that 
the hypothesis of Theorem 6 fails to be satisfied, Fuller's problem has a very nice 
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feedback solution. This suggests that it should be possible to extend Theorem 6 
further. However, such an extension is not likely to be possible using the technique 
of subanalytic sets, since this technique depends on the reduction to finite-dimensional 
spaces of controls. A totally different idea is probably needed. 
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Some Topics in Quantum Statistical Mechanics 

Huzihiro Araki 
Some topics in quantum statistical mechanics of spin lattice systems 

are reviewed from a mathematical point of view 

1. C* -dynamical systems. The mathematical object studied in quantum statistical 
mechanics of a spin lattice system is a C*-dynamical system consisting of a C*-
algebra 91 and a strongly continuous one-parameter group %t9t£R9 of ^auto
morphisms of 31. The "spin lattice" refers to a system of a finite dimensional 
full matrix algebra 3IX (the spin algebra) associated with each point x in a lattice 
L such as the «-dimensional cubic lattice L=Z". The algebra 31 is the inductive 
limit of tensor products of 3IX and has the following system of local subalgebras: 
For each finite subset A of the lattice L9 there corresponds a finite dimensional 
subalgebra 31 (4) with the trivial center (corresponding to the tensor product of 
SIj. for x£A and the identity operators ly of 3Iy for y$A)9 satisfying (\)AiZ}A2 

implies 31(^)331(^2), (2) the union of all VL(A) is dense in 31, (3) a^l(A^) 
and & 631(^2) commute if A1 and A2 are disjoint. The algebra St is simple 
and has a unique tracial state, which we denote by co0. We denote the conditional 
expectation relative to co0 from 31 to 31(4) by EA (the partial trace on the com
plement of A). 

The T, (describing the development of the system with the time t) can be uniquely 
described by its infinitesimal generator ö (the derivative of rt at *=0), which 
is a *-derivation. A model of a quantum spin lattice system is specified by giving 
a *-derivation 50 with its domain D(5d>) = the union of all 31 (A) (A finite subsets 
of L) in terms of a "potential" $ as follows: # is a map from non-empty subsets 
of L into selfadjoint elements of 31 suchthat 0(A)Ç.(SI(A) and 

HA = lim2!{$(^1): A/ZDAl9AnA1 nonempty} 



874 Huzihiro Araki 

exists in 31 for all finite subsets A of L as the finite subset A' of L tends to L. 
For a^\(A), the ^-derivation ö# in question is defined by the following com
mutator: 

ö0a = i[HA, a]. 

The complicated definition of HA in terms of <P is just to guarentee the consistency 
of this definition when the same a is considered as an element of a different local 
algebra Ü(A^) with A^A. 

Any ^-derivation whose domain is the union of il (A) can be described in this 
manner. The correspondence of such *-derivations with potentials becomes bijective 
if we impose the following condition on $: EA ($(A)) = 0 for all A with non-
vanishing intersection with the complement of A1. The set of all such # form 
a Fréchet space relative to seminorms rA(<P) = \\HA\\. (L is assumed to be countable.) 
For any UHF algebra, of which our 31 is a special case, it is also known that the 
domain of the generator of a strongly continuous one-parameter group of ^auto
morphisms contains \JA^i(Ä) f°r a suitable choice of the local algebras 31 (A). 

A real mathematical problem in describing %t in this manner lies in the construc
tion of Tt from ô09 i.e. the extension of ö0 to a generator of a one-parameter 
group of ^-automorphisms of 31. Each of the following conditions is known to be 
sufficient for the closure of ö0 to be a generator. 

(A) The following expression is finite for some ,y>-0: 

2sup{2{||*(A)\\e*»: Aix, \A\ = n}: x£L} 
n=l x A 

where \A\ denotes the number of points in A. The proof is by explicitly construct
ing xta in terms of power series of t and proving the absolute convergence of the 
series for sufficiently small t for any öG u3t(/l) [1], [2], [3]. 

(B) There exists a monotone sequence of finite subsets A„ lending to L such 
that the distance of HA from 3t(/lIJ) is bounded uniformly in n. The proof is 
by using an abstract characterization of a generator [4]. This applies to some 1-dimen-
sional models. 

(C) There exists a monotone sequence of finite subsets An tending to L such 
that the distance of HA to 3t(ylII+III) is bounded by Cne~am for all positive integers 
72 and m for some constants C>0 and ooO. This condition applies to a class 
of models on two dimensional lattices. The proof is by first constructing a candidate 
for T(fl by a kind of perturbation expansion, next proving an integral equation 
which it satisfies and finally appealing to an abstruct characterization of a gene
rator [5]. 

(D) There exists a monotone sequence of finite subsets A„ tending to L such 
that S(HA )=lim„, i[HA , HA ] exists and is bounded uniformly in n. The HA 9k=n 
and 777, in this condition can be replaced by EA HA for any p(k) tending to °° 
as 77->o°. The proof depends on a simple abstract argument [5]. This condition 
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applies to the classical interaction where <P(A) belongs to an abelian subalgebra 
of 31 and hence HAs mutually commute [6]. 

2. General properties of %t. The specification of the model in terms of the potential 
$ refers to a local behavior of the time translation %t. For a given *, it is difficult 
to prove some global property of the time translation tt. We mention some such 
properties, which do not necessarily hold but are of some interest. 

(i) The fixed point subalgebra 3IT of 31 under r r If all $(A) belongs to an 
abelian subalgebra of 31 (as in classical interactions), then that abelian subalgebra 
certainly belongs to ST. On the other hand, for typical quantum interactions 
3tT is expected to be trivial. 

(ii) The GNS representation associated with the unique trace state co0 carries 
a unitary representation U0(t) of t£R implementing T, and leaving the canonical 
cyclic vector invariant. The spectral property of U0(t) is of some interest. For 
example, if the only invariant vectors are multiples of the canonical cyclic vector, 
then SP must be trivial. 

(iii) If ||[T,(a), è]|| tends to 0 as ^ » for any a and b in 3Ï, %t is said to be 
(strongly) asymptotically abelian. If (p([Tt(a), b]) tends to 0 as t->-°° for all 
state ç instead, xt is said to be weakly asymptotically abelian. Either property 
implies that the set of the U0(t) invariant vectors is one-dimensional and the spec
trum of the selfadjoint generator of U0(t) is the whole real line. 

Since the asymptotic abelian property of the time translation %t is a handy 
assumption in a general discussion and is often assumed, it is desirable to have a general 
method of proving (or disproving) it for a reasonable class of potentials for quantum 
interactions. 

An important class of potentials are those having a symmetry property. Let G 
be a group of *-automorphisms of 3Ï and n be a homomorphism of G into 
bijections of L suchthat gc$t(A) = SSr(ngA). A potential <P is said to be G-invariant 
if g<P(A) = <P(ngA) for all g£G and all A. Under the condition EA <P(A) = 0 
stated earlier, this is the case if and only if ö0 commutes with all g£G (and hence 
if and only if %t commutes with g£G under any of the conditions (A)-(D)). 

Typically G contains a sequence gn such that ng A becomes disjoint with 
any given finite set as n-+°°. In that case the asymptotic abelian property 

lim ||[g„fl, b]|| = 0 
n 

holds for all a and b in 31. Usually G is a locally compact group and the asympto
tically abelian property holds for g-+°° in G. 

For sufficiently complicated interactions, it is probably a reasonable guess that 
the commutant of zt in the set of all ^-automorphisms of 31 is generated by 
zt and the obvious symmetry group G of the above kind. However, no such cases 
have been established, nor any method of using such information is known. In the 
case of a classical interaction, the commutant of %x clearly contains a large number 
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of *-automorphisms, i.e. the group of unitaries in an abelian subalgebra of 31 
modulo the circle group. The commutant of a certain group of quasifree auto
morphisms of the CAR algebra has been determined [7], but this does not provide 
an example of the commutant of a one-parameter group of automorphisms. 

3. Equilibrium states. For our purpose, an equilibrium state at a nonzero tempera
ture is a state coß of 31 satisfying the following KMS condition for some real 
number ß (inversely proportional to the absolute temperature): For any a £ 31 
such that Tta is entire in t9 cuß(ab)=€uß(bTißä) for all /3£3C. Such a state is called 
a (TP /?)-KMS state. The (T, ,0)-KMS state is unique and is the trace state co0. 

The equilibrium state at the zero temperature is a ^-invariant state co (i.e. 
œ(/c1a)=œ(a) for all #631) suchthat œ(axtb) is the Fourier transform J eitp dpLah(p) 
of a complex measme fi0tb whose support is in the positive half line for all 
a, è 6 31 (a ground state) or in the negative half line for all a9 6 £31 (a ceiling 
state). This condition, apart from the invariance, is the same as requiring one
sided spectrum for the unitary one-parameter group Uœ(t) implementing %t and 
leaving the cyclic vector invariant in the GNS representation of co. 

If Tr is an inner automorphism, i.e. i;ta=eUHae~UH for some #€31, then there 
exists a unique (T,,/J)-KMS state coßH(a)=co0(e~ßHa)/co0(e~ßH) for all finite ß 
(the canonical ensemble). If %t can be approximated by inner automorphisms, i.e. 

zta = lim eitH»ae~itHn 

n 

uniformly over compact sets of t for a dense set of a in 3Ï for a sequence Hn£% 
then any accumulation point of states coßH as 72->°° is a (Tt, jS)-KMS state, which 
exists for all ß. Since any accumulation point of (zt, /J)-KMS states as ß -> + °o 
(or — oo) is a ground (or ceiling) state, ground and ceiling states also exist in this 
case. If the closure of ö0 is a generator (hence if one of (A)-(D) holds), then 
the above situation holds with HA serving for Hn as A-+L[8\. 

Under the condition (A), the (%t9 /?)-KMS state is known to be unique for small 
\ß\. Under the condition (B), it is unique for all ß [9], [10], [11]. There are examples 
of # (satisfying conditions (A, C, D)) for which (zt, /?)-KMS states are not unique 
for large |j8|. The ^-dependence (and in particular the critical point) of (T,,/?)-

KMS states is of great importance in physics. 
It is of both mathematical and physical interest to find out the set Sx of all T,-

invariant states in relation with the sets Sß of all (zt, jS)-KMS states and the sets 
S±eo of all ground and ceiling states. All of them are compact convex. Sß for any 
finite ß is a Choquet simplex and its extremal points are exactly primary KMS 
states. If %t is asymptotically abelian, Sx is also a Choquet simplex. Extremal 
points of £T are called ergodic states. A primary (T,,/?)-KMS state is ergodic 
if and only if xt has a weak form of (n-) asymptotic abelian property in the associated 
GNS-representation. In particular, if zt is asymptotically abelian, primary KMS 
states are ergodic. 

It is difficult to pin down all ergodic states for any given it. Clearly, any unique 
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KMS state of any one-parameter subgroup of the commutant of %t is a primary 
Tf-invariant state. (See § 4.) For a certain group of quasifree automorphisms of 
the CAR algebra, the set of all ergodic states is known [7]. 

The (T,,/?)-KMS states have other equivalent characterizations. We briefly 
list some of them. We assume that the closure of d# is the generator of %t whenever 
S0 or HA appears explicitly. 

(I) A characterization in terms of ö0 [12]: coß(50a)=O and —ißcoß(a*ö0a)z> 
S(coß(aa*):coß(a*a)) for all a£u8I(/l) where S(v\u) is u\og(ujv) if u and 
v are positive, 0 if w=0 and +oo if w>0 and v=0. 

(II) The local variational principle of minimal free energy [12], [13] : For any 
finite set A and for any state cp of 31, which has the same restriction to 31 (A±) 
as the given cop as long as Ax is disjoint with A9 the minimality EAp(cuß)^FAß((p) 
holds for the free energy PAß defined by FAß((p)=ß(p(HA)—§A((p), where the 
open system entropy SA(<p) is the limit of the difference SA,(cp) — SA,\A((p) as 
A' tends to L, which exists, the closed system entropy SA, (cp) is defined as 
—(DQ(QA,, log QA,) in terms of the density matrix QA,£yi(A') uniquely determined 
by (p(a)=co0(gA,9a) for all a€$l(A')9 and A'\A denotes the relative complement 
of A in A\ 

For ground states, (I) reduces essentially to our definition: co(ooa)=0 and 
— ico(a*ö0a)^O for all ff£u8I(yl). The other becomes 

(II)' For any finite set A and for any state cp of 31, which has the same restric
tion to 31 (A^ as the given state œ as long as A± is disjoint with A9 the minimality 
co(HA)^cp(HA) holds [14]. 

The case of ceiling states is obtained by reversing s> and ^ . 
If we consider a fixed symmetry group G such that nG is transitive on L9 the 

set of all G-invariant potentials form a Banach space under the norm ||#|| = ||-H{X}|| 
(independent of x£L) due to the estimate \\HA\\ ^ \A\\\<P\\. If we restrict our atten
tion to G-invariant states, then we have the following characterization of (T,, /?)-
KMS states for all finite ß under a certain condition on nG (usually satisfied): 

(III) The global variational principle: ße(coß)—s(mß)^ße((p)—s((p) for all 
G-invariant states cp of 31 where the mean energy e(<p) and the mean entropy 
s(q>) are the limits of {A^çÇH^ and lA^S^cp) as A-+L in a manner appro
priate with respect to the action of nG (ä la Van Hove). 

For ground states, 
(III)' e(co)^e((p) for all G-invariant states cp of 31. 
The value P(ß$)=s(coß)—ße(coß) is called the pressure function, which coincides 

with the limit of |yd|_1 logco0(e~ßH) as A-+L and is convex and continuous in #. 
We now discuss characterizations which do not involve the parameter ß. A state 

is called passive [15] if for any self-adjoint 3I-valued differentiable function ht of 
t£R with a compact support, 

oo 

Lh(co) = f œ^KdhJdt)) dt ^ 0 
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where T[' is the *-automorphism of 31 defined by the following perturbation 
formula: 

Ì I1 V 1 

T{'A = 2 l" J dti J dt2... j dtn 
M = U — oo — oo — o o 

The (xt9 jS)-KMS state with jS>0 as well as ground states are passive. The converse 
is not true because convex combinations of (T , ,^ ) -KMS states with mixed values 
of ß are also passive. The converse holds if we impose some conditions on co such 
as the weak clustering property: 

T 

lim (2T)-1 f dt(co(aTtb)-co(a)co(bj) = 0. 

Alternatively, the complete passivitiy condition that co®n on 31®" is passive relative 
to T®'1 for all positive integers 77 implies that m is either a (xt, /?)-KMS state for 
some ß^O or a ground state. The passivity condition expresses the property of 
equilibrium state that it can not produce an energy in a cyclic process, i.e. a form 
of the second law of thermodynamics. 

A characterization of KMS states for ß^O and ceiling states together is obtained 
by reversing the inequality in the passivity condition. 

Another characterization of equilibrium states is the stability under a (localized) 
perturbation of dynamics [16], [17], [18], [19]. For simplicity of exposition, assume 
the .^-asymptotic abelian property for zt: j ^ ^ \\[b9 zta]\\ dt<°° for all a, b in 
a dense subalgebra Sii of 31. If œ is an equilibrium state, then the stability con
dition fZ^codP, Tta])dt=0 for all P and a in S^ holds. For primary states 
co9 for example, the converse also holds. 

For some other characterization of KMS states, see for example [20], [21]. 
It is an interesting question to find a condition under which the third law of ther

modynamics holds, i.e. whether s(coß)-+0 as ß-+°°9 and whether s(co) = 0 for ground 
states and ceiling states co. 

4. Chemical potential. The original meaning of equilibrium is that the state is 
stable. The canonical ensemble prescription and variational principle are its charac
terization heuristically obtained many years ago in the framework of statistical 
mechanics and thermodynamics, respectively. The KMS condition is an abstract 
characterization of the canonical ensemble by Kubo and by Martin and Schwinger 
about 20 years ago. The equivalence of these different characterizations is now 
more or less established in the mathematical framework explained above. 

There is another thermodynamic variable used by physicists to describe an equi
librium state, namely the chemical potential. It appears in the following physical 
circumstances. If a number of particles is preserved under isolated circumstances 
but can change when brought into a contact with some other substances such as 
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a catalyzer, the equilibrium states are parametrized by chemical potentials (in addition 
to ß), which serves as a "potential" in chemical reactions. Such a state will be 
unstable under catalytic perturbation but stable under perturbations preserving the 
number of particles. The following is a summary of theory of chemical potentials 
in the present mathematical framework [22], [23]. 

We consider a compact group G0 of *-automorphisms of 3t (called the gauge 
group) such that gil(A)=il(A) forali A and gzt~ztg forall g£GQ. For example 
G0 may be a circle gi oup T= {a0 : 0 mod 2n} and any operator #6 SI satisfying 
a0a=einBa is interpreted as changing the number of particles by 77. We are interested 
in those states which satisfies the stability condition for G0-invariant perturbation P. 
The restriction of the state to the G0-fixed point subalgebra 3I0 of 31 must then 
be an equilibrium state for the restriction of T, to 3t0 (which is Tr-invariant). 
Hence we shall treat the extension of extremal (xt9 /?)-KMS states œ of 3I0 to 
a %t invariant state of 31. Since such a state can be decomposed into ergodic states, 
we actually discuss extensions to ergodic states. The traditional prescription of 
physicists gives (T, allt, /?)-KMS states in the above mentioned example with the 
real parameter \i9 which is the chemical potential. (The states known as grand 
canonical ensembles.) Our aim is to justify this mathematically. 

We state the result under the assumption of asymptotically abelian zt. Then an 
ergodic extension of a primary (zt, ß)-KMS state of 3I0 to 31 exists and is unique 
up to gauge i.e. two extensions cp± and cp2 are related by (Pi(ga) = cp2(a) for all 
a 6 31 for some g€G0. (This result holds for any ergodic states of 3I0.) If the state 
is faithful on 3t0, then the extension is a (rtgt, ß)-KMS state where gt is a one-
parameter subgroup of the center of the stabilizer G(p={g£G0: (p(ga) = cp(a) for 
all 0631} of the extension (p. (In the above example gt=<xflt.) If the state is not 
faithful, the only possible complication is that the extension may have a "one-sided" 
spectrum for a normal closed subgroup N9 of Ĝ  and is a (ztgt, ß)-KMS state 
for gt in the center of GJN^ when the extended state is restricted to the Affixed 
point subalgebra of 31. The analysis can also be carried out without the assumption 
of asymptotic abelian for zt under some other assumptions which are moie compli
cated but can be verified for concrete models more easily. 
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Geometrical Aspects of Gauge Theories 

M. F. Atiyah 

1. Introduction. Gauge theories are, broadly speaking, physical theories of a geo
metrical character such as Einstein's theory of general relativity. In a narrower 
sense however they correspond to the differential geometry of fibre bundles and 
were first introduced by H. Weyl in 1916. In recent years they have become 
increasingly strong candidates to provide a fundamental description of elementary 
particles. The hope is that, when quantized, gauge theories will explain elementary 
particles in the same way as quantization of Maxwell theory leads to photons. 

The basic difficulty in this programme lies in the nonlinearity of the classical 
field equations. The successes so far achieved in quantum field theory have depended 
on sophisticated perturbation techniques which involve expanding about the linearized 
equations. For many purposes however perturbation theory is inadequate and 
physicists are exploring alternative nonperturbative approaches to the quantization 
problem. 

One hopeful development has been the discovery that gauge theories possess some 
remarkable classical solutions which, in simple cases, can be explicitly described. 
One example is the 'tHooft-Polyakov "magnetic monopole" (see [9]) which is 
a static solution for an £E/(2)-gauge theory behaving asymptotically like a usual 
Dirac monopole (for the group U(l)) but having no singularities. Another example 
is the instanton solution of Belavin et al. [8] for an S'C/(2)-gauge theory in Euclidean 
4-space (as opposed to Minkowski space). 

The physical significance of instantons is different from that of monopoles and is 
best understood in terms of the Feynman functional integral approach to quantiza
tion. This involves expressing physical quantities as functional integrals involving 
és where S is the (Minkowski space) action or Lagrangian. A standard way to 
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attempt to ascribe meaning to such an integral is to continue analytically into 
Euclidean space in which case the exponential becomes e~s where S is now the 
(positive) Euclidean action. Instantons correspond to minima of the Euclidean 
action. Of course this does not solve the problem of giving a mathematical meaning 
to the functional integral but it is a step in the right direction and is becoming 
increasingly popular. 

The general hope is in any case that a thorough understanding of the classical 
nonlinear equations of gauge theories may cast light on the difficult problem of 
quantization. 

2. Instantons. Mathematically instantons, for a given compact Lie group G, 
correspond to fibre bundles with group G over £4 (the compactified 4-space, 
having a connection A which minimizes the L2-norm ||F||2 of the curvature F. 
For G simple and non-abelian (e.g. SU(2)) the fibre bundle is classified topologically 
by an integer k and the minimum of ||.F||2 is 87c2|/c|. 

In physical terminology A is the potential, F is the field and [|î ||2 the action. 
Different integers k correspond to different asymptotic conditions for A in R*, 
and k is referred to as the instanton number. Since ||F||2 depends only on the 
conformai structure of iE4 it is natural to pass to the conformai compactification S*. 

For /c=l and G = SU(2) a solution spherically symmetric about the origin 
in JR4 was discovered by Belavin et al. [8]. This was extended by 'tHooft and others 
(see [10]) to give solutions for / o l . Their solutions can be regarded as a non
linear supposition of k single instantons located at different points of i?4, the super
position being achieved by an ingenious but rather mysterious Ansatz. 

A parameter count, using infinitesimal deformation theory, showed that, for 
/c>2, this Ansatz did not yield the most general /c-instanton [3], [13], for which 
more sophisticated methods have had to be used. These methods arise naturally 
from Penrose's twistor theory [2], [12] and have led to a complete solution of the 
instanton problem, not just for SU(2)9 but for all compact classical groups [4]. 

The geometry underlying Penrose's theory goes back to Plücker and Klein and 
hinges on the fact that 4-dimensional space can be viewed as the parameter space 
of lines in 3-space. More precisely, for our purposes, there is a fibration P3(C)-+S*9 

where P3(C) is complex projective 3-space and the fibres are complex projective 
lines (i.e. 2-spheres). Instanton bundles on *S4 correspond by this map to holo
morphic bundles over Pa(C)9 satisfying suitable constraints [6]. Such bundles 
are necessarily algebraic by a basic theorem of Serre and the constraints are also 
expressible algebraically (over the real numbers). Thus the instanton problem gets 
reduced to a problem of real algebraic geometry in 3 dimensions. 

Using the powerful techniques of modern algebraic geometry, and following in 
particular the work of G. Horrocks and W. Barth [7], one obtains the complete 
solution of the instanton problem referred to above. The main technique involved 
is the use of sheaf cohomology groups, some of which have a direct interpretation 
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in 4-space as solutions of standard linear equations (Laplace, Maxwell, Dirac, etc.). 
The 'tHooft Ansatz, for example, which is based on Laplace's equation, has a natural 
cohomological counterpart, and can be generalized to the other equations [6]. 

The final outcome [4] of this algebraic geometry is a very explicit description of 
all ^-instantons. The solutions, i.e. the connections A and curvature F are given 
by rational functions of the 4-space coordinates, and depend on a suitable matrix 
of parameters. The 'tHooft solutions for SU(2) correspond to the special case of 
a diagonal matrix. The general /c-instanton does not have the same local or point-
wise appearance due to the presence of the off-diagonal terms. 

This solution of the general instanton problem provides a tangible mathematical 
justification of the Penrose approach. The technical reasons for its success lie in the 
fact that sheaf cohomology is a more flexible tool than its counterparts in 4-space. 
In the long run this may well mean that the process of quantization should, as Penrose 
argues, be carried out in the twistor framework. 

There are two caveats that should perhaps be made. In the solution of the instanton 
problem one key step has to be carried out in the £4-picture. This involves proving 
that a certain operator is positive and is not so easy to see in the P3(C)-picture. 
Secondly the Penrose transformation works well for instantons because these are 
given by the self-dual Yang-Mills equations (Euler equations for the Lagrangian 
\\F\\2). The full Yang-Mills equations involve also the anti-self-dual case and because 
the equations are non-linear we cannot, as in Maxwell theory, combine the two 
together. However Witten, in a very interesting paper [15] (see also [16]), has recently 
shown how to interpret the full Yang-Mills equations in a twistor framework. This 
involves studying the product of P3(C) with its dual and looking at the 5-dimensional 
"incidence" hypersurface together with some normal derivatives. Interestingly 
enough this use of normal derivatives conesponds to a supersymmetric approach 
involving formal anti-commuting variables. 

Finally I should mention a very intriguing paper by Manton [11] which shows 
that, in a certain precise sense, an infinite superposition of instantons produces a mag
netic monopole. To see how this might happen recall that a monopole is time-
independent and so can also be viewed as an infinite action solution in Euclidean 
4-space. 

3. Topological aspects. In the Feynman approach to quantization we have to 
integrate over the function space of all classical fields. In the Euclidean version of 
gauge theory, extended to £4, this space would be the space sé of all connections. 
There is however a large group of symmetries of this space, namely the group 
0 of gauge transformations1 (bundle automorphisms), which preserves the Lag-

1 For technical reasons it is convenient here to use only gauge transformations equal to the 
identity at °° (i.e. at the base point of £4). 
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rangian \\F\\*. Integration should therefore be carried out on the quotient space 
# = sé fé. Now sé is a linear space but ^ is only a manifold and has to be treated 
with more respect. Thus for integration purposes a Jacobian term arises which, 
in perturbation theory, gives rise to the well-known Faddeev-Popov "ghost" particles. 
Nonperturbatively it seems reasonable that global topological features of <$ will be 
relevant. 

Homotopically #~fì3(G) the function space of based maps S*-+G9 the compo
nents (êk of # corresponding to maps of degree k. The /c-instantons define 
a finite-dimensional manifold Mka^k given by the minima of the action. For 
G=SU(2) and fc-*°° it is a remarkable fact [5] that all the homology of <ßk lies 
in Mk. It is not unreasonable to conjecture that a similar result should hold for 
all G and that one should even have a homotopy equivalence Mk~<€k as /c-*°°. 
This would tell us that all the global complication in #fc was already present in 
Mk (for /c-+°°), and might indicate that instanton contributions, suitably inter
preted, would converge to the required functional integral. 

The results of [5], for G=SU(2)9 use the 'tHooft solutions depending on configu
rations of k distinct points, and the striking theorem of G. B. Segal [14] that, for 
/c-*-<*>, Ck(R*)zzQl(S*) where Ck(B?) is the configuration space of k points of 
jR3 and ^ denotes homology equivalence. It is important to note that the funda
mental group of Ck(R

s)9 namely the permutation group Ik9 gets abelianized on 
passage to fìj^S3). It seems likely that this already happens in Mk as a result of 
the nondiagonal matrices in the description of the general fe-instanton (for /cs>3). 
This indicates that a "particle" interpretation of the space %9 while valid for 
homology purposes, is inadequate in other respects. 

Homotopically the space Q3(G) simplifies, for G=SU(n)9 if we take 77-»-oo. 
This suggests that the quantum theory might be soluble in some sense for this limit 
case and one might then take the 1/«-expansion to derive information about the 
finite levels. One very significant feature of the limit theory is that all the homotopy 
of the function space # is then contained in the family of (massless) Dirac operators 
coupled to the (iso-spin representation of the) gauge field. More precisely if we 
assign to AÇ.W the corresponding Dirac operator DA we get a homotopy equi
valence between V and the space of Fredholm operators in Hilbert space. This is 
related to the index theorem for elliptic operators and the Bott periodicity theorems 
concerning the homotopy of the unitary groups [1]. Even foi finite n one can derive 
interesting consequences [5]. 

In conclusion, and to put matters in proper perspective, I would like to emphasize 
that my discussion of geometrical aspects of gauge theories does not imply that geo
metry or topology alone will unlock the secrets of physics. Many other insights 
coming from analysis, statistical mechanics and of course experimental physics are 
needed. The geometrical point of view is however a comparatively new one in the 
context of quantum field theory and I hope it can provide some useful ideas. It is 
at least encouraging that the mathematical study of classical gauge theories, geo-
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metric, topological and analytic, has over the past decades developed powerful 
new approaches and techniques. If gauge theories turn out to provide the right 
explanation of the basic forces of nature, physicists may find that the work of their 
mathematical colleagues has not been entirely irrelevant. 
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Model Equations for Waves in Nonlinear 
Dispersive Systems 

Jerry Bona 

The present discussion focuses on models for unidirectional wave propagation 
in which nonlinear, dispersive and dissipative effects are simulated realistically and 
in such a way that shock formation and other singular behaviour is avoided. While 
comparatively narrow, the range of discussion nevertheless covers a number of 
interesting and challenging scientific issues, several of which still remain open. 
The model equations take one of the following forms : 

ut+f(u)x+Hut = 09 (la) 
or 

ut+f(u)x-Hux = 0. (lb) 

Here u=u(x, t): RXR-+R and subscripts denote partial differentiation. The func
tion f:R-+R represents nonlinear effects in the physical system being modeled, 
while H is a linear operator representing dispersive effects, and dissipative effects 
when they are considered. The best known model in the form (lb) is the KdV 
equation 

ut + ux+uux 4- uxxx = 0 (2) 

which was introduced by Korteweg and de Vries [17] and has in recent years been 
the subject of prolific study. 

The derivations of approximate equations such as (la, b) differ from one modeling 
situation to another. Nevertheless, one may appreciate in general why such models 
arise, at a certain level of approximation, without relying on the details of a particular 
application (cf. Benjamin [3]; Benjamin, Bona and Mahony [6]). 

Upon linearization of the full equations of motion around a rest state, a dispersion 
relation is determined for plane simple-harmonic waves which relates frequency 
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cD=kc(k) to wave-number k. For example, two-dimensional surface waves in 
water of uniform depth have the dispersion relation 

c(k) = œ(k)/k = {tanh (k)/k}^2 (3) 

in suitably scaled coordinates. Here the phase velocity c(k) has a maximum c(0)9 

corresponding to the limit of large wavelengths. In general the propagation of 
infinitesimal waves in such a system will be governed by an equation of the form 

ut+Mu=09 (4) 

where Mu(k)=ikc(k)û(k) and the circumflexes denote Fourier transforms. Note 
that if c(k) has a nonzero imaginary part, then (4) will contain a dissipative term. 
In many applications attention is restricted to a long-wave régime /c<cl, and it is 
then justified to approximate c(k) near /c=0 in order to obtain a more tractable 
model equation. In the case of water waves as mentioned above, two relevant models 
are 

ut+ux+jUxxx = Q and ut+ux~uxxi = 09 (5) 

which correspond respectively to the dispersion relations c(k) = l—\-k* and c(k) = 
1/(1 +\k*) approximating (3). 

If the effects of dispersion due to finite wavelength are ignored and attention 
is concentrated solely on the effects of nonlinearity, then it is a general attribute of 
the systems in question that waves propagate along characteristics which depend 
on the value of the dependent variable: thus 

dx 
~dt 

This property is equivalent to 
ut+f(u)x = 0, (6) 

= ë(u). 
H=constant 

where f'=g. If the régime of interest includes in its characterization an assumption 
that the waves be of small amplitude, then it is justified to use a simpler model 
obtained by approximating g for small values of its argument. If a linear approxi
mation to g is presumed to be adequate over the range of amplitudes in question, 
then we take g(u) = l-\-u9 say, and so obtain 

ut+ux+uux = 0. (7) 

If the nonlinear, dispersive and dissipative effects are of a similar order of smallness, 
then normally the interaction between these effects is of a yet higher order of smallness. 
Accordingly, it is warranted simply to add the extra terms appearing respectively 
in (5) and (7), so to obtain the model equation (lb). 

It is noteworthy that nonlinear, dispersive and dissipative effects are generally 
small corrections to the basic one-way propagator ut+ux=09 which is just a factor, 
governing propagation in the +*-direction, of the one-dimensional wave equation. 
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Thus, if g(w) = l+£i(w), where gi(w) = 0(w) as w-*0, and if c(k) = l+c1(k)9 

where typically c1(k) = 0(kv) as k-+0, then (lb) may be written as 

ut + ux+fi(u)x-Lux = 0, (8) 

where f[=g\ and Lv(k) = c1(k)ù(k). Provided u and k are required to be small, 
then ft and L are of higher order of smallness than the leading terms ut and ux. 
In such a situation, the basic level of approximation will be unaltered if the approxi
mate relation ux = —ut is utilized to alter the higher order terms. Hence the 
equation 

ut+ux+fMx+Lut = 0 (9) 

of the form (la) may be inferred as a model for the unidirectional propagation of 
small-amplitude long waves. References to specific examples where (la, b) have 
been derived as models may be found in the review article of Jeffrey and Kakutani [15] 
and in the two collections of articles on nonlinear waves edited respectively by 
S. Leibovich and R. Seebass [19] and A. Newell [21]. 

Some care is necessary in the use of the approximations outlined in the preceding 
discussion. The stated hypotheses are invariably pivotal to the derivation of these 
equations as rational models, and they should therefore be respected in using the 
models to gain insight into a physical situation. In the particular case of irrotational 
surface waves on shallow water, if the independent variables x and t and the 
dependent variable w, which represents the height of the wave above the undisturbed 
depth, are scaled so that u and its derivatives are order one, there appear the two 
model equations 

ut+ux+suux+ö2uxxx = 0 (10a) 
and 

ut+ux+euux-ö*uxxt = 0, (10b) 

corresponding to the different approximations to the dispersion relation given in 
(5). The parameter c is a measure of the amplitude of the waves and d"1 is a 
measure of their wavelength. It is appropriate to assume both e and <5 are small, in this 
scaling, and that c and <52 are of the same magnitude. In the literature on water 
waves this is sometimes expressed by demanding that the Stokes number S=8Ö~2 

is order one. The assumption concerning the Stokes number being valid, an order-
one change of the dependent variable gives the special case e=(52. In this scaling 
it is apparent that the nonlinear and dispersive terms represent small corrections 
to the basic propagator ut+ux=09 the smallness of the corrections being measured 
explicitly by c. Needless to say, the zero on the right-hand side of (10a, b) represents 
an approximation to terms that are of order e2. 

On time scales of order e"1, the nonlinear and dispersive corrections can ac
cumulate and have an order-one influence on the wave profile. Equally, on time 
scales of order c"2, the higher order terms not included in (10a, b) can have an 
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order-one effect on the wave profile. Hence, on such time scales, the models may 
have become unreliable and predictions made on longer time scales should be viewed 
with caution. 

At first sight it might appear somewhat contradictory that two different models 
purport to describe the same physical phenomena, as in (10a, b). However, it has 
been shown by Bona, Pritchard and Scott [11] that if u and v denote respectively 
the solution of (10a) and (10b) corresponding to the same order-one initial wave 
profile, then u—v is of order s over the time scale e~\ Numerical studies indicate 
that the difference u—v grows linearly to order one on the time scale c~2. Hence 
it appears that the two models may indeed simultaneously provide accurate predic
tions at least over time scales where either model may be expected to apply. A further 
conclusion is that expediency should govern the choice of (10a) or (10b) in a parti
cular situation where a model for small-amplitude long waves is needed. For instance, 
the inverse scattering methodology and the infinite collection of polynomial conserved 
densities for (10a) may both be very useful for various theoretical considerations 
(cf. Miura [20] for an account of the inverse-scattering method, and Whitham [27] 
and Segur [26] for some applications). Olver [22] has shown that (10b) has only 
the three polynomial conversed densities corresponding to mass, momentum and 
energy in the original physical problem that is modeled. This and certain other facts 
indicate that there is also no inverse scattering formalism for (10b), at least as we 
presently understand such a formalism. On the other hand, (10b) is far easier to 
handle numerically than (10a). 

In the task of comparing the predictions of the models (10a) or (10b) with ex
perimental data, the most natural mathematical formulation is an initial- and 
boundary-value problem to be explained presently. In this setting, (10b) appears 
definitely easier to use and quantitative comparisons using (10b) have been made by 
Bona, Pritchard and Scott [12]. Their work supplements earlier comparisons, made 
using the pure initial-value problem for (10a), by Zabusky and Galvin [28] and by 
Hammack and Segur [14], which showed good qualitative agreement between 
measured data and theoretical predictions. 

The experimental configuration used in all the above-mentioned comparisons 
was a rectangular channel containing water with a wavemaker at one end. For the 
experiments reported by Bona et al. [12], the water was initially at rest when the 
wavemaker was set in motion. At several stations along the channel, temporal 
records of the passage of the waves generated by the wavemaker were taken. An 
appropriate mathematical problem was suggested and analyzed by Bona and 
Bryant [9]. In dimensionless but unsealed coordinates, it is 

ut+ux+uux-uxxt = 0, 

u(x90) = 09 u(09t) = g(t)9 
(11) 

for x91^0. In a numerical scheme for (11), the function g is a discretization of 
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the measurement of the wave taken closest to the wavemaker. The numerical 
integration of the model (11) will then predict u(x09t) for any station x0 further 
from the wavemaker than the station at which g is measured. Such a prediction 
may then be directly compared with the measurement taken at the station x0 and 
the model judged on the basis of the discrepancy between the two. 

The Stokes number S for these experiments ranged from 1/4 to 30. Dissipative 
effects proved to be generally of the same importance as nonlinear and dispersive 
effects, and accordingly had to be incorporated into the model. The proper form of 
dissipation term in equations of the types (10a) or (10b) has been derived by Kakutani 
and Matsuuchi [16] and it is non-local in character. For the experiments in 
question, where most of the energy was manifested at one frequency, an ad hoc, 
local form of dissipation represented by a term — vuxx in (11) can be justified. This 
form was used by Bona et al. [12], although comparisons are desirable between 
measured data and predictions from the model incorporating the proper form of 
dissipation. The latter need poses an interesting mathematical and numerical 
challenge which is presently under study. 

The agreement between the experimental and numerically predicted values was 
quite good. For S in the range [1/4,10], the difference between the measured 
and computed wave traces was about 8% of the size of the physical wave. The 
agreement was less striking as S became large. The difference between the measured 
and the computed wave was 22% of the size of the measured wave when S=30. 
These comparisons are all respective to the L^ norm. Even for such large values 
of S9 some of the qualitative properties of the wave profile were still modeled well, 
although quantitatively the situation had deteriorated. 

Turning now to a different aspect, we recall one of the most fascinating pro
perties of many of the equations in (1). It is that, when dissipative effects are ignored, 
the balance between nonlinearity and dispersion admits the possibility of a special 
class of waves moving at constant velocity and without change of shape. These 
waves were called solitary waves by Scott Russell [25] who first observed them on 
the surface of a canal in the early 1830s. Scott Russell subsequently conducted 
experiments which showed the solitary wave to be a very stable waveform, which 
could sustain repeated complicated interactions without losing its identity. The 
existence of such permanent waves was at variance with the surface-wave theory 
known in the middle of last century. Indeed, one of the main accomplishments of 
Korteweg and de Vries in the 1890s was to resolve the paradox of the solitary wave, 
at least at the level of their model equation. Even so, the importance of this class 
of waves was not recognized until the 1960s when computer studies by Kruskal 
and Zabusky [18] of the KdV equation (2) showed that an initial profile of 
elevation broke up into a sequence of solitary waves and very little else. An analogous 
result for the sine-Gordon equation had been obtained earlier by Perring and Skyrme 
[23]. The celebrated inverse-scattering theory for (2), first discovered by Gardner, 
Greene, Kruskal and Miura [13], subsequently established this result, and a host 
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of others including the fact that solitary-wave solutions of (2) emerge from inter
action with each other with only a phase shift. This type of exact result is true for 
a number of other wave equations admitting an inverse-scattering theory, including 
the sine-Gordon equation. 

Recently a class of equations of the form given in (1) has been shown to possess 
solitary-wave solutions (cf. Benjamin, Bona and Bose [5]; Bona and Bose [8]), even 
when the operator H is not a differential operator. Moreover, numerical studies 
show that while the tidy situation regarding interaction of solitary waves for the 
KdV equation (2) does not in general obtain, the solitaiy wave nevertheless plays 
a distinguished role in the long-term evolution of an initial profile of elevation. 

To take a concrete example, consider the model equation (10b). It has been proven 
by Benjamin [2] and Bona [7] that the solitary-wave solution of both KdV and 
(10b) is stable in the following sense. Let cp denote a solitary-wave profile and 
let ^ be a perturbation of cp, say in the norm defined by 

\\w\\* = f[w*(x) + wl(x)]dx. 
R 

Let n>0 be given. Then there exists a <5>0 such that if \\cp—\j/\\^S9 then 
d(q>9u)<n for all *>0, where u is the solution, of (10b) say, with initial profile 

d(w9V) = inf ||W(.)_-!;(. -J-3;)|| 
ytK 

is a pseudo-metric that compares the shape of two functions. One may think of 
d as being defined on the product of the quotient space Hx\% with itself, where 
H1 is the space of measurable functions f:R-+R suchthat ||/||<oo and T is the 
translation group in R. Moreover, Abdulloev, Bogolubsky and Makhanov [1] 
and Bona, Pritchard and Scott [10] have produced numerical results indicating that 
when a pair of solitary-wave solutions of (10b) interact, the bulk of the mass emerges 
as a slightly different pair of solitary waves, shifted in phase, with a very small dis
persive tail lagging behind. Finally, numerical experiments indicate than an initial 
wave of elevation evolving under (10b) breaks up into a finite number of solitary 
waves followed by a dispersive tail. Similar numerical results hold good for other 
models of the type given in (1). 

Exactly what we should make of all this is still unclear. What is it in common 
to the models (la) and (lb) that causes waves to evolve into solitary waves? What
ever this may be, it is probably more fundamental and at the same time less powerful 
than the inverse-scattering theory. A satisfactory answer to this question might have 
implications for the more complex models such as the various versions of the 
Boussinesq equations and ultimately the full equations of motion for various physical 
systems. 

A final point deserves mention. Equations (1) have natural multi-dimensional 
versions which are of interest. The case of a system of two equations, for example, 
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can serve as a model for the two-way propagation of one-dimensional waves. An 
existence, uniqueness and regularity theory for such systems has been given by 
Saut [24] in the case (lb) and by Benjamin and Bona [4] in the case (la). However, 
the qualitative properties of solutions of such systems are still largely unknown. 
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On the Mathematics of Phase Transitions 
and Critical Phenomena 

Jürg Fröhlich* 

I. Introduction. In this review I try to summarize (mostly in the form of references) 
a tiny part of the mathematics of equilibrium statistical mechanics (ESM), phase 
transitions and critical phenomena. Many important contributions are not mentioned, 
because of ignorance, bias, or, most importantly, page limitations. The only purpose 
of these notes is to provoke the reader to learn more about ESM, to provide him 
with a few basic, recent references and to outline some recent developments in which 
I have personally been involved. In this connection I shall emphasize the concept 
of reflection positivity which has proven equally important in relativistic quantum 
field theory and ESM. 

I start with a short list of some of the main circles of problems in ESM each 
requiring further research efforts. 

1. The general framework of ESM. Some basic references are [l]-[7]. Interesting 
open problems concern: A good theory of the third law of thermodynamics (Nernst: 
Entropy at 0 Kelvin=0) and its violations; a concrete theory of the Gibbs phase 
rule of satisfactory generality. 

2. Time evolution of infinite systems, approach to equilibrium, irreversibility, open 
systems. Many (or most?) basic questions asked by the masters (Boltzmann, 
Planck,...) may be regarded as unanswered. Huge heuristic and rigorous efforts 
have been invested in understanding these problems. I do not know a short lisi of 
basic references, but should like to recommend [8]. Related to 2 are 

* A Sloan Foundation Fellow. 
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3. Foundational problems in ESM. (Derivation of the ergodic hypothesis in 
classical ESM; see [9] for a short review, of the KMS condition in quantum ESM; 
see [4], [10] and references given there. The second problem has deep links to Tomita-
Takesaki theory and its applications [11]. The central questions have not been 
answered, yet.) 

4. Structural problems of ESM. See [l]-[3], [6]9 [7]- (Structure of manifold of 
equilibrium states, general theory of phase transitions, symmetry breaking, critical 
points, ....) 

5. General techniques to determine the phase diagrams, the critical behaviour, ... 
of a sufficiently general class of systems in thermal equilibrium of interest to physics. 
This review is centered around that circle of problems, and references can be found 
in the main part of the texl. 

6. Mathematical study of special, physical systems and physical phenomena at 
thermal equilibrium. (Stability of nonrelativistic, quantum mechanical matter [12], [13] ; 
thermodynamic functions of Coulomb systems [14]-[17]; existence of correlation 
functions [18]-[20]; screening [14], [21], etc. Two marvelous references are [22], [23], 
Mathematical foundation of solid state physics: Rigorous theory of magnetism, 
super conductivity, Bose-Einstein condensation, super fluidity, melting, liquids,.... 
For inspiration one may consult any honest, modern text book on solid state physics.) 

Henceforth I concentrate on 5, emphasizing those techniques that are linked 
to the concept of reflection positivity, in field theory known as Osterwalder-Schrader 
positivity [24] ; see [25]-[29], It is obviously impossible to give any complete arguments. 

II. Classical lattice systems and reflection positivity. I illustrate the main points 
of this review in terms of classical lattice systems, a class of dynamical systems 
defined below. The techniques described in the following extend however to quantum 
mechanical lattice systems and to relativistic quantum field theory in the Euclidean 
description [24] which has inspired them in the first place; see [30], [25]. Those 
techniques do not seem to be applicable to nonrelativistic continuous systems in 
a satisfactory way. Here, new ideas are very much needed. 

Let if be an infinite, v-dimensional lattice; in the following £?=ZV (simple, cubic 
lattice), but other lattices can usually be accomodated. 

At each site x£3? we are given a copy Kx of some configuration space K and 
a fixed probability measure dg(%x)9 %XÇ.KX. Sometimes K will be a finite dimen
sional Hilbert space carrying a representation, U9 of some compact, topological 
group G. Then dq is assumed to be invariant under the action of G on K. Given 
a subset JTcJSf, we define 

^x = Jex^x9 ^°° = ^Xs=SP' 

(It is technically useful to choose a topology on K such that it is a compact Haus
dorff space. Then Kx and K^ have the same property.) 
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The class of continuous functions on Kx is denoted C(KX)9 the "observables 
localized in X". We denote by "tr" the state on C(KJ) determined by the product 
measure TLc^efo*)-

A classical dynamical system is defined in terms of the "algebra of observables" 
^(KJ) and the set of states on C(KJ)= probability measures on K^. The dynamics 
of such a system is specified by an interaction $. This is a map from bounded subsets 
XaSexo C(K^ satisfying 

(a) $(X)£C(KX)9 real-valued; 
(b) $(X+a)=i;a(<I>(X))9 where rn denotes translation by a vector a^Sß9 i.e. 

Ta is the natural identification map from C(KX) to C(Kx+a). 

(c) 2'x3o(l/vol.Z)sup|^(Z)|<-3 and t r r ( ( ? ( Z ) ) ^ / j 7 , e 7 ^ ( ^ ) ^ W ( z ) = 0 , 

when YnX^Q. 
Interactions form a real Banach space, B. The Hamilton function of such a system 

confined to a bounded region AczSP is given by 

H$ = ZW*), 
XczA 

the free energy at inverse temperature ß by 

SA (ft *) = - tt//» ' vol. A) log tr (<r'*5). 

For a clean discussion of interesting phenomena such as phase transitions and critical 
phenomena one must first take the thermodynamic limit A\££. The limit /(/?, $) = 
lini^i^/^(/?, #) (in the sense of van Hove [1], [6]) exists and defines a concave, 
bounded functional on B. ESM of classical lattice systems is by and large the theory 
of the functional / . 

A tangent functional ocß0 to f at ß$ is a linear functional on B satisfying 

for all WÇ.B. Associating with Y the observable 

*r= 2(Vvol.X)Y(X)<:C(K„) 

one can show that 
©/roC ŷ) = xpo(W) (1) 

defines a translation invariant state of the infinite (A=££) system. 
The (translation invariant) equilibrium states of the infinite system with dynamics 

given by $, at inverse temperature /?, are precisely the tangent functionals to / at 
ß$9 i.e. the states given by (1). (Equivalently, equilibrium states can be characterized 
by the "Gibbs variational principle" or the "Dobrushin-Lanford-Ruelle equations" 
[1H3], [610 

One says that a system with dynamics $ has a phase transition with order para
meter if coß0 is unique for small ß and non-unique for large ß. (Uniqueness for 
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small ß is known if 2xw*uP l*t*0l<oo> P6L [3].) It has a phase transition 
without order parameter if coßlXt is unique for all ß9 but the curvature of / at ß<P 
is finite (on finite range interactions) at small ß and infinite, in some direction, at 
large ß. A critical point ßc for $ is a point such that the curvature of / at /?c# 
is infinite, in the direction of some finite range interaction (but coß # is unique, 
whereas coßo is generally nonunique, for /?>/?c). 

Deep structure theorems about equilibrium states and phase transitions with 
order parameter follow from the fact that / is a concave functional on a real Banach 
space the tangent functionals of which are the equilibrium states: See [6]. In parti
cular, it is shown in [6] that equilibrium states are norm-dense in the space of all 
translation-invariant states on C(K^9 that phase transitions with order parameter 
are in some sense generic and that interactions with phase transitions are not isolated 
in B\ see also [31]. Next, I introduce the concept of RP (reflection positivity): 
Consider a decomposition of Sß into two disjoint sublattices, T+9T _ (in the 
following half-lattices separated by a hyperplane); r is the reflection taking T± to 
TT9 and 9^ the obvious reflection map from Kr to Kr . For F£C(Kr ) set 

(6F)(x-) = F(ßtZ-), X- = ixxUr-. 

An interaction $ is called RN (reflection negative) iff 0$(X) = $(rX)9 and 

2 tr(F(9F)$(X))^0, (2) 
xnr±9*0 

for all FeC(Kr+). 
Note that RN interactions form a convex cone. A state co on C(KJ) is called 

RP (reflection positive) iff 
<o(F(0F))>0 for all F£C(Kr+). (3) 

Loosely speaking one has the following general 

THEOREM 1. (1) [28], [29]. For all inverse temperatures ß^-0 there exists an 
RP equilibrium state coßq> if and only if $ is RN. (Remark: That $ is RN 
does not imply that all equilibrium states for ß$ are RP1) 

(2) [32]. Any RP equilibrium state for ß$ can be decomposed into extremal-
invariant equilibrium states for ß$ which are RP. • 

It turns out that it is considerably easier to prove theorems on the structure of 
/(/}, #) and of the equilibrium states when $ belongs to the cone of RN inter
actions. This will be illustrated with a few examples. It requires rather much know
ledge of the Euclidean description of relativistic quantum field theory [24] (r.q.f.t.) 
to understand how the concept of RP arises and why it is natural, at least in r.q.f.t. 
(There it guarantees the existence of a quantum mechanical Hilbert space and a self
adjoint, positive Hamilton operator [24].) 

All applications of RP described below are more or less tricky applications 
of a Schwarz inequality: Consider the vector space C(Kr ) and an RP state 
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œ on C(KJ). Then, by (3), (F9G)-+co(F(6G)) clearly defines a positive semi-
definite inner product on C(Kr ). Hence 

\co(F(0G))\ ^ co(F(eF))1^co(G(eG))1^. (4) 

IH. The chess board estimate. Let F(x)€C(K) be real-valued, and let vx(F) denote 
the corresponding function in C(KX). For translation-invariant states co9 define 

/lJ^er x£A 

Existence of this limit is standard. A rather immediate consequence of infinitely 
many applications of (4) and translation invariance is 

THEOREM 2 [27]-[29]. Let FX£C(K) be real-valued, for all x£&. If œ is 
RP then 

Hn^(Fx))\^IIz(co9Fx). D 
X X 

This inequality is remarkable, because it provides upper bounds for expectations 
of local observables in terms of thermodynamic functions (z(co9 F) is a constrained 
thermodynamic function) which are relatively easy to estimate. 

Theorem 2 is a special case of the so called "chess-board estimates" which follow 
from a generalization of the Holder inequality proven in [27] and RP. The gene
ralized Holder inequality provides, moreover, simple (real analysis) proofs of the 
Holder inequality for traces and many other inequalities for matrices important 
in ESM [28]. (It might be a starting point for an Lp theory for general von Neumann 
algebras.) 

IV. Gaussian domination and infrared bounds. Let J(x) be a real-valued function 
on S£ with 2x^(x) = ^' Let S be some real-valued function in C(K) and 
Sx the corresponding function in C(KX). The interaction #2, $2: {x9 ^}-^^2({^» y}) = 

-SxJ(x-y)Sy9$2(X)=09 for X^{x9y}9 is RN if and only if 

2 ZxJ(x-ry)Zy^09 (5) 

for all complex-valued functions Z:x-+Zx on r+. 
Examples of / ' s satisfying (5) are (\x\ =Euclidean length of x): 

(a) the nearest neighbor interaction 

1, |*| = 1, f 1, W = 1, 
(6) 

(b) J(x) = const. |x|-v+2-", t\ >> 0, for x^O. 

J(x) = (-l)Z*i-1J0(x), 
(c) J(x) = -(JJ-*(x), 

J(x) = Ji(x)J0(x), 

where /„ and Jx satisfy (5); see [29]. 
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Let coß0i be an arbitrary translation-invariant, RP equilibrium state for <P2
 a t 

inverse temperature ß. (By Theorem 1, (1) such a state exists.) To a>ß0z we may 
thus apply inequality (4) and Theorem 2. This yields (via some not quite trivial 
arguments.) 

THEOREM 3 [25], [26], [29] (GAUSSIAN DOMINATION). Let h = {hx} be a real-valued 

function on ü? of compact support. Then 

< W e x p {ß2 SxJ(x-y)hyli) < exp [ ~ J 2 M ( * - 3 0 ä J . • 

Taking second derivatives at A = 0 one obtains 

COROLLARY 4. 

2 huJ(u-x)coß02(SxSy)J(y-z)hz^-ß-12KJr(x-y)hy. D 
u>x%y%z x,y 

After Fourier transformation one arrives at the infrared bound [25], [29] 

dX(k) <; [ocS(k)-(ßJ(k)yi']dvk9 (7) 

where dÀ(k) is the Fourier transform of coß0z(SoSx)9 and a some nonnegative 
number. 

Theorem 3 and Corollary 4 remain true, verbally, if coß0z is replaced by coß(0z+o,)9 

where <!>' is an arbitrary RN interaction, and cop^ +^ any translation-invariant 
RP equilibrium state for # 2 + $ ' at inverse temperature ß. A particularly direct 
proof, based on Theorem 2, of a yet somewhat more general result is also given 
in [33]. 

V. Applications of RP, chess board estimates and infrared bounds. 

1. Universal diamagnetism in relativistic q.f.t. Let K be a Hilbert space carrying 
a representation, U9 of a compact group G. Let g={gxy} be a connection, i.e. 
to each pair, xy9 of nearest neighbors there corresponds gxy£G9 with gxy=gyx9 

and U(gxy) defines an isomorphism: Ky-+Kx. The trivial connection 1 = 1 
is obtained by choosing for gxy the identity in G9 for all xy. 

Let $g be a connection-dependent interaction defined, for example, by $g({xy}) = 
-(Xx>U(gxy)Xy)> where (•, •) is the scalar product on K; <l>g(X)=09 otherwise. 

THEOREM 5 [34] (UNIVERSALITY OF DIAMAGNETISM). Let $' be any g-independent, 
RN interaction. Then 

S(ß,*g+$')>S(ß,*g-i+&). • 

This is a special case of a general theorem proven in [34] as a consequence of RP. 
In q.f.t., / is interpreted as a lattice matter field, and the connection g is a lattice 

gauge field. In this interpretation, universality of diamagnetism is the statement 
that when matter fields are coupled to a gauge field by an RN interaction, $>g9 
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the "free energy" / (= vacuum energy density) rises. This has remarkable conse
quences for the construction and the physical contents of gauge theory models. 
See [34], [35] and references given there. 

2. Phase transitions with order parameter and the critical point in the N-vector 
models. Let K= S^"1 , the unit sphere in RN

9 § the vectors in K9 and §x the 
vectors in Kx. Let dg be the uniform distribution on SN~~\ Furthermore / , satisfying 
(5), is as in § IV, and $ 2 is given by $%({x9y})=J(x—y)Sx'§y9 $2(X)=09 other
wise. Clearly S*§ = 19 so that © ^ (§0 'S0) = 1. On the other hand, inequality 
(7) says 

coß02(SiSi) ^^+ß-U(v9J)9 

with I(v9J)=-j J(k)~1dvk. Setting cc=2^sslofJ)
9

 o l i e obtains 

1 = coß0ßo.SQ) ^ a + / J -W(v , J). 

Thus, when I(v9J) is finite and ß>(NI(v9 J))"1, a is positive. Now, there exists, 
for all /?, at least one RP coß0i for which o}ß^(§0)=0. If wß0z were the unique 
equilibrium state (i.e. extremal-invariant) then oc = \cjß0 0O)\2'9 see e.g. [26], [28]. 
Hence, for /J>(7V7(v, / ) ) _ 1 , (Dßo^ cannot be extremal-invariant. On the other hand, 
for ß small enough, coß0z is definitely unique [36]. Hence there exists a phase 
transition with order parameter. This transition is accompanied by the breaking of 
a continuous symmetry group of the dynamics, 0(N)9 (and there exist (N— 1) so 
called Goldstone excitations), [25], [29]. These results can be extended to interactions 
<P = <1>2 + <I>'9 with $ ' R N a n d 0(JV)-invariant. Analogous results have been estab
lished for ($ • <]5)2 quantum field models, the study of which has inspired the whole 
method [25]. It remains to decide when I(v9J) infinite. Sufficient conditions for 
I(v9 ,/)<oo are: For v ^ 3 , I(v9J) is finite even in the case that J is a nearest 
neighbor interaction; see(6). For v=l,2,1(v9J) is finite if e.g. J(x)^const.(\x\ + l)~7 

and v<y<:2v. This is a relatively easy problem in Fourier analysis; see [29]. 
The following asserts the existence of a critical point for some special JV-vector 

models (a result also based in part on RP). 

THEOREM 6. Let v ^ 3 , and let J be nearest neighbor; see (6). Then, for N=l929 

the corresponding N-vector models have a critical point, ßc9 with the property that 
2xe2>œp020o-8x) is finite for ß<ßc9 but diverges at ß=ßc [37]. (See [38] for 
N=29 3, 4.) For ß<ßc9 the equilibrium states are unique [39], [40]; the state Gtyc<p2 = 
lim/?t/?c cußQ is extremal-invariant. • 

A natural question is then: What is the situation, for these (nearest neighbor) 
models when v = l ,2 . For v = l, these models are explicitly soluble, the equi
librium state is unique, for all ß<°° , and there are no critical points. The model 
v=2, JV=1 (Ising model) is explicitly soluble, too (a very nontrivial task!!). There 
is a phase transition with order parameter and a unique critical point. 
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The model v=2, N=2 (two-dimensional rotator model) has a unique equi
librium state, for all /?<°o [40], Existence of an interval [ßc9 °°] of critical points 
is conjectured. It has been proven that ß^ftn+s)'1 (s small) [41]. Partial results 
towards proving the conjecture are given in [41], [42]. For a review of rather so
phisticated, heuristic results see [43] and references. 

For v=2, JVs>3 it is conjectured that there is a unique RP equilibrium state and 
no critical point, i.e. j8c=°°. Partial results—at least rather sharp lower bounds 
on ßc—have been obtained in [44], [45]; see also [46]. The following result, partly 
based on RP and Theorem 2, has grown out of attempts to prove the v=2, 7W3 
conjecture. 

3. Applications of RP to exclude the occurrence of phase transitions and critical 
points. Let K=RN. Vectors in K are denoted by §; dQ(§)=g(S*)dNS9 where 
g is a nonconstant, monotone decreasing function on (0, oo). Let $2

 a n ^ J be 
as in § V. 2. 

THEOREM 7 [44], [45]. For v>2 and all j?<oo5 

Kd>20o' $x)\ < c°nst. exp [-m(ß) \x\]9 

for some m(ß)>0. • 

For the TV-vector models (K=SN~1) of §V. 2, Theorem 7 is only proven for 
j?<max(j?0, (N—2)/2v) [45], for some positive ß0 estimated in [45]. Moreover, 
it has been shown, in this case, that for v=2 

m(ß) «< const, exp [-const. (ß/N)] [47], 

mainly a consequence of infrared bounds! These results rather favour the conjectures 
in § V. 2. The general problem of which the above are special, but possibly typical 
examples is: Develop a general, mathematical theory of phase transitions without 
order parameter and of critical points! We have a few reasons to believe that, again, 
RP is going to play a very useful role. The reader should consult Sinai's contribu
tion for relevant information and references concerning this general problem. 
It certainly is one of the main problems in present day mathematical physics, being 
at the core of some of the central questions in ESM and relativistic q.f.t. For this 
reason it is most unfortunate that we still do not have a general mathematical theory 
of this sort. 

4. Applications of RP to the Peierls argument. The Peierls argument [48] (which 
cannot be described here) is one of the most powerful machines for proving the 
existence of phase transitions with discrete order parameter. It was invented by 
Peierls to prove the existence of a phase transition with order parameter in the 
v=2 Ising model. Its marriage with RP, pioneered in [30] and developed into 
a systematic tool in [27], [49], [29] has simplified and strengthened it in a most satis
factory way, as references [30], [27], [49], [29] clearly show. For a complementary, 
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very powerful extension of the Peierls arguments see [50]. A short review of this 
and other matters in the theory of phase transitions is [51]. 

Much of this review describes work done in collaboration with, learnt from or 
due to D. Brydges, J. Glimm, R. Israel, A. Jaife, E. H. Lieb, E. Seiler, B. Simon and 
T. Spencer. 
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Introduction to Gauge Theories 

Arthur Jaffe* 

This report is divided into three parts. In the first part, we describe some non
linear equations of classical physics. Certain of these equations, for example the 
Yang-Mills equations, have a geometrical significance. Their solutions are harmonic 
connection forms on a principal bundle; the structure group of the bundle is called 
the "gauge group" in physics. 

The purely mathematical questions concerning the solutions to these equations 
have an interest of their own. In the second part of this report, however, we shall 
sketch the relation between these solutions and physics. Here it becomes necessary 
to introduce the notion of quantization. The classical equations we consider do not 
have a direct interpretation in physical terms; rather they yield insight into quantum 
field theory. In order to explain this connection, we shall describe the constructive 
field program. Many steps in this program have been established over the past 
ten years; now the construction of quantized gauge theories (i.e. quantization of 
geometry) poses interesting, new problems. 

Finally, we shall return in part three to the interpretation of the solutions described 
in part one. We sketch how these solutions may provide an explanation of quark 
confinement, i.e. the lack of observation of the quark particles, suggested by Gell-
Mann and others to be the basic building blocks of nuclear particles. 

1. Classical nonlinear equations from physics. 

I. 1 Some examples. Let us begin with typical equations from physics. We let 
M denote a subset of JR4 on which the equations are defined, and denote x £ M 

* Supported in part by Grant PHY-77-18762 from the National Science Foundation of the 
United States. 
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by space-time coordinates x=(t9 x)=(t9 xl9 x29 x3). If we wish to ensure that solu
tions have limits at infinity, we replace J?4 by the four sphere S4. We occasionally 
denote coordinates xß9 fi=09 1,2, 3, where xQ=t. 

(i) Nonlinear wave equations. Let P(s) denote a real polynomial of s (LR1. 
The equation 

(1) <Pn-2<P*ixJ+P'(9) = 0 

for the function <p=<p(x) is a nonlinear wave equation with potential energy density 
P((p(x)). Equations of the type (1) play a role in the description of meson inter
actions, as well as in the classical nonlinear oscillation of a membrane. Such equa
tions have been studied extensively. 

(ii) Maxwell's equations. The equations of classical electrodynamics, i.e. Maxwell's 
equations, describe a two-form F9 the electromagnetic field, 

(2) F = -^FllvdxfgAdx\ 

(Here and in the following we use a summation convention.) The Maxwell equa
tions are 
(3) dF=09 d*F = *J9 

where * denotes Hodge duality, and where / is the "current" one form. Given /, 
these equations are linear. In case that the form F is exact, i.e. there is a one form 
A such that 
(4) F=dA9 

then the equation dF=0 is automatically satisfied. In physics, A is called the 
"potential." Thus the solution of Maxwell's equations is reduced to the solution of 
the equation 
(5) d*dA = * / . 

Any exact differential may be added to A yielding the same F9 so the solution 
to (5) is not unique, 
(5') A' = A + dA9 F' = F. 
In physics, the arbitrariness (5') in A is called a "gauge transformation", and 
Maxwell's electromagnetic field is the simplest example of a gauge theory. 

To concretely identify these equations, write Maxwell's equations in standard 
form, where the electric field É and magnetic field B have components defined 
as various components FßV of F. Writing these components as an antisymmetric 
matrix, 

(6) Ft IIV 

0 
-EL 

-E2 

-Ez 

Ex 
0 

-•B. 
2?2 

E* 
Bs 
0 

- * i 

£ 3 

-Bt 
BL 

0 . 
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Then the equation dF=0 can be written 

(7) div5 = 0, ^ + c u r l 3 = 0f 

while d*F= # / is the pair of equations 
ftp 

(8) div Ê = Q, curl B-j- = J, 
where J=Qdt+^i=1Jidxf. 

(iii) Pwre Yang-Mills equations. These equations are a nonlinear generalization 
of the Maxwell equalions. The generalization is most easily understood in a geo
metrical context. We can regard the potential A of Maxwell's equations as a 
connection form on a circle bundle over M. Locally the bundle is MXU(1)9 

and the connection form A=Afl(x)dxß has sections with values in the Lie algebra 
ill1 of the circle group U(l). The electromagnetic field F=dA is the curvature 
defined by A. To obtain a Yang-Mills theory, we replace the circle bundle by 
a principal bundle P(M9G). Locally P is the product MXG9 and the case G=U(l) 
reduces to Maxwell's equations above. In general, we take G to be a compact 
Lie group. 

The potential A is now defined to be a connection on P, i.e. to be a Lie algebra 
valued one form, A=ApL(x)dxß

9 where the sections A (x) belong to the Lie 
algebra 0 of G. A connection defines parallel transport of the fibre over a point 
xgM, and a covariant exterior derivative DA on Lie algebra valued forms, cf. 
[8], [25]. 

Such a differential form 0 is tensorial if it transforms under the adjoint action 
of G9 namely 0-+0d=g~'19g9 where g:M*->G. Then DA is covariant in the sense 
that for tensorial 0, 

{DAty=DA.V, 
where 
(9) A» = g-1Ag+g~1dg. 

The transformation (9) is the generalization of the gauge transformation (5'); here 
the exact differential dA is generalized to the cocycle g"1 dg. Incase G=U(\)9 

the formulas reduce to D=d9 A9=A/
9 and 0^=0. Groups G^U(\) enter physics 

as "gauge groups" of particles. An extremely important example is the group of 
internal "color" symmetry, G=SU(3). 

The generalization of Maxwell's equation (3) is obtained by replacing d by the 
covariant derivative DA9 namely the requirement that 

(10) DAF = 09 DA*F = *J. 

Often these equations are considered in the "free space" case, meaning J=0. 
We restrict our attention to this problem. Thus we study DF=09 D*F=09 

which can be regarded as the requirement that F be harmonic, AAF=09 where 
AA is the covariant operator AA=DADA+D^DA. 
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The assumption that F is the curvature form defined by the connection A on P9 

automatically assures that DAF=0. In fact, this requirement means that 

(11) F = DAA = dA + l/2[A9A]. 

Then, although DA9^09 in general, it is an identity that DAA—DAF=0, In fact 
this identity is the Jacobi identity of differential geometry, the generalization of 
d2=0 to covariant differentiation. 

With the assumption (11), the Yang-Mills equations are reduced to finding 
a curvature F satisfying 
(12) DA*F=0. 

This equation, because of (11), can be regarded as a nonlinear system for A9 namely 

DA*DAA = 0. 
In terms of components, 
(13) dflF>lv + [A(i9Ftlv] = 09 

with F^d^-d^A^A^ Av\. Here dß denotes d/dx». 
(iv) Particle physics. The actual interaction of particles is described in physics 

by a Lagrangian combining the nonlinear wave equation, the Yang-Mills theory 
and a current J arising from a Dirac field. The mathematical abstraction of iso
lating parts of the complete system above is made to simplify the analysis. Ulti
mately the complete coupled system is of interest to physics. We now restrict 
attention to pure Yang-Mills theories with J=0. 

1.2. Action functionals. Equations as (1) or (12) above can be derived from a 
variational principle ("action principle" in physics). The standard action func
tional sé is defined as the integral of the Lagrangian density 

(14) sé = J&dxdt. 
M 

In the case of equation (1) above, 

(15) & = -l/2dft<pdfi(p-P(<p). 

In the case of the Yang-Mills equations (15), we let A be a connection and define 

(16) ^(A)=TvFflvF^s 

j / = - | |F | |B = Tr JFA*F. 
M 

In each case, the metric to raise or lower indices has the Minkowski signature 
(— + + +). The flat metric ds2=—dt2+(dx)2 (special relativity) has been studied 
extensively; a general pseudo-Riemannian metric is the case of general relativity. 
We restrict attention here to the fiat case. The requirement that sé has vanishing 
first variation, is equivalent to the equations of motion (1) or (15). In classical 
physics the action plays no more fundamental role; however in section II we discover 
that the action has another, central significance in quantization. 
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Associated with each action functional above is a second functional, the 
Euclidean action 
(17) séE= fgEdxdt. 

M 

Here $£E differs from i? only in that it is calculated with the Euclidean (flat) 
metric with signature (+ + + +). Here again, the requirement that the first variation 
of séE vanishes is equivalent to variational equations. Unlike the case above, 
these equations are elliptic (rather than hyperbolic) on account of the metric. For 
the two cases above, they are 
(1') A<p+P'(<p) = 09 

(120 D*F=09 

wheie * depends upon the metric, and A is the Laplace operator. 
In physics we are used to the role of classical hyperbolic equations of propagation. 

For the remainder of this talk, we consider the elliptic Yang-Mills case (12'). One 
might ask, "Why?" Aside from the mathematical appeal of the problem, there is 
an important role for these equations in physics: The elliptic problem provides 
a basis for understanding the quantization of the hyperbolic, classical equation. 
Here we study the mathematics of the elliptic, classical problem. In §§ II, III we 
discuss the application. 

1.3. Classical elliptic problems. We return to the Yang-Mills equations (12') 
with action séE of the form (16). Two cases: 

Case A. F£L29 *F=±F. This is the case of instantons (antiinstantons). The 
first explicit example of such a connection form was discovered in 1975 by Polyakov 
and coworkers [4]. Recently, Atiyah-Hitchin and independently Manin-Drinfeld 
gave explicit formulas for all solutions [2], [10], see also [6]. The condition F=±*F 
means that any curvature (which must satisfy DF=Q) automatically satisfies 
D*F=0. The condition *F=±F becomes the integrability condition for a 
complex structure, and the classifications of these structures is dealt with by methods 
of algebraic geometry. See Atiyah in these PROCEEDINGS. 

It has been conjectured that all solutions with F£L2 must satisfy *F=±F. 
In that case, all square-integrable solutions would already be known. A partial 
proof of this conjecture (i.e. that local maxima of séE satisfy *F=±F) has 
been announced recently [5]. 

Case B. F$L2. In case F$L29 then *Fj*±F9 in general. This problem is 
no longer purely algebraic, but involves hard analysis. These solutions appear 
to have interesting interpretations and applications. We shall concentrate here 
entirely on F$L2. Only partial results are known for F$L29 and many general 
questions remain open. 

The non-L2 character of F arises from a singular set 5* for F. We can regard 
(12') as equation on M=R*\S9 with specified growth near S. Alternatively we 
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can consider (12') as an equation for generalized functions defined on il4 with 
singular support S. The simplest cases are: 

(i) S sfinite set of points (dim S=0). In this case we interpret the solutions as 
having point charges at S. In known examples these charges are called "merons" 
and F has poles at S. 

(ii) S=curve (dim S=V). This case of "line charges" can also be interpreted 
as dipole charges. This case has only been studied in detail for G=U(1) and on 
a lattice [15]. 

(iii) S=2-surface. In this case the topology of fi4\£ may be nontrivial, for 
example the fundamental group of JR^XS may not be the identity. In this case the 
Yang-Mills connections are said to have "vortices" on S. For lack of space, how
ever, we shall not discuss them here. See [22], [11], [18]. 

1.4. Parallel transport. An important notion in the physical interpretation of 
gauge theories is the holonomy, defined by the connection A on the bundle P. 
Let C be a closed curve in M =R*\S9 starting and ending at x. A point g in the 
fibre over x is moved by parallel transport along C into a point g'. Thus by 
varying g9 parallel transport along C yields a mapping of the fibre over x into 
itself. This mapping U(C) is by definition an element of the holonomy group 
of A with respect to P9 and with base point x. (If Cl9 C2 are two such curves, 
and C=C1oC2 is their composition, then U(C) = U(C1)U(C2).) The character, 
Tr U(C)9 is in fact independent of the base point. 

As parametric representation for C, take ££[0,1], s\-+x(s)Ç.C. The usual expres
sion for U(C) is the solutions to the differential equation 

^M = A(X(s))V(s), V(Q) = I, 

where X(s) is the tangent vector to C at x(s). There is a special formula in the 
physics literature for U(C)9 namely 

(18) U(C) = Poxp[fÀ). 
c 

Here P denotes a "path ordered" or "multiplicative" integral. This notation is 
motivated by the fact that for smooth C9 

U(C) = lim Qxp(n~1An)Qxp(n~1A„^1)...Gxp(n~1A1)9 
11-+00 

where Ak=A(X(k/n)). 

1.5. S=points in a plane. We consider the special case where the singular set 
S consists of points lying in a place. Meron connections are characterized vanishing 
Chern class on M9 

(19) TTFAF=0. 
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REMARK. All known examples have the property that for a curve C in the place 
of S9 the holonomy is 
(20) U(C) = (-/)", 

where n is the number of points enclosed by C. 
We first consider the subcase that all the points of S lie on a line /. The construc

tion of the connection A then simplifies by the use of cylindrical symmetry to 
eliminate redundant coordinates. In the case the group G=SU(2), the elliptic 
system D*F=0 of 12 equations simplifies to a single equation. We describe this 
case in a series of steps. 

Step 1. Reduction [16]. Choose the t coordinate axis along /. Map the upper 
half plane z=t+i\x\ onto the unit discD in the standard conformai way and 
consider the equation 
(21) AÌF = V3-ÌI' 

in D with W=±l on 3D. The discontinuities of ÎP occur exactly on the image 
on dD of the singular set S. We now denote this image by S. Here A is the 
Laplace-Beltrami operator on D with constant negative curvature, 

(22) A = l/4(l-\z\2)2dd. 

THEOREM 1. Every solution to (21) yields an SU (2) Yang-Mills connection 
on M, given by 
(23) A = l/2(W+l)\x\-2(xXdx) • ia. 

Here ia are Lie algebra generators for SU (2). 

Step 2. Existence; Jonsson, Zirilli, McBryan, Hubbard [24]. Let C denote 
the C°° functions on the interior of D which are continuous on D\S and which 
satisfy the boundary condition for W as described above. 

THEOREM 2. There exists a solution W£C to (21). 

The proof of this theorem involves the adaptation of variational methods to 
singular problems. The naive action functional is not defined on the solution V 
to (21). Let Se denote an e-neighborhood of S in D9 and define 

(24) ^ f i W = / [\dV\2+2(l-\z\2)-2(V2-l)2]dzdz. 
D\SB 

Although séE(W) has no limit as e->0, there exists a constant ae independent 
of W suchthat 
(25) séRen (W) = lim (séa (T) - naX n = cardinality S9 

e-»-0 

exists for WÇC. The resulting "renormalized" functional séRcn is bounded from 
below and can be minimized to obtain a solution to (21). Uniqueness is still an 
interesting open question. 



912 Arthur Jaffe 

I mention two steps to generalize these results: In the case G=SU(3), there 
are solutions which are not SU (2) imbeddings. These solutions satisfy two coupled 
equations, as has been shown by Imbrie [23]. For general points S in a plane, 
Taubes [30] has reduced the 12-equation SU (2) system to a 4-equation system in 
a space of constant negative curvature. While only partial existence results have 
been established in this case, presumably existence can be proved. The boundary 
conditions will automatically yield the holonomy (20). 

There are many open questions of interest both for geometry and for physics. 

H. The constructive field program. Main goals of the constructive field program 
are to quantize classical equations, to prove existence of solutions to these equations 
(quantum fields) and to establish properties of these solutions. Ultimately, of 
course, one hopes to shed new light on physics, by dealing with issues such as those 
discussed in § III. 

Quantum fields are not completely understood either as laws of nature or from 
a mathematical point of view. For this reason, mathematicians sometimes fail to 
appreciate the fundamental role that quantum fields play in physics. Physicists, 
however, are convinced that quantum fields provide an accurate picture of nature. 
The basic reasons are persuasive and close to the heart of physics. First, the rules 
for calculation given in field theory texts explain a variety of phenomena, from ele
mentary particles, to atoms to macroscopic matter. Also, these rules yield numbers 
far more precise than any other physical theory—numbers which can be compared 
with observations made in the most accurate experiments on nature. In the case 
of the magnetic moment of the electron, for example, we have eleven decimal place 
agreement between calculational rules and observations. Both experiment and 
calculation in this case have been developed over a thirty year period. 

This very success, however, places a great constraint on possible mathematical 
formulations of quantum field theory. In particular, when specialized to the case 
of these perturbation calculations, the mathematical theory must predict and repro
duce the existing rules. This is the case with constructive field models, in that existing 
models have asymptotic expansions which agree with the rules (perturbation theory) 
of the textbooks. Presently, we have examples in two and three space-time dimensions, 
and a framework for a theory in four dimensions. Much of this has been joint 
work with J. Glimm and by our collaborators. 

With this background, let us begin our discussion of quantization. The problem 
is to construct a one parameter unitary group U(t)=exp(—itH) on a Hilbert 
space yf9 such that the fields are linear operators on 34?. Also 

(26) <p{t + tj = U(t)-iq>(t0)U(t) 

is the solution to the quantized field problem with initial data (p(tQ). 
A number of methods have been developed in the last ten years to solve such 

problems. I shall describe only one quantization procedure, starting from the 
Euclidean action functional séE. Basically it generalizes the Feynman-Kac repre-
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sentation for the kernel of the heat operator exp(tA — tV)9 written as a Wiener 
integral. Ultimately it yields a formula for exp(—tH). 

For quantum fields one must replace Wiener integration by a measure on some 
space of generalized functions <F. We can take these functions as sections of 
a bundle associated with P9 and take M=R*. In the case of the nonlinear wave 
equations, for example, we take SF=y>,(M)9 the space of tempered distributions. 

Without giving details, one defines a translation invariant probability measure 
dpi on !F9 which formally has density exp (séE). Generally, the measure has the 
form 

dpi = limZ(s)-i exp (séE) IJ dg(x). 
fi-° X£M(B) 

Here Z(c) is a normalizing factor, and M(e) denotes a discretized M (e.g. a lattice 
approximation with lattice spacing e). Also dg(x) denotes Haar measure on the 
fibre over x. The hard work of constructive field theory goes into the estimates 
proving existence and establishing properties of such measures. 

The construction of Osterwalder and Schrader [28], [27] gives simple sufiicient 
conditions for the measure dp, to yield a quantum field theory. Under these con
ditions theie exists a Hilbert space 3tif9 a canonical projection n from L2(df£) 
to 34?, and a commutative diagram which defines the Hamiltonian 34?, cf. also [19]. 

i+m "translation • urn 

This is the quantization of sé9 since in the perturbation limit it agrees with the 
standard physics textbook quantization of sé. 

The most powerful method to analyze d\i is based on expansions. In particular, 
these expansions have the character 

(28) Quantum Theory=Classical + Fluctuation, 

d\l = «/^classical X "/^fluctuation • 

Here fl^classical is the Gaussian measure about a stationary point of séE. Thus 
the classical Euclidean solutions of § I provide the zero order term in the expansion, 
and they yield approximate quantum fields. 

Using these expansions, going by the generic title of cluster expansions, existence 
theorems and many properties of quantum field examples have been established. 
1 mention in particular two results established since 1974, namely existence of 
dimension d=3 quantum fields [11], [26] and nonuniqueness (existence of phase 
transitions) for d=2 quantum fields [21], cf. [9]. Both these subjects have developed 
into whole areas, cf. [19], [20], [13], [12] for references. 
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Osterwalder and Seiler have established the existence of lattice gauge models [29]. 
However, little has been proved in the continuum limit. The analysis of classical 
Euclidean solution is the first of many steps in this constructive program. 

in. Quark confinement. If quarks are the basic building blocks of protons, 
neutrons, mesons, etc., why are they not observed in the products of high energy 
particle collisions? This is one major unanswered question-of-principle in particle 
theory. Physicists propose that for nonabelian groups G9 a gauge theory can provide 
the answer to this puzzle. The method is to show that pairs (and certain triples) 
of quarks are attracted to each other by a potential V(L) which increases with 
distance L between the quarks. Thus if one attempts to separate the quarks, the 
attractive force between them increases, keeping them in a bound state (quark 
confinement). One would then only observe these bound states (protons, neutrons, 
mesons, etc.). 

We now outline an argument that 

(29) V(L)~uL9 L — , a > 0. 

An asymptotically linear potential (29) would ensure confinement. We reduce our 
discussion of (29) to three basic hypotheses. Establishing these three properties 
of a quantized gauge theory would yield a mathematical proof of (29). While these 
particular hypotheses are tentative and may not be correct, it is likely that a variation 
of the theme is correct. We present this argument because it illustrates a potentially 
important physical application of classical solutions to the Euclidean Yang-Mills 
problem, such as those described in § I. The proposal given here appears in [18], [17]. 
Other proposals can be found in [7], [22], [18]. 

The first hypothesis is that V(L) can be computed from the expectation of the 
holonomy group. Let C be an LXT rectangle and define 

(30) V(L) = - Hm Y Inf Tv U(C) dpi. 

K. Wilson [31] suggested that V(L)9 defined by (30) and computed in a pure gauge 
theory, is the physically correct potential between heavy quarks in a gauge theory 
including both quarks and gauge particles (gluons). One can plausibly justify this 
assumption, so we accept (30) as our potential. 

Our second hypothesis is that the solutions with holonomy (20), i.e. U(C) = (—/)", 
dominate the contribution to the integral in (30). In this case, 

(31) / t f ( C ) ^ ~ P r ( C ) + - P r ( C ) _ , T — , 

where Pr± are the probabilities in measure dpi that C encloses an even or an 
odd number of points. 

The third hypothesis is that the distribution of the number of points inside C 
obeys a Bernoulli-type distribution law with a given density. (Such a statistical 
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property is commonly true in statistical physics, e.g. in Ising-type models.) By 
this assumption 

(32) Pr (C) + - P r (C)_ - exp [- O (Number of Points inC)] 

= exp[-0(AreaC)] 

~ exp(—aTL)9 

which ensures (29). 
We thus confront the most challenging open mathematical problem: To under

stand qualitatively and quantitatively quantum fields in dimension four. 
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Polynomial Interpolation* 

Carl de Boor 

We discuss two recent developments in this ancient and basic subfield of Numerical 
Analysis. 

1. Proof of the Bernstein and Erdös conjectures. Let C[a9 b] be the Banach space 
of continuous functions on the finite interval [a9 b] with the usual norm, ||/|| := 
max {|/(x)|: a<zx*^b}9 and let n^2. Corresponding to each point t in the open 
simplex 

T:= {teR!*-1: a < / !< . . .< tn_x < b}9 

we construct the linear map Pt of polynomial interpolation in C[a9 b] at the 
77 +1 points or nodes a=: tQ9 tl9..., t„:=b. In its Lagrange form, 

Ptf=f(tik+-+f<flIB9 

with 

w n—tj 

We wish to determine optimal nodes, i.e., a point or points **6 T for which 

||/V|| = i n f i l l . 

Here ||PJ:=sup /6C||P,/||/||/||, as usual. Consideration of this problem is motivated 
by the faci that the interpolation error admits the sharp bound 

| | / - P J | | < ( 1 + ||P«||) disi (/,*,,) 

* Sponsored by the United States Army under Contract No. DAAG29-75-C-0024. 
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since Pt is a linear projector with range nn9 the subspace of polynomials of degree 
<». Further, \\Pt\\ bounds the effect which errors in the data /(/ ;), i=09...,«, 
have on the interpolant constructed. In fact, 

llgll < IIPill max \g(tt)\ for any gg TT„ . 

Thus (and this was Bernstein's motivation) a choice of t for which \\Pt\\ is small 
allows a "cheap" and effective bound on the size of a polynomial g£nn in terms 
of just n+1 of its values. 

The last inequality is connected with the well known observation that 

ll-P.ll = \\M, 
with 

At:=\k\ + ... + \ln\ 
the Lebesgue function of the process. (L. Fejér [8] lists Runge, Borei, Lebesgue, 
delà Vallée Poussin, Faber, S. Bernstein, D. Jackson, Tietze and Hahn, in that order, 
as having dealt with this function. Tietze, in turn, acknowledges J. Radon for having 
pointed out to him this formula for \\Pt\\.) It is easy to see that, for each i=1,..., n9 

At has exactly one local maximum on the interval [ti-l9tt]9 at ti9 say, 

L(t) := max At(x) = At(-cX i = 1> ••• > w. 
ti^x^x^ti 

This allows the conclusion (apparently due to Morris and Cheney [13]) that 

dXildtj=-Fi'(tj)1j(Ti), 

with F{
 m-=2] (signum lj(yï))h> which shows the map 

P: T-^Rn\t^{ki(t))
n

1 

to be smooth. 
Bernstein [1] conjectured that \\Pt\\ is minimal when At equioscillates, i.e., when 

Xl(t)=X2(t)=...=Xn(t). 
Erdös [7] added to this the conjecture that there is exactly one choice of t for 

which At equioscillates and that, for all t9 

minAl(0<inf||PJ|. 
I «t T 

Luttmann and Rivlin [12] and Cheney and Price [6] summarize subsequent work 
on these conjectures. At the last congress, Cheney [5] ended his talk with a descrip
tion of some progress achieved by him and Kilgore. 

In the meantime, Kilgore [10] has established what turned out to be the crucial 
result: An optimal Lebesgue function, i.e., a At for which | | i lj=infj |>lj, must 
necessarily equioscillate. On first sight, this is rather less than what is wanted since 
it only establishes the converse of the Bernstein conjecture. But, in the proof, Kilgore 
shows by an ingenious argument that all the («—l)-minors in the Jacobian of P, 

dr = (ßxjdtj), 

http://ll-P.ll
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are nonzero on T. It is this fact which can be made to yield a proof of both the 
Bernstein and Erdös conjectures, as is shown in de Boor and Pinkus [2]. Kilgore 
[11] uses the fact (together with a result from de Boor and Pinkus [2]) in a different 
way for a proof of the Bernstein conjecture. 

The problem of determining an optimal t is equivalent to finding the best approx
imation in 1^ (ri) to the point 0 from the nonlinear (connected and smooth) manifold 

M:= {r(t):t£T}. 

Viewed this way, the Bernstein and Erdös conjectures generalize well known facts 
about best approximation in l^ri) from an (n— l)-dimensional linear Haar 
manifold, i.e., from a set 

L:= {At+bitZR"-1} 

with b some «-vector and A an nX(n — 1) matrix all of whose (n—l)-minors 
are nonzero. 

The specific results proved in de Boor and Pinkus [2] are as follows. 

THEOREM 1. The map A\ T-^R"'1: t*-+(Xl+1(t)—Aj(f))ï_1 is a homeomorphism 
from T onto JR""1. 

In particular, there is exactly one choice of t for which At equioscillates, and 
this, together with the converse of Bernstein's conjecture established by Kilgore, 
proves the Bernstein conjecture and the uniqueness assertion in Erdös' conjecture. 
The other part of Erdös' conjecture follows from 

THEOREM2. If Af(f)<A/(5) for i=l9...9n9 then t=s. 

The proof of Theorem 1 consists in verifying that the map A is a local homeo
morphism (a consequence of Kilgore's result) which maps the boundary of T to 
the boundary of Rn~1

9 i.e., for which lim^r||J(r)[|00 = oo. The conclusion that 
therefore A must be a (global) homeomorphism onto JR"""1 is called Palais' 
Theorem by some (because of Corollary 4.3 in Palais [15]), but can be found already 
in Browder [3]. 

Finally, similar results are proved for trigonometric interpolation, for which the 
uniform distribution of interpolation points is shown to be optimal. 

Given the truth of the Bernstein conjecture, it is not all that hard to compute the 
optimal t* for the first few n. But, Theorem 2 implies that such t* is not of any 
practical importance. For, Brutman [4] has shown that, with 

:= L + 6 + (fl-fc)[< C O S | ^ # O S 2 ^ 2 j l / 2 ' / = = 0 ' - ' * 

the zeros of the Chebyshev polynomial of degree n + \9 adjusted to the interval 
[a9 b] in such a way that the first and last zero fall on the endpoints of the interval, 

max A, (Ie)-min A, (O < 0.201. 
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Numerical evidence strongly suggests that even 

max A, (tc) - min A, (tc) < 0.0196 

which would mean that this easily constructed node vector tc gives rise to an inter
polation map Ptc whose norm is within 0.02 (and, in any case, within 0.201) of 
the best possible value for all n. 

Since, for these expanded Chebyshev points, ||Prc||~(2/7i)ln 77+O.6, this re
affirms interpolation at these points as a very good way to construct near best poly
nomial approximants (for values of n considered in practice). The construction 
of best polynomial approximants in several variables is much more expensive; hence 
such a way of constructing near best approximations in several variables would be 
very desirable. But, unfortunately, almost nothing is known about good, let alone 
optimal, points for polynomial interpolation in two or more variables. The space 
n„ of polynomials of total degree «<;? in k variables has dimension (n*fc), but 
not much is known about how one might choose ("+*) interpolation points so 
that, at least, an interpolant is defined. For this reason, it is intriguing to consider 
the following different and striking generalization of polynomial interpolation. 

2. Kergin interpolation. The following theorem is proved in Kergin [9] as part 
of the author's thesis. 

THEOREM (KERGIN). Let t09 ..., tn£Rk
9 not necessarily distinct. There is one 

and only one map P on C^n\Rk) to n„9 the subspace of polynomials on Rk of total 
degree *^n, with the following properties: 

(i) P is linear. 
(ii) For every fdC^, every m with O^m^n, every mth degree homogeneous 

polynomial qm in k variables, and every / £ {0, ..., 77} with \J\ =777 + 1, there 
exists a point in the convex hull of {tj}jeJ at which qm(D)Pf matches qm(D)f. 

Here, 
qm(P) = 2 *i(d/dxùil - (P/dxtf* 

\i\ = m 

for certain numbers a£. 
In particular, we get for m=0 in (ii) that Pf must interpolate / at the points tt. 

Also, if all the points tt coincide, then Pf is necessarily the Taylor polynomial 
for / around that common point. 

Kergin also proves that such a P is necessarily continuous on C(l°. This allows 
him to restrict attention to / in 

S:= {goA: g£C<">(jR), A: Rk -+R linear}, 

since span S is dense in C(,,). 
The matching conditions (ii) yield fairly easily that there can be at most one such 

map. The existence of such a map is, offhand, much harder to establish. Here is 
one way to do it which developed in discussions about Kergin's theorem with 
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M. Golomb, C. A. Micchelli and J. Robbin and which brings out the close relation
ship to univariate polynomial interpolation. 

We use the abbreviations Axi\^=xi^1—xi and 

1 U tm ! 

J f'=f J - / f(x0+t1Ax0+t2Ax1 + ... + tmAxm-1)dtm-dt1. 
[.v0>...,.rm] 0 0 0 

In terms of this notation, the Hermite-Genocchi formula for the mth divided dif
ference at the points x09 ..., xm£R of a function g£CM(R) can be written 

[*o xjg= f gW 
[xQ,,..,xm] 

(see, e.g., Nörlund [14; p. 16]). In particular, for f=goÀ£S9 

f f=[Xx09...9Xxm]g<-m\ 

Recall now that divided differences occur in the Newton form for the interpolating 
polynomial : 

Ptg := 2(- -to)(- -*i) - (• -tm-i)[t0, .... *Jg 
m = 0 

is the polynomial of degree ^n which agrees with g at the points t09 ...9tn (repeats 
in the ?ys giving rise to matching of derivatives in the usual way). Recall further 
that therefore 

(*) ft0, .>.,ttJPtg = [tÌQ9 ...9 f jg , all {z0, ...,iw} £ {0, ..., 7l}. 

Now consider the map P on C°l\Rk) given by the following formula due to 
C. A. Micchelli: 

(Pf)(x):= 2 f Dx.ioDx-tl...Dx-.tm_1f9 m=0 ft u 
with Dyf\=^k

r=1yr(dldx^f. The map P is clearly linear and continuous on C(n). 
We can therefore understand it by its action on S. For f=goÄ€S9 

Dx-tQ... Dx-tm_J = A(*-f„) ... K*-tm-i)g{m) oA. 
Consequently, 

n 

P(goX)(x) = 2*>(x-to) — ^(x-fro-JtAfo, ...5 Ayg, 
»;=0 

i.e., 
(**) P(goA) = (Pwg)oA. 

This shows that P maps £ into nnnS; hence P maps C(M) into n„. If now 
Qm(x)=2\j \=m aj x* ^or s o m e 0 ̂  777 «̂  77, and {/0,..., /„,} £ {0, ..., 72}, then for 
f=goX£S (with Àx=:Z,.Kxr) 

f qm(P)(f)= f 2 ^ ) o i = 2 « Ä - - 5 \ ] g » 
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hence (*) and (##) imply that 

^ / O ' - ' ^ m l I fi0 ^».1 

for all feS9 hence for all /£C(n). 
This shows that P has all the properties demanded of the map in Kergin's 

theorem. 
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Approximation des eindimensionalen 
Stefan-Problems durch finite Elemente 

Joachim A. Nitsche 

0. Einführung. Die mathematische Formulierung zahlreicher in der Praxis auf
tretender Probleme führt auf Randwertprobleme — speziell für parabolische Dif
ferentialgleichungen — mit dem Charakteristikum, daß der Rand zum Teil nicht 
von vornherein gegeben ist, sondern von Eigenschaften der Lösung selbst abhängt. 
Das älteste solche „freie" Randwertproblem geht auf Stefan [1889] zurück. Bei 
einer Raumdimension lässt es sich so beschreiben: In dem Gebiet — o.B.d.A. sei 
.y(0) = 1 angenommen — 

(1) Q = {(y9 T)|T > 0 A 0 < y < s(z)} 

ist nach einer Funktion U gefragt, welche die Gleichung 

(2) Uz-Uyy = 0 in Q 

erfüllt. Neben der Anfangsbedingung 

(3) U(y90)=f(y) für y€ / = (ö,l) 

ist im einfachsten Fall am linken Rand 

(4) Uy(09T) = 0 für T > 0 

vorgeschrieben. Längs des freien Randes y=s(z) muss einerseits U verschwinden 

(5) 17(S(T),T) = 0 für T > 0, 

andererseits ist die Funktion ^(T) durch die zusätzliche Bedingung 

(6) sT+tfy(s(T),T) = 0 für T > 0 
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an die Lösung U gekoppelt. Das Schmelzen bzw. Gefrieren eines Eisblocks ist 
eine der physikalischen Interpretationen. 

Freie Randwertprobleme haben in den vergangenen Jahren zunehmendes Interesse 
gefunden. Der Zusammenhang mit Variationsungleichungen wirkte als zusätzlicher 
Stimulus. Wir verweisen auf den Übersichsartikel von Magenes [1976], in dem 
auch der Zusammenhang mit weiteren freien Randwertproblemen dargestellt ist. 
Hinsichtlich numerischer Methoden zur Approximation der Lösung des Stefan-
Problems sei auf die Literatur-Hinweise in Nitsche [1978] verwiesen. 

In der letztgenannten Arbeit wurde eine Finite-Element-Methode vorgeschlagen, 
welche für „reguläre" Lösungen optimale Konvergenz sicherstellt, d.h. ist die Lösung 
hinreichend regulär, so ist die sich ergebende Konvergenz-Ordnung optimal. Bei 
dem hier betrachteten Problem ist die Regularität der Lösung nur abhängig von 
der Regularität der Anfangswerte einerseits und dem Erfülltsein von Kompatibilitäts
bedingungen bei y=0 und y—\ andererseits. In aufsteigender Folge handelt es 
sich um die Bedingungen (i) /(1)=0, (ii) / '(0)=0, (iii) f"(l) =/ , 2(l) usw. 

Selbst bei linearen parabolischen Problemen mit festen Rändern erfordert die 
Analyse der Konvergenz von Galerkin-Verfahren bei reduzierter Regularität der 
Anfangswerte und/oder nichterfüllten Kompatibilitätsbedingungen besondere 
Methoden. Wir verweisen auf die Arbeiten Babuska—Fix [1972], Bramble et al. 
[1977], Helfrich [1974], Thomee [1974]. Es ergibt sich, daß für positive T-Werte auch 
dann optimale Konvergenz vorliegt; die auftretenden Koeffizienten divergieren 
jedoch gegen unendlich bei T-^0. 

Gegenstand dieser Note ist ein erster Schritt in der Herleitung derartiger Aus
sagen für das Stefan-Problem. Da sich dieses auch als nicht-lineares Problem mit 
festem Rand auffassen lässt — siehe # 1 — ist damit auch eine Möglichkeit zur 
„lokalen" Konvergenz — Analyse von Galerkin-Verfahren nicht-linearer para
bolischer Aufgaben aufgezeigt. 

1. Schwache Formulierung des Stefan-Problems, Finite-Element-Methode. Durch die 
Transformation 

(7) x = s-i(>u)y 

wird das Stefan-Problem in ein solches für das Gebiet 

(8) ß = {(x9 T)|0 < x < 1 A T > 0}, 

d.h. mit festem Rand, übergeführt. Wird zusätzlich anstelle von T die neue Variable 
t gemäss 
(9) dT/dt = s2(x), T(0) = 0 

eingeführt — vgl. Friedman [1976] — so genügt die Funktion u(x91)=U(y9 T) 
der Differentialgleichung 
(10) uxx-ut = xux(l9t)ux in ß 
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und den weiteren Bedingungen 

« (0, t) = 0 
für t>09 

(11) 11(1,0 = 0 

u (x9 0) = f(x) für x 6 /. 

Der freie Rand ergibt sich aus 

(12) ds/dt = -ux(l9t)s mit 5(0) = 1. 

Die Funktion v=ux liegt im Raum 

(13) # ! = {w|weJ3ì(/) A w(0) = 0}. 

Eine „schwache" Charakterisierung von ü ist gegeben durch das 

Problem Pv. Gesucht ist v mit v('9t)£H1 derart, dass 

(14) (v9w) + (v'9w') = v(l)(xv9w') für weHt und f > 0 

erfüllt ist zusammen mit der Anfangsbedingung 

15) K-,0) = g := / ' . 

Durch einen Punkt bzw. Strich ist dabei die Differentiation nach t bzw. x ange
zeigt; (•, •) ist das L2(/)-Skalarprodukt mit der Norm ||«||. Weiterhin ist zur 
Abkürzung v(l)=v(l9t) benützt. 

Die Finite-Element-Methode zu Pv bietet sich an: Es sei Sh ein Teilraum 
von ßl9 wir denken etwa an Splines mit verschwindenden Werten bei x=0. Die 
Näherung vh=vh(>9 t)£Sh wird durch (14) festgelegt, wobei jetzt w nur den Teil
raum Sh durchläuft. Hinzu kommt die Anfangsbedingung 

(16) t>Ä(.,0) = g„ 

mit einer geeigneten Approximation £/,€£,, an g. 

2. A priori Abschätzungen. Gemäss unserer Zielsetzung wollen wir den Fall einer 
reduzierten Regularität diskutieren. Demgemäss machen wir über g=f (15) nur 
die Voraussetzung 

(17) geL2(i). 

Als Approximation gh (16) wählen wir die La-Projektion gh=PhgÇ.Sh definiert 
durch 

(18) (ft,z) = (ftX) für x£Sh. 

Es lässt sich zeigen 
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SATZ 1. Es existiert ein nur von ||g|| abhängiges r > 0 , so dass v und vh samt 
allen Ableitungen nach t für f£(0, T] in L2(I) liegen. Dabei gilt: 

(19) T t'k{\\dkv\\2+\\dkvhV}^c9 

(20) ftzk-H\\dkv\\2+\\dkvhr}dt^c. 
o 

Hier wie später gibt c Konstanten an, die nur von \\g\\ abhängen. 

Wir benötigen später Konvergenzeigenschaften der L2-Projektion. Aus (19), (20) 
und der Tatsache, daß bis auf Terme niederer Ordnung die Ableitungen dkv und 
d2kv einander entsprechen, ergibt sich unmittelbar für den Fehler e=eh=v —Phv 

(21) ||e||2 ^ cMin{Ä2fc*-*|0 ^ fc <; r}9 
T 

(22) ftk\\4*dt^ch2k+2 für O^lc^r-l. 
o 

Hierbei ist unterstellt, daß Sk ein Spline-Raum der Ordnung r ist (stückweise 
Polynome vom Grade <r). 

In der Supremums-Norm | • | ergibt sich wegen der a priori Abschätzung |w|2« 
2|M| ||w>'|| für W€JÖI speziell 

(23) \v\2+\vh\
2 *z ct-V*. 

3. Fehleranalyse. Der Fehler e=eh=v — vh genügt der Beziehung 

(24) (ê,x)He',x') = v(l)(xe9x') + e(l)(xvh9x) für ZeS„. 

Die Aufspaltung 

(25) e = (v-Phv)-(vh-Phv) = e-$ 

liefert für den Korrektur-Term <PÇ.Sh die definierende Relation 

(26) (ê9x)+a($9x) = a(s9x) für X£Sh9 

wobei die Bilinearform a('9 •) durch 

(27) a(w9 z) := (w'9 z')-v(l)(xw9 z')-w(l)(xvh9 z') 

erklärt ist. Die Wahl x=$ führt auf die Abschätzung 

(28) ^(*II#II2H *IOT ^ c||^||2+^{||ß'||2+ri/2||fi||2}. 

Der Term ||#||2 rechts läßt sich eliminieren. Dazu führen wir die durch 

— w" = # in 7, 
(29) 

w(0) = w'(l) = 0 

festgelegte Funktion w=w(*9t)Ç.61
 u n ( l die Ritz-Approximation (p=RhweSl h 
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ein. Es ergibt sich 
(30) ||<P||2 = ($, -w") = ($', w') = (<?', <p') 

= a($,<p)+v(lXx0,<P')+$(l)(xvh,(p') 
und damit weiter 

(31) 11*11* =-(è,cp)+a(e,(P)+v(l)(x<I>,<p')+Hl)(xv,l><P'). 

Wesentlich ist die Umformung des ersten Gliedes rechts: 

(32) - ( £ , <p) = (w", cp')=- (w',<p') 

Unter Heranziehung des Gronwallschen Lemma folgt aus (28) in Verbindung 
mit (30) nach einigen Umformungen der 

SATZ 2. Zu a mit a<l existieren Konstante x9y und c nur abhängig von oc und 
\\g\\ derart, dass gilt 

(33) ^{^I I^I IH^-^-1|^12}+{^| |^| |2 + ||<ï>||2} 

^c^dle'P+r^llell2}. 

Unter Ausnützen der Abschätzungen für c aus # 2 lässt sich folgern. 

SATZ 3. Der Fehler e=v—vh der Finite-Element-Methode für das Problem 
Pv genügt für a< l der Abschätzung 

(34) ||ß|| < cJft-V* für t£(09T]. 

Von natürlichem Interesse ist die Approximation an den freien Rand. Indem 
— vgl. (12) — die Näherung sb durch 

(35) sh=-vh(l, -)sh9 sh(0) = 1 

definiert wird, ergibt sich der 

SATZ 4. Der Fehler s—sh für den freien Rand ist bei a< l durch 

(36) | s -sh\ <; cjf für 0 <; t <= T 
beschränkt. 

Die Approximation Uh(y9 T) an die Lösung U des Stefan-Problems ergibt sich 
durch Integration von vh bezüglich x und Rücktransformation (x9 t)-+(y9 T) 
vermöge y=xsh(th(z))9 wobei th(z) die Umkehrfunktion von zh(t) definiert 
durch — siehe (9) — 
(37) ih = sl T„(0) = 0 

ist. Die Abweichung U—Uh in der L2-Norm ist wieder von der Ordnung hat~~1/2
9 

wobei in einer Aa-Umgebung des freien Randes U bzw. Uh geeignet zu extrapo
lieren ist. 
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Eléments Finis et Dualité 

P. A. Raviart 

1. Introduction. De manière classique la méthode des éléments finis (M.E.F.) 
est basée sur un principe variationnel connu en élasticité sous le nom de principe 
du minimum de l'énergie potentielle. L'analyse numérique de cette M.E.F. est 
désormais bien connue: cf. par exemple les livres de Ciarlet [9] et de Strang et 
Fix [23]. Parallèlement, les ingénieurs ont popularisé d'autres M.E.F. basées sur des 
principes variationnels différents tels que le principe de l'énergie complémentaire, 
le principe d'Hellinger—Reissner etc.,... qui jouent un rôle important en élasticité: 
pour cela, cf. par exemple Oden et Reddy [15]. Ces M.E.F. ont une importance 
croissante dans les applications et leur analyse numérique a considérablement prog
ressé ces toutes dernières années. Le but de cet article est de fournir une brève 
introduction aux développements mathématiques récents sur le sujet. 

2. Un exemple simple. Considérons le problème suivant: 

—Ap = g dans Q9 

(2.1) 
p = 0 sur T, 

où Q est un ouvert borné de RN de frontière T et où la fonction g est donnée 
dans L2(Q). Il est bien connu que la solution p de (2.1) peut être caractérisée 
à l'aide du principe variationnel 

(2.2) I(p) = Min I(q)9 I(q) = fl± |grad q\*-gq] dx. 

En fait, dans les applications, on est souvent plus intéressé par la détermination de la 
fonction M=grad/? que par la connaissance de la fonction p elle-même. On cherche 
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donc à utiliser le principe suivant qui donne une caractérisation directe de u : 

(2.3) / (»)= , Min J(v)9 J(v) = ^r [\v\*dx. 

c'est la formulation duale du problème (2.1). En pratique, il n'est pas toujours aisé 
de satisfaire exactement la contrainte div u +g=0. Par dualisation de cette contrainte 
on vérifie facilement que le couple (u9p) est l'unique point-selle de la fonctionnelle 
quadratique 
(2.4) if (D, q) = J(v) + f q(diw v + g)dx 

ß 

sur l'espace produit H (div ; Q)XL2(Q) où #(div; Q)={ve(L2(Q))N; div«£L2(0)}. 
Ainsi p n'est autre que le multiplicateur de Lagrange associé à la contrainte 
div u+g=0. De manière équivalente, le couple (u9p) est caractérisé par les équations 

f{u-v+pdivv}dx = 0 \/veH(div; Q)9 
n 

(2.5) 
fq(divu+g)dx = 0 V^€L2(ß). 
n 

Le principle variationnel (2.4) (ou (2.5)) est le fondement de la construction des 
M.E.F. mixtes de résolution du problème (2.1). 

3. Une formulation générale des méthodes d'éléments finis. La situation précédente 
étant en fait très générale, nous allons introduire un principe variationnel abstrait 
et une méthode d'approximation associée qui englobent la plupart des exemples 
rencontrés dans les applications. 

On se donne deux espaces de Hilbert (réels) X et W9 et on note ( •, • ) la dualité 
entre X et son dual X' ou entre W et son dual W. On se donne en outre deux 
formesbilinéairescontinues a(*9 •): XXX-+R et ô(-, *):XXW-+R. On considère 
alors le problème suivant: étant donné f^X' et i^W9 trouver un couple 
(u9p)eXXW tel que 

a(u9v) + b(v9p) = (f9v) Vv£X9 
(3.1) 

b(u9q) = (x,q) V qtW. 

On introduit ensuite le sous-espace V de X défini par 

(3.2) V = {v£X; b(v9 q) = 0 V q£W}. 

Alors on a le résultat fondamental suivant qui est en fait un cas particulier d'un 
résultat plus général de Brezzi [4] (cf. aussi Babuska [2]). 

THEOREME 1. On suppose qu'il existe deux constantes a, /?>0 telles que 

(3.3) a(v9v)^a\\v\\2
x \/veV9 

(3.4) s u p Ä ^ L ^ ^ i i ^ Mqtw. 
vZX \\V\\x 
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Alors le problème (3.1) admet une solution unique (u9p) et l'application (f9 x) -*(«, p) 
est continue de X'XW'+XXW. 

Donnons ensuite un cadre général de l'approximation du problème (3.1) inspiré 
de [8]. Introduisons deux autres espaces de Hilbert 2 et \V tels que J c ^ , ffîa W 
avec injections continues et denses puis deux formes bilinéaires continues 
à(*9*)\2xX-*R et £(-, *)\%xP-+R telles que 

(3.5) a(u9v) = a(u9v) \ju9v£X9 b(v9q) = b(v9q) \/v£X9 \fqÇ.W. 

Une méthode d'approximation de (3.1) consiste alors à se donner deux espaces de 
dimensions finies Xh et Wh tels que 

(3.6) Xh c X9 Wh c= vf 

et, en supposant f£%'9 à chercher un couple (uh9pi)^XhXWh solution de 

ä(uh9 v,ù+S(vh9ph) = (/, v}) Vvh£Xh9 

(3-7) 
£(W/,,?A) = GC (7/,) V^/,6^. 

Posons 
(3.8) Vh = {vheXh; b(vh9 ?„) = 0 VqhZWh). 

On a le théorème d'approximation qui étend des résultats de [4], [8]. 

THEOREME 2. On suppose que la solution (w, p) de (3.1) vérifie pÇffi et qu'il existe 
deux constantes oc^9 ß^>0 indépendantes de h telles que 

(3.9) ä(vh9vh)^ujvhn \/vheVh9 

(3.10) sup^L^^^IIft l l^ VqkZWk. 
vh£Xh Hftllx 

Alors le problème (3.7) admet une solution (uh9p}) unique et il existe une constante 
C>0 indépendante de h telle que 

(3.11) | « -«J | ,+ | | p - f t | | „ < c\ M \\\u-vh\\x+ sup J f c î ^ M ] 

+ inf ||p-fc||*}. 
Qh€Wh y 

Notons que si 3?=X9 W=W9 on a sous les hypothèses (3.9), (3.10) le résultat 
naturel d'approximation 

(3.12) \\u-uh\\x+\\p-ph\\w^C{ inf 1111-̂ 11*+ inf \\p-qh\\w}. 
*>h€xh QhtWh 

D'après le Théorème 2, il reste dans chaque cas — mais c'est là le point délicat! — 
à construire des formes £(•, •)> %(• > •) e t des espaces Xh9 Wh ayant de bonnes 
propriétés d'approximation de façon à satisfaire les conditions (3.9) et (3.10). 
Notons d'ailleurs que si, dans les applications, l'hypothèse d'ellipticité est souvent 
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assez simple à vérifier, il n'en est pas de même du moins en général, de l'hypothèse 
de compatibilité (3.10) entre les espaces Xh et Wh (cf. [11] à ce sujet). 

4. Applications. Nous allons illustrer les résultats généraux du paragraphe précédent 
à l'aide de deux examples représentatifs. 

4.1. Problèmes elliptiques d'ordre 2. Reprenons l'exemple introduit au paragraphe 
2. Il correspond à X=H(div; Q)9 W=L2(Q)9 a(u9v) = ffìwvdx9 b(v9q) = 
= JQdivvdx9 f=0 et (x,q)=~fDqgdx. 

On suppose alors que 2Th est une triangulation régulière de Q à l'aide de triangles 
K de diamètres«^A. La M.E.F. mixte consiste à choisir J?=X9 ffî=W. Il s'agit 
alors de construire des sous-espaces de dimensions finies de H(div\ Q) et de L2(Q) 
formés de fonctions ayant un comportement polynomial dans chaque triangle 
K de la triangulation ST]x. Pour la construction explicite de tels espaces Xh et Wh 

vérifiant les conditions (3.8), (3.10) nous renvoyons à [18], [25]. L'inégalité (3.12) 
fournit alors une majoration de p— ph dans L2(Q). On peut en déduire une majora
tion dans L°°(Q) à l'aide des techniques de Nitsche, cf. [20]. 

Par ailleurs, il faut noter que l'appartenance d'une fonction v à l'espace 
XhczH(div; Q) impose la continuité des traces normales vn aux interfaces des 
éléments finis K. On peut également dualiser cette contrainte de continuité ce qui 
donne naissance aux M.E.F. mixtes hybrides, hybrides duales, équilibres etc. Pour 
tout cela, voir [3], [18], [19], [24], [25]. 

Toutes ces M.E.F. se généralisent facilement aux équations et systèmes d'équations 
elliptiques du 2ème ordre. Dans le cas du système de l'élasticité, on peut en outre 
dualiser la symétrie du tenseur des contraintes, cf. [1]. 

4.2. Problèmes elliptiques d'ordre 4. Donnons maintenant un exemple où A^cfZ-
Considérons alors le problème biharmonique 

A2ij/ = / dans Q9 
(4.1) 

\j/ = dij/jdn = 0 sur T, 

où la fonction / est donnée dans H~1(Q). Une formulation variationnelle du 
problème (4.1) consiste à poser 

X = H$(Q)XL2(Q)9 W = L2(Q) 

et pour u=(\l/9œ)9v=((p96)Ç.X 

fl(w, u)= fcoBdx, b(v9q)=-fq(Acp + 6)dx9 (/, v) = (/, <p)9 x = 0 
ß ß 

où <•, •) désigne la dualité entre H~1(Q) et HQ(Q). Le problème (3.1) corres
pondant admet alors une solution unique (u=(\l/9œ)9p) où \j/ est la solution de 
(4.1) et co=p=—A\l/. On obtient ainsi une formulation mixte du problème (4.1). 
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Pour éviter d'avoir à construire des sous-espaces de dimensions finies de H$(Q)9 

ce qui nécessite l'utilisation d'éléments finis C\ on introduit les espaces et les formes 
bilinéaires (cf. [10]) 

JT = Hl(Q)XL2(Q)9 v¥ = Hl(Q)9 

a(u9 v) = a(u9 v)9 B(v9 q) = f (rot ç?« rot q—0q)dx9 
ß 

de sorte qu'il suffit de construire des sous-espaces de H1 (S) pour obtenir une méthode 
d'approximation. 

Soit alors / un entiers» 1; on pose par exemple : 

Wh = {qeC«(Q); qÌKePt(K) V*€**}, Xh = {Whmi(Q))XWh9 

où Pj(K) désigne l'espace des restrictions à K des polynômes de degrés/. Les 
conditions (3.9) et (3.10) sont alors vérifiées de sorte que le problème (3.7) admet 
une solution unique (uh=(\J/h9 co})9ph=cOji). En utilisant les techniques développées 
dans [21] pour évaluer le 2ème membre de (3.11), on obtient si la fonction \j/ solution 
de (4.1) est assez régulière 

\0(hl) si Z>2, 
(4.2) ll^-^JI^(ß) + A1/2l|a)-u)/j|U2(ß) = | 0 ( f t l _ £ ) s. l = h 

ce qui améliore les résultats de [21]. 
Pour d'autres formulations variationnelles du problème (4.1) et d'autres M.E.F. 

mixtes, hybrides, ou équilibres, nous renvoyons à [7], [8], [16]. 

5. Problèmes non linéaires. Les méthodes d'approximation introduites plus haut 
peuvent s'étendre de manière naturelle aux problèmes non linéaires. Donnons 
deux exemples d'application. 

5.1. Inéquations variationnelles. Considérons le problème unilatéral (problème 
de l'obstacle associé à (2.1)): trouver p£C solution de l'inéquation variationnelle 

(5.1) /grad p • grad (q-p) dx ^ f g(q-p) dx V q£C9 
ß ß 

où C est le convexe fermé supposé non vide C={qÇ:Hl(Q)'9 q^\j/ p.p. dans Q}. 
Ici aussi on peut introduire une formulation variationnelle analogue à (2.5): 

le couple (w=grad/?,/? —\j/) est l'unique élément de iï(div; Q)XL\(Q) tel que 

f(u-v+pdivv)dx = 0 Vi>e.#(div; Q)9 
ß 

(5.2) 
/(<7-Cp-^))(div«+g)<0 Vq£L%(Q), 
ß 

où L\(Q) est le cône {q£L2(Q);q^0 p.p. dans Q}. La forme abstraite de ce 
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problème (5.2) consiste, avec les notations du § 3, à se donner un cône convexe 
K fermé non vide de W et à chercher un couple (u9p)£XXK tel que 

a(u9v)+b(v9p) = (f9v) \/veX9 
(5.3) 

b(u9 q-p) < (x, q~p) VqtK. 

Pour des résultats généraux sur l'approximation du problème (5.3) et sur la con
vergence de la M.E.F. pour les problèmes unilatéraux nous renvoyons à [5] (cf. 
aussi [22]). Pour l'approximation par des M.E.F. équilibres des problèmes uni
latéraux en élasticité, voir [13]. La situation est beaucoup plus délicate lorsque 
le convexe K n'est pas un cône; c'est le cas en particulier des problèmes d'élasto-
plasticité (cf. [6], [14]). 

5.2. Equations de Navier-Stokes. La M.E.F. mixte de résolution de (4.1) peut 
être étendue à l'approximation des équations de Navier-Stokes en dimension N=2 
et en formulation fonction courant 

*'*-£(*ê)+é(*&)-'dansß-
(5.4) 

<A = ^ = 0 su r r . 
dn 

Il suffit avec les notations du § 4.2 de remplacer a(u9 v) par 

On peut établir la convergence de la M.E.F. mixte dès que ^ est une solution isolée 
de (5.4) avec les mêmes ordres de convergence (4.2) que dans le cas linéaire (cf. [12]). 
Pour un panorama des M.E.F. de résolution des équations de Navier—Stokes, 
voir [17] et la bibliographie de cet article. 
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TpyflBi MeacflVHapoflHoro KoHrpecca MaTeMaraicoB 
XejIBCHHKH, 1978 

^HCJieHHoe Peinenne 3aaa?i 
MaTCMaTH îecKOH <3>HSHKH 

A. A. CaMapcKHH 

floKJia^ nocBJimeH, B OCHOBHOM, BonpocaM o6meii TeopHH pa3HOCTHtix MeTOßOB 
H nocTpoeHHH pa3HOCTHBix cxeM flJiH jiHueHHLix H HejiHHeHHLix 3a,n:aH. H3jiaraioTca 
pe3yjibTaTti, nojiyneHHtie B nocjießinie ro#i>i aBTOpoM H ero coTpyßHHKaMH. 

1. ycTOHHHBOCTb onepaTopHo-pa3HOCTHbix cxeM. OcHOBiian TeopeMa. Pac-

CMOTpHM, cjießyfl [1], AByxcjioiÎHyK) onepaTopHo-pa3HocTHyio cxeMy 

(1) Byn+1~yn+Ayn = 0, n = 0,1, ..., sappa yQeH9 
T 

c jiHHeHHbiMH orpaHEraeHHBiMH onepaTopaMH A9 B9 3aBHcamHMH OT napaMeTpoB 

h9 T > 0 H tn=m H 3aAaHHtiMH B rnjib6epTOBOM npocTpaHCTBe H=Hh. TeopHJi 

ycTOHHHBocTH cxeM (1) pa3pa6oTaHa B [1]—[3]. Ujejib Teopnn — Haöra Heoöxo-

flHMBie H ßocTaTOHHbie ycjioBHa ycTOHHHßocTH H anpHopmae oijemcH 6e3 npçn;-

nojioacenHH o crpyicType A KB. CxeMa (1) Ha3tiBaeTCji ycTOHHHBOH B npocTpaHCTBe 

HD co cicajiapubiM npoH3Be#eHHeM (y9 v)D=(Dy9 v)9 r#e D:H-+H9 Z>*=Z>>0, 

ecjiH ßjia pemeHHfl satana (1) H JIIOôHX y0£H 

(2) ( D ä + I . y»+ù < (Dyn9 y„)|| HJIH H^+IIID < Win-

T e o p e M a 1. Ilycmb A u B ne 3aeucnm om n9 A*=A>0 u J 5 _ 1 cyujecmeyem. 

Toeda òAH ycmomueocmu cxeMbi (1) e HA9 neoôxoduMo u docmamowo, mnoóu 

ebino/iHH/iocb onepamopuoe nepaeencmeo BQ=RGB^0.5ZA. 

2. ycTOHHHBOCTb B cjiynae necaMoconpflHcemibix onepaTopoB A H B. Tpeôyerai 

yKa3aTb cBOHCTBa onepaTopoB A H B cxeMti (1), ycTOHHHBOH B icaKOM-jiHÔo npocr-
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pancTBe HD. uoicasano, HanpHMep, HTO npn A* = — A9 J5*=JB>0 HJIH A*=A>09 

B*=—B cxeMa (1) ne HBJIäCTCä ycTOMHBOH HH B OAHOH H3 HopM HD (a6cojiioTHO 

HeycTOHHHBa). 

T e o p e M a 2 ([4]). Tlycmb A*=A9 B*=B u xomn 6u OòUH U3 onepamopoe A UAU 

B noAooicumeneH. Ec/iu cxejaa (1) ycmomuea e KaKOM-Au6o npocmpancmee HD9 

mo ewno/iHftemcn onepamopnoe nepaeencmeo B^(TJ2)A. 

Tpe6oBaHHe caMoconpraeimocTH A is. B cymecTBeHHO (HMeeTca npnMep yc-

TOHHHBOH cxeMbi c A*=A > 0 , He y#0BjieTB0pflK)in;eH ycjioBHK) B^(T/2)A). 

T e o p e M a 3 (A. B. TyjiHH). Tlycmb B=D+TAC9 Z>*=Z)>0, cyufecmeywm 

onepamopbi C~~r
9 B"1. Tozda ycmomueocmb (1) e HD sKeueaAenmna ebinoAuenwo 

onepamopnozo nepaeeucmea A0+zA*(<(C—0.5E)D~r)0A>>09 zde A0=ReA = 

0.5(A*+A)9 E — edunuHHbiu onepamop. ECAU A* = —A9 A"1 cyufecmeyem9 mo 

ycAoeue DC+C*D^D neoóxoduMo u docmamomo òAH ycmomueocmu e HD. 

Pe3yjibTaTH TeopHH MoryT 6biTb H3nojib30Bain>i, HanpHMep, #jur Hccjie#OBaHHK 

ycTOHHHBocTH ^ByxnapaMeTpHHecicoro ceMencTBa cxeM 

Wr + ffA + O - ^ P » = 0, JyPi + ffA + fl-ffJw, = 0 

(o6o3HaneHHÄ CM. [1]), annpoiccHMHpyiomHx cHcreMy ypaBnemm aKycTHKH du/dt+ 
dP/dx=09 (l/cl)dPldt+duldx=0. Han êHM onepaTOpbi D H C, npH KOTopbix 
B=D + TAC; ycjioBHe ycTOHHHBocTH DC+C*D^D HPHBO^HT K HeyjiynmaeMbiM 
yCJIOBHHM flJIJI 0"i, (72: 

oi+fla ^ 1, l+4y2(a1-0.5)((r2-0.5) ^ 0, y = ncjh. 

ycTOHHHBocTb TpexcjioHHBix cxeM e HecaMoconp^xceHHLiMH onepaTopaMH HCC-
jieAOBaHa B [4]. 

4. ITrepaijHOHHbie MCTO^M. 06m;aH Teopmi HTepan;HOHHbix MCTOAOB AJIä penie-

HHfl jiHHeÖHoro onepaTopHoro ypaBHeHHü>4w=/, A: H-*~H B rnjibSepTOBOM npocT-

pancTBe H H3Ji05icena B [1], [3]. flByxcjioHHbiH (oflHOHiaroBbin) HTepau,HOHHbiH 

MeTOA 3anncbiBaeTCA B KanonHiecicoH $opMe 

(3) Byk+1~yk+Ayk=f9 7c = 0,1, 2,..., Vy0£H; B:H-+H. 

ECJIH A*=A>09 B*=B>0 H 3aßam>i yl9y2 H3 ycjioBHH y^^A^y^B, TO 

cymecTByeT Ha6op onTHMajibHbix napaMeTpos T*, T29 . . . , T* npn KOTopoM MeTOß 

BblHHCJIHTeJIbHO yCTOHHHB H HHCJIO HTepaiJHH, TapaHTHpyiOmHX TOHHOCTb 8 > 0 , 

ecTb n^n0(c)9 770(e)=ln(2/e)/2f, £ = yi/y2- OnepaTop B BbionpaeTca H3 ycjioBHa 
MaiccHMyMa ^ H MHHHMyMa nncjia onepaijHH npn onpe^ejienHH yn+1 H3 (3). BbiGnpaa 
MaTpnuiy B B BH^e npoH3BeaeHHH HHHCHCH H BepxHen TpeyrojibHbix MaTpnu, (CM. [1]) 

B = (E+œRx)(E+œR2)9 Ri+R2 = Al9 R% = Rl9 
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nojiynaeM yHHBepcajibHbin nonepeMenHO-TpeyrojibHbiH MeTOA (IITM) (A. A. Ca-
MapcicHH, 1964; CM. [1]). Taic icaic B*=B^09 TO RJW IITM MOECHO Hcnojib30BaTb 
onTHMajibHbiH He6biuieBCKHH na6op {T£}. ECJIH npeßnojiOHCHTb, HTO A^öE, 

RxR2^(AjA)A9 <5, J > 0 , TO BbiGnpaa co=2/fôA H napaMeTpbi {T£}, nojiyHHM 

rpp t]=S/A. B HacraocTH, 

n 0 ( ß ) « l n T / ( 2 / 2 | ^ ) , 
fi 

n0(e)^0.281n-/l/ft 

B cjiynae pa3HOCTHOH 3â ,aHH flHpnxjie RJISL ypaBHenHH IlyaccoHa B CAHHHHHOM 

/?-MepHOM (p^2) Ky6e Ha KyônnecicoH ceTice c niaroM h. 
A. B. KynepoBbiM H E. C. HnicojiaeBbiM B [5], [6] npeßjioaceHa MOflH^HicaijHfl 

ÏÏTM: 

B = (D+coR1)D~1(D+œR2)9 D * = Z > > 0 ; RÎ = R29 R1+R2 = A. 

ECJIH A>*ÒD9 <5>0, R1D~1R2^(A/4)A9 TO npn œ=2J^ôA H {Tk=%l} orjemca 
AJIJI n0 (e) ocTaeTCÄ B CHJIC B KanecTBe D=(diJ) MOXCHO B3̂ Tb AHaroHajibHyio 
MaTpimy, Bbi6Hpaü dtJ H3 ycjiOBH* MaiccHMyMa n=ö/A. Mo#H(j)Hi];HpoBaHHbiH 
IITM OKa3aJica BecbMa ŝ eicTHBHbiM npn pemeHHH pa3HocTHOH 3a#aHH flHpnxjie 
B npoH3BOJibHOH o6jiacTH fljifl ypaBHeHHji div(lcgradu)=f e CHJIMìO MCHA-

lomHMca K034)4)Hu;HeHTOM k=k(x)m
9 TaK, B cjiynae ypaBHeHHji IlyaccoHa HHCJIO HTe-

paî Hii npaiCTHHecKH coBna^aeT c HHCJIOM HTepaijHH AJDI TOH »ce 3a,n;aHH B KBâ paTe, 
CTopoHa KOTOporo paBHa ^HaMeTpy oojiacra. fljia TpeTben icpaeBOH samara H AJIH 
ypaBHeHHjr co CMeniamibiMH npoH3BO£HbiMH B np^MoyrojibiiHice HHCJIO HTepauiHH 
n0(E)*{(l/fh)ln2)/e. 

5. Pa3nocTHbie MeTO#bi fljisi 3a^an e iierjia/jicHMH peuieinwiMH. IIpoH3BOAHbie 
pemeHHH 3JijiHnTHHecKHX 3a#aH MoryT 6biTb HeorpaHHHeHbi B OKpecraocTax Toneic 
CMeHbi THna KpaeBbix ycjioBHH, pa3pbiBa KpaeBbix 3HaneHHH H npaBOH nacra, B 
yrjioBbix TOHKax JIHHHH pa3pbiBa ico3<J)(I>Hi;HeHTOB, B MHoroyrojibiiHKe B oicpecr-
HOCTHX BepniHH yrjiOB H T.#. 3TO npHBô HT K noHH>iceHHio norpeiHuocTH annpoiccH-
Maî HH H TOHHOCTH cxeMbi. Bo3HHicaioT ABe npoSjieMbi: 1) HccjieAOBaiiHe H3BecT-
Hbix pa3HOCTHbix cxeM AJIJI yica3anHbix 3a,n;aH; 2) pa3pa6oTica HOBHX 6ojiee 3(])<j)eK-
THBHblX MeTOflOB pemeHHH. 

JlaaconeH B [7] noica3aji, HTO pa3H0CTnaa 3a^ana flnpHXjie fljia ypaBHennji 
JIanjiaca B HJIOCKOH oôjiacra c yrjioM vn npH v >1 B cjiynae miTHTOHeHHOH cxeMbi 
H HenpepbiBHOH rpaHHHHOH ŷHKî HH HMeeT norpemiiocTb 0(h2/v~2B/r1/v~e)9 rpß 
h — mar ceTKH, r — paccToanne AO BepniHHbi yrjia, e=const > 0 — jiioöoe HHCJIO, 

H 0(A1/V""27/*1/V""8) B cjiynae pa3pbiBHOH rpaHHHHOH <J>yHKiiHH. 
U,HKji pa6oT no HccjieAOBaHHio KJiaccHHecicnx cxeM AJIH OTbicicanHH nerjiaAicHx 

pemeHHH BbinoJiHen B. B. AimpeeBbiM H E. K). ApxnnoBOH B [8], [9], B [8] H3yneHa 
3aflana flHpnxJie AJIH ypaBHeHira JIanjiaca B nojiynjiocicocra y>0 c rpaHHHHbiM 
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ycjioBHeM w=signx , HMeionpiM pa3pbiB B nanajie icoopAHHai, H noica3ano, HTO 

B cjiynae naTHToneHHOH cxeMbi ee norpeniHocTb ecTb 0(hjr)9 ecjiH pa3pbiB He B 

y3Jie ceTKH, H 0(h2/r2)9 ecjiH pa3pbiB nona^aeT B y3eji ceTicn. YicasaH cnocoö no-

BHineHHÄ TOHHOCTH nyTeM crjiaxcHBaHHa (neMoiioTOHHoro) rpaHHHHOH <J>yHiai;HH. 

fljwr CMeuiaHHOH 3aAanH HeHMaHa—flnpHXjie nojiyneira oijeHKa norpeninocTH 

0(hlir) H yica3an cnocoô HcnpaBJienHfl KpaeBbix ycjioBHH, npH KOTOpoM norpem-

HOCTb ecTb 0(h2/r3/2). 

Pa3pa6oTKa HOBHX 6ojiee 3$^eiCTHBHbix MCTOAOB OTbicicaHM HerjiaAKHx pemeHHH 

HA,eT no TpeM nanpaBjieHHuM: 1) Hcnojib30BaiiHe oGbiniibix cxeM c BbiöopOM B OK-

pecTHOcTH ocoöbix TOHeK cnennajibHbix noji£piibix ceToic c H3MejibHeHHeM (no 

CTeneHHOMy 3aicoHy) mara no pa^nycy (E. A. BOJHCOB [10]); 2) BbmejieHHe oco-
6eHHOCTH H HCnOJIb30BaHHe MeTOfla KOHeHHblX 3JieMeHTOB, HTO npHBOAHT K He-

jioicajibHHM ceTOHHbiM annpoKCHMan;HJiM (<3>HICC H CTpeHr, [11]); 3) nocrpoenne 

Ha o6biHHbix inaojioimx pa3HocTHbix cxeM, necymux oco6eHHOCTb (H. B. <E>P£3HHOB 

[12]). B [12] ypaBHeHHe JIanjiaca Au=09 u=u(xl9x2) annpoiccHMnpyeTCH pa3-

HOCTHOH cxeMOH (axy^ ) x +(a2yx)Xz
:=(P c nepeMeHHbiMH Koa^^Hi^neHTaMH al9a29 

npnneM ax H a2 OTJIHHHH OT 1, a q> — OT Hyjra jinnib B KOHCHHOH OKpecraocTH 

oco6oH TOHicH. rjiaBHau nacTb pa3JioaceHH5i fyymLTJjm u B OKpecTHOCTH OCOôOH 

TOHKH yAOBJieTBopaeT pa3HOCTHOMy ypaBHeHHK). 3Ta cxeMa R&QT xopomyio TOH-

HOCTb ICaK B MaJIOH OICpeCTHOCTH OCOÔOH TOHKH, TaK H BHe Hee. AHaJIOrHHIIO CTpOHT-

CH cxeMbi AJifl ypaBHeHHK IlyaccoHa B MHoroyrojibHHice. 

6. BeicTopHbie cxeMbi ([13], [14]). E n n e m i e H. B. Opa3HHOBbiM KpaeBbix 3aAan 

AJiH sjiJinnTHHecKHx ypaBHeHHH o6m,ero BHAa B o6jiacTjix npoH3BOJibHOH <])opMbi, 

a Taoce SKonoMHHHbix cxeM AJIJI MHoroMepmix napaOojinnecKHx ypaBHeHHH npn-

Bejio K noHATHK) BeicTopHOH pa3HOCTHOH cxeMbi H cymecTBeHHo pacmnpHJio Kjiacc 

pa3H0CTHbix cxeM. 3 T O pacmnpeHHe cBü3aH0 c nocTpoenneM cxeM B npocTpaHCTBe 

CeTOHHblX $yHOT,HH öojiee CJIOaCHOH CTpyKTypH, ÄBJIHIOmeMCH npüMOH CyMMOH 

HeCKOJIbKHX CeTOHHblX npOCTpaHCTB. IlyCTb 3aAaHH CeTKH W^\ 3aBHCHIÎ He OT A, 

H cooTBeTCTByioniiHe npocTpaHCTBa Hj^ ceTOHHbix C^HKAHH J>(S), s=l, 2, . . . , m. 

IlycTb Hh=Hfp® Hf® ® "• ® Hf^ — npflMaa cyMMa npocTpaHCTB H^ H BeKTop 

jj = (yV\ y&\ . . . , y™)) g Hh c KOMnoHenTaMH y® 6 Hf?; s=1, 2, . . . , m. 

I I O A BeicTopHOH pa3H0CTH0H cxeMOH 6yAeM noHHMaTb onepaTOpHoe HJIH onepa-

TopHO-pa3nocTHoe (pa3HocTiioe no apryMeHTy tn=m9 n=09 1,...) ypaBHenne 

c onepaTopaMH B Hh (CM. [14]). OopMajibHbiH npneM nocTpoenHH BeicTopubix 

cxeM cocTOHT B cjieAyiomeM. 3aAane pjm HCXOAHOTO ypaBHeHHH cTaBHTca B COOT-

BeTCTBHe 3KBHBajieHTnaa icoppeicTnaa 3aAana AJifl CHCTCMM AH$<i)epeHn;HaJTbHbix 

ypaBHeHHH: eAHHCTBeHHbiM ee peinenneM srajnieTCfl BeKTop-^)yHicn;Ha, Bee KOM-

noHenTbi KOTOpoH coBnaAaioT c penienneM HCXOAHOH 3aAaHH. AnnpoKCHMnpyn 

icaacAoe H3 ypaBHeHHH STOH CHCTeMbi Ha cooTBeTcrayiomeH ceTice w^\ npnxoAHM 

K BeKTOpHOH cxeMe. ECJIH BeKTopnaa cxeMa KoppeKTim, TO icaacAaa ee KOMnoneHTa 

npn6jiH3KaeT cooTBeTCTByiomyio KOMnoHeHTy 3KBHBajieHTH0H CHCTeMbi, a 3HaHHT 
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H HCXOAHOH 3aAanH. CeMencTBO seKTOpHbix cxeM cymecTBeHHo 6ojiee mnpoKoe, 
neM ceMencTBO pa3jiHHHbix annpoKCHManiHH HCXOAHOH 3aAann A-KH OAHOTO ypaB
HeHHH na OAiioH ceTice. Bojibmoe HHCJIO BeicropHbix cxeM RJISL sjurnnTHHecicHx 
H napaôojiHHecKHx ypaBHeHHH nocTpoeHO H. B. <Dptf3HHOBbiM. CiOAa OTHOCHTCH, 

B nacTHocTH, sicoHOMHHHbie aAAHTHBHbie cxeMbi, ooJiaAaiomne annpoKCHMaijHeH 
B cyMMapHOM cMbicjie [1], AJI5I peinenna MHoroMepiibix ypaBHeHHH napa6ojin-
Hecicoro THna. 

B cjiynae HeperyjinpHbix ceToïc pa3H0CTHbie cxeMbi RJISL sjuiHnTHHecicoro ypaB-
neura 2 v 

L" = a 2± -^r (k*ß(x)g^-J = -f(x)9 xe(x19 x2)9 

OÔbIHHO CTpOflTCH MeTOAOM KOHeHHblX 3JieMeHTOB. OAHaKO 3TH cxeMbi (oco6eHHO 
npocTenmne H3 HHX) MOECHO, icaïc noKa3ano H. B. <DpH3HHOBbiM, nojrynHTb MeTO-
AOM 6ajiaHca (HHTerpoHHTepnojmrHOHHbiM MCTOAOM [1]). OHH HBJIHIOTCH Beic-
TOpHblMH CXeMaMH. 

7. BapHai|iioHiio-pa3iiocTHbie cxeMbi RJIK ypaBneiniH ra30AHnaMHKH n MariiHTnoM 
rï!ApoAB"mMHKn ( M i y Q . ^JIH STHX ypaBHeHHH xopomeiî TonnocTbio o6jiaAaioT 
nojiHOCTbio KOHcepBaTHBHbie cxeMbi [15], A ^ icoTopbix Ha ceTice BbinojmHeTCH 
ne TOjibKO 3aKOH coxpaHeniw nojiHOH SHeprHH, HO H ypaBHeHHH ôajianca BHyT-
peimeH H KHHeTHHecicoH aneprini, a Taioice SHeprHH ajieiCTpoMarHHTHoro HOJIH. 

fljiH BbiBOAa nojmocTbio KOHcepBaTHBHbix pa3HOCTHbix cxeM B nepeMeHHbix Jla-
rparaca s^eKTHBHbiM oica3aJicH BapHauHomibiH HOAXOA, ocHOBaHHbiH Ha nojiy-
AHCKpeTHOM aHajiore npHHAHna HaHMeHbmero ACHCTBHH raMHJibTona—Ocrpo-
rpaACKoro [16], [17]. uojiynaioiAHecH npH STOM BapHan,noHHO-pa3HOCTHbie cxeMbi 
(BPC) HMeioT BTopoH HopHAOïc annpoKCHMaipiH Ha rjiaAKHx pemenHHX, oôjiaAaioT 
nojmoH KOHcepBaTHBHocTbio, Jienco ajiropHTMH3HpyioTCH. B P C HMeioT KOBapnaHT-
Hyio $opMy 3anncH, TaK HTO npn nepexoAe OT OAHOH CHCTeMbi KoopAHHaT K APyron 
H3MeHHeTCH TOJibKo BHA BbipaaceHHH oôbeMa jiarpanxceBOH HHCHKH KaK <])yHKn;HH 
KoopAHHaT ee BepmHH. 3 T O oôecneHHBaeT B03MoaraocTb pacneTa TeHemm B CHC-
TeMax KoopAHHaT, aBTOMaTHHecicH noACTapHBaiomnxcH K paccHHTbiBaeMOMy n o -
TOKy. BPC n03BOJIHIOT BBeCTH HCICyCCTBeHHyK) BH3KOCTb B KOBapHaHTHOH <])opMe, 
He 3aBHCHIAeH HH OT HHCJia H3MepeHHH, HH OT CHCTeMbi KoopAHHaT [18]. fljIH 
Apyrnx nacTo BCTpenaiomHxcfl MHoroMepHbix ypaBHeHHH MaTeMaranecKOH 4>H3HKH 

(TenjionpoBOAHOCTH, AH^ysHH MarHHTHoro nojin H T. A-) TaK>ice MoryT 6biTb 
nojiynenbi pa3H0CTHbie cxeMbi, HMeiomne KOBapnaHTHyio $opMy 3anncH, o6jia-
Aaiomne BTOpHM nopHAKOM annpoKCHMaiTHH H coxpanmomne CBOHCTBO caMocon-
pH>KeHHOCTH H 3HaicoonpeAejieHHOCTH. 

BPC AJifl MHoroMepHbix MTR ypaBHeHHH c TenjionpoBOAHOCTbio no3BOJineT 
pemHTb pHA MOAejibHbix H npmcjiaAHbix 3aAan B pa3JiHHHbix cncreMax KoopAHHaT: 
O pa3BHTHH HeyCTOHHHBOCTH PsJieH—TeHJIOpa B HeC»<HMaeMOH 3KHAKOCTH [19], 
o MarHHTHOH icyMyjiHn;HH [20], o CHMMCTPHH c^epHHecKHx MKHieneH npn cacaraH 
Hx jia3epHbiM H3JiyneHHeM [21] H AP-
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Galerkin-Fiiiite Element Methods for Parabolic 
Equations 

Vidar Thomée 

The purpose of this paper is to present a survey of error estimates for Galerkin-
finite element methods applied to parabolic initial-boundary value problems. In 
doing so we shall depend on known results pertaining to the corresponding elliptic 
problem. We shall concentrate on the error originating from the discretization in 
the space variables and only quote at the end some work related to the discretization 
in time. 

Before we state our parabolic problem we consider briefly the elliptic problem 

N d ( du\ 
Au=— J?*—\aikTi— +flow = / in Q9 u = 0 on dQ9 j,k=iàXj \ dxk) 

where Q is a bounded smooth domain in RN and where the coefficients are smooth 
with (ajk) positive definite and a0 nonnegative in Ü. This problem may also be 
stated in weak form: Find UÇLH](Q) such that 

A(u9y) = (f9(p) for <peHè(Q)9 

where 

A(u9v)= f\ 2 ajk-K-~ïï~" +^uv\dx9 (u9v)= fuvdx. 
û U*=i oxk ox j ) £ 

Let {Sh} denote a family of finite dimensional subspaces of HQ(Q)9 depending 
on the "small" parameter h9 with the property that for some integer rs>2, 

inf {Bw-zfl + ftlw-rixHCftlwIL. for weHi(Q)nHr(Q)9 

where || • ||5 denotes the norm in HS(Q) and || • || = || • ||0. A simple example (with 
r=2) of such a family is obtained by approximating the domain ß from the interior 
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by a union Qh of triangles with diameter at most h9 and considering continuous 
functions which are linear on each triangle and vanish outside Qh. More gene
rally, one may consider continuous functions which reduce to polynomials of 
degree r — 1 on triangles. Nontrivial modifications near the boundary are then 
often necessary. 

The "standard" Galerkin-finite element method for our boundary value problem 
is then to find uh^Sh such that 

Aui»X) = (J>X) for x£Sh. 

Setting e=uh—u we have at once A(e9%)=0 for /GS,, and hence 

C-i\\e\\l^A(e9e) = A(e9x-u)^C\\e\\1 inf \\u-x\\i, 
xtsh 

so that by our assumptions on {Sh}9 

lklli<C,Är"1ll«llr for ueHi(Q)nHr(Q). 

A famous duality argument by Aubin [1], Nitsche [18] and Oganesjan and Ruchovetz 
[23] shows the L2 estimate needed to conclude the optimal order error estimate 

IMI + &lklli<CÄr||u||, for ueHi(Q)nHr(Q). 

We now turn to our main target, the initial boundary value problem (ut=du/dt9 

*+ = {f>0}). 

(1) ut+Au=f in QXR+, w = 0 on dQXR+9 u(x90) = v(x) in ß, 

which we write in weak form, with «(•, ì)C.HQ(Q)9 

(ut9 q>)+A(u9 q>) = (/, (p) for (p^H}(Q). 

The corresponding "standard" Galerkin-finite element semidiscrete problem is 
then to find uh(t)£Sb such that 

(2) (u,ltt,X)+A(uh9x) = (f,X) for x£Sh9 t> 0, uh(0) = vh9 

where vh is a suitable approximation of v in Sh. This may be considered as an 
initialvalue problem for a system of ordinary differential equations in the coefficients 
of uh with respect to some basis in Sh. 

Error estimates for (2) were given in e.g. Price and Varga [24], Douglas and 
Dupont [11], Fix and Nassif [15], Wheeler [32] and Dupont [14]. We show the follow
ing for e=uh — u. 

THEOREM 0. For u sufficiently smooth in ßX[0, t0] and with a suitable choice 
of vh we have 

l|e(0ll + * WOlli <= C(u)W for O^t^ t0. 

PROOF. Following Wheeler [30] we define the elliptic projection P^. / /^ (ß) -*^ 
by A(P1u—u9 %)=0 for XéS,,. By above we then have 

(3) \\P1u-u\\+h\\P1u-u\\1^Chr\\u\\r for uÇ.Hl(Q)nHr(Q). 
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In the parabolic case, set 6=uh—P1u and Q^P^—U. By our definitions we have 

(0t9x)+A(09x)=-(Qt,x) for xeSh. 
Choosing in particular # = 0f we find 

1 | 0 ' I | 2 +T^ ( 0 '0 ) = ~(e" 0,) * T ie'l|2+T l|0'r-

Hence after integration, with vh=Pxv so that 0(O)=O, in view of (3), 

C-*||fl||î < A(ß, Q)(t) *A(ß, 0)(O)+ f\\Qt\\*dx< C(u)h*. 
0 

This completes the proof since e=6 + g so that, using (3) once more, 
lkll+ANIi<ll8ll+*llclli+lieili<c(«)Ä'. 

In the rest of this paper we shall, following Bramble, Schatz, Thomée and Wahlbin 
[8], write the semidiscrete equation in a somewhat different form. Thus let 
Th : L2(Q)-+Sh denote the solution operator of the discrete elliptic problem, defined by 

(4) A(Thfx) = (f9x) for Z65». 

The semidiscrete problem (2) may then be written 

(5) Thu1ht + uh = Thf for t > 09 uh(0) = vh. 

The continuous problem (1) may analogously be put into the form 

(6) Tut+u = Tf for t ^ 0, w(0) = v, 

where T=A~1. The operator Th has the properties : 
(i) Th is selfadjoint, positive semidefinite on L2(Q) and positive definite on SIt9 

(ii) There is an integer r ^ 2 such that 

\\Thf-Tf\\ ^ œ\\f\\s_2 for 2^s^r. 

We may now consider the discrete problem (5) assuming only that Th is an 
approximate solution operator of the elliptic problem satisfying (i) and (ii). In this 
fashion we also include into our considerations methods other than the standard 
Galerkin method described above. For instance, one may cover situations when the 
functions in Sh cannot easily be made to satisfy the homogeneous boundary con
ditions. One way of dealing with such a situation, which is contained in the above 
framework, is to use in the discrete problem rather than the bilinear form A ( •, • ) 
a form with boundary terms, such as the following form proposed by Nitsche [19], 

B„(v, w) = A(p, w)-(v, ^ ) - ( f ^ . w)+ßh~\v, w), 

where <•, -> denotes the inner product in L2(dQ)9 d/dv the con ormai derivative 
on dQ and ß a positive constant. Another method included is the Lagrange 
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multiplier method of BabuSka [2] which employs a separate family of approximating 
functions on dQ. 

Subtracting (6) from (5) we find for the error 

(7) Thet + e = Q = (Th-T)Au = (Px-/)w, 

where the elliptic projection is now defined by P1 = ThA. Using the properties 
(i) and (ii) one proves easily by the energy method (cf. [8]) : 

THEOREM 1. We have for *s>0, 

\\e(t)\\ < C{||ß(0)||+Ar[|bl|r+/||M,||rdT]}. 
0 

In particular, for the homogeneous equation (/=0) with vh=P±v or P0v (P0 

denotes the L2-projection onto £,,), we find under the appropriate compatibility 
conditions on v at dQ9 

\\e(t)\\^Csh
r\\vl+s; 

a somewhat more precise argument yields this inequality with e=0. In this case, 
it is in fact possible to show convergence of order r, even for time derivatives, 
under much weaker regularity assumptions than above, when t is bounded away 
from zero (cf. [8]). 

THEOREM 2. Let j^O and vh=P0v. Then for the homogeneous equation, 

\\D{e(t)\\ < Clrt-'l*-*\\v\\ (Dt=d/dt). 

Results of this nature were also discussed by spectral representations in Blair [4], 
Thomée [28], Helfrich [17], Fujita and Mizutani [16] and recently by the energy 
method in Sammon [25]. 

The estimate of Theorem 2 for the homogeneous equation may be combined 
with Theorem 1 to derive error estimates for the nonhomogeneous equation for 
t bounded away from zero, which require smoothness of the solution only near t 
(cf. [30]). 

THEOREM 3. Let j^O and vh=P0v. Then for the general nonhomogeneous equation, 
for f;x5>0, 

\\D{e(t)\\ ^ C / f { i | |A z «(0 l l r+ f\\DJ
t
+1u\\rdT + \\v\\ + f 11/11 dz\. 

l ' = 0 t-0 o J 

In one application below, we shall need an error estimate in H1 (cf. [31]). 

THEOREM 4. Consider the standard Galerkin method (2) for the nonhomogeneous 
equation and let vb=PQv. Then for fx5>0, 

BD/eWHi-sCfc^fi sup ||2>Mt)ll,+(/l|ZV+1«l^idT)1/2} 
W-0 t-ö^rst \zt ' •» 

+CA'{N + /||/||rfT}. 
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The above estimate in H1 shows an order of approximation in the gradient of 
the solution which is one order less than that for u itself. We shall now present 
a result from [30] which shows that if the finite element spaces are based on uniform 
partitions in a specific sense (which we shall here only refer to as uniform) in the 
interior domain ß0 , then difference quotients of uh may be used to approximate 
any derivative of u in the interior of ß0 to order 0(hr). This generalizes a result 
in the elliptic case by Bramble, Nitsche and Schatz [6]. In addition to the global 
norms used above we use for S c ß the norms |-|fl and ||-||Sjß in L°°(Ü) and 
HS(Ü)9 respectively, and set JV0=[JV/2] + l. 

THEOREM 5. Let Sh be uniform on ß 0 c ß and assume that Th is such that 

A(Thf9x) = (f,x) for x£Sh with s u p p l e ß0 . 

Let vh=P0v and let Qh be a finite difference operator approximating Da with order 
of accuracy r. Then for t s* S > 0, ß2 c e ß2 c e ß0 , 

\QiMh{!)-D«u(t)\Q^Chr{ sup ||w(T)||r+,a,+No,ßl 

+ ( / ( K + | a | + * „ - l , ß l + NI?+ ll/ll2) dxfZ+\\v\\ + /«/H dx}. 
t-0 

Notice the local character of the stringent regularity assumptions. 
We shall now turn to global estimates in the maximum-norm and denote by 

| • | and | • |r the norms in LJ^Q) and W^(Q)9 respectively. The following result 
was proved in [8] (for N=l9 cf. [33]). 

THEOREM 6. Assume that Th satisfies 

\Thw\*zC\Tw\l9 \\Thw\\ ^ CWTwW,. 
Then for />»0 we have 

KOI < c f ê V - W M O I + PÌMOll} . 

The proof consists of a simple iteration argument using the error equation (7) 
and noticing that Th is a bounded operator from Lq(Q) to Lp(Q) if 
O^q^-p-^N'1. 

Combining this with a property such as 

KI-PJvl^Ch'Qogh-^rlvl 

(for a survey of such estimates, see Nitsche [20]) and the above estimates for time 
derivatives we have under the appropriate assumptions, for /;x5>0, 

^(OI^C^Ä^log/i-1)*2-. 

Using weighted norms, Nitsche [21] (cf. also Dobrowolski [10]) proved the following 
result which is uniform for small t and in which the number of derivatives entering 
is independent of N. Here we are concerned with the standard Galerkin method 
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with A=— A and the subspaces are assumed to consist of C° piecewise polynomials 
of degree /•—1 on a quasiuniform partition into simplices, or isoparametric modi
fications. 

THEOREM 7. For Th and Sh as stated and with vh=P1v9r^39 we have for any N9 

KOI ̂  c//{|t/(/)|r+|Wf(0|,+(/k|MT)1/a}. 

Recent work [26] shows that under the present types of assumptions the following 
discrete a priori estimate holds for solutions of the homogeneous semidiscrete equation 
(for N^5 under an additional assumption about the discrete elliptic problem), 
namely 

| W / l (0 l^c( iog /T-^K| . 

This has as a consequence for the error in the nonhomogeneous problem: 

THEOREM 8. Under the above assumptions, and with vh=P1v9 we have 

logi-j {|ii(0|r+/H,A}. 

In the analysis of different finite element methods for elliptic problems the duality 
argument quoted above for showing L2 error estimates from the basic H1 estimates, 
also yields error estimates in negative norms. To state such an estimate, set for 
s^09 \\v\\-8=(Tsv9 v)1/2. This norm can be shown equivalent to 

s u p ( y ^ ; (pÇ.C°°(Q)9 AJq> = 0 on dQ for j < s/2\. 

The negative norm estimate for the elliptic problem can then be expressed as 

\\(I-P1)u\\.^2)^C^-z\\ul for uem(Q)nHr(Q)9 

and thus shows convergence in || • |L(r_2) which is of higher order than that in the 
L2-norm if r>2. In the rest of the paper we now assume this estimate to hold in 
addition to (ii) or that now 

(ii') \\Thf-Tf\\-P < CÄ'+«+"B/||,. 0 < p, q «s r - 2 . 

One may show similar estimates for the parabolic problem (cf. [31]). 

THEOREM 9. With v,,=P0v or PjV we have for f>0, 

WOIU-2) < Cft*-»{||»||,+ /iklUr}. 
0 

For the purpose of proof, one introduces the semi-inner product (v9w)_sh = 
(T^v9 w) and the corresponding seminoma || • || _sft. It can easily be seen by (ii) that 

N-^cflMi.-.+Ä'IMi}, 0 < s < r _ 2 

IMI_.<C{|H|_M+Ä'N}, 
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it is therefore sufficient to show the desired estimates in || - ]| Cl »>.» - This is 
done by the energy method similarly to the proof for s=09 using the fact that Th is 
selfadjoint and positive semidefinite with respect to (•, •)-(r-2),Ä-

One may also derive negative norm estimates for time derivatives. These require 
additional smoothness only near t. 

THEOREM 10. Let j^O and vh~P0v or Pxv. Then for *^<5>0, 

\\D{e(t)\\^2)^ C/^-*{Ì| |A'"(0llr+ fW^uldT+fHldz}. 
l / = 0 t-0 0 

We shall now give two examples from [31] utilizing the above negative norm error 
estimates to show pointwise convergence of order 0(h2r~2) for certain approxima
tion procedures. Following Douglas and Dupont [12] such procedures are referred 
to as superconvergent, in as much as they are of higher order than the optimal 
order basic error estimates in L2 or L^. The first estimate in the literature of this 
nature for Galerkin methods for parabolic equations (cf. [27]) concerned the pure 
initial value problem in one space dimension, with Sh consisting of smooth splines 
on a uniform mesh, and shows that if vh is taken as the interpolant of v9 then an 
associated finite difference operator has accuracy of order 2r—2 and used known 
results from finite difference theory. For collocation methods for ordinary dif
ferential equations a similar phenomenon was observed by de Boor and Swartz [5]. 

Our first example here concerns superconvergence at knots for C° elements 
in one space dimension. This was proved first by Douglas, Dupont and Wheeler [13] 
using as a comparison function a so called quasi-projection of the exact solution 
into the subspace. Their approach required a more special choice of discrete initial 
data and somewhat higher regularity of the exact solution than the one described 
here. 

Recall first the following simple fact for the solution of the two-point boundary 
value problem 

Au=f on (0,1), M(0) = M(1) = 0, 

and the corresponding semidiscrete solution uh = ThfÇ.Sh where Th is defined 
by (4) and where Sh consists of piecewise polynomials of degree r — 1, with 
X(0)=x(l)=0 and with only continuity required at the knot x=x0. With g=gXo 

the Green's function of A with boundary values zero, we have for e=uh—u9 

e(x0) = A(e9g) = A(e9g-x) for x£Sh. 

Since g£Hr(09 x0)nHr(x09 l)nC°(0,1) one finds easily 

\e(x0)\ < Chr-1||c||1 ^ C(u)W~2. 

We now state a corresponding result for the parabolic equation. 
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THEOREM 11. With the above assumptions on Th and Sh9 we have in the parabolic 
case for any «>0, 

|e(*b, 01 < c\lf-i 2 IIAMOII1+&rIIA"+M0ll + |IA"+1*(0ll- J . 

It follows by our previous estimates that under suitable regularity assumptions, 

|*(*o, 01 < C(u)W-* for f > 0. 

The proof uses the representation 

e(x091) = i(-iyz,(A'*, r^)+(-i)«+H^,+1^ r"g), 

where g=gXo is as above, and 

L(e9v) = (et9v)+A(e9v) = L(e9v-x) for /CS,,, 

and depends on the fact that TJg may be well approximated by an element of Sh 

In the case that the finite element spaces are based on uniform partitions in the 
way quoted in connection with Theorem 8 in the interior domain ß 0 c czQc:RN

9 

it is possible to show that for any derivative D* one may find a local approximation 
of Dau from uh in ß0 . To see this we first quote the following lemma (Theorem 3 
in [29]) which generalizes to the case of derivatives a construction due to Bramble 
and Schatz [7]. 

LEMMA. Let dft denote the forward difference quotient corresponding to D* and 
\\/ the B-spline in RN of order r—2. Then there exists a function Kh of the form 

y 

with ky=0 when \yj\^r—1 such that for ßxCicißoCcß, e=uh—u9 

\Kh*dïuh-D*u\ai < C{Ä»-»|u|M+,. | i l l a 

+ 2 ll̂  + ̂ IU(r-2),ß0+Är-2 2 \dl + Pe\fì0}9 
|/3N=r-2+tf0 llltfr-2 

w#A || •||_fr«a)i0 the dual norm to that in JH
r
0
r"2(ß0). 

In order to use this estimate we need to have at our disposal the appropriate 
estimates for b\e. Such estimates may be derived by the techniques developed 
for elliptic problems in Nitsche and Schatz [22], Bramble, Nitsche and Schatz [6] 
and yield: 

THEOREM 12. Under the above assumptions, we have for the parabolic problem 

\Kk*diuh(t)-D*u(t)\Ql 

< C(u)A»-»+C i{||/îîe(0IU(r.« i« i+Ar- ,y««(01f lJ, 
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where C(u) depends on u and certain of its derivatives on Q0 at time t and m is 
a positive integer. 

Combining this with our above global estimates we have e.g. with vh=P0v9 

for t^S>09 

\Kh*àhUk(t)-^M\ai = 0(h*-*) as ft-0. 

Several of the papers referred to above complete the error analysis by also discuss
ing the error introduced by discretizing in the time variable, particularly by 
means of the backward Euler or Crank-Nicolson methods. For more general time 
discretizations than these we quote in particular Crouzeix [9] for Runge-Kutta type 
methods in the nonhomogeneous case and Baker, Bramble and Thomée [3] for esti
mates for homogeneous equations with smooth and nonsmooth data. 
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It is my guess that my being invited to give this talk has something to do with 
the Four Color Theorem. This encourages me to present a discussion of our proof 
although it has appeared already in print [A.H.] and [A.H.K.]. First I should remark 
that Appel, Koch, and myself are members of the fifth generation working on the 
Four Color Problem and that we have made extensive use of many results due to 
earlier as well as contemporary investigators. If I would try to give proper credit 
to everybody who has in this way contributed to the proof then this would require 
about 45 minutes and I could not discuss anything else. Consequently I have to ask 
everybody who is interested to read the introduction to our paper [A.H.] in which 
this is described and to permit me to concentrate in this talk mainly on questions 
which are not explicitly discussed in our paper. 

We know now that every planar map is four-colorable, or, using the equivalent 
dual formulation of the theorem, that every planar triangulation is vertex-four-
colorable (so that any two vertices which are joined by an edge receive different 
colors). I must admit that I could perfectly live without knowing this. The importance 
of the Four Color Problem seems to lie entirely in the challenge it has provided to 
mathematicians to eventually develop proper methods to deal with such a simple 
question, rather than in the answer to the question itself. Did we recently find the 
proper methods and if so, what are they? This question is so controversial that it 
may be interesting. 

Our proof consists of two parts, I: Discharging (our method of proving unavoid
a b l y of sets of configurations in planar triangulations), and II: Reducibility. 
When Appel and I began our joint work the methods of Part II load been developed 
already to a high degree of perfection. I begin therefore with a discussion of that part. 
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In a planar triangulation A9 we consider a simple closed circuit Rn of« vertices 
and T? edges («>1), a so-called w-ring, so that the "interior" of R„ (in the plane) 
contains precisely m vertices of A (m>0), that no "diagonal" edges of A go 
through the interior, and that the exterior contains at least m vertices of A. The 
m interior vertices, together with those edges of A which join pairs of them and 
those triangles of A which join triplets, form a so-called «-ring configuration C 
in A. For some special configurations C one can prove by standard methods that 
they cannot occur in any minimally five-chromatic triangulation A9 i.e., in any 
hypothetical counterexample A to the Four Color Conjecture that has a minimal 
number, say N9 of vertices. Such configurations are called reducible (the precise 
technical term is "C-reducible", see [H] or [T.W.]). The standard proof of reduci-
bility is, in principle, simple but in most cases requires a large number of case-
distinctions: The configuration C is removed from A and the "hole" is closed 
(by "collapsing", filling in "diagonals", and/or filling in a configuration smaller 
than C) so as to obtain a triangulation A' with fewer than N vertices. Then by 
hypothesis, A' permits a (vertex-) four-coloration, say b'. Now the old triangula
tion A is reconstructed (by reversing the operations which changed A into A') 
and the coloration 3' provides us with a coloration, say e, of the exterior of C 
in A9 which includes in particular a coloration, say £, of the ring R„. If the colora
tion £ can be extended over C (i.e., over the interior of i?„) then we have already 
the desired contradiction (by having colored the hypothetical counterexample A). 
If £ does not extend over C then we have several possibilities of changing e (and 
correspondingly Ç) by so-called Kempe-interchanges (for details see [T.W.] or [H]), 
interchanging the two colors in some of the so-called Kempe blocks (which are the 
maximal connected regions of the exterior of C being colored by one pair of colors). 
If the changed coloration, say £*, extends over C then we have again the desired 
contradiction. Thus in order to prove the reducibility of C, we must consider all 
possible colorations £ of the ring Rn (the number of which increases exponentially 
with n)\ those extending over C are called "initially good" or "good0" and do not 
require any further treatment. For each coloration £ which is not good0, we must 
consider all possible "Kempe chain dispositions" (since the hypothetical triangula
tion A is not explicitly given); then for each of these Kempe chain dispositions 
we must try to find some suitable Kempe-interchange that changes £ into a good0 

coloration; if this succeeds then we call £ "goodi". The remaining colorations 
£ (which are neither good0 nor goodx) are treated again and those of them which 
can be changed (under all possible Kempe chain dispositions) into good0 or goodi 
colorations are called good2. If continuing in this way we can change all colorations 
£ into good ones then the reducibility proof for C is finished. 

All configurations with ring size w=2, 3, or 4 are reducible. This implies in 
particular that a minimally five-chromatic triangulation A cannot contain any vert
ices of degree smaller than 5 (i.e., with less than 5 incident edges of A). Thus we may 
restrict our attention to triangulations A in which every vertex has degree at least 5. 
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On the other hand, Euler's formula (which is the basis for all work done in Part T) 
yields the "unavoidability" result that every planar triangulation contains some 
vertices of degree smaller than 6. Thus if the standard reducibility proof would 
work for the case (n = 59m= 1), then the single degree-5 vertex would be reducible, 
implying that every planar triangulation contains some reducible configuration 
and hence cannot be minimally five-chromatic; then the proof of the Four Color 
Theorem, as attempted by Kempe in 1879, would be complete. But for n — 59 the 
standard proof of reducibility works if and only if /«>1. 

All attempts of finding essentially stronger methods of proving reducibility have 
failed. But the standard method yields the reducibility of many individual con
figurations with «>5 and m>3; moreover, the method is quite suitable to be 
carried out by a digital computer and several investigators have written effective 
programs for n up to 15. 

At this point Appel and I applied a method which is not really new but certainly 
not very popular either, the method of probabilistic estimates (regarding the truth 
or falsity of particular statements in pure mathematics). Since this method has 
essentially provided the key to solving the Four Color Problem I think it deserves 
some attention, as controversial as it may be, and I would like to consider it some
what more closely. 

Can one make a prediction in which cases the method of proving reducibility 
(as considered above) will be successful? The ideal achievement would be a precise 
prediction, i.e., a proof of reducibility for certain configurations C without the 
necessity of carrying out the algorithm for every one of them. But this goal has 
been reached (in spite of considerable efforts) only in very few exceptionally suit
able cases. In general, the question whether a coloration £ of Rn which is not 
good, can be changed under every Kempe chain disposition into some goody (j^i) 
coloration seems combinatorially too complicated as to permit a precise prediction. 
Thus we have the alternative of either making no prediction at all or helping our
selves in some way. It is close at hand to convert the absence of an obvious pattern 
into an assumption of randomness. If we select a coloration £* of Rn at random 
then the probability that £* is good0 is g0/h where gQ is the number of good0 

colorations of Rn and h is the number of all possible colorations of Rn. Now 
we assume that those colorations which we obtain by Kempe interchanges are 
'randomly distributed" and thus each of them is good0 with a probability g0/h. 

REMARK. The crucial point is that we interpret our disability of making a precise 
prediction as randomness of the distribution. What is wrong with that? You cannot 
blame a mathematician for being naive—this is one of our privileges. But we must 
recognize the following serious objection : "While these considerations may be use fui 
to a certain extent, they are so vague that they should not be accepted in mathematics 
or else the rigor and the reputation of all of mathematics would suffer." (A similar 
objection was made against infinitesimal calculus in the 18th century.) But I am 
confident that with some care and some good will one can make these considerations 
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as rigorous as anything else in mathematics. In particular I suggest that we should 
replace the word "probability" by "pseudo-probability" or, somewhat shoiter and 
friendlier, "paraprobability" whenever some questionable assumption of randomness 
is involved. Moreover, when we formulate a result concerning the paraprobability 
for the truth of some proposition we should always explicitly state all assumptions 
of randomness which have been made. 

Now it is not too difficult to estimate (see § 4 of [A.H.]) that the paraprobability 
for a configuration C of being reducible depends quite critically on gQ/h where 
h can be exactly computed from the ring size n (and is approximately proportional 
to 3") while another estimate can be made for gQ in terms of m+n ("the more 
vertices in CvR„ the more colorations"). This yields the following simple rule. 

Rl. If m>n — 5 then C is likely to be reducible, in particular, for every unit 
by which m exceeds 77—4, the likelihood of reducibility increases considerably. 

It is, of course, important that an estimate of this type can be tested by the compu
tation of samples as well as by theoretical work. The computational tests of our 
rule Rl are disappointing for small values of n: not only the single degree-5 vertex 
(m = l, n=5) is irreducible (i.e., the C-reduction algorithm fails) but also the only 
configurations with n = 6 and m=2 or m = 3 (the "5-5 edge" and the "5-5-5 
triangle") are irreducible. The detailed work of several investigators has resulted 
in a theory of "local reduction obstacles"; for instance, if a configuration C con
tains a vertex which has more than three neighbors in the ring Rn9 then C is 
extremely likely to be irreducible. This means a serious deficiency of our above 
assumption of randomness which, however, is easily corrected by adding to Rl 
the restriction "provided that C is obstacle-free". Amended in this way, the rule 
is excellently supported by computational tests. (Only one failure among the about 
200 configurations with n<ll .) In order to remove the somewhat annoying restric
tion to obstacle-free configurations one can prove that if m>3/z/2—6 then C always 
contains an obstacle-free subconfiguration and one obtains the rule 

R2. If 7«>3«/2—6 then C is extremely likely to be reducible. 
Here the words "extremely likely" mean that we have the 

CONJECTURE. Every configuration C with m>3n/2—6 is reducible. 
This conjecture is an excellent candidate for a mathematical proposition which 

is true but not provable (or in this case, at least not admitting a proof which is 
shorter than a proof of the Four Color Theoiem itself). Why is the conjecture likely 
to be true? Because the configurations which fulfill the hypothesis of the conjecture 
can be recursively enumerated in a sequence Cl9 C29..., Ci9... so that the para
probability for Ct to be a counterexample to the conjecture is small for i=\ and 
decreases exponentially with /; moreover, for the small values of i (at least up to 
200), the conjecture has been confirmed by computation. Thus the paraprobability 
for the existence of any counter-example to the conjecture is an infinite sum which 
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has a very small limit. Why is the conjecture likely to be not provable? Because 
it is not enough that the conjecture can be proved for every single value of i9 even 
if each one of these proofs can be obtained by one and the same algorithm, since 
the juxtaposition of all these proofs would be infinitely long. (It seems to be the 
Achilles heel of mathematical theorem proving that proofs of finite length are 
required.) For provability of the conjecture, the configurations Cf ought to have 
so extremely strong similarities that one and the same (finite) argument can yield 
the reducibility of all (the infinitely many) of them. So it appears plausible 
that truth is a much weaker property than provability and that, regarding true 
propositions, unprovability should be regarded the general case while provability 
is the special case. These considerations may be regarded as an attempt to intuitively 
digest the unsolvability results of mathematical logic and to estimate the extent 
to which they may affect the working mathematician. Quite in opposition to this, 
there seems to be a wide-spread belief that for "practically" all "naturally arising" 
conjectures truth implies provability. Certainly I cannot prove that this is wrong. 
I cannot even prove that there is no Santa Claus; but this does not justify the as
sumption that there is one, and we better make preparations for the event that there is 
none. All I can say is that exactly this skeptical attitude regarding our possibilities 
of proving theorems has opened the way to the solution of the Four Color Problem; 
it leads immediately to a more positive appreciation of the probabilistic estimates, 
for the simple reason that they seem to be better than nothing and that there might 
be no essentially better insight available in that area. This does not mean at all to 
think that there is no progress possible in reduction theory; in the opposite! A great 
variety of interesting progresses have been made decades ago as well as very recently, 
and certainly can be made in the future; but yet it may be that none of them can 
lead to a proof of our conjecture or of any theorem of similar strength. Furthermore, 
it should not be suggested that a probabilistic estimate can be "as good as a proof". 
The only "first class knowledge" is obtained through mathematical proof. However, 
it may be good to remind ourselves that even our "first class knowledge" is not 
"absolute certainty", its two weak points being 

(1) the question of consistency of the underlying axioms, 
(2) the question of correctness of the proof. 
The second question seems to be of a much lower intellectual level than the first 

one but nevertheless at least as serious. We shall have to come back to this point 
later. Compared with this, the "second class knowledge" (of the truth of a mathe
matical proposition) as obtained through probabilistic estimates has two additional 
weak points, 

(3) the question of justification of the randomness assumptions, 
(4) the remaining non-zero paraprobability for the proposition to be false. 

REMARK. Regarding the seriousness of points (3) and (4) as compared with (1) 
and (2), an interesting variety of opinions is available; some mathematicians with 
a highly developed sense of dignity prefer the view that our second class insight is 
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no insight at all. Of course, it is perfectly all right to say "if I cannot go first class 
then I refuse to go at all"; but it amounts to a greater risk of missing the train. 

After these remarks we are now ready for the crucial question regarding the Four 
Color Problem: can we reasonably expect that every planar triangulation must 
contain some reducible configuration (which implies the non-existence of a counter
example to the Four Color Conjecture)? The answer is obviously affirmative: 
We look at all Oth, 1st, 2nd, and 3rd neighborhoods of vertices in all possible planar 
triangulations. (The 0th neighborhood is the vertex itself; the 1st neighborhood 
consists of the vertex and its neighbors together with the joining edges and triangles; 
the 2nd neighborhood contains the vertex, its neighbors and all their neighbors; etc.) 
By Euler's formula, the average degree of the vertices is six, which allows us to estimate 
the average m- and «-values, m and «, of the neighborhoods (see § 4 of [A.H.], 
the averages being taken over all vertices and all triangulations). For the 0th neigh
borhoods we have m = l, «=6; for the 1st neighborhoods is m=7, « = 12; i.e., 
no indication of likelihood of reducibility. But for the 2nd neighborhoods we have 
m = 19, « = 18; this means that the hypothesis m>« —5 of our rule Rl is already 
fulfilled with a margin of 5 by the average second neighborhood; however, the 
hypothesis of our extremely cautious conjecture, 77*>3«/2—6, is not yet fulfilled. 
For 3rd neighborhoods we have 7« = 37, «=24, and the hypothesis of the conjec
ture is fulfilled by a margin of 6. We need not go on; clearly, the "area" m increases 
much faster than the "circumference" n with the "radius", or size class, of the 
neighborhoods. 

These considerations indicate that not only should every planar triangulation 
contain some reducible configuration but that from a certain size class on, the 
majority of all neighborhood-configurations should be reducible. Again, one can 
criticize the assumptions under which we have obtained this estimate, for instance 
our averaging over all triangulations; one can certainly construct individual triangu
lations in which the averages of m and « for 2nd neighborhoods are significantly 
different from our in and w. Such critical remarks are extremely important for 
testing and improving probabilistic estimates; in fortunate cases, such improve
ments may eventually lead to mathematical proofs superseding the probabilistic 
estimates. For instance, W. Stromquist found a quite amazing method for treating 
2nd neighborhoods and arrived at a proof that every planar triangulation contains 
some 2nd neighborhood of a vertex of degree «^30 which in turn contains a configura
tion with m>« —4 and with no vertex degree over 30. This implies the existence of 
a finite "unavoidable set" of configurations which fulfill the hypothesis of our rule 
Rl by a margin of 1. Appel and / developed the method of "discharging" to 
such a degree that it allowed us to construct explicitly unavoidable sets of likely 
reducible configurations. This development had certainly not been possible had 
we not relied essentially on the estimated likelihood of reducibility but only on 
computed results. A refinement of the above estimates had shown that finite un
avoidable sets of reducible configurations should exist so that all configurations had 
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ring sizes «<£ 14. This guided us to refine the discharging method to the point that 
it actually yielded such a set (of 1482 configurations). The reducibility of these 
configurations was established by Appel and Koch (during the last 6 months of the 
4 years long development of the discharging method) using a computer-algorithm 
which devoted only a limited amount of time to each configuration. In this way 
we treated many configurations as "reduction failures" which could have been proved 
reducible with more time. But since—as predicted by the above estimates— 
unavoidable sets of reducible configurations exist in vast numbers, it meant rela
tively little extra work to find one such set whose members could be treated relatively 
easily. 

REMARK. The role of the computer in the proof of the Four Color Theorem seems 
to have a disturbing effect on many mathematicians. Indeed, a computer-run 
(with a particular program and a particular input) may be regarded as a physical 
experiment. The experiment may tell us that a particular configuration C is red
ucible. How can a physical experiment be part of a mathematical proof? Of course, 
it cannot. We do not suggest to change the concept of mathematical proof; by 
no means! I suggest however, for a further discussion of the issue, to distinguish 
between the concept of mathematical proof (the finite sequence of elementary 
logical steps leading from the hypothesis to the conclusion) and the actually printed 
material which (assuming that no confusion can arise) is also called "proof". Let 
me call the latter a demonstration. If the demonstration is valid then it is the de
monstration of a proof. This again means that there is an obvious routine procedure 
for filling in all the trivial details and thus expanding the given demonstration into 
a mathematical proof (which is formally perfect and likely unbearably long). But 
what means "obvious routine"? This has led to disagreements between authors and 
referees as well as to undetected errors, and the "validity problem of proofs" (here 
I should say of demonstrations) might deserve some serious consideration in general. 
In our special case (reducibility of a configuration), there is no principal difference 
between it and any "conventional" case of a proof: The demonstration is very 
short; only the configuration itself (and perhaps a so-called C-reducer) are given; 
the rest is trivial routine. In this case, it is explicitly spelled out what "trivial 
routine" means: the reduction algorithm. The computer is used for verifying 
the validity of the demonstration; but its use is not absolutely necessary; the work 
could be done by hand, however with less reliability and requiring about 3000 man-
hours for a configuration of ring size « = 14. (The computer could also print the 
mathematical proof, perhaps on 30,000 pages; but who wanted to see it?) Some 
mathematical proofs are longer than others, for simple reasons of combinatorics. 
But since many true propositions do not have any proofs (of finite length) it is 
plausible that many will have long proofs but no short ones. In such cases, computer-
verification may be superior to conventional methods. This leads to the following 
controversial conclusion: There are problems in pure mathematics which can be 
solved by methods of physical experiment rather than conventional reasoning. Of 
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course, most physicists like this aspect whereas many mathematicians do not. That 
is just too bad! All I can do in order to compensate for this is to ask the physicists 
whether the day will come on which they know more elementary particles than the 
botanists know plants, and what will then be the celebrated difference between 
the exact and the descriptive sciences. Then most physicists do not like this, and we 
are even again. I personally like the idea that certain serious difficulties may bring dif
ferent sciences closer together rather than farther apart and that a complex of 
superiority is merely a handicap rather than a blessing. 

It seems obvious that the method of probabilistic estimates can be applied to many 
other mathematical problems. It appears that in some cases, this is rather easy 
and trivial, while in other cases it is quite difficult and challenging. 

As an example of an easy case, I like to consider Fermat's Last Theorem. I admit 
that I feel strange when I address myself to this problem not being a number theorist 
at all. But if I can give this talk in the section on aspects of computer science barely 
six months after I learned programming, then I can talk as well on Fermat's Last 
Theorem without knowing any number theory. It looks as follows: Given three 
positive integers, a9 b9 n9 a^b9 «>2, we define the paraprobability for the existence 
of an integer c so that a"+bn=cn as the density of the «th powers near the value 
fl"+/3". It follows by very simple computation that the paraprobability for the 
falsehood of Fermat's Last Theorem is p<3~N where the number 3 comes from 
my knowledge that for a counter-example, b must be at least 3 (which can certainly 
be greatly improved), and N means the smallest value of « for which the theorem 
is not yet proved, i.e., N= 125,001. Thus we have /?<10-50'000. Although this is 
only second-class knowledge, it seems to me that we know the truth of Fermat's 
Last Theorem with a rather high degree of certainty, (how does this compare with our 
knowledge, say about the truth of the principle of conservation of energy or of the 
second law of thermodynamics?) 

A more difficult case for an estimate seems to be the Riemann Hypothesis—al 
least for the outsider. The fact that the first few millions of zeros of the £-function 
lie on the critical line seems to support the conjecture, but the fact that extremely 
close pairs of zeros occur again and again seems to point in the opposite direction, 
and it requires an expert to produce a reasonable estimate. 

Finally regarding the Poincaré Conjecture, I may regard myself an expert. But 
all I could produce so far was first a crude estimate which supported the falsity of 
the conjecture, then a computational test which reversed it and yielded a refined 
estimate supporting the truth of the conjecture, and then another computational 
test which revealed the refined estimate as totally unsatisfactory. This indicates 
that the method can be quite stimulating long before it yields reasonable estimates. 
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Tpyzjw MejKflyHapojUHoro KoHrpecca MaTeMaTHKOB 

XejILCHHKH, 1978 

O HeKOTopbix Pc3yjiBTaTax B TeopHH 
OyHKIlHOHa^BHblX CHCTCM 

C . B . JIÔJIOHCKHH 

OAHHM H3 BaMCHWx pa3^ejiOB AHCKperaoH MaTeMaraicn SLBJISLGTCSL Teopra: $yHK-
mioHajibirax CHCTeM c onepaniHHMH. 

3>yHKiiHOHajibHBie CHCTCMH c onepan[HÄMH MoryT 6LITB onpe^ejieHBi cjie^yiomHM 
o6pa30M. 

IlycTb E={e) —MHOXcecTBo 3JieMeHTOB e. PaccMOTpHM ^ymcuHH f(xl9 . . . , xn)9 

KOTOpbie onpeflejieHti na noflMHoacecTBe fyaEx ... XE9 3HaneHHfl KOTOPBIX npn-
nafljiexcaT Taic ace E. 06o3HaraM nepe3 P={f} MHoacecTBo Bcex TaKHx (JyHKUHH. 
OGBIHHO $yHKiiiHOHajiLHaa cncTeMa P 6epeTca BMecre e neicoTopoìi coBOKynHocTtio 
onepaipda R9 KOTopaa no3BOJBieTHCxoflH H3 JiK)6oro noAMHoacecTBa SOI <j)yHKu;irii H3 
P nopoacflaTb noAMHoacecTBo [SR]R <j)yHKijHH H3 P Ha3tiBaeMoro 3aMBiKaHHeM 9W. 
ITapa (P9 R) Ha3BiBaeTC5i 4>yHicn;HOHajibHOH CHCTCMOH c onepaijiarMH. 

OyHKijHOHajiBHBie CHCTeMbi c onepaî HAMH BO3HHKJIH B MaTeMaTHiecKOH JiorHKe 
KaK annapaT jopra H3yneHHa HeicoTopBix jiornnecKHx npo6jieM. YKaaceM HeKOTopBie 

H3 HHX. 

(P29 C) — cHcreMa Bcex 6yjieBCKHx (fryHKijHH c onepaijaeö cynepno3Hn;HH. 

(Pk9 C) — cncTeMa Bcex ^yincizHH /c-3HaHHOH jiorHKH c onepar^Hen cynepno3HijHH. 

(P, p, C, l ip , fi) — CHCTeMa Bcex HacTHHHO-peKypcuBHBix ŷHKî HH c onepaijHÄMH 
cynepno3Hu;Ha, npHMHTHBHaa peKypcM H MHHHMH3amui. 

B cpe^HHe Hamero BeKa BO3HHK HOBBIH MOIIUIBIö HCTOHHHK (fropMnpoBamui 

<J)yHKUHOHajibHBix CHCTeM c onepaijHJiMH. Pern» HßeT 06 K3yHeHHH ynpaBjiaiomnx 
CHCTeM B KHÔepHeTHKe. nocjieAHHe MOHCHO rpy6o roBopa, TpaKTOBaTB, KaK yc-
TpOHCTBO, HOCTpOeHHOe H3 SJieMeHTOB H SneOK naMÄTH, KOTOpbie HMeiOT BXOflBI 
H BBixoflbi (CM. ^epTeac 1). 
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m 

HepTe» 1 

KpoMe Toro, ßamioe ycrponcTBO ocymecTBJiaeT npeo6pa30BaHHe COCTOJIHHH 

BXOßOB H OTeeK naMHTH, KOTOpOe MO>KHO XapaKTepH30BaTB IieKOTOpOH 4)yHKu;HeH / . 
IlycTB P= {/}. flaiiHBie ynpaBJifliomHe CHCTCMBI MOECHO COCAHHHTB .zjpyr c ApyroM 
onpe^ejieHHBiM o6pa30M H nojiy^aTB HOBtie ynpaBJiaiomne CHCTCMBI. 3TH npaBHjia 
coê HHeHHH (KOMno3imHÌi) npHBO^HT K CHCTeMaM onepaî HH R naß no^MHoacecT-
BaMH H3 P. MBI nojiynaeM 4>yHicijHOHajibHyK) cncTeMy c onepaijMMH (P, R). R&RVLM 

neicoTOpBie npHMepBi. 
Kjiacc napajiJieJiBHo nocjie^oBaTejibHBix AByxnojiiocHbix iconTaicTHbix cxeM one-

BHAHO cB5i3aH c cHCTeMOH (P29(IIII9 &, v)). Ka»c,n;afl TaKaa cxeMa peajiH3yeT 
6yjieBcicyio 4)yHicmïio. napajijiejiBHOMy coe#HHeHHK> cooTBeTCTByeT onepanna v , 
nocjieflOBaTejiBHOMy &, 1717 — onepaipui nepeHMeHOBaHHa nepeMemiBix. 

Kjiacc aBTOMaTOB, nocTpoeHHBix H3 sjieMeirroB (CM. ^epTeac 2) 

T 
HepTexe 2 

PaöoTa icaacßoro H3 aBTOMaTOB xapaKTepn3yeTCfl HaôopoM 4>yHKii;HH fl9 ...9fm 

icaxc^aii H3 KOTOPBIX onncBiBaeT npeo6pa30Banne BXOAHBIX nocjie^oBaTejiBHocTen 
B BBixoflHyio (3TH (fcyEKnjm 6y,n;eT Ha3BiBaTB aBTOMaTHBiMH). C KjiaccoM Bcex 
aBTOMaTOB B flamioM 6a3Hce CBH3aHa $yHicn;HOHajiBHaH cncTeMa (PeBTm9 C, 0) 
c onepaniPiaMH cynepno3imHH H o6paTHOË CBä3H. 

B nacToamee BpeMJi HOHBHUHCB o6o6m,eHi«r 4>yHiojHOHajibHbix CHCTCM. 3TH 

o6o6meHHÄ HflyT B flßyx nanpaBJienmix. 
1. fljiH icaxgjoro nepeMeimoro xt 6epyT CBOIO o6jiacTB H3MeHeHHH Et H Toiyja 

f(x1,..., x„) onpeflejraeTCH na ßf <z Ex X.. . X E„. 
2. Hapjmy c 4>yHKii;Heii / paccMaTpHBaioT HeKOTOpyio cKanapuyio ee xapaïc-

TepHCTHicy. HanpHMep 
(/J T) — npeo6pa30BaHHe / npoHcxoflHT 3a BpeMa T ([1]) 
(f>P) — npeo6pa30BaHHe / HMeeT BepoHTiiocTB OHIH6KH paBHyio^ ([2]). 

OGHHHBIM o6pa30M BBê eM paß UOHATHH. 

OnpeAejieHHe. Kjiacc SOI 4>YHKIJ™ H3 P Ha3BiBaeTca 3aMKHyTbiM, ecjin 
[m]R=m. 
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Onpef lej ienne. CncTeMa 91 4>yHKijHH H3 3aMKHyToro Kjiacca 9)1 Ha3biBaeTca 
nojiHOHB 9Jl9 ecjiH [9l]R=9Jt. 

Onpe^ejieHHe. ITojiHaa B Sot cncTeMa 91 Ha3HBaeTca 6a3HCOM B S0Î, ecjiHBCflicaa 
coocTBeHiiaa ee noflcncTeMa He 6y^eT nojmofi B 9R. 

Onpe^ejieHHe. Pa36neHHe 3aMKHyToro Kjiacca S0Î B nptfMyio cyMMy nofl-
MHoacecTB Ha3biBaeTca KoiirpyeHi^Hen, ecjiH OHO coxpaHaeTca onepaijMMH H3 R. 

Tenepb MBI MoaceM c^opMyjinpoBaTb HeKOTOpbie oôiipie 3a,n;aHH ^jia $yHK-
IJHOHaJIbllHX CHCTeM: 

1. npo6jieMa nojiHOTH, 
2. HccjieflOBaHHe 6a3HcoB, 
3. H3yneHHe cTpyicTypti Bcex 3aMKHyTbix ioiaccoB B P, 
4. H3yneHHe H30Mop<])H3MOB, TOMOMOP4)H3MOB H KOHrpyemjHH, 
5. BbiflBjieHHe oco6eHHocTeH HHAHBHßyajibHbix 4)ynKn;HOHaJibHbix CHCTCM, 
6. cpaBHenne BO3M03KHOCTCH onepaijHH H3 R9 

7. HccjieAOBaHHe MeTpnnecKHx CBOHCTB 3aMKHyTbix KJiaccoB, H T. n. 
riojiyqeHHe OôHJHX pe3yjibTaTOB fljia 4>yHKn;HOHajibHHX CHCTCM, XOTH H BO3-

MOXCHO (CM. HanpHMep CajioMaa [3]), HO B BH,ny Hpe3MepHOH ninpoTbi STOTO HOHATHä 
Majio, HTO flaeT RJW KomcpeTHbix $yiiKn,HOHajibHbix cncteM. 3^ecb MOSKHO npoBecra 
aHajiornio c yHHBepcaJibHHMH aJire6paMH ($yHicn;HOHajibHbie CHCTCMM c onepa-
n,HÄMH — HeKOTOpbiH noflKjiacc ajire6p). B BH#y STOTO npeACTaBjiaeTca n;ejiecoo6-
pa3HbIM Cy3HTb nOHHTHe 4)yHKn;HOHaJIbHOH CHCTeMbi HO TaK, HT06bI OHO OXBaTbIBaJIO 
Bee BaxcHeHHiHe KOHKpeTHbie cjiynan. HanpHMep, MOXCHO noTpe6oBaTb, HTO6H 
onepaitHH R BKjnonajiH B ce6a onepaijHio OT03K,zi;ecTBjieHHtf nepeMeHHbix. nocjieß-
HHe oneHb ecTecTBeHHO c npHKnaßHOH TOHKH 3peHHa, nocicojibKy CBOAHTCA K o6i>e-
AHHeHHK) BXOflOB. B 3T0M GJiyHae R TaKOBO, HTO Bce 3aMKHyTbie Kjiaccbi HBJIKIOTCH 
HHBapHaHTHbiMH B cMbicjie [4] icjiaccaMH. HHTepecHbie HccjießOBaHHa B TaicoM 
HanpaBJieHHH Be^yTca B. B. KyApaBn;eBHM. 

B HacToamee BpeMa npHxoßHTca HATH no nyTH AeTajibHoro H3yneHHa He6ojib-
moro HHCJia cneijHajibHO OTo6paHHbix (MOAejibHbix) 4>yHI^H0HajIbHHx CHCTCM. 

3flecb cjie#yeT Ha3BaTb nerape OCHOBHBIX o6beKTa 

(P 2 , C)> (Pk9 c) npn k > 2, (PaBr, C, 0), (P,.p., C, n p , fi) 

3naHHTejibHaa nacTb pa6oT no âHHOH TeMaraice npHxoAHTca Ha H3yneHHe 
HMeHHo 3THx ^yHicn.HOHajibHbix CHCTeM. nepeHHCJieHHbie ^yHKiiiHOHajibHbie CHC
TCMH HHTepecHH TeM, HTO icaHCßaa cjieAyiomaa aBjraeTca ycjioHCHeHHeM npe^H-
Aymen: ycJioacnaeTca JIHôO noHarae 4>yHKE(HH, JIH6O noHjrnie $yHKn;HH H MHO-
acecTBO onepan,HH. 3 T O oôcToaTejibCTBO no3BOJiaeT pe3yjibTaTbi H MCTOAH npn-
MenaeMbie A M OAHOH 4>yHKi*HOHajibHOH CHCTCMH, HcnoJib30BaTb A M H3yneHHÄ 
6ojiee cjioacHOH 4)yHiojHOHaJibHOH CHCTCMH. yKa3aHHoe cooTHonieHne 4)yHKn;HOHaJib-
Hbix CHCTeM flaeT oTnenaToïc H na cTeneHb HX H3yneHH0CTH (P2 , C) — H3yneHa 
BecbMa nojiHO (IIOCT [5]); (Pk9 C) — H3ynena 3HanHTeJibHO, HO ecTb Bonpocbi na 
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KOTopne MH ceroAHa eme He HMeeM OTBCTOB; (PaBT, C, 0) H (PH<P., C, rip, pt) — 
H3yneHH cymecTBeHHO xyace, neM (Pk9 C). 

BßHAy 3TOTO Î eHTpajIbHblM OÔbeKTOM B HaCTOHmHÏÏ MOMeHT ÄBJMeTCH (Pk9 C) 

H B AOKJraAe B ocHOBHOM MH 6yAeM rOBOpHTb O HeH. 

KaK yace roBopnjiocb, npocTeHinen 4>yHKijHOHajn>HOH CHCTCMOH B STOM CMbicjie 
HBJiaeTca (P2 , C), KOTopaa GbiJia BecbMa nojiHO H3yneHa nocTOM. B ero pa6oTe 
[5] nocTpoena cTpyKTypa Bcex 3aMKHyTbix KJiaccoB. IIosKajiyH rjiaBHHM pe3yjib-
TaTOM aBJiaeTca oieAyiomaa TeopeMa. 

TeopeMa. Kaotcduü 3aMKHymuü K/tacc 9JI U3 P2 UMeem Konemuü 6a3uc. 

K coacajieHHio caMo AOica3aTeJibCTBO nocTa (CM. [6]) BecbMa rpoM03Aico H He 
MoaceT 6biTb Hcnojib30BaHO B o6meM Kypce AHCKperaoH MaTeMaTHKH. OAHaKo 
AoicjiaAHHKy yAaJiocb HaHTH cymecTBeHHO öojiee npocToe AOKa3aTejibCTBo (He 
HyacHO 6paTb Bce 3aMKHyTbie Kjiaccbi H cTpoHTb cTpyKTypy). 

OnpeAejieHHe. OyHKijHÄ f(xl9 . . . ,x„) yAOBJieTBopaeT cBOHCTBy A (a^), ecjin 
AJia JHO6HX fi Ha6opoB (fx[9 ...9a?„) (i=l9...9fi) TaKHx, HTO / ( a j , . . . , a j ) = 
. . .= / (a f , ...,a{J) = l ( = 0 ) cymecTByeT o6maa eAHHHHHaa (HyjieBaa) KOMnoHeHTa, 
T.e. cymecTByeT j TaKoe, HTO a } = . . . = a ^ = l ( = 0 ) . 

OnpeAejieHHe. OyHKijHJi q> Ha3HBaeTca noA^yHKijHeH fyyHKujm / , ecjin ç 

MoaceT 6biTb nojiynena H3 / nyTeM OToacAecTBJieHHa nepeMemibix. 
yKa3aHHoe AOKa3aTejibCTBo onnpaeTca Ha cjieAyiomHH tyaxT. 

TeopeMa. ECAU 6y/ieecKan gjyHKtfun f ne ydoeAemeopnem ceoücmeaM A2 u 

a29 mo ona nopowcdaemcn CBOUMU nodgSywajuMMU 3aeucxufuMu ne 6onee9 veM om 

3 nepeMeHHbix. 

nepeHA,eM Tenepb K o63opy HeKOTopnx pe3yjibTaTOB JIJUL (Pk9 C). 

üpoßjieMa nojiHOTM. a) fljia KJiaccoB c KOHenubiM 6a3HC0M cymecTByeT aji-
TOpHTM n03BOJIHK)II];HH AJIÄ JIK)60H KOHeHHOH CHCTeMbi $yHKIJHH H3 9JI y3HaTb 
6yAeT 0Ha nojiHOH HJIH HeT. 

6) T. K. ajiropHTM pacno3HaBaHHa HOJIHOTH aBJiaeTca BecbMa TpyAoeMKHM, TO 
B03HHK nOAXOA HOCTpoeHHfl KpHTepHÄ nOJIHOTbl B TepMHHaX npeAHOJIHblX KJiaCCOB. 

OnpeAejieHHe. IIoAKJiacc W 3aMKHyToro Kjiacca 9Jt Ha3HBaeTca npeAnojiHHM, 
ecjiH 9JI' He aBJiaeTca nojmoH CHCTCMOH B SDÌ, HO npncoeAHHeHHe JIIOôOH 4>yHKLi;HH 
/ H3 9W\9W' AeJiaeT cHCTeMy W u { / } HOJIHOH B 9)1. 

TeopeMa ([7]). ECAU 3aMKHymuü KAacc 9R UMeem KOHCMUHü 6a3uc9 mo OH UMeem 

moAbKo Konemoe HUCAO npednoAHUX KAaccoe u cucmeMa 9t ôydem noAHoü mozda 

u moAbKo mozda, ecAu ona ne codepoicumcn ifeAUKOM nu e OòHOM U3 npednoAHux 

e 9JI KAaccoe. 
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flaHHaa TeopeMa aßjiaeTca o6o6in;eHHeM TeopeMbi A . B. KysneijoBa. O n a cßa-

3aHa c TpyAoeMKHMH nocTpoennjiMH. IIosTOMy OHa n e A^Bajia BO3MOECHOCTH 

HBHO HaiiTH Bce npeAnojiHHe KJiaccn AJia (P3> C). O H H 6 H J I H nocTpoeubi B [8] 

H Hx OKa3ajiocb 18. 

CjieAyiomHH niar 6 H J I CB#3aH c nonHTKOH äBHOTO o n n c a u r a npeAnojiHbix KJiaccoB 

AJIä (Pk9 C). 3Aecb HMeeTca: cepna pa6oT (A. B. Ky3Hen;oB H C. B, ü 6 J I O H C K H H [7], 

B. B. MapTHiiioK [9], JIo Hxcy-icaH, n a n IOii-Hi3e, BaH Can-xao H JTIO C ioö -xya 

[10]—[14], E . K ) . 3axapoßa [15]). OKOHHaTejibHHH m a r 6 H J I CAejiaH H . Po3eHÖeproM 

[16] H cocTOHT B cjieAyiomeM. 

T e o p e M a . Bce npednoAUbie e Pk KAaccu pa3ÔueawmcH na 6 neno onucyeMbix 

cejaeücme. 

^eTajibHbie HccjieAOBaHHa E. K ) . 3axapoBa, B. B . KyApflBijeB H C. B. #6JIOHCKHH 

[17] noica3ajiH, HTO HHCJIO n (k) npeAnojiHbix icjiaccoB EMeeT acHMnTOTHKy BHAa 

^[Oc-n/2] (2 n p n k neTHOM 
n(k) ~ 6(k)k2c*-* , rAe ö(k) = { , v v ' v 11 n p n k HeneTHOM 

H cjieAOBaTejibHO 6bicTpo B03pacTaeT, KpoMe Toro ycTaHOBHjin noßeAeHHe n(k) 

AJia MaJibix k: 

k 
n(k) 

2 
5 

3 
18 

4 
82 

5 6 7 
643 15182 =-7.108 

ECJIH paccMaTpHBaTb KJiaccn c TOHHOCTbio AO THnoB, T. e. nepecTanoBOK HHceji 

0 , 1 , ...9k— 1 MHoacecTBa E9 TO KpHTepHH nojmoTH B TepMHHax npeAnojiHbix 

KJiaccoB npaKTHHecKH npneMJieM AO k-^6. 

B ) Bo3HHKaeT Bonpoc o nocTpoenHH 6onee 34 )$CKTHBHHX KpHTepneB HOJIHOTH. 

üocjieAHee BO3MOECHO, ecjiH yHHTHBaTb 6ojiee nojmyio HH4)opMan;Hio o pac-

CMaTpHBaeMOH CHCTeMbi 9t 4)yHKAHH H3 Pk. 3pßCb XOpOIHO H3BCCTHH CTaBHIHe 

KjiaccHHecKHMH pe3yjibTaTH CjiyHeijicoro [18] H CajioMaa [19] H HX o6o6m;eHHa 

[20] B 3THX KpHTepHax AeJiaeTca npeAnojio>KeHHe o TOM, HTO ncxoAHaa cncTeMa 

91 coAepacHT onpeAejieHHbie noAMHoacecTBa 4>yHKijHH OT OAHOTO nepeMeHHoro. 

HanpHMep: 91 coAepacHT Bce 4>yHKu,HH OT OAHOTO nepeMeHHoro H BbinycicaiomHe 

xoTa 6 H OAHO 3HaneHHe HJIH 9t coAepxcHT Bce 3BaHMHO-OAH03HaHHbie 4>ynKijHH 

oAiioro nepeMeHHoro (noACTaHOBicn). H 3 Apyrnx pe3yjibTaTOB cjieAyeT ynoManyTb 

paGoTy B. B. KyApaBijeBa [21], B KOTopon AaeTca KpHTepHH nojmoTH AJIä CHCTCM 

coAepacamnx oAHy 4>yHKi],Hio (icpHTepHH nie4)4>epoBocTH). 

ITpoöjieMa 6a3Hca. HHCJIO 6a3HC0B B Pk Kaie jienco BHACTB 6ecKOHeHHO. nosTOMy 

M03KHO cTpeMHTbca nojiyHHTb KJiaccH$HicaulHio 6a3HcoB n o onpeAejieuHHM cBOHCTBaM 

(HanpHMep, n o BxoHCAeiiHio B Te HJIH HHbie npeAnojiHHe KJiaccn). fljia P 2 TaKHe 

nocTpoeHHa AeJiajincb. B cjiynae Pk STO TaK ace Bnojme peajibHO. 
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HeicoTopbie npoABHacenna HMeiOTca AJHI 3aAann o MaKCHMajibHOH Rjimie 6a3Hca 
B cjiynae / c=3 . 

BecbMa HHTepecHHM oica3ajiocb pe3yjibTaTH, Kacaiomneca npocTbix 6a3HcoB, 

OnpeAejieHHe. Ba3HC 9t Kjiacca SOI Ha3HBaeTca npocTHM, ecjin icaxcAaa cncTeMa 

91' nojiyneHHaa H3 9t nyTeM 3aMeHH npoH3BOjn>HOH eë 4̂ yHKu;HH Ha Jiioöoe noA-

MnoacecTBO co6cTBeHHbix noA4>ynKIi;™ 6yAeT HenojmoH. 
Bce npocTbie 6a3HCH AJia k=2 SHJIH HaHAeiiH B [22]. KonennocTb HHCJia npoc

Tbix 6a3HcoB AJIä & > 3 ycTaHOBJiena CaJioMaa [23] H AJM npoH3BOjibHbix 3aM-
KHyTbix KJiaccoB C. B. #6JIOHCKHM [24], fljia nncjia s(k) npocTbix 6a3HcoB B Pk 

B. B. AjieicceeBbiM [25] noicasano, HTO logs(k)^kkk~1. 

H3yqeniie cTpyiCTypbi 3aMKnyTHX KJiaccoB. BecbMa 3aTpyAHen:o TeM, HTO Pk 

npn / C > 3 B oTJiHHHe OT P2 coAepacHT He S0 , a c 3aMKHyTbixKJiaccoB [26]. nosTOMy 
HCCJieAOBaHHK HanpaBJienbi Ha nojiyneiiHe Hi^opMaijHH 06 STOH cTpyicType. B 
nacTHOcTH, BbiacmnoT KaK MoaceT 6biTb ycTpoeHa oKpecraocTb npoH3BOJibHoro 
3aMioiyToro Kjiacca 9R9 T. e. omacaTb ero MaKCHMajibHbie noAKJiaccbi (npeAnojiHbie 
icjiaccbi) HJIH ero MHHHMajibHbie HaAKJiaccbi, HJIH icaicoro BHAa BCTpenaioTca B nen 
Ê enoHKH BJioaceHHbix Apyr B APyra KJiaccoB. 

ECJIH KOHeHHOCTb HHCJia npeAnojmbix KJiaccoB CBjœaHa c cymecTBOBanneM 
KoneHHoro 6a3Hca, TO KOHCHHOCTB HHCJia MHHHMajibHbix HaAicjiaccoB AJM Kjiacca 
9)1 coAep»cam;ero 4>yHKijHio BHAa g(x)=x sKBHBajieHTHa npeAHKaTHOH onncye-
MocTH Kjiacca 9JÎ (CM. C. B. £6JIOHCKHH [27]). HmepecHo OTMCTHTB, HTO AaHHHH 
pe3yjibTaT TecHO nepenjieTaeTca c neKOTopHMH HOHJITHìIMH AJM HHBapnaHTHbix 
KJiaccoB [4]. 

HccJieAOBaiiHe H3OMOP4>H3MOB, roMOMop4>H3MOB H KoiirpyenijHH. HanaTo AJM 
(Pk9 C) B H3BecTHOH pa6oTe A. H. MajibijeBa [28]. H M HaHAeHbi Bce KOHrpyenn;HH 
AJia: HeicoToporo ceMencTBa 3aMKHyTbix KJiaccoB, coAepxcamero TaK i e H Pk , 

nocjieAHee no3BOJiHJio onncaTb Bce H30MOP4)H3MH H roMOMop4>H3MH Pk B P e . 
HHTepecHbie pe3yjibTaTH B AaJibHenineM H3yneHHH KOHipyeHH.HH nojiyneiibi HeAaBHO 
B. B. TopjioBbiM [29]. H M HaHAeHbi Bce KOHrpyeHii.HH B P 2 . ^jia 3aMKHyTbix KJiaccoB 
coAepxamnx TOJIBKO TpHBHajibHbie icoHrpyeimHH nojiyneHH 

1) TeopeMa Aaiomaa KpHTepHH, HO3BOJHIK>IIJ,HH y3HaBaTb HMeeT JIH AaHHHH 
Kjiacc TOJibico TpHBHajibHbie KonrpyeHii.HH HJIH HeT B cjiynae, KorAa 9)1 coAepacHT 
4)yHKn,HH BHAa g (x)=x9 H 

2) TeopeMa noKa3HBaiomaa, HTO A M icaacAoro k cymecTByeT KOHeHHoe HHCJIO 
MHHHMajIbHblX KJiaCCOB BCe COÔCTBeHHbie HaAKJiaCCH KOTOpHX HMeiOT TOJIbKO 
TpHBHajibHbie KOHrpyeHH.HH. 

BbifiBJieiiHe ocoöemiocTeH HHAiraifAyajibiibix tyyHKqiioiiajibiibix CHCTCM. 3Ta 
npo6jieMa B03HHicaeT yace B paMicax CHCTCM (Pk9 C). Cennac HaiconHJiocb MHOTO 
4)aKT0B, CBHAeTejibCTByiomHx o cymecTBeiiHOM OTJIHHHH (P2 , C) H (Pfc, C) npn 
/c>2 , npHBeAeM cBOAKy HeKOTopbix pe3yjibTaTOB TaKoro poAa. 
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TaGj iHi ja 

MOIUHOCTB MHOICeCTBa 

3aMKHyTLIX KJiaCCOB 

Ba3Hc 

KoHrpyeHUHH 

(Pi, Q 

Ho 

Bcer,n;a KOHeien 

Bcer^a KOHennoe HHCJIO 

(Ph, C), k>2 

C 

MO»CeT OBITI. KOHeHHbïM, CHeTHMM 

H OTCyTCTBOBaTb 

MOHCeT 6bITb KOHeHHWM, CHeTHLIM 

H MOECeT ÖBITB KOHTHHyaJIBHblM 

JIio6onHTHbiH pe3yjibTaT, cBSBaHUHH e aHajiH30M: äBJICHHK cKanKa MOIIJHOCTH 

MHo>KecTBa 3aMKHyTbix KJiaccoB, nojiynen B. B. KyAP#Bn;eBHM [30], PaccMOTpHM 

4)yHKii;HOHajibHyK) cncTeMy (PS9 C)9 r^e Pz MHOXCCCTBO Bcex 4>yHiajHH f(xl9 ...9xn) 

apryMeHTH KOTopbix AByx THHOB OAHH — npoôeraioT MnoacecTBO E1 = (a9b) 

Apyrne — E2=(c9d)9 3HaneHHfl 4 ^ ™ * ™ npHHafljieacaT ijejiHKOM oAHOMy H3 

MHoacecTB. Onepaiçna cynepno3HijHH yTOHmreTca ecTecTBeHHbiM o6pa30M: ^yHicn,M 

MoaceT 6biTb noACTaBJieHa BMecTo Tex nepeMemibix, ecjin 3HaHeHira KOTopbie OHa 

npHHHMaeT BXOA^T B oôjiacTb OnpeAejieHHe nepeMeHHoro. 

TeopeMa. CucmeMa (PI9 C) UMeem KonmunuyyM 3aMKnymbix KAaccoe mozòa 
u moAbKo moaòa9 Kozòa (a9b)^(c9d). 

K AaHHOMy Kpyry BonpocoB OTHOCHTCJT pe3yjibTaT, nojiyHeHHbrii B paóoTe E. K) . 

3axapoBOH H C. B. #6jioHCKoro [31]. Kaie H3BecTH0 B (P 2 , C) H3 BCäKOH <j)yHKn,HH 

cymecTBenno 3aBHwimeH 6ojiee neM OT OAHOTO nepeMeHHoro MOECHO nojiynHTb 

nyTeM cynepno3Hii;HH C^HKI^HH cymecTBeHHO 3aBHCÄin,yio OT r>>N nepeMeHHbix, 

rpp N HanepeA 3aAaHHoe HHCJIO. npH k ^ 3 Hap^Ay e TaKOH B03MO»cHocTbio 

noaBjurioTCH flBe BO3M03KHOCTH BbipoECAeHHH cynepno3HH,HH 

1) XOTä H B03M03KHO nocTpoHTb 4>yHKEpaio, 3aBHCflmyio OT r>*N nepeMeHHbix, 

rAe N nanepeA3aAamioe HHCJIO, OHa He 6yAeT cymecTBemio 3aBHceTb OT nacTH 

nepeMeiiHbix; 

2) H3 4>yHicijHH Hejib3Ä HOJiyHHTb 4>yHKijHH cymecTBeHHO 3aBHCjnnHe 6ojiee neM 

iV0 nepeMeHHbix. 

OlCa3HBaeTCK, HTO AJIH ICa»CAOH KOHeHHOH CHCTCMH $yHKÎ HH M0>KH0 BbUICHHTb 

3a KoneHHoe HHCJIO iuaroB BO3MO»CHO jm H3 Hee nojiyHHTb 4>ynKijHio, cymecTBeHHO 

3aBHC^myio 6ojiee, neM N nepeMenHbix, rAe N AaHuoe HHCJIO. ^ajiee STB noHHTHa 

npHMeHHioTCÄ ^JIK nojiyneHHK 6ojiee xoponien HHäHCH OU^HKH CJIOECHOCTH peajm-

3an;HH fyyiwjjjrìì i o Pk 4>opMyjiaMH B npoH3BOjibHbix 6a3Hcax. 

B AanHOM o630pe HCBO3M03KHO nepeHHCJiHTb MHOTHC H3 pe3yjibTaTOB A M 4}yHK" 

ipiOHajIbHHX CHCTeM. 

M H ynoM^HeM p^A HanpaBJieHHH HccjieAOBaHHH. 
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T. Bypoin H ero ynemncH (FffP) 3aHHMajiHCb HccjieAOBanneM (Pk9 C) H HX 

o6o6meHHHMH. 

fleMeTpoBHH (BHP) H3ynaji T. H. npeAeJibHbie JIOTHKH M. H. KpaTKo, B. B. 

KyApaBn;eB, C. B. AjieniHH H B. A. ByeBHH nojiynHJiH p^A HHTepecubix pe3yjibTaTOB 
AJM (PaBT, C, 0) H HX MOAH4)HKan,HH. MHOTO CAejiaHO B H3yneiiHH (PnPt, C, n p , fi) 

H HX MOAĤ HKanjHH aMepHKaHCKHMH MaTeMaTHKaMH H rpynnoÈi MaTeMaTHicoB 
H3 HoBocH6npcKa. 

B 3aKJH0HeHHe cjieAyeT 3aMeTHTb, HTO Teopmi 4)yHKn,HOHajibHbix CHCTCM HMeeT 

MHoroHHCJieHHbie npHJio>KeHHfl icaïc BnyTpn MaTeMaTHKH Taie H 3a eë npeAeJiaMH. 
OTMeTHM pe3yjibTaT C. B. AjieniHHa [32], KOTopbm AaJi HOBoe penieHHe npo6jieMH 

BepHcaHAa o nepnoAHHecKHx rpynnax — AaJi HBiioe OnpeAejieHHe rpynnn H3 
PaBT 6ecKOHeHHOH nepHOAHHecKOH H HMeiomeH ABe o6pa3yK)in;Hx. 

üepeHHCJiHM HeicoTopbie Apyrne npHJioaceHHJi. 
K). A. BnnorpaAOB Hcnojib30Baji annapaT Mnoro3HaHHOH JIOTHKH AJIH onncaHHH 

3JieKTpHHeCKHX cxeM. 
B. B. TapacoB nojiynnji p^A TeopeM o 4>yHKnlHOHajibHHx cncTeMax CB 3̂aHHbix 

c npo6jieMaMH HaAOKHocTH. 
B. B. KyAPÄBî eB H JI. A. BnpioKOBa pa3pa6oTajm Teopnio p,jm 4>yHKn;HOHajibHOH 

CHCTeMbi ({ ( / , T)}, C) B KOTOpOH yHHTHBaeTCH 3aAep3KKa T npH BHHHCJieHHH $yHK-
^HH / . 
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Some Recent Developments in Formal 
Language Theory 

G. Rozenberg 

Given a finite alphabet S9 any subset of X* (the set of all words over I) is 
called a language. This is how language is defined in formal language theory. Hence 
in mathematical terms, formal language theory investigates subsets of free monoids. 
In traditional formal language theory (initiated by the linguist Chomsky) languages 
are defined by various finitary processes such as grammars and automata, which in 
general are rather involved combinatorial objects. However in recent years one 
witnesses a vigorous development of a new area—theory of L systems (initiated by 
the biologist A. Lindenmayer)—where language definitions have very natural 
algebraic character. 

The aim of this note is to survey a fragment of the theory of L systems. Although 
we survey only a small portion of available results, it is chosen (and arranged) in 
such a way as to give the reader some picture of how the theory is built up. We 
start with the most rudimental systems (consisting of iterations of single homo-
morphisms) and then consider their three most natural generalizations (namely 
iterations of a finite number of homomorphisms, iterations of finite substitutions 
and iterations of a finite number of finite substitutions). In the first section we present 
several results and research areas typical for this part of the theory which considers 
sequences of words rather than their sets (languages). This is a subject matter very 
novel in formal language theory. In the remaining three sections we consider various 
types of L languages. We concentrate on results describing their combinatorial 
structure. 

We do not quote here the origins of listed results as they all appear in [1] or [2] 
where they are properly referenced. We use mostly standard terminology and nota
tion. For a word x we use \x\ to denote its length and #Bx to denote the number 
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of occurrences of letters from B in x9 A denotes the empty word. For a language 
K9 nn(K) denotes the number of different sub words of length n occurring in words 
from K and Length(K) = {n:n = \x\ for some XÇ.K). Given an alphabet I and 
A^S9 Pres^ is a homomorphism from 2* into £* defined by PresA (a)=a for 
a£A and PresA(a) = A for a£E\A. 

I. Single homomorphisms iterated. The simplest way to define a sequence of words 
or a language in L systems theory is to iterate a homomorphism on a free monoid. 
It is formalized as follows. A DOL system is a triple G=(I9h9co) where I is 
a finite alphabet, A: Z'*-*I* is a homomorphism and G)£Z,+. The sequence of G9 

denoted E(G)9 is defined by E(G)=co09 col9... where co0=œ and œi+1=h(œi) 
for f^O. The language of G9 denoted L(G)9 is defined by L(G) = {h"(œ): n^O}. 
The length sequence of G9 denoted LS(G)9 is defined by LS(G)=\co0\9 |ct>x|, \co2\9 .... 
The growth function of G9 denoted fG9 is the function from nonnegative integers 
into nonnegative integers defined by fG(n) = \hn(coQ)\9 ras>0. E(G) is referred to as 
a DOL sequence, L(G) as a DOL language, LS(G) as a DOL fewgfA sequence 
and /G as a DOL growth function. 

We shall now briefly review several research areas concerning DOL systems. 

1.1. DOL growth functions. Growth functions of DOL systems form a very natural 
object to investigate (also motivated by biological considerations which started 
the development of the L systems theory). The relationship between DOL length 
sequences and Z-rational sequences of numbers is by now quite well understood. 
Typical results here are: 

THEOREM. Assume that an N-rational sequence of numbers has a matrix representa
tion u(n)=7cMnri9 72=0, 1, 2,..., with either only positive entries in n or only positive 
entries in rj. Then u(n) is a DOL length sequence. • 

THEOREM. Every Z-rational sequence can be expressed as the difference of two 
DOL length sequences. D 

Generating functions form a very useful tool in investigating DOL growth func
tions. The following result is typical in characterizing generating functions of 
DOL growth functions. 

THEOREM. A rational function F(x) with integral coefficients and written in lowest 
terms is the generating function of a DOL growth function not identical to the zero 
function if and only if either F(x)=aQ+axx +...+anxn where a09al9 ...9an are 
positive integers, or else F(x) satisfies each of the following conditions: 

(i) The constant term of its denominator equals 1. 
(ii) The coefficients of the Taylor expansion E(x)=27s=oanx1t are positive integers 

and, moreover, the ratio an^\an is bounded by a constant. 
(iii) Every pole x0 of F(x) of the minimal absolute value is of the form x0=rc 

where r= |JC0| and e is a root of unity. D 
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1.2. Locally catenative DOL systems. A very natural way to generalize linear 
homogeneous recurrence relations to words is as follows. 

A locally catenative formula (LCF for short) is an ordered /c-tuple v=(il9 ..., ik) 
of positive integers where t > 2 (we refer to k as the width ofv and to max {il9...9 ik} 
as the depth ofv). An infinite sequence of words co09 col9 co29 ... satisfies v with 
a cutp>»max {il9..., ik} if, for all n^p9 coM=œ/J_/ ... (on_t . A sequence of words 
satisfying some LCF v with some cut is called (v-) locally catenative. A DOL system 
G is called (v-) locally catenative if E(G) is (v-) locally catenative. We say that 
G is locally catenative of depth d if G is ü-locally catenative for some LCF v with 
depth of v equal to d. 

First of all we get the following correspondence between locally catenative DOL 
sequences and languages. 

THEOREM. A DOL system G is locally catenative if and only if L(G)* is a finitely 
generated monoid. D 

The following result illustrates the relationship between a global property of 
a DOL sequence (namely its locally catenative property) and a local property 
of the underlying DOL system (namely the way its homomorphism is defined). 
Let G=(E9h9co) be a DOL system with co£l where for no a in I9h(d) = A. 
The graph of G9 denoted &(G)9 is an ordered graph the nodes of which are elements 
of E and, for a9b£E9(a9b) is an edge in @(G) if and only if h(d)—ubß for some 
a,/?€!;*. 

THEOREM. If there exists a£E such that hn(co)=a for some n^»0 and every 
cycle in <&(G) goes through a then G is locally catenative. • 

The most important open problem concerning locally catenative DOL systems 
is the decidability status of the question: "Is an arbitrary DOL system locally 
catenative?" The best known result in this direction is: 

THEOREM. (1) It is decidable whether or not an arbitrary DOL system is locally 
catenative of depth d, where d is an arbitrary positive integer. (2) 7/ is decidable 
whether or not an arbitrary DOL system is locally catenative of width d, where 
d is an arbitrary positive integer larger than 1. • 

1.3. DOL equivalence problem. One of the more challenging problems in the 
theory of DOL systems is the DOL sequence (respectively language) equivalence 
problem: "Given two arbitrary DOL systems Gl9 G2 is it decidable whether or not 
E(G1)=E(G2) (respectively L(G^=L(G2))T 

The problem was solved quite recently (by K. Culik and I. Fris). 

THEOREM. The DOL sequence and language equivalence problems are decidable. • 

Various efforts to solve the above mentioned problems created quite a number of 
notions and results which are of interest also in traditional formal language theory. 
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For example one gets the following representation theorem for recursively enumerable 
languages. 

THEOREM. Let K bea recursively enumerable language. There exist an alphabet I9 

homomorphisms g9hl9h2 and a regular language M such that K=g(Eq(hl9h2) n M)9 

where Eq (Ax, h2) = {x 6 S + : h^x)=h2 (x)}. D 

II. Single finite substitutions iterated. A natural way to generalize DOL systems 
is to consider the iteration of a finite substitution rather than a homomorphism. 
(The difference between a finite substitution and a homomorphism is that the former 
maps each letter of the alphabet into a finite set of words whereas the latter maps 
each letter into a single word.) Since in such a case the generated language (rather 
than the sequence) becomes the primary concept, one therefore considers (as usual 
in formal language theory) an additional (terminal) alphabet. 

An EOL system is a construct G=(I9 h9 co9 A) where Z9 A are finite alphabets, 
A^I9 co£l+ and A is a finite substitution from X* into 21*. The language of 
G is defined by L(G) = {x£A*: x£hn(co) for some ws>0}. L(G) is referred to as 
an EOL language. 

The following results illustrate the combinatorial structure of EOL languages. 
They are especially useful for proving in general that various "concrete" languages 
are not EOL languages (which is often a difficult task). Let Ä"bea language over 
I and let B be a nonempty subset of I. Let N(K9 B) = {n: (Bx)K(#Bx=n)}. 
We say that B is numerically dispersed in K if N(K9 B) is infinite and, for every 
natural number k9 there exists a natural number nk such that whenever ux and 
u2 are in N(K9 B) and ux>u2>nk then u1—u2^k. B is clustered m K if N(K9B) 
is infinite and there exist natural numbers kl9 k2 both larger than 1 such that when
ever a word x in K satisfies ^Bx^k1 then x contains at least two occurrences 
of letters from B9 which lie at a distance smaller than k2 from each other. 

THEOREM. Let K be an EOL language over I and B a nonempty subset of Z. 
If B is numerically dispersed in K then B is clustered in K. • 

Let K be a language over an alphabet £ and let B be a nonempty subset of I. 
We say that K is B-determined if for every positive integer k there exists a positive 
integer nk such that for every x9y in K if \x\9 \y\>nk9 x—x^ux29 y—xxvx2 and 
|w|, |t?|<fc then PresB (u) = Presjj (v). 

THEOREM. Let K be a B-determined EOL language. There exist positive integer 
constants c and d such that, for every x£K9 if #J3x>c then \x\<d*B*. • 

THEOREM. Let K be an EOL language over an alphabet I. If K is I-determined 
then there exists a constant c such that, for every nonnegative integer n, nn(K) ̂  cn3. • 

III. Several homomorphisms iterated. The language of a DOL system is obtained 
by applying to a fixed word an arbitrary homomorphism from the semigroup gene-
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rated by a single homomorphism. Semigroups generated by a finite number of 
homomorphisms form a natural next step. 

A DTOL system is a construct G=(E9 H9 œ) where E is a finite alphabet, œ£E+ 
and H is a finite set of homomorpliisms from E* into E*. The language of G 
is defined by L(G)={xeE*:x=h„...h1(w) for n^O.h^ff}. 

The following result describes a rather basic property of the set of all subwords 
of a DTOL language. 

THEOREM. Let E be a finite alphabet such that #E=n^2. If K is a DTOL 
language over E then limI^oo(nI(K)/nl)=0. • 

Adding an extra (terminal) alphabet one can define a richer class of languages. 
An EDTOL system is a construct G=(E9 H9 co9 A) where (E9H9co) is a DTOL 
system and A^E. The language of G is defined by L(G) = {x£A*: x=h„...h1(co) 
for w^O, hjÇH}; it is referred to as an EDTOL language. 

The following two results are very useful results on the combinatorial structure 
of EDTOL languages. 

A function / from R+ into 2?+ is called slow if for every OC£JR+ there exists 
wa£Ä+ such that for every x£R+ if x>na then f(x)<xx. 

Let E be a finite alphabet and let f:R+-+R+. A word w over E is called 
f-random if every two disjoint subwords of w which are longer than /(|w|) are 
different. 

THEOREM. For every EDTOL language K and for every slow function f there exists 
a constant s such that for every firandom word x in K longer than s there exist 
a positive integer t and words xQ9 ..., xt9 ol9 ..., &t with o,

1...at^A such that 
x=xQ...xt and, for every nonnegative integer n9 x{sG

,[x1o
n
2...o

il
txt is in L. • 

THEOREM. Let K be an EDTOL language over an alphabet E, where &E=n>>2. 
If Length (K) does not contain an infinite arithmetic progression then 

l im#{^:H = /} = 0 . D 

IV. Several finite substitutions iterated. In the same way as one generalized DOL 
systems to EOL systems one extends DTOL systems to obtain ETOL systems. 

An ETOL system is a construct G=(E9 H9 co9 A) where E is a finite alphabet, 
co£E+

9 A^E and H is a finite set of finite substitutions from E* into 2s*. The 
language of G is defined by L(G)={x£A*: x£hu... Ai (co) for w^O, h^M). 

Here is a typical result concerning combinatorial structure of ETOL languages. 

THEOREM. Let K be an ETOL language over an alphabet E. Then for every 
nonempty subset A of E there exists a positive integer k such that for every x in 
K either (i) |Pres^x|<l, or (ii) there exists a9b in A and w in E* such that 
x=x1awbx2 for some xl9x2 in £* with \awb\*^k, or (iii) there exists an infinite 
subset M of K such that, for every y in M, (Pressi ^Pres^ x\. • 
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The following result is a typical "bridging" result. It allows one to construct 
examples of non ETOL languages providing that one has examples of languages 
that are not EDTOL. 

THEOREM. Let El9 E2 be two disjoint alphabets and let Kt^E^9K2^E^. Let 
f be a surjective function from Kx into K2 and let K={wf(w):w£K1}. Then 

(1) If K is an ETOL language then K2 is an EDTOL language. 
(2) If f is a bijection, then also K± is an EDTOL language (if K is an ETOL 

language). • 

We hope that through this short note the reader acquires a taste of the theory 
of L systems—a new and rapidly developing area of discrete mathematics with 
interesting connections to computer science and biology. 
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Group-Theoretic Algorithms, A Survey 

Charles C. Sims 

The development of the modern digital computer has had more influence on group 
theory than on any other branch of algebra except number theory. There is a growing 
list of results in group theory which, at least at the present time, could not have been 
obtained without the use of a computer. Three examples are the determination of 
the four-dimensional space groups [3], the calculation of the orders of certain restricted 
Burnside groups such as announced in [1] and the construction of some of the newly 
discovered sporadic finite simple groups such as described in [12]. The use of 
computers in group theory has stimulated research in the area of group-theoretic 
algorithms. The purpose of this paper is to survey some of the achievements in 
this field. 

Many computational problems in group theory do not have algorithmic solutions. 
Probably the best known problem of this type is the word problem for finitely pre
sented groups. Thus often a proof of the existence of an algorithm for solving a parti
cular problem is a nontrivial result. For example, recently Grunewald [10] showed 
among other things that it is possible to decide whether or not two given elements of 
the unimodular group GL (n9 Z) are conjugate. However, this paper will be limited 
primarily to algorithms which have been implemented on a computer and applied 
to a significant mathematical problem. I shall discuss seven algorithms and one 
data structure which seem to me to be applicable to a particularly wide class of 
problems. Space does not permit giving either formal definitions of the algorithms 
or a complete bibliography. Fortunately an extensive bibliography on computers 
in group theory has been compiled by V, Felsch [8]. Updated copies are available 
from Felsch at the Technische Hochschule, Aachen. The references given here are 
to the papers which provide the best introduction to the algorithms discussed. 
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In order to describe the algorithms it is useful to introduce the concept of a monoid 
with involution. Let M be a monoid, or semigroup with identity. An involution 
on M is an antiautomorphism of period two, that is, a map x-*x' of M into 
itself such that (xy)'=y'x' and (x')'=x forali x and y in M. 

In this paper we shall encounter three types of monoids with involution. The 
first type consists of groups with the inverse map as the involution. The second type 
is obtained by choosing a set A and a point ö in A. Given a in A and f.A-^A 
we shall write the image of a under / as of. Let M(A9 8) denote the set of maps 
f:A->A suchthat öf=ö and such that whenever <x,f=ßf^59 then oc=ß. The set 
M(A9 8) is a submonoid of the monoid of all maps of A into itself. The group of 
invertible elements in M(A9S) is isomorphic to the symmetric group on A — {$}. 
Given / in m(A9 S)9 define / ' : A -+A as follows: 

us' = ß9 if oc 9e S a n d ßf = a, 

= (5, otherwise. 

Then / ' is in M(A9S) and ' is an involution on M(A9S). 
We can also define the free monoid with involution generated by a set X. Let 

X± be the cartesian product ZX{1, —1} and let M be the set of all words, or 
finite sequences, al9...9ar9 r>=0, where each at is in X±. Let U=al9 ...9ar 

and V=bl9 ...9bs be in M. The product of U and V9 written here as U9 V9 

is the word al9 ..., ar9bl9 ..., bs. If a=(x9 e) is in X±
9 then define a'=(x9—e) 

and set U'=a'r9 ...9a[. Then ' is an involution on M and the obvious universal 
property holds for the pair (M9 '). There is a natural homomorphism of M onto 
the free group F generated by X. The image of the word U will be denoted by [U]. 
We normally identify X with XX {1} and identify a word of length 1 with its 
single term. Thus we have X(=,X±<=,M. If X is finite and the elements of X± are 
linearly ordered in some manner, then we can well-order M by defining t / < F 
to mean that either r<s or r=s and for some /, l < / < r , we have a~bj9\*^j<i9 

and a^bf. 

The first five algorithms described below answer questions about a group defined 
by a finite presentation. We shall maintain the following notation in discussing 
these algorithms. Assume we are given a finite set X and a finite subset R of the 
free monoid with involution M generated by X. We shall also assume that X± has 
a fixed linear order and order M as described above. Let F be the free group 
generated by X and let N be the normal subgroup of F generated by all conjugates 
of the elements [U] with U in R. Set G=F/N. If U is in M9 then the element 
N[U] of G will be denoted U. 

Given X and JR, it is not hard to construct an integer matrix A such that the 
commutator quotient group G/G' is isomorphic to Zm/K9 when m=\X\ is the 
number of columns of A and K is the subgroup of Zm generated by the rows 
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of A. The orders of the cyclic direct factors of G/G' are given by the elementary 
divisors of A. When the presentation X9 R comes from an application of the 
Reidemeister-Schreier algorithm, which is described below, it is quite possible 
for A to have hundreds of rows and columns. In this case, even when the elementary 
divisors of A are small, the traditional elementary divisor algorithm using integer 
row and column operations leads to very large integers in the intermediate steps. 
Work of G. Havas suggests an alternate approach. The z'-th elementary divisor 
of A is the gcd of the determinants of the i-hy-i submatrices of A. Using con
gruence methods similar to those described in [4], one can compute the rank of 
A and obtain useful information about the elementary divisors of A. 

A more recent algorithm for studying the quotient groups of G is the nilpotent 
quotient algorithm [14]. Let p be a prime. Define yp(G) = G and for i;»l set 
yf+1(G)=(G9 H)Hp

9 where H=yf(G)9 (G9 H) is the subgroup of G generated by all 
commutators g^h^gh with g in G and A in H and Hp is the subgroup 
generated by all hp with A in H. The series G=yp(G)^yP(G)^... is called the 
lower exponent-/?-central series of G. Given X9R9p and a positive integer c9 

the nilpotent quotient algorithm computes the order pn of G=G/yp
+1(G)9 the 

largest quotient group of G having exponent-p-central class at most c. In addition, 
a particularly nice type of presentation for G is constructed. The difficulty of the 
computation depends more on the size of c than it does on p or the order of G. 
Typical values of c are 10 or 20 while the value of n obtained is often in the 
hundreds or even larger. 

The next three algorithms are concerned with subgroups of finite index in G. 
To each such subgroup H of G there corresponds the permutation representation 
of G on the set of rightcosetsof H. If we number these cosets from 1 to n = \G:H\9 

then we get a transitive representation of G into the symmetric group En. It is 
useful to generalize the notion of transitive permutation representation for monoids 
with involution. We shall need to do this here only for the free monoid with involu
tion M. Let « be a positive integer, let An={091,..., n} and let Mn=M(A1l9 0). 
The group of invertible elements of Mn is isomorphic to En. A coset table repre
sentation of M into Mn is a homomorphism / : M-+M„ such that for each *V0 
in An there is a word Ut in M such that /(£/,) maps 1 to i. The associated coset 
table is the n-by-2m matrix whose i,jlli entry is the image of i under f(a)9 where 
a is the jth element of X±. We say / is complete if / maps M into the group 
of invertible elements of M„. 

Let / : M-+M„ be a coset table representation and let U be a word in M. 
We shall say / is compatible with U at a point zVO in A„ if whenever U can be 
written as a product V9 a9 W with V and W in M and a in X± such that 
j—jfcv) a n (j ]c==jKw') a r e both nonzero, then jf^=k. If / is complete, then 
/ is compatible with U at i if and only if iKU)=i. If / is compatible with U at 
each i in ^„-{0}, then we shall say / is compatible with U. 

Coset table representations of M which are compatible with each element of 
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R can be constructed as follows: Let H be any subgroup of G and let Ul9 ...9U„ 
be words in M such that Ul9..., Un are in distinct right cosets of H and such 
that {E/i[l<i<72} is a Schreier system in the sense that whenever a product U9 V 
is in the set then U is in the set. For any a in X define f(a) to be the element 
of Mn mapping MO to j9 where either 7VO and HÜiä=HÜj or 7=0 and 
//E7fa is not in {HUk\l^k^n}. The map f:X-+Mn extends to a coset table 
representation / : M-+Mn9 which is compatible with each element of R. We call 
/ a truncation of the action of G on the right cosets of H. 

Let / : M-+Mn be a complete coset table representation. For zVO in An let 
Ut be the first word such that /(C/f) maps 1 to i. We say / is standard if 
Ux -< £/2 < . . . < Un. The following theorem forms the basis of an algorithm for describ
ing the set of subgroups H of G such that \G:H\ does not exceed a given bound. 

THEOREM. There is a 1-1 correspondence between the set of subgroups of G of 
index n and the set of complete standard coset table representations f: M-+M„ 
which are compatible with each element of R. The subgroup corresponding to a parti
cular representation f is {Ü\f(U) fixes 1}. 

The low index subgroup algorithm takes as input X9 R and an integer N and 
lists the coset tables corresponding to the complete standard coset table representa
tions / : M-+Mn with n<^N which are compatible with the elements of R. One 
version of this algorithm is described in [6]. The values of N which can be handled 
vary from less than 10 to 50 or 100, depending on the presentation. 

It is a fundamental result of Reidemeister and Schreier that a subgroup of finite 
index in a finitely presented group has a finite presentation. Given the presentation 
X9 R and the coset table corresponding to a subgroup H of G, of finite index, 
the Reidemeister-Schreier algorithm [9] constructs a presentation Y9 S for H. 
In most implementations \Y\ = l+n(m—1) and \S\=nr9 where m=\X\9 n=\G:H\ 
and r=|J?|. Typical values of m9r and n might be 3, 10 and 50, respectively. 
Due to the large number of generators and relators produced, considerable further 
processing is required to make the presentations useful. At present only a few 
ad hoc techniques for doing this are available. As mentioned above, the elementary 
divisor algorithm can be used to determine the structure of HIH'. 

Let S be a finite set of words and let H be the subgroup of G generated by 
the elements Ü with U in S. There is no algorithm for deciding whether \G:H\ 
is finite given only X9 R and S. However, if \G\H\ is finite, then it is possible to 
determine |G:üT|, although there is no way of giving an a priori bound for the time 
needed to complete the computation in terms of some reasonable measure of the 
size of the inputs X9 R and S. If / : M-+Mn is a truncation of the action of G 
on the cosets of H defined by a Schreier system of words Ul9 ..., Un9 where Ê  
is the empty word, then not only is / compatible with the elements of R it is also 
compatible with the elements of S at 1. The Todd-Coxeter algorithm, also referred 

file:///G/H/
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to as coset enumeration, takes as input X9 R9 S and a positive integer N9 which 
may be thought of as a bound for the space which can be used during the computation. 
The output is a coset table corresponding to a representation / : M-+M„ satisfying 
the following conditions: 

(1) N^n. 
(2) / is compatible with the elements of 7?. 
(3) / is compatible with the elements of S at 1. 
(4) If U and V are words in M such that f(U) and f(V) map 1 to the same 

nonzero point, then HÜ=HV. 
(5) If N>n9 then / is complete. 

If / is complete, then it follows that n = \G:H\. If \G\H\ is finite, then for 
sufficiently large N the Todd-Coxeter algorithm will terminate with / complete. 
This algorithm has probably been used more extensively in group-theoretic computa
tion than any other algorithm. Descriptions of various implementations may be 
found in [5]. 

The algorithms described so far deal with groups which may be infinite. We turn 
now to algorithms and data structures for handling groups which are obviously 
finite. An algorithm due to Neubüser [13] constructs the complete lattice of sub
groups of a group of moderate size, say of order a few thousand. As formally defined, 
this subgroup lattice algorithm determines only the solvable subgroups. However, 
the number of nonabelian simple groups which can occur as composition factors 
of subgroups of a group of order less than 5000 is very limited and using ad hoc 
methods the full lattice of subgroups can be found. 

A data structure described in [15] makes it possible to perform many computa
tions in a permutation group G on a finite set Q even when the degree w=|ß| 
is in the thousands. A base for G is a sequence al9..., ar of points in Q such 
that the only element of G fixing each af is the identity. Many "interesting" 
groups have bases with r much smaller than n. An element g in G is determined 
by the images of, ..., o£. Let G(/) be the stabilizer of al9..., a ^ in G, l ^ f ^ r + 1 , 
and let At be the orbit of G(0 containing oai9 l^i^r. For each <5 in At let 
Ui($) be an element of G(/) taking 0Lt to ö. The sets U^° = {ui(ö)\5^Ai} form 
a concise and useful description of G. If G is defined by a set of generators X9 

then A± and C/(1) can be found easily, but it is more difficult to find the other t/(/). 
We say X is a strong generating set for G relative to al5..., ar, if G(/) is generated 
by X^^XnG®. In this case all the C/(/) can be constructed easily. The elements 
of C/(/) can be described by a Schreier system of words which can be efficiently 
stored using an integer vector v indexed by the points in Q. If a is in Q9 then 
va=0 if a is not in At. If a is in At—{a,}, then va is the number of the last 
factor of Ufa) in some list of the elements of Z(/) and their inverses. Finally 
va= — 1. The vector v is referred to as a Schreier vector for At. Bases and 
Schreier vectors can be quite useful in the construction of algorithms for studying 

file:///G/H/
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the elements and subgroups of a given permutation group as well as for determining 
the automorphism groups of moderate size groups and various types of combinato
rial objects. See for example [11]. 

The Schreier-Todd-Coxeter algorithm takes as input a set X0 of permutations 
of a finite set Q and determines a base al9..., oir for the group G generated by X09 

a strong generating set l 2 l 0 for G relative to al9 ..., ar and a presentation for 
G in terms of the generators in X. The algorithm involves repeated coset enumera
tion. A formal description of the algorithm can be found in [16], An implementation 
by J. Leon handled a set of generators for the Suzuki sporadic group of degree 1782 
and order about 4.5 XlO11 in 10 seconds on a fairly fast machine. 

In conclusion I would like to mention the following additional work on group-
theoretic algorithms. Atkinson [2] has suggested an algorithm for deciding whether 
a given transitive permutation group is primitive. Dixon [7] has described a method 
for constructing the character table of a moderate size finite group. Several investiga
tors have written programs to assist in the construction of character tables for large 
finite groups. However, little has been published about these programs, which 
require close man-machine interaction. Workers in Aachen and Sydney are col
laborating on the development of a unified system of programs implementing many 
group-theoretic algorithms, including the ones discussed here. In addition, a language 
to facilitate computations with the system is being developed. 

ACKNOWLEDGEMENT. I wish to express my gratitude to J. J. Cannon, J. Neubüser 
and M. F. Newman for their assistance in the preparation of this paper. 
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On the Synthesis of Self-Correcting Networks 

Dietmar Uhlig 

1. Introduction. In this paper we consider the following networks : combinatorial 
networks, contact networks, valve contact networks and valve networks. Precise 
definitions are given, for example, in [1], [3], [5], [6], [10], [11]. These networks compute 
Boolean functions. For example, the contact network in Figure 1 computes the 
function (between the source nodes P1 and P2) X^XQ V x±x2x3 V x^Xg v xxx2x^ = 
Xi©X2©*3- (We use © or 0 to denote sum modulo 2.) The combinatorial 
network in Figure 2 computes the function Xj&Xa v x1&x2=x1^x2. A valve is 
a directed edge which is not labelled with a variable. The valve contact network 
in Figure 3 computes the function x1x2x3 v xxx3 v x^. 

A set Q consisting of gates is said to be complete if every Boolean function can 
be realised by some combinatorial network with these gates. For example, the set 
consisting of the 2-input AND, 2-input OR and the NOT function is complete. 

FIGURE 1 FIGURE 2 FIGURE 3 
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We assume that Q is complete. A cost, Pi9 is associated with each of the gates 
gt£Q. The cost £ C O M W of a combinatorial network 9t is the sum of costs of 
its gates. The cost £ C O N W °f a contact network (or the cost L y c W °f a valve 
contact network) 91 is the number of its contacts (or the sum of costs of each 
of its contacts and of each of its valves). Then, the combinatorial complexity, 
Ì C O M ( / ) ( ^ C O N ( / ) o r £ v c ( A respectively), is the minimum of LCOM(9I) (LCON(8ï) 
or LyC(2I), respectively), where 31 ranges over all combinatorial networks (con
tact networks or valve contact networks, respectively) computing / . Further, the 
Shannon function £ C O M ( ^ ) CACONIC^O o r £vc(^)> respectively) of a family HF of 
Boolean functions is the maximum of LC0M(f) ( £ C O N ( / ) o r ^vc(/)> respectively), 
where / ranges over all functions in SF. 

Let Q„ be the set consisting of all Boolean functions of n variables. C. Shannon 
has shown [11] that 27« <> LC0N(Qn) S^/n).1 O. B. Lupanov has shown [3]-[6] that 

^COM(Ô„) ~ Q —, ^CON(GW) ~ —» Lwc(Qn) ~ — (1) 

(Q = Q(Q) = const.) and that for every positive number s the number of Boolean 
functions / having a combinatorial complexity 

fjn *\n ryn 

Lcou(f) < (1 - e ) e — , ^CONCO < (1 - ß ) — , Lyc(f) <= (1 -« ) — > 
W W W 

respectively, is o(22"), i.e. for large w "almost" all Boolean functions of Qn have 
a combinatorial complexity which is "almost" equal to LC0M(Qn)9 Z*CON(ÔH) o r 

^vc(G„)3 respectively. 
We consider networks realising Boolean functions of Qn and which are self-

correcting for errors of any gates, contacts or valves. Other errors, for example, 
errors of lines, are ignored. 

The idea to consider self-correcting networks is due to S. V. Jablonskij [9]. 

2. Self-correcting contact networks. A contact network 21 is called self-correcting 
for b interruptions and d shorts or is also called (b9 ^-correcting, if 91 realizes 
a function / in case no contacts of 91 are shorted or interrupted and if 91 realizes 
the same function / in case at most b contacts are interrupted and at most d 
contacts are shorted. 

A contact network is denoted by [/*, 91] (or [r9 g])9 if it consists of r+l parallel 
sequences each of which consists of r + l networks 91 (or any r + l realisations of 

1 a (n) ~ b {n) (or b(n)~a (//)) denotes lim [a (n)/b («)] < 1. 
2 a (n) ~ b (n) denotes lim [a (n)jb («)] = 1. 
8 Here is assumed that the cost of a contact is equal to 1. 



The Synthesis of Self-Correcting Networks 989 

the Boolean function g) (see Figure 4). Obviously, if 91 realizes f=f(xl9 ...9x„) 

FIGURE 5 FIGURE 6 

FIGURE 4 

(by the assumption that there are no shorts or interruptions), then [r, 91] also 
realizes / and is (r, r)-correcting. But the combinatorial complexity of [r, 91] 
is (r+l)2 times greater than the combinatorial complexity of 91. However results 
of some authors show that there are better methods for sufficiently large n. 

Let £CON(/) be ^ number of contacts that are sufficient to construct any (b9 d)-
correcting contact network realising /. Obviously, ^CòN(/ ) = J ^CON(/ ) - Let 
4*odA(ßn)=max/eQn « ( / ) • 

Ju. G. Potapow and S. W. Jablonskij have shown [9] that 

L&îKQn) ~ 2n/n. 

If 6=0 and d=l9 then by (1) we have 

£&»<&> ~ L&$(Q«) = £coN(ß„). (2) 

Therefore, if « is a sufficiently large number, then for "almost" all Boolean func
tions the combinatorial complexity in the case of realisation by contact networks 
correcting one short is only a little greater than the combinatorial complexity in the 
case of realisation by contact networks which do not correct errors. 

Ch. A. Madatjan has shown [7] that 

« ( Ö » ) ~ 2"/» 

and later E. I. Neciporuk has shown [8] that (2) is true if the number of errors is 
not constant, namely if 6=o(log/7/loglog«) and d=3. (We use Ioga to denote 
log2ö.) He has also shown that if ô=o(log/î/loglog«) and d=o(n1/z~ô) (<5>0), 
then 

*M (Qn) £ 2Lg$ (Qn) ~ 2(2"/n). (3) 

The author of this paper shows [12], [14] by a special coding that if 
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loëb=°{iàï) and loed=o{i^)' (4) 

then (3) is also true. The idea of proof with the number of errors by (4) is given in §5. 

3. Self-correcting combinatorial networks. Assume that a complete set of gates 
Q is given and that all elements of Q are unreliable and may yield their associated 
Boolean function or may not do so. A combinatorial network is called r-self-
correcting if the failure of any r' (r'*^r) of its elements does not affect its correct 
operation. If r^l then there does not exist an r-self-correcting combinatorial 
network 91 constructed only by unreliable gates, because the gate of 2f, whose 
output is also the output of the network 91, is also unreliable, but its errors cannot 
be corrected. Therefore, for the construction of self-correcting networks we need 
(abstract) gates which are quite reliable. Assume that in addition to Q a set ß* of 
erliable gates is given such that symmetrical Boolean functions can be realised 
using only gates of fì*. A cost, P* (it may be very big), is associated with each of 
the gates g*£Q*. Let L^M(Qn) be ^ Shannon function for r-self-correcting 
combinatorial networks (i.e. the minimum of costs sufficient for the realisation of 
every function of Qn by an r-self-correcting network). G. I. Kirienko has shown [2] 
that if r=20(n), then 

L&uiQn) ~ LC0M(Qn) - Q(2n/n) (Q = Q(Q) = const.). (5) 

But the networks constructed with his method contain very many reliable gates 
C£2n/nc for a constant C). 

The author of this paper has shown [13], [14] that if also r=2o(,° and if O* is 
a complete set, then combinatorial networks containing only on the order of r 
reliable gates of ß* and satisfying (5) can be constructed. The author of this paper 
has also shown [14], [16] that it is necessary to use r* gates of ß*, where r* is 
on the order of r. 

4. Self-correcting valve contact networks and valve networks 

E. I. Neciporuk developed methods for the construction of selfcorrecting valve 
contact networks. He has shown [8] that if n-^oo then for a certain a=an-+°° 
and b=bn-+°° 

i\"chKQn) ~ 2»/«. 

He has also found the Shannon function for valve networks which are correcting 
r interruptions for a certain r~rn-+°° [8]. 

5. A code and its application for the construction of selfcorrecting contact networks. 
Let us consider a sequence {(n9 qn9 m„)} where q„ and m„ are integers which are 
dependent on n. 
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THEOREM 1. If qn-+<*> and 

B " UoglogtfJ 

and if each of (n9q„9mn) is associated with qn Boolean functions g^\ ...,g^, 
which are dependent on the variables xl9 ...9xm , then there exist Boolean functions 
h^9..., h^\ which are also dependent on the variables xl9 ...9xm such that 

(a) rn~qn9 

(b) for every i (i=l9 ..., q„) there are sn disjoint subsets n[9 ...,i7j of the set 
{1, ...,r„} such that 

© M«> = gpo a = i , . . . , S / J ) . 
jen[ 

The proof of the Theorem 1 follows from the proof of Theorem 3 of [15] (see also 
[12], [14]). Let us omit the index n. 

Now we give the 

IDEA OF PROOF OF THEOREM 1. Let us consider in this paper only the special case 
s=2p and q~up

9 where u and/? are integers. We argue by induction. If p=l9 

then we set 
'gj> if J = U 
g]-i®gj> if 2^j^u9 (6) 
gj-i, if ] = u + L 

Obviously, from n[ = {\9 ..., i) and J7^={/+1, ..., w+1} follow 

ninlll = A9 © hj = gi9 © hj = gi and (if q -*«,) r = q+\ ~ q. 

For the reader's convenience let us illustrate the general case by p=2. (For the 
general case see [14], [15].) We take for each integer u EL one to one correspondence 
Hu between ,4 = {1,2,..., w2} and the set B consisting of all pairs (k9 /), where 
k and / are integers at least 1 and at most u. The integer from A corresponding 
(k91) by Hu is denoted by H(u9 k91). We take for each k all of the functions 
g*=gH(Utliti) (instead of gt with / instead of j) and take by (6) (i.e. by induction) 
all of the functions hf=gfl (l=l9..., w+1). Now take for each / by (6) all of 
the functions h^=^hB^u+1^ (/c=l,..., w+1) (talcing for each / g£J instead 
of gk with k instead of j). Let Zj={l, ...,/} and Z2={i+l9..., w+1}. We 
obtain n[9...9n[ by nl

H^p) = {H(u+l9 v9 w)\v£Z[9 w£Zl
ß}. 

Note that it is not very difficult to show the following two statements. 

THEOREM 2. There is a function aM with a„-*0 for JZ-*°° such that for every 
Boolean function g dependent on n variables there is a network Dg having three 
source nodes Pl9P29Ps and realising the functions g9 g and zero between Pl9 P29 

between Pl9P$ and between P29PB9 respectively (see Figure 5) and which 
contains only contacts and no more than LCON(Q„) (l+a„). 

ä , = 
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THEOREM 3. Let zl9...9zt be Boolean functions. The function z1®...®zi can be 
realised with no more than two of each of the networks Dz^9 ..., D2t respectively (see 
Figure 6). 

Now we present the method of construction of contact networks which are self-
correcting for R shorts and R interruptions with logjR=o(/î/logw) and realising 
f(xl9 ..., xn). We set s=(R+l)\ k=o(n) (more precisely see [14]), q=2k and 
consider all (not necessarily different from each other) 2k functions gl9 ...9g2u 
which are obtainable from f(xl9..., x,,) by setting xn-k+l9 ...9xn for constant 
(and which are dependent on n—k variables). Then we take the functions hl9 ..., hr 

by Theorem 1 and construct with no more than 

•vi-fc 
2rZCON(ô„-*)(l+«„-*) - 2 - 2 * - ^ . ~ 2 ^ 

contacts two copies of all of the networks Dh , ...9Dh respectively (as defined 
above). This is possible by the Theorems 1 and 2 and by (1). It is not difficult to 
connect the networks Dh ,..., Dh with networks of the type [R9 x?}]9 *"=«—/c+1, ..., n 
(as defined above), containing together no more than 2o(n) contacts in such a way 
that if ^B-fc+i=o,

B-k+1, ...9xtt=on and if gt=f(xl9 ...,*„-*, o"n-H-i> ...,0^), then 
we obtain according to Theorem 3 (iÊ+1)2 realisations of gt which are connected 
to a network [R9 gt]. The network obtained in this way is self-correcting for R shorts 
and R interruptions. 

6. Realisation of vector functions. With the code considered in § 5 the author of 
this paper has shown [14], [15] that the Shannon function for vector functions 
(f(x(i\ ...9x™)9 ...9f(x

{*\ ...9xV°))9 where / is a Boolean function and all of 
the variables are disjoint, is also ~Q(2n/n). 
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Recent Developments in the Theory of the 
Shapley Value* 

Robert J. Aumann 

1. Introduction. The Shapley value is an a priori measure of a game's utility to 
its players; it measures what each player can expect to obtain, "on the average", 
by playing the game. Other concepts of cooperative game theory, such as the Core, 
Bargaining Set [6], and N-M Solution [26] predict outcomes (or sets of outcomes) 
that are in themselves stable, that cannot be successfully challenged or upset in 
some appropriate sense. Almost invariably, they fail to define a unique result; and 
in a significant proportion of the cases, they do not define any result at all.1 The 
Shapley value, although it is not in any formal sense defined as an average of such 
"stable" outcomes, nevertheless can be considered a mean, which takes into account 
the various power relationships and possible outcomes. 

It follows from this that the Shapley value may also be thought of as a reasonable 
compromise, the outcome of an arbitration procedure. A player should be willing 
to settle for a compromise that yields with certainty what he otherwise would only 
have expected in the mean. For example, the symmetric N-M solution of the 3-person 
majority game predicts one of the three payoff vectors (1/2, 1/2, 0), (1/2,0,1/2), 
and (0, 1/2, 1/2), corresponding to the three possible 2-person majorities. Before the 
beginning of bargaining, each player may figure that his chances of getting into 
a ruling coalition are 2/3, and conditional on this, his payoff is 1/2; the "expected 
outcome" would then be (1/3,1/3,1/3), and this is also the Shapley value. It would, 

* This work was supported by National Science Foundation Grant SOC75-21820-AO1 at the 
Institute for Mathematical Studies in the Social Sciences, Stanford University. 

1 The Bargaining Set is the only one of these three covered by a general existence theorem. 
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therefore, also be a reasonable compromise; but it is not in itself stable, since it can be 
easily improved upon by any two-person coalition. 

Mathematically, the Shapley value is perhaps the most tractable of all the concepts 
of cooperative game theory. This has led to the growth of a considerable theory, 
which in turn has enabled a wide range of applications to Economics and Political 
Science. Here we survey some of the more recent of these developments. 

2. General definition in the transferable utility case. We begin by recalling that 
a coalitional game, or simply game for short, is a real-valued function v on the 
<j-field fé of a measurable space (/, fé), with v(0)=O. Here / is the player space, 
the members of fé are coalitions, and v(S) is the worth of a coalition S. A game 
is called monotonie if SZDT implies v(S)^v(T). 

Fix (/, fé). An outcome (or payoff vector) is a finitely additive game.2 For each 
game v and automorphism (one-one bimeasurable function) 0 of (/, fé), define 
the game 0^v by (0^v)(S)=v(0S) for all S. 

Let us be given a linear space Q of games, which is symmetric in the sense that 
®*ô = o f° r all 0. An operator <p from Q to outcomes is called symmetric if 
c(0*v) = 0jcpv) for all v in Q and all automorphisms 0; monotonie if cpv is 
monotonie whenever v is; and efficient if (<pv)(I) = v(I) for all v in Q. A zw/we 
on g is an operator from Q to outcomes that is linear, monotonie, symmetric, 
and efficient. 

3. Finite games. A game v is called finite if there is a finite subset N of / (a support 
of ü) suchthat v(S)=v(SnN) for all £. The finite games form a linear space 
on which there is a unique value; it is given by 

(3.1) ÛW({Q) = E(v(Stu {0)-»(SO). 
where S>| is the set of players (members of N) preceding ï in a random order on N, 
and £ is the expectation operator when each order on N has probability l/\N\l 
[36]. It is easy to check that (3.1) does indeed define a value; as for uniqueness, 
perhaps the simplest proof is that of Dubey [7], who uses an induction on \N\ to 
show that every finite game is a linear combination of unanimity games (games for 
which v(S) = l or 0 according as SZDN or S$N). 

4. Nonatomic games, partition values, and the diagonal property. Diametrically 
opposed to the finite games are the nonatomic games, which model situations in 
which no individual player has any significance [2]. Examples are games of the form 
/b/x, where \i is a nonatomic vector measure, and / is a real-valued function on 
the range of \i vanishing at 0. One approach to defining a value for a nonatomic 
game v is via approximations by finite games. Specifically, if i7 is a measurable 
partition of /—i.e. a finite subfield of fé—we may define a finite game vn, whose 

a Intuitively, the sharing of proceeds in an additive game involves no difficulties, so that by 
associating an additive game to a non-additive game, we have essentially specified an outcome. 
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support consists of the atoms of 77, by vn=v\n; then vn is a kind of finite approxi-
mant to v. Given a coalition S in fé, an increasing sequence {nl9n29 ...} of 
such partitions is called S-admissible if Sgili and [jini generates fé. A value 
cp on a space g is called a partition value [30] if for each game v in g and each 
coalition S9 there is an »S-admissible sequence {nl9772, ...} such that 

(4.1) lìmWvnì)(S)-+((pv)(S)9 
« - V O O 

where ij/ is the value for finite games. If for a specific game v and outcome <pv9 

(4.1) holds for all £ and all ^-admissible sequences, then we write v£ ASYMP and 
call cpv the asymptotic value [16] of v. Whereas the partition value is defined in 
terms of the imbedding space g, the definition of asymptotic value is independent 
of any imbedding space; its existence depends on the game v only. 

A partition value of a non-atomic game is a limit of values of large finite approx
imants. The asymptotic value is the strongest possible partition value; if it exists, 
then no matter how the player space is cut up,3 in the limit result is the same. 

Are there values that are not partition values? This leads us to the diagonal 
property of values. Let v be a nonatomic nonnegative measure on fé with v(7) = l 
(vGNA1 for short); 77 a partition of / into many—say n—"small" sets; and Qh 

the union of the first h atoms of 77 in a random order on the atoms. For a fixed A, 
we will have v(Q}^hjn with high probability; moreover, for fixed 8, if 77 is 
sufficiently far out in some » -̂admissible sequence, then the probability is >1— e 
that \v(Qj) — (h/n)\<e simultaneously for all h. Thus if /^(NA1)1" (i.e. \i is an 
m-tuple of NA1 measures), almost all the coalitions occurring in Formula (3.1) 
as applied to vn will have /̂ -measures very near the "diagonal" Dm = {(t9 ...9t): 
f €[0,1]} of the m-cube. In particular, let cp be a partition value; then 

(4.2) if cp is defined for two games vx and v2 that agree on all coalitions 
S with p,(S) in some ^-neighborhood of Dm, then cpv1 = cpv2. 

Any value cp satisfying (4.2) for all vectors \i of NA1 measures is called a diagonal 
value. 

All the values treated in [2] were diagonal, and for a long time it was not known 
whether all values are diagonal. Finally, Neyman and Tauman [29] and Tauman 
[40]4 found examples of nondiagonal values. In particular, not all values are parti
tion values. 

What, then, accounts for the diagonality of all previously considered values? 
In [27], Neyman answered this question by showing that all continuous values are 
diagonal; here continuity is w.r.t. (with respect to) the variation norm, defined by 

IMI = s u p { Ì |*Œ)-*GSf-i)|: 0 = SoCzS^.^aS, = / } . 

8 E.g. into n intervals of "length" 1/«, or into n of length 1/2« and «a of length l/2wa 

4 [40] avoids a certain undesirable pathology in [29]. 
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This norm plays a crucial role in the theory, and all previously considered values had 
been continuous w.r.t. it. 

Closely related to the diagonal property is the diagonal formula for values. Let 
pNA denote the smallest variation-closed linear space containing all games /ov, 
where VÉNA1 and / is absolutely continuous. There is a unique value on pNA, 
and pNAczASYMP [16]. Suppose now that /^(NA1)™ and / é C ^ T T ) . Then 
/bjuÇpNA, and 

(4.3) ?(/o/*) = (ft /V/(f,...,*)<**> 
o 

[2, Theorem B]. To understand (4.3), note that it follows from Lyapunov's theorem 
that for each t in [0,1] there is a coalition ti with fi(tl) = (t9 ...9t): the ti are 
called diagonal coalitions, and may be considered "perfect samples" of 7 as far as 
fofi is concerned. Let us now think of a "player" in a non-atomic game as an 
infinitesimal coalition ds; the marginal contribution of ds when added to ti is 

(fop)(tIuds)-(fop)(tI) = (ii(ds), V/fc ..., 0>-

Thus (4.3) says that the value of a player is his average contribution to a diagonal 
coalition. 

This principle, which is of fundamental importance in the theory of nonatomic 
games and its applications, has been extended far beyond the space pNA for which 
it was originally established. The deepest and furthest-reaching work on this subject 
is due to J. F. Mertens [20], who has established the existence of a value obeying 
a suitable analogue of (4.3) on a very large space of games, which even contains 
games not in ASYMP. 

5. Political applications. A weighted majority (WM) game is one of the form 
fqov9 where v is a non-negative measure with v(7) = l (the vote measure), 0<#<1 
and fq(x)=0 or 1 according as x^q or x>q. Finite WM games appear already 
in [26]. Values of finite WM games were first studied by Shapley and Shubik [38], 
who interpreted them as measures of political power. They have since been applied 
to many voting situations, such as the UN security council, the US electoral college, 
state legislatures, multi-party parliaments, etc. ; [18] is a good survey. Shapiro and 
Shapley [35], Milnor and Shapley [21], and Hart [11] studied values of oceanic 
games, i.e. WM games in which v contains a nonatomic part (the "ocean" of small 
voters) as well as some atoms (large voters); [21] contains an application to corpora
tions with several large stockholders. An interesting qualitative conclusion is that 
when (7=1/2, a single atom has value larger than his vote, as might be expected; 
but this is often reversed when there are several atoms. For example, when v has 
2 atoms and an ocean of measure 1/3 each, then the atoms get only 1/4 of the value 
each. 

The above are asymptotic results on the values of the atoms when the largest 
"small" vote tends to 0. Calculating the values of the small voters themselves, 
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even approximately, is much more difficult, and even when there are no atoms, the prob
lem was open for many years. Only recently did A. Neyman [28] prove, in a remark
able tour-de-force of combinatorial reasoning, that ^ovGASYMP when vÇNA1. 
Intuitively, his result says that the value of a coalition depends only on its total 
vote, not on the relative sizes of the voters. It can be used to prove that oceanic 
games are in ASYMP, and also that /ov 6 ASYMP when / is monotonie and 
continuous, and vGNA1. Also, there are close connections to renewal theory. 

More complex political structures can also often be described by using WM games. 
A bicameral legislature is the product of 2 WM games, and the electoral college when 
the players are the individual citizens is a polynomial in WM games. Such games 
need not be in ASYMP; thus if \i9 vgNA1 and / ^ v , then (f2/3oii)(fmov)$ 
ASYMP; however, it is a member of a space with a partition value [30]. Whether 
there is a partition value on the algebra generated by all nonatomic WM games 
is an open question. 

See [31] for an application using a non-symmetric variant of the value. 
A variant of the Shapley value called the Banzhaf value has achieved some pro

minence in connection with political models. For finite games it is defined by (3.1), 
with the sole difference that now 5, varies over the set of all subsets of N\{i}9 

each such coalition receiving probability l/2,iV|""1. In general, it is not efficient. 
An account of the theory and a very extensive bibliography may be found in [8]. 

6. Economic applications. Games arising in economics often have a property 
called "homogeneity of degree 1 ;" roughly, this means that two coalitions differing 
from each other in their size only, but not in their composition, have worths pro
portional to their sizes. Examples are games /o/z, where ^(NA1)7" and / is 
a function of m variables that is homogeneous of degree 1. Suppose now that 
cp is a partition value. A principle that is basic to many of the economic applications 
asserts that 

(6.1) if (p is defined for a superadditive5 game v that is 

homogeneous of degree 1, then (pv is in the core of v. 

(Recall that the core of a game v is the set of outcomes v such that v(I) = v(I) 
and v(S)^v(S) forali S.) 

Let's demonstrate this in the particular case in which v=fofi9 where ^(NA1)7" 
and / is a superadditive6 function defined and homogeneous of degree 1 on the 
nonnegative orthant of Rm

9 and C1 in its interior. Although /$C1(7^m), it can 
be shown that nevertheless #6pNA and the diagonal formula (4.3) holds. Moreover 
the homogeneity of degree 1 and the superadditivity together yield the concavity 
of / Since / is homogeneous of degree 1, V/(f,..., t) is a constant, so (4.3) yields 

5 v(SUT)>v(S)+v(T) whenever 5Tir=0. 
0 f(x+y)>f(x)+f(y). 
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(pv=(fi9 V/(l,..., 1)>. This means that (pv is a function h of ft(S)9 i.e. ((pv)(S) = 
h(ii(S)); and in fact h is the linear function with coefficients V/(l, ..., 1). By the 
efficiency of the value, A(l, ..., l)=((pv)(r) — v(I)=f(l9 ..., 1), and hence it follows 
that the graph of h is tangent to that of / at (1, ..., 1). Since / is concave and 
h is linear, it follows that the graph of h always lies above that of / ; but this 
implies that ((pv)(S)^v(S) for all S9 which together with the efficiency ((pv)(I) = 
v(I) means that (pv is in the core. 

In this case a small additional argument, which depends on the actual tangency 
(i.e. the differentiability of / ) , yields that v is the only member of the core. This is 
true whenever uÇpNA; pNA expresses a kind of differentiability property of 
a game. In general, though, the core will contain more than just the value. For 
example, when v is the minimum of two NA1 measures, then the core consists 
of a non-degenerate interval (i.e. the set of all convex combinations of two different 
outcomes); in this case the asymptotic value exists and is the midpoint of the core. 
More generally, Hart [12] has proved that if a superadditive game v that is homo
geneous of degree 1 has an asymptotic value (pv9 then (pv is the center of symmetry 
of the core of v. 

If the core has no center of symmetry,7 there will be no asymptotic value; but not 
all is lost. If v is an NA1 measure, an outcome (pv is called a v-value if for all S9 

(4.1) holds for all »S-admissible sequences of partitions whose atoms have equal 
(or in an appropriate sense almost equal) v-measures. Suppose now that \i in 
(NA1)"' is absolutely continuous w.r.t. v, with Radon-Nikodym derivative dfi/dv 
in (L2(v))"'. Let / be superadditive and homogeneous of degree 1; then Hart [14] 
has shown that v—fo\i has a v-value, which has an interesting expression in terms 
of the core of v and the /w-dimensional normal distribution whose covariance 
matrix is the same as that of dfi/dv. 

We come now to the applications. An important model in economic theory is 
that of the exchange economy. Like many economic models, it cannot be expressed 
as a transferable utility (TU) game as in § 2; a more general concept—the nontransfer
able utility (NTU) game—is required. The most commonly used adaptation of the 
value to NTU games is that introduced8 in [37], which culminated a long development 
to which many contributed; see in particular [24], [9]. We will not define the NTU 
value here; a brief treatment is in [1, § 4]. It is enough for our purposes to note that 
the analysis involves the values of certain TU games auxiliary to the given NTU 
game. 

In an exchange economy, the law of supply and demand defines competitive prices 
and, correspondingly, competitive allocations of goods and services. The TU games 
to which we are led from exchange economies are precisely the superadditive homo
geneous games, and their cores are closely related to the cores of the "parent" NTU 

7 For example, the core of the minimum of 3 linearly independent measures is a triangle. 
8 For an alternative approach, see Owen [32]. 



Developments in the Theory of the Shapley Value 1001 

economies. The relationship between the value and the core expressed by (6.1), 
and the subsequent discussion, thus imply a close relationship between values and 
competitive allocations. More precisely, it can be proved that all allocations as
sociated with an NTU value of a non-atomic exchange economy—i.e. all value 
allocations—are competitive. When the utility functions of the agents in the economy 
are sufficiently differentiable, we can assert the converse as well; in that case, therefore, 
the value allocations are the same as the competitive allocations. 

Again, many people contributed to this development; see in particular [39], [5], [2], 
[4], [12], [13], [19], [14]. An excellent survey up to 1976 is in [13]. 

Models containing both political and economic elements, including in particular 
problems of taxation and redistribution, have been considered recently [1]. The 
TU games to which these models lead are products of pNA games with nonatomic 
WM games; the methods of Neyman [28] show that they have asymptotic values, and 
they are also amenable to the diagonal methods of Mertens [20]. 

Conceptually, these models «differ from exchange economies in that threats play 
an important role. Games of this kind were treated by Nash [25], and much more 
generally by Harsanyi [9]. The worth v(S) of a coalition S in an auxiliary TU 
game is now based as much on the harm that S could do to the players outside it 
as the good that it could do for itself. The value is of course efficient, so that it 
assumes that destructive threats are not actually carried out; this fits well our inter
pretation of the value as a reasonable compromise.9 None of the pie gets thrown 
out, but how it gets cut up may depend on threats. 

7. Cost sharing. An interesting practical application of the Shapley value is to 
problems of cost sharing. For example, Littlechild and Owen [17] have considered 
the problem of airport landing fees. Runways (and other airport components) 
must be built large enough to accomodate the largest aircraft that will use them; 
but obviously it makes no sense to share the cost equally among all users, i.e. to 
charge the same landing fees to a jumbo jet and a private 4-seater. Here one defines 
a game v by considering the players to be individual aircraft landings, with v(S) 
the hypothetical cost of building a facility that will accommodate the set S of 
landings. Each landing is then charged a fee precisely equal to its Shapley value. 
The efficiency condition assures that the fees will exactly cover the cost, the symmetry 
condition assures that similar users are charged the same fee, and the linearity condi
tion assures that the cost of using two different and independent facilities is the sum 
of the costs of using each one separately. Monotonicity, of course, only says that 
you don't get paid for landing at an airport. 

A spectacular recent application of this type is to telephone billing at large institu
tions. See Billera, Heath, and Raanan [3]; the system proposed by them has been 
adopted for internal telephone billing at Cornell University. 

9 Value models in which threats do sometimes get carried out involve incomplete information; 
see [10], [23]. 
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8. Other contributions. A complete review of recent developments in the theory 
of the Shapley value is impossible in the space allotted to this paper. The quantifier 
"some", not "all", should be understood in the title; there have been many important 
contributions not covered here. We close by mentioning two conceptually innovative 
recent works : In [34], A. Roth formalized the idea that the value measures a game's 
utility to its players; and in [22], R. Myerson characterized the value in terms of 
communication networks connecting the players. 

9. Conclusion. Much of the analysis in political and economic science has tradi
tionally proceeded on an ad hoc basis, often using different methods and principles 
for each model under consideration. A unified approach to these disciplines is 
provided by game theory. Among the tools it provides, the Shapley value is parti
cularly broadly and systematically applicable, and appears able to account for 
theoretical principles in widely diverse areas. 
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Computer Animation and the Geometry 
of Surfaces in 3- and 4-Space 

Thomas F. Banchoff 

Geometers have always used any available media to help them illustrate their 
work with diagrams, pictures, and models. Modern computer graphics provides 
a new medium with great potential both for teaching and research. Older methods 
of representing curves and surfaces by drawings on a blackboard or models in wire 
or plaster are frequently found to be inadequate in many important geometric prob
lems, specifically those which involve objects undergoing transformations or objects 
which exist properly in the fourth dimension or higher. A high-speed graphics 
computer makes it possible to approach and solve such problems by methods which 
were unavailable only a few years ago. Producing 30 different pictures per second, 
such a computer can display on a television tube a sequence of images which the 
viewer readily interprets as the projections of an object rotating in 3-dimensional 
space. By turning dials, a mathematician can investigate a curve or surface by 
having it rotate about different axes and stopping it at especially interesting positions. 
He or she can "fly inside" the object to focus on some local behavior or proceed 
to examine some specific singularity by deforming the object through a one-parameter 
family of curves or surfaces. 

Most of the classical objects of the calculus or differential geometry of curves and 
surfaces take on new meaning when they are reinvestigated using such methods. 
But these approaches also give insights into some areas where previous descriptive 
methods were very limited and entirely new aspects of geometry and topology 
become subjects for exploration. 

In this report, we describe five sets of films which give examples of the use of 
computer graphics techniques. Some are in finished form and have been used in 
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a variety of teaching situations. Others are in preliminary form, intended for mathe
matical research discussions. 

For the most part the films rely on direct and uncomplicated techniques. Most 
of the objects in the films are parametrically defined surfaces, given by three or 
four coordinate functions, each a function of two variables defined over a cross-
hatched domain which is usually either a rectangular or polar coordinate patch 
in the plane or a portion of the Riemann sphere. The images are then projected 
into a 3-dimensional subspace, orthogonally or centrally, and then projected again 
into the 2-dimensional plane of the television tube which is the output device. In some 
cases, for an extremely complicated object, it is possible to project two images which 
can be viewed with stereoscopic apparatus to give the effect of a single 3-dimensional 
image. Usually, however, a sense of 3-dimensionality is developed by having the 
image rotate slowly about an axis in the 3-dimensional space. For almost all viewers, 
this movement creates a spatial sensation which is interpreted readily as the shadows 
of a rotating transparent framework in ordinary 3-space. Subsequent deformations 
take place within the background context provided by this rotation. In particular 
as slices are made by planes parallel to a fixed direction, the curves of intersection 
on the rotating figure are perceived to be planar slices. 

Although slicing by a linear function, or more generally by some other function, 
does require some computational ability, the machine operates quickly enough that 
it is possible to view a sequence of slices in "real time", as if observing an object 
through a window as it rotated in the next room. The effect, however, is greater if 
in addition to the slice, the film displays as well the part of the surface lying below 
or above the slice—the technique of "water-level slicing". Since this technique 
requires more time per picture and since it is especially well suited to representations 
using color, this technique is used primarily in the animation mode, where one 
picture is made at a time, and then the finished film is projected at 24 frames per 
second. For color, filters are used and each frame is exposed several times for the 
different portions of the picture. 

In addition to projection, rotation, and slicing it is possible to use linear inter
polation between figures with the same parametrization. Again this is fast enough 
that the technique can be employed for real time manipulation of the figures for 
videotapes or for on-line research. 

More complicated programs require a recomputation of the data for every frame 
and are suited more for a filming mode. 

All of these techniques can be handled by a relatively small machine, in this case 
a META 4 A, B configuration with a Vector General scope, augmented by a parallel 
processor built at the Brown University Computing Laboratory. 

All films described here were produced in collaboration with Charles M. Strauss 
at Brown University. 

THE HYPERCUBE: PROJECTIONS AND SLICING treats the convex hull of the sixteen 
points ( ± 1 , ± 1 , ± 1 , ±1) in 4-space, first by orthogonal projection then by 
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central projection from 4-space to 3-space. In each case we rotate in the coordinate 
planes xy9 yu9 xw9 yw9 and zw ending at the original position. We then slice each 
figure by hyperplanes perpendicular to the vectors (1, 0, 0, 0) then (1,1, 0, 0) 
then (1,1,1,0) and finally (1,1,1,1), For a more thorough description of this 
film, see [4], 

COMPLEX FUNCTION GRAPHS treats graphs of complex functions w=f(z) con
sidered as parametric surfaces (x9 y9 w, v) in 4-space, where z = x + iy and w = 
= u + iv. In each case orthographic projection into (x9 y9 u) is used to gett he graph 
of the real part of w (Figure 1), then rotation in the uv plane gives (x9 y9 v)9 

the graph of the imaginary part of w. Rotating the original graph in the xv 
plane leads to (y9 w, v) the graph of the imaginary part of the inverse function of 
/ , and finally projection to (x9 u9 v) gives the graph of the real part of the inverse 
function, 

FIGURES 1 AND 2 

The first example is the squaring function w = z2 with domain given by the lower 
half of the Riemann sphere and graph given by (x9 y9 x2—y*9 2xy) in 4-space. Pro
jection of this locus into the (x9 y9 u) space gives a hyperbolic paraboloid (figure 1). 
Rotating in the uv plane gives the imaginary part of the squaring function, also a 
hyperbolic paraboloid. Rotating the original figure in the xv plane gives the imagi
nary part of the square root as the projection to (y9 u9 v) space. The graph of the 
inverse relation has a self-intersection curve along the positive w-axis and a singular 
point at the origin where the rank is 1. It represents a geometric realization of the Rie
mann surface of z=±]/w (Figure 2). In each projection the form of the para
bolas x=constant is indicated. The special projection to the uv plane has a 
ramification point of order 2 which resolves into a hypocycloid with three cusps as 
the graph is rotated. 
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The second example is the exponential function w—ez with the inverse relation 
z=log(w). The domain is — 2TZ^X^47I9 —l^y-^l and the graph is 
(x9y9e

xcos(y)9e
xsin(y)) in 4-space. Projection to (x9 y9 u) gives the real part 

of the exponential (Figure 3). The projection (y9 u9 v) gives a right helicoid which 
represents the imaginary part of the Riemann surface for the logarithm (Figure 4), 

FIGURES 3 AND 4 

The projection (x9 u9 v) gives a surface of revolution of a real exponential function 
as the real part of the logarithm (Figure 5). This example is also described in [5]. 

THE GAUSS MAP, A DYNAMIC APPROACH follows geometric ideas originated 
by Gauss in his paper defining total curvature of embedded surfaces. For the elliptic 
paraboloid, we show how the unit normals over a curve can be collected at a single 
point to form the boundary of the spherical image of the region bounded by the 
curve (Figure 6). ̂ The same procedure for the hyperbolic paraboloid produces 

FIGURES 5 AND 6 
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a spherical image with orientation reversed (Figure 7). For a parabolic cylinder, the 
spherical image degenerates to a single curve (Figure 8). 

We consider two examples which include elliptic as well as hyperbolic points and 
we examine in particular the singularities of the spherical image map. For almost 
all immersed surfaces, this mapping will have only folds and cusps as singularities 
and we indicate how two degenerate cases may be deformed to exhibit generic beha
vior at the cusps of this map. 

/r "V ̂ • t t : t V * ' 

iy, ' 
FIGURES 7 AND 8 

First we consider the monkey saddle, with an isolated point of zero Gaussian 
curvature, and perturb to get the graph of (x9 y9 x

3—3xy2+E(x2+y2)) (Figure 9). 
For £=0, this surface has a Gauss mapping with a ramification point of order 2, 
and for fi^O, the image of the parabolic curve will have three cusps (Figure 10). 

Secondly we consider the biparabolic surface which is the graph of 
(x9y9 (y—x2)(y—sx2)). For e ^ ± l , the Gauss mapping of this surface will have 
exactly one cusp and the Gauss mapping will be stable (Figure 11). The case c=0 
was first investigated by M. Menn [7] (Figure 12). 

In each case we show the spherical image of a circle x*+y*=r* as /* changes. 
We show the linear interpolation between the surface and its Gauss spherical image 
so that the singularities of the Gauss map are expressed as limits of singularities of 
homothetic images of parallel surfaces of the original surface. We then show the 
spherical image of a test curve centered on the curve r—constant and indicate 
the behavior of the asymptotic vectors in a neighborhood of a cusp of the Gauss 
mapping. 
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Various characterizations of the singularities of the Gauss map in terms of lines 
of curvature, ridges, and double tangencies are included in the joint work of the 
author with T. Gaffney and C, McCrory [3]. 

THE VERONESE SURFACE is an embedding of the real projective plane which starts 
with the hemisphere x2+y2+z2=l9 z^O and maps each point (x9y9z) to 
(x\ y2

9 z2
9 Ì2xy9 Ì2yz9 fäzx) in 6-space. The projection of this surface into 4-dimen-

sional space given by 
(Y2xz, f2yz9 (\\f2)(z2-x2\ f2xy) 

FIGURES 9 AND 10 

FIGURES 11 AND 12 

f.- / / , *\\ > 
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is again an embedding and we examine a family of projections of this surface into 
3-dimensional subspaces (all of which must have local singularities) [1]. 

The projection into the first three coordinates gives a cross-cap with two pinch 
points (Whitney umbrella points). The linear interpolation of the lower hemisphere 
into the cross-cap is a regular homotopy right up to the last instant when opposite 
points on the equator are identified, forming a segment of double points (Figure 13). 

J 

W.< iii"* V ~""*- I -, - ^"r "'S'A J 

4 - "' 

fr 

* 7, i 

FIGURES 13 AND 14 

Rotating in the plane of the third and fourth coordinates gives a deformation 
from the cross-cap to Steiner's Roman surface (f2xz9 Ì2yz9 ]f2xy) (Figure 14) 
with tetrahedral symmetry. This projection has six pinch points which are the end-
points of three double point segments intersecting in a triple point. These examples 
are described further in [6]. 

The embedding in 4-space is tight (i.e. almost every height function when restricted 
to the surface has exactly one maximum and one minimum) and this property is 
shared by the images in 3-dimensional subspaces. These examples lead to the con
jecture that any stable tight mapping of the real projective plane into 3-space must 
have either two pinch points or six pinch points. At the position in the rotation 
where the figure moves from cross-cap form to Roman surface form, the double 
point locus consists of two straight lines, and one of the orthogonal projections 
to a 2-plane is an equilateral triangle (Figures 15 and 16). 

In the film the cross-cap is sliced perpendicular to (1,0,0), then to (1, 1,0), 
then to (1,1,1). As the first two slices pass through the origin, they contain the 
line which is the image of the tangent plane at a pinch point and they intersect the 
surface in a pair of ellipses which are tangent to the line. 

After rotation in 4-space, Steiner's Roman surface is sliced in the same three direc
tions, obtaining a cusp in the slice curve whenever the slicing plane passes a pinch 
point without containing the tangent line. The final slices have threefold symmetry, 
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F I G U R E S 15 A N D 16 

with a maximum, a curve with three cusps, then with three nodes, then with a triple 
point, then three nodes, ending at a doubly covered projective line with a Möbius 
band neighborhood containing three pinch points. 

THE TORUS is given as the surface of revolution 

((2 + Y2 cos i/0 cos 0, (2 + y2 cos \j/) sin 0, j/2 sin ifr) 

and the slices in three different directions describe three different types of critical 
point behavior. Slicing perpendicular to (1, 0, 0) gives four non-degenerate critical 
points at different levels and the slice through the origin is a pair of congruent 
circles. Slicing perpendicular to (0, 0,1) gives two critical levels, each consisting 
of a circle of degenerate critical points and the slice through the origin is a pair of 
circles with the same center. A classical problem in differential geometry asks for 
a direction for which there are exactly three critical levels, and the film illustrates 
such a slice, perpendicular to (1, 0,1). In this case, the slice through the origin is again 
a pair of circles, this time intersecting in a pair of points [8]. 

THE FLAT TORUS is an embedding as a product of two circles in 4-space considered 
as the product of two planes, i.e. 

(coso, sino, cosp, sin<p). 

This torus is a surface on the 3-sphere of radius ]/2, as we may project stereo-
graphically from (0, 0, 0, j/2) and we obtain the torus in the previous paragraph 
(where sin^=|/2cosc>/(|/2-sinc))). Rotating the flat torus in the plane of the 
first and fourth coordinates produces a one-parameter family 

(cosa cos 0+sin a sinç>, sin0, cos<p, —sin a cos 0+cos a sin<p) 
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which projects to a family of cyclides of Dupin, all conformally equivalent to the 
original torus. In particular when a=7t/2 and the point (0, 0, 0, j/2) lies on the 
torus, the result is a noncompact cyclide which separates all of 3-space into two 
congruent parts. 

The cyclides of Dupin and spheres are the only closed surfaces in 3-space which 
have the spherical two-piece property, so that any sphere separates them into at 
most two pieces. Their inverse stereographic projections are the only surfaces on 
the 3-sphere which are tight, so that every hyperplane separates them into at most 
two pieces [2]. 
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TpyflLi MexcAyHapoflHoro KoHrpecca MaTeMaTHKOB 

XejubCHHKH, 1978 

HeKOTopBie BonpocBi HcTopnn TeopHH 

ÂHaJIHTIiTieCKHX OyHKItHH B X I X B, 

A. H. MapKymeBHH 

1. B anoxajibHOH paSoTe PHMana "Grundlagen für eine allgemeine Theorie 
der Functionen einer veränderlichen complexen Grösse" (1851) HOHTH oTcyTCTByioT 
CCHJUCH Ha npeAmecTBeHHHKOB. n p n 3TOM B Heia OOXOAäTCJI He TOJIBKO pe3yjn>TaTbi 

H MGTOffbi KOHIH H ero nocjie^oBaTejieH, HO H «npo6jieMa Beica», KOTopoä caM 
KOHIH He 3anHMajicK: H3y*ieHHe aGejießtix HHTerpaJiOB H HX o6pameHHe. Ho, KO-

HeHHO, PHMaH »CHJI H BOCITHTblBajICÄ B EWeHHOH aTMOC^epe, C03flaHHOH BCeMH 
3THMH xpy^aMH. Satana Hacroamero ßOKJiaßa B TOM, HTO6M nojmee BBIHBHTB 
Te H êH H KOHicpeTHLie pe3yjiBTaTbi TeopHH ^ynKii,™ cepeAHHM nponijioro Beica, 
KOTOpLie BJIHÄJIH npjIMO HJIH KOCBeHHO Ha AHCcepTaijHio PHMam. 

2. IIOHTH Bce CBH3aHHoe c HMeneM KOHIH 6HJIO yace cAejiaHO K 3TOMy BpeMemi. 
3 T O öLIJI Ha6op Mom,HHx cpeACTB HCCJieAOBaHHa pasjinrabix npo6jieM aHajiH3a: 
HHTerpajibHa« TeopeMa, HHTerpaji KOHIH, TeopeMa o pa3Jio»ceHHH B creneHHOH 
pKA, BKJHonaa H pa3jioaceHHe HCHBHLIX 4>yHKii,HH, noHÄTHe Bbi^eTa H TeopeMa o 
BHieTax, MaacopaHTLi cTenemibix pjiAOB H CBÄ3aiiHoe c HHMH «HCHHCJieHHe npe-
flejioB» (calcul des limites), no3BOJisBHiee ofixopytTbcx. B TeopHH aHajiHTHHecKHx 
^yniojHH 6e3 nonaTHÄ paBHOMepHOH cxoflHMocTH. MHoroe H3 yxa3aHHoro 6HJIO 
onyÔJiHKOBaHO nonra 3a neTBepTb Beica Aop paccMaTpHBaeMoro BpeMeiiH. Ho H 
B 40-bie roABi Komi* ycHjieimo pacnpocTpanaji CBOH npeacime H HOBbie pe3yjib-
Tara, nocpeßCTBOM "Exercices d'analyse et de physique mathématique", BBIXOAHB-
mHx OTAeJibHLiMH BbinycKaMH. Ha THTyjibHbix JincTax nerapex TOMOB, icaacAMH 
H3 KOTopbix cocTaBJieH H3 12 BBmycicoB, 3HanaTCÄ 1840, 1841, 1844 H 1847 ir. 
HeoöxoAHMo, oßnaico, yraraiBaTb, HTO ^SLKTWIQCKKC cpoicH H3AaHH£ BbinycicoB 
nocjieAHHx A»yx TOMOB 3ana3AbiBajiH AO 3—4 JieT no oTHoniemiio K 1844 H 1847 IT. 
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BbinycKH 3TH 6jiaroAapH pacToponHocTH HX H3AaTeji*r Bachelier CBoespeMeHHo 
AocTHrajiH GojibuiHx ropoAOB Eßponbi, B nacTHocTH Eepjima, rAe Bamejn>e HMeji 
cBoero npeACTaBHTejM. 

H3BecTno, HTO PHMaH, 6yAyHH B BepjiHHe c 1847 r., oôcyacAaji c 3H3eHHiTeHHOM 
ocHOBHbie npHHî Hnbi BBeAeHHÄ icoMnjieKCHbix BCJIHHHH B TeopHH 4>yHKipiH, HpHHeM 
3H3eHIHTeHH OCTaBajICÄ Ha TOHKe 3peHHÄ <|>OpMajIbHHX BblHHCJieHHH, a PHMaH 
BHABHraji ypaBHeHHa e HacTHbiMH npoH3BOAHbiMH B KanecTBe cymecTBeimoH oc-
HOBbi onpeAejieHHÄ ^yincî HH KOMnjieiccHoro nepeMeHHoro. KOHCHHO, c|)opMajibHo-
KajibKyjiaTHBHaa TOHKa 3penH£ 6biJia cBOHCTBemia 3H3eHHiTeHHy B ero nocTpoeiiHH 
TeopHH 3JijHHiTHHecKHx tyyjiKnym; ero AeHTpajibHaji pa6oTa GbiJia ony6jiHKOBaHa 
B TOM »ce rofly. Ho £CHO, HTO penb y PHMaHa injia He 06 sjuinnTHHecKHx (JjyHKAHjix. 
M H CKOjiHHbi npeAnojiaraTb, HTO OCHOBHBIM onnoHeHTOM PHMaHa 6HJI (jmKTH-
necicH He 3H3eHmTeHH, a KOHIH. B caMOM A^Jie, B "Mémoire sur les fonctions de 
variables imaginaires" KOHIH, noMemeHHOM B 36 Bbinycice Exercices (OH Bbimeji 
no BceM npH3HaKaM K Komiy 1846 r.), Mojioflbie MaTeMaraicn MorjiH nponecTb 
cjieflyiomee OnpeAejieHHe t̂ yHKijHH KOMnjieiccHoro nepeMeimoro (no <j)OpMe Gojiee 
y3Koe, neM B «AjireôpaHnecKOM aHajiH3e» KOIHH): "Ces fonctions se trouvent 
complètement définies quand les opérations ont été définies elles-mêmes, et quand 
on a complètement fixé le sens de notations employées dans le calcul (Exercices, 
III, 1844, p. 366). 3 T O T Te3Hc npocjiaBJieHHoro yneHoro H MOT nocjiyacHTb, no 
HameMy npeAnojioaceHHio, HCXOAHHM nymcTOM AHCKyccHH. 

3. Topa3Ao BaacHee RJIZ Hac, oAHaico, HTO PnMan BOBce He oTÔpacwBaji noHtfTHH 
4)yHKAHH KOMnjieKCHoro nepeMeHHoro, KaK pe3yjibTaTa oneparj.HH HaA BeJiHHHHaMH. 
Boo6m;e HHTepec PHMaHa K cTapHHHOH npoÔJieMe aHajiHTHnecKoro npeACTaBjieHHH 
$yHKn,HH: H K cpeACTBaM TaKoro npeACTaBJieHHa yAHBHTejibHo rjiy6oK H ycTOHHHB. 
BeAb nocjieAHeH npo6jieMe (npaBAa, B AeHCTBHTenbHOH oôjiacTH) nocBameHa 
BTOpaÄ ero AHccepTan;HH "Über die Darstellbarkeit einer Function durch eine 
trigonometrische Reihe" (1854). Ho STOT HHTepec 6HJI AoeTaTOHHO KCHO npoHBjieH 
H B nepBOH AHCcepTan,HH. Vace B § 1 PHMaH ACJiaeT oroßopicy, HTO onpeAeneHHe 
^ynKAHH KOMnjieKCHoro nepeMeimoro nocpeACTBOM TpeSoBamai AH^^epeHAHpye-
MOCTH He HCKJHonaeT coßnaAeHHK 3Toro onpeAeJieHHH c noHjrnieM 3aBHCHMocTH, 
BbipaacaeMOH nocpeACTBOM onepan,HH HaA BejiHHHHaMH "für den Begriff einer 
durch Grössenoperationen ausdrückbaren Abhängigkeit" (Werke, 1876, S. 4). Eme 
AaJibine OH HAeT B § 20, He coAepflcameM KomcpeTHbix pe3yjn>TaTOB, HO HO mnpoTe 
H 061AHOCTH HrpaiomeM pojib TeopeTHHecKoro BBeAenna K paôoTe. PHMaH yTBepac-
AaeT, HTO npHHima H ÓJiHHcaHinaa n,eJib BBeAeiiHÄ KOMHJieKCHbix BCJIHHHH B MaTe-
MaTHKy 3aKjiioHaeTca "in der Theorie einfacher durch Grössenoperationen aus
gedrückter Abhangigkeitsgesetze zwischen veränderlichen Grössen" (Werke, S. 38). 
^ajiee, pe3K>MHpyÄ, HTO »ce HOBoro AaeT ero HccjieAOBaHne A-Kä TeopHH (j)yHKu#H 
KOMTjJieKCHoro nepeMeHHoro, PHMaH yKa3HBaeT, HTO paccMOTpeHHe aHamiTHHecKHx 
BHpaKeHHH OH HCKjiioHaeT epeMenuo: "da wir die Betrachtung des Ausdruckes 
einer Function gegenwärtig ausschliessen" (ibid., S. 39). HaKOHen;, OH 3aKJnonaeT 
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3TOT § 3aAaHen: yôeAHTbca B nojiHOM coBnaAeHHH HOHHTHH ^yHKijHH KOMHjieKCHoro 
nepeMeimoro, ycTaHOBJiemioro B AHccepTan;HH "mit dem einer durch Grössen
operationen ausdrückbaren Abhängigkeit" (ibid.9 S. 39). B CHOCice noüCHaeTCÄ, HTO 
peHb HAeT O 3aBHCHMOCTÄX, BblpaacaeMblX npOCTeHHIHMH apH(j)MeTHHeCKHMH Aen-
CTBHÄMH B KOHeHHOM HJIH 6eCKOHeHHOM HHCJIC BbIpaÄaÄCb COBpeMeHHbIM Ä3HK0M, 
OH Aonycicaji B03MoacnocTb oxapaKTepH30BaTb KJiacc aHauHTHnecKHx ^ymauym, 
KaK 4>yHKii,HH, npeACTaBHMbix B BHAe npeAeJia nocjieAOBaTejn>HocTH paipiOHajib-
Hbix ŷHKiTHH (TeopeMa PyHre). KOHCHHO, B <J)opMyjiHpoBKe PHMaHa He xßaTajio 
Tpe6oBaHHÄ paBHOMepHOH CXOAHMOCTH. OAHaKo, BenepiHTpacc, OT BHHMaHM 
KOToporo 3To MecTo He ycKOJib3Hyjio, ocnapHBaji PHMaHa B coßceM ApyroM, B 
neM PHMaH, äBHO HOApa3yMeBaBHiHH CB«3HOCTb o6jiacTH onpeAejieiiHü ^yrncnjan, 
6HJI ne noBHiieH. B craTbe 1880 r. "Zur Functionenlehre" BenepmTpacc, npHBeA» 
npHMep p^Aa paipoHajibHbix ^yrncipriì, npeACTaBjunomero B pa3AeJibHO jiexcairjHx 
o6jiacTHx pa3JiHHHbie aHararrHHecKHe $ywaspK9 npaMo nnmeT, HTO ero n,ejib AOKa-
3aTb, HTO noH^THe MOHoreHHOH 4>yHKii;HH KOMnjieKCHoro nepeMeimoro He noji-
HOCTbK) coßnaAaeT c noHHTHeM 3aBHCHMocTH, BbipaacaeMOH nocpeACTBOM apn$-
MeTHnecKHx onepau,HH HaA BeJiHHHiiaMH H yKa3bmaeT B cHOCKe HTO npoTHBonojioEe-
Hoe yTBepKAemie 6HJIO BbicKa3aHO PnMaHOM B Könne §20 ero AHccepTan,HH. 

4. ECJIH nonbiTaTbca OTBJieHbcii OT ceroAHflHiHHx CBCACHHH B TeopHH ŷHKu,HH, 
TO, noacajiyn, caMoe HeoacHAaHHoe BnenaTjieHHe Ha HHTaTeJia npoH3BOA#T npocTOTa 
H HenpHHyMCACHHOCTb, C KOTOpOH PHMaH BBOAHT MHOrOJIHCTHyK) nOBepXHOCTb, 
pa3ocTjianiiyio na njiocKocTH. Ro PHMaiia MaTeMaTHKH c HHMH He BCTpenajincb! 
PHMaH 3Aecb, KaK H B Apyrnx cjiynaax, npoÄBHJi cnocoÔHOcTb reHHajibHoro KOH-
cTpyKTopa. MBI nocTapaeMCK noKa3aTb, OAHaKo, HTO MaTepnajibi AJIä STOH KOH-
CTpyKÎ HH 6bIJIH B H3BeCTHOH CTeneHH 3arOTOBJieHbI COBpeMeHHHKaMH PHMaHa. 
JIHCTH 6MUIH BHKpoeHbi, jiHHHH coeAHHeHHÄ H caM cnocoô nepexoAa OT OAHOTO 
jiHCTa K ApyroMy öHJIH yKa3ambi. OcTaBaJiocb oöbeAHHHTb HX B OAHO n,eJioe, 
cKjieHTb MeacAy CO6OH. 

HyacHo HanaTb Bce-Taicn c KOHIH. B n,HTHpoBaHHOM Bbime MeMyape, roBopa 
o cnoco6ax BbiAejieHHü oAH03HanHbix BeTBen MHoro3HanHbix tyyimsjm Taicnx, KaK 
In x H xa, OH 3aMenaeT, HTO B npeAbmymHx paôoTax npeAnojiaraji BcerAa, HTO 
AeHCTBHTejibHaa nacTb x nojioxcHTejibHa. Tenepb ace, BBOA# 3HaneHHK p=argx 

B HHTepBajie (q> — 7t,(p+n), KomH BbiAeJuieT OAH03HaHHbie seTBH 4>yHKirHH He 
B nojiynjiocKocTH, a B njiocKocTH c pa3pe30M BAOJH» Jiyna, BbixoAamero H3 Hanajia 
KoopAHHaT. OH oTMenaeT, HTO tyynKiJFx H3MemieTCÄ cKanKOM npn nepexoAe x 

nepe3 3TOT Jiyn. npH Been 3JieMeHTapHocTH 3Toro mara BnepeA, cAeJiaHHoro 
Komn, B HeM Moreno BHAeTb oAHy H3 npeAnocbiJioK K HACJIM PHMaHa. 

CymecTBemioe npoABHaceHHe B STOM HanpaBJieHHH SbiJio cBÄ3aHO e KJiaccHHec-
KHMMeMyapoM V. Puiseux, "Recherches sur les fonctions algébriques", 1850, aBTop 
KOTOpOTO, BHpOHeM, HaCTOHHHBO HOAHCpKHBajI CBOK) 3aBHCHMOCTb OT HAeH H Me-
TOAOB Komn. ny6jiHKan,HÄ MeMyapa B pacnpocTpaHeHHeânieM TorAa »cypHajie 

JlnyBHjijiÄ no BpeMeHH coBnaAajia c nepBOH cTaAHen paôoTH PHMaHa iraA A^c-
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cepTarjHeH — c OKTflôpji no A^KaSpb 1850 r. npoiiTH MHMO paSoTbi, coAepacaBmen 

nocjieAHee CJIOBO B TeopHH ajireopannecKHx 4>yHKn,HH (H HX HHTerpaJioß) H B03-

BemasmeH o cBoeM coAepacaHHH B 3arojioBKe, PHMaH, no HameMy yôeacAeHHio, 

ne MOT. BeAb no ero ace xapaKTepncTHice oôjiacTb HccJieAOBaHHH, B KoTopbix 

nepeMeHHbiM npHAaBajincb KOMnjieiccHbie 3HaHeHM, noHTH nojiHOCTbio CBOAHJiacb 

K TaKHM 3aBHCHMocT»M, B KoTopbix oAHa H3 HepeMeHHbix ecTb ajire6paHHecicaÄ 

4)yHKijHJi ApyroH, HJIH HHTerpaji OT ajire6paHHecicoH C^HKAIIH (Werke, S. 38). 

M M npHAaeM 3Aecb Taicoe 3HaneHHe BbicKa3aHHOH rnnoTe3e o 3HaK0MCTBe P H -

MaHa B npoinecce pa6oTbi naA AHccepTarjHeH c pe3yjibTaTaMH nioH3e noTOMy, 

HTO BHAHM B 3THX pe3yjIbTaTaX KaK 6bl 3arOTOBKH, CBOerO pOAa BblKpOHKH, pHMa-

HOBOH nOBepXHOCTH (3aMKHyTOH). CaMO noaBJieHHe HOHJ1THÄ pHMaHOBOH HOBepX-

HOCTH B Hanajie AHCcepTau;HH PHMaHa (§ 5) c onpeAeJieHHeM ToneK pa3BeTBJieHH*i 

H onHcaiiHeM CBJBH JIHCTOB MeacAy CO6OH, pacnaAaiomnxca Ha H,HKJIM B oicpecTHOcTH 

icaxcAOH TaKOH TOHKH, npoHHu,aTejibHbïH HuraTejib Toro BpeMeHH MOT BocnpHHHTb KaK 

npeBOcxoAHbiH reoMeTpHnecicna KOMMeHTapHH H BMecre c TeM CBoero pOAa pe3K)Me 

ocHOBHoro coAepacaHHÄ p a ô o r a nioH3e. 

3aMeTHM, HTO B 3TOH pa6oTe no^BHJiocb BnepBbie B nenaTH Tonnoe onncaHHe 

npoijecca aHajiHTHHecicoro npoAOJraeHKJi, O6HHHO cBü3biBaeMoro c HMeneM Benep-

HiTpacca. nioH3e yKa3WBaeT, HTO ero MOXCHO ocymecTBjuiTb Taoce, noJib3yÄCb 

BMecTo n,enH icpyroB, HanpHMep, ijenbio jieMHHCKaT. C npHHrjmiHajibHOH TOHKH 

3peHHH BaacHO, HTO OH ycTaHaBJiHBaeT AJia aJireöpaHHecKHx <])yHKijHH SKBHBajieHT-

HocTb AByx TnnoB npoAOJixceHHfl: c coxpaneHHeM aHajiHTHHHocTH H C coxpaHeiraeM 

HenpepbiBHocTH. EjiaroAapa 3TOMy TonojiorHHecKiie (roMOTOHHHecicHe) HACK Hr-

paioT y nioH3e cymecTBeHHyio pojib. H B STOM OTHomeHHH OH TaK»ce BbicTynaji 

npeAmecTBeHHHKOM PHMaHa. 3aAana, KOTopyio cTaBHT H pemaeT niOH3e 3aicjno-

naeTCH B TOM, HTo6bi He BbinojiHAH 4)aKTHnecKH npon,ecca npoAOJiaceHHfl no icaKOMy-

JIH6O nyTH, He npoxoAflmeMy nepe3 ocoGbie TOHKH, H onnpaacb TOjibKo Ha cBeAeiraJi 

o xapaKTepe HoBeAeHHs: <J)yHKii;HH B oicpecTHOcTH ocoöbix ToneK, cpaBHHBaTb ico-

HeHHbie pe3yjibTaTbi npoAOJiaceHHa BAOJH» nyreH c OSIAHMH HanajioM H KOHUJOM. 

3AeCb-TO H BblflBJIfleTCÄ HeoGxOAHMOCTb HCnOJIb30BaHHÄ TOnOJIOTHHeCKHX B3aH-

MooTHomeHHH MeacAy KPHBLIMH, HTO H AejiaeT nioH3e. H o , KOHCHHO, PHMaHy 

AejiHKOM npHHaAJiexcHT 3acjiyra BHHHJieneHHH cfryiiAaMeHTaJibHbix noHHTHH 3apo»c-

AaBmeHCK leopHH: nopjiAKa CBä3HOCTH H pOAa noBepxHocTH H ycTanoBJieHHe 

cooTHomeHHH MexcAy HHMH. 

OcTaeTCÄ Ao6aBHTb, HTO H nocjie PHMaHa AaJieKo He Bce MaTeMaTHicH, H3yHaBmne 

ajire6paHHecKHe 4>yHicn,HH H HX HHTerpajibi, OXOTHO ocTaBJiÄJin njiocKocTb H nepe-

xoAHjiH Ha pHMaHOBy HOBepxHOCTb, npeACTaBjiKBmyio, KoneHHO, 6ojiee BbicoKyio 

cTyneHb aocrpaKiprH. TaK, neTBepTb BeKa cnycTJi, Briot H Bouquet BO BBCACHKH K 

"Théorie des fonctions elliptiques", 1875, nncajin, HTO MCTOA PHMaHa He icaaceTCH 

HM HMeioiAHM icaicHe-JinGo npeHMymecTBa nepeA HAeeii KOHIH, npeAJiaraBmero 

AJIä npeACTaBJieHHK MHoro3iiaHHbtx (j)yHKn,HH npHcoeAHHOTb K 3iiaHeHHio nepe-

MeHHOH cooTBeTCTByiomee 3HaneHHe 4>yHKrj;HH H pa3JiHnaTb HHAeiccaMH 3HaneiHia 
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4)yHKu,aH, ecjiH OHH H3MeHflK>Tca, KorAa nepeMeiniaji onncbiBaeT 3aMKHyTyio 

icpHByio. B 3TOM naccaxce Bepiibix nocJieAOBaTejien He TOJibKO Ayxa, HO H 6yKBbi 

KOHIH, M H BHAHM y6excAeHHe coBpeMeHHHKOB PHMaiia, HTO cpeACTBa, KOTopbie 

npeAJiaraji KOHIH (H pa3BHBaji nioH3e) paBHocHJibHbi cpeACTBaM caMoro pHMana. 

KoHenHO, STO HecnpaBeAJiHBO no OTHOHICHHIO K PHMany. noAHepKHeM erne pa3, 

HTO nam 3iccKypc B CTOpoHy MeMyapa nioH3e HMeji jiHHib ijejibio noKa3aTb, HTO 

B neM 3aKJnoHaJicjr cTpoHTejibHbrii MaTepnaji, KOTopbrii PHMaH Mor Hcnojib30BaTb 

AJi£ cBoen reHHajibHOH KOHCTpyKijHH, 0Ka3aBineH cTOjib ôojibmoe BJHamne Ha 

nocjieAyiomee pa3BHTHe MaTeMaTHiŒ. 

5. P ü A O M c n;eHTpaJibHbiMH HAOIMH AHCcepTan;HH: KOHii;enn;HeH aHajiHTHHecKOH 

4>yHKÎ HH H ee HpCHTeJIfl — pHMailOBOH nOBepXHOCTH, pe3yJIbTaT, KOTOpHH Mbl 

XOTHM BHAeJiHTb B 3aKjnoHeHHe AOKJiaAa,HMeeTHacTHbriixapaKTep. OAHaKo, B HeM 

3apoAbim 6yAym;eH TeopHH rpaHHHHbix CBOHCTB anaJiHTHHecicHx 4>yHKijHH, B KOTOpoH 

oöbeAHHÄiOTCÄ MeTOAbi KjiaccHHecKoro aHaJiH3a H nocjieAyiomeH TeopHH 4)yHKn;HH 

AeHCTBHTejibHoro nepeMeHHoro. 

Penb HAeT o cjieAyiomeH o6meH TeopeMe § 10, OTHOCHMOH Hbme K TaK Ha3bi-

BaeMbiM TeopeMaM o "cTnpaiiHH ocoGemiocTeH aHajiHTHnecKHx (fayHKujiK". B O T 

4)opMyjiHpoBica PHMana, KOTopyio OH paccMaTpHBaeT icaK cjieACTBHe H3 npn-

BeAeHHoro HM aHajiH3a CBOHCTB rapMOHHHecKHx 4>yHKn;HH: 

«ECAU (ßyHKifun (penb HAeT 06 aHajiHTHHecKOH ^ymciüHH Ha HeKOTopon pHMaHOBOH 

noBepxHOCTH — A. M.) ne UMeem pa3pbieoe nenpepuenocmu eòo Ab AUHUU, U òaAee 
òAH AK)6Oü moMKu O' no6epxnocmu9 eòe z—z\ npomedenue w(z — z') neAnemcn 6ec-
Konemio MuAbw eMecme c z—z', mo onaneoôxoduMO Konenna u nenpepuena eMecme 
co eceMU npou3eodnbiMU eo ecex momtax noeepxnocmu.» 

#0Ka3aTeJibCTB0 PHMana Hejib3a npH3iiaTb AocTaTOHHbiM. ECJIH paccMaTpHBaTb 

3Ty TeopeMy c coBpeMeimbix no3Hn,HH, TocjieAyeTHanoMHHTb, HTO aHaJiHTHHHOcTb 

B AaHHOH oÖJiacTH HenpepbiBHOH fyyimsym., A M KOTopoìi KOHeHHbie npoH3BOAHbie 

du/dx, du/dy, dv/dx, dv/dy cymecTByioT BciOAy (KpoMe, 6biTb MoaceT, KOHeniioro 

HJIH cneTHoro MHoacecTBa ToneK) H yAOBJieTBOpaioT ypaBHeHHHM 

du/dx = dv/dy, du/dy = -dv/dx, 

BnepBbie y^ajiocb ycTaiioBHTb Bnojme cTporo TOJibKo B 1932 r. (TeopeMa 

Looman—Menchoff). n p H STOM AOKa3aTeJibCTBo cymecTBeHHo HcnoJib30Bajio 

cpeACTBa TeopHH 4>ynKiPïH AeHCTBHTejibHoro nepeMeHHoro (B nacTHOcTH, Tc^pnio 

Mepbi H HHTerpajia JIe6era). 

^ T O KacaeTCÄ yTBepacAenHtf PuMaHa o cTHpaHHH B03Mo»cHbix ocoôenHocTen, 

pacnojioaceHHbix na Ayre icpHBOH, Ha KoTopoH 4>yHKAHji nenpepbiBHa H B OKpecT-

HocTH KOTopoìi ona aHaJiHTHHHa, TO OHO HeBepHO 6e3 AonojiHHTejibHbix orpaHH-

neHHH Ha 3Ty Ayry. OAnaico, OHO cnpaBeAJiHBo, KaK BnepBbie Aoica3aJi nepe3 noji-

BeKa P . Painlevé npn ycjioBHH, KOTopoe PHMaH, Bepoarao, cHHTaji caMo CO6OH 

pa3yMeiomHMCÄ — cnpaMJtaeMOCTH AyrH. Bo BCHICOM cjiynae, BBCAH HeoôxoAHMbie 
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yTOHHeHHH B 3Ty TeopeMy, MOXHO nojiHocTbio coxpaHHTb ee 3HaneHHe Rim no-

cjieAyiomero H3Ji03KeHH#. 

OaKTH, npeAnoJioaceiiHÄ H OTAejibHbie 3aMeHaiiHst, cocTaBHBmne coAepacaHHe 

3Toro AOKJî Aa, KOHCHHO, He AOJI^KHM H ne MoryT B KaKoö-To cTeneHH yMajiHTb 

3HaneHHe TpyAa PHMaHa, nepeA reHHeM KOToporo M M npeKJioHHeMca. H o ecjiH 

naM yAaJiocb BbuiBHTb OTAejibHbie, nycTb Heoojibinne, noApoÔHOCTH TOH TBop-

HeCKOH aTMOc4)epM, B KOTOpOH 3Ta pa60Ta B03HHKJia, H yKa3aTb Ha TO, HTO CB5Ï3H 

ee e HAeHMH TaKHX coBpeMenHHKOB PHMana, KaK KOHIH H nioH3e, BOMOXCHO 6MJIH 

6ojiee cymecTBeHHMMH, neM STO O6MHHO npHHHTo cHHTaTb, TO Hama ijejib HOJI-

HOCTbK) AocTHrHyTa. 

Moscow STATE UNIVERSITY 

Moscow, USSR 
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