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Organization of the Congress

The recommendation to hold the 1982 International Congress of Mathe-
maticians in Warsaw was made by the Site Committee of the Interna-
tional Mathematical Union during the Helsinki Congress in August 1978,
The final decision was taken a few days later when the Congress, at its
closing session, accepted the invitation to Warsaw, made by Professor
Kazimierz Urbanik on behalf of the Polish National Committee for
Mathematics.

At the beginning of 1982, due to the events in Poland, the question
of holding the Congress in Warsaw was raised and discussed again. In
April 1982, the Executive Committee of IMU, considering the scientific
prospects for IOM-82 at that time, decided to postpone the Warsaw
Congregs by one year. At the same time the Executive Committee decided
to hold the General Assembly of IMU in Warsaw, as previously planned,
in August 1982. The question of the Warsaw Congress was extensively
discussed at that meeting. Eventually, in November 1982, the Executive
Committee of IMU finally confirmed the organization of ICM-82 in Warsaw
in August 1983.

Poland’s offer to be the host of the ICM-82 followed upon the promise
of support made by the Polish Academy of Sciences. The Oongress was
particularly honoured by the fact that Professor Aleksander Gieysztor,
President of the Polish Academy of Sciences had consented to be its
Patron.

The scientific programme was the responsibility of the International
Mathematical Union, acting through the Consultative Committee, whose
members were Professors J. P. Serre (chairman), M. Atiyah, B. Bojarski,
W. Browder, Z. Ciesielski, P. Deligne, L. Faddeev, S. Lojasiewicz and
8. Winograd. The Committee was established in 1979 and in June 1980
decided to divide the mathematical programme into 19 sections and appoint-
ed the cores of the panels for those sections. The panels were finally set up
and submitted their suggestions before the summer of 1981. Oonsidering
these suggestions and also suggestions received from some National
Committies, the Consultative Committee in October 1981 selected 16
mathematiciang to give one-hour plenary addresses and 137 1o give
45-minute addresses in the sections. Some more names were added later,

[X1]



XI1I ) Organization of the Congress
three after it was known that ICM-82 had been postponed. All the persons
invited to deliver the plenary addresses and 129 of those asked to speak
in the sections accepted the invitation. Of the total number of 145 pro-
spective speakers 110 were present at the Congress including 13 plenary
speakers. The manuscripts of 5 absent speakers were read out at the
Congress.

. The Fields Medals Committee consisted of Professors L. Carleson
(chairman ex officio), H. Araki, N. Bogolyubov, P. Malliavin, D. Mumford,
L. Nirenberg, A. Schinzel and C. T. 0. Wall. The committee for the newly
established Nevanlinna prize in “Mathematical aspects of Information
Science” consisted of Professors J.-L. Lions (chairman), J. Schwartz
and A. Salomaa. The decisions of these Committees were announced
at the General Assembly meeting in August 1982.

Other preparations for the Congress were in the hands of the Polish
Organizing Committee. Its chairman was Ozeslaw Olech, who took direct
responsibility for all arrangements. A great amount of work was done
by Bogdan Bojarski, Jérzy Browkin, Zbigniew Ciesielski, FEugeniusz
Fidelis, Stanislaw F.ojasiewicz, Zbigniew Semadeni, Wiestaw Zolazko
and other members of the committee. Altogether more than 60 Polish
mathematicians took part in the preparations for the Congress. A small
Congress' Burean was set up in 1979, assisted by the administrative-statf
of the Institute of Mathematics of the Polish Academy of Sciences. A par-
ticularly important role was played by Anna Sierpinska-Jankowska, who
was fully engaged in the affairs of the Congress from the very beginning.
Registration, accommodation and some other arrangements were handled
by the Orbis Congress Bureau.

The main sources of funds for the Congress were:

(1) a subvention from the Polish Academy of Sciences,

(2) a subvention from the International Mathematical Union,

(3) membership fees.

All financial matters were attended to by the Instltute of Mathematics
of the Polish Academy of Sciences. Some facilities were offered to the
Congress without charge by the Warsaw University.

The International Mathematical Union gave travel grants to young
mathematicians from developing countries and the Congress waived
their fees.

" A short preliminary announcement about the Warsaw Congress was
sent out in the autumn of 1980 to all the countries of the world in which
mathematical communities were known to exist. The First Announcement
was dispatched in July 1981 to the same addresses with the request
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that copies of it be further distributed among the mathematicians of
the countries in question. The Second Announcement, containing detailed
information about the Congress, planned for August 1982, and including
the registration form, was mailed in December 1981 to those mathema-
ticians who had applied for it; about 6000 copies were sent, mostly to
individual addresses. Only a small number of the registration forms were
returned in the spring of 1982.

The information about the April 1982 decision of the Executive Com-
mittee of IMU was mailed in May 1982 to the same addresses. When
it was finally decided to hold the Congress in Warsaw in 1983, the Third
Announcement was issued. It contained all the information given in the
Second Announcement brought up to date and also a list of the invited
speakers with the titles of their addresses as well as a rough schedule. The
mailing of this announcement started towards the end of January 1983.

2400 ordinary members of the Congress were registered and about
150 accompanying persons from more than 60 countries; not all of them
eventually turned up. The lectures and seminars were also attended by
a number of non-registered participants. The mathematical activities
of the Congress took place in the Palace of Culture, located in the centre
of Warsaw.

Besides the invited addresses included in the official programme,
about 680 short communications were presented during the Congress.
Summaries of more than 800 short ecommunications which reached the
organizers in time were photocopied and offered to the Congress members
upon registration. A symposium of the International Commission on
Mathematical Instruction was held on four afternoons, accompanied by
a geminar of the International Group on the Relations between History
and Pedagogy of Mathematics affiliated to ICMI. On the initiative of
Congress membersg 14 different seminars were organized, some of them
having more than one session. A show of computer-animated films wag
presented on two evenings by the author Professor T. F. Banchoff.

A Dbook exhibition organized in cooperation with the ORPAN —
Distribution Centre of Scientific Publications of the Polish Academy of
Sciences wag open throughout the Congress.

The City of Warsaw showed its hospitality to the participants by
granting them free travel on all city buses and trams for the duration
of the Congress.

On the evening of August 19 the President of the Polish Academy
of Sciences gave a reception to which all Congress members and the
accompanying persons were invited.
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The Organizing Committee arranged various social events. On Saturday
August 20 and Sunday August 21 excursions to Boguslawice were orga-
nized. Each included a picnic party and a show called “The Cracovian
wedding”. The latter was a spectacle comprising folk songs and dances
in the colourful dresses of the Cracow region and a parade of riders and
equipages driven by horses in the traditional Cracovian harnesses. The
excursions had about 1200 participants each. On the same days, for
those members and guests of the Congress who remained in Warsaw,
the Silesian folklore ensemble “Slask” gave a special performance. Two
violin recitals by Aureli Blaszezok (violin) and Maria Szwajger-Kula-
kowska (piano accompaniment) were given on August 17 and August 18.
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Invited Addresses

Most of the speakers who accepted the invitation gave their addresses
in the Congress themselves and submitted manuscripts for printing. If
this was not the cage a number (1), (2), (3) or (4) appears after the speaker’s
name in the list below. These numbers have the following meaning:

(1) The speaker did not attend the Congress. His manuscript was
read there, and it is printed in the Proceedings.

(2) The speaker did not attend the Congress, His lecture was can-
celled, but his manuscript is printed in the Proceedings.

(3) The ppeaker delivered the address in the Congress but did not
submit a manuseript for the Proceedings.

(4) The speaker did not attend the Congress and did not send a ma-
nusecript.

One<hour addresses

V,I. Arnold — Bingularities of ray systems

P. Brdés — Extremal problems in number theory, combinatorics and
geometry

W. H. Fleming — Optimal control of Markov processes

0. Hooley — Some recent advances in analytical number theory

Wu-chung Hsiang — Geometric applications of algebraic K-theory

P.D. Lax - Problems solved and unsolved concerning linear and non-
linear partial differential equations

V.P. Maslov — Non-standard characteristics in a,symptotlca,l problems

B. Mazur - Modular curves and arithmetic

R. D. MacPherson — Global questions in the topology of singular spaces

A. Petezyniski — Structural theory of Banach spaces and its interplay
with analysis and probability

M. Rabin (4) — Computational complexity and randomizing algorithms

D. Ruelle — Turbulent dynamical systems

M. SBato (3) — Monodromy theory and holonomic quantum fields — a new
link between mathematics and theoretical physics

8. Shelah (4) — On some problems on the continuum

[XV]



XVI Invited Addresses
!
Yum-Tong Siu — Some recent developments in complex differential
Geometry
R. Thom (4) — Mathematics and scientific explanation

45-minute addresses in sections

Section 1. Mathematical logic and foundations of mathematios

G. L. Cherlin — Totally categorical structures
J.-Y. Girard — The £-rule
P. A. Loeb — Measure spaces in nonstandard models underlymg standard
stochastic processes
R. A. Shore — The degrees of unsolvability: the ordering of functions
by relative computability
A. O. Slisenko — Linguistic considerations in devising effective a.lgorlthms
B. I Zil’ber — The structure of models of uncountably categorical theories

Section 2. Algebra

R. L. Griess, Jr. — The sporadic simple groups and construction of the
monster

M. Gromov (2) — Infinite groups as geometric objects

J.C. Jantzen — Hinhijillende Algebren halbeinfacher Lie-Algebren

A. Joseph (2) — Primitive ideals in enveloping algebras

A. Yu. Ol’Sanskii — On a geometrlc method in the combinatorial g‘roup
theory, -

C. M. Ringel — Indeeomposa,ble representa.tlons of ﬁmte-dlmensmna,l
algebras

C. Soulé — K-théorie et zéros aux points entiers de fonctlons zeta .

R.P. Sta,nley — Combinatorial applications of the hard Lefschetz theorem

B. I Zel’ma,nov — On the theory of Jordan a,lgebras .

Seotwn 3. Number theory

A N. Andrianov — Integral representations of qua,dra,tlc forms by
quadratic forms: multiplicative . properties

J.-M. Fontaine — Représentations p-adiques
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Opening Ceremonies

The opening ceremonies of the Warsaw Congress took place in the Con-
gress Hall of the Palace of Culture on August 16, 1983 at 9.30. After
a performance of the men’s choir of the Choral Society “Harfa” (The
Harp), which started with the national anthem, Professor Lennart Carleson,
President of the International Mathematical Union for the years 1979-1982
opened the proceedings with the following words:

On behalf of the International Mathematical Union I am
happy to greet you all here today to begin the work of the
1982 International Congress of Mathematicians. Already at
the Ziirich meeting in 1897 it was stated that the first objectives
of the Congress are to promote the personal relations between
mathematicians from different countries and to give a survey
of the state of our science. The rules of the congresses have,
through the years, become firmer and since 1962 the IMU is
formally responsible for the scientific content. This Congress
meets under special circumstances, but the main objectives
remain and to keep unbroken traditions has been a fundamental
concern to the TMU.

The organization of the Congress is by our rules in the
hands of an organizing committee. Following a well established
tradition I now propose that the president of the organizing
committee, Professor Ozestaw Olech, is elected President of
the Warsaw Congress.

The proposal of Professor Carleson was accepted by acclamation.
Following his election Professor Olech gave his presidential address to
the Congress.

It is my pleasant duty to declare the 1982 International
Congress of Mathematicians open.

This is a great and happy moment for the Polish mathemat-
ical community, strongly represented here, on whose behalf
I would like to welcome cordially all foreign participants.

4 — Proceedings... XLIX
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On behalf of all of you, I would like to welcome the Presi-
dent of the Polish Academy of Sciences, Professor Aleksander
Gieysztor. We greatly appreciate the fact that he eonsented
to be the Patron of the Warsaw Congress and that he has
been so kind as to attend this ceremony in person.

I also extend a most cordial welcome to all our distin-
guished guests. Among them, I wish to greet Professor Zdzi-
slaw Kaczmarek, the Scientific Secretary of the Polish Academy
of Sciences, Professor Stanistaw Nowacki, Deputy Minister of
Science, Higher Education and Technology, Mr Jézef Wiejacz,
Deputy Minister of Foreign Affairs, Mr Stanistaw Szewczyk,
Vice-President of the City of Warsaw.

Organizing a meeting of this magnitude would not have
been possible without the active support of the Government.

. At an early stage, before the International Mathematical
Union (IMU) had made its final decision, the Secretary of the
Polish Academy of Sciences explicitly promised to back the
Oongress should it be held in Poland; that promise has been
fulfilled in all aspects. We have likewise received the support
of the various governmental agencies throughout the prep-
arations for the Congress. For the support and smooth cooper-
ation of these agencies, I would like to express thanks and
appreciation.

Professor Urbanik, inviting you to Warsaw at the closing
ceremony in Helsinki, said: “For a long time Polish math-
ematicians have carried in their hearts the desire to organize
an international Congress®.

The best example of those was Professor Kazimierz Kura-
towski, once very active in the IMU, who was strongly advo-
cating the initiative to invite the Congress to Poland. I am
very sorry that he did not live long enough to share with us
this happy moment.

The hope that the desire to have the Congress in Poland
would become a reality was based on the belief that the rich
tradition of mathematical research carried out in this country
makes Poland an acceptable choice for the Site Committee.

We are privileged to have with us Professor Wiadystaw
Orlicz, the Nestor of Polish mathematicians, who, for more
than fifty years has been enriching this tradition in Poland.

I propose that Professor Orlicz be elected Honorary Presi-
dent of the Congress.
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The proposal was warmly accepted by the Congress and Professor
Wiadyslaw Orlicz was elected Honorary President by acclamation,

The general aim of an IOM is to give an appraisal of current
mathematical research. This important and difficult task could
not be reached without wide international cooperation, and
the active involvement and hard work of many leading math-
ematicians.

The official mathematical programme is decided upon by an
international Consultative Commiitee established for ICM by
IMU. This Committee, after two years’ work, produces the
final list of invited speakers, taking into account the proposals
of the panels and the suggestions of the National Committees.

The Consultative Committee for the present OCongress
consists of six members appointed by IMU — Professor
Jean-Pierre Serre, chairman, and Professors Michael Atiyah,
William Browder, Pierre Deligne, Ludvig Faddeev and Shmuel
Winograd.

Three other members, Bogdan Bojarski, Zbigniew Ciesielski
and Stanislaw Xojasiewicz, represent the Organizing Committee.

May I propose that we thank the Consultative Committee
for the work they have done and that we also extend our
thanks to all those involvéd in preparing the programme.

The organizational responsibility for the Congress was
shared by the Department of Mathematics of the Warsaw
University, the Institute of Mathematics of the Warsaw Tech-
nical University and the Institute of Mathematics of the Polish
Academy of Sciences. A number of mathematicians from out-
side Warsaw were also members of the Organizing Committee.

Many institutions and individuals, mathematicians and
members of the administrative staff have been involved in
the preparations. I wish to thank them all for their hard work
for their support, for gharing with me the responsibility for
the Congress.

The role of the Organizing Committee is mainly technical.
This time, however, the Organizing Committee was faced with
some extra responsibility when the question- of holding the
Congress in Warsaw was again raised and discussed.

In April 1982, the Executive Committee of IMU, consider-
ing the scientific prospects for the ICM-82 at that time,
decided to postpone the Warsaw Congress by one year. This
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decision was accepted by the Organizing Commnittee in the
conviction that it would be advantageous for the final result.

The final scientific result you will be witnessing yourselves.
It depends not only on those who have prepared the program
but also on the cooperation of those who have been chosen
to fill in the programme with the invited survey lectures, both
plenary and in sections. I regret that you will not have the
opportunity to listen to some of the lecturers announced in
the Third Announcement or even in the printed Programme
you have just received.

Nevertheless the number of invited speakers present at
the Congress, though not full, is over one hundred and I would
like to welcome them particularly warmly.

Applying for the Oongress in Warsaw, we expected that
this would be an opportunity for greater participation in an
ICM of mathematicians from Poland and other socialist coun-
tries. T would like to observe with great satisfaction that our
expectations have become a reality.

Warsaw is a known centre for mathematical research. It
was here that the first specialized international journal of
mathematics in the world was founded. I am speaking of the
Fundamenta Mathematicae. Here, for the last ten years,
mathematicians from all over the world meet regularly at
the Stefan Banach International Mathematical Center, a com-
mon enterprise of the Academies of socialist countries.

Let me express the hope that this Congress will contribute
to all these international mathematical traditions to & con-
siderable extent.

Professor Olech left the floor to the Patron of the Oongress, Professor

Aleksander Gieysztor, President of the Polish Academy of Sciences, who
delivered the following address to the Congress:

Mr Honorary President, Mr President of the Congress,
Ladies and Gentlemen,

It is a great pleasure and honour for me to welcome all
of you on behalf of the Polish Academy of Sciences, the schol-
arly community of this country and the city of Warsaw.
Our Academy from the very moment when the idea of holding
the International Mathematical Qongress in Warsaw appeared,

. declared its support to our colleagues involved in its organiza-
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tion. The idea of having the Congress in Warsaw was in the
air for quite some time and was especially cherished Dy the
late Kazimierz Kuratowski, Vice-President of our Academy
and a scholar who contributed greaily to the organization of
Polish mathematics during the past several decades.

The decision of the International Mathematical Union in
1978 to have the Oongress in Warsaw undoubtedly expressed
an appreciation for the contribution of Polish mathematics
to the general body of mathematical knowledge. I assume this
appreciation pertains both to past accomplishments and to
the current state of mathematical research in Poland.

The difficulties in preparing the Congress have becn many
and of a quite varied nature. It is fortunate for us that most
of them have been overcome. Now you are here in Warsaw
ag representatives of over sixty countries from all over
the world, the total number of about two thousand three hundred
mathematicians brought together to discuss mathematics and
to develop academic and personal contacts. Your prescnce
here is a proof that the idea of international scientific cooper-
ation is sirong enough to overcome impediments of any kind.

The months of August and September encompass two
important dates in the history of this country. Thirty nine
years ago on the 1st of August the Warsaw Uprising began
and September 1st 1939 was the firgt day of the Second World
War. Both these months are times of national remebrance, of
reflection upon the higtory of our country.

' During the Second World War the Polish scientific commu-
nity was decimated. In particular, well over half of the ac-
tively working Polish mathematicians lost their lives. Many
others found themselves in various couniries all over the
world. Universities, libraries and printing presses in Poland
were largely destroyed. The educational system of the country
was in ruins and scientific activity was disrupted.

The fact that this Congress is being held in Warsaw in
1983, thirty eight years after the war, gives evidence of the
reconstruction of Polish science both in {he organizational
and the substantive sense. In particular, it is a proof of the
renaigssance and expansion of the Polish mathematical commu-
nity. At present this community is many times larger than
before the Second World War. The membership of the Polish
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Mathematical Society has increased at least fifteenfold and
there are active scientific groups in many universities and
polytechnics. The Institute of Mathematics of the Polish
Academy of Sciences has a very well supplied mathematical
library, which serves the whole of Polish mathematics. This
year we have celebrated the 10th anniversary of the activities
of the Stefan Banach Mathematical Center.

In these facts one can see a telling example of the vitality
and enduring power of the cultural and intellectual heritage
of mankind. On the other hand, this heritage has to be con-
stantly regenerated with new creative forces.

Science is not a simple continuative accumulation of knowl-
edge, but changes of level and crises. The levels are formed
by the normal evolution of science, by the solution of particu-
lar problems according to steady and unquestionnable para-
digms. The crises are scientific revolutions, changes of para-
digms.

It is remarkable to observe that mathematics, this oldest
science, together with logic, is constantly generating new
concepts, creating new domains of mathematical research,
embracing and influencing ever wider areas of human knowledge
and understanding of the world in general.

In the history of human thought we can easily trace many
examples of principal importance showing how mathematical
thinking essentially contributed to the fundamental change
of our basic concepts of the structure of natural phenomena.
We have only to think about the ideas of Copernicus, the
relativity theory of Einstein or quantum mechanics. At present
we are witnessing the impact on our lives and ways of thinking
of the scientific and techmnological revolution based on the
incredible possibilities of computers and their overall invasion.
The resulting changes in our civilization are not comparable
in their scope and rapidity to anything experienced in the
past. The social, economie, cultural and political implications
of these changes are enormous.

What is the driving force of this development? What is
it that keeps this wonderful edifice growing, integrated and
relevant for the understanding of the world around us and
having an esthetic value as well?
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Why should this rapidly expanding area of knowledge not
have broken apart into separate and disconnected branches?

All these facts, questions, perhaps even answers, you un-
derstand much better than anyone outside your science. Of
courge I don’t dare to answer these questions. I would rather
listen. And reading the words of John von Neumann: “It is
undeniable that some of the best inspirations in mathematics —
in those parts of it which are as pure mathematics as one can
imagine — have come from the natural sciences” and those
of Aleksandr Danilovich Aleksandrov stating that “...the
vitality of mathematics arises from the fact that its concepts
and results, for all their abstractness, originate... in the actual
world”, I see more clearly the dual character of the relationship
between mathematics and science in general. Mathematics is
the leafage on the tree of science and contributes to the welfare
of the whole structure but in order to live it must essentially
depend on its roots.

Let me recall at this moment what David Hilbert said:
“The organic unity of mathematics is inherent in the nature
of this science, for mathematics is the foundation of all exact
knowledge of natural phenomena. That it may completely
fulfil this high mission, may the new century bring it gifted
masters and many zealous and enthusiastic disciples.”

The fact that you have systematically organized your
congresses since 1900 testifies that the idea of Hilbert about
the unity of mathematics is a8 valid now as it was eighty three
years ago.

The fact that so many young people engage in mathematics
and attend the Congresses and that to the most outstanding
of them you award the golden medals of international recogni-
tion shows that you have succeeded in attracting “enthusiastic
digciples”. I know that you make conscious and systematic
efforts to recruit and shape these disciples. After all, it is in
mathematics that the idea of Olympie Competition for high
school students arose. We note with pleasure the activities
of the International Commission on Mathematical Instruction
accompanying the Mathematical Congress. You care for the
young generation and you also care for outsiders to your
science. You understand very well that all these efforts are
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in the long run essential for the vigour of your science, for
its ability to grow and yet remain young.

I believe these actions and the attitude giving rise to them
are the right ones in the much more general setting of “la
CUondition Humaine”. Perhaps the mystery of staying young
and of maintaining permanent development is revealed in these
words: give your best, take in selectively.

I wish all of you and your fascinating science perseverance
in pursuit of these goals.

I assume that, because of the universality and wide appli-
cability of mathematical thinking, this Congress will be also
relevant for science and human culture in general.

I would like to express my hope that the several days
you spend in Poland will allow you to see a little of our country
and give you an opportunity for direct encounters with Polish
people, leading to a better understanding of our thinking,
history and current problems. Let me express my best wishes
for the success of the Congress.

Professor Carleson, Chairman of the Fields Medals Committee, then
presented the following report:

One of the most important activities of each congress is
the award of the Fields prizes. The list of mathematicians who
through the years have received these prizes is indeed impres-
sive. Work in the committee for these awards gives an even

.stronger impression of the strength and breadth of current

mathematical research and of the vitality of the young ge-
neration of mathematicians.

The idea of J. C. Fields to encourage young mathematicians
has been a great success. As we are all aware, our science is
now closely tied to the revolution of society created by com-
puters. For this reason the IMU has accepted with great satis-

' faction an offer by the University of Helsinki, Finland, to

finance a prize in “Mathematical aspects of Information Science” -
with objectives similar to those of the Fields prizes. In recogni-
tion of Rolf Nevanlinna’s contribution to our science, both in
the IMU and in Finnish computer science, the prize has been
named the Nevanlinna prize.

The committee for the Fields prize had the following mem-
bers: H. Araki, Kyoto; N. Bogolyubov, Moscow; P. Malliavin,
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Paris; D. Mumford, Cambridge, Mass.; L. Nirenberg, New
York; A. Schinzel, Warsaw; O.T.C. Wall, Liverpool, and
myself ag chairman.

The committee for the Nevanlinna prize consisted of:
J. L. Lions, chairman, J. Schwartz, New York and A. Salomaa,
Turku.

The decisions of the committees were already announced
at the meeting of IMU in August 1982 here in Warsaw. The
Fields prizes were awarded to Alain Connes, Paris; William
Thurston, Princeton and Shing-Tung Yau, Princeton — and
the Nevanlinna prize to Robert Tarjan, Stanford. I offer them
our warmest congratulations.

May I now ask our Honorary President, Professor Orlicz, to
come forward and give the prizes to the winners.

When Professors Connes, Tarjan, Thurston and Yau had received
the prizes from Professor Orlicz, it was announced that after the opening
session Professor H, Araki would speak on the work of Qonnes and Pro-
fessor Schwartz on that of Tarjan, and that the reports of Professor
Wall on the work of Thurston and of Professor Nirenberg on the work
of Yau will be read out in their absence.

The opening session ended with a concert of the men’s choir “Harfa”
conducted by Michat Dgbrowski.






Closing Ceremonies

The closing session of the Warsaw Congress took place in Congress Hall
to the Palace of Culture on August 24, 1983 at 12.15. Professor Olli Lehto,
fefl Secretary of the International Mathematical Union, delivered the
lohowing address:

Ladies and gentlemen, dear colleagues,

It has been customary at the closing session of the Con-
gress to present a report on the activities of the previous
General Assembly of the International Mathematical Union.
Usually, the General Assembly is held just before the Con-
gress, but this time, the 1982 General Assembly took place
already a year ago. It was held here in Warsaw and was attended
by the delegates of almost all member countries of IMU. With
gsome experience from previous assemblies, I found that the
Warsaw meeting had an exceptionally friendly atmosphere.

The resolutions of this General Assembly have been pub-
lished in an issue of the IMU Bulletin which has been dis-
tributed long ago. Therefore, I think there is no reason to
go into details here now.

As you may well guess, much of the discussion at the
General Assembly centered around the ICM-82. The decision
to hold the 1982 Congress in Warsaw was made by the IMU
Site Commititee in Finland in 1978. It was regarded as a very
good decision, justified by the fine mathematical tradition in
Poland and by the fact that Poland seemed to be easily ac-
cessible to mathematicians no matter which part of the world
they came from. For three years, the organization of the Con-
gress was running smoothly. But as: we all know, difficulties
started at the end of 1981, just at the time when the main
pre-Congress document, the Second Announcement, was being
sent out.

The changed situation put the mathematicians to a waiting
position, as it was not known whether the Congress could
be held. It soon became clear that, in spite of the new con-

LIX
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ditions, the Poles were willing to continue their efforts for
organizing the Congress. However, in April 1982 the Executive
Committee of IMU arrived at the conclusion that conditions
for a scientifically good congress did not exist in August 1982.
Making the final decision about the Congress was postponed
till November. This procedure was endorsed by the General
Assembly, which also provided the Executive Committee with
much useful advice.

It was not an easy. task for the Executive Committee to
reach a decision. But after weighing the pros and contras,
the Executive Committee unanimously decided that the ICM-82

" De held in Warsaw in August 1983.

It is of course not up to me to make a general evaluation
in public of whether our decision was correct or not. But let
me say that I feel very happy that the ICM-82 now took
place here. The continuity of international cooperation was
maintained, and in spite of regrettable absences of some in-
vited speakers, this was a high class meeting from the scien-
tific point of view.

The positive feeling towards this Congress is also largely
due to the excellent work done by our Polish colleagues. We
‘have all seen how well everything is functioning, and we have
gsensed the warm and friendly atmosphere of the Congress.
All this can only be achieved by the joint effort of a large
number of people. Our thanks are due to all of them, the
more 80, a8 the work has been carried out under such difficult
cirecumstances.

An exceptionally heavy load has been on the shoulders
of one person, the chairman of the Organizing Committee and
President of ICM-82, Professor Czestaw Olech. His skill and
strength have largely contributed to the success of this Con-
gress.

At the time of the General Assembly, we did not know
whether ICM-82° would be held. Nevertheless, it’ was then
already time to think of the 1986 Congress. The General Assem-
bly confirmed the decision of the IMU Site Committee to accept
the invitation of the United States National Academy of
Sciences to ICM-86 at the University of California, Berkeley.

The IMU has a Special Development Fund whose principal
aim is to help young mathematicians from developing countries
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to take part in ICM’s. This time, the Union was able to give
grants to 83 mathematicians from 21 different countries.
Since the funds of the Union are limited, the success of this
important project depends largely on donations made to the
Special Development Fund. Fund raiging for ICM-86 has
already started, in that an appeal was recently sent to the
National Committees for Mathematics of the member countries
of IMU.

Let me conclude by emphasizing the basic principle of
IMU that politics should never find a foothold within the
Union. As individuals, we may of course have whatever pol-
itical views we choose, but when it amounts to organized in-
ternational cooperation in mathematics, then political aspects
should be put aside entirely. Our fine science should be the
uniting link between us and make us in a true sense one big
mathematical family.

Professor O. Lehto then invited Professor Jack K. Hale to speak
on behalf of the Mathematical Community of the United States of America.
Professor Hale spoke as follows:

We are very pleased that the mext ICM will be held in
Berkeley, California, USA.

On behalf of the mathematical community of the United
States, I would like to extend a cordial invitation to all of
you to attend that congress. My only hope is that we can
be as gracious a host as our colleagues in Poland and that
the congress will be as well organized and as successful as
the IOM in Warsaw.

The invitation was accepted by acelamation.

Speaking on behalf of the members of the Congress, Professor Hans
Freudenthal and Academician S. M. Nikol’skil expressed their thanks to
their Polish hosts.

In his reply, Professor Olech thanked the speakers for their warm
words of appreciation of the work of the organizers of the Warsaw Con-
gress. He gave some statistical information about the Congress, thanked
the Congress members for their contributions, particularly all the speakers
and the chairmen of the various sessions. He passed on the words of
thanks to all his Polish colleagues who participated in the arrangements
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and to the members of the Congress Bureau. He closed his address as
follows:

In our work we-have used much of the experience of the
organizers of the previous Congress in Helsinki. In many
cases we followed exactly the procedure they used. This greatly
simplified our work and was a great help for us. I was in con-
stant contact with Professor Olli Lehto, the President of the
Helsinki Congress, and, in particular, his personal advice was
of great value. I wish to thank him for -all that very much
and ask him to transmit our thanks to our Finnish colleagues.
If we can pay this back by being of any use to the organizers
of the next Congress in Berkeley, we shall be only too happy.

Let me thank you all for coming to the Congress in Warsaw.
I hope you have enjoyed your stay both mathematically and
socially. I wish all of you all the best for the years to come.

This way we came to what I personally consider a happy
end and I declare the ICM-82 in Warsaw closed.
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The work of the Fields medalists and the Nevanlinna prize winner were
presented as follows (the asterisk means that the report was read out in
the absence of the author).

Fields Medallists

Hozihiro Araki — The Work of Alain Connes
C.T. 0. Wall* — The Work of W. Thurston

Louis Nirenberg* — The Work of Yau, Shing-Tung
The Nevanlinna prize winner

J. Schwartz — The Work of Robert Endre Tarjan
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The Work of Alain Connes

Theory of operator algebras, after being quietly nourished in somewhat
isolation for 30 years or so, started a revolutionary development around
late 1960’s. Alain Connes came into this field just when the smokes of
the first stage of the revolution were settling down. He immediately led
the field to breathtaking achievements beyond the expectation of experts.

His most remarkable contributions are: (1) general classification and
a structure theorem for factors of type III, obtained in his thesis [12],
(2) classification of automorphisms of the hyperfinite factor [29], which
served as a preparation for the next contribution, (3) classification of
injective factors [31], and (4) applications of the theory of C*-algebras
to foliations and differential geometry in general [44, 50] — a subject
currently attracting a lot of attention.

In this report, I shall mostly concentrate on the first three aspects
which form a well-established and most spectacular part of the theory
of von Neumann algebras.

1. Classification of type III factors

In the latter half of 1930’s, Murray and von Neumann initiated the study
of what are now called von Neumann algebras (i.e. weakly closed *-sub-
algebra of the *-algebra L(H) of all bounded linear operators on a Hilbert
space H) and clasgified the factors (i.e. von Neumann algebras with trivial
centers) into the types I,, » =1,2,..., and I, (isomorphic to L(H)
with dimH = » and oo), IT;, I, and III. (In the following we restrict
our attention to von Neumann algebras M on separable Hilbert spaces H.)
Only three type III factors (and only threc type II, factors) had been
known to be mutually non-isomorphic till 1967, when Powers showed
the existence of a continuous family of mutually non-isomorphic type
ITT factors.

$ — Proceedings... [3]
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Traces provided a tool for a systematic analysis of type IL factors
at an earlier stage, while the non-existence of traces made type III factors
remain untractable till late 1960’%s, when the Tomita—Takesaki theory
was created and furnished a powerful tool for type III. To introduce
notation, let M be a von Neumann algebra on a separable Hilbert space
H and let ¥ e H be cyclic (i.e. M¥ be dense in H) and separating (i.e.
such that #% = 0 for # € M implies # = 0). The conjugate linear operator
Sga¥ = o*¥, we M, Has a closure S, and defines the positive selfadjoint
operator 4y = S%Sy, called the modular operator. The Tomita~Takesaki
theory says that » € M implies of(#) = A%@43" € M. The one-parameter
group of (*-)automorphisms of of M depends only on the positive linear
functional y(2) = (#¥, ¥) and is called the group of modular auwtomor-
phisms.

Connes [12] has shown that the modular automorphisms for different
v’s are mutually related by inner automorphisms (in other words, the
independence of o¢f from y in the quotient Out M of the group Aut M
of all automorphisms modulo the subgroup Int M of all inner automor-
phisms) and introduced the following two isomorphism invariants for M

S(M) =[()Spdy (Sp denotes the spectrum),
4

T(M) = {tecR: of eIntM}.

(In a more general case, (M) = (") Sp4,, where the intersection is
taken over faithful normal semifinite weights ¢.) It turns out that
S(M)\{0} is a closed multiplicative subgroup of R}, and this leads to
the classification of type III factors into the types IIT,, 0 < A< 1:

S(M) = {i": neZ}u{0} if 0<i<l,
S(M) ="R%, i£A=1, SM)={0,1} ifi=o.

The Powers éxamples R;, 0 <i<1, due to Powers, are of types
IIT, and hence mutually non-isomorphic. The two invariants (M) and
o(M) of Araki and Woods, introduced for a systematic classification of
infinite tensor produects of type I factors (including R;), are shown to
be equivalent to S(M) and Z'(M) for them [7].
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2. Structure analysis of type III factors

Connes [12] went on and succeeded in analysis of the structure of type
IIT, factors M, 0<<A<1, in terms of a type II von Neumann algebra
N (with a non-trivial center) and an automorphism 6 of N, such that M
is the so-called crossed product Nx,Z of N by 0.

For 0 < 1< 1, 0 should scale a trace = of a type II, factor N in the
sense that 7(0w) = Av(a) for all we N, and N;X,Z, ¢ = 1,2, are iso-
morphie if and only if there exists an isomorphism = of N, onto &N, such
that #~! 6,70, is inner, or equivalently (in view of a later result of Connes
and Takesaki), n0, 7' = 0,. This means that the pair (N, 6) is uniquely
determined by M and the classification of M is reduced to that of the
pair (&, 0).

For 1 = 0, 0 should scale down a trace = of a type II, von Neumann
algebra N in the sense that 7(0») < ¢v(w) for all w e N, for some p< 1
and, again, there is a somewhat more complicated uniqueness result
for the pair (N, 0).

Motivated by the above results of Connes, a general structure theorem
including the type III, has been obtained by Takesaki in terms of a one-
parameter group 0, of trace-gcaling automorphisms of a type II, von
Neumann algebra N.

In the process of developing the above classification and structure
theory, COonnes introduced two important technical tools, namely the
unitary Radon-Nikodym cocycle (equivalently, relative modular oper-
ators) useful in application to quantum statistical mechanics, non-com-
mutative L, theory, etc., and the Connes spectrum useful in the analysis
of 0* dynamical systems.

3. Classification of automorphisms of the hyperfinite factor

A von Neumann algebra, containing an ascending sequence of finite-
dimensional subalgebras with a dense wumion, is called approwimately
Jimite-dimensional (AFD). AFD factors of type II;, as shown by Murray
and von Neumann, are all isomorphic to what is called the hyperfinite
factor, denoted by R in the following. Connes [29] has given a complete
classification of automorphisms of B modulo inner automorphisms (i.e.
the conjugacy class of Out R). Namely, a complete set of isomorphism
invariants in Out B for an a € Aut R is given by the pair of the outer
period p (= 2, 3, ...), which is the smallest p > 0 such that o? is inner,
defined to be 0 for outer aperiodic o, and the obstruction p which is the
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p-th root of 1 (1 for p = 0) such that o = AdU, o(U) = yU, where
(AdU)(x) = UzU*. Although the result is about a specific B, this factor
E is in the bottom of all known AFD factors and the result that outer
aperiodic automorphisms of R are all conjugate up to inner automorphisms
'is essential for the results described in the next section.

As a by-product, Connes [23] solved negatively one of old problems
on von Neumann algebras by exhibiting, for each 0 <1< 1, factors
of type III,, not anti-isomorphic to themselves.

4. Classification of AFD factors

A complete classification of AFD factors of type III,, 4 s 1, is what I
consider the most distinguished work of Connes. It turns out that an
AFD factor of type III, is unique and is isomorphic to B, foreach 0 < 1 < 1,
while AFD factors of type III, are isomorphic to Krieger’s factors asso-
ciated with single non-singular ergodic transformations of the Lebesgue
measure space, their isomorphism classes being in one-to-one correspon-
dence with the metric equivalence classes of non-singular non-transitive
ergodic flows on the Lebesgue measure space.

One of the most important technieal ingredients of the proof is the
equivalence of various concepts about a von Neumann algebra which
arose over years in theory of von Neumann algebras. Murray and von
Neumann found a factor N of type II, non-isomorphic to R (distinguished
by Property T'). In 1962, Schwartz distinguished N, B and NQR by
the following Property P: A von Neumann algebra M on a Hilbert space
H has the property P iff for any T € L(H), the norm closed convex hull
of the uTw* with % varying over all unitary operators in M intersects
M'. Any AFD factors posseses Property P.

The Property P for M implies the existence of a projection of norm 1
from L(H) to M’. This is the Hakeda—Tomiyama extension property
for M’, called Property E by Connes, and is stable under taking the in-
tersection of a decreasing family, the weak closure of the union of an
ascending family, the commutant, tensor products and crossed product
by an amenable group. Thus the Property P implies Property E for M.

Any projection B of norm 1 from a O*-algebra ¥, to its subalgebra
A, is shown by Tomiyama to be a completely positive map satisfying
the property of the conditional expectation: #(axb) = aB(x)b for any
a,beN, and weW,. A O*-algebra U with unit iy called injective if any
completely positive unit preserving linear map 6 from U into another

~
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O*-algebra B with unit has an extension 8 to any O*-algebra 2, containing
9 as a completely positive unit preserving linear map from 9, into B.
A von Neumann algebra M is injective if and only if it has Property B.

Effros and Lance called a von Neumann algebra M semidiscreie if
the identity map from M into M is a weak pointwise limit of completely
positive maps of finite rank and proved that M is injective if it is semi-
digerete.

Connes [31] unified all these concepts by showing that they are all
equivalent. The core result is the isomorphism of all injective factors
of type II, to the unique hyperfinite factor R; it is established by a highly
involved and technical proof, utilizing a theorem on tensor products of
O*-algebras, the property I' of a factor which Murray and von Neumann
introduced to distinguish some factors, properties of Aut N and Int N
of a factor %, the ultra product R® for a free ultrafilter w, an argument
analogous to Day—-Namioka proof of Felner’s characterization of amenable
groups, ete.

The uniqueness of injective factors of type II, then implies the unique-
ness of injective factors of type IT,. Together with an earlier unique-
ness result for trace-scaling automorphisms of RQ®B(H) (exhibiting
the unique injective factor of type IL,), it also implies the uniqueness
of injective factors of type III;, 0 < A < 1. With help of an earlier result
of Krieger, injective factors of type III, are also completely classified by
the isomorphism class of the so-called flow of weight. Thus Connes succeed-
ed in a complete classification of AFD factors (which iz as much asg
saying injective factors) except for the case of type III,, which still
remains open.

The work of Connes also shows that any continuous representation
of a separable locally compact group & generates an injective von Neumann
algebra if G/G, is amenable, where G, is the connected component of the
identity (in particular, if G is connected or amenable).

5. Other works

After his sucecess in the almost complete classification of injective factors,
Connes turned his attention to application of operator algebras to differ-
ential geometry. Connes developed a non-commutative integration
theory, which provides a method of integration over a family of ergodic
orbits or over the set of leaves of a foliation. One significant outcome
of this theory is an index theorem for foliation. I am sure that this subject
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will rapidly develop much further. For survey of the present status, we
refer to [44], [50].

The works on positive cones [13] provide a geometric eharacterlzatlon
of von Neumann algebras through the associated natural positive cone
in the Hilbert space and lead to some applications.

A work connected with Kazdan’s property T [42] provides a simple
example of continuously many non-isomorphic factors of type II, and
answers a- question of Murray and von Neumann about the fundamental
group of a factor of type II,.

I hope that I have conveyed. to you some feeling about the incredible
power of Alain Connes and the richness of his contributions.
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On the Work of W. Thurston

Thurston has fantastic geometric insight and vision; his ideas have com-
pletely revolutionized the study of topology in 2 and 3 dimensions, and
brought about a new and fruitful interplay between analysis, topology
and geometry.

The central new idea is that a very large class of closed 3-manifolds
should carry a hyperbolic structure — be the quotient of hyperbolic space
by a discrete group of isometries, or equivalently, carry a metric of con-
stant negative curvature. Although this is a natural analogue of the
situation for 2-manifolds, where such a result is given by Riemann’s
uniformization theorem, it is much less plausible — even counter-in-
tuitive — in the 3-dimensional situation. The case of a manifold fibred
over a circle with fibre a surface of genus exceeding 1 seems particularly
implausible, and this was the cage Thurston examined firgt. The fibration
is determined by a homeomorphism # of the surface, and in seeking to put )
(and hence its iterates) into normal form, he was led to consider the images
of curves under high iterates of h: these may eventually become dense in
gome regions, leading to measured foliations. In general, he wasled to consider
a lamination, which is a disjoint union of injectively immersed curves, which
may be dense in some regions and not in others. These ideas gave rise to a
geometric model of Teichmiiller space and its compactification, which revol-
utionized thinking in this already highly developed subject.

In this, Thurston was able to draw on his previous work on foliation
theory. He swept through this subject producing startling new examples
(the Godbillon-Vey invariant takes on uncountably many values), extend-
ing the Haefliger foliation theory to closed manifolds by an entirely
novel geometric technique, calculating homology of classifying spaces
of foliations and relating it to homology of diffeomorphism groups, etec.
One dramatic example: any closed manifold of Euler characteristic zero
admits a codimension 1 foliation.

[11]
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The analysis of the diffeomorphisms of a surface concludes with
a partition of the surface into well defined pieces, on each of which % has
a structure of particularly simple form: the “generic” case is that in which
b i3 Anosov. This partition gives a partition of the total space of the
fibration mentioned above, and again we have a geometric' structure on
each piece. This leads to a reformulation of the project, which occurred
at a timely moment in the independent development of 3-dimensional
topology. .

In the late 1950%, Papakyriakopoulos obtained fundamental new
results on embeddings of dises and spheres into 3-manifolds, one conse-
quence of which was a unique decomposition of M by spheres into irre-
ducible pieces. It seemed that these were largely determined by their
fundamental groups, and much work went into studying properties of
these, though even a basic question like ‘‘are the fundamental groups
of knots residually finite?” remained unanswered. A method was devel-
oped by Haken and Waldhausen using successive decompositions of M
by ‘‘essential’” -embedded surfaces to answer such questions: this gave
excellent results in the cases to which it applied. These are the manifolds
M formerly called “‘sufficiently large” but now, following Thurston, ‘“Haken
3-manifolds”. The condition is that there exists an embedded surface
of positive genus whose fundamental group maps injectively to =, (M).
If M has a boundary component of positive genus, or if the first Betti
number i§ non-zero, such a surface can be constructed. Yet more par-
ticular are the examples given by Seifert fibre spaces. A close analysis
of these by Jaco and Shalen and (independently) Johannsen led to a de-
composition of M into a “Seifert” piece and an “‘atoroidal’ piece: in the
latter, every embedded torus is parallel to the boundary.

Thurston was now able to conjecture that every irreducible, atoroidal
3-manifold has a hyperbolic structure, and to prove it in the case of Haken
manifolds. This includes, for example, the complement of any knot in 83
(other than torus knots and ecompanion knots) — which allows one to
prove the residual finiteness mentioned above. It also led to the solution
of the Smith Oonjecture — that the fixed point set of a periodic homeo-
morphism of §° is always unknotted — a problem which had attracted
a great deal of attention over a forty year period. In fact, Thurston for-
mulates the general conjecture in more attractive terms: every compact
* 3-manifold has a canonical decomposition into pieces each of which has
a geometric structure.

Here, a type of geometric structure is defined by a (simply-connected)
model manifold X, with a Riemannian metric, and its group G'x of iso-
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metries. To say that M has a structure of type X means that there are
local coordinate charts from M to X, with transformations between
different charts given on their overlaps by elements of Gx. From this,
Thurston constructs a developing map ¢: M—X from the universal
covering of M: the structure on M is complete if ¢ is a homeomorphism.
In order to be of interest, X must satisfy some conditions (e.g. Gx is
transitive): such X he calls geometries. Thurston then shows that there
are just 8 three-dimensional geometries: in addition to the sphere, Bucli-
dean and hyperbolic space, and products of two-dimensional models
with a line, there are 3 further cases, in each of which X is a Lie group.
Although the hyperbolic structures are by far the most profound, this
general theory of geometric structures has clarified and synthesized much
previous work in the other cases also: the list of 8 three-dimensional
geometries had not been previously obtained.

The main theorem proved to date is that every compact Haken 3-mani-
fold admits a geometrical decomposition as above. However, hyperbolic
structures have also been obtained for numerous non-Haken manifolds.
There is also an extended conjecture: that if the manifold has a finite
group of automorphisms, then a decomposition, and geometric structures
on the pieces, can be found so that the group respects these. This is now
known in most cases where a decomposition exists. Of particular difficulty
are finite group actions on the 3-sphere. Thurston has shown that most
of these are equivalent to orthogonal actions, but the fixed-point free
case still eludes the method. Results on these problems have been obtained
by other authors using minimal surface theory. Thurston’s method in-
volves using his main theorem to obtain a hyperbolic structure on the
subset where the group acts freely.

As might be expected, the proof of the general result is long and in-
volves many new ideas: it is not yet all available in detail. All I can do
here is to mention a few of the ingredients.

Thurston showed that one can pass from any point in Teichmiiller
space to any other point by a unique *‘left earthquake’. An example of
an earthquake is an incomplete Dehn twist: cut a Riemann surface along
a simple closed geodesic and then identify the banks after moving each
point on one by the same distance. In a general earthquake the simple
closed geodesic is replaced by a lamination. Thurston’s earthquake theorem
was used by his student Kerckhoff to solve the Nielgen realization problem
(every finite subgroup of the Teichmiiller modular group has a fixed
point).
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Discrete isometry groups of hyperbolic 3-space were first studied
by Poinecaré, who dubbed them “Kleinian groups’. These have been much:
studied by analysts, and Ahlfors’ finiteness theorem obtained in the 1960’s.
was a fundamental result. Thurston has studied deformations of such
groups (in order to patch together hyperbolic structures defined on two
pieces of a manifold): this involves a deep study of limit sets. He has
shiown that a quasiconformal map on 8% which conjugates one Kleinian
group to another extends to H*® as a quasiconformal volume preserving
map with the same property. Typically, one of these groups is Fuchsian,
with limit set §', but the image Jordan curve is fractal, with Hausdorff
dimensional d > 1. It can be constructed as the boundary of a dise ob-
tained by bending the standard D? along all the curves of a lamination.
Thurston has also shown that for a large class of Kleinian groups (including
“degenerate’ ones), the limit set has measure zero: thus proving another
conjecture which had resisted repeated earlier attempts.

Thurston’s work has had an enormous influence on 3-dimensionak
topology. This area had a strong tradition of ‘“bare hands’ techniques,
and relatively little interaction with other subjects. Direct arguments
remain essential, but 3-dimensional topology has now firmly rejoined
the main stream of mathematics.
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LOUIS NIRENBERG

The Work of Yau, Shing-Tung

Yau has done extremely deep work in global differential geometry and
elliptic partial differential equations, including applications in three-di-
mensional topology and in general relativity theory. He is an analyst’s
geometer (or geometer’s analyst) with remarkable technical power and
ingight. He has succeeded in solving problems on which progress had
been stopped for years. Here are a few of this striking achievements:

1. The Calabi conjecture. Consider a compact Kahler manifold M
with Kéhler metric ds* = g;zde’de% and the associated closed form

o = %—g,,—,dz’/\ e,
In 1954, Calabi conjectured that given a closed (1,1) form
o= -7'—1? 702! A de
o ik

representing the first Chern class of M, there is a Kdhler metric d§? with
R; as its Ricei tensor and such that the corresponding = % G502 A de

is in the same cohomology class as w. Oalabi also conjectured the exist-
ence (and proved uniqueness) of a canonical K#hler—-Hinstein metrie
on a Kihler manifold M with ample canonical line bundle.

Analytically these conjectures reduce to solving a complex Monge—
Ampére equation for a real function ¢

0? .
det (gjl'ri- —(w—;;—,;) = det(g;z) e, ¢=0or 1,

[15]
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with F a given function, satisfying [exp# = Vol(M) in case ¢ = 0.
o

In [1] and [3] Yau solved these (and more general) equations by deriving
suitable a priori estimates for the solution and its derivatives. The deri-
vation of these estimates, though classical in spirit, is a tour de force.
Earlier, T. Aubin had proved Calabi’s conjecture in case M has non-
negative holomorphic bisectional curvature.

Calabi’s conjecture has important and beautiful applications in al-
gebraic geometry, some of which are derived in [1]. For example:

(i) The only Kihler structure on a complex projective space is the
standard one.

(ii) There are compact simply connected Kéhler manifolds whose
Ricei curvature is everywhere negative, for example, any complex hyper-
surface of CP™! with degree >mn-2.

(iii) Suppose M is a Kahler surface with ample canonical bundle.
Then 30,(M) > C}(M), and equality holds iff M is covered holomorphic-
ally by the ball in CZ

(iv) (Conjectured by Severi) If a complex surface is homotopic to
CP?, then it is biholomorphic to CP2

2. The positive mass conjecture. This asserts that for a nontrivial
isolated physical system (in general relativity theory), the.total energy,
including contributions from matter and gravitation, is positive. This
was first proved by R. Schoen and Yau [12,13]; a simpler proof was
later given by E. Witten. Their proof involves the construction of global
minimal surfaces and a study of their stability and behaviour near in-
finity. It is very techmical and extremely ingenious. Recently in [14}
they adapted their arguments to prove the positivity of the Bondi mass —
the total mass of the isolated physical system measured after loss by
gravitational radiation.

3. Real and complex Monge-Ampére equations. In joint work with
8. Y. Cheng (based partly on work of A.V. Pogorelov), Yau gave a com-
plete proof of the higher dimensional Minkowski problem (to determine -
a closéd convex hypersurface in B™*! if its Gauss curvature is given as
a function of its normal), as well as the Dirichlet problem for the real
Monge-Ampére equation [7], [8]. In [9] they carry over some of the
results of [3] to noncompact complex manifolds. They prove that if
a complex manifold with a complete K#hler metric satisfies: (i) its Ricei
curvature is < 0, < 0, (ii) its injectivity radius is > ¢y > 0, (iii) its cur-
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vature tensor and its covariant derivatives are bounded, then the mani-
fold admits a unique Binstein—Kéhler metric. Furthermore, in a strictly
pseudo-convex domain in C" with smooth boundary, they study the
behaviour near the boundary of the unique Einstein—-Kédhler metrie.
This involves the study of the solution of the Fefferman equation

(—1)"det [” ""‘] —1

with » = 0 on the boundary. This work involves deep, technical esti-
mates,

4. Various attempts have been made to find higher dimensional
forms of the uniformization theorem. In this connection there was the
Frankel conjecture that a complete, simply connected Kédhler manifold
M, with positive holomorphic bisectional curvature, is biholomorphic to
a complex projective space. This was proved by 8. Mori using methods
from algebraic topology of characteristic p.

Y. T. Siu and Yau [16] gave a very elegant analytic proof with the
aid of harmonic maps. Earlier [15] they had proved that if, on the other
hand, the sectional curvatures of M satisfy

. A
0 > sectional curvature> — Tt
A, e>0, and » = distance from some point of M, then M is biholo-
morphic to C™.

5. Furiher work on elliptic equations and geometry. In a series of papers,
some with P. Li (see [10], where other references may be found) Yau
obtained estimates on the first and other eigenvalues for the Laplace
operator on a compact manifold, with or without boundary, under various
hypotheses on the Ricei curvature — butb relying on little further infor-
mation about the Riemannian manifold.

Yau proved a very useful form of the maximum principle in non-
compact manifolds M and used it to derive various geometric results.
In his paper [6] he proved there is no non-constant positive harmonic
function on a complete Riemannian manifold with non-negative Ricei
curvature,
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6. Connections with topology.In a series of papers with W. H. Meeks
IIT (see [11] which contains other references) Yau used topological
methods of 3-manifolds to settle some old problems for minimal surfaces.
Conversely, they used minimal surface theory to derive results in
3-dimensional topology, such as Dehn’s lemma and equivariant versions of
the loop and sphere theorems. Among a certain family of maps of the
dise, or sphere, into M3, they show there is one with minimal area. Then
using the tower construction in topology, they prove that any area mini-
mizing map in the family is an embedding — thus realizing solutions
of topological problems as minimal surfaces.

The equivariant loop theorem together with a theorem of Thurston
"~ were used to prove the Smith conjecture.

In [5] with H. Blaine Lawson, Yau proved that if a compact mani-
fold admits a smooth action by a compact, connected, non-abelian Lie
group, then it admits a metric of positive scalar curvature. They then
prove that if 2" is an exotic n-sphere which does not bound a spin mani-
fold, then the only possible compact connected transformation groups
of X" are tori of dimension <[(n-+2)/2].

Paper [2] is an interesting study of the group of isometries of a Rie-
mannian manifold.

Yau has many papers concerned with minimal surfaces; he uses these
surfaces in the way that, previously, people had used geodesics.

Finally, for a good picture of the role of amalysis in differential ge-
ometry, we recommend the two articles by Yau in the seminar [4], the
first, which is a survey, and the last, a list of open problems in differential
geometry — many contributed by Yau himself.

Yau’s work covers all aspects of global differential geometry and
is distinguished by great technical power, and depth, as well as by its
widé variety — also by his courage and vision.
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JACOB SCHWARTZ

The Work of Robert Endre Tarjan

Pure mathematics enjoys the luxury of studying its construections,
whether finite or infinite, in complete independence of all questions of
efficiency. By contrast, theoretical computer science must ultimately concern
itself with computing engines which operate with limited speed and
data storage, and therefore must take efficiency as one of its central
concerns. Two clogsely related activities, algorithm design and algorithm
analysis, grow out of this inevitable concern with efficiency. The al-
gorithm designer aims to find procedures which accomplish specified
computational tasks as efficiently as possible; algorithm analysis attempts
to establish upper bounds on attainable performance, which, as they
become realistic, provide optimality targets at which algorithm designers
can aim.

Robert Tarjan has been a leader in both these enterprises, which lie
at the intellectual heart of computer science, and which during the past
two decades have begun to define the enduring theoretical inheritance
which computer science will be able to carry forward. He is perhaps the
strongest designer -of high-efficiency combinatorial algorithms active
today, and deserves much of the credit for raising the field to its present
level of sophistication. He has succeeded in devising near-optimal al-
gorithms for many graph-theoretic and geometric problems which had
at first appeared quite intractable, and has also contributed several
algorithmic analyses of striking profundity and elegance. His work is
distinguished by a meticuluos craftsmanship, which returns repeatedly
to crucial problems, always to replace refined results by constructions
more nearly perfect.

Several themes have characterized his work. One important thread
is that of effective choice of processing order for structures, such as graphs,
whose basic definition suggests no particular ordering. Here he has de-
vised, and many times exploited, the simple but remarkably effective

[21]
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concept of depth-first spanning tree for a graph. This is any subgraph
produced by stepping from node to adjacent unvisited node whenever
possible, but retreating to nodes visited earlier when nodes having no
unvisited neighbours are encountered. The ordering of nodes that results
from this simple graph-traversal procedure turns out to provide a re-
markably advantageous starting point for other graph analysis problems.

A pioneering demonstration of the efficiency attainable by use of this
technique appears in Tarjan’s first but remarkably mature work (with
J. Hopcroft) on the classical problem of graph planarity testing. The
same depth-first tree theme, which has become a kind of Tarjan trade-
mark, was continued, but used in new and striking ways, in subse-
quent papers on the problem of graph dominators and on graph reduc-
ibility, which has significantly influenced some aspects of practical
compiler-writing.

Tarjan has also applied other, quite different, graph orderings which
proved effective for other graph-theoretic problems, some related to
major problems in numerical analysis, e.g. the choice of optimal elimin-
ation orders for solution of sparse systems of linear equations.

A second major theme of Tarjan’s work has been development and
exploitation of data structures capable of supporting various special
combinations of elementary operations with remarkable efficiency. Data
structures of this kind play an essential role in many of his most refined
algorithms. In this connection he has developed and exploited new forms
of rapidly modifiable search trees which improve access speed by exploit-
ing information concerning the frequency with which particular items
will be accessed; new techniques for maintaining collections of trees
as they are dynamically joined and cut into subtrees; efficient represen-
tations of priority queues, ete. The design of these data structures has
gone hand in hand with development of clever counting techniques for
making their efficacy manifest.

To pave the way for application of these ingenious graph-processing
methods and remarkable data structures, Tarjan has repeatedly found
deep and surprising transformations of graph-related problems. This
additional level of combinatorial orchestration is seen in his work (with
Hopecroft) on efficient analysis of graphs into triconnected components,
on decompositions of planar graphs in ways facilitating application of
finite element techniques, and generally in a remarkably prolific outpouring
of work on graph-theoretic and geometric algorithms.

Yet another theme of Tarjan’s work is the application of sophisticated
enumerative combinatorics to analyse the efficiency of particular al-
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gorithms, and, more profoundly, to estimate the maximum efficiency
which ean be aitained by whole classes of algorithms which he has stu-
died. In this area his work (with hig student T. Lengauer and others)
on the “pebbling game” model of computation represents one of the
most sophisticated and successful elucidations of the deep problem of
time /space tradeoffs in computation.

The mass of his work shows his enthusiasm, energy, and force; the
exceptionally many major combinatorialists and computer scientists with
whom he has collaborated show the warmth and generosity of his scien-
tific spirit. He sets a high standard of excellence for the new prize now
awarded to him; if future recipients of this prize meet the same standard,
computer science will do well indeed.
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V. I. ARNOLD

Singularities of Ray Systems

The simplest example of a ray system is the system of all normals to
a given surface in Huclidean space. Hamilton (1824) turned the theory
of ray system into a part of symplectic geometry; since Maslov’s thesis
(1965) ray systems are called Lagrangian submanifolds.

The normals to a surface foliate some neighbourhood of that surface;
but away from that neighbourhood wvarious normals start intersecting
one another (Fig. 1). The resulting complicated and beautiful geometry

TFig. 1

wag hidden up to 1972, when the relation between singularities of ray
systems and Euclidean reflection groups was discovered.

This relation, for which there is no a priori reason, turned out to be
a powerful method for the analysis of singularities. By 1978 it became
clear that the Euclidean reflection groups also govern the singularities
of Huygens evolvents.

Huygens (16564) discovered that the evolvent of a plane curve has
a cusp singularity at each point of contact with the curve (Fig. 2). Plane
curve evolvents and their higher-dimensional generalizations are the
wave fronts on manifolds with boundary. The singularities of wave fronts,
as well ag those of ray systems, are classified by reflection groups.

[27]
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‘While the ray and front systems on manifolds without boundary are
related to the 4, D and X series of the Weyl groups, the singularities of
evolvents are described by the B, (, F series (those having Dynkin
diagrams with double connections).

Fig. 2

The relation of the remaining reflection groups (Is(p), Hs, Hy) to
singularity theory was unknown until recently. This situation has changed
since the fall of 1982 when it was discovered that the group Hj (the group
of symmetries of the icosahedron) governs the singularities of evolvent
systems at the inflection points of plane curves.

The icosahedron appears at an inflection point as mystically as it

does in Kepler’s law of planetary distances. I believe, however, that in
our problem the appearance of the icosahedron is more relevant than
in Kepler’s case; I hope that the remaining group H, will appear naturally
in the analysis of the more complicated singularities of ray systems and
wave fronts. -
"~ The main theme of this paper is the application of the relation between
singularities of ray systems and reflection groups. The results I shall
discuss are now included in symplectic and contact geometries under
the names of Lagrangian and Legendrian singularity theories. But one
may consider them as part of the calculus of variations, or of control
theory, of PDE theory, or of classical mechanics, of optics, or of wave
theory, of algebraic geometry, or of general singularity theory. Some of
these results deal with objects so basic, that it seems strange that the
classics have missed them. For example, the local classification of pro-
jections of surfaces in general position in the usual 3-space was dis-
covered only in 1981.
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The number of nonequivalent projection germs is 14: the point neigh-
bourhoods on generic surfaces generate exactly 14 different patterns
when the surfaces are seen from different points of 3-space.

The reason is perhaps the difficulty of the proofs: they depend on
the relations (sometimes unexpected) to invariant theory, Lie algebras,
-reflexion groups, algebraic geometry, and Deligne mixed Hodge structures.
Some of the results were stimulated by applications of singularity theory
to perturbation analysis of Hamiltonian dynamical systems, and even
to number theory, but most new concepts came from the problem of
bypassing an obstacle in Euclidean 3-space.

In order to describe these new results I must recall some well-known
notions,

1. Symplectic geometry

A symplectic structure on an even-dimensional smooth manifold is a closed
‘nondegenerate differential 2-form on it.

Examples: 1. The oriented area element defines a symplectic structure
on the plane. 2. The direct product of symplectic manifolds has a natu-
ral symplectic structure. 3. The phase space of classical mechanics
(the total space of the cotangent bundle of a smooth manifold) has a natu-
ral “dpAdg” symplectic structure. 4. One may equip the manifold of
oriented lines in Huclidean space with the symplectic structure of the
total space of the cotangent bundle of the sphere, since these two mani-
folds are diffeomorphic. 5. The characteristic direction at a point of a hyper-
surface in a symplectic manifold is the skew-ortho-complement to
the tangent plane. The characteristics on a hypersurface are the integral
lines of its field of characteristic directions. The manifold of characteristics
inherits a symplectic structure from the original manifold. 6. In particu-
lar, the manifold of extremals of general va,ria,tiona,{ problem, lying
at the same level manifold of the Hamiltonian function, 1s equipped with
a natural symplectic structure. 7. Consider the space of odd-degree binary
forms. There exists a unique (up to constant multiple) nondegenerate
SLs-invariant bilinear skew form on this even-dimensional linear gpace.
This form defines a natural symplectic structure on the space of binary
forms. 8. The binary forms in » and y, with coefficient in front of x**+!
equal to 1, form a hyperplane in the space of all forms. The manifold
of characteristics of this hyperplane can be identified with the manifold
of even-degree polynomials in @ of the form #* 4-... We have thus equipped
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this space of even-degree polynomials with a symplectic structure. 9. The
one-parameter group of shifts along the z-axis preserves this symplectic
structure. The Hamiltonian function of this group is a polynomial of
degree 2, known already to Hilbert (1893). The manifold of characteristics
of a level hypersurface of the Hamiltonian function can be identified
with the manifold of polynomials #%*~!+-... with sum of roots equal to 0.
We thus get a natural symplectic structure on this space of polynomials.

THEOREM (G. Darboux, 1882). All the symplectic structures on mani-
folds of a fized dimension are locally diffeomorphic.

Thus, every symplectic structure is locally reducible to the normal
form ) dp;Adg; by a suitable choice of local “Darboux coordinates” p;, q;.

Let us now consider submanifolds of a symplectic manifold. The
restriction to the submanifeld of the symplectic structure is a closed
2-form, but it is not necessarily nondegenerate. In Euclidean space there
is not only the inner geometry of a submanifold, but also an extensive
theory of exterior curvatures. In the symplectic case the situation is
much simpler: !

THEOREM (A. B. Givental, 1981). The germ of & submanifold of a symplec-
tic manifold s determined (up to a symplectic diffeomorphism) by the
resiriction of the symplectic form to the tangent spaces of the submanifold.

An intermediate theorem, dealing with wvectors nontangent to the
submanifold, was proved by A. Weinstein (1973). Unlike the Weinstein
theorem, the Givental theorem implies the classification of the germs
of generic submanifolds in a symplectic space: one uses the classification
of the degeneracies of symplectic structures obtained by J. Martinet
(1970) and his followers.

Ezxamples: 1. The germs of a generic 2-surface in a symplectic mani-
fold are locally symplectomorphic (symplectically diffeomorphic) to those
of the surface p, =3}, ¢, =0, p; = ¢ = ... = 0 (we use the Darboux
coordinates). 2. On a 4-submanifold one encounters stably the curves
of elliptic and hyperbolic Martinet singularities with normal forms

Py =Di1Pe+ 010+ GB/6, P:s=0, pi=g =...=0.

The ellipticity and hyperbolicity concern the character of the motions
in a dynamical system related intrinsically to the submanifold. The
relevant divergence-free vector field on g 3-dimensional manifold has
a curve of singular points. The classification at singular curves turns
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out to be less pathological than that at singular points (the latter being
almost as difficult as the whole of celestial mechanics).

I have thus described the first steps of the symplectic singularity
theory of smooth submanifolds.

A Lagrangian submanifold of a symplectic manifold is a submanifold
on which the restriction of the symplectic structure vanishes, and which
has highest possible dimension (equal to half of the dimension of the
symplectic manifold).

Bzamples: 1. The fibers of the cotangent bundle. 2. The manifold
of lines normal to a smooth submanifold (of arbitrary dimension) in
Euclidean space. 3. The set of all polynomials #*™--... divigible by a™.

A Lagrangian fibration is a fibration whose fibers are Lagrangian
submanifolds.

Lzamples: 1. The cotangent bundle. 2. The fibration sending an oriented
line in Kuclidean space to the corresponding unit vector at the origin.

All Lagrangian fibrations of a given dimension are locally symplecto-
morphic (in the neighbourhood of each point of the total space).

A Lagrangian mapping is a diagram V-—>H—>B, where the first arrow
is an immersion of a Lagrangian submanifold, and the second is a Lagran-
gian fibration (Fig. 3).

|
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Fig. 3

Hpamples: 1. The gradient mapping: ¢+ 68 /dq. 2. The normal mapping:
associate to each wvector normal to a submanifold in Huclidean space
its end point. 3. The Gaussian mapping: associate to each point of a trans-
versally oriented hypersurface in Huclidean space the unit vector at
the origin in the direction of the normal at that point. (The corresponding
Lagrangian manifold consists of the normals to that hypersurface.)
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An equivalence between Lagrangian mappings is a fiber-preserving
symplectomorphism between the total spaces of the fibrations, mapping
the first Lagrangian submanifold onto the second one.

The set of critical values of a Lagrangian mapping is called its caustic.
The caustics of equivalent mappings are diffeomorphic.

Bxample. The caustic of tile normal mapping of a surface is the envel-
ope of its normals, i.e., its focal surface (the surface of the curvature
centers).

Every Lagrangian mapping is locally equivalent to a gradient one
(to a normal one, to a Gaussian one). The singularities of generic gradient
(normal, Gaussian) mappings are equivalent to those of generic Lagran-
gian mappings. These singularities are classified by the Euclidean reflection
groups 4, D, H.

Ezample. Consider a medium of dust-like particles moving inertially
whose velocities form a potential field. After a time interval ¢ a particle
moves from g to #--¢ 98 /dx. We obtain a one-parameter family of smooth
mappings R3>R®. .

These are Lagrangian mappings. Indeed, & potential field of velocltles
defines a Lagrangian section of the cotangent bundle. The phase flow of
Newton’s equation sends the initial Lagrangian manifold to new Lagran-
gian manifolds, which, however, need not be sections (for large #): their
projections to the base space may have singularities (Fig. 4). The caustics

P

\

Fig. 4

of these mappings are the places where the density of particles becomes
infinite. According to Ya. B. Zel’dovich (1970), a similar model (taking
into account gravitation and expansion of the Universe) dedcribes the
generation of the large-scale nonuniformity of the distribution of matter
in the Universe.

The theory of Lagrangian smgulajntlesrlmphes that & new-born caustic
has the shape of a saucer (at.moment ¢ after its birth the saucer’s axes
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Fig. 5
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are of order {2, its depth of order # and thickness of order #*%). The saucer’s
birth corresponds to A4,;. All metamorphoses of caustics in generie one-
parameter families of Lagrangian mappings in 3-space are presented
in Fig. 5 (1976).

THEOREM (1972). The germs of generic Lagrangian mappings of manifolds
of dimension < b are stable and simple (have no moduli) at every point. The
simple stable germs of Lagrangian mappings are classified by the A, D, B
HBuclidean reflection groups, as explained below.

2. Contact geometry

A contact structure on an odd-dimensional smooth manifold is a non-
degenerate field of hyperplanes in the tangent spaces. The exact meaning
of “nondegenerate” is irrelevant because of the “Darboux contact the-
orem”: in the neighbourhood of a generic point, all generic fields of hyper-
planes on a manifold of a fixed odd dimension are diffeomorphic.

Examples: 1. The space of contact elements of a smoeth manifold con-
sists of all its tangent hyperplanes. The velocity of an element belongs
to the hyperplane defining the contact structure, if and only if the velocity
of the contact point belongs to that element. 2. The space of 1-jets of
functions y = f(#) has a natural contact structure dy = pdz (p = df/o»
for the 1-jet of y = f(x) at ).

The external geometry of a submanifold of a contact space is locally
determined by the internal one, i.e., by the contact structure traces on
the' tangent spaces (the Givental contact theorem).

An integral submanifold of a contact manifold is said to be Legendrian
if it has the highest possible dimension.

Examples: 1. The set of all contact elements tangent to a fixed sub-
manifold (of arbitrary dimension). 2. In particular, the contact elements
at a given point form a Legendrian manifold (the fibre of the bundle of
contact elements). 3. The set of 1l-jets of a function.

A fibration is said to be Legendrian if its fibers are Legendrian sub-
manifolds.

Examples: 1. The projective cotangent fibration (a contact element
is sent to its contact point). 2. The fibration of 1-jets of a function over
its 0-jets (forgetting derivatives).
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All Legendrian fibrations of a given dimension are locally contacto-
morphic (at every point of the total space).

The projection of a Legendrian submanifold to the base of a Legen-
drian fibration is called a Legendrian mapping. Its image is called a front.

Bramples: 1. The Legendre transformation: A hypersurface in a pro-
jective space can be lifted to the space of its contact elements as a Legen-
drian submanifold. The manifold of contact elements of the projective
space fibers over the dual projective space (associate to a contact element
the hyperplane containing it). This fibration is Legendrian. The projection
maps the lifted Legendrian manifold to the hypersurface which is pro-
jectively dual to the original hypersurface. Thus the projective dual
of a smooth hypersurface is a Legendrian mapping front. 2. The equidistant
mapping: Pick a point on every oriented normal to a hypersurface in
Huclidean space, at distance ¢ from the hypersurface (along the normal).
We get a Legendrian mapping whose front is equidistant from the given
hypersurface.

Legendrian equivalence, stability and simplicity are defined by analogy
with the Lagrangian case.

Every Legendrian mapping is locally equivalent to a mapping defined
by a Legendre transformation, and to an equidistant mapping. The local
Legendrian singularity theory coincides with that of singularities of
Legendre transformations (or equidistant mappings, or wave fronts).

THEOREM (1973). The germs of generic Legendrian mappings of manifolds
of dimension < b are stable and simple at every point. The simple stable
germs of Legendrian mappings are classified by the A, D, H Huclidean
reflection groups: the Legendrian mapping fronts are holomorphically equiv-
alent to the varieties of singular orbits of the corresponding reflection groups.

" Bzample. The singularities of a generic wave-front in 3-space are
(semicubical) cuspidal edges (4,), and swallow-tails (A4;, Fig. 6: at these
points the front is diffeomorphic to the surface in the space of polynomials
o'+ ax?+bx+ ¢, consisting of the polynomials having multiple roots).

Remark. The necessity to complexify in the above theorem suggests
that Euclidean reflection groups may have different real forms.

All Lagrangian singularities can be constructed from the Legendrian
ones. For this, one considers Legendrian submanifolds of the space of
1-jets of functions. By forgetting the value of the functions one projects
the jet space onto the phase space. The Legendrian manifolds’ germs
are projected isomorphically onto the Lagrangian ones. For instance,

7 — Proceedings...
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the caustic of a Lagrangian mapping is the projection of the cuspidal
edge of the Legendre mapping front under a generic projection with
1-dimensional fibers.

Fig. 6

THEOREM (O. V. Lyashko, 1979). Al holomorphic vector fields transversal
to a front of a simple singularity cam be mapped one onto another by front-
preserving holomorphic diffeomorphisms germs.

Example. A generic vector field in a neighbourhood of the “most
singular point’’ of the swallow-tail {x*+-ax®+br-tc¢ = (x+a)?...} is
reducible to the normal form é/d¢ (Fig. 7) by a swallow-tail-preserving
diffeomorphism.

Fig. 7

The reduction to normal form of various geometric objects by wave-
front or caustic-preserving diffeomorphisms is the main technical tool
in the geometry of ray systems and wave fronts. For instance, the study
of the metamorphoses of moving wave fronts is based on a result “dual”
to the Lyashko theorem.
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THEOREM (1976). Generic holomorphic functions equal to 0 at the ““most
singular” point of a simple singularity front can be mapped one onto another
by front-preserving holomorphic diffeomorphisms germs.

Example. A generic function at the most singular point of a swallow-
tail is reducible to the normal form a--const by a swallow-tail-preserving
diffeomorphism.

The theorem above follows from the equivariant Morse lemma. We
use it as follows. The momentary wave fronts form a ‘“large front” in the
space-time. Reduce the time function in the space-time to normal form
by a large-front-preserving diffeomorphism. We obtain the normal form
of the metamorphosis of the momentary front.

The infinitesimal diffeomorphisms preserving a front are the vector
fields tangent to it. Their study leads to a ‘‘convolution operation’ on the
invariants of the reflection group. This operation associates to a pair of
invariants (i.e., of functions on the orbit space) a new invariant — the
scalar product of the gradients of the given functions (lifted from the orbit
space to the Buclidean space).

The linearization of this operation is a bilinear symmetric operation
on the space cotangent to ihe orbit space at 0.

THEOREM (1979). The linearized convoluiion of ithe imvariants is equiv-
alent to the operation (p, q)—8(p-q) on the local algebra of the corresponding
singularity, where 8 = D +-(2[h)H, h is the Coxeter number, and D is the
Huler guasihomogeneous derivation.

For the exceptional groups this theorem was proved by A. B. Givental.
In his joint work with A. N. Varchenko (1981) the theorem is extended
to higher quasihomogeneous singularities, In this extension they substi-
tute the Euclidean structure by the intersection form of a suitable non-
degenerate period mapping. This period mapping comes from a family
of holomorphic differential forms on the fibers of the Milnor fibration
associated to a versal deformation of a function. A nondegenerate inter-
section form determines (according to the parily of the number of variables
of the funection) either a locally flat pseudo-Euclidean metric with a stan-
dard singularity at the Legendrian front, or a symplectic structure which
is holomorphieally extendable to the front.

Hzample. The set of odd-degree polynomials having highest coefficient
equal to 1 and sum of the roots equal to 0 is thus equipped with a new
symplectic structure. The variety of polynomials with maximal possible
number of double roots is a Lagrangian subvariety.
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‘3. Applications of Lagrangian and Legendrian singularities

The theory was first developed for the study of asymptotics of oscilla-
tory integrals by the stationary phase method. I shall not discuss these
(very important) applications here in detail, but shall rather mention:
(1) Varchenko’s (1976) proof of the formula describing the exponenti of the
main term of oscillatory integrals in terms of the Newton boundary of the
phase function; (2) the example due to the same author of the nonsemi-
continuity of this exponent; and (3) V. N. Karpushkin’s (1981) proof of
a uniform with respect to the parameters estimate from above of the
double oscillatory integrals (for simple integrals such an estimate was
obtained by I. M. Vinogradov, and for triple ones it was disproved by
Varchenko’s nonsemicontinuity example).

The uniform estimate also holds for all members of generic families
of functions depending on a small number I of parameters (Duistermaat
proved it in 1974 for 1< 6; Colin de la Verdiere in 1977 for I < 7; Kar-
pushkin in 1982 for 1< 9); I = 73 is too large (the Varchenko example
becomes possible).

The study of asymptotic expansions of oscillatory integrals in the
complex domain has led Varchenko (1980-1981) to the construction of
a mixed Hodge structure, which he calls the asymptotic structure. He has
proved that its Hodge numbers coincide with the mixed Hodge
numbers constructed algebraically by Steenbrink (1976). Among the
corollaries of Varchenko’s theory are: (1) the constancy of the Hodge
structure invariants along the “u = const’ statum, and (2) the fact
that the “inner modality” of quasihomogeneous functions coincides with
their true modality. In real algebraic geometry the mixed structure gives

some generalizations of the Petrovskii-Oleinik inequalities.
(

THEOREM (1978). The local Poincaré index of a gradient vector field in R*"®
18 bounded from above by the middle Hodge number |ind| < A",

The singularity mixed Hodge structure associates to a finite multi-
plicity critical point of a function a finite set of rational numbers, the
critical points spectrum. The spectrum’s left end is the smallest exponent
of the oscillatory integrals with a given phase function (along complex
chains). The examples show the semicontinuity of this exponent, as well
as of all the other spectrum points. For instance, the spectrum obtained
through a deformation reducing the multiplicity by one, divides the
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initial spectrum (in the same way as the axes of an ellipsoid divide the
axes of the initial ellipsoid).

The spectrum semicontinuity conjecture (1978) was recently confirmed
by the works on an apparently unrelated to it algebraic geometry problem:
how large can the numbers of (Morse) singular poinis on a hypersurface of
degree d in CP™ be?

Bruce (1981) gives an estimate from above, which agymptotic (for
the surfaces in CP3) ig d?/2-- ... (the best estimates from below are of
order 3d3/8, 8. Chmutov, 1983). Comparing the first exactly known answers
(0,1, 4, 16, 31, 64) with the mixed Hodge structure, I have formulated the
following

CoNJEOTURB. The number of singular poinis does not exceed the number
of indeger poinis m of the cube (0, @)™, for which (n—2)d/2 +1 < D'm; < nd /2.

For surfaces in 3-space this implies an estimate from above 23d2/48 + ...
Trying to prove this cojecture A. B. Givental in October of 1982 improved
the lower order terms in the Bruce estimate. His proof uses some Rayleigh—
Fisher-Courant type inequalities and makes transparent the relation of
the problem to the spectrum semicontinuity conjecture.

A. N. Varchenko immediately applied io this problem the Steenbrink
(1976) theorem on the limitg of the Hodge structures. Thus he proved
both the conjectured estimaie of the number of singular points and the
spectrum semicontinuity (the last — for quasihomogenous function deform-
ations, generated by adding lower weight monomials). The same way
he proved the semicontinuity of the left end of the spectrum for all functions
in 3 variables and for funetions in n variables having ‘“far away’ Newton
polyhedra, -

I shall also mention the applications of Lagrangian singularities to the
mechanical quadrature theory, i.e., to the problem of integer points in
large domains. Let V be the volume of a smooth boundary domain G in
the Puclidean R", and N (1) the number of integer points inside i@, R(4)
= A"V —N(4). The Lagrangian singularity theory implies the following
results:

THrOREM (Colin de Verdiere, 1977). For n < 7 generically
IR (2)] < Oan—2+2lndn),

THEOREM (Varchenko, 1981). The average |R(2)|* over all laitices oblained
Jrom the integer point latlice by rotations and shifis, does not exceed O™,
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The convex analytic case was studied by Randol (1969). The exponent
(n—1)/2 is what one might expect according to the law of large numbers
(if the A"~! cells were divided by the boundary independently). The proof
of the last theorem is inspired by the Duistermaat (1974) proof of the
Maslov “canonical operator” unitarity.

The statistics of Newton diagrams of singularities has led to another
inequality related to integer points.

TreorREM (K. A. Sevastianov, 8. V. Konyagin, 1982). The number of
vertices of a volume V convex polyhedron in R, whose vertices are integer
ﬁoints, does mot exceed CV@VO) (ihe same estimate holds also for the
number of faces of arbitrary dimension).

The influence of the boundary inflections on the remainder term of
the asymptotic of the number of integer points is a particular case of the
interrelations between the integer and smooth structures of R", which are
crucial for many branches of calculus. ’

For instance, the order of approximation of a typical point of a sub-
manifold by the hyperplanes defined by the equations with not too large
integer coefficients is essential for-the resonance phenomena in the theory
of nonlinear oscillations (the flattening of the fast frequencies’ manifold
enhances the sticking at resomances).

In his study of evolutions of action variables in Hamiltonian systems,
N. N. Nehoroshev introduced ‘‘steepness exponents’ of the unperturbed
Hamiltonian function. The calculation of these exponents for a generic
Hamiltonian function has inspired the theory of tangential singularities.

4. Tangential singularities

These are singularities of the arrangement of a projective surface with
respect to its tangents of all dimensions.

Ezample. The tangential classification of points on a generic surface
in 3-gpace (Fig. 8) was found by O. A: Platonova and E. E. Landis (1979).
A line (p) of parabolic points divides the surface into the domain (e¢) of
elliptic points and that of hyperbolic ones (k) containing the curve (f)
of inflection points of the asymptotic lines with the biinflection points (d),
the selfintersection points (¢), and the points of tangency to the parabolic
line (¢).
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This classification is useful both for Nehoroshev’s exponent estimate
and for the classification of projection degenerations.

Fig. 8

TEEOREM (O. A. Platonova, O. P. Shcherbak, 1981). Project & generic
surface from RP?® to a plane along the straight lines passing through a pro-
jection center (a point outside the surface).

All the projections thus obiained are locally equivalent to the 14 projec-
lions of surfaces # = f(w,y) along the z-axis, where f is given by the list

©, o, o*d4oy, otdaoy?, ooy, ottoy, ooty toy?,
S Loy oy, odtayt, ottodytoyd, o5toy.

Here the projections are considered as the diagrams V-—#->B consist-
ing of imbeddings and fibrations, and the equivalences are 3 X 2-diagrams,
whose verticals are diffeomorphisms.

The singularities of a projection from a generic center are only Whitney
folds and cusps (one sees a cusp along every asymptotic ray). Other sin-
gularities require special points of view. The finiteness of the list of normal
forms of projections (and hence that of the list of visible contours) is not
evident a priori, because there exists a continuum of nonequivalent sin-
gularities in generic 3-parameter families of projections of surfaces to
the plane.

The hierarchy of tangencies may become more transparent in terms
of the symplectic and contact geometries. Melrose (1976) remarked that
the tangent ray geometry of a surface in Euclidean space depends on two
hypersurfaces in the symplectic phase space: the first describes the metrie
and the second — the surface.
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The same pair of hypersurfaces describes the hierarchy of asymptotic
tangents. Thus we are able to transfer a large part of the geometry on
the usual space surfaces to the general case of arbitrary hypersurface
pairs in symplectic or contact spaces, using the geometrical intuition of
the surface theory for the study of general variational problems with one-
sided phase constraints, _

Let Y and Z be two hypersurfaces in symplectic space X, 1ntersectmg
trangversally along a submanifold W. Projecting ¥ and Z onto their
characteristics’ manifolds U, V, we obtain a hexagonal diagram

I
47
u/‘\v

J
b

where X is the (common) manifold of Eritical points of the projections
from W to U and to V.

Example. Let X = {q, p} be the phase space of a Euclidean free par-
ticle (¢ is the particle position, p — its momentum); ¥ — the manifold
of unit vectors (p? = 1); Z — the manifold of boundary vectors (¢ belongs
to a hypersurface I'). Then U is the ray space, V is I”s tangent bundle
space, W — the bundle space of the boundary (not necessarily tangent)
unit vectors and X — the spherical tangent bundle space.

Singularities of both projections W-U and WV at a nonasymptotic
tangent unit vector are Whltney folds. Bach projection defines an invo-
lution on W which is the identity on X

Ezample. We have defined two involutions o and v on the manifold
W of boundary unit vectors of a convex plane curve (Fig. 9). The product
of involutions is the Birkhoff (1927) billiards transformation.

Melrose used the involution pairs to reduce the symplectic space hy-
persurface pairs to a local normal form by a O®-symplectomorphism
(in the analytic case the series obtained are generically divergent, as is
the case in the Hcalle (1975) and Voronin (1981) theories of dynamical
Systems at resonances).
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At more complicate singularities (for instance, at asymptotic unit
vectors) the symplectic space hypersurface pairs have moduli. However,
one can reduce the pair formed by the first hypersurface and the inter-
section to simple normal form (at least formally), for the first two degen-
eracies of the fold. Thus we can study the singularities of the mapping
which associates the ray to a boundary unit vector at the generic asymp-
totic and biasymptotic unit vectors.

Fig. 9
The variety of critical values of this mapping is locally diffeomorphic
to the product of the usual swallow-tail with a linear space. This variety
lies in the symplectic space of straight lines in a standard manner:

TrEEOREM (1981). All the generic symplectic structures at the poini of the
critical variety described above are locally reducible one into another by a criti-
cal-variety-preserving formal diffeomorphism.

Al a biasymptotic ray the variety of tangent rays is locally diffeo-
morphic to the product of a swallow-tail with a line. So the above theorem
describes the symplectic geometry of the variety of tangent rays.

5. The obstacle problem

Consider an obstacle bounded by a smooth surface in Euclidean space.
The obsiacle problem requires a study of the singularities of the shortest
path lenght from a point in the space to a fixed initial set, among paths
avoiding the obstacle. This simple variational problem on a manifold
with boundary is unsolved even for generic obstacles in 3-space.

The shortest path consists of segments of straight lines and of geo-
desics on the obstacle surfaces (Fig. 10). Hence let us consider the system
of geodesies orthogonal to a fixed front. The system of all rays tangent
to these geodesics is a Lagrangian variety in the symplectic space of all
rays (as is every system of extremals of a variational problem). In the



44 Plenary Addresses: V. I. Arnold

usual variational problems on manifolds without boundary the relevant
Lagrangian variety is smooth (even in the presence of caustics). In the
obstacle problem it may acquire singularities. The above theorem implies
the following

COROLLARY (1981). The Lagrangian variety in the generic obstacle problem
has a semicubical cuspidal edge ot the generic asymplotic rays and an “opm
swallow-tail” simgularity at the bi-asymplotic rays.

Fig. 10

The open swallow-tail is the surface in 4-space {#°-+ 43+ Bw?--Oz-D}
.congisting of polynomials with at least triple roots. The differentiation
‘of polynomials maps the open swallow-tail onto the usual one. The opening
of the swallow-tail eliminates the selfinetersections but preserves the
cuspidal edge (Fig. 11).

Fig. 11

THEOREM (1981). The cuspidal edges of the wave fronts moving generically
in 3-space form an open swallow-tail in the space-time (over the usual swal—
low-tail of the caustic).
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THEOREM (O. P. Shceherbak, 1982). Oonsider a generic one-parameter
Samily of space curves and suppose that for a given value of the parameter
(of the time) the family curve has a biflatness point (of type 1, 2, 5). Then the
projective dual curves form a surface in the space-time, which is locally diffeo-
morphic to the open swallow-tail.

The open swallow-tail ig a firgt representative of a large series of sin-
gularities. Consider the set of polynomials with a root of fixed comultip-
licity %, ((@—a)"~*(#*+,..)) in the space of polynomials o"-1,a" >+
+ v.. +4,_;. The differentiation of polynomials preserves the comultiplic-
ities of the roots.

THEOREM (A. B. Givental, 1981). The sequence of varieiies of poly-
nomials with roots of fiwed comuliiplicity stabilizes as the degree n increases,
starting with n = 2k+1 (4.e., at the moment of the dissociation of the self-
intersections).’

Bzample. The open swallow-tail is the first stable variety over the
usual swallow-tail.

The following Givental theory of triads (1982) formalizes the appearance
of the open swallow-tail in the obstacle problem.

DEFINITION. A symplectic triad (H, L, 1) consists of a smooth hypersurt
face H in a symplectic manifold, and of a Lagrangian manifold L tangen-
to H (with first order tangency) along a Lagrangian manifold hyper-
surface 1.

The Lagrangian variety generated by the triad is the image of 1 in the
manifold of characteristics of H.

Hzample 1. In the obstacle problem with boundary I' < R" let us con-
sider the distance, along the geodesics of I', to the initial front as a function
s: I'>R. The manifold L of all the extensions of the 1-forms ds from I’
to R™ forms a triad together with the hypersurface H: p* = 1.

This triad generates precisely the variety of rays tangent to the geo-
desics of our system of extremals on I

Bxample 2. Oonsider the symplectic space of polynomialy F = a®--
+24,8% 1+ ... ++4; of an even degree d = 2m. The polynomials, divisible by
2™, form a Lagrangian submanifold L. Let & be the Hamiltonian function
of the shifts along the # axis. (This polynomial in 4 is

h = Z’(_l)ig:(i)g;(i)’ i+ =d, FH d'FF |dat.)
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The hypersurface » = 0 is tangent to the Lagrangian manifold Z along
its hypersurface I of polynomials divisible by 2™+ and forms with them
a triad. .

The variety generated by this triad is the Lagrangian open swallow-
tail of dimension m—1 (the set of polynomials a?'4a,2% 3+ ... +a;_,
having a root of larger multiplicity than half the degree).

THEOREM (A. B. Givental, 1982). The triad of Example 2 is stable.
Germs of generic iriads at all points are symplectically equivalent to those of
Fryample 2.

" COROLIARY. The variety of rays, tangent to the geodesics of the system
of ewtremals in the generic obstacle problem is locally symplectically equivalent
to the Lagrangion open swallow-tail.

In contact geometry two sorts of Legendrian varieties are associated
to the obstacle problem: the varieties of the contact elements of the
fronts and the varieties of 1-jets of multi-valued time functions. The
varieties of the first type ar egenerically the Legendrian open swallow-
tails (they are diffeomorphically lifted Lagrangian swallow-tails). The
varieties of the second type are the cylinders over the former.

Example. Consider the obstacle bounded by a plane curve with an
ordinary inflection point. The fronts are the curve evolvents. They have
two singularities: a usual cusp (of order 3/2) at the boundary curve of the
obstacle and a b/2-singularity at its inflectional tangent (Fig. 12). The

Fig. 12

Legendrian variety is nonsingular over the generic points of the obstacle
curve, but over the inflectional tangent points the Legendrian variety has
a cuspidal edge of order 3/2.
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Let us consider the 3-space of the plane contact elements (fibered over
the plane). All contact elements of all the evolvents of a generic curve
form a surface in this 3-space. Let us consider the 3-space of polynomials
2®+a2? +-bo+-c (fibered over the plane of their derivatives). All those
polynomials having multiple roots form a surface in this 3-space.

TuEoOREM (1978). The germ of the first surface at the tangent at an inflec-
tion point of a generic curve is diffeomorphic to the germ of the second surface
at zero, by a fibre-preserving diffeomorphism.

This surface (Fig. 13), together with the ¢ = 0 surface representing
the plane contact elements at the obstacle boundary points, forms the
variety of singular orbits for the reflection group B,;. This remark has
led to the boundary singularity theory (1978), of which I shall only men-
tion the following.

Tig. 13

Brample (1. G. Sheherbak, 1982). Consider a generic curve on a generic
surface in Euclidean 3-space. At some points the curve touches the surface
curvature line. The boundary Lagrangian singularity theory implies
that this situation is governed by the exceptional Weyl group F,: the
union of the focal sets of the surface and of the curve with all the surface
normals at the points of the curve forms a variety which is locally diffeo-
morphic to the F, caustic.

The boundary Lagrangian singularity theory implies an amusing
“Lagrange duality’”, which interchanges the singularity of a function
on the ambient space with that of its restriction to the boundary: this
duality is & modernized version of the ‘“Lagrange multipliers rule” (I. G.
Shcherbak, 1982).

Returning to an inflection point of a plane curve, consider the graph
of the (multi-valued) time function for the obstacle problem. The level
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sets of this time function are the obstacle evolvents. Hence the graph
has the shape drawn in Fig. 14 (1978); this surface has two cuspidal edges
(of orders 3/2 and 5/2).

E

Fig. 14

When I showed this surface to A. B. Givental (1982), he recognized
the singular orbit variety of the group .H; of symmetries of the icosahedron
drawn by O. V. Lyashko (1981). Givental’s conjecture was rapidly con-
firmed : ’

TeroREM (Q. P. Sheherbak, 1982). The graph of the (multi-valued) time
Sfumetion in the generic plane obstacle problem is diffeomorphic to the variety
of singular orbits at the inflection points of the obstacle boundary.

THEOREM ! (O. V. Lyashko, 1981). The variety of singular orbits of H,
i8 diffeomorphic of the space of polynomials . x°-t-ax*+bx?-+¢ having a
multiple root.

Lyashko’s theorem describes the variety of singular orbits of H, as
the union of the tangents to the curve (i, ¢3, #%) in 3-space, while Shcher-
bak deals with any curve (t+ ...,%34 ..., 84 ...).

A generic front in the 3-space obstacle problem must have a singu-
larity of the same type at the point of tangency of an asymptotic ray
with the obstacle surface.

In this paper I have not even mentioned many important aspects of
the Lagrangian and Legendrian singularity theory, especially the global
ones, such as the theory of the coexistence of singularities (the Lagrangian
and Legendrian cobordism theories reduced to homotopy problems
by Ya. M. Eliashberg, the Lagrangian and Legendrian characteristic

1 A similar description of X'(H,) was found by O. P. Shcherbak in 1983: it is based
on an inclusion of the H, graded local algebra defined by the invariants convolution,
into the H, graded local algebra: x%+ 45+ awy® -+ by®+ cx+d.
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classes of V. A. Vasiliev, which are generalizations to higher singularities
of V. P. Maslov’s class, and so on).

I have not even mentioned the extensive clagsification of the gimple
projections (Goryunov, 1981), the theory in which, for instance, the
exceptional root system 7, is an ancestor of a whole family of descen-
dants I',. One can find details of those theories and the extensive relevant
bibliography in the surveys [land [2].

In gpite of the progress of the ray system geometry during the past
three centuries, from Huygens up to now, the drawing of pictures very similar
to those one finds in Huygens’ works is still one of the main sources of
new discoveries in this difficult domain where even the 3-dimensional
problem is still unsolved and where numerous useful but unexpected
interrelations with other branches of mathematics (such as relation
of the obstacle problem to the group Hj of symmetries of the icosahedron)
gtill remain mysterious.
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P. ERDOS

Extremal Problems in Number Theory,
Combinatorics And Geometry

During my long life I wrote many papers on these subjects [1]. There
are many fascinating and difficult unsolved problems in all three of these
topics. I have to organize the problems in some order. This is not an easy
task and anyway not one of my strong points.

In number theory I will mainly discuss questions related to van der
Waerden’s theorem on long arithmetic progressions and problems in
additive number theory.

In geometry the questions I want to discuss are either metrical prob-
lems, e.g. number of distinet distances which must occur between points
in a metric space. The metric space usually will be our familiar H,. I will
also discuss incidence problems of points in #,. These problems have
a purely combinatorial interpretation too, but the results in #, are com-
pletely different than in the finite geometries.

In combinatorics I will discuss Sperner, Ramsey and Turédn type
problems and will try to emphasize their applications to number theory
and geometry.

Since I must, after all, remain myself, I can not entirely refrain from
stating some old and new problems which, in my opinion, perhaps have
been undeservedly neglected.

I hope the reader will forgive a very old man for some personal and
historical reminiscences but to save space I will try to write only facts
which I did not mention elsewhere.

1. Number theory

First I discuss problems in number theory. Here some of the most striking
and significant questions are those connected with the results of van der
Waerden and Szemerédi.

8 — Proceedings.., [51]
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Van der Waerden proved more than 50 years ago that if we partition
the integers into two classes, at least one of them contains an arbitrarily
large arithmetie progression. Many beautiful and important extensions
and modifications are known, e.g. the Hales—Jewett theorem and Hind-
man’s theorem but we have no space to discuss these here. A very mice
book on this subject has been published recently by Graham, Rothschild
and Spencer [2]. (This book contains a very extensive list of references
and the references which I suppress here can be found there.) The finite
form of van der Waerden’s theorem is:

Let f(n) be the smallest integer for which if we divide the integers
not exceeding f(n) into two classes, then at least one of them contains
an arithmetic progression of # terms. Van der Waerden’s original proof
gives an explicit upper bound for f(n) but his bound increases very fast:
in fact as fast as the well known Ackerman function (which increases so
fast that it is not primitive recursive). The best lower bound due to Ber-
lekamp, Lovasz and myself increases only exponentially, like a power
of 2. The first task would be to prove (or disprove) that f(n)* tends to
infinity but that f(n) tends to infinity more slowly than Ackerman’s
function.

Another equally important task would.be to find a sharpening of
Szemerédi’s theorem: Denote by 7,(n) the smallest integer o for which
every sequence a; < ... < ¢, < 7 contains an arithmetic progression of %
terms. Turan and I conjectured 50 years ago that for every %, r,(n) = o(n).
This conjecture was proved for & = 3 by K. F. Roth, then later by Sze-
merédi for ¥ = 4 and finally by Szemerédi for every k. A few years ago
Firstenberg proved Szemerédi’s theorem by methods of ergodic theory.
This procf does not give an explicit upper bound for 7,(n). Fiirstenberg
and Katznelson proved the n-dimensional generalization of Szemerédi’s
theorem for which there is so far no other proof. It is not yet possible to
tell the potentialities and possible limitations of this new method [3].

K. F. Roth and F. Behrend proved that

iegm

< 73(n) < m(

(1)

€1 logn

No useful upper estimation for #,(n) is known for & > 3. Szemerédi and I
observed that it is not even known whether r(n)/ry,,(n)—>0. It would
be very desirable to improve the upper and lower bounds in (1) and to
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obtain some useful upper bounds for 7,(n). In particular, is it true that

n

r(n) < logn) (2)

for every & and 1 if n > ny(k,1)? I offered a reward of § 3,000 for a proof
or disproof of (2). (2), if true, would of course imply my old conjecture:

1 . . .
IfZ—- = oo, then for every k there are & o’s forming an arithmetic pro-
o

gression. This in turn would imply that there are arbitrarily long arith-
metic progressions in the primes. Recently 18 primes in an arithmetic
progression were found by Pritchard [33]. It seems certain that a much
stronger result holds for primes: For every % there are k consecutive primes
forming arithmetic progression. But this problem certainly cannot be
attacked by any of our present-day methods, and is in fact beyond any
methods likely to be at our disposal in the near or distant future. Schin-
zel’s well-known hypothesis H would imply it. Van der Corput, Ester-
mann and Tchudakoff independently deduced by Vinogradov’s method
that the number of even numbers 2n < 2 which are not the sums of two
primes in many ways is less than x/(logz)? for every d if @ > x,(d). This
was later improved by Montgomery and Vaughan to '~ % (In fact by
Goldbach’s conjecture all even numbers but 2 are sums of two primes.)
These results immediately imply that there are infinitely many triples
of primes in an arithmetic progression. It is not yet known whether there
are infinitely many quadruples of primes in an arithmetic progression.

An old conjecture of mine (in fact one of my first conjectures, which
perhaps did not receive ag much attention as it deserved), can be stated
a8 follows: Let {f(n)} be an arbitrary sequence with f(n) = 41. Then
for every ¢ > 0 there are an m and a d such that

ml
| D) f(kd)| > e. (3)
k=1
Note that I permit fewer arithmetic progressions here than in van der
Waerden’s theorem but I also ask for much less. A weaker variant of (3)
states that if f(n) = 41 and f(n) is multiplicative, then

El nf(k)l-—— oo, (4)

Tchudakoff [4] stated independently in another context a more general
conjecture. Here I just would like to call attention to a large class of



b4 Plenary Addresses: P. Erdos

problems called problems on irregularities of distributions or discrepancy
problems. The first results in this subject were found by van der Corput
and Aardenne-Ehrenfest and later by K. F. Roth and W. Schmidt, also
by Spencer and myself. Recently very striking results were obtained
by J. Beck [32]. Very recently these problems were discussed by V. T. S86s
in a more general setting, Her paper [30] will appear soon. Here I restrict
myself to problems related to van der Waerden’s theorem. Denote by
f(n; 1) the smallest integer for which if we divide the integers not exceed-
ing f('{b; l) into two classes, then there is an arithmetic progression of »
terms which contains at least n/2 41 terms in one of the classes. f(n; n/2)
is our old f(n). I easily proved by the probability method that for I > en

J(n50) > (146,)". ()

For small values of &, (B) is perhaps not very far from being best possibler
It would be very interesting and useful to obtain good upper and lowe.
bounds for f(n;!). It would be especially interesting if one could deter-
mine the dependence of f(n; ) on I. The trouble is that there are no non-
trivial upper bounds known for f(n;1), not even if I is bounded. As far
as I know the only result of this kind is due to J. Spencer who determined
F(2n; 1), i.e. he determined the smallest integer f(2n; 1) for which one
cannot divide the integers 1,2,...,f(2n;1) into two classes so that
every arithmetic progression of 2n terms contains precisely n terms from
each class [B].

2. Combinatorics and additive number theory

Now I discuss problems in combinatorial additive number theory. For

a fuller history and discussion of such problems I refer the reader to the

excellent book [6] by Halberstam and Roth. Perhaps my oldest conjecture

(more than 50 years old) is the following: Denote by 4 a sequence 1 < a,
k

<...< @< n of integers. Assume that all the sums D ;a; (6, = 0 or 1)
=1

are distinet. Is it true that ¥ = logn/log2 40 for some absolute constant
0% The powers of 2 show that C > 1. L. Moser raised this problem inde-
pendently., Moser and I proved that

logn  loglogn

log2 2log2 +0().
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Conway and Guy [7] showed that O = 2. They found 24 integers not
exceeding 222 for which all the subset sums are different. It has been con-
jectured that their construction is perhaps optimal and that 0 = 3.
Now I discuss some problems of Sidon. Sidon called a finite or infinite
sequence A a B{ sequence if the number of representations of every
integer n as the sum of & or fewer a’s is at most . Let us first assume & = 2,
r =1, i.e. we assume that the sums a; - a; are all distinet. First we con-
sider infinite B, sequences (for » = 1 a B{) sequence will be denoted
by B,). Sidon asked: Determine the slowest possible growth of a B, se-
quence. The greedy algorithm immediately gives that there is a B, sequence
for which a, < ¢k®. On the other hand I proved that for every B, sequence

. (178
—>1.
hrz?fo?p k2(loghk) = )

I have been able to improve (6). Further I proved that there is a B, se-
quence for which

.. o O 1
hmmeZ‘ > 5 (7)

Kriickeberg replaced % in (6) by 1/¥2 and I conjectured that 1/V/2 can
further be improved to 1 which, if true, would be best possible. I could
prove (7) if I could prove that if a; < a, < ... < ;I8 a B, sequence, then
it can be embedded into a B, sequence a; <...< @< @ <... <
with @, = (1—}—0(1))7{;2. Perhaps the following stronger result holds:
Every B, sequence can be embedded into a perfect difference set. Rényi
and I proved by probabilistic methods that to every e >0 there is an
r = r(s) for which there is a BY) sequence satisfying a, < k*** for every Fk.
I would expect that in fact there is a B, sequence satisfying a; < &*t°,
but the proof of this is nowhere in sight. In fact a;, < ck® remained unim-
proved for nearly 50 years. Recently Ajtai, Komlés and Szemerédi [8]
proved by a novel and very ingenious combinatorial method that there
is a B, sequence for which

ck?
logk

a, <

This new method was recently applied by Komlés, Pintz and Szemerédi
to Heilbronn’s problem 91
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Denote by f;. (@) the largest integer for which there is a B, sequence
having f,(») terms not exceeding ». Turan and I proved thab

(L+0(1)a'” < fa(w) < 2+ cals. (8)

Lindstrom proved f,(#) < "2+ #"4 -1 which at present is the best upper
bound for f,(x).

The lower bound of (8) was also proved by Chowla. Turan and I con-
jectured that

fa(@) = 2 +0(1). (9)

(9), if true, is probably very difficult. Bose and Chowla proved that
for every k&

fu(2) = (1+o0(1))a*,

Bose observed that our method with Turén fails to give f,(#) < (1+0(1)) o™
and in fact this problem is still open. In fact I could never prove that if A
is infinite B, sequence (k > 2), then

limsup g;I* = oo.

Sidon asked me more than 50 years ago: Denote by f(n) the number
of solutions of # = a;-+ ;. Is there a basis of order 2 (i.e. every integer
ig the sum of two a’s) for which f(n) = o(n°), for every ¢ >0% By prob-
abilistic methods I proved that there is a basis of order 2 for which

¢;logn < f(n) < ¢,logn

which is very much stronger than Sidon’s conjecture. Turén and I further
conjectured that for every basis of order 2 we have

lim f(n) = oo. (10)

n—>o0

Perhaps (10) already follows if we assume only that a, < ck® holds
for some ¢ and every k.
Is there a basis of order 2 for which

f(n)/logn—>12 (11)

Probably (11) will not be quite easy, since (unless I overlook an ob-
vious idea) the probability method does not seem to help with (11).
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D. Newman and I conjectured that there is a BY) sequence which is
not the union of a finite number of B, sequences. Three years ago I found
a very simple proof of this conjecture [10]. Nesetril and Rodl proved
the related conjecture for B’ sequences. In fact I proved that there
is a B sequence having n® terms no subsequence of which having more
than 2n? terms is a B, sequence. To see this consider the B sequence

A4 Iusn, n<oSntnl,

This is a B sequence of n® terms and no subsequence having more than
2n? terms can be a B, sequence. To see this consider a complete bipartite
graph of n black and n?® white vertices. The black vertices correspond
to the numbers 4* and the white vertices to 4”. 4%+ 4° corresponds to the
edge joining 4* and 4°. A simple graph theoretic argument shows that
every subgraph of 2n? edges contains a O,, i.e. a rectangle. This shows
that the subsequence is not a B, sequence. Observe that m? = (n3)?2,
£ cannot decide if the exponent £ is best possible. Perhaps it could be
improved to % but I doubt it [11]. V. T. 86s and I considered B,") sequen-
ces, i.e. sequences i, ..., G, ..., where the number of solutions of m
= a;—a; is at most 7. Of course, for # =1 we obtain our familiar B,
sequences. We could not decide whether there is a B;") sequence which
is not the union of a finite number of B, sequences. It is easy to construct
a B, sequence for which every integer has a unique representation a;— a;.
On the other hand it is easy to see that if a, < Ak? then the number of
solutions of a@;—a; =% cannot be bounded. We plan to write a paper
at a later date on these and other problems on B;") sequences.

To complete this chapter I state two unsolved problems: Let ¢(n)—0
and 1<a;<a,< ... < a,<n be the largest set of integers for which

the number of distinct integers of the form a;+a; is < (1 +tp('n)) (“2")

2
I can prove that @ > (140(1)) 3 n?, and hope that for some constant

£>0, o< (L—e&) (2n)"2, This, if true, would imply that a harmonious
graph of n vertices must have fewer than (1—#) (’;’) edges [12] for some

constant 5 > 0.

Silverman and I asked: Let % (n) be the largest integer for which there
is a sequence 0 < a; <...< @, < 80 that none of the sums a;+ay
is a square. How large is h(n)? This harmless looking question leads to
surprising complications [13].
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3. Geometrical problems, global results

Next I discuss geometrical problems. Let ,,...,#, be distinet points
in H,. Denote by d(«;, «;) the distance between #; and ;. Let ¢ denote
the number of distinet distances and let o, > ay>...> a; denote the

4

multiplicities of the distances ( Doy = (g)) . We will mainly study the
i=1

maximum possible value of @, and the minimal value of ¢. We will study

the problems both globally and locally, where “locally” means that we
study the distribution of “distances from one point ,”. We will study
these problems both if the points are in general position and also if they
are restricted in various ways, e.g. they form a convex set or no three
are on a line. It will turn out that all these problems lead to various inter-
esting and difficult questions and we are far from their final solutions.
Many of them lead to interesting combinatorial extremal problems. G. Pur-
dy and I hope to finish a book on these geometrical problems before this
decade is over. We have written several joint papers on this subject.

i
V. T. S6s and I tried to obtain conditions (other than the trivial }a,

=1
= ("2")) which would permit us to embed the points in H,. This question
ig nontrivial even for ¥ = 1 and we have obtained only preliminary results
(in many cases with the help of various colleagues). We hope to return to
these problems elsewhere. I was told of the following attractive conjecture
of Specker. It is easy to see that for every choice of the multiplicities
@y, ..., 05 the points can be embedded into E; for some k < n—1. Specker
conjectured that k& = n—1 is needed only for the regular simplex, i.e.,

if ay = (’;) I have never looked seriously at this nice conjecture but I

am told that it does not seem to be trivial. V. T. S6s and I raised the
following question: Is there an f(k) so that if the n points are in ¥, and
the minimum multiplicity a, >n then n < f(k).

Now let us return to our subject. First of all I wish to remark that
both on the metrical and on the incidence problems important progress
has been made in the last 2 years by J. Beck, J. Spencer, F. Chung, E. Sze-
merédi and W. Trotter. I have to apologize that I mainly restrict myself
to my own problems (not because I consider them more important but
because I know more about them). I just want to remark that very re-
cently P. Ungar [31] completely solved a problem of Scott by proving
that » points in #, determine at least n—1 distinet directions (sharpen-
ing an earlier result of Burnet and Purdy). )
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Denote by f,(n) the largest possible value of a, and g,(n) the smallest
possible value of ¢. Probably % = 2 is the most interesting and difficult
cage. For &k = 1 everything is trivial: f;(n) = g,(n) =n—1. For &k > 2
intéresting problems remain, bub to save space I will only refer to the
literature.

I observed in 1945 that

pltoflogloen - £, () < g, 3 (12)

and conjectured that the lower bound in (12) is best possible or at least
not far from being best possible. The lower bound is given by the triangu-
lar or square lattice and perhaps some sort of lattice gives the true
lower bound. V. T. 86s and I conjectured that the » points which give
fo(n) must contain an equilateral triangle or a square or at least a set
of 4 points which determine at most 2 (or perhaps 3) distinct distances.
Further we asked: Is it true that f,(n) — ay—>o00 as n—>o00? Is it true that
the configurations which maximize a; are the same which minimize %
The answer is almost certainly no. Join two points if their distance is 1.
Assume that the distance 1 oceurs f(n) times. We could get no useful
properties of this graph. Of course, it must be connected. It is easy to see
that this graph eannot contain a K (2, 3) and this was the way I originally
proved f,(n) < en®2. With a little trouble we could enumerate all the
forbidden subgraphs having fewer than %k vertices, as long as & is not
too large. Once I hoped that the exclusion of finitely many of these forbid-
den graphs will give f,(n) < n#'t% But now I rather believe that for
n > m,(k) there is a graph of n vertices and cn®? edges not containing any
of the forbidden graphs having < & vertices.

Szemerédi proved 10 years ago that f(n) = o(n*?). Two years ago
Beck and Spencer proved f,(n) < #°*~° for some & > 0. This was improved
by Fan Chung, Szemerédi, Trotter and Spencer to f,(n) < n*. Unfortunately
their method does not seem to give fy(n) < n'*®. I also observed in 1946 that

ga(m) >Vn—1—1. This was improved by L. Moser to g,(n) > en*® and
last year Fan Chung proved g,(n) > cn®”. This has also been improved to
ga(n) > en®*,

4. Distance distribution, local resulis

I conjectured that if @,,,,...,%, € H; and one denotes by ?(n) the
number of different distances from «; then

maxt,(n) > on/(logn).
.i \
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Beck proved maxi,(n) > cn®” and this was also improved to max#(n)
i 1
>n*4, In fact I conjectured that

D) t:(n) > on?[(logm)'". (13)

i=1

Perhaps (13) is a bit too optimistic but as far as I know no counterexample
is known.

I conjectured that for any » points @y, ..., @, in the plane there is an
«; 8o that the number of points equidistant from ; is o(n°) and perhaps
it is less than n®°e°e®, The lattice points again show that (if true) this
conjecture is best possible. It is trivial that this result holds with en'/?
instead of n® and recently Beck proved it with o(n'?). Denote by a;(n)
‘the largest number of points equidistant from ;. The most optimistic
conjecture is that

n
2 a;(n) < pltelloglogn (14)
i=1

Again, perhaps (14) is a bit too optimistic.

5. Distance distributions with conditions

Below we shall assume some additional properties 2 of the points ,, ..., z,,
and denote the corresponding functions by f,(2,n), g,(2,n), 4;(2,n).
Let % denote that «,, ..., #, form a convex set. I conjectured and Altman
proved that

gs(C, m) = [-721] (15)

Szemerédi conjectured that (15) remains true if we assume only thab
no three of the points are on a line, but his proof gives only g,(%, n)

> [13"—] (where .2 denotes the above property). L. Moser and I conjectured

that
f:(C,3n+41) = bn
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but we could not even prove f(C, n) < cn. I also conjectured that for
a convex Ret
n
max?,(0, n) > [—2—] (16)
i

but (16) is still open. Perhaps (16) remains true if we assume only that
no three of the ,’s are on a line: maxt,(&, n) > [»/2]. I further conjectured
i

that in the convex case there is always an @; so that no three of the other
vertices are equidistant from it. This was disproved by Danzer but perhaps
remains true if 3 is replaced by 4. Here again convexity could be replaced
by the condition 2.

Let #* denote that no three points are on a line, no four on a circle.
Is it then true that

g2(Z", n) [n—>00?

I could not even exclude g,(Z*, n) > en?, but perhaps here I overlook
an obvious argument. I could not exclude the possibility that g,(ZL*, n)
=n—1 and o, =14, 1<i<<n—1. I thought that this is.impossible for
« > b, but colleagues found not quite trivial examples for » = b and
n = 6. .

Let & denote that every set of 4 points determines at least b distinet
distances. Is it then true that g,(#, n) > on?? Is the chromatic number
of the hypergraph formed by the quadruples determining > b distances
bounded ? If the points are on a line, this chromatic number is 2.

I could not prove g,(#,n) > cn® even if we assume that every set
of b points determine at least 9 distinet distances.

Below we delete 2 from our notation. Very likely, if our set contains
no isosceles triple (i.e., if every set of three points determines three distinct
distances) then g,(n)/n—>oo.

Assume finally that the points are on a line and that every set of 4
points determines at least 4 distinct distances. Then g,(n)/n—co but
g:(n) can be less than #'*°. The number of these problems could clearly
be continued but it is high time to stop.

6. Incidence problems

Now I discuss incidence problems. Sylvester conjectured and Gallai proved
that if » points are given in H,, not all on a line, then there is always
a line which goes through exactly two of the points. The finite geometries
show that special properties of the plane (or #,) must be used here. Motzkin
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conjectured that for » > n, there are at least [n/2] such lines. He fur-
ther observed that, if true, this conjecture is best possible for infinitely
many ». Hansen recently proved this conjecture, sharpening a previous
result of W. Moser and L. M. Kelly. Hansen’s proof has not yet been
published.

Croft, Purdy and I conjectured that if », ..., @, is any set of » points
in H,, then the number of lines which contain more than I points is less
than en?/l3. The lattice points in the plane show that, if true, this con-
jecture is best possible. Szemerédi and Trotter recently proved this con-
jecture. Thus, in particular, there are fewer than en'? lines which contain
more than n'? points. The finite geometries again show that special
properties of the plane have to be used.

. A few weeks later Beck independently proved our conjecture by a dif-
ferent method but in a slightly weaker form. The strong form of our
conjecture was needed to prove another conjecture of mine. Denote by
Ly, ..., L, the lines determined by our points. By a well-known result
of de Bruijn and myself m > n. Denote by |L;| the number of points
on L;, |Ly| = |Ly| > ... > |L,|. I conjectured that the number of distinct
sets of cardinalities { ILII, <y [ L)} is between e“1” 2 and e®2'*, The lower
bound is easy and Szemerédi and Trotter proved the upper bound. I have

a purely combinatorial conjecture. Let |S| =n and let 4;,= 8, 1<i<m
be a partially balanced block design of 8, i.e. every pair {»;, #;} be con-
tained in one and only one of the A’s. I conjectured that the number
of dlstlnct sets of cardinalities in {|4,[, ..., [4,|} is between n°1" Y and
n%""”, The upper bound is easy but the lower bound is still open. Rodl
recently informed me that the lower bound is also easy.

About 100 years ago Sylvester asked himself the following problem.
Assume that no four of the #,’s are on a line. Determine or estimate the

largest number of triples of points which are on a line. 5-(;") is a trivial

upper bound and Sylvester proved that #n2/6 —cn is possible. The best
possible value of ¢ is not yet known. Thus here the difference between the
plane and block designs is not so pronounced. A few years ago Burr,
Griinbaum and Sloane [14] wrote a comprehensive paper on this subject.
They gave a plausible conjecture for the exact maximum. Their paper
contains extensive references. Some of their proofs are simplified in
a forthcoming peper of Fiiredi and Paldsthy.

Surprisingly, an old conjecture of mine has so far been intractable.
Assume % > 4 and that no k-+1 of our points are on a line. Let 7,(n) be
the maximum number of k-tuples which are on a line. Then I;(n) = o(n?).
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B. Griinbaum proved that I,(n) > en'*t*~2 ig possible and perhaps this
result is best possible.

Dirac conjectured that if ,, ..., #, are » points not all on a line and
we join every two of them, then there is always an x; so that at least
7|2 —c distinet lines go through ;. If true, then apart from the value
of ¢ this is easily seen to be best possible. Szemerédi and Trotter and a few
weeks later Beck proved this conjecture with ¢;n instead of /2. Finally
Beck proved the following old conjecture of mine. Let there be given n
points, at most n —% on a line. Then these points determine at least ckn
distinet lines. Perhaps the correct value of ¢ is  in any case. Beck gets
a very small value of ¢. Many very interesting questions have completely
been omitted, e.g. Borsuk’s conjecture [15]. Some more geometric prob-
lems will be mentioned in the last chapter on combinatorial problems,
where combinatorial theorems directly imply geometric or number-theo-
retic results.

7. Combinatorial problems

In this final chapter I discuss combinatorial problems. Many mathema-
ticians, including myself, wrote several survey papers on this subject [16]
and therefore I will try to keep this chapter short. Also recently appeared
an excellent book of Bollobas [17] and several very interesting papers
of Simonovits will soon appear. Thus, apart from a few favourite problems,
I will mention only results having applications in number theory or ge-
ometry. Perhaps the first significant result in this subjeet is the following
theorem of Sperner [18]: Let |8] =n, 4;c 8, 1<i<T, be a family
of subsets of 8 no one of which contains the other, then

maxT, = ([7:;2]). (a7)

Sperner’s theorem was forgolten for a long time, perhaps even by its
discoverer. When I first met Sperner in Hamburg more than 20 years
ago, I asked him about his result. He first thought that I asked him about
his much better known lemma in dimension theory, and it turned out
that he all but forgot about (17). (17) in fact was used a great deal in the
theory of additive arithmetical functions. As far as I know, the first
use of (17) was due to Behrend and myself. Behrend and I proved (Beh-
rend [19] a few months earlier) that if 1 < a; < ... < a; < @ is a sequence
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of integers in which no one divides the other, then
! 1 clogz

(logloga)¥? * (18)

c=1

Pillai and both of us observed that (18) is best possible, apart from the
value of ¢. Later Sarkozy, Szemerédi and I [20] determined the best value
of ¢ in (18). It seems likely that there is no snmple characterization of the
extremal sequences.

Now I discuss -some extremal problems on graphs and hypergraphs.
As stated, many papers and the book of Bollob4s have appeared recently
on this subject, thus I will be very sketchy. Let G) be an r-uniform
hypergraph (i.e. the basic elements of G) are its vertices and r-tuples).
For r = 2 we obtain the ordinary graphs [21]. G(n, ¢) will denote a graph
(r-uniform hypergraph) of n vertices and e edges (r-tuples). Let f(n; G™)
be the smallest integer so that every G (n;f(n; G")) (ie. every r-gra,ph
of n vertices and f(n; G“")('n,)) edges (i.e. r-tuples)) contains G as a sub-
graph.-If 7 = 2 and @ is a complete graph of I vertices K (I), Turin de-
termined more than 40 years ago f (/n, K (l)) for every l. He also asked
for the determination of f(»;@) for more general graphs. Thus started
an interesting and fruitful new chapter in graph theory. In particular he
asked for the determination of f (n; K (1)) where K)(1) is the complete
r-graph of 1 vertices. This problem is probably very difficult. It is easy
to see that

tim f{n; K90) /(7) = o

always exists. ¢,; = 1—1/(l—1), but for no I >r > 2 is the value of ¢,;
known. Turdn had some plausible conjectures. One possible reason for
the difficulty of this problem is that (while Turdn proved the uniqueness
of his extremal graphs for r = 2 and every 1) W. G. Brown, and in more
general form Kostochka, proved that for r > 2 there are many different
extremal graphs [22]. Now, for r = 2 I state some of our favourite con-
jectures with Simonovits. It is well known that

f(m; 0y) = (§+0(1)) n*2 (19)
Try to characterize the (bipartite) graphs for which
fln; @) < en®?, (20)
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(One can eagily see that if f(n, @) = o(n?), then @ is bipartite.) Our con-
jecture (perhaps more modestly it should be called a guess) is that (20)
holds if any only if @ is bipartite and has no subgraph each vertex of
which has degree (or valency) greater than 2. Unfortunately we could
neither prove the necessity nor the gufficiency of this attractive, illumi-
nating (but perhaps misleading) conjecture. A weaker conjecture, having
a better chance of being true, states: Let @ satisfy (20). Define ¢’ by adjoin-
ing a new vertex to @ and join it to two vertices of & of different colour.
Then @' also satisfies (20). Further, we conjectured that if @ is bipartite,
then there is some rational a, 1 < a < 2, for which

limf(n; @)/n* =e¢, 0<oc<oo. (21)

Further, for every rational a € [1, 2) there is a G for which (21) holds [23].
It is well known that (21) is false for # > 2, but perhaps for every G

Bmf(2n; 6)/f(n; GY) = o(@") (22)
n—»00
exigts and differs from 0 and oo.

Nearly 50 years ago I investigated the following extremal problem
in number theory: Let 1< a; < ;< ... < @, <o. Assume that all the
products a,a; are distinet. Put f(x) = maxa,: estimate f(x) as accurately
as possible. I proved that there are positive constants ¢, > ¢; > 0 such
that [23]

(@) + ¢, 2 [(log @) < f (@) < 7(w) -+ e 0® (loga)*? (23)

(where z(x) is the number of primes < #). The proof of (23) was based on
the inequality

o;n®? < f(n; ¢,) < 0,02 (24)

(24) was proved at that time by B. Klein and me.
Another number theoretic application of graph theory is as follows:
Denote by KE"(¢,...,t) the r-graph of ¢ vertices o ...a!), 1<j<1
having " edges {#{), of), ..., a{)}. I proved (for ¢ = 2 this was proved
earlier in a sharper form by Kovari and T. Sés and Turén) that

Floy (G ounyt)) = O(mr=2"1), (25)

I deduced from (25) the following result: Let 1<b, <b,< ... be an
infinite sequence of integers. Denote by g(n) the number of solutions
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of n = b;b;. Assume that g(n) >0 for all n. Then
limsupg(n) = oo. (26)

n=00
The additive analog of (26) is an old problem of Turdn and mine, and,
as stated in Chapter 1, is still open [24].
I just state one more theorem of Simonovits and mine which has
direct consequences to some of the problems discussed in Chapter 2.
‘We proved that (for # > n,)

2

fins i, 0) = [ 5| +5 +1 (21)
and (27) implies that for n = 0(mod8)
n: on

film) =+ +1. (28)

The simplicity of (28) is in curious contrast to the difficulty of (10) [25].

Now I have to say a few words on Ramsey’s theorem. Very much
work has been done on this subject and to save space I only state one
or two of my favourite problems and refer to the literature. (The list
of references is, of course, far from complete [26].) Let G,,...,G; be k
graphs, and letr (G4, ..., G;) be the smallest integer n for which if one colours
the edges of the complete graph K (n) by % colours arbitrarily, then for
some 4, 1 <4<k the i-th colour contains @; as a subgraph.

It is surprisingly difficult to get good upper or lower bounds for these
functions, e.g. it is not yet known whether the limit of r (K (m); K (m))"™
exists. It is known that it is between 2V and 4. The sharpest known
inequality for r (K (3), K (m)) states

Cym? c,m?
. 29
Togmys < (@), Km) < 120 (20)
The proof of (29) uses probabilistic methods. Presumably
mr——l
—— 30
r(K(r), K(m)) > Togm)™ (30)

for some constant a,, but (30) resisted so far all attempts for » > 3. It
seems very likely that

r(K(m), 0,) < m*~* (31)
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holds, but it is not even known that (C; is a triangle, Oy = K (3))
r(E (m), 0,)/r(K(m), O)—0. (32)
Szemerédi recently observed that

cma

r(K(m), 0,) < Togm)® "

(83)

(33), in view of (31), only just fails to prove (32). Ajtai, Komlés and Sze-
merédi [8] in fact proved the following lemma, which immediately gives
(33), and was crucial to the proof of (7):

Trivially, every G(n; kn) has an independent set of size > n/2k. Now,
if one agsumes that our G'(n; kn) has no triangles, then the largest inde-
pendent set has size > (enlogk)/k (which, apart from the value of the
constant, is best possible). In fact, the result remains true even if we
assume only that the number of triangles is abnormally small. Several
unsolved problems remain, e.g. if we assume only that our G(n; kn) conk
tains no K (r), can we ensure an independent set of size much larger than
n/2k. The results in this case are not yet in their final form [27].

I just mention one application of Ramsey’s theorem. 50 years ago
E. Klein asked: Is there an f(n) such that if @, ..., @y, is a set of f(n)
points in the plane, no three on a line, then one can always find a subset
of n points forming the vertices of a convex n-gon. Szekeres deduced this
from Ramsey’s theorem. He also conjectured that f(n) = 2" !+1. Later
we proved

1<) < (% 35)-

The first unsettled case is whether f(6) = 17 or not.

To finigh the paper I want to state a conjecture of mine which would
have some geometric applications: Is it true that there is an #n = n(e)
so that if en <k <(3—e)n and |8 =n, 4, 8, 1<i< T, is a family
of subsets of § so that for every 1<, <4, < T,

[A; NAy | # T,

then T, < (2—e)" Peter Frankl just proved this conjecture.

9 — Proceedings...
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Optimal Control of Markov Processes*

1. Introduetion

The purpose of this article is to give an overview of some recent devel-
opments in optimal stochastic control theory. The field has expanded
a great deal during the lagt 20 years. It is not possible in this overview
to go deeply into any topic, and a number of interesting topies have been
omitted entirely. The list of references includes several books, conference
proceedings and survey articles.

The development of stochastic confrol theory has depended on par-
allel advances in the theory of stochastic processes and on certain topics
in partial differential equations. On the probabilistic side one can mention
decomposition and representation theorems for semimartingales, formulas
for absolutely continuous change of probabilily measure (e.g. the Girsa-
nov formula), and the study of Ito-sense stochastic differential equations
with discontinuous coefficients. It seems fair to say that these devclop-
ments in stochastic processes were in turn to an extent influenced by their
applications in stochastic control. For controlled Markov diffusion pro-
cesses, there is a direct connection with certain nonlinear partial differ-
ential equations via the dynamic programming equation. These equa-
tions are of second order, elliptic or parabolic, and possibly degenerate.
Stochastic control gives a way to represent their solutions probabilistically.
There is an unforeseen connection with differential geomeiry via the
Monge-Ampére equation.

Broadly speaking, stochastic control theory deals wilh models of
systems whose evolution is affected both by certain random influences

5
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and also by certain inputs chosen by a “controller”. We are concerned
here only with state-space formulations of control problems in continuous
time. Moreover, we consider only markovian control problems in which
the state #,; of the process being controlled is Markov provided the control-
ler follows a Markov control policy. We shall not discuss at all the exten-
sive engineering literature on input-output formulations particularly
for linear system models, see Astrom [1].

We shall mainly discuss the case of continuously acting control, in
which at each time ¢ a control 4, is applied to the system. However, in
§ 8 we briefly mention impulsive control problems, in which control is
applied only at discrete time instants. In optimal stochastic control
theory the goal is to minimize (or maximize) some criterion depending
on the states ; and controls #, during some finite or infinite time interval.
In § 2 we formulate a class of optimal control problems for Markov pro-
cesses, with criterjon (2.2) to be minimized. The distinction between prob-
lems in which #; is known to the controller, and problems with partial
observations is made there. When #; is known, the dynamic programming
method can be used. In principle, this method leads directly to an optimal
Markov control policy, although it rarely gives the optimal policy explicitly.
In §3, both analytical and probabilistic approaches are indicated.
Associated with dynamic programming is the Nisio nonlinear semigroup
(§4). In §5 we discuss methods of approximate solution and special
problems. In § 6 a logarithmic transformation is applied to positive solu-
tions of the backward equation of a Markov process. There results a con-
trolled Markov process, leading to connections between stochastic control
and such topics as stochastic mechanics, large deviations and nonlinear
filtering. The case of controlled, partially observed processes is mentioned
in § 7, along with adaptive control of Markov processes. Finally in §9
we indicate a few of the various difficulties encountered in seeking to
implement in engineering applications the mathematically sophisticated
results of the theory, and mention some newer areas of application.

-

2. Controlled Markov processes

We consider optimal stochastic control problems of the following kind.
We are given metric spaces X, U called the state space and control space,
respectively. For each fixed u € U there is a linear operator L* which
generates a Markov, Feller process with state space X. The domain of
L" eontains, for each u € U, a set D dense in the space C(2X) of bounded
uniformly continuous functions on 2. The state and control processes
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@, u; are defined on some probability space (2, #,P). The Z-valued
process x; is adapted to some increasing family of c-algebras &, c &,
and the trajectories @ are right continuous. The U-valued process u, is
predictable with respect to an increasing family of o-algebras ¥, c &#,.
The o-algebra %, describes in a measure theoretic way the information
available to the controller at time ¢. The processes (#;, #,) are related by
the requirement that

Mg(t) = g(@)—g(@)— f Ltg(w)ds - (2.1)

is a (#;, P) martingale for every g € D. We consider a fixed, finite time
interval 0 << T, and the objective to minimize a criterion of the form
of an expectation

T
{ IR dt—l—G(mT)} (2.2)
. .

Bgample 1. Controlled finite-state Markov chain, with = {1, 2, ...,N}.
In this case L” is identified with the infinitesimal matrix (g3;) of the chain.
When the control «, is applied, the jumping rate of », from state ¢ to j

is gt
Bzample 2. Controlled diffusion process with X = R",
w; ~—mo+ff(ms,u ds—l—f o (g, u,) dw,, (2.3)

with w, a brownian motion (of some dimension d) independent of the
initial state x,. In this case

,j=1

v =} Z%(w - am, +2f¢ @, ) ai (2.4)

with @ =060’ and D = {g: 91 Yoy Yoy € O(R"), i,j = 1,...,n}. The
diffusion is called nondegenerate if the elgenvalues of a(x, u) are bounded
below by ¢ > 0.

Further assumptions, which vary from author to author in the litera-
ture, need to be made. To avoid undue complication, in the discussion
to follow we take a compact control space U, and k(x, ), G'() bounded,



74 Plenary Addresses: W. H. Fleming

uniformly continuous. In (2.3), f(x, 4), o(x, #) are bounded and as smooth
as necessary. The c-algebras &,, ¢, are right continuous and completed.
If » is ¥,-measurable, then the controller can observe the state .
In this case, one may as well take ¥, = %, and known initial state w,.
This is the situation in Sections 3-6 to follow. If (2.1) holds, we call

a=(2,7,P,{F},0,u)

an admissible system for the control problem with completely observed
states.

A Markov control policy is a Borel measurable function from [0, 7] x X
into U. An admissible system q is obtained via a Markov control policy
u if

w = u(t, v,.). (2.5)

Given u and #, € 2, one would like to know whether a corresponding
admissible system exists, with », a Markov process. Under sufficiently
strong restrictions this is well known. For instance, in case of controlled
diffusions a Lipschitz condition on u (¢, #) would imply the classical Ito
conditions. For nondegenerate controlled diffusions, existence follows
from Krylov [8, p. 87] for any bounded %. The Markov property of
can be obtained under stronger hypotheses. For instance, for nondegen-
erate diffusions it holds if in (2.3) ¢ = o (#). A martingale method for obtain-
ing the Markov property is to show that the probability distribution
P of the state trajectory «, is unique and depends continuously on the
initial state @, [69]. In general x; is only a weak-sense solution to (2.3),
since neither the probability space nor the brownian motion w, are given
in advance. However, in the nondegenerate case with ¢ = o(2) a result
of Veretennikov [61] gives a strong solution.

3. Dynamic programming

The dynamic programming approach to the control problem with com-
pletely observed states #; can be described in a purely formal way, as fol-
lows. For initial state #, € 2 and admisgible system a, write J = J (T, @, a)
in (2.2). Let

W(T, z,) = int J(T, @y, a). (3.1)
a
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Formal reasoning indicates that W(T,«) should satisfy the dynamic
programming equation

— — AW, T>0, (3.2)

with initial data W (0, #) = G(x), where
Ag(@) = m;n [L*g (@) + K (@, w)]. (3.3)

Formally, an optimal Markov policy w* is found by requiring «*(t, @)
to minimize L*W (T —1, ©)+ k(«, ) among all w € U. Instead of the finite
time control problem, conu ol until #, exits a given open set ¢ = X can be
considered. In that case the dynamic programming equation becomes the
autonomous form of (3.2) in 0, with W(w) = @(2) for » € 0. There are
also autonomous dynamic programming equations agsociated with the
infinite time control problem, with discounted cost or average cost per
unit time criteria to be minimized.

In the rigorous mathematical treatment of dynamie programming
there is one easy result, the so-called Verification Theorem [7, p. 159].
Roughly speaking, it states that if W (T', ) satisfying (3.2) with the initial
data and the associated Markov policy u* are both “sufficiently regular”,
then u* is indeed optimal and W(T,#) is the minimum performance
n (3.1). The Verification Theorem is used to obtain explicit solutions,
in those cases where such a solution is known. Much more difficult are
the questions of existence of sufficiently regular W and w*, and there is
a large literature dealing with various aspects of them. One approach
is analytical with the stochastic interpretation made afterward. In this
approach, existence of solutions to the dynamic programming equation
and their regularity properties are studied, using non-probabilistic methods.
It is then proved that optimal (or at least e-optimal) Markov control
policies exist. A second approach is probabilistie. In this approach, one
starts with the minimum cost function W in (3.1) and develops stochastic
counterparts to the dynamic programming conditions for a minimum.
A third approach is to consider an associated nonlinear semigroup (§ 4).
While this approach leads to fewer technical difficulties than either of
the other two, it also leads to weaker results.

For controlled diffusions the analytical approach is remarkably well
developed (see Krylov [8], Lions [45]). In the nondegenerate case the dy-
namic programming equation is a second order nonlinear partial differen-
tial equation of parabolic type also called a Hamilton—Jacobi-Bellman
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equation. In various other formulations, with @, controlled for all time
t> 0 or until exit from an open set 0, the Hamilton—Jacobi-Bellman
equation is elliptic rather than parabolic. Under reasonable assumptions
the problem, the solution § has generalized second derivatives which are
locally bounded. In the elliptic case a deeper regularity result of Evans
([26], [60]) gives a classical solution. In the degenerate case W is less regular
with locally bounded generalized first derivatives W,,. The dynamic
programming equation (3.2), suitably interpreted in terms of Schwartz
distributions, still holds ([8], [45]). For the case of controlled jump Markov
processes, results on existence, uniqueness and regularity of solutions
to (3.2) were obtained by Pragarauskas [52].

A large class of monlinear elliptic or parabolic equations, satisfying
appropriate convexity conditions, can be represented as Hamilton—Jacobi—
Bellman equations. As Gaveau [35] pointed out, the Monge—Ampére
equation has such a representation.

In the probabilistic approach, the starting point is to rewrite the
dynamie programming principle in the following martingale form. Given
an admissible system a let

14
my = fk(ws,us)ds—l—W(T—t, ).
0

Then m, is a (#,, P) submartingale, and q is optimal if and only if m, is
a (#,;,P) martingale. With the aid of the Doob-Meyer decomposition:
for submartingales and some martingale representation theorems, condi-
tions for optimality are obtained (see Bismut [21], Davis [16], Elliott
[256], El Karoui [5]). These conditions are probabilistic counterparts of
those expressed analytically by the dynamie programming equation (3.2).
With the probabilistic approach difficult questions of regularity of solu-
tions to (3.2) are avoided. The probabilistic techniques give results about
existence of optimal Markov policies ([21], [5, p. 218]). These methods also
give conditions for a minimum for optimal control under partial obser-
vations.

A different kind of Markovian control problem. for diffusions, in which
the control acts only on the boundary of a region ¢ « R" was considered
by Vermes [62].

4. The Nisio nonlinear semigroup

The dynamic programming principle can be restated in another form,
in terms of a semigroup of nonlinear operators. In purely formal way,
this is done as follows. In (2.2) we fix & but consider various G. Werewrite
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the infimum in (3.1) a8 W(T, #) = 8;G(#). The dynamic programming
principle is formally equivalent to the semigroup property

Sy, 4m, = B 08y, (4.1)

of the family {S;} of nonlinear operators. In addition, for “sufficiently
regular” @, one should have

—d%—STGITSO = AQ. (4.2)
This formal procedure was put on a rigorous basis by Nisio [10], who
obtained {8,} as a semigroup on the space 0(X) and showed under some
mild additional conditions that (4.2) holds for @ € D (notation of § 2).
Equations (4.1), (4.2) would imply the dynamic programming equation
(3.2) if we knew that W (T, )= 8,G is sufficiently regular (in particular,
if 8, maps D into D). However, W does not generally have the desired
regularity. In such instances (4.2) is a kind of weaker substitute for (3.2).
Nisio’s treatment is analytical. She obtains S, as the lower envelope
of the family of linear semigroups 8%, where for constant control u e U
the gencrator of 8% coincides on D with the operator L*+ (-, u). A. sto-
chastic treatment of the Nisio semigroup is given in Bensoussan and Lions
[2], and a uniqueness result in case of nondegenerate diffusions in Nisio
{61]. Bl Karoui, Lepeltier, and Marchal [24] used another procedure,
and obtained a nonlinear semigroup on a larger space of bounded functions
@ which are measurable in a suitable sense.

5. Explicit and approximate solutions

In a few instances the dynamic programming equation (3.2) can be solved
explicitly. Examples are the well known stochastic linear regulator and
Merton’s optimal portfolio selection problem [7, pp. 160, 165]. For other
special problems the solution can be reduced to a free boundary problem.
The boundaries to be determined separate regions where some control
constraint holds or not. See for example Karatzas and Benes [40].
When a golution cannot be found by special methods, one can seek
an approximate solution to (3.2). One class of approximate methods
involve discretizations of (3.2). Among such methods the algorithm of
Kushner [9] has a natural stochastic control interpretation. The differ-
ence cquations associated with the algorithm correspond to the dynamic
programming equation for an approximating controlled Markov chain.
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For the special case of controlled one-dimensional diffusions, Borkar
and Varaiya [22] used a procedure in which piece-wise constant appro-
ximating Markov control policies are allowed.

Other results give approximate solutions to (3.2) when the state pro-
cess @, is a nearly-deterministic controlled diffusion. In (2.3) let ¢ = &'/2G.
The solution is sought in the form of an asymptotic series in e. In [29]
this is done by expanding the solution W*(T, #) in an asymptotic series.
The expansion is valid in regions where the solution W°(T, ) of the
corresponding Hamilton-Jacobi equation is smooth. In [20] Bensoussan
obtains an asymptotic expansion, using & stochastic maximum principle
instead of (3.2).

6. A logarithmic transformation

Consider a linear operator of the form LV (), where L is the generator
of a Markov process & with state space 2. The initial value problem

4
7 = Lo +V (@9 ) (6.1)

with data ¢(0,®) = @(x) has a probabilistic solution by a well known
formula of Feynman-Kac type. For positive solutions of (6.1) another
probabilistic representation for ¢(7, x) can often be found in the follow-
ing way. The logarithmic transformation I = —loge changes (6.1) into
the nonlinear equation

ar N
=7 = H(D-T (@), (6.2)
H(I) = —e'L(e7)). " (6.3)

If one can find a control problem of the kind in § 2 such that
H(I) = min[L*I+ k(z, u)], (6.4)
uelU

then (6.2) is the dynamic programming equation (3.2). The stochastic
control interpretation of I(T,x) is as the minimum of the criterion J
in (2.2). Thus, in (3.1) we have W = I. For a nondegenerate diffusion
obeying the stochastic differential equation

agy = b(&)dt+ o (&) dw,, (6.5)
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a Markov control policy u(f, #) changes the generator L to L%, correspond-
ing to change of drift from b(x) to %(¢, #) in (6.5). In (2.2) one takes

k(w, u) = }(b(@)—u) o~ (@) (b(@) —u),

with @ = oo¢’. An appropriate control problem for the case of & a jump
Markov process is described in [31], and for a general class of Markov &
in Sheu’s thesis [68]. The change of generator from I to L% corresponds
to a change of probability measure. It was pointed out by M. Day that
this change of measure results by conditioning with respect to @(x;)
(see [31, (4.B)]).

In case L = }4, corresponding to & a brownian motion (6.1) is the
heat equation with a potential term. The stochastic control interpretation
of 8§ = —logep is as least average action. Upon rescaling, taking L = { A4
and replacing V by A~'V, the usual least action is obtained as a “classical
mechanical limit” ag 4—+0 [28]. The heat equation with potential is the
“imaginary time” analogue of the Schridinger equation of quantum
mechanies. There is an intriguing connection between stochastic control
and the Schrodinger equation, whose implications are not as yet well
understood [36]. This work is in the framework of Nelson’s stochastic
mechanics. An apparently different theory of “stochastic mechanics?”
was developed by Bismut [4].

Holland [39] gave a stochastic control interpretation of the dominant
eigenvalue of the Schrodinger equation as minimum mean total energy
of a particle in equilibrium. The approach was again based on a logarithmie
transformation and subsequently led to Sheu’s treatment [58] of the
Donsker—Varadhan formula for the dominant eigenvalue of the operator
L+7V appearing in (6.1).

The Ventsel-Freidlin theory of large deviations deals with asymptotic
probabilities of rare events associated with nearly deterministic Markov
processes. The logarithmic transform gives another approach to results
of this kind. As an illustration we consider the problem of exit from an
open set D < X during the time interval 0 <t < 7. Let #; be a Markov
process tending to a deterministic limit «f as &-0. Let I°
= —clogP, (v* < T'), where z* is the exit time of #; from D. Under various
assumptions (including a suitable scaling of &), I° tends to a limit I° where
INT, x) is the minimum of a certain “action functional” among curves
starting at # e D and leaving D by time 7. In the stochastic control ap-
proach I*(T, #) is the minimum performance in a corresponding stochastic
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control problem [27], [31], [58]. In this approach a minimum principle
is associated with the large deviation problem for & >0, not just in the
limit as e—0. ’ )

In [32], the logarithmic transformation was applied to solutions to
the pathwise equation of nonlinear filtering, making a connection between
filtering and stochastic control.

7. Partial observations; adaptive contrel

The states @, of a stochastic system often cannot in practice be measured
directly, or perhaps can only be measured with random errors. This has
led to an extensive literature or nonlinear filtering and on optimal control
under partial observations. For controlled diffusions, a standard model
is to take state dynamics (2.3) and an observation process y, governed by

¢

Y = [h(w)ds+W,, (7.1)

0

with W a brownian motion independent of w. The information available
to the controller at time # is usually assumed to be described by the o-al-
gebra ¥, generated by observations y, for s < {. However, existence of
optimal controls has been proved only with a somewhat wider class of
admissible controls than those adapted to this family {%,}.

Several good survey articles on controlled partially observed diffusions
have recently appeared [15], [16], [17]. Hence, we shall not try to sum-
marize the various results here. In studying partially observed control
problems it is useful to introduce an auxiliary “separated” control prob-
lem. In the separated problem the role of “state” process is taken by a
measure-valued stochastic process o; [34]. The measure o, represents an un-
normalized conditional distribution of z; given observations and controls
Yoy Ugy 0 <8<t A nonlinear semigroup for the controlled, measure-
valued process o, has been constructed [19], [30], [33]. Among other
recent work, we mention that of Rishel [63] on partially observed jump
processes, and of Mazziotto and Szpirglas [49] on impulsive control
under partial information.

In adaptive control the objective is the simultaneous control and
identification of wunknown system parameters. Common techniques
in discrete-time adaptive control involve gsequential techniques,
based on maximum likelihood or least squares, for updating esti-
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" mates of unknown parameters. In the context of adaptive control of
Markov chains see the pioneering work of Mandl [48], also Borkar and Va-
raiya [23], Kumar and Lin [41]. Another (Bayesian) viewpoint is to treat
adaptive control of Markov processes as a special case of stochastic control
under partial observations. This is done by simply regarding the unknown
parameters as additional (nontime-varying) components of the system
state. From a practical standpoint this approach encounters well known
difficulties, in that effective solutions to partially observed stochastic
problems are difficult to obtain. Nevertheless, special cases in which the
problem becomes finite-dimensional have been treated by Hijab [38]
and Righel [54].

8. Impulse control; problems with switching costs

In impulse control problems the control actions are taken at discrete
(random) time instants, and each control action leads to an instantaneous
change in the state ;. Typical impulse control problems are those of
stock inventory management, in which a control action is to reorder with
immediate delivery of the order.

The analytic treatment of impulse control was initiated and developed
systematically by Bensoussan and Lions [3], with emphasis on the control
of nondegenerate diffusions. The dynamie programming cquation is re-
placed by a set of inequalities which take the form of a quasivariational
inequality. For the case of degenerale diffusions see Menaldi [50], and
for impulsive control for Markov-Feller process see Robin [55], [56].
Lepeltier and Marchal [43] gave a probabilistic treaiment.

Another class of stochastic control problems of recent interest are
those in which control actions are taken at discrete time instants, with
no instantaneous change in &, but with a cost of switching control actions.
Such problems arise in the theory of controlled queues (see Sheng [57])
and in control of energy generating systems under uncertain demand.
The analytical treatment again is to reduce the problem to a quasi-
variational inequality (see Lenhart and Belbas [42], Liao [44]).

9. Applications

Optimal stochastic control theory was initially motivated by problems
of control of physical devices. More recent influences have come from
management science, economics, and information systems. Until now,
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the impact on ‘engineering practice of much of the sophisticated math-
ematical theory has been small. The stochastic linear regulator is a stan-
dard tool, because the optimal Markev control policies turn out to be
linear in the state #. If the Markov policy is nonlinear, it is difficult to
implement. Moreover, other issues may be considered in practice more
important than optimality of system performance as predicted by the
stochastic control model. The model is generally a simplification of nature,
through linearizations, reductions of dimensionality, assumptions that
noises are white, etc. A control which performs well (éven optimally)
according to the model may behave poorly in a real control system. The
question of robustness of controls with respeet to unmodelled system
dynamies is of current interest in the engineering control literature (see
for example [63]). A different sort of question is that of stochastic con-
trollability [64].

‘We conclude by mentioning two novel applications of stochastic con-
trol. One is Arrow’s model of exploration consumption, and pricing of
a randomly distributed natural resource. This model was analyzed in
detail by Hagan, Caflisch and Keller [37]. They determined approxi-
mately the free boundary between portions of the state space where new
exploration should or should not be undertaken.

Ludwig and associates have applied a stochastic control method to
fishery managernent problems [47]. The fishery resource is confrolled
through the rate at which fish are harvested. This work has an important
statistical aspect as well as the control aspect, since errors in measuring
unknown parameters in the fishery model can be important.
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Some Recent Advances in Analytical Number Theory

The realm of the analytical theory of numbers is nowadays too vast for
one to attempt a complete survey within an article of this length. We
therefore mainly restrict ourselves to those aspects of the additive theory
that are associated with the author’s recent work.

The circle method of Hardy and Littlewood plays a dominant role
in the analytic part of the additive theory of numbers. Familiar though
this method is to experts in the field, it is appropriate in an expository
article that we should give a brief description of the underlying procedure
in order that we should be aware of its limitations and of the relevance
to it of recent mathematical developments.

Avoiding complete generality for the sake of brevity and clarity,
we can indicate the nature of the method by considering its formal appli-
cation to the problem of determining whether an indeterminate equation

Fly oy eeaydy) =0 (1)

is soluble, where f(#,, ..., #,) is a polynomial with rational integral coeffi-
cients. It being inherent in the technique that normally it should only be
applied when the answer to the proposed question is thought to be in the
affirmative, the method usually not only settles the problem of existence
but supplies an estimate for the number »(x) of solutions of (1) that lie
in some large appropriate region R,, where # is a parameter tending to
infinity. In many, but by no means all, of the more important problems
the natural form of this region is inherent in the other data and is there-
{ore not the subject of a special definition ; this, for example, is the situation
in Waring’s problem when we consider the representation of large numbers
N as the sum of s k-th non-negative powers.

[85]



86 . Plenary Addresses: C. Hoole};

The genesis of the method, as modified by Vinogradov, is the obser-
vation that

1
() = Z‘ o2l sl 76 |
8 (yeslp)eBy

To treat the integral the range of integration is split up into intervals
(or arcs as they are usually called, since the procedure is easily interpreted
in terms of the circumference of the unit circle) that are in some sense
centred by rational numbers (Farey fractions) of the form h/k, where

(h,k) =1, O0<h<k, k<X,

and where X is a suitable function of #. When 6 is at the “centre” h/k
of an are and % is small, the integrand can be estimated with great accuracy .
because

P R Y

is a periodic function in 7,,...,7, with small periods; consequently, by
partial summation or some equivalent process, the integrand can also
be satisfactorily calculated when 0 is close to &/k. Thus part of the integral
can be adequately treated, while the form of the calculations suggests
that the residual part is negligible in circumstances where we may reason-
ably expect there to be an asymptotic formula for »(x).

To validate the asymptotic formula thus suggested it is requisite to
overcome the difficulties encountered when % is large or when 6 is far
from the centre of the arc it lies in (these two possibilities are partly
interchangeable because there is usually somelatitude in the choice of X).
There are two main lines of development here. The first is for us to refine
the calculations already made so that they are applicable to the entire
range, endeavouring in some places to gain improvements by shewing
there is some cancellation between contributions from arcs corresponding
to a common denominator k. However, matters of such nicety intervene
that it is seldom that the programme succeeds. This approach was first
used by Kloosterman in his investigation on quaternary quadratic forms,
whence flows the present custom of designating such a procedure by the
term Kloosterman refinement.

The second and more common technique is applicable to problems
that are additive or that can be made additive by a suitable transform-
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ation. The Waring’s problem about the number »(N) of solutions of
oo+ =N

typifying the situation to be covered by this routine, the integrand is
now

fs( 0) 6—2m‘No ,
‘where

floy = 3 e, (2)
I<N1E
Over the set # of minor arcs, which the residual range of integration is
termed, the integrand is bounded by

gﬁumwgmmwwm

where 0 < g < s. In favourable circumstances, which alas do not too
often occur, the integral above can be estimated because it has a natural
arithmetical meaning. The upper bound, on the other hand, has often
been satisfactorily estimated through the work of Weyl, Weil, and Vino-
gradov. Impressive developments in Waring’s and other problems have
been achieved by these means. There is, however, the substantial short-
coming that the method is inapplicable whenever the order of magnitude
of »(N) is not larger than N. Consequently, it ecannot deal with important
unsolved problems such as the Goldbach problem or Waring’s problem
for four cubes. Similar remarks relate to the more general earlier context
when »(z) is small in terms of 2, where as before R, is chosen in a natural
way. Finally, many variations in this line of attack have been introduced
by various writers, and we refer the interested reader to the several treatises
on the subject for further details.

Enough has been said already to see the potential relevance of expo-
nential sums of the type

eﬁm'f(ll,... W)l ( 3 )
lpeenslp<ts
to the circle method. The study of such sums can be easily reduced to
that of complete sums
ezﬂf(ll,...,lr)h/k’ ( 4)
0<lyylgseensly <k
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which themselves are a specialization of sums of the form

e211:{}'(11,...,l,.)h/k , ( 5)

0<lyseenlpy <k
g(llf...,l:.'i=o

where the significance of the notation f may change as we go from (3)
to (b). Although the importance of (4) has been long understood, it has
been perhaps less appreciated that there are a multitude of ways in which
(b) might conceivably be of assistance.

Best possible estimates for (3) in the case = 1 were made available
by Weil’s work and allowed considerable progress to be made in additive
number theory (both by the circle method and by other means). It was
therefore to be expected that Deligne’s fundamental and far reaching
proof of the generalized Weil conjectures should lead to further advances
as soon as it could be shewn how his work was applicable to the sums (5).
Estimates for special cases having been obtained by various writers, best
possible estimates in the general case were in faet first obtained by the
speaker in 1979 by a very simple method ([7], [10], and in a paper shortly
to appear), while shortly afterwards Katz obtained similar estimates
by a more recondite method, which also shed much light on the structure
of the L-functions over algebraic varieties [14].

Recently, a striking advance has been made by Heath-Brown using
a Kloosterman refinement and the estimates for multiple exponential
sums. As the culmination of a series of important papers, Davenport
shewed that an n-ary cubic form f with integral coefficients had a non-
trivial integral zero provided that n>16 ([1], [2], [3]). The result is
false for » = 9 even when f is non-singular but it had been conjectured
that it is always true for » = 10. Heath-Brown [4] has proved its truth
for » = 10 when the form is non-singular, an achievement that settles
the situation for the most important category of cubic forms.

Notwithstanding the potential relevance of the Deligne estimates
to the circle method, no other significant advance has yet been made
through this order of ideas. This is due in part to certain deficiencies
i,ﬁ the circle method to which we shall later allude and also to the fact
that in many of the more important outstanding problems the expécted
jva.lué of »(x) is too small for the method to be applied in any but the most
abstruse manner.

Yet there is a further possible avenue of advance through the eircle
method that seems not yet to have been exploited. This is to go beyond
the Kloosterman refinement and to consider possible cancellations be-
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tween contributions from integrals corresponding to different values of %
Serious arithmetical and analytic difficulties, not yet normally capable
of resolution, lie athwart this path. But the author has been successful
in directing this idea to the theory of indefinite and definite ternary
quadratic forms, in which the cardinality of the representations of num-
bers is too small for a Kloogterman refinement to be adequate. Inter-
esting though this development may be from a methodological angle,
it enables no real progress to be made since the theory of ternary forms
has already been successfully treated by other more appropriate methods.

We turn now to some recent progress in additive number theory that
has been made by a,ltgarna.tive methods. First, we mention the mixed prob-
lem of represenfing numbers as the sum of squares and non-negative
cubes, the history of which goes back to Hardy and Littlewood. Although
it is conjectured that all large numbers are both the sum of one square
and two cubes and of two squares and one cube, the best that was known
through the circle method about two squares in this context was that
they and four cubes sufficed to represent all large numbers. Not so long
ago, however, Linnik [15] proved by his ergodic method that, if »(n)
is the number of representations of » as the sum of two squares and three
non-negative cubes, then

v(n) > nh-*

for n >mn,, thus shewing that all large numbers are expressible in the
proposed manner. But this work neither supplied an asymptotic formula
for »(n) nor even shewed that »(n) was of the expected order of magnitude.
We therefore propose to sketch briefly how we proved the asymptotic
formula

y(n) ~ %w]’“ (—;—) S(n)n,

where G(n) is the singular series, thus demonstrating that the theory
for two squares and three cubes conforms to the traditional pattern of
results in Waring’s problem [8]. Note that this is only the third genuine
example of an asymptotic formula in Waring’s problem where the car-
dinality of representations of n does not essentially exceed #» in order of
magnitude (the other two are the explicit formulae for three squares and
for four squares), a fact that is related to our avoidance of the circle method.
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The source of the method is that, if 7(u) denotes the number of ways
of expressing u as the sum of two squares, then

r(p) =4 D x() (u #0) - (6)
113 .
and .
v(n) = Y ra—X-Y-2°). )
X34+ 73+23<n

Substituting (6) in (7), we find that »(n) is expressible as a combination
of sums such as

1,
X34 73173<n
X34+ ¥34+23=n,mod %k
where k < n'/2. The latter sums in turn can be evaluated by complicated
transformations in terms of the exponential sums

gHriaX +bT +eB)lk

X34 734 Z8=n, mod%
0<X,Y,Z<k
to which our estimates through Deligne’s theory are applicable. The for-
mulae thus obtained almost, but not quite, suffice, a very complicated
argument involving a deep theory of elliptic curves over finite fields
being needed to complete the proof.

A somewhat surprising lacuna in the theory of these mixed problems
has been the absence of known asymptotic formulae for the representations
of numbers as the sum of three squares and a non-negative k-th power
when %k is greater than 2." Notwithstanding the existence of an exact
formula for the number of ways of expressing a number as the sum of
three squares, this question turns out to be unexpectedly difficult for
the larger values of %, and it is only now that the asymptotic formulae
have been derived by the author by exploiting relatively recent devel-
* opments in the theory of the Dirichlet’s L-functions [11].

We next consider the classical Diophantine equation

X4+ Y = Z" W (h>2), (8)

which was studied, in particular, by Fermat and Euler. Although these
scholars obtained rational parametric solutions when % is 3 or 4, it has
been conjectured that the equation has no non-trivial solutions whenever
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h > B. This speculation being obviously extraordinarily difficult to ireat
in view of its connection with Fermat’s Last Theorem, it is of interest
to ponder some associated questions involving the expression of a number
as the sum of two h-th powers whose resolution would provide some guid-
ance about the matter. Let 7,(n) be the number of ways of expressing »
as the sum of two A-th powers (positive or negative, order being rel-
evant), let N, (o) be the number of positive integers #» not exceeding @ for
which 7,(n) > 0, and let », (@) be the number of those integers for which
7,(n) > 2, noting that »,(2) = 0 for » > b if the conjecture is true, Then
we have been able to shew that

Ny (@) ~ A(h)a™™ (9)
and

n(@) = O (@D,

thus demonstrating that it is certainly exceptional for a number express-
ible in the given form to be thus expressible in more than essentially
one way. This goes some way in the required direction and is actually
true for all k > 3, although so far we have only supplied the full details
for the case where kb is odd ([6], [7], in which are supplied references to
relevant earlier writings by Erdoés, Mahler, Greaves, and the author).
This work also furnishes an analytic theory of the representation of num-
bers as the sum of two h-th powers for & > 2, a theory that is seen to con-
trast markedly with the classical theory for the case i = 2.

Considerations relating to the density of representations, to which we
have previously alluded, preclude the application of the eircle method
to the additive equation (8), which indeed is even beyond the theoretical
powers of that method whenever & > 3. Yet we cannot tarry long enough
to describe our method in detail on account of its complication. It must
therefore suffice to indicate briefly the ideas involved by referring to the
case h = 3, in which (8) takes the form

r(r2438%) = p(p%-+30%) (10)

after a simple transformation. Since only solutions with X +Y % Z+W
serve to give a bound for »;(w), we are led to study (10) subject to r < o
and other appropriate conditions. Now (10) is contained in the equation

r(r*+3s%) = ol, (11)
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which, being of the form
r(r?+4 3s?) = Omod g,

can be studied with great accuracy by the theory of exponential sums
in a manner akin to that used in the two squares and three cubes problem.
The cardinality of solutions of (11)is too large, however, and it is necess-
ary to take into account the special nature of the number ! by means
of a sieve method that exploits the idea that, for any prime p, a square
0% i3 mot a quadratic non-residue, modp. The calculations involved in
this refinement are somewhat complicated and involve our estimates for
multiple exponential sums of type (5) for r = 3.

There is an application of these ideas to the study of the number g(n)of
representations of » as the sum of four non-negative cubes. It being at
present impossible to find an asymptotic formula or even a positive lower
bound for g(n), it is not without interest to elicit as keen an upper bound
as possible for o(n). Here our method gives [5]

e(n) = O(n1%*e),

which represents an improvement on the trivial bound O(n*3*®).

It had been guessed by Davenport and others that there is a positive
density of numbers expressible as the sum of two cubes of rational numbers,
and this was proved by Stephens [17] on the assumption that the Birch—
Swinnerton-Dyer conjectures for certain elliptic curves are true. At the
level of unconditional results, if M (%) is the number of positive integers
up to # that are the sum of two rational cubes, then our result (9) gives

M () > Ny(2) > A0

with an explicit value for 4,. But our method can be adapted to take
meaningful account of the changed circumstances with the consequence
that we can shew that [12]

M(z) > A2 Plogm.

The calculations involved also shed other light on the conjecture and
suggest that it can only be true if the elliptic equation

X34+ Y =z’ (12)

frequently has a smallest solution in which Z is almost exponentially large
in terms of n.
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Another interesting question in this field is whether a polynomial
f(z) equalling a sum of two integral h-th powers for every integer a is
identically of the form

{1 (w)}h‘l‘{fz(w)}h- (13)

Our method cannot so far resolve this matter but can at least shew that
such polynomials f(x) have certain properties that are consistent with
their having the proposed form (13). We should also observe that Schinzel
[16] has actually shewn that the answer is in the affirmative provided
that certain far-reaching generalizations of the prime-twins conjecture
are true.

Our thesis has tended to shew up certain shortcomings in the power-
ful circle method in spite of the suggestions we have made concerning
its improvement. Apart from theoretical limitations, these deficiencies
fall into a number of categories. For example, the method is in some
respects not very flexible in adapting itself to the peculiar circumstances
of individual problems, a penalty no doubt of the wide ranging scope of
the machinery. Moreover, for the deeper problems the analysis becomes
very complicated, a situation that is brought about in part by the need
tio consider exponential sums at arguments other than the arithmetically
natural values i /k. In view of these facts and our present inability to make
further substantial progress with Waring’s problem through the circle
method, it seems worthwhile to devise an alternative method of some
generality that might incorporate some of the features of the special
methods already mentioned. We therefore go on to deseribe a procedure
developed by the author [9] that is applicable in principle to Waring’s
problem for any exponent and that has already been successful in isolating
some new results. In some respects it has a potential for further refine-
ment that is denied the circle method, although we have not succeeded
in using it to resolve any of the deeper unsettled questions. Furthermore,
the method has nowhere the same universality as that of the circle method.

We hint at the method by considering its relevance to problems in-
volving the equation

Pto(ly.l) =n, (14)

in which there is always a square present and in which ¢(l,, ..., 1,) is a sum
of powers. The underlying idea, implemented in practice with rather
more refinement than our remarks here might suggest, is to split up
@(lyy ey 1) into two sums of powers g, (I, ..y b)) Pallos1s ++ 5 1) in & suitable
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way and to prove that the expected asymptotic expression L(m) for the
number N (m) of solutions of

Ptgillyy ceey b)) =m -

is in fact always valid save possibly for a small exceptional set of m.
If this can be achieved, then one can estimate the number of solutions
of (14) by considering

Z-N{n—‘Pz(lsH; ceer )}

provided that r—s is not too small.
The connection between N(m) and L(m) is treated by attempting
to shew that the variance

3 (W (m)—L(m)}*
m<e
is small, to which end we require a good asymptotic formula for -
D) N*(m).
m<a
Now the latter sum is obviously equal to the number of golutions in certain
integers of the equation '
P—2 = Pr(diy ey A) —@1(lyy oeis b) = P(Aay evy Ay biy ey 1),
say, and hence of
00 = P(hyy eeey Ay by eny Tg)y
where in particular g, ¢ are of the same parity. For given g, this gives
rise to the condition
YAty eney Ay lyyeeny lg) = 0 modo,
which can be treated by means of the exponential sums

621:'5111(7.1,...,ls.ll,...,ls)hlk ( kl @)

Apsessdglysennils

by a variation of earlier methods described. The analysis is then completed
by using, inter alia, many of the properties of these sums that were pre-
viously developed in connection with the circle method, it being notable
that we now need only work with trigonometrical sums corresponding
to rational arguments.
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‘We notice that our procedure consists partly of reducing our problem
to another one in which one of the unknowns occurs linearly. If the lowest
exponent occurring in the given problem is greater than two, then several
transformations are needed to secure a linear problem and the details
can become very formidable. However, a simple proof of the asymptotic
formula in the nine cubes problem can be derived in this manner.

When examined systematically, our method is seen to have many
links with the circle method in spite of the different genesis, the occur-
rence of similar exponential sums being a case in point. But the expo-
nential sums in our method are shorn of arithmetically irrelevant analytic
complications, thus lightening the potential task of effecting Kloosterman
type refinements when these might be relevant or possible.

Our mention of the sizes of the solutions of the Diophantine equation
(12) gives us an opening to introduce our final topie. Thig is the Pellian
equation

m™—-DU* =1,
whose fundamental solution %, = T+ VDU is known to satisty
2VD < np < ¢4V DlosD

for positive (non-square) determinants D. Since these inequalities have
more or less represented the full extent of our knowledge, the author [13]
has evolved a lattice point method that determines the distribution of
the determinants D for which 7, is limited by small functions of D. Al-
though the results obtained can only be rigorously substantiated for the
smaller limits, the author in fact believes they are true for much larger
limits. If we were right in this opinion, and in our reasons for holding
it, then some interesting facts concerning the class number h(D) of
properly primitive indefinite binary quadratic forms

az® 4 2bxy - cy?

of determinant D = b%— a¢ would emerge. Fo1 example, we could obtain
the agymptotic formula

D' (D) ~(25[12n%)wlog?a,
D<e

which would setlile a matter that has been open since it was first raised
by Gauss in the Disquisitiones Arithmeticae (V, Art. 304). As it is, we
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can obtain unconditional lower bounds for the above sum that advance
our knowledge.. Moreover, we are led to conjecture that

D o)~

<z
p=1mods
and that, if v(8) @) is the number of determinants p = 1 mod4 for which
h{p) > B, then

s afloga 3B (15)

as f—oo. Impressive corroboration of these ideas comes from the present
work of Henri Cohen, who simultaneously has been led by entirely differ-
ent considerations of a more algebraic nature to enunciate conjectures
about the behaviour of h(p). His work, which is strongly supported by
numerical evidence, agrees with ours in all areas where the subjects of
investigation coincide (in particular, equation (15)), although it should
be stressed that he and the author by no means study the same questions
overall. Conditional work on similar matters has also been described in
a recent paper by Takhtajan and Vinogradov [18]. As with the earlier
matters discussed, this topic shews there is much life left in many of the
important questions in number theory that were first raised centuries ago.
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Geometric Applications of Algebraic K-theory

Algebraic K-theory has been one of the most important mathematical
developments of the last two decades. In the reports [81], [68], [6] of
past International Congresses of Mathematicians, emphasis was given
to the algebraic aspects of the theory. In this report, I shall concentrate
on its geometric applications. After all, the theory was initiated by Reide-
meister [70], Franz [38], de Rham [24], and J. H. 0. Whitehead [89]
(see also [90]) who introduced in the 30’s some invariants for solving
geometric problems. The revival of the interest in these invariants in the
early 60’s, which were the seeds of algebraic K-theory (Milnor [62], Smale
{76] and Kervaire’s exposition on the S-cobordism theorem of Barden-—
Mazur-Stallings [54]) also arose from geometric considerations. At the
end of this note, I shall make a few conjectures.

Due to limitation of space, I skip the Hermitian K-theory and Novi-
kov’s conjectyre on higher signatures of closed aspherical manifolds
altogether,

Some of the geometric problems dealt with here have very interesting
and equally important Hermitian analogues. The interested readers might
consult [30], [34], [88].

-~

1. K,(4), Why(n), simple homotopy type and A-cobordism

Let A be an associative ring with unit 1. The group of all non-singular
o X n matrices over A will be denoted by GL(n, 4). Identifying each
M e GL(n, 4) with []g ‘1’] € GL(n+1, 4), we obtain inclusions GL(L, 4)
c...cGL(n,4) < ... The union is called the infinite general lincar
group GL(A4). A matrix is elementary if it coincides with the identity
matrix except for one off-diagonal entry. It was observed by J. H. O.

11 — Proceedings... \ [99]
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Whitehead [4, p. 226], [63, p. 359] that the subgroup H(4) <« GL(4)
generated by all elementary matrices is a perfect group and is precisely
equal to the commutator subgroup of GL(A4). We defin

K,A = GL(4)/H(4) 1)

which may be viewed as a generalization of the determinant function
for matrices. Let = denote a multiplicative group and Z[#] the correspond- -
ing integral group ring. We have natural inclusions 4= < GL(1, Z[=])
c GL(Z[n]), where 4= denotes the subgroup of (1 x 1)-matrices (+g),
g € m. The cokernel K,(Z[x])/image(-x) is called the Whitehead group
Why(m). Clearly, K,(A) and Wh,(n) are covariant functors of rings and
groups to Abelian groups respectively.

‘Whitehead [90] introduced the notion of simple homofopy which is
finer than homotopy. Let L, and L, be finite OW-complexes such that
L, is obtained from L, by attaching a k-cell ¢, to L, along a (k—1)-cell
¢~ < de®. Call this procedure simple expansion and the reverse procedure
simple collapsing. Simple homotopy is the equivalence relation generated
by simple expansion and simple collapsing. Let X and Y be the underlying
topological space of the OW-complexes L and K, and let f: X—Y be
a homotopy equivalence. Using the CW-complex structures of L and K,
we may homotope f to a cellular map g: L—>K. By introducing the mapping
cylinder

M, = X x[0,1]VY[{(%,1) = g(»)| @ € X} (2)

we obtain a CW-complex pair (M, L) such that L is a deformation retract
of M,. It is not difficult to see that the inclusion K = K X0 < M, is
a simple homotopy equivalence, we shall say that f is simple if L « M,
is simple. It was proved in [63, pp. 378-384] and [21] that this definition
only depends on the underlying spaces X, Y and the map f, i.e., it is inde-
pendent of the OW structures L and K of X and Y, and the map g.

Using simple expansions and simple collapsings repeatedly, we may
replace (M,, L) by a CW-complex pair (K,, L,), satisfying the following
conditions:

(a) (M,, L) are simply homotopic to (K, IL,) respectively
and L, c K3

(b) K, arises from L, by attaching a finite number of k-dim
cells {¢f} and (k+1)-dim cells {¢f*'} for & > 2.

3)
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Consider the universal covering complexes f}l IS El of L, ¢ K,. The
fundamental group = will be identified with the group of covering trans-
formations, so that each ocexn determines a mapping

o: (Ku Kl) Ll)? (4)

which is cellular. I Oy(X,, L,) denotes the cellular chain complex, then
each o e # determines a chain map .

oyt Ou(Ry, Ly)>Ou(Ky, Ly) ()

and thig action makes the chain group O, (Kl, 131) into a free Z[n]-module
with a basis obtained by making a ehowe of a Iift to K1 of each p-cell of
K, —L,. Therefore, we have an isomorphism

A 2 li
0">0k+1(K17L1) e olc(Kl’ 1)‘*0 (6)

of free Z[n]-modules with the liftings {¢/*'} and {6/} of {e{*'} and {e}} as
bases. Using these bases, dy,, determines an element in GL(Z[#]) and
thus an element ¢ (K,, L,) in Wh,(=). It was proved in [63] and [b4] that
the torsion =(K,, L) is independent of the choices! and it only depends
on f. Denote it by z(f) € Why(n). Let us summarize these fatics in the
following theorem.

TrarOREM 1.1. Let X,Y be the underlying topological spaces of the OW-com-
plewes K and L, and let f: X—Y be a continuous map. Let g: K—L be
a cellular map homotopic to f. Then f determines an element ©(f) € Why(x)
depending only on f: X—Y such that g is simple if and only if =(f) = 0.

Applying simple homotopy theory to manifolds, let us consider the
following geometric problem. Let (W™+'; M%, M%) be a triad of compact
manifolds such that oW*+! = MPUM?. We say that W"*! is an h-cobor-
dism between My 'and M7 if M} (¢ = 0,1) are deformation retracts of
Wrtl, The simplest example of an h-cobordism is (W"+! = M™x [0, 1];
Mp = M"%x 0, M} = M"™x1). If (W**+'; My, M?) is a smooth h-cobordism
(i.e., W™t ig a smooth manifold), =,(W"*!) =1 and = > 5, then the
remarkable theorem of Smale [76], [64] asserts that W"*! is diffeomorphic
~to My x[0,1] (and also to M7 X [0, 1]). Our interest is focused on the

case 7w =, Wt £1, If (W™*'; Mp, M}) is a smooth Ah-cobordism,

1 Bince we may have different liftings of the cells, we pass from K, (Z[x]) to
Why(w) in order to make the invariant well-defined.
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then a O'-triangulation ¢: (K ; Ly, L,)—~(W"*'; M2, M?) gives rise to a com-
binatorial cobordism which has a handlebody structure from the tri-
angulation [63]. Or, if (W"+'; My, M?}) is a topological h-cobordism and
if m>5, then (W"*!, M®) has a handlebody decomposition [56]. By
a handlebody structure of W"*! on M7, we mean a filtration

YO = My < YW = ,,.c YO = W (7)
such that

for each ¢ >0, there is an embedding
fiz Sl x Driitl L F0-D and a homeo- (8)
morphism Y9 Y¢Du, Dl x D91 rel X1,

The union of a k-handle and a (k-+1)-handle J = D* x D~ *+1yDt+l ¢
x D" * along D* xH, = Hy XxD" % where H, = 0D" **'and H, c dD*+
are codim 0 discs, will be called a trivial pair of handles. Introducing and
cancelling a trivial pair of handles correspond to elementary expansion
and elementary collapsing in simple homotopy theory. Following these
procedures, if » > 5, we may produce a handlebody structure of (7) such
that j; =... =, =k and jpp; = ... =J;_; =k+1 (2<Ek<n-3); ie,
W+ iy obtained from My by attaching k-handles and (%--1)-handles.
By making a choice of lifting of the cores? of the handles to (W', M7),
the universal covers of the pair (W', MU®), we get a chain complex

\

00y (W1, JIm) 2ty 0 (Wm+2) 317) >0 )

of based Z[xn]-modules as in (6). The map &Hl determines an element
v € Why (z(W™*+")) which is the torsion? of the inclusion of M%< W»t!,
This element only depends on the underlying topological space and not
on the handle structure of (W"*!, M7) and it is denoted by =(W**+, M2).
In correspondence to Theorem 1.1, we have the following S-cobordism
theorem due to D. Barden, B. Mazur and J. Stallings [3], [64], [63].

3 Le., f(87i~1x 0) of (8) where 0 is the center of D" fit],
3 Note the asymmetry of My, M, in the definition. If we wish to consider (W, M),
we have to consider the duality of [63, pp. 393-398].
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TEEOREM 1.2 (A) Let (W™*'; M%,M7%) be a smooth, PL or iopological
h-cobordism for n = 5. Then, W™ is diffeomorphic, PL homeomorphic
or homeomorphic to My x [0,1] if and only if ©(W"+', M%) = 0.

(B) For a given manmifold M; (n>=5) and an element 7,
€ Why (m,(MY)), there ewists am h-cobordism (W™+'; M7, M?) such that
(W, MB) = vy and W™ is smooth or PL if M7y is so.

II. Higher K-groups and pseudo-isotopy theory

For A a ring with unit 1, we observed in § I that H(4) = [GL(4), GL(4)]
< GL(A4) is perfect. Let BGL(A) be the classifying space of GL(A4).
Construct BGL*(4), Quillen’s “+4” construction [67], from BGL(A)
by attaching 2-cells and 3-cells such that there is a homology equivalence
BGL(A4)-BGL*(4) over Z, and =, BGL*(A) = GL(A4)/H(4) = K,(4).
In fact, BGL™ (4) is an infinite loop space. K;(A) is defined to be m; BGL (A)
(¢ > 1). Waldhausen [84] generalized this definition to construet higher
algebraic K-groups of a pointed connected CW-complex X as follows.
Let @ be the loop group* of X and let B = Q°8°[@,] be the “group
ring” of @ over 2% 8%, Form the matrix ring M, (R). Consider the pull-
back diagram

GL,(R) — M,(R)

S

GL, (mo B) —— M, (7 R)

and let GL( (R) = limG:L . (R). It turns out that BérL(R) exists, and using

the fact that [:n:oGrL(R), noGL(R)] = H(Z [m:nG]) we may perform the

“ 47 construction for BGL(R) such that BGL* (R) is an infinite loop
space [84], [79]. Waldhausen defined

A(X) = BGL*(R) (11)
and K, (X) = m; A(X) for ¢ > 1.

4 @ is cither a simplicial group model or a topological group model of the loop
gpace X of X.

5 Bince Q%°8* is not a topological ring, B is only a group ring in an appropriate
sense. Thig causes most of the technical difficulties.
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Based on this model, some computations for =, (A (X ))®Q were given
in [49], [35], [15]. Invariant theory plays an important rOle in these
results. .

Due to the fact that Q°8® is not an honest (topological) ring, Wald-
hausen’s original way of introducing A (X) is different from the above.
See [84], [78], [79] for the details.

A(X) is closely related to pseudo-isotopy theory. Let us recall some
developments before the publication of [84]. If M is a compact differ-
entiable manifold (generally with boundary), a pseudo-isotopy of M is
a diffeomorphism f: M X I->M x I such that f|M x0 =id. Let P(M)
denote the space of pseudo-isotopies endowed with the C®-topology.
We are interested in computing =; (P(M )). This problem was first studied
by Cerf [20] and later by Hatcher and Wagoner [42]. Their idea roughly
goes as follows. Connect & given pseudo-isotopy f: M X I—-M X I to the
identity pseudo-isotopy fo: M X I—-M x I by means of a generic map
F: MXIXI->IxI such that F|M XIX0 = pf, and F|M X I X1 = pf
where p denotes the projection to the second I factor. Choosing F' care-
fully, the construction produces a one-parameter family of handlebodies
as follows: Let ¢ denote the coordinate of the second I factor. For ¢ = 0
(vesp. t = 1), M x I is the given product structure induced by a gradient-
like vector field associated to the Morse function pf, (resp. pf). There is
a finite number of birth points® for 0 < ¢ < &, (¢, & small positive number)
such that at ¢ = ¢, the Morse function ¥, gives rise to “trivial pairs of
handles”. Similarly, there is a finite number of death points for 1—e;
< t<1 (& a small positive number) such that the handles are cancelled
in “trivial pairs” at ¢ = 1 —e,. The one-parameter family of Morse func-
tions F; (50 <t <<1—g,) gives rigse to a one-parameter family of handle-
bodies over the subinterval [, 1—e,] = [0, 1]. Based on analysis of the
parametrized handlebodies, Hatcher and Wagoner [42] relate P (M)
to Why(m, M), a quotient of K,(Z[x,M]) for dimM > 6.

In [40], Hatcher studied the space of PL pseudo-isotopy spaces Ppr, (M)
and the following stability question:

Let Ppp (M) < Ppp,(M X I) (resp. P(M) < P(M xI))
be the natural inclusion essentially given by fxid.
I8 7 (Ppr,(M))—>m;(P(M xI)) an isomorphism for
1 < dimM?

6 See [20], [42] for the precise definitions.
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He claimed the stability theorem for Ppy (M) and then Burghelea and
Lashof extended it to P(M) [16]. Unfortunately, there are some flaws
in the proof of [40]. Based on his work on pseudo-isotopy by eliminating
the higher order singularities [b1] and a modification of Hatcher’s argu-
ment, K. Tgusa in a still unpublished paper has proved that the stability
theorem ig valid for P (M) with a somewhat smaller range. Elaborating
on the multi-disjunction lemma, in his thesis, T. Goodwillie has claimed,
that the stability ranges for P (M) and Ppy, (M) are the same (yet unpub-
lished). The interest in the stability theorem stems from the observation
that

P(M) =lLimP (M x I,
: (13)
(resp. Ppy,(M) = lim Ppy, (M x I)
i

becomes an infinite loop space and we can apply homotopy theory and the
categorical machinery. This is the starting point for Waldhausen.

Let us study WhP" (M), the double delooping of P(M). Motivated by
consideration of the parametrized handlebodies for studying P (M),
consider a “rigid handlebody theory”, a manifold model of Waldhausen’s
expansion space [84]. (We follow the exposition of [46].)

Let 8, be an (n-%—1)-dim manifold and m,: 8,—A4* a differentiable
bundle map such that the fibers are (n—1)-dim manifolds (generally with
boundary). Suppose that 8, is a codim 0 submanifold of §Y for a manifold
Y and =: Y—4" is a bundle projection extending 7z,. We say that ¥ is
a k-parameter family of rigid hamdlebodies on 9, if there is a filtration:

YO = gpc ¥V c...c X0 =Y (14)

satisfying the following conditions:
(a) For each 7 >0, there is an embedding

fi: Q=1 ¢ DI ¢ A—>F D)
and a homeomorphism
Y0 X, ye-ny, phx Dri x A"
o i

rel Y%~V guch that f; and d; preserve the projection onto A,
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(b) M9 = ¥O, _5 8% I is a manifold, even though ¥® need
not be.

(¢) Let 0, ¥ = cl (0 M%) — (9, x {0} udM®D|0A*)) where IMD|9A* iy
the part lying over 94%. Then, f;(8%!x D" Jix A*¥) < 0, XYV and f,
is a differentiable embedding into 8, ¥ (after we smooth the corners).
Note that h; has an obvious extension to

MW = MU-DuDix D% x A,

and also assume that this is a diffeomorphism (again after smoothing
the corners).

The attaching data, the f;’s and d,’s, are a part of the structure, but
independent handles may be attached in any order. We may construct
a category H; which has the k-parameter families of rigid handlebodies as
objects and the compositions of isomorphisms and cancelling of trivial pairs
of handles’ as morphisms.

The obvious definitions of face and degeneracy make H" a simplicial
category and appropriate inclusions and quotients make it into a cofi-
bration category in the sense of [84], [46], [69].

Let X be a space and let & be a stable vector bundle over X. The cate-
gories Hy(X, &) k,mn =0,1,..., are defined as follows. The objects
are diagrams g

Ji (X, 90)>X (16)

where (Y, d,) is an object of B} and f: ¥Y—X is a continuous map, together
with a stable bundle isomorphism y: t¥—>f*¢ where tY is the stable
tangent bundle of ¥. The morphisms and cofibrations of B, appropriately
modified with the data on the induced bundles from &, define morphisms
and cofibrations of E (X, &)". Note that Z,(X; §)" has a camposition
law “+4” — disjoint union of (¥, 9,)’s — and hence the classifying space
has an infinite delooping in the sense of Ispaces [72]. On the other hand,
'we can make use of the cofibration structure such that the 8, construction
of [84] and the @ construction of [66], [46] apply to this situation as
explicit deloopings of H,(X; &)

Let B(X; &)" < H,(X; &)" be the full subcategory’ of objects such that
8, = Y is a homotopy equivalence. We can also deloop E*(X; &) by means
of 8, construction.

7 For technical reasons, we don’t really cancel the trivial pairs geometrically.
See [46] for details.
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Multiplying by D?, we define functors

8.I,(X; £ = 8B (X; 1,
(17)
8.IMX; &5 8 BN X ; &
Set
BH(X; §) = lifllS_E_(X; &)™,

BIMX; ¢) = lim |8 BM(X; ), (18)

where the limit is taken with respect to 2. It {urns out that BH(X; &) and
BE"(X; £) are weakly homotopically equivalent to Q%(X) — the infinite
loop space associated to the frame bordism and Wa%™(X) of [84], respect-
ively, if X is a finite complex. (They are independent of £!) It has been
shown that WhO™(X) is rationally equivalent to WAP(M) if X is
homotopy equivalent to M with the tangent bundle of M, {(M) stably
equivalent to & (This is the reason why we keep & in the construction.)
In fact, Waldhausen has recently claimed that WhO™®(X) is WhPH ().

Finally, let us state the remarkable result of Waldhausen [84]. It
comes out of his “localization theorem” [84], [59]; [83].

TEEOREM 2.1 There is & fibration up io homotopy
QBE(X; £)—~A(X; &£)—-BE"(X; &)
which is weakly homotopically equivalent to
QF(X)—>A (X)—>Who™P(X)
if X if a finite complex.

Since WhO™P(M) is (at least rationally) equivalent to WADH(M),
one can easily see the importance of the functor A (X) if one is interested
in computing 7, (P(M)) = ., (WHPH(H)).

III. K,(A), obsiructions to being a finite OW-complex and to finding a
boundary for an open manifold

Again let A be a ring with unit 1. Let K,4 be the additive group having
one generator, [P], for each finitely generated projective module P over
A, and one relation, [P]—[P,]—[P,], for a short exact sequence 0—>P,
—P->P;~>0. In other words, K, A is the “Grothendieck group” associated
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to the category of finitely generated projectives over A. The class of
free A-modules of rank 1 generates a cyclic subgroup of K,.4. The quotient

K, A [(subgroup generated by free modules)

is called the projective class group, K,(A). It A = Z[x], then K,(Z[n])
is sometimes written as K, ().

Let X be a connegted CW-complex and let ¥ be a connected finite
OW-complex. We say that X is dominated by Y if there exist f: XY,
g: Y—X such that fg: Y- is homotopic to the identity. We would
like to know whether X itself is of the homotopy type of a finite complex.
It turns out that we may choose Y such that

H,(I, X) = 0

for ¢ 4k (k> 2) and H, k(M 7 X) is a finitely 4genera,ted projective module

over Z[z; X] where Mf denotes the mapping cylinder of f and (M,, X)
is the universal covering of the pair (M;, X). The class

o (@) = (—LF[Hy (M, X)] e By(m, M) (19)

turns out to be well-defined, independent of the choice of ¥ or of the
integer k. In [86], the following fundamental theorem was proved:

" THEOREM 3.1 (A) For X a connected CW-complex dominaied by o finite
complex, X is of the homotopy type of a finite complex iff o(X) = 0.
(B) Let 04 € Ko(7) be a given element with m a fiwitely presented group.
There exwists a connected OW-complew X dominated by o finite OW-complew
with m, X =x and o(x) = og,.

Let W™ (n > 5) be a smooth (or PL) open manifold. If there exists an
arbitrarily large compact set with 1-connected complement and if H,(W)
is finitely generated as an Abelian group, then, as was proved in [10],
W is the interior of some smooth (or PL) compact manifold, W. For the
general case, L. Siebenmann developed the following theory [74]. Let
W" (n >5) be a connected smooth open manifold and let ¢ be an end of
W™, We say that e is tame if it satisfies the following conditions:

(A) There exists a sequence of neighborhoods of &,
U,oUy,> ... o U;>...such that (N T; =
and my(U)em(U;yy), ¢ =1,... are isomor-

phisms. We Set = ,(e) = limar, (U,) and call (20)
<

it =, of the end e.
(B) Bach U, is dominated by a finite CW-complex.



Geometrie Applications of Algebraic K-Theory 109

We may ask whether we can add a boundary to W” at the tame end s
and reduce our problem to the case where W” has only one end. In fact,
wo may choose each U; of (19) to be a manifold with compact boundary
U, such that 7, (0U;) ~ m,(U;) ~ = and ‘

Hy(U,, 80, =0

for ¢ £k (3<k<n—3) where (ﬁ,, aﬁi) is the universal covering of
the pair (U;, 0U;) and H,(U;, 0U,) is a flnltely generated projective

module ' over Z[x]. Then, (—1):[H,(U;, 8U,)] = o(U;) e Ko(w) is the
obstruction defined in Theorem 3.1. Here is Siebenmann’s theorem [74].

TEmOREM 3.2. (A) (—1V*[Hy(U;,00,)] e Kylme) only depends on e,
and we denote it by o(e).
(B) A boundary can be added to W" at ¢ iff o(s) = 0.

IV. Kiinneth formula for algebraic K-theory and its geometric application

Let T be an infinite cyclic group with a generator ¢, and let A[T] be the
finite Laurent series ring of A on ¢, which is just the group ring of 7' over A.
If o is an automorphism of 4, we also have the a-twisted finite Laurent
geries ring A, [T]. (See [32] for details.) Let Nil(4, a) be the full subcat-
egory of the category P(4) with objects (P, f) where P is a finitely gener-
ated projective module over A with f an a semilinear nilpotent endo-
morphism. Let Nilo(4, a) be the Grothendieck group of Nil(4, e). The
“forgetful functor” defined by “forgetting” the endomorphism f defines
a homomorphism j: Nily(4, a)—>Ky(4) and we let ﬁlo(A, a) denote
Kerj. It is easy to see that we have a natural decomposition

Nily(4, o) = Nilo(4, o) @ Ko(4). (21)

Let I denote the subgroup of K, A generated by #— a,x and let (K,A)™"*
denote the subgroup of # e K (4) invariant under e, (induced by a).
Thinking of K, and K, as homology functors of rings, one might guess
from the Kiinneth formula for the homology groups of a space # fibering
over 8!, F—H->8%, that there should be an exact sequence

(_)—>K1(A)/I—->X—>K0(A)““—+O

such that X ~ I,(4, [T]).. This is not true in general, unless A4 is
(right or left) regular [7]. In fact, it was proved in [4, p. 628] that there
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is a canonical decomposition
E(A[T)) = E,(4)©Nily(4) @ Nilo(4) @ Eo(4). (22)
This was generalized in [32] to give:
Ey(4,[T]) = XONily(4, ))@Nily(4, a), (23)

where X fits into an exact sequence 0—K,(4)/I>X—K,(4)**—0, and we
also have a natural projection:

B3 Iy (4, [T]) Ko Ay @Nily(4, a). (24)

For the group = = @ X,T, a semi-direct product, consider A4,[T]
=Z[G x,T] with A = Z[G]. By passing to Wh,(G X,T), we have the
formula

Why(@ x.T) = XONiy(4, a)@Nily(4, a™Y), (25)

where 0>Why(G)/I>X—K,(A)*>0 (I = {y= o—a.x| © € Why(§)}). We
also have a natural projection

Bt Why(@ X, T)~E, (@) ©Nily(Z[61, o). (26)

Now consider the following geometric problem. Let M™ (n > 6) be a
closed smooth (PL or topological) manifold. Is M™ a fibration over 8! with
connected F™~! as fiber? If so, we should have a projection g: M™—>8*
such that the fiber is homotopic to a connected finite complex X with
7wt = 7, M™ = @ X, T being a semi-direet product of ¢ = =, X by T = =, 8.
For n = Z (i.e., @ = 1), it was proved in [12] that this condition is suffi-
cient. For the general case, we need to find a codim 1 submanifold F"! = M}
representing the homotopy fiber of ¢ satisfying the following conditions:

(A) When we cut M™ open along F™~', we have
an h-cobordism (W*; F%, F%) with Fp~t, Fp-!
diffeomorphic to (PL or homeomorphic to) F*;

(B) =(W", Fy) € Wh,(G) vanishes.

(27)

If only condition (A) is satisfied, we call it an almost fibration. It was
proved in [28] that the obstruction to being an almost fibration is an
element in &,(G)"@Nily(Z[G], a).
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Generalizing the problem when a space fibers over 8%, let M7 be a closed
smooth (PL or topological) manifold of dimn > 6 with % = m, M = @ X, T
and let F?~! ¢ M7 be a connected codiml submanifold with G = s, F*!
corresponding to the subgroup @.< m. Let

fr My—>M7 (28)

be a homotopy equivalence. We ask what is the obstruction O (f) to find-
ing an (n—1)-dim submanifold 3! <« My and a map

g: (M3, Fy~")—~(M}, FY™) (29)
such that '

(A) g is a homotopy equivalence of pairs,
(B) g~H(FY™Y) = F3, (30)
(C) the induced map g: M%—M?7 is homotopic to f.

O(f) is called the obsiruction to splitting f with respect to Fy=,

THEOREM 4.1 [36]. Assume that (M%), f: MY — M (n>6) are
given as above. Then the obstruction O(f) to splitting f with respect to Fy—!
is equal to Pv(f) where ©(f) € Why(n) is the torsion of f.

One should read 8. E. Cappell, A Splitting Theorem for Manifolds,
Invent. Math. 33 (1976), pp. 66-170 for the generalization of the above
theorem.

V. Negative K-groups K_;(A) and some of their geometric applications

In [4, pp. 667-674], H. Bass introduced the functor K_;(4) (¢ > 0). He
observed that the decomposition (22) is funectorial and can be written
as '

0K, (A)—~>EK, (A[t]) @K, (A [t ]) K, (A[T])>Ky(4)->0.  (31)
Yt is natural to define K_; (¢ > 0) recursively using the formula
K_;(A) = Ooker{K_;, (A[}]) DK 44, (A[t7]) ~E_;,, A[T]).  (32)

Bass showed that (31) continued to hold with K,, K, replaced by K_,
and K_;,, (¢>0) (and he also defined negative Nil groups). For T
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=T x ... XT, we have the following decomposition formula [4], [1]:

Why(% XT") = Why(n XTy X vee XT;X oo XT,)®
@R o(mXTyX oo XT;X ... xT,) (mod nil terms)
= Why(x) @’nﬁ'o(ﬂ)@

PN HEMEET

$=2

@ K,_,(Z[n]) (mod nil terms). (33)
It was proved in [8], [19] that if = is a finite group, then

K_,(Z[x]) =0 for i>2. (34)

Let us now turn to a geometric problem. A Top siratification of a space

X is an increasing family of closed subsets of X, {X"|n > 1} such that
X1 = fi, there is a positive integer IV such that X*) = X, and for every
n, each component of X™ —X-1 ig a topological (Top) n-dim manifold
without boundary (possibly empty). The stratification is locally cone-like
if for every @ € X™ —X®~1), there exists a compact Top stratified space L
and a stratum-preserving open embedding %: B" x c¢L—X such thab
h(0,v) = # where ¢L denotes the open cone over L and o is its vertex.
The space L is called a link of # and b is called a local chart. We shall call
a space X a Top CS8 space [2], [75], if it has a locally cone-line stratifi-
cation. In [2], we define (combinatorial) PL structures on a Top CS space
X compatible with the stratification (see [2] for the precise definition),
and then study the existence and uniqueness of such structures on a given
TopCS space. Of course, these questions are the refined forms of the
problem of triangulating a topological space and the Hauptvermutung.
The simplest example of a Top 0S8 space is the suspension DM of a closed
manifold M. In [62], [77] counterexamples to Hauptvermutung were
given with X = Y M" (n>b) as the underlying topological space and
with elements in Wh, (%, M) as the invariants to distingunish them. [1], -
' [2] globalize the examples of Milnor and Stallings into an obstruction
theory such that the obstruction invariants are generally in the subquo-

tients of K_; of the group ring of the links of various strata.

The obstruction theory of [1], [2] has been explicitly applied to the
following problem. Let Ry, R, € O(n), the group of orthogonal transform-
ations of R". We say that R,, R, are topologically (resp. linearly) equiv-
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alent if there is a homeomorphism (resp. linear automorphism) f: R"—>R"
such that f'R,f = R,: R"—>R" The conjecture that the notions of topo-
logical and linear equivalence of rotations should be equivalent was stated
by de Rham in 19356 [24] and he reduced it to the case where the rotations.
have finite order. Note that f induces a homeomorphism

h: X,—X,, (34)

where X; = R"[(R,), the quotient space of R™ by the finite subgroup
of O(n) generated by R;, ¢ =1, 2. Given X;, the preferred PL structures
induced from the rotation R;, we may then try to deform % to a PL homeo-
morphism. This is the problem studied in [2]. (See also [69].) Modifying
the topologically equivalent RB,, B, to new ones, R;, B;, if necessary, we
manage to kill most of the obstructions in the subquotients of K_; and
then apply a version of G-signature theorém to obtain the following re-
sult [47].

Let B,, B, € O(n) have order k = 12™ where 1 is odd and m > 2. Suppose
that (a) B, and R, are topologically equivalent, and (b) the eigenvalues of
R! and R} are either 1 or primitive 2™-th roots of unity. Then R, and R,
are linearly equivalent.

If & is odd, then condition (b) is superfluous. In this case, it was
proved independently, by Madsen and Rothenberg [60] using a differ-
ent method from [47]. However, the K_; groups of [1], [2] (see also [57])
still play an important r0le in their work.

The interest of de Rham’s problem was revived [6b] and there are
remarkable counterexamples of this conjecture in [18] if & = 12™, m > 2,
l # 1, and the above condition (b) is not satistied.

VI. Concluding remarks and some conjectures

One of the problems in algebraic K-theory is to compute K,;(A4) (—oo < ¢
< oo0). Emphasizing the geometric applications, we are mostly interested
in the case of A = Z[@] for @G a finitely presented group. Most algebraic
calculations have been carried out for @ finite. Let me pose some conjec-
tures about the case when @ is not necessarily finite or torsion-free. In fact,
I believe that these problems are more geometrically interesting and they
should serve as guide posts for future development.

CoNJrOTURE 1. Let @ be a finiiely presented group. Then K_; (Z[G]) = O
Jor i > 2. At least, K_;(Z[G]) = 0 for i > 0.
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Before I state the next conjecture, let me single out a class of infinite
groups. We say that a closed manifold M™ is a K(I',1)-manifold (an
aspherical manifold) if s;(M™) = 0 for ¢ > 1 and =, M" = I'. Note that I"
is necessarily torsion-free.

CoNJEOTURE 2. Let I' be the fundamental group of a closed K (I', 1)-mani-
Jold. Then Why(I') = K(I') = K_;(Z[I']) = 0 (¢ >1). (See [31] for sup-
porting evidence.)

It is clear that the following conjecture is much stronger than Conjec-
ture 2.

CoNJECTURE 3. Let I' be a torsion-free group such that BI" has the homo-
topy type of a finite OW-complex. Then Why(I") = Ky(I") = K_,(Z[I"]) =0
(t=1).

For the higher K-groups, let us consider the map of [68]:

\ A by (BG; E(2)) K. (Z[G)), (36)
where hy (BG; K (Z)) denotes a generalized homology theory with coeffi-
cients in the spectrum of the algebraic K-theory of Z.

CoNJECTURE 4. If I' is & torsion-free group such that BI' is of the homo-
topy type of a finite CW-complex, then

W ®id: by (BT; K (%) ®Q-K.(Z[n]) ®Q

is an isomorphism.

For BI' having the homotopy type of an aspherical manifold, Con-
jecture 4 was verified in some special cases [31]. As we pointed out in [35],
Conjecture 2 is the algebraic K-theory analogue of Novikov’s conjecture
on higher signatures. (So are Conjectures 2, 3!) Interested readers should
consult [30], [34], [88] for further details about this conjecture.
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Problems Solved and Unsolved Concerning Linear
and Nonlinear Partial Differential Equation

Current research in partial differential equations is extensive, varied and
deep. A single lecture, if it is not to be a mere catalogue, can present only
a partial list of recent achievements, some comments on the modern
style, i.e. the kinds of problems chosen and methods used for solution,
and cautious speculations on fulure trends. The choice of examples is
of course shaped by the personal taste of the speaker and limited by his
expertige.

The first part of this lecture is such an overview; it is followed by
a more detailed discussion of two topics with which the speaker has some
familiarity, one concerning a linear, the other a nonlinear problem in
partial differential equations.

la.Linear problems

In the last few years a number of problems concerning linear partial
differential operators on manifolds with boundaries have been solved or
are nearing solution. Thanks to the researches of Melrose [30], Taylor
[37], Yvrii and others we understand well the propagation of signals
along reflected, glancing and gliding rays, the clue to many problems in
diffraction and scattering. Microlocal analysis, the modern version of
wave-ray duality, has provided the tools: pseudo-differential operators,
Fourier integral operatiors, Hamiltonian flows and Lagrange manifolds.
In his recent work Charles Fefferman [15] makes use of a sophisticated
version of the uncertainty principle. Another versatile modern technique

* Preparation of this report was supported by the U.S. Department of Energy
under Contract DE-ACO02-76 ERO 3077.
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iy the use of trace formulas to link spectral and geometric information.
The view from secattering theory has also been useful.

For a thorough documentation of the successes of the modern theory
of linear partial differential equations we have to await the publication
of Hormander’s 3-volume treatise [19], but it is clear that the successes
have been so sweeping that they have radically altered the course of
research in this field. I believe that in the future we shall see more appli-
cations of the methods and results of the theory of linear partial differ-
ential equations to other fields of mathematics; examples from the past
are of use of PDE methods in several complex variables and quasicon-
formal mappings. We are likely to see more special questions raised, from
sources inside and outside mathematics, and more detailed answers given;
mere preoccupation with existence and uniqueness questions is likely
to diminish.

Section 2 contains a brief description of wave propagation on complete
manifolds of constant negative curvature. One of the tools used is the
Radon transform, less popular than its more glamorous sister, the Fourier
transform, but more appropriate in some situations. See also [18].

1b. Nonlinear problems

The strides that have been made recently in the theory of nonlinear
PDE’s are as great as in the linear theory. Unlike the linear case, no
wholesale liquidation of broad classes of problems has taken place; rather
it is steady progress on old fronts and on some new ones, the complete
solution of some special problems, and the disecovery of some brand new
phenomena. The old tools — variational methods, fixed point theorems,
degree of mapping and other topological methods — have been augumented
by some new ones. Preeminent for discovering new phenomena, is numeri-
cal experimentation; but it is likely that in the future numerical calcu-
lations will be part of proofs.

We shall discuss, very briefly, three topics:

(i) Viscous, incompressible flows.
(ii) Hyperbolic systems of conservation laws and shock waves.
(iii) Completely integrable systems.

(i) Viscous, incompressible flows. In spite of a claim by Kaniel, [21], laid
to rest by D. Michelson, the existence for all time of strong solutions of
the Navier-Stokes equation, and the uniqueness of weak solutions, in
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three-dimensional space are very much open questions. We have learned
more about the singularities of weak solutions, in particular about the
Hausdorff dimension of the singular set. Already Leray has shown thatb
every solution is continuous if we eliminate a closed set of ¢ with zero
Hausdorff measure of dimension 1/2. B, Mandelbrot has raised the question
of what the Hausdorff dimension of the possible singularities of weak
solutions is in space and time. The first results on thig important question
were obtained by V. Scheffer [34]; the latest word is the following the-
orem of Caffarelli, Kohn and Nirenberg [6]:

The one-dimensional Hausdorff measure of the set of singularities
of a suitable weak solution in #, {-space is zero.

Turbulence, surely one of the outstanding problems of mathematics,
can be described by the long-time behavior of typical solutions of the NS
equations. When viscosity is large compared to the force driving the
flow there exists exactly one stationary flow to which all flows tend.
As the force is increased, this stationary flow becomes unstable, i.e. any
slight perturbation drives it away, perhaps to another, stable, stationary
flow. When the force is increased still further, this too becomes unstable
and the flow tends to yet another stationary flow or possibly to a periodie
flow. As the force is increased further the flow becomes more and more
chaotic. This chaotic flow is concentrated around a so-called atiractor
set, i.e. a get consisting of points of accumulation of a single flow driven
by a force that is independent of #. Such sets are invariant under the
Navier—Stokes flow; concerning these Foias and Temam have proved
the following, see [17]:

A bounded set that is invariant under the strong Navier—Stokes flow
in a bounded domain has finite Hausdorff dimension.

The dimension of such sets may go to infinity ag the viscosity tends
to zero.

Further results along these lines have been obtained by P. Constantin
and O. Foias.

The simplest testing ground for ideas of ingtability and turbulence
of viscous fluids are the Couette-Taylor flows, i.e. flows between two
concentrie eylinders, the inner one rotating with some angular velocity w.
If the cylinders have infinite length, then there is a stationary flow that
is independent of the angle 0 and distance 2 along the axis of the cylinders.
For w low enough this flow is stable; as w increases, this flow becomes
unstable, yielding stability to another, z-dependent, flow consisting of
a stack of Taylor vortices, named after their discoverer. As w increases
further this flow, too, becomes unstable and gives way to a 0-dependent,
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periodic flow; further increase in w leads to more and more complicated
flows.

There is a wealth of experimental studies of Couette-Taylor flows,
revealing a bewildering variety of steady and unsteady flows, see e.g.
Benjamin, [3]. The understanding of these (which must also take into
account the finiteness of the cylinders) is a profound challenge to theor-
etical and computational fluid dynamicists.

Flows without any driving force to maintain them decay because
the viscous forces dissipate energy. Recently Foias and Saut [16] have
shown that the rate of decay is exponential, the same as for the correspond-
ing linearized Stokes flow; they have further shown that the Stokes
and the Navier—Stokes flows are linked by a wave operator.

‘When viscosity is zero, as in the Euler equation, no imposed force
is needed to maintain the flow. Existence and uniqueness is known in 2
dimensions but is doubtful when # = 3. Extensive calculations by 8. Or-
szag and his colloborators on the Taylor-Green vortex problem, [31],
reveal a bewilderingly complicated flow; as time goes on, smaller and
smaller scale features appear until the numerical method — a spectral
method keeping track of more than 100 million Fourier coefficients —
is unable to resolve them. Another set of calculations by Orszag employs
the Taylor series in time, up to order 88, summed in a cunning fashion
to elude singularities in the complex ¢-plane; the features revealed in the
two calculations are similar.

Another set of calculations, not nearly so machine-intensive as Or-
szag’s has been performed by Chorin, see e.g. [8]. He considers an initial
value problem, periodic in space, where vorticity is initially confined to
a narrow, slightly crooked tube. The basic variable is vorticity, and the
calculation takes into account that the vorticity is confined to the tube,
which stretches and twists with the flow. Using a number of bold simpli-
fications the calculation is carried out long enough to indicate that after
a finite time the vortex tube will be stretched so thin that its Hausdorff di-
mension becomes ~2.5, a prediction of Mandelbrot’s, [29]. Another
calculation by Chorin, employing a rescaling reminiscent of the renor-
malization group of physicists, leads to the same conclusion.

(ii) Hyperbolic systems of conservation laws and shock waves. A system
of n conservation laws in one space variable # and in ¢ is of the form

/
1

Uy +f(u)m =0,
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u(w, t) in R"; the system is strictly hyperbolic if the matrix Vf(u) has
real eigenvalues for every % in R™.

The basic problem is the initial value problem: given «(w, 0) = u,(2),
show the existence of a solution w(w, ?) for all £, in the class of discon-
tinuous functions, satisfying the conservation law in the sense of dis-
tributions, and an entropy condition of the form

$ +gm < 0?
where s = s(u) is an entropy, g = g(u) entropy flux. The two satisty
VsVf = Py,

and s is required to be a convex function of .

Numerical evidence indicates strongly that various difference schemes
for solving conservation laws converge; yet until recently no proof had
been given for systems with more than one state variable w. Similarly,
physies strongly suggests but mathematics had been unable to prove
that if v = u,(x,?) solves the viscous equation

U+ (%) = eD(U)py, &>0.
(@, 0) = uo(@),

D an appropriate n Xn viscosity matrix, then as & tends to 0, u,(z, 1)
converges to a solution of the system of conservation laws that satisfies
an entropy condition.

This year Ron Di Perna [12], succeeded in proving such convergence
theorems for the equation governing the isentropic flow of a gas satisfying
a polytropic equation of state, with the artificial viscosity D = I. Among
the many ingredients are two beautiful general ideas of Tartar and Murat,
[36]. One is a characterization of strong convergence in terms of weak
convergence:

Suppose u;(y) is a sequence of mappings from R* to R™, uniformly
bounded in L%; then there is a subsequence such that for every con-
tinuous funection g in R™ the weak limits

w-limg (4;(y))
exigts. Thege limits can be represented as
[ 9(wydv, (u),

where », is a probability measure in R™ parametrized by y in R™. The
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subsequence w; converges strongly if the measures v, have, for each y,
a gingle point as support.

The second idea is compensated compactness: Let v; and Wy be two
gequences of mappings from R* to R*; if both converge Weakly in the L,
sense to » and w respectively, and if diw;j and curl w; lie in compact sets
in the Hj;! topology, then

limffvj-fwjdy =fv-wdg/.

Tartar himself has used these ideas to prove the convergence of viscous
golutions for scalar conservation laws; Di Perna has shown how to
use them for systems with two variables.

Very little is known about existence of discontinuous solutions in
more than one space variable; even short time results are of recent origin,
see A. Majda’s report to this Congress. Yet numerical calculations, done
. with care and ingenuity, see e.g. Colella and Woodward, [10], converge
. and give solutions consistent with experiements.

In one-space dimension we know, at least for simple systems, that
shock formation and interaction severely limit the amount of information
that a one-dimensional flow field can contain. Something similar must be
true in higher dimension, but the mechanism causing it is not understood.

In his report to this Congress, S. Klainerman will describe some recent
results on long term existence of regular solutions of the initial value
problem for non-linear hyperbolic equations in several space variables.

The question of uniqueness, subject to an entropy condition, is not
satisfactorily settled even in one-space dimension, not even for the equation
of compressible flow, in spite of the important pioneering work of Oleinik,
and more recent work of Di Perna.

There are intriguing open problems concerning stationary transonic
flows around given contours, with volocity prescribed at infinity. An
ingenious method of Garabedian yields large families of aero-dynamically
interesting smooth flows, but a basic theorem of Morawetz shows that
for a generic contour no shockless flow exists. The basic problem is to
prove the existence of a flow, with shocks, and to prove its uniqueness.
Recent numerical calculations of A. Jameson indicate that in the potential
flow of approximation there may be many solutions.

(iii) Completely integrable systems. This chapter in mathematics, barely 15
years old, continues to fascinate analysts and algebraists, as well as physi-
cists. The effort has been truly international, and has paid off in the
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discovery of new completely integrable systems, many of physical interst,
.some containing two space variables, see Ablowitz and Fokas, [2], and
Zakharov’s report to this Congress. The algebraic classification of thege
systems has progressed, see van Moerbeke’s report to this Congress, and
new connections with other branches of mathematics and physics have
been found, such as the z-function of Sato, Miwa and Jimbo, [33], see
Sato’s and Takhtajan’s reports to this Congress. Three books have ap-
peared recently on solitons and scattering theory [1], [7] and [41], and the
work of Beals and Coifman, [4]. The speaker will restrict his remarks
1o a few scattered comments on the analytic side of the matter.

(a) Solutions of completely integrable partial differential equations
lie on infinite-dimensional tori. Numerical experiments with such equa-
tions, see e.g. [22], furnish numerical approximations that appear to lie
on tori, necessarily finite-dimensional. This indicates that some infinite-
-dimensional analogue of the KAM theory might be true; no such result
is known.

(b) The sine-Gordon equation
Uy — Uy +-5inU = 0
hag explicit solutions

m sin¥ (1 —m21)

V1 —m? coshmw

u(w,t) = —4-a.rctan[ ], m<1

that decay exponentially in @ as |#]|—oco and are periodic in time. If the
function sinw is replaced by g(u), Coron [11] has shown that no such
golution can exist when the time period 7' is < 2x/g’(0); Coron and Brezis
conjoecture that there are no such periodic solutions of any period, except
for very special functions g.

(¢) The explicit solution of the initial value problem for the KdV
equation

w; —6uvy, -2y, = 0,
u(@, 0) = u(@)

in terms of the seattering transform makes it possible to determine expli-
citely the limit of the solution % (w, ¢, &) as e—0. This rather interesting
limit is described in Section 3.
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These altogether too brief remarks on nonlinear PDE were confined
mostly to problems arising in mathematical physics; it is the richest
source of such material, but not the only one: geometry is another, see
8. T. Yau’s report to the Helsinki Congress [39]. The speaker has neither
the knowledge nor the time to report on progress in this very active area
in the last five years, but he cannot resist mentioning the very recent
demonstration by Wente, Steffen, Struwe and Brezis and Coron of the
existence of two surfaces of constant mean curvature spanning a pre-
scribed plane curve, not too large; the proof is a marvel of subtlety,
see Ambrosetti’s report to this Congress.

There hasn’t even been enough time to mention all the subjeets in
mathematical physics that have been traditionally, but especially in
the recent past, rich sources of problems in nonlinear PDE: elasticity
theory, see Ball’s report to this Congress, electromagnetic theory and,
more recently, magnetohydrodynamics. Two topics which need more
help from mathematicians than they are getting now are multiphase
flow and combustion, see e.g. [9] and [28]. In both it is of great import-
ance to understand the mnature of turbulent regimes; but in multiphase
flow, a8 in aero- and hydrodynamics, turbulence is detrimental; in com-
bustion it is beneficial since it promotes the mixing of fuel and oxydizer.
On the other hand shockwaves are detrimental for combustion, since
they produce entropy which decreases the efficiency of conversion of
heat into mechanical energy.

2. The Laplai:e—Beltrami operator on complete Riemannian manifolds
with constant negative sectional curvature

In a series of papers, [24]-[27], R. S. Phillips and the speaker have ana-
lysed, fairly completely, the spectral properties of the Laplace-Beltrami
operator on manifolds ' as above in the case when F has infinite volume
and is geometrically finite. This extends to all dimensions the previous
work of Patterson, [32], in the case n = 2, and allows F' to have cusps
of all kinds.

The universal cover of F is hyperbolic space H,,; F itself can be identi-
fied with the quotient H,,[I', I" & discrete subgroup of isometries of H,.
More concretely F can be identified with a fundamental polyhedron F
of H, modI'. Conversely, if I' is a discrete subgroup of the group of all
isometries, then H,[I' = F is a complete Riemannian manifold with
constant negative sectorial curvature; if I" contains elliptic elements, #
has harmless singularities along submanifolds.
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We shall use the Poincaré model for H,, i.e. the upper half-gpace
{#,y), @ in R*, y > 0, equipped with the metric

_ dx? +dy2

ds? "

The set of points at infinity, (8, 0), oo, is denoted by B.
The L2 norm and Dirichlet integral, invariant under isometries of
H,, will be denoted by H(u) and D(u):

dwd,
y D) = [ ()

dxdy
Hu) = [ ot =
Y
The invariant Laplace-Beltrami operator I, is defined in terms of these
quadratic forms:

H(w, Lyw) =.—D(u,v)
for all O functions % and v,
Ly = y*(4+0y*) —(n—2)y oy,

where 4 = }'ox? is the Euclidean Laplace operator. Using the Friedrichs
extension, L, can be made into a nonpositive self-adjoint operator with
respect to H.

Similarly we denote the L? and Dirichlet integrals over F by H(u)
and Dyp(u); here » is any 0 automorphic function with respect to a given
discrete subgroup I' of isometries, and 7 is a fundamental polyhedron
for I'. In what follows we assume that F has a finite number of sides, i.e.
that I' is geometrically finite.

Discrete subgroups can be classified by the geometric properties of
their fundamental polyhedra I into the following classes:

(i) I is compact,
(ii) ' is noncompact but has finite volume:

dod
v (F) =f Zny < oo,

ra

(iii) 7' has infinite volume.

The spectral properties of L, are sharply different in these cases.

In case (i) it follows by standard elliptic theory that the spectrum
of L, is standard discrete, i.e. pure point gpectrum accumulating only
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at — co. The present work is concerned mainly with case (iii); our results.
are:

(a) L, has absolutely continuous spectrum of infinite multiplicity
in (—oo, —}(n—1)3).

: (b) L, has at most a finite number of point eigenvalues, all located
in the interval (—%(n—1)2, 0).

(e) L, has no singular spectrum; even the point spectrum may be
empty. However, Beardon and Sullivan [35] have shown that if F' contains
a cusp of highest rank, then there is at least one point eigenvalue. We
have a new proof of this result, Theorem 6.4 in [26].

Jorgensen, [20] has constructed interesting examples of groups of
isometries of H; whose fundamental polyhedron has infinitely many
gides. For these, Epstein, [13], has shown that L, has infinite-dimensional
spectrum in (—1, 0).

Case (ii) is a curious mixture of (i) and (iii): Z, has absolutely con-
tinuous spectrum in (—oo, —3(n —1)2), but only of finite multiplicity,
which is equal to the number of cusps. There is no singular spectrum but
there may be point spectrum, accumulating at —oco. In many special
cases it is known that this point spectrum is ample. In the general case,
Selberg has established a relation between the density of the point spectrum
and the winding number of the determinant of the scattering matrix;,
gee also pages 205-216 of [24]. To give an absolute estimate of the number
of point eigenvalues remains a challenging open problem.

‘We return now to case (iii). Earlier studies of the continuous spectrum
of L, proceeded by constructing explicitly a spectral representation of L,;
the generalized eigenfunctions of I, entering this spectral representation
are Higenstein series, constructed by analytic continuation.

Our approach is entirely different; it is applicable to representing
operatiors whose continuous spectrum has uniform multiplicity on the whole
line. Let A be an anti-self-adjoint operator whose spectrum. is of uniform
multiplicity on the whole imaginary axis. Then the spectral representation
for A can be thought of as representing the underlying Hilbert space H
by L*(R,XN), N some auxiliary Hilbert space whose dimension equals
the multiplicity of the spectrum of A.

Each fin H is represented by an L2 function X (¢), ¢ in R, the values
of K lying in N. Since 4 is anti-self-adjoint, Af is represented by oK (o).

Denote U (t) the unitary group whose generator is A: U(t) = expid.
Then

U (t)f € K (o).
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The Fourier transform of this representation with respect to o gives
another representation of H by L*(R, N), where each f in H is represented
by

folk(s), k=K.

Then
d
——Fk
Afes === T(s)
and
U(l)fek(s—t), U(t) =expiA.
This is called iranslation representation. s

Of course, conversely, the Fourier transform of a translation repre-
sentation is a spectral representation.
‘We show now how to construct a translation representation for the
unitary group associated with the non-Euclidean wave equation
’U/u ‘—Lu = 0,

‘where

—1\2
L=Lo+(n ).

2

Note that if (a), (b), (¢) hold then, apart of the finite point spectrum, L
has continuous spectrum of uniform multiplicity on (— oo, 0).

The group associated with the wave equation consists of the operators
mapping initial data into data at time ?:

U(t): {u(0); u(0)}—>{u(t), u, (i)}
The generator of U is

Afu, 0 = fuy w} = fuy o} = {3 g o}

L 0} thus L having continuous spectrum of uniform

Note that 4? = {0 P

multiplicity on R_ is consistent with A having continuous spectrum of
uniform multiplicity on <R.
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Most properties of the non-Euclidean wave equation follow from
standard hyperbolic theory:

(i) The initial value problem is properly posed.

(ii) Signals propagate with speed < 1.
(iii) If the initial data are automorphic, so is the solution for all 4.
(iv) Energy is conserved, where

n—1
2

2

H = H(u)—H(u, Lu) =H(u¢)+1)(u)—( ) H(u).
Finally we have the special property

(v) For n odd the Huygens property holds, i.e. signals propagate
with speed = 1. _

It is not hard to show by integration by parts that for 07 data in H,,,
the energy F is positive. We denote by H the completion in the energy
norm of O data. It follows from conservation of energy that U(f) is
unitary for the energy norm.

We define the Radon iransform of a function « in H, by

&(s.B)

Here £(s,p) is the horosphere centered at the point g at co, whose
distance from the origin is s. It is well known that

A _nt, 2l
Lu=¢ 2 082 .

Now take the Radon transform of the wave equafion:

n—1 n—1
‘ A

A ) A ——p8 2" 9
0 = 'u”'—'Lu = u“—'e 3 330 2 u.

Introduce

then
= Oy —0s5 = (0;+3,) (0,—0,),
from which it follows that v, —v, is a function of s —f. We define now
B, {u, w} = P(v,—v,) = P(e%lt,—0,6°),
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P an appropriately chosen operator in 8 that commutes with translation.
R, is a translation representation of H for U(), i.e.

(i) B {u(t), w()}(s) = B {u(0), u,(0)} (s—1),
(ii) [(B{u,w})*dsdm(p) = B(u),
(iii) B, maps H onto L,(R, B).
Of course (i) follows from the way B, was constructed; for (ii) and

(iii), see Theorem 3.4 [25] when # = 3 and P = ¢d,.
We turn now to the automorphic case. Here energy, defined as before by

n—1

By () =HF<u¢>+DF(u>—( ) Hyp(w),

is not necessarily positive. It was shown in Section 4 of [26] that one can.
add a quadratic function K (%) to the energy so that G(u) = Hyp(u)+K (u)
is positive, and that K is compact with respect to G. It follows from thig
that if Hp is negative on a subspace, that subspace is finite-dimensional.
Since for #; = 0 the energy is —Hpy(u, Lu), it follows that the positive
spectrum of I consists of a finite number of eigenvalues. It can be further
shown, using the fact that F contains full neighborhoods of points at oo,
that L has no negative eigenvalues, see Theorem 4.8 of [26]; this is a non-
Euclidean version of a classical result of Rellich and Vekua.

It follows from the form Hyp = Hyp(4)—Hp(w, Lu) that if » is ortho-
gonal to all the eigenfunctions of I, then Hz> 0. If %(0) and %,(0) are
both orthogonal to all the eigenfunctions it follows that so is % (¢) for any ¢.
We denote this space of initial data by H,. Clearly H, is invariant under
the solution operators Ug(f) for the automorphic solutions of the wave
equation.

We define now a translation representation RY of H, for the group
Uy (t); it has M 41 components, M being the number of cusps of maximal
rank. The zeroth component of RY is R, , defined as before; each of the
remaining ceomponents are associated with cusps of maximal rank as
follows:

Map the cusp to the point oo, so that it has the form F X(a, o),
F a fundamental polyhedron in Euclidean space of the parabolic sub-
group keeping oo fixed. Since the cusp is of maximal rank, F_ has finite
volume. Denote by % the mean value of u:

_ 1
wo) = ) { u(w, y)do.

13 — Proceedings...
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Note that the integration is over a part of a horosphere centered at oo.
Now integrate the wave equation over F_:

_ _ _ n—1\*_
u,,—yzum,—l-(n——2)yuy-—( 3 )u = 0.

Introducing w = y® V2 % and y = ¢° as new variables we obtain
Wy —Wes = 0.

We now define the jth component of the translation representation as
W;—Wg, 1.0,

o1, nls
B {u,m} =ole > w—0, 2 m).

In Part T of [27] we show that RY is a partial translation representation
of H, for the group Uy(f); in Part II we prove the completeness of this
representation. RY is called the outgoing representation. One can define
quite analogously the incoming representation RF. The relation of the
two is the scattering operator 8y, a notion introduced by Faddeev and
Pavlov [14]. As pointed out in Section 4 of [25], the scattering operator
is nontrivial already for the case of I" = id, i.e. for the translation represen-
tations Rg over a.ll of H,. This is in sharp contrast to the Euclidean case.

‘We wish to empha,sme that the translation representations are construc-
ted here in purely geometrical terms, i.e. in terms of integrals over horo-
spheres.

3. The zero dispersion limit for the KdV equation
The equation in question is
Uy —O6ut, -2y, = 0,

and the question under discussion is this: if the initial values of u are
fixed,

u(®, 0; &) = u(w),

how does the solution %(x, {; ¢) behave as ¢ tends te 0%
‘When we set ¢ = 0 in the equation, we obtain the reduced equation

Uy —Ouity = 0.
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This equation has no solution for all ¢, only in the interval (¢, %),

§ = (@), = ((Maxu @)
* &z

here () is the initial value of . It is reasonable to surmise that for ?
in (&, %), u(@, ¢, &) tends as e—0 to the solution of the reduced equation.
‘What happens when ¢ lies outside this interval? Numerical experiments
indicate that over some part of the @-axis, u(z, ?, ¢) is oscillatory. As ¢
tends to 0, the amplitudes of these oscillations remain finite, their wave-
lengths are of order &. Clearly, if we can talk of a limiting behavior as ¢
tends to 0, this limit can exist only in the weak sense, e.g. in the sense
of digtributions. This indeed is the case; the speaker and O. D. Levermore
have shown, [23], that (@, ¢, &) tends in the sense of distribution to a limit
%, provided that the initial value %(@) is nonpositive and tends to zero
so fast that f ou(x)de is finite. These papers show not only the existence
of a limit but give a fairly explicit formula for the limit #. For simplicity
we take the case when u(x) has a single minimum; then

u(w,1) = aiQ*(m, 1),

where

Q*(m7t) = Min Q(y;2,1).

0<y<p

Here @ is a quadratic functional of u:

1
(@, p)—— (Ly, y),

4
Q(y; @,1) = —~

L the linear integral operator

V—U
Y-y

1
Ly(v) = ;f log

"P(ﬂ)dﬂ-

The functions admissible in the minimum problem are restricted to
lie between 0 and ¢, where ¢ is defined in terms of the initial data as fol-
lows:

_ ndy
p(n) = RQIW, 0< 7.
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The function a appearing in the linear term in @ depends linearly on # and
t, and is defined as follows:
- a(n, ®,1) = nw—4n*t—0, (1),

where 0, (7) is a function defined in terms of the inital data. Using the

KdV equation it follows that also u2(w, ?; &) has a limit w? in the distri-
bution: sense, and that

'l_b', = 3’“:’ .

Multiplying the KdV equation by % and rewriting the resulting equation
_a8 a conservation law shows that .

lim (w33 s202) = u?
3_.)0 .

1]

exists in the distribution sense, and that
= M_Li‘o
Combining this with the explicitly form the % leads easily to the formulas
=100, w=0Q"

The minimum problem defining Q* is a so-called quadratic program-
ming problem; it turns out that it ean be solved explicitly. To see this
it is convenient to extend the functions y admitted in the minimum
problem for all real % as odd functions; as a result we may replace the
kernel of the operator L by log|y—u|. One can show that L is negative
definite, and that it is related to the Hilbert transform H as follows:

aﬂL =Ho

We extend now p to the upper half of the complex 7 plane as a harmonic
function that vanishes at oco; ¢ can be regarded as the real part of an
analytic function of Hardy class. The variational condition for the mini-
mum problem can be regarded as prescribing the real and imaginary parts
of the function on complementary subsets of the real axis; for details
we refer the reader to [23]. Suffice 113 here to say thfx.t the resultmg for-
mulas for %@ show:

(i) For t in (&, t), @ is a solution of the reduced equation, and that
in this time interval the convergence of # to % takes place not only in the
gense of distributions but for each ¢ in the I? sense in #
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(ii) For ¢ outside the interval (i;,1%;), @ can be described by Whit-
ham’s averaged equations, or by the more general equations of Flaschka,
Forest and McLaughlin based on multiphase averaging.

(iii) For ¢ tending to oo, % decays like ¢~; more precisely

-
B, ) = — o (ﬂ/ —”:—) to(t™)

for 0 < @/t < 4m, where m = max[—u(2)]. Outside this range %(»,?) is
&

o(t72).

The formula for u(w, ?; &) is obtained from Gardner, Greene, Kruskal
and Miura’s solution of the KAV equation by the scattering transform.
We trace carefully the manner in which this solution depends on &, and
show that as e tends to zero, it has a limit in the sense of distributions.
The nonpositivity of the inital data makes the GGKM solution of the KdV
equation particularly .simple. A more difficult case has been handled by
Venakides [407.
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V. P. MASLOV

Non-Standard Characteristics in
Asymptotical Problems

Introduction: Examples of non-standard characteristics. General problems

1. An example of the Klein~-Gordon equation. If we asked a physicist

what Hamilton—-Jacobi equation naturally corresponds to the Klein—
Gordon equation

o*u o*u
2 Y Yl 2ty = 0.1
pr ham2+mou 0 (0.1)
(m, o, h are physical constants), he would write of course the Hamilton-
Jacobi equation
o8 \? o8 \*
— ) — =) —m2e* = 0.2
( 6t) (am) me 0 (02)

describing the free motion of a relativistic particle. But the mathematician
specializing in hyperbolic equations would write another Hamilton—Ja-

cobi equation,
oD\* [0\ '
— ) — =) =o0. 0.3
(&) (%) 0

This equation is a characteristic equation in a standard mathematical
sense. Who is right?

The answer is: both the physicist and the mathematician are wrong
or, to say it more politely, both of them are right. The nature of the dis-
agreement is easy to see. The physicist is looking for the semi-classical
asymptotics of the solution of the Klein—Gordon equation with respect
to the parameter /. He sets this parameter to be small.

The mathematician is looking for the asymptotics with respect to
“smoothness”. Namely, he looks for example for the solution of a problem
with singular initial data modulo differentiable functions.

[139]
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To obtain the characteristic equation (0.3) the mathematician substi-
tutes in the Klein—Gordon equation a solution of the form

0(B)po+BO(B)gy+ ..., (0.3.1)

where 0 is the Heaviside function, @ € 0, ¢; € (°. Then he puts the
coefficient by the main singularity equal to zero.

The physicist obtains the Hamilton-Jacobi equation corresponding
to the free motion of a relativistic particle by substituting in the Klein—
QGordon equation the function gexp(iS/h) (8 € 0®, ¢ €Cy’). Then he
puts the coefficient by the main term in the resulting polynomial in &
equal to zero.

The problem. of constructing the semi-classical asymptotics can easily
be reduced to the problem of constructing the asymptotics with respect
‘to smoothness. Namely, consider the solution of the Klein—Gordon equa-
tion as a funetion of one more variable. This variable is our small par-
ameter h. Further, it is convenient to introduce 4 = 1/h. Evidently, the
asymptotical expansion of the solution #(x, ¢, 1) of the Klein—Gordon equa-
tion is equivalent to the expansion with respect to smoothness of the func-
tion v (@, ¢, &), which is the Fourier transform with respect to 1 of the func-
tion wu(»,t,1). And we see, the function #(z,?, &) satisfies the hyper-
bolic equation

0% %0 g 4 020

=0. (0.4)

ot? O? &2

Indeed, by setting
v(@, 1, &) = (2n)7* [eHu(w, 1, 1)dA

and passing to the Fourier transform in (0.1), we obtain equation (0.4).
Note that ¢ in (0.1) and (0.4) may be a smooth function in .

We search for the parametrix (0.4), i.e., the asymptotic expansion
with respect to the smoothness of the solution of equation (0.4) with
initial data

oz

Vjmo =0, o
t=0

= 0(z—y)0(&—n),
in the form .
feﬂpw(m’e’"’m’t)(‘l’o(w; &y, 0, 1) +1p| " pa(wy &, 9, 0, )+ ...)d_p,

where p = (p,, p,) are dual to the variables =, & |p| = Vp?-+p2,v = py/Ipl,
© = Pof|pl, P, Pos @1y ... € C™.
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But the Fourier transform property |p| is considered as a large par-
ameter.

Analogically to the previous procedure, as [p|->oo for @(z, &, v, w, 1)
we obtain the equation

od\* [oD\* , ,[0D\}

) =) — —) =o0. 0.

(%) ~(5a) (%) =0 (©0)
By using the expansion of dJ-function

1 ,
8(@—y)8(6—n) =5 [ expilp|((@—y)+w(E—n)))ap
we obtain the condition on @:

\ Blyy =v(2—Yy) +w(é—n).
Set
D(my E,v, 0,1) = 8(w, &, 9,1) +w(E—n),

where 8 is independent of &,  (such substitution is possible since equation
(0.5) is independent of &). Then the equation for § has the form

2 2 N
(55 (2] s . oo

It is easy to see that for w? = 1, i.e., when the asymptotics is constructed
with respect to the variable & only, this equation coincides with (0.2).

Despite such evident correspondence belween the semi-classical agymp-
totics and the asymptotics with respect to smoothness, they were studied
independently for a long time. In the middle of the sixties the method
of characteristics describing the asymptolics of solutions both with respect
to smoothness and to the parameter was expanded upon a wide class
of pseudodiffercniial and h-pseudodifferential operators (i.e., operators
with a small paramcter & by the derivatives).

Thus there exist two types of characteristics for equations with a small
parameter: for the so-called h-differential equations and for more general
h-pseudodifferential equations.

The characteristics of the first type describe asymptotical expansions
in terms of powers of this parameter. The characteristics of the second
type describe asymptotical expansions in terms of smoothness. It is natural
to pose for h-pseudodifferential equations the problem of constructing
of such compound asymptotical expansions as would include asympto-
tical expansions both in terms of the parameter and in terms of smooth-
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ness. Namely, the problem is to find solutions modnlo functions simulta-
neously smooth and small. For the Klein-Gordon equation the character-
igtics corresponding to our problem are defined by a one-parametr fam-
ily of the Hamilton—Jacobi equations (0.6) depending on the parameter
w? € [0, 1] (such an interval of variation of the parameter «? is the con-
sequence of the equality »®+w? = 1). For o = 0 these characteristics
coincide with the characteristics of the problem of construction asympto-
tics with respect to smoothness, and for w = 1 with that of the problem
of rapidly oscillating asymptotics.

The compound asymptotics and the family of characteristics corre-
sponding to them play an essential role. For example, the compound asymp-
totics describe mathematically effects of the Cherenkov type, namely,
the phenomenon in with there is a domain of rapid oscillations (light
beaming) in the tail of a particle. The particle is described by the d-function.
This domain can be described exactly by a corresponding family of char-
acteristies.

2. Systems of equations of crystal lattice oscillations and difference schemes.
Analogous compound asymptotics and corresponding characteristics can
be constructed for difference schemes and for systems of a large number
of ordinary differential equations.

Consider a simple example of such a system, namely, the atom oscilla-
tions in a one-dimensional crystal lattice with the step % on the circle of
length 27nr, = Nh (N is the number of atoms):

d*u, c?

dtﬂ = ﬁ(un_l_l —-2%”-[‘-%”_1), n = 1’ ceey N. (0.7)

Here u,, denotes the deviation of the n-th atom from the equilibrium state,
Uo = Uy Uy = U1+

Assume that the circle radius ry remains finite where N ~1/h is
a large number, and let us search for the asymptotical solution under
these assumptions.

Consider a smooth (2nry)-periodic function u(z, t) taking the values
u; at the lattice points. Equation (0.7) can be rewritten as follows:

\ % uwth, 9 —2 Byt
T 'h_a[“(w’l' s 8) —2u(z, 1) +u(x—h,1)].
The solution of -this equation at the lattice points coincides with the
solution of (0.7) and is independent of the initial data outside the lattice
points. '
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Using the identity
0
exp [i(—ih%)] u(w, t) = u(®w+h,t),

‘which can be verified by means of the Taylor expansion or by means of
the Fourier transform, we rewrite the latter equation in the form

o0*u . . 0

P +4c¢%sin?(—ihiD)u =0, D = e (0.8)
Even in this simplest case the family of characteristic equations appears
not to be standard (Maslov, 1965, [103]). It has the form

o8\? ¢ . [w 08

where the parameter w varies in the interval [0, 2x]. This fact concerns
equation (0.7) but not equation (0.8), and it follows from the fact that
the characters of the discrete group, corresponding to the lattice 2=k /N,
vary just in this interval.

In the three-dimensional case for the lattice corresponding to an Abe-
lian discrete group the parameters in the characteristic equation vary
in the Brillouin zone (well known in the erystal theory [3], p. 100). If the
lattice corresponds to a non-Abelian group, then the parameters in the
characteristic equation may vary in some extraordinary domains.

Consider the simplest example of a finite-difference equation, namely,
the difference scheme

W72 (gt =20 +ul ™) = 0BT (g —2up g y), (0.10)

h?

which approximates the wave equation. The family of characteristic
equations for (0.10) has the form:

_GE 42w~ taresin [csin (—cg f—‘g—)-l =0
ot 2 /| '
where the parameter w varies from 0 to 2n. These characteristics define
the spread zone of the oscillations for the so-called unity error, i.e., of the
oscillation of the solution, which at the initial moment is equal to unity
at a point of the net and is equal to zero at other points. First such char-
acteristics for difference schemes were introduced in [1067].

For the equations with constant coefficients the spread zone can be
calculated directly from the exact solution [146], [39].

Ay
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3. General setting of the problem of asymptotics compound with respect
to smoothness and to the parameter. The problem of constructing
asymptotics with respect to smoothness or to the parameter can be re-
garded as follows: for a given pseudodifferential operator L: H,—~H,_,, in

the scale of the Sobolev spaces H, an almost inverse operator R, such
that

LRy = 1+Qy (0.11)

should be constructed. Here Qy: H,—~H,, 5 is a smoothing operator in
the problem of asymptotics with respect to smoothness, or a ‘‘small’”
operator, namely [Qylg .p, = o(k¥), in the problems on asymptotics
with respect to the parameter k. For the compound asymptotics the oper-
ator @, is simultaneously a “small’” and a smoothing one:

IIQN"HS—>H8+N = 0 (hN) .

When the asymptotics is constructed, the initial equation is reduced to
an integral equation of the second kind with a kernel which is not only
smooth but also small with respect to the parameter. This fact enables us to
prove the existence theorem and to construct estimates of the solution
uniform. with respect to the parameter. The compound asymptotics can
naturally be interpreted as the construction of an almost inverse operator
in the scale generated by a pair of commuting operators 4, = 1/h (the
multiplication by the inverse of the parameter) and 4, = —id/0x = —iD.
The Fourier transform with respect to 4 = 1/h transfers this seale into
the usual Sobolev scale.

4. Compound asymptotics with respect to smoothness and the decrease
at infinity. More complicated situation arises when we construct asymp-
totics with respect to an n-tuple of non-commuting operators. For example,
for differential equations with growing coefficients, i.e., equations con-
taining both the powers of the differentiation operator 4, = D and the
powers of the operator A, = » it is natural to pose the following problem :
an almost inverse operator E, should be constructed such that the remain-
der @, in (0.11) not only is & smoothing operator but also transforms any
function from I, into a function rapidly decreasing as # tends to infinity.
In this problem the characteristics are defined by an n-tuple of non-
commuting operators 4; and A4,.
Consider the example
0w o*u

dt2 ox?

—a*(1+b(x))u, beCP(R),
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The characteristics are defined by means of the following family of
non-standard Hamilton-Jacobi equations (Maslov, 1973, [109]):

a8\? o8\?
(3 & e

where o is a parameter varying from zero to one.

For general equations with growing coefficients amalogous character-
igtics are constructed and the global asymptotic of the solution with
respect to smootheness and to the growth at infinity is obtained, i.e., an
almost inverse operator in the scale induced by the pair A4,, 4, is con-
structed (Maslov, 1973, [109]; Maslov and Nazaikinskij, 1979, [117]).

5. The case of degenerale characteristics. In the same way, for equationg
with singularities or with singular standard characteristics it is sometimes
possible to find appropriate self-adjoint operators 4, ..., 4, with respect:
to which the non-standard characteristics of the equation are non-singular,
Then it is possible to construct an almost inverse operator with respect
to the scale generated by A4,;. The scale is given by the sequence of norms

”’u’”s = ”(l +A% "I‘ cos -—l—-A?")Slzu” .

The operator R, almost inverse to the operator L, satisfies equation
(0.1), in which the remainder @, is a smoothing operator with respect
to the scale:

12w lls-ss+5v < 00-

The operator R,y can be explicitly calculated in terms of functions of
non-commuting model operators 4,, ..., 4, in the case where they define
a representation of a Lie algebra or a nilpotent algebra with nonlinear
commutation relations ([112], [64], [66]).

Even in the case of geometrically simplest characteristics, namely, for
some degenerating elliptic equations, this idea enables us to construct
almost inverse operators in the scale generated by the n-tuple of vector
fields 4,, ..., 4, which induce a nilpotent Lie algebra (Stein and Folland,
1974, [41]; and others [141], [140], [142], [43], [64]).

6. Example of an asymptotics in the case of characleristics with singular~
ilies. We show by means of the simplest example how the ideas discussed
above enable us to solve the problem. of oscillating solutions for a hypers
bolic equation with a singularity in the characteristics.
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Consider the problem for the following wave equation:
o0*u
ot?

Ueo =05  Uglo = 0,

—c(w) du = f,
' (0.12)

£ = oxp (- 8u(@)) 2o@),  Sulo) = o,

where c¢(z) € O°(R"), ¢(x) =36 >0, go(®) e O(R"), ¢o(0) % 0. By the

Duhamel principle the solution of this problem is expressed in terms of
the solution of the Cauchy problem

’ 0%p

ot?

—c(z)dv = 0,

Vo = J, "’;lt-o = 0.

The standard scheme of constructing the asymptotic solution of the
above problem is the following: the solution is presented in the form
exp(i8 [h)p. Evidently the wave operator acts on the exponent as follows:

2
o—iSIm [_ (_q,h 9 ) +¢2(—ihD) ]e"‘g/”

[~ ()]

. 8 dy , 08 dp 08
+ ”‘)[—ZW—JF W w P

2
+h2[ Ztr —02 A¢] .

Hence 08,/0x = 0 for # = 0, and the solution of the characteristics equa-

tion
o8 oS
( ) +0? ) —0: S]t=o =So,

is a non-smooth function at this point. Thus the standard scheme of
constructing the asymptotics with respect to the parameter cannot be
applied to this case. )

It is evident that the characteristics of the wave equation correspond-
ing to the asymptotics with respect to smoothness (parametrix) (0.11)

+c“<pA;S’] +
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have no singularities. Indeed, the equation is homogeneous in operators
iD; hence the bicharacteristics start from the sphere |p| =1 and the
singular point p = 0 drops out in this case. The asymptiotics with respect
to smoothness enables us to represent the solution (0.12) in the form
w = (Ry-+ry)f where By: H,—H,,, is an explicitly calculated operator,
and ry: H,—~H,, »is a smoothing operator. The operator 7, in this example
transfers the right side to a function whose norm in the space H,, y is
of order 1™", since this function is a convolution of the exponent exp (8 /h)
with the (smooth) kernel of the operator . The other terms of the
asymptotics of function 7, f with respect to & are obtained by means of
the solution of the wave equation with zero Cauchy data and smooth
right sides. Thig problem. differs from the initial one in that the wave
operator should be inverted on a function uniformly smooth (non-oscil-
lating) with respect to the small parameter. Such a solution can easily be
obtained by means of computer.

The accuracy of the approximation of the solution by the leading
term of the asymptotics depends on the type of the initial conditions.
For example, if Sy(z) = |#|* then the leading term R,f approximates
the solution modulo O(h™*). Thus the estimate of the leading asymp-
totical term is connected with the individual initial condition. The leading
term R,f can asymptotically be represented in the form of an integral
whose integrand oscillates in the parameter A and has a singularity.
For example in case ¢ = 1, n = 3 we have

1
Byf =4 [ lo—exp(ilelmyga(£)dé.
le=&|<t

The leading term of the asymptotics in the case of variable coefficients
and an arbitrary dimension has the same properties.

This scheme is applicable to the case of a general operator equation
with characteristics non-singular with respect to an n-tuple of operators
and singular with respect to another n-tuple of operators.

Apparently, this scheme covers the results of Guillemin, Sternberg,
Uhlmann and others [37], [43], [44], [49], [60], [127], [b].

7. General setting of the problem of characteristics. We have considered
2 number of simple examples which show that it is necessary to give
- a general definition of characteristics. The main part of this general no-
tion of characteristics is the possibility of conmecting different areas in
physics and mathematics. Then the methods of one area can be applied

14 — Proceedings...
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in another. For example, it turns out that the following problems, appar-
ently unconnected, are of the same mathematical nature: the behaviour
of the solutions of the equations of the dynamics of a viscous liquid far
ahead of the shock wave and large deviations in the theory of probabilities;

the Cherenkov effect and the diffusion of unity error in a difference scheme;
effects of dissociation of molecules and conical refraction in acoustics

and so on. These effects often involve difficulties, which arise in proving
the existence theorems for pseudodifferential equations.

First of all, in order to define characteristics, we need an n-tuple of
operators, namely, model operators with respect to which the asymptotics
is constructed. Further, the original equation should be expressed in terms
of those model operators. This procedure itself demands preliminary
investigation, namely, the construction of the calculus of non-commuting
operators.

In this paper I have no opportunity to give a general definition, since
it demands preliminary considerations. I prefer to show, by means of
simple but specific examples, the basie ideas which enable us to construct
the characteristics in a more general situation.

Part I. The non-standard characteristics of linear equations and equation
with nen-local nonlinearity

1. Pseudodifferential operators with symbols and characteristics on arhit-
rary symplectic manifolds. Quantization conditions for coordinate-mo-
menta. Consider the first generalization of the notion of characteristics.
‘We shall describe below the difficulty which arises in asymptotical prob-
lems for asymptotics in terms of the parameter. It also arises for com-
pound asymptotics in terms of an n-tuple of operators. The phase space
for these problems is not necessarily a cotangent bundle of mani-
folds.

Even in the simplest example of the equations of oscillations of atoms
which we mentioned above the phase space is not a cotangent bundle.
In fact, the configuration space in this problem is a two-parameter family
of circles. This family depends on the continuous parameter » tending
to 0 and on the discrete parameter N, which tends to infinity. Note that
the length of the circle is equal to Nh. The character arguments of the dis-
crete group of shifts of the lattice vary from 0 to 2=, and the space of
momenta is the unit radius circle. Thus, in this case the phase space is
a family of two-dimensional tori. The surface of the torus is obviously
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equal to 2nNh; hence the following equality holds:
1
- d « = ».
= f p A dwN (1.1)

Consider now a one-parameter family of tori. If the left-side expression
in the equality (1.1) is an integer, then it is possible to construct a calculus
of pseudodifferential operators; namely, with any symbol f which is a
smooth function on the torus one can associate an operator f which is de-
fined on functions on the circle 8' = 0 < 2 < 2nry, so that the following
formulas hold: the commutation formula

. -\
[f,§1 = —ih{f, g} +0(h?) (1.2)

and the formula of the operator action on the exponent

e~ SIf (eSihg) = f(m, S (2))p(®)+

o] of op @ O[O
+(_@h){'5§(”’ds)%+_2'Ero'(79}7(m’ds))_
@, O0f .
— 5t P (@, dS)} +0 (h2). (1.3)

Here curly brackets denote the Poisson brackets, ¢ is an arbitrary smooth
function on the circle, S is a real function on the circle which defines
a smooth curve p = d8(x) on the torus, and the estimate O(h?) in (1.3)
is in the norm L,.

As in the case of the Huclidean space the operators f will be called
h-pseudodifferential operators (with symbols on the torus). We shall use
the notation

f =f(w,—’§D).

Now to a symbol on the torus f = ¢®sin®(p/2) there corresponds an
h-pseudodifferential operator of the form

f = o?sin? (—7@1 D).
Consider an equation with this operator

0*u

B2
o2

b
-+4c2gin® (_i_ D) =0, Ulpspry = Ulg=o- (1.4)
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Denote by u, the value of the function « at the point # = kh. Then we
can write
Uppyr — 20 0,y = ("% —2 4-6770%) |,
ih 0
= —48in?| — ——
(- 2.2).

L
x| |z=kn

Thus equation (0.7), describing the oscillations of the atom lattice on
a circle, is equivalent to the h-pseudodifferential equation (1.4), whose
phase space is a torus satisfying condition (1.1).

Now consider the general case: the family of symplectic manifolds
depending on a parameter u, varying in a compact. It is convenient to
consider that the manifold is fixed, and that the symplectic structure
on it depends on the parameter u (i.e., it is a closed non-degenerate 2-form
Q@ or the Poisson bracket {...,...}*). We assume that for u = u(h)
the following condition holds: over any two-dimensional cycle the inte-
gral of the symplectic form Q™) divided by 2=k coincides (modulo
integer numbers) with half of the value of the second Stiefel-Whitney
class, i.e.,

—1—h [QE®)] = W,(mod2Z). ,(1.5)
K7

Then with each smooth function f on the phase manifold one can associate
an operator f, so that the commutation formula (1.2) (with the Poisson
bracket {...,...}J ™)) holds and formula (1.3) holds locally (Karasev
and Maslov, 1981, [66], details in [67], [68], reproduced in [120], [124]).

Call equation (1.5) the quantization condition for coordinate-momenta.
The value { W, in (1.2) will be called the vacuum correction. It is remark-
able that condition (1.5) (with the zero vacuum correction W, = 0)
arose already in the construction of a rather narrow class of pseudodiffer-
“ential operators with locally linear in ¢ symbols, namely, the differential
operators of the first order (Kostant, 1970, [77]; Souriau, 1966-1970,
[149-151]). For the half-integer vacuum correction (there are important
examples, see e.g. [42]) within the framework of the first order operators,
condition (1.5Y was obtained for the Kaehler manifolds (Czyz, 1979, [23])
and in the case of general real manifolds (Hess, 1981, [55]).

By constructing the calculus of pseudodifferential operators on the
orbits of a compact Lie group condition (1.5) numerates the irreducible
representations of the group. Thus, the quantization of eoordinate-mo-
menta on the orbits coincides with the Weyl rule of integer major weights
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of irreducible representations (Borel and Hirzebruch, 1959, [16]; Kirillov,
1968, [74]). The vacuum correction is then equal to zero.

It should be noted that in general phase manifolds the quantization
condition for coordinate-momenta is a sufficient condition for the existence
of the canonical operator on Lagrangian submanifolds [68]. This fact
enables us to apply to general phage manifolds the theory of global asymp-
totical solutions of h-pseudodifferential equations, which is constructed
in detail in R®*® [103]. The bicharacteristics of such A-pseudodifferential
operators belong to those phase manifolds on which the operator symbols
are given. The global calculus of k-pseudodifferential operators can also
be defined on symplectic V-manifolds [67].

Note that in construeting the calculus of ordinary pseudodifferential
operators on an important class of homogeneous symplectic manifolds
(Boutet de Monvel and Guillemin, 1981, [18]) the quantization conditions
do not arise, see [68].

2. Electron terms. Now we congider the second generalization of the notion
of characteristics. Recall that the characteristics equations for a hyper-
bolic system of equations of the first order are obtained from the character-
istic matrix by equating its determinant to zero. In the same way we obtain
the characteristics for the systems of h-pseudodifferential equations

9 7
@7»7? +IL (m, %D) =0, wecR" (1.5.1)

Here % = (4, ..., %,) and the symbol L(x, p) denotes a smooth matrix-
valued function, diagonalized by a smooth transformation. The equations
of characteristics for system (1.5.1) are defined by the eigenvalues 4;(z, p),
j=1,...,1 (1< m) of the matrix L(z, p) and have the form

o8 o8

W_M’ (m,—ég) =0, j=1,..,1 (1.5.2)
It is natural to pass from the finite-dimensional space, where the symbol
L(z, p) acts to an infinite-dimensional space, which results in equations
with the operator-valued symbol f}(w, p). If the spectrum of the operator
I:(m, p) is discrete and its eigenvalues have constant multiplicity, the
asymptotical solution is constructed as in the finite-dimensional case
(Maslov, 1965, [103], [104]). In this case the equations of characteristics
are defined in the same way as the equations of characteristics for systems.
They have the form of equations (1.5.2), but the functions 4;(x, p) are
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now the eigenvalues of the operator ﬁ(w, ). If the spectrum of the operator

L(w, p) is continuous, then the equations of characteristics are defined by
the poles of the analytical continuation of ils resolwent which are closest to
the real awxis. This fact,is used in the collision theory and in the theory
of the decay of nuclei (the Gamov theory). Since the poles are complex,
the characteristics are also complex in this case.

The eigenvalues 4;(z,p) of the symbol of the h-pseudodifferential
operator are called terms or effective Hamiltonians in physical literature.

As an example consider the problem of interaction of heavy and light
particles (the nuclei and the electrons). This problem is studied in the
quantum theory of molecules and in the theory of collisions. In this case
the small parameter appears in the Schrodinger equation only at the
derivative corresponding to heavy particles. In the simplest one-dimen-
sional model the equation is

. Oy oy Oy

h— = —h? —— —

r ar oy
The operator-valued symbol has the form

+V(z,9)p.

62

P +V(z,y).
Its eigenvalues (the electron terms) define the characteristics which
describe the motion of heavy particles along the classical paths in the field
generated by the light quantum particles.

The concept of equations with operator-valued symbols has a general
character and can be used, in particular, to obtain the characteristics
and the corresponding asymptotical expansions in terms of “smoothness’.
Examples of such characteristics are given by Grushin, 1972, [46], [47],
and, in fact, by Boutet de Monvel and Guillemin, 1981, [18], and by
Guillemin and Sternberg, 1979, [49].

It should be noted, that this general concept allows us to connect
problems which seem, on the surface, absolutely different. For example,
physicists’ papers on the problem of predissociation of molecules with the
intersection of electron terms helped Kucherenko, 1974, [84] in con-
structing the parametrix for non-strietly hyperbolic equations.

L(w, p) = p*—

3. Pseudodifferential operators with complex characteristics. Global asymp-
totics. Now congider the third generalization of the notion of character-
jstics. Difference schemes and Markovian chains ean now be represented
a8 h-pseudodifferential equations. Then it is possible to obtain their
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characteristics. Note that the equations of characteristics are complex
for Markovian chains, non-symmetric difference schemes, equations of
the principal type, and also for the problems of the decay of nuclei men-
tioned above. For example, the simplest difference scheme w7 —ul

= ’;T; (ufy1—ug) on the circle (v is the step in ¢, and 4 is the step on the

circle), represented in the form of an k-pseudodifferential operator
[(e00 —1) (P —1)]u =0, a ==,

leads directly to the complex characteristics equation

where o € [0, 2=] is the parameter (see equation (0.9)), and
1 .
H(w,p) = mln(l +a[exp (ip) —1])

is a complex-valued Hamilton function with the non-positive imaginary
part. The equations deseribing processes with absorption lead to complex
characteristic equations with analogical properties.

Complex solutions of real analytical equations of characteristics were
considered in the famous paper by Leray, Gérding and Kotake, 1964,
{96], in connection with the study of the singularities of non-analytical
solutions of partial differential equations. In physical literature complex
solutions of real analytical Hamilton—-Jacobi equations and of the Hamil-
ton system were used long ago (Keller, 1956, in the problem of reflection
{70]; Maslov, 1963, in the problem of scattering [102]; Kravzov, 1967,
in the analogous problem of refraction [81], and others). This approach
encountered essential difficulties which arise in obtaining analytical
solutions of the Hamilton—Jacobi equation and choosing the right branch
of the multi-valued solution. These difficulties were avoided when the
problem was solved modulo O(%Y) (or modulo # times differentiable
functions) with the help of constructions based on the following simple

idea. Let the asymptotical solution have the form exp (7::—8 (m)) o(2),

where Im§ > 0 (which is necessary for the boundedness of the solution
a8 h—-+0). It is clear that the values of the functions 8 and ¢ in the do-
main Im8 > 6 > 0 are not essential, since the solution in this domain
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vanishes with the accuracy considered. Then the imaginary part of the
function 8§ acts as an additional small parameter which follows from the
estimate:

(Im8)exp (h~18) = O(H).

Thus one can construct asymptotical analogues of the analytic Hamil-
tonian formalism, in which analyticity is reduced by almost amalyticity,
namely, it is required that the Cauchy—Riemann conditions should be sai-
isfied mod ((Im 8)~).

This idea was used in [108] heuristically in the theory of the complex
germ. Almost analytical formalism is also based directly on this idea.
It was also used by Treves in [154] to construct the parametrix of the
eqﬁa,tion of the principal type.

Since 1966, [103], the n-diménsional submanifolds of the phase space
R? X Ry, which annihilate the symplectic form, have been the basic geo-
metrical construction in the theory of characteristics. The author called
them Lagrangian manifolds.

The geometrical basis of almost analytical formalism is the mnotion
of the analytical Lagrangian manifold. It is locally a 2n-dimensional
real submanifold in the complex phase space C** = R*". This approach
is close to the analytical theory and has theoretical harmony.

The main geometrical construction in another approach is the “La-
grangian manifold with the complex germ”. The structure of the complex
germ is given on an n-dimensional real manifold 4 which is “almost La-
grangian” by means of imbedding into the complex phase space (g x O2.
This means that on 4 a non-negative function D (ealled the dissipation)
and the function W satisfying the condition dW = PdQ+-0(D) are given.

The dissipation condition is assumed to be satisfied. This means that
the planes tangent to A are (-Lagrangian on the zero set of dissipation;
namely, they are real-similar, they annihilate the form dPAd@ and sa,tisfy
the positivity condition Im(P,g, Q,g) > 0, Vg € C", where a = (ay, ..., a,)
are the coordinates on the plane.

The advantage of the theory of the complex germ over the almost
analytical theory is the following. Asymptotical formulas obtained by
means of the complex germ are more constructive and simpler. For
example, for the construction of the global asymptoties of an h-pseudo-
differential equation of the first order it is sufficient to solve only the
Hamilton system and the system in variations,

Namely, let H(x, p) be a smooth complex-valued Hamilton function
corresponding to the asymptotical problem, # = ReH, H = ImH < 0.
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To construct the asymptotics in the theory of the complex germ the
(real) Hamilton system and the system of equations in variations should
be solved:

q = _'p? Z.’ = _‘#q’
b = Hy o+ wt+ill,,

W = — Wt — Hpw—iH,.

pp

Almost analytical formalism and the theory of the complex germ enable
us to construct global asymptotical solutions of the problems mentioned
above and to obtain simpler formulas by using additionally only the
solution of system in variations. The last fact is essential for constructing
the asymptotics of solutions of stationary problems (Maslov, 1977, [113]).
Thus the asymptotics of some concrete quantum-mechanical spectrum
were obtained [113], [32].

Analogous spectral series were obtained by the method of model
problems for the Laplace equation on a Riemann manifold (see Babich
and Buldirev, 1972, [6]; Lazutkin, 1969, [92]).

The theory of the complex germ permitted the construction of a com-
plete system of semi-classical coherent states for the Schrodinger operator,
the Klein—Gordon operator, and the Dirac operator (Bagrov, Belov,
and Ternov, 1982, [8], [7]).

I call asymptotic formulae obtained by means of the theory of the
complex germ additive asymptotical formulae. They have the form g
= p,+0(k"), where p is the exact solution and vy, is the asymptotical
one. Such asymptotical formulae in the diffraction theory describe only
the domain of partial shadow. In the theory of probabilities they describe
only normal deviations.

Distinet from additive asymptotical formulae, multiplicative formulae
have the form y = y,(1+0 (k")) and describe in the diffraction theory
the whole domain of shadow. In the theory of probabilities they describe
large deviations.

The difference between these two situations can be shown by means
of the following trivial example: the multiplicative asymptotical formula
of the function exp{(—a*—a*)/k} is the function itself but the additive
asymptotical formula for this function has the form exp{—a?/h} -0 (h)
as the following condition holds:

Ma.x (@ exp{ —a?[h}) = (2h/e)?, and so on.
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t

4. Problems of the logarithmic asymptotics of the solution. The class of
equations of the tunnel type. Instanton as the logarithmic limit.

4.1. Hquations of the tunnel type. Now we consider the fourth gener-
alization of the notion of characteristics. Equations whose solutions
do not oscillate at all, but only damp, are of great importance. We call
such equations tunnel equations. The asymptotical formulas for the
solutions of such equations are also constructed with the help of character-
igtics, but the latter are obtained in another way, which is the result
of the general definition of characteristics.

Compare the characteristics of equations with rapidly oscillating
solutions and those of equations with rapidly damping solutions. For
this purpose we consider the Schridinger equation and a parabolic equa-
tion. They are very similar. On the left we write the Schriodinger equation
with a small parameter A and its solution, on the right we write the para-
bolic equation, which also has a small parameter h.

Schrodinger equation Parabolic equation
o 0y 621/) ow . a“"u

The Green function for V(x) =0 The Green funection for V(x) =0
has the form has the form

L[] L ot
" Vamin L@ | 7=l T ]

As h—0, the function y, rapidly oscillates and the function u, rapidly
damps without oscillations. For V(») € C;° and for small ¢ the asymptotics
of the Green function for the Schrodinger equation has the form:

=;/21m1/

where the function S(z, &, 1) satisfies the h-characteristic equation

28 (w, &, 1) '

up — 38, ¢ 0] +om),

o8 (68

(] v



Non-Standard Charaoteristics in Asymptotical Problems 167

The asymptotics of the Green function for the parabolic equation as

h—0 has the form
. 1 azsl(m’ E;t) Sl(wi E’ t)
" Vamh ]/ wok | O [ )

where the function 8,(w, &, t) satisfies the Hamilton—Jacobi equation
o8, (681

w

] (L+0(R)),

ot t 0w
It is natural to consider the last equation as the equation of characteristics
for the asymptotical problems corresponding to the parabolic equation.

Note the following. The Hamilton-Jacobi equation corresponding
to the Schrodinger equation has a physical sense. Moreover, for the problem
which is described by the Schriédinger equation with a small parameter A
this equation was considered earlier, since it describes the classical motion
of a particle. The physical sense of the Hamilton—-Jacobi equation is not
clear, but the solution u of the parabolic equation has a remarkable prop-
erty: there exists a limit

limhlnu = —8,(», &,1).
0
The global asymptotics of the parabolic equation in the multidimensional
case was constructed by Maslov in 1965, [103]. For an important class
of equations which are connected with the probability problems the
logarithmic limits of the solutions were first obtained in the outstanding
papers of Varadhan, 1966, [157]; 1967, [158]; and Borovkov, 1967, [17].

The global asymptotics for the heat conduction equation with varying
coefficients in degenerated case was constructed by Molchanov, 1975,
[130], Kifer, 1976, [73], Maslov and Chebotarev [20].

General systems of equations with this property were published by
the present author as late as 1981, [121], though the term ‘‘unnel equa-
tions” had been introduced in 1965 in “The perturbations theory and
asymptotical methods’. In the preface to that book the author promised
to devote his next work to these equations. However, he has not done
so. He has abandoned this theme, considering the class of tunnel equa-
tions to be too narrow. It is difficult to invent examples of systems of
equations which would belong to this class, besides the parabolic equa-
tions, which are the only equations in the class of differential equations
containing the derivative of the first order with respect to time. Then it
turned out that the narrowness is not a defect of this class but on the
contrary, its advantage, since it absorbs, from among all the possible

)2—V(w) =0.
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Hamiltonians, the right physical models. Probably, the only h-pseudo-
differential (not differential) equation of the first order with respect to
time which belongs to this class is the general integro-differential Kol-
mogorov equation in the theory of probabilities.

‘We give the tunnel conditions in the case of systems of h-pseudo-
differential equations of the form
