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JAMES ABTHUR 

The Trace Formula for Noncompact Quotient 

1. In [12] and [13] Selberg introduced a trace formula for a compact, 
locally symmetric space of negative curvature. There is a natural algebra 
of operators on any such, space which commute with the Laplacian. The 
Selberg trace formula gives the trace of these operators. Selberg also 
pointed out the importance of deriving such a formula when the symmetric 
space is assumed only to have finite volume. Then the Laplace operator 
will have continuous as well as discrete spectrum; it is the trace of the 
restriction of the operator to the discrete spectrum that is sought. Selberg 
gave such a formula for the quotient of the upper half plane by SL(2, Z). 
(See also [6] and [8].) Selberg also suggested how to extend the formula 
to any locally symmetric space of rank 1. Spaces of rank 1 are the easiest 
noncompact ones to handle for they can be compactificd in a natural 
way by adding a finite number of points. I have recently obtained a trace 
formula for spaces of higher rank. In this article I shall illustrate the 
formula by looking at a typical example. 

2. Let X be the space of n by n symmetric positive definite matrices of 
determinant 1. The group G = SL(w, R) acts transitively on ÌT as iso-
metries by 

gip^gplg} pel, g^G. 

Since the isotropy subgroup of the identity matrix is K = SO(w, B), we 
can identify X with the space of cosets G\K. Suppose that r is a discrete 
subgroup of G. Then the locally symmetric space 

x - r\x 
can be identified with the space r\G/K of double cosets. We are inte
rested in the spectrum of the Laplacian on L%{X). Let tfK be the space 
of smooth, compactly supported functions on G which are left and right 

[849] 
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invariant under K. It is a commutative algebra under convolution, 

(/i»/t)(«) = ffi(y)My^äy3 UGG. 
G 

For any feJ^K9 define the operator B{f) on L2(r\GIK) by 

(*(/)*)(*) = ffW(w)äy, <t> etf(r\GiK). 

This gives a homomorphism of the algebra jf^ into the algebra of bounded 
operators on JL2(r\GIK). The corresponding representation of JfK on 
L2(X) commutes with the Laplacian. Since the Laplacian can be approxi
mated by operators i2(/), the problem of the spectral decomposition 
of the Laplacian on L2{X) is included in that of the spectral decomposition 
of tfK on L2{F\G\K). 

Suppose that fe*K and $ e I 2 ( r \ f f /Z) . Then 

(*(/)*)(*) = //(»)# to) ̂  = ffi^yi^My 
G G 

r\Gyer 

since <? is unimodular and $ is left r invariant. Thus, Ê(f) is an integral 
operator with a smooth kernel 

K(œ, y) = ^fico-'vy), », y e r\<?. 

If J T \ 0 is compact, the trace of the operator will be obtained by inte
grating the kernel over the diagonal 

J £ fiorato ~tr R(f). 
r\Gyer 

Selberg's formula is obtained by grouping together those elements in J1 

with the same eigenvalues and taking the integral separately of each 
such term. The result is a sum of ©-invariant integrals over semisimple 
conjugacy classes of G. 

3. From now on, we will take r to be the discrete subgroup SL(w, Z) 
of G. Then r\G has finite invariant volume, but is no longer compact. 
The integral of K(œ7 y) over the diagonal does not converge. 

However, it is possible to modify K(œ, œ) by sòme functions on rxö/JK" 
which are supported near infinity and which reflect the various directions 
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in which the integral can diverge. The functions are parametrized by the 
standard parabolic subgroups 

indexed by partitions 

% « (%, ...,wr), nt+ ... +nr =n, 

of n. The group Mn is the intersection of G with 

OiL{nl9 B ) X M . X GL(w,,, R), 

embedded diagonally in GL(w, #), while JSî  is the group of matrices 
which differ from the identity by a matrix with entries only above the 
diagonal blocks of Mn. It is easy to show (using a variant of Gram-Schmidt 
orthogonalization, for example) that any oo eG can be decomposed as 

oo p= nmh, 

with Jc e l , ne Nn and the element 

m = mx.., mr, % e GL (%, B), 

belonging to M„, The decomposition is not unique, but the vector 

E„{œ) « (logldetm^l, ..., log|detw,.|), 

which lies in the vector space 

is uniquely determined by OD. Note that if #0 is the partition ( 1 , . . . , 1) 
corresponding to the minimal parabolic subgroup, there is a natural 
projection 

(t1}...,tn) = T-+X, <= (h+— + ^ V n + " +**••••) 

of a„0 onto a* such that (JÏWo(0))* = MnW 
The modified kernel depends on a truncation parameter 

T e= (tu . . . , tn) 

in a^ such tj — ij+1 is la.rge for each j . For any partition n let i„ be the char
acteristic function of the set of vectors (%,..., ur) in a„ such that 
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for each * = 1 , . . . , r — 1 . The modified kernel is 

n deP„(\T\GNn yeM„ 

where |w| = r denotes the length of ut. Note that if ut = (w), so that Mn = <?, 
the function T„ is identically one and the group Nn is trivial. The corre
sponding summand is J5T(a?, x) itself. The other gummands, as functions 
of so, are defined on r\G and are supported only near infinity. 

Let (9 be the set of equivalence classes in r = SL(w, Z) of matrices 
with the same (complex) eigenvalues. The modified kernel can be written 

060 

where 

Etitof), 

#(*,/)= J£(-l)w+1 2 f % f{*-lè-1ynto)ìm[Bn(òx)-TH)a*. 
n ôeP„(\r\GNn yeMnno 

As we would hope, the function ft;f(a?,/) is integrable. (One actually has 
to prove that JJ j \k%(<Djf)\äio is finite [1, Theorem 7.1].) The integral 

o r\G 

f TfitPif)*», 
r\G 

defined a priori only if ti—ti+l is large for each *, turns out to be a poly
nomial in T [3, Proposition 2.3]. We let J0{f) denote its value, at T = 0. 
The left hand side of our trace formula wUl be 

EJo(f)-
oe& 

It is a generalization of the formula for compact quotient. For if the class o 
intersects no proper parabolic subgroup P„, as is always the case when 
the quotient is compact, there are no correction terms and J0(f) is just 
a G invariant integral over a semisimple conjugacy class in G. In general, 
though, J0(f) is more complicated. If o contains only semisimple matrices, 
J0(f) will still be an integral over a semisimple conjugacy class, but some
times with respect to a measure which is not G invariant. If o contains 
matrices which are not semisimple, J0{f) will be a sum of integrals over 
several conjugacy classes. 

The proof of integrability requires some knowledge of the geometry 
V\G near infinity. If G is a compact fundamental domain for N„Qn Pin JV„o, 
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the set 

S = 0 ; a$ > 0, fy/ai+1 > 
V3 

E 

is an approximate fundamental domain for F in G [7]. This means that 
rS s= #, but only finitely many J1 translates of 8 intersect 8, In par
ticular, there are (w — 1) independent co-ordinates which can approach 
infinity. One studies the function jfe;f(a?,/) as œ approaches infinity in the 
direction of each partition ut — {y,1}..., nr)} in the sense that if 

œ s= n 
a» 

Je, neö, JceK, 

the co-ordinates anil%i+i are each large, but all the other co-ordinates 
ajlaHi r e m a î1 1 within a compact set. 

4. The other main difficulty in the noncompact case is the existence- of 
continuous spectrum. This means that the right hand side of the formula 
for compact quotient has also to be seriously modified. The continuous 
spectrum has been completely characterized in terms of the discrete 
spectrum of spaces of lower dimension. It is handled by means of Eisen
stein series, whose study was begun by Selberg, and completed by Lan
glands [9], [11]. If ut is a partition of n, let Ml

n be the subgroup of elements 

m = mx... mr, mi e GL (%, JB), 

in M„ such that |det%| «= 1 for each i\ let An be the subgroup of elements 
m such that each mi is a positive multiple of the identity matrix. Then 
Mn is the direct product of Ml

n and An. If K„ = M„nK, we can define 
a convolution algebra Ji?Kn °* functions on JKJ exactly as above. Eisen
stein series are associated to eigenfunctions of &fK in I?[Tc\M^M}n\K^. 
Suppose that cj> is such an eigenfunction. Set 

A.(<») = <M™)> 
for any element 

x = monk, m e ilf *, a e A n) n eNm IceK. 

If % belongs to ct*®C, the space of complex linear functions on ct„, the 
Eisenstein series is defined by 

JS7(ff, 0, A) = JT (j>n{ôœ)e«+^H^\ 
ôeT(\P„\r 
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where Q„ is the linear functional which maps any vector u = (%,..., ur) 
in a„ to the dot product 

( n—1 n — 3 n — 3 n —1\ 

9 9 ###? ? J• [uv ..., %,. . . , ^y , . . . , ur). 
ni nr 

The Eisenstein series actually converges only for certain A, but Lang-
lands shows that it can be analytically continued to all A as a meromor-
phic function which has no poles when A is purely imaginary. There is 
a functional equation which relates E (a?, 0, A) to the Eisenstein series 
in which the co-ordinates of A are permuted by an element w in S{n] (the 
symmetric group on \ut\ letters). For. then 

wut = {nw{1), ...,nw{r)) 

is another partition to which one can associate an eigenfunction wcj) and 
a linear functional wX. One can choose an orthonormal basis âiïn of the 
subspace of ^(rnM^M^IEJ spanned by the eigenfunctions such 
that wàìn = âSwn for each w, and on which the functional equations are 
especially simple. For any <£ e âSn the functional equation is just 

B(œ9 $, A) = m[w, $, A)JE7(#, wfa wX), 

with m(w, 0, A) a meromorphic function of A. When A is purely imagin
ary, m(w, <j>, A) has absolute value 1. It can be decomposed <* 

m{w, 4>,X) =* [J m^{Xi- Xj), 

where A == (Ax, ..., Ar) and m0(#) is a meromorphic function of one complex 
variable. m^{z) equals the classical function 

uër^m 
3+1 

f Xi - t - l . 

C(«+l) *-m* 
if ^ = yr0? but is obtained from a more general i-function for arbitrary ut. 
(See [10].) 

The importance of the function 25(-, <£, A) is, of course, that it is an eigen
function of J4?K. Indeed, it is not difficult to see from the definition that 
for any / e ^?K) 

i2(/)S(.,^,A)=JB(.,i2„(/M)^,A), 

\ 



The Trace Formula for Noncompact Quotient 855 

where B„ denotes the action of 3fK on L2{rc\Mn\M
l
njKn)} and 

/M(m) « J Jf(man)ea+e^H«{a))dadn, m e Ifi. 

For each A, jf-*/*,* is in fact a homomorphism from f̂K to JfK . We are 
assuming that <£ is an eigenfunction of #?# ; that is, 

for a complex valued homomorphism 7̂  of e^^ . It follows that 

is a complex valued homomorphism of JfK} and 

J B ( / ) ^ ( . , ^ , A ) = V ( / ) ^ ( ^ , A ) . 

If ut — (w), JB( •, (j), A) is just 0, which by assumption is square integrable. 
However it ut ̂  (n), JE7(-, 0, A) will not be square integrable, and so will 
not lie in the discrete spectrum, Suppose that 

w' = ( < , . . . , % ) 

is another partition of n9 which equals wut for some permutation w. Then 
if A is purely imaginary and <j> e BSn there is an asymptotic formula 

eM»*'W>j0(0, 0, A) ~ ^ 9»(«o9 <£, X)>{w<j>)n,(a})em*H"'{x)) 

as a? approaches infinity in the direction of uv\ Since the function on the 
right is oscillatory and not square integrable in this direction, JEJ( •, <j>, X) 
cannot be square integrable, Incidentally, from this we recognize the 
functions {m(w,0,A)} as higher dimensional analogues of the classical 
scattering matrix. 

5. Langlands shows that as n9 <j) e SSn and A e iat vary, the Eisenstein series 
exhaust the spectrum. This gives a second formula 

n 

for the kernel K(oo, y). (It is convenient to take dX to be the measure on 
ial which is dual to the Lebesgue measure associated to the basis 

(1, - 1 ; 0 , . . . , 0 ) , , . . , ( 0 , , . . , 0 , 1 , - 1 ) 

2 i— proceedings,.., t. II 
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of an.) The summand with ut = (n) is just the kernel of the restriction 
of B(f) to the discrete spectrum. 

We have already discussed how to truncate K(a>,y) so that it can be inte
grated over the diagonal. The main result of [2] is that the second formula 
may be truncated in an apparently different way, more suitable to cal
culation, without changing the integral. The resulting integral is there
fore a polynomial in the variable T of truncation. From its value at T = 0 
we would hope to extract the trace of B(f) on the discrete spectrum toge
ther with some terms. The answer turns out to be simpler than one has a 
right to expect. We will do no more than quote it. 

Consider a partition 

ut = (%,. . . , nr) 

of n. Let A be a fixed point in ia* and let 

I = ( & , . . . , £ ) , ftetB, 

be a variable point in ia*. (The co-ordinates Si of £ are uniquely deter
mined modulo diagonal vectors ( | 0 , . . . , |0).) Suppose for the moment 
that $ is any vector in 0$n. I t is a simple exercise to show th at 

v 
>ri m(w, <j), X)~~lm(w9 <j), A + | ) 

j ~ * ( %w(l) — £tü(2)) • • • ( £«;(»--l) ~" $w(r)) 

is a regular function of | e ia*n —despite the apparent singularities from the 
denominator. Let ^„(<£, A) be its value at £ = 0. I t is an interesting ratio
nal expression in the functions m(w9<j), A) and their derivatives, which re
duces to a logarithmic derivative if r = 2. More generally, suppose that 
utt is a partition of n which is finer than ut. Then ia* is naturally embed
ded in ia*x and Sr = S{nl represents certain cosets in S{„, modulo the 
subgroup of permutations in 8„ which leave ia* pointwise fixed. Conse
quently, the expression above makes sense if <£ is taken to be a vector 
in &„ . I t too is regular in £ e ia*, so we continue to denote its value at 
£ = 0 by /Lin{<fi, A). Given utl9 let @ni{ut) be the set of vectors $ in âl such 
that W(j) = <j) for each w in the subgroup of Ä,^, which leaves ia*, pointwise 
fixed. For this set to be nonempty, utx must necessarily be of the form 

( n± n± nr nr\ 

where each dt is a divisor of n^ 
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The formula for the integral of the second truncated kernel (at T = 0) 
ends up being 

with the numbers r9dl9 ...9dr related to ut and utx as above. (This formula 
is a special case of the main result, Theorem 8.2, of [4].) Actually, the 
terms must be grouped in a certain way to ensure convergence. This is 
because one does not know that JR[f) is of trace class on the discrete 
spectrum. Suppose for siuiplioity that the complication is not present. 
If utx equals (n) so does ut9 and the corresponding term is just the trace of 
JB(/) on the discrete spectrum. Our final formula then expresses this 
trace as 

oed) **!,?*,* ia* 

where the sum is over partitions utx and ut with utx ^ (n), and vectors 
4> e 8„ (n)* We reiterate that the only terms left over from the case of 
compact quotient correspond to classes o which meet no proper parabolic 
subgroup. All the other terms are peculiar to the noncompact setting. 

In general, though, we do not know that E(f) has a trace on the dis
crete spectrum. The most that can be said at present is that JB(/) is of 
trace class on the space of cusp forms, a subspace of the discrete spectrum.^ 
Grouping the terms slightly differently will then give a formula for the 
trace of JB(/) on the cusp forms. 

6. The main applications of the trace formula are actually to be found 
in a more general situation. We change notation slightly, writing Kn for 
SO(M, B) and G(R) for SL(n, B), with G now standing for the algebraic 
group SL(w). The adèle group G (A) is defined as the group of elements 

(flto? 02? 03? •••? g#) •••)? 

with gR e G(R) and gp e G{QP) for every prime number p, so that gp actual
ly belongs to the compact group Kp — G(ZP) for almost all p. It is a lo
cally compact group in which G(Q) embeds diagonally as a discrete sub
group. It is not hard to show that natural embedding of G(R) into G{A) 
induces a diffeomorphism 

G(Z)\G(R)IKR ^U G(Q)\G(A)/K, 
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where 

K = Kn x JT2 x Ez x . . . x Kp x . . . 

The algebra JtfKRj w k 0 se action on L2(G{Z)\G{R)/EB) we have been 
looking at, is now seen to be part of a larger algebra. Let JPK be the space 
of smooth, compactly supported functions on G (A) which are left and right 
E invariant. I t is also a commutative algebra under convolution. I t acts 
on the space L2[G(Q)\G{A)IE) (and hence also on L2(G{Z)\G(R)IER) 
and on L2(X)). Thus, by introducing the adèles, we can see that the spec
tral decomposition of L2{X) comes with some rich extra structure that 
is not apparent at first glance. Everything we have discussed above ex
tends and we obtain a trace formula for any function in £?K. ÎTote that 
an eigenvalue of 3tfK will be a formal product 

ft == JiR • Ji2. Ji3... Jip . . . 

of homomorphisms. I t is the relationship of these local homomorphisms 
with each other that is expected to carry the interesting number theoretic 
information. 

More generally, there is no reason to ask that functions be invariant 
under E. The associated convolution algebra will no longer be abelian, 
but that does not matter. Mor does G have to be SL(w). I t can be any 
reductive algebraic group over Q. With arguments that follow the general 
pattern outlined above one can establish a trace formula for any operator 
JS(/) on L2(G(Q)\G(A)), w i t h / a smooth, compactly supported functioji 
on G (A). For more details, we refer the reader to the survey article [5]. 
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P. G. HCMAIMJIOB 

BecKOHe^HOMepiibie r p y n n t i H H X 

npeflCTaBJieiiHü 

MBI H3;JIO>KHM neKOTophie pe3yjiBTaTBi nocjie^nnx JICT O npe#cTaBjieiiHHX 
„ôOJIBUIHX" rpynn, KpaTKo nepenncjinM TCMBI, KOTOpHx KocuëMCH irnme. 

B § 1 paccMaTpHBaeTcn rpynna D°(X) — CBnsnan KOMnoneiiTa eflHHH-
IJBI B rpynne Bcex HH$$eoMop$H3MOB raa;n;Koro Miioroo6pa3HH X, TOHì-

p;ecTBeHiii>ix BHe KOMnairra (ecjiH X ne KOMnamiio). flaëTca onncanne 
Bcex yHHTapHLix HenpiiBo^HMBix npeACTaBjieiiHH, orpanHHeiine KOTopBix na 
noRrpynny p;n$$eoMop$H3MOB, cocpefloTOHemiBix B $HKCHpoBaimoft KO-
OpRHIiaTHOS OKpeCTHOCTH, HMeeT OTJIHHIIBIÜ OT Hyjlfl HHBapHaHTHHH BeK-
Top B npocTpaHCTBe npeftCTaBJieHHH. 3aTeM paccnaTpHBaeTca ' rpynna 
DQ(X9 con) — cBH3Han KOMnoiieHTa e^Hniii^u B rpynne Rii$$eoMop$H3MOB 
c KOHnaKTHHM HocHTejieM, coxpaiifliomnx $opMy oôxëMa œn. HaKoneij, 
B § 1 pa3ÔHpaeTCH saßana 06 HHjjyKTHBHOM npep;ejie ceMeftCTBa rpynn 
D°(U9 a)n)9 U c X9 U ~Rn (oneBHflHHM o6pa30M BJIOJKCHBIX B D°(X9 co11)) 
oTHocHTejibHO BJIOJKCHHH JD°(U9 co>1)-^DQ(V9 co11) npH TJ c V. PeuieHHe 
3Tofi samara npHBo^HT K HHTepccnoMj^ ijeHTpajiBHOMy pacunipenHio rpynnt i 
D°°(X9 COn)9 nOpOĤ AÖHHOH flH(|)$eOMOp(J)H3MaMH C MaJIBIMH HOCHTeJIHMH. 

B §2 MM oTjjejibHo paccMOTpHM rpynny D^/S1). Ona HMeeT npe;o;cTaB-
jienHH, ne oXBaTBiBaeMBie KoncTpyKnneH H3 § 1. KpoMe Toro, ona HMeeT 
npoeKTHBHhie npe^cTaBjienHH; nocjieaiiHe nocTpoeiiH V. CnrajioM nyTëM 
BJiomeniiH B öecKoiieniioMepHyio CHMnjieKTHvecKyio rpynny ; MBI npHBo-
RHM pe3yjiBTaTH? pa3BHBaiomHe 9Ty TeMy, B nacTHocTH, He^aBiiHe pe3yjn>-
TaTM K). A. Hcperana . 

B § 3 H3yqaioTCH npe«cTaBjieHHH rpynnBi raaflKHX oToßpameiiHß 
MHoroo6pa3HH B KOMnaKTiiyio rpynny J I H . 

§ 4' nocBHmën ßecKOHeMiioMepiiLiiM aHaaioraM KJiaccii^ecKHx MeTpHH-
HBIX rpynn. MBI npHBeftëM neKOTopBie pe3yjiBTaTBi I \ H. OjiBinaHCKoro, 
coftepmamne, B HacTHocra, onncanne oouinpnoro KJiacca 6ecKOHe*mo-
MepiiBix rpynn rana I H KOHCTpynijHio HX npeRCTaBjienHA. 

HaKoneij, § 5 nocBHmëH Bnojine HCCBHSHBIM „GOJIBUIHM" rpynnaM. 

[861] 
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3aecB npHBOßHTCH onncaHHe c$epH*iecKHX npejjCTaBjieHHË rpynnBi SL2(JKT) 
OTHOCHTejIBHO SL 2 (ÜL 0 ) ,

 r ß e E — nOJie C HeTpHBHajIBHBIM HeapXHMeHOBBIM 
HopMHpoBaHHeM, E0 — KOJiBijo nejiBix 3jieMeHTOB, npHHëM nojie BBITOTOB 

EQIEX ôecKOHe^HO (3Aect Ex — MaKCHMajiBHBifi Hjjeaji B E Q ) . PaccMaTpn-
BaioTCH TaKîKe rpynnBi aBTOMOp$H3MOB nepeBBeB, B BepniHHax KOTopBix 
CXOJJHTCH 6ecKOHerao MHoro pë6ep. 

§1. IIpeACTaBjiennfl rpynn AHfj>c[>eoMopci>H3MOB 

1. npeACTaBJiemifl rpynnBi D°(X). IlycTB X — CBH3Hoe (7°°-MHoroo6pa3Hey 
d i m X =n< oo. fljia jiioSoro npeo6pa30BaHHH x->x-g9 xeX, Ha30BëM 
ero HOCHTejieM MHOJKCCTBO snppgr = {x: co ^x-g}. Hepe3 D°(X) o6o3Ha-
HHM rpynny Bcex jo;H(|)$eoMop$H3MOB Kjiacca (7°°, ïïJIH KOTOpHX cymecT-
ByeT TaKoe ceMeôcTBo gi9 HenpepBiBHo 3aBHcamee OT tfe[0,l], HTO 
g0 =g,gx = ö(3p;ecB e— TOjKuecTBeHHBiiî HH$(|)eoMop$H3M) H MHOJKCCTBO 
U s u p p ^ cojjepHŒTca B KOMnaKTe. fljia jiioöoro OTKpBiToro V c X, rpynna 

t 

D°(U) BjiOHtenaB D°(X) (3JieMeHTBi H3 DQ(U) npoAOjijKaioTca Ha X TOJK-
HecTBeHHo). PaccMaTpHBaioTca HenpHBOßHMBie yHHTapHBie npeACTaBjienHH 
g->T(g)9 ~geD°(X), ynoBJieTBopnioinHe cjieayiomeMy ycjioBHio: 

(E) fl(/iR ueKomopoeo if c X9 U ~ Rn
9 oepanunenue npedcmaejieHun na 

nodzpgnny D°(U,con) codepoteum ueuyjieeou uueapuanmubiü eenmop. 

YKaîKeM KOHCTpyKHHio TaKHX npencTaBJienHË ; Ham OCHOBHOH pe3yjiB-
TaT COCTOHT B TOM, HTo 3Ta KOHCTpyKHHH coaepjKHT B ce6e onncaHHe 
Bcex npencTaBjieHHH co CBOHCTBOM (E) (CM. O6 3TOM HHJKC). 

IlycTB Ü — MHOJKeCTBO BCeX 3aMKHyTBIX nOAMHOÎKeCTB co cz X. RttH 
Kamaoro 3aMKHyToro F cz X nojioJKHM QF = {co: œ cz F}; nepe3 BQ 

o6o3HaHHM c-ajireöpy no;n;MH05KecTB H3 Q9 nopoHî«ëHHyio BCCMH QF. 
Tpynna D°(X) ßeECTByeT Ha JBß. IlycTB p — HeKOTopaa Mepa Ha BQj 

KBa3HHHBapHaHTHaa OTHOCHTejIBHO 3TOrO KCHCTBHH. npeAnOJIOH^HM, HTO 
Jf{X) HencTByeT Ha Bn aprojpraHO, p{AAA-g)->Q npn g->e «JIH jiioöoro 
A cz Q (3HecB A — 3Han CHMeTpipmofi pa3H0CTH), / \dfjfl(co>g)ldfi--l\d/j,->0 
npn g->e. a 

IlycTB, najiee, H0 — ^HKCHpoBamioe rnjiBÔepTOBo npocTpaHCTBo, 
U{HQ) — rpynna ero yHHTapHBix onepaTopos co cjiaöoö Tonojiorueö. 
IlycTB AJIH KaîK^oro geD°(X) 3as;aHa $yHKijHH a(g7co), co e QmodO 
( ßmodO 03HaHaeT MHOJKCCTBO Q C BBlßpOHieHHBIM nORMHOJKCCTBOM 
fj, — MepBi HyjiB) co 3Ha^eHHflMH B U(hQ), ynoBJieTBopaiomaa cjiejiyiomHM 
ycjioBHHM: 1) a(gxg2, co) = a(g19 co)a(g29 co'gx), co G ûmodO JJJIH JIIOöBIX 

gl9 g2 H3 D°(X); 2) a(g, co) =E9 co e fl^modO npn geDQ(X\F); 3) mo-
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6aa H3MepHMaa Z7(IT0)-3HaraaH $yHKijHH b(co)9 co e Q9 y^oBJieTBopaiomaa 
RjiH KôJKHoro g e D°(X)yCJIOBHIO&(COtg)a(g9co) — a(g7 co)b(co)9 co e ßmodO, 
HMeeT BHR b(co) = XF7 co e ßniodO, rße X G C7 E — eftHHHHHBiH onepaTop. 
TenepB cTpoHM npejjCTaBjienHe. OHO meËCTByeT B npocTpaHCTBe Ho-SHaH-
HBIX Bei^Top-^yHKDiHË L2(Q9E0) no ^opMyaie 

fljia JiioSoro aaMKHyToro F cz X o6o3HaHHM Hepe3 D°(X\F) nop;-, 
rpynny Tex g9 KOTopBie MOHCHO COCRHHHTB e e KPHBOìI gi9 rjje Bce g( TOJK-

fteCTBeHHBI B OKpeCTHOCTH F. 

TEOPEMA 1 [8]. npedcmaejienue (1) nenpueoduMO u ydoejiemeoprnm 
ycjioewo (E), fljia AIOöOZO saMKHymozo F cz X nodnpocmpaHcmeo eeKmopoe, 
HenodeuofCHbix omnocumcjibuo D°(X\F)9 coenadaem e EF — {fi f(co) *= 0, 
co e i ^ m o d O } . 

Cjießyiomaa TeopeMa coRepWHT OCHOBIIOë pe3yjiBTaT. 

TEOPEMA 2 [8]. Kawcdoe yuumapnoe nenpueoduMoe npedcmae/icHiie 
co ceoücmeoM (TS) yuumapno dKGwa.MHm.Ho npedcmaeAeuwo (1), Mepa p 
onpedejisiemcu npedcmaeJieHueM e mounocmbio do dmuecuieumHocmu, a tßyn-
ntiUR a(g9 co) — e moHHoembw do aaMtnu Ha b(co)a(g9 co)b*(co9- g)9 r^e b: Q-> 
*->U(H0) — u3MepuMoe omoopaoicenue. 

HTaK, onncaiiHe npeflCTaBJieHHH cBejiocB K Mepe fi H KoijHKaiy a(g9 co)9 

yHOBjieTBopaioiUHM nepe^ncjieHHBiM ycjioBHaM. Han6oJiee npocTofi npn-
Mep TaKOB: [i — öTO ecTeoTBemiaa Mepa uà MHomecTBe Qn9 cocToameM 
H3 ^-Tone^iiBix noRMHOjKecTB co cz X9 Si KOIJHKJI nopoîKftëH nenpHBo-
EHMBIM yiiHTapHBiM npeftCTaBjieHHeM no^rpynnBi Stab(co0) ~{g: coQ-g = 
= co0}, TpHBHaaiBHBiM uà D0(X\co0) (npyrHMH cjioBaMH, HpejucTaBneHHe' 
3aBHCHT TojiBKo OT pocTKa BJieMenTa g eStab(û)0) B.TOHKe co0; BTHM oöecne-
^HBaeTca npiiBeflëiraoe BBinie ycjioBHe 2) uà KOIJHKJI a(g9 co)). COOTBCT-

cTByioiijee npe^CTaBuieiiHe rpynnBi D°(X) HHRyijHpoBano e Sta"b (co0). 
ÏIpHBenëM npHMep MepBi, cocpeftOTOHeHHoft Ha MiiowecTBe noftMiio-

H êcTB e ejnHHCTBenHoft npeïïenBHoiï TOHKOë; JJJIH ynpomeiiHa orpaiiH-
HHMca cjiynaeM X *= 81. IlycTB 81 peajiH30BaHa B BHJIìC B / Z ; nepea \x\ 
o6o3naHHM ßjiHJKaöniee paccToanne OT X G 81 fto u,ejiofi TOHKH. BO3BMöM 

nocjiepiOBaTejiBHOCTB He3aBHCHMBix cjiynafiHBix TOTCK ook G /S1, ïc «= 1 , 2 , . . . 7 

pacnpefteJiëHHBix c HJIOTHOCTBIO px(œ) s= 1, ph(x) = dk\<D\ô*~1
9 Je = 2 , 3 , . . . , 

rjje ôk> 0 H £ök< oo. ITOJIOîKHM ylc = œx+ . . . +œk. H a MHoa^ecTBe ï" 

http://dKGwa.MHm.Ho
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Bcex nocjieAOBaTenBHOCTeË y = (yXjy27...) B03HHKaeT BepoaTHocTHaa 
Mepa r. MkeeM oToÖpameHHe Y->ß, CTaBamee B cooTBeTCTBHe KaJKjjoä 
nocjießOBaTejiBHOcra y = (yX9y2, ...) MHOîKecTBo {yk} BXOJJHHJHX B Heë 
Tonen. 06pa3 MepBi T B û oöosHa^HM *iepe3 p. OKa3BmaeTca, Mepa fi KBa-
3HHHBapnaHTHa H aprojjHraa OTHOCHTCJIBHO B0(81). IIpeACTaBjieHHe 

T(g)f(co) = Vdv(co-g)läfA(co)f(co'9), feL2(Q) 

HenpHBojjHMo H oöjiajjaeT CBOëCTBOM (TS). 3ACCB MBI orpaHHrajiHCB Tpn-
BHâ iBHBiM KOIJHKJIOM. B cjiy^ae dimX > 1 HMCCTCH aHajioraHHaa, HO 

ropa3p;o ôojiee cjioamaa KOHcrpyKijHH MepBi ([8], [7]). 
AHajiorn TeopeM 1, 2 BepHBi H ;P;JIH HeKOMnaKTHoro X. B 3TOM cjiy^ae 

HMeeTca ôOJIBIHOë Kjiacc Mep na Bü7 cocpejjoTOHeiiHBix Ha 6ecKOHeraHX 
jioKajiBHo-KOHe^HBix KOH^nrypaimax H3 X. IIpHMepOM HBjiaeTca nyac-
coHOBCKaa Mepa AJia Rn\ oHa 3aMe*iaTejiBHa TeM, HTO pemaeT 3ajja*iy 
o npejjCTaBjieHHHX rpynnBi JD°(Rn)7 c^epnnecKHX OTHOCHTCJIBHO D°(Rn, con)9 

r^e con = dxxA . . . A dxn ([10]). 

2. lIpeACTaBJieHiiîi rpynrai JD°(X, con). IlycTB X KOMnaKTHO, con — $opMa 
o6i>ëMa Ha X, v — cooTBeTCTByiomaa Mepa Ha X. .Hua KaîKjjoro H3MepH-
Moro A cz X o6o3Ha*iHM nepe3 M(A7v) rpynny H3MepHMBix npeo6pa3o-
BaiiHË MHOMKecTBa A, coxpanaioiimx Mepy w; na X\A npeo6pa30BaHHa 
npoAOJiJKaioTca TOJK êcTBeHHo. Ha M (A, v) paccMaTpnBaeTca cjiaôaa cxo-
HHMOCTB: gk->g (cjiaßo), ecjiH v(BAB*gk)-*0 HJIH jiroôoro H3MepHMoro B. 
npeacTaBjieHHe g->T(g)7 geD°(X7 con)7 Ha30BëM jioKajiBHo-cjiaôo Henpe-
pBiBHBiM, ecjiH ero orpaHH^eHHe Ha noarpynny BHua B°(U9con)7 rse 
JJ cz X9 U ~ Rn

7 HenpepBiBHo B CMHCJie cjiaßoE CXOHHMOCTH (H, cjieao-
BaTejiBHo, npoffoJiHîaeTca JJO npeacTaBjieHHa rpynnBi M(U7v)). IJejiB 
3Toro nyHKTa — onncaHHe TaKHX npeRCTaBjieHHË. JĴ JIH 9Toro noHaaoÔHTCH 
Bjio>KeHHe i: D°(X7 con)->G7 KOTopoe MBI oroinieM. 

riycTB p: X->X — yHHBepcajiBHoe HaKpBiTHe, JH — rpynna HaKpBi-
Baiomnx npeo6pa30BaHHH, JD° — cBH3Haa KOMnoHeHTa ejjHHHijBi B rpynne 
Bcex jj;H$$eoMop$H3MOB MHorooßpasHa X7 nepecTaHOBOMHBix e J1 H COX-
paHHioiiiHx $opMy p*(con)7Z =jb°nr. IlycTB, jjajiee, H — rpynna BCCX 

npeo6pa30BaHHË x-^x-a, x e X, coxpaHaiomnx Mepy p*(v)7 npecTaHO-
BO^HIBIX C r H yjuOBjieTBopaiomnx ycjioBHio snppd(5,£*ff)< oo, rp;e 
d (x} y) — paccToaHHe Ha X7 nopoìKEaioiijee ero TonoJiornio. IïOJIOîKHM 

G = ZjZ. HMeeM OHeBHjmoe Bjioaœmie i: D°(X7 con)->G. HerpyjjHo npo-
BepHTB, HTo G H30Mop$Ha (He KaHOHH êcKH) nojiynpaMOMy npoH3Be-
jjeHHio M(X7v)-IIx

7 rjje JJ — (JjyHjjaMeHTajiBHaa rpynna MHoroo6pa3Ha 
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X9 IJX — rpynna H3MepHMBix ^yiinmiË / : X->IT c KOHCHHBIM IIHCJIOM 

3HaHeHHE (KaK OôBIHHO, MiioîKecTpaMH MepBi nyjiB npeneÖperaeM). H a 
IIX BBO^HTca cjia6aa CXO^HMOCTB. 

fljia Jiioßoro npeACTaBJieiiHa cr->T(c)9 a G Sy npeacTaBjienne g->(Toi)(g)9 

g G D°(X9 con)7 oHeBHjüHBiM o6pa30M JioKajiBiio-cjiaÔo nenpepBiBiio. HeTpH-
BHajiBHBiË $airr cocTOHT B TOM, HTo HpH d i r o . X > 5 Bepuo H oßparaoe; 
Tonnée, cnpaBe^JiHBa cjie^yiomaa TeopeMa. 

TEOPEMA 3 [12]. ECJIU d i n i X ^ Ö , mo jiioóoe jiom/ibHo-cjiaôo nenpe-
pbieiwe npedcmae/ieme zpynnu JD°(X7 con) npedcmaeuMO e eude g~>(Toi) (g)9 

zde cr-*T(o) npedcmae/ienue zpynnu G. 

OmiineM HiiTepeciiBiË KJiacc jioKajiBiio-cjiaôo nenpepBiBiiBix npea-
cTaBjieiiHË, HyMepyeMBix iienyjieBBiMH 3JieMeiiTaMH npocTpancTBa Hl(X7R)9 

([12]). OßosiiaHHM nepe3 Q ecTecTBenHoe npe^CTaBjieHiie rpynnBi B°(X7con) 
B npocTpancTBe L\ *= (feZz(X9v)9 jfdv ~ 0}. IlycTB asE1(X9R)9 

a T£ 0? a — cooTBeTCTByioiE[aa 3aMKiiyTaa l-$opMa. fljia Jiioôoro g e 
G D°(X9 co11) $opMa a —g-a Torna, TaK HTO a —g-a = d<pg\ MOJKHO cmiTaTB, 
HTo f<pgdv ^=0. Hciio, HTO (pgjff2 = <pgi+Q(gi)<Pg2. HMea npe^CTaBjieHHe Q 
H 1-KOUHKJI cpg9 CTpOHM OÔBPIHBIM CnOCo60M npeftCTaBJieHIie B $OKOBCKOM 
npocTpancTBe E x p i ^ no $opMyjie 

Ta(g)exj*f - ^ ( e W ^ - ^ ' 2 / 2 e x p ( e ( ^ ) / + ^ ) . 

IIpe;n;cTaBjieHHe Ta nenpHBOAHMo npn O ^ O J ^ N ^ JIHIHB npn a = ß 
JIH6O a = — ß. OHO JioKajiBiio-cjia6o nenpepBiBHo; ecjin U cz X7 U c±Rn

9 

v(XW) «= 0, TO ero orpanxraeiiHe na D°(U7 con) pa3jiaraeTca no <J)opMyjie 
Q°@Q1® . . . j rße Q1C 03naHacT cHMMeTpHSOBaHiiyio 7c~yio CTeneiiB npejucTaB-
jieiiiia Q. rioBHAHMOMy, Jiioôoe npe;n;cTaBJieHHe c nocjiefliiHM CBOëCTBOM 

aKBHBajieiiTHo oftiioMy H3 Ta. 

3adaw 06 undynmueHOM npedejie ceMeiicmea JD°(U7con). HanoMiiHM 
oßmee onpeftejieiiHe (CM. [24.]). IlycTB Ran nafîop rpynn {Gt} H ;P;JIH neKo-
TopBix t7 s Eau roMOMop<j)H3M Fsi: Gt->GS9 npHHëM FsuoFis = Fiu7 ecjin 
onpeftejieiiBi Fsu9 Fts. HHWJ^KTHBHBIë npeReji ceMeöcTBa {Gt} COCTOHT H3 
rpynnw G H TOMOMOP$H3MOB fs: GS->G9 yAOBJieTBOpaiomnx ycjioBHHM 
1) fs =ftoF8i9 ecjiu onpeftejiën Fsi) 2) ecJiH rpynna G' H roM0Mop$H3MBi 
ft yp;oBJieTBopaioT anajionraiBiM ycjioBHHM, TO f't = pofi7 r^e p: G->G' — 
rOMOMOp$H3M. 

PaccMOTpHM ceMeflcTBo rpynn D°(U7con)9 V cz X7 U c^Rn. HMeeM 
oneBHßHoc Bjioweiine D°(TJ7 con)->D*(V9 con) npn U cz F . Hama ijejiB — 
onucaTB HHfliyKTHBHBiË npe;n;eji aToro CeMCËCTBa. 
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PeuieHiie 3T0Ë sana^H npHBORHT K HOBOë oecKOHê HOMepHoË rpynne 
F(X7 con)7 HBjiaiomeHca neHTpajiBHBiM paciHHpeHHeM rpynnBi D00(X7 con)9 

nopojKAëHHoË BceMH D°(U7 co11). HaMeTHM eë nocTpoeHHe. 
IlycTB Ek npocTpaHCTBO BHCHIHHX Jfc-$opM, dk: Ek->Ek+1 — onepaTop 

AH^^epeimnpoBaHHa. 3a$HKcnpyeM Towy xQeX7 eë oKpecTHOCTH YQ c 
c Yx cz Y27 ji;H$$eoMop$HBie Rn

9 onepaTop I9 oöparaBifi cnpaßa K dn_2 

H yaoBjieTBopHiomHË ycjioBHio: supp 1(a) cz Y27 ecjiH snppa cz Yx. ,E(JIH 

KaîKftoro BjieMeiiTa g eDQ0(X7 con)7 6jiH3Koro K e, 3a$HKCHpyeM 3aMKHyTyio 
(w—l)-$opMy cog"1, coBnaaaiomyio c of1"1 — g • co71"1 B oKpecTHOCTH MHO-
mecTBB. X\Y07 r^e dcon~~l = con npn x ^=xQ. IIOJIOJKHM 

a(h7g) = (Ioh -ÄoI)con
g~l. 

JlerKO BH^eTB, HTO $opMa a(h7g) 3aMKHyTa. Hepes a(h9g) o6o3HairaM 
eë KJiacc KoroMOJiornË. CymecTByeT TaKaa oKpecTHOCTB ejjHHHijBi V c 
czB00(X7con), qTo €ù(gxg27g3) + a(g17g2) = a(gX9 g2g3) + a(g27 gz) AJIH 

Bcex gX9g29g* H3 V. MBI nojiyrajra jioKajiBHBiË 2-KOIJHKJI Ha co 3Ba*ie-
HHHMH B Hn~2(X7R). ITOJIOJKHM L = Hn~2(X, B)l%[En~2(X7 Z))9 r«e 
roMOMOp$H3M i nopoîKKëH BjioîKeHHeM Z->R. Eta $yHKnHH a(h7g) MBI 
nojiy^iaeM 2-KOIJHKJI à(h7g) co 3HaHeHHHMH B L. MHOJKCCTBO V xL npe-
BpamaeTca B jionajiBHyio rpynny c onepaijHeË (g17 lx) (g2712) — (gxg29 

lx + l2 + à(g17 g2)). OHSL jjonycKaeT npoftojiaceHHe ao neiiTpajiBHoro pac-
HIHpeHHH 

0->L->F0(X9 con)->BQ0(X7 con)-+07 

TpHBHajiBHoro lias KaHînoË noßrpynnoE BHAa B°(U7 con)9 U a^Rn. Hano-
Hen, B03BMëM HanoojiBHiyio cBa3iiyio rpynny E(X, con)7 HaKpBiBaiomyio 
rpynny FQ(X7con) H TaKyio ^TO Has KaîK^oË noarpynnoË B°(U7con), 
JJ ~ B % cooTBeTCTByiomee pacniHpemïe TpHBHajiBHo. rpynna E(X9con) 
H eCTB HCKOMBIË HHflyKTHBHBIH npeftejl CeMeËCTBa {B°(U7 CO71)} OTHOCH
TejIBHO BJiOHîeHHË B°(U9 con)->B°(V9 con)7 (JJ cz V) ([13]). 

npeacTaBjiaeT HHTepec aHajiorn^Haa satana jjjia apyrnx rpynn HH$-
$eoMop$H3MOB (HanpHMep, JJJIH rpynnBi aBTOMop$H3MOB ciiMnjieKTH-
necKoro MHoroo6pa3na). 

§ 2. Upe/jcTaBjieHHH rpynnbi J)°(81) 

ByayT paccMOTpeHBi npeacTaBjieHHa, He oßjiajjaiomHe CBOëCTBOM (TS)9 

a TaKwe npoeKTHBHBie npeACTaBJieHna. 
IlycTB H — BemecTBeHHoe rnjiBÖepTOBo npocTpaHCTBO ; qepe3 GIiQ(H) 

oßosHa^HM rpynny Bcex onepaTopoB BHRa TJ+T, TJJ& JJ opTorpHajien, 
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a T — onepaTop rHJiBÖepTa-HlMHftTa. JSjrn KOMnjieKCHoro nijiBÔepTOBa 
npocTpancTBa E o6o3HaHHM nepe3 Sp0(^) rpynny oneparropoB, coxpana-
IOIUHX $opMy Im( , ) H npeRCTaBHMBix B BHße U+X7 rße XJ yiiHTapen, 
T — rHïïbOepTa-IÏÏMHRTa. AnajiorHHiio, HO c 3aMeH0Ë Im( , ) na E e ( , ), 
onpeßejiaeTca rpynna O0(E). HanoMiniM H3BecTiiBie npeßCTaBjieiiHa arax 
rpynn. 

Tpynna QIi0(H) ftencTByeT B a^epuoM paciHHpeHHH H' :=> H npeoô-
pa30BaiiHHMH, coxpaHHion̂ HMH ecTecTBeimyio rayccoBy Mepy p. 3TO 
no3BOJiaeT nocTpoHTB npejjcTaBJieHHa B npocTpaHCTBe L2(H'7fi) no $op-
Myjie/(co)->(^(0>. f lr)/^(a>))1/2^s(o)-âr). 

Tpynna Sp0(^) HMeeT npoeKTHBiioe npeRCTaBJieiiHe B npocTpaHCTBe 
8(E) — nonojiHeHHH cHMMeTpHHecKoË ajireôpBi 8(E) no ecTecTBennoE 
rnjiBÔepTOBoË nopMe. AHajiorHHiio, rpynna 0Q(E) HMeeT npoeKTHBiioe 
npejjcTaBJieHHe B A(E) — nonojiHeHHH BHeiuiien ajireöpBi na« E. BTH 
npeftCTaBjieiiHH xoponio H3BCCTHBI H3 Teopnn BTopnraoro KBaHTOBaiiHH 
(CM., HanpHMep, [1]). 

I \ Cnraji nocTpoiiJi Bjiowenne rpynnBi DQ(8l) B Sp0(jBT), HTO no3BojiHJio 
nocTpoHTB npoeKTHBHBie npe^CTaBJieHHa rpynnBi B°(81). IO. A. Heperan 
yKa3aji ne^aBiio cepHio BJIOJKCHHH rpynnBi B°(8X) B QJJ0(H) H Hccjie;n;oBaji 
cooTBeTCTByioimie npeRCTaBjienna ([16]). OnnmeM KpaTKO 3TH pe3yjiB-
TaTBi. B BemecTBeimoM npocTpaHCTBe 00O(81) (8l peajiH3yeM B BURe RßizZ) 
BBeftëM $opMy 

2TC 2" I / _ ß \ -* 
fx(a)f2(ß)daäß, 

r#e 0 < 4 < 2, X 7^1 (npn X > 1 Hnrerpaji onpeaejiaeTca nocpe«CTBOM 
anajiHTiraecKoro npoaojuneHHa). IlycTB Sx — nonomieHHe 0°°(8l) no 
HopMe V(f9f}^. Tpynna B°(81) fteËCTByeT B Hà no $opMyjie Tk(g)f(a) = 
*=f(a-g)(d(a'g)lday-W2l 

TEOPEMA 1 (10. A. HepeTHii [16]). Onepamop Tx(g) npimadjiewmm 
GcL0(HA) dan Jiioöozo g. 

HcnoJiB3ya npeßBißynjyio KoiicTpyKijHio, noJiynaeM cepnio ymiTap-
HBix npeacTaBjieHHö rpynnBi B°(8J) B npocTpaHCTBe L%ÇEL'X9 ft)9 E\ ZD JBTA. 
OHO HMeeT ;a;Ba oneBHßHBix HHBapHaimiBix no^npocTpaiicTBa, cooTBeTCTBy-
lou^He TOTHBIM H neTOTHBiM (JiyHKijHHM /(co), co G E[. OôosHaHHM nx (orpa-
HHHHBaacB cjiy^aeM s t= 0) *iepe3 Exp (2^)+ H E x p ( ^ ) _ . B [16] omican 
cneKTp HX orpanimeiiHË na no;n;rpynny PSL2(B). H3 3Toro onncanna 
oieayeT, »ITO 3TH npe^cTaBJieiiHH HMeioT HenpHBô HMBie KOMnoHeHTBi; 
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TaKOBa, HanpHMep, nnKJiH^ecKaa oöojio^na BaKyyMHoro BeKTopa 1 e 
E L2(IL'7 ft). HBJiaiOTCa JIB OHM HenpHBOJJHMBIMH, HeH3BeCTHO. 

n p n X = 0 aHajioroM $opMBi < , >A HBjiaeTca 

a-ß 
< / i , / i > o - / / l n sin- fi(a)Mß)dadß. 

B 3T0M cjiynae npeacTaBjieniie TQ HMeeT 1-KoijHKjr c(g7 a)= (a-g)'a— 1. 
KaTKjjBiË 1-KOIJHKJI t'c(g7 a) 3aj*aëT BjiojKeHne rpynnH B°(8X) B nojiynpa-
MoenpoH3BeAeHHe GL0(H"0)- JET0. IIocjieHHaa rpynna HeËerayeTB L2(H

f
0, fi); 

H0 ReËCTByeT B E0 cftBiiraMH. B HTore nojiy^aeM HOBoe CCMCëCTBO npeji;-
CTaBjieHHË rpynnBi B°(81). 

CooTBeTCTByioniaa MO«H^HKaEtna KOHCTpyKijHH K). A. HepeTHiia no3BO-
jiaeT TamKe BJIOJKHTB B°(81) B Sp0(if) H O0(E). 

§ 3. npe^cTaBJieHHA rpynn oToopaHceimn B rpynny Jin 

IlycTB E — rnjiBöepTOBo npocTpaHCTBO (KOMnjieKCHoe JIHSO BeinecT-
BeHHoe), A(E) — rpynna Bcex ero EBHmeHHË, T.e. npeo6pa30BaHHË 
BHfl;a x->Ux + h7 TRe U — ymiTapiiBiË oneparap, heE. OnpejjejiHM 
B npocTpaHCTBe ExpJBT onepaTopBi B(U7Ji) $opMyjioË 

exp^-^e - ( ^ 7 ^- , Ä , 2 / 2 exp {Uœ + h). 

OHH o6pa3yiOT yHHTapnoe npejjcTaBjieHHe rpynnBi A(E)7 ecjin E Beme-
CTBeHHo, H npoeKTHBHoe npeacTaBjieHHe JJJIH KOMnjieKCHoro E. ECJIH 
TenepB G — HeKOTOpaa rpynna, g->V(g)7 g G§7 eë npejuCTaBJiemie B E, 
yi(g) — KOIJHKJI} TO HMeeM roMOMop$H3M G->A(E)7 3a;n;aHHBiH ^opMyjion 
i(g)x = V(g)oo+y)(g), H, TeM caMBiM, npejjCTaBjieHHe g-^(Boi) (g)7 g eG. 

B paöoTe ApaKH [26] 3THM MeToftOM 6BIJIH nocTpoeHBi „$aKTopn-
3yeMBie" npeßCTaBjieHHH rpynnBi G H3MepHMBix oToôpaaîeHHË npocTpaH-
CTBa c X c MepoË [i B r p y n n y JTH G. OHH 3aRaiOTca H3MepHMHM ceMeË-
CTBOM npeacTaBjieHHË Vx(g)7 geG, fteËCTByioHjHX B rnjiBÔepTOBBix npo-
CTpaHCTBax Hx H KoijHKjiaMH y>x(g). B 3TOM cjiyqae E = f@Exd/A7 f(g) = 
= {Vx[g(x))}. 3TH npeacTaBJieHHa 6BDIH 3aTeM nojtpoßHo H3y*ieHBi B [2], 

[3 ] ; B âCTHOCTH, 6BIJIH paCCMOTpeHBI yCJIOBHH HX HenpHBOJJHMOCTH. 
B paöoTax [11], [27], [28] KOHCTpyKnna ApaKH ÔBijia BHROH3MeHeHa 

npHMeHHTejiBHO K rpynne G™(X9 U) rnajjKHx oTOÔpameHHË MHorooß-
pa3Ha X B KOMnaKTHyio nojiynpocTyio rpynny U H , HMeionjHx KOMnaKT-
HBiH HocHTejiB. B 3T0M ejiy^iae E — 3T0 npocTpaHCTBO l-$opM Ha X co 
SHaneHHHMH B ajireöpe JTH L rpynnBi; cnanapHoe npoH3Be;n;eHHe B E 
3a«aëTca pHManoBOË MeTpimoE Ha X H HHBapnaHTHBiM cKajiapHBiM npoH3-
BeaeHHeM B L. C™(X7 U) jjeËcTByeT B E nocpeßCTBOM npHCoeaHHeiraoro 
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^eËcTBiia V B Z. HaKoneij, KOIJHKJI 3a;uaëTCH $opMyjioË Rglodg9 rp;e 
Eg1 jieBBift c^BHr na g~\ 

HenpHBO^HMOCTB noJiyneiiHoro npeftCTaBjieiiHa ÔBijia H0Ka3aHa RUB 
d i i n Z > 5 B [11], RJia d i m X > 4 - B [27], «Jia dimX = 3 - B [25]. 
IIpH dimX 5= 1 OHO npHBojptMo. Cjiy^afi d i m . X = 2 pa3o6pan JIHHIB 

*iacTHTmo B [25] : p;oKa3ana nenpHBORHMocTB npn neKOTopoM orpaHimeHHH 
na pHManoBy MeTpuny. 

§ 4. npê CTaBJiemiH 6e3KoneHHoMepni>ix KJiaccnieckiix rpynn 

B nocjieanee BpeMa 6BIJIO o6napy>KeHo, *JTO pap; anajioroB KJiacciraecKHX 
rpynn (SecKonemioMepiiBix) ftonycKaeT saKOH^ennyio TeopHio npepcTaB-
jieiiHH. MBI H3JIOWHM neKOTopBie pe3yjiBTaTBi no 3TOH TeMarane, npinsaft-
jiemamne, raaBHBiM o6pa30M, T. H. OjiBinaHCKOMy ([17]-[23]). 

oo 

1. rpymiw paura 0. Pe^B HflëT o rpynnax SO(oo) = U^O(n) , U{°°) *= 
OO 00 91 = 1 

~{JU(n)7 Sp(oo)= I jSp (^ ) . B RajiBHeEineM OHH 6y;uyT HrpaTB Ty a*e 
w*=l n«=l 

pojiB, HTo KOMnaKTHBie rpynnBi B Tpa^nmioHHoE TeopHH. 
OrpaHHHHMca (c rcejiBio coKpaTHTB H3jioH^eiiHe) rpynnoö TJ(oo). Pac-. 

cMOTpHM eë npe^CTaBjieHHa, HenpepBiBHBie B paBiioMepuoË onepaTopuoË 
TonojioniH; OHH ftonycKaiOT npoflojnKeHne Ha rpynny yiiHTapHBix onepa-
TOpoB BKp;a FJ+T, v#e F — eßHinraiBiö, T - KOMnainmiË onepaTop. 
HMeeTca ecTecTBeHiiBiË na6op nenpHBo^HMBix npe;o;cTaBjieHHH, BO3HH-

KaioiB(HX H3 pa3JioH^eHHa w-oft Teii3opHoË CTeneiiH TOTKßecTBeHiioro npeft-
CTaBjieiiHa rpynnBi Ï7(oo) B rHJiBÔepTOBOM npocTpaHCTBe E®n = jff® ... 
,.,®E7 E «= Z2. OHH nyMepyioTca HenpHBOßHMBiMH npeftCTaBjieiiHHMH 
CHMMeTpHHecKoii rpynnBi H o6o3HaHaioTca nepe3 Qà7 Xe8n. IIOJIOîKHM 

Qw = QA®QV' CjiesyiomnË pe3yjiBTaT npHHaßjieTKHT A. A. KnpHJi-
jioBy. 

TEOPEMA 1 ([15]). Haoïcdoe HenpueoduMoe ynumapnoe npedcmaajienue 
zpynmi U (oo), nenpepuenoe ß paenoMepnoü monojiozuu9 dKewajienmHo 
odnoAiy U3 QIJ,. 

KpoMe Toro, Jiioôoe npep;cTaBJieHHe pa3jiaraeTca B RHCKperayio cyMMy 
nenpHBORHMBix. npeftCTaBJieiiHa, HenpepBiBHBie B paBiioMepuoË Tonojio-
THH, HasBiBaioTca pymibiMU (TepMHii V. H. OjiBniancKoro [21]). 

2. rpynnw KOHcmoro paura p—l927... Tan na3BiBaiOTca rpynnBi 
BO0(p7 oo), U(p9 oo) t= $j>(p7 oo), onpe^ejiaeMBie Kan Hn;o;yKTHBHBie 

00 

npe^ejiBi BO0(p9 oo) = (J SO0(#, n) H T.«. 
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OnPEßEJiEHHE (r. H. OjiBinaHCKHË [19]). YHHTapHoe npep;cTaBjieHHe 
/ rpynnBi SO0(#, oo), U(p, oo), Sp(#, oo) Ha3BroaeTca donycmuMbw, ecjin 

ero orpaHH^eHHe Ha« nojjrpynny SO(oo), ï7(oo), Sp(oo) aBJiaeTca pyn-
HBIM. 

,E(onycTHMBie npe«CTaBjieHHH nojiHOCTBio onncaHBi B [18]. OCHOBHOë 

3Tan B HX KJiaccH$HKanHH — 3To onncaHHe rojioMop^HBix npe^CTaBjieHHE 
rpynnBi TJ(p9 oo)" (Z — piaKpBiTna rpynnBi TJ(p9 oo), yiiHBepcajiBHoro 
Ha« noßrpynnoä U(p))m, npe«CTaBjieHHH «pyrnx rpynn nojiy^aiOTca 
OTCiojja nyTëM orpaHHWHHH. Hioöoe «onycTHMoe npe;n;cTaBjieHHe nopoîK-
flaeT ajireßpy $OH HeËMana THna I ([19]); TaKHM o6pa30M, HMeeM BecBMa 
3aMenaTenBHBiË Knacc He jioKajiBiio-KOMnaKTHBix rpynn THna I. 

3. IIojiyrpynnoBon IIOAXO«. TO OôCTOHTCJIBCTBO, HTO B TeopHH npe«CTaB-
jieHHË ,,6OJIBHIHX" rpynn B03HHKaioT npe«CTaBjieHHH nojiyrpynn, 6BIJIO 

oÔHapyjKeHo B [6], r«e paccMaTpHBajiHCB MaTpn^HBie rpynnBi c ajieMeH-
TaMH H3 He JioKajiBHo-KOMnaKTHBix nojieË. B [19] ÔBijia Hccjie«OBaHa 
pojiB nojiyrpynn B Teopnn npencTaBjieiiHË rpynn 8O0(jp, oo), U(p7 oo), 

SpCP? °°)* riyeTB G — ojjHa H3 rpynn, Gn — no «rpynna MaTpnu; ^ , 

r«e n> p7 T — yiiHTapiioe npep;cTaBjieHHe rpynnBi G B npocTpaHCTBe E7 

En(T) — no «npocTpaHCTBO <?w-HHBapnaHTHBix BeKTopoB. npe«nojioamM, 
00 

HTO T «onycTHMo; B 3TOM cjiynae MHOJKCCTBO [jEn(T) njioTHo B E. 06o3Ha-

*IHM nepe3 Pn npoeKTop Ha En(T). Tor«a $yHKnna A(g) =PnT(g)Pn 

onpejjejieHa Ha npocTpaHCTBe r(n) = Gn\GjGn7 KOTopoe MOHîHO OTOJK-

HecTBHTB c nojiyrpynnoË MaTpnn nopa«Ka n x n Ha« F = B, C, H, ne 
yBCJIH^HBaiOimaX HH«e<|)HHHTHBIE CKajiapHBiË KBa«paT —l^il2— ... — |#p|2 + 
+ . . . +\xn\

2
7 œeFn. 0Ka3BiBaeTca, A aBJiaeTca npe«CTaBjieHHeM nojiy-

rpynnH r(n), npnnëM A (s*) = (A (s))*. 3TO OOCTOHTCJIBCTBO aBJiaeTca 
KJiiOHeBHM npn H3ŷ eHHH «onycTHMBix npeACTaBneHHË. 

4. Tpynnbi oecKonê Horo panra neicoMnaKTHoro Tnna. HMeeTca 10 TaKHX 
rpynn; B KaJK«oË H3 HHX BBi«ejiaeTca no «rpynna paHra 0 (JIH6O no«-
rpynna, aßnaiomaaca npoH3Be«eHHeM no«rpynn paHra 0). ITpHMepoM 
cjiyamT rpynna GL(oo,C) cocToamaa H3 onepaTopoB BH«a TJ+T7 r«e 
TJ ymrrapeH, a T — onepaTop PHjiBOepTa-IIlMHATa ; B Heë BjiomeHa 
noftrpynna ?7(co). flonycTHMBie npe«CTaBjieHHa onpe«ejiaiOTca TaKîKe, 
Kan «Jia rpynn KOHeraoro paHra. HeH3BecTHO, npHHa«jieaîaT JIH BTH rpyn-
HBi Timy I (B cMBicjie, pa3i>acHëHHOM B n. 2). B [20] nocTpoeHo 6ojiBinoe 
ceMeËCTBO HenpHBO«HMBix «onycTHMHX npe«cTaBjieHHË. 3TO ceMeËCTBO 
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ycToËHHBo OTHOCHTejIBHO Teii3opHoro nepeMHOH êHHa c nocjieayioiijHM 
pa3jio?KeHHeM Ha nenpHBOHHMBie KOMHOHCHTBI. B [20] «aiiBi «Be peajin-
3aB[HH npe«cTaBjieHHË : peajiH3an;Ha, ocuoBamiaa Ha «CëCTBHH rpynnBi 
Ha npocTpaHCTBe c rayccoBOË MepoË, H peajiH3au;HH nocpejjcTBOM BJIOHïC-

HHH rpynnBi B ôecKOHeHHOMepuyio MeTanJienTHiecnyio rpynny H npn-
MeHCHHH npe«cTaBjieHHa BeËJia. 

5. rpyifflM GecKoneiHoro paura KOMiiaicTiioro Tnna. KaaqjoË nape (G9E) 
H3 n. 2 cTaBHTca B COOTBCTCTBHC napa (G0, E)7 r«e E *- rpynna paura 0, 
JIHöO npoH3Be«eiiHe ftßyx Tairax rpynn. Kan H B n. 2, npe«cTaBjieHHe 
rpynnBi G0 Ha3BiBaeTca donycmuMUM9 ecjiu ero orpann^eiiHe uà E — pyi-
Hoe. Tpynna G0 HMeeT cymecTBeHHo 6ojiBine «onycTHMBix (no oraonie-
HHio K E) npe«CTaBjienHË, neM pyiiiBix. BojiBiiioe ceMeËCTBO TaKHX npe«-
CTaBjieiiHË nocTpoeHo B [23]. KoHCTpymjHH nanoMHHaeT BTOpyio peajin-
Banmo, onHcaimyio B n. 4; napasy c npe«cTaBJieHHeM BeËjia 6ecKOHe*mo-
MepnoË MeTanjieKTHHecKoË rpynnBi HcnojiB3yeTca cniiHopHoe npe«CTaB-
Jienne ôecKOHê HOMepHOË cnnuopuoË rpynmi. 

6. IlpeACTaBJieHHsi KJiacca I H $aicTop-npeACTaBJieHHH THna II1B PaccMOT-
pHM napy (G,E) KOMnaKTHoro THna, B KOTopoË G — ExE. 3«ecB E — 
3TO o«na H3 rpynn U(oo)7 SO(oo), Sp(oo). B [23] saMe^eno, »ITO npe«-
cTaBjieHHH KJiacca I TaKoË napBi coBna«aiOT c $aKTop-npe«cTaBJieHHHMH 
Tnna IIX rpynnBi G. 3TO npocToe Ha6jiio«eHHe no3BojiaeT CBa3aTB «ony-
CTHMBie npe«CTaBjieHHa c Teopneö IIrnpe;n;cTaBJieHHH, pa3BHBaeM0Ë B [4], 
[29], [30]. B [4] nojiyqena KJiaccH$HKaijHH Hi-npeACTaBJieHHË. 

7. G KajK«oË napoË (G, E) KOMnanraoro TnnaMoamo cBH3aTB napy (Gx
9 Ex)7 

r«e X — npocTpaHCTBO Jleôera, a Gx
 H EX — rpynnBi H3MepHMBix OTO6-

paîKeHHË H3 X B G H E. IIpeßCTaBjieHHH KJiacca I TaKHX nap (H, B nacT-
HOCTH, IIj-npeßCTaBjieHHH rpynnBi Gx) onncaHBi B [22]. 

§ 5. IIpeACTaBJieHHH nnoJiHe HecBSBHbix „6OJIBIIIHX" rpynn 

1. rpynna SL2(E)7 E ne JioKaJiwio-KOMnaicTiio. IlycTB E — nojie c neapXH-
Me«OBBiM HopMHpoBaHHeM \x\ = 2~w^(w(xy) — w(x) + w(y)7 w(x~\-y) > 
^mm{w(x)9w(y)}7 MHOJKCCTBO 3HaHeHHË $yHKijHH w coBna«aeT c Z). 
IIOJIOîKHM E0 = {x: | » K 1}, Ex = {x: \x\<l}. Ilojie BBITCTOB E0IEX 

npe«nojiaraeTca SecKonê HBiM. Oyiinmua paccTOHiina \x — y\ npeBpanjaeT 
i B H e jioKajiBHO-KOMnaKTHoe MeTpunecKoe npocTpaHCTBO. B pa6oTe [9] 
onncaHBi Bee (HC TOJIBKO yHHTapHBie) npe«cTaBjieiiHa rpynnBi G = BJJ2(E)9 • 

3 — Proceedings,,., t. II 
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KOTopBie BnojiHe HenpHBo«HMBi, yHHTapHH Ha noarpynne GQ =* SL2(2£0) 
H cojjepataT e«HHH*iHoe npe«cTaBjieHHe OTOë noHrpynnu. 3TH npe«CTaßjie-
HHa CTpoaTca TaK. IlycTB P — npoeKTHBHaa npaMaa Ha« E. IIpeBpaTHM P 
B yjiBTpaMeTpH^ecKoe (B ftpyroË TepMHHOJiorHH — HeapxHMe«OBo) npo-
CTpaHCTBo, oß^aBiiB paccTOHHHeMMe?K«y Tô KaMH x = (xx: x2)7 y = (yx: y2) 
H3 P HHCJIO 

d(x, y) = \xxy2-x2yx\9 \\x\\ = maacflflj, \x2\} = 1, ||y|| = 1. 

IlycTB L — jiHHeËHaa oßojioHKa xapaKTepncTHHecKHx $yHKijHË Bce-
B03MOJKHBIX IHapOB 3T0r0 npOCTpaHCTBa; CymeCTBeHHO OTMeTHTB, OTO 
9TH $yHKIJHH JIHHeËHO He3aBHCHMBI. Bo3BMÖM nOCJie«OBaTeJIBHOCTB {bk}™9 

H BBe«ëM B L cKajiHpHoe npoH3BeHeHHe, CHHTaa, TOO «JIH JIIOöBIX «syx 
HiapOB H3 i HX XapaKTepHCTHHeCKHe (ftyHKIJHH OpTOrOHajIBHBI H HopMa 
xapaKTepncTH^ecKoË $yHKn;HH mapa pa«nyca 2~h paBHa bk. ITycTB H*5** — 
nonojiHeHHe L no HopMe V(f,f). 

Tpynna G «eËCTByeT B P OHCBHRHBIM o6pa30M. Baamoe (H He OHCBH«-
HOe) OÖCTOHTeJIBCTBO COCTOHT B TOM, HTO nOJiyHCHHOe TaKHM o6pa30M 
«eËCTBHe rpymiBi G oToöparaaeT npocTpaHCTBO L B ceôa. JSJIH Kaaî«oro 
g e G paccMOTpHM ^ynKijHio 

a(g7 x) = \\x-g\\9 x = (xx: x2) eP9 \\œ\\ = 1 . 

npoßepaeTca, HTO a(g7-)eL H a(gxg27x) = a(gX9œ) + a(g29x-gx) npn 
81982^^9 œeP. OTCiofta cjieftyeT, *ITO «jia Jiioöoro KOMnjieKCHoro X ^ 0 
onepaTopBi 

{Tx(g)f)(x)=Xa>^f(x-g)7 feL9 

3a«aioT jiHHeöHoe npeHCTaBjiemie B npocTpaHCTBe L. YaoOHee paccMaTpn-
BaTB npe«cTaBjieHHe Vk(g) = JJxT3L(g)TJx

1
9 r«e onepaTop XJX yMHOJKaeT 

Ha X[kl2] xapaKTepHCTÈ^ecKyK) $yHKinHio mapa pa«nyca 2~h. 
TenepB c$opMyjinpyeM OCHOBHHC yTBep«K«eHHa ([5], [6], [9]). 
!• Vx(g) — MHoro ĵieH OT X «jia Ka*K«oro g. 
2. ECJIH 0 < m< 6fc/6Ä+i< M < 00, TO VX npo«ojiHîaeTca «o orpa-

HH îeHHoro onepaTopa B E{b^. 
3. ECJIH 0 < X< 19 TO FAyHHTapHo B E{b^ npn b2k = (1 —A)"1, b2k+1 = 

.= X(1-X)-K 
4. ECJIH X # 0, X ^ 1, TO VX BnojiHe HenpHBO«HMO. 
5. Jlioöoe -BnojiHe HenpHBo«HMoe npe«CTaBjieHHe KJiacca I (OTHO-

CHTejiBHo GQ) rpynnBi G 3KBHBajieHTHo no M. A. 'HaËMapKy JIHôO o«HOMy 
H3 Vx, X^07 X^l9 JIHôO npencTaBjiemno VQ7 HH«yî npoBaHHOMy e«H-
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HHMHBiM oRHOMepHBiM npe;n;cTaBjieHHeM no«rpynnBi G0. (Pa3yMeeTca, 
MBI 3p;ecB roBOpHM TOJiBKo o neo«HOMepHBix npe«cTaBjieHHax rpynnBi G.) 

6. C^epHHecKaa $yiiKijHH npe«cTaBjieiiHa HMeeT B H « 

VxiB) = X~w{9\ v{9) = minte? (flfo). • 

2. Tpynna GcLn(E)7 E ne jioKajiBno-KOMnaicTno. IlycTB E TO » e nojie, 
HTO B H. 1. IIOJIOJKHM G = QLn(E)7 G0 = QJjn(E0). PaCCMOTpHM CJIJ^aË 
n > 2. B [6] onHcaiiBi Bee Bnojine HenpHBo«HMBie n23e«CTaBjieiiHa KJiacca I 
rpynnBi G B JIHHCëHOM TonojiorHHecKOM npocTpaHCTBe. CooTBeTCTByioiiiHe 
c^epHTCCKHe $yiiKB[HH BBipajKaiOTca nepe3 roMOMop$H3toi a««HTHBHofi no-
jiyrpynnBi BeKTopoB t = (t19 ...9 tn)9 r«e tk — ijejiBie, tx > . . . > tn9 B nojiy-
rpynnyC (c onepaimeË yMHoa^eiiHa). 3«ecB BnepBBie BOBHHKJIH nojiyrpyn-
nBi B Teopnii npeRCTaBjieiiHE KJiacca I ; nan yme roBopHJiocB B § 4, Bnoc-
jie«CTBHH noJiyrpynnoBBie cooopamenna ôBIJIH npHMeneiiBi B HccjieAOBaHHH 
npe«CTaBjieiiHË SecKOHeraoMepHBix KJiaccn^ecKHX rpynn. 

3. rpynnBi aBTOMop$H3MOB ^epeBteB. ^epeBBH In (B KajKftoË BepniHHe 
«epeßa CXOJJHTCH n peßep, n< oo) BBitiojinaioT B TeopHH jp-aRH^ecKHX 
rpynn pojiB cHMMeTpn^ecKHX npocTpancTB. rpynnBi aBTOMop$H3MOB 
HepeBBeB In H HX npeftCTaBJieHHH H3y*iajiHCB B [17]. B [21] paccMOTpeiiBi 
npeRCTaBaeiiHa «epeBBeB Ia (B Ka?K«oË BepniHiie CXO«HTCH a pëôep, 
a — ßecKOHeraBiE Kap«HHaji). H a BTOë rpynne Ga BBO«HTCH cjiaßaa TO-

nojiorna : $yH«aMeHTajiBiiyio CHCTeMy oKpecTHOCTeË ejjHHHnBi cocTaBJiaioT 
noKrpynnBi, ocTaBjiaiomne Ha MecTe KoneraBiË naßop BepniHH. B [21] 
«oKa3ano, HTO rpynna 6fa npHiia«jieH^HT rany I ; onncaiiBi Bee eë yiiHTapuBie 
HenpHBo«HMBie npe«cTaBjieHHa. 
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MepHHX KJiaccHHecKHX rpynn, ffoKJbadw AH CCCP 250, JNà 2 (1980), CTp. 284-288. 

[21] OjibmaHCKHlt Y. H., Honne „öojibnme" rpynnH THna I, B cöopHHKe CoepeMennue 
npoójieMbi MameMamuKU 16, BHHHTH, MocKBa, 1980, CTp. 31-52. 

[22] OjitniaHCKHH V. H., G$ep'HHecKHe $yHKiçHH H xapaKTepn Ha rpynne U(oo)x, 
Vcnexu MameM. nayn 37, Na 2 (1982), CTp. 217-218. 
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GE0EGE LUSZTIG 

Characters of Reductive Groups over Finite Fields 

Let G be a connected reductive algebraic gronp defined over a finite field 
Fq and let G(Fq) be the gronp of its ,FS- rational points. We shall report 
here on some recent results on the irreducible (complex) representations 
of G(FQ). 

1. Special conjugacy classes 

Let E be a connected reductive algebraic group over C and let W be its 
Weyl group. The Springer correspondence allows us to parametrize the 
irreducible representations E of W as F = F^^ where u is a unipotent 
element in G (up to conjugacy) and <p is an irreducible representation of 
the group of components AH(u) = ZH(u)IZ°H(u). (However, not all <p 
arise in the parametrization.) For F = F^Uttp) let aE be the dimension 
of the variety SSU of Borei subgroups containing u and let aE be the integer 
defined by the requirement: the irreducible representation of the Hecke 

algebra of W7 corresponding to F7 has formal degree of the form — X ° ^ + 

+higher powers of X (nE = integer, > 0). One verifies that aE < aE 

for all E G Wv. 
Consider, for a unipotent element u e fl, the set 

{<p: irreducible representation of AH(u) such that F = F^Utip) 

is defined and aE = % , } . (1.1) 

We say that u (or its class) is special if the set (1.1) is non-empty; in this 
case, we denote by IH(u) the intersection of kernels of all representations 
(p in the set (1.1). I t is a normal subgroup of An(u). More generally, an 
element g G E (or its conjugacy class) is said to be special if its unipotent 
part gu is special with respect to Ex = Z0

H(gs)9 where g8 is the semisimple 
part of g. Let An(g) = ZH(g)IZ°H(g). If g is special, then both IHl(gu) 

[877] 
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and AHl(gu) are normal subgroups of AH(g) and we set ÄB(g) 
= AH(g)IIHi(gu). 

(For example, if E = GLW, all elements of E are special. If E = Sp2TO, 
(w > 2) a transvection in E is not special.) 

We shall now fix an automorphism j:E->E of finite order which 
leaves stable some "épinglage" of G (in the sense of Bourbaki). Let E^aQ) 

be the set of special elements g e E such that g is conjugate in E to j(gq). 
Let geE(jsqy For each integer n9 let Z^n)(g) = {x eE: xgx~l =jn(g*n)}, 
and let Z(g) = ±Z{n)(g). Then Z(g) is a group with multiplication defined 

n ,w ~ *» 

by #*#' = jn'(x)x' for a? eZn(g)7 x' eZn'(g). Then 2f(o)(g0 is a normal sub
group of Z(g) ; it may be identified with ZH(g). Thus, we have a surjective 
map Z(g)->Z with kernel ##(#). Let A(g) = Z(g))Z^(g). We have then 
a surjective map A(g)->Z with kernel -4.H(Sf). It is easy to see that the 
kernel of the natural map AH(g)->ZB(g) is a normal subgroup of A(g)9 

hence the quotient A(g) of A(g) by this kernel is defined and we have 
a surjective map A(g)->Z with kernel ÄH(g). Let A^(g) c J.(</) be the 
inverse image of 1 e Z under this map. We now define a set Ji(g) as follows« 
It consists of pairs (x7 a) where x is an element of A^(g) and a is an irre
ducible representation of the centralizer of x in ÄK(g) which can be extend
ed to a representation of the centralizer of x in A (g}*9 these pairs are taken 
up to the equivalence relation defined by conjugation by A(g). It is clear 
that the set Ji(g) depends only on the conjugacy class of g: if g' is con
jugate to g7 there is a canonical bijection Jt(g')^Jl(g). 

2. Classification of irreducible representations of G(Fq) 

We shall take E in Section 1 to be the Langlands dual of G. Thus, given 
a maximal torus T and a Borei subgroup B => T in G7 stable under the 
Frobenius map F: G->G7 and given a maximal torus Ï7' in E with a Borei 
subgroup B' containing 2", we have a definite isomorphism of lattices 
i: Hom(27, J**)^Hom(C*, T') under which the simple roots of G become 
the simple coroots of E and the simple coroots of G become the simple 
roots of E. 

Let a: T->T be the automorphism defined by F(t) = a(iq) for all 
t eT. Let j : E->E be an automorphism of finite order E with the follow
ing properties: 

(a) j leaves stable an "épinglage" attached to T', JB'; 
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(b) the automorphism of Horn(C*, 2") defined by y.Tr->T' corre
sponds under i to the automorphism of Hom(27, J**) defined by a: T-+T. 

One of the main results of [5] may be interpreted as giving a bijection 

isomorphism classes of 

irreducible representations of G(Fq) 
+ JL -*(g) (2.1) 

up to 
H-conjugacy 

at least under the assumption that G has connected centre. (However, 
the last assumption can be dropped.) The representation of G(Fq) cor
responding to (x9o) ejf(g)9 has dimension ——^~4r d**"*®1* + lower 

\Zj{0)(oo)\ 
powers of q. Moreover, the multiplicities of irreducible representations 
of G(Fa) in the virtual representations B? of [2] whore explicitly com
puted. By the results of [2], this implies explicit formulas for the character 
of any irreducible representation of G(Fq) at any semisimple element. 

3. Green functions 

The Green functions are the values of the characters of B0
T (see [2]) at 

unipotent elements in G(Fq). It is known from [2] that, once the Green 
functions are known, the character of E% will be automatically known 
at all elements. In the case where the characteristic of Fq is large enough, 
Springer [8] and Kazhdan [4] were able to express the Green functions 
as certain trigonometrical sums on the Lie algebra. Springer [8] has rewrit
ten these trigonometrical sums in a geometric form, in terms of a certain 
Weyl group action (Springer's representation) on the Z-adic cohomology 
of the variety êSu. Eecently, Shoji [6], [7] and Beynon and Spaltenstein 
[1] have computed the Green functions in all cases (in large characteristic) ; 
in the case of unitary groups, Kawanaka [3] was able to compute the Green 
functions without restriction on characteristic. 
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PIBEEE VAN MOEEBEKE* 

Algebraic Complete Integrability of Hamiltonian 
Systems and Kac-Moody Lie Algebras 

The discovery about a hundred years ago by Poincaré that most Hamilto
nian systems are not completely integrable marked the end of a long 
and fruitful interaction between Hamiltonian mechanics and algebraic 
geometry; in fact many algebraic geometrical results have their origin 
in problems of mechanics. 

The resolution of the Korteweg-de Vries equation some 15 years ago 
by spectral methods has led to unexpected connections between mecha
nics, spectral theory, Lie groups, algebraic geometry and even differential 
geometry, which have provided new insights into the old mechanical 
problems of last century, and many new ones as well. The study of specific 
systems and equations have led to general schemes, mainly in the realm 
of Lie algebras, which manufactures lots of completely integrable Hamil
tonian systems; some of them can then be recognized to be of genuine 
mechanical or physical significance. However, given a Hamiltonian sys
tem, it is often hard to fit it into any of those general frameworks. But, 
luckily, most of the problems under consideration possess the much richer 
structure of algebraic complete integrability which in general is more 
restrictive than the real analytic one commonly used, although in many 
examples it appears that the notions of algebraic and analytic integrability 
coincide. 

A Hamiltonian system 

dE J = J{*) = 
antisymmetric matrix with poly
nomial entries in z7 satisfying the 
Jacobi identities 

* Support of NSF grant 8102696 is gratefully acknowledged. 

[881] 
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with polynomial right-hand side will be called algebraically completely 
integrable (a.ci.) when 

(1) the system possesses h polynomial trivial invariants E19...7Ek 

such that 

dE. 
j r _ L = 0 

dz 

and M = (n — h)l2 invariants Ek+1,..., Ek+m (polynomial in z) in in
volution ({Ei9 Ej} = 0) having the property that for most values of 

ci eR9 the invariant manifolds f] {Et = c$r\Rn are compact, connect
a i 

ed and therefore real tori by the Arnold-Liouville theorem; 
(2) moreover, the real tori are part of abelian varieties (complex alge

braic tori 1= C"1 /Lattice); in the natural coordinates (tX7..., tm) of these 
tori, the flows (run with complex time) defined by the vector fields gene
rated by the invariants Ek+17..., Ek+m are straight lines and thç coord
inates zi = %i(ti9 -..j tm) are meromorphic in (tX7..., tm). 

Mumford [41] has given a more general definition which coincides 
with the latter one when most invariant manifolds are compact, but 
which includes the noncompact case as well. 

Two kinds of results will now be highlighted: in the first section we 
present a Lie algebra theoretical scheme leading to algebraic completely 
integrable systems, based on the Kostant-Earillov coadjoint action. 
Many old and new problems discussed in Section 2 fit into this scheme, 
while others do not seem to or are not known to ; clearly other types of 
reductions could also be. envisaged. Therefore in Section 3 an analytic 
but more systematic approach has been developed for testing algebraic 
complete integrability, which is quite effective in small dimensions and 
becomes more complicated to implement in higher dimensions; it has 
the advantage of leading to global results, unlike the existing criteria for 
real analytic integrability, which, at this stage, are perturbation results 
(cf. Melnikov's method [31]). However, when a family of Hamiltonian 
systems is sufficiently homogeneous, then Melnikov's method can be 
extended to show nonanalytic integrability for a full family of Hamil
tonian systems. These recent methods due to Ziglin and Holmes and 
IMEarsden will be explained in Section 4. 

This lecture will focus chiefly on compact and discrete systems; many, 
interesting methods have been devised for nonlinear partial differential 
equations, noncompact systems, etc., which I shall not consider. 
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1. Coadjoint orbits in Kac-Moody Lie algebras 

We first state a theorem which is valid for any Lie algebra: 

THBOEBM 1 (Adler, Kostant, Symes [1, 2, 25, 47, 48]). Let L be a Lie 
algebra paired with itself via a nondegenerate &à-invariant bilinear form 
< , >, L having a vector space decomposition L = E+N with E and N 
Lie subalgebras. Then9 with respect to < , >, we have the splitting L = L* 
= E1+N-L and N* = EL paired with N via the induced formai , » 
inherits the coadjoint symplectic structure of Eostant and Eirillov7 its Pois
son braclcet between functions Ex and J3*2 on N* reads 

{H19 E,} (a) - « a , [VNMX9 VNM,Ì}}9 a e N*. 

Let r cz N* be a manifold invariant under the coadjoint action above and 
let 3tf(F) be the algebra of functions on a neighborhood of T9 invariant under 
the coadjoint action of L (which is distinct from the N-N* action). Then 
the functions E in 3ff(T) lead to commuting Eamiltoniàn vector fields of 
the Lax isospectral form1 

à= [a7PK(VE)]. 

This theorem produces Hamiltonian systems having many commuting 
integrals; some precise results are known for interesting classes of orbits 
in the case of both finite- and infinite-dimensional Lie algebras. 

Paradoxically, the finite-dimensional Lie algebras usually lead to 
noncompact systems, and the infinite-dimensional ones to compact sys
tems. As announced, we shall merely concentrate on the latter situation 
and therefore, in particular, on the Kac-Moody Lie algebras. 

Any finite-dimensional Lie algebra L with bracket [ , ] and Killing 
form < , > leads to an infinite-dimensional formal Laurent series extension 

N 

Se = | £ Aft with N arbitrary e Z and A% e LÌ 
t = —oo 

with bracket 

and ad-invariant, symmetric forms 

1 PJZ and Pjsf denote projection onto K and N. 
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depending on h e Z. The forms < , >ft are nondegenerate if so is < , >. 
Let &p>q(p < g) be the vector subspace of &9 corresponding to powers 
of h between p and g. 

The first interesting class of problems is obtained by taking 
L = gl(n9 R) and by putting the form < , >x on the Kac-Moody exten
sion JöP; then we have the decomposition into Lie subalgebras 

& = ^00+^-00.-1 s E + N with E = EL
9 E = EL and E = N*. 

Consider the invariant manifold Tm9 m^ 1 in E = N*7 defined as 

m—x 

rm = \A = Y Afl + ah^ a = diag(a1? ..., an) fixed} 

with diag(J.TO_1) = 0. 

THBOEEM 2 (Adler, van Moerbeke [2]). The manifold rM has a natural 
symplectic structure (usually degenerate) ; the functions E = (f(Ah~j), hk}x 

on rm for good functions f lead to a.c.i. commuting Eamiltonian systems 
of the form 

1 M - 1 

À = [A, PK (/' (Ah-*) h"~% A =% Aft + <#» (1) 
l '=0 

and their trajectories are straight line motions on the Jacobian of the curve 
<ë of (generic) genus (n — ±) (nm—2)\2 defined byQ(z7 h) E= àet(A—zi) = 0. 
The coefficients of this polynomial provide the orbit invariants of Fm and an 
independent set of integrals of the motion. 

Of particular interest are the flows where j = m9 Jc = m + 1, which 
have the following nice form: 

À = [A9 ad^adr^-i+iSft] with ß{ = /'(o,); (2) 

the flow depends on / through the relation ß{ = f'(a4) only. Eeyman 
and Semeriov-Tian-Shansky [47] have also integrated such equations, 
but in the real analytical sense. , 

Another class is obtained by choosing any semi-simple Lie algebra L; 
then the Kac-Moody extension J? equipped with the form < , > = < , >0 

has the natural level decomposition 

JSf = ^Sei with [<?i9 JSP,.] c J2fwi l&09<?Q] = 0, JBP? = J2Lt.. 
ieZ | 
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Let J5+ = J &i a n d BT = J &i7- then the product Lie algebra & x & 
*>o i<o 

has the following bracket and pairing: 

<(ii,h),(K,K)> =<h,i'i> + <h9Ïz>> 

It admits the decomposition into E+N9 with (P0 denotes the projection 
onto -£f0) 

JBT - {(I, - I ) | I e<?}9 jjjr « {(I, I') G F xP+|P0(Z) = P.(I')}, 
K*- = {(Z,Z)|Ze.S?} ~ ^ , J ^ = {(l9l')eB~xB+\P0(l + V) = 0}. 

Then from Theorem 1 the orbits in N* = E1 possess a lot of commuting 
Hamiltonian vector fields of the Lax form: 

THEOREM: 3 (van Moerbeke and Mumford [37]; Adler and van Moerbeke 
[2]). The N-invariant manifolds r_jtk = J ä>

i s jgp r^ jf J ^OTe u na-
-j<i<k 

turai symplectic structure and the functions E(lX9l2) = f(lx) on r._jtk lead 
to commuting vector fields of the Lax form 

Up, (P+- lP 0 )FJ ] , 
with P + the projection onto B+ ; their trajectories are straight line motions 
on the Jacobian of a curve defined by the characteristic polynomial of elements 
in r„jtk (thought of as functions of h). 

Finally a general and effective statement on linearization was given 
by Griffith in a beautiful recent paper [15] summarizing the situations 
discussed before. It is based on the observation that the tangent space 
to any deformation lies in a suitable cohomology group and that on al
gebraic curves "higher cohomology" can always be eliminated using 
duality theory. Given a Lax flow 

n N 
À = [A9 B] with A = V A$ and B = YBih

i
9 At and Bi matrices, 

Griffith defines the Laurent tail of B as follows: differentiating with regard 
to t the eigenvalue problem Av =zv leads to Bv = —v + to for some mero
morphic function X depending on z9 h and *. Then given the Curve # defined 
by àet(A —zi) = 0 and p e #, he defines 

[Laurent tail (B)]p = {principal part of the Laurent expansion of 
X at p}. 
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THEOREM 4 (Griffith [15]). The Lax flow above linearizes on the Jaco-
bian of the curve % if and only if the following conditions hold* for all p e (h)^ 

[Laurent tail (B)1p e span of 
[Laurent tail (B)]^, 
Laurent tails at p of any meromorphic 
function / on # sucli that (/) ^ — Eß)^ 

2. Distinguished examples of flows on Kac-Moody Lie algebras 

(a) Example of rx in Theorem 2. The most noted one is to take A =* X +ah9 

with Xeso(w); then the Hamiltonian flow (2), where aj and ßj can be 
taken arbitrarily, is at the Oth order in h 

X = [X, AoX] with ( i o J ) ö = XyXq and ^ = ßi — ßj 
(Xi — aj 

and identity at the first order in h. Such a flow stays within so(w); intro
duced by Manakov [29] and extensively studied by Mishchenko, Fomenko, 
and Dikii [32, 33, 11], it expresses the Fuler-Arnold [7] equations for 
the geodesic flow on SO(w) for a left-invariant diagonal metric J hi^-% 

of the special form above (this is a restriction for SO(w),w>3). The 
natural phase space for this motion is an orbit defined in SO(w) by [w/2] 
orbit invariants. By Theorem 2, the problem is a.c.i. and the trajectories 
are straight lines on Jac(#) of dimension (n—2)(n —1)/2 and more speci
fically, on the Prym variety Prym(#/#0) c Jac(^) of dimension 
(n(n —1)/2 — [w/2])/2 induced by the natural involution (z9 h)r\(—z7 —h) 
on # as a, result of X eso(w); #0 is the curve obtained by identifying 
(z9h) with (— z7 — A); the functions X2

j7 X12X13X23, etc., are abelian 
functions on Prym(#/#0), but this is not true of the Xi3> themselves; 
the reason is that the complex tori obtained by intersecting the con
stants of the motion relate to Prym(^) by doubling some periods; see 
Haine [18]. Finally, this is the only set of diagonal metrics for which the 
geodesic flow is a.c.i., as discussed in Section 3. Using Lie algebra techni
ques, Thimm [50] has also established the complete integrability of geo
desic flow on some homogeneous spaces, which was further generalized 
by Guillemin and Sternberg [16]. 

(ftjoo is the divisor of poles of h. 
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(b) Example of P2 *** Theorem 2, One of the most celebrated examples 
here is obtained by taking A = ah2 — hx/\y—y®y for x9y eRn

7 which 
can also be considered as a rank 2 perturbation of the diagonal matrix a; 
see Moser [38, 39] and [2]. 

The motion (2) 

À = {A7 r+ßh] with r « ad^d^yAfl) , ßi = /'(«*) 

decomposes into 

dER dE* 
, _ _ « , - * . . _ _ £ , Ì . - H - - 1 , (3) 

where J5T̂  = J J£ ftPi(a?, 2/), with 
z 

which for /(#) — ln# (i.e. ft = ajf1) is Jacobi's geodesic flow on the ellip-
n 

soid J (x2 /at.) = 1, expressing the motion of the tangent line {x + sy | s e R} 

to the ellipsoid in the direction y of the geodesic; for f(z) = #2/2 (i.e 
ft = a^), it is G. Neumann's motion of a point on the sphere 8n~~1

7 \x\ = 1 
under the influence of the force — ax. From Theorem 2, both motions are 
straight lines on Jac(^), where # turns out to be hyperelliptic of genus 
n-~\ (much lower than the generic one) ramified at the following 2n 
points: some point at oo, the n points a4 and n — 1 other points %i of geo
metrical significance, based on the observation that generically a line 
in Rn touches n — 1 confocal quadrics. To be precise, the set of all common 
tangent lines to n — 1 confocal quadrics QX{(x9x) + l = 0, i = 1, . . . , n — 1, 
where Q0(x7y) *= <(# — a)~1x7 #> can be parametrized by the quotient 
of the Jacobian of the hyperelliptic curve # above by an abelian group P. 
The group is generated by the discrete action obtained by flipping the 
signs of xk and yk and some trivial one-dimensional action. Letting 7&->0 
in the matrx A and excising the largest eigenvalue from this matrix leads 
to a new isospectral symmetric matrix L = (I—PJ/)(a — x®x)(I—Py) 
and a flow 

L = [ a d ^ a d ^ A j / j i ] , 

where the spectrum of L is given by the n — 1 branch points Aj above and 
zero. From these considerations, it follows that the tangent line {x + sy\ s e R} 

4 — Proceedings..,, t. II 
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to the ellipsoid remains tangent to n — 2 other confocal quadrics and the 
corresponding n — 1 eigenfiinctions of L provide the orthogonal set of 
normals to the n — 1 quadrics at the points of tangency, hence recovering 
a theorem of Ohasles. The close relationship between Jacobi's and Neu
mann's problems, which in fact live on the same orbits, was implemented 
by Knörrer [24], who showed that the normal vector to the ellipsoid 
moves according to the Neumann problem, when the point moves ac
cording to the geodesic. These facts, as investigated also by Knörrer [23], 
tie up with the following result of Eeid [46] and Donagi [12]: the set of 
all n — 1 dimensional linear subspaces in the intersection of two quadrics 

x\+ ... +x2
n-y

2- ... -y2
n_x = 0, 

axx\+ ... + a X - ^ i ~ ••• -K-itfn-x = 4 

in P2n_i(C) is t*16 Jacobian of the curve # defined above. This is done 
by observing that the set of linear subspaces in the above quadrics is the 
same as the set of (n — 2)-dimensional linear subspaces tangent to n — 1 
quadrics 

(ax-Xj)x\+ ... +(an-Aj)œ
2

n = #o, j = l , . . . , w ~ l , 

which is dual to the set of tangents to the confocal quadrics. The Neumann 
problem is also strikingly related to the KdV equation and various other 
nonlinear partial differential equations; see Deift, Lund, Trubowitz [10]. 

Finally, the symmetric top under gravity (symmetric about an axis 
through the fixed point) (Lagrange top) evolves on an orbit of type P2 ; 
there n = 3, A = P+Jffe + aft2, Peso(3) ~ JR3 is the unit vector in 
the direction of gravity and M e so (3) c^ JB3 is the angular momentum in 
body coordinates with regard to the fixed point; moreover a = (A + ft)Xi 
where %eso(3) c^fi3 expresses the coordinates of the center of mass 
and where (h-\-p7 A + ŵ, 2X) is the inertia tensor in diagonalized form. 
The situation then leads to a linear flow on an elliptic curve; see Eatiu 
and van Moerbeke [45] and, for higher-dimensional generalizations, 
Batiu [44]. 

'(c) Example of P_ijfc in Theorem 3 (see [37] and [2]). Consider the periodic 
infinite band matrix M of period n7 having j + h + 1 diagonals ; the spec-
trum of M is defined by the points (z7 h) e C2 such that Mv(h) = zv(h)7 

where v(h) = (..., A"1*?, v9 hv7 . . . ) , v e Cn. Let Mn be the square matrix 
obtained from M in the way explained in Figure 1 and let # be the curve 
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defined by det(Mh-zl) = 0. Then 

infinite band matrices with\ 
j + 1c +1 diagonals of period n 
with some regularity, with given > 
spectrum, modulo diagonal 

, periodic matrices / 

Jac (# ) \w-
0-divisor. 

•1 translates of the 

The coefficients of the polynomial de>t(31h~zl) in (z9 h7 h~l) provide the 
orbit invariants and a complete set of commuting vector fields. This is 
proved by applying Theorem 3 to L = sl(n) which confirms the symplectic 
structure first found in [37] and approached from the Lie algebra theor
etical point of view in [2] and Symes [49]. Similar statements can be made 
for other semi-simple Lie algebras; see [2]. Of particular interest is the 
orbit P_Ifx for different semi-simple Lie algebras : they lead to the motion 
of various periodic Toda lattices (particles connected with exponential 
springs), as introduced by Bogoyavlenski [8]. According to [34, 2] they can 
all be linearized on Jacobi varieties constructed in a similar fashion as 
above. One may wonder whether using different representations leads to 
new abelian varieties. In [2] it is shown that the higher-dimensional Jacobi 
varieties obtained by considering higher-dimensional representations all 
contain the fundamental Jacobi variety corresponding to the lowest-
dimensional representation; this is done by using the theory of corre
spondences between curves and the results about the associated homomor
phisms between their Jacobians. 
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The problems above also tie up with isospectral deformations of dif
ference operators. A generic one-dimensional difference operator, given 
its periodic spectrum (in the sense above), can be deformed in as many 
ways as there are directions to go in the Jacobian of its' spectral curve, 
In higher dimensions many partial results seem to lead to rigidity. In fact, 
Mumford (van Moerbeke [35]) has shown that a discrete 2-dimensional 
Laplacian cannot be deformed, given its periodic spectrum; the proof 
can be summarized by the observation that the Picard variety of most 
algebraic surfaces is trivial; the proof that the specific spectral surface 
defined by the 2-dimensional Laplacian has trivial Picard variety is based 
on the technique of toroidal embedding, which reduces cohomological 
computations to combinatorial questions. 

Finally, inspired by the dynamical systems, Mumford [41] has given 
a beautiful description of hyperelliptic Jacobians of dimension g. Let 
y% = B(z) be the monic polynomial of degree 2g + l defining the curve # 
and let 0 be the 0-divisor. Then 

J a c ( # ) \ 0 
variety of polynomials TJ9 Y 
with deg U = g9 deg V^g—1 
and U monic such that U\ B — V2 

3. When is a system algebraically completely integrable? 

Among the three-dimensional rigid body motions under gravity and 
with a fixed point, S. Kovalevski found only three a.c.i. cases: the Euler 
rigid body motion, the Lagrange top and the so-called "Kovalevski" top. 
Eeminiscent of her method, we now state a necessary condition for systems 
to be a.c.i.: 

THEOEEM 5 [3, 4]. 1/ the Eamiltonicm flow 

dE 
z = J—r-, J = J(z) = polynomial in z eRn 

cz 

is a.c.i.9 with generically irreducible abelian varieties7 then this system of 
differential equations must admit Laurent expansion solutions in t such that 

(1) each zi blows up for some vaUie of t7 

(2) the Laurent expansions of z4 around some places where zt blows up 
admit n — \ parameters. 

This theorem is quite effective in pinning down the a.c.i. systems 
among a family of Hamiltonian systems; the existence of sufficiently 
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many parameters in the expansion translates into algebraic conditions 
on the parameters defining the family. Showing the sufficiency of the 
condition in Theorem 5 can be done as follows (although this has never 
been done rigorously in general): whenever the asymptotic solution 

* = rk(zW+z(lH+zWt2+...) 

with n — 1 free parameters a19 ..., an^x (which appear rationally), then 
there exist n rational functions B^z) of z such that 

s{ s Bi(z)7 1 < i < n-l9 % = Bn(z) 

admit Taylor expansions in t of the following nature 

Si = a{ + 0(t)9 l^i^n— 1, 

r = * + 0(t»)i 
with regard to these new variables (s17..., sn__17 rx) the differential equa
tions (run with time r) are nice and regular wherever the z{ blow up. 
This is equivalent to resolving the singularity of 

A=kr\{zeP"\Ei = CiZl} 

Pig. 2 

along the locus zQ = 0 reached by the flow. This is to say, the differential 
equations tell you to blow up the variety A along the part of the locus 
# 0 = 0 reached by the flow and to blow down A along the part not seen 
by the flow. It enables one to build and sew up the various affine pieces 
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defining the complex algebraic tori; this shows the algebraic integrability 
of the flow. This method is particularly useful whenever the flow does 
not have a Kac-Moody interpretation. 

However, in some circumstances, the computations needed to verify 
condition (2) of Theorem 5 can be quite formidable and even impossible 
to carry out. I t turns out that in some cases merely the facb that the 
general solutions of the differential equations are single-valued and ana
lytic in t in the neighborhood of some special solutions suffices to single 
out the a.c.i. systems, as used by Haine in Theorem 8. All these ideas 
have now been applied to the following results. 

THEOREM 6 (Adler, van Moerbeke [3]). Consider the system of particles 
with non-nearest neighbor exponential interactions governed by the Eamil-
tonian 

i==l i=>l i = l 

where N^ is a real (Z + l ) xZ matrix of maximal rank. This system is alge
braically completely integrable if and only if 

Vi Jkj 2(EN%(EE%1 is an integer < 0 , 

i.e., if E is the Gartan matrix of a Eac-Moody Lie algebra (there are only 
a finite number of such matrices for each Z, see Kac [22]). Then these systems 
are the Toda lattices9 given by the coadjoint orbit method on the corre
sponding Eac~Moody Lie algebra as explained in Section 2, Example (c). 

THEOREM 7 [4, 5]. The geodesic flow on SO(4) 

'-['.-si '-["'£]• 
z'®z" e so (3)® so (3) =iso(4), z' = (%,^2?%)? *" = O ^ s * ^ ) 

for the metric defined by the quadratic form 
6 3 

is algebraically completely integrable if and only if one of the following con
ditions holds. 

(1) The quadratic form E is diagonal with regard to the customary coor
dinates of so(4), i.e. 2E= £ A^X^ with Ay = (ft — ft)/K — a,), ft, af e G. 
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Then the system has besides two orbit invariants and the Eamiltonian 
2E one other quadratic invariant, which is diagonal as well. Then the flow is 
a straight line motion on the abelian variety 1 of Theorem 9. (A special case is 
the Clebsch case for the motion of a ^-dimensional rigid body in a fluid.) 

(2) The quadratic form E satisfies the conditions (with Ay ~ Af —Aj): 
(*14, US, *!«)# = 4 ^ 4 4 . 4 * ^ 4 6 ( 4 1 ^ « (4*5 ~ A*)\ A£A$(AU-

-Auy7A£Aä(Au-AnY)9 

where B = A12A46 — AlzAAs
m

9 then the flow has one extra quadratic invariant 
and it linearizes on the abelian variety 2 of Theorem 9. The SteTclov-Lyapunov 
case of the rigid body motion in an ideal fluid is a special case of this one. 

(3) The quadratic form E satisfies the conditions: 

(^i4? 2̂5? ^3ö) — d13Ai6A21A54iAnA65(A22 A65 , An A46 , A21 J 5 4 ) 

with a2 ~ AA6jA137 ß* = Au\A2l7 y* = A65/AS2 or their inverses satisfying 
the quadratic relations 

aß + ßy+ya + 1 = 0 and 3ßy + y-ß + l = 0; 

then the extra-invariant is quartic and the flow linearizes on an abelian 

Some examples of these metrics have been considered recently also 
by Bogoyavlenski [9], 

THEOREM 8 (Haine [17]). The geodesic flow on SO(w) for the metric 
defined by the diagonal quadratic form J} AyX2j is algebraically completely 
integrable if and only if Ay = (ft — ft)/(a^ — c^), ft, a{ e C. 

Theorem 7 is part of a wider statement of algebraic geometrical nature. 

THEOREM 9 [5, 6]. Consider four quadrics in C6 of the following nature 
(with some mild (checkable) nondegeneracy assumptions): 

3 6 3 

i = l i=l i*=l 

6 6 3 

i=4, 1=1 , i = l 

Let VQ ^P3(C) be the linear span of the quadrics Q{ and let Q{ also denote 
the matrix of the quadratic form. Then the discriminant surface A has the 
following property: 

VQ^A = {[tX9129137 k] e P*(0)1^(2^) = 0 } =ExuE2uES7 
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where the Et are 3 quadratic cones. Then the following 3 statements are equiv
alent: 

(i) the three cones E17 E2 and E3 intersect in a curve #0 wot to a hyper-
plane,' this curve is then the locus of all rank 3 quadrics in VQ

m
9 

4 

(ii) the variety Ç\ {zeP6\Q4 =• c^l} is singular along one or several 

curves at infinity (i.e. at z0 = 0); 
4 

(iii) the affine variety Q {z eC6\ Q{ = c{} is equipped with two inde-
i « i 

pendent quadratic vector fields. 
Under any one of these 3 conditions the four quadrics intersect in the 

affine part of an abelian variety and #0 <wm only be an elliptic curve or a curve 
isomorphic to P1. 

1. The curve #0 ^8 elliptic and nonsingular; then #J contains 4 points 
Q[,..., Q[, still spanning VQ, corresponding to quadrics which expressed 
in some new variables through a linear change have the following simple 
form: 

Q'(x) - ^ I 
V i W I 

a l " " a 4 

O'(x) - WÌ 1 V 2 W — 1 a2 — a3 

n'lx\ - ^ ' , 
*tf3W 1 

a3— a2 

Q'4(x) =xxx4+x2Xs 

x\ 
I 

«i — a3 

1 
a2 — a4 

^ 2 j 

« 3 ~ al 

a£ f 

ax —a2 

ag — a! 

# 6 

«3 — t t 4 

CAXQ. 

11 
11 

Jl 

O
l«

 
O

 
fc

O
 

©
 M

 

Moreover, the singular locus at infinity of the intersection of these four 
quadrics is an elliptic curve S9 which is a 4-fold unramified cover of ^. 
Let ^ be a double cover of #0 ramified at the 4 points ^0 °plane{^7 cfa = 0}, 
then according to Mumford [4] (see also Haine [18]) 

H {* e C6\ Qi = o ,}- E r y m ( « X ) \ 
$ = i 

a genus 9 curve, which is a ramified] 

cover of ^ with 16 branch points) 

This system of quadrics supports the geodesic flow equation of SO (4),' 
which from example (a) (Section 2) linearizes on Prym (#/#<,), which is 
a dual abelian variety to Prym(#'/^o) (Haine [18]); the functions Xy 
are themselves meromorphic on Prym(#ó/^ó)> while only their squares 
are on Prym(#/#0); i n fac*> Prym(^/^0) is obtained from Prym(#7^o) 
by doubling half the periods (isogfcny) and it is also isogeneous to the 
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Jacobian of a naturally arising hyperelliptic curve, as follows from Kötter's 
[26, 27] investigation of the Olebsch case for the motion of a rigid body 
in an ideal fluid. 

2. The curve #0 is isomorphic to P1 ; then <g'Q contains 3 points Q[, Q2, Q'3, 
corresponding to rank 2 quadrics (which are also the vertices of the 3 
cones Ei) and a fourth point Q[. They have the form: 

Ql « 0 Î + ( l - 0 ) 0 Î , 
Q'2 = ax2-(l-a)x2

69 

Q's = ax2
4 + x2

59 

Q[ = (x1-xAy + (x2^x5)" + (x^x6)K 

In P6, these quadrics intersect at infinity in 8 curves isomorphic to JP1; 
the variety is singular along 4 of them. Blowing up the variety along 
these four curves and blowing it down along the remaining four, as can 
be done in an elementary way by using the asymptotic solutions of the 
differential equations,one shows that, 

4 

f) {z e C6\Qi = Ci} = Jac (hyperelliptic curve of genus 2) \ 
*"1 [4 genus 2 hyjperelliptic curves pairwise trans-

\ versally intersecting in 2 points, each point , 
of intersection belonging to 3 of the 4 curves 

completing the statement of Theorem 9. 

4. The nonexistence of analytic integrals of Hamiltonian systems 

Letz ~ (xX7 x291, <p) e TJ s== B x [I0~ß ? Io + £] x #',for a domainD <= R2. 
Consider in U the Hamiltonian system 

BE ÔE . dB • ÔE 
®1 = —^ 9 #2 = - * ~Z 9 9 = -^T9 I ==: ~ 9 

1 dx2 dxx
 r dl 9 dtp ' 

where 

E(z) = E0(œ9I)+i*Ex(x9I9 <p)+ ... 
Then I is a constant of the motion I0 for the unperturbed system; assume 
that the unperturbed system has two hyperbolic fixed points in B, joined 
by séparatrices; assume that the solution x(t) along these séparatrices 
can be continued analytically to an appropriate complex strip 77 = {0 
< Imi < &}, which contains a finite number of singular points. 
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THEOREM 10 (Ziglin [52]). If the sum of the residues of dEx\dy [z (t)) 
in t ell, where 

t 

(t)=\x(t),I0, J -^(£<T) ,I 0 )<ZT) , 

is not zero, then in JJ the perturbed system does not have an additional analytic 
constcmt of the motion, for any sufficiently small |^| ^ 0. 

Ziglin relates the nonvanishing of the sum of the residues above to 
the nonvanishing of the Melnikov integral. He uses Theorem 10 which 
appears as a local result to prove the global result below, by rescaling 
the variables so that the system can be viewed as a small perturbation 
of the Euler rigid body motion. • 

COROLLARY ([52], see also Holmes and Marsden [20]). The motion of 
a nonsymmetric rigid body in the presence of gravity does not have any addi
tional analytic integrals besides the known ones. 

The-theorem does not apply whenever two principal momenta of 
inertia become equal, because of the fact that the hyperbolic points used 
before disappear. Ziglin [53] applies then successfully the following method : 
consider a Hamiltonian system and a special solution X = <p(t), which 
can be continued analytically for t eC\ consider the linearized equations 
(normal component only) around this solution. To each meromorphic 
integral of the motion of the Hamiltonian system in a neighborhood of 
the curve X = <p(t)7 there is a corresponding rational integral of the lineari
zed equation; moreover, independence is preserved. Any closed path 
issuing from a given point of the Biemann surface X = <p(t) produces 
a linear transformation mapping a vector into a new one obtained by 
solving the linearized equation around this loop. The set of such loops, 
and hence the corresponding maps, forms a group G of symplectic maps 
leaving invariant the rational integrals above. 

THEOREM 11 (Ziglin [53]). If the Eamiltonian system above is comple
tely integrable with analytic integrals, then every transformation of the group 
of monodromy G must preserve the base point and the eigendirection of some 
nonresonant transformation of G. 

This theorem is applied to the symmetric rigid body in the presence 
of gravity around the special solution corresponding to the initial con
dition (M, T) = (0, M2, 0, yx, 0, y2) with M and r defined as in part 
(b) of Section 2. More precisely, we have 
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COROLLARY (Ziglin [53]). The symmetric rigid body with gravity, whose 
center of mass belongs neither to the equatorial plane through the fixed point 
nor to the axis of symmetry cannot have analytic integrals besides the known 
ones. 

Arguing further, Ziglin finally shows that the rigid body motion can 
never be analytically integrable except for the three known cases: the 
Euler, Lagrange and Kovalevski cases. Melnikov integral arguments have 
also been used by V. V. Kozlov, D. A. Onishchenko and A. D. Veselov 
to show nonintegrability for rigid body motions in fluids. 
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TOSHIO OSHIMA 

Discrete Series for Semisimple Symmetric Spaces 

A homogeneous space I - ö/ff of a connected Lie group G is called 
a symmetric space if there exists an involutive automorphism a of G such 
that E lies between the fixed point group Ga and its connected compo
nent Gl containing the identity element. 

For a connected Lie group Gf, put G = G' xG', o[(gX9 g2)) = (g2, gx) 
and E = Ga. Then the homogeneous space X = G IE is naturally isomorp
hic to G1 by the map (g\9g2)

}r^gxg2
1. Hence any connected Lie group is 

an example of a symmetric homogeneous space. Another typical example 
is a Eiemannian symmetric space, which has been well studied from sev
eral viewpoints. 

Now we restrict ourselves to the case where G is semi simple. In this 
case we call G\E a semisimple symmetric space. Berger [1] classifies all 
the pairs (g,I)) of Lie algebras corresponding to semisimple symmetric 
pairs (G,E). For simplicity we assume that G is a real form of a complex 
Lie group Gc and that E is the identity component Ga

0 of Ga. Then X ad
mits an invariant measure and we have a unitary representation of G in 
the Hilbert space L2(G/E) of square integrable functions on X. Hence it 
is a fundamental problem to give an explicit decomposition of L2(GjE) 
into irreducible unitary representations of G. 

Let D(GfE) be the ring of invariant differential operators on X. Then 
D(G/E) is a polynomial ring C[AX, ..., Av\ where Aj are algebraically 
independent. The number r is called the rank of the symmetric space, 
which we will denote by rank((?/Jî). Here we may assume that Aj are 
self-adjoint operators on Z2(G/E). Then the problem we have mentioned 
is almost equivalent to the following problem: give a simultaneous spectral 
decomposition of the self-ad joint operators. 

In the decomposition of L*(GjE) there appear several different types 
of representations. Some of them correspond to most continuous spectra 
of D(GjE). They are called most continuous unitary "principal 

[901] 
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G/E. The projection operator onto the principal series is given by an 
integral transformation by the "Poisson kernel" for X7 and the correspond
ing Plancherel measure is given by a c-function (cf. [5] for their defini
tions), which is calculated explicitly. Other important and fundamental 
representations are those which correspond to discrete spectra of D(G/E). 

By the discrete series for GjE we mean the minimal closed ö-invariant 
subspaces of Z2(G/E). We fix a o'-invariant maximal compact subgroup 
E of G. Then the first fundamental result is 

THEOREM 1. The discrete series for G\E is non-empty if and only if 

rank((?/jff) = iank(JSC/ZnJff). (1) 

Harish-Chandra [3] proves that a discrete series for a semisimple 
Lie group G exists if and only if rank(<?) = rank(J5Q, which is a special 
case of the above theorem. In general, when the condition (1) holds, Flen-
sted-Jensen [2] (cf. [7]) constructs infinitely many irreducible representa
tions that belong to the discrete series. On the other hand it is proved 
in [6] that condition (1) is necessary for the existence of the discrete series. 

ÏTow to describe the discrete series we prepare some notation. Here
after we assume condition (1). Let 0 be the Cartan involution of G corres
ponding to E. We remark that ad = Qv. The involutions of the Lie al
gebra g of G induced by a and 0, and the corresponding complex linear 
involutions of the Lie algebra gc of Gc are denoted by the same letters, 
respectively. Let g = ï) + q (resp. g = ï+p) be the decompositions of g 
into the + l a n d — 1 eigenspaces for a (resp. 0). Put ld == ïnï) + V — l(pnlj) 
and let Ed be the analytic subgroup of GG corresponding to ld. Then Ed 

is a compact real form of the complexification Ec of E in Gc. Let tq be a 
maximal Abelian subspace of ï n g . Then tq is a maximal Abelian sub-
space of q, which is equivalent to condition (1). Let (tq)* denote the set 
of all linear maps of tq to C. For an a G (tq)* we put gc(tq; a) = {X e gc; 
[Y, X ] = a(Y)X for all Y e tq} and moreover put 2(tq) = ( a e (tq)*\{0}; 
gc(iq? °) ¥= {°}}« ^ i x a positive system £(tq)

+ of 27(tq) and put 
n* = 27agc(tq; a) where the sum is taken over all a e 2(tq)

+ and put Q( Y) 
= Jtracec(ad(Y)[ +) for Y e t q . Let W be the Weyl group of the roo;fc 

system £(tq). Then TF,is naturally isomorphic to the quotient group of 
the normalizer NKd(tq) of tq in Ed over the centralizer ZKd(tq) of tq in Ed. 
Let U(Q) (resp. Z7(tq)) be the universal enveloping algebras of the complex-
ifications of g (resp. tq). Let tf(g)10 (resp. U(tq)

w) be the subalgebras of 
D"(g) (resp. U(tq)) consisting of ^-invariant (resp. TT-invariant) elements. 
Using the direct sum decomposition U(Qd) = ((*(nt) ü"(g) + Or(g)t))©Cr(tq), 
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we define a projection p of U(Q) onto U"(tq). Then it is known that the map 
17(8) a DH>eQop(D)oe~e e U(tq) 

^(g)T)/ur(g)1)nï7(g)I)^ï7(tqr. 

I t is clear that the left-hand side is isomorphic to D(G/E). Then for a 
1 e (tq)*, we can define an algebra homomorphism %x of D(G/E) to C by 
the above isomorphism. Here we note that %x = x^ if and only iî p = wX 
for a suitable w e W. 

For a X e (tq)*, we define the following subspaces of i2(0/Jff): 

L2(G\E,Jt%) = {feL2(GlEY,Df = %A(J9)/ for all DeD(GIE)} 

and 

L2
K(GIE; JtK) = {feL2(GIE-7 jeA);f is infinite}. 

Let F be a minimal closed (x-invariant subspace in L2(GjE) and let F JK 
be the subspace of IT-finite functions in K Then it is clear that there 
exists a A in (tq)* such that 7 is embedded in L2(G/E'7 JlK) and that 

Ee <A, a> > 0( for all a G 27(tq)+. (2) 

Let Tq be the analytic subgroup of G with the Lie algebra tq? and let 
Pd be a parabolic subgroup of Gc with the Levi decomposition Pd = MdNf9 

where Jff is the centralizer of 2^ in Gc and Nf is the analytic subgroup 
of GG corresponding to nt

+. Define a lattice Z(tq) in (tq)* by 

L(tq) = {A G(tq)*; X—Q can be extended to a character of Tq 

and exp<A, X> = lfor allX G tq satisfying expX G E}. 

Then, for any XeL(tq), we can define a holomorphic homomorphism 
rA of Pd to C® so that rA(expZ) = exp </l — £, X> for all Xetq and 
that rA(expY) = 1 if Y e j Y e p ^ I , Y> = 0 for all J e t , } . Here 
pd is the Lie algebra of Pd and < , > is the Killing form of gc over C. By 
this homomorphism rA we can associate a holomorphic line bundle LA 

over Gc/P
d. In fact, for an open subset UPd of Gc/P

d, any section / of Lx 

over UP* is a holomorphic function on UPd and satisfies /(gw) = f(g)rK(x) 
for all gr G UPd and a? GPf. 

Let EG be the complexification of E in #c. We define the following 
compact ifc-orbits in Gc\P

d, which have a strong connection with the 
discrete series. Let 17(E) be the quotient group of the normalizer of tq 

in En E over the centralizer of tq in Ec\E. Let wX7 . . . , wm be represen
tatives of the coset W(E)\W and let wx,..., wm eEd be representatives 

S — Proceedings..., t. II 
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of wX9..., wm7 respectively. Then EcWjPd are compact JTc-orbits in G^P* 
and if i ^ j , then E^P* # E^P* (cf. [4]). 

Then the following theorem is a slight modification of a result in [6]: 

THEOREM 2. (i) Assume the conditions (1) and (2). IfL2(G}E) JtK)^ {0}, 

<A, a> =£ 0 /or aZÎ a G £(tq) (3) 

a e i ( y . (4) 
(ii) Under the conditions (1), (2), (3) and (4) we have the following (g, E)~ 

isomorphism 
m 

L2
K{GIM; JiaZ- ©flS^fa/Pf ,<W-M> (5) 

wAere w eqîtals the complex codimension of the compact algebraic manifold 
EçWjPç1 in Gc\P

d (which does not depend on j) and &&\Z(LK) means a sheaf 
of sections of LK in the sense of algebraic geometry. 

In the above theorem, if G is compact1, then condition (1) is trivial 
and m = 1, n = 0, Ec = Gc and the right-hand side of (5) equals 
r[GcIP

d; &^ig(Lx)). In this case, Theorem 2 (ii) is reduced to the well-known 
Borel-Weil theorem. So we want to call Theorem 2 (ii) the Borel-Weil 
theorem for discrete series for semisimple symmetric spaces. 
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B. PAETHASAEATHY 

Unitary Modules with Non-Vanishing Relative Lie 
Algebra Cohomology 

For a real semisimple Lie algebra g0 it is of interest to find the class of 
unitarizable, irreducible Haiish-Chandra modules X such that Eì(Q09 

jfc0, X(&E) is non-zero for some integer i. Here, 1c0 is a maximal compactly 
imbedded subalgebra of g0, E is a finite dimensional irreducible module 
for g0 and E{(...) are the relative Lie algebra cohomology spaces. It is 
known ([8]) that the class of such modules is a subclass of the class of 
modules Aq$x constructed in [5] and [9]. Here, q is a parabolic subalgebra 
of g (dropping the subscript 0 means complexification) under a Oartan 
involution 0 fixing lc07 aud % varies over a subset of t* where Ms a funda
mental Oartan subalgebra of g contained in q. There is a conjecture, as 
yet unproved, that Aqj belong to the subclass above. The only difficulty 
in proving this conjecture is the inability to prove that the Aqj in question 
are unitarizable. This problem has been solved in some special cases — to 
mention a few due to Speh ([7]) in the case of $\(n, R), by Enright ([3]) 
in the complex case, by Baldoni-Silva and Barbash ([1]) in the case of 
real rank one groups and by the present author ([6]) in the case of highest 
weight modules. The general problem is often vaguely referred to as the 
problem of unitarizability of A^. A solution has now been obtained by 
Vogan and more recently, also by Wallach. 

For all g, when q is of quasi-abelian type (see the definition below), 
it has been proved recently by Enright, Parthasarathy, Wallach, and 
Wolf ([4]) that AqA are unitarizable. (We say q is quasi-abelian if [unk, 
unp"} = 0 where u is the nilradical of q). 

In this paper we will assume that rank of g0 = rank of Jc0 and discuss 
the unitarizability of AqtX whenever q contains the Borei subalgebra r cor
responding to a Borel-de Siebenthal chamber P (Definition: P contains 
a unique non-compact simple root ß and its coefficient in the highest root 
is 1 or 2). 

[905] 
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We assume that g0 is irreducible. Eecall that rank of Jc0 = rank of g0. 
Let ß be the unique noncompact simple root for P and, if (g0, hQ) is not 
a hermitian symmetric pair, let y be the unique simple root for Pk which 
is not a simple root for P. Let u be the nilradical of q. Write 

unit = uk + itk, 

where the coefficient of ß in the roots in %tk is zero and the coefficient of ß 
in the roots in uk is two. 

By looking at the construction in [5] one can infer that, if q' np = q np, 
then we may work with q' instead of q. Thus we can assume that q is maxi
mal among all q', such that qnp = c\'np. 

By a verification case by case one can check that the following is true: 

(*) Either q is of quasi-abelian type or, if ql9 with the Levi decomposition 
mx + %tx is the maximal parabolic subalgebra obtainted by deleting ß, then 
uxnJc = n". 

We only have to deal with the latter case since for parabolics of quasi-
abelian type the result is proved in [4]. 

From the construction in [5] recall that the modules AqtK are obtained 
by a chain of "completions" of a g-Verma module VQtp3ß with respect 
to a reduced expression for w e Wk, where Pkn—wPk = the roots in 
unie. Here, the word "completion" is used in the sense of [2], Thus, we 
can make 

(Step 1) completion with respect to a reduced expression for w' where 
Pkn—io'Pk = the roots in uk, 

followed by 

(Step 2) completion with respect to a reduced expression for w" where 
Pkn — wnPk = the roots in uk. 

Since ß has coefficient zero in,the roots in uk, the simple reflection sy 

does not occur in the reduced expression for w'. Thus, after completion 
of step 1, the original Verma module becomes another Verma module 
VQsPtti>. In view of (*), step 2 is now just like producing a module 
of type A^: 

The parabolic qx is of quasi-abelian type. However, the parameter p' 
is in general off the list of parameters for which unitarizability has been 
established in [4]. 

The crucial "Dirac operator inequality" associated with unitarizability, 
which is often an aid in proving unitarizability, can be seen to hold for 
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the irreducible quotient of YQtP$fÀ. This inequality is preserved during 
completions. Thus.a large part of VQfPtii> (considered as a Zc-module) which 
is adequate to analyse the module AqtX will satisfy the Dirac operator 
inequality. This circumstance enables one to employ the techniques fam
iliar in the quasi-a.belian case and leads to a proof of the unitarizability 
of J.M. 
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A. B. VEFKOV 

Spectral Theory of Automorphic Functions 
for Fuchsian Groups of the First Kind and Its 

Applications to Some Classical Problems 
of the Monodromy Theory 

Introduction 

In the first part of this address we give a description of the spectrum of 
the automorphic Laplacian A for the Fuchsian group of the first kind 
with noncompact fundamental domain. In the second part we establish 
a connection between the resolvent of the operator A and the ha,rmonic 
Green function on the Eiemann surface for the group T. As an application 
of this theory we obtain an expression for the Fourier coefficients of the 
Klein absolute invariant J for the group T with zero genus in terms of 
some series with Kloosterman sums. We find also certain explicit formulae 
for the accessory coefficients of the Fuchs equation with J7 as a mono
dromy group. 

We begin by introducing some notations: E is the hyperbolic plane, 
ds2 is the Poincaré metric, L is the Laplace operator in the $s2-metric, 
dfi is the Eiemaunian measure associated with the äs2-metric, r is an 
arbitrary Fuchsian group of the first kind with noncompact fundamental 
domain E (notation r e9ft), |JP| is the rô^-volume of E (\F\ < oo), # is 
an arbitrary finite-dimensional unitary representation of E, V — V(x) 
is the linear space over C for the representation %, «5f (E-, %) *= L2(E-7 dp; %) 
is the standard Hilbert space of functions / : E-^Y which are automor
phic: f(yz)= %(y)f(z)9 and which have a square integrable V norm on E 
with respect to dfi,A(r*, %) is the self-adjoint non-negative operator gen
erated by — L in «^(JT; %) (the automorphic Laplacian). 

[909] 
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Part 1 

From the famous papers by A. Selberg and from the works of his succes
sors in the 60's (E. Godement, L. Faddeev, E. Langlands, W. Eoelcke) 
the following properties of the spectrum of the operator A(F; %) are well 
known. The spectrum is spread over [0, oo) and contains a ft-multiple 
continuous spectrum in [1/4, oo). The multiplicity 1c = h(r, %) is the 
total degree of singularity of % with respect to r. For example, if % is trivial 
and one-dimensional (% = 1), then h is the number of all pairwise non-
equivalent cusps of F. (If % is regular, ^ G ^ ( i ^ ) , then the continuous 
spectrum is missing, ft = 0. We consider here only the situation in which 
continuous spectrum does occur, #e9is(.F).) The eigenfunctions of the 
continuous spectrum arise from the Eisenstein-Maass series as a result 
of its analytical continuation. The general theory does not exclude also 
the existence of a discrete spectrum of A (J1; %) composed of isolated eigen
values of finite multiplicity. 

From the naïve point of view, one might suppose that the discrete 
spectrum of A(r-7 %) is ample. Namely, one can expect that its distribution 
function N(l; r-,%) = {the number of all ty Xj < X} satisfies the Weyl 
formula 

N{X-,r;%) ~J^-dim7(aW (1) 

and the proof of this statement should not be too difficult. However, up 
to now* the author does not know any proof in the general situation of 
re<$R, % e $fts(-T), that there exists at least one eigenvalue of A(r',x) 
which lies on the continuous spectrum. 

A satisfactory solution to this problem might result from an inves
tigation of certain Dirichlet series defined by A. Selberg in [16]. These 
series arise from the Fourier coefficients of the Eisenstein-Maass series. 
Investigation of this kind has been so far pursued in the very special situ
ation of some congruence subgroup" J7 £ PSL(2 ; Z) (see [3]) (and for cycloi-
dal subgroups) but it is very difficult in any other case (see [19]). Infor
mation about the discrete spectrum of A (T; x) we get here is valid in 
a more general situation and is obtained by indirect methods only. 

Let us now turn attention to theorems on the spectrum of A(r-7 #). 
Let I(s-7 r-7 x) be the determinant of the scatterring matrix defined by 
A(r-, x)> I t is a meromorphic function of s e C. From the Selberg trace 
formula the following formula (see [16]) results (called here the Weyl-Selberg 
asymptotic formula). 
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THEOEEM 1. JPor any r e SUI and % e$fts(r) 

„ „ „ . 1 ç V (1 , . „ \ , | ^ | d i m 7 , 

À = l/4 + T a , 2 7 > 0 . 

The precision of this asymptotic formula may be increased, if necess
ary (see [20]). 

COROLLARY 1. Eor given r and %,'letI(s;F'7%) be a meromorphic function 
of order 1; then the Weyl formula (1). is valid for JV(A; F; %). 

oo 

Let Z(8-, r; %) = /7{P} u àGt(lr~x(P)^(P)~s~% Bes > 1 , be the 
Selberg zeta function (see [16]). I t is known that it has a meromorphic 
continuation to the whole of C (as a function of s) and is a function of 
order 2 satisfying a certain functional equation. Some of its nontrivial 
zeroes lying on Ees = 1/2 and s e [0,1] correspond to eigenvalues ^ of 
A(r; x) a n d the other ones correspond to the poles of I(s; r-7 x) in 
Ees < 1/2. From the definition of Z(s\ F\ x) and from the Selberg trace 
formula the following theorem is derived (the Artin factorization formula 
as I call it) (see [20], [21]): 

THEOREM 2. Let .TeSUÎ and let rxarbe an arbitrary subgroup of 
finite index, ^eSR(r1) = %(Fx)\jyis(rx)'7 then 

(i)Z(s7rX7x) ^z(SiF7u
xy9 

(2) 1(8; rx; %)Q{r1\ xf~28 = I(«; r\ Ux)ti(r-7 U
xy-2s', here Ux is the 

induced representation (from #), Q is a certain elementary function. 

COROLLARY 2. If the Weyl formula (1) is valid for E(X; rx; 1) then it is 
true for N(A9 r-, 1), whenever rx is a normal subgroup of finite index in r. 

From the results of D. Hejhal and Corollary 2 the next theorem fol
lows : 

THEOREM 3. Let r be an arbitrary congruence subgroup (not necessarily 
principal) r s PSL(2, Z); then the Weyl formula (1) is valid for N(l\ JT; 1). 

We now turn to an inspection of those cases where one can only prove 

N(X7 r; x) -> oo; (2) 

this condition being called here the Boelclce hypothesis. I got to know this 
hypothesis from J. Elstrodt and L. Faddeev. I t has a meaning for arbit-
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rary Te3ft, #e9la(.T). W. Eoelcke proved (2) for Hecke groups r 
= (?(2cos7i;/g) and % = 1 (see [14]). 

From the well-known Fricke theorem on the algebraic structure of 
F and from Theorem 2 we get (see [20]): 

THEOREM 4. (i) Let rx be an arbitrary normal subgroup of finite index 
in JTGSR. Then for any sufficiently large X the inequality holds: 

^(A;r i ;l)^( £ dfca»7(*))- Uil 

Eere (rx\r)*GS is the set of all regular representations of the factor group 

rx\r. 
(ii) For any r e SCR there is a subgroup Fx as in (i) such that the set (rx\r)*Gg 

is not empty. 
From the formal point of view, the theory of general Hecke operators 

can be regarded as a different method of investigating the discrete spectrum 
of A(r*9 x)- These operators exist if J1 has a nontrivial commensurator 
and is generated by nontrivial translations gt E->E such that the double 
classes FgF are discrete (we suppose here x — 1)- ^7 Hecke operator 
T(g) is linear, continuous in «#( J1; #), commutes with any bounded func
tion of A(r-, x) and satisfies T*(g) = T(g~1)7 asterisk denoting the con
jugate operator. These properties of T(g) are useful for the investigation 
of the spectrum of -A(.T; #). The following theorem is typical (see [20]). 

THEOREM 5. Lei .7^ e 9Jt have a fundamental domain with one cusp only 
and let rx be a nontrivial subgroup rx c J ' G S J I ; then N(A7 rx) 1) -> oo. 

A-*oo 

We now focus attention for a while on one important example of 
a group JTeSR of zero genus with a nontrivial commensurator (see [5]). 
For any such r the corresponding Eiemann surface is symmetric and the 
spectral theory of the operator _A(JT; 1) is reduced to the Dirichlet and 
Neumann boundary value problems. (This example will also be of im
portance in the second part of the address.) 

Let M be a regular polygon in E, i.e., such that 1) M is limited by 
finitely many geodesies, 2) interior angles of M are of the form izß where 
jfc G Z, lì, > 1, or ft = oo if the corresponding angle is equal to zero. Let m 
be the number of zero interior angles of M. If m ^ 0, then M is not com
pact but | i f | < oo. Let rQ

M be the group generated by the reflections 
with respect to the sides of M. We define a subgroup Fu of index 2 in the 
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group rQ
M, consisting of words of even length with respect to the generators 

of r j f . If m ^ 0 then EM e 30?. Its fundamental domain FM can be chosen 
to be FM = Mu SM, where S is the reflection relative to some side of M. 
We have (see [20]): 

LEMMA 1. (1) The reflection S generates the Eeclce operator T(£)f(%) 

= / ( ' * ) ; 
(2) T(S) is self-adjoint] 
(3) PX(S) = \{I-T(ê)),Pt(ê) = \(I + T{é)) are orthogonal projec

tors onto some subspaces #fx(FM; 1), ^%(FM\ 1) c #f(FM ; 1), ^f = ^©e^f 2; 
Ä̂ <5 I is the identity operator in MP. 

THEOREM 6. (1) The restriction of the operator ~-A(rM; 1) to ^fx(J^2) 
is isomorphic to the operator of Eirichlet (Neumann) boundary value problem 
in 31 for the differential operator L. 

(2) The operator of the Eirichlet problem from (1) has a discrete spectrum 
only. 

(We remind that the Dirichlet (Neumann) condition is f\dM 

= 0 (df/dn\dM = 0), where BM is the boundary of M and djdn is the 
normal derivative.) 

The general method of the Selberg trace formula with a construction 
of a Hecke operator (see [17]) admits a modification in the special case 
of the group rM and the operator T(S). Hence we obtain the Selberg 
trace formulae of Dirichlet and Neumann boundary value problems 
(see [20]). I omit here these formulae in all of their details and define the 
Selberg zeta-function of the Dirichlet problem by 

where the product is taken over some set of conjugate element classes 
in SFM,Jf is the norm of the class, a($Y) is equal to 1 or 2, depending 
on iy (for details see [20]), Z(s\ FM

m, 1) is the ordinary Selberg zeta-func
tion. The function ZM(s) has similar properties to those of Z(sm,r-,1), 
whenever Tis a cocompact group. Lot NM(X) be the distribution function 
of the eigenvalues of the Dirichlet boundary value problem operator 
Px{â)A(rM; 1) in If. According to the method of analytical number 
theory, modified by D. Hejhal (see [3]) and B. Eandol (see [13]), of esti
mation of the Eiemann zeta-function argument in the "critical strip" 
we have: 
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THEOREM 7. (See [20].) The following formula is valid: 

EM(ll4: + T*) =±^T*-^TlnT+-^(CM + m)T + 0(TßiiT), T->co. 
47C 2TC 2TC 

Eere CM is a constant (see [20]). (In this formula m may be equal to zero, 
i.e. M can be a regular compact polygon.) 

COROLLARY 3. For any sufficiently large X the following inequality holds: 

Along with examples of discrete spectrum lying on the continuous 
one there are also examples of groups jTeüüi for which the operator 
A(r-,1) has a discrete spectrum lying outside the continuous one, i.e. 
on [0,1/4). Corresponding eigenfunctions are either the residues of Eisen-
stein-Maass series or cusp-functions. We do not discuss here this question, 
which is interesting for applications, and we refer the readers to papers 
[18], [23]. 

Part 2 

One of the fruitful problems of the analytic theory of ordinary linear 
differential equations is the problem of reconstruction of the equation 
coefficients according to a given, monodromy group. This is a classical 
problem (see [10]), which is not finally investigated even for a Fuchsian 
second order equation. An equation of this type is closely connected with 
a non-linear Schwarz equation. For example, an interesting Schwarz 
equation arises if one "investigates the conformai mapping of the upper 
half-plane P cz C onto a simply connected curvilinear polygon M limited 
by a finite number of circular arcs. We consider this situation in detail. 

If z:P->M is a given conformai mapping, then 

{*,S}=QM(S) (3) 

where {#,«/} is the Schwarzian derivative, {#, «/} = » ' " V —|«"V" a , 
and QM[*f) a rational function uniquely defined by the polygon Jf.^This 
function has second order poles at the pointsj corresponding to the vertices 
b% of M. The coefficients at these poles are evaluated in terms of the in
terior angles of the polygon M (see [15], [5], [4], [2], [8]). However, as far 
as I know, the explicit formulae are not known for all coefficients Xk 

(accessory parameters) (more exactly, such formulae are lacking for 
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Ï —3 of them, if I is the number of vertices of Jf) at the first order 
poles of QM (J) situated at the points ak, in terms of M or in terms of the 
monodromy group rM corresponding to the Fuchsian equation 

f W + l f c W / W = 0 . (4) 

(As it will be seen later, if one knows the accessory coefficients then one 
knows the function QM(#)-) 

In this part of the address we find (following [22]) some formulae for 
the desired accessory coefficients under the natural assumption that 
M is a regular polygon (see Part 1). Besides, we suppose that m = m(M) 
> 1. (The result is valid also in a more general situation (see the end of 
this part).) It is also convenient to assume: (i) the number of angles of 
M is equal to I = n + l9 n > 2, (ii) M e E = {z e C\ z = x + iy, y = Imz 
> 0}, (iii) bs = z(a5), j = 1, ..., w + 1; 6B+1 = i oo, an+1 = oo, (iv) for 
any sufficiently large a > 0 we have {z e M\Imz > a} = [0,1/2] x [a7 oo). 

The formulae for the accessory parameters will be obtained from a cer
tain exact connection between the coefficients of equation (4) and the 
coefficients of the expansion of a given conformai mapping. Earlier, 
a similar connection was useful for the investigation of the ^-invariants 
for triangle groups starting from the hypergeometric equation (see [6], [12]). 

Now we pass to the results. The following statements are known: 
ajeR7j = 1, ..., n + 1 . If fx and jf2 are two linearly independent solutions 
of equation (4) then z(J) = fx(S)h(S)~x is the solution of (3). The inverse 
mapping (absolute Klein invariant) <fM{z) = <̂ (#) exists and is a FM-auto
morphic function analytic in E. Moreover, FM is the group defined in 
Part 1. FM has a cyclic subgroup F^ generated by the translation z->z + l. 
The Fourier expansion 

«**(*) = £ Akexj)27iilcz (5) 

holds and all Ak e R. From (3) we have 

-{SM,*}=SII(*)QM(SM{*))- (6) 

The following formulae are known 

Q*(S) =/7(^-%)-iK-2(^)+ ix^-«*)-1] , 
n 

Nk = i(l-al)[J'(ale-at). 
*=i 
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Here the prime means that the product is taken over all t except for t = ft, 
n—2 

En-AS) = 2 Xk<?h9 Xn-i ^ I/2- T h e problem is to find the coefficients 
7c=0 

Xk91c = 0 , 1 , . . . , n — 3. (In the special situation of w = 2 equation (4) 
for 'triangle functions' does not have accessory parameters.) 

n n 

We introduce the notation [] (J — ak) = J£ ^k^h9 Bn = 1? •*" = -fjf (*)• 

We put 

~ l « j L , . . . , ^ , * 1 > . . . , s 4 < o o , 

(8) 

&=0 Zi+Z2+--°+Zfc+ml+m2=s |a 

In (8) we assume that 4 < — r < w + 2, 0 < jp < w —2. The first principal 
statement of this part is 

THEOREM 8. (1) The matrix {$p(r)} is invertible (moreover it is triangular 
with positive elements on the main diagonal)-, let {$p(r)}~1 =Vp(r)-

(2) For the coefficients Xk, 0 < f t < w — 3, the following formula is 
valid : 

** = % %(r)!F(r).- (9) 
r = - 4 

The proof of this theorem is based on formulae (5)-(7) (for details 
see [22]). 

The equality (9) makes sense if one knows the coefficient Ak from (5). 
How we will obtain some formulae for Az\Ak9 h > 1. I t seems that the 
Eamanujan-Hardy-Littlewood-Eademacher-Lehner circle method (see 
[7]) might be adequate here; however, this method turns out to be not 
sufficiently exact for an arbitrary group FM. Therefore we use another 
method which is based on the connection between the resolyent of the oper
ator A (FM\ 1) and the harmonic Green function. Furthermore this method 
gives some more information about the invariant <fM(z). 

Let GM(z, z') be the Green function of the Dirichlet boundary value 
problem in M for the ordinary Laplace operator. From the conformai 
invariance of this function and from the Eiemann theorem we derive 
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LEMMA 2. The following formula is valid: 

vrM\%i & ) = - — m ====-<• j 
2 7 1 I ^ ( « ) - ^ K ( « ' ) I 

where the bar above SM(z') denotes complex conjugation. 

Let r (#,#'; s ; r K ) be the kernel of the resolvent (A (rM
m

91) — s (1 — s)!)""1 

at some regular point s(l — s) (for example, Be« >1). 

THEOREM 9. (see [22]). We have: 

GM(z9z')^ lim \r(z,zt-9S)rM)-r(^z,zt\S)FM)\. 

Now we introduce the Siegel-Selberg series as I call it (see [9]): 

• * » ( * > s ; - T M ) = X ( e x P 2 7 r ^ ( y * 0 ) V y ( Y * ) I s - H 2 ( 2 T U | n | y ( j * ) ) ; 

this series converges absolutely in Ees > 1. Here n eZ, z «= Ee^-MIms 
= «?(») +iy (ä), Zfi(#) is the modified Bessel function of the first kind. 
The second principal statement of this part is 

THEOREM 10. The following formula is valid: 

JmSM(z)Az\ = ni lim {Fx(z9 s; rM)-F^(z, s; rM)). 
B-*l + 0 

The proof of this theorem is based on Lemma 2 and Theorem 9. It 
requires also the use of an asymptotic expansion for r (z,z'\ s ; FM) when 
Im#~>oo (see [22]). 

In this way the problem of finding the Fourier coefficients of JM(z) 
is reduced to that of finding the Fourier coefficients of the Siegel-Selberg 
series. These latter coefficients are well known from the papers by D. Me-
bur [9] and J. Fay [1], Finally, consider the Kloosterman sums 

8(m, n;c) = V exj>2ni(malc+ndlc) 

where yz = (az+b)(cz+d)~l, y e J^xrM / r r o , y $ J^. By the Biemann-
Boch theorem we have: 

LEMMA 3. For any group rM, Hier e are no cusp forms of weight 2. 

From Theorem 10, Lemma 3 and the results of papers [9], [1] we obtain 
(see [22]): 
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THEOREM 11. For the Fourier coefficients of the Klein invariant JM(z) 
the following formula is valid: 

A^zl = -^2 '« - 1 ' S f ( -^ l50) I 1 (^ : ) , *>1 . 

Let us remark here that the last formula extends the Eademacher 
formula which he obtained for the case of a modular group (see [11]). 

In conclusion, let us point out certain possible generalizations of 
the results of this part. The basic results, i.e. the statements of Theorems 
8, 11, are extended to the case of an arbitrary group r e aft of zero genus. 
The proof of Theorem 11 is essentially different. It is connected with 
the conformai invariance of a certain modified Neumann function. For 
an arbitrary cocompact Fuchsian group of zero genus one should be able 
to create a similar theory. The accessory coefficients should be expressed 
in terms of the asymptotic expansion coefficients of the modified automor
phic resolvent kernel in the neighbourhood of the pole of the conformai 
mapping J(z). All the theory is expected to be very complicated in the 
situation of a non-zero genus. I hope that in this case the spectral theory 
of automorphic functions might prove useful for the effective construction 
of conformai mappings of multiply-connected Eiemann surfaces onto 
some special canonical domains. 
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MICHÈLE VEBŒNE 

Formule de Kirillov et indice 
de l'opérateur de Dirac 

Dans cet article nous annonçons une formule pour l'indice équivariant de l 'opérateur 
de Dirac et montrons son analogie avec la formule universelle proposée par Kirillov 
pour le caractère des représentations d'un groupe de Lie. Cette analogie suggère une 
généralisation de la formule de Kirillov au cas des orbites non génériques do la re
présentation oo adjointe. 

Ceci est un travail commun avec Nicole Berline. 

Soit G un groupe de Lie d'algèbre de Lie ft. On considère la fonction 

( eadX/2 __ 0-adXß \ 
J m 

adX / 
Elle admet, au moins dans un voisinage de 0, une racine carrée analytique 
j 1 / 2 , telle que j1/2(0) = 1. 

Supposons G unimodulaire et de type I. Soit G l'ensemble des classes 
de représentations unitaires irréductibles de G. Kirillov a conjecturé la 
formule suivante [16]: pour presque tout TeG (au sens de la mesure 
de Plancherai) il existe une orbite 6 de G dans le dual g* de g telle que, 
dans un voisinage de 0 dans g, on ait l'égalité de fonctions généralisées 

tr 3?(exp X)jll2(X) = / ««">*&(/) , (D 

en notant ß0 une mesure invariante sur l'orbite 0, que nous préciserons 
dans la suite. La validité de cette conjecture a été établie dans de nom
breux cas [10,16,14,15]. 

Cette conjecture est un des aspects de la méthode des orbites qui con

siste à mettre en correspondance, génériquement tout au moins, représen

t a i ] 
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tations unitaires irréductibles d'un groupe de Lie et orbites de la représen
tation coadjointe. Dans cette correspondance, à une représentation de 
la série discrète est associée une orbite G = G •/ admissible dont le stabili
sateur est compact [11]. Eéciproquement, supposons que G admette une 
structure riemannienne ö-invariante, et soit *r = i^x un module de Clifford 
admissible sur G (voir 2.12). Considérons la représentation virtuelle T.r 

dans la différence des noyaux L2 des opérateurs de Dirac D*. Dans de 
nombreux cas, cette représentation est la représentation TfiX de Duflo. 
La formule universelle de Kirillov dicte une formule pour la trace (au sens 
fonctions généralisées) de la représentation T^7 c'est-à-dire une formule 
pour l'indice équivariant de l'opérateur de Dirac D. 

Il parait donc naturel de rechercher une formule similaire à celle 
de Kirillov pour l'indice équivariant d'un complexe elliptique o-équi-
variant sur une variété M. Nous avons montré dans [3], [6], comment 
la notion de formes (r-équivariantes permet de proposer une telle formule 
universelle pour certains complexes classiques. 

Nous montrons ici comment écrire la formule de Kirillov en termes 
de formes équivariantes. Si l'orbite G satisfait certaines conditions, on peut 
en effet écrire la formule de Kirillov sous la forme: 

tr T(ex-pX) = JCh(X, r)f~ll2(X, TG)7 (2) 

où Ch(.X, r) et f~ll2(X, TO) sont des classes de cohomologie équivariante 
par rapport à l e g définies clans la section 1. Dans le cas où l'orbite G 
est de dimension maximale, le terme f~ll2(X, Tö) se réduit à la constante 
j~ll2(X) et jGh(X, r) coïncide avec / ei<f>x> dß&(f). Un exemple de Khal-

o 0 
gui [14] montre que pour une orbite non générique la formule (1) est 
fausse, même si on remplace j 1 / 2 par une autre fonction analytique Cr-in-
variante. 

L'écriture ci-dessus suggère que, pour une orbite non générique, la 
formule de Kirillov doit être modifiée pour tenir compte du terme 
f-li2(X,T&). 

Malheureusement, nous devons souligner les défauts de notre inter
prétation dans son état actuel: 

(1) Nous ne définissons le terme f~ll2(X, T&) que sous des conditions 
probablement trop restrictives sur l'orbite G. 

(2) Dans le cas où /"ll2(X, TG) est défini, nous ne pouvons assurer 
que le membre de droite de (2) définisse une fonction généralisée. 
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1. Cohomologie et classes caractéristiques équivalantes 

1.1. Soit M une variété différentielle. On note sf(M)^ ®sfr(M) l'algèbre 
sur C des formes différentielles; on note ^(M) la sous-algèbre, commu
tative, des formes paires; on note d la dérivation extérieure. Si f est un 
champ de vecteurs, on note c(£) : s/(M)->sf(M) la contraction, j?(f ) la déri
vation de Lie. On a JSf(f) = d'c(ë) + c(£)'d. 

Soit G un groupe de Lie agissant sur M à gauche. Soit g l'algèbre de 
Lie de G. Pour X G g on note X* = X% le champ de vecteurs sur M défini 
par (X*f) (m)— (dldt)f(exp tX-m)\(!=0. Soit séx la sous-algèbre des formes 
p G j/(JSf) telles que J2?(Z*)/* « 0. 

On rappelle les définitions de [3], L'opérateur (non homogène) dx 

= d — 2i%c(X*) sur s?(M) est une antidérivation qui inverse la parité 
des formes et vérifie (d — 2iv;c(X*j)2 = — 2/&7i;j£?(.X*). Il est donc de carré 
nul sur J / X . On pose 

Z(M,dx) ^keT(d-2inc(X*)), 
B(M, dx) = (a-2t7uo(Z*))j/x . 

On a donc J5(JM", dx) c #(Jf, Äx) c séx. On pose 

Jï*(Jf, dx) « £(i!f, dx)lB(M, dx). 

Il est clair que si X*f = 0, l'anneau E*(M, dx) est l'anneau de cohomo
logie ordinaire de M. 

1.2. La cohomologie de Äx est particulièrement simple à décrire lorsque M 
est compacte et que le groupe à un paramètre exp tX est relativement 
compact [6]. Dans ce cas les zéros de X*M forment une sous-variété Jf0 

de H et on a la proposition suivante: 

1.3. PROPOSITION. Eapplication i*: E*(M, dx)->E*(M0) est un isomor-
phisme. 

La formule de localisation [3], [6] généralise un résultat de B. Bott 
[7]? [8]. Nous l'énonçons ici dans un cas particulier. 

Si /u e= J?/j,[rl e s#( M) et si N est une sous-variété compacte orientée 
de M, on écrit / fi pour j fi{dimN]. Si m est un point de M, on pose /A (m) 

N N 

= //0] (m). Si N est une sous-variété compacte orientée invariante par 
le groupe à un paramètre exp tX, l'application \i->fii est bien définie 
sur E*(M7dx).

 N 
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Si m e M est un zéro du champ de vecteurs X , la dérivation de Lie 
J§P(X*) induit un endomorphisme Lm(X) de l'espace tangent TmM. 

Supposons que le groupe G soit compact. Si X e g et si m est un zéro 
de X* tel que Em(X) soit inversible, il existe une base ex, e2, . . . , e2n_1, e2n 

de TmM telle que: 

On suppose cette base d'orientation positive. Alors, le produit Xx...Xn 

ne dépend pas du choix d'une telle base. On pose: 

%{Lm(X)) =i-nXxX2...Xn. 

On dit que X* est non dégénéré lorsque Lm(X) est inversible pour tout 
zéro m de X*. Eappelons alors la 

1.4. PROPOSITION. Soit G un grou>pe de Lie compact agissant sur une variété 
compacte orientée de dimension 2n. Soit X e g tel que le champ de vecteurs 
X*M soit non dégénéré. Soit ß e E* (M, dx). Alors 

/'- s 
1.5. Eemarque. La proposition 1.4 est aussi obtenue dans [1] par les 
méthodes de la cohomologie jP-équivariante ([19], voir aussi [23]). 

1.6. Revenons au cas où G est un groupe de Lie quelconque. Une applica
tion Xï-+fix de g dans stf(M) sera appelée une forme équivariante si 

pxeZ(M,dx)9 

Vax = g-Vx p o u r s r e ö , X e g . 

Donnons dès maintenant un exemple: 

1.7. Soit (Jf, a) une variété symplectique, munie d'une action hamiltonienne 
d'un groupe de Lie G. Notons fx le moment de X G g. Par définition on 
a c(X*)a + dfx = 0 et comme da = 0, il en résulte que fx — (aßi^) est un 
élément de Z(M, dx). 
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En particulier, soit G cz Q* une orbite de la représentation coadjointe 
de G. Pour la structure symplectique canonique de G, le moment de X G g 
est donné par fx(l) = — <ï, X> pour l eG. L'élément exp [—£ (fx — (°72^))] 
eZ(M, dx) jouera un rôle important dans la suite. 

1.8. Rappelons comment l'analogue équivariant de la construction de 
Ohern-Weil fournit des éléments de E*(M7dx) ([5]). 

Soit E un groupe de Lie d'algèbre de Lie ï). Soit P->M un fibre princi
pal de fibre E sur lequel E opère à droite. On suppose P muni d'une action 
à gauche du groupe G. On fait l'hypothèse que P admet une 1-forme de 
connexion a invariante par G. (Cette hypothèse est toujours satisfaite si 
G est compact, mais il serait préférable de l'éviter dans la situation géné
rale). Pour X G g on définit le moment de X par Jx = c(Xp) a. On note Q 
la courbure de a. Soit 0 une fonction polynômiale IT-invariante sur ï). 
On définit par multilinéarité la forme 0(JX — (Q/2ìTC)) sur P . Cette forme 
se projette en une forme sur M notée 0(X7 a), qui appartient à Z( M, dx) 
et dont la classe dans E*(M, dx) ne dépend pas de la connexion ö-inva-
riante a choisie. On note cette classe 0(X,P). On peut encore definir 
0(X,E) lorsque 0 est un germe de fonction analytique en 0 sur I): si 0 
est entière, 0(X, P) est une forme sur M, dont les coefficients dépendent 
analytiquement de X ; si le rayon de convergence de 0 est fini, on peut 
définir 0(X,F) sur tout ouvert relativement compact de M, pour X 
assez petit. Si on note 1(1)) l'algèbre des fonctions entières JT-invariantes 
sur I), l'application 0\->0(X,F) est un homomorphisme d'algèbres de 
î(i)) dans E*(M,dx). 

1.9. Fibre trivial. Supposons que P soit le fibre trivial M X E, l'action de 
G étant donnée par g (m, h) = (gm, y (g) h), pour un homomorphisme y 
de G dans E. Notons aussi y l'homomorphisme de g dansl) qui s'en déduit. 
Soit a la connexion (plate) sur P image réciproque de la forme de Maurer-
Oartan sur E. Alors a est ©-invariante et on vérifie immédiatement que 
0(X, a) est la fonction constante sur M égale à 0(y(X)). 

1.10. Homomorphisme de fibres. Un homomorphisme E-+E' de groupes de 
Lie définit de manière naturelle un homomorphisme du fibre P dans le 
fibre principal P' = E x f f f f de fibre E'. L'action de G sur P se trans
porte naturellement à P ' . Si P ; admet une connexion ö-invariante, on 
identifie, par abus de notation, les formes associées (1-forme de connexion, 
courbure, moment, etc.) et les formes sur P qui sont leurs images réci
proques par l'homomorphisme P->P'. 
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1.11. Fibres vectoriels. Soient V un espace vectoriel, réel ou complexe, et 
-f"->M un fibre vectoriel de fibre-type V. Le fibre principal associé a pour 
fibre E = GL (7). Si G agit sur y en préservant une connexion linéaire, 
à toute fonction 0 Jff-invariante sur ï) = gl(V) est associée par 1.8 une 
classe 0(X,ir) G jff* (If, dx). En particulier, on notera Ch(X, "/") (carac
tère de Ghern) la classe associée à la fonction Ab-*treA. 

Soit Q (z) = J£ anz
n une fonction analytique d'une variable z. Pour 

tout espace vectoriel Y, la fonction A\->dGbQ(A) sur ^ ( T ) est invariante. 
Soient TT.->.M" (̂ ' = 1, 2) deux fibres ©-équivariants et admettant des 
connexions ©-invariantes. Soit ^ 1 © ^ 2 leu* somme de Whitney. Il est clair 
qu'on a: 

1.12. LEMME. 

detQ(X7r1®r2) = äetQ(X,i^1)detQ(X,r2). 

1.13. La fonction j(z) = (ezl2 — e~~zi2)\z et sa racine carrée j 1 / 2 définie 
(au voisinage de z — 0) par j1/2(0) = 1 apparaissent dans la formule du 
caractère et de l'indice de l'opérateur de Dirac. On pose 

/ll2(x,r) ~tetft2(x,r)9 
/~ll2(x, r) = detj~1/2(x, r). 

Sur les algèbres de Lie so(n) cz gl(n) et sp(n) c gl(n) la fonction 
A\-*àetj(A) admet une racine carrée analytique entière. Si donc f est 
associé à un fibre principal ©-équivariant de fibre SO(w) ou Sp(w) et 
admettant une connexion ©-invariante, la forme fli2(X7'f) est définie 
sur M toute entière et dépend analytiquement de X. 

1.14. Notons DL(w, C) le groupe GL(w, C ) / ± l . Un fibre principal HT de 
groupe DL(w, C) sera appelé pseudo-fibré vectoriel. Si iV est ©-équivariant 
et admet une connexion ©-invariante, on peut encore définir le caractère 
de Chern Ch(X,TT). 

Nous pouvons maintenant énoncer la formule pour l'indice équiva
riant de l'opérateur de Dirac obtenue dans [6]. 

Soient M une variété riemanienne compacte orientée de dimension 2Z 
et © un groupe connexe d'isométries de M préservant l'orientation. Soit 
ir = f O 0 ^ i ^n fiferé gradué de Clifford [2], ©-équivariant, sur M. Pour 
chaque m G M, la fibre ir

m est donc un module gradué pour l'algèbre de 
Clifford C(TmM). Notons #+ (resp. S~) l'espace des spineurs pairs (resp. 
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impairs). Pour chaque m e M, on a des décompositions 

K = Btevrm et y*n = Bâ®Wm. 

Les espaces Wm/±1 définissent un pseudo-fibré vectoriel ©-équivariant 
ir [6]. 

Soit _D^: P ( f °)->P(fx) l'opérateur de Dirac associé au module de Clif
ford *f9 défini à l'aide d'une connexion ©-invariante. Alors KerD^ et Ooker 
E\r sont des ©-modules de dimension finie et on a: 

1.15. THéORèME. Si X e Q est suffisamment petit, 

^ K er<(expX)- t r 0 o k o r I ,o (expX) = j 0\(X7mf"m(X,TM). 
M 

1.16. Fibres homogènes. On suppose désormais que M est un espace homo
gène GjE. Une connexion ©-invariante sur le fibre principal G->G/E est 
définie par une decomposition g = Ç ©m où m est un supplémentaire 
ZT-invariant de I). 

1.17. Soit r une représentation de E dans un espace vectoriel de dimension 
finie Vr. Une connexion linéaire ©-invariante sur le fibre vectoriel © xHVr 

est une connexion sur le fibre principal ©XHGL(7T), image du fibre 
principal G->M par l'homomorphisme -H"->GL(7T). La 1-forme sur © 
à valeurs dans gl(Vr) qui correspond à cette connexion (conventions de 
1.10) est définie par une application linéaire r: TCG = Q->gl(VT) qui 
vérifie: 

1.18. r|ç = r , 
r(adfc*X) = r(h)r(X)r(h)"1 pour tout XGg,7&GJ2". 

Si le fibre principal G->G/E admet une connexion ©-invariante, on 
obtient une telle application r en posant ï|w = 0. 

Toujours avec les conventions de 1.10, le moment de X G g et la cour
bure de la connexion x sont les formes différentielles sur © données par: 

1.19. Jx(9) == ̂ (adflr^X) pour g eG. 

1.20. Q est ©-invariante par les translations à gauche et 

Q(Y,Z) -\%(Y),x(Z)ï~-%\Y,Z'\ p o u r r a G g. 
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1.21. L'étude des orbites admissibles de la représentation coadjointe deman
de de considérer le cas où r est une représentation non pas du groupe E 
lui-même, mais d'un revêtement à deux feuillets E, telle que r(ë) soit 
égal à ± 1 pour tout élément e eÊ qui se projette sur l'élément neutre de E. 
Alors T définit un homomorphisme de E dans le quotient GcL(V^)l(±.l) 
de GL(7T). Une application x-§-^gl(Vx) qui vérifie les conditions 1.18, 
avec 21 à la place de E, définit une connexion ©-invariante sur le fibre 

principal ©xH (GL(7T ) / (±l)) . À toute fonction 0 eî(gl(VT)) est donc 
associée, pour l e g , une classe dans E*(M, dx) notée 0(X, r). Cette 
classe provient de la forme 0(JX — (Qßin)) sur ©, où Jx et Q sont données 
par 1.19 et 1.20. 

2. Classes caractéristiques pour les orbites de la représentation coadjointe 
et formule du caractère 

2 .1 . Soit 0cg* une orbite de la représentation coadjointe de ©. On munit 
G de sa structure symplectique canonique a. Soit f eG. Grâce à l'homomor
phisme ©(/)->Sp(g/g(/))c->SL(g/g(/)), le revêtement à 2 feuillets 
SL(g/g(/))->SL(g/g(/)) induit un revêtement à 2 feuillets ©(/)->©(/), 
qui coïncide avec le revêtement défini par M. Duflo [11]. On définit, en 
suivant [11], l'ensemble 3£(f) des [classes de] représentations unitaires 
irréductibles r de ©(/) telles que r(expX) = ei<f'x> IäVr pour X e g ( / ) 
et r(e) = — I d F , en notant e l'élément non neutre de 0(f) au-dessus de 
l'élément neutre de ©(/). L'orbite est dite admissible lorsque l'ensemble 
%(f) n'est pas vide. Si © est algébrique, 3£(f) consiste en un nombre fini 
de représentations de dimension finie. Plaçons-nous dans ce cas. Notons 
PT = © x W ) ( G L ( 7 T ) / ( ± l ) ) le fibre principal défini par xe%(f). 

2.2. Rappelons que PT admet une connexion ©-invariante canonique, 
introduite par B. Kostant [17], obtenue en posant r(X) = £</, X > I d r 

pour X G g (notations de 1.18). Comme ad g-f = f si g e G(f), la courbure 
Q et le moment Jx de cette connexion sont en fait déjà des formes sur 
Q = ©/©(/), données par 

Jx(l) = i(ly X>Id F r pour le G,1 

Q = —ialä.v . 

1 Le moment de X relativement à cette connexion diffère donc par un facteur 
-i du moment défini en 1.7 relativement à l'action hamiltonienne de G sur 0. 
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Le caractère de Chern du fibre PT est donc la forme sur O donnée par 

2.3. Oh(X, r) = tr(eJx-oi2i") = dim Vxe^x>eal2lz. 

On voit donc apparaître le premier ternie de la formule (2) de l'intro
duction. Pour donner un sens au terme f~ll2(X, TG)7 nous allons faire 
momentanément l'hypothèse suivante. 

2.4«. Le fibre G->G = ©/©(/) admet une connexion ©-invariante, donnée 
par une décomposition ©(/)-invariante g = g(/)©m. 

Considérons la suite exacte de G(/)-modules: 

0->(adg)-/->g*^g(/)*->0. 

La suite exacte de fibres vectoriels associée définit le fibre normal EG à G 
dans g*: 

0->TG->G x Q*->NQ->0. 

L'action de © sur 0xg* est donnée par g(l,V) = (ad*0-Z, ad*0'Z'). La 
forme f~~li2(X, 0xg*) est donc la fonction constante sur G donnée par: 

( -ad*.X/2 __ P-B>VX}2 \ - 1 / 2 

• ^ - 5 5 ) ~ r ' " m - -

Grâce à l'hypothèse 2 A on a, en utilisant 1.12 : 

2.5. jl'*{X) = /1 / 2(X, Te>)fll2(X, N<9). 

Si / e & et X e g(/), i.e. si / est un zéro de X*, on a 

^'2(X,^r(/)=det f l ( / )( 
ead2T/2 __ e-&ÛXl2 \ 1/2 

âdX ) 

2.6. Considérons le cas d'une orbite de dimension maximale 2d. Alors g(/) 
est commutative [12], Il en résulte, d'après 1.17, que le fibre normal 
NG =©xW )g(/)* admet une connexion ©-invariante plate, et on a 
^2(X,NG) = 1 . 

Dans ce cas, sous l'hypothèse 2.4, la forme f~ll2(X9TG) se réduit 
donc à la fonction constante j~1/2(X). 

La formule de Kirillov: 

trT(expX)j(X)1/2 = dimr Je^'^%, 
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OÙ 

ß * 
Po (2nfd\ 

s'écrit donc aussi en termes de formes ©-équivariantes : 

trT(exp'X) = / C h ( X , r ) / - 1 / 2 (X , TG). 

Ce qui précède nous conduit à proposer une généralisation de la con
jecture de Kirillov (sous l'hypothèse 2.4). Nous la proposons sous deux 
formes : 

2.7. CONJECTURE. Soit G une orbite admissible, fermée, de G dans g*, r effî(f). 
E existe une représentation unitaire irréductible TfjX de G telle que: 

trT/>T(expX) = / C h ( X , T ) / - 1 / 2 ( X , TG) (Cl ) 

ou plutôt 

t r %(expX)j1 / 2(X) = f Ch(X, T ) ^ 1 / 2 ( X , EG). (C.2) 
(9 

Indiquons maintenant des situations où cette formule est justifiée. 

2.8. Tout d'abord si G est fermée de dimension maximale, (0.2) est la formule 
de Kirillov, et sa validité a été établie dans [15] par Khalgui pour les 
représentations Tfx de Duflo. 

2.9. Si G = {0}, on a / 1 / 2 ( X , EG) = j(X)1/2 et la formule (0.2) est donc 
vérifiée si on associe à l'orbite {0} la représentation triviale. 

2.10. Si g(jf) est reductive, l'hypothèse 2.4 est satisfaite et la forme 
fl!2(X, NG) est définie sur G toute entière et dépend analytiquement 
de X G g. Malheureusement, nous ne pouvons assurer que l'expression 

JCh(X9r)/ll2(X,EG) 
o 

définisse une fonction généralisée sur un voisinage de 0 dans g. 
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Cependant, supposons que le sous-groupe à un paramètre ad(expïX) 
soit relativement compact dans ad©, et que le champ de vecteurs X% 
n'ait qu'un nombre fini de zéros. Soient f e G et X eQ(f). Soit Wf un 
sous-espace de (g/g(/))c? stable par exptX, totalement isotrope positif 
pour la 2-forme canonique. La formule de localisation 1.4 s'écrit alors 
f ormellement : 

j 0 h ( X , r ) / 1 / 2 ( X , ^ ) j ( X ) - 1 / 2 

o 
ei<f,X> I dim VT 

fe{zévoBdeX&} acXjWf\
e 6 ) 

Supposons que © soit semi-simple, et soit X un élément elliptique 
(non nécessairement régulier) de g*. Associons à l'orbite G-À la représenta
tion Tx de Zuckerman. (Il n'est pas démontré que TÀ soit unitarisable). 
Alors la formule du caractère [22] pour T^ coïncide sur l'ouvert des élé
ments elliptiques réguliers de g avec l'expression précédente. 

En particulier, lorsque © est compact connexe, notre conjecture est 
bien vérifiée : si t est une sous-algèbre de Cartan telle que X e t*, la représenta
tion TK associée au fibre de Clifford canonique sur l'orbite © -X a pour poids 
extrême iX — QK, Où £A est la demi-somme des racines de ic dans QC telles 
que (iX, a> > 0, et la formule (0.2) coïncide avec la formule du théo
rème 2.8. 

2.11. Si le fibre normal n'admet pas de connexion ©-invariante, le terme 
flì2(X, EG) n'est même pas défini. Il est vraisemblable qu'on peut amé
liorer la conjecture (0.2) en cherchant, en guise de flj2(X, EG), une fonc
tion analytique ©-invariante X->J*(X), à valeurs dans l'espace des 
formes différentielles sur G, qui vérifie: 

(a) J#(X)eZ(M,dx), 

[ cadAr/2 _ ß-adX/2 ni/2 

<ietö(/) — J pour feG,XeQ(f). 

Si © est compact, d'après la proposition 1.3, ces conditions déterminent 
la classe de J # (X) dans E*(M, dx) pour les cléments X dont les zéros 
sont isolés. 

S'il existe une fonction ©-invariante j& sur g telle que 

( eadZ/2 ___ 0-adX/2 \ 

— 1 p o u r / e 0 , X e g ( / ) , 
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un choix naturel pour J#(X) sera la forme de degré 0, égale à la constante 
j0(X)112. La formule des caractères obtenue est alors celle de Duflo [10]. 
Dans le cas contraire, J#(X) devra nécessairement comporter des termes 
de degré supérieur. 

2.12. Eevenons enfin à notre motivation initiale. Soit O une orbite de 
dimension maximale de la représentation coadjointe. Supposons que & 
admette une structure riemannienne ©-invariante. Il existe donc une forme 
euclidienne Q sur g/g(/) invariante par ©(/). Le revêtement ©(/) de ©(/) 
(2.1) est aussi défini par le diagramme 

6(/KSpin(<?) 
ir I 
G(/KSO(0). 

Soit Q = Q+ ®Q~~ la représentation de Spin(Ç) dans l'espace des spineurs. 
Soit re#"( / ) ; les représentations r®Q± sont alors des représentations 
de ©(/). On peut définir le module de Clifford 

Tt = GxG(f)(r®Q) 

(un tel module de Clifford sera dit admissible). 
Le fibre fr est muni d'une connexion ©-invariante déduite de la con

nexion de Kostant et de la connexion de Levi-Cività. On peut alors définir 
l'opérateur de Dirac 

B^iE^f^r^?). 

Notons KerD^ le noyau L2 de Bf. La représentation de © dans KerD* 
est une somme finie de représentations de la série discrète ([21], [18], 
[Ö]). De plus, si © est nilpotent ou semi-simple, [9] montre que la représen
tation KerD+~KerD7 coïncide avec la représentation irréductible TfyZ 

dont le caractère est donné par la formule de Kirillov ([20], voir aussi [4]). 
Dans ce cas, la "formule universelle" donne donc une formule inté

grale pour la fonction de Lefschetz 

XH>trKéBD+ (expX) - trKerl>- (expX) 

au sens fonctions généralisées. a 

Soit iTx un module de Clifford admissible sur un espace homogène 
M = G/E tel que E soit compact. A. Connes et H. Moscoviti ont obtenu 
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pour l'indice I? de l'opérateur de Dirac Dt une formule utilisant la classe 
Ch(r)/~1/2(27Jlf) [9]. Nous pensons que le théorème 1.15 est encore valable 
dans ce cas pour exprimer la fonction de Lefschetz de l'opérateur Ex. 
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EICHAED ASKEY* 

Orthogonal Polynomials 
and Some Definite Integrals 

The connection between sets of orthogonal polynomials tha t can be found explicitly, 
their recurrence relations, and some specific definite integrals and series tha t can be 
evaluated is very close. Some examples are given. The integrals are extensions of 
the beta integral, and a pair of series are the Rogers-Ramanujan identities. 

1. Introduction 

At the last International Congress, E. M. Nikishin [8] said it would be 
very useful to expand the list of weight functions whose orthogonal poly
nomials can he found explicitly. The specific weight function he suggested 
is \e2n}/T — l]~ldt, 0<t< oo, whose moments are 

oo 

j <»|y«iT_i5-i# = {2n + l)\C{2n+2)l(2n)in+2 

o 

= (-l)»B lfl+l/(4n + 4). (1.1) 

I do not know how to find these polynomials, but polynomials orthogonal 
with respect to en^[e2n]/t — l ] - 1 * can be found, and they are a special 
case of a much more general class of orthogonal polynomials that can be 
given explicitly as generalized hypergeometric series. There is a further 
extension, where the polynomials are basic hypergeometric series. Con
tained in this class is a set of polynomials introduced by L. J. Eogers 
in 1894 [10] and 1895 [11], and used by him to discover the Bogers-Eama-
nujan identities. 

* Research supported in part by grants from the National Science Foundation 
of the United States. 

[935] 
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2. Orthogonal polynomials 

A set of polynomials {pn(x)} is orthogonal if 

oo 

/ Pn(®)Pm(®)ua(œ) = 0, m =£ n (2.1) 
—oo 

for a positive measure da(x). Any set of orthogonal polynomials satisfies 
a three term recurrence relation 

xpn(x) = A^n+l(x) + Bnpn(x) + Gnpn^(x), 

*-i(«o =:<>, Po(x) = i7
 ( -> 

with AnOn+1>Q9 An,Bn,Gn+l real, n = 0,1, ... Conversely any set 
of polynomials that satisfies (2.2) is orthogonal with respect to a positive 
measure (which may not be unique). Historical comments will not be 
given here. See [13, vol. 3, Comment to [68-1], pp. 866-869] for some, 

3 . Hypergeometric series and orthogonal polynomials 

A series j£ ck is a hypergeometric series if ck+1[ck is a rational function of Jc. 
If 

ö * ± i _ (Jc + a1)...(Jc + ap)x 
Cn — X (h+b1)...{h + bQ){k + l) ' 

then 

P a 
a17 ..., ap 

; x 
b19 ..., ba 

Mfc 
= y (<*>i)if-(%)k ar_ 

where the shifted factorial is defined by 

(a)k = r(Jc + a)ir(a). (3.2) 

Two hypergeometric series are contiguous if they differ by one in 
one parameter, and the other parameters are the same. Gauss showed 
that 2-Fi(a7 b;c,x) and any two JFt series contiguous to it are linearly 
related. Some of the linear relations can be interpreted as three term 
recurrence relations like (2.2), so there are orthogonal polynomials that 
can be represented as hypergeometric series. I t is also possible to iterate 
the Gauss relations and obtain three term recurrence relations for other 
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orthogonal polynomials. Three examples follow: 

Kn(x;p,N) ^zlPA-ih-xi-Nil-p-1), » = 0 , l , . . . , j y , (3.3) 

nV ' L 2a J aL ft/a ' fl,(fl + i ) _ f J' 
(3.5) 

f = [(« + I)2a32-4ffl]1/2. 

Notice that J5r„(») and #„(«) have essentially the same form, 
2-Fi( — n, a\c\ t), but the parameters and the power series variable have 
completely different forms, and the orthogonality relations are very 
different. The orthogonality relations are 

N 

^Kn(x]p,N)Km(x;p,N)(N)p-(l-pf-^0, 

O^m^n^E, 0<p<l, 
ï 

jE^ß)(x)P^(x)(l-x)a(l + x)ßdx - 0, m ^ n, a,ß> -1. (3.7) 
- i 

The orthogonality relation for Sn(x-, a,b) is too complicated to state 
here. There is an absolutely continuous part of the measure supported 
on ( — c,c), G = 2Va /(1 + a). "When a>l, & > 0 that is the complete 
measure, and the orthogonality relation was found by Pollaczek 
and Szegö. When 0 < a < l , & > 0 there are also infinitely many 
discrete masses, at xk = ±(b + 2ah)[b-\-h(a + l)]~~1!2[b + ah(a + l)]~1/2, 
1c = 0,1, ... When a->0 the absolutely continuous part of the measure 
disappears, and the resulting orthogonality was discovered independently 
by Carlitz, and Karlin and McGregor over twenty years ago. The general 
case was done by Askey and Ismail [3], using the recurrence relation 
satisfied by Sn(x; a,b), Darboux's method to find asymptotic values 
for two linearly independent solutions to this second order difference 
equation, and the theorem of Markoff stated by Nikishin. See [3] for 
the explicit formulas and references. The sum in the case a = 0 was found 
by Euler as a limiting case of an identity of Lambert, and can be used 
to count the number of rooted labeled trees. 
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The first two of these polynomials contain special cases that arise 
as spherical functions on some two point homogeneous spaces, the com
pact connected rank one symmetric spaces in the first case, the space of 
JF-tuples with 0 , 1 , . . . , &~ 1 as entries, using the Hamming distance 
in the second case. The third one arises as the random walk polynomials 
associated with a birth and death process whose parameters are linear 
functions of n. The recurrence relation in the third case is 

xl(a + l)n + b)]Sn(x) = (an + b)Sn^(x)+nSn^(x). (3.8) 

Chebyshev was the first to find a set of orthogonal polynomials that 
needs a higher hypergeometric series to represent them. He showed that 

Qn(x7a,ß9E) 3 ^ 2 

— n,n + a + ß + l, —a? 
a + 1, -2T • 4 

(3.9) 

satisfy 
N 

£ Qn(v)Qm(v){XT) (NN-tß) = 0' 0 < m * n < N- (3-10> 
This orthogonality relation is a common extension of (3.6) and (3.7). 
The most general hypergeometric orthogonal polynomial of this type is 
a balanced 4.F3. The absolutely continuous case is 

'V). 
(3.11) 

Wn(x
z; a, b, c, d) 

(a + b)n{a + c)n{a + d)n 
•J?* 

-n, n + a + c + d — 1, a + ix,a-
a + b9 a + c, a + d 

Wilson [15] showed that 

r(a+ix) E(b + ix) E(c + ix) T(d + ix) 
j Wn(afi)Wm(afi) dx = 0, 

r(2ix) 

m^n, (3.12) 

when a, b, c, d > 0. There is a discrete orthogonality as well, when a + d 
=J — E. I t is equivalent to Bacah's orthogonality for the Eacah coeffi
cients (or Q—j symbols) of quantum angular momentum theory. The 
orthogonality relation (3.12) is an easy consequence of the evaluation of 

2rc 

ou 

/ 
r{a + ix) r{b + ix) r(e + ix) r(d+ix) 

r{2ix) 
dx 

r(a + b)r(a + c)r{a + d)r(b + e)r(b + ä)r(c + d) 
r(a + b + c + d) 

(3.13) 
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which was found by W7ilson [15]. This is the most general hypergeometric 
type extension of the beta integral that I know. 

The recurrence relation for 

». =|(*)'(T)' - •»•["*' ~^lt1,'+1 -1] 
that was found by Apery and proven at the last Congress by H. Cohen, 
see [14], is an easy consequence of the three term recurrence relations 
for the 4JP3 polynomials. These three term relations go back to Eacah in 
the early 194.0's. 

4. Basic hypergeometric series and orthogonal polynomials 

A basic hypergeometric series £ ck has cjc+1/ck a rational function of qk 

for a fixed value of q. We will take \q\ < 1, or the limiting case when q is 
a root of unity. Two examples are the ^-binomial theorem 

y {a'>g)* A* = (axìti°° u..!) 
iri (ii î)* (œ> 2)oo 
/£ss=0 

and the theta function 
oo 

2 ( - 1 ) ¥ V = (j» ; q*Uxq; fUq/x; a«)«,, (4.2) 
— OO 

where 
oo 

(*» s)» =/7(1- as '1), («i a)* = (*; q)J(n,ci «)»• (4.3) 

The most easily motivated set of orthogonal polynomials that can 
be represented as basic hypergeometric functions a-rise in the following 
way. Fejér defined generalized Legendre polynomials pn(x) = #„(cos0) 
by 

00 

l/(«")l* =2>»(oos0)r", (4-4) 

when ah are real and 

/(*)=2W* 
Ä = 0 
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converges in a neighborhood of z = 0. f(z) = (1 — #)~1/2 gives the Legendre 
polynomials, and f(z) = (1 — z)~~x the ultraspherical polynomials. Since 
these polynomials are orthogonal with respect to (1 — x2f~112 when 
X > —1/2, it is natural to ask if any other polynomials of this type are 
orthogonal. Feldheim and Lanzewizky independently asked and answered 
this question. The most general such polynomials come when f(z) is the 
series in the g-binomial theorem. The three term recurrence relation is 

2x(l-ßqn)On(x;ß\q) = (l-qn+1)On+1(x; i?l2) + ( l - / ?y - 1 )C„_ 1 (0 ; ß\q). 

. (4.5) 

They were unable to find the explicit orthogonality relation. When 
— 1 < ß, q< 1 it is 

l-2[2w2-l)qk + q2k 1 dx x • j — - r 2. 2 (2x 1) a + a 

. . - - . - - l / l - » -
= 0, 

m ^ n. (4.6) 

These polynomials were discovered by Eogers. In [10] he used the special 
case when ß = 0 and his solution to the connection coefficient problem 
between these polynomials and Ohebychev polynomials to derive the 
Kogers-Bamanujan identities: 

2- an 1 

. n (a; tin (fljafUfl4;«8). 

n=0 

nn
2+n -ï 

(<z; iL (a> r U r ; tl 00 

In [11] he introduced the general polynomials and proved a number of 
incredible formulas. These include the linearization result, which would 
be rediscovered in the case q = 1 over twenty years later and in the case 
q = — 1 over sixty years later; the connection coefficient problem, and 
a ^-extension of Mehler's bilinear generating function for Hermite polyno
mials. 

The most general set of orthogonal polynomials of this type is 

f'Wn(x;a7b,c,d\q) = rq'n, f~xabcd7 aem, ae'iQ ? ^ ^ 
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where x = cos 0 and 

Ya0,..., ap I _ y (a„; g)„ . . . (a„; g), / 

When — 1 < q, a, b, c, d < 1 the orthogonality relation is 

Fn(ooB0) Wm(ooB0)|(flM<;; qUW 
/ 1(^5 ff)oo(^; ffUoa'j qUde*°,q) 

= 0, m ^ n . (4.11) 

See [4] for this orthogonality relation, the recurrence relation, a second 
order divided difference equation, a Eodrigues type formula using divided 
differences, and other facts, and [6] for a generating function and asymp-
totics. There are many very interesting special cases. Those of Bogers 
are treated directly and in some detail in [2], and some special cases that 
extend Jacobi polynomials are studied in [9]. Also see [5]. A g extension 
of polynomials of Pollaczek and Szegö is given in [3], Some general results 
of Nevai [7] were used in this case. 

Eecently we have realized that q->e2nilk leads to some very inter
esting results. Take ß = s*

k+1e2nilk
9 q= se2nijk and let s->l in (4.5) dividing 

first by (1 — s) if the limit would vanish. The recurrence relation is 

(4.12) 
2xpn(x) = Pn+M+Pn-iWi w + 1 ^ mk9 

2(m + X)xpn(x) = mpn+1(x) + (m + 2X-2)pn_1(x)7 

n = mlc — 1. 

The generating function (4.4) is 
oo 

(1 - 2or + r2)-1 (1 - 2Tfc(a)rle + r**)j* £ •= P» (»)»"" (4-13) 
11=0 

with TJC(GOBO) = COSÄJ0. I t is surprising that a generating function that 
is so nice was not found long ago, but it seems not to have been. The ortho
gonality relation is 

1 7 c - 1 

/*>»Ä»(«0]7 |a*-ooB,7cj/fc|*(l-»,)1'»<fo = 0, (4,14) 

m ^n, X> - 1 / 2 . 

Further facts about these polynomials, and a related set whose weight 
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function is (1 — x2)~l times the above one, are given in [1]. There are more 
general polynomials that come from the g-Wilson polynomials and cor
respond to Jacobi polynomials. Until these polynomials were found the 
only explicit polynomials whose weight function had a zero inside an 
interval supporting an absolutely continuous measure came from the 
weight function (l — x2)a\x\b on [ — 1,1]. The Pollaczek-Szegö random walk 
polynomials are interesting because the weight function can vanish so 
rapidly at the ends of the interval that the measure is not in the Szegö 
class (a > 1, b > 0), and because the weight function can have an absolu
tely continuous part and infinitely many discrete masses (0 < a < 1, 6 > 0). 
The corresponding limit when q->e2nilk in the q-version will lead to a very 
interesting orthogonality relation, but it has not been worked out yet. 

There are many other interesting orthogonal polynomials that can be 
represented as basic hypergeometric series. See Stanton [12] for some of 
the geometric settings discovered by Delsarte, Dunkl and Stanton. 
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New Banach Space Properties of Certain Spaces 
of Analytic Functions 

-liis report describes some recent results in the isomorphic theory of 
erbain spaces of analytic functions, mainly the disc algebra A = A(JD). 
)ne of the purposes was to investigate to what extent these spaces are 
imilar to the so-called classical Banach spaces, namely to the space 0 
£ continuous functions and the Lebesgue space L1, as far as operators, 
>a,ses, complemented subspaces, etc., are concerned. At this point, many 
[uestions can be answered and the remaining open problems offer new 
>erspectives of investigation. Already some time ago, natural connections 
>etween analytic function theory and general Banach space theory wore 
Loticed, motivating a more systematic study. I t turned out that this 
esearch is closely tied up with classical analysis. 

The starting point is the remarkable equality B(lx,l2) = 771(ï
1, Z2) 

ibtained by A. Grothendicck in [9], stating that each bounded linear 
iperator from I1 into Z2 is 1-summing. Eecall that an operator u between 
îanach spaces X, Y is ^-summing (0<p< oo) provided np(u) < oo, 
dierc 

*,(*) =Bnp(2,|N(^)ll,,)1/P 

aid the supremum is taken over all finite sequences (x{) in X with 
£ \<poi9 x*y\p < 1 for each x* E X * , \\<D*\\ < 1. Let us say that X has the 
xrothendieck property (GP) provided B(X,P) = i71(X, Z2). For some 
ime, the only known examples of such spaces were the ^-spaces , i.e., 
I>aces with the same local structure as Z1. The class was enlarged by inde-
lendent work of S. Kisliakov [15] and G. Pisier [24], who proved that 
he quotient of an .S^-space by a reflexive subspace remains a GP-space. 
Denote the circle by II and let 

jffj - {feL\n)7f(n) = 0 for w < 0 } . 

[945] 
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Our first main result, solving affirmatively a problem raised separately 
by A. Pelczynski and 1ST. Yaropoulos, can be stated as follows 

THEOREM 1 [2]. The space LllB\ and hence the dual A* of the disc alge
bra, have (GP). 

There are many ways to formulate this fact. I t means for instance 
that each bounded bilinear form on A can be extended to a bounded 
bilinear form on G(II), or that the projective tensor algebra A&A is 
a closed subalgebra of 0(11)^0(11). Similar results for ü*-algebräs were 
proved in successive work of G. Pisier [25] and TL Haagerup [10]. Let 
us point out that the embedding of A& A in 0(11)^0(11) is not isometric, 
as observed by S. Kajser in [14]. A consequence of Theorem 1 is the eotype 
2 property of A*, thus 

COROLLARY 2. There is a fixed constant G > 0 such that 

holds for each finite sequence fa) in A*, fa) being the usual Eademacher 
Theorem 1 can be proved by different methods. I t can be established 

by the so-called extrapolation technique, depending on the following 
interpolation inequality for p-summing norms of operators on A. 

PROPOSITION 3. Assume that 1 < p <oo and that u is a p-summing op
erator from the disc algebra in an arbitrary Banach space. Let p < q < oo 
and ljqr = d + (l — 0)lpf. Then for all 0 < <p < d, the qsumming norm of 
u can be estimated as follows : 

0- •v 
A byproduct of Proposition 3 is the fact that each operator wNof rank n 
defined on A admits an extension u to G(II) with ||fi||<CIogw|MI- This 
result is clearly the best possible. 

The proof of Proposition 3 relies ou the weak-type property of the 
Hilbert transform and the log modularity of A. More precisely, the density 
A, corresponding to np(u), obtained by A. Pietsch's factorization and 
F. M. Eiesz's decomposition theorems, is in general not a weight in the 
sense of B. Muckenhoupt [19] and the usual Biesz projection is not bound
ed, as an operator acting on L2(A). This difficulty is avoided by con-
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structing new "analytic projections", using the log modular property 
3i A. The following fact has been shown: 

PROPOSITION 4 [3], Assume A in Ll(II) and A^l. There exist A in 
Ll(II), A > A, Hülli < const \\A\\19 and a projection P from L2(A) onto 
E2(A) which is LV(A)-~LP{A) (l<p< oo) and L1 (A) - L1*00 (A) bounded. 

Several of the results described above extend formally to H00 and 
ts dual by arguments of local reflexivity. However, it is not known if 
iach bounded operator from S°° to (H°°)* factors through a Hilbert space.1 

The approximation problem for JET00 is still unsolved. Further extensions 
;o the algebras lying between H00 and L00 follow from the Douglas prop
erty [16], There are also finite-dimensional models, obtained by con
sidering the polynomial spaces [1, ei0, . . . , 0,nö] equipped with X°°-norm. 

Nothing is known about the local structure of algebras of bounded 
tnalytic functions in more variables. However, our methods permit us 
;o, solve certain interpolation problems for the bi-disc algebra. For instance 
3] the following proposition generalizes a well-known result due to 0. Pa-
ey [22]: 

PROPOSITION 5. Let Sc Z+ be a A2-set and let ((pk)keS be a wealcly 2-sum-
nable sequence of H°°-jhtnctions, i.e., 

sup y.\<Ph(*)\%< °°-

Wien there exists a 0 in E°°(D X JD) satisfying for each Je e S 

f0(e,w)c-ikede=9k(w). 

Denote by U = 17(77) the space of functions f eA(.D) such that 

/ = lim (Dn*f) uniformly 
n-+oo 

n 
Dn = S eip°) equipped with the norm 

# = 0 

11/11,7= BUp||Dw*/|L. 
n 

n [20], D. Oberlin derived from A. Vinogradov's inequality [27] 

IIÖ+ Mill.» < const IH,,, (fi e M(II)) 

1 This fact was more recently proved in the affirmative. 
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that compact subsets of measure 0 of II are the peak sets for TT. As a con
sequence, the dual space £7* admits a decomposition which is very similai 
to the classical theorem of F. and M. Eiesz. By using related ideas, a ver
sion of Havin's lemma [11] was derived in [7], implying in particulai 

PROPOSITION 6 .1 . The space U* is iveaMy complete, i.e., wealcly Gauch% 
sequences in Ü* are wealdy convergent. 

2. Each reflexive subspace of Z7* can be linearly embedded in LP for somt 
1 < p < oo. 

Of course the usual character sequence (e?nd)n=ZQtl)2t... is a Besselian 
basis for U, since clearly | | ^ a^710^^ (]?\an\

2)112. On the other hand, 
it was proved in [5] that the results of A. Olevski [21], S. Bockarev [1] 
and S. Szarek [26] on Lebesgue functions remain valid for the disc algebra, 

PROPOSITION 7. Let n be a positive integer and M > 0. Suppose thai 
(Vk)i<k<ni (xk)i^k^n are bi-orthogonal sequences in A and A* respectively, 
suciTthat \\cpk\\^M (1 < tc < n) and \\£ akxk\\ < M (%\ak\

2)112 for all scalai 
sequences (ak). Then for some z e C, \a\ < 1, we have 

Ï2\2 »<•> 
l < m < w 

a>i ^ e(jf)iogw. 

COROLLARY 8. The disc algebra has no Besselian basis. Consequently, 
there is no linear isomorphism between the spaces A and JJ. 

The proof of Proposition 7 relies on Proposition 4. I t is not known 
whether or not Ï7* has the Grothendieck property. The results stated 
above indicate a restriction in extending the methods of disc algebra tc 
the space Z7. 

The three-space problem for the Banach space L1 is one of the stil] 
open questions in classical Banach space theory: Assume that Z is a sub-
space of L1. I t is not known if L1 embeds in either Z or LX\Z. I t was shown 
in [23] that the space L1 does not admit a complemented embedding in 
i 1 / !? 1 . For this reason the pair L1 = j&1(i7)? Z = JffJ is a natural candi
date for a counterexample. By using the results of [23], it can be proved 
that the complex ix-space cannot be isometrically embedded in LljE.\, 
However, [4], 

THEOREM 9. L1 embeds isomorphically in Ll{H\. More precisely, then 
exists an increasing sequence of integers (nk) such that if <5 is the a-algebro 
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on II generated by the functions ak(Q) = sign cosnk0, then the restriction of 
the quotient map qxLl->L1ISl to Ll(<Z) is an isomorphism. Consequently, 
each bounded ^-measurable function on II can be obtained as an conditional 
expectation of an H°°-function. 

In fact, in the above we may take any sequence (%) which increases 
rapidly enough. Our method of proof consists in studying the behaviour 
of certain IP-valued martingales. 

I end this report with a summary of the known results on the linear 
isomorphism and non-isomorphism of algebras of analytic functions and 
IP-spaces in a distinct number of variables. It was shown by B. Mitia-
gin and A. Pelczynski [18] that the disc algebra A(D) and the bi-diso 
algebra A(D2) are not isomorphic. Their invariant, the so-called (ip — np) 
ratio, is of local nature. The dual of A(D2) can be identified with the 
space 

Ll(n2)lR@(A§C)*®C*9 

where B = {f eLl(II2)]f(m7 n) = 0 if m < 0 , n < 0}, allowing us to 
establish the non-existence of an isomorphism between A(D2) and A(JD3) 
for topological reasons. This method is similar to Henkin's proof, using 
the theory of analytic measures ([12], [13]), that the polydisc algebras 
A(Dm) and ball algebras A(Bn) are not isomorphic except for m ~ n = 1. 

The investigation of IP-spaces started with B. Maurey's result [17] 
on the isomorphism of the Hardy space Hl(D) and the diadic martingale 
space B}(6). I t solved in particular the open problem whether or not 
E1(D) has an unconditional basis. 

Explicit bases were obtained shortly later by L. Oarleson [8] and 
P. Wojtaszczyk [28]. The isomorphic classification of IP-spaces in sev
eral variables is now essentially understood and it turns out that isomor
phism depends on the nature of the singularity appearing in the repro
ducing kernel. 

THEOREM 10. 1. Hl(Dm) and B}(Dn) are not isomorphic for m^n 
(see [6]). 

2. JSl(Bm) is isomorphic to IP((5) in each dimension m (see [29]). 
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Real Analysis and Potential Theory 

The basic aim of this paper is to give a survey of some recent results on 
the boundary "behavior of harmonic functions and the solvability of the 
Dirichlet problem for general domains. Many of the results have been 
established by combining potential theoretic ideas with recent results 
from real analysis. Many of the results will also hold for solutions of more 
general partial differential equations. We start, by recalling some classical 
results. 

The Eatou theorem says that if u is harmonic and bounded from below 
in the unit disc then u has nontangential limits almost everywhere on the 
unit circle. Privalov [24] showed the local analogue of this, namely that 
if u is harmonic in the unit disc and if for every point ei6 of a measurable 
subset JE7 of the unit circle there is an a > 1 such that u is bounded from 
below on ra(e

id) = {#: \z\ < 1, \z — ei0\ < a(l — \z\)} then u has a nontan
gential limit at almost every ei0 EE, that is, u restricted to rß(e

ie) has a 
limit as z-+ei0 for all ß > 1 . This result was proved by using conformai 
mappings. The extension to higher dimensions therefore needed new meth
ods. This was first done in 1950 by Oalderon [3]. He showed that if u 
is a harmonic function on En = {x e Rn: x1 > 0}, nontangentially bounded 
at every point Q of a measurable set E c dEn (i.e., for every Q e E there 
exist a > 1, h > 0 and M such that \u\ < M in raJl(Q) = {P e En: \P — Q\ 
< a dist {Pj&H^}, |P —QK fr})> "û*1611 u h a s a nontangential limit at almost 
every Q eE. In 1962 Oarleson [6] showed that the same conclusion fol
lows under the weaker hypothesis of nontangential boundedness from 
below. Both Oalderon and Oarleson studied the behavior of the harmonic 
function u in "saw-tooth" regions, that is, domains of the form 
^J rath(Q), E cz dHn. A crucial part of Oarleson's proof consisted of very 
precise estimates of harmonic measures on saw-tooth regions. The harmo
nic measure is defined as follows. For a domain D and a continuous func
tion / on D let Hf denote the solution of the Dirichlet problem with bound-

[953] 
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ary values / , i.e., Sf is a continuous function on D which agrees with / 
on dB and is harmonic in B. (The Dirichlet problem is not always solvable 
in the sense we have stated here but the class of domains for which this 
is possible has been characterized by Wienner [27].) For every Q e D 
the mapping f->Hf(Q) is a positive continuous linear functional on the 
space of continuous functions on dB. Therefore, by the Biesz representation 
theorem there is a unique probability measure coQ on dB such that 

*Bf{Q) = ffdœç 
ÖD 

The measure coQ is called the harmonic measure for B evaluated at Q. 
We remark that the harmonic measures are mutually absolutely contin
uous; hence they have the same null-sets. 

In 1968 and 1970 Hunt and Wheeden proved that if B c Rn is a bound
ed Lipschitz domain -and u is a harmonic function that is nontangentially 
bounded from below at every Q eE7E being a measurable subset of dB, 
then u has nontangential limits at almost every point Q e E relative to 
harmonic measure. Their result implies both the results of Oalderon and 
Oarleson. Here we recall that a bounded domain B is called a Lipschitz 
domain if dB can be described locally as graphs of Lipschitz functions, 
i.e., functions y satisfying the estimate \y(x)— <p(y)\ < M\x — y\. The 
significance of Lipschitz domains lies in the fact that any domain Q given 
as a union of, say, convex circular cones is a countable union of Lipschitz 
domains. Therefore one can, in principle, reduce questions about nontan
gential behavior to the case of Lipschitz domains. 

The results mentioned above lead to the question of characterizing 
the null-sets for the harmonic measure of Lipschitz domains. If the domain 
is sufficiently smooth, e.g., if the boundary is Gli<x (i.e., is described locally 
as graphs of functions with Holder continuous gradients), then the har
monic measure is bounded from above and below by a constant multi
plied by the surface measure. However, this is not the case even for C^-do-
jnains. The problem of characterizing sets of harmonic measure zero for 
Lipschitz domains was solved by Dahlberg in [9]. For a simple proof 
see Jerrison and Keiiig [18]. 

THEOREM 1. If B is a Lipschitz domain then the surface measure a and 
the harmonic measure are mutually absolutely continuous. Moreover, the 
harmonic measure belongs to the Muckenhoupt class A^. Furthermore, if 
& denotes the density of the harmonic measure then for all balls B with center 
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on dB one has the estimate 

\~T^r f*a**| < Const—— (leda, B*=BndB. (1) 
\<T(b) J j cr(flf) J 

We recall here tha.t a positive measure p belongs to the Muckenhoupt 
class J-«, if there exist a, ß e (0,1) such that for all balls B with center 
on dB and all Borei sets E c S = BndB with the property that or(JS7) 
< aar(S) we have /̂ (JB) < ßju.(S). We remark that from (1) follows that 
(see Ooifman and Fefferman [7]) to each Lipschitz domain there is an 
e = e(B) > 0 such that 1c e l 2 " 1 " » . On the other hand for each q > 2 
there is a Lipschitz domain such that 

S' hqda = oo. 
ÔJO 

However, if B is a (^-domain, i.e., the boundary is locally represented 
as graphs of continuously differentiable functions, then for all q G (1, oo) 
we have the estimate (Dahlberg [10]) 

x x ' s ' s 

In fact the function log 7c is of vanishing mean oscillation (Jerrison and 
Kenig [20]). 

The upshot of the reversed Holder inequality (l).is that for a l l / e L2(o), 
f is integrable with respect to the harmonic measure. Therefore the Diri
chlet problem is solvable when the data are in L2(o) and the solution Hf 

has the following properties (Dahlberg [10]): 

THEOREM 2. Let B be a Lipschitz domain and 2 < # < oo. If f eLp(a) 
then n = Mf is harmonic in B and has the nontangential limit f almost 
everywhere on dB. Furthermore, if a>l and 2Vau(P) == Bwp{\u(Q)\: Q 
era(P)}7PedB, then 

\\NaU\\ma)^0(a)\\f\\LP{ay (2) 

If in addition B is a Gl-domain then (2) holds for all p >1. 

We now describe another way of analyzing the boundary behavior of 
harmonic functions, namely by the so-called area integral. For u being 
a function in B c Rn and a > 1, P e dB the area integral of u at P is 
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defined as 

Aau(P) ==( J \gra>àu\2àwt{Q,dB}2-ndm(P)\ 
^oCP) 

1/2 

where m is the Lebesgue measure on Rn. The area integral was introduced 
by Marcinkiewicz and Zygmund [23], who showed that if n is harmonic 
in the unit disc V then u(z) has a nontangential limit almost everywhere 
on a set E c du if and only if the area integral is finite almost everywhere 
in E. oalderon [4] showed that if u is harmonic in Hn and is nontan-
gentially bounded on E c dEn then the truncated area integral 

Aa$hu(P)=( J \gr%àn\2ddsHQ,dHj~"dm(Q))112 

is finite almost everywhere on E. Later Stein [25] showed the converse. 
Later versions of this result have involved inequalities comparing the 

area integral and the nontangential maximal function. Such inequalities 
have been proved by many authors in increasing generality, see [1,14,15], 
By using tjie reversed Holder inequality (1) in a crucial step of proof of 
the so-called "good^" inequalities, the following result was established 
in Dahlberg [11], 

THEOREM 3. Let B c Rn be a Lipschitz domain and suppose p is a posi
tive measure on dB that satisfies the A^-condition. Let M denote the class 
of harmonic functions that vanish at Q0 e B. Then for all a and ß greater 
than 1 the Lp-norms of Aau and Nßu are equivalent on M for all p e (0, oo). 

I t is straightforward to verify that 

f(Aan)2d(ï~ f |grad^|2dist{$, dB}dm. 
dJD JD 

Therefore we have, by combining Theorem 2 with Theorem 3, that for 
« e i f 

f |gradw|2dist{Q, dB}dm ^ ju2da. 
dD 

Using the results above one can prove local results about nontangential 
convergence for harmonic functions in general domains. For P e Rn let 
P(P) denote the class of all possibly truncated open cones with vertex at P . 
For B a domain and P e dB let P (P , B) = {y e P(P): y c B}. We can 
now formulate a general result concerning the existence of nontangential 
limits. 
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THEOREM 4. Let B c Rn be a domain and suppose E c 8B is Borei 
measurable with the property that P(P, B) # 0 and P(P, Rn —B) ^ 0 
for all P eE. If u is harmonic in B then the following statements are equiv
alent: 

(a) u has a nontangential limit at almost every point P eE, 
(b) for almost every P eE there is a y e P(P, B) such that u is bounded 

from bellow on y. 
(c) for almost every P eE there is a yeT(P7B) such that 

' J \gmdLu\2\Q-P\2-ndm(Q) < oo. 
v 

Here "almost every" is taken with respect to the (n — l)-dimensional 
Hausdorff measure. 

For a very interesting extension of this result we refer to Jerrison 
and Kenig [21]. 

The crucial ingredient in the proofs of the above results has been 
the reversed Holder inequality (1). Another approach to these problems 
is also possible: by solving the Dirichlet problem by the classical layer 
potential method. For a Lipschitz domain B "c Rn and / eL2(a) we recall 
that the double layer potential of / is defined by 

where N(Q) is the unit outward normal to dB at Q e dB and con is the 
area of the unit sphere in Rn. It follows from the recent works of Oalderon 
[5] and Ooifman, Mc Intosh and Meyer [8], that w has a nontangential 
limit Tf(P) for almost every P e dB and for all a > 1 we have 

P1/«*« < WMìLHO) < 0 o M t \\fhHo). 

In order to show the solvability of the Dirichlet problem with data in 
L2(o)7 it is therefore enough to show that the operator T has a bounded 
inverse on L2(a). This has recently been proved to be the case by Verchota 
[26]. For the case of C^-domains Fabes, Jodeit and Eiviere proved that 
T was invertible on Lp(o} for all p71 < p < oo. Clearly, for the case of 
Lipschitz domains, one cannot in general claim that T is invertible for 
all p>l. The method of layer potentials can also be used to treat other 
boundary value problems like e.g. the Neumann problem. For a discus
sion of this see the above papers. A direct treatment of Neumann problem 
has been found by Jerrison and Kenig [19]. 

file:////fhHo
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We shall next briefly indicate some anologues of the above results 
for solutions of more general equations. Let us consider uniformly elliptic 

equations of Lu = 0 where L = £ —— aij —— where the a^'s are 
ÖXA ÖXj 

bounded and measurable. In this case it is possible to define the analogue 
of the harmonic measure, see Littman, Stampacchia and Weinberger [22], 
and it is called the L-harmonic measure. It is also known ([22]) that a do
main B has the property that the solutions of the equation Lu = 0, u = / 
on dB are continuous on B for a l l / e G(dB) if and only if B has the same 
property relative to the Dirichlet problem for harmonic functions. 

It is therefore natural to ask for the relation between the i-harmonic 
measure and the surface measure. Even for smooth domains it may happen 
that the surface measure *and the Iz-harmonic measure are mutually sin
gular (see Oaffarelli, Fabes and Kenig [2]). However, if the coefficients 
are assumed to be continuous and the modulus of continuity œ(ô) satisfies 
the condition 

Jœ2(h)h~ld2.< oo 

then the methods developed in [12] yield that the surface measure and 
the £-harmonic measure are mutually equivalent. 
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TADEUSZ PIGIEL 

Local Theory of Banach Spaces 
and Some Operator Ideals 

The local theory of Banach spaces is concerned with the structure of 
finite-dimensional Banach spaces and the relation between an infinite-
dimensional Banach space and its finite-dimensional subspaces. 

In this theory two isomorphic Banach spaces X, Y are considered 
to be close to each other if the Banach-Mazur distance coefficient, d(X7 Y)7 

defined as 

inf {liril-llff-*1!! | r i s a linear isomorphism of X onto Y} 

is close to 1. One puts d(X, Y) = oo if X9 Y are not isomorphic. 
We shall denote by SfX the set of all finite-dimensional linear sub-

spaces of X and, for any Banach space E, we put 

d(E,S?X) ^mf{d(E,E)\ Ee#>X}. 

The space Y is said to loo finitely a-represented in X provided that d(F, £?X) 
< a for E e &> Y. We write Y f.r. X if this is true for a = 1. 

The concept of finite representability is due to A. Grothendieck ([23]), 
who also conjectured that l2 is finitely 1-represented in every infinite-
dimensional Banach space. This conjecture was proved (in the case of 
real scalars) by A. Dvoretzky ([12]). That result, which strengthens con
siderably the so-called Dvoretzky-Bogers Lemma, marks the beginning 
of the local theory of Banach spaces. 

A further incentive was the work of E. 0. James, which led to the intro
duction of super-reflexive Banach spaces ([25]). If 0* is a class of Banach 
spaces, the class called super-0* consists of those X e & for which Y f.r. X 
implies Y e@. The property defining the class & is called a super-property 
if 0> = supera. 

The local theory studies super-properties and some of them are very 
important in the theory, but the notion of a local property of a Banach 

[961] 
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space is wider. It includes also, e.g., the local ^-structures which we de
fine in Section 3. In fact, many concepts studied in functional analysis 
and pertaining to finite or finite-dimensional objects become "local" 
if suitable bounds are imposed on integer-valued parameters (cf. [48]). 
Here we mention only the concept of the uniform approximation prop
erty. 

. It is not possible to cover in this report all aspects of the local theory 
of Banach spaces. For more information we refer especially to the mono
graph [40], the reports of A. Pelczytìski and G. Pisier in these Proceed
ings and the recent survey [43]. 

Let us exemplify a natural family of super-properties. To every bounded 
linear operator A\E1^E2 where Ei is a linear subspace of LPi(fa), 0 <pA 

< oo for i = 1, 2, there corresponds'a super-property which we call 0>(A). 
(A special case of this construction appears also in the address of A. 
PelczyÄski in these Proceedings.) Namely, if X is a Banach space, we 
say that X e0>(A)\± the tensor product 

A®\HX\ E±®X-+E2®X 

is bounded when Et®X is regarded as a linear subspace of the space 
Lp.(fa',X) for i = 1 , 2 . If Xe0>(A), in particular if dimX< oo, then 
the number ||JL®idx|| is a parameter characterizing the &(A) property 
of X. 

We shall mention some special cases. If &: L2(R)->L2(R) is the 
Fourier transform on the real line, then X e 0>(3F) iff X is isomorphic to a 
Hilbert space ([3|>]). 

Now, let L2 s= L2(\0,1], dx) and let Bad c L2 be the subspace span
ned by the Bademaeher functions rx, r2,... Consider* first the operator 
0t\ L2->L2,0tf = J (/»**)**• T l i e property Xe@(M) was introduced in 

[44] as K-convexity. The important result of [52] says that 

X e 0>(0l) iff lx is not f.r. X. 

Let <gQ: Bad-*Zfl, q > 2, <&J J a^) = (a<)<>x and Fp: lp-^L2,1 < p < 2, 

^((a^) = J a^. The spaces in 0>(%q) (resp., in ^(^p)) are said to be 

of cotype q (resp., of type p). The equalities 

Cq(X) - 11*1®idj|, TP(X) = O^a idJ I 
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are consistent with the usual definition of the cotype q and type p con
stants of X. 

The notions of type (resp., cotype) appeared first in probabilistic 
considerations (cf. [24]) as sufficient (resp., necessary) conditions for the 
almost sure convergence of the random series Jòi^u where x{eXiov 

i 

i = 1, 2, . . . Later they were found to be important in many other con
texts, also outside the local theory of Banach spaces. A deep study of 
their properties was made in [44], I t culminated in the following 
result. 

Given an infinite-dimensional Banach space X, let 

p(X) = s u p { p < 2 | TP(X)< oo}, 

q(X) = i n f { s > 2 | Ga(X)< oo}. 

Then lp{X) f.r. X and \{X) f.r. X. 

As a corollary of the above result, X can have no super-property which 
fails for lp(jQ or for l^xy I n particular, since p(lr) = min(2, r), q(lr) 
=> max (2, r), we see why X is of no better type than p(X) and of no better 
cotype than q(X). 

The proof in [44] involved a detailed study of sequences of vectors 
which X must contain if p(X) = p < 2 (resp., q(X) = p > 2); if p =2 
this rediflSes to the Dvoretzky-Bogers Lemma. Applying to those se
quences the technique developed in [6], which depends on the Bamsey 
Theorem, they were in a position to use the deep result of [35], which 
gives a sufficient condition for lp to be finitely represented in a Banach 
lattice. 

Some simplifications and strengthenings have been found in [55], 
[46] and [37]. 

Those combinatorial arguments give no useful estimates for the dimen
sion of J|-subspaces one can obtain starting from a sequence of n vectors. 
Since the study of finite-dimensional Banach spaces requires quantitat
ive estimates, this leads to a general question: Oan the values of basic 
parameters characterizing "geometric" properties of the space X be ex
plained in terms of some simple objects in X% 

Few results are known in this direction (cf. [59], [33]). In this report 
we shall consider more specific questions concerning the quantity 

\p(X) = sup{fc| d(ll, STX) < 1 + «}. 
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We shall first discuss the case of nearly Euclidean subspaces. Following 
[18], we write h6(X) instead of h6t2(X). 

The proofs of Dvoretzky's theorem given in [45] and [57], besides 
being simpler than the original argument, cover also the case of complex 
Banach spaces. They yield the estimates (stronger than those in [12]) 

h6(X) ^ ce2(log(2ls))-%(X)9 0 < e < 1, 

hî(X} ^ c max (logn9 nd(X, It)"2). 

where n = dimX and c>0 is an absolute constant. 
Since ifc1(Ẑ ) < Ologn (cf. [45], [18]), the second estimate cannot be 

improved in the general case. The first estimate is almost exact. The 
logarithmic term may be just a consequence of the methods.1 There are, 
however j examples where h^X) = dimX = m and Jc8(X)^0s2m for 
1 ^ £^5 j/(logm)/m. This estimate can be viewed as a quantitative ana
logue of the distortion problem for l2 (cf. [40]). 

In [18] a subtler estimate of \(X) was found. [Namely, there is a c > 0 
such that, if dimX = n and q^29 then 

Tc1(X)^cOa(Xr2n2!a. 

In particular, if X e SfLp , 1 < # < oo, then hx (X) > ctn
r
9 r = min (1, 2 jp). 

(In the case X = l\ this was also obtained in [30].) 
Conversely, if h±(X) ^ c(dimX)a

9 c, a > 0, for every Xe£?Y, then 
Ga(Y) < oo for q >2 /a (cf. [18]). 

The key ingredient in [45] and [18] was the inequality discovered by 
P. Levy ([38]), which follows from the solution of the isoperimetrie problem 
for subsets of the sphere S71"1 c Rn. 

Iff: Sn~1-^R satisfies \f(x)-f(y)\ < \\x-y\\2 for x9 yeSn-\ then there 
exists- an Mf such that for d > 0 

X({x e Sn~l\ \f(x) - Ä ) | ^ (?}) < àe~nâ212. 

(Here A denotes the normalized Lebesgue measure on S71'1.) 

One considers functions of the form f(x) = \\Tx\\ where T: 1\\->X 
is a linear operator of norm 1. If T is suitably chosen, since / is almost 
constant off a set of a small measure, it is possible to show that / is also 
almost constant on Ec\Sn"x

9 where E is a "typical" linear subspace of 

1 Added in proof. This follows from Corollary 2.6 in [21 J. 
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dimension lc9 provided that jfe < anM2. The number a depends on the 
expected bound for sup{/($)//(j/)| x,y eEr\Sn"1}. 

This leads to the estimate for JcB(X) fairly easily. To estimate hx(X) 
one can use the operator T which results from the Dvoretzky-Bogers 
Lemma, 

Considering a T for which d(X91%) is attained, one obtains the estimate 

-kx(X)Tcx(X*) > cn2d(X9 It)'2 > en. 

In particular, msi>x(lc1(X)9lûx(X*))'^ Vcn. This estimate was used in 
order to solve the finite-dimensional version of the complemented sub-
space problem. 

It is also possible to obtain a formula for Tcx(X). We refer to [49] for 
the definition of the TJ^f2)-norm of operators (also called the y-summing 
norm). 

There exists a c > 0 such that for every X 

oU{2t2)(idx)
2 < lcx(X) < 4Z7(2|2)(idx)

2. 

This equivalence allows one to obtain the estimates of Jcx(X) from 
rather formal results concerning the J7(2f2)-norm. On the other hand, it 
is possible to characterize the £7(2j2)-norm of arbitrary operators in terms 
of their behaviour on some Euclidean subspaces of the domain. 

Let us mention a consequence of the estimate Jcx(X) > cdimX for 
XeS?Lx. It implies that, whenever Jcx(E)ldimE is sufficiently small, 
the space E has "many" subspaces with rather bad properties. Namely 
(cf. [15]), there is a c > 0 such that9 if h > hx(E), then every F e S?B with 
dim J7 > fc/c has a subspace G such that dim© = Jc and gl(G) > c[Taßx(E))112. 
The parameter gl(ö), introduced in [22], estimates from below d(G, U) 
for any space Ü with a 1-unconditional basis. In fact, gl(0)< ûd(G, Z) 
if Z is A-complemented in a Banach lattice. 

Becall that a linearly independent sequence wx, ..., xn eX is called 
a-unconditional (resp., asymmetric) provided that, for every choice of 
eie{ + li —1} and scalars oX9...9cn9 one has 

n n 

||J£V»W0J<«||2V<|| 

where ut(i) = i for i = 1, ...9n (resp., for every permutation % of 
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The study of such sequences (and their infinite analogues) plays an 
important role in the investigation of the structure of Banach spaces. 
Only recently, however, strong quantitative results have been found 
(cf. [2], [42]) concerning the following general question: 

Let xx,..., xn eX be a (linearly independent) sequence with a prop
erty 0>. Consider another condition, say St. For what values of To is it 
possible to find yx,..., yk e X of the form y$ = J a^, where A3 n Al = 0 

for j =£ l9 so that the sequence yx, ...,yk satisfies «S? 
I t turns out that in several important cases one can obtain estimates 

of the form h > cna where c, a > 0 depend on âP, â and sometimes^ also 
on the geometric properties of X. In [2] and [42] such problems are studied 
with the technique involving "isoperimetric inequalities" for some finite 
groups and for products'of spheres. This leads to strong estimates, e,g., in 
the case: ^—arbitrary, a—(1 + ^-unconditional, and also to some quantita
tive versions of theorems from [44] and [35]. 

The classical isometric embedding Jp: lp->Lx, 1 < ^ < 2 , maps the 
unit vectors into independent identically distributed jp-stable random 
variables (OJJLp One can show. (cf. [16]) that for any a > 1 , if X e£fLx, 
d(X,ltXa and 6x,...,dmeX, then m < c(logn)pl{2p~2\ c = eM < oo. 

The surprising result of [29] yields, in particular, for every 1 < p < 2 
and e > 0, the- estimate 

for n = 1, 2 , . . . , where c = c8yP > 0 . The embedding is accomplished by 
means of a random matrix which somehow simulates the Jp. 

In the case 1 < s < p < 2, it is known only that, for some a = a(s9 p) 
< °°i K.pttt) ^ Ge,pni this is deduced from the above result by using 
Maurey's factorization theorem. 

The more general result obtained subsequently in [54] makes use of 
the stable typep constant STp(X), which is equal to \\JP® idx|| (cf. Section 1) 
(if p = 1, the 1-stable variables are not elements of L19 but one may use, 
e.g., the operator J^.l^L^). Le t us mention that Tp(X) < cpSTp(X). 

I t is proved in [54] that, for each e>0 and 1 < p < 2, there is a ô 
= ôPt6 > 0 such that for every X 

Jce3l(X)>exV(dSTx(X))9 

JceJX)>ô(STp(X))^^K 
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In particular, if STP(X) = oo, then lp f.r. X. Conversely, if lp f.r. X9 

then STp(X) > STp(lp) = oo. In fact, one has either ST2(X) < oo or 

{p e [1 , 2] | lp f.r. X} = {p\ STp(X) = 00} = |>(X), 2 ] . 

This corollary, obtained in [54], recaptures the essential part of the 
results in [44] concerning the type, without making use of the most diffi
cult parts of the proof. 

Since STpfä) > n1_~1/p, also the result of [29] is a corollary. However, 
those lower estimates are not always sharp, e.g., if 1 < p < 2, one obtains 
K>P(l^)>ô(lognY^-1l 

There is only one case of p =£ 2 where a formula for lcetP is known, 
at least for some £ > 0. For real scalars this was proved in [13], using 
probabilistic and combinatorial techniques. 

For each ô > 0 there exist ß, c > 0 such that, if xl7 ..., xne X, ||^.|| < 1, 
i = 1, . . . , n and 

1 

^r^x^dt^ôn, 

then there is an A c {1, ...9n} with Card (J.) = h^cn which is ß~l-equiv~ 
aient to the unit vector basis in l\. 

Very recently I have learned that the complex case was solved in [47], 
These results generalize some theorems on Sidon sets obtained in [53]. 

Analogous results for p > 2 are less satisfactory. We mention only 
the estimate found in [1] 

max(fcet2(X), K^X)) > exp(c Vlogn ) 

where c = cB > 0 does not depend on X. Easy examples show that this 
estimate cannot be improved. The proof uses [18] and some combina
torial methods. 

These results concerning finite-dimensional normed spaces should be 
compared with what is known about the corresponding infinite-dimen
sional problems. 

I t is a still open major question whether every infinite-dimensional 
Banach space contains an infinite ^-unconditional sequence. On the other 
hand, there are infinite-dimensional Banach spaces with an unconditional 
basis which have neither a subspace nor a quotient space with a symmetric 
(or even a subsymmetric) basis and, moreover, one can assume in addition 

9 — Proceedings..., t. II 
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that X is of type 2 and cotype 2+s for each e > 0 . Similarly, a space 
with a symmetric basis may contain no isomorphic copy of any lp space 
(cf. [14], [40]). 

]Sow we present some cases where a local approach was used in the solution 
of problems concerning the global structure of Banach spaces. 

The well-known problem whether a Banach space Lx(fi) can contain 
an uncomplemented subspace X which is isomorphic to Lx(v) was solved 
in [3]. 

The solution follows from the local analogue, which says that for some 
B < oo one can find, for n =1,2, ..., subspaces Xn a IfW with d(Xn, l™) 
< B such that \\P\\^ an, for any projection F of l™^ onto Xn, where 
limaw = oo. 

On the other hand, in the results of [5] and [28], which we present 
below, there is no local version which is a priori equivalent to the global 
one. 

First we recall the notion of a local ^-structure (cf. [48]). Let & be a 
family of finite-dimensional Banach spaces. A Banach space X is said 
to have an ^-structure if X has an «^-structure for some X e [1, oo). This 
means that for each E e SfX there are F e & and G e £?X such that G 2 E 
and d(F,G)^L 

Two well-known special cases are obtained if & = &p~ {lp\ n 
= 1, 2,...} for some p e [1, oo] or if & = <%l ==' {E eSfl^ E has a 1-un-
conditional basis}. Space with Jöfp-structure coincide with the ^p spaces 
introduced in [39]. The ^/-structure is called the local unconditional struc
ture in the sense of [11] (abbreviated to l.u.st.). 

The above class of l.u.st.'s is larger than (but closely related to, cf. 
[17]) the class of Banach lattices. I t contains most Banach spaces encoun
tered in Analysis (some spaces of analytic functions and differentiate 
functions being notable exceptions). Certain pathologies which are poss
ible in the general case do not occur within this class, e.g., if Xhas a l.u.st. 

„and is not super-reflexive then lx f.r. X ([26]). 
I t is not known whether or not l.u.st. coincides with the more 

general notion introduced in [22]. This is related to the problem whether 
a A-complemented subspace of a space X with a c-unconditional basis 
has an f(c, ^-unconditional basis. The problem is still open even in the 
important special case of X = Lp(fj,),p ^ 2. 
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The ^-spaces are important in the isomorphic theory of Banach 
spaces, because they seem to be the right generalization of the classical 
JCp-spaces in this context. In the past few years the theory of those spaces 
has been considerably enriched, especially due to the work of J. Bourgain 
(cf, [4]). Here we shall describe only the examples found in [5], whose 
construction is "finite-dimensional". 

Each of the spaces called Xa>b is obtained in [5] as the direct limit 
of a sequence (En)n>1 of A-isomorphs of lQn\ The inductive construction 
of the En*B forces some projections on Xa)h to satisfy an estimate iiwolv-
ing the parameters a, b. As a consequence, the <£^xspaces Xab liave 
the Radon-JSfïtcodym property, in particular, they have no subspace isomorp
hic to c0. This disproves a conjecture supported by the result for spaces 
which are J S ? ^ for each X > 1 ([61]). Moreover, for any X > 1 , among the 
X^B there are 2^ mutually non-isomorphic SP^-spaces. For other strik
ing features of those examples we refer to [4] or [5]. 

Even more essential uses of local methods in global problems as well 
as many purely local results can be found in [28] (cf. also [40]). Two natural 
classes of separable Banach spaces with a global symmetric structure are 
the rearrangement invariant (r.i.) lattices of measurable functions on [0,1] 
or [0, oo). Those spaces obviously have, for X > 1, an ^?rstructure where 
St == {E e Sfl^ E has a 1-symmetric basis}. The ^-structure of those 
spaces is a very efficient tool in their investigation. Many results in [28] 
are new, even for the spaces LP\0,1\ 1 < p < oo, p ^ 2 . 

A partial case of such a result shows that if X is an r.i. function space 
on [0,1] and d(X, Lp) < oo, for some p e [1, oo), then the linear spaces X 
and Lp are equal and the norms are equivalent. This means that Lp [0,1] 
has a unique representation as a r.i. function space on [0,1]. (Not every 
r.i. space Y on [0,1] has the above property.) 

The proofs of that and other results in [28] often depend on quantitative 
finite-dimensional analogues, which are also interesting in themselves. 
We quote one of them in the stronger form obtained, by another method, 
in [56]. 

If (fy)f=i and (fi)i=1 are normalized 1-symmetric bases in the Banach 
spaces E and F, d(E, 1%) > nr, r>0 and T eL(E, F), Tei = /< fori = 1, ... 
...9n9 then max{||T||, yi7"1!!} < (7 < oo where G depends only on r and 
d(E, F). 

In this sense the symmetric structure of E is unique provided that E 
is not "close to the Hilbert space". I t is not known whether or not G has 
to dopend on r. 
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Two recent results, also concerning w'-dimensional symmetric spaces, 
show in two different ways that, for large n, those spaces form a small 
subclass of the class Jin of ^-dimensional Banach spaces. 

I t -is proved in [59] that, if E, F e Jtn have 1-symmetric bases, then 
d(E,F)^21Qn112. 

This should be compared with the remarkable result 

i n f r t u p { d ( X , Y)\ X,Y e J£n} > 0, 
n 

obtained in [20]. The method introduced by E. D. Gluskin was later 
used in [41] to solve the problem of large asymmetry constants (cf.t [19]). 

A space E e Mn is said to have enough symmetries, in short s (E) = 1, 
provided that 

dim{T eL(E, E)\ TV = UT for U eG(X)} = 1 

where G(X) = {UeL(X,X)\ \\U\\ = HCT1!! = 1}. (Many facts proved 
for spaces with a 1-symmetric basis can be obtained by assuming only 
that s(X) =1.) Setting for XeMn 

s(X) = inf {d(X, E)\ E e Jln, s(E) = 1}, 

we obtain the asymmetry constant of X. The result of [41] says that 

sup{s(X)| XeJ?n}^cn112, 

where c > 0 does not depend on n. (Note that s(X) ^d(X, It) s (It) < n112 

for X e Jln.) 

In the last part of this report I present some recent results from the theory 
of operator ideals. In many situations in Banach space theory, and es
pecially in the local theory, certain operator ideals play a very important 
role, but the scope of their applications is much wider. Particularly im
portant in those applications are the ideals of ^-summing operators, 
Q <p< oo, and some related ideals.(cf. [39], [22], [58], [33]). 

Let us recall the definition of the (p, q)-snmming operators, 0 < q < p 
< oo. Given Banach spaces X, Y, the space nPjQ(X9 Y) consists of such 
operators T eL(X, Y) that nPtü(T) < oo, where 

^ ( T ) = s u p ( ^ [ | ^ , f ) 1 / P , 
i<n 
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the supremum being taken over all finite sequences xx, . . . , xn e X such 
tha.t J] |#*(a^)|a< ||a?*II3 for œ* e l * , The p-summing operators correspond 

to the case q = p, in this case one writes simply IJp(X, Y) and np(T). 
We refer to the treatise [49] for comprehensive information about 

operator ideals. Here we just mention that, if a class % of operators is 
an operator ideal, then for any Banach spaces X,Y the intersection 
S}tnL(X, Y) is a linear space denoted by %(X, Y), and if A e%(X, Y)9 

TeL(W,X) and SeL(Y,Z) then SATe%(W,Z). 
I shall discuss the problem of the distribution of eigenvalues of bounded 

linear operators. Although the problem may seem to be far from the 
local theory of Banach spaces, it has been solved by using basically finite-
dimensional methods, many of them being analogous to those used in the 
local theory. Also the possibility of applying general results concerning 
classes of linear operators in a given space often depends strongly on the 
local geometry of the space (cf., e.g., [8]) 

For the sake of simplicity, we consider here complex Banach spaces. 
If T eL(X, X) and T—Xidx is a Fredholm operator for X ^ 0, we denote 
by (Xj(T))j>1 the sequence of eigenvalues of T counted according to their 
multiplicities and ordered so that \XX(T)\ > \X2(T)\ > ... We put Xn(T) = 0 
if T has fewer than n eigenvalues. 

The classical result of H. Weyl ([60]) shows that, if E is a Hilbert space 
and 0 < p < oo, then the Schatten class SP(E) is an ideal in the algebra 
L(E, H) such that (X^T)) e lp for T e SP(H). Hence the degree of compact
ness of T predetermines the rate of decreasing of the eigenvalues. 

A generalization of this fact would be to find an operator ideal %p 

such that (i) %(E,E) 2 SP(E) and (ii) for any X, if Te%(X,X)9 

then {Xj(T))elp. 
This problem is a kind of equation in which the unknown quantity 

is an operator ideal and one looks for a maximal solution which, hopefully, 
has some useful properties and can be related to more familiar objects. 
I t is easy to prove, cf. [49], that for p = 2 the operator ideal U2 is a sol
ution. Since IIp(E, E) = S2(E), for 0 < p < oo, the ^-summing operators 
may have just 2-summable eigenvalues if p < 2. However, if p > 2, then 
the ideal ITP satisfies (ii). This non-trivial fact was proved in [27]. 

One has ITPt2(E, E) == SP(E) for p > 2 , but the ideal JJp2 lacks prop
erty (ii). In fact, it was shown in [34] that, if T e JJPi2(X, X), then \X5(T)\ 
^ °pKp,2(Œ)3~llP / o r j = 1> 2, . . . and that no stronger conclusion can be 
obtained. 

I t was also shown in [27] that, if T eL(X9 X) can be factored as 



972 Section 9: T. Figiel 

T = Tno ...oTx, with 7tPi(Ti) < oo, p^2, then the eigenvalues of T 
are ^-summable where p~~l = J p^1. Analogous results were obtained 

in [34] for compositions of (pi9 2)-summing operators. 
While those results were rather strong and had interesting applications, 

they did not generalize (except for the case of i72) the inequality of Weyl, 
which says that, for T eL(E,E), 0<p<oo and n = 1, 2, . . . , oo, 

n n 

3 = 1 j=l 

where s^T) = XÓ[(T*T)1Ì2) are the so-called singular numbers of the oper
ator T. (In this case cp = 1 . ) 

I t seemed natural to look for a solution of the form %p = S£$ where s 
is a generalization of the "singular numbers" to all operators and 

<e$(X, Y) = {TeL(X, Y)\ (8j(T)) elp}, 

or, more generally, if 0 < u < oo, 

JZ^JX, T) = {TeL(X, Y)\ {st(T)) elpJ 

where lPsU is a Lorentz sequence space. 
The largest among the reasonable generalizations of the s '̂s (cf. [49]) 

are the approximation numbers defined, for T eL(X, Y) and n = 1, 2, 
. . . , by 

an(T) = miQ\T-S\\\ SeL(X, Y), rank S<n}. 

If T e L(E, E), then an(T) = sn(T) for each n. The Weyl-type inequality 
with 8j replaced by a$ was obtained in [31] (where cp > 1), hence the ideals 
J2f*fJ solve the above problem for 0 < p < oo. 

Even better solutions se^ and SB*® were found in [27]. They corre
spond to the so-called Gelfand numbers and Kolmogorov numbers (cf. 
[49]). 

The approach of [32] and [34] led A. Pietsch to the notion of Weyl 
numbers 

xn(T) = s u p K ( T U ) | ï 7 e i ( Z 2 , X ) , | | ï 7 | | < l } , 

n = 1,2,..., and to remarkable simplifications of the method (cf. [50]). 
He proved that, for 0 < p, u < oo, 

T e SeWu(X, X) implies (Xn(T)) e lp§u. 
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Since, for p > 2, JJPt2 c JSf̂ J», and the ideals SS^ satisfy a nice compo
sition formula (in the indices p and u), these results improve those 
of [34] and clarify them as well. The improvement is rather subtle, since 
Ep2 =) ̂ p% for p > 2 and II\ •=> j?fi. Also, for no p > 2 does one have 

An alternative solution improving those of [27], was found in [7]. 
The operator ideals S?p

e]u are defined by using the entropy numbers (en(T))n>1 

(cf. [49]), which are related to the entropy of ^(Ball^) in Y. One has 
a very simple relation 

\Xn(T)\^V2en(T) 

for TeL(X,X) and n=l,2,..., (cf. [7]). 
The ideals jSf^ and S£p\ have similar properties, but for some operators 

T the sequences (en(T)) and (xn(T)) behave very differently. The eigen
values of many natural operators in Analysis can be studied by using one 
of those methods. For examples we refer, e.g., to the papers we have 
quoted. Those applications include some integral operators either weakly 
singular or with a smooth kernel (cf. [51]) and, more generally, operators 
in Sobolev or Besov spaces which "improve smoothness". 

For instance, if M is a compact smooth manifold and T maps the 
Besov space BQ

PtU(M) into a smaller space JBJifl(Jf), then the properties 
of the embedding I: JBJ>f,->B|itt reflect on the eigenvalues of IT. If p > q 
one uses en(I), iîp^q then either xn(I) or their dual analogue is needed, 
The study of the opera-tor I can be made simply (cf. [51]) in terms of the 
spline bases on M constructed in [9] and [10]. In each case the methods 
yield optimal indices of summability under given assumptions. 
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B. C. KAHIHH 

HeKOTopBie pe3yjn>TaTM 06 o u e n K a x 
nonepe^iHHKOB 

CTaTLH nocBHmeiia oijeHKaM noneperanKOB KJiaccoB rjia^KHx $ynKijHM 
H KoiieMiioMepHHX MHomecTB. PaccMaTpHBaeMan TeMaraKa, KaK no no-
cTanoBKaM saRüK, Tan H no MeTô aM HX pemeiinn, npuna^jiea^HT K oßjiacra 
norpamraioË Memjiy Teopneft npHÖJiHTKeiiHH, Teopnen opToroHajibHbix 
PHROB H reoMeTpueö nopMnpoBanntix npocTpaiicTB. B nocjiep;iiHe TOAH 

orteiiKH nonepennHKOB nannuaioT naxo^iTb npHMenennc B npHKjiajjiioft 
MaTeMaTHKe? npn aHajiH3e KanecTBa BHHHCJIHTCJIBHHX ajiropHTMOB H B $yn-
KijiioiiajiLHOM anajiH3e, npn H3y*ieHHH pacnpejjejieHHH coßcTBemiBix raceji 
onepaTopoB. 3aßaHH o nonepeniiHKax B nocjieftiine ßecHTL jieT HHTCH-

CHBHO H33^ajiHCb H iiaiua ijejiL — jjaTb 0630p neKOToptix, nojiyHemiHx 
SRech pe3yjiBTaTOB. 

nycTB X — 6anaxoBo npocTpancTBO, K — KOMnaKT B X, L c X — 
noftnpocTpaiiCTBo. IIOJIOJKHM 

AX(E9L) = sup inf | |2 / -* | | x . (1) 
yeK zeL 

OnPB̂ EjiEHHE 1 (A. H. KojiMoropoB [10]). n-nonepenuuKOM KOMnaKTa K 
B X na3LiBaeTCH BemraiHa 

dn(K,X) = inf AX(K,L), 
L 

rße inf 6eperrcfl no BceM no^npocTpancTBaM L c X pa3MepnocTH < n. 

OnPB̂ EJiBHHB 2. JluuemibUi n-nonepennuKOM KOMnairra K B X na3HBa-
eTCH BejiHHHiia 

ôn(K,X) = inf sup \\x ~Tx\\x, 
T xeK 

rjie inf 6epeTcn no BceM, ineMCTBjaomiiM B X jiHiieMiibiM onepaTopaM T paura 
< n (T: X~+L, L c X, d i m l / < n). 

[977] 
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HcTopHiiecKH nepBan H HaH6ojiee'H3BecTHaH sa t ana o noneperanKax — 
sa t ana 06 oijeHKe noneperaHKOB KJiaccoB Coöojießa Wp B npocTpaH-
CTBax Lq, 1 < g < 00 (L°° = (7). HanoMHHM, HTO «JIH r > 0 

Wî(-7c,ie) = { / : 11/11^.^ +I1 / W I | E P(^ ,<1} > 

rse 
OO 7T 

— K03(|$Hî HeHTBi <DypBe $yHKiïHH /(a?). AHaJiorHHHO onpesenaeTca KJiacc 
Wp(T

s)-($}ynKiwft s nepeMeHHBix, sanaHHBix Ha Tope Ta = ( —n, TT)S. 
HnHce noH^eT pe îB 0 CKopocra yÔLiBannn npn n->oo nonèpeHHHKOB 

än(W;,LV (2) 

npn 3TOM MBI orpaHHHHMCH cjiynaeM s = 1, TaK KaK paccMOTpeHHe KnaccoB 
(JjyHKijHìi MHorpix nepeMeiiHBix He BHOCHT 3HecB eymecTBeHHBix HOIIOJIHH-

TeJIBHBIX Tpy«HOCTeË. 
riopHAKH nonepe^HHKa (2) npH p = q = 2 6HJIH onpeaeneHBi eme 

A. H . KojiMoropoBBiM [10]. B 50-x rojjax BTH BonpocBi paccMaTpHBanncB 
PyjpmBiM [15] H C. B. CTCTKHHBIM [16]. B [15] noKa3ano, HTO 

d , ( W Î , I ? ) X n - ^ » (3) 

a B [16] HaöAeHbi nopfljjKH Bejin îHHBi (2) npn p = q = 00. 
B 60-x rojjax SBUIH onpeaejieHBi nopnAKH nonepeTOHKOB (2) ßjm 

JIIOöBIX p ix. q c p^q, a aaTeM H npn 1 < ^ < g '<i2 ; öBIJIH BLIHHCJICHBI 

H TOHHBie 3HaiieHHH neKOTopBix nonepeHHHKOB (CM. nojoipoOHee [5], [7]? 

[18]). Bo Bcex yKa3aiiHBix cny^anx noKa3BiBajiocb, HTO 

dn(Wp, L*) > c-ALq(Wp, Tn)y c = c(p, q) > 0, (4) 
n 

rfle Tn = {P(œ): P(#) = J£ ahe
%hx\ — npocTpaHCTBO TpHroHOMeTpH êcKHX 

k=—n 

noJiHHOMOB. HepaBeHCTBo (4) 03Ha*iaeT, HTO npn g<max(2 ? JP) npo-
CTpaHCTBo TpnroHOMeTpHHecKHX nojiHHOMOB HanjiyHHiHM (no nopauKy) 

1 IIpn paccMOTpeHHH nonepe^HHKOB (2) KOHe*iHO Bcer^a npep;nojiaraioT, IITO 
Wp(T

s) — KOMnaKT B Lq(Ts), EJIH OToro HeoöxoftHMO H flOCTaTOHHO, 1ITO6H r/s—lfp + 
+ l/q > 0 (CM. [1]). 

a 3anHCt an>z bn 03Ha*iaeT, HTO npn w = l , 2 , . . . , 0 < - 4 < anjbn < B < oo, r#e 
A H B — aÖCOJHOTHBie nOCTOHHHHe. 
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B03M0JKHBIM o6pa30M npHÖjlHJKaCT KJiaCC Wp B MeTpHKe Lq. C TpHßljaTBIX 

TOAOB H3BeCTIIO, HTO 

A (Wr T)~\n~% eCml P>q' (5) 
* M \ "p, J-n) ~ („-r+lfr-l/^ e c j I H p < q ^ W 

nosTOMy H3 cooTHonieiiHH (4) cpaay iiaxoflHJiiiCB nopaßKH nonepemiHKOB 
(2) npn # < max(2, p). 

P. C. HcManiJioBBiM [5] ôBIJIO noKa3ano, HTO npn q > max(2,p) no-
nejieime Beniraaii (2) peai-co MeHHeTca. B TOCTHOCTH, B [5] nojiyneno iie-
paßeiicTBo 

än(W
2

19 ÖXc-n'W-hiiK c^n~ll5'lnn'AL00(Wl, Tv), 

H3 KOToporo cjie^yeT, HTO oÖBraiBie TpnronoMeTpHHecKHe noJinnoMBi ne 
HBjiHiOTCH xoponiHM annapaTOM npHÖjrajKeiiHH KJiacca W\ B MeTpune G. 
B 9TOM cjiynae, B nanecTBe „xopomo npHÖjiiimaiomero" w-Mepuoro noji;-
npocTpancTBa, P. C. McMarnjioBBiM öBIJIO B3HTO noAnpocTpancTBO BHjja: 

n 

T'n = [P(x): P(x) = %a,é*i*}, (6) 
3 = 1 

TRO {Äj}JLi ~ iieKOTopBifi, cnerjuajiBHO BBiöpauHBifi, naöop ijejiBix MHceji. 
3a6eran Bnepejj, OTMCTHM, HTO c noMomBio nojjnpocTpaHCTB Bnp;a (6) 
Monmo xopomo annpoKCHMHpoßaTB KJiaccBi W[ (r > f ) H noKa3aTB (CM. 
[13] ), HTO npn q > 2 

miALq(W[, T'n) - dn(W[, L«) X n~^2 (7) 
•Si 

(B (7) inf ßepeTCH no BceM no^npocTpancTBaM BHfla (6)). B CBH3H C öTHMH 

pe3yjiBTaTaMH BOBIIHKJIO noiiHTne TpHronoMeTpimecKoro nonepeimiKa 
KJiacca ^yiiKî HH K B npocTpaHCTBe LQ: 

mtALq(K,T'n), 

ORiiaKo JüJIH K = Wp,l<p< oo = q TOHHO OIJCHHTB 3Ty Bejiiramy ne 
y^aeTCH II neT ocnoBaiiHH ĉ HTaTB, HTO no nopn^Ky oiia cosna^aeT c no-
nepê HUKOM (2). 

y>Ke B nepBBix paöoTax, nocBarqenHBix nonepeniiHKaM KjiaccoB rjiajj-
KHX <J)yiiKii;HH (CM. iianpuMcp [16]) npoH3BOAHjiH EHCKpeTHsaijHio salami, 
T.e. CBeaeime ee K saj^sme o noneperaiiKax neKOToporo MHOîKecTBa B Bm. 
npn Hsy^eiiHH KjiaccoB CoôojieBa TamiM KonennoMepiiBiM aHajioroM 
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HBjineTCfl 3a;uau;a 06 oijeHKe BCJIHHHHBI 

< W , Ç ) , (8) 
rjje Bp — eAHHiî HBifi map B npocTpaHCTBe lp H JJJIH X = {®j}jLi e Bm 

MM 
1P 

•ut, 
( V | ^ n P , ecjiH l^p<oo, 
3=1 
m a x \Xj\j ecjiH p = 00. 
l<3<in 

JJocTaTOHHO TOiHBie cnoco6Bi HHCKpeTH3au;HH ôBIJIH npejyiojKeHBi B pa-
6oTax [3] H [13], ornano oTcyTCTBne xopouiHX oijeHOK Benn^imBi (8) 
He «aBajio BO3MO>KHOCTH npoABHHyTBca B peineHHH sa^a^H o CKppocTH 
yÔBiBaHHH nonepeHHHKOB KjiaccoB Coßojießa. AßTopoM B pa6oTe [7] (CM. 
Tanme [ß]) ÖHir npeßJiomeH MeTon oijeHKH nonepeHHHKöB (8), a cjiejjo-
BaTejIBHO H (2), OCHOBaHHBIH Ha BepOHTHOCTHBIX COOOpaJKCHHHX. KpaTKO 
3TOT MeTOfl M05KHO OnHCaTBTaK: paCCMaTpHBaeTCH AOCTaTOHHO IHHpOKOe 
MHOîKecTBo ümsU ^-MepHBix nojmpocTpaHCTB L cz Bm, HajuejieHHoe Mepon fz 
(HanpHMep MHOJKCCTBO Bcex w-MepHBix nojoipocTpaHCTB B Bm c MepoË 
Xaapa HJIH MHOJKCCTBO noftnpocTpaHCTB L cz Bm, d i m i = n, KOTopBie 
B cTaHji;apTHOM 6a3Hce 3a;n;aiOTCH MaTpnijeË c DjieMeHTaMH ± 1 H pL = 2~mn) 
H oî eHHBaeTCH BenniHHa 

I M S = I M ( W » W ) = J A
lm(^9L)d/i. 

OHeBHftHO, HTO 

än(B%, la)= inf A (B%, L) < IM. (9) 
L, dim L^n q 

OKa3BiBaeTca, HTO B pane cnynaeB paaHHija Measay neBOH H npaBofi nacTBio 
B (9) HeBejiHKa H TOHHO OIJCHHB HHTerpaji IPtÇL, MBI nojiy^HM xopouiyio 
oijeHKy nonepeHHHKa (8). K npnMepy, yKa3aHHBiM MCTOJJOM aBTopoM 
ôBIJIO noKa3aHO (CM. [7], a TamKe cTaTBio aBTOpa B côopHHKe [14]), HTO 

npn JIIOôBIX pviq, l^p,q^oo 

' 1 ecjiH 1 < p < q < 2 , 
n~ll2+1/a, ecjiH p < 2 < q, (10) 
n-ilp+i!a9 e c j I H p ^ m i n ( 2 , q). 

i7 lTt*n 7 2 w \ >—* T * 
an\*>p > bq ) <— 1ptq —> 

H3 (10) raeayeT, HTO cjiynaËHoe w-MepHoe nojpxpocTpaiiCTBo npn JIIOöBIX 

p a q xopoHio annpoKCHMnpyeT map Bp
n B MeTpHKe lq

n, B TO BpeMa KaK 
npOCTpaHCTBO HHCKpeTHBIX TpHrOHOMeTpHHeCKHX nOJIHHOMOB TOH-ffîe pa3-

file:///Xj/j
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MepHOCTH HaeT xopomee npHOJiHJKeHiie mapa JBjn B l2
Q

n
 TOJIBKO npn g < 

< max(2,#). 
C noMOHjBio onHcaiiHoro no^xo^a B [7] ßOKasana H 

TEOPEMA 1. IIpu m > n 

ln~li2< dn(B™, 0 < O n - ^ I l + l n — J . 

OraeTiiM, nro HoKasaTB cooTiiomeHiie (10) 3aMeTiio nponje, neM no-
jiyqiiTB ^ocTaTOHiio TOHHBie (CM. TeopeMBi 1 H 4) oijeiiKH nonepc^HHKOB 
dn(Bp) Ç)J 3 < ^ < 2 < 2 < 00 npn m Miioro ôojiBiue, nen n. B nocjieaneM 
cjiyqae TpeôyeTca noßpoßnee nsyiHTb reoMCTpHiô  mapoB Bp. 

J\jm Toro, HTOôBI aaTb npe^cTaBjieHHe 0 TOM, Kanoro Tiina reoMeTpn-
HecKiie Bonpocbi B03HHKaioT npn oii[eHKax nonepê HMKOB (8), npHBejneM 
O^HII pe3yjibTaT, nonyqeHHUft B [7] nonyrao. 

TEOPEMA 2. ffjia nawcdozo m = 1, 2, . . . uaudemcsi marne opmozonajihnoe 
npeoopasoeanue T'm npocmpaucmea Hm, nmo 

m~ll2'B™ cz B™nT'm(B?) c Km~ÎI2B™, 

ede K — aocojiiomnan nocmoRunasi, a a-B™ — map paduyca a. 

OijenKH nonepe^HHKa dn(Bf, l™) 0Ka3ajincb nanôonee BaamBiMH ßjia 
npHJioa^eHHH. Onnpaacb Ha TeopeMy 1 11 Hcnojib3ya oTMeneniibie BBime 
cnocoôbi RHCKpeTHBaî HH, B [7] aBTop 3aBepmiin onpe^ejiemie nopHßKOB 
nonepe^HHKOB dn(Wp,L

a), r>l. B HTore ona3ajiocb, HTO HMeeT MecTo 

TEOPEMA 3. Ilycmb l^p, £ < oo,r-p>l. Toeda 

än(w;,L«)~ 
n~r' ec.au p&tq ujiu 2 < p < q, 
n-r-ii2+i/p ? ecjlu p^2<q, 

n-r-iiQ+iip^ ecjlu ±^p<q^2. 

Kan BHAHO H3 TeopeMBi 3 H (5) npn q> m&x(2,p) nonepemniK (2) 
cyniecTBeiiHo Meiibine, *ieM ALQ(WP, Tn). 

JJJIH nojiHOTBi paccMOTpeHiia Bonpoca ocTaBajiocb oijeniïTb nonepen-
HHK (2) npn rp < 1, T.e. Kor^a KJiacc Wp ne KOMnaKTen B G(—n,n). 
OKa3ajiocb (CM. [9]), HTO B 3TOM cjiy^ae noBejüemie nonepenniiKa (2) 
pe3K0 MenaeTca H RJIH ero TOMHOë OIJCHKH neoôxoftHMo 3iiaTb To îiBie, 
paBHOMepHbie no n H m oijeiiKH BCJIHHHH (8) npn q> ma,x(2,p). Tanne 
ou,eHKH 6BIJIH nony^eiiBi B nacTiioM cjiynae p = 1 aBTopoM [8] H B oönjeM 
cjiynae E. J\. rjiycKHHBiM [4], KOTopBifi, Hcnojib3ya omicamiBiö BBime 
BepoaTHocTHBifî MeTOA, ßOKasaji, HTo cnpaBeAJiHBa 

http://ec.au
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TEOPEMA 4. Ilycmb l^p< q< oo, n<m. Toeda 

<'<''<*•*<.&:;;,<>«••*•*• 

ede GX(p, q) u c2(p, q) — noncmaumu, 3aeucmi{ue momno om p u q, a 

llP-lfq 
(min{1, mm-n"112}) w-m, 2 < p < q < oo, 

0(m, n,p, q) = 

iv iß 
max ' Im11«-11*, Il - —\ -min{1, m1'*-w"1'2}}, 

(11) l < ^ < 2 < g < oo, 
1 l/n-l/g 

max {»*-*, ( l - £ V 1/2"1/2}, 1<1 ,< 2 <2. 

TaKHM o6pa30M B HacToamee BpeMa npn q< oo nopajjKH nonepe^HH-
KOB (8) nojiHOCTbK) onpeaejieHBi. BonpocBi ocTaiOTca TOJIBKO B cjiynae 
q = oo; Heii3BecTH0, B nacTHOcTH, KaKOB nopaAOK (npn n->oo) Bejin-
TOH **{%?,£), p>l. 

C noMom&io TeopeMBi 4 E. JJ. KynamiH [11] ncmasan, ITO cnpaBejjjiHBa 

TEOPEMA 5. Ilycmb — l / g < r— 1/p < 0, g > max(2,jp). i lp« w-»oo 
cnpaeedjiaebi coomnomenua 

. n i tip-lia 
ecu p > 2 u r > - . T ^ - ^ , 

1 • ' ^ 2 1/2 - i / a 

IN+ä , ec/ziz # < 2 « rp < 1. 

VTBepHtaeHHe TeopeMbi 5 npn p = 1 6HJIO nojiy îeHO paHee B [9]. 
OôpaTHM BHHMaHiie Ha TO, HTO B TeopeMe 5 He paccMOTpeHH cjiyqan, Korna 

1 llp-llq 
rp = 1, l < p < 2 n r = — • — —, 2 < « < oo. 3ji;ecb 3Hamïe no-

2 1/2—1/j 
pa^KOB BejiHHHH d^B™, I™) He aocTaTOHHO HJia TOTOOë oüieHKH nonepeq-
HHKOB KjiaccoB CoôojieBa. Bojiee Toro, E. J\. KyjiaHHHbiM ôBIJIO noKa-
3aHO, HTO JJJIH JiK)6oro e > 0 H q e (2, oo) HaË^yrca TaKHe nocTOHHHbie 
CQtB H C'q, *ITO 

0 < ^ f8-^-1 /2-ln1 /2-8^< dn(Wî, L«) < 0;^-1/2-ln%, n = 2, 3 , . . . , (12) 
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T.e. B oijeiiKax RJIH nonepemnwa (2) MoryT no cymecTBy B03iiHKaTb MHO-
JKHTCJIH BHjüa lnvn. HiiTepecno cpaBiiHTB oijeiiKH (3) 11 (12). 

KocneMca Tenepb Bonpoca 0 jiiraeEiiBix nonepemiHKax. Bepoarao-
CTHBIH noAXOA 0Ka3ajica npHMemiMBiM H B 3aßaie 0 n o p a w a x npii n->oo 
BejiiimiH ôn(Wp,L

q) H ôn(B™,Vq), E. fl. TjiycKHH [4], ycHjiHBaa ôojiee 
paiiHHË pe3yjiBTaT XejiJiura [19], nona3aji, HTO cnpaBejjjiHBa 

TEOPEMA 6. Tlycmb 1 < p < q < 00, (p,q) ^ ( 1 , 00), n < m. Tozda 

& /r>m 7i»\ 

o<c3(P,<D< J;ti :\,<oi(p,q), 
\LJ(m, n,p, q) 

zde cs(p, q) u c±(p, q) — nocmonimue 3aeucmi(ue IJIOMKO om p u q, u (CM. 

(11)) 

\<P(m,n9p,q), cerni l^p<q^p', 
T(m, n,p, q) = 

[0(m,n, qf,pf), ecjiu max{jö, p'} < q, 

1 1 1 1 

_ + — ^ — ̂  — ^ i . 
p p' q q' 

TeopeMa 6 BBiacnaeT n o p a i n nonepemiHKOB àn(B%91%) BO Bcex 
cjiyHaax3aHCKJiioMenHeMCjiy^aa^= 1, q= 00 (OTMCTHM, HTO dn(B?91™) = 
= ^n(^T} O ) - OKoiwaTejiBHBiË pe3yjiBTaT o nopa^Kax jiHiiefiHBix no-
nepOTHHKOB KjiaccoB Wp,r>l 6BIJI nojiynen B. E. MaËopoBBiM [13] 
H XejiJinroM [19]: 

TEOPEMA 7. Ilycmb r>lup<2<q. Tozda 

ôn(W
r
p9 L«) x n-r+llP~llq-ß

9 ede 

» ot , . / l 1 1 1 \ ^^,2)^min(¥ ,-7 ,_--j. 

Panée 6BIJIO HSBCCTHO (CM. [5]), ^TO npn p > 2 HJIH q< 2 ôn(Wp, Lq) X 
X ^ i f f (W^j 21»). OTMCTHM (CM. TeopeMBi 3 H 7), HTO jinneËHBie nonej)eiiHHKH 
KjiaccoB Wp9p>l B npocTpaHCTBe ö(—7U,7T;) cymecTBeimo öojiBiue, *ieM 
nonepeHHHKH no A. H. KojiMoropoBy. 

B nacToamee BpeMa aciio, HTO HcnojiB30BaiiHe cjiynaEHBix nojjnpo-
CTpancTB aaeT BO3MO?KHOCTB onpeftejiHTb nopa^KH nonepeniniKOB RJIH 

miipoKoro KJiacca KOMnaKTOB. HenoTopBiM nejjocTaTKOM BepoaTuocTiioro 
noAXopia aBJiaeTca HCBO3MO?KHOCTB HBiioro ynasanna nojjnpocTpancTBa, 
xopomo annpoKCHMiipyiomero KOMnaKT. IIo3TOMy ecTecTBenno B03miKaeT 

10 — Proceedings..., t. II 
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Bonpoc (CM. [14], CTp. 320, a TaKHîe [2]) o KOHCTpyKTHBHOM E0Ka3aTejib-
CTBe TeopeMbi 3. 

B saKjiiöHeHHe OTMCTHM, HTO paccMOTpeHHaa HaMH saftana o nonepen-
HHKax KjiaccoB Coöoneßa HMeeT oT^acTH MojjejibHBiË x a p a m e p H CTaBHTca 
KOHeHHO H RJIH ßpyrHX KJiaCCOB $yHKIJHH. IlpH 3TOM MOJKeT B03HHKHyTb 
noTpeÖHocTb B H3yneHHH noneperaHKOB KOHe^HOMepHbixMHOHîecTB 6ojiee 
cjioamoro, *ieM mapbi Bp BHjja. BMecTe c TeM, npHMeHeHHa oijeHOK Bejimum 
(8) He orpaHHHHBaiOTca cjiynaeM KjiaccoB Wp. TaK, ncnojib3ya TeopeMy 1 
H ee cjiejüCTBHH, B. H. TeMJiaKOB [17] onpeßejiHJi nopajjKH nonepe^HHKOB 
B npocTpaHCTBax Lq(Ts), Kq< oo KjiaccoB 2Ç f5 (p > 1) — $yHKijHË 
s nepeMeHHbix; npejjcTaBHMHM B BHjje CBepTKH : 

# L = {/(»).' /(») = ^37 j<p(y)-Fï(®-y, *)äy, IMU^)<l}, 
rpS 

TRO r = (r19 . . . , rs), min rû > 1, a = (ax, ..., as) H ajjpo onpesejiaeTCH 

paBeHCTBOM 

B KOTopoM cyMMHpoBaHHe npOH3BOflHTCH no BceM HaôopaM h = ('k1,... 

..,Jcs), JCj > 0, l < j < s , OTKpbiTOË 3ji;ecb ocTaeTca, B03HHKmaa B tia-
najie 60-x roflOB, 3a«aHa o nopaßKax nonepeHHHKOB dn[Epâ, G(TS)). 
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X. Introduction 

JT-theory is a wide area of mathematics embracing substantial parts of 
algebra, topology and in recent years — analysis. I will be talking about 
operator if-theory, the IT-theory of <7*-algebras. Its origins are in topolo
gical If-theory which may be regarded as a part of operator JK-theory. 

Eecall that Grothendieck's group Kd(A) for an associative ring with 
unit A is defined by introducing formal differences in a semigroup of iso
morphism classes of finitely generated projective ^.-modules ([1]). This 
group is covariant in A. In topology A = G(X), the algebra of continuous 
complex-valued functions on a compact space X. In this case projective 
Jl-modules correspond to complex vector bundles and the group K0(A) 
is denoted by K°(X). (Upper ^nd lower position of indices reflects contra-
and covariance properties respectively.) The group K°(X) gi^es rise to 
a Z2-graded cohomology theory K* ([1]). 

An independent development of operator K-theory began with the 
discovery of deep connections between elliptic operators and the ^ - h o m o 
logy theoiy dual to If* ([2]). I t appeared that by axiomatizing the notion 
of an elliptic operator one can define, for a ö*-algebra A, a group K°(A) 

[987] 
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dual to Grothendieck's KQ(A) ([14], [15]). On the other hand, Grothen
dieck's group K0(A) itself appeared to be closely connected with index 
of elliptic operators on regular coverings of closed manifolds invariant un
der the discrete group of transformations of the covering (see [15], §8). 
This led to an operator-theoretic definition of K0(A) in terms of Fredholm 
operators over C*-algebra A (see [15], §8; [18], §6; [25], §§1,2). 

But the most important thing for the development of operator if-the-
ory was its connection with ö*-extensions. Observed for a special case of 
extensions in [6], this connection appeared to be general and prompted 
a way of unifying both K* and JT*-functors into the IT-bifunctor KK*(A, 
B) ([16], [18]). We now come to formal definitions, but before that it is 
worth pointing out that unified homology-cohomology theories may be 
defined also in a purely topological situation (cf. [18], § 6, Def. 4). Very 
likely, this will give new methods not only in iC-theory. 

2. Definition of the üT-bifunctor 

We begin with generalizing the notion of Hilbert space (see [27], and [17], 
[18]). Let È be a ö*-algebra. A right JB-module E is called a Hilbert B-modnle 
if there is a "JS-scalar product" on E: (x, y) eB,\fx,yeE which is IMinear 
in y [(x,yb) = (x,y)b,\fb eJ3), selfadjoinfc ((y,x) =(x,y)*), positive 
((x, x) > 0) and non-degenerate (if (x,x) = 0, then x = 0). Moreover, 
E must be complete in the norm: \\x\\ = \\(x, x)\\112. We shall consider 

oo n 

only Hilbert .B-modules having a countable set {#J with [J (J£%B) 
dense in JE. n = 1 i=al 

A map of Hilbert B-modules T: E1->E^ is called an operator if there 
is an adjoint map T*: EZ->EV such that (Tx, y) = (x, T*y), Va? eEly y eE2. 
The algebra of operators ££(E) is a ö*-algebra. An ideal of compact oper
ators X(E) is a closure of a subspace spanned by "rank 1" operators 
dXtV: QXiV(z) = x(y,z),x,y,zeE. For B = C we get the usual Hilbert space 
B, algebra Jâf (H) and ideal X (H) (which is denoted by X when J3" is 
separable and infinite-dimensional). 

Given a homomorphism of ö*-algebras / : B->D, a Hilbert D-module 
E®BD is defined as a completion of JE® I) in the norm corresponding to 
the D-scalar product : (x1®d1, x2®d2) == d*f [(xx, #2)) ̂ 2 • Finally, we 
need the notion of graded Hilbert B-module JE. This is simply a sum of 
two Hilbert JB-módules: E = E^@E{1\ 

DEFINITION 1 ([18]). Let A and B be 0*-algebras, with A separable. 
Consider pairs (E, JP) where E is a graded Hilbert JS-module with A acting 
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on E from the left via a (diagonal) * -homomorphism <^0) © ç>(1) : A -> J£? (E^ 0 
@-®(1)), and F:E{0)->E^ is such an operator that V a e i : 

aF-Fa, a(FF*-l), a(F*F-l) (1) 

are compact operators. We shall identif}^ isometrically isomorphic pairs 
and denote the set of all pairs by &0(A, B). The direct sum operation makes 
this set a semigroup. A pair with all entries in (1) zero will be called degen
erate. An addition of a degenerate pair will be called a stabilization. 
Pairs (E0, FQ) and (E±, Ft) are homotopy equivalent if they are restrictions 
of some (Ë, J?) e iQ(A, B®O[0,1]) to the end-points of [0,1] (i.e., 
Et = Ê®B(B)0lQ)1]B, Ft = F®1 for t = 0,1). We define a semigroup 
KKQ(A,B) by identifying in SQ(A,B) pairs which become homotopy 
equivalent after stabilization. Quite similarly, a semigroup KKX(A,B) 
is defined starting with pairs (E, 8) where E is a Hilbert JS-module (non-
graded), Se£?(E) and, instead of (1), operators 

aS-Sa, a(S2-l), a(S*-8) (2) 

are compact. 
EKi(A,B) are in fact abelian groups, covariant in B, contra variant 

in A, and liomotopy invariant in A and B. This means that if a path of homo
morphisms ft'-B^Bz is (pointwise) continuous in t e [0,1] then 
(/J*: KKi(A, BJ-^KK^A, B2) does not depend on t (and similarly for A). 

In the case of A = C we can identify JLK"0(J., B) with K0(B). Let E 
have a unit 1. Taking any (E,F) e êQ(C,B) we can find a (É,F) 
e êç(C,B) differing from (E, F) by stabilization and a compact pertur
bation of F, so that 1 — JP.F* and 1 — F*F are compact projections ( [18], § 6). 
But then the .B-modules KerjF and KerJF* are projective and finitely 
generated ([18], § 6). Considering their difference as an element of K0(B), 
we get an isomorphism: KK0(C,B) c^K0(B). 

We shall denote KK^CjB) by K^B) and KKi(A9 C) by IP(.A). 
For a locally compact space X we put K^X) = Ki(G(X)), K^X) 
= Ei[G(X)) where G(X) is the algebra of continuous functions on X tend
ing to 0 at oo. Moreover, we put KKi(X,Y)=KKi[G(X),G(Y)). 

Now a few words about 0*-extensions : 0->B->D^>A->0 (cf. [18], § 7). 
They are closely related to the group KKt(A, B). Indeed, the left action 
of D on B defines a homomorphism D->£?(B) and (after dividing by B) 
a Busby homomorphism ß: A->J£(B)jB. If q admits a completely positive 
lifting^ then applying a standard Stinespring construction ([27], [17]) 
we get a Hilbert .B-moduIe E and a homomorphism cp: A-+£?(B©E) 
such that Pq)(a)P (modJS) = ß(a) where P is a projection B@E->B. 
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A pair (B®E, 2P —1) represents an element of EE±(A, B) corresponding 
to the initial extension. 

The main techniques to deal with JBT-bifunctors are provided by the 
bilinear pairing ([18]) 

EEt(At, B1®B)®EEj(D®A2, BJ-^EE^A^A,, BX®B2) (3) 

(i,j e Z2), which generalizes all the known cup and cap products in JT* and 
Z*-functcrs (cf. [15], §§ 4, 6). For this reason (3) may be called a cup-cap 
product (or a product intersection). To indicate that the intersection (cap) 
is in D we shall write a cup-cap product of elements x and y as x®Dy. 
The idea of the construction of (3) is taken from elliptic'operators, but 
the construction itself is rather difficult (even after simplifications given 
in [11] and [33]), and we omit it. 

The cup-cap product is functorial in all its arguments and, what is 
most important, associative. This last means that (Mi®D

x*)®D2®a 
= tfiOöJ^a®^) for xx eEE^A^ B^D^, X2 eEEf(Dx®A2, B2®D2), 

xz e EEr(JD2® Az, Bz). In particular, EEQ(A, A) is an associative ring 
with unit 1A = (E, F), where E = A ©0, F = 0. 

An immediate corollary of the existence of a cup-cap product is the 
general periodicity. We shall call element aeEE^D^B^ D^invertible 
(D^invertible, or simply invertible) if 3/? e KKj(D2, Dx) such that ß®Dla 
= l&2(a®D2ß

 = l p ? o r "both, respectively). A cup-cap product with 
invertible elements a and ß gives isomorphisms: EEi(A,B®D1) 
~EEi+j(A9B®D2), EEi(A®J01,B) ~ EEi+j(A®D2, B). In this way 
one obtains the usual Bott periodicity, as well as stability: changing A 
to A®G(B2) or A®X we do not change the JOC-groups (and the same 
for B). 

There is also an equivariant version of the 2£-bifunctor ([19]). Let 
G be a separable locally compact group. Consider a category of 0*-algebras 
.with ö-action (and (?-equivariant morphisms). A <7*-algebra B with a 
ö-action G x B->B continuous in the sense of the norm will be called a 
G-algebra. (x-action on la Hilbert JB-module E must satisfy the additional 
conditions g(xb) = g(x)g(b), g((x, y)) = (g(x), g(y)) and must be continu
ous (in norm). Note that the induced ©-action on jSf(JS) is usually not 
continuous. We define the group EEf(A, B) for ö-algebras A and B 
just as before, but adding to the list (1) operators a[g(F)—F), \fgeG, 
and demanding that function g->g(F) should be continuous in norm. 
The group EEf(A,B) is defined in the same way, 

Product (3) generalizes to the lO^-bifunctor with all properties listed 

file:///fgeG
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above. In particular, B(G) = EEf(C, C) is a commutative ring with 1, 
aaid all groups EEf(A,B) are i2(ö)-modules. For a compact group G, 
B(G) is the conventional representation ring of G, whence the notation. 

3 . Methods of computation 

DEFINITION 2. Let X be a complete Eiemannian manifold and<? a separ
able locally compact group acting on X by isometries. A cotangent 
manifold T*X has a natural almost complex structure. Associated with it, 
there is a Dolbeault operator on smooth forms with compact support: 
D = g + 8*: Q°C>*(T*X)->Q°0>*(T*X). Since B is essentially selfadjoint, 
on the £2-completion H of Q°C'*(T*X) we can consider the operator 
T= (1+D2)""1/2 D e£?(II). A decomposition of H into forms of even and 
odd dimension gives a grading: Jff = H^@H^9 with T taking the form: 

[0 T*l 
* . The pair (H,TX) represents a canonical "Dolbeault 

element" [dx] eEf(T*X). 

THEOREM 1. Let X be simply connected and liave a non-positive sectional 
curvature. Then the element [dx] eEf(T*X) is G(T*X)-invertible, i.e., there 
exists a dxeK°a{$*X) such that [dxi®c^x = ^C(T*X) eEE°G(T*X, T*X). 

Note that the construction of ôx (see [19], § 5) is based on the idea 
of using the radial geodesic co vector field ( [23], § 6). The proof of Theorem 1 
also makes use of a "rotation" of I x l ([19]? §5, Lemma 3). 

THEOREM 2 ([19], §5). Let group G be connected, let GK be its maximal 
compact subgroup and let X = G/GK. Then the element [dx] is C(T*X)-in-
vertible. Denote its inverse by ôx and the element àx®c^x^[dx'] eB(G) 
by yG. The element yG is idempotent and depends only on G and not on the 
choice of GK and ôx. For any G-algebras A and B the restriction 
r:EEf(A,B)-*EEfK(A,B) maps the subgroup yG-EE<?(A, B) isomor-
phically onto EEfK(A,B) with Korr = (l-yG)-EE?(A, B). 

Note that ya ^ 1 for groups G with the Kazhdan property (T). On the 
other hand, yG = 1 for amenable groups and Lorentz groups SO0(w, 1). 
More precisely, we have 

THEOREM 3. Let G be a connected group having an amenable normal 
subgroup JSf with G/N locally isomorphic to a product of a compact group 
and a finite number of Lorentz groups. Then yG — 1. 

The proof is based on the construction, for the group 
G = SO0(2w + l , 1), of an element aeE°(S2n) mapped into leB(G) 
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under the homomorphism induced by mapping 82n into a point. I t is very 
likely that yG = 1 also for all groups SU(w, 1). 

We now come to the computation of the iT-functor for the group 
ö*-algebras ö*(0) and crossed products G*(G, A) ([28]). Most useful here 
is the natural homomorphism ([19], § 6): 

j G : EEf(A, B)^KKi[&{ßi A), G*(G, B)), 

which maps 1A into 10*\G,A)
 a n ^ transfers the product x®Dy of elements 

x eEEf (A, B) and y eEEf(B, B) into 3G(x)®oHGiD)jG(y). 

THEOREM 4 ([19], § 6). Let G be a connected group, GK its maximal 
compact subgroup and Y a cotangent space to GjGK at the point (GK). Then 
there are G*(GK, A®G(Y))-invertible elements in the groups EE0(C*(G, A), 
G*{GK,A®C(Y))) and EEQ(G^(G,A), G*(GK, A®C(V))). If yG = 1 
then both these elements are invertible. In particular, for E-groups, if the action 
of GK on V is spinor, then, in general, both Ei[G*(G, A)) andEi[G*eäL(G, JL)) 
contain as a direct snmmand the group Ef^:

6imV(A), and if yG = 1, then all 
these three E-groups are isomorphic. 

4. Index of elliptic operators 

Let X be a closed smooth manifold (with a fixed Eiemannian metric) 
and p: T*X->X a projection. A pseudo-differential operator (cf. [13]) 
of order 0 acting from sections of the vector bundle rj{0) to those of rfì can 
be considered as an operator F: L2(rj^)->L2(rjW). (We fix Hermitian 
metrics on rf® and rç(1)). The symbol o> of operator .F is a homomorphism 
of vector bundles: p*(rj{0))->p*(rj{1)). We shall call F elliptic if \\cfFa^ — l\\x^ 
->0 and \\<yFo%—l||(a.jC)->0 uniformly in x e X as £->oo in T*^X. (Operators 
that are elliptic in the ordinary sense can clearly be normalized to satisfy 
this condition.) 

We shall consider r\ = 9/0)©rçW as a graded bundle and L2(rj) as 
a graded Hilbert space. The space of continuous sections of the vector 
bundle p*(rj) over T*X, tending to 0 at oo, will be denoted by G(p*(rj)). 
The algebra G(X) acts on L2(rj) and on C(p*(rj)) from the left by multi
plication. Thus we get elements [F] = (L2(rj), F) e E0(X) and [o>] 
= (0[p*(y))i °>) eKE°(X9T*X). Similarly, for a selfadjoint elliptic 
operator 8 we get elements [8]GEX(X) and [<rfl] EKE1(X, T*X). 

THEOREM 5. If [ S J e l 0 ( T * I ) is the Bolbeault element then 

IF] = [o>]®a(T**) \3xl [#] = [^]®oifl-i)[SJ. (±) 
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This theorem was established for the first time in [14] and [15]. But 
the theorem itself (cf. [4], [5]) and its proof (cf. [10], [11]) are probably 
natural enough to be discovered again and again. (However some refe
rences to the previous work in the new attempts would not seem to be 
superfluous.) 

From Theorem 5 one easily obtains a "cohomological form" of the 
index theorem ([3], 2.12). For this, one must take the Chern character of 
both sides of (4) and notice that oTi([dx]) is Poincaré dual in T*X to 
the Todd class of the complexified cotangent bundle of X. 

A number of index theorems can be obtained following the above scheme 
(for example, the index theorem for foliations [11]). Another example 
(see [25], [32]) is the index of elliptic operators in locally trivial bundles 
over X with fibres being finitely generated projective (right) modules 
over a <7*-algebra A with 1. (Such bundles are called A-bnndles.) Here 
[F]eEE0(G(X), A), \_aF\eEEQ[G(X), A®G(T*X)) and the index the
orem for JL-operators is again just (4). 

We will now generalize this situation to the case of group action (cf. 
[9], [20]). Let X be a complete Biemannian manifold and G a separable 
locally compact group acting on X by isometrics. We shall assume that 
all stability subgroups, as well as the orbit space XjG, are compact. A will 
be a separable ^-algebra with 1. We will consider G-invariant elliptic 
^.-operators on X belonging to the class L°6tô ([13], § 2.3) and assume that 
all operators and symbols have regular supports ([13], §2.1). In this case 
there arc elements [JP] eKK$(0(X)9 A), [o>] eEEG

0(O(X), A®G(T*X)) 
(and similarly for self adjoint 8) and relations (4) are valid. But most inter
esting here is the index with values in E*[G*(G, A)). 

To define it we introduce on the space G™(r\) of smooth, compactly 
supported sections of a G — A-bundle r\ a structure of right GC(G, A)-mo-
dule by the formula: 

(e-a)(x) == Jg(e)(x)'g[a(g--1))^(g)-1l2dg eG^(ri)9 

a 

where e EG^(TJ), a EGC(G, A), \i is the modular function of G. Moreover, 
if < , > is a ^-invariant Hermitian A -metric on r\, we can define a 6?c(6r, A)-
scalar product of any two e19 e2 e G™(rj) as 

(0i, e2)(g) = v(g)-112- f<ei(x), g(e2)(œ)} dx e GC(G, A). 
x 

Denote by En the completion of G™(r\) in the norm ||e|[ = \\(e, e)\^GtA). 
By the method of ([13], §2.2) one can check that a (?-invariant elliptic 
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operator F of order 0 defines a "Fredholm" operator F: E^-^E^i), 
i.e., an element màa(F) eE0(G*(G, A)). Selfadjoint S defines mda(S) 
eE^G^G^)). 

Eecall now that there is a canonical element [e] eEQlO*(G, G(X))) 
defined by a "cut off" function c(x) on X (see [20]). Put mät(F) = [c]® 
®G*(G,C(X))3G(IFÌ) ZKO(G*(G,A)), and similarly for 8. 

THEOREM 6. mda(F) = indj(JF), mda(8) = indt(8). 

For A = C this is just Theorem 3 of [20]. The case of an arbitrary 
A and X = G = Rn was treated in [9] (Theorem 10). 

Example 1. In the notation of Theorem 4 assume that X = ff/fl^ *s 

even-dimensional and the action of GK on F is spinor. Denote by 8^ the 
half-spin Spin(7)-modules. For any finitely generated projective GK — A-
module P define G — ̂ .-bundles fjfe = 0 xGfjs:(/S

±®P) over X and consider 
the (^-invariant) Dirac operator B%: ö ? ( ^ ) - > 0 ? ( E ? ) . Multiplying D£ 
on the left by a G-invariant operator J2 with symbol a(x, £) = (1 + ||£ll2)"~1/2

? 

we get an operator JF£ = R-B£ of order 0. Thus we obtain a homomor
phism dA:E%K(A)->E0(G*(G,A)): dA([P]) = inda(Pp), which just coin
cides with the inclusion described in Theorem 4. Note that when A = C 
one can take B = (l + JDp\Dp)-1/2 (see [20], Theorem 2). 

5. IT-theory of representations 

At present, this is a non-existent mathematical region. However, it may 
really come into existence in a near future. Consider a simple example. 

Example 2. Studying irreducible unitary representations of the group 
G = SL2(2ü) entering the regular representation, one can "compute" explicit
ly the algebra G*eà(G). Each discrete series representation gives a direct 
summand X to G*Gd(G), the even principal series adds a direct summand 
A0 = O([0, oo))®jf, and to the odd principal series there corresponds 
a direct summand Ax isomorphic to a subalgebra of A0 consisting of those 
continuous functions on [0, oo) with values in X which are reduced at 
the point 0 by some decomposition M = S'®H". I t is easily verified 
that EQ(X) = Z, EQ(AQ) = 0, E0(AX) = Z, and therefore, #0(0*ed(G)) 
~ ( ®Z)@Z. 

Let us compare this with the isomorphism dc: B(81)i^E0[G*(G)) 
^>Eo[G*ed(G)) given in Example 1. Denote'by B* the Dirac operators 
on X = G/81 corresponding to one-dimensional ^-modules Pn(e

iq>->ein<p). 
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Put F+ = (l + B+B~)-ll2B+. Note that for n # 0 the spectrum of the 
operator (B+®D~)2 on i2-sections contains 0 as aoi isolated point. Ac
cording to [20], it follows that KerD^, as Hilbert (7*ed(0)-modules, are 
isomorphic to the ranges of some projections qfv eX (E' ±) and that in d (F+) 
= [g,t] —[3,7] in EQ(G*cà(G)). In fact, for n>0, KerD+ is a holomor
phic discrete series representation and KerD~ = 0. For n < 0, KerZ>~ is 
an anti-holomorphic discrete series representation and KerJD+ = 0. The 
remaining generator [P0] eB(81) maps into a generator of E0(AX) = Z. 

Suppose that while computing O*ed(0) we have "forgotten" that an 
odd principal series representation at t = 0 is reducible (H = H' ®JI"), 
Then instead of a subalgebra Ax c O*ed(0) we get A0 and the direct sum
mand Z= E0(AX) in E0[C*Gd(G)) disappears. The element 3o([P0]) becomes 
0, in contradiction to Theorem 4. This shows how one "missing" point 
of the unitary spectrum G can be detected by if-theory. This method may 
become useful, for instance, in the problem of unitarity for representa
tions of semisimple Lie groups. 

However, to make such applications possible one should compute 
ÜL*(O*(0)) for a much larger class of groups than in Theorem 3. Closely 
connected with this is the problem of computing representation rings 
B(G). îTote that groups E*(C*Gä(G)) have already been computed for all 
complex semisimple groups and Lie groups of real rank 1 ([29], [35]). 
Unfortunately, this computation is based just on a complete knowledge 
of algebras C*cd(0). 

A reasonable conjecture on the structure of J£*(C'*cd(0)) is Connes's 
conjecture ([31]): ^(O*ed(0)) ^ j ^ ^ z ( p o i n t ) . However, as can be 
seen from Example 2, in order to make this conjecture much more valuable 
for applications one should specify a concrete isomorphism (which was 
not done in the original form of the conjecture). 

CONJECTURE 1. The homomorphism 8A: E?K(A®C(Y))^Ei(G*od(G, A)) 
described in Theorem 4 and Example 1 is an isomorphism. 

6. Higher signatures 

Let Mn be a smooth oriented closed manifold, [Mn] its fundamental 
class in Hn(M

n), and L*(Mn) the Pontriagin-Hirzebruch characteristic 
class of Mn. Fix a discrete group ut and denote by B% its classifying space. 
For any continuous map f:Mn-+Bn and any x eJS*(But)®Q one can 
construct a real number <L*(Mn)-f*(x), [Jfn]>. Ebvikov's higher signa
ture conjecture (for group n) is the assertion that all these numbers for 
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any x and / depend only on a homotopy type of Mn (for any Mn). If we 
denote the Poincaré duality by B, the problem is to prove that 
f*[p(L*(Mn))} eB*(But)®Q depends only on the homotopy type of 
Mn (for any Mn and / ) . 

In a series of papers [14], [15], [22], [23] the present author and 
A. S. Miscenko independently suggested a method of reducing this problem 
to a problem of operator JT-theory. Here is this reduction (following 
[15]). Without loss of generality one can assume that n is even. Let (d+ ô) 
be the signature operator on Mn (see [3], § 6) and [d + ô] e E0(M

n) the cor
responding element. From a cohomological form of the Atiyah-Singer 
theorem it easily follows that the problem is to prove the homotopy in
variance of /#([$+<5]) e BEQ(But)®Q, where BEQ(But) means lim EQ(X), 

—> 
XczBn 

the inductive limit along the directed set of all compact subsets X c= But. 
TSow we will define a natural homomorphism 

ß:RE0(B7t)->E0(G*(7t)). 

Consider a compact subset X cz But. Let X be its regular covering (with 
group ut) induced by inclusion X c But. Then XxnG*(ut) is a (7*(^)-bundle 
over X. I t defines an element [ßx] eEQ[G(X)®G*(UZ)). The cap-product 
[ßxi®o(x): ^°(G(X))-^E0[G*(ut)) after passing to lim gives the homo
morphism ß. , ""*" 

I t appears that the element ß(f*([d+d])) e E0(G*(ut))®Q always 
depends only on the homotopy type of Mn (see [24], [26] and [15], [19} — 
— even without tensoring by Q). The proof exploits the close relationship 
between this element and Miscenko's homotopy invariant element o(Mn) 
in Wall's group Ln(ut) ([21]). How we can formulate a conjecture [15] 
(called in [32] the strong Novilwv conjecture), from which the conventional 
one follows: 

CONJECTURE 2 (SM)). ß®Q: RE0(Bn)®Q->E0(C*(7t))®Q is a mono-
morphism. 

Note that SÎTC was proved for the case of Buz admitting the structure 
of a closed manifold with a non-positive sectional curvature in [23]. This 
includes the case of uniform subgroups without torsion of semisimple 
Lie groups. In his publications later on (cf. [24]) Miäcenko usually omitted 
the condition of compactness for BT\, thus giving the impression that non-
compact But admitting a non-positive curvature is also treated in [23]. 
I t should be pointed out that no proof for non-compact But was provided 
by Miscenko either in [23] or in his other publications. 
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All known proofs of SITO in the assumptions of a non-positive cur
vature of But or inclusion of ut into a Lie group are based on some ana
logues of Theorems 1 and 2, the main difficulty lying in these theorems 
(see [19], § 9 for ut a closed subgroup of a connected Lie group). A direct 
proof for ut c GJL(n, C) announced in [15] was technically difficult just 
for the lack of a cup-cap product technique. 

THEOREM 7. SNO is valid for ut if But is a complete Biemannian manifold 
of a non-positive sectional curvature. In fact, in this case even ß is mono
morphe. 

THEOREM 8. SJSTG is valid for closed discrete subgroups of connected 
Lie groups. For subgroups ut without torsion ß is monomorphic. 

Here are short proofs. In the case of Theorem 8 let us assume first 
that ut(cz G) has no torsion. Then we can take But = ut\G/GK. In any case, 
denoting a universal covering of But by X, we have a G(T*X)-invertible 
element [8X] in E%(T*X) (Theorems 1 and 2). Hence, j„([dxD

 i s 

(f(n9 (7(T*X))-invertible. But C*(ut, G(T*X)) ~ C(T*But)®X (see [12]), 
and so we have a C(T*But)-invertible element j„([dxi)

 EEEQ(G(T*But), 
G*(ut)). In particular, the cap-product ®G(T*BU) 3n([dxl): K°(T*But) 
->^0(C*(^)) is monomorphic. But this homomorphism can easily be 
identified with ß via the Poincaré duality: E°(T*But) c^BEQ(But) (see 
[19], § 8), which gives the required result. For the general case of ut with 
torsion (in Theorem 8) the assertion easily reduces to finitely generated ut. 
Then applying Theorem 6.13 of [30], we see that (possibly after passing 
to a factor group of G by some finite central normal subgroup) ut contains 
a subgroup of finite index without torsion. In view of Propositions 2.7 
and 2.8 of [32] we come to the case where ut is without torsion, which ends 
the proof. 

Note that at present Novikov's conjecture seems unlikely to be true 
in general. I t is more likely that there must be some restrictions on ut of 
the type of nuclearity (injectivity, amenability) of some "enveloping" 
algebras for ut (for example, Ö*(0) in the case of Theorem 8). From this 
point of view it could be useful to analyse the class of groups ut consider
ed in [7] and, in particular, to prove SNO for this class. 

7. G* -extensions 

Earlier, discussing special cases of the üT-bifunctor, we already associated 
some element epeEE^AjB) with an extension 

0-*B-+B^>A->0. (5) 
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I t was done under the assumption that q admits a completely positive 
lifting. We shall call extensions with this property admissible. (Eecall 
that in the case of nuclear A all extensions are admissible [8].) If q has 
a cross-section homomorphism, the extension is called split. For such 
an extension eB = 0. 

An interesting class of extensions is associated with group 0*-algebras. 
If T is a (non-trivial) normal subgroup in G, we have an extension 

O-^JB_>C*(0)^O*(0/P)->O, (6) 

where B = Kerg. Since for split extensions the homomorphism g* of 
JïVgroups is always epimorphic, we obtain from Theorem 4 in particular 

THEOREM 9. If G is connected and r simply connected and solvable, 
then extension (6) does not split. 

In fact, for a large class of simply connected nilpotent Lie groups 0 
and one-dimensional P the element e0*^ corresponding to (6) can be com
puted explicitly by using only some simple geometric observations 
([19], §6). 

We have not yet described the exact sequences for the JBT-bifunctor. 
These 6-periodic exact sequences are 

. , . ->EEi(A, B^EE^I, B)^>EEi+1(AjI, B)->EEi+[(A, B)->..., (7) 

. . . -^EE,(A, B)^EE,(A, B/J)*->EEW(A, J)-+EEi+1(A, B)~> ••; (8) 

where I and J are ideals in A and B respectively. Originally established 
in [18] on the assumption of nuclearity for A, they are now obtained 
on better assumptions ([34]). Namely, only the admissibility of exten
sions 0->I->A->A/I-^0 and 0-+J->B->B/J->0 (respectively) is re
quired. (For (7) this is probably the best possible assumption.) The homo
morphisms d and ô can be described here just as in [18]: d(x) = eA®jX, 
d(x) = x®B/JeB where eAsEE1(Aß,I), eB eEEX(BjJ, J). 

And finally there is, of course, the question of recovering the original 
extension (5) from the corresponding element eDeEE±(A, B). Assume 
that A is nuclear. Then VaeEE^A, B) there exists an absorbing 
extension of the type 0->X®B-+Ba->A-^0, which is unique up to 
unitary equivalence ([18], § 7). If eD = a then the algebra B can be inclu
ded in Ba in such a way that B becomes a ßtll corner in X®B and 
B + (X®B) = Ba,Br\(X®B) = B (see [18], §7, Corollary 2). I t 
is an open question how to classify such subalgebras B c Ba. 
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YVES MEYEE 

Intégrales singulières, opérateurs multilinéaires, ana
lyse complexe et équations aux dérivées partielles 

1. La continuité J? des opérateurs définis par des intégrales singulières 

Soit, avec los notations usuelles, T: @(Rn)->@'(Rn) un opérateur linéaire 
continu. Appelons E(x,y) e@'(Rn xRn) le noyau-distribution de T, T* 
le transposé de T dont le noyau-distribution est E (y, x), <•, •> la forme 
bilinéaire de dualité entre S(Rn) et @'(Rn) et Q c Rn x Rn l'ouvert défini 
par y =£ x, x e R11, y eB'1. Nous dirons que le noyau E(x,y) vérifie les 
estimations de Galderón-Zygmund s'il existe un exposant e > 0, e < 1, et 
une constante 0 ^ 0 tels que la restriction de E(x,y) à l'ouvert Ü soit 
une fonction continue ayant les trois propriétés suivantes: 

\E(x, y)\ < 0\x-y\~n pour tout (x, y) G Q, (1) 

\E(x', y)-E(x, y\ < G\x-x'\Ë\x-y\-n~* si (x, y) G ß e t 

| * - a > ' | < l | 0 - y | (2) 

et finalement 

\E(x, y)-E(x9 y')\ < 0|2/— 2/'ri^ —2/r9l"~e si (0, y) e ûet 

| y - y ' l < l l * - 0 | . (3) 

Nous désignerons par ê Vensemble des opérateurs T: <3(Rn)->!3'(Rn) 
dont le noyau vérifie (1), (2) et (3). 

Un opérateur linéaire continu T: <2i(Rn)-><2>f(Rn) est appelé dans cet 
exposé (ceci n'est pas la terminologie usuelle) un opérateur de Galderón-Zyg
mund s'il existe une constante G > 0 telle que pour toute fonction 
fe2(Rn), T(f) appartienne à L2(Rn;dx) et vérifie | |T/| |a< ü||/||2, et si, 
en outre, le noyau-distribution E (x, y) de X vérifie les estimations de Oal-
derón-Zygmund. Les célèbres méthodes de variable réelle de Oalderon et 

[1001] 
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Zygmund s'appliquent alors et l'on obtient \\Tf\\p < Gp\\f\\p si 1 < p < + oo 
tandis que T envoie continûment i°°(Bn) dans l'espace BMO(JRM) de John 
et îTirenberg ([20]). Enfin pour 1 < p < + oo et tout poids co e Ap de la 
classe de Muckenhoupt, tout opérateur de Galderón-Zygmund se prolonge, 
par continuité, en un opérateur linéaire continu de ^(JB^; cadx) dans 
lui-même ([4]). 

Nous désignerons par E cz ê l'espace vectoriel des opérateurs de Gal
derón-Zygmund. Le problème fondamental de cette théorie est de trouver un 
critère commode permettant de déterminer si un opérateur T e S appartient, 
en fait, à JE. Le critère que nous allons donner porte sur l'objet T(l) que 
nous allons maintenant définir si T G ê-, 1 désigne la fonction identique
ment égale à 1. 

Soit @0(R
n) cz 9(Rn) le sous-espace des fonctions <p telles que f <p(x)dx 

= 0. Si <p e 0 o et T G ê, la distribution T*(<p) est, en fait, continue hors 
du support de <p et est 0(\x\~~n~~8) à l'infini. Alors (T*(<p), 1> a un sens et 
T(l) = 8 est une forme linéaire continue sur 2}Q définie par <#, ç?> 
= <T*(cp), 1>. De même T*(l) est une forme linéaire continue sur @0(R

n). 
Nous désignerons par E1(Rn) l'espace de Stein et Weiss dont le dual 

est BMO(IT). Alors SfQ est dense dans H1 et nous écrirons T(l) eBMO 
pour exprimer que la forme linéaire continue T(l)9 définie sur 2iïQ, se prolon
ge à El(Rn). De même T*(l) eBMO a un sens. 

Une dernière définition nous sera utile. Soient y e @(Rn), u e Rn, ô>0. 
Alors on pose <p{u^(x) = <p((x-u)ld) et l'on dit que T:@(Rn)->2i'(Rn) 
est un opérateur d'ordre 0 si, pour toute partie bornée ^ c @(Rn), il existe 
une constante G = G (SS) telle que | < T ^ M ^ , ^ > | < Gôn pour tout 
q>± G âS9 tout 0>2 G âS, tout u G Rn et tout ô > 0. 

THéORèME 1. 8oit T: 3i(Rn)->@'(Rn) un opérateur linéaire et continu 
dont le noyau-distribution E(x9y) vérifie les estimations de Galderón-Zyg-
mnnd. Alors les deux conditions suivantes sont équivalentes: 

T se prolonge en un opérateur continu sur L2(Rn)9 (4) 

^(1) eBMO, T*(l) eBMO et T est d'ordre 0. (5) 

Soit Pt, t^0, le semi-groupe de Poisson. Pour toute fonction. 
ß GBMO(B W ) , désignons par Zß l'opérateur défini (formellement) par 

? dt d 
4 f Qt{(Qtß)(Ptf)}-r = - W ) o ù Qt = ~*l£pt- Mo™ Lß e s t ™- °Péra" 

o f dt 

teur de Calderón-Zygmund tel que Lß(l) = ß et £ j ( l ) = 0. Si ß et y 
appartiennent à BMO(JRn), L = Lß+L* est aussi un opérateur de Cal-
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derón-Zygmund tel que L(l) = ß, L*(l) = y. Gela montre que les deux 
fonctions de BMO intervenant dans (5) sont arbitraires. 

L'ensemble A cz & (L2 (Rn), L2 (Rn)) des opérateurs TeS tels que 
T(l) = T*(l) = 0 est, en fait, une algèbre ([25]) et le théorème 1 peut 
être précisé en 

B ~ A 0BMO (Rn) ©BMO(Rn). (6) 

L'isomorphisme est T->(B, T(l), 2*(1)) où B - T-Lß-L* si ß = T(l)9 

y = T*(l). 
Pour démontrer le théorème 1, on se ramène, grâce à l'isomorphisme 

précédent, au cas où le noyau-distribution B(x,y) de B vérifie les estima
tions de Oalderón-Zygmund et où JS(1) = J2*(l) = 0. Alors la continuité 
de B sur L2 se démontre grâce au lemme de Ootlar ([15], [19], [26]). 

Si E: Q->C vérifie les estimations de Oalderón-Zygmund et si E (y, x) 
= -E(x,y), on pose EB(x9y) = E(x,y) si \x-y\ > E, Ee(x9 y) = 0 
sinon. Alors limEB(x, y) existe dans 2'(Rn xRn) et définit une distribution 

40 

notée v.p.If(œ, y) et un operateur T: <2)(Rn)-+3}'(Rn) d'ordre 0. La con
tinuité de T sui1 L2 est alors équivalente à ^(1) G BMO. 

Oes remarques fournissent une démonstration particulièrement simple 
des résultats de [3]. 

On appelle Th,heN, les opérateurs dont les noyaux-distribution 
sont (A(x)—A(y))h(x — y)~]i~l lorsque A:R->C est lipschitzienne. Pour 
obtenir la continuité de Tk sur L2(R) il suffit de vérifier que Tk(l) 
G B M O ( B ) . Or TJc(l) ^Tj^A'). Puisque A'eL°°(R), un raisonnement 
par récurrence et le théorème 1 donnent immédiatement ||37A|| < ÖÄ+1||-4.'||*. 
On sait aujourd'hui que \\Tk\\ < 6400(1 + ft)4||J./||* ([11]). 

2. Applications à l'analyse complexe 

Soit 9?:JR->JRune fonction lipschitzienne: \cp(x) — (p(y)\^M\x — y\ pour 
une certaine constante M > 0, tout x ER et tout y G R. Considérons le 
noyau-distribution v.p. (x — y+i[q>[œ) — ̂ (y)))'1 et l'opérateur Tv:Si(R) 
->3)'(R) associé. 

THéORèME 2. L'opérateur Tv est borné sur L2(R) et sa norme oie dépasse 
pas G(l+M)\ 

Il existe, à l'heure actuelle, deux démonstrations du théorème 2. La 
première (A. P. Oalderon, G. David) consiste à démontrer d'abord la con-
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tinuitó de T^ sur L2(R) en appliquant soit le théorème 1, soit le théorème 
de Oalderon présenté au congrès d'Helsinki ([3], [14]). 

Une utilisation ingénieuse des inégalités aux bons X de Burkholder et 
Gundy permet alors de passer au cas général. La seconde ([11]) consiste 
à étudier les opérateurs Tk définis ci-dessus par de nouveaux algorithmes 
dus à A. Mcintosh. La signification géométrique du théorème 2 est la 
suivante. Soit r c jR2v le graphe de la fonction <p, Qx l'ouvert situé au-
dessus de r, Q2 celui au-dessous de r. On appelle S2(Û±) c L2(r) 
= L2(r-,ds) l'espace de Hardy défini comme la fermeture dans L2(T) 
des fractions rationnelles P(z)IQ(%) nulles à l'infini et dont les pôles ap
partiennent à û2. On définit de même H.2(Q2) et le théorème 2 signifie 
que L2(r) est la somme directe des çous-espaces B2(û1) et H2(Q2). Ob
servons que T9 est un opérateur de Oalderón-Zygmund. 

Nous pouvons généraliser l'étude précédente. 
Soit r une courbe de Jordan fermée et rectifiable du plan complexe, 

limitant le domaine Qx. îTous désignerons par Û2 l'extérieur de J1 

et par s e [0, Z] la longueur d'arc sur r (l étant la longueur totale 
de r). 

Suivant Keldysh, Lavrentiev et Smirnov, on définit, pour 1 < p < + oo, 
deux sous-espaces fermés HP(Û1) et &tp(Qx) de LP(T\ ds). L'espace de 
Hardy HP(ÛX) est la fermeture dans JL^I7; ds) de l'ensemble des poly
nômes P(z). D'après le théorème de Eunge, on peut également définir 
HP(QX) comme la fermeture des fractions rationnelles P(z)IQ(z) dont les 
pôles appartiennent à û2. De même on définira ensuite HP(Q2) comme 
la fermeture dans i ^ JT ; ds) des fractions rationnelles P(z)jQ(8) nulles 
à l'infini et dont les pôles appartiennent à Qt. 

Le second espace 3^P(QX) est défini, de façon indirecte, comme l'en
semble des / e Lp(r-, ds) tels que f zkf(z)dz = 0 pour tout Je eN. Lavren-

r 
tiev a démontre que ces deux espaces sont, en général, distincts. Leur 
égalité ne dépend pas de p et, si elle a lieu, on dit que Qx est un domaine 
de Smirnov. 

Pour définir M}p(Q2), on remplace zk par (z — a)~k, a e Ql9 7s > 1. 
On dit que jTest une courbe de Lavrentiev si en désignant par z(s), s e RßZ, 
le paramétrage de r par la longueur d'arc, on a |*# — «f < G\z(s')— $(s)\ 
pour tout s et tout s'. On dit que r est lipschitzienne si r est localement 
le graphe d'une fonction lipschitzienne. 

Enfin r est une courbe régulière d'AMfors si, en désignant par \E\ la 
mesure de Lebesgue d'un borélien 23 c RßZ, il existe une constante 
( 7 ^ 2 telle que, pour tout nombre complexe #0 G C et tout r > 0, on a 
\{seRßZ; |*(*)-a0l <*}l < Cr-
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Avec ces notations on a ([14]) 

THéORèME 3. L'espace Z2(JH; ds) est la somme directe de E2(Q1) et de 
M2(Q2) si et seulement si r est une courbe régulière d'Ahlfors. Alors Qx et Q2 

sont des domaines de Smimov et pour 1 < p < + oo, Lp(Fm, ds) est la somme 
directe de HP(QX) et de MP(Q2). 

Donnons quelques indications sur la preuve du théorème 3. On appelle 
T l'opérateur défini (formellement) par le noyau de Oauchy (z(s)—z(t))"1

9 

s G RßZ, t G RßZ, et tout se ramène à l'étude de la continuité de T sur 
L2(RßZ). On utilise, dans cette étude, trois ingrédients: 

— le fait que T soit borné sur L2 lorsque F est lipschitzienne 
(théorème 2); 
- — une décomposition de tout intervalle d'une courbe régulière d'Ahl
fors en deux parties: la première, après rotation des axes, est contenue 
dans le graphe d'une fonction lipschitzienne et la seconde a une petite 
mesure relative; 

— l'utilisation des inégalités aux bons l de Burkholder et Gundy 
pour passer du cas local au cas global. 

Le succès de cette application à l'analyse complexe vient de la déci
sion de traiter le problème à l'aide des méthodes de l'analyse réelle. On 
peut d'ailleurs remplacer le noyau de GauChy 1/(8 — w) par n'importe 
quel noyau E(z — w) où E: R2\{0}->C est impaire, homogène de degré 
— 1 et indéfiniment derivable. 

3STous allons poursuivre l'étude de l'opérateur défini par le noyau de 
Oauchy dans le cas des courbes de Lavrentiev ouvertes; elles sont para
métrées par la longueur d'arc s e R et l'on a |s —1\ < G\z(s) — z(t)\ pour 
tout s G B et tout t G B. 

Ces courbes de Lavrentiev sont donc caractérisées par le fait que 
l'opérateur Tr défini par le noyau de Oauchy soit un opérateur de Oalderón-
Zygmund. 

Nous allons définir la variété "K des courbes de Lavrentiev, la para
métrer à l'aide d'un ouvert V de BMO(B) et enfin démontrer que l'ap
plication qui à r associe Tr (ou la représentation conforme) est réelle-
analytique sur V. 

La variété iT des courbes de Lavrentiev orientées sera d'abord décrite 
comme une ensemble. On part des couples (T, z0) d'une courbe de Lavren
tiev orientée r et d'un point #0 G r. Ensuite on considère que deux tels 
couples sont équivalents si l'on peut trouver un déplacement plan g (g(#) 
= e*z + y) tel que g(T) = J" et g(z0) = g(z'0). 

Désignons par BMO(JB) l'espace de Ba.nach des fonctions réelles 
b: R-^R appartenant à l'espace de John et Nirenberg. Il existe alors une 
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partie ouverte Y c BMO(JB) telle que, pour tout couple (JP, #0), ü existe 
s 

6 G F de sorte que 2(s) = z0 + / ex-pib(t)dt. De plus b est la détermination 
o 

"naturelle" de args'(s). En fait, V est une carte globale de la variété 1T 
des courbes de Lavrentiev, munie de la relation d'équivalence ci-dessus. 

Pour & G F, on forme l'opérateur Tb dont le noyau est K(t, s) = yizi 
r.-p.{z(s) — z(t))"1dz(s)m

9 b et z sont reliés comme il vient d'être dit. Alors 
on a ([8]) 

THéORèME 4. L'application T: V->&[L2(R), L2(R)) gui àb e 7 associe 
l'opérateur de Ganchy Tb est une fonction réelle-analytique sur V. 

Cela signifie que pour tout 60 G V9 il existe e > 0 et Ö > 0 de sorte que 
si P ~ A I I B M O < e> o n a i t 

Tb=^T^(b^bQ9...9b-b0) -
0 

où les ï [ ^ :BMOx. . . xBMO->& (L2(R)9 L
2(R)) sont des opérateurs 

multilinéaires vérifiant \\T$ (ft, ..., fk)Utfjfi < 0*+1||/tI|3aMo . • • II/&II BMO-
Pour démontrer le théorème 4, on construit explicitement le prolon

gement analytique en remplaçant b0eV par bQ+ß où ß:R->C vérifie 
||/?||BM0 < s. On utilise alors le fait que, si ||y||BMo < 8 (y es* reliée à la partie 
imaginaire de ß), co (s) = exp y (s) est un poids vérifiant la condition A2 

de Muckenhoupt. On sait par ailleurs que les opérateurs de Oalderón-Zyg
mund restent continus lorsque i 2 (B ; dx) est remplacé par L2 (B; œ(x)dx) 
et que co eA2. 

On peut préciser le théorème 4 en appelant X cz <£ (L2(R)9 L
2(R)) 

l'ensemble de tous les opérateurs de Oauchy Th9 b e V. On munit X de 
la métrique définie par la norme d'opérateur. Alors l'application T: V->X 
est un homéomorphisme ([13]). En d'autres termes V est une carte glo
bale de X. 

Soient R\ le demi-plan supérieur ouvert et 0: R\->QX une représen
tation conforme qui se prolonge en un homéomorphisme croissant de B 
sur r orientée. Définissons l'homéomorphisme réciproque h:R->R par 
0(h(s)) = z (s), s étant la longueur d'arc sur P. Alors h'(x) = co (co) est un 
poids appartenant à la classe A^ de Muckenhoupt (Lavrentiev). Il en 
résulte que ß = logh'(x) appartient à BMO(B). 

THéORèME 5. L'application qui à la fonction b eV associe la fonction 
ß e BMO (B) est réelle-analytique. 
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Pour le voir on utilise la formule de Kerzman-Stein ([24]) permettant 
de passer du noyau de Oauchy au noyau de Szegö et l'on relie ce dernier 
à la représentation conforme ([8]). 

3 . Opérateurs multilinéaires et applications aux equations aux dérivées 
partielles 

Ces applications spectaculaires, prévues par A. P. Oalderon, ont été ob
tenues par E. Eabes, D. Jerison, C. Kenig et leurs élèves. Nous commen
çons par décrire de nouvelles actions multilinéaires de L°°(Rn) sur L2(Rn) 
généralisant le produit ponctuel usuel. Oes actions ont des propriétés 
très remarquables que nous allons d'abord énoncer. 

Désignons par F la topologie forte sur l'algèbre &[L2(Rn), L2(Rn)) 
notée sé. Soit SS cz sé la sous-algèbre des opérateurs de multiplication 
ponctuelle par les fonctions b(x) eL°°(Rn), sous-algèbre que l'on munira 
encore de la topologie forte ff*. Enfin le groupe 0 se compose des auto-
morphismes de sé de la forme particulière T->8T8"y où 8 agit sur L2(Rn) 
par 8f(x) = f(ôx+x0), ô>0,x0e R\ 

Les opérateurs multilinéaires Tk: [L°°(Rn)yc->sé que nous allons cons
truire auront les deux propriétés suivantes: 

si bj$m91 < j < "k, m > 1, est une suite de fonctions de L°°(Rn) et si 
les opérateurs de multiplication correspondants Bitm convergent 
fortement vers l'opérateur Bô de multiplication par bj7 alors Tk(blm, ... 
. . . , bktm)->Tjc(b19..., bk) au sens de la topologie 3T. (7) 

Tk commute avec l'action de 0 au sens que Tk(8bx, . . . , 8bk) 
= 8Tk(bx, ...j&J/S""1 pour tout 8 défini comme ci-dessus. (8) 

Voici maintenant une recette pour construire de telles actions. Soit 
yj e L1(Rn) une fonction vérifiant / y (x)dx = 0, \ip(x)\ < G\x\~n+l et | Vip(x)\ 

HP 

< 0\x\~n si \x\ < 1, \ip(x)\ < Gm\x\~m et | Vip(x)\ < Gm\x\~m pour tout m > 1 
si \x\ > 1. 

Nous posons alors, pour tout t > 0 , ipt(x) = t"ny)(xß) et appelons Qt 

l'opérateur de convolution avec ipt. Nous appellerons (p eL2(Rn) une fon
ction ayant toutes les propriétés de ip à l'exception de J qj(x)dx = 1 et 

Pt : L
2 (Rn) ->L2 (Rn) l'opérateur de convolution avec cpt. Soit m ( f ) 

eG°°(Rn\{0}) une fonction homogène de degré 0 et M: L2 (Rn) -+L2 (Rn) 
l'oyjérateur de convolution associé. Posons, pour tout t > 0, Mt == (1 — 
—Pt)M. Supposons l'existence d'une fonction heSf(Rn) telle que Mt 

= JSt + Bt où Ht est l'opérateur de convolution avec lit(x) = t~nli(xjt) 
et où le noyau-distribution de Bt est porté par |a?~ y\ < t. 
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On appelle bô(x) eL°°(Rn), 1 < j < ft, des fonctions vérifiant HfyL < 1; 
on désigne par Bj:L

2(Rn)->L2(Rn) les opérateurs de multiplication cor
respondants et enfin p(t) eL°°(0, +oo). Avec toutes ces notations, on a 

THéORèME 6. Il existe une constante G, ne dépendant que des fonctions <p, 
y, m et % (et de la dimension n) telle que pour tout Je > 1, tout choix des 
bjeL°°(Rn) et de ^eL°°(0, +oo), l'opérateur 

00 

/

dt 
QtB.MtB,... MtBkMt/j,(t) — (9) 

0 

soit continu sur L2(Rn) et que \\Lk\\ < C^IMI«,. Be plus le noyau-distribution 
Lk(x, y) de Lk vérifie 

J \Lk(x, y)-Lk(x', y)\dy^ C ^ M L (10) 
\x—y\^2\x—x'\ 

pour tout x eRn et tout x1 e Rn. 

On a également l'estimation quadratique correspondante: si / eL2(Rn), 
alors QtBxMt...BkMtf appartient à L2(R^lm

9dxdtß) avec une norme 
< Gk+1\\f\k. 

L'estimation (10) se prouve directement tandis que la continuité des 
opérateurs Lk sur L2(Rn; dx) s'obtient par récurrence sur h > 0. On définit 
à cet effet Lk et Lk en remplaçant respectivement le dernier Mt interve
nant dans (9) par Pt et par rt (opérateur de convolution de symbole 
exp(-tf2|£|2). Puisque Mt = (l-Pt)M, il vient Lk = Lk_xBk-L'kM. 
Par ailleurs Pt — rt = Qt a les mêmes propriétés que Qt ce qui rend immé
diate la continuité de Lk — L'l. Pour terminer, on applique le théorème 1 
à Lk et la seule vérification non triviale est Lk(l) eBMO. Or Lk(l) 
= Lk_x(bk). Il suffit d'utiliser la continuité de Lk_x sur L2(Rn) et (10) 
pour conclure que Lk_x envoie L°°(Rn) dans BMO(Bw). 

Pour terminer, le théorème 6 sera appliqué à la conjecture de Kato 
dont nous rappelons l'énonce. Soit A(x) = ((a3-tk(œ))1<jtk<n une matrice 

à coefficients dans L°°(Rn). Posons, si | e Cn et r\ e Cn, <£, rç> = % Sffji 
i 

et supposons qu'il existe une constante c > 0 telle que, pour tout | e Cn 

on ait ~Re(A(x)Ç, | >>c |£ | 2 . 
À l'aide de A(x), on construit suivant Kato [22] l'opérateur accrétif-

maximal TA: VA->L2(Rn), défini formellement sur le sous-espace dense 
VA c L2 par TAf = — div(A(»)Grad/). Le domaine VA dépend, de façon 
non linéaire, de A et l'on a ~Re(TAu, u) ^ c||Grad u\\l en posant (u, v) 
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= j îivdx. Kato a conjecturé que, dans ces conditions, le domaine de la 
RP> 

racine carrée accretive maximale ]/TA de TA est H1 (Rn), l'espace de Sobolev 
usuel. 

Nous ne savons pas encore démontrer ce fait en toute généralité. 
Le théorème 6 fournit cependant l'existence d'une constante en > 0 telle 
que la conjecture de Kato soit vraie dès que ||JL(a?) — l ^ < en. Pour le 
voir, on écrit A(x) = 1 + B(x) et l'on développe VTA en une série d'opé
rateurs multilinéaires en B que l'on traite par le théorème 6. La contrainte 
li-Blu < e» permet de sommer la série écrite ([10], [16], [17], [18]). 

Bibliographie 

[1] Calderón À. P. , Àlgelbras of Singular Integral Operators, Troc. Bymp.Pure Math. 
10 (1965), pp. 18-66. 

[2] Calderón À. P. , Cauchy Integrals on Lipschitz Curves and Related Operators, 
Proc. Nat. Acad. Sei. VBA 74 (1977), pp. 1324-1327. 

[3] Calderón A. P. , Commutators, Singular Integrals on Lipscliitz Curves and Ap
plications, Proc. Internat. Congress Math., Helsinki 1 (1978), pp. 85-96. 

[4] Coif man E. R. and Feffernian Ch., Weiglited Norm Inequalities for Maximal 
Functions and Singular Integrals, Studia Malli. 51 (1974), pp . 241-250. 

[5] Coif man R. R. et Meyer Y., Commutateurs d'intégrales singulières et opérateurs 
multilinéaires, Ann. Inst. Fourier 28 (3) (1978), pp . 177-202. 

[6] Coif man R. R. et Meyer Y., Au delà des opérateurs pseudo-différentiels, Astéris
que 57 (1978), Soc. Math. France. 

[7] Coifman R. R. et Meyer Y., Une généralisation du théorème de Calderón, Proc. 
Sem. held at El Escoriai, June 1979. 

[8] Coifman R. R. et Meyer Y., Lavrentiev's Curves and Conformai Mappings, Inst . 
Mittag-Lefflcr, Report no. 6 (1983). 

[9] Coifman R. R., David Gr. et Meyer Y., La solution des conjectures de Calderón, 
Advances in Math. 48 (1983), pp. 144-148. 

[10] Coifma-n R. R., Deng D. Gr. et Meyer Y., Domaine de la racine carrée de certains 
opérateurs différentiels accrétifs, Ann. Inst. Fourier 33 (2) (1983), pp. 123-134. 

%[11] Coifman R. R., Mcintosh A. et Meyer Y., L'intégrale de Cauchy définit un opé
rateur "borné sur les courbes lipschitziennes, Ann. of Math. 116 (1982), pp. 361-387. 

[12] Coifman R. R., Meyer Y. et Stein E. M., Un nouvel espace fonctionnel adapté 
à l'étude des opérateurs définis par des intégrales singulières, Proc. Cortona Me
eting, July ]982, Lecture Notes à paraître. 

[13] David G-., Courbes corde-arc et espaces de Hardy généralisés, Ann. Inst. 
Fourier 32 (3) (1982), pp. 227-239. 

[14] David Gr., Opérateurs intégraux singuliers sur certaines courbes du plan complexe, 
Éc. Polytechnique, Centre de Mathématique, mai 1983. 

[15] David G-. et Journé J.-L., Une caractérisation des opérateurs intégraux singu
liers bornés sur L*(Bn), O. E. Acad. Sci. Paris Bér. I 296 (1983), pp. 761-764. 

[16] Fabes E., Jerison D. et Kenig C , Multilinear Littlewood-Paley Estimates with 



1010 Section 9: Y. Meyer 

Applications to Partial Differential Equations, Proc. Nat. Acad. Bei. UBA 79 
(1982), pp . 5746-5750. 

[17] Fabes E., Jerison D. et Kenig C , Multilinear Square Functions and Partial Dif
ferential Equations, Univ. Minnesota, Math. Report 82-167. 

[18] Fabes E., Jerison D. et Kenig C , Necessary and Sufficient Conditions for Absolute 
Continuity of Elliptic-Harmonic Measure, Ann. of Math. 119 (1984), pp. 121-141. 

[19] Fefferman Ch., Recent Progress in Classical Fourier Analysis, 10M Vancouver 
1 (1974), pp. 95-118. 

[20] Fefferman. Ch. and Stein E. M., Hp Spaces of Several Variables, Acta Math. 129 
(1972), pp. 137-193. 

[21] Jones P . et Zinsmeister M., Sur la représentation, conforme des domaines de 
Lavrentiev, O. B. Acad. Bei. Paris 295 (1982), pp . 563-566. 

[22] Kato T., Perturbation Theory for Linear Operators, Springer-Verlag, New York, 
1966. 

[23] Kenig C. and Meyer Y., Kato*s Square Boots of Accretive Operators and Oauchy 
Kernels on Lipschitz Curves Are the Same, Institut Mittag-Leffier, Report no. 
4 (1983). 

[24] Kerzman N*., Singular Integrals in Complex Analysis, Proc. Symp. Pure Math. 
35, part 2 (1979), pp. 3-41. 

[25] Lemarie P . Gr., Communication orale. 
[26] Meyer Y., Lemme de Gotlar, opérateurs définis par des intégrales singulières et 

applications aux équations aux dérivées partielles, Cours donné à l'Univ. Auto
nome de Madrid, avril 1983 (à paraître). 

[27] Meyer Y., Intégrales singulières, opérateurs multilinéaires et équations aux 
dérivées partielles, Bém. GoulaouicSchwartz, École Polytechnique, 3 mai 1983. 

[28] Vefchota Gr. C , Layer Potentials and Boundary Value Problems for Laplace Equa
tion m Lipsohits Domains, University of Minnesota, Minneapolis (June 1982). 

UNIVERSITÉ DE PARIS-SUD, ÉQUIPE DE RECHERCHE ASSOCIÉE AU CNRS (296), 
ANALYSE HARMONIQUE, MATHÉMATIQUE (BAT. 425?, 914=05 ORSAY CEDEX 
ET 
CENTRE DE MATHÉMATIQUES, ÉCOLE POLYTECHNIQUE, 91128 PALAISEAU OÉDEX, 
FRANGE 



Proceedings of the International Congress of Mathematicians 
August 16-24, 1983, Warszawa 

B. S. PAVLOV 

Spectral Theory of Nonselfadjoint Differential 
Operators 

As recently as twenty years ago the spectral analysis of singular, nonself
adjoint operators still appeared to be, to a large extent, "terra incognita". 
By that time, owing to the papers of Gelfand [3], Najmark [20, 21, 22] 
and Martirosyan [18], the rough features of spectrum structure of one-di
mensional and three-dimensional Schrödinger operators with rapidly de
creasing potential were already known. The main difficulties appearing in 
the study of these operators and, in general, any operators of that type 
were also recognized. It was the above two examples which made it clear 
(Pavlov [25, 26]) that even a very small (one-dimensional) nonselfadjoint 
perturbation could produce a point spectrum with an extremely rich 
structure. Their spectral function appears to be generalized (Marchenko 
[17]) and any attempt to consider, in the expansion theorem, continuous 
and point spectra separately is, generally speaking, doomed to failure. 
Problems of completeness and expansions with respect to eigenfunctions 
were, by then, solved simultaneously on the basis of a technique not 
beyond the limits of the Eiesz integral. In the case of the point spectrum 
this led to the necessity of, analytically very delicate but practically hardly 
effective, summation "with brackets" (Lidskij [16]) and in the case of 
the continuous spectrum — to isolating so-called spectral singularities and 
computating them by the expansion theorem separately (Lyantse [14,15]). 

I will discuss here the results of spectral analysis of singular differ
ential operators, mainly of Schrödinger type, as well as some results 
concerning abstract dissipative operators, which appeared after 1970, 
The analytic basis to most of these results is given by the ÏTagy-Poias 
functional model and Lax-Phillips scattering theory. We employ them 
for spectral analysis of differential operators of Schrödinger type, and 
of some operators which appear when considering resonance scattering, 

[1011] 
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Naturally, the concrete problems also forced us into some additional ab
stract considerations. I will discuss 

1. Localization of the spectra of one-dimensional Schrödinger operators. 
2. Separation of spectral components of abstract dissipative and Schrö-

dinger-type operators. 
3. Completeness of the family of eigenfunctions of an operator which 

has a discrete spectrum. "Joint completeness" for resonance scattering. 
4. Biorthogonal eigenfunciion-expansion theorems for abstract dis

sipative operators and operators of Schrödinger type with absolutely 
continuous spectrum. Summability of the eigenf unction expansions for 
operators which have absolutely continuous spectra and spectral singu
larities. 

5. Some special problems: order (serial) structure of eigenvalues, com
parative study of the spectral properties of self adjoint and dissipative 
operators by means of scattering theory. 

Progress made in the above-mentioned directions by various math
ematicians has always involved some shift in neighbouring mathematical 
branches. In this sense a nonselfadjoint singular operator and particularly 
the Schrödinger operator serve as a unique testing ground for a great 
variety of theories and methods. In particular, we may say that it has 
already, to a large extent, come true what M. G. Krein (1st Congress of 
Mathematicians, Moscow, 1966) predicted, namely that in the investiga
tion of nonselfadjoint operators facts and methods of analytic functions 
theory will play a more and more important role. 

1. Indeed, localization of the spectrum of a nonselfadjoint operator and 
the study of its structure was based on then known uniqueness theorems 
for analytic functions of various classes of smoothness. On the other hand, 
the needs of the spectral theory of such operators stimulated investiga
tions of uniqueness theorems for the Gevrey classes (Khrushchev [9]). 
These investigations have recently produced the final results concerning 
the spectrum structure and localization of the Schrödinger operator with 

00 

a rapidly decreasing potential, / \q(x)\xndx = Gn < oo, n = 1, 2, . . . 
(Khrushchev [11]). ° 

Working in the spirit of Pavlov [25, 26] S. V. Khrushchev intruduced 
a class Na of functions meromorphic in the upper half-plane <7+, holo
morphic in the first quadrant G++ and satisfying the conditions: 

sup \g(k)\ = 1, 
keO + + , 
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2. sup |£<n> (7c) | < Ofly. nn>% n = 0 , 1 , . . . , 

3. \g{iy)\ = 1 , y > 0 , 
4. |£(0)| < 1 , 0 < a ? < oo, 
5. s"l(0)l , t 0, 
6. limfc[l-0(7s)] = a > 0 . 

fc->00 

Functions of class .ya turn out to be related to the Weyl functions of dif
ferential operators of the form lh = — y+q(x)y with real potentials of 
class Ba: 

|gr(o?)|<Ogexp[-(7^a/(1+a)], - o o < a ? < o o , a > 0 , 

and complex boundary condition y'(0) — hy(0) = 0: they coincide with 
the characteristic functions (cf.) of operators which can be expressed in 
terms of the Weyl function m^X) by the formula 

THEOREM 1 (Khrushchev [11]). LetS(lc) be an analytic function holomor
phic at infinity. Then the function 8 ()/%), XeO+is the characteristic function 
of a Schrödinger operator lh with h e ö + , q eBa, Imq = 0 iff S E Na. 

One of the most important problems in spectral analysis is to describe 
the null set of a characteristic function — i.e., the set of eigenvalues and 
spectral singularities of an operator. The following theorem describes 
fully all the possible null sets of characteristic functions for operators 
of type lh with h G G+, q e Ba9 Imq = 0: 

THEOREM 2 (Khrushchev [11]). A closed set E, E <= C+ , is a null set 
of the characteristic function of an operator of the above type iff 

1. E is compabt in Ö+ , 
2. EnB cz (0, oo) 
3. E is a set of non-uniqueness for the Gevrey class, i.e., E = f(0), f e Ga. 

The last assertion links the description of null sets with the description 
of sets of uniqueness for functions of the Gevrey class Ga (Khrushchev [9]). 

The progress made by various mathematicians in solving problems 
2, 3, 4 is essentially related to the development of the theory of functional 
models for nonselfadjoint operators. Por dissipative operators such a 
model was introduced and thoroughly investigated by Szökefalvi-Nagy, 
Foias, Lax, Phillips, Adamian and Arov. Owing to it one can formulate 
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many questions of operator theory in the language of function theory. 
The question about classification of invariant (spectral) subspaces reduces 
to the question about factorization of matrix-valued analytic functions 
(Szökefalvi-Kagy and Foias [41], Ginzburg [4] and later). 

2. The problem of separation of spectral components of a dissipative 
operator can also be reduced to a question of analytic function theory 
(Pavlov [28], Vasyunîn [42]). 

Let B be a dissipative operator in Hubert space E and 8 the charac
teristic function of B. Suppose now that 8 has a "scalar multiple" and 
can be factorized in the forms 

8 « SA = SA, 
where 8i and Si are inner functions in 0+ and 8e and 8e are outer functions ; 
8i = dsÛd = Ud6s where ds and 6S are singular inner functions and IId 

an,d ffd are Blaschke-Potapov products. We define absolutely continuous, 
discrete, and singular spectral invariant subspaces Na9Nd,N8, where 
the parts of the operator B have characteristic functions 86,IId, 6S res
pectively. The spectral invariant subspace JŜ , where the part B\N{ = Bt 

has characteristic function St we call the inner subspace of B. Generally, 
Ni = Nd+Ns. The corresponding subspaces of the adjoint operator 2?* 
we denote by JSTj, Nd, N*. 

The analogous subspaces of a selfadjoint operator are of course mutual
ly orthogonal. This is not true in general for nonselfadjoint dissipative 
operators. Before one can construct the spectral decomposition of a non
selfadjoint B, one must investigate the separation conditions for the parts 
of B in the subspaces Na9Nd9 Ns. 

The key to the separability of the spectral components Ba — B\Na, Bd 

= B\Nd9 Bs= B \N3 is the following simple fact. Let f(h) = {(ft — ha)~
lea, 0}, 

ea eKerSiCka), \\ea\\ = 1. Then j is an eigenvector of B, 

Bf = hJ, lmfca>0, 

written in terms of the BTagy-Foias model. An easy computation shows 
that y 

sm(f,Na) = \\8e(ha)ea\\. 

So we see that sin(/, Na) is small if 8e(ha)ea is small. Eoughly speaking, 
we can say that subspaces Nd and Na will b e a t a non-zero angle if the 
discrete spectrum ad = a(Bd) is disjoint from the set of all real zeros of 8e9 

i.e., "spectral singularities". îTow let us be more precise. 
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DEFINITION 1. Let us call the real point 7c0 a spectral singularity of 
the dissipative operator B if it is a zero of its cf. in the following weak 
sense: 

Sup \8;l(h)\ = oo, Ve. 
\k-lc0\<B,Imk>o 

The set of all spectral singularities of B we denote by a0(B). 

DEFINITION 2. Let us call a contour y e Ö+ a Garleson contour if it 
is a deformation of the real axis and the Lebesgue measure \dy\ fulfils 
the Oarleson condition 

sup sup3TÄ j \dy(h)\ = O0(y) < oo. 
-oo<A<oo e |A~ft|<8 

We say that the Garleson contour y separates a0 from % = ad\j a8 if Qy 

does not contain any point of a0 and coy does not contain any point of a{, 

Here Qv is the open in Ö+ subset lying above y, and cov is the open set below 
y; QyUyvcDy = ö + . 

THEOREM 3 (Pavlov [28]). If there exists a Garleson contour y,ycÖ+9 

which separates a0 from a{9 and if 

esssup|l;S-1(7c)||<0< oo, 
key 

then the subspaces Ni and Na form a non-zero angle. In particular, if at 

and cr0 are disjoint, 

dist(^ , a0) > 0 , 

and if 0*0 is compact9 then sin(JSr
1., Na) > 0. In the other direction, if the cf. 

8 is scalar and continuous, # e L i p a , a > 0 , and canoro ^ 0 , then 
s i n ( # a , ^ ) = 0 . 

Another form of separability conditions for the spectral components 
depends on explicit calculation of the angle between Na and JSf^ 

THEOREM 4 (Pavlov [28]). If 8 has a scalar multiple s and se is its outer 
factor, then 

12 — Proceedings..., t. II 
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THEOREM 5. (Pavlov [28], Vasyunin [42]). Let b, b be the BlascKke 
factors of si}Si,Bs =B\NS,BS = -B*\lTa. Then 

sin(^d,JNTfi)>||{&(4)}-1|r1, 

sm(Nt,Nt)^\\{b(Bs)}-*\r\ 

In scalar case the equalities take place (Vasyunin [42]). If both right sides 
here are positive, then siji(Nd, Na) > 0 and Nd+Ns = Nt is a direct 
sum (as is Nt + N* = J/J). 

THEOREM 6 (Pavlov [28]). The spectral components jy^ and Nd of a dis
sipative differential operator lh are separable if V e Ba, a > 1 . On the other 
hand, for every a, a < 1, there exists an operator lh with a real potential 
F e.Ba, Imfe > 0 , such that its spectral components are not separable. 

Since the number of eigenvalues of lh is finite if a > 1, and moreover 
its cf. does not have any real zeros of infinite order, the first assertion 
is clear. The second is based on some results on spectral inverse problems. 

3* Among the various problems concerning completeness of the system of 
eigenfunctions of a dissipative differential operator, two are of special 
interest : 

(a) When is Na + Nd = fi"? (That is, when is Ns = 0?) 
(ß) Let Na be 0. When is Nd + N*d = S% 
The first is the usual problem of completeness. I t is equivalent to 

asking when the singular factor ds of the characteristic function is trivial. 
This can be checked with the help of Helson's theorem [5]: 

If 8 has a scalar multiple s, s = se'Si, and s€ is a Blaschhe product9 

then 8 = 8e-II, JSfs = 0. Sere II is a BlaschJce-Potapov product. 

Unfortunately, Helson's theorem holds only for operators generated 
by ordinary differential expressions (see Pavlov [27]). These occur in 
one-dimensional problems of resonance scattering. (See also Ivanov 
and Pavlov [8].) The problem of completeness of the family of eigenfunc
tions in many-dimensional problems of resonance scattering remains open. 
Lack of new function-theoretic criteria for triviality of singular factors 
restricts the study of many interesting operators we meet in mathematical 
physics (Lax and Phillips [12], Pavlov [33]). 

Interesting analytic problems arise from the question of simultaneous 
completeness of eigenfunction systems of dissipative operators B, —B* 
with discrete spectra. This question arises, when one tries to show that 
solutions of the so-called Regge problem form a complete system 
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in LZ(Q, (0, a)). The Eegge problem is one of the simpler Sturm-Liouville 
problem with impedance boundary condition, for instance: 

- y " = H*Q% y'(0) = 0, y'(a)+imj(a) - 0 (*) 

(cf. Nikolskii, Hruscev, and Pavlov [23]). This can be reduced to the fol
lowing more general problem in Hilbert space: 

Let JS be a dissipative operator in Hilbert space. Assumo that B has 
an inner characteristic function: 8 = IIds = 0SÜ. Then what are sufficient 
conditions for Nd + N*d=Eì 

There is as yet no solution of this problem in terms of the spectra of 
the singular function 0S and the Blaschke product JJ. In the scalar case, 
a less precise result can be obtained from the Helson-Szegö-Devinatz-
Widom theorem, which allows one to characterize the case when 
sin (.#"*, Ns) > 0 (Mkol'skii, Pavlov, and Khrushchev [23]). Let us note 
that 

N*s=EQNd, Ns = E0N*d. 

THEOREM 7 (Mkol'skii, Pavlov, and Khrushchev [23]). Let 8 = nd 
be an inner scalar characteristic function defined on G+, 

Kn = E\ QTtEl, K0 = E\ QQE\ ; 

let Pn and PQ be the orthogonal projectors onto Kn and K0. Then the following 
conditions are equivalent: 

1. P@: K„->Ke, Pn: KQ-^KX are isomorphisms. 
2. For the corresponding model operator B on K = E\ Q8E\ we have 

s in (^ , j r * )>0 , JBrd + N*=K. 

3. dist^JrcÖ, E°°) < 1, distXoo(rc9, E°°) < 1. 

This theorem gives the following result for the mentioned above Eegge 
problem. 

THEOREM 8 (NikoPskii, Pavlov, and Khrushchev [23]). For a smooth 
positive function p on [0, aQ]v (aQ, a) such that Q(ae) ^ 1, Q(X) = 1, x > ae, 
we have aQ 

(oc) If ae < a < ae + J* @ds, then the family of eigenfunctions of the Regge 
0 

problem (or eigenfunctions and associated functions if there are multiple 
eigenvalues) is complete in L2tQ(0, a). 
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aQ 

(ß) If a = ae+ j @ds9 then this family comprises a Biesz basis in 
L2J0, a). 

The proof of the second assertion is parallel to the proof of the basis 
property for exponentials (BTikoPskii, Pavlov, and Khrushchev [23]). 

Up to now only a few joint completn essproblem have been studied. 
Thus the analogous Eegge problem with continuous spectrum is not yet 
solved. One anticipates that in the scalar case one will always get com
pleteness. 

4. In solving questions about expansions with respect to eigenfunctions 
it is an important step to choose a suitable system of eigenfunctions cor
responding to the continuous spectrum. This problem is nontrivial even 
in the case of a selfadjoint operator with a simple spectrum and for oper
ators with partial derivatives it plays in fact a crucial role. There is no gen
eral way to construct canonical eigenfunction system for selfadjoint dif
ferential operators. However, in the case of a sufficiently rapidly decreas
ing potential, the Schrödinger operator has such a system — scattered 
waves (Povzner [39]). 

Surprisingly, a dissipative operator always has a canonical eigenfunc
tion system for the continuous spectrum (Pavlov [29]). This system can 
be constructively written in terms of functional models, and, in fact, is 
fully analogous to Povzner's scattered waves since it is obtained by pro
jecting the solutions of the scattering problem of a dilation of a given 
operator B onto the original space in which B acts. Further, the existence 
of such a canonical system permits us to obtain biorthogonal formulae 
for spectral projectors of operators both in the abstract case (Pavlov [29]) 
and for concrete differential operators (Pavlov [30]). 

Let B be some dissipative operator in Hilbert space K which has 
outer cf. 8: E-+E, I-S(Jc) c G^E), KeC+; let Z be the selfadjoint 
dilation of B, expiBt = PKexpiZt\K, t>0. To construct the system 
in question, one has only to project orthogonally a certain orthogonal basis 
of eigenfunctions of the dilation Z (of B) from the dilation space E onto K. 
These basis functions are also, for other reasons, called the "solution of 
the scattering problem". They can be expressed as linear combinations 
of eigenfunctions of Z associated with outgoing and incoming spectral 
representations T±. On the other hand, the latter systems {$+}, {@J} 
are determined up to uintary equivalence in an auxiliary Hilbert space E: 
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It is easy to see that these functions are not orthogonal, but their linear 
span is E. The complete (in E) orthogonal system of eigenfunctions of 
the dilation Z is composed of two parts: 

{0_(K9v)}9 ~ o o < A < oo, veE, 

{0<(K,n)}, 0<(XiV) = d?{0+(X9f,)-B{X)0_(X9f,)}9 

where A = I — 8*8(A) > 0 , rj are the eigenvectors oi A, Arj = ònr}, ò > 0. 
The linear span of {&<} is just the "additional component" in the sense 
of Nagy-Foias. 

THEOREM 9 (Pavlov [29]), A system of eigenfunctions of B complete 
in Na is obtained by projecting 0<(X,rj) orthogonally onto K; this can be 
written in the distribution sense as follows: 

cp<ß,rj) = o^ß)Pkl0+(l9r})-8W0ß,ri)l. 

The biorthogonal system consists of functions: 

v = 8(X)r,lSfiß), 8„{X)=Vl-d,, 

which are eigenfunctions of B*: 

°n 

The spectral projectors onto the subspaces N® of Na corresponding 
to intervals œ of the absolutely continuous spectrum, have biorthogonal 
representations as integral operators with distribution kernels: 

• . ( * , * ' ) = - J ^ 7 7 ^ ^ , ( f t ) v ^ ( f t ' ) « 
« in) nK ' 

provided there are no spectral singularities on co (inf^(/l) > 0). 
Aera 

In the case of a dissipative Schrödinger operator B = —A + V9 

V = q+ia*9 a > 0, the role of auxiliary space E is played by L2(Bwp^a). 
If we construct the minimal selfadjoint dilation# of BinL2(R~~9 E)@L2(B^)@ 
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®L2(R+,E) (Pavlov [30]) 

Z 
v_ 
u 

as 

S« + - [ 7 _ ( 0 ) + 7+(0)] 

dS 

v±eW\(R±9E), v+(0)-v_(0) = iaPBn, 

then the Îfagy-Foias functional model of B can be constructed by expres
sing B in some special (say, incoming-outgoing) spectral representation 
of Z. Then, using the preceding theorem, one gets a canonical system of 
eigenfunctions { ^ } , {y)fiV}, of the absolutely continuous spectrum of 
B and J3*. These functions satisfy the equations 

ùptn =* tytii iatn ^ • 
arc 

z*y>lv = hX*, favi* 
/ 

- ? ; 

arc 

here ZI97 = dnij9 òn > 0; v = flty/*,,. Then we can easily construct spectral 
projectors and state the expansion theorem (Pavlov [30]). 

The quality of the convergence or summability of the eigenfunction 
expansion depends on the "smoothness" (relative to B) of the function 
to be expanded and on localization of the spectral singularities of B. 

Let {ae} be some family of subsets of R1 such that ||S"1(A)|| < 1/e, 
X e ae, <rB->R, when s->0. Let Na be the linear set, dense in Na9 consisting 
of all / e K which are orthogonal projections onto K of elements g e E 
which are orthogonal to L>_:f = PKg. We then set ||/||s = \\g\\ and call 
the norm || ||g the strong norm in Na. 

THEOREM 10 (Pavlov [29], [31]). IffeNa, then s-lim PaJ = / . 
e-»0 

By applying the above biorthogonal construction of projectors, it is 
possible to obtain formulae of summation, in the original norm, for spec
tral expansions with respect to the absolutely continuous spectrum. 
IsTamely the following is true: 
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THEOREM 11 (Pavlov [31]). If the scalar multiple sß of the cf. of the 
dissipative operator B is a smooth function, se sLipa((7+), a > 0, then there 
exists a family {sô

e} of outer functions such that 

(a) tfW^WKOM, b>C+,o>0, 
(ß) fi(k)=tl{k: dist(fc, <r0) ̂  Ô > 0 } . 

<5-»-0 

We also have sô
e (B)f cz Na, 6 > 0, and 

s-]imsô
e(B)f=f. 

<5-»0 

We observe that the method of summation of eigenf unction expansions 
indicated here shows clearly that expansion theorem need not involve 
separate terms corresponding to spectral singularities (see Lyantse [14]). 

5 . The effectiveness of function-theoretic methods in the study of spectral 
problems for nonselfadjoint differential operators has stimulated the 
search for an analogue of the functional model for general (nondissipative) 
nonselfadjoint operators. One of the first versions of such a model was 
presented by Davis and Foias. Unfortunately its realization required the 
spectral analysis of a J-selfadjoint operator on a space with an indefinite 
metric which present near the same difficulties. ÏTaboko [19] intro
duced another functional model for a nonselfadjoint operator of the general 
form A + iV which requires only the spectral analysis of a selfadjoint 
operator — a dilation of the dissipative operator A + iV. This model 
has already proved to be useful in numerous problems of perturbation 
theory, particularly in constructing a smooth theory of scattering for 
operators of the form A + iV and clarifying questions about similarity 
to a selfadjoint operator (Naboko). The possibilities of application of this 
model are still far from being exhausted. 

We will now concentrate on two special questions of the spectral 
theory of dissipative operators. 

A very interesting question of spectral analysis is that of order struc
ture of eigenvalues and eigenfunctions of a nonselfadjoint operator. 
îfikol'skii and Pavlov [24] found explicit order (serial) conditions which 
guarantee the basis property of the eigenfunctions of a contraction; 
these apply also for dissipative operators. Later Pavlov [27] showed 
that indeed these order conditions hold for systems of ordinary differen
tial equations. In [40] Shubova found the serial basis in a problem of re
sonant scattering of acoustic waves by an "almost spherically symmetric" 
obstacle; and Popov in [38] did the same for the problem of resonant 
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scattering of electron waves by a system of zero-radius potentials. The 
order approach to bases was used by Avdonin [1] and Ivanov [7] in a 
problem in control theory. 

After a fully description of bases of exponentials in L2(09 a)9 a < oo, 
had been given in papers of Pavlov and Khrushchev [40], Avdonin and 
Ivanov started the investigation of the corresponding vector bases. They 
discovered that vector bases of exponentials appearing in a class of control 
problems also have order (serial) nature. 

A basis of exponentials {e'Vfy}, e3 e E9 in L2 ((0, a)9 E), àimE < co, 
is called serial if the set of all frequencies {fy} splits into a finite number 
of "series" {ftf}£Li = Ap such that unit vectors ef corresponding to each 
series converge to specified limits as j->co: ef^->ep. Applying simple serial 
bases of exponentials, Avdonin [1] and Ivanov [7] gave a full solution of 
the control problem for a system of connected strings. 

A system of strings can be represented by a graph JT with the control 
forces attached at the vertices. Such a system is called controllable if for 
any initial state U0 there exist controls {f3-(t)} ensuring that the solution 
U(t, X),XETof the system of equations describing the oscillation of the 
graph become zero at t = T: U(x9 T) = 0, x e r. 

To each string \ connecting nodes (r)9 (s) we assign two sequences 
of vector exponentials with frequencies equal to the eigenvalues of the 
string: 

2n 
e H 

0 
0 

ò 
1 
0 

ô 
1 
0 
0 

(r) 

(s) 

J 

»=0f±l,:b2, 

e W 

.. 

0 
0 

Ó 
1 
0 

ô 
- 1 

0 
0 

w 

(«) 

n^O.dbl.ia, 

The joint family of these sequences is a basis in its linear span over the 
interval (0, T) iff the given system of strings is controllable. In particular, 
a "tree" of strings is always controllable. The problem of controllability 
for a cycle is more complicated. For instance, if the strings are commen
surable, |Z,| = rn^-a, then the cycle is controllable iff the number of strings 
is odd and their joint "length" £mj is even. 
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All that has been said suggests that bases of exponentials which cor
respond to differential operators and bases of the eigenfunctions of those 
operators have in a number of interesting cases an exceptional inner 
structure whose extrenal expression is the serial structure exploited in 
various problems. The study of convergence of expansions with respect 
to such systems should obviously utilize this structure, which itself de
serves some deep investigation. A differential operator is the quantum ana
logue of a "classical" dynamic system and, it seems, the serial structure 
of the operator's eigenvalues is determined by that system in both non
selfadjoint and selfadjoint (Lazutkin [13]) cases. 

A comparative study of the spectral properties of dissipative and self
adjoint operators appearing in the problems of resonance scattering in 
systems with weakly related "outer" and "inner" components is another 
interesting question. 

So far we have investigated very few problems of this sort. We may say 
that the experimental evidence is still accumulating and, perhaps, the time 
for generalizations has not yet arrived. We come across systems of that 
kind in studying the scattering of acoustic waves on trap-type domains 
(Petras [37]), the scattering of electron waves by a crystal or a fine film 
(one-dimansional model: Pavlov and Smirnov [36]), the scattering on 
a resonator with a small opening. As regards the last example, the theory 
of extensions has been used to study only a simple model problem (Pavlov, 
Faddeev). Analogous approach has been used for scattering of electron 
waves by a complex molecule (Pavlov, Faddeev, a model in terms of the 
theory of extensions). In all these problems pairs of operators come to 
light — a selfadjoint and a dissipative one. Their spectral properties are 
in a natural correspondence analogous to that which was studied in a cor
responding model situation for operators with discrete spectra (D. Clark 
[2]) and latter for operators with general spectra (Pavlov and Faddeev 
[35], by means of scattering theory). From the point of view of applica
tions one of the most important of such problems is that of the distance 
estimate between corresponding eigenvalues — real %n of a selfadjoint oper
ator and complex Tcn — of related dissipative operator; {hn} can be inter
preted as resonances and (IrnJfcJ"1 as the lifetime of the resonance. 

Another attractive prospect is opened by the fact, mentioned above 
(see 4), that eigenfunction expansion for dissipative operators is, in a way, 
even more constructive than for selfadjoint. In fact one has the following 
result, of a rather "experimental" character (Pavlov and Faddeev [35]). 

Let U0 be the shift operator in L2(G) = E0 

U0: /(fl)-*exp(tfl)/(fl), 0 < 0 < 2TT, 
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» 

and let V be a unitary operator with absolutely continuous spectrum 
of multiplicity 1 in an abstract Hilbert space K. By means of extension 
theory one can construct a compound operator UV9 which acts on E0 ®K 
and differs from U0@U only by two-dimensional perturbation, which 
can be related by the coupling operator V. This pair can be studied by 
the methods of scattering theory. 

THEOREM 12. For coupling V tending to zero, the eigenfunctions of the 
absolutely continuous spectrum of the contraction operator T — PKUV\K 

converge in the distribution sense to eigenfunctions for the absolutely con
tinuous spectrum of JJ. 

In this lecture I have not touched upon many interesting subjects 
(some of them close to my own research). Also I have only mentioned 
a small number of mathematicians working in the area chosen for this 
survey. I hope that the theory of nonselfadjoint differential operators 
of mathematical physics, so conveniently situated in the "triple point" 
between the theory of differential equations, functional analysis and func
tion theory will in time multiply the number of its followers and then 
the time will come for more detailed surveys. 

I wish to explain my cordial gratitude to my friends G. Bjork 
and 0. Davis for their helpful support and constructive discussions of 
the matters, described in this lecture. 
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GILLES PISIEB 

Finite Rank Projections on Banach Spaces and 
a Conjecture of Grotliendieck 

In this report we discuss several recent results concerning the existence 
or non-existence of well behaved finite rank projections on a Banach space. 
We will be interested in projections with large ranks and norms as small 
as possible. 

0. Standard notations 

We remind the definition of the Banach-Mazur distance d(E, F) between 
two Banach spaces: 

d(E,F) =inf{||T|| \\T-l\\}, 

where the infimum is over all isomorphisms T from E onto F. If E and F 
are not isomorphic, we set d(E, F) = +oo. As usual, we will denote by 
Ç the space Rn equipped with the norm 

IIKOII-I^KI35) ii? 

1. The finite-dimensional basis problem 

Since Enflo's example [4], we know that there are Banach spaces which 
fail the approximation property and, a fortiori, fail to have a basis. 

By definition, a Banach space X has the approximation properly (in 
short A.P.) if the identity is approximable by finite rank operators uni
formly on every compact subset of X. 

The »space X has a basis if (and only if) there is a sequence {Pn} of finite 

[1027] 
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rank projections on X such that 

Pn_x(X) a Pn(X) for aU n > 1 ; (1) 

rankPTO = n\ (2) 

UPn(X) = X9 (3) 

sup l lPJK oo. (4) 

If we then select a sequence {xn} such that xn ^ 0 and xn ePn(X)n 
riKerPn_19 we obtain a basis of X in the usual sense. 

One defines the basis constant of X as 6(X) = inf{sup[|PJ|} where 
the infimum runs over all possible sequences {Pn} as above. Clearly, this 
makes sense also when X is of finite dimension d9 by restricting (1) and 
(2) to all n < d (and Pn = I d x for all n > d). 

We now examine b(X) for a finite-dimensional space X. Although 
this is surprising at first glance, the result of Enfio does not imply (and 
is not implied by !) the existence of a sequence {Xn} of finite-dimensional 
spaces with basis constants b (Xn) tending to infinity with n. In fact, until 
recently, the following question was still open: 

Question 1. Is there a universal bound for b(X) when X runs over all 
finite-dimensional (in short f.d.) spaces ? 

The only known upper bound for b(X) is 6(JC)< (dimX)1/2, which 
follows immediately from a classical result of E. John: on every w-dimen-
sional space there is an inner product norm which is Vn equivalent to 
the original one (cf. [14]). Becently, Gluskin and Szarek gave the expected 
negative answer to Question 1, (cf. [8], [32]). More precisely, we have 

THEOREM 1 ([32]). There is an absolute constant ô > 0 with the following 
property: for each integer n, there is an n-dimensional space Xn such that, for 

every projection P: Xn->Xn with rank — , we have ||P|| > <5 Vn. In partic

ular, we have b(Xn)^ bVn. 

We refer to [32] for the rather long and delicate proof of this result. 
I t should be mentioned that Szarek's construction relies on probabilistic 
ideas: the spaces Xn are selected "at random" in a clever way so that the 
property in Theorem 1 occurs actually with large probability. Szarek's 
methods were directly inspired by a previous (quite remarkable) paper 
of Gluskin [7], where the latter proved the existence (with positive prob
ability, in some sense) for each n of two ^-dimensional spaces Xn, Yn 
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satisfying 

mtvrlä(Xn9 7n)>0. 
n 

Later, Gluskin pushed his methods to answer Question 1 with a weaker 
form of Theorem 1 (cf. [8]), while Szarek proved independently the essen
tially sharp version of Theorem 1 quoted above. 

2. The complemented l™ problem 

Enflo's example tells us that there exist Banach spaces which do not have 
"enough" finite rank projections of uniformly bounded norms to appro
ximate the identity operator in the pointwise topology. 

This leaves open the following question, which can be roughly formu
lated as follows: are there non-trivial finite rank projections at all on 
a general space? 

Question 2. Let X be an infinite-dimensional Banach space. Does there 
exist a sequence {Pn} of finite rank projections on X with uniformly 
bounded norms and unbounded ranks? 

Of course, this is much weaker than saying that X has a basis, since 
{Pn} is not required to satisfy (1) or (3); and, quite obviously, there are 
spaces without the A.P. which possess the above property. In [20], Lin
denstrauss reformulated the preceding question, in a stronger formulation : 

3. Let \ = rankPTC. Can one find Pw's as in Question 2 with 
the additional property that, for some p in [1, oo], we have Bwpd(Pn(X), 
tp

n) < oo ? 

In that case, we can as well assume that lcn = n and we then say that 
X contains uniformly complemented Z '̂s. Moreover, it is easy to see that 
the problem reduces to the cases p = 1, 2 and oo. 

In several special cases, positive answers were given in [34], [15] 
and in [35]. To motivate Question 3, let us recall a fundamental theorem 
of Dvoretzky (cf. [5]): for every infinite-dimensional space X, for every n 
and e > 0, we can find a subspace Xn of X such that d(Xn, VI) < 1 + e. 
Boughly, this means that X reproduces somewhere the structure of Eucli
dean spaces almost isometrically. Eor various reasons, mainly in operator 
theoretic considerations, it is of interest to decide when we can find sub-
spaces Xn as above together with projections Pn: X->Xn such that 
sup ||PJ| < oo. I t is rather simple to check that Lp spaces or lp spaces 
have this property for 1 < p < oo and not for p = 1 or oo. In Lv, we even 
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have complemented w/w^e-dimensional Hilbertian subspaces (take the 
span of Gaussian variables, or Bademacher functions); but, in lp9 this 
is no longer true, so that, in general, we must restrict our attention to 
the finite-dimensional subspaces. 

Unfortunately, in general, the answer to Question 2 is negative: 

THEOREM 2 ([30]). There is an infinite-dimensional Banach space X 
and a constant <5 > 0 such that all finite rank projections P: X->X satisfy 

\\P\\>0 (rankP)1'2. 

In particular, X is a counterexample to the property in Question 1. 

Remark. Let E be an ^-dimensional subspace of a general space X. 
Then there is a projection P: X->E with ||P||<j/w. This is a classical 
result (originally due to Kadec-Snobar). Therefore, in the above space X9 

this general upper bound cannot be improved (at least asymptotically)-
regardless of how E is chosen in X. 

The space constructed for Theorem 2 also fails the A. P. We will rei 
turn to this in the next section. 

There is however a major difference here from the approximation prob
lem. Indeed, now we know that there are extremely "nice" spaces, e.g. 
uniformly convex spaces, which fail the A.P. (see [31] for examples of 
subspaces of lp,p ^ 2, failing the A.P.). However, it turns out that, in 
all uniformly convex spaces, Question 3 (and a fortiori Question 2) has 
a positive answer, so that the "optimistic" conjecture is correct for these 
spaces. (See the corollary of* Theorem 5). To state this in full generality, 
we will need some terminology. We will say that a Banach space X con
tains Z£'s uniformly if, for some I > 1, there is a sequence of subspaces 
Xn of X such that d(Xn, Z£) < l. It is known (cf. [13] [17]) that, if this 
property holds for some % > 1, it also holds for all X > 1. In particular, 
a uniformly convex space cannot contain Zj's uniformly (consider the case 
n = 2 and let % tend to 1). 

With this terminology, Dvoretzky's theorem says that any infinite-di
mensional space contains ZîJ's uniformly. 

The study of the Z -̂subspaces of a Banach space is intimately connected 
with the notions of type and cotype, which are defined as follows. Let 
D = { — 1,1}^, let [i be the uniform probability on B and let 
en: D->{—1, +1} be the w-th coordinate on D. We will denote the space 
L2(B9 p-, X) simply by L2(X). 
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DEFINITION. Let l < ^ < 2 < g < oo. A space X is of type p (resp. 
of cotype q) if there is a constant G such that, for all finite sequen
ces (xl9 ...,xn) in X9 we have 

l|v.|U*«0(I><»,P 

(r«p. |J;V( | >i(2iw«)"Y 
1 

We will denote by TP(X) (resp. Gq(X)) the smallest constant 0 satis
fying this. Every normed space is of type 1 and of cotype oo. We refer 
to [22] for more details. We should mention that these notions are used 
frequently in the current study of probability on Banach spaces (of. e.g. 
[12]). In the latter area, the spaces whieh do not contain Z£'s uniformly are 
called B-convex) this class of spaces was introduced by A. Beck, in the 
early sixties, to investigate the strong law of large numbers for vector 
valued random variables. 

The results of [22] and [17] combined together, yield the following 
theorem, which relates these analytic notions with the more geometric 
concept of "containing Z£'s". 

THEOREM 3 ([22] [17]). For an infinite-dimensional space X, let 

p(X) = sup{j)|X is of type %} 

q(X) = inf {q\X is of cotype q}. 

Then, X contains l™s uniformly for p = p(X) and also for p = q(X). 

This implies that p(X) (resp. q(X)) coincides with the smallest (resp. 
largest) p such that X contains Z£'s uniformly. 

In particular, p(X) is non-trivial, i.e. p(X) > 1, iff X does not contain 
ZJ's uniformly; while q(X) is non-trivial, i.e. q(X) < oo, iff X does not 
contain Z '̂s uniformly. 

In the concluding remarks of [22], it was asked whether there is a 
"duality" between p(X) and q(X*)9 when p(X) > 1 . 

The key to solve this problem is the notion of "JT-convexity"; a Banach 
space X is called IT-convex if the orthogonal projection JS from L2(D9 p) 
onto the span of the sequence {en} induces a bounded operator, denoted 

13 — Proceedings.,., t. II 
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by JB, on L2(X). Whenever it is bounded, Ê is a projection onto the 

space of all series J* snxn, with xn in X, which converge in L2(X). 
7 1 = 1 

I t is rather striking that the boundedness of this single projection on 
L2(X) implies the boundedness of many projections on X, as the following 
result of Eigiel and Tomczak-Jaegermann shows: 

THEOEEM 4 ([6]). Any K-convex space X is locally n-Euclidean, which 
means that there is a constant G and, for each n and e>0, there is an integer 
N = N(e,n) satisfying the following property: 

for every subspace E cz X with dimE > N9 there is a subspace F cz E of 
dimension n and a projection P: X->F such that d(F9l%) <l + e and 

WW «J. 
The proof uses the same isoperimetric inequality as in [5] ; the space F 

and the projection P are obtained by a suitable random choice. For a dif
ferent approach using random matrices, see [1]. 

Fortunately, it turns out that JT-convexity admits a simple "geome
tric" characterization: • • 4 

THEOEEM 5 ([28]). A Banach space is K-convex iff it does not contain If s 
uniformly. 

I t is the "if" part which is non-trivial. This showâ that the conversero 
Theorem 4 is true: 

COEOLLAEY. The properties "X does not contain V?s uniformly", "p (X) > 1", 
"X is K-convex" and "X is locally n-Euclidean" are all equivalent. 

Several special cases were already known, in particular, for Banach 
lattices, cf. [34] [15]. Moreover, if X is IT-convex, then X is of type p 
iff Z* is of cotype p1 (cf. [22], remark 2.10); hence if p(X) > 1, we have: 

1 1 1 1 
p(X) q(X*) p(JT) q(X) 

= 1. 

We should mention that the proof of Theorem 5 relies heavily on some 
results from the theory of holomorphic semi-groups. 

We refer to [28] for more details-

Remark. The results of [29] suggest the following conjecture. 

CONJECTUEE. In any space X in which Question 2 has an affirmative 
anstoer, the same is true for Question 3. 
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Indeed, this is verified in [29] if q(X) = 2, and there is still some hope 
that the approach of [29] will prove the conjecture in general (cf. [29], 
p. 143). 

3 . A conjecture of Grothendieck 

n 
Let X, Y be Banach spaces and let u = £ xi ® yi be an element of the 

algebraic tensor product X® Y (xi eX, yx e Y). Let Bx be the unit ball 
of X. Grothendieck defined the injective and projective norms as 

and 
J 

n 

M A =îBi{^IWIIIy<ll}, 

where the infimum runs over all possible representations of u. He denoted 
by X<& Y and Xg» Y the completions of X® Y with respect to the cor
responding norms (cf. [10] [11]). 

Obviously, ||«||v < IN|A, so that there is a natural norm decreasing map 
from X& Y into X® Y. At the end of [10], Grothendieck listed six open 
questions, which are now (essentially) all solved. The first (and main) 
one was the A.P. problem. The last one was the following: 

Question 4 If X ^ Y = X® Y, is it true that either X or Y must be 
finite-dimensional ? 

In view of the fact that || ||v and || ||A are, respectively, the smallest 
and the greatest reasonable tensor norm, it is natural to ask if they can 
happen to be equivalent on X® Y in any other case than the trivial one 
when one of the dimensions is finite. This is precisely the content of Ques
tion 4. Let us consider the case when X and Y are in duality. Then X* ® X 
can be identified with the closure of the finite rank operators in the space 
&(X, X) of all bounded operators on X. 

On the other hand, the elements u in X* ® X which are in the image 
of the natural map J: X*gX->X® X are exactly those which can be 
written as 

oo 
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co 

for all x in X, with #* in X* and xn in X, such that JJ ||#*|| ||#J| < oo. 
i 

These are called nuclear operators and their "nuclear norm" is defined as 
oo 

N(u) = inf J£ \\a>*\\ \\xn\\ where the infimum runs over all representations 
i 

satisfying (5). Grothendieck-showed that X has the A. P. iff J : X * ® X 
- > X ® X is injective; in that case the trace of a nuclear operator is well 
defined, and it is then easy to prove that J is an isomorphism only if the 
dimension of X is finite. However, until recently it was not known whether 
X must be f.d. when J is merely assumed to be surjective. This question 
belongs to the same family as Question 2. Boughly formulated, it reads: 
if the dimension of X is infinite, is there any non-trivial operator at all 
in X*®X? Indeed, the nuclear operators are trivial in the sense that they 
are just absolutely convergent series of rank one operators. 

We should mention that a positive answer to each of the preceding 
questions was given in [3] if X does not contain Z '̂s uniformly (this can 
now be derived easily from the more recent Theorems 4 and 5). Moreover, 
the following finite-dimensional version of Grothendieck's conjecture 
was proved in [25]. 

THEOEEM 6. Let {Xn} be a sequence of f.d. Banach spaces and let Y be 
a Banach space. Assume that for some constant G9 we have ||w||A < ö[|«||v, 
for all uinXn®Y and for all n. Then either sup dim Xn < oo or dim Y < oo. 

n 

In particular, if either X or Y has a basis (or merely the property in 
Question 2), then the answer to Question 4 in "yes". However, in general, 
the answer to both of these questions is negative: 

THEOEEM 7. Let E be any Banach space of cotype 2. (For instance E =lx 

or E = Z2.) Then there exists a Banach space X which contains E isometrically 
and is such that: 

(i) X ® X = X ® X 
(ii) The map J from X*®X into X*®X is surjective. Equivalently, 

there is a constant G such that every finite rank operator u on X satisfies 
N(u) < G\\u\\. 

Moreover, if E is separable, we can obtain a separable space X as above. 

We do not know, however, if there is a reflexive space X (or merely 
not containing IJ which possesses any of the properties (i) and (ii). Sim
ilarly, Question 2 is still open for reflexive spaces. Also, we could not con
struct a space X such that every compact operator on X is nuclear. 
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Note that if P: X-»X is a finite rank projection, then it is well known 
that N(P) > (rankP)1'2, therefore Theorem 2 is a corollary of Theorem 7 

1 
with ô = —. To describe the proof of Theorem 7, we focus on (i) ((ii) is 

obtained as a consequence of (i) by the results of [25]). 
The basic idea is to construct a sequence of Banach spaces EQ cz Ex 

cz Ezcz ... Encz En+l cz ..., with En isometrically embedded in JEJn+1 

with E0 = E, and such that, for some constant K, we have for all n and 
all u in En®En 

Once the sequence {JEJn} is obtained, it is quite easy to check that X = U En 

satisfies the above property (i). 
The difficulty in the construction of the sequence {En} lies in the fact 

that (6) can hold for some En+1 containing En, only if En satisfies a certain 
restrictive condition; therefore, to carry on the construction, we must 
make sure, a.t each step, that En+1 satisfies not only (6) but also this con
dition, which we now make more explicit. 

Let u: E->F be an operator between Banach spaces, we say that u 
factors through a Hilbert space JBf if there are operators A : E->M and 
B: H-+F such that u = BA\ this property is "controlled" by the follow
ing norm: yz(u) = inf(||J5|| ||JL||), where the infimum is over all possible 
factorizations of u. If u is an element of E®E, we will denote by y%(u) 
the above norm computed for the operator from E* into E associated to u. 
It is then easy to see that y%(u) < IMI^^ for any u in E®E. Therefore, 
if (6) holds, then the space En must satisfy 

\fueEn®En, y2(u)^K\\u\\v. (7) 

This strongly indicates that, in order to prove Theorem 7, we must first 
investigate this condition (7). This was done in [25]. 

THEOREM 8. [25] Let E and F be Banach spaces such that both E* and F 
are ofwtype 2. Then there exists a constant K (depending only on the cotype 2 
constants of E* and F) such that every finite rank operator u: E-+F satisfies 

y2(u)^K\\u\\. 

COEOLLAEY. If moreover E or F has the A.P., then any bounded oper
ator u : E->F factors through a Eilbert space. 

Applied to the identity operator, this yields 
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COEOLLAEY. If a Banach space E and its dual E* are of cotype 2, and 
if E possesses the A.P., then E is isomorphic to a Hilbert space. 

These results were conjectured in [21] (without the A.P.). Up to now, 
they cover all the known couples of Banach spaces E and F such that every 
bounded operator u: E-+Ffactors through a Hilbert space. They can be 
viewed as an "abstract" form of a classical theorem of Grothendieck, who 
proved this for E = L00 and F = L . His result was extended in many 
ways. Maurey (cf. [21]) discovered the relation with the notion of cotype 
and proved this result for E = L^ and F any space of cotype 2. The main 
examples of cotype 2 spaces are L1 spaces and their subspaces. More ge
nerally, the dual or the predual of a 0*-algebra is of cotype 2 [33], as well 
as the quotients J^/B when JB is a reflexive subspace of L1 ([16], [24]). 
Becently, Bourgain [2] proved that LXJE} is of cotype 2. Actually, the 
last two examples play an important role in the proof of Theorem 7. 
I t is conceivable that the assumptions of Theorem 8 are necessary if nei
ther E nor F is isomorphic to a Hilbert space (see [25], remark 2.4). How
ever, the A.P. cannot be removed from the preceding two corollaries. 
Indeed, in the proof of Theorem 7, we actually construct a sequence {En} 
verifying (6) and also such that 

sap(7a(JBfft)< oo. (8) 
n 

This last property implies by Theorem 8 that for some constant K (inde
pendent of n) wa have (7) and this enables us to carry on the inductive 
process. Finally, the space X constructed for Theorem 7 is of cotype 2, 
as well as its dual, but it cannot be isomorphic to a Hilbert space; in fact, 
this space X fails the A.P. and this shows that both corollaries would 
be false without the A.P. 

4. Upper bounds for the projection constants 

Let X be a Banach space. 
In this section we estimate the projection constant of an w-dimensional 

subspace E of X when n tends to infinity. We can define 

XX(E) =inf | |P | | and px(E) = inf {y2(P)> 

where the infimum runs over all possible projections P: X-±E. lx(E) is 
called the projection constant of E relative to X. We have clearly AX(E) 
<ftr(J&). 
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We then let 
en(X) = mvfix(E) 

where the supremum runs over all n-dimensional subspaces E cz X. For 
such an E, we have d (E, Z£) < en (X) and there exists a projection P : X->E 
such that ||P||< en(X). The asymptotic behaviour of en(X) when n->oo 
has attracted a lot of attention in recent years. For a general space, we 
have en(X) < Vn, and the "worst" cases are attained (at least asymptot
ically) for X =s L1 or X = L°°. But if a space is "far" from these extreme 
cases, this can be improved. In [19], Lewis proved that 

en(L»)^Jp *l 
Following Lewis, this was generalized by many authors (Lewis, Tomczak-
Jaegermann, ...). For instance, it was proved in [18] (cf. also [37] for a 
better proof and other results) that if X iŝ of type p > 1 and of cotype 
q < oo, then en(X) < Gna for some constant G and a = l/p — ljq. The ques
tion whether this can be improved to a = inax(l/p —\, \— ljq) (or any 
a < \, when l/p —ljq > \) is still open. It was (essentially) verified for Banach 
lattices in [27]. 

Although the "right" exponent is still in doubt, we do know that 
n"ll2en(X)^0 when n-+oo iff X does not contain ZJ's uniformly (cf. [23] 
and [26]), which means that p(X) > 1 and q(X) < oo. 

5. Open problems 

In this section, we mention two important open questions. First, the in
finite-dimensional analogue of Theorem 1 or 2 is not known: 

Problem 1. Let X be an arbitrary infinite-dimensional space. Is there 
a bounded projection P : X->X such that both P and I—P have infinite-
dimensional ranges ? In other words, can any X be split into a non-trivial 
direct sum? 

For an interesting particular case, see [9], page 226. More generally, 
although there are spaces with few finite rank operators (cf. Section 3), 
it is not known whether there is a space which admits few bounded ope
rators. Precisely, the following is open: • 

Problem 2. Is there an infinite-dimensional space X such that every 
bounded operator u: X->X is of the form Hdx+v with % scalar and v 
nuclear? 
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Actually, this is unknown even if we only ask for a compact v. A re
lated example (X non-separable and t>'s of separable ranges) is con
structed in [36], using special axioms. 

Of course, a positive answer to Problem 2 implies a negative one to 
Problem 1. Moreover, a separable space X asv in Problem 2 would be the first 
example of a separable Banach space on which every bounded ope
rator has a non-trivial invariant subspace. 
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DAN VOI0ULES0U 

Hilbert Space Operators Modulo Normed Ideals 

1. The developments in the üT-theory"of operator algebras have led to 
important progress in our understanding of Hilbert space operators modulo 
the ideal of compact operators (see [10]). I t appears that further devel
opments of the K-theory methods and of the functional analysis tech
nique that emerged in this context may be used in the study of the more 
refined properties of Hilbert space operators modulo normed ideals smaller 
than the compacts. I will survey some of the work and problems which 
fit into this perspective. 

2. & will denote a separable complex Hilbert space of infinite dimension, 
Jöf (#P) and X(2tf) the bounded and the compact operators on iïf respect
ively. We consider general normed ideals of compact operators S$* 
with the norm \T\0 = 0 (eigenvalues (T*T)1/2), as in [12]. For 
0 = 0p{S19 f„ ...) - {S\ii\

p)llP (i < P < oo) we get the Schatten-
von Neumann classes (Vp9 \%) and for 0 = AC (fl7 f2, .. . ,) = £!S*j~l+1,p 

where (£*) is the decreasing rearrangement of (|f |j) we get certain Lorentz-
type ideals, which we shall denote by («£, | - |~) . 

3 . First, we shall consider questions about trivial extensions in the sense 
of ([5]). 

Becall the classical facts about perturbations of self-ad joint operators. 
Let X19 X% e^C(J^) be self-adjoint operators without isolated eigenvalues 
of finite multiplicity with equal spectra a(Xt) = a(X2) = K. Then by 
the theorem of Weyl and von Neumann there is a unitary U such that 
UX1U*--X2aX'(Je). By Kuroda's theorem, &(&) may be replaced by 
any ©§* ^ <SPa. Further &(&) may be replaced by #x if and only if the ab
solutely continuous parts of X19 X% are unitarily equivalent (by the Kato-
Rosenblum theorem). 

Now, giving X19 Xz as above is equivalent to giving faithful *-homo-
morphisms ft: 0(K)-*X{JP) with Qj(G(K))n^r(^) = 0 (j = 1 , 2 ) , and 

[1041] 
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thus for such homomorphisms there is a unitary TJ9 so that Vq^f) TJ* — 
— Qz(f) &&(&) for all feG(K). The non-commutative Weyl-von Neu
mann type theorem of [20] asserts that in the preceding statement G(K) 
may be replaced by any unital separable ö*-algebra. 

For normed ideals other than Jf(Jf), note that UXJJ*—Xz e<5$ 
does not imply that / ( TJXJJ*) ~ / (X 2 ) e Sg> for all / e G(K) but only for 
/ in a dense *-subalgebra of G(K) containing the restrictions of polyno
mial functions to K. Thus, in general, consider a dense *-subalgebra 
B cz A, B s 1, eòuntably generated as an algebra. The non-commutative 
Weyl-von Neumann type theorem extends as follows ([21]): the con
clusion is that TJQ^b) U* — Q2(b) e<S$ for b e B and one assumes addition
ally for j = 1,2 that 

(*) tliere are finite-rank Rm, 0 < Rm < I , Rm f I so that \[Rm9 Qj(b)]\0 

->0 as m-»oo for b eB. 
Condition (*) always holds when G^ = X(tf?) and the role this fact 

plays in the proof of the non-commutative Weyl-von Neumann type 
theorem for X(#P) was pointed out in the improved exposition of [20] 
given in [1]. 

I t may seem that the above result of [21] involving condition (*) is 
not of much use. However, it provided the means for proving that 

for every w-tuple T with n > 2 of commuting self-adjoint operators 
there is a diagonal w-tuple ô of commuting self-adjoints such that x — ò e Wn. 

The case n = 2 solves a problem, attributed to Halmos, refining 
one o£ his well-known ten problems [13]. 

To any A, B given as above, Q: A->S£($P) and Q$9 there corresponds 
a central projection E%(Q) G[Q(A)Y which is the greatest projection of 
(Q(A))' on which Q satisfies (*). Then for E0(Q) = I—E%(Q) we have: 

(**) (Tn)r <= S8Mir B | |< G, and lim|[T„, g(6)]|* = 0 for all beB 
= > s - l i m T U E 0 ( Q ) = 0 . * • * " 

In [21] it is shown that in the case A = G(K), K cz Rn, B = poly
nomial functions, and Q$ = #~, the decomposition I = E0(Q)+E%(Q) 

is precisely the decomposition into singular and absolutely continuous 
parts. The proof of this depends on the asymptotic of the Fourier coeffi-

n 

eients of (% — l)l(]£\Zj — l\2), viewed as a function on the w-torus. Thus 

<ên seems to be the right generalization to the case of ^-tuples of the 
ideal (€1 in the theory of perturbations of a single self-adjoint operators. 
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By using (**) some abstract theorems about generalized wave-oper
ators were proved in [21]. In particular, these results have the following 
corollaries : 

(a) For ^-tuples r, r' of commuting self-adjoint operators with n > 2 
such that r — %' e <ë~9 their absolutely continuous parts are unitarily equiv
alent. 

(b) For ^-tuples T, %' of commuting self-adjoint operators, with 
n^3, T — T ' G # ~ and (fm)\™ ^-functions in a neighbourhood of a(r)u 
u cr(r') such that \fm\ = 1 and w- lim fm= 0 in L2[a(r)u o(%'), dk)9 it fol
lows that 

F = s-lim(/m(r'))*/m(T)^flC(r) 
m-*-oo 

exists and is independent of (/m)~. 

These results are stronger than those obtained in [23] by other methods. 

4. In connection with the above results let me mention the following 
problems: 

(a) Though higher-dimensional generalizations of the Kato-Eosen-
blum theorem have been obtained by these techniques, it is an open prob
lem to give a proof of the original Kato-Eosenblum theorem within 
this framework. 

(b) For a measure /J, on Rn with compact support K, A = G(K), 
B = polynomial functions, and Q — the representation of A on L2([i), 
the decomposition into E% and E0 corresponds to \i =* fa + fa with p19 ^2 

concentrated on disjoint Borei sets. What is this decomposition for Q$ 
= ^ - , 1 < ^ <n% 

5. The next situation corresponds to non-trivial extensions in te case 
of subsets of the plane. 

There is an important work about pairs of self-adjoint operators 
(Xx, X2) with [X19 X2] e V19 due especially to J. D. Pincus, E. V. Oarey, 
J. W. Helton, E. Howe, O. Berger and others. The Helton-Howe theorem 
([14]) asserts the existence of a measure P on B2 such that 

^>«.*<^=ii l f -M>-
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where p, q are polynomials in two variables,N and p(X19 X2), q(Xx, X2) 
are defined modulo Wt. In case X1+iX2 —zJL is Fredholm for some #0, 
dP is proportional to the Lebesgue * measure multiplied by the index 
(X1-\-iX2—zI) in some neighbourhood of #0. 

Actually, as shown in [6], dP = gdxdy, where geL1 is a function 
introduced in another context in [18]. 

Note that the Helton-Howe formula provides representations of index 
data by traces of commutators. Even more, g seems to generalize the 
function ^->index(2T—zi), which is the basic invariant in the classifica
tion of essentially normal operators. This suggests the following problem 
([22]): 

Is there a #2-analogue of the Brown-Douglas-Fillmore theorem? 
Explicitly, if [Xu X2] e V19 tX[, X2] e Vx and dP^^ = dP{XiXd, do 
there exist N normal and JJ unitary so that 

(X1 + iX2)®N- UdXl+iXtiQX) JJ*eV2î 

In particular, this would imply that Xt + iX2 is unitarily equivalent 
mod#a with QÉ\Q^9 where N is normal and Q is a projection such that 
[Q9N]e<£2 — i.e., a Choi-Effros type result relative to #2. 

The earliest attempt to relate pairs (X19X2) as above to IT-theory 
is perhaps [3]. 

6. Attempts at generalizing the Helton-Howe theorem from the lowest 
even dimension to higher even dimensions have led the same authors [15] 
to consider the more general trace-form Tr[X1 ? . . . , X2n\= Tr( £ Xa^... 

. aeS2n 

... X0(2nj), However, in higher dimensions the abstract theory for systems 
(X19 ..., X2n) satisfying some conditions on the commutators has en
countered serious difficulties, though in the case of pseudo-differential 
operators Helton and Howe obtained the beautiful formula: 

Tr[J.1? ...9A2n] = const J fidf2A ... Adf2n9 
S*(M) 

where fj is the symbol of Aj9 M is a compact manifold and 8*(M) is the 
co-sphere bundle. 

On the abstract side, it was shown in [11] that, in the case of (2w —1)-
dimensional sphere-extensions with commutators in Vn9 the trace-form 
represents the index-data associated, with the extension, but it seems that 
in order to get a non-zero index one should allow the commutators to be 
in an ideal bigger than <gn. 
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7. Modulo the compacts, extensions can always be replaced by "abstract 
elliptic operators" in the sense of Atiyah-Kasparov ([2], [16]). This means, 
roughly, replacing for instance an essentially commuting system of self-
adjoints by a pair consisting of a commuting system and a certain element 
in its essential commutant. The connection between the two points of 
view depends on the Ohoi-Effros theorem. 

There is an obvious refinement to normed ideals of the Atiyah-Kas
parov framework and there is a general approach to trace-forms represent
ing index-data in the context to a recent theory of donnes ([8]), [9]). 
Oonnes's approach works for both ^-homology groups, and for a glimpse 
in this direction it is convenient to switch from one JT-homology group 
to the other. In the commutative case it corresponds to the passage from 
even to odd dimensions. 

Let A be a <7*-algebra, Q: A->J£(M>) a «-homomorphism, e2 == I a 
grading of X9 i.e., X = Jf+ ®X"9 such that Q is of degree 0, i.e., Q = g+ © 

© e - , F2 =I9F =F* e&(Sf), degF - 1, i.e., F = ("^ ^ 1 with JJ 

unitary and suppose [g(a), F] e X(X) for a e A. Further, let B = {a 
eA\ [F9 Q(a)] e <gp} and assume B = A (which implies K0(A) = -^o(-S))-
Then there is a homomorphism K0(A)-*Z given by 

[P]-*mdexc + ( p p f + \Q+ (P) UQ~(P)|e-(PK~, 

where P is an idempotent. 
If 2m^p — 1 and b0, ..., b2m eB let r2w = const-Tr (eF[F, o(&0)] . . . 

. . . [F, Q(b2m)]); then we have 

indexß+(P)i5r+ \Q^(P)VQ"(P)\Q-{P)^ = r2m(P, . . . , P ) . 

2m-fi times 

Now for r2m one has r2m(b0b19 b2, . . . , 62m+1)-r2wt(60, bxb29 b3, ...) + 
+ r2m(^o? bx, b2b3,...) + . . . +T 2 m (b0, ..., b2mb2m+1) — r2m(b2m+1bQ, b19... 
. . . , & 2 m ) = 0 and r2m(b19 ...9b2m,b0) = r2m(b0, 6X , . . . , b2m). Then r2m is 
actually a cocycle for a cohomology theory Hf(B) ([9]) having as cochains 
(w + l)-linear maps <p: Bx . . . XB-+C such that 

<p(b19 ..., bn, b0) - ( - 1 ) > ( 6 0 , b19..., bn) 

and the coboundary map is given by (bcp)(b0,..., bn+1) = (p(bQb19 b2, . . . 
.-.A+i)-9>(&o, M i , &3, . . .)+ ... + ( - l ) X & 0 , ..., bnbn+1) + (-l)n+1x 
X(p(bn+1b09 b19..., bn). Now the cohomology theory JET* is very large. 

This corresponds to redundancies reflecting the fact that an index 
expressible by a trace-form for ^ can also be expressed by a trace form 
for tfn+1, %n+2) ••• Disposing of cup-products, it is possible to eliminate 
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such redundancies and it is shown in [9] that after elimination of redun
dancies Oonnes's cohomology theory for the algebra of (7°°-functions on 
a compact manifold corresponds to the usual de Eham homology of V. 

8. Concerning the appearance of ^-commutators in concrete situations 
in analysis we should mention the recent progress which started with the 
work of Peller on ^-Hankel operators [19]. 

9. Among the problems appearing in the geûeral situation we mention 
the problem of finding some analogue of the Choi-Effros theorem and 
the question originating, in the work of E. G. Douglas, of determining 
the smallest ideal such that a given ^-homology class may be realized 
with commutators in^that ideal. 
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DAVID E. BEILLIKGER 

Statistical Inference for Random Processes* 

1. Introduction 

Statistics is concerned with data collection, data analysis, data reduction, 
data modelling and inference. Its primitive concept is that of data. Statis
tics is part of the methodology of science — pure and applied. It is per
tinent to the various goals of science proper: explanation and understand
ing, prediction and control, discovery and application, justification-
classification. Two things at the heart of science are observation and 
inference. Inference may "be deductive, arguing from the premises to con
clusions, or what is the major process in science, inductive, intuiting 
from the specific to the more general. 

Statistical inference is concerned with making statements that go be
yond the data collected. Its traditional paradigm is that of from the sample 
to the population or parameter. The strength of statements made depends 
on the situation at hand. There are several schools of statistical inference. 
The schools are often in conflict; however, these days, their chosen prin
ciples are fairly clear. 

By now statistics has amassed quite a collection of procedures for 
drawing inferences from data; however, with the passage of time, the 
data of concern has gotten steadily more complex. This essay is concerned 
with statistical inference in general and for random process data in par
ticular. In barest detail a random process is an indexed family of random 
variables (or chance quantities). In operational uso a random process 
is a random function, or random measure, or random generalized function 
with domain that is temporal or spatial or spatial-temporal. Its values 
have coordinates. Its realizations are: curves, surfaces, shapes, figures, 

* Prepared with the partial support of the National Science Foundation, Grant 
CEE-7901642 and while the author was a Guggenheim Fellow. 
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sequences and the like. It relates to situations where things move and 
change. 

We begin with an example of statistical inference for random processes 
taken from our own experience. The example is one with a precise experi
mental setup yet, apparently, inferences may not be drawn from direct 
examination of the data or after the realization of new experiments. Bather, 
a statistical concept of some subtlety is required to unravel the situation. 
We remark that the statistician is concerned with the probabilistic con
ceptualization of natural processes. At the same time he is a guardian of 
a collection of tools that bring order to complex data sets, tools which 
have had real successes. The remaining sections of the paper reflect these 
two aspects. Scientific investigation and modelling are discussed in general 
terms. Process data analysis and its aims are discussed in particular 
terms. 

Though it is not brought out specifically in tho paper, mathematics is 
always present for the statistician. Sometimes, especially in the theory of 
random processes, his work is indistinguishable from mathematics. At 
other times mathematics is a potent heuristic aid for planning data col
lection and analyzing data at hand. 

2. An example 

A sequence of nerve impulses, or spike train, is a common form of neur-
ophysiological data. The times of the pulses correspond to the times at which 
a particular neuron fires off. The heights of the pulses are nearly constant 
and, provided the experimental conditions are reasonably fixed and the 
experiment is not continued too long, the character of the spike train 
is not seen to be evolving with time. It appears that this kind of data may 
be reasonably modelled as a piece of a realization of a stationary point 
process on the real line. Such a process may be defined as a random process 
whose realizations N(-) are non-negative integer-valued Borei measures 
on R with the (stationarity) property that the probability that ^(Ij.+t) 
= %, . . . , N(IK + t) = nK does not depend on t for IK a Borei subset of 
JB and K = 1, 2 , . . . Suppose that the observed times of consecutive pulses, 
for a given spike train, are tx, ...,tn. Then a key role is played in the 
example by the empirical Fourier transform 

n 

d(X) = ^ e x p { - a ^ } = Jexp{—iXt}N(dt)9 

where X e R and T is the observation domain. 
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In our example, spike trains could be recorded simultaneously for three 
neurons A, B, 0 of Aplysia ealiforniea. It was "known" that neuron A 
was driving neurons B and 0. It was not known whether there was some 
separate connection between neurons B and Ö and this was the scientific 
question of interest. (Details may be found in Brillinger et al., Biol. Cyber
netics 22 (1976), 213-228.) 

A useful statistic for measuring the degree of association (at frequency X) 
of two empirical spike trains, A and B, is the sample coherency 

ÔABW=/ABW/I/ /AAW/BBW 

where /AB (X) is obtained by averaging values of dA([i)dB(fjL) for //in a neigh
borhood of X. Provided the same averaging is employed in formingfAA(X)9 

/ B B W 0ILe h a s I $ A B W I 2 ^ 1 > with values near 1 corresponding to strong 
association. The Figure shows the functions \RAB\*, |JBB0|

2, |JBA0|
2 for one 

particular set of experimental data and the spike trains are indeed "found" 
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to be associated in pairs. The issue is whether the association of neurons 
B and 0 results totally from their both being driven by neuron A, or 
whether they have some association (connection) beyond that. To the ex
tent that relationships involved are well enough captured by quadratic stat
istics, one can address such questions by partial coherencies. 

The sample partial coherency of trains B and G given train A is 

• B B C A = ( Ä B o - Ä B A Ä A O ) / / ( l - - | S B A | a ) ( l - - | Ä o A | a ) . 

One has \RBQ.A\2 < 1, with values near 0 corresponding to weak associ
ation of trains B and C having "removed" the effects of train A. The 
Figure presents this function for the given data. There is the strongest 
suggestion of no direct connection between neurons B and Ö. 

To formalize this "strongest suggestion" the 5 per cent significance 
line is given in each plot, as the horizontal dashed line. Were there no 
separate connection of B and Ö, the probability of this line being exceeded 
at a given frequency would be (approximately) 0.05. 

The situation now reached is typical of what happens in science and 
what statistical inference has to offer. The hypothesis (of no direct connec
tion) cannot be verified absolutely; hence it is given an opportunity to 
show itself false. What has happened is that the data have shown them
selves compatible with the hypothesis up to the limits of the inherent vari
ation present. Probability has been used to formalize this last. 

3. Scientific investigation 

In an earlier paper on our topic, (J. Royal Statistical Society A 130 (1967), 
pp. 457-477) M. S. Bartlett sets up a "ladder diagram" of scientific en
quiry of the following form: 

(Theory) (Practice) 

model «-» planning/design 
deduction -> data collection 
induction <- data analysis 
new model <-> new planning /design 

Things are initiated by some idea, question or problem. Then one moves 
down and across the steps as work progresses. (Similar schemata have 
been given by G. E. P. Box, J. American Statistical Association 71 (1976), 
pp. 791-799, and H. Mohr, Structure and Significance of Science, Springer-
Verlag (1977).) Deductions from the model play a broad role and a narrow 
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one. Broadly they may be predictions that science and technology use to 
make progress. Narrowly, they may be used just to validate the model 
with extant data. (Statisticians have been much concerned with this 
last.) 

An essential feature of the whole investigative procedure is its cyclic /it
erative character: ... deduction to induction to deduction to ... 

4. Process data 

Commonly the term process has referred to a phenomenon which showed 
a continuous change with time. However, the idea has been substantially 
abstracted with the time parameter allowed to be discrete, multidimen
sional, set-valued and function-valued amongst other things. Further, 
any requirement of continuity has been directly adapted to the situation 
at hand. 

Process data refers to information that has been derived by obser
vation of the process at some collection of "time" values. The informa
tion will often have numerical form; however, its values can lie in some 
general structured space. We shall write process data as {Y(t),t eT}9 

T denoting the observation domain. 
In using the term we have in mind things like: the recorded arrival 

times of individual photons collected by a telescope aimed in some direction, 
stereoscopic photographs from a distance of some land or sea surface, the 
collection of time series recorded at an array of sensors after a pulse of 
energy is input to the earth, measurements of X-ray absorption by the 
head as a function of the direction of a submitted X-ray beam, the distribu
tion of earthquakes through space and time. In discussions of process 
data it is usual to work in situations for which the number of realizations, 
n, of the process T(t) is much less than the dimension, p, of the obser
vation domain T. Multivariate data analysis, in contrast, concentrates 
on the case n > p. 

Thanks to the dramatic advances in equipment and instrumentation 
during the past 30 years, researchers have effective tools for dealing 
with the collection of many sorts of process data, e.g. ultrafast phenom
ena and spatial-temporal fields. Issues arising are: data selection (aux
iliary variâtes?), data storage (device, structure), data retrieval, data dis
play, data auditing and flagging. Particular aspects of the process of inter
est affecting how this is done are: data type, data frequency content/dy
namic range/information content and whether one is working in real-time 
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or off-line. I t is clear that digital computers are important. Optical com
puters are now beginning to play an important role as well, e.g. in data 
smoothing and Fourier transforming. 

As indicated in the ladder diagram, the model, deductions from the 
model and the design of the investigation affect data collection. We shall 
return to these stages later. 

5. Aims of process data analysis 

A time series, Y(t), is a particular type of process for which t and Y(t) 
are real-valued. J . W. Tukey, Directions in Time Series (Eds. D. E. Bril-
linger and Gt. C. Tiao), Institute of Mathematical Statistics (1980), has 
listed the following aims of time series analysis: 

1. discovery of phenomena, 
2. modelling, 
3. preparation for further inquiry, 
4. reaching conclusions in statistical terms, 
5. assessment of predictability, 
6. description of variability. 

These apply to the general process case as well. Having in mind the great 
variety of process data, we may also mention: control, classification, 
establishing causation, description of relationship, summarization, re
moval of concommitant variation, measuring degree of association, signal 
reconstruction and enhancement, questioning conformity of theory to 
data, focusing information, precise measurement of constants, compara
tive analysis. 

The neurophysiological example that we presented earlier was con
cerned with reaching conclusions; however, the technique employed, 
Fourier analysis, is well-suited to discovering unsuspected phenomena. 

We have available today a broad collection of methods for meeting the 
aims above. Various factors enter into the choice of method for an intended 
analysis. One of the most important is the degree of urgency involved in 
the situation at hand. A second is the computing facilities available. 

6. Methods for process data analysis 

At the operational level the methods available for process data analysis 
depend upon the type of process of concern; however, there do exist 
a number of techniques of quite broad applicability. We shall concentrate 
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on these. Further any technique employed will depend intimately on the 
aim of the analysis. 

Manipulations possible for process data depend upon the particular 
character of the process under study as well as the computational and in
strumental facilities available. Linear forms in the data are by far the 
most common. They may be real-valued or function-valued. Included are 
Fourier and other transforms and least squares projections. In many cases 
they are chosen to have high information content. 

It is clear that one can contemplate working with quadratic and other 
polynomial forms in the data. This has proved to be successful on many oc
casions. Great advantages of such forms are that they may be manipulated 
directly and that computational devices for their evaluation are often 
available. 

The step away from polynomial forms is a long one. Experience and 
insight have sometimes suggested particular statistics to work with. 
Alternatively, models of the situation of concern have proved a rich source. 
We will return to the concept of model shortly. 

Things computed and displayed are located at several levels.Some things 
are the primary goals of the work. Other things are intended to indicate the 
uncertainty (or instability) of those primaries. Yet other quantities are 
evaluated to examine and challenge assumptions (the model) that drove 
the analysis. 

Among specific methods applicable to process data are : spectrum analy
sis, smoothing, inversion, likelihood, Kalman-Bucy, clustering, re-
expression, dimensional reduction, contingency, analysis of variance, least 
squares, simulation. Specific algorithms exist for their application to many 
types of data. However, there are continual difficulties that arise in prac
tice and complicate the use of the algorithms. These include : missing data, 
out-of-line data values, measurement error, concomitant variation, 
extra structure in the data, artifacts, heterogeneous data-, censored data, 
biased collection procedure, jitter, discretization error. A broad variety 
of procedures now exist for dealing with these difficulties. 

7. One important method 

In a surprisingly large number of situations, the Fourier transform pro
vides a meaningful method for handling process data. It is broadly defined, 
flexible and has useful mathematical, statistical and computational prop
erties. We have already indicated the form of the Fourier transform 
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of some point process data. If instead we had planar data on a continu
ous process, it would take the form 

â(Xx,X2) = jj Y(tx, t2)exp{ — i(X1t1 + X2t2)}dt±dt29 

T denoting the domain of observation. In many situations it turns out to be 
helpful, and sometimes even crucial, to insert a convergence factor, y>9 

forming for example 

/ / W (h ih) Y (h, h) exp { ~ * (hh + Kh)} dtxdt2, 

the support of ip being contained in T, ip being approximately 1, but taper
ing off to 0 as it approaches the boundary of T. The last expression ex
tends quite directly to the case of a generalized (Schwartz-Bruhat) process 
over an abelian locally compact group. 

It should be no surprise that the Fourier transform of process data is 
useful for handling convolutional relationships. (Indeed, this was one rea
son for its use in the example of Section 2.) It is also useful for examining 
a process for phenomena at "frequency" X. One way this is done is via 
the periodogram, |$(A)|2, or some smoothed form of this last. The field 
of seismology provides two pertinent examples. Consider the suite of time 
series recorded by an array of seismometers. Following an earthquake a 
seismic signal may move across the array. A periodogram type analysis 
of this data can be used to estimate the direction of the source of the seis
mic energy and the velocity with which it is travelling (and this may be 
done for individual temporal frequency bands). By doing this analysis 
for successive time periods, changes in the energy source may be noted 
and associated phenomena viewed. Aki and Ohouet, J. Geophysics Res. 80 
(1975), pp. 3322-3342, provide an example wherein, following an explosion, 
Fourier analysis first shows energy coming from the appropriate direction 
with the expected velocity, this is then followed by energy arriving from 
all directions with various velocities — apparently the result of back-
scattering. Bolt et al., Earthquake Engineering and Struct. Bynam. 10 (1982), 
pp. 561-573, provide another example of this sort of analysis. In their 
case, records from a nearby earthquake were processed. The apparent 
direction of the source of seismic energy was seen to shift with time. This 
may have been the first experimental measurement of a seismic dislocation 
moving along a rupturing fault. In each case, Fourier analysis allowed one 
to "discover" the presence of suspected scientific phenomena. 

One tremendous statistical advantage of employing Fourier analysis 
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is that, in the case of a stationary process, the problem is turned into one 
involving independent identically distributed random variâtes. 

8. Modelling 

An ubiquitous concept in the work of statisticians (and indeed of all 
researchers) is that of model. A variety of meanings are attached to the 
word. (Some of these are reviewed by P. Suppes, Synthese 12 (1960), 
pp. 287-301. ) It is often taken to mean a theory. With a model at hand, much 
of a researcher's work becomes deductive and manipulative. The greatest 
difficulties lie in creating pertinent models. Statisticians end up with a 
schizophrenic attitude to them. This is well illustrated by two statements 
of G. E. P. Box: "Statistics is or should be the art and science of building 
scientific models which (necessarily) involve probability.", "Since all models 
are wrong the scientist cannot obtain a 'correct' one by excessive elab
oration." 

Workers have developed a number of methods for assessing, impartially, 
the strength of evidence for or against a particular model, (i.e. for model 
validation) and for estimating the values of quantities characterizing a 
given model (parameters). Much work with models is concerned with in
vestigating them theoretically and examining their goodness-of-fit em
pirically. 

The vast majority of statistical analyses rest on a probability model 
of a process under investigation. Consideration of a random entity allows 
all of probability theory to bo brought to bear on problems —in particu
lar, for example, results concerning special random processes. In the 
case of a system (that is, a structure consisting of possible inputs, an oper
ation and corresponding outputs) there now exists an immense literature 
concerning identification given data consisting of pieces of (process) 
input and corresponding pieces of (process) output. An essential practical 
distinction arises between situations in which the scientist can select (some 
of) the inputs and those where they are outside his control. Another 
distinction is whether the model is mechanistic (based on specific descrip
tion of the natural components involved) or empirical (based on regular
ities that caught the researchers eye). The former is the fundamental one. 

9. Statistical inference 

A statistical inference is a map from data to an uncertain conclusion. 
The logic involved is multi-valued. The procedure is inductive. Statements 
made are correct only in some average sense. The statistician usually pro-
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ceeds by building a chance model for the situation. Questions that arise 
include: is the constructed model adequate for the data? how should 
subjective information be incorporated? in what form should the con
clusions be stated and what is then their meaning? are there important 
unmeasured variables? what is the goal of the work? on what should 
probability statements be conditional? how is a better model to be dis
covered? what parallel models should be considered? how should iact of 
preliminary analysis be incorporated? how should costs be inclu
ded? 

Uncertain conclusions drawn after a data analysis have various forms 
and levels. At one extreme one has what Mosteller and Tukey, Data Analy
sis and Regression, Addison-Wesley (1977), call a "concealed inference" 
wherein the data are so strong that no formalism or arithmetic are re
quired to come to a solid conclusion. Indeed, the very goal of experimen
tation is to end up with such certain conclusions. At another extreme, 
a conclusion involves but an elementary indication of the suspected vari
ability (stability) of some primary entity derived from the data at hand. 
In between one has a broad collection of inference forms and tools. We 
mention : tests of significance, confidence regions, likelihood graphs, pos
terior distributions, tolerance regions, standard errors, distance measures, 
prob-values, fiducial probabilities, sensitivity analyses, simulations. 

One of the major contemporary works on statistical inference for random 
processes is that of U. Grenander, Abstract Inference, J. Wiley (1981). 
It is worth indicating some of the distinctions he recognizes and problems 
and procedures that he highlights. By his choice of the term "abstract 
inference" he deliberately leaves ambiguous whether he means the sample 
space (set of possible observations) or parameter space (values for quan
tities characterizing the probability distribution at hand) or both to be 
"abstract". In the work he discusses each case. For inference he employs: 
linear methods, likelihood based estimates and direct methods (the latter 
being based on common sense estimates). Classical statistical inference 
falls from the first two, once the appropriate structure is set up. To deal 
with the fact that classical procedures sometimes fail if the parameter 
space is too large, Grenander introduces the "method of sieves" —em
ploying the classical procedure over a subset of the parameter space. The 
method is like Tihonov regularization and, for example, leads to splines 
in the case of nonparametric regression. Belated circles of ideas include: 
penalized maximum likelihood, Courant regularization, Bayesian estima
tion, ridge regression, and Stein estimates. 

In the analysis of process data three situations, requiring different 
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statistical techniques, occur in practice: the signal-like situation, the 
noise-like situation and the mixture of signal and noise situation. In the 
signal-like case records for the same circumstances differ chiefly by measure
ment noise, e.g. images under the same conditions, identical utterances 
by one individual. In the noise-like case realizations have quite different 
appearances, e.g. the roughness of two pieces of road surface, turbulent 
fields generated in repetitions of an experiment. The third case is a hybrid, 
e.g. an earthquake recorded near a sea storm. In the signal-like case inter
est often is to estimate the signal. Smoothing or deconvolution operations, 
including regula.rization, may be invoked. In the noise-like case interest 
lies in the population from which the realization came and, for example, 
what may be sought is a description of the variability present or of other 
underlying characteristics. Difficulties arise if one uses a technique devel
oped for one case, with another. Comparison of signals requires generaliz
ation of classical AÏTOVA. 

So-called inverse problems fall into the signal-like case. These include 
the problems of computerized tomography, image reconstruction and earth 
modelling. They may often be formulated as: y = Xd + s, with y, 0, s 
lying in abstract spaces, with X a known operator and with y also given. 
The problem is to estimate the signal 0. Difficulties arise because of the 
presence of the noise e and because X is often unbounded. The Tihonov 
regularization approach chooses as estimate the value of 0 minimizing 
\\y — -3T0||2 + a||0||o for some scalar a and 0 lying in some normed space. 
In a number of cases the estimate may be written 0 = (X'X + aA^X'y, 
for A an operator. 

Photon correlation spectroscopy provides an example of a noise case 
where one is interested in describing the variability present. In one appli
cation, similar particles suspended in a liquid are in motion with differing 
velocities. It is desired to estimate the distribution of velocities. To do 
this, the liquid is illuminated by a laser beam. The motion of the particles 
induces Doppler shifts of the laser frequency, specifically the autocovari-
ance function of the scattered light is proportional to l + a\b(u)\2 at 
lag« where a is a constant and b(u) = j [(smuqv) juqv]f(v) dv, f(v) being 
the desired velocity distribution and q a known constant. The autoco-
variance may be estimated from a photo-multiplier record of the fluctuat
ing light. The function f(v) may be estimated by regularizaton. One 
reference is Frost and Cummins, Science 212 (1981), pp. 1520-1522. They 
measure sperm motility. 

I t seems fair to say that once a stochastic model has been set down 
much of the work of statistical inference proceeds in a regular manner. 
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The book by I. V. Basawa and B.L.S. Prakasa Eao, Statistical Inference 
for Stochastic Processes, Academic Press (1980) contains many results for 
a broad array of random processes. Difficulties arise on two fronts. First, 
many of the results are based on approximations, so they need study in 
any particular situation. Second, and more importantly, there is the prob
lem of obtaining a reasonable model. In, seeking a model the researcher 
typically turns to substantive theory and exploratory data analysis 
(using J. W. Tukey's term). At some point the researcher has to have an 
insight. This is a subconcious act and there is little likelihood that it can 
ever be made mechanical, but with today's marvellous visual display 
devices and growing collection of exploratory data tools, environments 
for insight can be set. Process data typically involves an element of change 
or movement, making visual displays especially appropriate. 

10. Planning and experimental design 

We conclude with a few comments on planning /design issues for process 
data. The distinction between experimental and observational data is 
crucial. (In the system case —the distinction between chosen and natural 
input.) The quality of inferences that may be drawn depends dramatically 
on which type of data is at hand. With observational data one has always 
to be concerned that some unsuspected or "hidden" variable was control
ling the situation, not the variables that showed themselves. Through the 
choice of factors to vary, through the design oi input, through the use of 
randomization a researcher can validate his statistical inferences and make 
efficient use of resources. 

Once again many situations may be studied via the model y — XÔ + e9 

provided one is flexible in definitions. Taking X such that X'X is the iden
tity has long been known to be an effective plan in elementary experi
mental design. In! the case of a process system, this leads to taking as input 
things like : Gaussian white noise, a homogeneous Poisson, pseudorandom 
binary noise and a train of chirp signals. A noteworthy phenomenon is 
ttiat stimuli developed for experiments in one substantive field find use 
in other substantive fields. We mention the chirp signal moving from 
radar to exploration seismology, the sinusoid moving from power engin
eering to laser spectroscopy, white noise moving from mechanical engin
eering to nuclear magnetic resonance spectroscopy. An additional benefit 
of employing random stimuli is that hidden variables are neutralized, 
as in traditional statistical experiments. 

In the case of a nonlinear system, only a few input processes have been 
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studied extensively. M". Wiener argued for the use of Gaussian white noise 
in the case of polynomial systems. It has led to satisfactory results in 
a number of physical situations, 

11. Epilogue 

Taking note of the site of this Congress and the site of the next, it would 
be remiss not to make specific mention of Jerzy Neyman. His following 
words are as true today as they were some twenty years ago: "Currently, 
in the period of dynamic indeterminism in science, there is hardly a serious 
piece of research which, if treated realistically, does not involve operations 
on stochastic processes. The time has arrived for the theory of stochastic 
processes, to become an item of usual equipment of every applied statis
tician." J. Amer. Statist. Assoc. 55 (1960), pp. 625-639. 
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Asymptotic Expansions and Deficiencies of Tests 

Introduction 

In this paper a brief survey of the asymptotic theory of hypotheses testing 
is given and some of the author's recent results are presented. The survey 
is not intended to be complete; it contains mainly results related to the 
author's interests. A detailed review of this field can be found in Pfanzagl 
[30]. 

We adopt the approach with the probabilities of errors of first and 
second kind being bounded away from zero and therefore we study the 
power of tests against local alternatives. Special attention is paid to 
asymptotically efficient tests for testing a simple hypothesis about a uni
variate parameter. We shall consider only "regular" families for which 
local alternatives approach the hypothesis at a rate of n~112. 

1. First order asymptotic theory 

In this section we present some results based on asymptotic normality, 
which are closely related to the subsequent higher order theory. We 
shall classify the results according to the following four directions: 

Distributions of test statistics under the null hypothesis. 
Distributions under alternatives; hence, asymptotic power, efficiency, 

deficiency. 
Asymptotic behaviour of the likelihood ratio. 
Asymptotic optimality, most powerful tests, complete classes. 

1.1. There is a vast literature on asymptotic distributions under the hypo
thesis. A general method of proving the asymptotic normality of a sta
tistic was to approximate it by a sum of independent random variables 
to which the Central Limit Theorem could be applied. 

[1063] 

15 — Proceedings..., t. II 
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1.2. An approach which was widely used consisted in the study of the 
asymptotic behaviour of a test statistic for an arbitrary underlying dis
tribution, which may correspond either to the hypothesis or to the alter
native. E.g., let the underlying distribution depend on 0 and test stat
istics Tn be used to test 3Q: 0 = 0O. Suppose that, for every 0, one can 
prove that Tn is asymptotically normaì ^ ( ^ ( 0 ) , ct2

n(Q)). Then, for a se
quence of local alternatives, 0n->009 say, one gets *Ar({tn(On)9 o2

n(dn)) as 
an asymptotic distribution of Tn9 provided the convergence is uniform 
in 0. 

This "direct" approach may be suitable when the hypothesis plays 
no special role in the whole family of distributions. But even then, a more 
appropriate method would be to take into account the local nature of 
the alternatives at the very beginning. This is done in the theory based 
on the concept of contiguity developed by L. LeOam [23], see, e.g. the 
monograph by G. Boussas [32]. 

In particular, if An is the logarithm of the likelihood ratio (LE) of 
the distributions of the sample under 6n and 0O and the joint distribution 
of (An, Tn) under 0 = 0O converges to a limit, then the distribution of 
(An, Tn) under 0 = dn also has a limit, which is readily determined (if 
the limiting distributions have densities, p0(x9y) and pAx9y)9 then 
Pi(n> V) = exPo(a, V))-

This method proved to be particularly effective in case of rank stat
istics, see Hâjek and Sidak [19], where the distribution of the vector 
of ranks under the alternative is much more complicated than under 
the hypothesis. 

1.3. The asymptotic behaviour of the LB (or its logarithm) plays a fun
damental role in this theory. In particular, it is a basis for checking the 
conditions of contiguity. An important class of models where this theory 
works are locally asymptotically normal1 (LAN) families of distribu
tions. 

To be specific, let {Pe, 0 e 6 cz R] be a family of distributions on a 
measurable space (9£', sf) having densities, pd9 w.r.t. a o'-finite measure v. 
Assuming without loss of generality that 0O = 0, consider testing S0: 
0 = 0 against Bxi 0 > 0 based on a sample X19..., Xn. Let Pn>e =Pex 
X... xPQ (n times), 

A i~~ nr Ptn-w(Xj) , ^ n n . v 
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The family {P,lj0? 0 e@} is called LAN if there exist r.v.'s Ln and 
a constant I > 0 such that 

Aiht - (tLn- i?I)^+0 for any t > 0 (1.2) 

and Ln is asymptotically normal Jf(§, I). 
In this case the distribution of Ailst is asymptotically normal 

Jf (=F i^2Jj J2I) under P M and P,Mw-i/2 resp. (1.3) 

and {PWj0}
 a n d {P,l>0 } are contiguous for any sequence Qn > 0 such that 

nll2dn is bounded. 
In case of one-parameter family, a simple sufficient condition for 

LAN was obtained by J. Hâjek [18]: pd should be differentiate w.r.t. 0 
(see Section 3.2 for a precise formulation) and 

I(0)->-I(O)>O as 0 | 0 . (1.4) 

Then (1.2) holds with Ln = Lnl and I = 7(0) where Lnl = w~1/2 J^1* (-**)> 
1(0) - E0lp, tjp = (S/Sfl)^, Z0 = log ft. 

1.4. When (1.2) holds, Ln is an asymptotically sufficient statistic and 
a test based on 

Tn=Ln + Vn with vJ^O , (1.5) 

is asymptotically most powerful (AMP) against JB :̂ 0 > 0 (more precisely, 
it is locally AMP, see Boussas [32]). 

2. Results on higher order asymptotics 

Denote by 0( • | p, a2) and q>( • | \i, a2) the d.f. and the density of Jf(i*,, a2)9 

let 0(-) = 0(- | 0,1) and <?(•) = <?(• | 0,1). A sequence of d.f.'s Fn is 
said to admit an Edgeworth expansion of order Jc if 

with (Pn>fc of the form 

sup \Fn(x) -0ntk(x)\ = o(n-W) (2.1) 

k 

i 
3 = 1 

01hk(x) = 0(x)+ j g n-^Q^xMx), (2.2) 

where the Qj are polynomials. 
We classify the results according to the same four directions as in 

the preceding section. 
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2.1. The validity of Edgeworth expansions was first proved for distri
butions of sums of independent r.v.'s by H. Cramer, see Cramer [16]. 
For the further development of this theory see V. V. Petrov [26], B. ÏÏ". 
Bhattacharya and E». E. Eao [3]. 

However, statistics typically arising in hypothesis testing are not 
exactly sums of independent r.v.'s. A possibility of approximating them 
by such sums cannot be used directly because the error of approximation 
influences the higher order terms of the expansion. 

Edgeworth expansions for particular kinds of statistics were obtained, 
e.g., by P. L. Hsu [22] for the sample variance, by K. L. Chung [15] 
for Student's t, by Tu. V. Linnik and N". M. Mitrofanova [24] for maxi
mum likelihood estimates. Behind these results for special cases lies 
a general method, which can be explained by the following example. 

Example 2.1. Let X19..., Xn be i.i.d. r.v.'s; consider the distribution 
of Student's statistic, 

^ ^ ( X - ^ / s , (2.3) 

where 

ti - EXX, X = n~l £ Xi9 s2 = (n-1)-1 Jj? (X^X)2. 

Without loss of generality, assume that ^ = 0, var Xx = 1. Let 
Sno-n-WgXt, Snl =n-V22(X2-l). (2.4) 

Then 

^ ( " V " ) Sno^ + ^ll2^i-n^Slor
112 (2.5) 

and applying Taylor's formula we get 

y 1/2 ( n \lf2 

-—£} ^ = ^ o ~ i ^ 1 / X o ^ i + i ^ 1 ( 4 ^ 0 + 3Ä n 0 ^ 1 )+ . . . (2.6) 

Now if it is required, e.g., to obtain an Edgeworth expansion of order 1, 
the problem reduces to obtaining this expansion for the distribution of 

Zn=8n»-ì*>-V2Sn,Snl. (2.7) 

Of course, one has to prove that the influence of the remaining terms 
on the distribution is o(n~112). 
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This example suggests considering the following general problem. Let 

(YH9 Y<) « (Yoi9 Yli9..., Ypi)9 i = 1, . . . , n, (2.8) 

be i.i.d. random vectors in Rp+1
9 and 

Sm-n-W^Yu, 1 - 0 , 1 , . . . , * , Sn={Bnl,...,B„). (2.9) 

Given functions 7̂ .; JBa,+1->J21, j = 1, ..., J, it is required to obtain an 
Edgeworth expansion for the distribution of 

K - B^+JJfT^iS^ Sn). (2.10) 

Usually the h$ are polynomials and J equals h, the required order of 
the expansion. However, sometimes some additional terms1 have to be 
considered in order to justify the approximation of the original statistic 
by Zn, which is called a stochastic expansion. 

The following theorem was proved by Ohibisov [7] with a stronger 
condition (ii). In the present form it was obtained by Pfanzagl [27] (where 
in fact a more general result is proved in which, in particular, Zn is multi
variate). 

THEOREM: 2.1 Suppose that the h$ in (2.10) are polynomials, and 
(i) EYn = 0, EY2

X = 1, E\Yn\
k+2 <oo,l=0,l,...,p, for an in

teger k > 1. 
(ii) Grameres condition C: For any a>0 there exists 0 < r\ < 1 such 

that 
sup | / (M)I<7 (2-11) 

IM|>a 
where f(s, t), t = (tl9..., tp) is the characteristic function (ch.f.) of (Y01, Y±) 

Then the d.f. of Zn admits an Edgeworth expansion of order h. 

In Ohibisov's paper [7] a convenient formal rule was also given for 
obtaining the explicit form of the polynomials Qj in (2.2) from the cumu
lants of Y's and the coefficients of VB in (2.10). 

Theorem 2.1 gave a method of obtaining Edgeworth expansions for 
a large class of statistics arising in parametric problems of hypotheses 
testing and estimation, see Pfanzagl [30]. In that paper one can also 
find a brief review of results obtainable by other methods. We mention 
here some papers where Edgeworth expansions were obtained: Albers, 
Bickel, Van Zwet [1]; Bickel, Van Zwet [4], Does [17] — for linear rank 
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statistics; Helmers [20] — for linear combinations of order statistics, 
and Oallaert, Janssen and Veraverbeke [6] — for U-statistics. 

2.2. In a manner very similar to the "direct" approach described in Section 
1.2, the same methods were applied to obtain expansions under alterna
tives. Besides providing better approximations to be used for numerical 
purposes, these expansions were applied to obtaining asymptotic expan
sions for power functions of tests. These expansions are of particular 
interest in case of AMP tests which have the same limiting power and 
may be distinguished from one another byhigher order terms. 

In the problem considered in Section 1.3, let <pntt =(pntt(X19 ...9Xn) 
be the critical function of a size a LE test based on Anit, t > 0 , i.e. for 
a suitable constant cny. 

<Pn,t = 

Le t 

1> A M > C ? M > -E, / O I O \ 

A A En,*<Pn.t = «• (2.12) 
U? An,t<cn,t> 

ßn,t(0) = ^ f l M l PnW = A ^ ( f l ) ; (2.13) 

then ßntt(0) is the power of <pnti for an arbitrary 0 > 0 and .ßn(tn~1/2) is 
the power of <pnyi for the corresponding alternative 0 = tn"112. Thus, by 
the îTeyman-Pearson lemma, we see that for each 0 > O , ßn(0) is the 
maximal power which can be attained by size a tests (envelope power 
function). 

Eor ßn an asymptotic expansion was obtained, 

ßJtn-W) = ßt + n-W Rlt+n-1 R2t + o(n~l) (2.14) 

where ßt is determined by (1.3) with I = 1 ( 0 ) ; hence 

ft = 1 -0(ct | \t2I, t2I) = 0(tV2 - na) (2.15) 

with 

ct = Mm enti = -Ifl + uJI1*, ua = 0~l(l-a)9 (2.16) 

and Rmt are products of cp(ct \ \tl9tl) = (tl112)'1^!112 — ̂ ) and poly
nomials in t whose coefficients depend on the moments of l$9 j = 1 , . . . , m. 

Moreover, 1 expansions for the powers, ßn(d), of various AMP tests 
were obtained, 

ßn (in-112) = ß + n - ^ B u + n^Rn + o (n"1). (2.17) 
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It was found that typically, under general regularity conditions, 
Bu = Rli9 i.e. "first order efficiency implies second order efficiency", 
see Pfanzagl [29]. It was shown in Bickel, Ohibisov, Van Zwet [5] that 
this property holds under very general conditions. 

Thus, when the expansions (2.14), (2.17) hold, then the power, ßn9 

of an AMP test differs from the largest possible one by an amount of 
order n~l. This fact is connected with the concept of deficiency describing 
the performance of a test in terms of the number of observations needed 
to attain prescribed errors of 1st and 2nd kind, a and co. 

ïTamely, given an co > 0 such that 1 — co > a, define 6Û by ßn(6n) 
= 1—co and mn by 

let 

i - * ~ / W 0 j 
y s— ir . 

ßmn+l(dn)~- ßmn(
6n) 

Then the randomized test using mn or mn+l observations with prob
abilities 1 — yn and yn has the power of 1 — co. Let us say that the test 
requires mn = mn + yn observations. AMP tests are asymptotically Pitman 
efficient, i.e. mjn->l as n-^oo. 

It was proposed by Hodges, Lehmann [21] to consider in this case 
the difference dn =mn — n, which was called the deficiency of the test ; 
its limit, d =limdn, if it exists, is called the asymptotic deficiency. 

n-+oo 

If (2.14) and (2.17) hold then the asymptotic deficiency is finite and 
equals 

ä = f f e ) (2.18) 
(Ua + U*) M« . ) 

where rt = Rn—R2t and t(a9co) = (ua + uœ)II112 (this is the value of t 
for which ßt = 1 — co). 

Example 2.2. For t0 > 0 , consider the test cpn^. Denote by R2ttQtt the 
coefficient at n"1 in the expansion (2.17) of ßn^(tn~112). The difference 
\,t — Bz.t — %2tt0,t "was written out in Ohibisov's paper [9], This difference 
and the asymptotic deficiency, dtQ9 of <pntt are 

rt t = Dt^ <p(tpl2-ua), dt = n^i{a^ 
M 2 t p / , ^ ah t0 {Ua + Um)2 

where 
I>h,i = lt2(t-t0?\.™0W-COYKW, #>)/!]. (2.20) 
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These expressions with t0 = 0 correspond to the test based on Lnl 

which will be called <pnt0. In a certain sense it is a limit of <pn* as t0->0. 
As a rule, in the papers cited in Section 2.1, where Edgeworth expan

sions for distributions of test statistics were obtained, they were used to 
obtain asymptotic expansions for the power and asymptotic deficiencies. 

The case where nuisance parameters are present was studied by Pfan
zagl, Wefelmeyer [31], see also Pfanzagl [30]. 

2.3. In the papers cited above AUti was approximated by a stochastic 
expansion by writing it as An§i = J£ [^1/2(XJ — M-Z*)] a n d applying 
Taylor's formula in terms of tn~112. The resulting stochastic expansion 
contains sums 

*»* = ™-1/2 2 * rtW-a,], % = •».#>, (2.21) 

with factors n~ji2; then Theorem 2.1 is applied, see, e.g. Pfanzagl [29]. 
Some other methods were used by Chibisov [9] and Albers, Bickel, 

Van Zwet [1] to obtain an Edgeworth expansion for the d.f. of AUti under 
weaker conditions. 

2.4. Now, AMP tests can be compared to each other by considering the 
higher order terms of their power or, equivalently, their deficiencies and 

None may ask whether there exists an asymptotically (up to o(n^)) most 
powerful test and, if not, whether one can find a sufficiently small asym
ptotically complete class. An answer was given by Pfanzagl [28] who 
showed that, under suitable regularity conditions, the family of tests, 
{<pn,t0,to^Q} forms an asymptotically complete class. This means that 
for any sequence of size a tests having powers ßn(6), there exists a sequence 
tn > 0 such that 

Ait*»-171) < ßn^Vn-^ + ofa-1) for all, * > 0. (2.22) 

The formulas (2.19) and (2.20) show that the LE tests for different 
tQ do not dominate each other and their powers differ by terms of order 
n"1, unless the expression in brackets in (2.20) vanishes. 

I t does so when {ïfl} is an exponential family because then a uniformly 
most powerful test exists and ßniiQ(0) does not depend on t0^ 0. On the 
other hand, it can be shown that if 

YMdp - COY2(l$\p) 11(0) ESO 

for 0 running over a nondegenerate interval then {Pe} is an exponential 
family. 
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In the case where nuisance parameters are present a theorem de
scribing an asymptotically complete class was obtained by Pfanzagl and 
Wefelmeyer [31]. Such a class again consists of LE tests. However, its 
completeness is asserted only within the class of tests based on statistics 
admitting a stochastic expansion (see also Pfanzagl [30] for a detailed 
discussion). 

3 . Recent results 

3.1. In the papers quoted in Section 2.1 the stochastic expansion (2.10) 
was treated as a transform of the vector of normalized sums, (SilQ, Sn)9 

whose distribution admits a multivariate Edgeworth expansion. In order 
to obtain this expansion one has to impose the same moment conditions 
on all components of the summands (see condition (i) of Theorem 2.1). 
Since the components of Sn enter into terms having factors n~jl2, j > 1, 
one may expect that the conditions on the corresponding summands 
can be reduced. The following result taking this into account was obtained 
by Chibisov [10]. 

Let 7&'s in (2.10) be polynomials and denote by M^ j = 1, 2, . . . , J9 

the set of those m = (m19 ...,mp) for which there exists a monomial 
x^x™!... X%P entering 7fy(a?0,ae) with a non-zero coefficient. 

THEOEEM 3.1 Let the following conditions be fulfilled: 
(i) EY01 = 0, EY2

0l = 1, E\Y01\
k+2 < oo. 

(ii) There exist r19...9rp such that 0 < r ^ < f c + 2, E\Yn\
ri< oo for 

I = 1, . . . , p, and 

y mi j ! ± J L _ a \ ^ j for all m e Mi9 j = 1, . . . , 7c. (3.1) 

(iii) Grameres condition O, see (2.11). 
Then for the d.f. of Zn an Edgeworth expansion of order k holds. 

Example 3.1. Suppose that we want to obtain an Edgeworth expansion 
of order 1 for the d.f. of Student's ^-statistic, see example 2.1. In Theorem 
2.1 the existence of 3rd absolute moments of all summands in (2.4) is 
required which results in assuming that EX\ < oo. To apply Theorem 3.1 
to Zn in (2.7), it is sufficient to require that JS\X1\*< oo and Cramer's 
condition 0 on (Xl9 X2) is satisfied- Condition (ii) is then fulfilled with 
rx = 3/2, Wi = j = 1 . The approximation of tn by Zn may be justified 
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under the same conditions, i.e. the expansion given by Theorem 3.1 
holds for the d.f. of tn itself. 

3.2. I t will be convenient for us to interchange the order of presentation 
and to consider the results on the LE in this section. These results were 
obtained by the author jointly with W. E. van Zwet. 

Their short formulations are contained in the communications by 
Chibisov, Van Zwet [14], Chibisov [11], [12]. These results provide Edge-
worth expansions for the d.f. of Anst, see (1.1), under PWj0 and PnM-ip. 
They allow one to reduce the regularity conditions required to obtain 
these expansions and the expansion (2.14) for ßn as compared to the 
papers mentioned in Section 2.3. In particular, the set {x: pQ(x)>0} 
may depend on 0 and no Cramer type condition on the joint distribution 
of (ljp9 1{Q\ ...) is imposed. 

CONDITION Br (r^2, integer). For any xeX, pQ(x) is absolutely 
continuous in 0 e U for a neighbourhood U = [0, a]; for any 0 e Z7, 
the derivative p$(x) = (dldd)pd(x) exists for v-almost all xeX; 

0 < limsupj0e \tjp\r = EQ|Z«r < oov. (3.2) 

Fote that B2 is exactly Hâjek's condition, see (1.4). 
Let hQ = (rl(le-lQ), 0 > 0 . Then (see (1.1)) 

^ = ^ - 1 / 2 i ; ^ - i / 2 ( X , ) 

is a normalized sum. of i.i.d. r.v.'s whose distribution depends on w. Define 
lQ to be — oo when pd = 0. Then under the condition Br he may be inf inite 
with a positive probability, and any moment conditions can be satisfied 
only for appropriate truncations of he. 

THEOREM 3.2 Under the condition Br there" exists he such that P0{Ä0 

=£ hô} = o(6r) and %Q is uniformly integrable w.r.t. P0 for any sequence 

Onir0' 

The following condition may be regarded as an asymptotic Cramer 
type condition. Denote the distribution of hQ under Jff0 by GQ, i.e. GQ(A) 
= PQ(hd e A) for Borei sets AeR. 

CONDITION AC. There exist — oo < bx < b2 < oo, positive s,c,M9 

0 < y < 2 and, for each 0 e JJ = [0, s], a number 0 < ad < 1, a distri
bution GdA and a measure GQy2 on R (GQt2(R)^.l) such that 

Ge = aeG6tl + (1 — aQ)G0t2, ae > cdv, 
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G0fl has a density gQA w.r.t. the Lebesgue measure such that gQfl < M 
and g0tl *= 0 outside [bX9 b2]. 

Example 3.2. Let p0(®) = ìe~ìx~OÌ, x eR. Then the Condition AC is 
satisfied with aQ ~ 0/2 as 0j 0. 

Denote by 0ntlt(x, {%y}) the Edgeworth expansion of order h for the 
d.f. of a normalized sum of i.i.d. r.v.'s having cumulants {%,•}; it is of 
form (2.1) with Q^cp ~P5(—0: {%$}), see Bhattacharya, Eao [3]. 

For %o of Theorem 3.2 let ^(6) = E0h
3
69 j = 1 , 2 , . . . , and j^(fl) be 

corresponding cumulants. Write S2 for %2. Theorem 3.2 ensures that 
ßj(d), j^(0) exist for j =l,...,r under the condition Br. 

The following theorem follows immediately from Theorem 1 of Chapter 
VI of Petrov [26] and Theorem 3.2. 

THEOREM 3.3. If the conditions BÄ+2 and AC are fulfilled tlien 

sup 
xeii 

*•'[—sW^)—/ "***("' fo(ln )}) = o(^-&/2). (3.3) 

Using the relation 

ÜPnM-1!2 ( 4 M < «0 = ^ÄPfi.otAi.l < *) 

one can deduce from (3.3) an asymptotic expansion for the dff. of An§i 

under PUttn-ij2. In this context the following theorem is useful. 

THEOEEM 3.4. Let Ebesé, 0 > O , be sets suoli that P0(EQ) = o(6r) 
and the condition Br be satisfied. TJien Pe(EQ) = o(0r). 

Theorem 3.2 gives no constructive description of %09 hence, no method 
of calculating the %'s entering into (3.3). The following condition allows 
us to calculate the moments of ft^-i/2 by formally using the Taylor ex
pansion 

htn-ii2*lp+ltn-V2lp+... 

CONDITION B(,,). For any x e X, pQ(x) is r—1 times continuously 
differenti able in 0 e U and p[r~l)(x) is absolutely continuous in 0 e Z7; 
for any 6 e Ü, p^(x) = (djdQ)p0

r"^(x) exists for almost all xeX\ 

EottP IPo\rlJ< 00 for j = l , . . . , r ; 

lim sup E0\pPlpD\ < EQ\pplp0\. 
0|O 

The following Theorem 3.5 holds true also under a similar condition 
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with the last relations replaced by 

J U W < » . for j = l , . . . , r ; 

Let 

limBupJ&,|#»|<J0o |Ip|. 

Ä" = 5 "TT ^ ' &(ô) = -»oCAllr-J 
, - 1 J 

where for a polynomial JET(0) = ]£tyd1 and « > 0 we write [B"(0)]w 

= J£ CJ0*-
 B y Holder's inequality ^-(0) exist for j = 1 , . . . , r under B(,,). 

THEOEEM 3.5. Under the Condition B (^ there exists he for which the 
assertion of Theorem 3.2 holds and 

J*(0) =^(ö) + o(0^'), j = l , . . . , r . (3.4) 

Denote by %(0) the "cumulants" corresponding to the "moments'* 
pj[0)9 i.e. the expressions which are obtained from {fij(O)} by formal 
relations between moments and cumulants. I t follows from the structure 
of Edgeworth expansions that (3.4) with r ~k+2 implies 

s u p i n a , &(* -* )} ) - t f ^K [%(tn^2)})\ = o(n~«2). 
xeR 

Therefore under the conditions B(Ä+2) and AC, (3.3) holds with %'s instead 
of %'s. 

The following theorem provides a sufficient condition for AC when 
9E = R and v is the Lebesgue measure. 

THEOREM 3.6. Suppose there exist — GO < ax < a2 < co, d > 0, e > 0 
and 0 > 0 such that 

(I) pQ(x) > 0 for x e [ax, a2] ; 
(II) lim inf pQ(X) ^PO(X) for v-almost all x e [ax, a2"\; 

(III) The derivatives pii)(ài), i = 1 , 2 , exist and l$(ax) =fil$(a2)
m, 

(IV) For cmy 6 e U = [0, e], pd(x) is absolutely continuous in œ 
e [ax, a2]; let pQ = dp9ldx'9 

H 
(V) / \p'Q(x)\2+ddx < 0 for 6eU. 

Then the Condition AC is fu\ 
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3.3. Turning attention to asymptotic powers and deficiencies of tests we 
present in this section a result which describes directly the difference, 
ßn — ßn9 between the envelope power function and the power of an AMP 
test without obtaining the expansions (2.14) and (2.17) for them. Namely, 
it provides a formula for 

rt = lim n(ßn(tn-V2)-ßn(tn-ll2)). (3.5) 
ft->oo 

Using this result, the asymptotic expansion for ßn can be obtained by 
writing out, first, the expansion for ßn (see Section 3.2) which is completely 
determined by the family {P0} and then introducing the correction (3.5), 
which depends on the test under consideration. Moreover, this result 
immediately provides the asymptotic deficiency by (2.18). 

Given t > 0, the test statistic, say, Tn, of an AMP test may be typically 
transformed by a linear function into a r.v. ZUti which is close to Antt, 
so that 

Znti = An,+Antt, where 4 M ^ > 0 . (3.6) 

In case of (1.5) one may set Zn%i =tTn~\t2I (cf. (1.2)). Note that this 
transformation does not influence the test function, and hence, the power. 
In connection with Example 2.2 consider 

Example 3.3. Writing out the Taylor expansion of Ani as described 
in Section 2.3 and noting that a2 = —I in "regular" cases (see (2.21) 
for the notation) we have 

Antt = tLill~lt2I + n^2(\t2Ln2+lPaz)+... ( 3 i 7 ) 

In order to consider the power of <pnt(Q at 0 = tn~ll2
9 we introduce 

Z!nttt =±AniiQ+it(to~t)I- (3.8) 

Then (3.6) holds with 

4M0,< = Kh.t-K.t - n-1l2imQ-t)^l2+mtl-t2)a3'\+ ... (3.9) 

In the theorem to be stated we consider rt given by (3.5) with ßn defined 
by (2.14) and ßn(tn~112) = Entin-\\2yn%i9 the power of a test ipUtt such 
that 

VW 
!? Zn.t>KtH „ / Q I A \ 
A r ^ & ^ o V»,* = «• (3.10) u> AM < °ntt) 
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Assume that there exist functions y = (yx, . . . , yp): 9£->Rp
9 Ht: Rq+1 

->R\ q^p, and Kni: RP+1->R such that 

Antt ~ n-^EMn,» Sn) +Kntt(An,t, $m), (3.11) 

where Sn = (Snl9 ..., Sm)9 Snl = (Snl, ...9,Snp)9 Snl = n~112 £ ^(X,), 
ï = 1 , . . . ,# . 

Under the conditions of the theorem, the distribution of (AUtt, Sn) 
converges to a normal one; denote by (At9 S) a random vector in Ra+1 

having this limiting distribution. 

CONDITION M. There exist polynomials \x(x,u), (x9u) e Rq+l, and 
httj(x,w), (x9w) eRp+1, j = 2 , . . . , J, such that 

j 

- |j3-,(a?,w)|<Äu(N, |u|), \Kntt(x9w)\<£n~sl2hitj(\x\9 \w\)9 

where |w| = (\ux\9..., \uq\)9 \w\ = (\wx\,..., \wp\). 
Denote by Mj9 j = 1 , 2 , . . . , J , the set of those m = ( m 1 , . . . , m p ) 

(m = (m19..., mfl) for j = 1) for which there is a monomial x^wfl... wpp 
(x^u^i ...u™a for j = 1 ) in httj(x9m)9 j =2,..., J (hn(x,u)), with a 
non-zero coefficient. 

THEOEEM 3.7. Let the conditions B4, AC and M äöZ<£; Zetf •£?*(•) be con
tinuous on R?+1 ; there exist rx, . . . , rp, 0 < rz < 4, swcft JÄatf Ü70 |#z (Xx) p < oo7 

I = 1 , . . . , p, and 

P I A \ 

y mA I I < j for all m e Mj9 j = 1, 2 , . . . , J. 

i=*i * l ' 

Then 

rt - l<p(ct I i « , *2I) A , (3.12) 

where ct is defined by (2.16) and 

Dt = var[fl-f(^f, S) \ Ai = <%]. (3.13) 

By (3.18) and (3;12) we immediately get 

(^a + ^ ) 2 ^ ' 

Applying this result to Examples 2.2 and 3.3, we see that (2.19), 
(2.20) could be obtained at once from (3.9) and (3.12)-(3.14). 
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The formulation of Theorem 3.7 has been published in Chibisov's 
notes [11]-[13], in Chibisov's note [12] a sketch of the proof is also given. 

The method of the proof of Theorem 3.7 carries over LeOam's approach 
described in Section 1.2 to higher order asymptotics. The proof does 
not involve asymptotic expansions, which makes the method applicable 
to various other problems, including those where no methods of obtaining 
asymptotic expansions are known. The result (3.12), (3.14) then holds 
with 

Dt = w [ f l i M , =<%], (3.15) 

where (Ai9 Ht) is a random vector whose distribution is the limiting one 
for (Anj, nll2Antt). The results of this kind were obtained by V. E. Be-
ning [2] for one-sample rank tests and linear combinations of order stat
istics and by V. K. Malinovskii [25] for some AMP tests in case of ob
servations which form a Markov chain. 

3.4. The result by Pfanzagl on the asymptotically complete class quoted in 
Section 2.4 has a final form; one can only reduce the regularity conditions 
using the results of Section 3.2. However it is easy to show that the class 
{?V ? *o ^ 0} is asymptotically complete within the class of AMP tests 
based on statistics (1.4) for which (3.12) with Bt given by (3.15) holds. 
This may serve as an explanation of Pfanzagl's result. 

Let a test be based on Tn from (1.4) and assume that the joint distri
bution of (Lnl, Ln2,n

ll2rjn) converges under PnQ to that of (Lx, L29 PL). 
Letting Zntt = tTn-%t2I we have (see (3.6), (3.7)) 

n^A^ ^tn^fin-at^ + lPaz) 

and the joint distribution of (AUti, nll2Antt) converges to that of (At, Bt) 
with 

At =tLx-lt
2I9 Ht =tH-it2L2-%t5az. 

Then 
Bt = var [ Ü I - \t2L2 \ Lx = uaI

ll2]9 (3.16) 

\ , t = ™i\t(tQ-t)L21 Lx = ujW] (3.17) 

(see (2.20), (3.9)) and we need to prove that there exists t0 > 0 such that 

Dkti < Bt for all f > 0. (3.18) 

Let 6 be the coefficient of regression of JET on L2 given Lx = uaI
ll2

9 i.e. 

H = bL2 + U, where cov(i 2 , U \ Lx = uaI
112) = 0. 
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Then 
JDt = t2 var[(6-^)i}21 Lx]+t2 var[tf | Lx = uaI

112}. (3.19) 

On comparing (3.19) to (3.17), we see that (3.18) holds with t0 = 26 if 
6 > 0 and with *0 == 0 if & < 0. 

This argument does not prove Pfanzagl's complete class theorem 
(see (2.22)) because this theorem holds for an arbitrary sequence of tests 
without any regularity of its asymptotic behaviour. However, a proper 
modification of Theorem 3.7 may be used to simplify the proofs of Pfanzagl 
and Wefelmeyer [31] quoted at the end of Section 2.4. 
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HAEEY KESTEET 

Percolation Theory and Resistance of Random 
Electrical Networks 

1. Percolation 

The simplest and most classical percolation model deals with bond-per
colation on Z2. This was introduced by Broadbent [1] and Broadbent 
and Hammersley [2] as a model for the spread of a gas or fluid through 
a random porous medium. The medium here is represented by the bonds 
(also called edges) between neighboring points of Z2. Through some of 
these bonds the gas or fluid may pass; these bonds are called passable 
or open. The other bonds are called blocked or closed. It is assumed that 
the characters of all the bonds of Z2 are independent random variables 
such that for each bond e 

P{e is open} =p, P{e is closed} = q:= l~-p. (1) 

The corresponding probability measure on the configurations of open 
and closed bonds is denoted by Pp. A path on Z2 is an alternating sequence 
of vertices and bonds of the form (v0, ex,vx, ...,vn__19 en,vn) with vimmml 

and vi adjacent vertices of Z2, and e{ the bond connecting ^_x and vi9 

1 < i < n. A path is called open if all its edges are open. The open cluster 
of a vertex v, denoted by W(v), is the collection of all vertices and bonds 
which belong to an open path starting at v. Most questions in percolation 
theory deal with the distribution of # W(v) : ~ the number of edges 
in W(v), and in particular with the dependence of this distribution on p. 
What makes percolation theory interesting for statistical physicists is 
the occurrence of a "critical phenomenon", that is the existence of a cri
tical value, pn say, such that in the two domains p < pH and p >pH the 
system shows markedly different behavior. Specifically, define the per-

[1081] 
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eolation probability 6(p) by 

m=*Pp{#w(v) = oo}, (2) 
and 

* H = 8 T i p { p : 0(p) = 0 } . (3) 

Then there will exist infinite open clusters only for p>pR (see Theorem 1 
below). 

ÏTote that in the present case the distribution of #TT(^) is independent 
of v, and therefore the same is true for 0(p) and pH. Broadbent and 
Hammersley [2] and Hammersley [12], [13] proved that 0 < pB < 1. 
Harris [16] showed that pH^l/2 and Sykes and Essam [28] made it 
highly plausible that pH = 1/2. After important contributions by Eusso 
[22] and Seymour and Welsh [24] Kesten [18] showed that pH is indeed J. 
(A new proof of this relation is in the interesting recent article [23] of 
Eusso). The full result is as follows. 

THEOREM 1. (For bond-percolation on Z2). 
V V ^ ï Men there exists no infinite open clusters a.e., [P^]. (4) 
If p >i then there exists exactly one infinite open cluster a.e.9 [P^]. (5) 

The transition from a regime with only finite clusters to one with an 
infinite cluster is reminiscent of the pfyase transition in the Ising model 
between "no long range order" (or no spontaneous magnetization) and 
"long range order" (or spontaneous magnetization). There is actually 
a rigorous relation between percolation and the Ising model (see [17]) 
but we shall not discuss this here. Other possible interpretations of the 
model deal with the spread of a blight in an orchard, binary alloys and 
the onset of gelation, etc. There even seem to be applications to questions 
about petroleum recovery. The reader is referred to one of the large number 
of recent surveys and popularizations [3], [6], [7], [9],' [14], [15], [19], 
[25], [27], [29], [30] for more information. 

In order to prove Theorem 1 use was made of two other critical prob
abilities pT and ps, which were defined in [22] and [24] 

pT:=mip{p: Ep{#W}< oo}, 

where Ep denotes expectation with respect to Pp. For our present pur
poses ps is more important. I t is the separation point between the p-values 
for which the "crossing probabilities" of large squares tend to zero and 
the jp-values for which these "crossing probabilities" have a strictly 
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positive lim sup. (In the above model the crossing' probabilities actually 
tend to 1 for p>Ps.) Formally set 

a(n9p) =Ppß open path in [ 0 , n ] x [ 0 , w ] which connects a point 
on the left edge and a point on the right edge of this 
square}. 

and1 

pg = sup{p: lipi o(n,p) = 0}. 

Part of the proof of Theorem 1 consists of showing that 

PT = PS =Pn* (6) 

Since pR = | this implies that for p < | the Pp-probability of an open 
connection between the left and right edge of [0,n]x[0,n] goes to 
zero. This fact provides the connection with questions about resistances 
of a random network we shall discuss now. 

2. Resistance problems 

Again, we restrict ourselves in this section to the simplest case. To an 
edge e between two adjacent vertices of Z2 a resistance R(e) will be assigned. 
I t is assumed that all the R(e) are independent random variables and 
that R(e) can take on only the values 1 ohm or oo ohm. Again wè have 
a family of probability measures {PP}Q<P<I on the configurations of resis
tances. This time 

Pp{R(e) = 1} =p, Pp{R(e) = oo}=q=l-p (7) 

for each edge e. e is called a conductor (insulator) if R(e) = 1 (R(e) = oo). 
Insulators cannot conduct electricity and for resistance calculations we 
can therefore construct a network equivalent to the above one by removing 
each edge, independently of all others, with probability q, and giving 
resistance 1 ohm to each edge that remains. Alternatively we can use 
the percolation construction of Section 1 and identify open (closed) edges 
with conductors (insulators). ïTow restrict the network to the square 
[0 ,w]x[0 ,w] and connect all vertices on the left edge of this square, 
i.e., {0}x[0,?&], by some superconducting material of zero resistance. 

1 This is the definition of Seymour and Welsh [24], which is the more intuitive 
one. For technical reasons it is better to define p$ by means of open crossings from 
left to right in the rectangle [0, n] x [0, 3n], as done in [19]. In the present model 
these two definitions are equivalent. 
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Also connect all vertices on the right edge {n}x[0,n] by material of 
zero resistance. Denote by Rn the (random) resistance between the left 
and right edge in [0, ri] x [0, ri] after these superconducting connections 
have been made. In principle Rn is determined by the standard rules for. 
combining resistances in series and in parallel which can be found in 
any physics book (see for instance [8], Section I. 25.5, I I . 22.3). However, 
explicit calculations are not feasible for large n, and it is precisely in the 
asymptotic behavior óf Rn that we are interested. Early on it was realized 
that this asymptotic behavior exhibits another critical phenomenon. 
(See [20] and its references). In particular Rn = oo if and only if there 
exists no conducting path in [0, ri] x [0, ri] connecting its left and right 
edge. Thus the result Ps = ì can be rephrased as follows: 

If p < \ then Pp{Rn = oo}-^l (n^oo). (8) 

If p > - | then lim sup Pp{Rn< oo}>0 . (9) 
w->oo 

Note that (9) still allows Rn->oo with w->oo. For p = 1, that is when 
every edge is a conductor, an easy calculation gives Rn = l + w~~1 so 
that we actually expect Rn to remain bounded, in some sense, for large p. 
The following results confirm this. 

THEOREM 2 ([19], Oh. 11). 

If p < \, then Pp{Rn = oo eventually} = 1. (10) 

If P = i? **** Pp{K->™} = 1- (11) 

If p>\9 then 
1 Pp {OiiP - i)~dl < lim inf JBW < lim sup Rn <C2(p- Ì)-3*} = 1 

for some constants 0 < Ox, C2, ôX9 ô2 < oo which are independent of p. 

The proof of Theorem 2 makes use of one more critical probability, viz. 

pR : = inf {jp: HC(p) > 0 such that Pp{3 G(p)n edge-disjoint con
ducting connections between the left and right edge 
in [0, ri] x [0, n] for all large n} = 1 } . 

One shows that also pR = \. Thus, once p exceeds ps = J there is not 
just a positive probability for the existence of a single conducting connec
tion between the left and right edge in [0, ri] X [0, ri], but there is even 
a probability close to 1 that there are G(p) n distinct conducting connections, 

(12) 
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for some 0(p) > 0. The maximal number of such connections seems of 
some interest by itself. Define 

le (ri) = maximal number of edge-disjoint conducting paths in [0,n]x 
X [0, n] which connect a point on {0} x [0, ri] with a point on {ri} x [0, n]. 

The asymptotic behavior of h (ri) (including large deviation estimates) 
is described by the following theorem, which can be proved by slight 
modifications of Theorems 2.1 and 3.2 in G-rimmett and Kesten [11]. 

THEOREM 3. Let p > £ . Then there exists a constant /u(p)>0 such that 

k(n) 
- ^ - - > ^ ( p ) > 0 a.«., [P„]. 

n 

Moreover, for 0 < e < fi(p) there exist constants 0 < 05 = Gi(e9p) < oo, 
j = 1, 2, 3, such that 

(witfA on(l)->0 as w->oo), and! 

(note the n2 in the exponent on the right). 

Remark. fi(p) equals the so-called time-constant of first-passage per
colation when the time-coordinate t(e) of the edge e has the Bernoulli 
distribution 

P{t(e) = 1} = p, P{t(e) =0}=q=l-p 

for each e (see Smythe and Wierman [26] for terminology). 

3 . Generalizations and open problems 

An obvious generalization — which is appropriate for Section 1 as well 
as Section 2 — is to replace Z2 by Za, or any other regular graph. The 
formulation of the percolation problem for such graphs is fairly obvious 
(see for instance [19], Chapters 2,3). However, only a few exact results 
are known,. pH has been determined for only a few planar graphs (basi-
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cally the triangular lattice, the honeycomb lattice and the simple quad
ratic lattice), but pH is not even known for Zd

9 d^3. 
Going still further, one can in the percolation problem allow the prob

ability for a bond to be open to be different for different bonds. E.g., 
on Z2, one can give one value to P{e is open} for all horizontal edges e9 

and another value for all vertical edges e. Or one can consider site-prob
lems, in which the vertices (instead of the bonds) are passable or blocked. 
(cf. [19] again). Eecently one has even considered mixed problems in 
which both the bonds and the vertices cari. be blocked ([14]). Many othe* 
variations and generalizations can be found in the literature. For in
stance considerable progress has been made recently [4], [5] on "orien-
ted-percolation" problems in which a path cai* traverse the bonds only 
in one direction (up and to the right, say). 

Turning now to the resistance problem of Section 2 a generalization 
of another kind immediately comes' to mind. One can allow an arbitrary 
distribution on [0, oo] for R(e), rather than the Bernoulli distribution 
concentrated on {1, oo} of (7). In this generalization the R(e) are i.i.d., 
random variables such that 

P{R(e) = oo}=^(oo), 

P{R(e)^x} = ( l -p (oo) ) F(x)9 x< oo, 

for some distribution JP on [0, oo). Eesults analogous to Theorem 2 for 
this situation can be found in, [19], Ohapter 11. 

Whether one deals with the original resistance problem of Section 2 
or with the above generalization, in either case one would like to show 
that on Z2 Rn has a limit in some sense as w->oo. Golden and Papanicolaou, 
[10] and E. Kiinnemann [21] have proved that Rn has an I? limit, pro
vided 

P{a < R(e) < V} = 1 for some 0 < a < 6 < oo. 

It is not clear whether their proof can be extended to cases where R(e) 
can take the values 0 and/or oo (as in the models considered here). 

When considering the resistance problem on Zd with d ̂  3 we take 
for Rn the resistance between the faces {0} x [0, rif~l and {ri} x \Q9rif~l 

in the restriction of the network to the cube \09rif. In this case the 
asymptotic order of Rn for large p should be n2~d (since Rn = n(n+l)1~a 

when all edges have a resistance of 1 ohm). Thus one expects at least 
that nd"2Rn is bounded when R(e) has the distribution (7) for a p >pR(Zd): 
: = critical probability for bond-percolation on Zd. However, we have 
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been able to prove this result only for p > \ (see [19], Theorem 11.3), 
even though it is known that pH(Zd) < J for d > 3 ([19], Example 10.2 
(in)). 

On the basis of analogy with other critical phenomena and Monte 
Carlo evidence one expects that Rn satisfies a powerlaw near the critical 
probability. E.g., in the special case of Z2 and (7) one expects (see [20], 
[27]) that there exists a constant \i > 0 such that 

l imi^ = (p-\Y^0^9 where op{l)-*0 when p\\. (13) 
n-*oo 

Olearly (12) is only a poor approximation to (13). However, to the best 
of our knowledge no powerlaws such as (13) have been established for 
the percolation problems discussed here. 
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PAUL MALLIAVIN 

Analyse différentielle sur l'espace de Wiener 

]ST. Wiener en développant en 1923 les fonctionnelles de carré integrable 
du mouvement brownien suivant les polynômes d'Hermite a commencé 
l'étude de fonctionnelles non linéaires du mouvement brownien. K. I tô 
en introduisant en 1943 la théorie des équations différentielles stochas
tiques, aboutissait à des fonctionnelles non linéaires de Wiener, permettant 
de calculer effectivement les solutions d'équations paraboliques sur Rn 

à coefficients variables. L'analyse différentielle sur l'espace de Wiener 
se propose d'étudier des fonctionnelles non linéaires "régulières" en mé
langeant les ressources du calcul intégral de Wiener-Itô avec les techni
ques d'un calcul différentiel "ad lioc" défini de telle sorte que les fonction
nelles de Itô soient différentiables. Il est bien connu que l'intégrale sto
chastique n'est pas un algorithme robuste les fonctionnelles de Itô ne 
sont continues pour aucune norme de Banach; a fortiori la théorie du 
calcul différentiel classique dans les espaces de Banach ne saurait leur 
être appliquée. On souhaite pouvoir appliquer aux fonctionnelles de Itô 
des techniques classiques en dimension finie (phase stationnaire, désin
tégration suivant une famille d'hyper surf aces, etc. . . . ) . 

(I) Différentes approches à la théorie de la, dérivation et leurs équi
valences. 

(II) Géométrie différentielle sur Vespace de Wiener. 
(III) Application à des estimations de fonctionnelles. 

I . Notion de différentiabilité 

a. Dérivation vectorielle. IsTous notons par X l'espace de Banach des ap
plications continues de [0 ,1] dans Rm, nulles en zéro. Le mouvement 
brownien sur Rm permet de déf inir sur X une mesure gaussienne \i, appelée 
mesure de Wiener. On note par S l'espace de Hilbert des fonctions x e X 
dont la dérivée dxjdx est de carré integrable et par JT0 le sous-espace 

[1089] 
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dense de PL constitué des fonctions telles que d*xjdt2 soit une mesure. 
Alors si h0 G Jff0 le produit scalaire %->(h \ h0)H se prolonge à X en une 
forme linéaire continue (x, ä0>. 

Les vecteurs de PL sont des vecteurs de dérivation pour la mesure p» 
Notant rh: x\->x + h, on a le résultat classique de Cameron-Martin: 

ï i 

(TA)*JW = «*P (J" hfdx — l j \hf\2dx)/t. 
o o 

En particulier définissant la divergence par la formule 

dive(h)dQ = lim e"1 [(rfiÄ)* e - e ] 

on obtient 

{<Liyß(h))(x)=Jh'(T)dx(t) 
' 0 

En analyse de Fourier sur Rn
9 un procédé classique pour introduire les 

espaces de Sobolev est de considérer les opérateurs de dérivation à valeur 
vectorielle obtenus sur IP(R?') comme limite d'opérateurs de translation. 
Dans (Jette approche le fait que la mesure de Haar de Rn soit invariante 
joue un rôle déterminant. Ici la mesure p, est quasi-invariante. De plus. 

div^(A) eiT0(X) où on a défini ifr
0(X) = Q •&*(•*)• 

p 
Sur iT0(X) on prendra la topologie d'espace de Eréchet. On note iVx(X) 
= {feir0(X)'9 y/h e H, DJeiT^X)} Où encore 

Dhf = lim s"1 [f(x + eh) -f(x)] (1> 

la limite étant prise au sens de la topologie de nr0(X). Alors l'application 
h\-^Dhf est une application linéaire continue de H à valejirs dans W0(X)-
Par suite il existe une application V/ définie sur X à valeurs dans R 
telle que 

(V/|ft)=I>Ä/. 
Si G est un espace de Hilbert abstrait, on note par IP(X\ G) l'espace des-
fonctions IP sur X à valeurs dans G. Alors s i / e WX(X), on a Vf e #0(-Z"; H). 
D'une manière plus générale si G est un espace de Hilbert abstrait, on définit 
H® G l'espace de Hilbert des applications linéaires dQ H dans G muni de la 
norme de Hilbert-Schmidt. Si u e ̂ ^(Xm

9 G), Dhu est encore défini par (i) 
d'où la définition de iTx(X-9 G). Pour v e WX(X] G) onaVue iT0(X; H ® G). 
En définissant Hp comme le produit tensoriel symétrique E® ... (g)K 
muni de la norme de Hilbert-Schmidt on définit alors ifr

p(X-, G) et l'opé
rateur 

V*: irp(X;G)^W0(X;SpéG). 
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Les opérateurs Vr sont fermés et les espaces ifT(X-,G) sont complets. 
(On trouve dans [25] une approche alternative utilisant les fonctions 
cylindriques. D'autre part la notion de vecteur de Oameron-
Martin permet de commencer une théorie de la dérivation [16] lorsque 
la mesure de base n'est plus gaussienne.) 

b . Domaines de l'opérateur de Orastein-Uhlenheck. Considérons la décom
position donnée par le chaos de Wiener L2(X) = © 3tfn où ffln note l'espace 
des fonctionnelles de Wiener de degré n, linéairement engendré par les 
polynômes de Hermite de degré total n. L'opérateur de Ornstein-Uhlen-
beck est alors défini sur 2tfn par 

3?\tf = —w Identité sur #Pn, (i) 

L'opérateur de Cauchy # est défini par ~ V —&. Sur les fonctions cylin
driques -2? s'exprime comme un opérateur différentiel de la forme 

•Sous la forme (i) la fermeture de ££ ou de # dans L2(X) s'écrit immédia
tement. Dans [28] on introduit 3)v(£t?\G), le domaine de la fermeture 
de Se dans LP(X-, G). De même dans [23] le domaine gP(&\ V) est défini. 
On pose f) &»(&\Q) = &»(&\Q). Alors / uSevdp = / v&udfj, si u, v 
e Qf°. Enfin, pour c > 0 , (JSf — c) est un opérateur inversible de 9P(S£, G) 
->IP(X,G). 

Stabilité par calcul symbolique. Soit fe ®°°(JSf; JB) et soit <p est une 
fonction définie sur R, à croissance polynomiale ainsi que ses dérivées 
d'ordre < 2, alors <po/e^°°(JS?; R). 

Inégalité d'intégrales singulières [23]. On a Visomorphisme topologique 

®">(<ê;G)~iirx(X,G), 

et plus précisément 

1 
- ^ ~ \\VU>\\LP(X,O) < IlVu\\mx,mo) < ö(P)\\w\\mxtQ) ( K P < *>)• 

Cet isomorphisms entraîne évidemment le même isomorphisme entre 
9" (Vi G) et ifrr{X\Q) (cf. également [32]). 

«. Calcul stochastique le long du processus d'Ornstein-Ublenbeck. Le proces
sus d'Ornstein-Uhlenbeck (ou processus O. U.) en dimension finie est 
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déterminé par ses probabilités de transition, pt(xQ, dx), qui peuvent 
être écrites explicitement par la formule de Mehler: 

jpt(œQ9dx)cp(x) = f<p(xQe-~il2 + (l--e-t)ll2y)diJi(y). 

Cette formule peut s'écrire aussi bien en dimension infinie et définit le 
processus O.U. sur X. Un autre procédé est de considérer une base ortho-
normée de H composée d'éléments de S0, par exemple la base 
(fc7r)""1sin(&nr) = ek9 Te > 1 , et e0 = 1 et de poser 

+ 00 

«•(') = S «*<«) (i) 

où Gnk sont des échantillons indépendants du processus O.U. sur Rm
9 

w = (w»,...,wk,...). 
Le processus (i), laisse la mesure /ä invariante, possède une p.s. version 

continue s u r X [18]. On peut d'autre part le réaliser à partir d'un bruit 
blanc à deux paramètres [181. 

Une fonction / sera dite une fois régulière si Mw(t) =f(œw(t)) est 
une semimartingale. Alors JSf/ sera défini [9], [18], [27] comme réalisant 
la partie à variation bornée de Mw(t). D'autre part, \\Vf\\2 sera défini de 
même comme le processus croissant associé à Mw(t). Ces définitions ont 
été inspirées des travaux [7] sur la différentiabilité des fonctions finement 
holomorphes sur C. 

Enfin notant <ph(x) = (x, ek), on pourra suivant [25], [28] définir 
Vf par 

A; 

où Vf'V<pk est la polarisation de la forme quadratique ||V/||2. 
Cette technique de localisation sur les trajectoires du processus O.U. 

permet de définir la régularité de fonction / sur un ouvert fin de X (cf. 
[22J). Pour l'équivalence globale de cette approche avec a. et b . voir [27]. 

d. Un exemple de fonctions régulières. Donnons-nous des fonctions G°° 
à dérivées bornées sur Ra, ak(y), ci(y). Considérons le système différentiel 
stochastique dy%(r) = af (y) dtx

k(r) + ck(y)dt, yk(Q) = 0. Alors g(x) = yx(l) 
définit [9], [18], [27] une application g eHr^(X'9 RQ). De plus la matrice 
de covariance Vgi-Vgj a u n e expression explicite ([1], [2], [18], [27]) 
qui permet de démontrer des théorèmes d'hypoellipticité G°° avec dégé
nérescence ([18], [19]). Le calcul de Vg fait intervenir du point de vue 
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de a. une variation par une courbe H, au sens de [14], [26]. Cette varia
tion peut être exprimée par une formule de Girsanov locale [1], Du point 
de vue de c. intervient un calcul stochastique sur le processus de O.U. 
qui obtient les solutions de S.D.E. comme limite fonctionnelle de solution 
d'équation qu'un principe de transfert différentiel ordinaire permet de 
ramener (cf. [6], [20]) ce calcul stochastique au calcul des variations 
sur des équations différentielles ordinaires, suivi ensuite d'un passage 
à la limite. Si on utilise l'approche b. un lemme fondamental [27] est la 
commutation de 3? avec le foncteur de l'intégrale stochastique. 

II. Géométrie différentielle sur l'espace de Wiener 

Donnons quelques exemples: 

(a) Remontée d'un champ de vecteur sur X [19]. Soit g ei^0(X; Rq). 
Supposons (det(V^-Vg*))"1

 GW0(X). Alors si A est champ de vecteur 
G°° sur Rq, il existe un champ de vecteur A eif^X; H) tel que 

g'(x)-À ^Aa{x). 

Notant Q = g*([i) on en déduit [19] que 

J \àire(Z)\de^ J \äivß{E)\äp. 
m 

Comme on verra en (c) que div^(Z) e i * si Z &1f\(X) on en déduit [15] 
une majoration de 

I|V(^)IILP(B») Où dç = udy et où ß > 0. 

(b) Gobord stochastique. Si ut est une forme différentielle de degré 1 
sur Ra alors / nodyx est définie de façon intrinsèque [8], [20] et définit 
une fonctionnelle g G if^X). Le cobord de % permet de calculer la diffé
rentielle de g ([10], [21]). 

(c) Oomplexe de de Rham-Hodge. Considérant l'adjoint de l'opérateur 
V pour la mesure \i, on peut définir le complexe de de Eham-Hodge sur 
X. En degré p le laplacien de de Eham-Hodge s'écrit —SP—p Identité 
([26]). Par suite le complexe est acyclique. D'autre part si Z e ifz(X] H), 
alors d i v ^ e ^ X ) . 

(d) Formules générales de Cameron-Martin. Soit Z Eift
co(X

m,G) satis
faisant de plus à des conditions d'intégrabilité exponentielle convenable, 
alors le flot Uf(x0) est défini pour presque tout x0 et (Uf)*fJi> se calcule 
par une intégrale de la divergence sur les trajectoires du flot [5]. 
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(e) Intégrales stochastiques anticipantes. L'opérateur div^ (Z) permet de 
retrouver l'intégrale stochastique de Skohorod de fonctions anticipantes 
[13], [32]. 

(f) Ponctions implicites. A chaque norme de "//^(X) est associé une 
capacité cPtT. On dit que A c X est mince si pour tout (p, r, s) on peut 
trouver un ouvert 0 de X, 0 ZD A tel que cPtT(0) < s. La projection ortho
gonale de corang fini d'un ensemble mince est mince ; les fonctions / G i^^X) 
possèdent une redéfinition à l'extérieur d'un ensemble mince; de 
cette redéfinition résulte un théorème des fonctions implicites en corang 
fini [22] (cf. [3] pour l'étude des grandes déviations). 

(g) Phase stationnaire. Les méthodes de phase stationnaire peuvent 
être appliquées à des intégrales oscillantes sur X [12]. 

(h) Equations aux dérivées partielles stochastiques hyperboliques. Le 
formalisme du calcul différentiel sur X9 transporté à des espaces de bruit 
blanc à plusieurs paramètres permet de donner une définition de l'intégrale 
stochastique adapté à la résolution d'équations non linéaires, hyperboli
ques, aux dérivées partielles stochastiques [11]. 

(i) Remontée des courants à Vespace de Wimer ,[33]. 

IH« Applications 

(a) DstimêeS' elliptiques. Sur une variété riemannienne ime estimée de 
V(log^) a été obtenue [3] uniquement en termes du tenseur de Eicci, 
intégré sur les trajectoires du mouvement brownien. 

(b) Estimées elliptiques en dimension infinie. Un exemple de telle 
estimée est obtenu dans [15], estimée qui contrôle l'énergie libre d'un 
système de Ising à spins continus. 

(c) Estimées hypoelliptiques d'équations dégénérées du type de Hör-
mander [2], [17], [19], [29] et cf. l'article de D. Stroock dans ce volume. 

(d) Régularité de semi-groupes de processus réfléchis [2]. Un calcul 
des variations sur les excursions est construit. Les semi-groupes obtenus 
sont progressivement régularisants. 

(e) Régularité en filtrage non linéaire ([4], [24])«obtenu à l'aide d'un 
calcul des variations partiel sur les degrés de liberté restant disponibles 
une fois l'observation effective. 



Analyse, différentielle sur l'espace de Wiener 1095 

Bibliographie 

[1] Bismut J.-M., Martingales, The Malliavin Calculus and Hypoellipticity under 
General Hörmander's Conditions, Z. Wahrsch. 56 (1981), pp. 469-505. 

[2] Bismut J.-M., Calcul des variations stochastique et processus de sauts, Z. Wahrsch. 
63 (1983), pp, 147-263. 

[3] Bismut J.-M., Large deviations and Malliavin9s calculus, Birkhäuser, 1984 et ORA8 
296 (1984), p . 1009. 

[4] Bismut J.-M. et Michel D., Diffusions conditionnelles, Journal of Functional 
Analysis 44 (1981), pp. 174-212 et 45 (1982), pp. 274-293 (Application au filtrage). 

[5] Cruzeiro A.-B., Plots sur l'espace de Wiener et formules de Cameron-Martin, 
Journal of Functional Analysis 54 (1983), pp . 206-227. 

[6] Belopol'skaya Ya. L. and Daleskii L., Itô equations and differential geometry, 
Usp. Mat. Nauìc 37 (3) (1982), pp. 95-142. 

[7] Debiard A. et G-aveau B., Différentiabilitó des fonctions finement harmoniques, 
Inventiones Mathematicae 29 (1975), pp. 111-123, et T. J. Lyons, Finely holomor
phic functions, Journal of Functional Analysis 37 (1980), pp. 1-18. 

[8] Ikeda N. and Manabe S., Integral of differential forms along the path of diffusion 
processes, Pubi. R. I. M. 8. Kyoto University 15 (1979), pp . 827-852. 

[9] Ikeda N. and Watanabe S., Stochastic Differential Equations and Diffusion 
Processes, North-Holland, 1981, pp. 322-352. 

[10] G-aveau B., Différentielle extérieure stochastique, Compte Rendus Académie des 
Sciences (JURAS) 286 (1978), pp. 381-384. 

[11] G-aveau B. et Moulinier J., Géométrie infinitesimale gaussienne et intégrales 
stochastiques de bruits blancs à plusieurs paramètres, dompte Rendus Académie 
des 8ciences 296 (1983), pp. 43-46. 

[12] G-aveau B. et Moulinier J., Méthode de la phase stationnaire pour l'évaluation 
de fonctionnelles de Wiener, Journal of Functional Analysis 54 (1983), pp . 
161-177. 

[13] G-aveau B. et Trauber Ph., Opérateur de divergence sur l'espace de Wiener, 
Journal of Functional Analysis 42 (1981), pp. 356-368. 

[14] G-ihman I. L. and Skorohod A. V., Stochastic Differential Equations, Ergeb. der 
Mathematik, Springer, 1972. 

[15] Holley E. and Stroock D., Diffusions on an infinite dimensional torus, Jour* 
nal of Functional Analysis 42, (1981), pp. 29-63. 

[16] Kusuoka S., Dirichlet forms and diffusion processes on Banacli spaces, Journal 
of the Faculty of Science, The University of Tolcio 29, Section I. A. (1982), pp . 
79-95. 

[17] Kusuoka S., Analytic Properties of Wiener Functional, Lee. Notes 923, pp. 1-47. 
[18] Malliavin P . , Stochastic calculus of variation and hypoelhptic operators, Proc. 

Int. Conference on S.D. F., Kyoto, 1976, pp. 195-264. Kinokuniya, Tokyo, 1978. 
[19] Malliavin P . , <7fc-kypoellipticity with degeneracy, in: Stochastic Analysis, A. 

Priedmann et Marc Pinsky, Editors, Acad. Press, 1978, pp. 199-214, 327-340. 
[20] Malliavin P. , Géométrie différentielle stochastique, Cours Univ. de Montréal, 1977, 

Presses de l'Université de Montréal, 1978, 128 pp. 
[21] Malliavin P . , Sur certaines intégrales stochastiques oscillantes, dompte Rendus 

Acad. des Sciences 295 (1982), pp. 295-300. 

17 — Proceedings..., t. H 



1096 Section 10: P. Malliavin 

[22] MaUiavin P., Implicit function in finite corank on the Wiener space, Symp. 
SDE Kyoto 1982, pp. 353-370, Kinokuniya, 1984. 

[23] Meyer P. A., Inégalités d'intégrales singulières sur l'espace du mouvement brow
nien, Proceedings of conference of Bangalore, 1982, Lecture Notes in Control 
Theory, pp. 201-214. 

[24] Michel D., Eégularité des lois conditionnelles en théorie du filtrage non linéaire 
et calcul des variations stochastique, Journal of Functional Analysis 41 (1981), 
pp. 8-36, et Proc. of Inter. Symp. SDE Kyoto 1982. 

[25] Shigekawa I., Derivatives of Wiener functionals and absolute continuity of 
induced measures, J. Math. Kyoto University 20 (1980), pp. 263-289. 

[26] Shigekawa I., De EhamrHodge complex on the Wiener Space, Séminaire Ecole 
Normale, Février 1983. i 

[27] Stroock D., The Malliavin calculus and its application to second order parabolic 
differential equations, Math. Systems, 14 (1981), pp, 25-65. 

[28] Stroock D., The MaUiavin Calculus, a Functional Analytic Approach, Journal 
of Functional Analysis 44 (1981), pp. 212-257. 
Ajouté à la correction des épreuves: 

[29] Bismut J.-M., Calculus of boundary processes, to appear in Annales de VEcóle 
Normale 1984. 

[30] Bismut J.-M., The Atiyah-Singer Theorems: A probabilistic approach I. The 
Index Theorem, Journal of Fund. Analysis 57 (1984), pp. 56-99. 

[31] Cruzeiro A.B., Unicité de solutions d'équations différentielles sur l'espace de 
Wiener, Journal of Functional Analysis 58 (1984), September. 

[32] Krée M., Propriétés de trace en dimension infinie, Bull. Soc. Math. France 
105 (1977), pp. 141-163 et avec Krée P., Continuité de la divergence dans les 
espaces de Sobolev sur l'espace de Wiener, domptes Rendus 296 (1983), pp. 833-836. 

[33] Watanabe S., Malliavin's calculus in terms of generalized functionnals de Ban
galore, 1982, Lecture Notes in Control Theory. ' 

10, RUE SAINT LOUIS EN L'ILE 
75004 - PARIS 



Proceedings of the International Congress of Mathematicians 
August 16-24, 1983, Warszawa 

PETE MANDL 

Self-Optimizing Control of Markov Processes 
and Markov Potential Theory 

The topic of the paper will he exposed on two families of processes : the 
controlled one-dimensional diffusion processes and the controlled Markov 
processes with a countable state space. It is hoped that the extensions 
to other types of processes will be apparent. 

The former family includes random processes X ~ {Xt, t > 0} having 
stochastic differential 

dXt =a(Xt9 Ut)dt + b(Xt)dWt, t^O. (1) 

The first term on the right-hand side expresses the drift of the process. 
The drift coefficient a(x, u) depends on the state variable x e ( — OO, OO) 
and on the control parameter u e <%. We assume that a(x,u) is continuous 
and ^ is a metric space. The function b(x) determines the magnitude of 
the random disturbance or the local diffusion. Let b(x) be Lipschitz 
continuous, b(x) > 0 . The control V = {Ot, t^ 0} in (1) is a random 
process nonanticipative with respect to X. More explicitly, U is progres
sively measurable with respect to the nondecreasing family of c-algebras 
&x = [&f = aa(Xs, s e [0, t]), t ^ 0}. The controller chooses the para-
metr value according to the past trajectory of X. To speak in a more 
intuitive manner, we suppose that a(x, u) and b(x) express the properties 
of a physical system S in the way that X satisfying (1) is the trajectory 
of S under control Ü. In other words, 8 is a system with generating oper
ator 

^(.)-**(*)"^+•(.,.)-£-. 

To guarantee the existence of a week solution of (1) for each U = {U(9 

t > 0}, additional conditions are to be imposed. Let us present a set of 
such conditions using G-irsanov's theorem. 

[1097] 
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PROPOSITION 1. Let 

a+(x) = sup \a(x, %i)\, x e ( — 00,00), 

and let Y = {Yt, tf > 0} be the solution of 

dYt=b(Yt)dWt, t^Q, Y0 = J. 

If 
t 

EvexV{%Ja+(Yafb(Ysr*äs}<oo, f > 0 , (2) 
0 

then (1) has a week solution for a/ny nonanticipative control U and for initial 
position X0 = y. 

The subscript y in (2) is to stress the initial state of Y. 
A controlled Markov process with a countable state space I , say 

Z = {1, 2 , . . . } , is most frequently characterized by means of its transi
tion rates. The meaning of the rates can be condensed in the formula 

P ( I M = j I * ? ) = a(Xt, j ; Ut)dt for j * Xt. (3) 

We call a(i9 j ; u)9 i =fi j9 the transition rate from state i into state j under 
control parameter u. We assume ci(i9y9n) to 'be continuous in u. The 
generating operator for 8 is, in this case, the matrix of transition rates 

A(u) = \\a(i,j'9u)\\itjeI. 

We let 

0 < a(i9 u) = V a(i,j',u), a(i9i9u) = — a(i,u), i e l . 

A formal treatment of (3) is as follows. We say that random process 
X is the trajectory of 8 under control U9 if for any function w(j)9 j e I , 
with a finite support, 

. t 

Mt =w(Xt)-w(XQ)- jA(U8)w(X8)ds9 t>0, (4) 
o 

is a local martingale. The statement remains valid for w(j) satisfying an 
appropriate restriction on the growth at infinity. 

• For diffusion processes, (4) is the consequence of the Ito formula for 
w(x)9 xe( — oo, oo), twice continuously differentiable. We then have 

Mt = fb(X8) — w(Xs)dWs9 t>0. (5) 
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The formulation of a control problem involves the introduction of 
a criterion to compare the controls. To this purpose suppose we are given 
a continuous function c(œ9 u)9 œ e( — oo9 oo), u e °ll. Set 

* 
Ct =fc(Xs9 U8)ds9 t>0. 

o 

Gt is the evaluation of the trajectory. We shall interpret it as the cost 
incurred up to time t. We shall concentrate on the optimization problem 

lim t"~1öt = min a.s. (6) 
t-+oo 

I.e., we consider infinite planning horizon and the average cost per unit 
time as criterion. Time averaging is given priority to taking mathematical 
expectation. 

In cases of interest the minimum on the right-hand side of (6) is a 
constant. Thus, take any constant 0, and introduce it into (4) in the 
following way 

t 

Ot-t6 + w(Xt)-w(X0) =Mt+ f (A(U3)w(X8) + c(X8, Ua)-d)ds, 
0 

tf>0. (7) 

Denoting the left-hand side by Rt and writing 

<p(x,u) = A(u)w(x) + c(x,u) — 0, xe( — oo, oo), ue°U9 

we can rewrite (7) as 
t 

Rt =Mt+f<p(X8, U8)ds =Mt+0t, t>0. (8) 
0 

If we succeed to find 6, w(x) such that 

min<p(x, u) = 0, x e ( — 00,00), (9) 
we?/ 

then R is a submartingale for each U, and (8) is its Doob-Meyer decom
position. 

Let (9) hold. To see the connection to (6) write 

r ^ - f l =r1Mi+rl(w(Xo)-w(Xt))+rl0t, t^o. (io) 

The law of large numbers for martingales applies to the first term on 
the right under rather general conditions. In the case of the diffusion 



1100 Section 10: P. Mandi 

process, M has quadratic variation x ^ 
i 2 

<Jf>i = | \b{Xs) A «(X,)) ft, < > 0. 

A local martingale with continuous quadratic variation arises from a Wiener 
process by time scale transformation 

From the law of the iterated, logarithm for the Wiener procees the next 
proposition is obtained. 

PROPOSITION 2. Let \ \ 

limr"2<JT>j loglogJ = 0 a.s. 0m probability). 
t->oo 

Then 
lim f~lMt = 0 a.s. (in probability). 

The second term on the right in (10) is negligible provided that certain 
stability conditions are fulfilled. The third term is nonnegative if (9) 
holds. We thus get 

fimr^i^fl a.s. 
£->oo 

under any control U. 
On the other hand, denoting by u(x) the minimizer in (9), we have 

<p(x9 u(x)) = 0, # e ( — 00,00). 

Hence, under the feedback control 

Û = {u(JEi), t^0}9 

we have 

Ct—td = Mt + w(X0)-w(Xt)9 * > 0 . 

This leads us to 
l i m r 1 O < = 0 a.s., (11) 
£->•«> 

00 

f JVB(o(Z;}û(^))-0)A»lim(J9a(7<-<0) = w{x)~ \xm.Exw(.Xt) 

— w (x) + const, (12) 

assuming that under # the distribution of X% stabilizes as $->oo. 
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The heuristic conclusion which we have obtained is that in (9) 0 is 
the minimal average cost and w(x) is the cost potential associated with 
the optimal feedback control. Abbreviate 

A[u(x)) = Â, c[x, ii(xj) = b(x). 

Under Û we have 

dXt =â(Xt)dt + b(Xt)dWi9 t>0. 

Consequently, X is Markovian, and the integral on the left of (12) is the 
potential associated with charge ô(a?) —0. 

Because of its relationship to other dynamic programming equations, 
we call (9) the Bellman equation for minimal average cost. 

The feedback control Û solves problem (6) for a particular system 8. 
In situations when the mathematical description of 8 is not completely 
known to the controller, he has to seek controls TJ such that (6) holds 
for some class of systems, e.g., a parametrized family. Controls having 
this property are called self-optimizing. 

Decomposition (10) is a convenient tool for investigation of self-optimizing 
controls. This is seen from the papers listed in the references. The direc
tions for the use of (10) are summarized in the following points: 

(i) Apply the limit theorems for martingales to M, and by estimat
ing 0 examine the speed of convergence of t~lGt to 0 as t->oo. 

(ii) Use the conclusions from (i) to classify the controls satisfying (6). 
(iii) Consider the cases, when the specification of 8 involves par

ameters whose values are to be estimated from the trajectory observed. 
The control is accomplished by inserting the parameter estimate into 
the optimal feedback control. Give conditions for the self-optimizing 
property, and determine the speed of convergence for various estimation 
techniques like the maximum likelihood, the minimum contrast, and 
the recursive methods. 

Let us first mention some points pertaining to the determination 
of cost potentials. Since u(x) is the minimizer of (9), we have 

Aw(x) + e(x)-0 = 0 , x G (-00,00). , (13) 

(13) is a second order differential equation which has a two-dimensional 
set of solutions for each 0. Boundary conditions in ± °° were introduced 
in [22] to pick up the right solution. 

PROPOSITION 3. Set 

Q(x) = exp {2 j â(y)b(y)~2dy}, x e ( -00, 00). 
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Let , 
00 oo 

j b(x)-2Q(x)dx< oo, j b(x)~2Q(x)\c(x)\dx< oo. 
— 00 — 0 0 

The average cost 0 is the unique constant such that (13) has a solution w(x) 
satisfying 

d 
lim Q(œ) —w(x) = 0. (14) 

a>-»±oo ax 

In the case of a countable state space, the cost potentials for con
trolled Markov chains were treated in [9], under a Liapunov type assump
tion. An analogous approach is applicable to continuous time processes 
with countably many states. To formulate the Liapunov condition we 
again use the cap on the symbols, referring to the chosen feedback con
trol. Let k e I be a particular state, say k = 1. From À we construct 
the matrix 

P-«*(*,J)llutf = 

0 d(l ,2)/Ä(l) d(l ,3)/Ä(l) 
0 0 d(2,3)/d(2) 
0 ,Ä(8,2)/Ä(8) 0 

JP is the transition probability matrix of the Markov chain imbedded 
in X until its first jump into state 1. 

ASSUMPTION 1. There exists a y(j) > 0, j el, such that 

mi)\+l+â(i)(Yp(i,j)y(j)-y(i))<0, tel, (15) 
i 

lim Pny = 0. (16) 
TC->00 

PROPOSITION 4. Let Assumption 1 hold. Then the average cost 6 is the 

unique number such that there exists a w(j), je I, satisfying 

Aw(i) + c(i)-d = 0 , iel9 

together with 
\w(j)\ < const y(j)9 je I. (17) 

A corresponding statement about the Bellman equation is also valid. 

PROPOSITION 5. Let <% be compact, let (15) and (16) hold for amy feedback 
control9 and let the left-hand side of (15) depend continuously on the control. 
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Then the minimal average cost 0 is the unique number for which the equation 

min {A(u)w(i) + c(i, u)~- 0} = 0, iel9 (18) 
uety 

has a solution fulfilling (17). 

The origin of (18) is in the paper [1] by B. Bellman. 
Returning to the diffusion processes, consider an example. Let the 

equation for the trajectory of 8 be 

dXt = ~-(Ut + aXt)dt + dWi9 <>0, (19) 

and let 
t 

Ot^f(X2
8 + U2

s)ds9 t>0. 
0 

Thus, we have the simplest case of a linear controlled process with a quad
ratic cost function. The Bellman equation is 

[Id2 d ) min\———w(x)--(u + ax) —w(x)+xz + u2—d\ = 0 , xe( — oo, oo). 
u [2 dx dx J 

Solving it with regard to (14), one obtains 

0 = } / a 2 + l - a , w(x) = (]/a2+l-a)a?2. 

The optimal feedback control is 

Ut = ( / a 2 + l - a ) ^ , t>0. (20) 

Under Û the limit relation holds, 

l i inT 1 ^ = 0 a.s. (21) 
t-+oo 

Assume that the controller knows only that a is some positive number. 
He is thus unable to insert the value of a into (20). He still wants to have 
(21), and therefore he compiles a self-optimizing control replacing a in 
(20) by its estimate from the past trajectory. An estimate is 

t-h t-h t-h 
af = - - ( / XsdXs+j XIsX8ds)/J X2

8ds9 t>h9 
0 0 0 

where h is a time-lag. Substituting from (19) we get 
t-h t-h t-h t-h 

a*=a-f XsdWjf Xjds = a-"/r[f X2
säs}/J X\äs, t>h, 
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where {#"(#), # ^ 0} is a Wiener process. Prom the strong law of large 
numbers for the Wiener process follows 

lima* = a a.s. 
<->00 " 

Hence, the control 

ÜJ - (A*2+l-a*)X,, t>h9 (22) 

approaches to (20) as t->oo. A stronger statement than (21) can be proved, 

PROPOSITION 6. (Gt —t6)jVt has, under either,of the controls (20) 
<md (22) asymptotically normal distribution JV(0, er2) as tf->oo, with 

o-2 =* (f /a2+l-a)2 / l /a2+l. 

27&e following relation holds, 

Sm ±(ö,-*ö)/l/2<lnlii< *= <r a.s. 
£->oo 

I 

We see that under the self-optimizing control (22) the cost is subjected 
to the central limit theorem and to the law of the iterated logarithm with 
the same parameters as under the optimal feedback control (20). 

Proposition 6 shows the pattern of more general theorems based on 
the decomposition (10). In proving them one has to verify the corresponding 
limit theorem for the martingale M, and then to show that the control 
tends to the optimal stationary one sufficiently quickly to make the 
remaining terms negligible. The quadratic variation < M}t is a functional 
of the same type as the cost, formula (5) confirms it. Thus, to prove 

lim r 1 <-M>j = <ra a.s., (23) 
$->00 

a decomposition analogous to (10) is used. Por the one-dimensional diffu
sion process, (23) implies 

Consequently, the limit theorems for the Wiener process imply those 
for the martingale M. The procedure is more complex for a countable 
state system. The applicability of the limit theorems to the discrete 
parameter martingale {Mn9 n = 0,1, . . .} is to be examined. Theorems 
like the next proposition are at hand. 

PROPOSITION 7. 8et Yk = Mk+1 — Mk9 k = 0 , 1 . . . Let 
n-l 

lim n'1 £ E{Y2
k \ &£} = a* (24) 

tt-*oo k==0 
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in probability, where a* is a constant, and let 

limn'1 J? JSYfc< oo. 

Then Mn/]/n has asymptotically normal distribution N(09 or2) as n-^oo. 
If, moreover, (24) holds almost surely, then 

lim ±MjV(2n\nhin) = a. 
W-»-oo 

The verification of (24) is reduced to the investigation of a cost func
tional in virtue of the equality 

E{Yl\&%}-E{ j c2(Xt9Ut)dt\3r*}, fc=0,l,..., 

where 

c%(i9u) = V a(i9j-9u)(w(j) — w(i)y, iel9 ne<%. 
3 

n 

The left-hand side of (24) can be replaced by n"1 j c2(Xs, U8)ds. 
0 

The contents of the papers in the references can be seen from their 
titles. The results of [7] and of [23] were widely used in the present survey. 
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of Certain Partial Differential Operators 

0. Introduction 

Let VQ,..., Vd e ö°f(RN-9 R
N) (0°f stands for the class of infinitely differ

entiate functions all of whose derivatives have, at most, polynomial 
growth) having uniformly bounded first order derivatives. Thinking 
of Vk as being the directional derivative 

f,vl(y) d 

*=1 to' 

define L on G2{BN) by 

L=i^Vl + V,. (0.1) 

The research about which this note is a report studies various properties 
of the operator L by means of the diffusion process associated with L. 

To be more precise, denote by 0 the space of continuous maps 0: 
[0, oo)->JSd which start at the origin. Give 0 the topology of uniform 
convergence on compacts, denote by 3S the Borei field over 0, and let 
if be the standard Wiener measure on (09 âiï), i.e., for all 0 < s < t and 
re, 

iT[Q(t)er\ aÊ) = (2n(t-s))^2 Jexp(Hy-0(s) |2 /2(tf-s 
r 

(a.s., if), where â&8 is the c-algebra over 0 generated by the maps 0 
e0->O(u) eRa for 0 < M < S . Following Ito, we construct a diffusion 

* This research was sponsored in part by N.S.P. Grant MCS 80-07300. 

[1107] 
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associated with L by solving the stochastic integral equation: 
d T T 

X(T9x96) =x+ £ f Vk[X(t9x, 0))oddk(t)+ J V0(X(t9x9d))dt, 
fc=l 0 0 

T^09 (0.2) 

for each x e RN. (Loosely speaking, (0.2) can be thought of as an ordinary 
integral equation into which 0(-) enters as a "control".) Of course, since 
^-almost no O(-) is anywhere of bounded variation, the meaning of 
ddk(t) integration has to be specified. The presence of "o" in our ddk(t) 
integral means that we have adopted thç Stratanovie convention so that 
the solution of (0.2) is, in a weak sense, the limit of solutions to the equa
tions obtained from (0.2) by replacing the path 0( •) with its own molli
fication. It was shown by Ito that for each x eRN, (0.2) uniquely deter
mines, up to a if-md\ set, a map.X( -, x): "@->C([0, oo); RN) with the 
property that for each T^0 the map X(T,x): 0->RN is measurable 
with respect to the ^-completion 8T of &T. Moreover, it is now well-l̂ nown 
(cf. [6]) that a careful selection of solutions leads to a version of X such 
that (t, x)->X(t, x) is Yr-almost surely an element of C0*00 ([0, oo) xRN; RN) 
(i.e. d{a{Xldxa exists and is continuous on [0, oo) xRN for afl multi-indices 
a). In fact, at the same time one can show that for all n > 0, T > 0, 
JB > 0, and p e [0, oo) there is an estimate of the form: 

sup sup max a (t9 x) I 
0<*<r \x\<R a<w I OX \RNJ 

< C(n9 p)(1 +Rfw)(f{n>&T (0.3) 

(cf. [15]). 
The basic connection- between the operator L in (0.1) and the equa

tion (0.2) is the one discovered by Ito. Namely, if the probability measure 
P(T9 œ9 *) on RN is defined by 

P(T9 x9 *) = HTo[X(T9 x))'1 (0.4) 

(i.e., j<p(y)P(T9x9dy) = E^[<p(X(T9x))]) then 

f<p(y)P(T,a!,dy)-<p(a>) = f (/L<p(y)P(t,œ,dy))dt (0.5) 
0 

for all (T9 x) e [0, oo) xRN and <p e Cl(RN) (Cg means bounded continuous 
derivatives up to wth order). In other words, for each x eRN

9P(-9 x9 *) 
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is a generalized solution of the Fokker-Planck equation 

• ( * ,» , * ) =L*P(t9x, * ) , t>09 (0.6) 
dt 

P(09x9*) = « » , 

where Jk* is the formal adjoint of L and in this equation acts on P(t9 x9 *) 
as a function of "*". Moreover, as a consequence of the uniqueness of 
solutions of (0.2), one can show that P(T, x, *) satisfies the Ohapman-Kol-
mogorov equation 

P(s + t9 x9 r) = JP(t9 y9 r) P(s9 x9 dy). (0.7) 

Combining (0.3) with (0.7) and defining 

Pt<p(x) = J<p(y)P(t9x,dy), (0.8) 

we conclude that {Pt; t>0} is a weakly continuous semi-group on Cb(R
N) 

and that Ö^(RN) is {Pt: t>0} invariant for each w> 0. Finally using 
(0.5), we see that for any <p e Ö^(RN), the function u(t, x) = Ptq>(x) is an 
element of O1,2([0, oo) xJS^) and solves the initial value Oauchy problem: 

— =Lu, t>0, 
* (0.9) 

"(0 , - ) = ? ( • ) • 

Up to this point, everything that we have discussed is the natural 
extension of what is well-known about the deterministic case when L = V0 

and X( -, x) is simply the integral curve of V0 starting at x. In particular, 
so far there is nothing more that we can say in the case where L is elliptic 
(i.e., span {Vx(y)9..., Vd(y)} = RN for all yeRN) than we can when 
L = V0. The traditional way in which probabilists have incorporated 
elliptic regularity theory into their field has been to use "uniqueness" 
to identify their probabilistically constructed quantities with analytically 
constructed smooth solutions to equations like (0.9). (The point here 
is that from (0.5) one can easily show that any reasonable solution u 
of (0.9), must be given by %(t9x) =Pt<p(x).) In this way, quantities 
like P(t9 x9 #) are seen to have whatever regularity properties the theory 
of partial differential equations predicts for the fundamental solution 
of (0.9). Obviously, this identification procedure yields no probabilistic 
insight into the origins of elliptic regularity. 
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1. A probabilistic approach to elliptic regularity 

In order to see how one might study elliptic regularity with probabilistic 
machinery, consider the problem of finding a condition which will guarantee 
that the measure P(T, x, *) in (0.4) admits a smooth density. Since (0.4) 
explicitly displays P(T9 x9 *) as the image of HT under a map, it is tempting 
to reason as follows: 

(i) HT is a "smooth" measure in the sense that it has quasi-invariance 
properties when translated by paths having square integrable derivatives. 
This iss the famous theorem of Cameron and Martin (cf. [2]). 

(ii) Since X(T9 x9 0) is described by an equation in which 0( •) enters 
as a "differential", X(T9x96) should be "smooth" under translations 
by paths having square integrable derivatives. 

(iii) If some appropriate notion of the "Jacobian" of 0-+X(T9 x9 6) 
is sufficiently non-degenerate, then one should be able to "lift" translation 
in RN to translation in 0. 

Combining (i), (ii), and (iii), one is led to guess that as "the image 
of a smooth measure under a non-degenerate smooth map" P(T, x, *) 
ought to admit a smooth density. This, in broad outline, is the idea pro
posed by P . Malliavin [9] and [10] for studying the regularity properties 
of P(T, x, *). Not only is the basic idea Malliavin's but also Malliavin 
is the person responsible for suggesting a method of transforming the 
basic idea into rigorous mathematics. Since Malliavin's groundbreaking 
articles, there have beeil various schemes worked out for carrying out 
his program. A sampling of the work in this direction may be found in: 
[14], [13], [5], [1], [16] and [7]. 

I t is not surprising that the difficult part of Malliavin's program is 
that of relating the nondegeneracy condition of (iii) to a nondegeneracy 
statement about the vector fields V0,...,Vd. Indeed, the smoothness 
demanded in- (ii) is a relatively simple consequence of the smoothness of 
these vector fields and .has nothing to do with ellipticity. Thus, elliptic 
regularity results are obtained by this methodology as a consequence 
of finding out how non-degeneracy of the Vks is manifested in non-de
generacy of the Jacobian mentioned in (iii). 

2. Malliavin's covariance matrix 

After carrying out the program outlined in Section 1, one finds that 
the nondegeneracy required in (iii) is measured by the Malliavin covariance 



Stochastic Analysis of Certain Partial Differential Operators 1111 

matrix Ä(T9x) given by the formula 
a T 

l(T9x) = £j J-1(t,x)Vk{X(t,x))®J~1(t9x)Vk(X(t9x))dt. (2.1) 

In (2.1), J(t, x) is the Jacobian dX(t, x)/dx of the map x-+X(T9 x) and 
J"1 (t, x) is its inverse. (Since J(t,x) satisfies a simple linear equation 
which is the stochastic analogue of the familiar one associated with the 
flow generated by a vector field, there is no difficulty showing that J(t,x) 
is invertible.) The fundamental theorem connecting Ä(T9 x) with regularity 
results about P(T, x, *) is that 

P(T,x,dy) =p(T9x9y)dy (2.2) 

with p(T9x9 •) eS?(RN) (the Schwartz class) if 

l /deti(T,^)G p | LQ(iT). (2.3) 
ffe[l,oo) 

A simple argument shows that (2.3) is equivalent to 

Since 
a 5» 

Ä = l 0 

the facts that X(0,a?) = a? and J(0,x) = 1 make it clear that (2.3), 
and therefore (2.2), holds when span {Vx(x),,.., Vd(x)} = 12 ,̂ Of course, 
span {Fi (a?), ..., Vd (x)} = RN is equivalent to saying that L is strictly 
elliptic at x, and so one should expect regularity under this condition. 

Getting away from ellipticity requires more work, and the idea here 
again originates with Malliavin. What one does is expand each J~~l(t9 x) x 
xVk[X(t,x)) in a "stochastic Taylor series" around t = 0. The expres

sion at which one thereby arrives is 

J-\t,x)Vk[X(t,x))~ £ VP(x)6^(t)+Rl(t,xiVk). (2.6) 
IH<Z-1 

To explain (2.6) requires the introduction of a little notation. First, let 
00 

J/ be the index set {0}u (J ({0, ..., d})\ Given v e^9 let \v\ = 0 if v = 0 

and M =Zif ye({0, . . . , d})'. Also, if \v\>l, set [>] = { 1 < J < 1 ; ^ = 0} 
and |[i>]| = card ([>]). The norm ||i>|| is then defined by 

IMI = M + IWi. 

18 — Proceedings..., t. II 
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Next, if 7 e G^(BN', BN) and v e jtf, then 7("> is defined inductively by: 
7(0> = 7 and, for v = (» l t . . . , ^) with I > 1, 7("> = [ 7 V 7(*'>] where 

H 0 if Z = l , 

( " l » M . » V l l Ì f l>2' 

(The notation [X, Y] denotes the commutator or Lie product of the 
vector fields X and Y.) Finally, set 60(t) = t and define 6{v)(t) inductively 

t 
by: 0<0)OO=1; flM(t) = dVi(t) if \v\ = 1; and 0(v>(J) = / 0^(s)od0^(s) 
for r = (v19 ..., vx) with I ^ 2. ° 

Simple time-sealing considerations show that (2.6) is a good Taylor 
expansion in the sense that for any e > 0 , G^^f), J > 0 , has the same 
distribution under HT as ev^2b^(t), t^ 0. Moreover, standard martingale 

T 

estimates allow one to show that j \Rl(t9x-9 Vk)\
2dt is on the order of 

o 
Tl+1. Less standard, and in fact at the heart of this analysis, is the fact 
that ' 

is on the order of Tl. Accepting these two estimates, plugging them into 
(2.6), and using the resulting expression to estimate the right-hand side 
of (2.5), one concludes that (2.3) holds so long as span {VP(x): 1 < k < d 
and IMKl—1} = RN for some Z^O. In particular, one shows in this 
way that (2.2) is true whenever span {V$(x) : 1 < k < d and v e s#} = RN. 

The theorem just discussed is the culmination of efforts by several 
authors. It all began with Malliavin in [9] and [10]. Many important 
details were added by Watanabe [5]. Both these authors restricted their 
attention to the case when the Lie algebra generated by V19 ...,Vd has 
full rank at x. The first attempt to take V0 into account appears in [11], 
where a special case is handled. Bismut [1] was the first to try for the 
full result, although he settled for the existence of a density without 
further regularity. Finally, Kusuoka and I completed the program. One 
version of our work appears in Section 8 of [17]. A second version, more 
along the lines just described, will be forthcoming in our article [8], 
Part II. 

Before moving on, it should be remarked that although the preceding 
regularity result about P(T, x, *) might be thought to follow directly 
from the renowned theorem of Hörmander [4], in fact Hörmander's 
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theorem predicts slightly less. To be precise, Hörmander's theorem says 
that P(T, x, #) will admit a smooth density on the set U consisting of 
those y e RN satisfying span {Vp(y) : 1 < k < d and v e jtf} = RN; it says 
nothing about P(T9x,*) outside of U. Although this may seem to be 
a rather trivial quibble, it exemplifies an important distinction between 
the present approach to regularity theory and the more traditional ana
lytic ones. Namely, this stochastic analytic approach is inherently global, 
whereas most analytic theories are based on local considerations. The 
global nature of the present approach has allowed us to show that the 
regularity due to non-degeneracy at x propagates to the whole of RN. 
Section 3 will be devoted to another example in which this global nature 
of the stochastic analysis is exploited. 

There are several directions in which one can go, starting from our 
basic result about A(t, x). For example, one can try to recover Hörman
der's theorem about the hypoellipticity of L. What one finds is that if 
u e 3(RN) then the wave front set W.F. (u) of u is contained in the union 
of W.F.(ZtO with {(y,Ç): è±V$(y) for all l^k^d and v e j*}. Of 
course, if span {Vp(y): 1 < k < d and V G ì } = RN for each y in the 
open set U, then it follows that ueo°°(U) whenever Lu eC°°(~U). In 
order to get the full Hörmander theorem from this statement, one can 
use the fact that if the Lie algebra generated by {V0,..., Vd} has full rank 
at x°, then there is a Q eö™(RN) suchthat Q(XQ) > 0 and span {fp(x°): 

1 < 7<;<dand ve^} = RN when f0 = e 2 7 0 - | 2 e O ^ e ) ) ^ , Vk = eVk 
k=l d 

for 1 < k < d, and tp is defined accordingly. Since QZL = igfl + tf» it 
i 

is now clear how to deduce that L is hypoelliptic on the set of y at which 
the Lie algebra generated by {V0,..., Vd} has full rank. This is the 
theorem of Hörmander. 

In connection with questions about the hypoellipticity of L, it is 
interesting to note that one can use stochastic analysis to obtain certain 
criteria guaranteeing hypoellipticity even when Hörmander's criterion 
fails. Without going into details, suffice it to say that these criteria are 

d 

stated in terms of the rate at which i^^x) = inf 2 2 [V*? (œ)? vf be-
Ve8N-l ft-l IMKZ 

comes positive as x moves away from a "thin set" on which nTl vanishes. (Of 
course, such results are interesting only for non-analytic TVs.) The results 
alluded to here are related to some of the criteria found by Oleinik and 
Eadekevich in [11]. 

The theorems on which the preceding two paragraphs are based will 
be presented in the forthcoming article [8], Part II. In the same article, 
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we will also present certain subelliptic estimates related to but slightly 
different from those obtained by Bothschild and Stein [12]. 

j3. Some global considerations 

For the most part, Section 2 was devoted to applications of stochastic 
analysis to local regularity questions about L. However, as was men
tioned there, the stochastic analytic approach is inherently global in 
nature and can be made to yield interesting non-local results. The purpose 
of this section is to explain one such application. 

Let M be a compact ö°°-submanifold of RN and assume that for each 
0 < k < d, Vk \M is a vector field on M. Then it is quite easy to see that, 
for each x e M, nUT[X(t9 x) e M, t^ 0) = 1. Thus, we can think of 
{Pt: t > 0 } as a strongly continuous semi-group on G(M). Suppose that 
one wants to find conditions which guarantee that {Pt: t>0} is uni
formly ergodic in the sense that there exists a probability measure ft 
on M and an s > 0 such that ||P*—/*I||0p < Ge~et

9 S > 0, for some G < oo. 
One condition which one needs is that for each non-negative cp e G (M ) \ {0} 
and each x e M there exists a T > 0 such that PTq>(x) > 0. This is a recur
rence condition and is equivalent to the condition that for each open 
U ^ 0 and x e M, if [(3t > 0)X(t9 x) e U) > 0. In addition to recurrence, 
one needs to know that {Pt : t>0} satisfies a mild regularity condition. 
One such regularity condition is the Kakutani-Yoshida version of Doeblin's 
condition (cf. [3]), namely: there is a T > 0 and a compact ET: C(M) 
->G(M) such that \\PT— KT\\QV < 1. Recurrence together with Doeblin's 
condition guarantees uniform ergodicity. To understand what the stoch
astic analysis discussed in Section 1 has to say about Doeblin's con
dition, recall that regularity properties of PT follow from non-degeneracy 
of the Malliavin covariance matrix A(T9x). I t turns out that the mild 
regularity required by Doeblin is satisfieff as soon as one knows that 
for all x e M and each rj e Ä^"1 which is tangent to M at x there exists 
a ï > 0 such that w((rj9Ä(T9 x)rj)BN > o) > 0. In order to phrase these 
conditions without reference to Wiener measure, we use the "support 
theorem" in [18]. To be precise, for each ip e C([0, oo); Ra) and x e M, 
define (P(»,fl?;y)eö([0, oo); M) by: 

d T T 

0(T9 x) y) = x+ JT* J Vk(0(t9 xi y))y>k(t)dt+ J Vo(0(t9 x-9 y>))dt, 
k=l 0 0 

T>0. 



Stochastic Analysis of Certain Partial Differential Operators 1115 

Then the recurrence condition is equivalent to the existence, for each 
open U ^ 0 in M and each xeM, of a ipeO([0, oo); Rd} such that 
0( -, x) f) enters U. The condition on A ( •, x) is equivalent to the existence, 
for each x e M and each rj e B**"1 tangent to M at x, of a y) e G ([0, oo) ; Rd) 
such that 

Êfd^^-T^M dt>0. 
R* fc = l 0 

Obviously, the preceding criteria are based on global properties of the 
TVs. Thus, this application demonstrates the power of stochastic 
analysis to handle global regularity questions. A related global question, 
and one to which so satisfactory a solution has not yet been found, is 
the problem of global hypoellipticity. A joint paper with Kusuoka about 
these and other global questions will be forthcoming [8], Part III. 
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S. WATASTABE 

Excursion Point Processes and Diffusions 

1. Introduction 

About forty years have passed since K. Itô introduced stochastic integrals 
and stochastic differential equations. Since then, the theory of differen
tial-integral calculus for sample paths of stochastic processes, often called 
stochastic analysis or stochastic calculus, has been extensively developed 
and has proved to be one of the most useful methods in the theory of 
stochastic processes and its applications. 

In this theory, point processes and stochastic integrals based on them 
play an important role in describing the discontinuities of semimartin-
gales. But the theory of point processes can also be applied to continuous 
semimartingales. A typical example is the case of Brownian motions in 
which the collection of all excursions of Brownian sample paths, from the 
origin to the origin, say forms a Poisson point process on a function 
space, called a Poisson point process of Brownian excursions (Itô [2]). 
This point process is useful in the study of fine structure of Brownian 
sample paths ; a typical example of this is a simple proof of Levy's down-
crossing theorem as was given in [1] and independently by Maisonneuve 
[5], (cf. e.g. Williams [8], Eogers [6], Kasahara [4] and [1] for related 
topics). 

The purpose of this report is to present some general results on con
structing a "whole" semimartingale starting from "pieces" of the semi-
martingale to be constructed. Such results, applied to the case of well-
known semimartingales like Brownian motions, yield a decomposition 
of the process into pieces like excursions, which, as we mentioned, pro
vides a useful method in studying the properties of sample paths. 

Also these results can be applied to construction problems. In [7] 
(cf. also [1], Ohap. IV, Sec. 7) we have constructed diffusion processes 
corresponding to Wentzell's boundary conditions by means of Poisson 

[1117] 
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point processes of Brownian excursions. There we constructed some sto
chastic processes but the question as to how they are related to the given 
analytical data remains unanswered. By our results obtained here, we 
can write down stochastic differential equations governing these processes 
explicitly and thus show that they are diffusions corresponding actually 
to the analytical data. 

2. Construction of Brownian motion from pieces 

Here we discuss a simple case to see the idea. Suppose we are given a or-finite 
but infinite measure space (W9 S&W9 n)* and also a right-continuous in
creasing family (@t)t>o o f sul t ) ^-fields of êSw. Though we are dealing 
with an infinite measure space, the notion of stochastic processes can be 
defined similarly as in the case of probability measure spaces. So let 
]?(u) == F(u, w), u e [0, oo), w eW, be a real continuous stochastic 
^process adapted to (0gt) with the following properties: 

(F. 1) For a.a. w (n(dwj), F(0) = 0 and there exists a (^)-stopping 
time a = a(w) such that 0 < a < oo and F(u) — P(UAO). 

(F. 2) For every u > 0, ( UA a(w) n(dw) < oo and P(%9 w) e L2(W9 n)* 
w 

Furthermore, for every u2 >ut > 0 and H çL°°(W9 n)c\L2(W9 n) which 
is êSu -measurable, we have 

J {P(%H9 w) ~P(ut, w)l H(w) n(dw) ==. 0 (2.1) 
w 

and 

j [F(u2, w) —F(u19 w)]2H(w) n(dw) 
w 

= f [u2Aa(w)—u1AG(w)']II(w)n(dw). (2.2) 
w 

Example 1 (Brownian excursions). Let W+ ={we<7([0, ooJ-^jR1); 
w(0) = 0, 3cr = a(w), 0 < a(w) < oo and w(t) > 0 f or te (0, a(w)), w(t) 
= 0 f o r ^ o ' ( w ) } , W~ = {weC([0, ooJ-^JB1); - - w e W + } a n d W = TF+u 
\jW~~. Let the <r-fields £%w+, 38w- and ätw be generated by Borei cylinder 

Let n+ be the cr-finite measure on (W+ , 0$w+) defined by 

n+(B) = J (2^)-3/2P0
0;<(5n{c7 = * } ) * , 

0 

where Pj;J is the Brownian excursion law on W+r\{w9 a(w) =t}, ([3] 
or [1], Ex. IV. 8.4. Cf. also [6] and [8] for other interesting descriptions 

file:///jW~~
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oîn+). n" on (W", 88w-) is defined similarly. Then the measure 
n— o+w++o"w" on (W9 SS), where c+ and cr are non-negative constants 
such that c+ + c = 1 , together with E(u,w) =w(u) and the natural 
filtration on W, satisfies the above properties.' 

Example 2 (Square root boundaries). Let P b e the domain in the space-
time plane [0, oo) x B 1 defined by T = {(#, t)\ 0 < t < oo, cxVt< x 
< c2Vt\ where C i < 0 < o 2 , — o o ^ c 1 < c 2 < o o and mind^l , |ö2 |) < oo. 
Let W = {w e ö([0, oo)-*.«1), w(0) = 0 , H cr = cr(w;) such that 0 < cr(w) 
< oo and (t9 w(t)) e r for 0 <t< a(w) and [a(w),w(t)) = (a(w),w(cr(w)) 
G o f for t^ a(w)\, let J ^ be generated by Borei cylinder sets and (3Sl) 
be the natural filtration. Let {Px}xeRi be the one-dimensional Brownian 
motion given canonically on O([0, ooJ-^JB1) and mt = mt(w) = inf |w > 0; 
(w(*0? tf + w) G Si1}, w G O([0, ooJ-^B1). Then there exists a unique c-finite 
measure n on (W90$w) such that, for every tf > 0 and E e ^o^0tOO)_^Ri)9 

W { W G W ; wfeE9 a(w)>t} = J [i(t9x)Px(w: w~teE)dx. 

(wf,wf G O ( [ 0 , ooJ-̂ jR1) for weC([0 , ooJ-^JB1) are defined as usual by 

w+(s) = w(tf + $) andwj~(s) = w(tAs)), where p(t9x) = f~(*o+1/2)y0 (--^-) x 

X e~œ /2', [A0, ipQ] being the first eigenvalue and the first normalized, positive 
eigenf unction of the following eigenvalue problem on L2[(c19 c2), e~x l2dx\: 

\(ip" — x\p') + X\p = 0 in (cX9c2) with y)(c{) = 0 if \c{\ < oo. 

Since f [i(t,x)dx = cons t ' t~ \ j [cr(w) Au\n(dw) < oo for u > 0 if and 
otft w 

only if A 0 < 1 . Therefore this n and F(u9w) =w(u) satisfy the above 
assumptions if and only if XQ < 1. 

ÏTow we construct, on a suitable probability space (Q,&r
9P) with 

a filtration (^t), a stationary (^)-Poisson point process N(dt, dw) 
( = N(dt,dw)(a>)) over W with the characteristic measure n (cf. [1]). 
I t is a Poisson random point measure on (0, oo) x W such that E [N(dt, dw)) 
= dtn(dw) and, for each co e ü, N({t}xW) = 0 or 1 for every t. We 
set, for each co e û, Dp ( = D ^ ) = [t-9 N({t} xW) = 1} and define 
p(t) ( = p(t)(co)) for tei)p as the unique element in W such that 
•^({*>#(*)}) =1' H /( t , w, û>) o n [°> °°) x W x t i is (^)-predictable and 
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t 
fds ff2(s9w9 co)n(dw) < oo for every £ > 0 , for a.a. co(P), then the 
o w 
stochastic integral 

*+ 

M\ = j jf(s9w9') É(ds,dw)9 É(ds,dw) = N(ds9 dw) — dsn(dw)9 
o w 

is defined as an (^)-locally square integrable martingale such that 
t 

(M}t = fds ff(s9w9 -)2n(dw)9 cf. [1] for details. 
o w 

Set 

A(t) = f j a(w) N(ds9 dw) = Zs^sen^Ms)!' (2.5) 
o W 

Then A(t) is a process with stationary independent increments with 
Levy measure v(dx) = n{a(w) edx}. Since / [CT(W)A1] n(dw) < oo, J.(tf) 

is well defined as a right-continuous strictly increasing function in t such 
that limA(t) = oo a.s. Therefore, for every tf > 0 there exists a unique 

£->oo 

s > 0 such that J.(s — ) < tf < -4(s), which we denote by s = %. We set, 
for every fixed t > 0, 

ft(s,w,co) = 
P(j-.A(s~),w) if *>J.(s--) 

0 i f J < J . ( s - ) 

which is (^)-predictable and satisfies ' 

^ [ J * fft(s>w> -)2n(dw)] =E[J ds fft(s9w9-fn 
0 TV 0 W 

It 

0 W 
E[f ds jft(s,w9 -)2n(dw)] =t for every T>0. 

THEOREM 1. Por every fixed t > 0, set 

B(t) = J Jft(s9w9-)É(ds9dw) = f fF(t-A(s-)9w)N(ds9dw). 
o x W o W 

Then t^B(t) has a continuous modification which is a one-dimensional 
Brownian motion. 
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This theorem, applied to Example 1, yields that the process defined by 

\p(s)[t-A(s-)'] if A(s-)^t^ A(s), seDp 

0 otherwise 

is a continuous process such that X(t)~(c+ — c~)o?t = B(t) is a one-
dimensional Brownian motion. Also the theorem applied to Example 2 
yields the following results of P. Greenwood and E. Perkins for one-di
mensional Brownian motion B(t): 

Pfit > 0, 3e > 0 such that cxih< B(t-\-h)-B(t) < c2]/h for all h 
G(0,e)) = l i / A 0 = A 0 ( o 1 , o , ) < l . 

3 . Construction of martingale from pieces 

Now we generalize the result of the previous section. Let (W,&w,n) 
and the (J^)-Poisson point process p(t) on (Û, ^,P) be the same as 
above. But we allow here F(u) = F(u, w), a = a(w) and (0$u) to depend 
on (t, CO)G[0, O O ) X û and F(u) be multi-dimensional. To be precise, 
suppose we are given, for each (t, co) e [0, oo) xQ, the following objects: 

X*>°[u) = (^B(tt,w))?-i 

at,a> = o^^(^) ^ o (here we allow the possibility that J'°(w) = 0) 

(äfy0): a right-continuous increasing family of sub cr-fields of 0iw 

and suppose that they depend on (t, co) (^-predictably in the following 
sense. Both (t, c^-W*" G ì ° ( W - > [ 0 , OO)) and (t, co)-*Ft>oì e L°(W 
-*ö([0, oo)->Rd)) are (J^)-predictable (L°(W->E), in general, is the space 
of JS-valued ^-measurable function on W) and, for (£&"), we assume 
the following: there exists a Polish space S and an S-valued function 
f = £*•* (u, w) measurable in (t, co, u, w), (^t)-predictable in (t, co) and 
continuous in u e [0, oo) such that, for fixed (t, co), 

4lm = n o[^°>>'); iXu + s]. (3.1) 
6>0 

We assume conditions similar to (F. 1) and (F. 2) for F1^ and o*>to
9 for 

every (t, co) and i = 1 ,2, . . . , ri!, except for (2.2). Instead, we assume 
that, for every (t, co), i,j=l,29...9d9 u2>ux>0, and every H 
eL°° (W, n) which is âS1^ -measurable, we have 

J[F^(u2,w)-F^(u19w)1 [Ft
j>

0>(u2,w)-Ft
j>

(0(u19w)]H(w)®n(dw) 
w 

(3.2) 
= jl<F^,F^}(u2,w)^(F^9F^y(u19w)]H(w) n(dw) 

w 
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where <-F'-,0>, JPJ,ra>(^, to) is real-valued, measurable in (t9 co9u9w)9 (^ty 
predictable in (t9 co) and for each (t9 co) and a.a. w(n)9 u-><Ft

i'
(°9 lfy

my(u9 w) 
is continuous with finite total variation on each bounded interval, (F^0*, 
XfmXQ,w)=0 and Qfy", Xfytf'-AU, w) = <JF^, JPl^X«,»); farther-
more, it is (^H-adapted ^or e a ck (*? <»)• We assume also that, for 
every tf > 0, 

• J ds j [1 A ors'w (to)] »(Aw) < oo a.s. (3.3) 
0 PP 

Let g(s) be an (J^)-adapted, nonnegative, measurable and locally inte
grable process and A (0) be an «^-measurable nonnegative random variable. 
Set 

t+ t 
A(t) = .4(0)+/ J os>a,(w)N(ds9dw)+ f Q(s)ds (3.4=) 

0 W 0 

and assume that t->A(t) is strictly increasing and lim-4.(J) = oo a.s. 

Then for every t > 0 there exists a unique s such that A(s—)< t < A(s) 
(A(Q—•) = 0), which we denote by s =<pt. Finally we assume that, for 
every t > 0 and i = 1, 2,..., d9 

t+ 
f f <Ff'", JFJ'-Xff''*, w) N(ds9 dw) < oo a.s. (3.5) 
0 W 

' For each fixed t > 0, we define a or-field Jfj on Q by 

^ = ^ ( ^ V o r [ l ^ > - J . ( ^ r ) , * (* ) )} 1*«*Jf (3.6) 

in which we used the following convention. Let A and a be extrapoints 
attached to W and 8, respectively, and we set p (t) = A if t$ D^, èU(a(u, A) 
= a, !%"(*, A) E= 0, ^"(t*,.«?) = a and ^ " ( u , w) = 0 if u < 0. 

THEOREM 2. flc*, /oy each t e [0,oo) and i =1,2 ,...,d, 

n+ 
Mi(t) = j jFs

i'
(0[t-A(s-),w)Ê(ds9dw). (3.7) 

o W 

Then M^t) has a continuous modification which is an (3^t)-locaUy square 
integrable martingale and 

(Mi9 MjXt) = J j(Fl><»,F*>my[t-A(s-)9w)l[(ds9dw). (3.8) 
0 W 
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We denote this system M = {MJ of martingales by MF = {Jff}. 
Let 0it(O(u, w), (t, co) G [0, oo) xQ, (u, w) e [0, oo) x ( ¥ u {A}) be given; 
suppose it is real-valued, measurable in (t, co9 u, w), (.^-predictable in 
(t, co), (J^,0>)-predictable in (u, w) and 0t'(o(u, A) = 0. Assume, for sim
plicity, that 0ttW(u,w) is bounded. Then for each fixed (t, co) and 
i = 1, 2 , . . . , d, we can define the stochastic integral 

(0-Fftm (u, w) = J 0l>m(v, w)dvFi(v9 w) 
0 

on the measure space {W, ÛSW, n, (^ai)} in the same way as the usual 
Itô integrals, so that (0-F)tt(O = {(0^)^} has the same properties as 
Fi>0). Define an («^-predictable process 0 by 

0(t7 ay) = 0<?i>°>{t-A(cpt-), p(<pt)). (3.9) 

THEOREM 3. 

t 

JÖ(s, co) dMf(s) = MfF(t), i = 1, 2, . . . , d. 
0 

Example 3. A typical example of such Fl,(0(u) = (.Fi,ID(w, w)) and 
a*,» Œ < .̂»(W) is furnished by those (P(f(*-),w)(tf) and <r[#(£(tf-), w)] 
defined in [7] (cf. also [1], p. 217) ; then ^ w is generated by (P(f (t —), w) (0), 
*;< w. In this case, they depend on (t, co) through the («^-predictable 
process t-(t—). Applying the above Theorems 2 and 3, we can obtain the 
stochastic differential equation governing the process X(t) constructed there 
and we see that X(t) is actually a diffusion process corresponding to the 
given differential operator and WentzelPs boundary condition. 
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ANTONIO AMBKOSETTI 

Existence and Multiplicity Results for Some Classes 
of Nonlinear Problems 

This survey is concerned with the existence of multiple solutions of 
nonlinear problems as elliptic boundary value problems and Hamiltonian 
systems. The main tools usually employed to get results of that type 
are: topological degree, bifurcation theory, critical point theory, global 
inversion theorems in presence of singularities, etc. 

Here the discussion will be restricted to the following cases: §1 — study 
of singularities of mappings and connections with multiplicity results, 
§2 — variational problems and critical point theory. 

§ i 

Let X, Y be Banach spaces and 0 eGl(X,Y). A. singular point is defined 
to be any ueX such that the Fréchet derivative d0(u) e£?(X, Y) is 
not invertible. Denote by Z the set of all singular points of 0. If S = 0 
then 0 is a homeomorphism from X onto Y, provided 0 is proper (i.e., 
0"1(E) is compact for all compact sets K c Y). In contrast to this, the 
presence of singularities gives rise to the existence of multiple solutions. 

In order to describe the range of 0, it is convenient to study both 
U and 0(2). Precisely, let us suppose that 0 e G2(X9 Y) and, given u eS9 

that the following holds: 

3veX, v^O and y>eY*-{0} such that: 
Ker(d0(u)) = Rv and Eange (d0(u)) =Ker(^). (01) 

IweX such that <d20(u)[v~\[w]} y > ^ 0. (02) 

Under conditions (01), (02) it is possible to show that 3 e > 0 such 
that 2riBB(u) is a Ofl-manifold of codimension 1 in X9 where B8(u) 
: = {z e Xi \\z — u\\ < e}. Moreover, in the case of 0 = Identity — Compact, 

[1125] 
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it is also possible to establish how the Leray-Schauder index of the possible 
non-singular solutions of 0(u) = 0 changes, depending on their position 
with respect to U. This analysis is already sufficient for evaluating the 
number of solutions of certain problems [6]: 

1. Example. Let JB be a Hilbert space, let L be a linear, compact, 
self-adjoint positive operator in E9 let H e G2 (E, E) be compact, homo
geneous of degree a9 a odd, with dH(u) self-adjoint strictly positive, 
(Vw 7^0). Consider the equation: 

u — XLn +3(u) = 0. (lx) 

Denote by p^9 0 < ^ ^ ^ 2 < ..., the characteristic values of L. The 
following holds concerning the nontrivial (i.e., ^ 0) solutions of (lx): 

(i) if /zx is simple and \ix < X < ^2 then (1A) has precisely 2 nontrivial 
solutions ; 

(ii) if p2 is also simple and p,2 < X < [t2 + e, e small enough, then (lx) 
has precisely 4 nontrivial solutions. 

Eor example, the Van Karman equations of nonlinear elasticity can 
be* put in the form (1A). 

In order to study 0(H), the assumption (02) has to be strengthened: 

< M W W W , y>> # 0 . (03) 

Under conditions (01), (03) it is possible to prove that 3 e > 0 such 
that 0[2JnBB(uj) is a G1 -manifold of codimension 1 in Y. This, in turn, 
allows one to show [9]: 

2. THEOREM. Let 0 e G2(X, Y) be proper and let (01), (03) hold for all 
%eZ. Moreover, suppose that 2 is connected and that 0(u) =h has a unique 
solution V ä e 0(2). Then 0(2) is a Gx-manifold of codimension 1 in Y 
and there are two open sets YQ and Y2 such that Y = You0(2)uY2 cmd 
0(u) — y has precisely 0,1 or 2 solutions, according as y eYQ9 0(2) or Y2. 

3. Example. Consider the boundary value problem 

—An =f(u) + h in ß, w = O o n dQ9 (2) 

where Û is a bounded domain in Rn with smooth boundary dQ. Let X9 Y 
be the Holder spaces Gl+a(Q) and G0+a(Q)9 respectively, and denote by 
0 < j l 1 < ^ 2 < . . . the eigenvalues of — A with zero Dirichlet boundary 
conditions. IîfeC2(R) is such that f"(s) > 0 , Vs eJB, and 

-oo < lim f'(s) < Ai < lim f'(s) < X2, 
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then 0(u) : = — Au —f(u) turns out to verify the assumptions of Theorem 2. 
Hence the number of solutions of (2) is completely determined by the 
position of h in Y9 according to the theorem. 

The study of (2) has been carried over. Assuming f eGl(R) is such 
that lim s~lf(s) < Xx< lim s"1f(s) < oo and taking h =t(p + h19<p being 

fi-»— 00 S-+00 

the eigenf unction associated to Xx, j cphx = 0 , it is shown in [1] that 
there exists t* == f(hi) such that (2) has at least 2 solutions for t < f9 

at least one solution for t = f9 and no solutions for t > f. 

It would be interesting to obtain a kind of global inversion theorem 
in t ie case where (03) is not satisfied, or else, to establish the precise 
number of solutions of (2) when/'(s) crosses more than one eigenvalue. 

§2 

If 0 = o is the Euler equation of some functional J: X->R9 the critical 
point theory supplies a method for finding multiplicity results, mainly 
when J is invariant under some group action (as the /^-action given by 
the time-translation in the case of autonomous systems of ordinary differ
ential equations, or the Za-symmetry in the case of boundary value 
problems with odd nonlinearities, see below). 

However, regarding for the moment the general case, we consider 
the rather typical situation in which u = 0 is a stationary point of J 
and one looks for nontrivial solutions of J'(u) = 0. When J is bounded 
neither from above nor from below, these stationary points have to be 
found via min-max procedures. A result of this kind is the following [10]: 

4. THEOREM. Let J eG1(X,R) satisfy the (PS) condition, i.e., every un 

with J(un) bounded and J'(un)->0 has a converging subsequence. Moreover, 
suppose J(0) = 0 and 3 r, Q > 0 and û eX such that: (i) J(u) > Q for 
all \\u\\ = r\ (ii) \\û\\ >r and J(û) = 0. Then J has at least one stationary 
point v 76 0 such that 

J(v) = inf max {J (#(*)): 0 < J < i } 
per 

where r denotes the class of paths from u =s 0 to u = û. 

Theorem 4 can be applied to find nontrivial solutions of several classes 
of differential equations as, for example, elliptic superlinear boundary 
value problems [10], periodic solutions of the vibrating string [15], etc. 

19 — Proceedings..., t. II 
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For a generalization to handle the case where J is indefinite at u = 09 

see [13], [22]. 
In order to find further critical points of J, Theorem 4 has to be some

what sharpened. A result in this direction has been proved in [3]: if 
the stationary point v found as inf-max in Theorem 4 is nondegenerate, 
then it has Morse index equal to 1. As an application one has: 

5. Example. Consider the boundary value problem (2) with h ==tcp + h±. 
The solutions of (2) are the stationary points of 

JM := ilMlUi,«- / W - J ** o n * = Wl>2(£2)9 

u 
where F(u) : = / f(s)ds. Assuming lim f'(s) < Xx and X2 < lim/'(s) =fi Xt 

0 s->—oo S->oo 

and finite, one shows that 3tf0 \ft < t0 J has a local minimum (then with 
Morse index 0) at some ux < 0, and another stationary point n2 > 0 
which is nondegenerate and with Morse index > 2. Therefore J has to 
possess at least a third critical point, for any such t. 

Another situation which occurs in applications is that one can need 
to find stationary points with additional properties, see the examples 
below. To this purpose, we will describe a device which allows to obtain 
stationary points of J as critical points of J constrained on a suitable 
manifold. 

Set h(u) := (J*'(u)9u} and M : = [u eX — {0}: h(n) = 0}. Suppose 
that heC1 and that <h'(u), u} ^ 0, Vw e M and let n* e If be a criticai 
point of J on M. Then 3X such that J'(u*) = Xh'(u*). But <J'(^*), M*> 
= h(u*) = 0 and <ä'(M*), U*} ^ 0 implies X = 0 and thus u* is a sta
tionary point of J. Of particular interest is the case where J has a mini
mum on M. 

6. Example. Consider the system of ordinary differential equations 

-& =Ax + VV(x) (3) 

where x e Rn
9 J. is a symmetric matrix with eigenvalues 0 < co\ < co\ < ... 

...<o>^ and VeG2(Rn
9 R) is convex and ß-homogeneous, ß>2. Let 

X: = La(ß92iz;Rn)9 a = ß(ß-l)-1. lì a > con then the densely defined 
operator #!->—a%x— Ax is invertible with compact inverse La. Let V* 
denote the Legendre transform of 7, and define J on X by seeing 

J(u):= - i J u-Lau+ f V*(u). 
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One verifies that the stationary points u of J correspond, through 
the relation x = W*(u)9 to the 27c/o,-periodic solutions of (3) (the Dual 
Action Principle [16]). Using the above procedure, one shows that J has 
on M a minimum which corresponds to Solutions of (3) with minimal 
period 27c/o*, ysfa>con. 

Por other results concerning solutions of Hamiltonian systems with 
a prescribed minimal period, see [17] for subquadratic Hamiltonians, [6] 
for super quadratic ones and [19] for some results in the case of non-con
vex Hamiltonians. 

Other applications concern the existence of steady vortex rings in 
an ideal fluid [7] and a proof of a remarkable result by Ekeland and 
Lasry [18] which we are now going to expose. 

Let H eG1 (R2n, R) and consider the Hamiltonian system 

z=fVH(z) (HS) 

where z = (p, q) eR2n, • = djdt and f(p, q) = (—2,jp). Suppose S"1^) 
= dQ, where Q is a bounded convex domain in R2n

9 0 e int Q, and that 
VB(z) 7̂  0, V# e dQ. Denote by Br the ball in R2n of radius r and center 0. 

7. THEOREM. Let H satisfy the above assumptions. Moreover, suppose 
there are r, B > 0 with B2 < 2r* such that Br c Q c BR. Then (HS) has 
at least n distiQict periodic orbits on H^Çl). 

Following [8], the proof can be carried out as follows: 
(i) Without loss of generality H can be taken homogeneous, of degree 

4, say, so that <?, the Legendre transform of H9 turns out to be homo-
2TT 

geneous of degree 4/3. Let E = [u e LAI* (0, 2TT; R2n): / u = 0} and denote 

by L the operator defined on E by setting Lu = z iff —• f& = u. If u e E 
2TT 2ïT 

is a critical point of J : = — J f u-Lu+ f G(u), with h — G(u) ^= 0, then 
o ö 

s :=7r 1 / 4 VG(u(1c-lf2t)) is a periodic solution of (HS) on .ET1 (1). 
(ii) One examines J constrained on M = {u eE: (J'(u), u) = 0}. In 

2TC 

the present case one has JlM(u) = \ j G(u). Both J and M are invariant 
o 

under the ^-action u(t)\->u(t+0) and the Lusternik-Schnirelman critical 
point theory provides the existence of critical points of J jM via inf-max. 
Using the specific assumption of Theorem 7 one proves that at least n of 
those critical points correspond to elements of E with minimal period 2TC, 
and hence give rise to different periodic orbits of (HS) on B~l (1). 
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An improvement of Theorem 7 was recently obtained; see [14]. 
We end the report with a brief discussion of a question concerning 

superlinear boundary value problems. 
„Let Q be a bounded domain in Rn with smooth boundary dQ and 

consider 
—Au =u\u\p-1 + h(x) in Q, u = 0 on dQ. (4) 

If h = 0 and 1 <p < (n + 2)j(n—2) then (4) has infinitely many sol
utions which can be found as stationary points on W\t2(Q) of 

Of course, the Z2-symmetry of J has to be used here. 
By means of replacing this by the equivalent critical point problem 

with constraint, we have proved in [2] a perturbation result: roughly, 
it states that V& e JV, 3 e (ft) such that (4) has at least Jc solutions provided 
\\h\\Loo < e(lc). Using essentially the same device jointly with some asymp
totic estimates, the existence of infinitely many solutions of (4) has been 
proved in [12], [24], but for a smaller range of p. For example, among 
others, one has 

8. THEOREM. Let I be the greatest root of (2n~2)s2 — (n+2)s — n = 0. 
Then if 1 < p < Z, (4) has infinitely many solutions. 

For another proof, see [23]. The problem to see whether or not 
Theorem 8 holds for all p < (n + 2)/(n — 2) is open. For a result in this 
direction, see [11]. For other perturbation results using the Morse Theory 
and applications to nonlinear eigenvalue problems, see [21]. 

Lastly, a few words on the problem 

—Au = Xu — g(u) in ß , u = 0 on dQ9 (5) 

where g(u) = o(\u\) at u = 0 and ^ " ^ ( ^ - ^ o o as \u\-^oo. While for g 
odd (5) has been exhaustively investigated, much less is known in the 
general case, see [4], [20], [25]. To obtain a complete multiplicity result 
for (5) seems to be an interesting goal to pursue. 
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JEAlsT-MIOHEL BONY 

Propagation et interaction des singularités pour les 
solutions des équations aux dérivées partielles 

non-linéaires 

1. Introduction 

Nous nous intéresserons aux équations non linéaires générales d'ordre m: 

${x, e(a), <u{œ),..., 3*«(»), ...),«<„= 0 (1) 

et au cas particulier des équations semi-linéaires: 

J£ aB(o>)aB«(a>)+Gf(», e(a), ..., dßu(a>), ...)w<B_i = 0 (2) 
\a\=m 

où x e Rn, où F (ou G) est une fonction G°° à valeurs réelles de ses argu
ments, où c(x) (le contrôle) est une fonction à valeurs vectorielles donnée 
(pas nécessairement G°°), et où u(x) est une fonction inconnue à valeurs 
réelles. 

Depuis 1978, un certain nombre de travaux ont été consacrés à la 
propagation des singularités pour ces équations. Il est remarquable que 
des résultats généraux, indépendants de la nature de F, puissent être 
obtenus, alors que les problèmes de l'existence de solutions, ou de l'appa
rition d'ondes de choc, dépendent fortement de la nature (croissance, 
convexité ...) de F. Il est également remarquable que les méthodes d'ana
lyse microlocale, surtout développées jusqu'ici pour les équations linéaires, 
s'appliquent à ce problème. 

Pour fixer les idées, nous décrirons notre problématique dans le cas 
où l'équation (1), munie d'une solution u, est strictement hyperbolique 
dans Rn entier par rapport à la direction xn, c'est-à-dire que le polynôme 
m fn: J£ (dFjdua)[x9 c(x),u(x)...) £apossède m racines réelles distinctes 

\a\mzm 

[1133] 
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pour I ' = (fi, ..., £w_i) non nul (bien entendu, pour (2), cette condition 
ne dépend que de l'équation et pas de n). 

Nous poserons le problème de la propagation des singularités de la 
façon suivante (le problème de l'existence de solutions est évacué par 
la formulation même). 

PROBLèME 1. Soit u une solution de (1) appartenant à l'espace de 
Sobolev Hs dans Rn entier. On suppose connues les singularités de c(x) 
dans Rn, et celles de u(x) dans R*L = {x e Rn

9 œn < 0}. 
Pour s' > s, peut-on déterminer si u appartient à Hs' au voisinage 

d'un point w avec xn > 0 ? 

PROBLèME l ' . Même énoncé, mais on suppose connues les singularités 
de c(x), et des données de Oauchy (dldxn)

j u(x'9 0), pour j = 0,. . . , m— 1. 

La situation est schématisée dans le tableau suivant: 

i 

(a) 
chocs 

(c) S 
interaction Xs = 2 s " so 

/ lb) 
/ comportement 

X linéaire 

SQ S 

(a) Si s est inférieur à un indice critique s0, on ne peut pas prédire 
en général le comportement des singularités dans l'avenir en ne connaissant 
que les singularités de u dans le passé. Il est a priori possible (cela dépend 
de la nature de F) que u soit G00 dans le passé et qu'une singularité (choc) 
apparaisse brusquement. Cela est par contre impossible pour s > s0 (seuls 
des chocs "violents" peuvent apparaître). On peut prendre s0 — n\2 + m+l 
pour l'équation (1), sQ = nfô + m—l pour (2), et des valeurs plus faibles 
pour des équations moins méchamment non linéaires. 

(b) Pour s > s0, si l'on ne recherche qu'une régularité limitée s' < 2s — 
— sQ sur u, les résultats sont les mêmes que pour une équation linéaire. 
Supposons que pour chaque bicaractéristique (nulle) rétrograde B issue 
de x, on ait c(x) e Hs'~m+1 le long de B, et qu'il existe un point de Bn JBÜ 
où u appartienne à Hs\ alors u appartient à Hs' au voisinage de x. 

On trouvera au §2 les résultats microlocaux et plus précis (théorè
mes 1, 2 et 3). La méthode de démonstration développée dans [6] consiste 
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à ramener l'équation (1) à une équation "paradifférentielle" linéaire, 
à laquelle les techniques pseudodifférentielles s'appliquent avec relative
ment peu de modifications. Cela est résumé au § 3. 

(c) Pour s'>2s — s0 (en particulier, si l'on désire déterminer si u 
appartient à G00 en Se), le problème est encore largement ouvert. Il est 
encore possible, au moins dans certains cas, de prédire le comportement 
des singularités dans l'avenir, mais un phénomène nouveau, typiquement 
non linéaire, apparaît: l'interaction des singularités. Nous voudrions 
d'abord donner une explication heuristique de ce phénomène. 

Considérons par exemple une solution u de (2), avec o = 0 pour sim
plifier. Supposons que, dans le passé, u soit G°° hors de deux hypersurfaces 
caractéristiques 2X et 229 et même que son spectre singulier (ou front 
d'onde) BB(u) soit la réunion Tlxr\T%2 des variétés conormales à 2X et 
à 22. Supposons que, pour xn > 0, E1 et 22 se coupent le long de r, de 
codimension 2. 

Si l'équation était linéaire, on aurait également SS(w) = T ^ u T ^ dans 
l'avenir, et il est raisonnable de penser que, dans notre cas, on a encore 
"en général" SS(^) =D T\\JT%2. 

Le point-clef est que, même si SS(^) était réduit à T%jjT%%, le spectre 
singulier de g(x) = G(x, u, ..., dßu,...) serait plus gros au dessus de r 
(dans les meilleurs cas — u distribution de Fourier — ce serait T ^ u T ^ u 
uTp). Les opérations non linéaires introduisent des singularités microlo
cales en des points (xQ, f0) où u n'en a pas, sauf si on se limite à des sin
gularités d'ordre s' < 2s—s0 (cf. corollaire 5) ce qui "explique" la validité 
et les limites des résultats (b). 

Si effectivement SS(#) contient T*, on a 

£aa(x)dau = -g 
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et d'après les propriétés des équations linéaires, SS(w) va contenir dans 
l'avenir les conormaux des autres hypersurfaces caractéristiques 23,... 
. . . , 2m passant par T. D'après (b), les singularités apparues sur 273,..., 2m 

issues de l'interaction seront moins violentes (2s — sQ) que les singularités 
sur 2X et 22(s). 

On dispose maintenant de toute une série d'exemples de solutions u 
mettant en évidence ce phénomène d'interaction' (voir [1], [13], [17] 
et [20]). Nous décrivons aux §§ 4 et 5 l'essentiel des résultats positifs 
(concluant à la régularité de u dans certaines régions) connus à ce jour. 

2. Localisation et propagation des singularités ([4], [5], [6]) 

Bappelons d'abord quelques définitions sur la régularité microlocale des 
distributions. Soit (xQ9 £0) e Rn x (Rn\ {0}). 

— On dit que u(x) appartient microlocalement à Vespace de Sobolev 
H* an point (x0, §0), si pour toute fonction <p(x) eO~, à support assez 
proche de xQ9 on a 

Çà(S)(l + mmeL2(r)9 

où T est un cône ouvert de Rn, contenant | 0 . Il est équivalent de dire 
qu'il existe un opérateur pseudo-différentiel classique E, d'ordre 0, 
de symbole principal non nul en (x09 £0), tel que EueH3. 

— On dit de même que u(x) appartient microlocalement à Vespace 
de Solder Ga,l s'il existe un opérateur E comme ci-dessus tel que Eu e Ga. 

L'ensemble des (x, £) tels que u n'y soit pas microlocalement G00 

ü'est autre que le spectre singulier (ou front d'onde) de u. 
Eevenons à l'équation (1) munie d'une solution u: 

F[x9 c(x), u(x)9..., dßu(x)9...) = 0 

(aucune hypothèse d'hyperbolicité n'étant faite). Si c est continue, et 
si u est m fois continûment différentiable, on définit le "symbole prin
cipal" de (1) (au facteur (i)m près) par 

Pm(œ,S) = J T -^- (ä?> ••-, 8ßu(x), ...)Sa. 

1 Pour a = k +ß, k e N, 0 < ß < 1, on dit que u appartient à Oa si \<fiu (x) — dKu [y)\ 
< c\y — xf pour |A| < k. Pour a entier, les espaces Oa doivent être remplacés par les 
classes de Zygmund correspondantes. 
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— Nous dirons que (x0, So) est caractéristique pour (1) si on a 
Ai(»o>fo) = 0 . 

— Nous appellerons bicaractéristiques les courbes intégrales du champ 
hamiltonien de pm (en supposant pm à gradient lipschitzien). La bicarac-
téristique issue de (x09 So) est la solution x(s)9 S (s) de 

Les résultats fondamentaux de ce paragraphe sont les suivants: 

THéOBèME 1. Soit u wie solution de (1) appartenant à Om+e (resp. 
Hnl2+m+e) avec Q > 0, et supposons que le contrôle c appartienne à GQ (resp. 
Eììl2+Q). Soit (x09 So) un point non caractéristique tel que G appartienne 
microlocalement à G6' (resp. Enf2+Q') en (xQ, | 0 ) . Alors u appartient microlo
calement à Cm+e" (resp. Hnl2+m+B") en (x09 f0) avec Q" = Min(e + e'> 2g). 

En l'absence de singularités du contrôle, on obtient un gain de régu
larité Q en tous les points non-caractéristiques. 

THéORèME 2. Soit % une solution de (1) appartenant à Hnl2+m+1+e
9 

g > 0 , et telle que pm(x9 S) soit à gradient lipschitzien. On suppose que 
c appartient à Enl2+1+Q. 

Soit (x0, So) w* point caractéristique, et r un arc de bicaractéristique 
issu de (x0, SQ). Soit CT^2Q, et supposons que u appartienne à jjnfi+™>+1+a 

microlocalement en (x09 £0), et que c appartienne à ]E[nl2+l+a microlocalement 
en tout point de R Alors u appartient à Bnl2+m+1+a microlocalement en 
tout point de r. 

Bemarques. (a) Pour des équations moins méchamment non-linéaires, 
la régularité minimale exigée pour u s'affaiblit. On trouvera dans [6] 
les résultats précis, ainsi que la manière de les étendre à des équations 

_ 3 . du \ 
qui ne sont pas sous la forme (1) [Par exemple, 2J2J-— (-4# (#> u) -z—) 
= 0 1 * ^ 

(b) Pour des équations linéaires, en considérant le second membre 
comme terme de contrôle, on ne retrouve que des résultats classiques. 
On obtient par contre des résultats non triviaux sur les équations linéaires 
à coefficients peu réguliers en prenant comme terme de contrôle l'ensemble 
des coefficients (voir aussi [2]). 

(c) Revenons au cas de l'introduction où l'équation est strictement 



1138 Section 11: J.-M. Bony 

hyperbolique par rapport à la direction xn (on peut remplacer Rn et 
jßü par un ouvert Q et Q~ = Qr\{xn < 0] à condition que Q soit dans 
le domaine d'influence de ß~: les bicaractéristiques nulles rétrograde 
issues d'un point de Q entrent dans Q" avant de sortir de Q. 

Sitine solution u appartient à Hs (s = w/2 + m + l + g) et est de 
classe G00 dans Q", il résulte des théorèmes 1 et 2 que u appartient mi
crolocalement à Hs+Q+1 aux points non caractéristiques, et à Ss+8 aux 
points caractéristiques. La fonction u appartient donc à Hs+e dans Q 
tout entier. Par récurrence, on en déduit que u e G°°(Q). Il ne peut pas 
apparaître de chocs dès que la régularité de u dépasse .jp/2*™*1, 

Pour le problème de Oauchy, on a le résultat suivant. 

THéORèME 3. Soient s = n\2 +m + 1 + g ; e > O ; O < 0 < e ; t f < s+0. 
Soit u une solution de (1) avec ueHs(Q)etce Hs~m(Q). Soit x'9 S' e R71"1 x 
x (JR^^X {0}) et soit SneR tel iue ^ point (x'9 0; | ' , Sn) soit caractéristique. 

Soit r un aro de bicaractêristique issu de ce point. Sous les trois hypothèses 
suivantes, on a u e H1 microlocalement en tout point de r. 

(a) ( ) u(x\ 0) e jp+*+I/a-J microlocalement en (x'9 £')9pour j = 0, ... 
\ Mj 

..., m—1. 
(b) c(x) sEs"m+e+1 microlocalement en tout point de R 
(c) Pour <p(x) eG™ (Rn)9 à support près de (x'9 0), et pour G voisinage 

conique de S' dans Rn"1
9 on a 

^(|)( l + |||2/s-w)/2(l + iriT+1)/2ei2(öxJB) 

(appartenance microlocale aux espaces ip-w»e+1 de [11]). 

On construit d'abord, grâce à un théorème de relèvement des traces, 
une fonction v(x) vérifiant (dldxn)

kv(x'9 0) = (dldxn)
ku(x'9 0) pour 

0 < & < [s—1/2], et appartenant microlocalement à l'espace HSil+e, puis 
on applique le théorème 2 à l'équation vérifiée par la fonction w(x) égale 
à u(x)— v(x) pour œn > 0 , et à 0 sinon. 

En utilisant également les techniques paradifférentielles, P. Godin [10] 
a étudié le problème des dérivées obliques non linéaires (non nécessairement 
elliptique): 

F(x, u, Vu, V2u) = 0 dans Q, 

f(x9 u, Vu) = 0 sur dQ 

en supposant que le problème linéarisé est sous-elliptique. H montre 
alors que les solutions assez régulières de ce problème sont en fait 0°°. 
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3. Calcul paradifférentiel et linéarisation ([4], [5], [6]) 

3.1. Paramulliplication. Soit a(x) une foction de classe GQ (Q > 0 non 
entier). Nous lui associerons l'opérateur suivant Ta (paramultiplication 
par a) défini par 

2>(£) = / x(S-n,n)à(S-rì)u(rì)dril(2izr 

où % est une fonction indéfiniment derivable hors de 0, homogène de 
degré 0, égale à 1 pour \S — rj\ < ex[77I et à 0 pour \S — r]\ > e2\r}\ (0 < ex 

< ß2 < 1). 
Contrairement à la multiplication par a9 l'opérateur Ta applique 

Es (resp. Ga) dans lui-même quels que soient s et a. Sa définition fait 
intervenir une fonction arbitraire %, mais un changement de fonction % 
ne modifie Ta que par l'addition d'un opérateur g-régularisant appli
quant E8 (resp. Ga) dans Jîs+e (resp. Ga+e) quels que soient s et a. 

Nous renvoyons à [6] pour la définition (beaucoup plus parlante) et 
l'étude de Ta à partir de la décomposition de Littlewood-Paley et des 
techniques de [9]. Les propriétés de composition (TaoTb—Tab est g-ré-
gularisant) et de commutation permettent d'englober dans un même 
ealcul les paramultiplications et les opérateurs pseudo-différentiels classi
ques. 

3.2. Symboles et opérateurs paradifférentiels. On dit qu.ep(x9 S) appartient 
à la classe de symboles 2™ si 

p(x9 S) =pm(œ, Ç)+Pm-i(œ9 f)+. . .+#m- [ c ](0, S), 

où pm_j est de classe Ge~j par rapport à x9 de classe G°° en S9 et homogène 
de degré m—j en f. 

A chaque classe de symboles correspond une classe d'opérateurs 
Op (££*), et on a les propriétés suivantes. 

(a) Si PeOp(i7™), P applique M8 dans E8~m (et Gô dans Cô~m). Si 
^ eZP et si u appartient à H8' microlocalement en (x09 So) alors Pu eE? 
microlocalement en (x0, So) avec ' = Min (s' —m, s — m+g). 

(b) A chaque PeOp(27™) correspond son symbole c(P)e2f. Les 
formules donnant les symboles du composé a(PoQ) et de l'adjoint c(P*) 
sont les formules classiques en calcul pseudo-différentiel, mais arrêtées 
aux [g] premiers termes. 

(c) Si a e GB
9 o n a î a e Op 2°Q et a(Ta) = a(x). Si P est un opérateur 

pseudo-différentiel classique d'ordre m, on a P e Op 2™ pour tout Q9 et 
c(P) est son symbole classique, arrêté aux [g] premiers termes. 
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(d) Si P eOp(Z7), on a a(P) = 0 si et seulement si P applique E3 

dans Es~m+e. 
(e) Si le symbole principal de P est non nul, P est inversible modulo 

un opérateur g-regularisant. 

Au vu de ces propriétés, il est clair qu'un grand nombre des démon
strations classiques utilisant les opérateurs pseudo-différentiels s'étendront 
aux opérateurs paradifférentiels, la différence essentielle étant que les 
résultats seront obtenus "modulo un opérateur g-régularisant" au lieu 
de "modulo un opérateur infiniment régularisant". 

Des extensions du calcul paradifférentiel au cas de symboles non 
homogènes sont dues à T. Meyer [14] d'une part, et à P. Godin [10] 
d'autre part. 

3.3. Fonctions composées et paramultiplication. En comparant l'expression 

de au à l'expression du n° 3.1, on voit que au = Tau+Tua+r, où r 
correspond à l'intégration sur le domaine s± [q|< |£ —rçK(l/«i)|rç|. Le terme 
Tau a la régularité locale et microlocale de u, le terme Tua a la régularité 
locale et microlocale de a, quant à r9 il appartient à E8+t"nl2 si a e E8 et 
u e EK Le résultat clef de la théorie est la généralisation suivante. 

THéORèME4. Soient ux,...,uN appartenant à GQ [resp. JTw/2+e], g > 0, 
et F (x, %, . . . , uN) une fonction G00 de ses arguments. On a 

F{x9u1(x)9...9uN(x)) ^J^Tw^-Ui+r 

avec reG2Q [resp. Enl2+2el 

N 

i 
l 

Nous avons démontré ce théorème dans [6], avec le résultat plus 
faible r e Enl2+2e~e pour tout s > 0. Le résultat précis est dû à Y. Meyer 
[14]. 

En appliquant 3.2 (a) et le théorème précédent au produit uv9 on 
retrouve le résultat suivant. 

COROLLAIRE 5. (a) L'espace des fonctions u appartenant à GQ et appar
tenant à GQ' microlocalement en (xQ9 |0) est une algèbre dès que g > 0 et 
Q' <2Q. 

(b) (J.-M. Bony, B. Lascar, J. Bauch). L'espace des fonctions appar
tenant à E8 et appartenant microlocalement à E8' est une algèbre dès que 
s>n/2 et s '<2s — n\2. 
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Bemarque. Historiquement c'est ce résultat qui a été le point de départ 
en 1978 des travaux sur la propagation des singularités pour les équa
tions non linéaires. La démonstration directe que nous en avions donnée 
(voir [3]) contenait déjà en germe l'idée de la paramultiplication. In
dépendamment et simultanément, B. Lascar [13] et J. Eauch [16], dé
montraient également la partie (b). Ces trois auteurs en déduisaient 
divers cas particuliers des théorèmes 1 et 2. 

•ultérieurement, plusieurs auteurs ont retrouvé d'autres cas des thé
orèmes 1 et 2 en démontrant, sans recourir au calcul symbolique, la 
régularité microlocale de solutions d'équations aux dérivées partielles 
à coefficients peu réguliers (voir [2], [8]). 

3.4. Linéarisation des équations non linéaires. 

THéORèME 6. Soit u une solution de (1) et appartenant à Om+Q [resp. 
Enf2+m+e], g > 0, avec ce Ce {resp. JBT?l/2+e]. Alors u vérifie Véquation 
paradifférentielle suivante ; 

Pu = Ec + r 

oü Pe Op(Z™); E e Op (27°); r e G2Q [resp. Jîn/2+2e]. Le symbole principal 
de P est (au facteur im près) 

OT7J 

Pm(®,£) = ^—(®9C,U,...9d
ßU, . . . )T . 

|a | -m a 

C'est une conséquence immédiate du théorème 4 

F(x,c,u9...) = ]?TdFldUß'd
ßu+TdFld0-c + r' - 0 

en posant P = Jj ^ôFIôVR9^ (*es a u* r e s termes entreront dans le 
\ß\>m-[Q] P 

reste) et E = -TdF/dc. 
Bemarque. Pour l'équation (2), sous l'hypothèse u e Om~"1+6

9 le second 
membre est du même type, et on a P eOp^^+i)? le symbole principal 
de P étant celui de l'opérateur linéaire ]£aad

a. On trouvera dans [6] le 
calcul de la classe de P et de la régularité du second membre selon le 
type de non linéarité de l'équation. 

Les théorèmes 1 et 2 sont donc ramenés à l'étude de la localisation 
et de la propagation des singularités pour des équations paradifféren-
tielles linéaires. On peut alors "recopier", avec un certain nombre de 
modifications pour le théorème 2, les démonstrations classiques dans le 
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cas pseudo-différentiel: inversion microlocale des opérateurs non carac
téristiques pour le théorème 1, estimations d'énergie de Hörmander [12] 
pour le théorème 2. 

4. Interaction des singularités (Dimension 1 d'espace) 

J. Eauch et M. Eeed ont consacré une série d'articles ([17], [18], [19]) 
au cas des équations et systèmes semi-linéaires strictement hyperboliques 
en dimension 1 d'espace. Nous décrivons ci-dessous le résultat principal 
de [19] qui est essentiellement optimal. Soit 

(3) 

un système de m équations, où les ft et les c{ sont réelles et C°°, et où on 
a ci(x9t) ^cj(x9t) pour i =fij. On note U le vecteur de composantes 
%, et Xi le champ de vecteurs d/dt + c^Xy^d/dx. 

Nous appellerons arbre caractéristique un arbre du type ci-dessus 
dont les lignes sont des arcs caractéristiques (courbes intégrales de l'un 
des champs X{) et tels qu'en chaque sommet, il arrive deux courbes in
tégrales de Xi et Xj (i =fij) et il parte une courbe intégrale de Xk (h ^i 
et h # j). Pour un arbre A9 nous noterons 11(A) l'ensemble des "pieds" 
de l'arbre (11(A) = {x19 x2,xz, a?4} sur le schéma). 

THéORèME 7 (J. Bauch et M. Eeed). Soit TJ une solution bornée de (3). 
On suppose que les données de Gauchy UQ(x) = U(x,0) appartiennent à Es 

pour ê > l / 2 . Soit S(x) une fonction telle que, pour tout x, UQ(x) appar
tienne à Es^ au voisinage de x. Alors U(x91) appartient à EaM) au voi-
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sinage de chaque (x, t), avec 

a(x,t) = In f ( £ S(Xi)) 
Xien{A) 

Vinfimum étant pris sur tous les arbres caractéristiques aboutissant en (x,t). 

En fait, les résultats de Bauch et Eeed sont plus précis et sont ex
primés en termes d'espaces ^ (g ; r19..., rm) que nous allons décrire. 

On définit d'abord l'espace (H8fXi comme l'espace des u appartenant 
à E8, telles que X\u appartienne à E8 pour Z< Je pour Je entier; et par 
interpolation (par exemple) pour Je réel positif. 

Si g, r19..., rm sont des réels vérifiant 0 < r$ < g, on dit que 
ue^(Q',rt,...,rm) si 

(a) en chaque point (xQ, tù910, T0) non caractéristique (T0 + c{ (x0910) S0 ¥= 0 
pour tout i) on Sb u e EQ microlocalement en (x0910, £0, r0), 

(b) en chaque point (x0,t0, f0, r0) caractéristique pour Xi9 on a u 
e(Eri)Q£*î microlocalement en (xQ910, f0, r0). 

Le résultat important est que s/(Qm
9r19 . . . ,rw) est une algèbre si on 

a ^ -> l /2 , g > l , g<Min (^+rA Contrairement aux espaces définis 

uniquement en terme d'appartenance microlocale aux espaces de Sobolev 
(cf. corollaire 5), on dispose ici d'espaces stables par les opérations non 
linéaires, où la régularité microlocale contrôlée (g) peut dépasser de 
beaucoup le double de la régularité locale s = Min (r,). C'est ce qui permet 
(entre autres) l'étude de l'interaction. i 

Dans [18], Bauch et Beed ont étudié le même problème, dans le cas 
où les données de Oauchy et donc la solution sont indéfiniment dérivables 
par morceaux. L'un des résultats assure que le phénomène d'interaction 
se produit "en général". Plus précisément, lors du croisement de deux 
singularités portées par des courbes intégrales de Xi et X^ respectivement, 
il naît une singularité portée par la courbe intégrale de Xk dès que 
(d2fkjdxidxj)(x,t, V) v^o. 

Le problème de la réflexion des singularités pour de tels systèmes 
est étudié par M. Oberguggenberger dans [15]. 

5. Interaction des singularités (dimension quelconque) 

5.1. Distributions conormales. Nous allons brièvement décrire les résultats 
de [7]. Nous allons d'abord associer, à des configurations géométriques 
simples, des espaces qui (a) sont des algèbres, (b) sont stables par l'action 

20 — Proceedings..., t. II 
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des opérateurs pseudo-différentiels, (c) permettent un contrôle de la 
régularité microlocale au-delà du double de la régularité locale. 

DEFINITION, (a) Soit V une sous-variété de codimension d de Rn, on 
note Es^k, s e R, heN, l'espace des u appartenant à E8 telles que l'on 
ait ZiZ^ ...Zi u eEs pour l < Je lorsque les Zi sont des champs de vec
teurs tangents à V. 

(b) Soit 2 la réunion de m hypersurfaces 2X,,.., 2m se coupant deux 
à deux transversalement le long d'uïie variété P de codimension 2. On 
note Es^k l'espace des n e Es tels que MîxMi2,.. Mi% u eE8 pour l < Je, 
lorsque les M{ sont des opérateurs pseudo-différentiels d'ordre 1 dont 
le symbole principal s'annule sur la réunion des variétés conormales 
à P et aux 2im 

Dans le cas (a), et pour Je = oo, les éléments de Esfk sont effecti
vement des distributions de Fourier associées à la variété lagrangienne 
conormale à V. 

Dans le cas (b), si u e Es^k, on a> u e E8+k au voisinage de tout point 
de Rn\2, et microlocalement en dehors des conormaux à P et aux 2i9 

et u eEs£k au voisinage de tout point de i^.XP. 
Ces espaces sont des algèbres pour s>n/2, ce qui est évident dans 

le cas (a), mais non dans le cas (b) (on ne peut pas remplacer les M{ par 
des champs de vecteurs). 

5.2. Interaction de deux singularités [7]. Bevenons à l'équation semi-
linéaire (2) supposée strictement hyperbolique (avec c = 0 pour simplifier). 

THéORèME 9. Soient 2X et 22 deux hypersurfaces caractéristiques, dis
jointes pour xn < 0, et se coupant en P. Soient 23, ..., 2mles autres hyper-

m 

surfaces caractéristiques issues de P et 2 — \J 2ju 
i 

Soit u une solution de (2) appartenant à Es (s >n/2 + m) et telle que, 
poîir xm < 0, on ait u e Es+k hors de 21^j22 et u e E8ik près de 2i (i = 1, 2). 

Alors on a u eE%'k, et plus précisément pour xn>0: 
— Eors de 2 on a u e E8+k. 
— Près de -Z^P; i = 1, 2; on a u eE8^k. 
— Près de 2j\r-, j =3,..., m; on a en posant g = s + l — n\2— m 

u e jJ*+e,[Ä~e] si Je> Q, u eEs+k sinon. 
Bien entendu ce résultat est local. Il n'est valable globalement dans 

Rn que si les 2j ne se recoupent pas et restent régulières. On peut toutefois 
réappliquer le théorème tant que les 2j ne se recoupent que deux à deux. 
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5.3. Problème de Cauchy. Dans le cas le plus simple de données de Cauchy 
singulières (distributions conormales associées à une hypersurface. de 
xn s= 0), on a le résultat suivant, sous les hypothèses du n° 5.2. 

THéORèME 10 [7]. Soit E VJiyperplan xn = 0 et P une Jiypersurface 
de E. Soient 2$, j = 1, ...9m les Jiyper surf aces caractéristiques passant 
par r et 2 = [J2j. Soit u une solution de (2) appartenant à E8, s > nfô + m, 
telles que les données de Oauchy yju(xt) == (djdxn)

j u(x'9 0) appartiennent 
à E8fj+ll2'k pour j = 0, . . . , m - l . 

Alors ue ff%k , et en particulier, u e E8+k Jiors de 2 et u e Es£k près 
de 2i\r. 3 

Il peut sembler restrictif de se limiter à des distributions conormales, 
mais un résultat remarquable de M. Beals [1] montre que des hypothèses 
de ce type ne peuvent être totalement évitées. 

Pour une solution assez régulière de l'équation des ondes non linéaires 

Ô2n v=i d2u vu vn oau „, v 

il n'est pas très difficile de montrer que, si les données de Cauchy sont 
des distributions conormales associées à l'origine (y$u e EQ~J+1I2'JC pour 
j = 0,1), alors la solution u appartient à E8+k en dehors de la surface 
G du cône d'onde et à E^k près de G\ {0}. Par contre, M. Beals montre 
qu'il existe des données de Cauchy G00 en dehors de l'origine, telles que 
la solution u soit singulière non seulement sur G, mais à l'intérieur de 
ce cône d'onde. 

THéORèME 11 (M. Beals [1]). (a) Soit % une solution appartenant à 
E8, s>nj2, de [3u=f(u). Supposons que toutes les bicaractéristiques 
nulles issues de x rencontrent Vhyperplan xn = 0 en des points où y0u et 
yxu sont G00. Alors ueE3s~n+2~~B près de x. 

(b) Pour n>2 et s>n\2 U existe une solution u appartenant à E8
9 

de Du = ß(x)u* avec ßeO°°, dont les données de Gaucliy sont G°° Jiors 
de Vorigine, et dont le support singulier est Vintérieur du cône d'onde: \x'\ 

< Kl-

5.4. Conjectures. On peut raisonnablement conjecturer le résultat suivant: 
A 

Soient 2 c 2 deux sous-ensembles de codimension 1, stratifiés en sous-
variétés Ö00, et désingularisables. On suppose que 27 et 2 sont caractéristiques 
aux points lisses et que la réunion des variétés conormales aux strates 
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de 2 est stable par le flot hamiltonien de pm. Alors, si u est une solution 
de (1) appartenant à Es

9 s > nJ2+m9 et appartenant à E8/0 pour œn < 0, 
on a u e G00 hors de 29 et u e E3£°° aux points lisses de 2. 

Pour l'équation des ondes Dw = F(x, u, Vu) en dimension 2 d'espace, 
les deux cas les plus simples non encore résolus sont les suivants: 

la) Interaction de 3 ondes progressives (b) Pincement d'une onde progressive 

û c>! 
avant après avant après 

On a figuré en pointillé les singularités prévues par la conjecture et moins violentes que 
les singularités initiales. 

Bauch et Beed ont donné récemment [20] un exemple de solution 
ayant le comportement (a). 

Ajouté sur épreuves: Nous avons démontré [21] la validité de la conjecture 
dans le cas (a) ci-dessus. Voir aussi [22] pour un résultat voisin. 
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V. S. BUSLAEV 

Regularization of Many-Particle Scattering 

For a long time the Schrödinger operator which, describes the motion 
of a quantum particle in a field of a, potential decreasing at infinity re
mained the basic model of the mathematical scattering theory. After 
the well-known works of L. D. Faddeev dedicated to the investigation 
of a scattering pattern in the 3-particle system, the Schrödinger operator 
of this system (and generally of the many-particle system) also became 
one of the main models in scattering theory. The peculiarity of the 
many-particle Schrödinger operator E manifests itself most expressively 
in the behaviour of the corresponding dynamical system 

ift = Eip 

for large t (time). In such a system qualitatively new asymptotic types 
of behaviour can be formed which are absent in the case of non-interacting 
particles. According to the heuristic conceptions of scattering theory the 
appearance of such asymptotical types of behaviour is equivalent to the 
existence of "junior branches of the spectrum" of the operator E, which 
can be characterized in terms of the discrete spectrum of subsystems. 
However, the difference between many-particle scattering and the scatter
ing of a particle by the potential is not limited by this phenomenon. 
Even in the case where new asymptotical types of behaviour do not 
arise the scattering differs essentially from the scattering of a particle 
by the potential. Such differences can be called, a little indefinitely, 
singularities of many-particle scattering. Although the singularities of 
many-particle scattering cannot be ignored, their role in different con
structions varies greatly. There is a set of important formula statements 
in the scattering theory of a particle by the potential whose propagation 
in the region of the many-particle scattering depends critically on the 
concrete structure of these singularities. Another essential moment is 
that the singularities of many-particle scattering can be described ex-

[1149] 
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plicitly on the level of heuristic constructions. Owing to this fact it is well 
to suggest new methods of justification of the heuristic conceptions of 
scattering theory, 

All the results given in this report are connected with the singularities 
of many-particle scattering. For simplification of the text we assume that the 
spectrum of the operator E does not contain the junior branches. Besides, 
as a rule, we shall suppose that the number of particles n is equal to 3. 
All the motivations and statements of problems are meaningful for any 
n. Due to the limited space of this article it is impossible to list explicitly 
even the basic formulas ; therefore we shall confine ourselves only to char
acterizing them descriptively. Some general formulas will be given 
explicitly and used as a support in the presentation. 

1. Singularities of many-particle scattering 

For the system of n ^-dimensional particles with a pair interaction the 
Schrödinger operator is a differential operator of the form y)\-*—Aip + Vw9 

where ip = ip(x) e C9 x = (x19 ...,xn) eRN, ^ eRd
9 N =nd9 A is the 

Laplacian on RN
9 V = ]£v(Xi — xf)9 v($) e R. The masses of the particles 

i<3 

and the pair potentials are assumed to be identical. In those parts of this 
report where a specific character of one-dimensional particles will be 
discussed this assumption will be essential. To exclude the trivial effects 
produced by the motion of the centre of inertia the operator described 
by the same formula is to be restricted to functions y defined over the 
linear subspace A = {x: x1+...+xn = 0} cz RN, rather than over JB^; in 
this case A is simply the Laplacian on A. Under certain conditions this 
construction leads to a self-adjoint operator in L2(A) which we denote 
by E, and by E0 in the case v = 0. To simplify the presentation we shall 
consider «(f) to be a smooth function, decreasing at infinity with the 
speed of rather great degree of | f | -1 . At w = 2 the operator E describes the 
scattering by the potential decreasing at infinity, 

Given these assumptions the continuous spectrum of the operator E 
coincides with [0, oo). A basis of eigenfunctions of the continuous spectrum 
can be constructed from functions y>(x9p), x9 peA9 constituting the 
solutions of the equation —Aip+Yip =p2f9 which describe the scattering 
of plane waves exp(ipx) by the potential V. Solutions ip are well known 
for n = 2; their existence for n = 3 follows from Faddeev's investiga
tions. Under special assumptions, the existence of such solutions was 
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proved also for n > 3. The Fourier transform 

W(p,p')=F£py>(x9p') 

of ip has a special structure 

W(p9p') = ò(p-p'\-T(p,p')[F}(p)-F(pr)-ioy\ F(p) =p\ (1) 

The kernel W(p9 pf) generates the operator W, which can be characterized 
as a wave operator in the momentum representation 

W = s.lim exp(itE) exp( -itHo).1 

t-*—oo 

This formula can be taken as a definition of W and therefore of the 
solution y>. The solution y can be characterized also by its asymptotic 
behaviour (in the distribution sense), as a?->oo: 

W(x9p) ~ e x p ( ^ + ^ - a ( l # l l ^ 

Here x = x\x\"l
9 GK depends only on K9 and / is an indefinite coeffi

cient, called the scattering amplitude. The following equality is valid: 

f(*fP) -\\V\{N'd-2)!"T(x\p\9p). (2) 

Finally, let us introduce an ^-matrix, dependent on B, E > 0, in operator 
S(F) which acts on functions At-*C, where At is the unit sphere in space 
A. The kernel of operator S(B) is defined by the formula 

S(p,pfiF) = ô(p9p')-2nif(p9p')/F)9 (3) 

p9p
reAt. According to the heuristic conceptions of scattering theory 

the operator W in L2(A) must be isometric with a finite index and 
the operator 8(F) in L2(At) must be unitary. 

In the problem of scattering by the decreasing potential the kernel 
I7 is a smooth function. On the contrary, for n > 2 the kernel T is a dis
tribution with some characteristic singularities. We call them singular
ities of many-particle scattering. In terms of the kernels T for the subsys
tems a kernel Ta(p9p') can be constructed such that T—Ta will have 
the prescribed smoothness. The kernel Ta can be extracted from first iter
ations of the Faddeev equations (if n =3) and of the Faddeev-Yakubovsky 
equations (if n > 3). Knowing Ta9 we can construct fa and Sa as well as 
Wa and fa, i.e., the terms of the corresponding objects, involving the 

1 In various places of the text the same operator will be considered in different 
representations, and this will not "be indicated "by symbols. 
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singularities of many-particle scattering. The function ipa can be character
ized independently as a smooth function for which the difference ip — ipa for 
a?-»oo is a diverging wave with an amplitude, having the prescribed smooth
ness. I t is important to note that the amplitude f(x,p) has singularities 
not only on the subspaces Ay = {x: xt = xf). To find the set on which / 
has singularities outside Ai5 the rays connected with the eikonaï x\-*px 
of the plane wave have to be introduced and their (possibly multiple) 
scattering on the subspaces Aió have to be considered. The directions of the 
scattered rays sweep out a set on Ax which is the support of the singular
ities of f('9p). This construction can easily be extended to describe the 
types of these singularities. If d > 1, the dimension of the support increases 
with the multiplicity of scattering, and the strength of the singularities, 
correspondingly, falls. After a certain number of scatterings the singu
larities disappear. 

I t is not difficult to describe the /Singularities somehow- Different 
tasks impose different requirements on the description of the singular
ities. Usually it is desirable to find such a representation for Sa as would 
immediately show that this operator is almost unitary in L2(Aj). Besides, 
this representation is desired to describe effectively the singularities of 
the value <p[S(F)) where cp is an arbitrary function. The same questions 
can be formulated-also about the operator Wa. 

The first strict formulas with a decisive role of the singularities of 
many-particle scattering seem to have been obtained in [6, 7]. These 
works dealt with trace formulas which we shall consider later. A series 
of subsequent works was dedicated to studying explicit formulas for the 
function y)a. As a starting point of the construction a form of the 
Faddeev equation was chosen. The formulas obtained contain some spe
cial functions and show a close connection between this problem and 
diffraction problems [13, 14]. 

The questions touched upon in this part have something in common 
with some problems arising in the theory of scattering of a particle by 
a potential decreasing may be slowly. We mean the problem concerning 
an explicit construction of the function fa(x, p) that the difference f—fa has 
an assigned smoothness on the beam x = p (forward scattering) [10,17]. 
The singular term fa is responsible for the asymptotic behaviour of the 
/8-matrix spectrum [1, 2], 

2. Method of unitary regularization 

I t has already been mentioned that the possibility of an explicit description 
of the singularities of many-particle scattering on the level of probable 
constructions gives possibility of a new approach to a strict justification 
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of the heuristic conceptions of scattering theory and of the structure 
of the singularities themselves. In this way the basis of an investigation 
of %-particle systems is as usual sufficiently exact information about 
the properties of kernels T of the subsystems. 

In this part it will be convenient to use a representation which can 
be characterized as the spectral representation of the operator E0. To pass 
to this representation from the momentum representation is to introduce 
spherical coordinates p+-*(E, a), E = p2, a =p in the momentum space 
A and to consider the function f(p) as a function on a semi-axis F > 0 
whose values are in a space of function A1-^C. In this representation 
linear operators A will be described by kernels A(E,E') whoso values 
at fixed F and B' are integral operators in the space of functions At->C. 
The kernel A(B,F') is naturally connected with the kernel A(p,pf) 
of the operator A in the momentum representation. 

Suppose we have all reasons to expect that the singularities of the 
kernel T coincide with the singularities of some "known" kernel Ta. 
Let us use (1) to construct the operator Wa in terms of Ta. The problem 
we are going to discuss is, in its essence, a unitarization of the operator 
Wa by means of adding a smooth component to the kernel Ta. In course of 
the construction we shall make several assumptions about the structure 
of the kernel Ta, which can be regarded as indications of the fact that 
the kernel Ta indeed properly reflects the singularities of the kernel T. 

Using formulas (2), (3), we can construct, in terms of Ta, the operator 
Sa(B) in L2(A1). A real operator S(B) must be a continuous function 
of B which is factorizable at E->oo into a product of unitary /^-matrices 
of the subsystems. Formulas describing the singularities of T usually 
correspond to the limiting transition at B->oo. Let us introduce the oper
ators which characterize the deviation of the operator Sa from a unitary 
one: A±(B) = S*a(E)Sa(E)-I, A2(B) = 8a(E)8*a(E)-I. Let us assume 
that : 

(A) the operator 8a(B) is a continuous function of B, B > 0, in the uni
form operator topology, which becomes close to a unitary operator at 
B->oo, and operators A19 A2 have smooth kernels. 

Under this condition the operator 8a(B) has a finite index ind8a(E). 
Since màSa(B) does not depend on B, and the index of a unitary operator 
is equal to zero, the index ind Sa(B) is also equal to zero. Therefore 
it is clear that operator 8a(B) = 8a(B) (I+A1(B))~112, isometric in accord
ance with the construction, will be unitary. The kernel of the operator 
8a(B) differs from that of the operator Sa(B) only by a smooth addend and 
it is possible to introduce in the kernel Ta such a smooth addend that the 
corresponding operator 8a(B) will be unitary. Let us consider the kernel 
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Ta to be chosen from the very beginning in such a way that the operator 
8a(B) is unitary. 

As a second step let us introduce operators which characterize a devi
ation of the operator Wa from a unitary one : Dx = W*Wa —I, B2 = WaWl —I. 
Simple calculations show that the kernels of operators Dx and D2 contain 
the addends A^E^E—E'—io)~l and A2(B)(E—B,—io)-1 respectively* 
If the kernel Ta was chosen as a smooth kernel, the operators Dt and D2 

would be the sums of smooth kernels and the indicated addends. In our 
case Ax = 0, A2 = 0; therefore it is to be assumed that: 

(B) the operators Dx and D2 have smooth kernels, quickly decreasing 
at B9 B'-^oo. 

Let us introduce the isometric operator Wa = W^I+E^112. As-
before, this operator has form (1) and its kernel ìa differs from original 
kernel Ta only by a smooth, quickly decreasing addend. The index of the 
operator Wa is finite: let us denote it by n. There are no reasons to expect 
that % = 0. Let R be an operator which has form (1) with a smooth quickly 
decreasing kernel TR. It is not difficult to construct the kernel TR in explicit 
form so that JB will be an isometric operator with the same index % and 
the product R^Wa "will be a unitary operator. In this case the operator 
B>~lWa will have the previous form (1), and the difference Ta—TatBy 

where TajB corresponds' to R~1Wa, will be a smooth, quickly decreasing 
function. 

So, the construction of a unitary operator Wa which has form (1) 
and whose kernel Ta differs from the original kernel only by a smooth,, 
quickly decreasing addend has been completed. 

So far the concordance of the singularities of the kernel Ta with the struc
ture of the operator E has not been used. Let us consider the operator K 
= EWa—WaEQ. If, in this definition, the real operator W was in place 
of Wa, the operator K would be zero. Let us assume that 

(0) the operator V = WlK has a smooth, quickly decreasing kernel. 
Let us introduce the operator Ha = W*aHWa. As 3a = H0 + V9 from 

(0) it follows that the pair of operators E0 and Ea can be investigated by 
means of any method which is suitable for the operator describing the 
scattering by the decreasing potential. Particularly, it can be asserted 
that the isometric wave operator with the finite index exists: 

JJ == s.limexp(^jgra)exp(— itEQ). 
t->—oo 

Hence the existence of the wave operator W follows. Also the equality 
W = Wa V is true, which indicates that the operator Wa reflects rightly the 
singularities of many-particle scattering. 
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The application of the above scheme to a concrete operator E de
mands some calculations. They are necessary for the construction of the 
kernel Ta and for testing its properties expressed by the conditions (A)-(G). 
These calculations have been made for n = 3, d = 1, 3 and also in frames 
of the so-called Friedrichs model of many-particle scattering for any 
number n of particles [11,12,18,19]. In the latter ease an inductive 
character was imparted to the given scheme. 

In the conclusion of the discussion of the unitary regularization method 
we should note that essentially it can be considered- as a variant 
of the integral equations method. All its merits and demerits are of course 
connected with this' circumstance. Particularly, one of the advantages 
is the possibility of obtaining very detailed information about the kernel T 
if the properties of kernels T for the subsystems are known sufficiently 
well. The given method naturally can be used not only in many-particle 
scattering problems but also in any case where the kernel of the wave operator 
W has form (1) and T possesses some characteristic singularities. 

Of course, the method of unitary regularization is not the only scheme 
which makes it possible to use heuristic information about the singu
larities of many-particle scattering to justify the formal conceptions of 
the scattering theory and to investigate strictly the structure of those 
singularities themselves. Another approach is connected with studying 
the asymptotic behaviour of the kernel R(x, y,z)oî theresolvent (JT—zl)~x 

in the coordinate representation. Having constructed the singular asymptotic 
terms, one can obtain for R(x, y, z) an integral equation with a smooth, 
quickly decreasing kernel. This method seems to be somewhat compli
cated but it has been used successfully for two importa-nt models. One 
of them is the Schrödinger operator with the slowly decreasing potential 
[17]. The second model is the Schrödinger operator of the 3-particle sys
tem with the pair potentials whose asymptotic behaviour admits the 
following description: v(£) = 'y0lfr1 + 'yi(£)> £-^°°j where v0 is a constant 
and vx is a quickly decreasing function [15,16]. Unfortunately we cannot 
discuss these problems in more detail. 

3. One-dimensional particles 

In the systems of one-dimensional particles the singularities of many-par
ticle scattering manifest themselves in a rather specific way. This is con
nected with the fact that, in general, in the case of one-dimensional par
ticles the force of the singularities of the multiple scattering does not 
depend on the multiplicity. The system of the particles with equal masses 
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possesses an additional specificity. In such an w-particle system the sin
gularities dependent on a sequence of double scatterings manifest them
selves with the same force at multiplicity r<-|w(w— 1) and disappear 
at greater r. Particularly, if n = 3, the singularities manifest themselves 
at r < 3. In this case the subspace A is two-dimensional. In such a system 
a ray parallel to the vector j? leaves the system of the screens Atj after a triplet 
of scatterings. Six directions of the rays leaving the system of the 
screens can be obtained from the vector p = (pl9 p2, p3) by transpositions 
of its coordinates. The procedure of description of the singularities of 
many-particle scattering given in Section 2 leads to some linear combina
tions of plane waves in each angle between the screens. The coefficients 
of these combinations can be explicitly expressed in terms of the elements 
of the 2-particle scattering matrix. In general, the above-mentioned linear 
combinations are discontinuous along the indicated six rays. In the case 
of identical pair potentials the discontinuity remains only on the rays 
directed along the vectors (P3,Pi9p2) and (p29Pa,Pi)- On these two rays 
the amplitude of the plane waves with wave vectors parallel to the same 
rays has a discontinuity which is equal to 

d(p) = r( jyr(Ä2)s(7y+r(fci)^W 

In the above expression s is the transmission coefficient and r is the 
reflection coefficient; they both correspond to the one-particle scattering 
by the potential v. Besides, Jc1 = iüp8 —p2), Jc2 = l(px— p3), h = i(#2 — 
—pj). Let us replace the discontinuous plane waves by the Fresnel waves T 

i.e., the smooth solutions of free equation — Aip = p2ip, well known in the 
theory of diffraction of the plane wave on the screen. Outside an angular 
vicinity of some ray a Fresnel wave asymptotically reduces to a plane 
wave with a discontinuous amplitude. After the above-mentioned replace
ment, the solution ipa of the free equation appears inside each angle. 
Asymptotically this solution is equal to the solution y), i.e., their difference 
is a diverging wave with a smooth scattering amplitude. 

Following thbse constructions we can describe the singularities of 
the whole scattering amplitude/. Now it is convenient to introduce a new 
representation in which a function A->G is considered as a function 
F->C6, where JP is a fundamental domain of symmetrical group S3, acting 
naturally on A. A$ F we can choose one of the angles between the screens. 
Let X be the angular coordinate of p in the domain F. In this representation 
the scattering matrix S(B) turns into an integral operator on arc G = Axn 
r\F whose kernel S (A, X'-9 E) is a matrix of sixth order. Outside the screens 
Ai:i the singularities of this kernel coincide with the singularities of the 
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following kernel: 

8a(X, X'-9E) = SMP+ß, V) + 8j28iPM, A'), W 

where P±(A, A') ~ ±(2ni)~1ß — A'iw)""1 and 817 &2, $3 are unitary ma
trices-functions on G. Part of their matrix elements are equal to the 
matrix elements of the one-particle ^-matrix, others (most of them) are 
equal to zero. In general, the matrices â19 829 83 do no commute. Since 
P ± are the kernels of two additional orthogonal projectors in L2(R), 
the suggested description of the singularities reflects very expressively 
the unitary property of the operator 8(E). Besides, formula (4) leads imme
diately to an explicit description of the singularities of the kernel of 
a function of the operator 8(B). 

If d = 0, the Fresnel waves fall out of the function fa and it becomes 
a linear combination of plane waves. Equations of type d = 0 can be 
met with in another range of problems in connection with the problem 
of factorization of the ^-matrix, see e.g. [20]. One of the terms used for 
them in this sphere is the Yang-Baxter relation. If d = 0, the operators 
8182i§3 and # 3$ 2#i become equal and the operator Sa turns into a factor -
izable operator in the following sense: 

0fl(A,A';J0) = iMa£a <»(*-*'). 
I t appears that the relation d = 0, if it is regarded as an equation for 

functions s and r, can be solved explicitly in the class of functions possess
ing the properties of the transition and reflection coefficients. With 
the help of the apparatus of the inverse scattering problem the whole 
class of potentials which obey the equation d = 0 can be described com
pletely. I t is known that this class contains the function v(£) = 2Qo(Ç) 
and the so-called soliton potentials characterized by the property r = 0. 
The total class of the potentials of this type is a non-trivial composition 
of the ô-iunction and the solitons. 

There exists one more mechanism leading to the falling out of the 
Fresnel waves from \pa and to the factorization of the singular part Sa of 
the Ä-matrix. The same effects take place also if the problem is restricted 
to the subspace of functions symmetrical or asymmetrical with respect 
to the action of the group $3. These last facts remain if n is arbitrary. The 
considerations of this part are based on the results of [5, 8, 9], 

4. Trace formulas 

In the problem of the scattering of a particle by a decreasing potential 
a trace formula is known, see e.g. [3], which gives the function 

co(B) ==2ilimImtv[(E-zI)-1--(E0-zI)-1'i, z =B + ie, 
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in terms of the Ä-matrix: co (E) =3=- trln#(J3). In the case of the 
uE 

Schrödinger operator E of an w-particle system the difference of the 
resolvents which figure in the definition of function co has to be replaced 
by the so-called connected part of the resolvent of E. If n = 3, one has 
to consider the function 

Q(E) ^2ilimImti{(E-ziyl^(E0-zI)-1-^[(Ea-zir1^ 
a 

- (So-^ I ) - 1 ]} , 

where Ea is an operator of type E containing, however, only one of the 
three potentials whose sum forms the operator V. Indeed, we should note 
that the right side of the last formula has a meaning only if d == 1, but 
with some unimportant modification it can be generalized to the common 
case. We shall not discuss here the sense of the function Q but we note only 
that it is an essential object in some relations of statistical physics. 

The following natural direct generalization of the trace formula: 

Q(F) = - ^ lo, where £0 = tr [ ln#~ J £ lnflfj, 
a 

cannot be valid. This follows already from the fact that the trace | 0 does 
not exist, see (4). In general, the trace £0 cannot be defined as an invariant 
one. Its satisfactory regularization seems to have been carried out so 
far only foy one-dimensional particles and for the Friederichs' model. This 
regularization is based on formula (4). To regularize the trace £0 we should 
calculate the trace first as the matrix trace and then as the trace of a 
scalar kernel. However, the formula stated remains wrong after regu
larization. It remains wrong even for the special class of potentials in
dicated in Section 3 although for this class regularization is not necess
ary. 

After the above-mentioned regularization of the trace £0 the accurate 
d 

formula has the form Q(B) =—-(£0--£)j where £ can be expressed 
dE 

explicitly in terms of the one-particle ^-matrices. We have no opportunity 
to write this expression here: although its general structure is quite clear, 
it cannot be written down briefly. As in the problem of a description 
of the singularities of many-particle scattering, the situation becomes 
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essentially simplified for the special potentials discussed in Section 3 
and also after passing to the Bose or Fermi statistics. In these cases with 
a proper term £0 the additional term | becomes a quadratic functional 
on the logarithms of the matrix elements of the one-particle ^-matrix. 

A whole series of delusions were inherent in the initial investigations 
of the problem touched upon here. The first strict result based on the 
Faddeev equations was obtained in [6, 7] for the system of three-dimen
sional particles. This result gave an explicit description of the function Ü in 
terms of the total tf-matrix and the ^-matrices of the two-particle sub
systems. The structure of the formula obtained turned out to be rather 
complicated. The above results for the system of one-dimensional particles 
and for the Friedrichs model were obtained in [4, 5]. 
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LUIS A. OAFFAEELLI 

Variational Problems with Free Boundaries 

A free boundary problem is the problem that arises when one attempts 
to describe a discontinuons change of behaviour in a physical, or biologi
cal quantity, an optimal strategy, etc. 

The evolution of an ice-water mixture, the behaviour of an elasto-plas-
tic material, an elastic membrane constrained to stay within a given 
region, are typical examples. 

In some of the simplest examples one can find weak solutions to the 
problem by variational methods or methods from non-linear P.D.B. 

For instance, if one considers, in a 3-space, an elastic membrane 
described by the graph of a function z ~ux(x,y) in a domain D c J2a, 
attached at the boundary of D(ux\dD = / ) and constrained to stay above 
the (x9 2/)-plane (u > 0), upon which a constant downward pressure is 
exerted, the equilibrium configuration should be a minimum of the energy 
functional 

jx(v) =J-J[(grad v)2 + 2v2dx (i) 

among all admisible functions {v;v\dD = / , v^O} (see [1]). 
Another variational free boundary problem of interest is the study 

of local minimizers u2 of 
J*W =Jf{g™àv)* + Xv>Qdx. (ii) 

A similar, but non-variational, free boundary problem is that of 
studying solutions u3 of the equation 

*«* =F>xJXu>o)- (iii) 

Note that in all these problems u (or more precisely its derivatives) 
have a discontinuous behaviour when u becomes zero. 

In fact, if one tries to deduce Euler equations for u, they are not 
satisfied across such a surface. 

[1161] 
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Heuristically, from the Hadamard variational formulas, what u should 
satisfy is the following: 

for (i) nx > 0, 

* « i = XUl>oi 

for (ii) Au2 = 0 on Q(u2) = {x: u2 =fi Ö}, 

« ) ? - K - ) 2 = l ; 

for (iii) Au3 = 0 on Q(u3) = {x: u3 =£ 0}, 

(ut)v-(u^)v =ven. 

In problems (ii) and (iii), note that u may be negative, problem (ii) 
describes the flow of two perfect jets, problem (iii) that of two flows in 
a porous medium. If u is non-negative, we have a one-phase flow. 

The study of one-phase problems and two-phase problems is essen
tially different. 

In one-phase problems, one has an a priori optimal regularity, which 
looks like a Harnack inequality. That is, if % is a minimizer of (i) in 
Bt(0) (the unit ball in Rn) and u(0) = 0, then the G1!1 norm of u (sup \u\ + 
+ sup|D^«|) in -B1/2(0) is bounded by a universal constant (Frehse). 

If ^2 (resp. u3) is a non-negative minimizer of (ii) or a weak solution 
of (iii) and u(Q) = 0, then the Lipschitz norm of w(sup|w|+sup|D^|) 
is bounded in Bll2(0) by a universal constant (Alt and Oaffarelli; Alt). 

Simple one-dimensional examples show that one cannot expect such 
a behavior if u changes sign (for instance in (ii)) since a solution can be 
built from very steep lines. 

How does one prove regularity in such a problem? 
The theory of minimal surfaces suggests that a monotonicity-type 

formula may be the answer (Alt, Caffarelli, Friedman). 
Let u™ (i = 1 and 2) be two GanEl functions in J3 (̂0) (of Rn). Assume 

that w(%(2) s= 0 (disjoint support) and that Au® =3 0 when u® ^ 0. 
Then, if um{0) = ^(2)(0) = 0, the function 

TT» JO 

/ / |Vu^frdrda / / [Vit®\2rdrda 
f(B) = ^ 

is monotone increasing in R (r9 a: polar coordinates in Rn). 
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Since, heuristically, 

f(0)=[upT[uWf9 

this product must Ibe finite. 
If one applies this result to the solutions of (ii) of (iii) along the free 

boundary, one obtains (always heuristically) 

for (ii) (u+Y-(uVy Œ i, «)V7)2< G 

and for (iii) \u+ —u~\^l9 (u+)2(u~)2 f^G9 

from where Lipschitz continuity follows after some careful analysis 
(Alt, oaffarelli, Friedman). 

As regards free boundary regularity, again, one-phase problems are 
well studied (see [1]). 

For two-phase problems (ii) and (iii) we have at present only a two-di
mensional analysis (Alt, Oafferelli and Friedman, to appear). 
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G. ESKIN* 

Initial-Boundary Value Problem for 
Hyperbolic Equations 

1. Introduction 

This report will be on initial-boundary value problems for strictly hyper
bolic equations. The particular form of the hyperbolic equation will not 
be important and without loss of generality one can consider a second 
order hyperbolic equation 

A(x9 D)u = 0 (1) 

in a cylindrical domain Q = ( — oo, + oo) xff c JBn+1, where x0 e ( — oo, 
+ oo) is a time variable and (x19..., xn) e G are space variables. 

Solutions of (1) are subject to zero initial conditions 

u = 0 for x0 < 0, x e Q, (2) 

and some boundary condition 

B(x, D)u\dQ = Ji(x'), x' e dQ, (3) 

where Ji = 0 for x0 < 0. 
The problem is to find necessary and sufficient conditions on B(x, B) 

such that the initial-boundary value problem (1), (2), (3) is well-posed. 
Note that all theorems that a;re formulated below will also apply to the 
case when (1) is a general hyperbolic equation or a hyperbolic system of 
equations of arbitrary order provided that all components of the charac
teristic cone are strictly convex (cf. [3]). Besides the Dirichlet and the 
Neumann conditions there are many boundary conditions that» are of 
interest in mathematical physics, for example, (a) the impedance boundary 
condition 

du , % du 
a(x)-— 

da 

* Partially supported by Grant MCS 81-01656 from the National Science Founda
tion of the United States. 

[116Ö] 
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where djdv is the conormal derivative, (b) the boundary conditions in 
the linearized water wave theory, (c) the boundary conditions in elasto-
dynamics for a solid with a free boundary. The last two examples describe 
interesting phenomena in wave propagation: supersonic boundary waves 
in the linearized water wave theory and Bayleigh's waves (subsonic 
boundary waves) in elastodynamics. 

2. Weak and strong Lopatinsky condition 

In the theory of general boundary value problems for elliptic equations 
and initial-boundary value problems for parabolic equations, the following 
condition is necessary and sufficient for well-posedness : 

Let x be an arbitrary point of the boundary dQ. Freeze coefficients 
of A(x9 B) and B(x,B) at the point x and consider the constant coeffi
cient boundary value problem for the principal parts of A and B in the 
half-space formed by the tangent plane'to dQ at the point Sk. This constant 
coefficient problem in the half-space can be solved explicitly using the 
Fourier transform. The .algebraic condition of the well-posedness of the 
constant coefficient problem is called the Shapiro-LopatinsJcy condition. 
If the Shapiro-Lopatinsky condition is satisfied for any (x'9 £') in the 
cotangent bundle T%(dQ), where x' e dQ and {' =£ 0, then the boundary 
problem in Q is well-posed. One can try the same criterion for the initial-
boundary problem for hyperbolic equations. Since we know that h and 
u are zero for x0 < 0, the Fourier transform with respect to x0 will indeed 
be the Laplace transform, so that the variable dual to x0 will be fo+ir 
where r > 0. It can be shown (see [14]) that for the well-posedness of 
the initial-boundary value problem for hyperbolic equations, it is necess
ary that the Shapiro-Lopatinsky condition will be satisfied for any 
(x', I') eT*(Q) and any r > 0, This condition is called the weak LopatinsJcy 
condition. It is necessary and sufficient for the well-posedness of IBVP 
(initial-boundary value problem) for hyperbolic equations with constant 
coefficients in the half-space. This result was established first by K. Hersch. 
As we shall see later, the weak Lopatinsky condition is not sufficient, in 
general, for the well-posedness of IBVP for hyperbolic equations. The 
reason is that there are boundary conditions that are sensitive to the 
local geometry of boundary (to convexity or concavity for instance). 
Therefore the tangent plane model is not good enough in these cases. 
Note that among such sensitive boundary conditions are the boundary 
conditions that produce boundary waves. 
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A general sufficient condition for the well-posedness of hyperbolic 
IBVP was found by Kreiss [15] and Sakamoto [21] in 1970. They proved 
that if the Shapiro-Lopatinsky condition is satisfied not only for all 
(x'9 f') eTt(Q) and r > 0 but also when r == 0 then the hyperbolic IBVP 
is well-posed. Such a condition appeared first in the work of S. Agmon [1] 
and it is now called the Agmon-Kreiss-SaJcainoto condition or the strong 
(or uniform) Lopatinsky condition. The strong Lopatinsky condition is 
satisfied in many problems of interest ajid it is independent of the shape 
of the boundary but there are important boundary conditions that do 
not belong to this class such as the Neumann boundary condition or any 
of the boundary conditions where boundary waves are present. An im
portant class of boundary conditions for second order hyperbolic equa
tions that implies an estimate of the solution in the energy norm was 
studied by S. Miyatake [19], L. G-arding [9], and extended by B. Melrose 
and J. Sjostrand [18]. 

3. Microlocalization 

For simplicity consider a boundary condition of the form 

-^-+l(x'9B')u\da~h(x')9 (5) 

where djdv is the conormal derivative and k(x', D') is a first order differential 
or pseudodifferential operator in tangential variables. Although the oper
ator A is not pseudodifferential in physical applications for second order 
hyperbolic equations, pseudodifferential X arises when one considers 
a hyperbolic equation of higher order or a system of hyperbolic equations. 
Then after a microlocalization the problem is reduced to a pseudodiffe
rential equation A(x,B) of the second order that is differential in the 
normal variable and the boundary operator has the form (5) with a pseudo-
differential A(x', D'). There is a natural partition of T*(dQ) into three 
regions: (1) the elliptic region where the principal symbol of A(x9D) 
has no real zeros with respect to a variable dual to the normal, (2) the 
hyperbolic region where there are two distinct real zeros, and (3) the 
diffraction region where there is one double real zero. 

In the elliptic and hyperbolic region the investigation of the IBVP 
can be reduced to a study of a pseudodifferential equation on the boundary. 
This reduction was done first by P. D. Lax and L. Nirenberg (see [20]). 
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4. Case of a strictly concave boundary 

The most difficult part of the problem is the study of the neighborhood 
of the diffraction region. We shall consider this problem under the addi
tional restriction that the boundary dQ is either strictly convex or strictly 
concave with respect to the bicharacteristics of the hyperbolic operator 

. A(x, B) that are tangent to dQ. Indeed one needs the concavity or con
vexity conditions only on the intersection of the set where the strong 
Lopatinsky condition does not hold with the diffraction region because 
in the region of T*(dQ) where the strong Lopatinsky condition holds 
one can use the Kreiss method. \ / 

Important examples of the IBVP with a convex or a concave boundary 
are the initial-boundary value problem for the wave equation in the 
interior or in the exterior of a strictly convex bounded domain in JBW. 

The following theorem describes conditions of the well-posedness of 
IBVP in the case of concave boundary. 

THEOREM 1 (see [6]). Assume, for simplicity, that the boundary condi
tion has form (5) and it is of principal type with respect to x0 in the elliptic 
and hyperbolic region. Then the weak Lopatinsky condition is necessary 
and sufficient for the well-posedness of IBVP with a concave boundary. 

5. Hypoelliptic boundary conditions 

There is an important class of boundary conditions (5) which are called 
hypoelliptic (see [18]). 

The hypoellipticity of the boundary condition means that for any 
distribution solution u of (1), (2),"(3) the following inclusion holds: 

WF(u\da)czWF(h)9 (6) 

where u\do is the restriction of u on dQ and WF(u\da) C T*(dQ) and 
WF(h) c Tl(dQ) are the wave front sets. 

, For example, the Neumann problem is hypoelliptic in the case of 
a concave boundary (see [16] and [22]). B. Melrose and J . Sjostrand 
(see [18], Part II) found a sufficient condition for the hypoellipticity 
of the IBVP and they formulated the following general conjecture that 
was proven in [8]: ' 

THEOREM 2. The boundary condition (5) in the case of concave boundary 
is hypoelliptic if the strong Lopatinsky condition holds in the elliptic and 
hyperbolic regions and for any point (x91) in the diffraction region where 
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tJie strong Lopatinsky condition does not hold there is a neighborJwod U0 

in tJie diffraction region sucJi tliat 

- — + s 0 < a r g ^ < 7 T - e 0 , s0>Q9 (7) 

for any (x', I') e U0, wJiere X1 is the restriction of tlie principal part of X(x'9 f) 
to tlie diffraction region. 

6. Case of a convex boundary 

The case of a convex boundary is more complicated than the case of 
a concave boundary because of multiple reflections of waves. The following 
general result was proven in [8]: 

THEOREM 3. Assume that tJie boundary is convex and the weaJc Lopatinsky 
condition is satisfied. Let, for simplicity, tJie boundary operator (5) be of 
principal type witJi respect to xQ in tlie elliptic and Jiyperbolic regions. Assume 
tliatfor any point (x, | ) in the diffraction region where tJie strong LopatinsJcy 
condition does not Jwld there is a neigJiborlwod Z70 in tJie diffraction region 
sucJi that 

- E e ^ O f M ^ i n - ' h ^ p i , • (8) 

for all (xf, £') e U0, where lx is tJie same as in Theorem 2. TJien tJie IBVP 
(1), (2), (5) is well-posed. 

I t was shown in [7] that the conditions of Theorem 3 are necessary 
and sufficient for the well-posedness of a model problem with a convex 
boundary. For a general hyperbolic equation the situation is more com
plicated. Consider, for simplicity, the case when X1 is a real-valued symbol. 
Then the condition (8) simply means that Xx^0 in U0. 

THEOREM 4 (see [8]). Bet Xx be real and assume tJiat the condition (8) 
is not satisfied at the point (x, f) in the diffraction region. Let tJie Poisson 
braclcet 

{X19 p) = 0 at tlie point (x,f), (9) 

wliere ju, = 0 is the equation of tJie diffraction region. If tlie boundary is 
strictly convex at tlie point (x, | ) tlien tlie IBVP is ill-posed. 
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Therefore the conditions for well-posedness of IBVP with a convex 
boundary are very restrictive when the strong Lopatinsky condition 
fails. Nevertheless it was shown in [7] for a model problem with a convex 
boundary that if the condition (8) is not satisfied but the Poisson bracket 
(9) is not equal to zero then the IBVP is still well-posed. 

7. Examples 

Let (1) be the wave equation and the boundary condition has the form. 
(4) (the impedance boundary condition). Then the weak Lopatinsky 
condition has the form 

a(x') > - 1 on dQ. (10) 

I t follows from Theorem 1 that for the wave equation in the exterior of 
a strictly convex domain with the boundary condition (4) the condition 
(10) is necessary and sufficient for the well-posedness of IBVP (see also 
M. Ikawa [10]). Consider the same problem in the interior of a convex 

domain. If a(x) = 0 and a(x) = 0 for some point xedQ and if 
dx0 

a(x') is not a nonnegative function in a neighborhood of x (i.e. the con
dition (8) is not satisfied) then Theorem 4 implies that IBVP is ill-posed. 

As a second example, consider the case of the oblique derivative 
boundary condition 

du 
^+ru\da^h9 (11) 

where d/dv is the interior conormal derivative and r is a tangential vector 
field on dQ. 

The exterior problem with the boundary condition (11) is always 
weU-posed. This fact was proved by M. Ikawa (see [10]). But the interior 
problem is ill-posed when r is not identically zero and has a degenerate 
critical point. Analogous results hold for the transmission problem 

A^XjB)^ = 0 in Q, (12) 

A2(x9 B)u2 = 0 in GQ9 

with the transmission conditions 

Ul IftQ = ^ 2 l ô P J ( 1 3 ) 

and 

dUi du2 

+ *i«ilw = - - r — + *i*ildo» (14) dvx ' x Xi0i£ dv2 



Initial-Boundary Value Problem for Hyperbolic Equations 1171 

where GQ is the complement to Q in jRw+1, d\dvx and d\dv2 are the interior 
«onorniaJ derivatives with respect to Ax and A29 rx and r2 are tangential 
vector fields to dQ and we assume that dQ is strictly convex with respect 
to the tangential bicharacteristics of Ax and is strictly concave with 
respect to the tangential bicharacteristics of A2. Then the transmission 
problem (12), (13), (14) with zero initial conditions is ill-posed if xx — x2 

is not equal to zero identically and there exists a degenerate critical 
point of r1 — T2. 

8. Propagation of singularities 

There is a close relation between the well-posedness of IBVP and the 
propagation of singularities. B. Melrose [16] and M. Taylor [22], first 
completely described the singularities of IBVP with concave boundaries 
ior the cases of the strong Lopatinsky boundary conditions and the Neu
mann boundary condition. 

The case of IBVP with convex boundaries for the Dirichlet and the 
Neumann boundary conditions was done independently by K. G. An-
dersson and B. Melrose [2], G-. Eskin [4] and V. Ia. Ivrii [12]. I t was 
shown in these works that the singularities propagate along broken bi
characteristics that are undergoing multiple reflections on the boundary 
and along the gliding rays. Further important progress was made by 
B. Melrose and J. Sjostrand in [18] where the propagation of singularities 
ior general domains were studied without restriction on convexity or 
concavity of the boundary. 

Under the restriction that the boundary is concave, the propagation 
•of singularities for an arbitrary boundary operator with a real-valued 
symbol satisfying the weak Lopatinsky condition was studied in [6], 
For such a general boundary condition the boundary waves may appear 
but they do not represent a threat to the well-posedness of IBVP. 

In the case of convex boundaries there is no hypoelliptic boundary 
condition in the sense of the definition (6) because there is always a propa
gation of singularities along the gliding rays. When the conditions 
of Theorem 3 are satisfied and the strong Lopatinsky condition holds 
in the elliptic and the hyperbolic regions, then the only singularities of 
•u\dQ are contained in the union of all gliding rays and broken bicharac
teristics that start at the points of WF(h). 

If the condition (8) is not satisfied then the picture of the propagation 
of singularities is more complicated. The singularities of u\dQ come from 
bonudary waves propagating along the boundary, and waves propaga-
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ting in Q and undergoing multiple reflections. In general (when the con
dition (9) holds) that leads to singularities so strong that the solution 
of IBVP ceases to be a distribution. And this is a reason for the ill-po-
sedness of IBVP under the conditions of Theorem 4. Indeed the solu
tion becomes an ultradistribution, i.e. a functional over the space of 000 

functions that belong to a certain Gevrey class. 
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ENNIO DE GIORGI 

(r-Operators and r-Convergence 

Avant de commencer mon exposé je veux remercier le comité organisateur du I. C. M. 
pour l'invitation que j 'a i bien appréciée pour plusieurs raisons. En premier lieu je 
suis heureux de pouvoir manifester mon admiration pour la contribution fondamentale 
des mathématiciens polonais à notre science et aussi pour tout ce que la Pologne a donné 
à l 'humanité. J e pense aussi que l 'I . C. M. est une occasion importante pour la réflexion 
commune des mathématiciens sur la valeur et la signification de notre science qui est 
un facteur fondamental de toute civilisation humaine, une oeuvre millénaire de 
l 'humanité, un signe remarquable de la dignité de l 'homme, de sa soif de conaissance 
que je crois signe d'un désir secret de voir quelques rayons de la gloire de Dieu. 

Je crois que la conscience de travailler à cette oeuvre commune, la conscience 
de la valeur et de la dignité de la mathématique doit conduire à une amitié profonde 
et sincère entre tous les mathématiciens du monde. Cette amitié est la base de notre 
échange d'idées et des informations, nécessaires au progrès de la science, elle peut 
contribuer à la compréhension et à l'amitié entre tous les hommes et tous les peuples, 
fondement de la paix, nécessaire pour que les découvertes scientifiques donnent 
à l 'humanité progrès et non destruction. 

Dans cet esprit même l'exposition d'un sujet assez particulier comme les opé
rateurs de type Q et la jT-convergence veut être un signe d'amitié. 

In the last years there has been a wide study of many limit cases in prob
lems in Differential Equations, Calculus of Variations, Control Theory, 
Probability Theory and so on, often motivated by physical situations 
(see [55]) like the mathematical theory of homogenization. Therefore 
it was natural to look for some general ideas in order to place the various 
results already known in an abstract setting, and also to find new methods 
for the questions still open. 

A possible answer in this direction is the theory of Ö-operators and 
J7-convergence; this theory represents a substantial generalization of 
earlier work on quadratic functionals (see [29]) related with limit problems 
for second-order elliptic partial differential equations. 

[1175] 

22 — Proceedings..., t. II 
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An example 

A simple and well-known example in which /"-convergence theory applies 
is the following (see [59]). Consider a sequence of one-dimensional bound
ary value problems for the second-order differential equations 

-^-(%(*)-^-)=A(*)5 *(a) = «(») = 0 (ft = 1 , 2 , . . . ) , (1) 

where <ph are measurable real functions on the interval [a9 b] of R such 
that 

0<A1^<ph(t)*ZiA2< + oo, V*6[a , f t ] , \fheN 

and/Ä belongs to L2(a9 b) for-every ft e N. If the sequence (l/(ph) converges 
weakly in Lx(a9b) to a.function lfo^ and the sequence (/Ä) converges 
in Ip(a9 b) to a function /«>, then the sequence (%) of solutions of (1) 
converges uniformly on [a9 6] to the solution u^ of 

d I du\ 

If we regard (1) as the Euler-Lagrange equation of the integral func
tional 

a 

we have 

limmin{Fh(u): u(a) = u(b) = 0} = minÇF«,^): u(a) = u(b) = 0}, (2) 
h->+oo 

where F^ is obtained from Fh by substituting cp^ and /«, in place of 
<Ph and /Ä. 

It may happen that the sequence (<ph) converges weakly in L1(a9 b) 
to a function y«, different from 9^, in which case the sequence of func
tionals (Fh) converges pointwise in L\a, b) to a functional G^ different 
from F^. On the other hand, it is obvious that in general pointwise con
vergence does not guarantee the convergence of the minimum values 
as in (2), even for real smooth functions (consider Fh(x) = fta?exp( — ft2#2)). 
A type of convergence in which (Fh) converges to F^ and which ensures, 
under suitable hypotheses, the convergence of the minimum values 
is just /'-convergence (see Theorem 1 below). 

file:///fheN
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Before giving the definition of T-convergence, we conclude the illu
stration of the previous example by remarking that, with the help of 
general results on jT-convergence theory (Theorems 2 and 3 below), (2) 
may be generalized as follows: 

lim mm\Fh(u)+ f fit, u(t))dt: u(a) = u(b) = ol 
fc-H-oo < l a 

b 

= min{jT
00(^)+ J y>(t9u(t))dt: u(a) = u(b) = OJ (2') 

a 

whenever y. [a9 &] xR->R is a continuous bounded function. Observe 
that if ip is not smooth, we cannot write the Euler-Lagrange equations 
to obtain (2'); thus the affinity between "/"-convergence methods and 
the classical direct methods in Calculus of Variations is already clear 
from this first elementary example. 

The definition of /"-convergence 

We now give the definition of T-convergence (see [26]). Let X be a to
pological space, and let (Fh) be a sequence of functions defined on a subset 
F of X with values inJB =JRu{ + oo, — oo}. For every point x0 in the 
closure Ë of F, define 

(/"(Z") liminf Fh)(x0) = sup liminf inf Fh(x)9 (3') 
Ä-++W VeJ(xo) A-*+oo xeU 

(r(X~) limsup Foioso) = sup limsup inf Fh(ot>), (3") 
Iir++oo UeJ(xQ) 7ir->-+oo œeU 

where J(x0) denotes the family of all neighborhoods of x0 in X. Moreover, 
if 

r(X~) liminf Fh(x0) = r(X-) limsup Fh(x0) = X9 

then we say that the sequence (Fh) T(X~) converges at x0 to X and we 
write 

X=r(X-)limFh(xQ). (3'") 
7&->+ex> 

The following properties of the JP-limits (3) are straightforward: 
(i) the /"-limits (3') and (3") are lower semicontinuous functions 

of x0 in E\ 
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(ii) if the sequence (Fh) is constant, that is Fh = Fx for every ft e JV, 
then (Fh) r(X~~) converges to the lower semicontinuous envelope of Fx 

on B; 
(iii) if the functions Fh have real values and are equicontinuous at 

• x0eF, then the P-limits (3') and (3") reduce to the ordinary liminf Fh(xQ) 
and limsup Fh(x0).

 Ä~*+0° 

Further generalizations 

Note that the /"-limits (3') and (3") may be rewritten as 

r(X~) liminf Fh(xQ) = sup sup inf inf Fh(x), 
Ä-H-oo ' UeJ(oùQ) keN h>k xeU 

JT(X") limsup Fh(x0) = sup inf sup inf Fh(x), 
h-++oQ UeJ(xQ) keNh^k xeU 

so it is natural to give the following definition. If Xx, X2 are topological 
spaces, Fx c x19 F2 s X2 and / : FxxF2-^R is a function, we define 
the functions r(X+,X2

+)/, /"(X+, X2)f, r(Xx,Xi)f, r(Xx,X2)f on 
Ex xE2 by the formulae 

. (r(X+, X£)f)(ël7 fa) = inf inf sup sup f(xl9x2), 
U2eJ($2) UxeJtèi) xxeUx x2eU2 

(r(X+9X2~)f)($X9£2)= sup inf sup inf f(xx,x2)9 
U2eJtf2) ^eJtfi) x1eU1 x2eU2 / £ ) 

(r(Xï,X+)f)(£x, £,) = inf sup inf sup f(xX9 x2)9 
U2eJ(£2) U^Jtfrf xxeUx x2eU2 

(r(Xï, X2)f)(ê19 £2) = sup sup inf inf f(x19x2). 
U2eJ(i2) U^Jtfj) x1eU1 iCgStfg 

Then, if XX^=N, FX=N9 £x = +oo, f(h,x2) = Fh(x2), we find 
that 

(r(N+, X2)f)( + co, |2) = r (X 2 - ) l imsup^( | 2 ) , 
7i->+oo 

(r(N-, Z2-)/)( +00, £2) = T(X2-) liminf Fh(ë2). 
A->+oo 

One may also define the /"(X+)-limits in a symmetric way as 

F(Xt) liminf JFÄ(|2) = ( r ( ^ - , X2
+)/)( + cx>, | a ) , 

ft->+co 

r(z+) lim sup JFA(I2) = (r(^+,z+)/)(+oo, i2). 
h-++oo 
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I t is not difficult to extend (4) to /"-operators for functions depend
ing on three or more variables and so to obtain the definition of /"-limits 
of sequences of functions of two or more variables. For example, in some 
minimax problems the following .F-limit is considered (see [18]): 

r{Xt,X2)\immlFn(^9 f8) = (r(N~, X+ X2)f)( + oo, fx, f.) 
7t-*-+oo 

= sup inf liminf sup inf Fh(oDi9œ^). 
U2eJ(£2) UxeJ(€x) Ä'-H-oo x1eU1 X2eU2 

I shall not compare here the definition of /^limits with that of other 
limits used in topology, differentiation and tangency theory, convex-con
cave functions and minimax theory, variational inequalities etc. (for 
this, see for example [4], [12], [19], [31], [32], [36], [37], [40], [47], [48], 
[51], [53], [54], [61]). However, I want to point out that themain prop
erties of /"-limits depend essentially on the fact that they are elements 
of a more general class of operators, the ©-operators, which we now define. 

Let A be an arbitrary set, and let Jöf be an arbitrary family of complete 
lattices. For every l e ££, we denote by adm(JL, I) the set of all functions 
/ such that dorn/ £ A, r ange / £ l. We do not exclude the empty function, 
that is the function / such that dorn/ = r ange / = 0 . Eow, we say that 
an operator g is a G (A, ^-operator if the following four properties hold: 

(i) dom0 = { ( / , ! ) : le<?,fe&äm(A,l)}9 

g(f, l) eadm (A,1) V (/, I) e don] g\ 

(ii) V lx, l2 e ££, V/ i e adm (A, lx), V f2 e adm (A, Z2) 

dom/x £ dom/2 => domg(f19 lx) s äomg(f2, l2), 

dom/i = 0 =• dorn g(fx, lx) = 0 ; 

(iii)Vle-SP, V/ i , / 2 eadni (A,Z) 

dom/i = d o m / 2 , fx<J2 => g(f191) < , 0 ( / . , I); 

(iv) if lx,l2e£t? and y: lx->l2 is a complete lattice morphism (i.e., 
for every Fx £ lx, Fx ^ 0 one has <p(lx — sup JE/J = ï2--sup 93(1 )̂ and 
ç ^ - i n f JS7x) = Z2-inf ^(^?i)) then 

V° 0 (/> W = 0 (?°/> ^) V / G adm ( JL, lx). 

From (iv) we immediately obtain the following condition: 
(iv') if f(x) ~c for every x e dorn/, then g(f9l)(y) =c for every 

j/Gdomsr(/, I). 
We shall call the operators satisfying (i), (ii), (iii) and the weaker con

dition (iv') G'(A, ^-operators. 
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Naturally, the case of the r(Xf9 Xf) operators corresponds to A 
= XxxX2 and ££ = {JB}, and they are actually G (A, J§?)-operators. 

Moreover, with each pair (gx,g2) of G(A, jS?)-operators we may asso
ciate the (gx, gr2)-convergence by considering the pairs (/, I) such that 
g±(f91) = g2(f71). An example of convergence in this sense is the r(X~~) 
convergence defined in (3'"). 

Finally, we remark that among ©-operators there are also other in
teresting operators different from the /"-operators : for example the mono
tone rearrangements of Hardy and Littlewood are ©-operators. An example 
of a ©'-operator is the operator Tx considered in Theorem 3. 

/"-convergence and Calculus of Variations 

Let us return to the r(X~) limits.-We begin by stating the general results 
that provide the link between jT-convergence theory and Calculus of 
Variations (see [26]). 

THEOREM 1. Let X be a topological space and (Fh) a sequence of func
tions on a dense subset F of X with values in R. Suppose that for every x eX 

F0O(x)=r(X-)limFh(a>) 
ft-*-}-OO 

exists. If (xh) is a sequence of points of F such that 

then 

lim#Ä — x^ and lim Fh(xh) = lim (inf Fh(x))9 
h-*-+oo A-H-oo Ä->+oo XBB 

JP»(0j =min.Foo(a0 = lim iBtFh(m), 
xeX hr->-{-oo xeE 

If Fh(xh) = mmFh(x), then Theorem 1 gives the convergence of 
xeB 

minima and minimal points of Fh to minimum and minimal points of F^. 
THEOREM 2. Let X9 (Fh) be as in Theorem 1. Suppose that for every 

x eX 

FM =r(X-)limFh(x) 
7lr->+00 

exists. If ,(Gh) is a sequence of functions on X with values in R converging 
uniformly on X to a continuous function GOQ9 then for every x eX 

JU») +<?«,(*) = nX~) Km [Fh[x) +GA(0)j. 
/k->+oo 
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Theorem 2 gives the stability of r(X~) convergence with respect 
to continuous perturbations. 

It frequently happens in applications that F may be embedded in 
many topological spaces Xj in this case Theorems 1 and 2 play an opposite 
role, because the topology of X must be chosen weak enough to ensure 
the compactness of the minimizing sequences and strong enough to ensure 
a larger class of continuous perturbations. 

THEOREM 3. Let (X,d) be a metric space and (Fh) be a sequence of func
tions on a dense subset F of X with values in R. Let a > 0 be fixed and 
define for every X> 0, heN and x eX 

(T,Fh)(x) =i^[Fh(y) + ^d(x,y))a]. 
yeB 

Suppose that for every xeX 

lim ììm{TxFh)(w) =F„(œ) 
A->+00 Är->+00 

exists and that F^x) > — oo. Then 

Fœ(œ) =r(X")limFh(x), WxeX. 
]lr-*-\-OQ 

Theorem 3 reduces the calculation of a /"-limit in a metric space to 
a limit of the minimum values of Fh + ip with y varying in a restricted 
class of continuous functions. In a certain sense, Theorem 3 is the con
verse of Theorems 1 and 2. 

By applying Theorems 3, 2 and 1 successively, it is possible to treat 
the example at the beginning of this paper. Similarly, these theorems 
can be applied in more complicated cases, e.g. to the sequences of quadratic 
functionals 

n 

$h(u) = j[£ a[fL>iuL>ju-2fhu\dx+ jy)(x,u(x))dx (ft = 1 , 2 , . . . ) , 

by relating the r(L2(Q)~) convergence of (Fh) with the asymptotic behav

ior as ft-> + oo of the equations 

More generally, the T(X~) convergence of sequences of functionals 
such as 

Fh(u) = ffh(x, u(x), Dû(x))dx+ j ip(x,u(x))dx • (5) 
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may be studied by examining the asymptotic behavior as ft-> + oo of 
the Euler-Lagrange equations of the first integral in (5). This subject 
has been extensively studied (we refer the reader to [5], ' [8], [29], [38], 
[41], [44], [49], [58], [59], [60]). 

Besides this approach, which one might call "indirect", there is a differ
ent one, related to the direct methods in Calculus of Variations and to 
measure theory. We describe them now. 

Direct methods in /"-convergence 

In order to illustrate the results in /"-convergence obtained by direct 
methods, let us begin with a result concerning area-like functionals (see 
[24]). For ft G N, A an open bounded subset of Rn and u e G1 (A), define 

Fh(u,A) = jfh(x,u(x),L>u(x))dx9 (6) 
A 

where fh: RnxRxRn->R are measurable functions such that 

\*\<fh{*,v,*)<o(i + \y\ + \*\), (7) 

l/*(0i Vu * I ) - / A ( 0 > y!2, *>)l < o( |yi-yi l + fc-*al) (8) 

with c a real constant independent of ft. Then it is possible to select a 
subsequence (F^) such that 

ripiA^VmF^iUtA) =F„(u,A) 
Ar-> + 00 

exists for every open bounded set A and for every u eLl(A), and the 
functional FQ0(u,A) is represented on Wlfl(A) by an integral like (6). 
Note that FOQ(u9 A) takes finite values on Wlfl(A) and also, in contrast 
to Fh, on the space BV(A) of integrable functions on A whose first order 
distributional derivatives are measures with finite total variation on A. 
However, under the general hypotheses (7) and (8), we do not know 
a meaningful integral representation of FJ^u 9 A ) when ueB V(A ) \ TT1'1 (A ) . 
This representation problem on BV(A) is also nontrivial if fh(x,y9z) 
= f(x9y9z)9 and is solved only in some particular cases. For example, 
if f(x, y9z) = \z\ we have, for every u e BY(A)9 the formula 

FOQ(u9 A) = j \Du\ = sup { fudivip dx: <p e [G?(A)Y, \<p\ < l } , 
A A 

which illustrates the link between /"-convergence and nonparametric 
minimal surface theory (see [45]). Analogous formulae for more general 
fh have been found recently (see [20]). 
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The previous result is essentially a compactness theorem with respect 
to the /'-convergence of a class of integral functionals. Similar results 
for other classes of integral functionals have been proved by several 
authors (see for example [11], [15], [42], [56]). 

There are also interesting examples in which the .T-limit of a sequence 
of functionals exists but has a form very different from the approxi
mating functionals. Recall for example (see [46]) that if Q has a smooth 
boundary, then for every ueBV(Q) 

A r 
I \Bu\ ii 8m(nu) == 0 a.e., r[J^{Q)") lim [ \ ^ ^ + hBm^nu)\dx == na 

+ oo otherwise. 

Another interesting example in which a sequence of obstacles con
verges to a smooth perturbation was found in [16]. There, a sequence 
(tph) of real functions on Rn was constructed such that, setting 

for A an open subset of Rn and u eL2(A), we have 

r(L*(A)~) lim [ J\Du\*dx+JVh(u9 A)] = J \Du\zdx+ f(\u\--u)*dx 
A-H-oo A A A 

for every bounded open subset A of Rn with smooth boundary and for 
every u eE1(A). 

More generally, the /"-convergence of integral functionals constrained 
by unilateral or bilateral obstacles has been studied by several authors 
(see [3], [22]); we mention here a compactness result (see [21]). 

Let / : RnxR xRn->R be a function such that f(x9 y, z) is continuous 
in y and convex in z. Suppose that for a fixed p > 1 

\*\*kf(*,V,*)<0(l + \yP+\*\*) 
with G a real constant. Then, for every bounded open subset A of Rn with 
smooth boundary and for every sequence (y)h) of uniformly bounded 
functions on Rn, there exist a subsequence ( y ^ ) , a function <p: Rnx 
XJK->JB and a positive measure fi such that 

r(IP{A)-) lim f / / ( * , u(x), Bu(x))dx+J (u, A)] 
7fr-H-oo L ^ 

= ff(x, u(x), Du(x))dx+ f <p[x, u(x))dfi(x) 
* 2 

for every u eHliP(A). 
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Besides these obstacle problems, we can consider also the r(Lp(Q)-) 
convergence of integral functionals subjected to varying boundary Dirichlet 
conditions. For example, let (Fh) be the sequence of functionals on Cfl(S) 
defined by 

Fh(u) 
[ JVl + \Du\* dx if u = % on dQ, 

+ 00 otherwise, 
where JO is a bounded open subset of Rn with smooth boundary and (tph) 
is a given sequence in G1(dü). 

First, assume that (iph) converges to tpM in Lx(dQ). Then, for every 
ueBV(Q)9 we have 

r(L*(QD UmFh(u) = JVl + \m\*+ / |B -y ja^ Ä - i , (9) 
- Ä->+00 Q QQ 

where 
n 

JVl + l-Dttl" =sup{ ffa + u^DiVj^da): <p0, ç»x,..., ç>„, eG?(ß), 

i = 0 

l 
%(a?)=l im r——=rr-rr I w(y)dy. 

v ' ê o meas £r\B0(x)) J KUÌ * 
Here J5e(a?) is the ball centered at x with radius g and ^n^x is the Hans-

* dorff surface measure on -dû. 
Observe that in this case the /"-limit (9) corresponds to the modern 

weak formulation of the nonparametric Plateau problem (see [45]). 
The weak convergence in Ll(dQ) of (iph) does not guarantee the existence 
of the jT-limit (9). Nevertheless, if we suppose that the sequence (iph) 
is bounded in Lx(dQ)9 then there exists a subsequence (F^) such that 
for every u e BT(Q) 

r[Lx(Q)~) lim Fc{Ji)(u) = JVl + |Z^ | a + fw[x9u(x))dtfn^(x)9 
Ä_H-oo fl dû 

where w(x,t) is convex and Lipschitz continuous in t, but in general 
w(x,t) does not have the form \g(x) — t\ for any geLx(dÜ). This last 
result has been used in [28] to construct an example of an everywhere 
discontinuous function ^ on the boundary of the unit circle in JB2 such 
that the functional (9), and hence the weak Plateau problem on the circle, 
have infinitely many minimum points. 



G-Operators and JT-Convergence 1185 

In all the results quoted above and in many other problems of JT-con-
vergence solved by direct methods, one deals with a sequence [Fn(u9 A)) 
•of functionals which are measures with respect to A. 3y compactness 
theorems, it is relatively easy to obtain the JT-convergence of a subse
quence [Fa{jh)(u,A)) to a functional F^u, A), whilst it is more difficult 
to prove that F^u, J.) is a measure with respect to A and then to re
present F^oo, A) by an integral over A. A recent paper (see [23]) gives 
.some general criteria and methods for answering the question of whether 
& r-limit is a measure. 

Very recently, the direct methods of F-convergence have been applied 
to functionals 

F(u9 A)= ff(oo9 u(x)9JDu(x))dx 
a 

depending on vector-valued functions u. Their case is rather different 
from the scalar one, mainly because the lower semicontinuity of F(u, A) 
does not imply the convexity of the integrand / in the gradient variables, 
as in the scalar case (see [34], [42]). However, some results, such as the 
one on area-like functionals satisfying (7) and (8), may be extended to 
the vector case: in particular, by taking Fh = F all equal, one obtains 
some interesting relaxation results (see [1], [7]). 

We conclude this section with two open problems of the same type: 
to find the weakest assumptions on the integrands ensuring the con
vergence of a sequence (Fh) of integral functionals (/'-convergence of 
the whole sequence, not only of a subsequence). 

The first problem is related with homogenization: the functionals 
Fh have the form 

l?h(u) = jf(hx, x, u, JDu, L>*u, ...,Bmu)dx (10) 

or 

Fh(u) = ff(x, hu, Du, ..., Dmu)dx9 (10') 

where û is an open bounded subset of Rn and / is periodic in the (vector) 
replacement variable hx in (10) or in the (scalar) replacement variable 
hu in (10;). Here one considers the r(Lp(Q)~) limit (1< jp < +°o): for 
(10) there are many results (for the direct methods, see [8], [9], [52], 
[57], [59], [60], for the indirect methods [2], [11], [29], [42], and for 
a counterexample see [33]). There are fewer results for (10') (see [10]), 
but in both cases we do not know of results or counterexamples which 
show that the optimality of the assumptions on / is attained. 
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The second problem is related with singular perturbations: the func
tionals Fh have the form 

JFh(u) = Jf(x, u, h~lDu9 h~2B2u, ..., h~mBmu)dx. 

In this case it is the r(Z^eak(£?)") limit ( 1 < # < +00) that is interesting 
(see [13]), and again we should like to obtain information about the opti
mal assumptions on / . 

Other problems and applications 

In this last section we mention,, without any claim to precision or com
pleteness, some other problems in which .T-convergence can be applied 
and which merit further study. In fact, the results already obtained show 
that ^-convergence is a flexible instrument which could become useful 
in many branches of mathematics. 

(a) F-convergence of optimal control problems. This is a direction of 
research that seems to be promising (see .,[12]). From the point of view 
of /"-convergence, it is useful to formulate an optimal control problem as 

min[.F(^, v)+K(u, v)]. 

Here F is usually an integral functional depending upon the two functions 
u and v, and K is the characteristic function of the state equation, that 
is, K(u, v) = 0 if (u, v) satisfies the state equation and K(u9 v) = +00 
otherwise. In this kind of problem the extension of the direct methods 
of Calculus of Variations encounters both the difficulties connected with 
obstacles and with functionals depending on vector-valued functions, 
whose components often have to vary in different function spaces. 

(b) r-convergence of differential equations. The /"-limit of characteristic 
functions appears also in problems of convergence of differential equa
tions not related to control problems. Suppose we have a sequence 

Fh(u) = / (11) 

of differential equations, and let Kh: XxY~->R be the characteristic 
function such that Kh(f, u) = 0 if Fh(u) = / and Kh(f9 u) = +00 other
wise. First one should ask whether the limits 

K'(f, u) = r(X'9 Z-) Urn Kh(f9 u)9 
h-++oo 

K"(f, u) = r(Z+, T") lim Kh(f, u) 
A-*+oo 
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exist. If so, the pairs (/, u) suchthat K'(f, u) = K"(f, u) = 0 are "stable" 
limits of solutions of (11), whereas the pairs (/, u) such that K'(f, u) = 0 
and F.n(f, u) = + oo are "unstable" limits. Another problem is to establish 
whether there exists a differential operator F^ such that F^u) = / if 
and only if K'(f, u) = 0 (or K"(f, u) = 0). One example of the above 
situation is the bounce problem (see [14], [30]). Other limits of differ
ential equations have been studied by methods of /"-convergence (see [52]), 
and many other results are obtained in the papers on indirect methods 
in /"-convergence quoted above. 

(c) Convergence of stationary points, steepest descent curves. Suppose 
that (Fh) is a sequence of functionals defined on a Hilbert space X which 
r(X~) converges to a functional Fn. Then it is interesting to find out 
when the solutions % of the equations 

du d2u 
f = -gradFh(u)9 — = -gmdFh(u)9 — = -gradF h (u) (12) 

converge to the solution uM of the respective equations with F^ instead 
of Fh. 

If Fh are quadratic integrals the conditions (12) may be equivalent 
to some linear partial differential equations (elliptic, parabolic or hy
perbolic; see [59]); in the general case the functional equations (12) 
may be strongly nonlinear and it may be convenient to replace the con
dition grad F(u0) — a with the weaker subdifferentiability condition 

u-*u0 \\M — U0\\ 

in which || || and < , > obviously denote norm and scalar product in X. 
Eesults are known for the "elliptic" case / = — grad Fh(u) where Fh is 
the sum of a convex function and of a smooth function (see [2]) and for 
the "parabolic" case du/dt = —grad Fh(u) studied by generalized steepest 
descent curves (see [27]). The first application of this theory has been 
the study of geodesic curves with obstacles (see [43]). 

(d) Convergence of minimax cmd of Pareto minima. Here we only want 
to quote the recent works [4], [18], [51]. 

(e) Random homogenization. Besides the classical "deterministic" ho-
mogenization, which essentially concerns periodic structures, several 
authors have studied similar problems for structures only statistically 
periodic (see [39], [50], [62]). A study has been begun of random variables 
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on spaces of integral functionals and their convergence (see [35]). Here 
it is natural and useful to consider .T-convergenee as a "topological'* 
structure on spaces of integral functionals. 
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TADEUSZ IWANIEO 

Some Aspects of Partial Differential Equations 
and Quasiregular Mappings 

This article grew out of my dual interest in partial differential equations and quasi -
conformal mappings. I t can be considered as complementary to the lecture of Jussi 
Väisälä [35] at the Helsinki CongresB where direct geometric methods of quasiregular 
theory were stressed. As a whole, quasiconformal theory develops into a branch of 
geometric multidimensional analysis with rather broad connections. 

1. Elliptic systems in two variables 

Quasiconformal mappings in the plane were introduced as early as 1928 
"by Herbert Grötzseh. However, the general concept of quasiconformality 
was clarified in the pioneering papers on nonlinear hydrodynamics by 
M. A. Lavrentiev. In his approach prominence was given to funda
mental connections of quasiconformal and quasiregular mappings with 
partial differential equations of elliptic type. Quasiregular mappings 
may be considered as weak solutions of the Beltratni equation 

h = «A (i) 
with arbitrary complex-valued measurable coefficient [i = p(z) satisfying 
the uniform ellipticity condition \ja(z)\ < q0 < 1 a.e. This equation is the 
most important case of the general quasilinear elliptic system 

fi=ii(*,f)f. + toi*,f)f,, l ï i(«,/)l + lff . («, / ) l<ffo<l (2) 

as well as the nonlinear system, strongly elliptic in the geometric 
sense [2]: 

fi = *(*>/>/.)» 

\h(z9f9 fl-Ä(*,/,C)|<2ol*--CI, » (* , / , 0) B 0 . ( 3 ) 

[1193] 
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The latter arose from the studies of the complex gradient f(z) = ux—iuy 

of the solution of a second-order nonlinear elliptic equation F(x,y,ux9 
uyi uxxi %xy> uyy) — °? i n particular, of the gas dynamics equation. 

The list of differential equations related to quasiconformal theory 
is longer but we end it here for simplicity. The modern state of the theory 
owes much to L. Ahlfors, L. Bers, B. Bojarski, C. Morrey, L. Eïrenberg, 
I. IS. Vekua and many others. 

2. Quasiregular mappings in Rn 

Let Ü and Q' be domains of Rn and let / : Q->Q' be a mapping of the 
Sobolev class W^jl00(.Q). Then / is said to be K-quasiregular, briefly 
K-q.r.9 if and only if 

\Df(^)\n<F.J(x,f) a.e. in Q, 1^K< oo, (4) 

where Df(x) denotes the Jacobian matrix or the linear tangent map 
Df(x): TxQ->Tf{x)Q' of the tangent spaces TXQ and Tf{x)Q' identified 
with Rn. The norm and the Jacobian determinant of Bf(x) are denoted 
by \Bf(x)\ and J(x,f) respectively. The smallest K for which (4) holds 
is called the outer dilatation of / . A IT-q.r.m. which is also homeomorphic 
is called a K-quasiconformal mapping, briefly ÜL-q.e.m. 

Geometrically, inequality (4) means that / takes infinitesimal spheres 
onto infinitesimal ellipsoids of uniformly bounded eccentricity. 

Systematic studies of higher-dimensional q.c.m. began with P. W. 
Gehring [10] and J. Väisälä [33], while the q.r.m. were introduced in the 
sixties by Yu. Eeäetniak [25] and by Finnish mathematicians: O. Martio, 
S. Eickman, and J. Väisälä [22], [23]. 

Allied with holomorphic functions, the quasiregular mappings behave 
similarly. They are open, discrete and have the branch sets of topological 
dimension <w—• 2. 

In the development of q.r.m. the methods of p.d.e. proved to be the 
most flexible and universal tools. On the other hand, geometric and to
pological methods in q.r.m. gave inspiration and new ideas for pure 
p.d.e., differential geometry and classical analysis. The true value of 
quasiconformal theory lies in its interdisciplinary role ([1], [3], [4], [35]). 
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3. Basic first-order differential systems 

These are derived from (4) as a consequence of uniform estimates of the 
tangent mapD/(#): TxQ->Ts{^Qf. A point x in Q will be called regular 
if Ff(x) exists and J(x,f) ^ 0. Define the symmetric matrix G(x) as 

G(œ) ^ l{J(xJ))-2lnD*f(x)Df(x) if x is regular, 
* ' [I (the unit matrix) otherwise. 

Hereafter D*/ stands for the transposed Jacobian matrix. I t follows 
from (4) that G is uniformly bounded and uniformly positive, precisely 

#(2-2n)/n£2 ^ <(?(a?) £̂  çy ^ K2lnP, (x, Ç)eQ xRn. (5) 

The domain Q becomes a Eiemannian manifold with the positive-definite 
element of arc length ds2 = ^Gij(x)dxidx:}. In general, the metric tensor 
G = G(x) need not be continuous. By the definition of G, the m a p / satisfies 
the matrix equation 

D*f(x)Df(x) =J(x,ff«G(x) a.e. in Q. (6) 

This extends the two-dimensional Beltrami equation (1). For G(x) = I 
(6) reduces to an ^-dimensional analogue of the Oauchy-Eiemann system 

J)*f{x)Df{x) =J(œ,ff*I, feWi^iQ). (7) 

Now suppose that H = E (y) is a Eiemann tensor defined a.e. in 
Q' c Rn. In the classical differential geometry the system 

J)*f(x)E{m)I>m = J(x,f)^G(x), feW^M (8) 

expresses the condition for / to be a conformai equivalence between Q 
and Q'. 

A slight generalization of (8) leads to the system 

D*f(x)]I(x,f)I>m -J(x,fflnG(*,f), /eWijoo(û) (9) 

with symmetric and positive matrices G and H defined on the product 
domain QxQ* on which they are uniformly bounded and normalized by 
det(?(a?,/) = detH(x,f) = 1. This extends the general quasilinear sys
tem (2) for which we have 

flu -0M - 2îffia J2"1:L -M22 + 2iff1B 
Q.1 &u +G22 +H1± +S22 ' *2 GX1+G22 +Bn +H2 
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The matrices G and H are referred to as the matrix characteristics 
of / . In spite of many similarities, the elliptic systems in the plane differ 
very much from their higher-dimensional counterparts. The latter are 
overdetermined and nonlinear. More importantly, their type classification 
breaks down at the points xQ where Ff(xQ) = 0, and the system (9) "de
generates". Nevertheless, on the basis of such systems various funda
mental problems of q.r.m. are more deeply understood and new pros
pects for their solutions appear. 

4. Degenerate second-order elliptic equations 

The case of K = 1 in (4) is extremal and we have Tvnl2(B*fDf) 
= nnl2J(x,f). This identity is also the extremal case of Hadamard's in
equality nnl2J(x, h) < Trw/2(D*ÄJDA) which is in the direction opposite to (4). 
The above facts apply in the following variational problem: given a 
1-q.r.m. f: Q->Rn and a subdomain U c Q, find a mapping h: U-+Rn 

such that h—f eWl
n(U) and h minimizes the integral 

I [ ä ] = fTinl2[B*h(x)Fh(x)Jdx.^ (10) 
u 

The direct method applies and by the convexity of the integrand one 
sees that the minimizer exists and is unique. However, if / and h agree 
on the boundary of JJ, then one has the identity / J(x, f)dx = j J(x, h) dx 

u u 
(this is a property of so-called null-Lagrangians). Hence 

JTTnl2(D*fL>f) =nnl2 fj(x,f)dx =nnl2 fj(x,h)da 
u 

< jTxnl2(D*hDh). 

u u u 

u 
This shows that / minimizers I. 

If / is a IT-q.r.m., one finds in this way that / is a quasiminimizer 
of I, precisely 

JTvnl2(D*fI)f) < K fTvnl2(D*hDh) 
u u 

for every h such that h—f eW^CO). Generalizing, the solutions of (6) 
minimize the integral 

V i [ i ] = fTTnl2[D*h(x)G-l(x)m(x)]dx. (11) 
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Variational problems for vector-valued functions are studied in non
linear elastostatics, but rather without discussing their connections with 
first-order differential systems. It is of great significance for quasicon
formal theory that the unknowns / = (f1,..., fn) which minimize the 
functional (11) uncouple the Eulcr-Lagrange system corresponding 
to (11), providing they solve (6). Therefore each component u = f, 
% = 1, . . . , n, of the solution of the Beltrami system (6) satisfies the single 
equation 

div A(x, Vu) = 0, A(x9 £) = <Gt"1(a?)l, £>(w~a,/*0~1(0)f• (12) 

At the same time this is the Euler-Lagrange equation corresponding 
to the variational integral 

j lu] = jF(x9 Vu)dx9 F(x, f) = (G~l(x)£, £>,l/2. (13) 
u 

For conformai mappings, (12) turns out to be the ^-harmonic equation 
div \Vu\n~2Vu = 0 , whose solutions u e W t̂l00(Z7) are called ^-harmonic 
functions [7]. 

Equation (9) leads to the second-order divergence system 

2J dx, —-A{j(x,f, Df) = 0 , i = 1, . . . , n9 (14) 

where Ai5(x, f,L): QxQ' xRnxn->R are given (n— l)-homogeneous forms 
in the matrix variable L e Bnx,l[16]. In general, the unknowns are coupled, 
and system (14) cannot be reduced to single equations. 

The functional (13) is a typical example of a quasiregular variational 
integral for which <71+* regularity is the best possible. Even n-harmonic 
functions need not be G2 smooth [7]. Nevertheless, some ideas of the classi
cal regular variational problems may be applied to (13). The integrand 
F(x,£) for |£|->oo behaves like |f|n with n = dim Q. Therefore, the 
natural solution space to consider (12) is Wl

nti00(Q), which is the bor
derline space in Sobolev's imbedding theorems. Notice that the 
class of equations (12) is quasiconformally invariant, the ^-harmonic 
equation is conformally invariant. These and other special facts concerning 
equations (12) are responsible for basic geometric and topological prop
erties of their solutions. This is particularly apparent in the works of 
Tu. Eeëetniak (see [27], [30]). 
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THEOREM 1. Let B ç Q be a relatively closed subset of Q and let u be 
a solution of (12) in Wllfi0Q(Q\B). Suppose that every x0eB is a limit 
point of Q\B and also lim u(x) = 4-00. Then B is a set of zero conformai 
capacity. x~^x^ 

Now, let / : Q->Rn be a q.r.m. and let / 0 e Rn. Denote B = {x e Q-9 

f(x) =fo}, the preimage of /<,. I t can be verified that the function u(x) 
= —log \f(x) ~ / 0 | is also a solution of (12) on Q\B. In view of Theorem 1, 
B is a set of zero conformai capacity which implies that the linear Haus-
dorff measure of B is equal to zero. This property of / allows us to define 
the local topological degree of/. By general geometric arguments (see [32]) 
the discreteness and openness of / follow ([6], [30]). 

5. Smooth characteristics 

We assume here that G and M are twice differentiate and that the solution 
/ o f (9) has continuous derivatives up to the third order. By analogy 
with the classical calculations of Weyl and Schouten on the conformai 
curvature, the following second-order equations are derived [3]: 

3 2 / 
dœda}m =Fij(®J,Bf, gradJ(x,f))9 i9j = l , ' . . . , n . (15) 

For the conformai case we write them explicitly as 

One more differentiation of (15) leads to an algebraic linear system for 
the third derivatives of / . When n > 2 this system can be resolved: 

3 3 / 
to. fa to =Ii

m(x9f9Bf, gradJ(a?,/)) , i, j , Tc = 1 , . . . , n. (17) 

In the case of the ^-dimensional Beltrami system (6), these formulas con
tain a linear and uniformly elliptic equation for the scalar function 
v =J(x,f)(n-2V2n

9 

where I%(x) are the Christoffel symbols and B(x) is the scalar curvature 
of the Biemann space (Q9G). This equation is in fact the linear part of 
the equation which appears in the Tamabe problem. From (18) we see 
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that v has rather special properties. In the conformai case (K = 1) v 
is harmonic. Thus (18) provides us with some information about the 
Jacobians of quasiregular mappings. 

The system (9) behaves like a system of ordinary differential equa
tions, so that the solutions are uniquely determined by their derivatives 
of order < 2 at a given point. The following theorem is an immediate 
consequence of (15) and (17) [3]. 

THEOREM 2 (the point Oauchy problem). Let G,H eG2(Qx Q') and 
let x0 eü, f0e Q', f G Rn, L G Rnxn, det L > 0, L*M(xQ,f0)L = (det Lfn 

•G(x0,fQ). Then the system (9) has at most one local solution of class <7a 

such that f(xQ) = / 0 , Bf(xQ) = L, grad J(x0,f) = £. 

In other words, the family of local solutions of (9) depends on %(n+l) x 
X (n + 2) real parameters. The number of the parameters is exactly equal 

to the dimension of the general Möbius group acting in Rn. 

6. The Liouville theorem 

By using finite difference methods various reqularity properties of 
1-q.r.m. may be derived from (7). In particular, \J(x,f)y G Lip(ß), hence 
J(x,f) is Holder continuous in Q. Moreover, J(x,f) is G°° on the open 
set Q+={xeQ-9 J(x9f)>0} since v = (J(x, /))(»-*>/a» is harmonic 
(see (18)). From (16) it follows that / is also G°° on û + . Therefore we 
are justified in using the uniqueness theorem in the point Oauchy prob
lem for the system (7) in Q+. On the other hand, there exists a (global) sol
ution of (7) with arbitrary Oauchy data, namely a Möbius transformation. 
Hence, / is Möbius in each connected component of Q+. Explicit express
ions for the Möbius transformations show that J(x,f) is positive on 
fìnD+. This means that Q+ is relatively closed in Q. Summarizing, if 
ß + is empty then / is constant. If this is not the case, then Q+ = Q and 
so / is Möbius in Q. 

These quite elementary arguments were used for the following general 
version of the classical Liouville theorem [5]. 

THEOREM 3. Fvery 1-q.r.m. in a domain of Rn, n > 3, is either constant 
or a sense-preserving Möbius transformation. 

In such a form this theorem plays important role in higher-dimensional 
quasiconformal theory. The Liouville theorem without any a priori re
gularity assumptions was first proved by F . W. Gehring [10] for locally 
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1-1 mappings. The case of an arbitrary 1-q.r.m. was treated by Yu. Eeäet-
niak [26]. Both authors referred to non-standard and difficult results of 
p.d.e., geometry and general quasiconformal theory. 

The first important question that arises as a consequence of the 
Liouville theorem is whether the injectivity remains valid for iT-q.r.m. 
with dilatation K sufficiently close to 1. 

INJECTIVITY THEOREM 4. There exists an s = s(n) > 0, n > 2 such that 
every K-q.r.m. with 1 < K < 1 + s is either constant or a local homeomor-
phism [14], [23]. 

7. The regularity theorem 

A version of Theorem 4 for mappings of Eiemannian manifolds reads 
as follows: 

EEGULARITY THEOREM 5. Let G and H be of class Gh(QxQ'), Jc>0. 
Then every nonconstant solution of (9) is a local diffeomorphism of class 
€k+1(£2). 

Other cases of this theorem were treated with various tools' by Tu. 
Eeâetniak [29], J. Lelong-Ferrand [20], and the author [16]. In [16] 
the second-order system (14) was exploited. Although we have no satis
factory regularity results for general solutions of such systems, in our 
special case of quasiregular mappings it is possible to use the methods 
relevant for a single elliptic equation. By the technique of truncated func
tions we first show that the Jacobian J(x,f) is locally bounded. Now 
fix xQ G Q and denote/0 = f(xQ) e Q'. After an affine change of thé variables 
œ and / it can be assumed that G(x0,f0) = jT(a?0,/0) = I. Therefore / 
becomes a ( l + e)-q.r.m. in a neighbourhood of xQ. Thus, / is a locally 
1-1 mapping (or constant). On the other hand, in a neighbourhood of 
y =f0efìf the inverse map g =f~\(y) satisfies the system B*g(y)G(g9 y) 
-Bg(y) =J(y,g)2lnH(g,y) which looks like (9). Hence J(y,g) is also 
locally bounded. In view of the identity J(x9f)J(y,g) = 1 it follows 
that J(x,f) is bounded away from zero and thus the system (14) becomes 
uniformly elliptic on the solution / . Finally, classical regularity results 
complete the proof of the theorem. 

The above illustrates that the regularity problems for general elliptic 
systems are more deeply seen if the solutions (or some special class
es of the solutions) are interpreted as mappings of Euclidean domains 
or Eiemannian manifolds. Then the analytical methods of study are 
enriched with additional new tools, of geometrical and topological char
acter. 
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-8. Self-improving property of reverse inequalities 

A priori estimates in p.d.e. are in principle the reverse of the classical 
imbedding inequalities. Eestricted to "regular" neighbourhoods, 
these estimates preserve their structural constants. As many examples 
•show, such estimates improve themselves automatically. To clarify 
these heuristic remarks we will give some examples that arose in p.d.e, 
a>nd q.c.m. 

Let Q be a domain of Rn. Our "regular" basis of neighbourhoods at 
.a given point x e Q will be tho family &(x) of parallel w-cubes Q such 
"that x GQ € Q. Let co be a measurable function defined on Q. We will 
work, under suitable assumptions on co, with the following local averages 
over the cubes Q e&r(Q) = \J ^(x): 

xeü 

i - jco(y)dy, MPiQ = ((\c0nQyip iip^-00,0,+00, 

HI-« , ,© = ess inf \co\, \\a>\LaQ = ess s u p |co|, 
Q Q 

II®ll*o Ä l l ^ - ^ I U ttp>l, 

Wi% = 101*11 M U for co G TPJ(Q) and 1 ^p < oo. 

By a reverse Holder inequality we mean that for some 0 ^r<p ^ 0 
and a constant A = A(n, r,p) > 1 the following is true: 

I M U < A \\co\\rtQ for each Q G J F ( û ) . (19) 

Let us recall some examples. The limit case of p = oo and r = — oo 
ïeduces to the classical Harnack principle. When p = 1, r = 1/(1 —g), 
1 < q< oojthen (19) defines the Muckenhoupt class <sfq. If ln|co| G B M O ( û ) , 

i.e., sup{||ln|co|||J; Ç G #"(£)} < oo, then (19) holds with p = — r = e for 
some positive e (the John-ïfirenberg lemma). The crucial result for 
q.c.m. was the inequality of F. W. Gehring 

\\Bf\\ìltQ^A(n,K)\\Bf\\ltQ, 

which holds for every Jf-q.c.m. / : Q-*Rn [12]. 
Unfortunately, estimates of the above type are too strong to hold 

ior solutions (or derivatives of solutions) of the classical elliptic differen
tial equations. The point is that (19) implies "the unique continuation 
property": co == 0 on a set of positive measure implies co = 0 a.e. The 
well-known examples of elliptic equations with the nonunique continuation 
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property due to A. Plia and K. Miller illustrate that (19) is not true in 
general. For solutions of differential equations we can only succeed in 
proving wealc reverse Holder inequalities 

IMI*,«* <A(n,p,r, a) \\co\\rtQ, 0 < r < # < oo, (21) 

where a is a parameter from the open interval (0,1) and Qe&r(Q). 
Henceforth aQ stands for the cube of the same center as Q but of diameter 
a times smaller. 

The simplest example is a subharmonic function co, for which IMI«,^ 
< (1 — cr)~n|M[lfQ. Usually, (21) is applied to the derivatives of solu
tions of elliptic equations or systems. The exponent p is then naturally 
determined by the leading coefficients. Essentially, (21) follows from 
the Oaccioppoli type estimation: IM|£/OQ< (7(1 — ff)""1

 IMIäQ regarded 
as a weak reverse Poincaré inequality. An analogue for q.r.m. is the 
inequality 

\\Bf\\n9aQ^A(n, o,K)\\Bf\\i,Q, Q e&(Q). (22) 

The self-improving property of (19) with exponents of different signs,. 
r < 0 < p, first appeared in Muckenhoupt's proof that sfa = \J <sfq, [24]. 

o!<a 
For positive exponents, it was discovered by F . W. Gehring [12]. We 
formulate his result in a somewhat greater generality. 

LEMMA 1. Suppose coeLf00(Q) and (21) holds. Then there exists an 
s = e(n,p, r, A) > 0 so that co ELf^e(jQ). Moreover, for 
G(0,P + S) there exists an A' — A'(n,r,p,r',p',a,Ä) sue] 

IMUOQ < A!IMI™ for each Qe^(Q). (23) 

The following comments must be made here: the fact that p in (21) 
can be increased follows from the Hardy-Littlewood maximal theorem 
and the following interpolation inequality [6] : for co e Iß*'(Q) 9 p,m^p^l7 

insu < iMgû+Wi- A) ii-»; «<.!!. 
Here ß is a cube in Rn and (Mpco)(x) = supflMl^g; Qe^(x)}. The 
right-hand exponent r in (21) can be arbitrarily decreased by an iteration 
process and a Whitney type subdivision of Q [19]. 

Discovered in quasiconformal theory, this lemma soon became an 
important tool for LP estimates in elliptic equations and systems [9], [13]. 

Let us make some comments connected with the role of the exponent 
r. If co is the positive solution of an elliptic second-order divergence equa
tion then u = log co is a function of class BMO(i2). Hence by the John-
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Nirenberg lemma, ||Cü||,.,IQ < 0||co||__^Q for sufficiently small r' > 0, and 
by (23) we get the Muckenhoupt type estimation IM|^aQ< (L4'||G>||_,.%Q. 

I n practice, this inequality acts as a substitute of Harnack's inequality [6], 
Another useful property of a function co which satisfies a weak 

reverse Holder inequality is that almost every zero of co is of infinite 
order. Taking into account that zeros of infinite order for the Jacobian 
of a nonconstant q.r.m. cannot occur [6], it follows that the Jacobian 
is positive a.e. Notice that (22) holds in fact for a = 1 but with the 
•constant A depending additionally on the topological degree of / [21], 

The above remarks on reverse Holder inequalities reflect a rather 
general principle on geometrical stability of properties of function classes 
satisfying natural double type inequalities which appear on several occa
sions in analysis and geometry [4], 

9. IP -integrability with large exponents 

LEMMA 2. Suppose co e L[0Q(Q), r > 1, 0 < a < 1, 0 < 0 < KT8™* cmd 
suppose that for each Q e^r(Q) 

INIr*ÌQ<9|HlriO. (24) 

1 1 
Then coeLfQ0(Q) for p = — log10 —. Moreover, 

on 0 

\\œ\\PfQQ^Ap(n,e)a^\\co\\rtQ (25) 

for each Q e^(Q) and Q G ( 0 , 1). 

Notice that p does not depend on a. 
The lemma is a consequence of the following maximal inequality: 

given Q, which in this case means a cube in Rn, and given f eLp(Q), 
jp > r > 1, we have 

\\Mrf\\PiQ < 106nn\Mm^ü+102n\\f\\rtS}, 

where (Jf #/)(*>) = sup{||/||*Q; QetF(x)}. 
The latter is in fact a local version of the Fefferman-Stein inequality 

(see [18]). The case of a = 1 has been considered by L. G. Gurov and 
Yu. Eesetniak [15]. However, in various applications the case a < 1 
seems to be more usefuL For example, this arises typically in elliptic 
differential equations [17], [18]. 

Through stability estimates the i^-probloms may be treated by use 
of Lemma 2, the stronger the estimates, the larger the exponent p. 
This will be exemplified below. 
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10- Stability 

When speaking of stability in Liouville's theorem, we usually mean an 
estimation of the distance between a given JT-q.r.m. and the Möbius. 
group, which is expressed in terms of the dilatation K. Perhaps the sim
plest example is the following "weak stability" result which directly follows 
by compactness arguments. 

PROPOSITION 1. There is an increasing function v: [l,oo)-> [ 0 , 2 \ 
lim v(K) = 0 with the following property: given a cube Q e&(Q) and a 
K-+1 

K-q.r.m. f^Wll(Q)9 n^39 there exists a Möbius map <p e W^Q) such 
that 

\\Bf-Bcp\\ i 0 < v(K)\\Bf\\niQ. (26) 

This result is far from optimal. Deeper studies, due mainly to M. A. 
Lavrentiev, P. P . Belinskiï and Yu. Eeäetniak have led to stability in 
the large as for example [31]: 

PROPOSITION 2. Let Q e^(Q) and letf: Q->Rn be a nonconstant K-q.r.m. 
Then there exists a Möbius map cp such that 

l l ç^o / - id l ing < G(n)(K~l) clmmQ. (27) 

We emphasize here the universality of the factor G(n)(K~ 1) in this 
estimation. I t is surprising that the infinite-dimensional objects (q.r.m.) 
are "uniformly approximated" by objects of fixed finite dimension (Möbius 
mappings). This estimation can be extended to wider classes of domains^ 
as for instance John's domains in place of Q [31]. Extended in this way, 
the stability estimates became an important apparatus dealing with glo
bal injectivity problems in quasiconformal theory. 

Passing to the example of stability estimates in p.d.e. we consider 
the stationary Schrödinger equation 

Aco + Vco=09 coeW\(Q)9 Q c Rn (28) 

with the potential VeLnl2(Q). The aim is to estimate the distance be
tween co and harmonic functions by means of local in/2-norms of the 
potential V. 

For each cube Q e^(Q) one can solve the Dirichlet problem 

M f e = 0 , heWl(Q)9 , 
\h-coeWl(Q). 
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Then the standard method of test functions and the Sobolev imbedding 
inequality yield 

||û>-A|h» <a(w,û)|M|i» , (29) 

where «(n, O) = G(n){\\Y(x)\nj2dx)2jn. 
Q 

A distinction between (26) and (29) has to be made here. On the 
left-hand side of (29) we are concerned with the entire cube Q while in 
(26) with the subcube %Q, hence the name "weak stability". 

We come now to one of our purposes. 

11. JT'-integrability from stability estimates 

Since h in (29) depends on Q, this is an uncontrolled term. The following 
simple trick eliminates h from this inequality. We have 

\\h\\j^ <(l + e(n9Q))\\œ\\_2n_ 

And for each C G ( 0 , 1 ] , (29) implies 

Ilö-ÄILSL,* < ^2-^28(n9 ß)||o)|K Q. (30) 
n-2 . n—2' 

On the other hand, harmonic functions are regular in that we have the 
following universal estimate: 

IIMIÏ» <0(n)a\\h\\2n <G(n)a{l + s(n9Q))\\co\\2n . (31) 

Combining (30) with (31) shows easily that 

IMIÏ» n<fl |NI.» n for CTG (0,1], (32) 
^ 2 ' ° Q ^ 2 » Q 

Where 0 = 2G(n)cx + 2[G(n)a + a{2^l2']e(n9 û). 
With an appropriate choice of a and small size of Q (the latter is needed 

to make e(n9 Q) small enough) the factor 0 will be as small as one likes. 
Lemma 2 is then applicable. It follows that the solutions co of the Schrö
dinger equation (28) are in L?0C(Q) with arbitrary p > 1, 

Similar arguments may be used for other cases of Lp estimates [17], 
[18], [28]. For q.r.m. the weak stability (26) and the regularity estima
tion 

\\mlaQ<G(n)a\\Bcp\\ntQ9 0 < a < 1 
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of a Möbius mapping cp e Wl
n(Q) are sufficient to prove that every JT-q.r.m. 

belongs to WP)iQ0(Q) with p =p(n, K)->oo as K approaches 1 [17]. 
Stronger stability estimates imply p(n, K)^G(n)l(K—l) as K->1 [28]. 

12. Existence 

The fact that differential systems for isometries and conformai mappings 
are overdetermined makes the problem of solvability rather complicated. 
However, geometric analysis of examples in q.c. theory suggested some 
new ideas. These came from an interpretation of the metric tensor G(x) [8]. 
We explain these ideas in the case of isometries between ^-manifolds 
in Rn. Similarities to the Yamabe problem can be seen. 

Any metric tensor G = G(x), x G Q C Rn, defines a distribution of 
Euclidean ellipsoids ê(x) = {£ eTxQ; <©(#)£, |> = 1 } in the tangent 
spaces, and vice versa. A map / : (Q, G)->(Qf, H) is isometric if and only 
if its tangent map Bf: TQ-+TQ' is a transformation of the underlying 
distributions of ellipsoids, i.e. 

B*f(x)H(y)Bf(x) =G(x), y = f(x) e Q'. (30) 

This system becomes well-determined when we introduce %n(n—l) addi
tional unknowns. For this purpose we allow free motions of S(x) in 
TXQ under the action of a \n(n— l)-dimensional group on TXQ. 

In the example below the action is that of the orthogonal group 
0(n) in Rn (which applies to quasi-isometries). Then system (30) takes 
the form: 

B*f(x)H(y)Bf(x) = 0*(x)G(x)0(x), y ef(x), (31) 

where 0(x) e 0(n) play the role of additional unknowns. These unknowns 
are independent if and only if the eigenvalues of G(x) are mutually dis
tinct. With this assumption and with G and H real analytic we have: 

THEOREM 6. The system (31) has local analytic solutions. 

Thus we observe that the introduction of additional (algebraic) varia
bles into the (nonsolvable!) system (30) makes possible the removal of 
the geometric obstructions to local solvability (the curvature tensor). 
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SEEGITJ KLATNEEMAE" 

Long Time Behaviour of Solutions to Nonlinear 
Wave Equations 

Most basic equations of both, physics and geometry have the form of 
nonlinear, second order, autonomous systems 

G(u,u',u") = 0, (1) 
where u = u(x1, x2,..., xn+1), and u', u" denote all the first and second 
partial derivatives of u. For simplicity we will assume here that both 
u and G are scalars and denote by ua, uab, the partial derivatives dau 
and respectively d2

ahu; a,b =1,2, ..., n+1. Let uQ(x) be a given solution 
of (1). Our equation is said to be elliptic or hyperbolic at u°(x) ac
cording to whether the (n+l)x(n+^l) matrix, whose entries are Gab 

= --—(u°9 u
0', u°"), is nondegenerate and has signature (1, . . . ,1 ,1) or 

(1,..., 1, —1). Nonlinear elliptic equations and systems have received a lot 
of attention in the past forty or fifty years and in this period a lot of progress 
was made and powerful methods were developed. By comparison, the 
field of nonlinear hyperbolic equations is wide open. In what follows I 
will try to point out some recent developments concerning long-time 
behaviour of smooth solutions to a large class of such equations. 

Let us assume that (7(0, 0,0) = 0 and that (1) is hyperbolic around 
the trivial solution u° = 0. Typically, the operator obtained by linearizing 
(1) around u° H== 0 contains only second derivatives. Without further loss 
of generality we may assume it to be the wave operator d\ + . . . + d2

n — d) 
= — D9 where we have ascribed to xn+1 the role of the time variable t. 
The equation (1) takes the form (1') 

nu =I?(u9u',u") (!') 
with F a smooth function of (u,u',un), independent of uu, vanishing 
together with all its first derivatives at (0,0, 0). 

[1209] 
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Associate to (1') the pure initial value problem 

u(x, 0) = sf(x), ut(x, 0) = sg(x) y (l'a) 
with/, g, ö°°-functions, decaying sufficiently fast at infinity (for simplicity, 
s ay ft 9 eG™(Rn)) and e is a parameter which measures the amplitude 
of the data. Given /, g and F we define the life span Î7* = T#(e) as the 
supremum over all T > 0 such that a <7°°-solution of (1'), (l'a) exists for 
all xeRn, 0 < £ < J F . The fundamental local existence theorem ([3], [4], 
[14], [24], [27]), asserts that, if s is sufficiently small, so that the initial 
data lies in a neighborhood of hyperbolicity of the zero solution, then 

T*(s) > 0. Moreover, a simple analysis of the proof shows that T*(e) > A — 
8 

where A is some small constant, depending only on a finite number of 
derivatives of Fr f, g. This lower bound for 2% is in general sharp if the 
number of space dimensions n is equal to one. Indeed let our variables in 
(1') be x and t and F = o,(%)^œa. with a a smooth function, <r(0) = 0. 
An old result of P. Lax [22], extended to systems of wave equations by 
F. John [10], shows that, under the assumption of "genuine nonlinearity", 
(/(O) ^ 0, all solutions to the corresponding initial value problem (l'a) 

blow up by the time O (—). Eecently, in [20], it was proved that 2* < oo 

even if the genuine nonlinearity condition is violated. More precisely, 
assume that <r'(0) = ... = or(p)(0) = 0, a(p+1)(0) ^ 0 then the correspond
ing solutions blow up by the time T = 0(1 /e**4"1). In both situations the 
blow-up occurs in the second derivatives of u i.e. uxx becomes infinite 
while ut, ux remain bounded. Such blow-ups are typical of shock formations 
and are observable phenomena of physical reality. If the original equation, 
or system can be written in conservation form i.e., in our case, 

n+l 

F(u9u',un) = ]? daf
a(u,u'), one can try to^exteiM the solutions past 

a=l 

these breakdown points by introducing the concept of weak solutions. 
This was successfully accomplished for very general first order systems 
of conservation laws, in one space dimension, by the fundamental work 
of Oleinik, P. Lax and J. Glimm (see [24] for a bibliography). In this 
lecture I will restrict myself, however, to classical, i.e. 0°°-solutions. 

Suprisingly, the situation looks better in higher dimensions. In 1976 
F. John [9] proved that, under the assumption F = F(u', u"), and n^39 

T*(s) can be significantly improved and, in 1980, S. Klainerman [15] was 
able to push T*(e) to infinity, and thus obtain global solutions, provided 
that n^Q. More generally, see ([17], [21], [38]), 
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THEOKEM 1. Assitme that F = F(u',u") = 0(\u'\ + \u"\Y+l for 
1 / 1 \ n-1 

uf, u" and that—I1H J < , then there exists an e0 sufficiently small 

such that for all e < £ 0 , (1'), (l'a) has a unique smooth solution for all 
x G Rn, t ^ 0.1 

The reason for this improved behaviour of solutions of (1') in higher 
dimensions was beautifully illustrated by F. John [9] with the following 
quotation from Shakespeare, Henry VI: 

"Glory is like a circle in the water, 
Which never ceaseth to enlarge itself, 
Till by broad spreading it disperse to naught". 

Indeed, the higher the dimension the more room for waves to disperse and 
thus decay. Accordingly, the key to [9], [15], [17], [21] and [28] is to 
use decay estimates for solutions to the classical wave equation, • u = 0 
(see [25], [26], [31]), and to combine them with energy estimates for 
higher derivatives of solutions to the original, nonlinear equations. 

The dimension n = 3, which nature gives preference, is not only the 
most important but also the most challenging. In [7] F . John exhibited 
an example for which T* < oo. More precisely consider F = ut-uu and 
the corresponding equation (1') in three space dimensions. Imposing only 
one mild restriction on the data, jg(x)dx > 0, F . John showed that there 
are no C2-solutions defined for all x e fi3, t ^ 0. However, for sufficiently 
small s, the solutions remain smooth for an extremely long-time before 
a breakdown occurs. We have in fact the following very general. 

THEOKEM 2 (F. John, S. Klainerman). Assume that F verifies one of 
the following hypothesis : 

(Hx) F does not depend explicitly on u i.e., F = F(u', u") 
(H2) F can be written in conservation form, 

4 

0=1 

(R'2) F(u, u', u") = V 8J
a(u, «0 +0(\u\ + \u'\ + \u"\)3 

for small u, u',u 

1 The author was recently able to improve this result [32]. The sharp condi
tion which assures global existence is p > 2j(n — 1). 
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Then, there exist three small, positive constcmts eö, A9 depending only on 
a finite number of derivatives of F9 / , g, such that for every 0 < s < s09 

T*(ß)>exp(A/s). 

Previously a weaker, polynomially long time existence result, was 
proved by F. John in [12] using an asymptotic expansion in powers of 
s, for u (see also [9]). The exponential long-time existence result was first 
proved, for spherically symmetric solutions (in the semilinear case 
F = F(u'), by F. John [7] and T. Sideris [29], and for F = F(u'9 u") by 
S. Klainerman [18]). 

The result of Theorem 2 is in general sharp. Indeed, F. John [11] 
proved recently that this is the case in the context of his previous example, 
F = utuu. There is, however, quite a rich class of nonlinearities F for 
which global existence holds. The following can be regarded as a generali
zation of Theorem 1 in dimension n = 3. 

TEGEOKEM 3. Assume that F verifies the following "Null"-condition 

P) 2 J^(u9u
9

9u
9')JPJ? = 0(\u\+ \u'\ + \u"\?9 

(ü). 2 ^0„6c(«,«',«")X"z6xc = O(|«I + I«'I+I«"I)', 
a,b,c=l 

(iii) j ; KabUJu,u%u")XaXbX°X*=0(\ul + \u'\ + \u"\)3 (ISO 

for every sufficiently small u9 u', u" and any fixed null space-time vector 
(JP,Z«, J3 ,X*) i.e., (Z1)" + (Z")» + (Z8)»-(2:*)" = 0 . 

Then, if e is sufficiently small, a global smooth solution of (!'), (l'a) 

To illustrate the content of Theorem 2 note that either of the following 
examples verifies the condition (N) 

Example 1 F = uaubc — ubuac9 for any three indices a9 6, c = 1, 2, 3, 4 
Example 2 F = da(u

2 — u\ — u\--u\)9 for any index a = 1 , 2 , 3 , 4 . 
The proof of both Theorems 2 and 3 depends on some recent [19] 

weighted L°° and L1 estimates for solutions to the classical, inhomogeneous, 
wave equation in dimension n = 3. They were first used, in the spherical 
symmetric case, in [18] and then extended to the general case by intro
ducing the angular momentum operators Qx = x3d2—x%d39 Q2 =^x1d3 — 
— x3d19 Qs = xzd1 — x1dz. Their key property is that they commute with 
the wave operator • and thus can be treated as the usual partial deriva-
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tives d19 d2, da. In particular, this allows us to extend the energy estimates 
used in [9], [15], [17], [21] and [28], to any combination of the derivatives 
^u 52, d3, Q19 Q2, P3. The operators Q19 Q2, AJ are closely connected to 
the "radiation operators" Z19 L29 L3 which played a fundamental role 
m [12]. 

A different, and very interesting proof of Theorem 3, based on some 
conformai mapping methods, was given by D. Christodoulou [1], (See 
also his previous joint work with T. Ohoquet-Bruhat [2].) 

Both Theorems 2 and 3 have straightforward extensions to systems, 
in particular to those of the type arising in Nonlinear Elasticity and General 
Eelativity. There are important problems, like that of stability of the 
Minkowski Space as a solution of the Einstein equations in vacuum, for 
which we hope that Theorems 2 and 3 could be relèvent. In the scalar 
case we believe that the picture provided by these theorems, together 
with the nonexistence results of F. John [7], [11] can be completed. In 
other words, we conjecture that if one of the hypothesis (HI), (H2), (H2') 
holds and (N) fails, then the lower bound on T*(e) given by Theorem 2 
is sharp, i.e. singularities must develop by that time, for any choice of / 
or g and e small. An important open question is to describe the type of 
blow-up which occurs in that case. If JP is quasilinear and verifies HI , 
we expect that, as for n =1, the breakdown occurs when the second 
derivatives of u become infinite while the first derivatives remain bounded. 
The recent work of F. John [28] points in this direction, but completely 
satisfactory results are still missing. Another open question is to derive 
results similar to Theorems 2 and 3 for the dimensions n = 2 and n = 4. 
We suspect that the corresponding, optimal lower bound for I7* for n = 2 

must be 01 — J while for n *= 4 one should be able to prove global existence.2 

In this respect we hope to find decay estimates similar to those of [19] 
for n T^ 3. The same type of questions can be asked for equations (1') 
where the wave operator Q is replaced by the Klein-Gordon operator, 
\J + m2 or the Schrödinger operator —id(+A. General results of the type 
of Theorem 1 were derived in [17], [21], [28], and for nonlinearities de
pending only on u in [30], (see also the reference there). The methods 
used to derive Theorems 2 and 3 might be used to substantially improve 
these results. 

In the end, I like to apologize for not mentioning the work of many 
2 See footnote, p. 1211. 
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other authors. In particular I have left out a lot of interesting results 
concerning semilinear equations i.e. F = F(u) in (l')f For an up to date 
bibliography concerning such results I refer to the recent papers of E. Glas-
sey [5],, [6]. r 
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ANDREW MAJDA* 

Systems of Conservation Laws in Several Space 
Variables 

We describe some recent progress in the short-time existence of discon
tinuous solutions for the Oauchy problem for an m x m system of hyperbolic 
•conservation laws in w-space variables/ 

+È-k**u)-°> *>0' 
du . v i d 

i 
dt jL-i ox* — (1) 

u(x, 0) = u°(x), 

"where ' x = (a?u ..., x J e Rn, u = t(u1, ..., um) is an m-vector, and the 
Fj(u) are smooth nonlinear mappings of Rm to Rm with A5(u) = dFôjdu 
the corresponding mxm Jacobian matrices for 1 < j < n. The prototypical 
«example of a system of conservation laws is' given by the compressible 
Euler equations of fluid dynamics, (where m = n+2) 

do 
•JL+div(m) = 0 , 

orni ,. ImrnA dp 

_ i + d l v ( _ l ) + _ | = „, , _ ! „ m 

expressing conservation of mass, momentum, and total energy. In (2), 
Q is the density with 1/g = r the specific volume, t> = '(f^,..., i?n) is the 
fluid velocity with gt? = m the momentum vector, p is the scalar pressure, 

* Partially supported by N.8.F. Grant ^MCS-81-02360 and A.R.O. Grant 
5^483964-20530. 

[1217] 
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and E = %(m-m,)lQ +Qe(r,p) is the total energy with e the internal 
energy, a given function of (r,p) defined through thermodynamic con
siderations. Other hyperbolic conservation laws often occur in classical 
physics and engineering — in particular, in describing magneto-fluid 
dynamics, combusion in certain regimes, shallow water waves, and petro
leum reservoir engineering ([1], [10]). 

Despite the abundance of concrete problems associated with systems 
of hyperbolic conservation laws, the rigorous mathematical theory, es
pecially in several space dimensions (n > 1), is only beginning. Here we 
describe the recent theoretical progress regarding discontinuous solutions 
in several space variables ([8], [9]), we contrast the new phenomena for 
n > 1 with those when n = 1, and also we mention some of the interactions-
of this theory with more concrete applied problems ([11], [12]). To empha
size this concrete point of view, we mostly state these results in the context 
of the compressible Euler equations in (2). The reader can consult the 
above papers for the general framework as well as the author's recent-
lectures ([10]) for a leisurely discussion of many of the topics mentioned 
briefly below. 

For linear hyperbolic equations, jump discontinuities in solutions-
always follow characteristic hypersurfaces for short enough times before 
focusing occurs. The most interesting manifestation of the strong non-
linearity in (1) is tha t unlike the linear case, jump discontinuities of (1) 
do wot typically follow characteristic surfaces. To motivate this, we comment 
that a piecewise smooth weak solution of (1) which is smooth except for 
a jump across the space-time hypersurface S(t) with respective sides G+r 

GL and space-time normal (nt, n19..., nn) necessarily satisfies the quasi-
linear equations 

du. v~i du, 

^f+i>M±>äf=o ( 3> 
in the respective smooth regions G± for u as well as the nonlinear boundary 
conditions across the hypersurface, 8, given by 

1Ä ZA l 

where [ ] denotes the jump across 8, i.e., [u]\s = (% — tt-)U- * n general 
the highly nonlinear boundary conditions in (4) force the weak solution 
to jump across noncharacteristic surfaces, 8(t)9 called shock fronts (see [1] 
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for plane wave solutions of (2) and (4) for the elementary theory of gen
uinely nonlinear plane waves where 8(t) is always noncharacteristic). 

Hext, we describe initial data for (1) where intuitively one would 
expect that a shock front solution of (1) with the qualitative structure 
described in (3), (4) would be generated by this initial data for sufficiently 
ßhort times. We take discontinuous initial data so that there is a smooth 
initial hypersurface, M, parametrized by a, with two sides ß + , ß _ so 
that 

u°(x) = 
U°JL(X) for a? in Q, , 

u°__(x) for x in ß__, 

where u°± are smooth functions. Given the qualitative structure in (4) 
anticipated for all small times t > 0, it is natural that we also require 
for this initial data that there is a scalar function, a(a), so that 

-cf(a)[nQ'} + ^nj[Fj(u
0ma)=:0 (6) 

for all as M where ri *= (n19..., n n) is the normal to M. Initial data 
satisfying (5) and (6) are called shoclc front initial data. What conditions 
are needed in several space variables to guarantee the existence and struc
tural stability of solutions satisfying (3) and (4) with the initial data from 
(5), (6)? We state the least technical version of the main theorem in [9] 
specialized to the compressible Euler equations in (2). Before doing this, 
we introduce three important physical parameters associated with the 
shock front initial data for (2). 

The normal Mach numbers, 

\v, •% — a\ 
M±(a)=±-±- 1(a) 

with 0 the speed of sound, 

The compression ratio, a (a) = \-—\ (a). 

The Gruneisen coefficient, r_, measuring the equation of state, 

r _ =[Q-ep(r_,p_))-l>0. 

We have 

THEOEEM. Assume that the shoclc front initial data for the compressible 
Euler equations belong to the Sobolev space, HS(Q±), s > [w/2] + 7 and 
satisfy (6) as well as the related compatibility conditions up to order s—1 
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(see [9]). Asume that the normal Mach numbers satisfy 

M2
+ (a)>l> Ml (a) for all a e M (A) 

and for n^2 that the Gruneisen coefficient, compression ratio, and normal 
Mach numbers also satisfy 

. * (ft(a)-l)Ml(a)<lir(a)+l (B> 

for all ae M. Then for sufficiently short times, there is a G2 hypersurface 
8(t) and G1 functions u± defined on the respective sides of this hypersurface 
satisfying (3), (4), and defining a shock front solution of (2) with the given 
initial data. Furthermore, any compressive shock front initial data (i.e. 
[K,(a) > 1) for idealpolytropic gases where e = px(r —-I)-1, r > 1 automatically 
satisfies (A), (B) and therefore has a shock-front solution. 

We remark here that for n = 1, under assumption (A), sharper results. 
are known and a complete theory of the perturbed Eiemann problem has-
been developed in [6], [7]. Also, with the above rigorous theorem, some 
of the formal calculations in [13] can be justified. The condition in (A) 
is very natural and corresponds to Lax's geometric entropy conditions-
in the general case ([14]). The additional condition in (B) for n > 2 mighti 
seem at the moment to be a technical restriction; however, the evidence,, 
both physical and mathematical, is overwhelming that when (B) is viol
ated for n > 2, more complex inherently multi-D wave patterns occur 
rather than shock fronts ([11], [12]). In [5], [15], interesting general 
geometric entropy conditions always implying (A) are developed. A natural 
question arises: Does every jump discontinuity for (2) satisfying these 
general entropy conditions automatically satisfy the inequalities in (B)? 
The answer is no and the corresponding examples are constructed in [8]y 

[10]. 
The shock front problem described in (3), (4) can be viewed as a highly 

nonlinear free boundary value problem for a quasi-linear hyperbolic 
system since 8(t) is non-characteristic and must be determined as part 
of the solution of the problem. There are three main steps in the proof 
of the above theorem. 

(I) Map to a fixed domain. 
(II) Linearization of perturbed shock fronts. 

(I l l) Construction of the shock front solution via a classical iteration 
scheme. 

Without giving any details, we illustrate some of the main points of 
this proof in the very special case of perturbed steady planar shock fronts 
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in two space variables. We assume the shock front initial data has the 
special form 

W\+v\(x,y), x>0, 

\ul+v»_(x,y), x<0, * > , » ) - | . o 

where v± eG™(R2) and 2Pi(u\) = F^ul). For small positive times, the 
anticipated shock front emanating from x = 0 should have the form of 
a graph, i.e., 8(t) can be described by the equation x = <p(y,t). We carry 
out step (I) in this special case by mapping the unknown shock surface 
x = cp onto x = 0. Thus, to construct the shock front solution, we need 
to find functions u±(x,y,t), <p(y,t) in a new co-ordinate system still 
denoted by (x,y,t) satisfying the interior equations, 

8u± - + ( i , ( « i ) - R i - M i M - ^ + ^ ( % ) - ~ = o 

for ; j j , * > 0 , (8) 

u±(x,y90) = < + < , ?(y,0) - 0 

and the nonlinear boundary conditions, 

nW+cpylF^uft-m =0 on x =0, J>0. (9) 
Step (II) in the outline of the proof involves linearizing (8), (9) at a typical 
varying perturbed state and analyzing the associated linear problem. 
At the special unperturbed state u± ES u°±, cp s= 0, the linearized problem 
for the unknowns (5±, cp) becomes the constant coefficient boundary 
value problem, 

aS± . A /„o x d*>± , A ufi ^^^ - - - œ > ° + ̂ (<)-i+J.2(<)-f-=JF : t for *>0, 

ÄM+^Kl^l^iKlv^i^)5- = * (10) 
for x = 0, J > 0 

together with appropriate initial conditions. The boundary conditions 
in (10) should be regarded as an over-determined evolution equation for 
the perturbed shock front boundary, q>, coupled to the boundary values 
of solutions of hyperbolic equations. A general variable coefficient theory 
for the problems in (10) is developed in [8]. What estimates define the 
well-posedness for the mixed problem in (10)? Looking back at the full 
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nonlinear problem in (8), (9), we see that it is crucial to gain a derivative 
of cp beyond the regularity of v± to avoid "loss of derivatives" in the non
linear iteration scheme. Such shock fronts with an associated linearized 
problem allowing for both this gain in regularity and also a well-posed 
interior mixed problem are called uniformly stable in [8] and admit an 
algebraic characterization analogous to the uniform Lopatinski condition 
for standard mixed problems ([3], [14]). Beturning to the physical example 
of linearized shock fronts for the compressible Euler equations, we have 
the following facts: 

PROPOSITION. For the compressible Euler equations 
I. Shock fronts are uniformly stable for n = l iff (A) from the theorem 

is satisfied. 
II. Assuming (A) shock fronts are uniformly stable for n^2 iff (B) 

from the theorem is satisfied. 
I I I . When the inequality 

(lL-l)M2__>l+M_ir_ 

is satisfied, shock fronts are violently unstable for w > 2 (see [8], [11]). 
TV. In the transition regime between the inequalities from (B) of the 

theorem and I I I , i.e., when 

-~I< (A*-i)Äi < i+Mjr_ 

causal radiating boundary wave solutions (v+9 ï_, <p)for (10) exist (see [11]). 

In [11], [12], the special linearized solutions mentioned in IV are used 
as the starting point of a formal asymptotic expansion which also incor
porates nonlinear effects and leads to a theory which predicts the experi
mentally observed formation of Mach stems in reacting shock fronts — 
thus, the theorem on stable shock fronts requiring condition (B) for n > 2 
is sharp. As regards.the general linear problem from (10) in multi-D for 
the general system (1), we have the following fact: 

PROPOSITION. A necessary condition for any shock front for a system 
of conservation laws in Rn to be uniformly stable is that the number of equations9 

m, satisfies m^n. 
In particular, in contrast to the case of a single space variable, shock 

fronts for the scalar conservation law in two space variables, 

du d , d 
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are less stable than those for polytropic gases in 2-D (see the extended dis
cussion in [10]). 

The final main step in the proof of the theorem is the convergence of 
a nonlinear iteration scheme based on the linearized problems analyzed 
in part (B). Here the strategy follows that used in the oauchy problem 
( [2], [10]) but the technical details are more complex due to both the strong 
nonlinearity in the boundary conditions and also to the use of square 
integrable weighted norms in space-time as opposed to maximum norms 
in time where the linearized problem is well-posed. It is desirable to 
find a simpler and sharper proof of the convergence than the one given 
in [9].1 

The results described here are the only rigorous ones known to the 
author regarding discontinuous solutions of Multi-D conservation laws. 
Obviously, this is a field in its mathematical infancy and a large number 
of very interesting open problems remain. The author hopes that this 
lecture stimulates the interest of other mathematicians in this important 
subject. 
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V. E. ZAKHAEOV 

Multidimensional Integrable Systems 

Introduction 

The discovery and successful development of exact solving methods for 
certain nonlinear partial differential equations (known as the Inverse 
Scattering Problem methods or ISP method) resulted in a change of our 
point of view on the subject of mathematical physics. Instead of equations 
of general form, specific, exeptional equations with strong intrinsic sym
metry began to play the main role. The most known examples of such 
equations are the following : 

1. The KxLV equation 

Ut + 6UUX+U,xx^0. (1.1) 

2. The nonlinear Schrödinger equation 

iUt+Uxx±\U\2U = 0. (1.2) 

3. The Sine-Gordon equation 

Uu-Uxx + smU =0. (1.3) 

These equations arise naturally in many physical problems and are of 
universal nature. They are Hamiltonian systems and their exceptional 
character lies, in particular, in the fact that they are completely integrable 
in the sense of classical mechanics, i.e., they have a full set of motion 
integrals In (n = 1, ..., oo) whose Poisson brackets are equal to zero. 

All known equations to which the ISP method can be applied are 
Hamiltonian systems and have an infinite set of commuting motion 
integrals, therefore we shall call them integrable. It is not rigorous because 
the completeness of sets of integrals which is necessary for integrability 
in a strict sense is proved only in rare cases (in particular for equations 
(I.1MI.3)). 

[1225] 
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All nonlinear equations to which the ISP method can be applied are 
the compatibility conditions for some overdetermined systems of linear 
equations. In most cases such systems can be reduced to the form (see 
[41], [42]) 

Wx = VW9 Wt = VW. (1.4) 

Here W = W(x, t, X) is a nondegenerated (N x iVJ-matrix function, 
and U and Y are (N x JT)-matrix functions of variables x and t which are 
rationally dependent on the complex parameter A. The compatibility 
condition for overdetermined system (1.4) is of the form 

Ui-V.+ tUtTl^O. (1.5) 

Fixing the positions of the poles of functions TJ9 V and specifying 
a certain number of reductions (some a priori relations for the coefficients 
of these functions) we obtain a special system of nonlinear equations, 
i.e., equations (I.l)-(1.4). Within infinite set of such systems a few dozen 
physically significant ones have been studied in some more detail. 

The most general method to investigate systems of type (1.5) was 
developed in [41], [42]. I t is based on some algebraic properties of solutions 
of the matrix Eiemann problem on the complex plane and it enables us 
(as a minimum) to construct infinite sets of exact solutions of systems 
of type (1.5). This method is called "the dressing method". 

If the variable t has the meaning of time, systems like (1.5) describe 
one-dimensional dynamical processes. I t is important from physical point 
of view to study such processes in two, three or more dimensions. All 
the systems for which space dimension d is greater then or equal to 2, 
we shall call multidimensional. This report is devoted to multidimensional 
integrable systems. 

Each of such systems, when restricted to a straight line, generates 
a one-dimensional integrable system; therefore multidimensional systems 
can be regarded as a result,of multidimensional generalization of one-
dimensional ones. This point of view dominates here. 

The first, fairly effective method of multidimensional generaliz
ation, was formulated in 1974 ([40]). In particular, it was shown that the 
Kadomtzev-Petviqshvily equation (K-P) 

d d2U 
— [Ui + WUm+UaJ = ±-^- (1.6) 

(which had been known since 1970) is an integrable multidimensional 
generalization of the KdV equation (see [1], [12]-[14], [18]-[21], [23], 
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[25], [26], [32], [38]). A few papers ([10], [16], [17], [33]), were devoted 
to "three waves" system 

1 +(V1,VU1) =iUzU3, 

8U, 
dt 

dUs 

—** 
8 +(V2,VU2)=W1U*S, (1.7) 

dt 

(here V19 V29 VB are arbitrary two-dimensional vectors) which is a multi
dimensional generalization of the case where the vectors are parallel. 
This case corresponds to a well-known system of type (1.5) (see [15], [36]). 
A multidimensional generalization of equation (1.2), namely the system 

iVt + UM+aUw±2\U\* U+ VU = 0, 

/ d2 d* \ Tr P \ - . ~ 32
 |77|, (L8> 

is known astheDavey-Stewardson system ([11]). There are other examples 
of multidimensional generalizations. One of the main systems of type (1.8) 
is the equation of a "principal chiral field" 

4-(rt)=^(rV»). (1.9) 
Here g is an element of an arbitrary Lie group G. The equation (1.9) admits 
the following integrable multidimension generalization : 

(9-l9t)=4zÜ~l9*) (LIO) 
dw dy 

where y and w are new independent variables. 
In the particular case where w = — t, Y = x and g can be represented 

in the form g =f+f, the equation (1.10) is equivalent to the known self-
duality equation ([5]) 

Here F^ is the Tang-Mills field with the unitary group. In the other 
particular case ([27]) where w = t, y = x, the equation (1.10) is the only 
known relativistically invariant classical model of field theory on the plane. 
Some other interesting integrable systems are also known. 



1228 Section 11: V. E. Zakharov 

The purpose of this report is not to describe the properties of particular 
systems but to clarify the principles of multidimensional generalization 
of one-dimensional systems of type (1.5). 

There are two essentially different ways of such generalization. Equa
tions (I.6)-(I.8) are of the first typej equation (1.10) of the second type. 
We discuss also the rule of obtaining of large classes of exact solutions 
of the multidimensional systems under consideration. 

1. The Riemann problem and,the "dressing method" 

Let us describe briefly .the "dressing method" for the systems of the 
type (1.4), (1.5). , 

jj = Lx(X,x,t) F = L2(X,x,t) 
mx(X,x) 9 m2(X,t) 

Here 

Lx = l\(t,x)X^ + l\(t,x)X^'l + ...9 

I* =ll(t9x)X** + l\(t,x)X**-l + ... (1.2) 

are the polynomials of degrees pl9 p2 with matrix coefficients l\i2(x,t) 
which are unknown functions, and m19 m2 — are the polynomials of 
degrees q19 q2 (#i<#i , q2<iP2) with given scalar coefficients. 

Substituting (1.1) into (1.4), (1.5), grouping like terms and putting 
the coefficients for all degrees of X equal to zero, we obtain a system of 
Pi+#2+1 nonlinear equations for px+p2 + 2 coefficients of polynomials 
Llt2. One equation is lacking and this is explained by the invariance of 
the system under gauge transformations of the form 

W-*W=fW, 

U^Ü-füf-'+fJ-1 (1.3) 

where / is an arbitrary and ^.-independent matrix function with det/ ^ 0. 
The main idea of the "dressing" method is to enlarge the gauge freedom 

due to ^.-dependent functions /. Let functions /, f"1 be analytic out of the 
contour r. Let f19 f2 be the boundary values of the functions / at the 
opposite sides of the contour and let 
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Functions V, Y (as compared with U, V) have in general a jump on the 
contour J1. One can easily prove that there is no jump if the transition 
function F satisfies the equations 

Fœ = lU,F], Ft = lV9Fl (IA) 

The common solution of these equations is of the form 

F « WF0(X)W~K 

Here F0(X) is an arbitrary matrix function defined on T, and ìFis some 
compatible solution of (1.4) given on r. The variation of W is reduced to 
re-defining of F. Knowing F\ one can find a gauge function / by solving 
the Eiemann problem and determine a function with values on the sides 
that meet each other related by the equation 

f* =fiF. (1.5) 
Freedom in determination of / (any given / can be replaced by g(x±t)f 
where g is an arbitrary non-degenerated matrix) is connected with the 
gauge invariance. If we additionally require /|^=00 = 1, then the problem 
(1.5) can be reduced to the singular integral equation 

where 
T =F-19 Q = J W 2 . 

So the method described above permits using the Eiemann problem to 
proliferate the solutions of system (1.4). The solution U, V is called the 
"dressing" of solutions JJ, Y by means of function F. 

For the initial (background) solutions JJ, Y9 which are supposed to 
be known, one can take, for example 

U = U(X9 x)9 Y - Y(X91)9 [U9 7] = 0. (1.7) 

This "dressing" method is especially effective if the gauge function / is 
a rational function of X. In this case, instead of the Bipmann problem 
there arises a finite system of linear algebraic equations and the result 
of dressing (of the trivial background (1.7)) is called the "soliton solution". 

2. The second method of multidimensional generalization 

The simplest way to increase the number of space variables in the systems 
discussed above is called here the second method only for historical reasons. 
In a clear form it was formulated in [6], [7] in 1977, though the particular 
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cases had been known earlier ([8], [9], [37]). The "second method" is 
based on the fact that the relation between the number of connections 
between the functions l\i2(œ9t) and the number of those functions does 
not change if we transform Ll9 L2 into the first order differential operators 

l\t2(x9t)^l\i2(x9t) + d\A. (2.1) 

Here d\j2 means differentiation with respect to new independent variables. 
The whole Eiemann problem scheme extends this case. Let us note that, 
after transformation (2.1), the operators d\t29 dx and dt became equivalent. 
Multiplying equations (1.4) by mx(X), m2(X) respectively, one can reduce 
them to the form 

DtT = 0, D2W = 0, (2.2) 

&=0 

The compatibility condition (1.5) takes the form 

[A, A ] =0 . 

Generally speaking, all the differentials dky9 dki2 are independent and 
their total number is equal to px+p2 + 2. In the simplest case p± = p2 = 1 
this number is equal to 4, but there may be Kxiear relations between differen
tials expressed by basic differentials dxi 

N N 

(2.4) 

If N = 

where 

1=1 1=1 

•• 2, we have a two-dimensional problem. If we put 

B1=(d1 + B1)X + (-ìì+B+), 

D2=(32 + B2)A-(-ai+B+) 

3 l = l ^ + ^ ' * i - ^ + ^ « 

d* = d*a
 +\3a,> B*=A> + *A* 
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(xi — are the coordinates in BA, Ai — Tang-Mills potentials in antihermit-
ian Lie algebra), then equations (2.3) coincide with self-duality equations 
(1.11) (see [5H7]). 

The self-duality equations can be considered only in a space of an 
even signature. 

The elliptic case (0.4) is investigated best of all, in this case the formula
tion of the problem is quite different from that given in the evolution 
case. Eepresentation (2.4) permits easy construction of local solutions 
of self-dual equations with strong singularities. The construction of global 
regular (multiinstanton) solutions was solved in principle (though not 
very effectively) in the well-known papers [3], [4] by means of a method 
different from the ISP method. Using ISP method, we can obtain for the 
present only a part of the multiinstanton solutions, but in an explicit 
form. The case of a signature (2.2) has no direct physical meaning, but 
if we suppose that there is no dependence on any of the coordinates, we 
obtain the only hither to known relativistically invariant integrable 
system in the plane [27]. In this case it is convenient to write down the 
operators D12 in the form 

A =dt + Xd-z + A, (2.5) 

D2 =X2d-z + XA~d0-B. (2.6) 

Here A =ff~1^? -B = 9~l9zi 

ihK(r,fc 
It is evident that this system is invariant with respect to rotations in 
a plane z = (xl9x2). When performing the Lorentz transforms 

where 

we substitute 

where 

dt = y ( ^ + M), 9, =y(d1 + ßdi) 

~1<ß<1- ' - p e r 
9->X+ffX 

X(t, s, z) = W(t, gs, z, A)|A_(1_y)//îr (2.7) 

Formulas (2.7) and (2.8) specify an action of the Lorentz group on (1.10) 
which cannot be described in terms of linear representations. It is inter-
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esting to note that the scattering problem for equation (2.5) coincides 
with the non-abelian Eadon transformation the specifying the integrals 
of ordered exponential functions of the type TéAaB along all lines in the 
plane (x19 x2). Using the Eiemann problem, we obtain also the solution 
of the inversion of this transform. 

On the whole, the second method for multidimensional generalization 
is not sufficiently developed. I t can easily be extended to supersymmetric 
systems and the activity in this direction seems promising (see the recent 
papers [30], [31]), 

3 . Polynomial reductions and general covariance 

Even for small p19 p2 the system (1.5) has an extremely high number 
of unknown functions, therefore it is important to reduce this number. 
One can do this by posing additional relations compatible with the system. 
Those algebraic or differential relations are known as reductions. 

Progress in this field was achieved in [28] where it was shown that 
important classes of reductions form a finite group. 

There are also other reductions, which cannot be reduced to those 
described in [28]. 

Let U and Y in (1.1) be of the form 

U = M^1(X)L1(X)9 V = M2
l(X)L2(X). (3.1) 

Here M19 M2 are the polynomials of X9 and their coefficients are the matrix 
JV x N functions of x and t. U and V can be represented in the form (1.1) 
•3̂ 1,2 (^1,2 = detif lf2) but the degree of LlA increases N times and this 
means a reduction. Now equations (1.4) take the form 

dW dW 
Mi—- L,W9 M2— = L2W. (3.2) 

oxx at 
Let 

Mx ( X) = tfi+m\(t, a>) A*!"1 + . . . , 

Jf2(A) = A3« + m\{t, so)Aa2_1 + . . . 

(as before, qx < pt and qz < p2). 
Consider the equation 

SaJf i - ^JTa = 0. (3.4) 

If we look for ü!1>2 in the form (2.5) the coefficients of the polynomials 
can be determined uniquely. 

(3.3) 
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Applying to the first of equations (3.2) the operator B2 — and to the 
dt 

«econd — the operators J2i-r— and subtracting the first one to the second 
dx 

we obtain, due to (3.4), the first order operator. From (3.2) we then obtain 

IZa-^r- + A A = ÄM19 Ü!— +B2LX = BM2 (3.6) 

dt dx 

where we look for polynomials A, B in the form 

A =a 0F2 + a1F2-1 + ..., 

B =&0^i + &iFi"1 + ... (3.7) 
Simple calculations show that in (3.4) and (3.6) the total number of 

the relations, which does not depend on X, is equal to 2 (px +p2) + qx + q2 + 3 
.and hence to the total number of unknown functions minus one. So system 
{3.4)-(3.6) is determined up to gauge transformations, which are now of 
the form 

•Mi.» = fMrJ-1, £x = / A / " 1 -WM-X, k = / A / " 1 -fMiif-'h 

where / is an arbitrary matrix function. We can extend the "dressing" 
method to systems (3.4)-(3.6). As before, it will be a generalization of 
gauge transformation. When the "dressing" transformation W->f(x91, X)W 
takes place equations (3.2) must be multiplied from the left by the functions 
g(x, t, X) and h(x, t, X). 

Let functions / , f"1, g, g"1, li, li'1 be analytic except on the contour JT, 
with the following boundary conditions 

U = / i * , 92 = 9i&, h = hS9 (3.8) 

and the transition functions F, G, E satisfying 

(3.9) 
M1F = GMx, 

M1FX^QL1-L1I', 

Then the functions 

M1=gMif-\ 

Li ^gLJ-'-gM^-X 

M%V = MMti 

M2Ft =ML2-L2F. 

Mz <= hM2f-\ 

£2 = f t i 2 / - 1 -ÄJ f 2 (/->), 
(3.10) 

are polynomials of and they are of the same form as Mh2, Llt2 and generate 
the compatible system (3.2) for the function W. The polynomials JBlf2, 
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Ax B are transformed according to the formulae similar to (3.7). Note 
that equations (3.6) can be solved uniquely by means of a single arbitrary 
function FQ(X) specified at the contour 

F = WFJP~l
9 G = MyWF^M^)'1, 

K = M2WFQ(M2Wr1. (3.11) 

Thus, dressing the system (3.4)-(3.2) can be generalized to the multi
dimensional case of h variables x19...9xk by taking into account the 
follpwing over determined system 

dW 
My—^LiW. (3.12) 

Here Mij9 Li are polynomials of X. 
The construction of compatibility conditions for the system (3.11) is 

a straightforward generalization of the procedure described above. At 
the first stage we solve the system of equations for the polynomial matrix 
JRik of X 

BikMkj+RjkMki = 0. (3.15) 

Then, by applying the differential operator Bik--— to (3.9) we equate 
dxi 

the resulting differential first order operator to zero. We have 

2 2 , , ^ -BjkLk = TkMkj9 (3.16) 

Bik^+TkLk = 0. (3.17) 

The dressing of the system (3.10)-(3.12) is done by means of the generalized 
gauge transformation W->fW and by multiplication of (3.12) from the left 
by the matrix Sik(x). The function f(X) and the matrix 8ik(X) are obtained 
from the solution of the Eiemann problems 

^ = *TO* (3.18) 

at the contour T7, where the transition functions Glk and F satisfy the linear 
equations 

MikF = GaMlk, 

3F (3.19) 
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These equations are satisfied if we take F and Gik in the form 

F = WF«W-\ Gik = MüWF,(MlkWr\ 

As before, the dressing is performed by means of a single matrix function 

Let L{ be polynomials of the same degree P , and My — polynomials 
of the same degree q < p. Then system (3.9) (being in general covariant), 
is also invariant with respect to any diffeomorphism group in B: xt 

— ®i (2/1 > • • • > V u)* ^ s y e t ? w e do not know any physical applications of systems 
of types (3.4), (3.6), (3.17), (3.19) but we hope they will be found soon. 
Let us also note that system (3.6) is greatly simplified if M2 = 1. Then 
B2 == 1, B± = M, B = Lx and for Mx and L we have 

- ^ +M,L2 = AM19 

M. (3-20) 

~ ^ - - ^ 1 ^ = AL^L.L,. 

4. The first multidimensional generalization 

Consider the system (1.4) assuming that TJ and Y are polynomials of X. 
By performing the Fourier transformation with respect to X (replacing 

X->i—r) equation (1.5) changes into a relation between differential 
dS 

operators with Ä-independent coefficients. However, there would be no 
essential difference if we assumed that the coefficients of the operators TJ 
and Y depend on S. The number of equations and unknown functions 
would be as in the previous case. This fact, which was clarified in 1974 
([40]), became the basis of the method which we call the first method for 
multidimensional generalization. Equations (I.6)-(I.8) are of type (1.5), 
where U and V are differential operators. In particular, the K-P , equation 
(1.6) becomes a compatibility condition for the following system of linear 
equation 

dW dW 
a2 — - = —- + UW, a 2 = ± 1 , 

dy dx* ' ' 
(4,1) 

dW d3iF 3 dW mm 

"5—5? + » f f * + l r ! R 
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The question arises under what conditions the overdetermined system 
of linear partial differential equations 

generates (as a compatibility condition) an integrable system of nonlinear,. 
physically significant equations. The polynomial reductions obtained 
above answer this question partially. 

Consider (instead of (3.2)) equations of the form 

One can see that the procedure of deriving compatibility conditions would 
not difler from that outlined in Section 3. As before, the compatibility 
conditions would be of the form (3.4), (3.6) where Mi9 Li9 A and B would 
be linear differential operators. 

The nonlinear systems arising as a compatibility condition for the 
linear equations (4.3) can be viewed as the first multidimensional general
ization of general rational systems (1.4). In the particular case where 
M2 = 1, the system (4.3) can be rewritten in the form 

^W = M1^-LlW = 09 Wt = AW. (4.4) 

IsTow, its compatibility conditions are of form (3.2), and can be written as 

— +l<?9A-i=BJ? (4.5) 

where 
B = Z 1 - J . 

One can say that equations of type (4.4) have an "Z-JL-JB triad". Equations 
of this type occurred and were studied in [34], and general equations of 
type (4.3) — in [35]. Some examples of equations of type (4.5) have been 
known since 1976 ([22]). 

We do not give the explicit form of these equations because we do not 
know yet any examples of their physical applications. Equations of type 
(4.3) can be a source of new reductions for one-dimensional systems, Foç 
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example, we can assume that the coefficients MV29 L12 do not depend 
dW 

on x. Then, after replacing--—>iXW, we have a non-trivial reduction 
dx 

of the scheme (1.4). 
In contrast to the one-dimensional situation, equations of type (4.3) 

have the meaning even in the case of ecalar coefficients of the operators 
Ml)29 X1>2. Let those coefficients be constant. Then the Fourier transform* 
atiôn ¥ ~ e

i(px+Qt+AS) leads to the equations 

*~ì£M' 2="^W (4'e> 

where lh2, mlA are the symbols of the operators Lls29 Jf1|2. Relations (4.6) 
are a rational parametrization of some algebraic curve of genus zero. On 
view of this, we call equations (4.3) elementary rational equations (also 
in the case of variable coefficients). Let us consider a system composed 
of a finite number of elementary rational equations 

dW 
Mi—-^LiW. (4.7> 

cxi 

By applying to system (4.7) a finite number of differential and algebraic 
operations, one can eliminate from it all the derivatives of ÎFwith respect 
to 8. This results in a system of type (4.2), its coefficients being uniquely 
expressed by the coefficients of system (4.7) and a finite number of their 
derivatives with respect to œi and 8. Then, denote their derivatives of 
all orders with respect to 8 by new symbols. We "say that system (4.8) 
obtained in this way admits partial rational parametrization. If there are 
no derivatives with respect to 8 among the coefficients of this system, 
we say that it admits total (full) rational parametrization. The compatibil
ity conditions for overdetermined systems admitting the total rational 
parametrization are well determined non-linear integrable systems. The 
overdetermined but compatible solutions of a parametrizing system of 
equations (4.7) are the compatibility conditions of systems admitting 
partial parametrization. Only very special systems of type (4.2) admit 
even partial parametrization. System (4.2) of the general form with variable. 
coefficients has no compatible solutions. If a rationally parametrized 
(or even partially parametrized) system of type (4.2) has constant coeffi
cients, the Fourier transformation W n*> e*öw) changes it to a system 
of polynomials describing an algebraic curve in the space Gk, with at least 
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one rational component. The Fourier transformation of system (4.7) 
determines its rational parametrization. 

Eecently a number of papers have appeared where systems of type 
(1.4) with functions TJ and X rational on an algebraic curve of genus one 
{[24], [39]) and also of an arbitrary genus are considered. The "dressing" 
of such systems is performed by means of a solution of the Eiemann 
problem on a corresponding curve. One can assume that such systems 
admit also the first multidimensional generalization. I t should be formu
lated in terms of systems of type (4.2), which do not admit even partial 
rational parametrization, but generate compatible (though underdeter-
mined) non-linear integrable systems. To classify such systems is a problem 
for the future. 

The Fourier transformation of equations with constant coefficients 
should generate an algebraic curve of a finite genus. 

Systems (3.15)-(3.17) also admit the first multidimensional generaliz
ation. To see this it is enough to assume that My and Bi are differential 
operators with respect to 8. All the above statements concerning generally 
covariant systems remain valid in this case, expect for the situation where 
operators My and L{ have scalar coefficients. This case is physically sig
nificant. The simplest generally covariant system of type (3.13) is of the 
form 

d*W . dW d& 

with an unknown second order tensor of mixed covariance TJ{ and an 
unknown scalar 0. By differentiation (4.8) with respect to xk and rear
rangement we obtain the following system of type (4.2) : 

which has no derivatives with respect to 8 and admits a full rational 
parametrization. As yet, nobody has managed to obtain a compact form 
of the equation for TJ] and 0 or to find any physical interpretation. 

5. The "dressing" procedure and the non-local Riemann problem 

The "dressing" procedure for the first multidimensional generalizations 
of type (1.4) was developed in [40] for the particular case of Y and TJ being 
polynomials. In [34], [35] this was extended to the case of general rational 
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systems of type (1.4). Let us describe this procedure for systems of type 
(4.7). Let Mi9 Zi be some differential operators for which system (4.7) 
is compatible and its compatible solution W depends on the parameter X. 
Then the system 

-^-!P = - WMt^Lt (5-1) 

is also compatible. Here Mf 9 Lf are operators conjugated to Mi9 L{. 
If M{(X) and L (X) are polynomials then W= S7-1. We construct the operators 
JP and Qt. Integral with respect to 8 and having kernels J?(8, 8', oo{) and 
Qt{S, 8', at) of the form 

F = / S t̂f, at, X)F0(X, X')W(8', wit X')dXdX', 

& = / Jf,y(0,rç, X)F0(X, X')gt(B'tat, X')dXdX', (5.2) 

Mtgt = W. 

It is easy to verify in a straightforward way that the kernels F, Qt in (5.2) 
satisfy the differential equations 

dF 
fSat * * *' (5.3) 

which are equivalent to the operator relation 

(1 + 4 ) ^ - 1 - ^ ) =[Mt-^-L^(l + F). (5.4) 

Let us consider triangle factorizations of the operators 1 + F9 1+Q0: 

(l+Jt+r^l+Jt-) = l + i , 

(i+p+r'a+p-) = i + 4 , (5-ß) 
which are equivalent because of their kernel, to the Marchenko's equations 

00 

F(8, 8', ffl,)+X+(/8f, 8', x{)+J K+(8, 8", x{)F(8", 8', xJdS' = 0, 
8 

(5.6) 

Qt{B, 8', Xi)+Pt{8, 8', «,) + / Pt(B, 8", «,)««(#'» 8', xt)d8' = 0. 

8 

26 — Proceedings..., t. II 
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It follows from (5.4) and (5.5) that 

(l+P^fa-^-L^l+K-r1 

= (1+Pf) (M^ - £ , ) (1 + JE+r1 = M^ -Li. (5.9) 

This means that the operators Mi9 Lt are differential. 
Their coefficients can be expressed in terms of the kernels P^", IT* by 

the relation 

(i+p'+) K S j - - * ) - ( * £ - * ) <i+*+>- (5-8> 
lî M, = —-, then 

* dX{ 

CXi 

Let îPQ be a solution of system (4.7). It is clear from (5.7) that the functions 

0± =( l+ .É*)y 0 (5.10) 

satisfy the equations 

(*£-*) 0± = 0, (5.11) 

i.e., this is a solution of a "dressed" system. Assume that the coefficients 
of the operators Mi9 Lx do not depend on 8. Among the solutions of system 
(5.3), (5.4) there are solutions depending on the difference $ — 8' only; 
hence their factorization results in JC* and P± which are also difference 
kernels. By performing the Fourier transformation of (5.10) we have 

0±(X)=(l+f±(X))Wo(X), (5.12) 

where the function/"1" is analytic in the upper half-plane and the function 
f~ in the lower one. Formula (5.12) shows that in this case the "dressing" 
is equivalent to the gauge transformation described in Section 1. The real 
axis plays the role of the contour R Substitute the kernel F in Marchenko's 
equation (5.6) of the form 

OO 00 

F(8, 8', ad =— f f G(X', X, Xt)êWs-m">dXdX' (5.13) 
— 00 —00 
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and find K of the form 
00 

K+(S, 8'9 x{) - - —- f f(X9 89 xùe-^'dX. (5.14) 
2tz J 

— oo 

We obtain 

f(X, S) - JG(X', X)e«™-WdX' + -L $m'®)®flff'S äX'd^. (5.15) 

Here the real axis is a contour J1. Consider the analytic function 
0 = 0(X, 89 Xi) with respect to X 

having a cut at the real axis. It is easy to verify that its limit values at 
the cut 0h2 satisfy the relation 

02(X) =0±(X)+ j01(X')G(X'9X)dX' (5.16) 
r 

where 

G(X\ X) = G(X'9 X)6W-W. (5.17) 

Hence, the Marchenko's equation (5.6) at the real axis gives a solution 
of the non-local Eiemann problem (5.16), parametrically dependent on 
the variable 8. This fact was first noted in [38]. In the particular case 
where G(X, X') =G(X)ô(X — X') we obtain the local Eiemann problem 
described in Section 1. In this case there is no dependence on ô. 

The possibility of interpreting the outlined "dressing" scheme as the 
non-local Eiemann problem allows us to hope that one can essentially 
generalize the dressing method to the non-local case without any restriction 
on the contour r . 

This programme is not yet sufficiently developed but it seems the 
prospective way to obtain a general solution of the systems under consider
ation. 

As a conclusion one can say that we now have fairly general methods 
to obtain both multidimensional integrable systems and vast sets of their 
solutions. There is no doubt that the "dressing" procedure of the Eiemann 
problems should permit studying in detail the equations listed in the 
introduction, which have important physical applications. Only the future 
will show whether this list will be extended owing to the possibilities I 
have outlined. 
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ANATOLE KATOK 

Nonuniform Hyperbolicity and Structure o 
Smooth Dynamical Systems 

§ 1. Introduction 

A substantial part of recent progress in the theory of smooth dynamical 
systems is based on better and more systematic understanding, than before, 
of the role played by "hyperbolic" behavior and more specifically by 
nonuniform hyperbolicity and Lyapunov characteristic exponents. One 
and probably the most important aspect of this development concerns 
ergodic properties of smooth dynamical systems with respect to absolutely 
continuous invariant measures or other measures naturally connected 
•with the smooth structure. The main work in that area in the last decade 
was done by Pesin [10], [11], [12], [13], and is now often referred to as 
the Pesin theory. Both the methods employed by Pesin and his results 
are essential for the subsequent development. He discovered the crucial 
role of nonuniform hyperbolicity and Lyapunov characteristic exponents 
and using these tools developed an ergodic theory for smooth dynamical 
systems with respect to an absolutely continuous invariant measure. His 
results include the celebrated entropy formula which shows that the 
entropy comes exclusively from the exponential expansion, the description 
of ^-partition and a complete classification of systems with nonzero ex
ponents. 

Among the developments that appeared after Pesin's work I would 
like to point out Mané's proof of the entropy formula [8], which contains 
a fundamental simplification of the original approach, the recent works 
of Ledrappier [6] and Ledrappier and L.-S. Young [7] on the characteri
sation of measures satisfying the entropy formula and a work on ergodic 
theory of geodesic flows on manifolds of nonpositive curvature by Bal-

[1245] 
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Imann and Brin [1]. The lack of space does not allow me to discuss here 
an extensive work by various authors on absolutely continuous invariant 
measures for one-dimensional maps and on various special, primarily 
2-dimensional examples, including both conservative transformations 
and maps with nonuniformly hyperbolic attractors. 

In this talk I am going to discuss another aspect of the development 
based on the concept of nonuniform hyperbolicity, namely, how certain 
global "exponential" properties of a dynamical system produce certain 
types of orbits including the abundance of periodic'orbits and large hyper
bolic sets. The structure of a dynamical system on a locally maximal 
hyperbolic set is well understood. It includes such ingredients as stable 
and unstable manifolds, local product structure, shadowing property, 
closing lemma, local stability of the set, density of periodic orbits among the 
recurrent orbits, Markov partitions, existence and uniqueness of measure 
with maximal entropy on basic sets, the uniform distribution of periodic 
orbits according to that measure and the growth of the number of periodic 
orbits with the exponential rate given by the topological entropy. Thus, 
the existence of an infinite locally maximal hyperbolic set for a given 
dynamical system provides considerable information about the orbit 
structure of the system and all effects obtained that way persist under 
small perturbations of the system. 

Most of the results discussed below are contained in my papers [2], 
[3], [4], [5], although in several cases I will formulate theorems in slightly 
stronger or more general form than they were written. 

Before proceeding to a more technical discussion let me outline the 
strategy of the approach. We begin with a certain "global" property 
which indicates that some kind of exponential growth is present. Here 
are some examples of global exponential properties. 

(i) Positive topological entropy, i.e., the exponential growth rate ot 
the number of different orbits distinguishable with an arbitrary fine buf 
fixed precision, 

(ii) Exponential behavior of the iterates of the map /* induced by 
a diffeomorphism / : M->M on the fundamental group TZ^M), i.e., the 
exponential growth of the word-length norm of the iterates f%y for all 
(or some) y eyp1(JIf)\{id}. 

(iii) Similar exponential behavior of the maps induced on homology 
groups. 

(iv) Exponential growth of the volume of a ball on the universal co
vering of a compact Eiemann manifold M. This property appears when 



Nonuniform Hyperbolicity and Structure of Smooth Dynamical Systems 1247 

the dynamical system under consideration is the geodesic flow generated 
by the metric. 

(v) In the same situation as in (iv), the exponential growth of the 
fundamental group nt(M) is another exponential type property. 

We will derive from a global property the existence of invariant mea
sures for the dynamical system such that orbits typical with respect to 
such a measure possess a weaker type of hyperbolicity than the orbits 
belonging to a hyperbolic set. The linearized system along such an orbit 
allows an exponential dychotomy but the coefficients in front of the 
exponential terms may oscillate as the initial point moves along the orbit. 
This is the reason for calling those orbits nonuniformly hyperbolic. How
ever, in our case the oscillations of the coefficients are not too big, they 
are essentially subexponential. The existence of many such regular non
uniformly hyperbolic orbits follows from Oseledec's Multiplicative Ergodic 
Theorem [9]. A neighborhood of a regular nonuniformly hyperbolic orbit 
possesses certain properties similar to a neighborhood of a hyperbolic 
set. Using proper variations of closing and shadowing arguments one can 
catch many orbits which never leave a (noninvariant) neighborhood with 
uniform hyperbolic estimates and thus possess a uniform hyperbolic 
structure. This construction may be supplemented with the estimates 
on the number of different orbits found and on the quality of hyperbolic 
estimates along those orbits. 

Let us discuss the last notion in detail. Let x be a hyperbolic periodic 
point of period n. The degree of hyperbolicity of x is measured by the 
number 1 

m(x) = — min |log|A||. (1) 

Oui' standard set-up in the discrete time case is to consider a diffeomorphic 
embedding / : TJ->M of an open neighborhood CT of a compact invariant 
set JT; here Jf is an ambient smooth manifold. Let for an open set Y 3 r 
and for % > 0, neZ+9 P£z(/) be the number of hyperliolic points xeY 
of period n with m(x) ^ %. 

Furthermore, let 

n-*oo W 

and 
^ ( / ) = i n f ^ ( / ) . 

If JT = M we will write px(f) instead of p%(f). 
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Similar definitions can be made for a continuous time dynamical 
system in a similar set-up. In the definition of m(x)9 the eigenvalue 1 
corresponding to the direction ,of the vector field should be excluded; 
instead of periodic points, periodic orbits would be counted; instead of 
orbits of a fixed period, one should count all orbits of period < T. 

§ 2 . Main results and applications 

We will assume the standard set-up described above. All maps and flows 
are assumed of class 01+a for some ô > 0. In the continuous time case we 
also assume that the flow does not have fixed points on r (added in 
proof: I have recently been able to remove this assumption). In both 
cases, hr will denote thè topological entropy of the dynamical system 
restricted to r. We assume hr > 0. 

THEOREM 1. Let f: U-> M and dim M = 2. Then for every e > 0 

*JE .̂(/)>*r-
THEOREM 2. Let ft: TJ-> M be a flow add dim M = 3. Then for every 

Phr-s(f) > Ar-
THEOREM 3. Under the assumptions of Theorem 1, for every s > 0 and 

every open set V => r there exists an invariant locally maximal hyperbolic 
set As c V such thatf\A is topologically conjugate to a subshift of finite type 
and 

*( /L . )>*r -« -
THEOREM 4. Under the assumptions of Theorem 2, for every s > 0 

and every open set V 3 r there exists an invariant locally maximal hyperbolic 
set A8c V such that ft\A is topologically conjugate to a suspension over 
a subshift of finite type and 

Mft\A8)>hr-e. 

COROLLARY 1. The topological entropy h(f) of anyG1+d diffeomorphism 
f: M->M is upper-semicontinuous as a function of f in G° topology. • 

Proof. Follows immediately from Theorem 3 applied to r = M and 
from the topological stability of hyperbolic sets. 

THEOREM 5. Let f: M->M be cm area-preserving diffeomorphism of 
a compact surface. Then f has a hyperbolic periodic point iff 

loffllDPII 
lim ë " J " >0. (2) 
n-*oo M 
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Here we assume that a Eiemannian metric is fixed on M so that 
)|D/|| = max sup ||D/ü||/||t?||. However, the quantity in the left-hand 

œeM veFxM\{0} 

part of (2) does not depend on the choice of Eiemannian metric. 
All results stated above about the existence of many periodic points 

and nontrivial invariant sets depend on smoothness. M. Eees [14] construct
ed an example of a minimal homeomorphism of the 2-torus with positive 
topological entropy. It is not clear, however, whether the 0fl+a assump
tion can be replaced by 01. 

The next group of results deals with the situations where the existence 
of many periodic orbits has been established by topological or variational 
methods. Such methods, however, usually say nothing about the hyper
bolicity of those orbits. By applying the above-stated theorems one can 
ensure the existence of many hyperbolic orbits. 

Let / : T2->T2 be a diffeomorphism of the two-dimensional torus 
which acts on the first homology group hyperbolically. This action is 

determined by an integer matrix A = A such that det A = ±1 and 

|tr-4.| > 2. Let X be the eigenvalue of A of absolute value greater than 1 
and a = log\X\. Then h(f) > a. 

COROLLARY 2. For every e > 0 

Pa-sif) > a-

If, in addition, f is an Anosov diffeomorphism then 

Pa(f)>a-

Let M be a compact surface of genus greater than one and / : M->M 
be a diffeomorphism homotopic to a pseudo-Anosov map jf0. Then h(f) > a 
where a = h(f0) and a is also equal to the exponential growth rate of the 
word-length norm for the iterates fiy where y is an arbitrary element 
of %x(M) different from identity. Nielsen's theorem implies that the expo
nential growth rate of the number of periodic orbits for / is > a. 

COROLLARY 3. For every e > 0 

Pa-s(f) > a. 

The next example is more interesting. Let a be a Eiemannian metric 
of class 02+(5 on a compact surface M with negative Euler characteristic F 
such that the total area of M is equal to v. Let <p° be the geodesic flow 
generated by that metric. The exponential growth rate p0iX for the num-
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ber of hyperbolic closed geodesies with the positive Lyapunov exponent 
5̂ X coincides with what we denote by px(q>t). Let K(F, v) = ( —2TZFIV)112. 

If or is a metric of constant negative curvature then this number repre
sents the common value of the topological entropy, entropy with respect 
to Liouville (smooth) measure and the positive Lyapunov exponent along 
any orbit. 

THEOREM 6 [4]. 

Po,K(E,v) > #(-E> v) 
and this inequality is strict unless a is a metric of constant negative cur
vature. Moreover, for every metric of nonconstant curvature th&re exists 
sa > 0 such that 

P<r,K(E,v)+ea>K(E,V). 

Thus, any metric of nonconstant curvature has more closed geodesies 
with stronger hyperbolic properties than any metric of constant curva
ture on the same surface with the same total area. 

This theorem follows from Theorem 2 and an entropy estimate. The 
metric a is conformally equivalent to a metric a0 of constant negative 
curvature and the same total area. Let Q be the conformai coefficient. 
Its average is equal to one. Therefore, the average of g1/2, which we will 
denote by Qa9 is less than 1 unless Q S 1. 

Let ha be the topological entropy of the geodesic flow $. Here is the 
desired entropy estimate. 

THEOREM 7[4]. 

ha^Q-1E(E,v). 

§ 3 . Hyperbolic measures 

Let (i be a Borei probability measure supported by T and invariant and 
ergodic with respect to a map or a flow under consideration. Let Xi < 
X% < . . . < Xr *>e the Lyapunov characteristic exponents of the dynamical 
system with respect to p. The multiplicative ergodic theorem implies 
that for /«-almost every point œ e T there exists a measurable invariant 
decomposition of the tangent space TXM = F1(x)@...@Ff(x) such that 
for VGFì(X) 

f-^-fcoo t 

By the ergodicity, dim2^(a?) must be constant /«-almost everywhere. 
We will denote this dimension by ft£ and call it the multiplicity of the 
exponent Xi-
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DEFINITION 1. A measure p is called hyperbolic if 
(i) in the discrete time case, all Xi are different from 0, 
(ii) in the continuous time case, the zero exponent has multiplicity 

one. 
Sometimes we will also call a nonergodic invariant measure hyperbolic 

if almost all its ergodic components are hyperbolic measures. 
For a hyperbolic invariant measure p let 

m({i) = min (#?). 

This definition agrees with (1) for a measure concentrated on a single 
hyperbolic periodic orbit. Naturally, m(fjt) characterizes the minimal rate 
of exponential behavior typical for the system. 

THEOREM 8. Let ft be an invaricmt ergodic hyperbolic measure for a map 
or a flow. Let x e supp/*. Then for any ô > 0, any neighborhoods Y B x and 
"W 3 supp^, and any collection of continuous functions y19...9<ph there 
exists a hyperbolic periodic point z e Y such that the orbit of z is contained 
in W and 

m(z) >m(jn) — ò. 

Moreover, in the diffeomorphism case 
porjB—1 

l(pers)-1 £ <Pi(fz)-J9idß\<d 
fc=0 

for i =1, ...,1c. A similar property holds for flows. 

The last statement means that the orbit of the point z is almost uni
formly distributed with respect to fi. 

Theorem 5 follows easily from Theorem 8 since (2) implies the existence 
of an /-invariant measure whose largest exponent is positive and the 
preservation of area ensures that the second exponent for that measure 
is negative. Another corollary is "weak stability" of hyperbolic measures 
in C1 topology. 

COROLLARY 4. Let \i be an invariant ergodic hyperbolic measure for 
a diffeomorphism f or aflowft. If fn converges to f (correspondingly f[n) con
verges to ft) in G1 topology, then fn (ffl) has an invariant hyperbolic measure 
[jtn such that fin converges to (i wealcly. 

THEOREM 9. If, under the assumptions of Theorem 8, p is not concentrated 
on a single periodic orbit9 then z has a transversal liomoclinic orbit. 
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COROLLARY 5. If a diffeomorphism or a flow has a hyperbolic ergodic in
varicmt measure whose support is an infinite set then its topological entropy 
is positive. 

THEOREM 10. Under the assumptions of Theorem 8, let supp fi = F 
and hß(f) (corr. hp(ft)) be equal to h > 0. Then for any e > 0 

pUif)>*> icon. pLe(ft)>h). 

Theorems 1 and 2 follow easily from Theorem 10, variational principle,, 
and Euelle's entropy inequality [15]. 

THEOREM 11. Under the assumptions as in the previous theorem, there 
exists an f-invariant, locally maximal hyperbolic set A8 such that the restriction-
f\A is topologically conjugate to a subshift of finite type and 

Mf\A,)>h(f)-°-
Moreover9 any orbit on A8 is almost uniformly distributed with respect to /& 
(cf. Theorem 8). 

Theorem 11 and its counterpart for flows which we do not formulate 
explicitly imply Theorems 3 and 4 in the same fashion as Theorem 10 
implies Theorems 1 and 2. 

It also allows us to strengthen weak stability of Corollary 4 to "entropy 
stability". 

COROLLARY 6. Under the assumptions of Corollary 4, the sequence of 
measures fin can be chosen with the additional property hß (/J->fy«(/) 
(corr. A ^ / î ^ - M / , ) ) . 
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A. LASOTA 

Asymptotic Behaviour of Solutions: 
Statistical Stability and Chaos 

Introduction 

In the history of attempts to describe the behaviour of complicated dyna
mical systems, the work of Boltzmann some hundred years ago marked 
a turning point. With the current intense interest in the properties of 
chaotic systems, Boltzmann's original idea of treating the evolution of 
densities under the action of a dynamical system is even more attractive. 

In the past few years a few simple sufficient conditions for the asympto
tical stability of sequences of densities have been discovered. These criteria, 
which are related to a spectral decomposition theorem for positive operators, 
are quite powerful and, potentially, of great utility in practical situations. 
This paper will present these stability criteria and examine several systems 
to which they are applicable. I t is especially significant that the same 
technique may be used to : (1) demonstrate the statistical stability of the 
dynamical systems generated by piecewise expanding transformations on 
intervals, on the real line and on manifolds; and (2) the asymptotic stabil
ity of densities which are solutions of the linear Boltzmann equation, 
of integral equations and partial differential equations of diffusion type. 

Throughout the paper no attempt will be made to present the results 
in their most general form, as our primary concern is to illustrate the 
variety of problems which can be solved by the same method. 

1. Stochastic semigroups and dynamical systems 

Let (X, sé', fi) be a measure space with a nonnegative cr-finite measure fx. 
A linear mapping P: L1-+L1 (L1 = L1(X9 s/9 p)) will be called a Markov 

[1255] 
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operator (cL [6]) if it satisfies the following two conditions: 

P / > 0 f a r / > 0 , feL\ (1.1) 

l|P/ll = 11/11 f o r / ^ 0 , feL\ (1.2) 

where || • || stands for the norm in Ll. Conditions (1,1) and (1.2) imply that 

|P/| < P l/l and HP/II < 11/11 for / e L\ (1.3) 

Let T be a nontrivial semigroup of real nonnegative numbers, i.e., 
T # {0} and tx±t2eT for every t19t2eT (t% > tfa). A family of Markov 
operators {Fl}teT will be called a stochastic semigroup if 

p*i+'2 = p'ip<2 for t1912 G T. (1.4) 

By J9 = D(X9s£, fi) we denote the set of all nonnegative elements 
of Ll with norm equal to one. The elements of JXwill be called densities. 
Since every element of L1 can be written as a linear combination of two 
densities, in studying the asymptotic properties of {P%y it is sufficient 
to consider {P*/}fe2T for / e D. 

A density /0 is called stationary if P*/0 = / 0 for teT. From (1.3) it 
follows that every stationary density is stable. In fact, if/0 e D is stationary, 
then for every other f eB 

P*/-/o II = H^/--P'/o II < ll/-/o IL 
A stationary density /0 will be called asymptotically stable if 

lim ||P</-/o|| = 0 for /GD. (1.5) 
£->oo 

Of course for a given semigroup {P%eT there is at most one asymptotically 
stable density. If such a density exists, then {P*}^ will also be called 
asymptotically stable. 

. Stochastic senügroups usually arise from pure probabilistic problems 
such as random walks, stochastic differential equations and many others. 
It is of great importance that they can also be generated by "deterministic" 
semidynamical systems. A family of transformations St: X->X (teT) 
will be called a semidynamical system if it satisfies the following two condi
tions: 

8r*(A) eat for A e sé, t eT9 (1.6) 

Sh+t2=8to8t2 îovt^t.eT. (1.7) 

A semidynamical system will be called nonsingular if, in addition, 

fjt[8jl(A)) = 0 for * G T whenever 11(A) = 0. (1.8) 
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Given a nonsingular semidynamical system {8t}, we may define a family 
of operators P%: L1~>L1 by setting 

Jpy(x)f*(dx) = f f(x)fi(dx) for feL1, 

A e sé and teT. (1.9) 

Due to the nonsingularity of {8^ieT, condition (1.9) uniquely defines 
{PsìteT ^ the Kadon-Nikodym theorem. It is also easy to verify that 
{Pg}teT is a stochastic semigroup. 

The semigroup {P^}^ has an interesting physical intei^retation. 
Assume namely that a large number of particles move independently 
in the space X and that the trajectory of a particle starting from the 
point x at time t = 0 is given by {8t(x)}ieT. Assume moreover that at 
t = 0 the positions of the particles are distributed according to a density/. 
Then this density evolves in time and its evolution is described by { P ^ / } ^ . 

The behaviour of {Pg}ieT allows us to determine many properties of 
the semidynamical system {8t}teT such as preservation of measure, ergo-
dicity, mixing and exactness. Here we will not concentrate on these prob
lems. Instead, we make the following definition. A nonsingular system 
{8t}ierp will be called statistically stable if the corresponding stochastic 
semigroup {Pjs}^ is asymptotically stable. 

To conclude this section consider the special discrete time case of 
stochastic semigroups and dynamical systems, T = N = {0 ,1 , ...} (see 
[5]). In this case Pn is the w-th power of the operator P ~ P1 and 8n is 
the n-th iterate of the mapping 8 = #x . Given a nonsingular 8, we define 
the corresponding Markov operator Ps by the simple formula 

jPsf(x)[t(dx) = f f(x)fi(dx) îorAesé, (1.13) 
A S-HA) 

and we have Pg = Ps . The operator Ps is called the Frobenius-Perron 
operator corresponding to 8. 

I t is easy to prove the following proposition, which emphasizes the 
role of discrete time semigroups. 

PROPOSITION 1.1. Let {Pgjiev be a stochastic semigroup and let t0eT 
be a fixed positive number. Then the asymptotical stability of { P ^ } ^ is equiv
alent to the asymptotical stability of the discrete time semigroup {PÌQn}nBN. 

The notion of statistical stability for discrete time semigroups is closely 
related to the concept of exactness in the sense of Eochlin [29]. In particu-



1258 Section 12: A. Lasota 

lar, when 8: X->X is measure preserving and fjt(X) = 1, these notions 
are equivalent [23]. 

2. A spectral decomposition theorem for Markov operators 

I t is well known that positive contractions of Banach lattices have some 
special spectral properties [30]. These properties were used by G. Keller 
to study the asymptotic behaviour of stochastic semigroups correspond
ing to picewise monotonie transformations of the interval and piecewise 
analytic mappings on the plane [10], [11]. Here we present a general 
theory applicable to every nonsingular mapping on a or-finite measure 
space. 

Let a o'-finite measure space (X, sé', (A) be given and let P be a Markov 
operator. We say that P is strongly (weakly) constrictive if there exists 
a strongly (weakly) compact set F c L1 such that 

]imd(Pnf, F) = 0 for / e B. (2.1) 
n—>oo 

Here d(g,F) denotes the distance between g and F, that is, the infimum 
of .||0 ~ / | | f o r / e F. 

The following two theorems summarize the properties of constrictive 
operators [17], [20]. 

THEOREM 2.1. Let 8: X->X be a nonsingular mapping and Ps the 
corresponding Frobenius-Perron operator. If Ps is tveaJcly constrictive, then 
Ps is also strongly constrictive. 

THEOREM 2.2. Let P be a strongly constrictive Markov operator. Then 
there exist a sequence of densities {&} (i = 1 , . . . , r) with mutually disjoint 
supports (g^ = 0 for i =fi j) and a sequence of linear functionals {X{} 
(Xi e L1*) such that 

lim IIP» ( / - Y XiifigM = 0 for feL1 (2.2) 

and 
P$i = ffa(*) for i = 1 , . . . , r. (2.3) 

where a is a permutation of the integers 1 , . . . , r. 

From Theorem 2.2 it follows immediately that the w-th power Pn of P 
can be written in the form 

•Pw/ = Ì ; W ) ^ ( i ) + i 2 n / MfeL\ (2.4) 
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where an denotes the n-th. itegrate of the permutation a and the remainder 
Bn converges strongly to zero as n->oo. Thus every sequence {Pn/}nejv 
is asymptotically periodic with a period which does not exceed rl. 

I t is easy to find an estimation of the integer r in (2.4). In fact, assume 
that there exists a function g eLl such that 

KmlKPV-flO+U = 0 for fe B, (2.5) 

where (u)+ = max(0, u). Then according to (2.4) and (2.5) 

i / = lim 2 * 7 = Ylii(f)9i<9 iovfeB. 

In particular, setting / = gk, we have Lf = g^^ig* Integrating over X 
and bearing in mind that the supports of gi are disjoint, we obtain 

r 

i=l x x 

which means that r < \\g\\. 

Now observe that the set F = {/: 0 < / < g} is weakly compact and 
that r = 1 implies the asymptotic stability of {Pn}ne#. Taking all this 
into account, we obtain from Theorems 2.1 and 2.2 the following 

COROLLARY 2.1. Let 8: X-+X be a nonsingular transformation and 
let Ps be the Frobenius-Perron operator corresponding to 8. If Ps satisfies 
(2.5) cmd \\g\\ < 2, then {8n}neN is statistically stable. 

Prom the point of view of applications the condition ||^|| < 2 is quite 
restrictive. However, it may be replaced by an estimation of P 7 from 
below. Namely, using Theorem 2.2, it is easy to deduce the following 

COROLLARY 2.2. LetP be a strongly constrictive Markov operator. Assieme 
there is a set A e sé of positive measure with the property that for every f eB 
there is an integer nQ(f) such that 

Pnf(x) > 0 for xeA, n> nQ(f). (2.6) 

Then {Pn}neN is asymptotically stable. 

Again in order to prove this corollary it is sufficient to show that 
r ~ 1 in formula (2.4). Indeed, if r were bigger than 1, then there would 
exist an integer k such that A would not be contained in the support of 
gk and the sequence {P7} "with/ = gk would not satisfy (2.6). Thus r — 1. 
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Finally we may completely eliminate the assumption that P is con
strictive if we replace (2.6) by the stronger condition that the semigroup 
{Pw} has a so-called "lower bound function". Because of a later application 
to differential equations we formulate this part of the theory for general 
(not necessarily discrete time) semigroups. 

Let {Pl}teT be a stochastic semigroup. A function h e L1 is called a lower 
bound function for \Pl}tQT if 

l i m P - P ' / ) + | | = 0 for feB. (2.7) 

A lower bound function h is called nontrivial if h ^ 0 and ||%|| > 0. By 
using arguments similar to those in the classical work of A. Markov [24] 
t is easy to prove the following [16] 

THEOREM 2.3. A stochastic semigroibp {P*}^ is asymptotically stable 
if and only if it has a nontrivial loioer bound function. 

To close this section observe that is is not necessary to verify conditions 
(2.1), (2.5) and (2.7) for all possible/ e B. Due to the fact that the Markov 
operators are linear and contractive it is sufficient to verify these conditions 
for all / belonging to an arbitrary dense subset of B. 

3. Dynamical systems generated by expanding mappings 

The asymptotic behaviour of discrete time stochastic semigroups generated 
by expanding transformations is now well understood. We will show how 
this behaviour may be explained by using the theory developed in the 
previous section. 

Our first application refers to piecewise monotonie transformations 
of a finite interval. This class of mappings was introduced by A. A. Kosya-
kin and E. A. Sandler [13] and was intensively studied, among others, 
by T. T . Li and J. A. Yorke [22], S. Wong [35], G. Wagner [32], B. Bowen 
[3], G. Pianigiani [27], Z. S. Kowalski [12], A. Boyarsky [4] and G. Keller 
[11]. A precise description of the statistical properties of piecewise mono-
tonic transformations may be given by a spectral decomposition of Ps. 
The possibility of such a decomposition was observed by G. Keller [11] 
and is the subject of our Proposition 3.1. 

Consider a piecewise monotonie transformation 8: [0,1] => [0 ,1] which 
satisfies the following conditions : 

(Ml) There is a partition 0 = a0 < ... < am = 1 such that for each 
integer i the restriction of 8 to the interval (^_17 a^ is a G2 function. 
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(M2) i n f | Ä » | > l (x ^at). 
(M3) Bvp(\8"(x)\l(8'(x)Y)< oo (x ^aj. 
As usual, denote by P8 the Frobenius-Perron operator corresponding 

to 8. It is quite easy to estimate the total variation of functions P$f for 
large n. Namely if 8 satisfies conditions (M1)-(M3), then there exists 
a constant K9 independent of /, such that 

l i m V P g / < X (3.1) 
n->oo 0 

for every / e B of bounded variation [21]. The set 

F = {geB: \Jg^K} 
o 

is strongly compact in L1 and by (3.1) the sequence {P7} converges to F. 
Therefore we have established the following result: 

PROPOSITION 3.1. If 8: [0, l]-> [0,1] satisfies conditions (Ml) ~(M3), 
then the operator P8 is strongly constrictive. In particular, for every f eLl 

the sequence {Pnf} is asymptotically periodic. 

Analogous results can be obtained for piecewise analytic and expanding 
transformations of the unit square [10]. It is also possible to prove the 
constrictiveness of Ps for some piecewise convex transformations of the 
^-dimensional cube considered by M. Jabloiiski [9], and some transforma
tions of the unit interval with a negative Schwarzian derivative studied 
by M. Misiurewicz [25]. However, these results are technically difficult 
and we omit the details here. 

As a second example consider a piecewise convex transformation 
8: [0, l]-*[0,1] which satisfies the following conditions: 

(01) There is a partition 0 = a0 < ... < am = 1 such that for each 
integer i the restriction 8{ of 8 to the interval [aim_19 a{) is a convex function. 

(02) Bifa^) = 0 and S'^a^) > 0 for i = 1, . . . ,m. 
(03) S±(0)>1. 
In this case the set B0 of all densities of the form 

with 

le 

tfij^-eU S n{a0,...9am} 
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is dense in D. It can also be verified [19] that the sequences {P#/} with 
f eB0 have the following two properties : (1) for every / there is an integer 
nQ(f) such that the functions {PJ?/} are non-increasing for n^nQ', and (2) 
there is a constant K independent of / such 

limsupPg/< K. 

From (1) and (2) it follows immediately that 

*S/>«l[o..] (e=(2K)-1) 

for n sufficiently large. Thus h = el[0,C] is- a lower bound function, for Ps 

and as a consequence of Theorem 2.3 we have the following: 

PROPOSITION 3.2. If a transformation 8: [0, l]-> [0,1] satisfies condi
tions (Cl)-(03), then the system {8n}neN is statistically stable. 

(Conditions (01)-(C3) are automatically satisfied by the mappings 
8ß(x) = /?a?(modl) with ß>l. This particular class of transformations 
was studied by A. Eényi [28], A. O. Gelfond [7], W. Parry [26], V. A. Boch-
lin [29], E. L. Adler [1], M. Smorodinsky [31] and P. Walters [33], who 
proved a stability result stronger than the convergence in L1. 

As the last and most spectacular example of applications of the theory 
of statistical stability to deterministic systems we consider expanding 
mappings on manifolds. 

Let M be a compact connected smooth (Ö00) manifold equipped with 
a Eiemannian metric | • | and let fi be the corresponding Borei measure. 
Consider a G2 expanding mapping 8: M->M. Thus we assume the existence 
of a constant X > 1 such that 

\dS(a>)S\>X\S\ iovxeM, ÇeTx(M). (3.2) 

It is easy to estimate the logarithmic derivatives of Pg/. BTamely there 
exists a constant K, independent of /, such that [16] 

limsup {max (-JL JgradP£/|)} < K (3.3) 

for every G1 positive density / . From (3.3) it follows immediately that 

fA\lYL) 

for sufficiently large n. Thus the constant function h = e~KLlfjb(M) is 
a lower bound function for Ps and from Theorem 2.3 w^ have the following 
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PROPOSITION 3.3. If 8: Jf-> M is a C2 transformation satisfying 
(3.2), then the system {8n}neN is statistically stable. 

The ergodic properties of expanding mappings on manifolds were 
studied by A. Avez [2], W. Szlenk [15] and K. Krzyzewski [14] who, 
in particular, proved that they are exact. The proof of statistical stability 
based on different ideas was given by P. Walters [34], 

Observe that in all our examples the fact that the properties of the 
functions P%f were "improving" for large n played a crucial role. Thus 
in the first case the variation of P%f was shrinking, in the second Pg/ 
became non-increasing and bounded, and in the third the logarithmic 
derivatives of Pg/ became bounded. The speed of this "improvement" 
in general depends on the choice of the initial density /. This is exactly 
what is required by the constrictivity condition. 

4. Integral and differential equations 

The technique developed in Section 2 can also be used for examining the 
behaviour of stochastic semigroups generated by some differential and 
integral equations. We shall demonstrate this by three examples in which 
our methods work equally as well as in the case of stochastic semigroups 
generated by expanding transformations. This shows once again a deep 
similarity of the so-called chaotic dynamical systems to the classical 
Markov processes. 

Example 1. In the theory of cell proliferation there appears [18] a recur
rence of the form 

f»+i(<») = -P/»(«0 s / *(*,y)k(yW: ®>o> (4-1) 
o 

where 

k(x,y) = _ _ e x p { - j q(z)dz^9 x,y^0 (4.2) 
v 

and q is a continuous nonnegative function defined on [0, oo) satisfying 
limsup q(x) > 0. An easy calculation shows [18] that there exists a constant 

c>0, independent of /, such that 
oo 

limsup f xPnf(x)dx < c (4.3) 
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for every / G D ( [ 0 , oo)) with compact support. From (4.3) and the Ohe-
byshev inequality it follows that 

2c 

fP*f(x)dx>i ' (4.4) 

for sufficiently large n (n^n0(fj). Thus 
2x 

Pn+1f(x) > J inf k(x9 y) = ff(2o?)exp j - f q(z)dz\ 

for x^x9 n^n0(f)9 

which shows that P has a non-trivial lower bound function. Thus, by 
Theorem 2.3, the semigroup {Pn}neN defined by (4.1), (4.2) is asymptotically 
stable, and for every initial density /0 the sequence {P7o} converges to 
a unique (in B) solution /^ of the equation 

2x 2x 

f(x) = 2q(2x) J e x p { - / q(z)dz)f(y)dy. 
0 y 

The function /* has interesting analytical properties. I t satisfies a differ
ential equation with an advanced argument and is flat at x = 0, i.e., 

\im[x'nf^(x)) = 0 for n ^ 0. 
iC->0 

Example 2. Consider a linear version of the Boltzmann equation (see 
[16]) 

dult, ce) r 
— ~ L + u ( t , a > ) = j b(œ,y)u(t,y)dy, t,m>Q (4.5) 

0 

where b(x9 y) is a measurable non-negative kernel satisfying 
oo oo 

j b(x9 y)dx = 1, j xb(x9y)dx^ay+ß9 y>09 (4.6) 
0 0 

where a, ß are constants and a < 1. We further assume that 
oo 

f inf b(x, y)dx>0 f o r r > 0 . (4.7) 

All these conditions are automatically satisfied when b is given by (see [16]) 

\-evFi(-y) for a?<#, 
b(x9y) = 

— evFi(—x) toTy>x. 
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Equation (4.5) with the initial condition 

u(09x) -=f(x), x^O (4.8) 

has exactly one solution u: [0, ooJ-^i^fO, oo)) for e v e r y / G ì 1 ([0, oo)), 
and the formula Pff(x) = u(t,x) defines a stochastic semigroup. By 
using (4.6) it is easy to verify [16] that {Plf} satisfies an inequality similar 
to (4.3), namely 

limsup xPlf(x)dx < c, o = - — ~ 
*-*oo J 1 — a 

tfor every f eB with compact support. Thus again by the Ohebyshev 
inequality we have 

20 

jPtf{œ)aa»l 
0 

or sufficiently large t (<> <<»(/))• Now from this and (4.5) it follows that 

1 r 1 
P*/(») > - I &(*, y)l*f(y)üy > — inf &(», y) for * > «,(/) 

which, according to (4.7), shows that {P'}^0
 l i a s a non-trivial lower func

tion. Hence, by Theorem 2.3 the semigroup {P^>0 is asymptotically 
stable. 

Example 3. Consider a partial differential equation of the parabolic 
type 

du xn d t du) vn 9 
3* Z i to,\ * l toj ^ dx, LlK ' 

in the half space t^O, x e Em. Assume that the coefficients are sufficiently 
smooth (for example a{j, da^\dxk9 bi9 dbi/dxk bounded and uniformly 
Hölderian) and assume that the form Ea{i £ <̂  is uniformly elliptic. Under 
these assumptions equation (4.9) with the initial condition 

u(0,x) =f(x), xeBm (4.10) 

has exactly one solution u: [0, oo)->£1(22m) for every feL1(Em), and 
the formula Plf(x) =u(t,x) defines a stochastic semigroup. This semi
group may or may not be asymptotically stable (see [8]). However, if there 
exist a ball B c Bm and a constant e > 0 such that the inequality 

liminf J u(t,x)dx^ e (4.11) 
/-»•OO ft 
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is satisfied for every / e B, then Theorem 2.3 implies the statistical stability 
'of {P*}̂ o« I n i a c ^ under condition (4.11) the lower function for {P*}^o 
is given by 

h(x) = e inf G(tQ, x9 y), 
yeB 

where G is the Green's function corresponding to the Cauchy problem (4.9)? 

(4.10) and t0 is an arbitrary positive number. 
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EICAEDO MANE 

Oseledec's Theorem from the Generic Viewpoint 

Let / be a Ö1 diffeomorphism. of a compact boundaryless manifold M. 
A point x e M is said to be regular if the sequence of derivatives at x of 
the iterates of / admits the following description : there exists a splitting 

m 
TXM = © Ei(x) (the Lyapunov splitting at x) and numbers Xy(x) >... 
> &m(x) (the Lyapunov exponents at x) such that lim ^""1log||(Da;/

n)i;|| 

= Xt(x) for every 1 < i < m and 0 ^v e E€(x). The dimension of E{(x) 
is called the multiplicity of a?. It is easy to check that the Lyapunov splitting 
and exponents are unique and that if x is regular so is f(x) with Lyapunov. 

m 
splitting Tf,x) M = © (BJ)Ei(x) and exponents Xt[f(x)) = Xi(x)91 < i < m 
Denote by A(f) the set of regular points. In the late sixties Oseledec proved 
that the set A(f) has total probability, i.e. fi (A(f)) ~ 1 for every/-invariant 
probability measure fi on the Borei c-algebra of M [4]. Since then this 
theorem evolved into one of the central tools in smooth ergodic theory. 
Eecently Oseledec's theorem was extended to compact maps of infinite 
dimensional Banach manifolds (Euelle [6], Mane [3]). This extension 
can be useful for the analysis of the dynamical systems generated by 
retarded functional differential equation or semilinear parabolic P.D.E's. 

Oseledec's theorem is essentially a measure theoretical result and 
therefore the information it provides holds only in that category. For 
instance, the Lyapunov splitting is just a measurable function of the point 
and the limits defining the Lyapunov exponents are not uniform. It is 
clear that this is not a defficiency of the theorem but the natural counter
weight to its remarkable generality. However, one can pose the problem, 
and this is the purpose of this exposition, of whether these aspects can be 
substantially improved by working under generic conditions. There are 
two approaches to this problem. One is to study Oseledec's theorem for 

[1269] 
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generic invariant measures of generic diffeomorphisms. The other, to 
study Oseledec's theorem with respect to Lebesgue measure and generic 
volume preserving diffeomorphisms. Let us introduce some notation and 
terminology. Denote DifPfJf) the space of G1 diffeomorphisms of If endo
wed with the ö1-topology and let Jl be the space of probability measures 
on the Borei or-algebra of M endowed with the weak topology. Let d( -, •) 
be a metric in Jt associated to this topology. The support of a measure 
/* will be denoted by s (ft). Define Jt(f) to be the set of/-invariant elements 
of M and Jt6(f) to be the set of ergodic measures in Jt(f). If fe&iîîl(M) 
and y = {x =fm(x)9 f(x), ...9f

m~l(x)} is a periodic orbit of /, denote by 
m—i 

py the measure fi = m"1 J£ df],x). Eecall that a subset of a topological 
3=0 

space is residual (or generic) if it contains the intersection of a countable 
family of open dense subsets. A Baire space is a topological space such 
that every residual subset is dense. Jt and Ji(f) are compact. Jte(f) is 
a Baire space (in fact, a residual subset of its closure). 

Our main tool in developing the first approach described above is 
the following theorem; in the next section we shall show that it follows 
from the ergodic version of Pugh's Closing Lemma which we proved 
in [2]: 

THEOEEM A. Given f e Diffx( If), e > 0 and a neighborhood % of f, there 
exist g etft and a g-periodic orbit y such that d(fi, fiy) < e. 

Applying standard methods involving upper semicontinuous set valued 
functions together with Theorem A, it is easy to prove the following 
corollary: 

COROLLARY. If Jtp(f) denotes the set of measures fiy, where y is a periodic 
orbit off e Diff1 (M), then Jtp(f) is dense in JtQ(f) for a residual set of diffeo
morphisms f. 

life Diff̂ -M") and A is a compact invariant set we say that a splitting 
TM\A = Bl ©... ©Em is a dominated splitting if it is continuous, /-invariant 
(i.e. invariant under the derivative of /) and there exists G>0, 0<X<1 
such that, if 1 < i < m, setting 23+ = © Ej and E" = © Ei we have 

||(I>J*)/J0+ II'\\(Bnx)f^)lEjn{x)\\ < GX-

for all x e A, n > 0. 
In the next section we shall prove the following theorem: 
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THEOREM B. For generic diffeomorphisms /eDiff^Jlf), there exists 
a residual set 2f(f) c Jt^f) such that, if fie$(f), there exists a dominated 

m 
splitting TMjs(fji) = © Ei which coincides with the Lyapunov splitting 

at fi-a.e. point of s(fjf). 
Using the domination property it is possible to prove the existence 

of stable and unstable manifolds for a.e. point with respect to measures 
in @(f), even if / i s only G1 and not G1+8, as required in general. This follows 
from the results of Hirsch, Shub and Pugh [1]. 

Theorem B has a serious deficiency, namely, the fact that for a O1 

generic diffeomorphism, the entropy is zero with respect to generic in
variant measures. This property follows easily from the methods used by 
Sigmund in [7] to prove the same statement for Axiom A, replacing the 
specification property by the corollary of Theorem A. This means that 
generic elements of Jte(f) fail to reflect the dynamic complexity of/. To 
avoid this problem one should work in the space Jt\(f) = {{* e Jte(f)\ 
\hM(f) >c}, proving that generic measures in Jt\(f) satisfy a strong form 
of Oseledec's theorem. So far we have obtained no results in this direction. 

Now lot us consider the second approach we proposed: Oseledec's 
theory for generic volume preserving diffeomorphisms. For technical 
reasons which we discuss later we shall work with sympletic instead of 
volume preserving diffeomorphism. Given /eDi f f^üf ) and xeA(f), 
define E8(x) = © {E^x): X^x) < 0}, Eu(x) = © {E^x): X{(x) > 0 } , Ec(x) 
= Ej(x) if Xj(x) = 0. When / is sympletic its Lyapunov exponents 
have the following symmetry property: If Xi(œ) is a Lyapunov exponent 
then — X^x) is also a Lyapunov exponent with «the same multiplicity. 
Thus dim.Es(x) = climEu(x). Define the elliptic, hyperbolic and par
tially hyperbolic regions respectively by AM(f) = {x eA(f): EG(x) 
= TXM}, AH(f)={xeA(f): TXM =Ea(x)@Eu(x)}, AP(f) = {x e A(f): 0 
< dim Ec(x) < dimif}. Let Symp^üf, co0) be the space of symplectic dif
feomorphisms of the symplectic compact manifold (M, co0) and let X be the 

k 

Lebesgue measure (associated to the volume form co = CO0A...ACO0, 

k = dimJf/2). 
THEOREM C. There exists a residual set of Symp^Jf, œQ) whose elements 

satisfy one of the following properties : 
(a) X[AE(f))=l, 
(b) / if Anosov (and then AE(f) = AP(f) = 0) , 
(c) X(AH(f)) = 0, X(AP(f))>0 and for all e > 0 there exists a Borei 

f-invariant set A c AP(f) with X(Ap(f) — A) < e and such that there exists 

28 — Proceedings..., t. II 
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a dominated splitting of TM/A which coincides with the Lyapunov splitting 
at a.e. point of A. 

Moreover, A is a uniformly partially hyperbolic set, i.e. there exist G > 0 
and 0 < X < 1 such that 

(1) \\(BxniE3(x)\\^GXn, 
(2) ||(DJ-)/J!f»(«)l|<OA" 

for all x e A, n^ 0. 

The following corollary is interesting: 

COROLLARY. G1-generically, area preserving diffeomorphisms of compact 
two-dimensional manifolds are either Anosov or satisfy lim n~~1log\\(Bxf

n)v\\ 
n->±oo 

= 0 for X-a.e. x and every 0 # v e TXM. 

We do not know (but this seems likely) if G holds for volume preserving 
diffeomorphisms. The symplectic property has two important features 
in its proof. First, it makes possible to deduce hyperbolicity conditions 
((1) and (2) in (c)) from the domination property, that is what we can 
actually prove. Second, during the proof we need to approximate a Ü1-
symplectic diffeomorphism by a C2-symplectic diffeomorphism. This is 
possible in the symplectic case (Zehnder [8]) but is unknown in the volume 
preserving case. The proof of Theorem 0, much longer and more compli
cated than that of B, will appear elsewhere. 

Proofs of Theorems A and B. If f eT)iW-(M), denote by E(f) the set 
of points x e M such that for every neighborhood °U of x and all e > 0 
there exist g e°U and ß (/-periodic point y such that d[f(x), gj(y)) < s 
for all 0 < j < m where m is the gr-period of y. It is conjectured that E(f) 
coincides with the set of recurrent points of /. For our purpose, it will 
be sufficient, combined with the result proved in [2], that E(f) is a total 
probability set. Now suppose that fi e Jte(f) and that cp: M->R is a contin
uous function. Since fi (E(f)) = 1, we can take x e E(f) such that 

i vi lim T y.v{f{«)) = [v*i*-
^ ± 0 ° '" i -6 M 

Given e > 0, we can choose N > 0 such that 

n-l 

< *ß (1) 

if n > ÜT. If % is a neighborhood of /, there exists, by the definition of 
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E(f), a diffeomorphism g e°U and a «/-periodic point y such that 
d[fj(x), gj(x)) is so small for all 0 < j < m (where m is the ^-period of y) 
that 

-£9tfti))--2<p(f3W) <•/». (2) 

Moreover, observe that if x is/-periodic, there is nothing to prove, and that 
if it is not, then m is very large if g and y are close enough to / and x. 
Therefore we can suppose that m > N. Then (1) and (2) imply (denoting 
y^{x,g(x),...,g^(x)}) 

J cpdpty— J cpdfjt 

M M 

fi fi 
2 ^ 2 

This concludes the proof of Theorem A. To prove B we shall use the follow
ing elementary lemma: 

LEMMA I. Let F be a Baire space, K a compact space and 8 c FxK 
a subset such that the function F 3 x->({x} xK)n8 has a residual set of points 
of lower semicontinuity. Then, if 8Q c 8 is a residual subset of 8 (in the 
relative topology of 8), 80n({x} xK) is a residual subset of 8r\({x} xK) for 
a residual set of values of x eF. 

We shall apply this lemma to Diff1 (M) x Jt and the subset 8 = {(/, p) : 
f eT>iîî1(M), fi e Jt6(f)}. Observe that at points / e Diff1 (M) where every 
periodic point is hyperbolic and Jtp(f) is dense in Jte(f), the function 
Diff1 (AT) Bf->8c\({$}xJl) = Jtt(f) is lower semicontinuous. This set of 
points is residual in Diff1 (if) by the corollary of Theorem A. Then we can 
apply the lemma and the proof of B is reduced to finding a residual subset 
80cz 8 such that, if (f,fi) e 80 then fi satisfies the properties in Theorem B. 
To find 80, we define a function 0: 8->Rl, where I = dimJf, which 
associates with each (f,/t)e8 the vector [Xx(f, fi), ..., Xl(f9 p)), where 
î(/> p) ^ ••• ^ î(jf\ /*) a r e ^ e Lyapunov exponents of / with respect to 

k 

fi, repeated according to their multiplicities. Denote by Brfx TMA ... A TM 
the k-th exterior power of Bf and define 

**(/t A*) = inf — riog||(-D&/)||^, fc=l,2,... 
n>l M J 

It is known that 

3=1 
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Then 

* (/, A*) = (*i(/i J»), * i ( / , A O - * I ( / , AOI •••> W , A O - * > - I ( / , *))• (3) 
Moreover, the functions (Pft are upper-semicontinuous because they are 
lower bounds of continuous functions. Consequently there exists a residual 
set Sk c S of points of continuity of fl>Ä. Write 8Q = P | #&. By (3) 3> is 

continuous at every point of $0 . îTow we need the following lemma: 

LEMMA I I . Let A be a compact invariant set of f eDiîî1(M) such that 
there exists a sequence of diffeomorphisms {fn: n e Z + } and periodic orbits 
Yn °ffm with Period mn, satisfying the following properties\ 

(a) For every x e A there exist xneyn,n =1,2, ... such that lima?M = x; 
(b) There exist ß > 0 and a neighborhood °lt of f such that if g e^t and, 

for some n, yn is a periodic orbit of g, then the eigenvalues of the Poincaré map 
of g at yn have moduli ^ ßmn\ 

(c) There exists an integer k(ß) such that, for all n, the dimension of the 
subspace associated with the eigenvalues of modulus < ßmn is k(ß). 

Then there exists a dominated splitting TMfA =E+®E~~ such that 
dimJ5+ =k(ß) for all xeA. 

The proof of this lemma is a direct application of the results of [2], 
Section 3. In fact, in [2] we worked with 1 playing the role of the constant 
ß in Lemma I I , but it is clear that the method of construction of dominated 
splittings developed in [2] works also in this case. 

Now suppose that (/, p) e 8Q. Let Xx > ... > Xm be the Lyapunov 
exponents of / Tyith respect to fi and let \,..., km be their multiplicities. 
Take numbers ßx>... >ßm^ separating the Lyapunov exponents of / 
with respect to fi (i.e. Xl > ß± > X2 > ß2 > ... > Xm_x > ßm_x > Xm). Let 
/n"*/ ^ e a sequence of diffeomorphisms with periodic orbits yn such that 
pYn-^(Jt. Such sequences exist by Theorem A. Then 0(fn, pYn) is near 
to 0(f, p) for large values of n. But it is easy to see that 0(fn9 pVn) 
= (|ax|

1/mw, . . . , Kl1/ î%) where mn is the/w-period of yn and a19 ..., al are 
the eigenvalues of the Poincaré map of fn at yn repeated according to 
their multiplicities and ordered so that \ax\ ^ . . . S* |a2|. This means that 
ß™n > ßfn > . . . > /jm» x are not moduli of eigenvalues of the Poincaré 
map of fn at yn, and moreover, the dimension of the subspace associated 
with the eigenvalues of modulus < ßfn of the Poincaré map of fn at yn 

is 2 h- Since this holds for any sequence of diffeomorphisms fn->f and 
j>i 

periodic orbits yn satisfying py ->fi, it follows that if we fix one such 
sequence then this sequence satisfies the hypothesis of Lemma I I for 
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ß = ßt and k(ß) = ^ k3- for every 1 < i < m— 1. Thus fix i and apply 

Lemma II to ß = ß and k(ß) = j£ 7 .̂ We obtain a dominated splitting 

TMls(fi) *= E+@E~ with dim$+ - fc(|5) for all a? es(/i). We claim that 
J3+ =^.+1(a;)©...©JS/m(^) for /*-a.e. xes(p). To simplify the notation 
set 8(x) =EHl(x)@...@Em(x), G(x) = .^(0)©... ©221,(0). Take a Borei 
set K a A(f) such that the subspaces #(#) and (?(a?) are continuous func
tions of x when a? varies in K and for all a? e JET there exists a sequence 
nj-> + oo such that /̂ "(a?) G K for all j and lim fn3(x) = x. Since there 

exist sets with this property and /^-measure arbitrarily close to 1, it is 
sufficient, in order to prove the claim, to show that 8(x) = E+ and 
G(x) =E~ when xeK. Write 8(x) = #+©#0, G(x) = ff-©0o where 
8+ czE+9 G~ czEx, 8QnE+ = {0}, G0nEx = {0}. We know that 

lim IK^^/a+iiMitJDy«^--»)/^.,!! = 0 (1) 
»l-*+00 

lim IKDJ-i/^ll-IK^-^D/a^.)!! =0. (2) 

Choose a sequence ^ such that fn3(x)->x if j~> + oo and fn3(x) eK for 
all j . From (1) it follows that (Bxf

ni) 80 converges to a subspace /S^ c Ex . 
By the continuous dependence of 8(x) when x varies in K, this implies 
that 

8(x) = B+®S». 
In a similar way we prove that 

G(x) = 0 - 0 0 « , 

with Goo c -®» • But using the definition of #(0), G (a?) and the Lyapunov 
exponents we obtain 

lim \\(BJn)IS(x)l\\(Bfn{x)r
n)IG(x)\\ = 0 

w-v+oo 

or 

^ + 0 0 \\(BJ*)w\\ 

if 0 ^ ^ e 8(x), 0 ^=w eG(x). However, if we take v e 8^ c Ex and 
w e Goo a JS7+, it follows from (1) that this limit is oo. This contradiction 
shows that we must have 8^ = {0}, G^ = {0} and this will only happen 
if 80 = {0}, GQ = {0}. This means that 8(x) e E+ ,G(x) c Ex and, because 
of the dimensions of these subspaces, we conclude 8(x) = E%, G(x) = E~. 
This proves the claim. Applying this property to all the ß's from i = 1 
to i = m—1, we prove that fi satisfies the assertion of the theorem. 
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MIOHAIi MISIUEEWIOZ 

One-Dimensional Dynamical Systems 

By a one-dimensional dynamical system I mean a continuous map / : X->X 
where X is either an interval or a circle. We study its iterates fl and the 
asymptotic behaviour of orbits as n tends to infinity. Such systems can 
display a surprisingly wide variety of types of behaviour. Most of the 
interesting effects arising for flows and homeomorphisms in higher di
mensions are present in the case of maps in one dimension. On the other 
hand, the existence of an ordering of the real line allows us to use some 
specific methods in one dimension. 

We can look at dynamical systems from different points of view. 
One of them I would call topological. We try to determine the structure 
of the map, look at periodic points, non-wandering points and all possible 
asymptotic behaviours of the orbits. The other point of view can be called 
physical. We are interested only in those types of behaviour which are 
present for a set of orbits of positive Lebesgue measure. A periodic orbit 
is important only if it is attracting. Of course, there are many problems 
equally interesting from both points of view. 

In this paper, to illustrate the types of problems and results which 
arise for one-dimensional dynamical systems, I shall concentrate on the 
case of unimodal maps of an interval. For a broader treatment of this 
and other subjects, see e.g. [2], [19], [17]. Let I = [0,1], let / : I-+I 
be a continuous map such that /(0) = / ( l ) == 0 and," for some e e (0,1), 
/ is increasing on [0, o] and decreasing on [c, 1]. We shall call such a map 
unimodal. The natural way to study the topological properties of such 
a system is to use symbolic dynamics. This can be done by coding. To every 
wel we assign a sequence of symbols (e2-)£L0 by setting ei = +1 if 
f(x) e [0, c\ and si = —1 iìf(x) e [c, 1]. (There is an ambiguity iif(x) = c9 

but we shall omit here some problems caused by this.) The set of points 
corresponding to a given sequence can either be empty or consist of one 
point or be an interval (such an interval is called a homterval9 since all 

[1277] 
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iterates of / restricted to it are homeomorphisms). The shift in the space 
of sequences corresponds to the map /. Therefore, up to homtervals, we 
can study the properties of our system by studying the symbolic system. 
The power of this fairly general method in the case of unimodal maps 
is based on the fact that the sequence corresponding to c (the so-called 
kneading sequence of /, denoted by K(f)) determines the whole symbolic 
system. These ideas, already present in Myrberg's paper [18], were deve
loped by Milnor and Thurston [14] and then by other authors to form 
the so-called kneading theory. It describes all possible sequences of the 
symbolic system if a kneading sequence is given, all possible kneading 
sequences, and the dependence of a sequence on a point and of a kneading 
sequence on a parameter in one-parameter families of maps. 

Here I have to remark that the method described above is not the only 
possible way of coding. F. Hofbauer [7] introduced another method (the 
intervals corresponding to the symbols have intersections with non-empty 
interiors, there are infinitely many of them, but one gets a subshift of 
finite type) and, in subsequent papers, obtained very interesting and 
general results. 

The next step in the kneading theory is to decompose some kneading 
sequences [10]. A situation where a map / has a decomposable K(f) has 
the following geometric interpretation [6]. There is an interval It containing 
c in its interior such that, for some n, the intervals I19 f(Ixf9..., f1"1 (Ix) 
are pairwise disjoint, f1^) <= It and ft = y^of^^ocp (where cp is an 
affine map from I onto IJ is again unimodal. Now K(f1) can perhaps be 
also decomposed (we then get I2 and /2), etc. Thus, we obtain 3 types of 
kneading sequences: 

1. periodic, 
2. aperiodic, finitely decomposable, 
3. aperiodic, infinitely decomposable. 

To avoid complications caused by homtervals we shall assume additio
nally that / is of class O3, the second derivative of / is negative and the 
Schwarzian derivative of / , 8f =f"lf' — l(f"lf)2> i s negative (the con
dition of a negative Schwarzian derivative was introduced for interval 
maps by Singer [21]). Such a function is called 8-unimodal. The best 
known examples of such maps are quadratic maps fa(x) =ax(l—x)* 
Two #-unimodal maps with the same kneading sequence are topologically 
conjugate (except the casew hen an attracting periodic orbit exists; it 
can be attracting from one side or from both sides). The kneading the
ory allows us to describe completely the structure of an Ä-unimodal 
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map / : I-+I. If K(f) is periodic, then / has one periodic attracting 
orbit. This orbit attracts almost all (in the sense of Lebesgue measure) 
points of I. If K(f) is aperiodic, then there are no periodic attract
ing orbits and no homtervals. If K(f) is aperiodic and non-de
composable, then the set of non-wandering points Q(f) consists of 
a fixed point 0 and an interval [/2(c)?/(c)]. If K(f) is decomposable, 
then every step of decomposition gives some invariant totally disconnected 
closed set as a subset of Q(f). What remains in Q(f) depends on the length 
of the decomposition. If it is finite, then for some n we have/w with K(fn) 
non-decomposable, and we use the previous description. If it is infinite, 
we are left with some set Q^ homeomorphic to the Oantor set, on which 
/ is a homeomorphism conjugate to some generalized adding machine. 
There is a conjecture that the Lebesgue measure of Q^ is zero. An affirma
tive answer to this conjecture in some specific situations follows from 
the Feigenbaum theory [4], [5], [11], [12] (which deals in particular with 
the lengths of the intervals Ik). Without the assumption of f"(o) < 0 
and Sf < 0, the measure of O^ can be positive. 

The difference between the two points of view may be illustrated by 
the example of notions of chaotic behaviour. From the topological point 
of view, chaos is the existence of uncountably many different asymptotic 
behaviours of orbits [12], This is equivalent to the existence of periodic 
points of periods different from powers of 2, and to the positivity of topolo
gical entropy [12], .[20], [15]. For a piecewise monotone map / of an inter
val, topological entropy h(f) can be defined as lim — log (the number 

n n 
of pieces of monotoni city of f1). In particular, if K(f) is periodic with 
period different from powers of 2, / is chaotic in the above sense. Neverthe
less, almost every trajectory is attracted by the same periodic orbit. 
Therefore, from the physical point of view it is not chaotic. From this 
point of view, chaos means the existence of an ergodic invariant prob
abilistic measure, absolutely continuous with respect to the Lebesgue 
measure. If such a measure exists, then, by Birkhoff's ergodic theorem, 
almost every trajectory is distributed uniformly with respect to the density 
of that measure. 

Since topological entropy depends only on K(f), so does the chaotic 
behaviour in the topological sense. Assume that / is #-unimodal. It is 
not known whether the existence of absolutely continuous invariant 
measure depends only on the kneading sequence. There is a conjecture 
that such a measure cannot exist for / with K(f) infinitely decomposable 
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If c does not belong to the closure of {/"(oJKLi» then such a measure exists 
[16]. For one-parameter families of maps of the form/^a?) = X-f(x)9 the 
set of parameters X for which such a measure exists, has a positive Lebesgue 
measure [9], [1J. 

From among many other problems concerning #-unimodal maps, let 
me mention two more. 

Intuì fcively, it seems almost obvious that in every ^-neighbourhood 
of an #-unimodal map without a periodic attraetor there is a map with 
a different kneading sequence. However, this is known only for r < l 
[8]. For larger r9 attempts at the proof meet obstructions similar to those 
for Gr closing lemma. 

The second problem is whether h(fÀ) is a non-decreasing function of 
X for fK(x) = X-f(x). All computer experiments show that it is. However, 
in the general case only some partial results have been obtained [13], 
[22]. A complete solution exists only for the case of quadratic maps. It 
follows from the results obtained for the family of quadratic maps of C, 
which depend stronlgy on the properties of these complex maps [3]. If 
this method could be applied to other families, it would fit very nice into 
the kneading theory. For complex quadratic maps one can also define 
a kneading sequence. It turns out that those sequences which cannot 
occur as kneading sequences in the real case can nevertheless appear in 
the complex case. 
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GBOEGE R. SELL 

Linearization and Global Dynamics * 

In this paper we show how the spectral theory of linear skew-product flows may be 
Tused to study the following three questions in the qualitative theory of dynamical 
systems ï (1) When is an co-limit set or an attractor a manifold ? (2) Under which con
ditions will a dynamical system undergo a Hopf-Landau bifurcation from a 7<;-dimen-
aional torus to a (7c +1)-dimensional torus ? (3) When is a vector field in the vicinity 
•of a compact invariant manifold smoothly conjugate to the linearized vector field 
.and how smooth is the conjugacy Ì 

I . Introduction 

Much of the current research into the qualitative behavior of dynamical 
•systems is concerned with two fundamental problems involving the 
asymptotic behavior of the motions. The first of these problems is to 
describe the attractors or, more generally, the co-limit sets of the motions. 
If one knows the structure of the co-limit set, then one has essentially 
«complete information about the given motion. 

The second problem arises when one is studying dynamical systems 
which depend on a parameter. Once again one is interested in the attractors, 
but now one wants to study their dependence on the underlying parameter. 
In this study one encounters two correlated theories. First, there is a per
turbation theory in which the goal is to find sufficient conditions for the 
.attractors to appear to be unchanged. Secondly, there is a bifurcation 
theory where the objective is to describe such phenomena as period-
doubling, Hopf-Landau bifurcations and the occurrence of "strange" 
attractors. 

Our main objective in this lecture is to illustrate how the classical 
techniques of linearization can be used to address these problems of global 

* This research was supported in part by a grant from the National Science 
Foundation. 
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dynamics. Specifically we are concerned with the question of linearization 
in the vicinity of a compact invariant manifold or more generally, near 
a bounded motion in a dynamical system. The linearization theory we 
require is primarily a theory of linearization near a time-varying solution. 

As an illustration of the power of these linearization techniques, we 
will address here three specific problems. The first of these, which we 
study in Section III, is the question of determining when an attractor 
or an co-limit set is a manifold. 

In Section IV we study the second of these problems by illustrating 
how the technique of linearization can be used to develop a bifurcation^ 
theory for invariant manifolds. Specifically we will describe conditions 
under which a ^-dimensional torus may undergo a Hopf-Landau bifurcation 
to a (k +l)-dimensional torus. This bifurcation theory is not simply a linear 
theory, but it also depends on the occurrence of certain irremovable 
nonlinear terms. Such nonlinearities give" rise to "normal forms" for 
differential equations, which in turn form the basis for developing various 
bifurcation theories. The study of these normal forms in the vicinity of 
a smooth invariant manifold is an important chapter in the development 
of a qualitative description of dynamical systems. 

The first step in a study of normal forms is the question of smooth 
linearization near an invariant manifold. This theory of smooth- linear
ization, which completes our triad of problems, is described in Section V. 

The theory we will describe here is valid for all compact invariant 
manifolds M or, more generally, for all bounded solutions <p of the under
lying differential equation. For the most part the new contributions of 
our theory occur when M (or cp) is not a fixed point or a periodic orbit. 
One noteworthy exception occurs in the linearization theory in Section V. 
As a corollary of our methods, we are able to give an answer to the question 
of determining whether there is a (^-linearization (1 < N < oo) of a (non
linear) vector field in the vicinity of a hyperbolic fixed point or periodic 
orbit. 

Before turning to the mathematical details, we wish to express our 
sincere gratitude to Eobert Sacker for the essential role he played in the 
development of these theories. Many of the ideas described below find 
their origins in our collaborations with Dr. Sacker. 

II. The spectrum 

We want to study the concept of a linear skew-product flow % defined 
on a vector bundle S over a compact base space M, Sacker and Sell [32] 
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and Selgrade [35]. Let us begin with a specific example which will be of 
interest later in the lecture. 

Consider a smooth vector field or ordinary differential equation 

X* = / ( X ) (1) 

defined in some smooth Eiemannian manifold W, which we assume (for 
simplicity) to be an open set in a fixed Euclidean space Bn. Let M denote 
a given compact invariant set for (1). For example, one may have 

M = Hul%) = Closure{cp(t): teB} 

where cp is a solution of (1) with range in a compact subset of W. 
For 0 e M we let 0-t denote the solution of (1) that satisfies 0 - 0 = 9 . 

Let A = Bf denote the linear part of / (i.e. the Jacobian matrix) and let 
0(09t) denote the fundamental solution matrix of 

x' =A(0-t)x9 (2) 

with 0(0 ,0) = I . Then 

n(x9 e9t) =(0(6,t)x9 d-t) (3) 

is a linear skew-product flow on En xM, or equivalently, 0 is a co-cycle 
on M, Ellis and Johnson [8]. The shifted flow associated with Eq. (3) is 

n,(x,6,t) =(0A(d,t)x,d-t) 

where 0x(O,t) = e~u0(O,t) and A is a real parameter. In other words, 
0k(O,t) is the fundamental matrix solution of 

x' = [A(d-t)-XI]x. 

The concept of a linear skew-product flow extends directly to a vector 
bundle S over M where 0-tfis a flow on M, see Sacker and Sell [32]. In 
this case 0(6, t) is a linear mapping from the fibre $(Q) over 0 e M to 
the fibre S(Q-t). For example, if M is a compact invariant manifold and 
one restricts the vectors x in Eq. (2) to be tangent vectors to M, then % 
becomes the induced linearized flow on the tangent bundle TM ( = $) 
generated by (1). 

We say that a linear skew-product flow n admits an exponential dichot
omy over M if there is a projector P : $-4ê and constants K^T, a > 0 
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such that 

\0(69 t)P(d)0~l(Q, s)\<Ke-a«-s\ s<t, 

\0(d,t)[I-P(6)']0-1(d,s)\^Ke-a^t\ t<,s. 

Eecall that a projector is a continuous mapping JP: ê->ê that satisfies 
P(x, 0) — \P(d)x, 0) where P(0) is a linear projection on the fibre S(Q). 

The (continuous) spectrum E = E(M) of n over M is defined as the 
collection of all X e E for which the shifted flow nK fails to admit an expo
nential dichotomy over M. The complement Q(M) = R — E(M) is the 
resolvent set. If X e Q(M) we let &>x and Qtk denote the range and null space 
of the projector associated with the exponential dichotomy for nK. These 
are invariant subbundles for n and one has i = Sfx +%K as a Whitney sum. 
Also we define 

2TX = fibre-dim Sfx, 

where the fibre-dimension of any subbundle i^ of S is defined by 

fibre-dim^ = dim'T(0). 

Note that Nx is monotone nondecreasing in X for X e Q(M). 
If M is connected then the Spectral Theorem assures us that E(M) 

is the union of k nonoverlapping compact intervals I1,...,Ik9 where 
1 < k < n and n = fibre-dim S. Also associated with each spectral interval 
Ii there is an invariant subbundleT i of ê, where nt = fibre-dim^, satisfies 
% > 1 , 1 < £ < & , with n ^=n1 + ...+nk. Furthermore if ft,XeQ(M) 
with fji<X and the open interval (fi, X) contains precisely one spectral 
interval Ii9 then one has 

Nx-$fß= fibre-dim r i . (4) 

See Sacker and Sell [33] for more details. 
If M is a smooth compact invariant submanifold for the flow generated 

by (1) on W, then there are three spectra (E, ET and EN) which we wish 
to study. First there is the full spectrum E, which is the spectrum of n 
on the full bundle Bn x M. The tangent bundle TM is an invariant sub-
bundle for the linearized flow n. By restricting n to the tangent bundle 
TM one obtains the tangential spectrum ET. ïfext let Jf denote any sub-
bundle in En x M which is complementary to TM. The linearized flow n 
then induces an associated flow nN on Jf and the spectrum of nN9 is the 
normal spectrum EN. As shown in Sacker and Sell [34], the normal spectrum 
EN is independent of the choice of the normal subbundle Jf. One can 
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compute ET and EN by using the projections of the Jacobian matrix A 
in the tangential and normal directions, respectively. Some of the properties 
of the three spectra are the following (cf. Sacker and Sell [34]) : 

(1) ETuENczE. 
(2) Usually (but not always) one has E = ET\jEN. 
(3) If M ^ point, then 0 e ET and 0 e E. 

Remarks. 1. The theory we describe here extends readily to the study 
of homeomorphisms, diffeomorphisms and, in general, linear skew-product 
flows with discrete time t. We will not develop the discrete version of 
this theory in this report. Instead we invite the reader to consult the refer
ences cited above. 

2. This notion of the continuous spectrum is very closely related to 
the ergodic concept of the measurable spectrum, which is based on the the
ory of Lyapunov exponents, see Oseledec [23] and Euelle [28]. The connec
tions between these two concepts are described in Johnson, Palmer, and 
Sell [19]. By exploiting these interconnections Perry [24] has devel
oped numerical algorithms for approximating the spectral intervals and 
the associated spectral subbundles. These numerical methods can then 
be used to study various bifurcation phenomena. 

III. Hyperbolic almost periodic motions 

We can now address the first of the three questions posed above. A some
what more general version of this question is to ask when does the 
co-limit set of a given trajectory lie on an invariant submanifold. A classical 
answer to this question is given in terms of the first integrals of the differ
ential system. However, even in the presence of first integrals one can 
rephrase the question by restricting to submanifolds of low dimension. 
In this rather general form, it seems overly optimistic to expect that there 
is any situation where this rather subtle problem can be resolved by 
studying the linearized equations above. Nevertheless this does occur 
in study of almost periodic solutions. 

Let cp(t) be an almost periodic solution of (1) and let M = Hull(9?). 
The Pontryagin Duality Theorem assures us that the topological dimension 
of M agrees with the algebraic dimension of M. (The latter is the dimension 
of the Fourier-Bohr frequency module.) Let k denote this dimension. 
Let E denote the spectrum of the linearized flow on En x M. 

First we note that if k > 1, then X = 0 e E. In this case, let I 0 denote 
the spectral subinterval that contains X = 0 and let i^0 denote the associ-

29 — Proceedings..., t. II 
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ated spectral subbundle. I t is shown in Sell [36] that fibre-dim ^ 0 ^ ** 
Furthermore if fibre-dim i^Q = k, then M is Lipschitz homeomorphic to 
the Jfc-dimensional torus Tk and cp(t) is a quasi-periodic solution. These 
conditions on k can be checked by using (4). 

The proof of these assertions, which can be found in Sell [36], is based 
on ideas developed by Pliss [25]. 

IV. Perturbation and bifurcation of manifolds 

Consider next the dynamical system 

X'^f(X,a) (5.a) 

on W, w h e r e / depends smoothly on X and a parameter a. Assume that 
for a, fixed, value, say a = a0, there exists a compact invariant submanifold 
M Q for (Ef.a'o)- V e want to study the behavior of MQ as a varies in a neigh-
bprhood o% a0. The perturbation theories of Sacker [31], Fenichel [9] and 
Hirsch,, Pugh and Shub [18] describe sufficient conditions under which 
M0 can be imbedded in a smooth family of invariant manifolds Ma, for 
a near a0, with MaQ = M0. These theories can be summarized in terms 
of the spectra. 

The manifold M0 is said to be normally hyperbolic of order r, where 
r is a positive integer, if there exist real numbers a} b w i t h - 0 < a < r a < & 
and suGh that 

1) XeET=>\X\^a, 
(6) 

2) XeEN=>\X\^b. 
If M0 is normally hyperbolic of order r, then there is a smooth family of 
invariant manifolds Ma of class undefined for a near a0 with MQQ = M0. 

If the assumption of normal hyperbolicity breaks down at a0, then 
the behavior of the flow generated by (5.a) near M0, for a near a0, can be 
very complicated, see Chenciner [5], Meyer [21], Sell [38] and Smale [41]. 
A full understanding of this behavior, even from a generic point of view, 
still eludes us. However there are a number of situations where one can 
Obtain some insight. One very interesting case arises in the study of the 
Hopf-Landau bifurcation of a ft-dimensional torus into a (ifc+l)-dimen-
sional torus. 

Assume that the parameter a is real and that for a e I, where I is an 
open interval with 0 e J, Eq. (5.a) has a family of ft-dimensional invariant 
tori x(a) which varies smoothly in a. (Smooth variation means of class 
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GN, for N sufficiently large.) Next we shall assume that the tori satisfy 
Hypotheses I and I I of Sell [37], which means that one can find smooth 
local coordinates Z e E1l~k~2, xeE2, cpeTJc near r(a) so that Eq. (5.a) 
can be written in the form 

xf = Axl(cp, a)x-\-aA12(cp, a)z + F(x, z, cp, a), 

z' = aA21(cp, a)x + [B(cp) + aA2Z(qj,a)']z+H(x,z,cp, a), (7) 

cp' = G(x, z,cp, a). 

The terms B and A^ denote matrices of the appropriate dimensions and 
F and E contain higher order terms in x and z. Furthermore one has 
(F, H) = (0, 0) when (x, z) = (0, 0). Also the differential equation 
cp1 = G(0, 0, cp, a) denotes the restriction of the flow generated by (5.a) 
to the torus r(a). The system (7) is a Hopf-Landau dynamical system. 

Let (o, 0O) denote polar coordinates in the a?-plane and let 0 = (0O, cp) 
= (0O, 619 ..., 6k) denote a typical point in TkJtl, where cp eT1(. For any 
continuous function u = u(6) on Tk+1 we let MQ\u\ denote the mean 
value of u. 

The main hypotheses concern the (2x2) matrix JLn and the function 
G. First let us expand Axl in terms of a, that is, let Alt = Q + aW where 
Q = Alt(cp, 0). Let wi:J(cp,a) denote the entries of W(cp, a). Consider 
the following hypotheses: 

HI . The (2x2) matrix Q satisfies 

a _ r° —i 
V 

where co 0 is a nonzero constant. 

H2. The mean value W = M0[w11 cos227100 + ^22 8^27100] (at a = 0) 
is nonzero. 

H3. There is a vector co = (œ1, ..., cok) and a smooth function L(x, z,<p, a) 
such that G = co + aL, and the (k +l)-dimensional vector co = (co0, co±, ..., cok) 
where co0 is given by H I above, satisfies the nonresonance condition \n-co\ 
^ c\n\~ô for integral vectors n = (nQ, nx,...,%) ^ 0. (Here c and ö are positive 
constants that do not depend on n.) 

In the theorem we state next, reference is made to a constant K. This 
constant, which is expressed as a mean value, depends upon the low-order 
terms (i.e. order < 3) in the Taylor series expansion of (7). The formula 
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for K appears in Sell ([37], Eq. (4.10)). The proof of this theorem relies 
on an invariant manifold theorem due to Hale [14]. 

THEOEEM 1. If Hypotheses H1-H3 are satisfied and the constant K is 
non-zero, then there is a unigue family of (k+1)-dimensional invariant tori 
r(a) defined for a-sgn(WK) < 0 and one has r(a)-+r(0) as a->0. Further
more if W > 0, K < 0 and the tori r(a) are asymptotically stable for a < 0, 
then the bifurcating tori r(ß) are asymptotically stable for ß > 0. 

Eemarks. 3. For k = 1 this result is essentially due to Sacker [30] who 
uses a weaker form of the nonresonance condition H3. Also see Marsden 
and McOracken [20] and Euelle and Takens [29]. 

4. Basically the same theorem, formulated for mappings instead of 
differential equations, appears in Chenciner and Iooss [6], Earlier versions 
of this result are cited in Haken [13]. 

Ö. A recent paper of Flockerzi [10] shows that the conclusion of The
orem 1 remains valid in some cases when both W and K vanish. In these 
cases Eq. (7) admits different normal forms. 

V. Linearization near a compact invariant manifold 

We shall begin this section by studying a nonlinear vector field 

x9 =Ax+F(x) (8) 

in the vicinity of a fixed point x = 0. We seek sufficient conditions for 
the existence of a smooth curvilinear coordinate system with the property 
that the vector field is linear when written in terms of the new coordinate 
system. Given such a linearization theory, a natural question then is to 
determine the smoothness of the new curvilinear coordinate system. 
Also, if the new coordinate system is lacking in smoothness, we want to 
determine the obstacles to smooth linearization. As we will now show, 
we can give a satisfactory and definitive resolution of this problem, when 
x = 0 is hyperbolic. 

The differential equation (8) is said tb admit a GN-linearization near 
x = 0 if there is a (^diffeomorphism. E: V1-+V29 where yx and 7 2 

are neighborhoods of x = 0, that satisfies the following two properties: 
(i) JT(0) = 0. 

(ii) Whenever x(t) is a solution of (8) with x(t) e F3 for t in some interval 
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I , then y(t) = E[x(t)) is a solution of 

y'-Ay (9) 

for tel. Similarly, whenever y(t) is a solution of (9) with y(t) e V2 for 
tel9 then a?(tf) = E"1 [y(t)) is a solution of (8) for tel. (The mapping 
y = JET(#) above is referred to as a GN-conjugation between (8) and (9).) 

Let A be an (nxn) matrix with eigenvalues Xt, ..., Xn repeated with 
multiplicities and let E(A) = {Xt,..., Xn}. Let m = (m 1 ? . . . , m j be 
a vector with nonnegative integer entries mx, ...,mn, and define y ( X, m) by 

y(X, m) =X-(m1X1 + ... + mnXn), 

where X is a complex number. Let \m\ ^ m ^ . - . + m ^ 
We shall say that A is hyperbolic ifReX ^ 0 for all A e E (A). A is said 

to be stable if E e ^ < 0 for all X e E (A). A is said to satisfy the Sternberg 
condition of order N, N^2, if y(X, m) ^ 0 for all X e E (A) and all m 
satisfying 2 < \m\ < N. We shall say that A satisfies the strong Sternberg 
condition of order N, if A satisfies the Sternberg condition of order N and 

'Rey(X, m) ^ 0 (10) 

for all X e E(A) and all m with \m\ = N. I t is easy to see that if A satisfies 
the strong Sternberg condition of order N > 2, then A is hyperbolic. 

Let A be hyperbolic and let E+(A) or iT"" (A) denote, respectively, 
those eigenvalues X e E (A) with EeA > 0 or EeA < 0. We shall say that 
A is strictly hyperbolic if A is hyperbolic and both E+(A) and E~(A) are 
nonempty. If J. is hyperbolic and Ei(A) =£ 0 , we define the spectral spread 

, _ max{|EeA|: XeE*(A)} 
6 ~~'min{|BeA|: XeEi(A)} 

where i = + or —. 
Let Q be a positive integer and let A be hyperbolic. We define the 

Q-smoothness of A to be the largest integer K > 0 such that : 
(1) Q-KQ- > 0, if i;+(J.) = 0 . 
(2) Ç - J r ç + > 0, if E-(A) = 0 . 
(3) There exist positive integers M, N with Q = M + JZV, M—KQ+ > 0, 

J\7 —KQ~ > 0, when J. is strictly hyperbolic. 
Since the spectral spreads are > 1, we see that the Q-smoothness of A 

satisfies JL < min(Jf, N) when A is strictly hyperbolic. 
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The following two theorems are proved in Sell [39]. 

, THEOEEM 2. Let Q^ 2 be an integer, and assume that F is of class <73Q 

on TJ c X with OeU where BPF(Q) = 0 for P = 0 ,1 . Let A be strictly 
hyperbolic, and consider one of the following two assumptions : 

(A) Assume that A satisfies the strong Sternberg condition of order Q. 

(B) Assume that BpF(0) = 0 for 0 < P < $ - 1 and that 

R>ey(X, m\ =£ 0 

for all X e E (A) and all m with \m\ = Q. 
Under either assumption (A) or (B), Eg. (1.1) admits a GK-linearization, 

where K is the Q-smoothness of A. 
If A is stable, then one can weaken the assumption on the smoothness 

of F. In particular-, we will prove the following result: 

THEOEEM 3. If A is stable, then Theorem 1 remains valid when F is of 
class G2Q. 

Remarks. 6. Sternberg ([42], [43]) studies the question of finding 
sufficient conditions that Eq. (8) admits a (^-linearization. He showed 
tha t there is a function V(s, X±,..., Xn) > 0 with the property that if A 
is hyperbolic and satisfies the Sternberg condition of order N where 
N> s + V, then Eq. (8) admits a (^-linearization. While there are several 
alternate proofs of Sternberg's Theorem (cf. Chen [4], Hartman [17], 
ÏTelson [22], and Takens [44]), the implicit formulae for N and V 
are very complicated. See Hartman ([17], p. 257), for example. Our the
orems assert that under the stronger assumption that (10) is valid, we can 
give sharper and simpler estimates on the order of smoothness of the 
conjugation to the linear system. The homeomorphic version of these 
theorems (i.e., N = 0) appears in Grobman ([11], [12]) and Hartman 
([15], [16]). 

7. Our methods extend easily to the.question of smooth linearization 
for diffeomorphisms in the vicinity of a fixed point. Our theory for the 
hyperbolic case where N = 1 is similar to, but not as strong as, a theorem 
of Bileckii ([1], [2]). 

The assumption that y(X,m) ^ 0 for 2 < \m\ < Q allows one to intro
duce a polynomial change of variables to eliminate the terms in Taylor 
series expansion of F with order between 2 and Q. The stronger assumption 
that Eey(A,m) ^ 0 for \m\ =Q allows us to eliminate the remainder 
term in the Taylor series expansion of F. 
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The argument which we use to prove Theorems 2 and 3 is based on 
the theory of nonlinear perturbations of linear equations with exponential 
dichotomies, cf. Goppel [7]. The change of variables we introduce gives 
rise to a related nonlinear differential equation on a different finite dimen
sional Banach space. The quantities y(X,m), for XeE(A) and \m\ =Q, 
arise as the eigenvalues of the associated linear equation, and Ineq. (10) 
ensures that this linear equation has an exponential dichotomy, Sell [39]. 

I t is especially noteworthy that the methods we used to prove Theorems 
2 and 3 extend readily to the study of smooth linearization near a compact 
invariant manifold M. In order to simplify the following discussion, we 
will assume that M, which is smoothly imbedded in W, has a trivial normal 
bundle. (The general problem can easily be reduced to this case.) I t then 
follows that one can introduce smooth curvilinear local coordinates so 
that in the vicinity of M the vector field (1) becomes 

x' = A(Q)x + F(x, 0), 0' - g(0)+G(x, 0), (11) 

where 0 represents local coordinates on, M and x e Eh represents a normal 
vector to M. Furthermore F and G satisfy 

(F,BXF,G)(0,6) = ( 0 , 0 , 0 ) 

where Bt = djdx. Here A(0) denotes the linear part of F projected in the 
normal ^-direction at the point 0 e M. The equation 0' = g(6) describes 
the flow on the manifold M. 

The linearized vector field near M is defined as the vector field 

y'=A(cp)y, cp'=g(cp) (12) 

where cp e M and y e Eh. The linearized flow in the tangent bundle TM 
is given (in these coordinates) by 

v'=B(6)v, 0'=g(0) (13) 

where B = B2g, B2 = 3/30 and v eEp where p = dimjf. The normal 
spectrum EN and the tangential spectrum ET are the spectra of the linear 
skew-product flows generated by (12) and (13), respectively. 

We seek sufficient conditions in terms of the matrices A(6) and JB(0) 
in order that there exists a C^-conjugacy E of the form 

y = x + u(x, 0), cp = 0 + v(x, 0) 

which maps Eq. (11) to Eq. (12) in the vicinity of M. 
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Since the dimension of the normal bundle is k, it follows from the 
Spectral Theorem that EN is the union of q nonoverlapping compact 
intervals, I1,...,IQ, where l < j < i . Let % = f ibre-d im^, where ir

i 

is the spectral bundle associated with Ii. Then % > 1 and nx+... +nq=k. 
We shall say that a Ä-tuple (X19..., Xk) from the spectrum EN is admissible 
provided 

(i) the mapping j->X$ from { 1 , . . . , k} to E has its range in EN9 and 
(ii) Card{j: X3- eIJ = ni9 1 < i < q. 

If the matrix A in (12) is independent of 0 and has only real eigenvalues, 
then an admissible jfc-tuple is a listing of the eigenvalues of A repeated 
with their multiplicities. 

The definitions of strict hyperbolicity, spectral spreads and Q-smooth-
ness of (12) are made as in the constant coefficient case. One simplifi
cation to note is that the spectrum for (12) is real. 

THEOEEM 4. Consider the equation (11) near M where the coefficients 
are of class 3Q and M is normally hyperbolic of order Q. Let a and b be defined 
so that (6) holds with r = K, and assume that one has 

\X-(m1X1 + ... + mkXk)\ >Ka, 
(14) 

\m1X1 + ...+mkXk\>(K+l)a 

for all X e EN, and all admissible k-tuples (Xx, ..., Xk) and nonnegative integers 
m19 . . . , mk that satisfy 

2 < ( m 1 + . . . + m Ä )<Q, 

where K is the Q-smoothness of (12). Then there is a GK-conjugacy between 
(11) and (12). 

Eemarks. 8. The homeomorphic version of the last theorem for a stable 
manifold appears in Pugh and Shub [26]. 

9. A result of Eobinson [27] can also be used to study smooth con
jugates between (11) and (12). However, his hypotheses concern the Taylor 
series expansion of the nonlinear terms F and G instead of the spectral 
properties of M. 

10. Our results are somewhat stronger than similar theorems developed 
in Bogoljubov, Mitropolskii and Samoilenko [3]. 
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1. Introduction 

An early success of statistical mechanics has been the provision of a solid 
framework which encompasses both the laws of mechanics and the basic 
principles of thermodynamics. Among the spectacular results of this 
approach are the explanations, from basic principles, of the various phase 
transitions which are observed in nature. A not less challenging goal is 
to reach a complete explanation of the critical behavior of bulk systems. 
The universality of the critical exponents, which has been observed experi
mentally, is an intrinsically significant effect. I t both calls for, and 
ïaiscs,, the possibility of a mathematical elucidation of the subject. 

Great advances towards the formation of a global picture, and the 
approximate calculation of critical exponents, have been made by renormal-
ization-group related methods. By their nature, these methods do not 
•offer exact solutions to any specific statistical-mechanical model. (Although 
they do produce sharp predictions above, and at, the upper-critical 
•dimension.) Instead, the analysis incorporates the notion of universality, 
which from the point of view of physics may indeed be better founded 
than any given model. However, in view of the mathematical intractability 
of these treatments, the problem of the critical behavior is still well worth 
further attention. 

In recent years progress has been made in the rigorous analysis of 
some of the most important models of statistical mechanics and quantum 
field theory. Instrumental for this advance has been the identification 
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of some stochastic-geometrical effects which play a key role in their phase 
transitions, and the corresponding critical behavior. 

The results for statistical mechanics include the following: 

(1) Proof that the critical behavior of the "susceptibility", in Ising-
type models, stabilizes when the model's dimension reaches the value 
d = 4. Above that "upper-critical dimension" the corresponding critical 
exponent, y, takes exactly the value 1 — which is suggested by an extremely 
simple (mean-field) approximation. 

(2) A simple explanation of certain aspects of the critical behavior 
which are manifested in low dimensions. Specifically, "hyperscaling" — 
which fails for d > é9 was proven to be "universally" valid in d = 2 dimen
sions. 

(3) A partial result for percolation models, which lends certain tenuous-
support to the physicists' "educated guess" — that these models are 
also endowed with an "upper-critical dimension", and that its value is-
d = 6. 

I shall briefly describe here the stochastic-geometric aspects of these 
models and of the above results. The basic phenomenon which is discussed 
is the existence of the "upper-critical dimensions", above which the critical 
behavior in statistic mechanical systems is quite simple, and below which 
it is rather non-trivial. 

This situation carries somewhat opposite implications for the con
structive quantum field theory, where the level of difficulties of the goals 
is found to be in an inverse relation to those posed by the challenges of 
statistical mechanics. However, since this is also the subject of the talk 
of K. Osterwalder, only a few words would be said here on the quantum 
field theory. 

The contribution to the Congress Proceedings contains only a brief 
summary of the talk. A somewhat more detailed report on this subject^ 
and a more complete reference list, are given in Aizenman (1983). 

2 . Stochastic geometry 

We use this term when refering to properties of random geometrical 
objects. An instructive example is obtained by considering two random 
lines, in Rd, which are obtained as the trajectories of two independent 
Brownian motions (Wiener processes). The question of how typical is it 
for these paths to intersect, has been dealt with in the papers of Kakutani 
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.(1944) and Dvoretsky Erdös, and Kakutani (1950). The answer can be 
summarized as follows. 

THEOREM 2.1. Let b1,b2eRd be the sets of sites visited during times 
te(0, oo) by two independent, d-dimensional, Brownian paths which start 
ut Xi, x2e Rd. Then 

Pmb(bxnb2 ^ 0) = 
0 for d > 4, 

(1) 
1 for d < 4. 

An analogous (but significantly different) statement holds for random 
walks. 

THEOEEM 2.2. Let œ19 co2cz Zd be the sets of lattice sites visited by a pair 
of independent simple random walks, with some specified starting points, 
at times J e Z + \ { 0 } , Then 

Prob(coxnco2 = 0 ) is 
> 0 for d>4t, 

(2) 
= 0 for d < 4. 

{Notice that the LHS in (2) corresponds to 1—LHS of (1).) 
These results exhibit two striking features. First, Theorem 2.1 may be 

<xmnter-intuitive if one thinks about 6t- as lines. (After all — b{ are the 
ranges of a pair of continuous mappings of JB+ into Rd.) Eandom rays 
miss each other already f or d > 1 + 1 . This puzzle is resolved by the cel-
lebrated observation that the Hausdorff dimension of the paths is 2 rather 
than 1. The other curious effect is that as a result of the discretization 
the behavior at the critical dimension, d = 4, is changed from being high-
dimensional in (1) to the low-dimensional in (2). This is due to the fact, 
which is not reflected in (1), that with probability 1 the two paths b19 b2 

come arbitrarily close to each other, even in d = 4 dimensions. 

3 . Percolation model 

In statistical mechanics one typically deals not with isolated components, 
as in the above example, but rather with infinite arrays of such elements. 
This is the case in the Bernoulli percolation model, which is based on 
a collection of independent random variables {nb} which are associated 
with the bonds (i.e. unit segments joining pairs of neighboring sites) of 
the lattice Zd. The variables take the values 1, 0 with the homogeneous 
probabilities p, 1—p- Por each given configuration of values of {nb}, the 
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lattice is decomposed into connected clusters — by regarding a bond a» 
connecting if % = 1. Let G (x) be the cluster which contains the site 
x e Zd, and \G(x)\ the number of its points. 

The model exhibits a phase transition, when p is varied, associated 
with the spontaneous formation of" infinite clusters. The transition is. 
manifested in the behavior of the quantities 

r(x,y) =Pvob(yeG(x)), 

P„=Frob(\G(0)\ = oo) 

and 

«=<|O(0) |> =£T(0,X), (3) 
X 

which are monotone functions of p (with P^p) = 0 for p small enough 
and limP^p) = 1, at d^2). At some critical point, pc, n(p) diverges 

(for d^2). The expected power behavior 

* S \Po—P\+V 

is the basis for the definition of the critical exponent y, whose values m 
one of the questions we shall address. 

When pressed for some quick guess for the critical behavior, one could 
try a "tree approximation", in which Zd is replaced by a Bethe lattice 
(Cayley tree) preserving the local number of neighbors. The calculation 
is then trivial, yielding 

H l+P 
\ziA—-xy-p~ = -

with 

,B .L . = (2Ä-1)-1 , (B) 

and 

yB.L. = l j independently of $ (!). (6) 

This of course is a very unreliable estimate of the actual values of 
pc and y. Furthermore, one can prove that pc ^ pfmIj', which leaves the 
second "prediction" even more suspicious. (Indeed, it is contradicted by 
numerical results in low dimensions.) Yet interestingly enough, these 
values do offer general bounds. 
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THEOEEM 3.1. For a general d, 

fl) Po>pf-Jj- m 

( # ) U> 

and 

(ii) y > l ( = ^ - L - ) . (8) 

In its weak form, (i) is a commonly made observation which is very 
elementary; (ii) is more recent (Aizenman and Newman, to appear) al
though its proof is surprisingly easy. The interesting point for us is that 
both can be proven using the observation that dn~x\dp is related to the 
probability that two neighboring sites, 0 and 1, belong to a pair of very 
large clusters which do not intersect. More specifically: 

1— p dn 

dp 
*=Prob(0(O)n0(l) = 0 | G(0)BX, G(l)sy), (9) 

where the probability is conditioned on the event on the right side, and 
is averaged over (x, y) with the normalized weights T ( 0 , X) T ( 1 , y)\%2. 

The above representation is quite telling. First, since Prob(— ) < 1, 
it leads to a bound on \dxrljdp\, which when integrated down from pc, 
where n~l(pc) = 0, directly leads to (ii). (We skip here some details on 
the how does one settle the question of the continuity of H"1 at pc.) 

Furthermore, (9) demonstrates that in order for' y to take some other 
value than 1, the probability of mutual avoidance of a pair of "incipient" 
clusters" should necessarily vanish. As we saw, for random walks, this 
happens only in the low dimensions d < 4. 

While random clusters are significantly different from random walks, 
these considerations suggest that there may be an "upper critical dimen
sion" above which the critical exponent y takes exactly the value which 
it has in the simple "tree approximation". We shall later mention a cri
terion which lends some support to the physicists' claim that the upper 
critical dimension is d = 6. 

The percolation model was presented first only because its geometric 
features are plainly manifest. However, the basic approach discussed 
here was first developed in the analysis of ferromagnetic spin systems, 
for which the results are more conclusive. 
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4. Ferromagnetic spin systems 

Statistic-mechanical models of ferromagnetism consist of lattice arrays 
of variables ("spins") ax, x eZd, with probability measures of the form: 

Q(da) =lim1exp/}[ V cTxay + h£ax]}n Qo(dcrx)IZ(A)9 (10) 

where Q0(d) is some non-interacting even single-spin measure, and Z(A) 
is the normalizing factor. The physical parameters of the model are the 
temperature — jS*"1, and the applied magnetic field — hß"1. 

A quantity of special interest is the magnetization, defined as : 

M(ß9h) =*fa0Q(da). (11) 

For sufficiently large values of ß, M(ß9 h) — as a function of h is 
discontinuous at h = 0. A critical value of ß is defined by the divergence 
of the susceptibility: 

X(ß) = 
Sh 

I t is expected that the critical exponent y defined as 

(12) 
A~0 

y - ] j m l°gX{ß) (13) 
7
 ß/,ßelogll(ßc-ß) K } 

is (along with the other critical exponents) independent of many of the 
details of the model. 

The phase transition is a cooperative effect in a system with an infinite 
number of degrees of freedom. Consequently, %(ß) is not expected to be 
derivable from any a priori suggestive, finite, system of differential equa
tions. However, a description of this sort is obtained within the very 
simplistic mean-field approximation, in which M = M(ß9 h) is the solution 
of: 

M =f(2dßM + ßh), (14) 

with 

fß) =Jae"aeo(äcr)lJeKaQ0(da). 
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For a general class of distributions, which satisfy the Griffiths-Hurst-
Sherman inequality (Griffiths, Hurst and Sherman, 1970; Ellis, Monroe 
and Newman, 1976; Ellis and Newman, 1978), the function/(A) is antisym
metric and concave on [0, oo]. In such cases (14) leads to the following 
"predictions": 

(1) ß0 - \2d(o*\Y\ where <<r*>0 = / ' (0 ) . (15) 

(2) For ß<ß0: 

X(ß)=lH2ä(ß0-ß)] (16) 

and in particular 

7 = 1. (17) 

The mean-field equation (14) is certainly not correct. Nevertheless, 
it is not entirely useless. The values obtained from it for ßc9 M(ß,h), 
and even y, form in fact rigorous upper bounds. 

The earliest such a result is in the works of Fisher (1967) and Griffiths 
(1967) which show that for the Ising model (with e0(dcr) = 6(a2— T)da): 

ß >ßf-¥'- (18) 

Since then, the inequality has been redrived by a great variety of arguments, 
listed in Aizenman (1983), for a wide class of a priori distributions. 

Furthermore, there is the following result which bears more on the 
critical behavior. 

THEOEEM 3.1 (Glimm and Jaffe, 1974). For systems in which the Lebowitz 
inequality (Griffiths, Hurst and Sherman, 1970; Ellis, Monroe and Newman, 
1976; Ellis and Newman, 1978; Lebowitz, 1974) is satisfied (including the 
Ising model with Q0(do) = o(o%—l)da, and the cp* lattice systems with 
e(dcp) = e-^'+B*2dcp) 

y>l ( = yM'F-)- (19) 

5. Vindication of the mean field approximation above the upper critical 
dimension 

There is an important difference between the two "predictions" of equa
tions (15) and (17). The value of ßc is clearly model (i.e. QQ) dependent. 
I t should not be expected to be, and is not, exactly equal to ßf%Wm. On the 
other hand, the critical exponents are expected to be universal. Indeed, 

30 — Proceedings..., t. II 
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the mean field result exhibits universality. (In fact too much of that —-
since it is false in low dimensions.) I t may sound remarkable that even 
though ßc #$f , F ' , *he power law of % as a function of ß — ße could be 
predicted correctly by this approximation. That however is the case in 
the "high dimensions" — d > 4, — a fact which was proven by arguments 
inspired by a stochastic-geometric picture. 

The stochastic geometric formulation of the problem is achieved by 
a representation of ferromagnetic systems by means of "dual" systems 
of "random currents". Omitting the details (given in Aizenman, 1982), 
let us just say that the currents are described by random flux numbers 
which are somewhat similar to the variables {nb} which were described 
in our discussion of the bond percolation model. A key difference is that 
the fluxes are constrained to be "sourceless" (i.e. Jj nb = 0 mod2), 

except at specified sites. Such a representation can be developed for each 
system with Q0(da) in the Griffiths-Simon class (Griffiths, 1969; Simon 
and Griffiths, 1973) which includes the Ising and ç>4 cases. One of the 

1 dv'1 

results is that the quantity —• 
2d 

reduces exactly to the probability 
dß 

of intersection of two long current clusters. The resulting expression is stri-
dn~l 

kingly analogous to the expression (9) for — — 

The consequences of such a relation were discussed above (Section 3). 
These include simple proofs of the relations (18) and (19), and a novel 
characterization of the upper-critical dimension, above which y = 1. The 
property which characterizes the high dimensions (here: d>ê)9 is 
that the probability of two long current clusters, which contain a given 
pair of sites, to be totally disjoint is uniformly positive. 

This framework permits to approach the problem in a way which is 
somewhat analogous to the analysis of the random walk's property (2). 
Such arguments have led to the following result (Aizenman, 1982 ; Aizen
man and Graham, 1983) : 

THEOREM 4.1. Ln systems with Q0 in the Griffiths-Simon class (which 
includes the cp4, and the Ising spins) the function %(ß), for ß < ßc9 satisfies: 

(2d)-i(ßc^ßr^X(ß)^ 

with some c, c< oo. 

cid^^-ß)-1, d>4, 
cieoHße-ßr'li+iogiKßo-ßil d=i 
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The upper bounds in (20) are consequences of the geometrically inspired 
inequality 

_1^ 

2d! 
d% 
dß 

^[l + (2dß)^^0a^r1 (21) 

which shows that a sufficient condition for y to attain its mean-field value 
is the uniform boundedness (for ß < ße) of : 

£=|S2 2<°o<yxy=-7fyT j dPl...dpdG>(p), (22) 

where G(3))=^^œ<<r0(Tœ>. 

In Aizenman and Newman (to appear) it is shown that for percolation 
-models the above condition is replaced by the finiteness, at p = pc, of 

F= 5^(0, ^ r ^> yîr(y> °) = T^vT J #i---#/ r^)3- (23) 
aî,2/ 

The proof of Theorem 4.1, for which d = 4 is the critical dimension, 
is completed by the Gaussian bound of Fröhlich, Simon and Spencer 
(1976) which implies that for ß < ß0 (and any d) : 

P +X 

In the above analysis, <o,
0o

,
flJ> plays a role which is somewhat similar 

to the hitting probability for random walks. Another proof of (20), for 
d > 4, has been given in the work of Fröhlich (1982) by means of a random 
walk expansion. 

Had the analog of (24) been known for r(p), at least for d > 6, it would 
have implied that for percolation y = 1 in d > 6 dimension. However, 
such a bound has not been derived, and is not expected to hold there as 
a dimension-independent inequality. 
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6. Few comments on the quantum field theory 

Above the upper-critical dimension not only do the critical exponents 
simplify, but also the correlation functions acquire a simple form — the 
random fields defined by their scaling limits are Gaussian. This fact has 
somewhat opposite implications for the statistic mechanician and the 
quantum field theorist. The former's task involves finding the critical 
behavior — which, as explained above, is simple above dc and quite non-
trivial in low dimensions. The goals of the latter require setting models 
of interacting — i.e. non-Gaussian, fields. This goal is made more difficult 
by the fact that at least the simplest candidate for such a construction 
fails — due to the attraction to a "Gaussian fixed point". Conversely, 
below the critical dimension there is a rigorizable perturbation theory 
which leads to non trivial fields — which presumably also describe the 
critical regime of statistic mechanical models. 

Here too, stochastic-geometric represetnations offer frameworks for 
the proofs of the above assertions — for which an important insight is 
derived from Theorem 1. Eecent results in this vane can be found in refer
ences (Aragao de Oarvalho, Oaraciolo and Frölich, 1983; Aizenman and 
Graham, 1983; Brydges,-Fröhlich and Sokal, 1983). 
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Energy-Minimizing Configurations in 
Nonlinear Elasticity 

We discuss applications of the calculus of variations to nonlinear elasticity, 
and certain related issues. We confine attention to problems in n > 1 
space dimensions. (A comprehensive account of one-dimensional problems 
has been given by Antman [3].) 

Consider an elastic body occupying in ä reference configuration a boun
ded domain Q c Rn. We assume for ease of exposition that the body is 
homogeneous-, i.e. it is composed of the same material at each point x e Ü. 
In a typical deformation X: ß->Änthe total stored-energy of the body is 
given by the functional 

B(x) = JW(xV(X))dX (1) 
Q 

where W denotes the stored-energy function of the material. Let Mnxn 

denote the space of real nxn matrices. We suppose that W: Mnxn-*R 
is continuous and bounded below, and that W(A) = oo if and only if 
det A < 0. (The last requirement is imposed with the intention of making 
it energetically impossible to compress part of the body to zero volume 
or to change its orientation.) We suppose that the body is subjected to 
external body forces with potential W(X, x) per unit volume and for 
simplicity we consider the case when Wi Rn x Rn->R is continuous and 
bounded below. We consider a mixed displacement zero traction boundary 
value problem, in which it is required that 

x(X) = x(X), a.e. X e dQ19 (2) 

while the remainder x(ôû\du1) of the boundary is traction-free. In (2) 
ßü1 denotes a measurable subset of the boundary dû of Q (which we 
assume to be strongly Lipschitz) with positive (n —l)-dimensional measure, 

[1309 
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and x: dû1->Rn is a given measurable function. (More general conserva
tive boundary problems are considered in Ball [4].) We define the total 
energy functional I(x) by 

* def 
I(x) =E(x)+ $W{X,x(X))dX. (3) 

n 

Corresponding to (2) we consiâer the set 

J / = {a? e Whl(Q-9 Rn): x satisfies (2), I(x) < oo} (4) 

and pose the following problem. 

PROBLEM. Does I(x) attain an absolute minimum on sé% 

In the case when dü± = dQ (pure displacement problem) a necessary 
condition that I attains an absolute minimum for every smooth W and 
x is that W be Wltl-guasiconvex (Ball and Murat [9]), i.e. 

JW(A+ Vcp(X))dX^ (measJ9)WXA) (5) 
D 

for any bounded open subset JD a Rn with meas 3D = 0, for all A e Mnxn 

and for all cp e W1
0

tl(D'9 Rn). The weaker condition that (5) hold for all 
<p e WliCO(B'9R

n) was introduced by Morrey [16] and termed by him 
quasiconvexity ; it implies in particular that for W e G2(M^n) the Legmdre-
Hadamard (or ellipticity) condition 

™%M,>. (•> 

for all J. e M^xn and all a9b eRn holds. TF^-quasiconvexity is also 
a necessary condition for sequential weak lower semicontimüty of JE(') 
in Whl(fì-9R

n). 
An example of a set of sufficient conditions ensuring that I attains 

its minimum is given by the following^ result. Of course the hypotheses 
imply that W is W^-quasiconvex. 

THEOKEM 1. Let n = 3. Suppose that W is polyconvex, i.e. there exists 
a convex function g: Jf3x3 xJf3x3 x (0, oo)-> Rsuch that 

W(A) = g (A, adj A, det A) for all A e M*™9 (7) 

where M*+* = {A e Jf3x3: det A > 0}. Suppose further that 

W(A)^ C+D(\A\p+\&cl]A\Q) for all AeM**\ (8) 
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where D > 0, G are constants, p^2 and g > plip— 1). Then if sé is non
empty I attains its absolute minimum on stf9 and the minimiser x satisfies 
det Vx(x) > 0 a.e. X e Q. 

Theorem 1 is proved in [9]; it is a slight refinement of earlier results 
of Ball [4, 5] and Ball, Orarie and Olver [8]. The proof uses the direct 
method of the calculus of variations, the weak continuity properties of 
Jacobians (Beshetnyak [18, 20], Ball [4], Ball, Currie and Olver [8]), 
and an idea of Beshetnyak [19]. For some related semicontinuity theorems 
see Acerbi and Fusco [2] and Acerbi, Buttazzo and Fusco [1]. For pure 
displacement boundary value problems with appropriate boundary data 
it can be shown (Ball [7]) that under stronger growth conditions on W 
the minimiser a? is a homeomorphism, so that interpénétration of matter 
does not occur. An analogous version of Theorem 1 holds for incompressible 
materials, all deformations of which satisfy the pointwise constraint 
det Vx(X) = 1 a.e. X e Q. 

The stored-energy function W is said to be isotropic if 

W(A) « 0(v19 v2, t>3) for all A e M*** (9) 

for some symmetric function O of the principal stretches vi ~ v^A), that 
is the eigenvalues of (ATA)112. Following essentially the work of Ogden 
[17] on stored-energy functions appropriate for natural rubbers we consider 
the case 

M 

0(v19v2,v3) = ^ ^ ^ + ^ + ^ - 3 ) + 

+ J£ Mlv*v*)ßj + ̂ V^j + fo*«)'' - 3) + M ' I ^ B ) , (10) 
i -1 

where M> 1, N^ 1, oi > 0 , fy > 0 , a x > .. . > aM> 1, ßx^ ... > ßN > 1 
and h is convex, bounded below, with lim h(t) = oo. Note that vxv2v3 

t-*o+ 
= det A. Then the hypotheses of Theorem 1 hold provided ax > 2 and ßx 

> a1l(a1— 1); a special case is the Mooney-Bivlin material, for which ax 

= ßx = 2 . For the function 

®(Vi,v*,Va) = c(v« + va
2 + va

3-3) + h(v1v2vz), (11) 

with c > 0 and h as above, the hypotheses of Theorem 1 hold provided 
<z>3. 
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A modification of the Saint Venant-Kirchhoff constitutive law satis
fying (7), (8) has been proposed by Oiarlet and Geymonat [10]. 

There are physically interesting stored-energy 'functions W which 
are not TTlfl-quasiconvex and in particular do not satisfy the hypotheses 
of Theorem 1. We distinguish two ways in which this may occur. The first 
is when W fails to be quagiçonvex, i.e. fails to satisfy (5) ; this case corre
sponds to materials which may change phase (see Ericksen [13], James 
[14, 15]). An example is furnished by an elastic fluid, for which 

W(A) ^h(ietA). (12) 

In this case (5), (6) and (7) are equivalent and are satisfied if and only 
if h is convex. For a van der Waals 'fluid, for example, h is not convex. 
Eesults proved by Acerbi and Fusco [2] and Dacorogna [12], for integrands 
taking finite values only, suggest that under strong growth conditions 
on W any minimizing sequence for !(•) has a subsequence converging 
weakly in W1A(Q; Rn) to a minimizer for the "relaxed problem" obtained 
by replacing W by its lower quasiconvex envelope. The corresponding 
result for an elastic fluid is proved in Dacorogna [11], 

A second way in which W can fail to be W1,:l-quasiconvex is due to 
its growth properties for large \A\. As an example, consider the isotropic 
stored-energy function (11) with c>0,heG3(09 oo), h" > 0 and lim h(t) 

= lim = oo. If a ̂  1 this function satisfies (7), and if a > 1 it is strongly 
£->oo t 

elliptic, i.e. (6) holds with strict inequality if a, 6 are non zero. However, 
if 1 < a < 3 W is not TF^-quasiconvex. This can be proved by choosing 

def 

D = B = { I G B 3 : \X\< 1}, A = Al, and showing that for sufficiently 
large X > 0 one can violate (5) with an appropriate discontinuous radial 
function cp. The problem of minimizing B(-) among radial deformations 

x(X)=^-X, B = \X\, (13) 

subject to appropriate displacement or traction boundary data is considered 
in Ball [7]. For example, for the stored-energy function (11) under the 
above conditions with 1 < a < 3 it is shown that for any X > 0 the absolute 
minimum of JE(-) among radial deformations (13) satisfying r (0 )^0 , 
V(22)^0 and r(l) = X is attained. Furthermore, there exists a critical 
value XQ such that for X < Xc the minimizer is trivial and given by r (B) = XB 
(i.e. x = XX), whilst for X > XG the minimizer satisfies r(0) > 0 , so that 
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a cavity forms at the origin. The nontrivial minimizers are discontinuous 
weak solutions of the full set of 3-dimensional Euler-Lagrange equations 
for B( •). The reader is referred to [7] for analogous results for more general 
compressible and incompressible materials, for a discussion of the relevance 
of discontinuous minimizers to the phenomenon of internal rupture of 
rubber, and for comments concerning the relationship of the analysis to 
the literature on discontinuous solutions to nonlinear elliptic systems. 
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O. LADYZEKBKAYA 

On Finding Symmetrical Solutions of Field 
Theory Variational Problems 

Field theory functionals are usually invariant under a group G of transform
ations acting in the space X of its arguments. This fact is being used by 
physicists for finding critical points of / o n X in the following way: a subset 
XQ of X invariant under G (or some subgroup of G) is singled out (i.e., an 
"Ansatz" is suggested) ; then a critical point v of / on X0 is found and after
wards it is confirmed that the point v should be critical for / on all X. 
In some cases the last statement is proved either by direct substitution 
% into Euler equations of the variational problem under investigation or 
by some special considerations. 

S. Coleman in [1] put forward some ideas on how to choose "right 
Ansätze". Later on, L. D. Faddeev, referring to a conversation with Oole-
man, formulated those ideas in the form of the following "Principle I " 
([2]): 

Let Xbe a manifold, G a group acting on X and fa G-invariant functional 
on X [i.e., f(gv) = f(v), \fv e X and V# e G). Let X0 be the set of all points 
of X fixed under the action of G (i.e., v eX0ogv = v, \fg eG). Then any 
critical point v of f on X0 should be critical also for f on X. 

L. D. Faddeev shows in [2] that many "Ansätze" proposed for different 
models of field theory are in fact nothing else but an indication of G and 
XQ. Principle I is very useful for getting some solutions of field theory 
variational problems, those which are less amenable for other methods 
developed in mathematics ("direct methods" of calculus of variations, 
the theory of fixed points, etc.). Though Principle I is not valid in such 
a general setting, the author together with her colleague, L. V. Kapitanskii, 

[1315] 
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made it our aim to find sufficient conditions (as wide as possible) on Xf 

G and / under which this principle is true. 
Let us begin with two examples which clarify the reasons of a possible 

failure of Principle I. 

1. Let X == R2, let / be a smooth function on R2 depending only on 
x2 and let G be the group: gxx = (xx + rx29 x2), reR1. Here X0 ={x% 
x2 = 0}; X and / are (J-invariant but Principle I fails to hold. 

2. Let X be the torus surface resulting by rotation of the circle 
{x = (xx, x29 x3) e JR3: (xx— l)%-\-x\ = 1, x2 = 0} about the #3-axis, *e* & 
be the group of rotations of B3 about the %-axis and let / be a smooth 
function depending only on xz. Here X0 = {x: x = 0}; X and / are G~ 
invariant but Principle I is not applicable. 

Looking at the first example, one might think that the noncompactness 
of G is the cause. But if we adjoint to G the element g: gx = (xx, —x2)r 

the principle becomes true. In the second example one could blame X: 
the manifold X has a singularity at the point x = 0. But by adjoining 
to G the element g: gx =(<vX9x2, —x3) we reestablish the principle. All 
an analysis of most problems of field theory shows that leaving manifolds 
with singularities out of considerations is like splashing the baby out of 
the bath. Moreover, in many cases X is not a manifold at all and then 
the notion of criticality of a point v for / on X0 and for / on X then requires 
a special definition. And this will be the starting point of our address. 

Let V be a complete Hausdorff topological vector space and let n& 

be a set of linear continuous operators {n(g)9 g e G} acting in V. Denote 
by 70 the set of all fixed elements of V; i.e., v e V0oüt(g)v = v, V# eG. 
VQ is a closed subspace of V. Let / be an invariant functional on an in
variant setX c V(i.e., 7t(g)v eXiîveX and f{n(g)v) = f(v)9 WveXand 
Vflr e G) and write XQ = Xr\V0. Let us take a point v e XQ and define the 
tangent set ToX to X at this point in the following way: an element rj eV 
belongs to T<>X if and only if 

dv(r) inn * ( T ) - * ( 0 ) 

T=: + 0 T - > + 0 

(in the topology of V) for a segment of a curve v(r), r e [ 0 , s], lying on 
X with the initial point v = v(0). The tangent set T<>X0 to X0 at the point 
v is defined in a similar way. It is easy to see that ToX and ToXQ are 
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= n(g)rj) and 
o o dn(g)v(x) 

invariant (as n(g)v(x)eX, n(g)v=v9 
dx 

ToXQ cz ToXnV0. 
T«+0 

Assume the existence of a linear invariant set MP dense in T<>X (in 
topology of V) and such that Jf0 ^jfr\ToX0 is dense in T<>X0. 

Eegarding /, we suppose that / has the derivatives at the jwint v along 
V?7 eM, i.e., that 

iîm-[/(^(T))-/(5)] **mhv) 
T_>+0 X 

exists for every curve vn(x)9 % e [0, e], vv(0) = v lying on X and such that 

dvn(x) 

dx 
= 17. 

T=+0 

Moreover, (5/(«?; r\) has to be linear with respect to ijm 

These hypotheses imply the equalities 

òffa rf) = òffa %(g)ri), Vrç eM and Wg e G. (1) 

We say that v is a critical point of f on X if 

#(*;*) = 0 , V*?eJT, (2) 

and w is a critical point off on X0 if 

N5/(v;rç)=0, Vrçe^ 0 . (3) 

Having introduced the necessary notions and definitions, we can 
formulate oui1 problem in the form of the question: under what conditions 
do (1) and (3) imply (2)? As long as we do not want to submit / to any 
special restrictions (except invariance), equalities (1) contain all the infor
mation about /. An important feature of (1) is linearity with respect to 
the second argument rj. In virtue of this, the equalities 

/ 1 m 

àf(v;il)=ôf(v; — ^^gi)^ (4) 

are true, \fg{ e G and V?y e #?. If for every rj e#f there are elements gx, ..., gm 
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1 m 

such that — ^^(gijv belongs to Jti?09 then (4) and (3) evidently imply 
m f-i 

(2), i.e., the criticality of v for / on X follows from the criticality of v for 
/ on X0. 

More generally, the last statement will be true if there is an 'averaging' 
operation 9* on G having the following properties: 

(a) &*q> = cp for any scalar function cp which is constant on G'9 

(b) P[n(-)ri) =r)ejè0 ^^nVQ, Vrj ejf, (5) 

(c) lT[6ffa *( -)^)) = affa rj), Vti e*. (6) 

Applying #" to both sides of (1), we get 

affari) = */(«;?), V17G*. (7) 

If «^o contains the set ^ 0 = [TJ: rj = 9[n( -)rj), V?? e ^ } , then (2) follows 
from (7) and (3). 

Thus we have proved 

THEOKEM 1. Let V be a complete Sausdorff topological vector space) 
let nG be a set of linear continuous operators {n(g), g e G} acting in V and 
let V0 be the set of all fixed points of V. Let X cz V be an invariant set and 
let v eX0 = XPLVQ. Denote by T<>X and ToX0 the tangent sets to X and X0 

o 

at the point v, respectively. /Suppose that ToX contains an invariant linear 
set 2tf dense in ToX and the set 3/f* =«^nToX f t is dense in ToX0. Further 
suppose that f is an invariant functional defined on the intersection of some 

o o 

neighbourhood of v with X and that f is differentiable at the point v along 
all rj ejf. Finally, assume that v is a critical point of f cm XQ. Then v will 
be a critical point of f on X whenever there exists an "averaging" operation 
& on G with properties (a), (b), (c) and M*Q contains the set 

Jf0 E=S {rj: 7j = 9[n( -)ij)9 Vrj e 2tf\. 

Bemark 1. In all applications of Theorem 1 examined below the oper

ation 2tf has (apart of properties (a), (b), (c)) the following property: 

_f[n[m)y) ^^(n) = V f o r V e ^ o ? and therefore ^0 = jê0. On the other 

hand, Jl?0 cz JFQ9 because ToXQ <= ToXnVQ. In virtue of these facts if 

ToX0 = ToZnFo then J T 0 =^TnV0 = c^0 and the condition if0 c J^Q 

of Theorem 1 is equivalent to the condition: J4?0 = ^ 0 = ^ n . 
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Now we shall present some consequences of Theorem 1 in which the 
operation 9 will be written out explicitly. 

COROLLARY 1. Let Y be a complete Hausdorff locally convex vector space, 
let G be a compact group, let dg be the invariant normalized Maar measure on 
G and let {n(g), g e G} be a representation of G in 7 by linear continuous 
operators 7t(g) having the property: the map g->vt(g)v is continuous (from 
G to V), for any fixed v e 7 . Letf be a continuous invariant functional defined 
on 7 and differentiable (in the sense of Gateaux) at the points of 7 0 . Then 
each critical point v of f on 7 0 is also a critical point of f on V. 

This is the simplest case of the situation described in Theorem 1. 
We have X = 7 , MT - ToX = 7 , X0 = 7 0 , H0 = ToX0 = V0. The 

differentiability of / at the point v means that ôf(v; ??) = (f'(v), rf) where 
f(v) is an element of the conjugate space 7* and <, > is the dual operation 
between elements of 7* and 7. Equations (1) in this case take on the form: 

(f(v)i y} = (f'fai ^(ff)9?)? Vy e ^ -A-13 ^ e operation T we choose inte
gration / ... dg. According to the well-known facts (see, for example, 

G 
[4]), F possesses properties (a), (b), (c) and rj == j %(g)r\dg belong to 7 0 , 

a 
V?7 e ye. Therefore all conditions of Theorem 1 are fulfilled and the state
ment is true. 

Now we introduce some additional requirements which we call "Con
ditions (A)": 

The set 34? from Theorem 1 is dense in a complete Kausdorff locally convex 
vector space W. Let W* denote the space conjugate to W and let < , > be the 
dual operation between elements of TP* and TP. We demand that ôf(v; rj) 
= (f(v), ri), V?7 est?, where f'(v) e TP*, and that each n(g) may be extended 
from MF to cui of W as a linear continuous operator. 

If conditions (A) arc fulfilled then (1) implies the equalities 

< / ' $ ) , [I-n(g))ri> = 0, \frjeW, Mg eG (8) 

and (3) implies the equalities 

<f(5)̂ > = o, v ^ r w 
(here and below we denote by #.Y the closure of tf 0

 i n t 3 i e topology of 
TP). I t is easy to see that the needed equality f(v) = 0 e TP* will follow 

31 — Proceedings..., t. II 

file:///frjeW
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from (8) and (9) if the linear set spanned by«^f^ and all elements (I—7t(g))rj9 

Vrç e TP, is dense in TP. 
We shall give examples of some situations when the last condition is 

fulfilled. 

COROLLARY 2. Let all hypotheses of Theorem 1 except the existence of 
the operation &* be fulfilled and let conditions (A) be also satisfied. Moreover, 
suppose that G is a compact group with a normalized Haar mesure dg and the 
map g->n(g)w is continuous from G to TP, for any fixed w e TP. Then v will 
be a critical point of / on X if the elements rj s= j n(g)r\dg, Vrç e TP, lay 

Here, just as in Corollary 1, we take & = J ... dg. The application 
G 

of & to (8) gives the identity </'$), y> = <ffa, V> for Vrç G TP. The 
elements rj belong to TP0 (the set of all fixed points of TP). By the last 
condition of Corollary 2, we have rj el&Y* Hence, (9) implies/'(v) = 0 e TP*. 

The topology of TP in a concrete variational problem is prompted by 
properties of the field v( •) which is the solution of the 'reduced5 variational 
problem. Often v( •) is a smooth function oìx e Rn

9 except for some points 
x. This allows one to represent 6f(v\ rf) in the form of / Z(v) -rjdx, where 

Z(v) is the left-hand side of the Euler equations and to consider df(v; if) 
as inner product in a Hilbert space L2(R

n*9 ̂ ). One can take as 3tf the 
set of smooth fields r\(*) which are zero near the singular points of v(-) 
and which are also submitted to certain linear equalities if there are some 
ties in the problem. In these cases TP is a closed subspace of L2(R

2\fi). 
Therefore the following corollary of Theorem 1 may be useful. 

COROLLARY 3. Suppose that all hypotheses of Theorem 1 except the existence 
of the operator IF are fulfilled. Let also conditions (A) be satisfied TP with being 
a Hilbert space with inner product (, ). Then v is critical point of f on X if 
Jff is the set TP0 of all fixed points of TP and if 

W0 s f i kevw(I-n(g)) = f| ^Tw{I-jt*(g)). (10) 
geG geG 

Equality (10) is true if: (1) the set {n(g),\fg eG} coincides with the set 
{tm*(g), VgeG} or (2) the operators ut(g) are normal (i.e., n(g)n*(g) 
-=n*(g)n(g)). 
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Under the hypotheses of Corollary 3, equalities (8) may be rewritten 
in the form 

([i-*(g))r{*),fi) = o9 VVeW, 

and hence f'(v) e p j kerw[I—n*{g)). This fact and (10) imply f(v) 
OEG 

ef] ïsrw(I-ot{g))^W0. Since 170 = H^9 equalities (9) give/'(v) = 0 GTP. 
gs& 

Let us point out one particular case of the situation described in 
Corollary 3. 

COROLLARY 3'. Lei V be a Hilbert space and let {n(g), g e G} be a set 
of bounded linear operations satisfying condition (10). Suppose that in a neigh-
bourhood of a point v e 7 0 there is an invariant functional differentiable (in 

o o o 

the sense of Gateaux) at v and that v is critical point of f on 7 0 . Then v is 
a critical point of f on 7 as well. 

Another consequence is the following : 

COROLLARY 4. Suppose that all hypotheses of Theorem 1 except the exist
ence of the operation $* are fulfilled and that conditions (A) are satisfied. 
Suppose also that % consists of just one operator n(g), which has the following 
property : 

the limit 

B-lim — [n(g)ri +... + [n[g))mv] = s-lim rj{m)s 97 for V97 e TP 
w-»-oo m m-+oo 

exists (in the topology of TP). 
Then v is a critical point of f on Xifrj e3^Y for a^ V e TP. 

In this case the operation f[n( •)??) = s-lim ?7(m) s= rj is taken for &*. 
m-*oo 

The elements rj belong to TP0 = K<òTw(L--n(g)} and therefore the last 
condition of Corollary 4 is fulfilled if tff = TP0 (but, in general, isPf is 
a subset of TP0). 

Theorem 1 and its corollaries can be extended to nonlinear continuous 
operators ut(g) if they have differentials at the point v. In such cases it 
is only necessary to impose the conditions previously demanded from 
ut(g) as the operators in #P (or in 17) on their differentials. 
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The linearity of the enveloping space 7 is also not very important, 
as long as we study local problems and can work within one chart repre
senting a small neighbourhood of the point v. For the variational problems 
which we have in mind it is convenient to imbed X (the domain of defi
nition of /) in a linear space 7 and choose 7 (and TP) in dependence of 
the properties of the solution v(-) of the "reduced" variational problem, 
the "qualities" of ties and limit-conditions of the original problem. 

ÏTow I would like to show how our Theorem 1 works in the model of 
Skyrme ([5]). In this model the functional / is defined by the integral 

3 3 

/(*) = /{*• J ^ + y ^wiA-i®^ ay*]}** - i^mdx, 
B 3 * Ä = l fc,/=l J B3 

(11) 

where 

0(a>) = (0o(a), * ! ( » ) , * , ( « ) , tfb(«0) s (<p0(»)f * ( * ) ) eJB*, 

3 

and 

xk ~~ 2 J ' axk' > ( «&' XV ~" ^ ®<Mk axV 
a=0 a=0 

a;2 = const > 0. 

The problem consists in finding critical points of f(&) among fields 
&(-) which satisfy the constraint 

|0(0)| B ( J ; 0l(x)f12 =1, Vxe R*9 (12) 

and for which the degree d(&) of the map 0: B3->#3 is a fixed integer m. 
The last condition makes sense only if the fields &(-) are continuous 
functions of x eJB3 = B3u{oo}. That is the reason« why we have chosen 
7 = G(R3). G(R3) is the Banach space of all continuous (on B3) fields 
&(-) with the norm ||<P(-)IIp = sup \<P(x)\. Following Skyrme, we take 

ax=B3 

as G the group SO (3) and its representation 

{n(g)0)(x) = [0,(gx)9(g-l0)(gx)) 
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in 7. The subset 70 consists of all fields having the form 

0(0) = / « ( r ) ; y J7(r)j (r ^ \x\), (13) 

where u(-) and U(') are continuous functions on Bl+ = {r: r e[0, oo]} 
and 17(0) = U(oo) = 0 . 

We introduce the set M of all fields (P(*) from 7 which are subject 

to (12), satisfy d(0) = 1 and for which 0(0) = ( - 1 ; 0), 0(oo) = (1; 0) 
(the case of d(0) = m for other m e Z is considered in the same way). 

Fields 0( •) from Jlf0 — MnV0 may be represented in the form 

W - ( o o . ^ , Ì B b . ^ 1 ) , (U) 

where co(-) is an arbitrary continuous function on B\ satisfying the 
conditions : 

co(0) = 2 T U , CO(OO) = 0. (15) 

The set X consists of fields 0( • ) from M which have generalized first 
derivatives and for which /(0) < 00 and X0 = Xr\M0. The functional 
/(0) on the 0(-) eX0 has the form: 

f(w) s / ( 0 ) =7T f [(co')2(«2r2+l~Cosa)(r)) + 
0 

+ 1 ^°° 2
S f t ) ( r ) (4a2r2 +1 - Cos co (r))] dr. (16) 

The "reduced" variational problem is the problem of finding the function 
o * t 

co(') which gives the infimum of f(co) among functions co(-) satisfying 
conditions (15). This "reduced" problem had been discussed by Skyrme 
in [5], but the question concerning the existence of such a function co( •) 

o 

and the question of explaining why the field 0(-) corresponding to this 
co( -) is a critical point of the original problem remained open. We proved 

o 

at the beginning that the "reduced" problem really has the solution œ(r) 
and that this function co(r) has all derivatives, for Vr > 0. The function 
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œ(') is found as the limit of a minimizing sequence. I shall not give 
here this proof. It is more or less standard, except for some a priori esti-

O / ft\ (v^ 

mates. But I would like only to explain why the field 0(0) = j Gos ^ 

x coir\ \ 
— Sin —-— J is indeed the solution of the original problem. 

The tangent set To M is the closed subset of 7 consisting of all elements 
fj(-) eV which satisfy the conditions 

(rj(x), 0(0)) = 0, rj(0) = 1/(00) = 0 eR\ (17) 

The set TgX contains smooth fields rj(') eTgM which are equal to 
zero near the points 0 = 0 and x = 00. The set of such fields rj( •) is linear, 
invariant and dense in $°M and we can choose it as the set Jf. The set 
ToMQ = ToMnV09 ToX0 = ToXr\V0 and the set ^ 0 = Tol^ruT are 
dense in ToX0. The variation df(v; rj) for rj etf? can be represented in 
the form 

àf $',*})= J[Z(&),ri)äa>, (18) 
B 3 

(dF(0)lô0 is calculated formerly, without 
dF(0) 

where Z(0) = * ) 

00 
regard of the tie (12)). Therefore equalities (1) may be written as 

f(Z(0)9V)dx = J(Z(0)9n(g)rj)dx. (19) 
B 3 B 3 

As the operation & we take integration over the group G = SO(3). The 
integral /n(g)r/(x)dg ^rj(x) is for any r\(-)e3tf an element rj of ^ 0 . 

Q 
o 

Thus all conditions of Theorem 1 are fulfilled and therefore 0( •) is a critical 
o o 

point of the original problem, i.e., / (Z(0)9 r])dx = 0, V?/ eJf9 0( •) e 7, 
B 3 

O \ o o 

f(0) < 00, 10(0)I = 1, V0 e Ä3 and d(0) = 1 . Using these facts it is. not 

difficult to show that 0(0) satisfies the Euler system 
Z(S)(x) - (Z(S)(x), 0(x))0(x) (20) 

for every 0eJB3\{O}. 
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With the help of Theorem 1 and its corollaries we have proved anal-
oguous results for some other models of field theories (for example, for the 
Yang-Mills-Higgs model) and for certain more traditional functionals 

f F(x, u, ux)dx. 
Rn 

For Euclidean Yang-Mills equations in B* with the structural group 
STJ(2) we have investigated the "spherically symmetric Ansatz". Namely, 
we have considered the following action of the group SO (3) on the space 
of potentials AM: 

AAœ) - £A%(®)*k->[rt(9)-A-Uoo) =Aa(gx)gaß9 a, p = 1 , . . . ,4 , (21) 
- fc=i 

where ak (le = 1, 2, 3) are the imaginary quaternion units (i.e., al = —1), 

4 

9 = S9^9 °4 «1» \9\ = 1 a n d 9e0 = fl^AVöV =0,«,äV<V 

The fixed points Ap( •) of this action have the form 

where fa( •) are arbitrary smooth functions of r e f i 1 with pure imaginary 
quaternion values and 

Map (i^r) ^ô^n^ô^na+ôa^h+ea^n^ nv= ("^r)- (23) 

The Y.-M. functional 

J(A)= J Ì 2^(0)1^0, (24) 
B * ft,v**l 

where FßV = d^A,, — dyA^ + [A^, Av], and the functional Q ( A) of topological 
charge are invariant under transformations (21). The densities of J and Q 
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for AM from (22) depend only on \x\ and 

oo _ 3 

j (A) =sv) = « i W^h+^^h+CsA, 7i)+ 
- o o * i = l i = l 

3 3 

+ y^l7 iX/4|2 + -|^'l7<x/^-3(/1,/2J3)W (25) 
*=1 i,J = l ^ 

OO <S oo , _ - - . 

Here/i = dfi/dr, /„(T) are vectors in i23 with components/*(T), fc = 1,2, 3, 

defined by /„(r) = l / ^ r ) ^ , | £ (T) | ^[i?(/*(r))2]1/i!and(7.,7, Ä is the 

mixed product. The functionals (25) and (26) are invariant under gauge 
transformations : 

where q =g(*) are arbitrary smooth quaternion-valued functions with 
\q(x)\ = 1. We choose g( •) in such a way that/4(T) = 0. Then S(f) can be 
written as 

S(/) = * / h"^1 l7l2+-K(/)UT, (27) 
- c o * 1=1 ' 

! * - * - > -̂  1 -> -> 

where K(f) = — > |/*-%|2 and ft = — % m / z x / w . 

The self-dual and anti-self-dual equations for (27) are 

/* = / * - f t i (28) 

fk = - A + ïu (29) 
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and Buler's equations are 

fi=fi-*ït + *Xt> (30) 

with Xi = if i«ü»V*x/w The following theorem is true: 

THEOREM 2 . 1 / 8(f) < oo and #( / ) > 0 /or a solution /(•) of egs. (30) 
iÄ6» /(•) satisfies eqs. (28), ana if 8(f) < oo and! Q(f) < 0, then f(-) 
satisfies eqs. (29). 

The proof of the first statement is based on the representation of the 
system (30) as the system 

fi <=fi-*i-V<9 (31) 
-»- ->• -> -> 
0. = - % + %,„«« X/T O . (32) 

I t is easy to see that »(T) = 0 if z{r0) = 0 for some r0 and the "principal 

part" of (32) near the poin t / = 0 in the Euclidean space B9(f) is zi = — ̂ . 
We have also obtained a stronger result : 

THEOREM 3. Suppose that (/(•)? #('))is a solution of the system (31), 
(32) such that z(x0) ^ 0 for a x0 and J(f) < oo. Then f(x) cannot enter 

a small ball Ke = j / : | / | s= 1/ £ \f4\* < Q \ (for example, Q= 1/8) infinitely 
I i=i ' 

many tàmes as t->— oo. 

The systems (28) and (29) can be solved explicitly in elliptic functions. 
For this purpose we introduce the new argument s = e x p r ( = \x\z) and 

new functions v{(s) = s^f^lns). The system (28) implies the system 

dvx -+ ->. dVo -v -*- dVo -> -> 

— « * x * i f T « W , - S - » « , X « 1 . (33) 

This system can be rewritten as the matrix-equation 

dt) 
= - ( i r ^ d e t © (34) 

as 
for the matrix v = [^] with components v4j = «J. Equation (34) has 
two important properties : (i) it is invariant under transformations of the 
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form v-^VxvV2 = w with arbitrary constant matrices VkeO(3)9 with 
detFj, = d e t 7 2

 a n ( l (ii) if v(s0) has the diagonal form for some s0 then 
v (s) is diagonal for all s. Owing to these properties, it is sufficient to consider 
only the case where 

~Ax(s) 0 0 

v(s) = 0 A2(s)0 

0̂ 0 Kz(s) 

For such v( •) equation (34) gives the system 

aA\-t aAio aAo 

- — = —A2A3, - j - - = — XXXB9 —z— = — AXA2. ( 3 5 ) 

I t has the integrals X\ — X\ = o3, X\ — X\ = o2, and therefore satisfies the 
equation 

( dX \2 

_LJ => (*»-*,)(*>-*), (36) 

which can be integrated in elliptic functions. The same is true for A2 and 
A3. There are solutions of eqs. (35) which tend to infinity when s goes to 
some sQ -=£ 00. 

THEOREM 4. There is only one (up to a gauge transformations) solution 
Alx of the Y.-M. equations which has the form (22), finite J (A) andQ(A) > 0. 
It is the 1-instanton satisfying the self-dual equations. For Q(A) < 0 it is 
the 1-instanton satisfying the anti-self-dual equations. 

The solutions Ak(s) = (o+s)~\ o > 0 , Tc = 1 , . . . ; 3 , of the eqs. (35) 
give the instanten with Q = 1 (the instanton of Belavin, Polyakov, Schwartz 
and Tyupkin). 

After this work had been completed we have learned about paper 
[6] of E. S. Palais devoted to the "Principle I " ( "the principle of symmetric 
criticality" as Palais calls it). In this paper Palais is concerned with smooth 
functionals / on smooth Banach manifolds mainly with compact groups 
G and gives interesting applications to some geometrical problems. 
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L. A. TAKHTAJAN 

Integrable Models in Classical 
and Quantum Field Theory 

Eecent papers of Faddeev, Sklyanin and the author ([25], [27], [28], [33]) 
contain a quantum version of the inverse scattering method (see also the 
reviews and lectures [7]-[9], [15], [23]). This is a new method of exact 
solution of the models in 1 + 1 dimensional quantum field theory and in 
classical statistical mechanics on a two-dimensional lattice. The profound 
papers of Baxter [l]-[3] have also played an important role in the forma
tion of the method. In the present talk I will try to explain the underlying 
ideas and basic constructions of this new domain of modern mathematical 
physics and also to point out its connections with other parts of mathe
matics and theoretical physics. Our exposition (as it can be seen from the 
references) will be mostly based on the results obtained in the Leningrad 
Branch of the Steklov Mathematical Institute. 

I . Classical theory 

1. Formulation of the inverse scattering method. This method applies 
to equations which can be represented as the zero curvature condition 
[Po> Pi] = 0 for the connection Vß = djdxß— TJ^Çx, A), p = 0 , 1 ; x0 = t, 
xx = x defined in a trivial fibre bundle with the base JB2 (the space-time) 
and the fibre Cm (the auxiliary space).^Matrix elements of the matrices 
TJ^x, t, A) depend on the classical fields y?(x, t), a = 1, . . . , M, involved 
in the equation considered, and on the variable A e C1 called the spectral 
parameter. The zero curvature condition must hold for all A. 

U331] 
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A fundamental role in the method is played by the equation of parallel 
translation along the #-axis 

dF 
= TJ(x9 X)F. (1) dx 

Here we put TJ = Ux and reduce the dependence on t. In the case of periodic 
initial data ipa(x+2L) = ipa(x) there naturally emerge the transition 

matrix T(x9 y9 A) = exp j U(x'9 X)dx* which is a solution of equation (1) 
y 

with the initial condition T(x9 y9 A) \Xesy = I and the monodromy matrix 
TL(X) for the interval (~L9L)9 TL(K) = T(L9 -L9X). Here I denotes 
the unit matrix in C"1 and the integral is understood as a multiplicative 
one. The time dependence of these objects is determined by the equation 

exp J Updibp = I (2) 
Y 

which holds for any closed contour y cz R2, due to the zero curvature 
condition. In particular, the functionals trî^UA), "k = 1 , . . . , m— 1, where 
tr stands for the trace in Cm

9 do not depend on t and play the role of gener
ating functions for the integrals of motion. 

In the rapidly decreasing case, where lim yf*(x) = ^ ± , there appear 
œ-j-dboo 

the reduced monodromy matrix T(X), relating the left and the right Jost 
solutions, and the characteristics of the discrete spectrum. In these terms 
the dynamics becomes completely transparent and the matrix TJ(x, A) 
is uniquely determined by them. This procedure is based on the formalism 
of the Eiemann problem, i.e., the problem of analytic factorization of 
matrix-valued functions. Here we have a connection with the theory of 
functions. 

These are the basic/items of the classical inverse scattering method 
(see [9], [12], [38]; our exposition follows [9], [12]). It is applied to such 
well-known equations as the Korteweg-de Vries equation (KdV), the 
nonlinear Schrödinger equation (N3), the Sine-Gordon equation (SG), 
the Heisenberg magnet equation (HM), and others. 

2. The Hamiltonian approach. The most elegant formulation of the method 
is its Hamiltonian formulation originating from paper [37]. Its present 
form is based on the concept of a classical r-matrix introduced in [24]. 
A classical r-matrix is defined as a matrix r(X) in Cm® C™ which enables 



ds 
dt 

We have ([30]) 

# 0 = 
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dx 

A 8; 

1 
1 2U* 

8(xt 

8, 

,*)e 

Vi 

R3 

= 

> 

* 
~2Î 

<8,8> = 

•8, 8 •• 

= 1. 

= <s, *>, 

Integrarle Models in Classical and Quantum Field Theory 1333 

one (if possible) to write down all the Poisson brackets of matrix elements 
of U(x9 A) in the following compact form 

{U(x,X)®TJ(y,[i)} =[r(A-/i) , U(x, A)® L+L® U(x9 (i)lô(x-y). (3) 
* 

Here {A®B} denotes the matrix in Cm®Cm of the same structure as 
* 

A®B with the products of matrix elements replaced by their Poisson 
brackets. 

As an illustrating example consider the BM model with the equation 
of motion 

w 

(5) 
ZiA. Oil) 2'IA~ 2A 

where —- oa, a = 1, 2, 3, are the generators of the fundamental repre-
2% 

sentation of the Lie algebra su(2): aa are called the Pauli matrices. The 
Poisson brackets and the Hamiltçnian of the model are 

{BM, Sb(y)} = eahc8c(y)à(x-y), (6) 

_ 1 r / dB dB\-
2 J \ dx ' dx j ' v ' 

—& 

where sab0 are the structure constants of su(2). The r-matrix is 

r(À) =P/2A, (8) 

where P is the permutation operator in C2®C2. 
The r-matrix formalism is based on the following result, though simple, 

yet important. 

THEOEEM 1. Suppose that relation (3) holds. Then for the transition 
matrix of equation (1) we have 

. {T(x, y, A) ®T(x9 y, p)} = [rtf-/*), X{a9 y9 A) ®T(x9 y9 /*)], (9) 
> 

where —L^y*^x<L. 
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As a corollary we obtain that {tr2^( A), t r l 7 ^^)} = 0 ; ft, I =1, ...,m —1, 
which is the involution property of the families of integrals of motion 
including the Hamiltonian of the model. Using Theorem 1 one can establish 
complete integrability in the rapidly decreasing case by constructing 
a canonical transformation to variables of action-angle type ([9], [12]). 

One of the characteristic features of the Hamiltonian formulation 
is that the r-matrix replaces the zero curvature condition ([25], [9], [12], 
[35]). 

THEOREM 2. Suppose that for the matrix U(x, A) in equation (1) the 
condition (3) holds. Then for the generic Hamiltonian equation 

^ ^ L = { t r ^ M , W"(x)}, a=l9...,M, (10) 

where \i is a parameter, the zero curvature condition holds with TJx(x, A) 
= U(x, A) and 

U0(x,X,p) =t?x[(TL(L,x,iJL)®I)r(p-X)(TL(x^ ~L9i*)®I)). (11) 

Here trx stands for the trace in the first factor in C™® Gm. 

3. Symplectic structure associated with an ^-matrix. Formula (3) can also 
be interpreted as the way of defining the symplectic structure on the phase 
space parametrized by the functions y>a(x), a = 1 , . . . , M. The skew-
symmetry of the Poisson brackets is provided by the condition r(X) 
= —Pr(—X)P and the relation 

{rX2(X-p), r13(A)] + [r1 2(A-^), r 2 3 (^ ] + [r13(A), r23(p)] = 0 (12) 

guarantees the Jacobi identity. Here P is the permutation matrix in 
Cm®Cm and r12 denotes the matrix in Cm®Cm®Cni which acts trivially 
in the third factor and coincides with r in the product of the first two 
(analogously for r13 and r23). The relation (12) is called the classical Yang-
Baxter equation (or the classical triangle equation) and is quite popular 
nowadays'([5], [22]). Thus, in [5] the solutions of (12) associated with 
simple Lie algebras were constructed. As a by-product of the* study of 
this equation a new object, the Lie-Hamilton group, has appeared in [6]. 

4. Geometrical interpretation of the r-matrix Poisson brackets. There 
exists a very elegant interpretation of the r-matrix in the language of 
the representation theory ([9], [11]): the Poisson brackets defined by an 
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r-matrix of the form (8) are just the Lie-Poisson brackets for an infinite-
dimensional Lie algebra. More precisely, let g be the finite-dimensional 
semisimple Lie algebra. The Lie-Poisson bracket on the phase space g* is 

{/,<?}(£) = y°a>c^-§- f„ fefif, (13) 
ài dL ôh 

where öabß are the structure constants of g. The brackets (13) can be natu
rally lifted to define the Poisson brackets for the functionals on </* —the 
dual space of the current algebra g. The latter is just the Lie algebra of 
the Laurent series in the variable A with coefficients in g. These brackets 
are also defined on the dual space of the subalgebra gf+ consisting of the 
Laurent series in the negative powers of A; the same holds for the comple
mentary subalgebra gL. Moreover, let Kab be the matrix of the Killing 
form in the basis Xa in g, let Kab be its inverse and 

n = ^KabXa®Xb. (14) 
a,b 

Then we have the following theorem ([9], [11]). 

THEOREM 3. The Poisson brächet for the generic element TJ(l) eg\ is 

{U(A)®U(V)} = [r(A—i»)f 17(A)®I + I® U(t*)]9 (15) 

where r(X) =nß. 

Introducing the ^-dependence in g (roughly speaking, considering 
g = f] ®g)> we obtain from (15) the relation (3). 

iceR1 

This approach leads to various integrable models if one considers 
suitable orbits in g\ (or in f 1). Thus the HMmodel corresponds to g = su(2) 
and the simplest orbit consisting of the points U(x9 A) = 8(x)ß9 82(x) 
= const I. Here we have a relationship with the representation theory and 
the method of orbits. 

If g has nontrivial automorphism <r, then the phase space can be reduced 
by considering quasiperiodic elements 

00 

l7(a>,A)= JT AnU{x,K + nco)A-n, (16) 

tt=*-oo 

32 — Proceedings..., t. II \ 
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where A is the representation of a. If the matrix II commutes with A ® A9 

then for V(x9 A) the relation (3) holds, with the r-matrix 

Z J A + wco v ' 

Thus, in particular, the r-matrix of the SG model is obtained from the 
r-matrix of the HM model. For the Lie algebras of An type a second 
averaging is possible. Thus one can obtain r-matrices expressed in terms 
of elliptic functions. 

5. The lattice case. Classical models on a lattice play an intermediate role 
in quantizing classical continuous models ("quantization of the auxiliary 
space"). The matrix U(x9 A) is replaced by the transition matrix Ln(X) 
from the wth lattice site to the (w+l)th. In the continuous limit Ln(X) 
= I+AU(x9 A) + 0(A2)9 where A is the lattice spacing. The monodromy 
matrix is given by the ordered product 

N 

TNW = [JLn(X) = LN(A)... LX(X), (18) 

where JV is the number of sites of the lattice. Since Ln(X) is the transition 
matrix for one lattice site, formula (3) is uniquely transferred to the lattice 
case as follows: 

{Ln(X)®Lm(p)} = [ r t f - j i ) , Ln(X)®Lm(p)1ònm (19) 

and in the continuous limit (19) goes back into (3). 
All continuous models have their lattice variants with the same r-

matrices. The averaging procedure also works for the lattice case. In 
contrast with the continuous case, in the lattice case the matrix Ln(X) 
is represented as an ordered product ([11]) and not as in (16). Here we have 
a connection with the theory of analytic matrix-valued functions. 

As a result of the study of equation (19), in [26] there were introduced 
quadratic Poisson brackets algebras. These brackets are nontrivial deform
ations of the Lie-algebraic Poisson brackets. Here we have an interesting 
example of a deformation of algebraic structures. 
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II. Quantum theory 

We begin with lattice theories, which necessarily a.rise in quantizing 
compact models, i.e. models with Poisson brackets algebras associated 
with compact Lie algebras (e.g. the HM model). Moreover, introduction 
of the lattice plays the role of ultraviolet regularization of continuous 
models. 

1. The fundamental relation with the quantum JS-matrix. Instead of the 
classical fields yf(x) we consider the field operators W^, which act irre-
ducibly on the Hilbert space l)n, the space of quantum states at the nth 
lattice site. The complete Hilbert space of the model on a lattice with 

N 

M sites is $N = f] ®1)n. In quantization it is natural to replace Ln(X) 

by the matrix-operator Ln(X) which is a matrix in Cm with matrix elements 
belonging to the ring generated by ¥£ and depending on the spectral 
parameter A. 

The problem of the right generalization of our main relation (19) to 
the quantum case is far from being trivial. The study of concrete models 
([25], [28], [33]) suggests the following generalization of (19), explicitly 
introduced in [28], [33]: 

B(A-t*)(Ln(?i) ®Ln(fi)) = (LJp) ®Ln(A))B(A-p). (20) 

Here the tensor product refers only to the auxiliary space Cm and B(A) 
is a matrix in Cm®Cm called the quantum B-matrix. If B(A) =P(I — 
— ihr (A)) + 0 (%2) as Ti->0, where % is the Planck constant, then, in the quasi-
classical limit relation, (20) goes back into (19). The uniqueness of such 
a deformation of the Poisson brackets as that given by (19) is an open 
question. 

As in the classical case, relation (20) leads to a generalization of standard 
mathematical objects. In [26] it was used to introduce some nontrivial 
deformations of the universal enveloping algebras of Lie algebras, the 
so-called SMyanin quadratic algebras. 

The quantum monodromy matrix TN(À) is introduced by formula (18), 
where matrices Ln(X) are replaced by LU(A). A remarkable property of 
the quantum U-matrix is that it gives a compact form of all commutation 
relations of the matrix elements of TN(A). The following simple result 
holds. 
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THEOREM 4 (a quantum version of Theorem 1). It follcnosfrom the relatim 
.(20) that 

B(X-p)(TN{X)®TNM) = (TN(V)®TN(A))B(A-V). (21) 

In particular, one has 

ltTTN(A),tvTN(t*)]=0, (22) 

where tr denotes the trace in the auxiliary space Cm. 

Thus the operators trT^A) form a commutative family, which is the 
family of quantum^ integrals of motion. 

From the associative property of the tensor product one obtains 
a sufficient condition for admissible JE-matrices 

(I®i2(A-^))(i2(A)®I)^ 

(23) 

This relation is called the Yang-Baxter equation (or the triangle equation 
and also the factorization equation). It occurs in statistical mechanics [1] 
as the commuting condition for transfer-matrices and in the scattering 
theory [39] as the factorization condition for ^-matrices (see also [33], 
[22]). Lately this equation has become rather popular; its solutions and 
methods for constructing them can be found in [4], [21], [22]. This equation 
also has connections with algebraic geometry [19]. 

We shall now consider the case of m = 2 more thoroughly. The simplest 
solution of equation (23) has the form 

w) ~ i^+aL (24, 
A + rç 

and corresponds to the models HM and NS. Here rj is a parameter (the 
coupling constant). Other solutions can be obtained by a quantum analogue 
of the averaging procedure. Namely, we put 01(A) =B(A)P and , 

00 

MW = fi ((r^IWA + ̂ Ktv»®!), (25) 
n=—oo 

i(A) = Y\ K®I)@{X + nco2)(crïn®I) (26) 
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for Im(o)2/co1) > 0 . Then the matrices B(X) ^0t(X)P and B(X) = m(X)P 
satisfy the Yang-Baxter equation and correspond to the S G model and 
the Xr^-Heisenberg model, respectively (see below). 

2. The local vacuum and the algebraic Bethe Ansatz. In addition to the 
matrix-operator Ln(X) and the quantum JK-matrix, a local vacuum is 
another important object of the quantum inverse scattering method. 
This is a vector con e ì)n characterized by the property 

Ln(X)con 
a(X) * 

0 0(A) 
cot ni (27) 

where a(X) and (5(A) are some functions of A. The reference state QN 
N 

= fj ® con has an analogous property with respect to the monodromy matrix. 
Using the existence of the E-matrix and local vacuum it is possible to 
give a general procedure for diagonalizing the operators trTN(X) ([28], 
[33]), which is the algebraic background of the method. Namely, the 
following statement holds. 

THEOREM 5 (the algebraic Bethe Ansatz). Let 

YAM BN{X)' 
TNW = 

0N(X) BN(X). 
(28) 

and suppose that there exist a local vacuum and a reference state. Moreover9 

suppose that in the basis in C2 ® C2
9 associated with the basis in C2 where 

(27) holds9 the B-matrix has the form 

B(X) = 

- 1 

0 

0 

. 0 

0 0 0 

6(A) o(A) 0 

c(X) &(A) 0 

0 0 1 

(29) 

where 6(A)/c(A) is an odd function of A. Then the vectors XFN(XX9..., Xj) 
= BN(XX)... BN(Xl)QN (Bethe vectors) are the eigenvectors for the operators 
tvTN(X) = AN(X) + JDN(X) with the eigenvalues 

^ùié^+^n 1 c{X}-X) 1 1 o(X — L) 
(30) 
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if the parameters XX9..., Xx satisfy the system of equations 

<5"(A,) - l l c(A,-A,) ' 3 - 1 ' - ' 1 - (31> 
k& 

This theorem can also be generalized to the case m > 2. 
As we have pointed out before, txTN(X) form a family of commuting 

quantum integrals of motion. I t contains also the Hamiltonian of the model. 
The simplest expression for the Hamiltonian occurs in the case of funda
mental models, where the quantum space is isomorphic to the auxiliary 
space. In this case there exists a point X = X0 for which the operator 
trTN(X) is proportional to the cyclic shift operator i n § ^ (the quasimomen-
tum operator). The Hamiltonians with interaction of Jc + 1 nearest neighbors 
on the lattice are expressed in terms of the operators 

j f f Â = = " ^ I O g t r T i v ( A ) l A s = ; l « , * = l , 2 , - - . , t f - l . 

In addition, ô(XQ) = 0, and so the spectrum of Hk is additive. For 
nonfundamental models the construction of local Hamiltonians requires 
additional tools ([8], [20], [36]). 

3 . Characteristic examples. 1. The isotropic HM of spins s, 2s e Z (XXX-
model; see [8], [9], [20], [21], [23], [32], [34]). Here ì)n = C2s+1 and the 
matrix Ln(X) looks like 

(31) 

1 
where — 8", a =1,2,3 are generators of an irreducible representation 

of sn(2) in \)n and 8% = J8£±*<8£. The ^-matrix has the form (24), where 
tj — i. The Bethe vectors are the highest weights [34] with respect to 
the action of su(2) in $)N and the system of multiplets associated with 
them is complete [16], [32]. In proving this there arise nontrivial combi
natorie identities [16]. The Hamiltonian has the form ([20], [21]) 

Hg** = s %fs«Sn, #»+1», (32) 
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where 8N+1 = Sx and f8 is a polynomial of degree 2s, characterized by 
2s 

the conditions f8(l(l+l)l2-s(s+l)) = £ (Ijh), I = 0 , 1 , . . . , 2s. In the 

quasiclassical limit H$xx) goes into the Hamiltonian of the lattice HM 
model. 

2. The lattice ITS model ([13], [15]). Here l)n = ^ ( f i 1 ) and the matrix 
Ln(X) is obtained from (31) by a left multiplication by CTQ. The operators 
8% are now the generators of tho irreducible infinite-dimensional repre
sentation of su(2) of spin s = —2\KA, where n is the coupling constant and 
A is the lattice spacing. The operators 8% are expressed in a standard way 
in terms of the usual creation-annihilation operators in J)n. The J2-matrix 
has the form (24), where rj = — in and the Hamiltonian is given by (32), 

where <$w, 8n+1} should be replaced by (cr8n, 8n+1}, a being an involution 
of su(2). The function fs naturally interpolates the polynomial from (32) 
to the case of nonintegral 2s ([36]). 

3. The lattice SG model ([14], [15], [28]). Here the field operators 
are unitary operators un and vn satisfying Weyl's commutation relation 
unvn = exP(*V)v7i^»j where y = ß2/8, ß being the coupling constant; 
i)n - Se2(R£\2TzZ) if y ^ 2izp\q and \% = C* otherwise. The matrix LJX) 
has the form 

Ln(X)- (33) 

where 

/ m2A2 \1/2 

, ^ mA t x . . 
9(vi A) = —7- ( 0 0 — e*v) 

and m plays the role of mass. The JE-matrix has the form (29), where 

. . . . imiy shA 
sh(A + iy) 7 N ' Bh(X + iy) 

In .contrast to the previous examples, a local vacuum exists only for 
the product LnJhl(X)Ln(X) and not for individual matrix Ln(X). The Hamil-
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tonian has a more complicated form than (32), but in the continuous limit 
goes into the regularized version of the Hamiltonian of the SG model 

^'- /(T*+T(£)'+£-<I—«h m 

where [cp(x)9 uz(y)] = id(x—y). 

4. The anisotropic HM model of spins J (XYZ model; see [2], [3], 
[31], [33]). This model is naturally related to the eight-vertex model 
of the classical statistical mechanics on the two-dimensional lattice [1], 
[33]. Its Hamiltonian is equal to 

H(XYZ) ^ ^ ( J Ä ^ 4 + 1 + J , ^ ^ + 1 + J a ^ 4 + 1 ) , (35) 

where the periodic boundary conditions are assumed. The matrices B (X) 
and Ln(X) for these models have a more complicated form than (29) and 
(31) and are expressed in terms of elliptic functions (see [1], [31], [33]). 
The diagonalization procedure for trTN(X) requires more complicated 
technical tools, but expressions for the eigenvalues of trTN(X) and the 
system of» equations (30) in Theorem 5 retain their algebraic form ([3], 
[31], [33]). 

4. Thermodynamic limit. Here we shall briefly consider the thermodynamic 
limit which is the limit as JV->oo for compact models and as L->oo, A->0 
for noncompact ones. The behavior of models in this limit is most interest
ing from the physical point of view. The main problem here is to define 
the ground state — the eigenvector of the Hamiltonian with the minimal 
eigenvalue (the lowest energy vector) and to describe the Hilbert space 
of states near it — the space of low-lying excitations. There are two pos
sibilities. 

1) The ferromagnetic case : the reference state is the ground state (this 
occurs for the NS model and the HM model in the case e > 0). Then in 

00 

the Fock space $F cz g^ adjoining to the vector Q = [J ®coniox XeR1 

in a weak sense there exist limits A(X) ='lim a"~N(X)AN(X)9 B(X) 
N-+OQ 
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= lim BN(X). These operators satisfy the commutation relations 
N-+OQ 

[AW,A((i)l=0, [JS(A),5(^)]=0, 

AMBM = „, \ ,-m BMAWi (36) 
c(fi~ A — *0) 
A(X)Q = Q. 

With the help of these formulae the spectrum and eigenvectors of the 
operators A (A) are easily obtained ([25], [27]). The commuting family 
log.A (A) has an additive spectrum and contains the limiting Hamiltonian 
of the model HF = lim (HN — FQ(N)IN). Here BQ(N) is the ground state 

JV-+0O 

energy and IN is the unit operator in §>N, 

2) The antiferromagnetic case: to the ground state there corresponds 
a special distribution of X19 ..., Xx in the Bethe vector (this occurs for the 
SG model and the HM model in the case e < 0). As J^-^oo, parameters 
Xx,..., Xt become uniformly distributed on the real axis with the density 
g (A). This is "the filled Dirac Sea". (This situation occurs in the quantum 
field theory and in solid state physios and is called "filling of the vacuum".) 
The function Q(X) satisfies a linear integral equation which follows from 
the system (30) 

oo 

27ce(A)+ f 0(i-rìe([i)dii=fw, (37) 
— 00 

where 

% aX c( —A) % aX a(A) 

Excitations above this ground state are characterized by the density 
1 n 

Q(X, XX, ..., AJ = Q(X) + — • ^?o(X — Xj), where cr(X — [i) is the resolvent 

kernel of equation (37), and parameters Xx,..., Xn appear as the holes in 
the Dirac Sea. 

In these terms the ground state and the excitation creation operator, 
respectively, have the form 

^rcmna = K m exp J5T f logBN(X)e(X)dX Q (38) 
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and 

B(X) = lim exp 
N-+CO 

J'logBN(p)a(X-p)äft (39) 

The operator A(X) is defined as in the previous case and A(X) and B(X) 
satisfy the commutation relations of the type (36) with c(X) replaced by 

c(X) = exp J logc([j)cs(X—ii)d[i (40) 

As before, the commuting family logA(A) has an additive spectrum 
and contains the renormalized Hamiltonian of the model. 

Using this method, it is also possible to describe the scattering of 
excitations and to calculate the ^-matrices. The in- and out-states are 
constructed with the help of operators Z(X) = B(X)A~1(X) (Z(X) 
~B(X)Ä~l(X)) satisfying simple commutation relations which follows from 
(36) (see [34]). 

In papers [15], [17], [25], [28], [32]-[34] this general scheme was 
applied to the detailed investigation of concrete models. In particular, 
in [28] it was used to obtain an exact non-pertubative solution of the SG 
model. With proper modifications this approach can be generalized to 
the case of models with the auxiliary space Cm, m>2. 

Finally, let us mention the latest achievements of the quantum inverse 
scattering method: (a) The exact calculation of norms of Bethe vectors 
[18], which gives us a hope to obtain explicit expressions for Green's 
functions; (b) The quantum variant of the equations of inverse problem 
[29], which provides an expression of Heisenberg field-operators W* in 
terms of the operators A (A) and -B(A); (c) A new approach towards the 
integrability of the quantum 0 (3) nonlinear cr-model [10]. 
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S. L, WOEONOWIOZ* 

Duality in the C*-Algebra Theory 

In Mathematics, the word "representation" has many meanings. One 
speaks about representations of groups, algebras, commutation relations, 
Lie algebras, etc. Usually the things that are being represented are objects 
of a certain category and representations are simply category morphisms 
into special objects whose structure is considered to be well understood. 

For example, in the case of topological groups one considers the group 
AutJff of all unitary operators acting on a given Hilbert space H. AutJ7 
is endowed with the strong operator topology. A representation (or, more 
precisely, a unitary representation) of a topological group G is then a con
tinuous group homomorphism n: G-^AutH. We say that H is the carrier 
Hilbert space of n or in other words that ut acts on H. 

In many cases (especially in the field of interest of quantum physics) 
like in the example above, the special objects that serve as targets for 
representations are related to Hilbert spaces. For these representations 
we can speak about the carrier Hilbert spaces. Also the other important 
notions known in the group representation theory such as unitary equiv
alence, subrepresentation, direct sum and direct integral of representa
tions and intertwining operators are meaningful in this general case. 

Let us notice that the notions of unitary equivalence and subrepre-
sentations can be defined in terms of intertwining operators. Indeed, 
representations ut and ut' are unitarily equivalent iff there exists a unitary 
operator intertwining ut and ut'\ a representation ut' acting on H' c H 
is a subrepresentation of a representation % acting on S iff the orthogonal 
projection B: J1-+JI' intertwines ut and utf'9 ut = utx@ut2 (where ut19ut29 

* Département de Physique Mathématique, Université de Provence. On leave 
from the Department of Mathematical Methods in Physics, University of Warsaw, 
Hoza 74, 00-682 Warszawa, Poland. 
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ut are acting on Mx, H2, JS1@H2 respectively) iff the canonical projection 
pt: Bl®M2->Bi intertwines ut and uti for i =1,2. 

On the other hand, it is easy to list the characteristic properties of 
intertwining operators (cf. Def. 1 in the sequel). This way we arrive to 
the concept of W*-catëgory [2]. Our definition of a TP*-category differs 
from the one used in [2] in four important points. 

At first the sets of morphisms considered in [2] are abstract dual 
Banach spaces whereas in our approach they are weakly closed subspaces 
of B(H) and the composition of morphisms coincides with the product 
of operators. One may say that W*-categories considered in this paper 
have concrete Hilbert space realization. 

Secondly in order to avoid the well known set theoretical problems 
(the use of classes not being sets) we restrict ourselves to a fixed Hilbert 
space. 

At third we use additional axioms saying that W*-categories are 
closed with respect to the direct sum and taking sub-object operations. 

At last we assume that the set of objects is endowed with a topologi
cal structure. We emphasize this point by saying that we deal with topolo
gical W*-categories. Topology is necessary to introduce the direct inte
gral operation (we shall not discuss this point in detail). 

For any ö*-algebra A, the set EepHA of all nondegenerate represen
tations of A acting on the Hilbert space H becomes a topological "^-cate
gory in a natural way. It turns out that EepHA can be considered as 
the object dual to A. Indeed, it is possible to reconstruct A if the topolo
gical TT*-category Bepff A is given. At this point a notion of an operator 
function defined on a TF*-category is very important. The operator func
tions were, introduced in [9] and [4], see also [3] where they are called 
decomposable functions and [2]. TF*-categories serve as natural domains 
for operator functions. We show that the ö*-algebra A is canonically iso
morphic with the algebra of all "vanishing at infinity" continuous oper
ator functions defined on EepH A. 

At the end of the paper we introduce an important property of to
pological W*-categories called "local compactness" which is character
istic for topological W*-categories of the form Eep^A, where A is a (7*-
algebra. The algebra A has unity if and only if the considered topolo
gical W*-category is "compact". 

In principle this property can be used to determine in which cases 
the structure of a set of representations of an object (e.g. a group, an 
algebra, a commutation relation) is isomorphic to BepHA. If this is the 
case, the <7*-algebra A is uniquely determined. 
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DEFINITION 1. Let JET be a Hilbert space and let B be a set. Assume that for 
any pair (r, r') of elements of B a weakly closed linear subspace Mor(r, r') 
of B(M) is given. We say that B is a W*-category if the following axioms 
are satisfied: 

L I eMor(r, r) for any r eB. 
II . For any r, r', r" eB and a, b eB(B) 

aeMoT(r,r') \ . . 

III. For any r,r' eB and a eB(E) 

(a eMor(r, r'))=>(a* eMor(p', r)). 

IV. For any r,rr eB 

(I eMor(r, r'))=>(r =r'). 

V. For any r eB and cmy u eB(E) such that u*u = I , uu* eMor(r9 r) 
there exists r' e B such that u e Mor (rf, r). 

VI. For any family (ra)aeA of elements of B and any family of isometries 
(ua)aeA acting on E such that ]£uaut = I there exists r' eB such that ua 

eMor(ra, r) , a e A. a 

To stress the connection between B and M we shall say that B is 
a W*-category acting on H. One can easily see that the properties described 
in Axioms IV, V, VI can be expressed in the following single statement. 

THEOKEM 1. Let B be a W*-category acting on E, (ra)aeA a family of 
elements of B and (ua)aeA a family of operators acting on H indexed by the 
same nonempty set A. Assume that E is generated by the union of the images 
of ua:E = V uaH and that 

u*ußeM.ox(rß,ra) 

for cmy a,ßeA. Then there exists one and only one element r eB such that 

ua eMor(ra, r) 

for any r eB. 

The proof of this theorem is standard and will be omitted. 

DEFINITION 2. Let B be a W*-category acting on a Hubert space E. 
A mapping 

F: B-+B(H) 
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will be called an operator function defined on B if for any r9 r' e B and any 
a e Mor (r, r') we have 

aF(r) =F(r')a. 

The set of all operator functions defined on a TF*-category B will be 
denoted by &(B). For any F, G e &(B)9 XeC and r e B we set 

(F+G)(r)^F(r)+G(r)9 

(X-F)(r)£xF(v)-9 

(F-G)(r)~F(r)G(r)9 

(F*)(r)=F(r)*. 

One can easily check that F+G, X-F,F*G and F* are operator functions 
and that ^(B) endowed with these algebraic operations becomes a *-al-
gebra. 

Assume now for the moment that îov some F e &(B) one can find 
a sequence (rn) in B such that hmp^rJHv = oo. Let % be a sequence of 
isometries acting on H such that ]?unu* = I. According to Def. 1,VI 

n 

there exists r e B such that un eM.ov(rn9 r). Then we have unF(rn)= F(r)un9 

F(rn) = UnF(r)un and all the norms ||jP(rft)|| are not larger than ||JF(r)||. 
The contradiction that we obtained in this way shows that for any F e ^(B) 

llF||"Bup|[F(r)|| 
reR 

is finite. Clearly the above formula defines a norm on !F(B) and ^(B) 
becomes a normed *-algebra. The following theorem gives more informa
tions about ^(B). 

THEOEEM 2. Let B be a W*-category acting on E. Then &(B) is a TF*-
algebra. Moreover !F(B) is rich in the following sense: for any r9 r' eB 

f aF(r) =F(r')a ) 
M.OT(r,r') =\aeB(E): ^ { ' * lJ 1. v ? ' \ v ; for all F e&(B)\ 

Proof. This theorem follows directly from the Murray von Neumann 
double commutant theorem. For details see [2]. 

As it was mentioned in the beginning the really interesting objects 
can be obtained by combining the W*-category structure and the topologi-
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cal structure. These objects are called topological T7*-categories. More 
precisely E is a topological W*-category if E is a topological space and B 
is a TP*-category. For the moment we do not formulate any compatibility 
condition relating these two structures. 

Let E be a topological W*-category and F e ^(B). We say that F is 
a continuous operator function if F is a continuous map from the topologi
cal space B into B(E) endowed with the *-strong topology. The set of 
all continuous operator functions defined on B will be denoted by 0(B) : 

(
for any x eE the mappings^ 

v ; Bsr->F(r)*xeE 

are continuous 

It is well known that algebraic operations restricted to a bounded 
subset of B(E) are continuous with respect to the »-strong topology. 
Having in mind that the limit of a uniformly converging sequence of 
continuous mappings is a continuous mapping we get the following result: 

THEOREM 3. Let B be a topological W"-category. Then C(B) is a 0*-
algebra with unity. 

The unity is the operator function 1 e&(B) such that l(r) = I for 
any r eB. Clearly 1 e C(B). 

Let JB be a topological W*-category and r e B. It is easy to see that 
the map: 

0(B)BF->F(r)eB(E) (*) 

is a representation of 0(B). A representation ut of G(B) will be called 
singular if ut is disjoint with all representations of the form (*). 

Now we can introduce the class of all continuous operator functions 
vanishing at infinity 

0 (B) £ IF e GIB)- n{F) = ° f ° r a n y s inSularl 

For the completeness reasons we state the following obvious result: 

THEOEEM 4. Let B be a topological W*-category. Then O^B) is a 0*-
algebra (without unity, in general). O^B) is a closed ideal in 0(B). 

In the general case, when the topology of B is not well compatible 
with its W*-category structure, the algebras 0(B) and O^B) may be very 
small (e.g.: 0(B) = {XI: Xe C}, C^B) = {0}). Therefore we need some 

83 — Proceedings..., t. II 
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axioms expressing the compatibility of the TP-category structure with 
the topology. These axioms should be formulated in terms of open sets 
and elements of Mor(-, •). Unfortunately, at the present moment we are 
not able to formulate the compatibility condition in the way satisfying 
the abovei requirement. Instead we shall use the following two axioms: 

VII. The algebra 0(B) separates the points of B. 

VIII . The topology of B is the weakest one such that for all F e 0(B) 
and x eE the mappings 

BB r-+F(r)x e H 

are continuous. 

More precisely, Axiom VII says that for any two distinct elements 
r,r' eB one can find F e 0(B) such that F(r) ^F(r'). Axiom VIII 
means that for any neighbourhood & of a point r e Bone can find F17F2,... 
..., FN e G(B), x1,x2, ...,xNeE and e > 0 such that 

L e E . \\(Bi(r
f)^Fi(r))xi\\<s)0 

* i =1,2,...,If J C 

Clearly Axiom VII implies that the topological space B is Hausdorff. 
Now we shall discuss the topological TF*~categories related to 0*-al-

gebras. For the simplicity we shall assume that the algebras are separable 
(otherwise one has to consider nonseparable Hilbert spaces). 

Let A be a C*-algebra. We denote by EepA (or more precisely by 
EepHA) the set of all nondegenerate representations of A acting on the 
Hilbert space H. We recall that a representation ut of A is said to be non-
degenerated (essential) if 0 is the only vector x eE such that ut(a)x = 0 
for all a e A. 

For any ut, ut' G EepA we denote by Mor(^, ut') the set of all inter
twining operators : 

but (a) = ut'(a)b\ 
for any a e A 

One can easily check that Mor(rc, ut') is a weakly closed linear subspace 
of B(H) and that the Axioms I-VI are satisfied. I t means that EepA 
is a W*- category. 

I t is interesting that in this case the algebra of all operator functions 
admits a very simple description. Indeed, using the Murray-von Neumann 
double commutant theorem (for details see [2]) one easily gets the following 
result: 

Mov(ut,ut') =lbeB(E): 
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THEOEEM 5. Let A be a 0*-algßbra mid E be a Eilbert space. Assume 
that A and E are separable (in fact it is sufficient to assume that the dimen
sion of Eis not smaller than the cardinality of a dense subset of A). Then the 
algebra of all operator functions J r(EepHA) is canonically isomorphic to 
the W*-enveloping algebra A** of A. An element a e Am corresponds to 
an operator function F e^CRepA) if and only if for any ut e EepA 

F (ut) = ut(a), 

where ut: A**~>B(E) denotes the weakly continuous extension of ut. 

The most interesting are operator functions corresponding to elements 
of A. We provide EepA with the weakest topology such that all these 
operator functions are continuous. In this way EepA becomes a topologi
cal W*-category. A subset 0 a EepA is a neighbourhood of a representa
tion ut e EepA if an only if 6 contains a set of the form 

\\{üt,(ai)-ut(ai))xi\\<e\ L'eEepA: ^^^W<% 
\ t=i,2,...,N y 

where ax, a2, ..., aN eA, x1} x2, ..., xN eE and e > 0. This topology 
on EepA has been considered by many authors (see e.g. [7]). 

For the sake of completeness we state the following obvious result: 

THEOEEM 6. Let A be a G*-algebra E a Eilbert space. Then BepJfA 
is a topological W*-category .satisfying the compatibility Axioms VII and 
VIII. 

I t is interesting to see which subsets of A** correspond to classes of 
operator functions with different continuity properties. The answer to 
this question is given in the following theorem, where we identify elements 
of A** with the corresponding operator functions: 

THEOEEM 7. Let A be a separable G*-algebra and Ebe a separable Eilbert 
space. Then 

for any x,y e E the fmiction 

1. . F e J ^ E e p A ) : EepA 3 ut-^(x\F(ut)y e C \ =QM(A), 

is continuous 

for any x e E the mapping 

2. iFe^-(BepA): BepAsut->F(ut)x eE \ =LM(A), 

is continuous 
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3. <7(EepA) = l f ( A ) , 

4. (UBepA) = A , 

where QM(A), LM(A)9 M(A) denote the multiplier algebras of the algebra 
A (see [5] for the precise definitions). 

The proof of this theorem is given in [10]. Here we would like to point 
out only that it is very easy to show that members of QM(A), LM(A), 
M (A) and A have the postulated continuity properties: for A it follows 
directly from the definition of the topology on EepA; for QM(A), LM(A) 
and M (A) one has to use the approximative unity in A and the classical 
result saying that the limit of the uniformly converging sequence of 
continuous mappings is a continuous mapping. On the other hand, the 
proof that the continuity properties imply the belonging to the multi
plier algebras of A is quite difficult. In case 1, one has to use the Voicules
cu result [8], in case 2, one passes to the algebra with unity and apply 1. 
Case 3 follows directly from case 2 and case 4 follows easily from case 3. 

Let us notice that for the algebras with unity the essentially equiva
lent result is contained in [7]. 

Now we go back to the general topological W*-categories. Let B be 
a topological W*-category. We are interested, under what conditions 
one can find a 0*-algebra A such that B is isomorphic to EepA. Accor
ding to Theorem 7 there is only one candidate for A: A = 0oo(B). Un
fortunately, in the general case O^B) may be very small (e.g. G^B) 
= {0}); Axiom VII says only that 0(E) is large enough. The same pheno
mena we have in the usual theory of topological spaces. Let X be a normal 
topological space. Then the algebra 0(X) of bounded continuous complex 
valued functions on X is rich enough: it separates the points of X. On the 
other hand 

<UX)S 
For any e > 0 

FeC(X): {zeX: \F(z)\ > e 
is compact 

is in general very small. Indeed, only if X is locally compact, the algebra 
G^X) contains functions nonvanishing at any given point of X. 

Therefore in our case we also need a condition saying that our topo
logical TF*-category is in some sense "locally compact". To express this 
condition we have to introduce the following notation. 

Let Isom(fl") denote the set of all isometric operators acting on E 
equipped with the strong operator topology and let JT denote the filter 
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of all neighbourhoods of I in Isom(Jff). For any ß e E and any F e / w e 
set 

„v df f ^ there exist / G ( P J G 7 | 
dr = lr eB: \. 

[ such that b eMor(r, r')) 

DEFINITION 3. Let E be a topological TF*-category acting on E, 0 c E, 
7 e ^ . We say that 0 is V-precompact if for any oj>en covering 

one can find a finite subset A0 c A such that 

<p= I M F -

DEFINITION 4. A topological W*-category E is called "compact" if 
E is 7-precompact for any V ejf. 

DEFINITION 5. A topological W*-category E is called ulocally compact" 
if for any r eB and any Y e Jf there exists a F-precompact neighbourhood 
of r. 

I t turns out that only for "locally compact" topological W*-categories 
E one may find a C*-algebra A such that E is isomorphic to EepA. Indeed, 
we have the following result : 

THEOEEM 8. Let Abe a 0*-algebra and E a Eilbert space. Assume that 
A and E are separable (in fact, like in Theorem 5, it is sufficient to assume 
that dimS" is large enough). Then the topological W*-category EepA is 
"locally compact". If A has unity then EepA is "compact". 
v 

The proof of this theorem is given in [10]. I t uses the Dixmier Lemma 
[1], the compactness of the set of all normalized completely positive 
maps from A into B(E) endowed with the weak topology and the Stine-
spring theorem [6], 

The condition that E is "locally compact" is also sufficient in order 
to obtain the positive answer to our main question. Namely we have: 

THEOEEM 9. Let B be a topological W*-category acting on a Eilbert 
space E. Assume that B satisfies Axioms VII and VIII and that E is "locally 
compact". Then 

1° The algebra O^B) is rich in the following sense: for any r eB the 
representation 

utr: 0O0(B)3F-^F(r)eB(E) 
is nondegenerate. 
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2° Any nondegenerate representation of G^(B) acting on E is of the 
form utr loith r eB uniquely determined. 

3° For any r,rf eB 

4° The mapping 

Mor (utr, utr>) = MoT(r, r'). 

E 3 r-^utr e EepH0oo(E) 

is a homeomorphism. 
Moreover, if B is "compact" then there is no singular representations 

of 0(B) and G^B) = 0(B) is a C*-algebra with unity. 

The proof of this theorem is given in [10]. The main step in this proof 
is to show that "locally compactness" implies that the set of states of 
0(B) related to the singular representations of G(B) is a closed face in the 
set of all states of 0(B). Then the statement of the theorem follows easily. 
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Nonlinear Control Theory and Differential Geometry 

This report concerns recent developments in the use of differential geo
metric methods to study nonlinear problems in automatic control. This 
has been an active subject for more than a decade now with contributions, 
coming from researchers in many countries. Eather than focusing here 
on a particular subarea of this discipline we have allowed ourselves to 
range rather broadly over the field using the discussion of a few unsolved 
problems as the main thread. In this way we hope to give some indication 
of the scope of the current activity and to touch on a representative 
sample of the geometrical ideas which play a role. 

Feedback 

Finite-dimensional, continuous time control systems have as their de
scription in local coordinates (x = dxjdt) 

x(t) =r(x(t),u(t)) 

with x(t) being a point in Bn and u(t) being a point in Bm. Without loosing 
too much generality, we may describe a corresponding global object as 
follows. Let X be a finite-dimensional manifold and let ut: E-+X be a rank 
m vector bundle over X. Let TX denote the tangent bundle of X and let 
ut*TX denote the pullback of TX over B. Begarding (x, u) as a point in 
B, a section of the pullback of TX over B can be given locally by a function 
y(x, u) which, for each (x, u), specifies a velocity x = y(x, u). We denote 
the set of all such sections by r(B, ut*TX) and call the elements of this 
set control systems. Notice that associated with any y e r(B, ut*TX) there 
is a vector field y0 which is obtained by setting u equal to 0 ; we call this 
vector field the drift. 

This definition includes a great many situations which are of techno
logical and mathematical interest such as mechanics problems with 

[13Ö7] 
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u representing exogeneous forces or torques, electrical networks with u 
representing voltage or current sources, etc. In order to help fix ideas 
we consider a specific example which illustrate the main points of the 
definitions. Let X be the unit sphere bundle over JB?3. (Think of {(x9 x) | x e B3

f 

\\x\\ = 1}.) Construct B by taking the tangent bundle of the two-sphere 
and pulling it back over X. (Think of B = {(x9 x9 u)\x eB*9 \\cb\\ = 1, 
0 = (u9 x}}.) The second order equation 

tè = u9 <u9 x) = 0, \\x(t)\\ = 1 

then defines a control system, i.e. an element of T(B9 ut*TX). This control 
system has a number of possible interpretations. On one hand, it describes 
the motion of a newtonian particle of unit mass and unit speed being 
acted on by a controllable force which is constrained to do no work. 
On the other hand, it can be thought of as describing the end point of 
a curve in JE73 whose curvature is \\u\\. In this latter guise y is a substitute 
for the more familiar Frenet-Serret system; x is the unit tangent vector, 
uj\\u\\ the unit normal, etc. 

We return now to generalities. Given a control system y we can replace 
u by u + a{x) and get a modified system which we denote by ya. Since 
a section oiut: E->X is specified locally by a function a we see that what 
has just been given is the local coordinate description of a mapping 

v: r(E,ut*TX)xr(X,B)~>r(B9ut*TX)9 

v: (y9 «)->/ , 

where ya has the local coordinate description x = y(x, u + a(x)). The 
section a e r(X9 B) is called a feedback control law. Notice that we can 
also think of v as defining an action of the additive group r(X9 B) on 
the set of control systems r(B9 ut*TX). Because it is usually easy to 
implement a feedback control law, as opposed to making other modifica
tions in the system which y describes, it is important to have a good under
standing of this group action. A specific question which arises in this way 
is the 

FEEDBACK STABILIZATION PROBLEM. Given y e T(B, ut*TX) and 
given a subset X1a X containing a distinguished point x0, does there exist 
a feedback control law a e r(X, B) such that xQ is an asymptotically stable 
critical point for (ya)0 with a domain of attraction which includes all of Xx ? 

We will discuss some partial results on this problem below, after we 
have has a chance to make further definitions and have introduced one 
more problem. 
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Beturning now to the mapping v9 notice that for a fixed y it de
scribes a mapping of the vector space F(X, B) into the vector space 
r(B9 ut*TX). If this mapping is affine then we see that y must admit 
a local description of the form 

x =f(x)+G(x)u. 

In the literature such systems are said to be input-linear control systems 
or affine control systems. As a further specialization, we will say that an 
input-linear control system y e F(B9 ut*TX) defines a linear control system 
if there exists a connection V on X with respect to which (i) X a complete 
flat affine space, (ii) the image of y~y0: E-+TX a flat subbundle of 
TX and (iii) in a neighborhood of each x we can describe y by equations 
of the form 

x = Ax + Bu + £ 

with x19 x2,..., xn satisfying V^djdx^ = 0. 
Linear control systems can be described quite concretely. Let (Ni} n{) 

denote the affine transformation x-^Nix+ni. Let {(^,%)} denote 
a group of affine transformations which act freely and properly discontinu-
ously on Bn. As is well-known, the quotient space X == Bnl{Ni9ni)} 
then admits the structure of a complete flat affine space and all 
complete flat affine spaces arise in this way. In order to construct a linear 
system on Bnj{Ni, n4} we need to find A and B and a homomorphism 

r . pr.,%)}->Gl(m) 

such that A = H^Nj1, NtB = Bcp(Ni, n{) and J.% = 0. Under these 
circumstances the range of B defines a flat subbundle of TX (which we 
take to be B) and the local description 

x = Ax + Bu 

defines a linear control system on B. 

FEEDBACK LINEARIZATION PROBLEM. Given y e r(B, n*TX) under what 
circumstances does there exist a e T(X, B) such that ya is a linear control 
système 

In describing some results on stabilization and linearization we re
strict discussion to the input-linear case. Obviously linearization can not 
be achieved without this assumption and rather little can be said about 
stabilization in the more general situation. With this assumption in 
force we define a subset of TXX, the tangent space at x, by 

&M = {œ\œ = ya(x, 0)-y0(oO, « e T(X, B)}. 
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If we write x =f(x)+G(x)u this is just the range of G(x). Denote the 
resulting distribution by «^v Proceeding inductively, we define &h 3 «^"A-1 

ZD . . . => #*0 by taking the distributions which correspond to ( [ , ] denotes 
Lie bracket) { 

I t is not too hard to deduce from this definition that ^k(x) is, for x = f(x) + 
+ G(x)u, simply 

&rk(x) = span(E, AB,..., AkB), 

where A = (df\dx)x and B =G(x). The linear system x ~Ax + Bu is 
said to be controllable if rank(B, AB,...) = dima?. For the purpose of 
this paper we want to call a y G T(B, ut* TX) quasi-linear if the dimensions 
of the ^h(x) are, for fixed Jc, independent of x and the controllability 
condition ^k(x) = TXX is satisfied for some Jc. 

As a local question feedback linearization is understood, i.e. necessary 
and sufficient condition for there to exist a such that ya is linear are 

(i) y should be quasi-linear; 
(ii) The distributions ^^,^x, ...,^h should be integrable. 
Furthermore if x0 belongs to the set of possible rest points 

So = {x\ f(x) G Bange G(x)} 

then for suitable a, ya has the local description x = Ax +Bu. 
This has some implications for stabilizability. It is well known that 

a linear system x = Ax +Bu which is controllable can be stabilized to 
any point in 80 using control laws of the forms u = Cx+i-. Since asympto
tic stability of equilibrium point of a nonlinear system is determined by 
the linearization if the linearization does not yield eigenvalues on the 
imaginary axis, this means that any quasi-linear system can be stabilized 
to any point in S0 having a domain of attraction which includes some 
neighborhood of x0. 

We now turn to a result on the nonexistence of stabilizing control 
laws. Consider the class of systems for which yQ = 0, d i m ^ is constant 
and equal to the dimension of the fibers of B, and for &k+1 = \ßk, &k] + 
+ &k with 0O = ^ 0 have the property that the <Si are constant dimension 
with ^ r = TX for some r. For reasons which will be explained in the next 
section we call such systems guasi-Biemannian control systems. The con
dition 9r = TX insures that it is possible to find a control which steers 
any initial state to any final state. The condition that yQ is zero insures 
that the set 80 of potential equilibrium states is all of X. The quasi-Eieman-
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nian systems are quasi-linear only in the very special case ^"0 = TX œ B 
and, except for this case, represent an opposite extreme. As an example 
we have the following nonstabilizability result. 

If y is feedback equivalent to a quasi-Biemannian control system 
with J^o rjk TX then SQ = X but ya has no asymptotically stable critical 
points regardless of the choice of a. 

We emphasize that this rules out even local asymptotic stability, 
regardless of the choice of x0. The proof of this theorem is based on the 
fact that if x0 were asymptotically stable there would be a Liapunov 
function V whose derivative V = (dVldx9 (ya)0> would be negative 
on B = {x\ V(x) = e} but that by a degree argument dV/dx and J ^ 
must be perpendicular at some point on B unless ^"0 = TX. 

In this brief account we were unable to mention the interesting work 
on invariant distributions, decoupling, etc. (see the references to Hirschorn 
and Isidori et al.). In connection with this kind of work it would be useful 
to know the answer to the following 

DIMENSIONALITY PROBLEM FOR INTEGRABLE SUBDISTRIBUTIONS. Given 
integers n>m> 0 find the largest integer <p(n, m) sucJi tliat we may assert 
that every locally defined distribution of dimension m in Bn Jvas a locally 
defined subdistribution of dimension cp(n,m) wJiicJi is integrable. 

There are obvious global versions of this problem as well but the local 
version seems to be what is needed the most in control theory. 

We close this section with some remarks on the literature. Beferences 
[1 ,3 , 9-12] pertain to this section, references [3] and [9] contain papers 
by many authors working in this field and can be used to trace the litera
ture; a complete set references would be several pages long. 

Hamilton-Jacobi theory 

The qualitative issues raised in the previous section are reflected in the 
solutions of concrete optimizations problems. The problem of minimizing 

t 

rj = j (u(o), u(o)}da 
0 

for x =f(x)+G(x)u, subject to the constant x(0) = 0 , x(t) = xx will 
now be used to illustrate this and to give some indication about solved 
and unsolved problems. In addressing these questions we will asume that 
x =f(x)+G(x)u is controllable in the sense that for any given t > 0 and 
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any xt near 0 there is a control such that x(t) = x±. The most interesting 
behaviour corresponds to the case /(0) — 0 and we limit ourselves to this 
case. 

Introduce the value function S(t, x) defined to be the minimum 
value of rj expressed as a function of * and the end point x. Assuming that 
the indicated partial derivatives exist, 8 satisfies the well known Hamilton-
Jacobi equation 

Since there may be many points where these derivatives do not exist 
we must interpret this equation in some weak sense. 

DEGENERATE HAMILTON-JACOBI PROBLEM. Give a complete theory 
of the solution of the above Eamilton-Jacobi equation in a neighborhood 
of an equilibrium point of f assuming only the controllability of x =» f(x) + 
+G(x)u. 

H / is identically zero and G(x) is of rank dimX then this Hamilton-
Jacobi equation appears in Eiemannian geometry. More precisely, if 
the metric tensor is expressed as (G(x)GT(x))~1 then 8(19 x) is the square 
of the distance between 0 and x. In this sense, the special case / .= 0 
is a generalization of Eiemannian geometry. This also explains why we 
called this situation quasi-Eiemannian in the last section. 

To begin with we solve the above equation in the linear case. This 
solution is well known, easy to verify, and will be qualitatively correct 
for the quasi-linear problems of the previous section. Using the notation 
x = Ax +Bu9 introduce 

t 
W(t) = feÄ{i^BBTeAT(-i^da. 

0 

Assuming controllability this matrix will be invertible for all t > 0 and 
8(t9x) = <#, W^tyx} will satisfy the corresponding Hamilton-Jacobi 
equation. W"1^) has a pole at t = 0 which we now describe. Let r be 
the least integer such that (B9 AB,..., ArB) is of rank n. Then for t small 
and positive 

W~l(t) = £ Ei*+M{t) 

with M(t) analytic near 0, M(0) = 0 and the E{ having range (B, AB9... 
..., Ai~2B) in their kernel. TSote that 8(t9x) is homogeneous in t only 
in the uninteresting case corresponding to rank B =n9A = 0 . 
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We now ton to a quasi-Biemannian situation. We coordinatile space 
X by an m-vector y and an m by m skew-symmetric matrix Z. The equa
tions are 

y ~u, 

Z = yuT —uyT. 

It is easy to see this system is controllable on its m(m+1)/2-dimensional 
state space. Variational arguments show that an optimal y satisfies y + Qy 
= 0 for same skew symmetric matrix Û. If y(0) = 0 and Z(0) = 0 then 
y(t) = emX — X and Z(t) is given by 

t 

Z(t) = y(t)yT(t)-2 jen°'lXTeQTadoQ. 
0 

The corresponding 8(t,y,Z) satisfies the following identities: 

B{t,y,o) =» •% 

8(t,y,Z) =8(l,y,Z)lt9 

8(t,y,Z) =S(t,ay,a*Z)la*, 

8(t, y, Z) = 8(t, by, 6ZdT), 6dT = I . 

From the last of these we see that 8(t, 0,Z) must be expressible in terms 
of the eigenvalues of Z and it has been shown that 

8(t,0,Z) - 2TT(/11+2;12+ ... +rAr)/t, 

where /Lx > A2 > ... > A,. are the positive eigenvalues of iZ. The derivation 
of this result shows, moreover, a rather remarkable "exclusion principle" 
which accounts for the different weights. Briefly stated, the optimal 
controls which steer this system from (0, 0) to (0, Z) have the form emb 
with the eigenvalues of Q being multiples of 2izi. However, it turns out 
that the nonzero eigenvalues of Q cannot be repeated and that the number 
of distinct eigenvalues must equal rank Z. 

For the special case m = 2 it is illuminating to write down the first 
few terms of the Newton-Puiseux expansion for 8. From the scaling 
properties we see that 8(t,y,z) = (\&\lt)'s(y*l\2\). In fact it has an ex
pansion in y\}/z which we may express as 

8(h y, «) - (|*|/t)(2w-V87u 112/11 *\z + \\yf+ . . . ) , 
this asymptotic expansion being valid off the plane z = 0. It is possible 
to interpret VB(19 y,z) as a distance function and this has been persued 
in some detail in our paper on singular Eiemannian geometry cited below. 
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Although it may not be apparent immediately, this second case is 
a paradigm for the general class of problems whose Hamiltion-Jacobi 
equation is 

88 11 d8 - asr\ 
- r - = ~--r(#1(x)-—-, # (0)-T—> 

under the hypothesis that rank G(0) = m and dima? = dim([0, 0 ] + ^ ) 
= m (m+l)/2, provided that we restrict our attention to a neighborhood 
of x = 0 . This is explained in more detail in the paper just refered to. 

I t is clear that one can raise many questions in this area. The following 
is obviously one of interest. 

HAMILTON-JACOBI ASYMPTOTICS PROBLEM. Bind the correct gener
alization of the given Newton-Puiseux expansion for cm arbitrary quasi-
Biemannian problem, assuming analyticity of &. 

Beferences [2, 4, 5, 8] deal with aspects of this material. We should 
point out that there is a discrepancy between our formula for 8(1, 0, Z) 
(which is taken from [2]) and the claims of [4], Section 5.3. I t seems that 
in [4] the possibility of optimal trajectories corresponding to "higher 
harmonics" has been overlooked. 

Stochastic phenomena 

ÎSTo discussion of the relationships between control theory and differential 
geometry should fail to touch on how these ideas illuminate problems 
related to Ito models of the form 

dx =-f(x)dt + ^gi(x)dwi. 
i=i 

We sketch out how this goes and later on describe its connection with 
nonlinear filtering. 

The first idea is that it is, for some purposes at least, worthwhile to 
study the above stochastic equation with the help of the control model 

& = /(as) - - JT l~\ gt{x) + JT ft (») »« 

= f(œ)+6(œ)u. 
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The explanation of w h y / got traded fo r / when we replaced "dw/dt" by 
u is to be found in the asymmetrical definition of the Itô integral — 
a point that has been discussed many times. Actually one gets more than 
just a control system x = f(x)+G(x)u out of this. Because Wiener pro
cesses in Bm are defined with respect to the quadratic form defining the 
variance, we get, automatically, an innerproduct on u as well. 

Beturning to the stochastic equation again, it has associated to it 
a second order differential operator L with the property that the prob
ability density ç(t, x) evolves according to 

If m is less then dima?, L will be degenerate; in fact it is of the form LQ + 
+1/1+ ... + 1 4 where the Li are first-order differential operators. The 
first point of contact between the control system and the stochastic equa
tions is that x =f(x)+G(x)u has the property that at any time t > 0 
the reachable set of states from a given x0 has nonempty interior if and 
only if djdt — L is hypoelliptic. Thus the support and the smoothness of 
the probability density is what one would guess it to be by looking at the 
sample path behavior of the related control system. The following problem 
can serve as a focus for our remaining remarks. 

HAMILTON-JACOBI/FOKKER-PLANCK PROBLEM. Belate tJie small time 
behavior of tJie solution of Bolcher-PlancJc equation to the solution of the 
Eamilton-Jacobi equation associated witlv the corresponding control problem. 

Of course in the case of full ellipticity this is an absolutely standard 
idea. 

As we have done previously, we recall the situation for the linear 
case. Consider 

dx = Axdt+Bdw. 

There is a beautiful formula for the probability density corresponding 
to a>(0) = 0 

p(t, x) = 1 = e-****, 
\/(àet8xx)(27z)n 

where 8 is the solution of the Hamilton-Jacobi equation discussed above. 
What this equation says is that the probability density at (t, x), given 
(c(0) = 0, is inversely proportional to the exponential of the cost of getting 
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to x from zero in t units of time. The expansion of 8(t, x) given in connection 
with Hamilton-Jacobi theory gives a rather detailed picture of the small 
time asymptotics of p. I t is apparent, for example, that the rate of growth 
of p(t, x) depends strongly on the particular subspace in which x lies. 

We now turn to the quasi-Eiemannian prototype 

dy = dn, 

dZ =y dwT — dwyT. 

P. Levy studied a special case of these equation corresponding to àìmy 
= 2 and recently there has been a great deal of interest in the general 
situation by probabilists and analysts alike, due in part to the many ex
plicit formulae which describe the relevant probability distributions. 

Of principle interest for our purpose is the geometrical interpretation 
of the right-hand side of the diffusion equation as an analog of the Lap-
lace-Beltrami operator. This goes hand in hand with the interpretation 
of VS(1, y, Z) as distance and leads to a generalization of the well known 
formula of Varadhan 

lim2Ünp(t,x) = -d*(x) 

relating the distance from x0 to x and the probability density at (*, x) 
given that x(0) = x0. 

Oui1 final problem concerns the area of estimation theory and illus
trates again the value of sample path considerations in those situations 
which are sufficiently robust. The key idea is to try to capture the sym
metries which make finite-dimensional estimatimation possible in a Lie 
algebra setting. 

We are given a stochastic differential equation 

dx =f(x)dt + g(x)dw 

together with an observation 

dy = h(x)dt + dv9 y eB1 

and wish to find Q(1,X\ y[Qtt]), the probability density at (t,x) condi
tioned on the observations over the whole interval [0, *]. We assume Q(09X) 

is given. The equation for Q is nonlinear but a certain path dependent 
multiple of Q, which we denote by Q, satisfies the stochastic partial differen
tial equation (here L is the Fokker-Planck operator associated with 
dx =f(x)dt + g(x)dw) 

ÔQ = Lçdt + dyh(x)Q. 
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If we associate to this equation a control system using the procedure 
outlined above we obtain 

^-^(L-^(x))e + uh(x)e. 

Abstractly this is an equation of the form 
x = Ax + uBx. 

If it happens that the Lie algebra generated by the operators A and B 
is finite-dimensional we would be lead to postulate a solution of the form 

x(t) = e^me^n . . . e
H^r o?(0), 

where Ex, E2 9... 9 Er is a suitably chosen ordered basis for the Lie algebra 
generated by A and B and {%} is a set of scalar functions dependent on 
u. In this context the Lie algebra 

{L-\li(x),Ji(x)}LA 

is called the estimation algebra. Bather remarkably, in the standard Gauss-
Markov cases it is the same as the oscillator algebra of quantum mech
anics. Our final problem is the 

CLASSIFICATION OF FINITE-DIMENSIONAL ESTIMATION ALGEBRAS. 

Bind all tlie finite-dimensional Lie algebras which can occur as the estimation 
algebras for diffusion processes. 

The literature on the connections between the Hamilton-Jacobi equa
tions and degenerate diffusions is very large. We mention Gaveau [4] 
and the more recent works [7,13]. The book [6] contains a number of papers 
on the connection between Lie algebasr and filtering. The literature can 
be traced from these. 
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H. W. KNOBLOOH 

Nonlinear Systems: Local Controllability and Higher 
Order Necessary Conditions for Optimal Solutions 

1. Introduction 

We consider control systems "which are defined in terms of an ordinary-
differential equation 

x =f(t;x,u). (1.1) 

u is the control variable and may he subject to a constraint of the form 
u e TJ. We allow specialization of u to an admissible control function 
u(-), that is, a function which is piecewise of class 0°° on R and has a range 
"whose closure is contained in TJ. The function / on the right-hand side of 
(1.1) is assumed to be sufficiently smooth. Hence, if an admissible con
trol function is substituted for u in (1.1), we obtain a differential equation 
which allows application of all standard results concerning the existence, 
uniqueness and continuous dependence of solutions (see e.g. [1], Sections 
2-4). Any one of these solutions will be denoted by x(-) and called an 
admissible trajectory. We also refer to the pair (u(-),x(-)) as a solution 
of (1.1). If we speak of an optimal solution, we mean a solution which mini
mizes the functional within the class of all admissible trajectories satis
fying boundary conditions of the usual type. It is always tacitly assumed 
that the value of the functional can be identified with the terminal value 
of a component of the state vector. 

We are concerned in this lecture with two types of problems which can 
be studied independent from each other. However, it is clear from the 
beginning that one can expect some kind of duality between statements 
pertaining to each of these problems. Among other things we will undertake 
in this lecture an attempt to put this duality into more concrete forms. 

Problems of the first type deal with necessary conditions which have 

[1369] 



1370 Section 14: H. W. Knobloch 

to hold along singular ares. A singular arc is a portion of an optimal sol
ution which is such that the control variable is specialized to interior 
values of the control set TJ. We restrict our attention to conditions which 
have to hold pointwise along a singular arc and which assume the form 
of a multiplier rule, i.e., a rule which can be expressed as an inequality 
of the form y(t)Ta(t) ^0, where y(-) is the usual adjoint state vector. 

Problems of the second type carry the label "local controllability". 
The precise definition goes as follows. Let there be given, for all t in some 
interval tt0,t], an arbitrary solution u(-)9x(') of (1.1) (called "reference 
solution" from now on). Local controllability along this solution and for 
t = t means : There exists, for every sufficiently small e > 0, a full neigh
borhood of x(t) which can be reached at time t = t by travelling along 
admissible trajectories starting at time t ==?—e from x(t — e). In other 
words: x(t) is an interior point of the set of all states to which the system 
can be steered from x(t — s) within time s. We remark that our notion of 
local controllability coincides with Sussmann's "small time local control
lability" (cf. [2], Sec. 2.3), if the system equation is autonomous and the 
reference solution stationary. 

It is somehow clear from the above definitions that problems of both 
types are concerned with local properties of solutions and that these 
properties, in a certain sense, exclude each other. If a solution is optimal 
(in the sense as explained above), then the set of all states into which the 
system can be steered from x(t — e) within time e is situated on one side of 
a certain hyperplane through the terminal point x(t) and we have no 
local controllability for t = t. Thus one can expect some kind of correspond
ence between results concerning singular extremals and those concerning 
local controllability which roughly speaking, amounts to "reversing" 
conclusions in a suitable way. We will demonstrate in Section 2 how this 
kind of reasoning can be put on more solid grounds by presenting two 
theorems — one giving necessary conditions for singular arcs and the 
other giving sufficient conditions for local controllability — in which all 
statements are expressed in terms of one and the same object, namely the 
local cone of attainability. This is a set of elements of the state space which 
is associated with each point of the reference solution. Since we may think 
of a solution as a curve parametrized by thè time t, we denote this set 
by Jff. The precise definition is given in Section 2 ; it will turn out to be 
a modification of the definition of the set IIt which was introduced in 
[1], Section 9. In fact, jft is a subset of IIt. The reason that we dispense 
here with some elements of IIt is the gain in mathematical structure. 
jTt enjoys certain properties which cannot be inferred from the definition 
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of IIt: It is a convex cone and its maximal linear subspace is invariant 
under a certain operator J7(Theorem 2.1). The operator .Twill be described 
in detail in Section 2. In contrast to the philosophy adojvted in [1] we 
prefer here a definition which depends on the choice of a special reference 
solution since it helps to bring out the system theoretic aspect of this 
operator. One can look upon J7from the viewpoint of linear systems theory ; 
it then appears as a generalization of the process which leads to the con
struction of the controllability matrix. Indeed, if the system equation 
is linear and is given as 

x =A(t)x + B(t)u, (1.2) 

then the columns of this matrix can be generated from the columns of 
B(t) by repeated application of J7. One can also look on it from the differ
ential geometric viewpoint. If the system equation is autonomous and 
the reference solution stationary then the simplest way to explain the 
application of r is in terms of a Lie-bracket involving / ( = the function 
which appears on the right-hand side of (1.1)). This, by the way, explains 
why the forming of the Lie-bracket with / is a nonlinear analogue of the 
linear mapping is defined in terms of the matrix A (t) of the linear system 
(1.2). 

Eegardless of which view one prefers, what counts for our purposes 
are the following two facts, (i) We can define r without any restrictive 
assumptions, as linearity of the equation or time independence of the 
reference solution, (ii) One can use J7 in order to generate new elements 
of dCi out of given ones : From the previously mentioned invariance property 
of c/Ci one infers that the following statement holds true: 

i p e j r , implies ±Ftt(p)eiït, ^ = 1 , 2 , . . . (1.3) 

To get an impression of the scope of this result it might be helpful to 
consider a special case. Let us assume that the system is linear in u, and 
hence defined by a differential equation of the form 

m 

A^U{t;x) + ^]uvgr{t;x), u = (it1,..., %m). (1.4) 
» » « = 1 

Furthermore, let us assume that the reference control satisfies the condi
tion u(t) eintZJ for all t e p0,*]. Using standard variational techniques 
it is then not difficult to see that ±gv(t-, x(t)) e Xt for all t e [t0, *]. Hence, 
it follows from (1.3) that the linear space spanned by (r^g^it, x(t)), 
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p = 0,1, ...,v =1, ...,m,is contained in ctt. This space was introduced 
in [1] and denoted there by 33(2) (cf. Section 1, in particular p. 5), it can 
be identified with the columns of the controllability matrix for the linear
ized system (i.e., for the linear system (1.2) with A(t) : =(dfldx) [t; x(t), u(t)) 
and B(t) : = (dfldu)(t; x(t), u(t)). I t is therefore not surprising to redis
cover 33 (J) as a part of #% and to establish its invariance with respect 
to the operator B\ this could be verified also by standard arguments. 
The importance of the statement (1.3) rests upon the fact that it allows to 
extend the space 93 (t) by adjoining further elements p without losing its 
two basic properties, namely, that of being a subspace of jft and being 
invariant with respect to r. In other words : One can add to the generators 
gv of the space 93 (t) all elements p e c/Tt which satisfy the condition +p e iït 

and then treat the enlarged set as if it would be the set of generators for 
33(2). Whether this is a useful insight or not, depends on the concrete 
possibilities of constructing vectors p with the property +p e cft and which 
are not already elements of 93(2). What is known in this respect is very 
little, nevertheless it seems worthwhile to review carefully the material 
existing up to now. 

The first examples of non-trivial elements p which are contained in 
Xt together with their negatives are among what we will call "second 
order elements" and discuss in detail in Section 3. The name stems from 
the fact that the necessary conditions which can be /expressed in terms 
of these elements are commonly called "second order". We will present 
in Section 3 a general definition of the "order" of an element of tft and 
give a complete description of the set of all second order elements. Special 
emphasis is put on those p which appear together with — p in this set and 
which therefore must be orthogonal to the adjoint state variable along 
an optimal solution. I t has been known since long that for a system of the 
form (1.4) the "mixed" Lie-brackets 

Pv,t*'-= C^jffJ (1-5) 

enjoy this property along a singular arc. But the background of this was 
not recognized until recently when Vârsan [4] announced the following 
result: Local controllability along a reference solution of the system (1.4) 
can be inferred from the following two conditions : 

(i) the reference control assumes values in the interior of TJ for all t9 

(ii) the controllable subspace 33(2) and the elements 

rv(pvJ9 v,ii = l , . . . , m , y = 0 , 1 , . . . 

generate together the whole state space. 
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As we will see in Section 3, both the second order equality type condi
tions and Vârsan's result are true since the hypothesis (i) implies ±pVffX 

e jf/ for any system of the form (1.4). It is also possible — under suitable 
extra hypotheses — to add further second order elements to the pVtfÀ in 
such a way that one arrives at a similar type of controllability criterion. 
However, all second order elements p which are such that +p e Xt reduce 
to zero if the dimension m of the control variable is equal to one (note that 
Pv>fA = 0, in view of (1.5)). The absence of those elements can be under
stood from the nature of the corresponding necessary conditions: they 
can be compared to the standard second order tests in calculus. Basically, 
these tests are inequalities (semi-definiteness of a quadratic form), which 
eventually may lead to equality type statements ; namely, if the form fails 
to be definite. All these statements, however, are trivial if there is not more 
than one variable. 

It should be pointed out that Vârsan's result reflects a typical non-linear 
system property: There exists a kind of "crosswise" interaction between 
the components of u which is exercised through the state vector (note that 
pVtf4 = 0 if the gv do not depend upon x) and which cannot be recognized 
by means of linearization since for a linear system the action of u = (u1, ... 
..., um) is just the superposition of the action of the components uv. In 
precise mathematical terms this interaction is expressed by the fact that 
one can simply adjoin the pVift to the generators of SB (2) without destroying 
the controllability properties of this space. 

Next, we wish to say a few words about possible extensions of 58(2) 
in case of a scalar control variable u. It is clear from what was said above 
that one has to search for possible candidates among higher-than-second-
order elements, but it is presently not obvious how this search can be 
carried out in a systematic way. What one expects to find is some kind 
of hierarchy among the subspaces of tf%, which corresponds to the hier
archy among higher order tests in optimization. Of course the controllable 
subspace SB (2) of the linearized system equation should be the member 
of lowest rank. 

The first attempt to put this idea into a more concrete form has been 
undertaken by H. Hermes and completed by H. Sussmann [3]. It led 
to a controllability criterion for a system of the form 

x =f0(x) + ug(x), u scalar, (1.6) 

with a stationary point (u09 xQ) playing the role of the reference solution. 
The crucial condition which enters this criterion concerns the Lie-
brackets associated with system (1.6) and evaluated at (u, x) = (u0, x0). 
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To be more specific, it is assumed that all brackets which involve the quan
tity g an even number of times can be expressed as a linear combination 
of Lie-brackets which are of odd order with respect to g. This even-odd 
relationship resembles the one which is well known, from elementary 
calculus: If all derivatives up to order 2Jc vanish at an extremal point 
of a function, then the (2ft+l)th derivative must also vanish there. Now, 
vanishing of some derivative at an extremal point is an equality-type 
necessary condition. In optimal control theory conditions of this kind 
appear in the form of an orthogonality relation y(t)Tp = 0. As we have 
seen before, they arise from elements p of the state space which satisfy 
the condition +p e Xt. We wish therefore to pose the following question 
which is a natural modification of the Hermes conjecture: Assume that 
the above stated condition holds for all Lie-brackets which are of order 
at most 2Jfc with respect to g, Jc being a fixed positive integer. Is it then true 
that the linear space spanned by all Lie-brackets which are of order at 
most 2Jc +1 with respect to g belong to «#"t ? 

In this generality the question probably cannot be answered along 
the lines of existing methods ; in particular, it is unlikely that Sussmann's 
proof of the original conjecture could be carried over. Note that it is 
required to establish the existence of specific elements in jft9 regardless 
of whether we have local controllability or not. It seems, however, con
ceivable that special cases can be treated e.g. with methods taken from 
[1] and that one would then be able to examine from case to case how 
much of the assumptions underlying the Hermes-Sussmann result is 
actually required. From the viewpoint of applications one would anyhow 
welcome results which are more restricted in its scope in return for more 
flexibility with respect to the hypotheses. Some steps in this direction 
have been undertaken and will be discussed in the lecture. In particular, 
it seems very likely —though not all details have been cleared — that for 
systems of the form (1.6) one can extend the space SB (2) by adjoining 
third order elements (i.e. vectors which can be written as third order 
polynomials in the components of g, gx, gxx, etc.) under the assumption 
that the Lie-bracket 

[g, [ss/o]] (1-7) 

evaluated at the reference trajectory x = x(t) is contained in 93(2) for 
t e [2 — «,*]. The reference solution need not be stationary; however, 
u( • ) has to assume values in the interior of the control set TJ. To compare , 
this result with the Hermes conjecture, one has to take into account that 
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in case of a stationary reference solution the space 93(2) is independent 
from 2 and coincides with the linear span of those Lie-brackets which are 
first order with respect to g. Hence it is required — in case of a stationary 
solution — that (1.7) is a linear combination of first-order Lie-brackets 
in order to ensure the existence of certain third-order elements in Xt. The 
conclusion is certainly much weaker than what would follow from the 
Hermes conjecture (in case of Jc — 1). On the other hand, one is relieved 
from the necessity of checking all Lie-brackets which are of order 2 with 
respect to g. In fact, there are some examples in the engineering literature 
(e.g. Lawden's spiral) where (1.7) is the only one among these brackets 
which is easy to compute. 

The results which have been outlined so far (one more will be added 
in Section 3) can all be proved by a combination of methods, which could 
be summarized as the "analytic" approach to control theory. A consider
able portion of it has been developed in [1] and used there to establish 
higher order necessary conditions for singular arcs. The starting point 
is the notion of control variations. These are parameter-dependent local 
modifications of the control function and the trajectory around a given 
reference solution. Later, in order to handle formal problems, one finds 
it convenient not to relate all results with the reference solution but to 
work directly with the right-hand side of the system equation. The analytic • 
approach leads thereby straight into an ad-hoc-made algebraic theory of 
non-linear systems, which appears at first glance to be a rather natural 
generalization of linear system theory. The connection with the differential 
geometric approach is less obvious; the comparison of these two basic 
methods in control theory will play a major role in the lecture. At present 
it is safe to say that the analytic techniques seem to be rather efficient 
if one wants to refine existing results and, in particular, get rid of restrict
ive assumptions concerning the system equation or the reference solution. 
Furthermore, they seem to be well suited for a better exploitation of the 
specific nature of a given problem. This also can be of an advantage if one 
has to compute from the right-hand side of equation (1.1) those quantities 
which one has to know in order to apply the general results. An illustrative 
example is the "economic" version of the generalized Olebsch-Legendre 
condition which was given in [1] (Theorem 20.2). 

The following two sections constitute a short account of the essential 
definitions and facts on which the analytic approach to non-linear systems 
theory is based. Except for occasional remarks we will not enter into a dis
cussion of the proofs. All details — as far as they cannot be found in 
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existing literature — will be given in a dissertation, which is presently 
prepared at the Department of Mathematics in Würzburg. 

2. The local cone of attainability 

This section is devoted to a closer study of the sets Xv We consider 
a reference solution u(-),x(<), which is defined on some interval [20,2] 
and which will be kept fixed throughout this and the next section. For 
simplicity we will assume that u ( • ) is of class 0°° on some interval [2 — s, t ], 
in particular, that any derivative of u(-) has a left-hand limit at * = ? . 
Our first aim is to define j f f . 

To this purpose we have to introduce some notation. In the sequel 
we will use the symbol X in order to denote a positive parameter. When
ever X appears in a formula involving 0-terms we wish to formulate an 
asymptotic relation which has to hold for X->0, uniformly with respect 
to all remaining variables occurring in the formula. 

The definition of j f j- will be based on a modification of what was called 
in [1] a "control variation concentrated at 2 = 2 . " We consider families 
of control.functions u(t; r , X) which depend on two real parameters r , X 
and which are defined for t eR, 0 < X < X0, 2 — e0 < * < 2. The following 
conditions should hold (X0, s0, K are positive constants). 

(i) u(t; r , X) is bounded for all 2, r, X. 
(ii) u(-,r,X) is — for fixed r , X — an admissible control function. 

(iii) u(t; x, X) coincides with the reference control whenever 2, r sat
isfy the relation 2 < T — X". 

(iv) Let x(t; r, X, xQ) be the solution of the initial value problem 

= f(t',x,u(t-,r,X)), x(t0)=x0-9 (2.1) x 

then x(t; t, X, x0) can be extended to a ü°°-function of 2, X, xQ on a full 
neighborhood of the set {2, X, x0: te [2 — sQ, 2], X = 0, xQ = x(tQ)}. 

Note that (i) and (iii) imply — by standard arguments — that the 
solution of the initial value problem (2.1) exists on the interval [20, r ] 
whenever X and ||a?0--^(*o)ll a r e sufficiently small. Furthermore, this sol
ution approaches the solution of the initial value problem 

x =f(t'9x9u(t))9 x(t0) =x0 (2.2) 

if X->0. So x(t; t, X9 xQ) is well defined on a set of the form 

{t,X,xù: te[t-e,tl, 0<X<X'Q, \\x0-x(t0)\\<e0}. (2.3) 
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I t is then required (cf. (iv)) that this function could be extended to a O00-
function of 2, X, x0 defined on a full neighborhood (in the (2, X, #0)-space) 
of the set (2.3). For simplicity we will denote the extended function also 
by x(t;t,X,x0). 

If we take x0 = x(tQ) then the solution of the initial value problem 
(2.2) is just the reference trajectory x(t). In other words: we have 
x[t; x, 0, x(t0j) = x(t) identically in 2, x and therefore also 

x[l)t, 0,x(t0)) = x(t) 

for all t e[t — E0,tli. Now, according to our hypothesis, the function 
x[t; t, X, x(t0)) admits a Taylor expansion with respect to X. Hence we 
have a relation of the form 

<s(t-9t,X,x(t0)) =x(t) + Xsp(t)+0(Xs+l) (2.4) 

where s is a positive integer and p (t) is infinitely differentiable on [?— e0,2 ]. 
Furthermore, p ( • ) does not vanish for all 2. In this manner one can associ
ai e with any family of control functions an w-dimensional vector p(t) 
which is of class G00 and is not identically zero on [2 — e0,2]. These p(-) 
play the decisive role in the definition of X %, which will now be given. 

DEFINITION 2.1. X~% is the collection of all ^-dimensional vectors 
p having the following property : 

There exists a family of control functions satisfying conditions (i)-(iv) 
and such that p equals the terminal value p(t) of the first nonvanishing 
coefficient in the Taylor expansion (2.4). 

One can see immediately that the inclusion holds : 

^ t ^ n r , (2.5) 

where TJ% is the set associated with the reference solution (and the time-
instant 2 = 2 ) according to Definition 9.2 in [1], We will not go into the 
discussion whether X% may be a proper subset of 11% or not. In fact, most 
of the elements of III which have been constructed in [1] actually belong 
to X% . That this statement holds true for 

/(?; x(t), u)-f{t; x(t), u(i)), ueTJ, 

can be seen by an argument of the same type as that used in [1] in order 
to verify (9.8). Further and more interesting examples will be discussed 
in Section 3. Though the definition of TJ% appears to be simpler than that 
of X% one will probably, in a concrete situation, find it equally difficult 
to verify tlie conditions of either of them. On the other hand, working 
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with jf % is more convenient because of certain a-priori-statements, which 
can be made and whlsh are independent both from the specific nature 
of the system equation (1.1) and from the choice of the reference solution. 
The most important ones are summarized in the following theorem. 

THEOEEM 2.1. (i) X% is a convex cone, (ii) Let +peX~l and p(-) be 
a G°°-function which is associated with a family of control f%mctions according 
to (2.4) and for which p = p(t). Then we have 

±{-P0)+Mh *(ï), «(?))*(?)} e ^ 7 . (2.6) 
One can observe that the second assertion of the theorem can.be stated 

in the following way: The maximal linear subspace of X% is invariant 
with respect to the mapping 

p->-p+fx{h «(ï), «(*))*. (2.7 
If the system equation is linear and given by (1.2) then the mapping 
assumes the form 

p-> -p + A(t)p. 

This is nothing else than the operation which can be applied in order 
to generate the controllable subspace out of the columns of the matrix 
B(t). 

If p(t) is of the form p (t, x(t)), where p is a sufficiently smooth func
tion of 2, #,then 

p = dpldt+pxf 

and (2.7) can be written in the form 

p->-dpldt-[f,p], 
where the expressions appearing in this formula have to be evaluated 
at x = x(t), t =t. Hence the mapping (2.7) is in fact nothing else than 
the application of the operator r, as introduced in [1]. 

We conclude this section by stating the two fundamental theorems 
about jf| which were announced in the introduction. The proof of the 
second one follows immediately, in view of (2.5), from Theorem 9.1 in [1]. 

THEOEEM 2.2. If X% = Rn then we have local controllability along the 
reference solution and for 2=2 . 

THEOEEM 2.3. Let the reference solution be optimal. Then there exists 
an adjoint state vector y(-) which satisfies the transversality conditions at 
the endpoints and the inequalities y(t)Tp < 0 for all p e Xt and all t e[tQ9 tj. 

http://can.be
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3. Second order elements 

Special attention is deserved by those elements in Xt which lead to 
second order necessary conditions. This notion was explained in [1] (Sec
tion 1, p. 5); the definition can easily be modified so as to make sense if 
one works with Xt instead of IIt. We consider a family of control func
tions as specified in Section 2 and we assume in addition that u(t; x,X) 
can be written as 

u(t) + Xrv(t'9x, X) (3.1) 
where r is some positive integer, v (2; r, X) is supposed to vanish for 2 < x — X" 
in order to meet the requirement (iii). It follows then from property (iv) 
by standard arguments that one can expand x[t;t, X, x(t0)) into an asymp
totic series of the form 

00 

where the coefficients pv(-) are functions of 2 infinitely differentiable 
on some interval [t — e,t]. We pick the first pv( •) which does not vanish 
identically and call it p( •). Clearly, p(t) e Xt for all 2 e (2— e, 2]. If p( •) 
= #,,(•) and r < v < 2r then p( •) is called a second order element. Accord
ingly, one would call p( •) a Jc-tli order element if (Jc—l)r < v < Jcr. 

A survey of second order necessary conditions can be found in [1], 
Sections 20, 21. Each condition is stated there as a multiplier rule y(t)Tp(t) 
< 0 (or y(t)Tp(t) =0) and holds under the hypothesis that a relation 
of the form 

q(t) e SB (2) (3.2) 

is satisfied for all 2 in some interval [2 — e, 2]. q(') is of course a vector, 
which does not trivially belong to the controllable subspace. A natural 
question arises whether the element which appears in the rule as factor 
along with y is actually second order (in the sense explained above) and 
whether this statement holds true irrespective of the optimal character 
of the reference solution. As can be seen by a thorough analysis of the 
proofs given in [1] the answer will always be affirmative if, at least, (3.2) 
is replaced by a slightly stronger hypothesis. This modification, however, 
is unnecessary if the space SB (2) has constant dimension. For simplicity 
we will therefore work for the remaining portion of this section with 
the following additional hypothesis: 

The dimension of the space SB (2) is independent from 2, 
for all 2 e [2 - e , 2]. (3.3) 
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We then restate here two of the second order conditions which have 
been proved in [1] (Theorem 20.2 and 21.2) for a general system of the 
form (1.1). The first is commonly known as the generalized Olebsch-Legendre 
condition. I t is a non-trivial result, regardless of whether u is scalar or 
not, and we will restrict ourselves to the case of a scalar control. The sec
ond one is the prototype of an equality type necessary condition, and 
hence is of interest only if u is not scalar as we have remarked in the intro
duction. Therefore we will here assume that u = (u1, u*)T is 2-dimensional. 

As before we denote by (u(-),x(-)) the given reference solution and 
assume that u( •) satisfies the condition u(t) e int TJ for all 2. We associate 
with this solution a sequence of vectors B\, v = 0 , 1 , . . . , i = 1 , . . . , m 
( = dimension of u), which are recursively defined as follows 

/(«; * ) : = /(<} »i «(*)), -Bod a) s = (3//3^)(2; x, u(t)\ 

Bl+1(t9 x):=(dBlldt)(t, x) + U, Bi\(t, x)9 v = 0 , 1 , . . . 

In case of m == 1 we write Bv instead of B\. 

THEOEEM 3.1. Eypotheses: (i) u is scalar, (3.3) holds true, (ii) We have 

(d*fldu2)[t; x(t)9 «(*)) G$B(2), \Bv^Bvl{t, x(t)) e»(<) 

for all t e [2 — e, 2] and v = 1, ..., Q > 0. 
Conclusion: — [J5e, -Be+1] (2, 5(2)) G jf^. 

THEOEEM 3.2. Eypotheses: (i) tt = (ul
9 u2)T is 2-dimensional, (3.3) 

holds, (ii) TFe äöWö 

(52//3(^)2)(2; x(t), u(t)) GSB(2), [ B ^ I , # ] ( « , *(*)) e93(2) 

/or 2 G [2— e, 2], v = 1, . . . , Qì > 0 , i = 1 , 2. 
Conclusion : ± \B\, B2

V] (t, x(2)) G X f if r + p < ex + Q2 . 
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Evolution Equations for Problems of Control and 
Estimation of Uncertain Systems 

The present report deals with problems of control and estimation for 
systems described by ordinary differential equations or differential inclu
sions ([8], [10], [12], [22]). I t is assumed that these equations are related 
to systems where the model parameters, the initial vectors, and the distur
bances are unknown, a set-membership description of their values being 
only given in advance. The systems are therefore said to operate under 
conditions of uncertainty. 

A considerable number of problems concerning systems of the above 
type are covered by the theory of differential games and related branches 
of control theory, [9], [13], [19]. 

The main problems of this report deal with the investigation of evol
ution equations that describe guaranteed or minmax estimates for the 
states of the system on the basis of available observations under uncer
tainty of the above type. Eelations between the given results and facts of 
stochastic filtering theory are formulated, the specific features of linear sys
tems being especially underlined. Duality relations between solutions 
of control and observation problems under uncertainty are shown to be 
a reflection of duality in the theory of extremal problems. 

A further discussion concerns the construction of "adaptive strategies" 
of control that combine the optimization of the evolution for the estima
tion process with the selection of control values that ensure a guaranteed 
result. 

The report is based mainly on the investigations carried through 
in the Institute of Mathematics and Mechanics of the Ural Scientific 
Center of the Academy of Sciences of the USSE at Sverdlovsk. 

[1381] 
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Notations 

The following notations are assumed: Bn is the w-dimensional real 
vector space, (l9p) =l'p is the scalar product in Bn

9 the prime standing 
for the transpose, T is a closed time interval [20,2J, âS is a Banach space, 
SS^(T) is the space of functions integrable with power p on the interval 
T (1 < p < oo), <7(m)(T) is the space of m-vector-valued continuous func
tions defined on T9 || • || is the norm in the Banach space 389 | • | is the 
Euclidean norm in Bn

9 Q(3S) is the set of all subsets of Sä9 comp $ is 
the set all compact subsets of âS9 (v( • ), X( • )> is the value of the functional 
generated by v( •) e St at an element X( •) G âiï. For $ => &W(T) we have, 
in particular, 

h 
<*('M(')> = f v'(t)X(t)dt. 

The symbol ç?(2,Q) stands for 

<p(hQ) = U M * , 2)1 ffe^} 

and d(vjQ) denotes the indicator function of a set Q at a point 0. Hamely 

ô(v\Q) = 0 if V G Ç , 4(t?|Q) = 00 if v$Q. 
The symbol g (Z|#) denotes the support function of a set Q at a point 
&,, i .e . , 

e(Z|0) =sup{2'2 | qeQ} 

and 3ço(ï) is the subdifferential of a convex function cp at a point Z; coQ 
is the convex hull of a set Ç and intQ is the set of all interior points of Q. 

The following notations are also assumed; the element yt(-\r) is gen
erated by the function y(t + o) where r — 2 < o r < 0 and yf(

a|<o) = #*(')> 
^(• |2 0 ) =2/(-); #j(-|2o) is the "tube" generated by the multivalued 
function Q(t + o), where 2 0 - 2 < < r < 0 , and Qt('\tQ) =Qt(')9Qh(-\t0) 
= (?(0; 8â(œ) == {#: |s —a?|<(5} is the Euclidean ball of radius <5 with 
center x,Bm is the unit (mxm)-matrix, K~Q = {p: Q+pcK} is 
the geometrical difference of sets K9 Q) A®B is the Kronecker product 
of matrices A, B, A = {as} is the wm-vector formed of the elements of 
A = {ai:j}, the entries of A being given by ai+{j^1)n = ai5. 

1. Evolution systems for problems of control and estimation 

Consider the differential inclusion 

dx 
— eB(t9x9u)9 x(tQ)eX°, teT, (1.1) 
at 
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where F(t, x9 u) is a multivalued mapping from TxBnxBp into complu. 
Here x is the phase vector, 2 stands for time, u is the control parameter. 
Equation (1.1) describes a system that operates under uncertainty, the 
latter circumstance being caused by the fact that J7 is a multivalued map. 

The function B(t, x, u) may be e.g. of the form 

B(t,x,u) =\J{f(t,x,u) + <p(t,v)\ veQ(t)}, Q(2) GCoinpJB*. (1.2) 

In particular, we may have 

B(t,x,u) =A(t,Q(t))x + B(t)u9 (1.3) 

(describing a linear system with uncertain coefficients) or 

B(t,x,u) =A(t)x + B(t)u+cp(t,Q(t)) (IA) 

(a proper linear system). 
The functions f(t,x,u,v), A(t,v), A(t), <p(t,v) are here assumed to 

be known, measurable in 2 and continuous in the other variables, the 
multivalued function Q(t) is assumed to be measurable ([4], [24b]). 

Along with (1.1) consider the equation of "observations" or "measure
ments" 

yeG(t,x,u), yeBm
9 (1.5) 

where G(t, x, u) is a multivalued mapping from T xBn xBp into comp!2m, 
and the element y(-) generated by an available measurement y(t) is 
considered as an element of ^n\T). 

The multivalued function G(t,x,u) describes the structure of the 
measurement process and the admissible uncertain disturbances. In the 
linear case (1.4) turns into the equation 

yeg(t9u)x+M(t). (1.6) 

We will further assume that the measurable function u(t) takes its 
values in compact sets &(t) s Rp, Assume that the function u(t) is given 
and let y(t) be a realization of the measured signal. The symbol X(-9 y( *)9 

u(-),t(n X°) (Xt(-,yt(-),l0,ut(-), X0)) denotes the set of all trajectories, 
x(x),xeT (TG[20 ,2]) that satisfy (1.1) and (l.B) simultaneously. The 
section X(tr) = X(t, yt(-), ut(-),t0, X°) s Q(Bn) of the set Xt(-, yt(>), 
ut(-),t0, X°) taken at time instant 2 is said to be the informational set 
for system (1.1), (1.5) consistent with the realization yt(-) (the control 
ut(-) being given). The symbol Y[u(-),X°) (Yt[ut(>), X0)) will denote 

85 — Proceedings..., t. II 
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the set of all functions y(-) e£^(T) (all functions yt(-)) suchthatX{-, y(<), 
u(-),20, X°) (X[t, yt(-)9 ut(-), 20, X

0)) is nonvoid. Further, it is everywhere 
assumed that y(<) eY(u(-),X°). Therefore, Y[u(')9X°) is always non-
void. 

We shall state a few simplest conditions which ensure that X[-9 y(-)9 

u( •), 20, X°) is compact and semicontinuous in y( •) and u( •)• 

THEOEEM 1.1. Assume that X° is a compact set in Bn, the functions y(') 
e Y(u(-), X°), u( • ) G0>( • ) are given and the following conditions are ful
filled 

(a) the mappings F(t,x,u), G(t,x,u) are convex-valued, upper-
semicontinuous in x, measurable in t and continuous in u, 

(b) there exists a nonnegative function g(-) e£Px(T) such that for all 
t, x 

B(t, x, u) c g(t)(l + \x\)Sf (&> denoting the unit ball in Bn), 

uniformly in u( • ) e 0>( •). 
Then the set {x(-)} of elements of X(-9y(-)9u(-)9t0, X°) is compact in 

C^)(T). 

This theorem admits a relaxed form, particularly with regard to condi
tion (b) (similar to conditions given in [4] for ordinary differential inclu
sions). 

THEOREM 1.2. Under conditions of Theorem 1.1, for u(-), X° fixed, 
the mapping %('9y(-)) = X(-, y(-), u(-), t0,X

Q) from Y(u(-)9X°) intq 
compQfà(T) is upper-semicontitouous in y('). 

When F(t,x9u)9G(t9x,u) are Lipschitzian in u and under some 
additional constraints on the dependence of F(t, x, u), G(t9 x9 u) on 2, the 
sets X (•, y ( - ) , u( • ), 20, X°) depend continuously on u( • ). Here comp ö(n)(T) 
is considered with the Hausdorff metric and Y(u(-), X°), &>(-) with 
the metrics of spaces £e^(T), &{P)(T). 

Let X[t9yt(-\x)9 ut(*\x), x, X) be the set of solutions of (1.1), (1.5) at 
time 2 (for given yt(-\x)9 ut(-\x)9x(x) eX). 

THEOEEM 1.3. For yt(-)9 ut(-) given, the following equality is true: 

X[t,Vt(-\t*)f*i(-\t*),to,ZÙ) 

= X[t9 yt(-\x)9 %( - | r ) , x, X(x, yT(-\t0),uT(-\t0), t09 X0)). 

Therefore, yt( • |T) ut(-,\x),X°given, the mappingX(t, •) = X(t9 yt(')9 

ut(')9X
Q) defines a generalized dynamical system which describes the 
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evolution of the control and estimation process. The sets X(t, •) contain 
the whole prehistory of the process. They therefore have Markov-type 
properties. 

Define X[2] = X(t9 •) to be the realization of the "bundle" X(t, •)• 

LEMMA. 1.1. TJie multivalued function X[t] from T to comp Bn is upper 
semicontinuous in t. 

There is some interest in determining conditions for X [2] to be convex. 
The simplest of these require that the support functions ç(l\F(t9 x, u)), 
ç)[p\G(t, x, u)) be concave in x for any I eBn,p eBm

9u e&(t)9t eT 
(under conditions of Theorem 1.1). This yields 

LEMMA 1.2. Let F(t, x, u),G(t,x,u) be as in (IA), (1.6), cp(t, v) = C(t)v 
and suppose that tJie sets Q(*)90t(*) are convex. Then X[t] are convex. 

A less trivial convexity condition for X[2] may be obtained on the 
basis of conditions introduced in [18], [21]. We note that even equations 
as simple as (1.3), (1.6) can yield nonconvex sets X[t]. 

2. Linear systems 

We will specify some properties of the sets X[t,yt(-), 0, tQ9 X°) 
= X[t, yt(-), 20, X°) occurring in equations (1.4), (1.6) (u(•) being given, 
we may take u(>) = 0 with no loss of generality). Further, we assume 
<p(t, q) = G(t)q and Q(t), 0k(t) to be convex and compact-valued. 

LEMMA 2.1. In order that tJie convex sets X(t,yt(-), 20, B
n) be bounded 

it is necessary and sufficient for tJie form $>0(Z) = l'W(t, t0)l to be positive-
3. Eere 

t 

W(t,t0) = j8'(t,x)G'(x)G(x)8(t,x)dx9 

wJiere 8(t,x) is Hie matrix solution of tJie system 8' = —8A(t), 8(t9t) 

= •»»• 

The positive definiteness of &0(l) is equivalent to the requirement 
for the homogeneous system (1.4), (1.6) to be completely observable. For 
finite-dimensional linear systems the latter property is equivalent to the 
requirement for X[t,yt(-), tQ,X°) to be bounded for X° = Bn, with 
Q(t), St(t) being bounded uniformly in t. 
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It may be useful to describe the "best" and the "worst" signals y(-) 
e Y(0, Bn) from the point of view of the observer. 

The "worst" signal for the observer is the function y°(-) eY(0, Bn) 
for which 

â(X(21,2/0(.),20,X«)) = m%x{d(X[t1,y(-),t0,X«))\ y(>) e Y(0, Rn)}. 

Here<Z(X) = max{£(e(Z|X) + £( — ZX))| |Z| =1} is the diameter of set X. 

LEMMA 2.2. Assume that the sets Q(t),M (t) are symmetrical about the 
origin and let X° = Bn. Then y°(-) = 0 . 

Therefore, under the conditions of this lemma, the worst triplets 
£( ") = {x°i *>( ')> S( ')} for the observer are those which generate the sol
ution of (1.4), (1.6) due to the system 

x =A(t)x + G(t)v, y =G(t)x+S9 x(t0) = x° (2.1) 

for the signal y(t) E= 0. 
It is more difficult to define the triplets {x°9 v(-), £( •)} (i£ t ^ y exist) 

for which X* (21? yt ( •), 20, X°) is a one-element set (dX* = 0). 
Consider the following example of necessary and sufficient conditions 

that ensure the property just stated. Take s (2, tX9 X( • ), Z) to be the solution 
of the system 

s « -sA(t) + X'(t)G(t), s(t±) = I\ (2.2) 

Here X(-) e9^( •), where ^(m>(-) consists of all functions X(-) which 
are the generalized derivatives X(t) = dA(t)\dt of functions A( •) e V^m)(T), 
where V^m)(T) is the set of m-dimensional functions of bounded variation, 
concentrated on T. Also assume that {0} GintX0. 

LEMMA 2.3. In order that for any x° e X° the pair 

{ v * ( t ) , £ * ( 2 ) } ( « * ( • ) e & $ > ( T ) , f * ( • ) G Ü « ( T ) ) 

should generate a realization y*(-) for which the set X(t1,y*(-),0,t0, X°) 
is a singleton, it is necessary and sufficient that there exists a collection of 
nonnull vectors ft\ (i =* 1 , . . . , n) with 

n+l n+l 
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and sucJi tJiat for every l® tJie following problem be soluble in tJie class X( •) 

s(to,tx,X(-),0) = !«>', 

<«(•,*„ A(-),ï),«*(•)> =^x{<s( . ,2 1 ,A( . ) ,Z)^( ' )> | «( ')6Ö(")| , 

<*(•), *•(•)> =min{<A(-),f(-)>l £(-)e*(-)}-

It is possible to indicate some sufficient conditions for the assumptions 
of Lemma 2.3 to be fulfilled provided that the system (2.1) is autonomous 
andÖ(*)s ( | ,« ( l )E« ([20]). 

We will say that the function v(i) has a complete oscillation on tJie 
interval [2', 2"] in tJie direction I if, simultaneously, 

and 

vrai max Vv(t) = max{Z'^| v e Q} 
te[t't"] 

vrai min Vv(t) =min{r-ü| veQ}. 
te[t',t"] 

The oscillations of the function f (2) are defined similarly. 
We will say that the functions v(t) (£(t)) have JSf complete oscillations 

in the direction I on the interval I7 if it is possible to indicate N pairwise 
nonintersecting closed intervals of complete oscillation in that direction. 

LEMMA 2.4. Assume tJiat tlie system (2.1) is autonomous and tJiat either 
m = n or 0 = 0. Then for any interval T tJiere exists an integer N such tJiat, 
if eacJi of tJie pairs v*(-), £*(•) has N complete oscillations in eacli of tlie 
respective directions e$ e Bn; i = 1 , . . . , n (for v*) ; e$ e Bm, j = 1, ..., m 
(for £*), where e$, e\§ are tJie elements of tJie standard basis in Bn and Bm, 
respectively, then the conditions of Lemma 2.3 are fulfilled. If tlie matrix 
A Jias only real eigenvalues, one may talee N = n, where n is tJie order of 
the system. 

Therefore the conditions of Lemma 2.3 are fulfilled whenever the 
functions v(t), f (2) are oscillating in some special way between the ex
treme points of the restriction sets Q, ài. We mention that the asymptotic 
condition X[2]->X*(2->oo), where X* is a one-element set, is fulfilled 
if the realizations v*(t), |*(2) are generated, for example, by stochastic 
processes having certain ergodicity properties and if the original system 
posseses certain periodicity properties ([14f], [23]). 
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3. Deterministic (guaranteed) estimation and stochastic estimation 

The description of the evolution of sets X(2, •) leads to the solution of 
a deterministic estimation problem. Indeed, knowing X(2, •)> we may find 
a guaranteed minmax estimate x°(t) of the unknown actual state of the 
space vector x*(t)9 taking x*(t) to be the "Chebyshev center" of the set 
X(2, •). Namely, x°(t) is determined from the condition 

e°(2, •) =max{||aj°(2)~a?||| xeX(t, >)} 

= min max {II« — x\\\ zeX(t9 •)> xeX(t9 •)} 
Z X 

where e°(2, •) is the guaranteed error of the estimation process. The com
putation of x°(t)9e°(t9 •) leads to a special problem of mathematical 
programming. 

Passing to the evolution of sets X(2, •) for linear systems, we may de
termine the support function Q (I \ X(t, • )) to be of the form 

e(ZJX(2,-)) = inf Us(t9tQ9X(-)9l)\X°) + 
A(.)6^W(-) 

+ J [Q(s{r9tQ9X(-)9l)\G(t)Q{t)+B(t)u(t)) + 
h 

+Q(-X(t)\<%(t)-y(t))}dt\. (3.1) 

The investigation of this function leads to the following conclusion. 
Consider the set Z(t, M ( • ), X°) of all solutions of the differential inclusion 
(A°(t) =A(t)-M'{t)G(t)9G«(t) =M'(t)) 

^eA^(t)z+CQ(t){y(t)-F(m(t))+B(t)u + 0(t)Q(t) (3.2) 

generated by all possible initial vectors z(tQ) GX° . 

LEMMA 3.1. The following equalities are true 

n{£(* , i f ( - ) ,*° ) l^ ( - )} = X(t,yt(-),«t[>),X*)-X[t,>), 

e(l\X{t,-)) =mî{e(l\Z{t, M(-),X*)\ Jf(-))} 

where the matrix M(t) may have no more than m independent scalar functions 
mim(t) ^ 0 for its entries (M(t) = {mtj(t)}). 
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Therefore equation (3.2) carries complete information on the evolution 
of the sets X(2, •). It is interesting to mention that the sets X(2, •) may 
also be described by means of equations related to the solution of the 
linear-quadratic Gaussian estimation problem (the Kaiman filtering 
problem), ([8], [10]). Namely, the following result is true. Consider inclu
sion (3.2), where 

A°(t) = A(t)-P(t)G'(t)N(t)G(t)9 C°(t) =P(t)G'(t)N(t)9 (3.3) 

P(t) ^A'MBM+PWAM-PWG^VN-iWGWPW+MW. (3.4) 

Denote the set of all solutions of this inclusion that start at z° e X° by 
Z(t,B(<)9X<>)9 where D(>) = {L, H(-), N(-)}. Then (see [14c], [14d]). 

THEOEEM 3.1. The following equalities are true: 

X(t9-) = r){Z{t9B(')9X°)\D(-)eB0}9 

G(Z|X(2, -)) -mt^llZ^D^.X^B^eB,}. 

Here D0 is the set of triples B( •) such that L = aBn9 M(t) = ß(t)Bpr 

N(t) = y(t)Em9 where the scalar parameters satisfy a > 0 , y(2)>0, 
ß(t) > 0, Bt is the set of triples B( • ) such that the matrices M (2) > 0, N(t) 
> 0 jointly depend at each instant 2 on no more than m independent 
scalar parameters, with L > 0 being arbitrary. 

In the case where Q(t) = {0}, the sets B0, Dx may be replaced by B*f 

B* where 

D0* = {aBn9 y(-)Bm}9 D* = {L909N(-)}. 

The above theorem admits the following probabilistic interpretation 
Consider the system 

dz = U(2)« + Ö(2)t?(2)+B(2)w(2))d2 + ö-1(2)^, 

dp =(G(t)z+i(t))dt + o(t)dr}9 

where v(t)9 £(t) are unknown deterministic functions bounded by convex 
sets Q(t) and !%(t), respectively; dw, dr\ are the standard normed processes 
of Brownian motion, a(t), ax(t) are given continuous matrix coefficients 
of diffusion with c1(2) nondegenerate, z(t0) is a Gaussian vector with mean 
value z0,p(t0) = 0. Having v(t), £(2) fixed, we may find the conditional 
mean value z[t] =z(t,pt(-), vt(-), ft(-)) of the process z(t) with given 
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measurement pt(-). It is well known ([8], [10], [16]) that s[2] satisfies 
the system 

dz ==A0(t)zdt + O<>(t)(dp-Ç(t)dt) + (B(t)u(t) + O(t)v(t))dt9 

where z(t0) = s°, A°(t), G°(t) are defined as in (3.3), (3.4), and M(t) 
= 0^(2)a[(t), JV(2) = tf(2)ö'(2). Let 

Z{t,B('),X^^{\Jz[t,pt('),v^)9^)9z^)\ 

v(-)eQ(-)9e(-)eM(-),z°eX<>} 

be the set of all conditional mean values of the vector z with uncertain 
mean values G(t)v(t), 1(2) of the disturbances 

O(t)v(t) + o(t)dw(t)ldt, £(t) + ax(t)dr](t)ldt. 

Then, under the same restrictions on v( •)>£(•) in both (2.1) and (3.6) 
and with p(t) ^y(t), the sets £[t ,D( •)»&(')] and Z[t9B(-), X°) coin
cide and Theorem 3.1 throws over a bridge between the solutions of stoch
astic Kaiman filtering and deterministic game-theoretic filtering. 

The proof of the latter theorem is based on the fact that the Lagrange 
multiplier X( •) which optimizes the right-hand side of (3.1) may be looked 
for in the form of an aggregate that may be represented by matrices L, 
M(-), N(-) related to a special auxiliary problem of statistical Kaiman 
filtering. Therefore the problem of minimizing (3.1) by X( •) is now substi
tuted by conditions of type (3.5), where the minimum is sought in the 
class of covariance matrices for the auxiliary problem. The inclusions 
(3.2), (3.4) may thus be treated as universal equations that contain in 
particular the solutions of stochastic filtering problems (for Q(') = {0}, 
<%(-) = {0}), the solutions of guaranteed estimation problems (according 
to Theorem 3.1) and the solution of the filtering problem for a system 
with statistically uncertain disturbances (3,6). 

The latter problem allows a generalization directed toward the estima
tion of systems of type (3.6) with incomplete information on the matrices 
o(t), o±(t) and L. 

Theorem 3.1 gives a precise description of the sets X(2, •). Various 
approximate descriptions of X(2, •) by means of appropriate solutions 
with quadratic integral constraints, including the best approximation 
of X(2, •) by ellipsoids are discussed in [3], [5], [14a], [25]. Finite differ
ence schemes related to the problems under investigation are given 
in [11]. 
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4. Duality relations for problems of control and estimation 

The calculation of e(Z|X(2, •)) admits a natural interpretation in terms 
of the primal and dual extremal problems. Consider the case of u( •) = 0 , 
X° = Bn. Denoting the solution of equation (2.1) by x(t910, v('), x°)9 

consider the "primal problem" (P): 

determine max (l9x(tx,t0,v(*)9 x0)) over all solutions x (2, 20, v ( * ), x°) 
consistent with equations (2.1) with v(-) eQ(-), £(•) e0t(*), X° = Bn 

and with given y ( • ) . 

The problem just stated may be formulated in the form: 

determine 

- , / 0 = min/(0°, v( • )) over x° e Bn, v( • ) e &$(T) (4.1) 

under the conditions 

/ « « ( • ) ) = (-h*M*(-)*<*)) + 

h 
+ /((5(y(2)-ö(2)a?(2,20,V(O^o)l^(2)) + ö(^(2)|C(2)))d2, (4.1') 

dxjdt = A(t)x + 0(t)v(t), x(t0) = x°. 

The respective "dual problem" (D) is as follows: 

determine 

X* =inf{^(s°, X('))\s°eBn, A(-) eL^(T)} (4.2) 

under the conditions 

h 
X{s«, A(-)) = / (çH^*i^(O^ 0 ) |Q(2)) + e(A(2)|^(2)+2/(2)))^2 + 

+ ô{s(t0,t1,X(-),s«\l), (4.2') 

dsßt = -sA(t) + X(t)G(t), sit,} = s° = 0, 

Under standard regularity assumptions ([6], [14a], [15]) the solution 
of problem (4.2) is attained on the pair (4 , X% ( • )) a n d / 0 = St? °. 
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The problem above consists in estimating (Z, x(tx)) "a posteriori" 
on the basis of an available function y (2). Of special interest is the "worst 
case" for the observer when y(t) = 0 and Q( •) = —Q( •), 0t( •) = — ffl( •). 
The respective solution can be given an interpretation in terms of "a priori" 
estimation. The latter problem is as follows : 

from among the linear operations <w(•)>#(")> defined by functions 
w( •) G W, where W is a given subset of I^(T) select an optimal operation 
which provides the minimum of 

x(w(-)) = max {\<w(-)9y(-)y-(l9x(tx))\} 

under the "unbiasedness" condition w(-) G#"0 where W0 is the set of 
elements w satisfying the equality 

< « ( • ) , y ( - ) > k . j : o - ( » , « * ) = <«^0fG(0»(">< i i <>,*•)>, (4.3) 

a?* = x(tx) denoting the unknown actual state of the system. Thus the 
guaranteed estimate for Vx(tx) received a priori (for v(<) eQ(>)9 £(•) 
eâZ(')9X° =Bn) is %(w°(-)) = inf {%(w(-))| w(-) eiT0}. After computing 
the Langrangian, we obtain 

e° = inf 0(w(-))9 0[w(')\ = sup &(w(-),v(-)9£(-)9p)9 

(4.4) 

&{w(-)9V(-),l;(-)9p) =<W(-)9G(')x[;t19v(.)9p)> + 

+ <«(•), « 0 > + CP,l). 

Turning attention to the dual problem, we are to choose from among the 
controls u( •) e <%( •) (%( •) is a subset of £ef*(T)) an optimal control u°( •) 
minimizing the functional 

dfe/<Z2 = JL(1)(2)̂  + (?(1>(2)̂ , s(20) = 0, z(tx) = 5 (4.5) 

over the set of solutions of the system 

h 
C° = min y(u(-))ï y(«(-)) = f F[z(t),u(t))dt9 (4.6) 

where 

F[z(t),u(t)) = e(z[t,t0,u(-),d)\QU(t)) + Q(u(t)\MM(t)), 
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*(')>0(')>#(") a r e given sets. The respective Lagrangian has the fol
lowing representation: 

^ («(•), / * ( • ) , ' ( • ) , 2) =<«(•»<!,/»(•), 2), 0(1,(-)«(-)> + 

+<«(•),*•(•)> + («,«). 

Here « (f, f0, % ( • ), d), s [t, tt, \i ( • ), q) are, respectively, the solutions of 
system (4.5) and of the system 

è = -8J!»(t) + rtt)0®(t), «(<x)=a. (4.7) 

Thus 

f = i n f sup 'j2?«(u(-),Ai(-)i r(-), fl). (4.8) 

Assume that for a certain ô > 0 problem (4.5) is solvable in the class 
u(-) e<%( •) for 0(2X) = <Z*, for every vector d* e8ô(d) (<%(-) being weakly 
compact). 

Then in (4.8) a minmax is attained on the elements 

tt°6*(0, w°(-) eQ(1)(-)? f (0 e«(1)(-)» 2° = ^ n -

The latter case is called regular. The regularity property for problem 
(4.4) is defined similarly. 

THEOEEM 4.1. Assume the conditions 

A'(t) = -J.(1)(2), G'(t) =(?(1)(2), 0'(t) = ü(1>(2), 

m-) = # • ( • ) , ö ( - ) = ö ( 1 ) ( - ) , ^ ( - ) = ^ ( 1 ) ( - ) , ä = I , 

oroâ steppose tJiat at least one of tJie problems (4.8), (4.4) & regular. Then 
tJie solutions of problems (4.8), (4.4) are attained an tJie elements u°(-)9 

^4°(*)j r°(*)j 2 a»d w°('), fl°(')> £°(')>2*°> respectively, where w°'(-) = w°(-), 
^ ' ( • ) -« 0 ( - ) , r ° ' ( ' ) = f ° ( - ) , 2 ° = ^ ° . 

Thus the optimal control w°( •) for the control problem (4.8) coincides 
with the optimal operation w°(*) for the observation problem (4.4) and 
the extremal trajectory s°(-) = s(-, 21? iw°(-),^°) coincides with the sol
ution x°(-) = x(',t0,v°('),p°) of equation (4.1) related to the "worst" 
realizations of disturbance v(-) and boundary vector p. 

COROLLARY 4.1. Under conditions of Theorem 4.1 tJie solution u°(-) 
of problems (4.5), (4.6) coincides for <%(') =JP^(T) with the solution 
Ä°(") of problem (4.2). 
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But then, in view of Theorem 4.1, the dual problem (D) may be inter
preted for y(t) = 0 , Q(-) = — Q(-)9M(-) = — 0t(-) as a problem of 
finding an "a priori" estimate of the parameter [I, x(tx)) under uncer
tainties v(-), g(-)9x°. The extremal multiplier X°(-) of problem (4.2) co
incides for HT( -) = ^^(T) with the optimal operation W°( •), owing to 
the criterion X ( iv ( • ) ) = min, and v° ( • ) coincides with ^° ( • ), while £° = f*. 

Thus the "dual" relations for the extremal solutions of problems of 
control and observation under uncertainty are a reflection of the well-known 
duality relations in convex analysis ([1], [6], [24b]). This situation admits 
a generalization to more complicated classes of ordinary and distributed 
linear control systems. 

Finally, it is worthwhile to emphasize the fact that problems of 
"a priori" and "a posteriori" estimation are related to each other in the 
same way as problems of open loop and closed loop control. 

5. Positional strategies. Game-theoretic duality 

The process of determining the guaranteed^stimate e° (4.4) may be con
sidered within the framework of differential games where one is taconstruct, 
in accordance with system (2.1), a semicontinuous in yt(-) multivalued 
function T^(2, yt(')) £ Q(t)— a "strategy of control" which satisfies 
the inequality 

flOpj = max inf {\l'x-z\} < e°, 
œeXit^zeZitpWHt,-)) 

whatever be the realization yt(-). Here Z(t, W(t9 •)) is the set of solutions 
of the inclusion 

*(t)ey'(t)ir{t,yt(.)), z(t0) = 0 , 

Thus the aim of the strategy ir°[t, yt(')) is the approach by z to the 
actual value z* = Vx* at a guaranteed distance e° (with the additional 
condition that the realization w [2] e W° (2, yt ( • )) satisfies w [ • ] e iT0). 

The computation of TF0 (2, yt( - )) may be achieved on the basis of a differ
ential game duality principle, which associates with the problem under 
consideration a regular differential game with incomplete information 
(in the sense of [9], [13]). The systems under conflict here are (4.1) and 
(4.2). The equivalence of the respective solutions then follows from the 
duality principles just mentioned and from the possibility of constructing 
the solution strategies for regular differential games on the basis of additio
nal open solutions ([13]). Thus the realization of the process of minimaxi-
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mizing the Lagrangians «5?, 3?^ may be treated as a differential game between 
the primal and dual systems (4.1), (4.2) controlled by parameters w and 
v (w = X) or, respectively, by u and p. 

6. Adaptive strategies of control 

A problem of special interest for (1.1), (1.5) is the one of a proper formal
ization and further on, of a computation of a control strategy u(t,yt(')) 
that ensures for all 2 ç T the inclusion 

EX(t,yt(-),ut[-l,X°)çzœ(t), (6.1) 

where u[t] is the realization of the strategy u(t9yt(-))9 E is an s xw-mat-
rix, X(t) is a given upper semicontinuous multivalued map (X(t) 
e Q(B3) for all 2). The inclusion (6.1) must be true for any realization 
y^)eYt{ut('),Xo). 

For full measurement of x(t) the inclusion (1.5) turns into the equality 
yE= x. The strategy u(t, x) (u(t, xt(-))) then ensures the "viability" prop
erty for system (1) in the sense of [1]. 

The solubility conditions for the linear case of the given problem 
(see (1.4), cp(t,q) = C(t)q) with additional terminal restrictions may be 
shortly stated as follows. For the system 

q =A(t)q+B(t)u, q(t0) = 0 , ue@(t) (6.2) 

one has to specify a number v° and a multivalued strategy 

u[t,q[t]+P(t,-)), ff[t]+P(V) =X(tr), 

(y[t] =»[*] + «[*]), 

that ensure the inclusion 

Eq(t, t0, u [•], 0) s X(t) - EP(t, •) = tf»(t, •) 

with the terminal constraint 

${g.(ti,t0,ui.],o)+P(tx,'))^v«. 

Here y^f], u\f\ are the realizations of the measurement and the control, 
ff[t] =2(*,*of"[-]0) is the solution of (6.2), P(t, •) =P(«, zt( -),P°) 
is the informational set for the system 

peA(t)p + G(t)Q(t), zeG(t)p+m(t), X° =P°, (6.3) 

similar to the set X(t,yt(-),Q, X°) defined in Section 1 for (1.1), (1.5) 
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(P{x.zv(.\t).t-P} isthensimilartoX(r7^(-!2),0,X)), @(x) = max{9?(a?)| 
x G X} where cp is a given convex function. Write 

X°(x9-) = X°(x9 • |2,P) ^X(x) + EP[x9zx(-\t)9t9P) 

and let Ztl(-\t,P) be the set of measurements generated by system (6.3) 
for z(t) eP, where 2 < x < tx. Let v(wf ( • |2), ̂  ( • |2), 2, g+P) be the smallest 
number v satisfying 

*(ff(*if 'i V • l*)i 2) +P(«i, *h[ ' I*), P)) < *° 
under the constraint 

JBTfftr, *,«,[•!<], 2) e ^°(T, -|*,P), (6.4) 

v°(2,g+P)= max min v(ut(-\t)9zt(-\t)9t9q+P). 

The function v°(t,q+P) corresponds to the potential in the theory of 
differential games [5]. We have 

v°(t, q+P) = sup{?F(Z, A(-), 2, q+P) \A(-) e V^(T), leBn] 

where ?F(Z, A(-), 2, q+P) is the dual functional for problem (6.4) 

W{l9A(.)9t9q+P) 
h 

= - / Q(s(r9tx,A(.),l\P(x)))dx-f(l,A(-)\t9q+P) 
t 

and the function /(Z, ^L(-)|2, g +P) is calculated by means of the tech
nique of convex analysis [10, 22, 23], and s(r, 2, A(-)9 Z) is the solution 
of (2.2) (with *(•) =<L1(-)I<Z2). 

Assume that the functional !F(Z, A(-)9 2, g+P) is strictly concave 
in l9 A(-) and that for each of the sets X°(2, •) there exists a Euclidean 
cr-neighborhood X\(t, •) such that in the domain ß e Jf?(2, •)? 0 <r< a 
the following conditions are fulfilled 

d+r(p\ X°(t, •))/32+minmax(Z,jf)<0, 

fe'dr(p\X°(t, •)), ZG.A(2)JP+P(2)P(2), 

r(i>|ir) =inf{|fl>-g||grGX}. 

Assume also that, for a certain d > 0, each of the sets X (2) — (.HP (2, • ) + 
+ #ó(0)) is nonvoid. 
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The solution of the problem is then given by the strategy 

U(t9X) = 
de{s°(t\t9q+P)\0>(t)) if gGint^°(2°, •), 
P(t) if qeX°(t9 -)\intjf°(*, •)> 

\dcp*(0\t9q+P) if q<£X°(t9-)9 

where s0(r|2,g+P) = s[x9 tx, A
Q(-)9 Z°), the pair 

{l«9A»(.)}edW*(0909t9q+P)9 

(îP*(Z*, -4*( •), 2, 2+P) is the functional conjugate to Ï7 in l9 A(-)9 and 

p*(#|2, ff+P) is the function conjugate to 

V(l\t9q+P) =Q(l\dr(p\K«(t9.))) + ô[l\A(t)p + B(t)P(t)). 

An accurate definition of the solution for the inclusion 

dx/dt e A(t)x+B(t)U(t, X(t9 -)) + 0(t)Q(t)9 

y =G(t)x+ât(t)9 

and the proof of a respective existence theorem is given in [14a]. 
The problem under consideration may be treated as a problem of 

constructing an "adaptive" strategy of control, its solution requiring 
the use of methods of game-theoretic dynamic control, ensuring therefore 
a guaranteed result. 

Among other problems lying within the framework of this report 
we might mention that of maximizing the diameter dX(t19 •) of the set 
X(tx, • ) by selecting a strategy u [t, y ( •)) for (1.1), (1.5). The more general 
situations lead to optimization with respect to a partial ordering intro
duced on the variety {X(t19 •)} 

7. On problems with quadratic constraints 

Consider the system (2.1) with the constraints 

(^,lk»o) + <«(OiJf(O«(O> + <f (O,^ ( - ) f (0><^ i i (7.1) 

where £ > 0 , M(t) > 0, N(t) > 0 are symmetrical matrices, L = const. 
The respective domains X(t19 •) now turn to be ellipsoids. Therefore 

the Ohebyshev center x°(t19 •) that gives the minimax estimate for x(tx) 
is the center of this ellipsoid. 

One can therefore consider the problem of selecting a program g°[t] 
= ^(2,^°(2)) or a measurement strategy g(t9 u) = g(t9 u°[l, X(t, •))) 
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providing, for any realization yu('), a minimal ellipsoid X(215 •) with 
respect to the inclusion ordering. The problem allows a solution in explicit 
terms [7]. 

Another question that deserves to be mentioned is to describe the 
class of closed-loop optimal control problems for system (1.4), cp (t, q) 
= 0(f)q, (1.6), (7.1) in the class of feedback strategies u (t, yt(-j) for which 

the separation principle is true; i.e., such that [u (t, yt( •))} may be reduced 
to a set of strategies of type u = u[t, x°(t) •)) calculated in the process 
of independent solution of the respective problems of estimation and of 
feedback control with complete information. There exist some nontriviar 
examples which show that this class of problems is nonvoid. 

8. On nonlinear estimation 

Consider the construction of sets X(2, •) for system (1.1), (1.3) with lineal 
measurement 

>y-G(t)xe0l(t), (8.1) 

In this case the set X(2, •) is, in general, nonconvex. However, here 
and in the more general nonlinear case it is possible to construct an equa
tion of a convex majorant X*(2, •) 2 coX(2, •)• Namely, the following 
result is true: 

THEOREM 8.1. Assume that the function u(t) in system (1.3) is the sohition 
of the equation u = Ou, u(t0) = u°, where 0 = {ci3} is a given constant 
(p xp)-diagonal matrix. Then for cmy triplet {L, M( •), N( •)} = A(-) the 
set coX(2, •) for the system (1.3), (8.1) is contained in the set Z[t, A(-), •) 
= {#[f| =s #*[2] + #*[2]} generated by all solutions of the system 

x* e A(t, Q(t))x* + B(t)u, ù = Cu, 

x(tQ) = x°, a* = Y a» , u(t0) = u«, z®(tQ) = 0, 
i = i 

mecuBnz^+F^&\t)K-\t)[y{t)-Q{t)m*-B{t)), 

J?» =- 2ciiP®-(P®G'(t)K-1{t)G(t)P+PG(t)K-1(t)G(t)P®) + 

m 

Â * = (% + c t t)J> t t+P ( i^ ' ( i )Z- 1( t )ö( t )PW, 
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Z(t) =M(t)+G(t)P*m'(t), P*[f] = {x°'®En)L{t){x«®En), 

A * ( * o ) = 0 , P ( ' ' > ( g = 0 , ( i , f t = l , . . . , ) ; x,zeBn. 

OOBOLIIAUT 8.1 The following inclusion is true 

coX(t,-)çf){z{t>M-),-)\M-)}-

Theorem 8.1 is proved by means of an approximation of the given 
solution with other informational domains which are ellipsoids constructed 
for a special problem related to autonomous equations of type (2.1) with 
quadratic constraints on the respective Green functions and on the distur
bances in the measurement. 

The given inverse problem is related to problems of identification 
of dynamic control systems [7]. Here, in particular, we come to the prob
lems of selecting the best inputs u(t) that ensure minimal dimensions of 
the domain X(2, •) and to those of best approximation of the trajectory 
of the Chebyshev center x°(t, •) by means of solutions of appropriate 
ordinary or time-lag control systems. 

The description of the evolution of domains X(t, •) for a more compli
cated system (1.1), (1.2), (8.1) may be considered within a discrete scheme 
of sequential estimation for one-stage systems of type 

zef(X) + Q, y-Gzem, (8.2) 

s* e co/(X) +Q, y-Gz* e M. (8.3) 

Denoting the sets of solutions for systems (8.2), (8.3) by Z = {z}, 
Z* = {z*}, we have Z e eoi? e z*. Here the sets Z are nonconvex and, 
in general, disconnected. 

Following the schemes similar to Sections 2, 3, we obtain 

Z e ®[M, f(X)), Z* c 0t[M9 co/(X)), 

where M is any m x ^-matrix, 

M(M,F) = (Bn-MG)(F + Q)+M(y~-<%). 

Finally we have 

z = u (n {«(•**•,/(*))IM})9 z* = n w » «>/(*))i Ai-
xeX 

A sequential application of these relations yields a discrete approxima
tion of domains X(2, •) or of their convex majorants [11]. 

36 — Proceedings..., t. II 
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From the conclusion of the above it is finally possible to prove that 
for the system (1.1), (1.5), where 

F(t, x, u) = F(t, x), G(t9 x9 u) = G(t)x+M(t) 
satisfy the assumptions of Theorem 1.1 and y [2] is continuous, the set 
X[2] =X(t, -) satisfies the following evolution equation (a.e. in T) 

lim0(X[2 + ft], %h(t + h))h~l-*Ü 

where 
arÄ(* + Ä) - U H Ç\{[B-MG(t + h)){x + h&(t,x)) + 

xeX[t] M e>0 

+ shM8+ M[yit + K\-®(t + h))} 

and 3}(X9S£) is the Hausdorff distance between the sets X, 3T. 

9. Infinite-dimensional generalizations 

The description of the evolution of domains X(2, •) admits a natural 
generalization to differential equations and inclusions with after-effect 
or to systems described by partial differential equations [16] (e.g., as 
those which describe the estimation of a heat distribution within a body 
of given configuration through the values of a finite number of pointwise 
measurements under uncertain disturbances). 

We wish to point out one specific feature of these problems. Namely, 
in the absence of constraints on the initial distribution and with a strong 
boundedness of disturbances in the original system and in the measure
ment equation, it is worth while to investigate the conditions for the 
respective informational domains to be bounded. The latter property 
is equivalent to a condition similar to observability in the absence of 
disturbances. Here it turns out that in parabolic systems and in systems 
with time lag the latter boundedness property holds if and only if the 
duration of the observation process is not less than the length of a certain 
critical interval of observation. 

We finally wish to underline that the problems considered in this 
report are closely connected with the theory and methods of solving 
ill-posed problems [26]. 
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P. L. LIONS 

Hamilton-Jacobi-Bellman Equations and the Optimal 
Control of Stochastic Systems 

Introduction 

In many applications (engineering, management, economy) one is led 
to control problems for stochastic systems : more precisely the state of 
the system is assumed to be described by the solution of stochastic differ
ential equations and the control enters the coefficients of the equation. 
Using the dynamic programming principle E. Bellman [6] explained why, 
at least heuristically, the optimal cost function (or value function) should 
satisfy a certain partial differential equation called the Hamilton-Jacobi-
Bellman equation (HJB in short), which is of the following form 

sup{.Aa^-/a} = 0 i n « (1) 
aesf 

(with appropriate boundary conditions) where Aa is a family of second-
order, elliptic, possibly degenerate operators, parametrized by a lying 
in a given set sé (of the control values); and where fa is a family of given 
functions. Here and below 0 is a given domain in TLN a.nd u is a scalar 
function. 

The HJB equations are second-order, degenerate elliptic, fully nonlinear 
equations of the following form 

E(x, u, Bu, B*u) = 0 in 0 

with the main restriction that B is convex in (Bu, B2u). 

As special cases the HJB equations (1) include 
(i) the first-order Hamilton-Jacobi equations (HJ in short) 

H(x,u9Bu) = 0 in 6. (2) 

[1403] 
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Strictly speaking, (1) contains (2) when R is convex in (t,p), but as it 
will be made clear below, our methods enable us to treat the general HJ 
equation (2), i.e., the case of a general Hamiltonian H. 

(ii) the Monge-Ampère equations 

det(B*u) = H(x, u9 Vu) ih &, u convex in G. (3/ 

Again strictly speaking, (3) is a special case of (1) only if H(x,t,p) is 
convex in (t,p) — and if this is the case, the fact that (1) contains (3) 
is indicated in Section IV.l. But just as above, the methods we give 
below enable us to treat the general Monge-Ampère equations (3). 

We present here various existence and uniqueness results for equations 
(l)-(2)-(3), and one consequence of the results presented below is a com
plete justification of the derivation of (1) in the theory of optimal stochas
tic control. The tools and methods that we used or introduced for this 
study are of three kinds: 

(i) the notion of viscosity solutions of (l)-(2) : this notion, introduced 
by M.Gr. Crandall and the author, makes possible, in particular, a complete 
treatment of the HJ equations (2) ; 

(ii) probabilistic methods: many of them being inspired by ÏT.V. 
Krylov's work; 

(iii) new partial differential equation^ arguments involving approxi
mation methods and a priori estimates. 

The plan is as follows 

I . Viscosity solutions 
1.1 Definition of viscosity solutions for Hamilton-Jacohi equations. 
1.2 Some of the main results on viscosity solutions for H J equations. 
1.3 Eemarks on the viscosity solutions for second-order equations. 
1.4 Further results. 

I I . Optimal stochastic control problems 
I I . 1 Presentation of the problem. 
11.2 Continuity and maximality of the value function. 
11.3 Viscosity solutions and Hamilton-Jacobi-Bellman equations. 
11.4 Further results. 

I I I . Regularity of the value function 
111.1 Regularity results. 
111.2 Uniqueness results. 
111.3 "Further results. 

IV« Monge-Ampère equations 
IV.l Relations with H J B equations. 
IV.2 Existence and regularity results. 

Bibliography 
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I. Viscosity solutions 

1.1 Definition of viscosity solutions for Hamilton-Jacobi equations. We 
recall briefly below the notion of viscosity solutions of HJ equations 
introduced by M.G. Orandall a.nd the author [14]. This notion enables 
us to settle the question arising from the following remarks : (i) in general, 
there does not exist global G1 solutions, (ii) if Wl>°° solutions of (2) can 
easily be built by the vanishing viscosity method (see W. H. Fleming 
[22]), then in general, there may exist many Wh°° solutions of (2) with 
prescribed boundary conditions; and moreover, the Lipschitz solutions 
are unstable, see [14] for more details. The notion of viscosity solutions 
enables us to select the 'good' solution for which existence and uniqueness 
results hold. In addition one has stability results and viscosity solutions 
are exactly the solutions built by the vanishing viscosity method. 

Let & be an open set in RN and let H be a continuous function on 
0 xR xRN. We first recall the notion of sub and superdifferential of 
a continuous function u at a point xQ e 0: the superdifferential B^u(x) 
is the closed convex set, possibly empty, defined by 

B+u(x) =={£eRN\lim sup {<p(y)-<p(x)-(Ç, y-x)}\x-y\-1 < 0}; 

he subdifferential B^u(x) being defined in a similar way or by 

B^u(x) = — Df( — u)(œ). 

DEFINITION 1.1. u e 0(0) is said to be a viscosity solution of the H J equa
tion (2) if for all x e 0 we have 

Vf eB+u(x), H[x, u(x), f)< 0, (4) 

V£eBiu(x)9 H(x9u(x)9£)7zO. H (5) 

Bemarlc LI. Of course, if <p e 0(0) is differentiable at xQ e 0 then Bf<p(x0) 
= Bï<p(x0) = {V<p(x0)}'9 and conversely, if B^(p(x0)nB^(p(xQ) ^= 0 then 
<p is differentiable at x0. In particular, any classical (i.e., Ö1) solution of 
(2) is a viscosity solution of (2), and any viscosity solution u of (2) satisfies 
equation (2) at all points of differentiability. • 

This notion, introduced by M.G-. Orandall and P.L. Lions [14] has 
many equivalent formulations; the most 'convenient* one being given 
in the following 
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PROPOSITION L l . Let u eC(&): u is a viscosity solution of (2) if and 
only if, for all <p e G1(&), 

at each local maximum point xQ of u — <p we have 

H[x0, u(xQ), B(p(x0)) < 0, (4') 

at each local minimum point xQofu—><pwe have 

H(x0,u(xQ),B<p(x0))^0. m (5') 

Bemark 1.2. I t is possible to replace in the above statement local by 
global (resp. global strict, resp. local strict) and op e G1 by <p e <7a (resp. 
<p e G00). For more details, we refer to [14] and to M. G. Orandall, L. 0. 
Evans, and P. L. Lions [13]. • 

One of the striking features of viscosity solutions is their stability 
with respect to uniform convergence (on compact sets) : if un e G(&) is a viscos
ity solution of (2) where H is replaced by Hn, and if un,Hn converge 
uniformly on compact sets to u, H, then u is a viscosity solution of (2). 
Similar results are obtained for the limit functions obtained via the van
ishing viscosity method: if uB eG2(0) solves 

— eAue+Hs(x, ue, Bue) = 0 in @ 

and if ue, He converge uniformly on compact sets to u9 H as e goes to 0, 
then u is a viscosity solution of (2). 

This simple remark enables u s t o obtain very general existence results 
of viscosity solutions for the H J equation (2) (with prescribed boundary 
conditions on d&) : using the vanishing viscosity method and the properties 
stated above, this amounts to the obtention of a priori W1'00 estimates 
uniform in e. Existence results are treated in P. L. Lions [33], [35]. 

1.2. Some of the main results on viscosity solutions of H J equations. We 
now present a uniqueness result taken from M. G. Orandall and P. L. 
Lionvs [14]. We use the following assumptions 

3y =y(B)>0, V(x,p)e(9xRN, V|*|, |«I < JB, 

[H(x, t,p)-H(x, s,p))(t-s) > y(t-s)*, (6) 

lim[mV{\H(x,t,p)-H(y,t,p)\l\x-y\(l+\p\)<e, | * |<U}]=0 (7) 
e->0 

for all B < oo. 
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THEOREM LI . Assume that 0 is bounded and that (6) holds. Let 
u,v e 0(0) be two viscosity solutions of (2). We assume in addition either 
that (7) holds or that u, v e WhOO(0). Then the following inequality holds; 

sup(w — fl)+<sup(w —-y)+. • (8) 

Of course, (8) implies uniqueness results for viscosity solutions of 
(2) with prescribed boundary conditions on dO: indeed, if u = v on d09 

then in view of (8), u = v in 0. 

Bemarlc 1.3. This result is shown in [14], [33] to be essentially optimal; 
variants concerning unbounded domains such as RN or time-dependent 
problems are given in [14]. 

1.3. Remarks on the viscosity solutions for second-order equations. We 
now consider fully nonlinear second-order elliptic equations such as 

H(x,u,Du,B*u) =0 mO; (9) 

where H e 0(0 xR XRN X 8N)1 satisfies the following ellipticity condition: 

H(x, t,p, r}x) < H(x, t,p, r]%) if ^ > rj2, \f(x, t, p) e 0 xR xRN. 
(10) 

To define viscosity solutions of (9), we must first define, for all (u, x0) 
e 0(0) xO, the superdifferential of order 2, B£u(x0). I t is the closed convex 
set, possibly empty, defined as follows : 

B+u(x0) ={(Ç,ri)eRNx8N\ 

lim s u p { ^ ( # ) - M ( 0 o ) - ( | , y - 0 o ) - | ( ^ 

the subdifferential of order 2 B^ u(x0) being defined in a similar way or by 

BzU(x0) = -B+(-u)(xQ). 

DEFINITION 1.2. u e 0(0) is a viscosity solution of (9) if for all x e 0 
we have 

V(£,7? eB+u(x), H(x, u(x), £, rj) < 0, (11) 

¥(£,<>!) eD^u(x), H(x,u(x)9Ç,rj)>0. • (12) 

1 SN denotes the space of N x N symmetric matrices. 
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I t can easily be checked that Remarks 1,1-2 and the equivalent 
formulation of Proposition L l can be extended to this case. Of course, 
if H does not depend on B%u, we recover the preceding notion. The stability 
results also hold if we consider sequences of H, u converging uniformly 
on compact sets. For more details on these questions we refer to P.L. 
Lions [34], [38]. 

The main question in this case concerns uniqueness results: except 
for easy results (if N = 1 , 2 , . . . ) , the only known case is when (9) reduces 
to the HJB equation (see Section II . 3 below). As regards existence results, 
general ones may be obtained by appropriate approximation methods. 

1.4. Further results. In the bibliography, various references are given 
concerning the notion of viscosity solutions for H J equations and its appli
cations to existence results, numerical approximation, optimal determi
nistic control problems, asymptotic problems, nonlinear semigroup the
ory, accretive operators. In P.L. Lions [39], the relations between viscos
ity solutions of (9) and TV2,*-solutions of (9) (satisfying (9) a.e.) are in
vestigated. 

II . Optimal stochastic control problems 

II .1 . Presentation of the problem. We define an admissible controlled 
system as a collection consisting of (i) a probability space (Q,F9B

l
9B) with 

the usual properties, (ii) an I^-Brownian motion Bi9 (iii) a*progressively 
measurable process at with compact values in a given separable metric 
space sé ; here at is the control process. The state of the system is given 
by the solution of the following stochastic differential equation 

dXt =o(Xt,at)dBt + b(Xt9at)dt9 xQ=xeO, (13) 

where, for simplicity, 0 is a bounded smooth domain in JR^ and a(x9 a) 
= [aió(x, a))l<i<N, b(x, a) = (b^x, a))1<i<N are coefficients satisfying con-

ditions detailed below and m is a given integer. We now define the cost 
functions and the value function of the problem 

T t 

J(x, 9>) =B{Jf(Xt, at)exv(-Jc(Xs, as)ds) dt + 
0 0 

x 

+9>(XT)exp ( - / o(Xa, as)ds)}, (14) 
0 

u(x) = inf {J (x, £f)\Sf admissible system}, (15) 
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where f(x, a), c(x, a) are given real-valued functions and r is the first 
exit time from 0 of Xt; x *= inf (t > 0, Xt$ 0). To simplify the presenta
tion we will always assume that 

( y(-, a) e W2>°°(RN), cp e W3'°°(RN)9 sup | |v(-, a ) ^ , « , < oo, 
«* (16) 

( ip(x9 •) G C(sé) for all a? G B ^ , for yj = oij9 bi9 c9f-9 

A = int{o(x9 a)lx eRN, a e sé} > 0 . (17) 

We now want to study the value function u and to show that, in 
a suitable sense, u satisfies and is characterized by (1) : 

sup [Aau-fa] = 0 in 0, (1) 

where /a(œ) = f(x9 a), Aa = - % ( # , a)dij-bi(x, a)di + c(x, a) and 
a = fco* .̂ 

In the next section we justify the derivation of (1) by showing that 
u is the unique viscosity solution of (1), provided u e 0(0). Therefore 
we first have to show that u e 0(0); the following result is taken from 
P .L . Lions [28] (where much more general results are given). We will 
assume (for simplicity) that dO = T_ n r o where F_, ro are disjoint, 
closed, possibly empty subsets of dO, and 

a{j(x, a)ni(x)nj(x) = 0, b{(x, a)ni(x) — aij(x9 a)ôijd(x) < 0 o n r _ Xsé, 
(18) 

where n is the unit outward normal and d(x) = dist(#, dO). We will also 
assume that 

3w G Whoo(0), Aaw^fa in @'(0) Va e sé, w = <p on T0; (19) 

3 ( 7 > O , V ( a ? , y ) G 0 x r o , 3 ^ : J(x, S?) ^p(y) + 0\x-y\. (20) 

THEOREM H . l . ZJtóer assumptions (18)-(20), ueO°'°(0) and u = <p 
on r0; here 0 = /l/Jl0 if A < A0, 0 arbitrary in (0,1) i / A ~ A0 <xwd! 0 = 1 
i/ A>A0 Ä A0 = sup { I T r ^ o - ^ O + ^&'f/ 0 G 0 , <XG J / , |f| = 1 } . 

Remarle IL I . In P. L. Lions [38], it is shown that conditions (18)-(20) 
are very natural. Certain extensions are also given and examples of situ
ations where (19)-(20) hold are indicated. 

Remarle II.2. Of course, if 0 =RN, (18)-(20) are vacuous and (19) 
holds. 
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Bemarlc II .3. The exponent 6 given above is optimal as it is shown in 
the following example. 

Bxample ILI . Take 0 = ]—1, + 1 [, a = 0, b(x, a) ^ x,f ^0,<p = 1 , 
c E= X. Then one checks easily that u(x) = \x\x and A0 = 1! • 

The proof of this result uses probability and analytic arguments based 
on the dynamic programming principle. 

We conclude this section by a result yielding one possible charac
terization of the value function in terms of maximum subsolution 

THEOREM H.2. The value function u satisfies: aT- Vu eLîOG(0) and 

Aau^fa in B'(0), Va e sé; (21) 

i.e. u is a subsolution of the HJB equation. In addition it is the maximum 
one in the sense that if ve 0(0) satisfies (21) and lim (v — w)< 0 then 
v^uin 0. d(iB)">0 

n . 3 . Viscosity solutions and HJB equations. The following result shows 
tha t , boundary conditions being prescribed, t h e value function is the 
unique viscosity solution of (1). 

T H E O R E M I I . 3 . If u e 0(0), then u is a viscosity solution of equation (1). 
Conversely, if ve 0(0) is a viscosity solution of (1) satisfying: v = u on 

dO then v = u in 0. 

This result, proved in P. L. Lions [38], justifies the derivation of the 
HJB equation and shows that (1) characterizes the value function. 

Sketch of proof. The fact that u is a viscosity solution of (1) is obtained 
by using the so-called optimality principle and by remarking that, taking 
advantage of the definition of viscosity solutions, one may replace u by 
smooth test functions ip and thus one may perform on ip the 'usual' deri
vation of (1). 

The converse statement is proved by probabilistic considerations and 
careful choices of test functions ip. 

II.4. Further results. In P. L. Lions [38], [40] these results are extended 
to more general situations and to other control problems (optimal stop
ping, time-dependent problems...). I t is also possible to show that if 
(18)-(19-) hold then one may restrict the infimum to admissible systems, 
where the probability space and the Brownian motion are fixed. Eesults 
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concerning the density of Markovian controls are also given. Let us finally 
mention that in P. L. Lions and M. ISTisio [47], Theorem II.3 is used to 
derive a general uniqueness result for nonlinear semi-groups. 

III. Regularity of the value function 

III.l. Regularity results. In this section, we follow and extend the approach 
of M". V. Krylov [26], [27] concerning the verification of the HJB equation 
in a more usual sense. The idea is first to obtain some regularity result 
on u and then to check (1). Since we do not want to impose non-degeneracy 
assumptions, we need to assume that dO = r__nr+, where r_, r+ are 
closed disjoint, possibly empty subsets of dO, and 

3v>0, \f(x, a) e r+Xsé 
cither ati(x, a)^(x)n$(x)^ v >0 
or a{j(x, a)ni(x)n^(x) = 0, b{(x, a)nt(x) —a^x, a)dijd(x) > v. 

(22) 
Write 

Xx =mv{2\div
T-èi\

2 + Tï(dio-dio
T)+2dib-êïil 

xeRN,ae sé, |f| = 1 } . 

THEOREM I I I . l . Under the assumptions (18), (22), if X> lx then the 
value function u belongs to Wh°° (0) and satisfies u = cp on i^u A and 

u is semi-concave in 0, i.e.: 3(7 > 0, d\u < (7 in @ '(0), V|f| = 1. 

(23) 

COROLLARY I I I . l . Under the assumptions of Theorem I I I . l , u satisfies 

AaueL°°(0) and s u p ^ ^ « ^ < oo, (24) 

and the HJB equation holds a.e.: 

sup{Aaw—/J = 0 a.e. in 0. 
a 

COROLLARY III.2. Under the assumptions of Theorem I I I . l . if there 
exist p e {1, . . . , N], v > 0, and an open set co contained in 0 such that 
for all x e co we can find n^ 1, 0l9 . . . , 0n e ]0 , l [ , a n . . . , an e sé 

n n P 

i = l i = l 3 = 1 

then di:ju G L°°(co) for 1 ^.i,j ^.p. m 



1412 Section 15: P. L. Lions 

A slightly weaker form of these results was first given in P . L. Lions 
[42] and the above results appear in P. L. Lions [38] (see also [34]). 

Sketch of proof. The estimate (23) implies (24) and Corollary I I I . 2 
in a straightforward way, and the fact that the HJB equation holds 
a.e. is a direct consequence of (23)-(24) and the fact that the value function 
is a viscosity solution of (1). Next, the proof of (23) is obtained by new a pri
ori estimates of two kinds; (i) a boundary e&timate obtained by a p.d.e. 
device, (ii) an interior estimate obtained by a probabilistic method. 

Remark I I I . l . In general, the assumption X > Xx is necessary in order 
to obtain (23) as is shown by Example I L I : in this example X± =2 and 
%(x) = |a?|A; now observe that u satisfies (23) if and only itX^Xx. m 

However, in the uniformly elliptic case, it is possible to assume only 
A > 0 

THEOREM IH.2. In the uniformly elliptic case, i.e., in the case where 

3i>>0, a(x,a)^vIN \f(x,a)eOxsé (25) 

we have u e W2tOO(0). 

This result was first proved in P. L. Lions [43] with the additional 
assumption À > Xl9 in [43] a new a priori estimate method was introduced. 
This method was simplified in L. 0. Evans and P. L. Lions [21] and 
Theorem III.2 was proved in [21]. 

An additional regularity result was recently obtained by L. 0. Evans 
[18], [19]; 

THEOREM HE.3 (L. 0. Evans). Under the assumptions of Theorem 
III.2, u e G2>\0) for some 6 e ]0,1[. 

IH.2. Uniqueness results. In the procecling section we obtained regularity 
results which ensure that the HJB holds a.e. One may ask if this yields 
a characterization of the value function. The following example shows that 
if ü G Wll0° satisfies (24) and the HJB equation a.e., it need not be ident
ical with u9 as is shown by the following example: 

Bxample I I I . l . Take a = 0, b ss a,' c == X, f = 1, sé = {a e RN\ 
|a| < 1}. Then clearly u = 1, but for aU ß9 x0 eR+ xRN 

u(x) =^( l - i ?exp(~A|a?~^ol) ) 

satisfies (24) and the HJB equation: \Bu\ + Xu = 1 everywhere except 
at x0. 
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Therefore we need some extra condition in order to characterize the 
value function. We have 

THEOREM III.4. Bet ueO(0) n W]£(0) satisfy: u = u on 80 and 

Aau^fa in B'(0), Va e sé; (21) 

sup {Aaù— fa} = 0 in the sense of measures; (26) 
a e s/ 

3geL%0(0), Aü^g in @'(0). (27) 

Then u s= u in 0. , 

Remark I I I . l . Of course, if 0 = RN
9 no boundary conditions are needed. 

Instead, we assume, for example ü e 0b(R
N). 

Observe that condition (27) appears to be quite sharp since in Example 
I I I . l , (Au)+ eLp(RN) for all p < N(e MN(RN)). 

Sketch of the proof. The proof of this Theorem has two ingredients : 
(i) the probabilistic lAestimates due to UT.V. Krylov [26], (ii) careful 
bounds on the commutation of regularizing kernels and operators with 
variable coefficients. 

HI.3. Further results. In the bibliography we give various references 
concerning previous versions of Theorems II . 2-3 and the analogous treat
ment of related problems such as optimal stopping, impulse control, 
time-dependent problems, or other boundary conditions, and the numerical 
approximation of HJB equations.. , Let us also mention that in the case 
where 0 = RN

9 Theorem I I I . l was obtained independently by N". V. 
Krylov [28], [29] and the author [41]. 

IV. Monge-Ampère equations 

IV.l. Relations with HJB equations. Let us now explain how the Monge-
Ampère equation 

det(D2w) = g(x) in 09 u convex on 0, u = <p on dO 

is related to HJB equations. This relation was discovered independently 
by B. Gaveau [24] and N. V. Krylov [30] and is given by the following 
algebraic observation: if A is an N xN nonnegative symmetric matrix, 
then 

(àetA)llN =inf{Tr(J .B) | B>09B =BT
f clet(B) =ljNN}. 
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Therefore the above equation is equivalent to the HJB equation : 

sup[ — 6#dqu] = —gllN in0 , u =<p on dO 

where B = (fy), m = {B ^ 0, B = BT, detB = l/JViY}. -

IV.2. Existence and regularity results. In differential geometry, the question 
of the existence of smooth convex hypersurfaces with various prescribed 
curvatures, such as e.g. the Gaussian curvature, leads to the following 
Monge-Ampère equations: 

det(D2w) =H(x,n, Vn) m.0, n convex on 0, n =cp 

on dO, (3) 

where we assume, for instance, cp e W2'°°(RN), H eO°°(0 xR xRN), 0 
being a bounded convex domain in JR^ (JV>2). 
>̂, We will assume that H satisfies : 

V ß < oo, 3 i>>0, H(x9t,p)^v > 0 for xe~0, \t\ < R, 

p eRN; (28) 

and that there exists w e 0(0) satisfying the following inequality in 
Alexandrov sense (ef. [1], [12]) — or in viscosity sense — 

det(D2w) > H(x, io, Bw) m09 w convex inO, w = cp 

on 80. (29) 

THEOREM IV.l. Under assumptions (28)-(29), there exists a minimum 
solution of (3) in 0°°(0)riO(0) satisfying: u^w in 0. 

In addition, if H is non-decreasing with respect to t, u is the unique 
solution of (3). a 

Remark IV.l . Variants and extensions of this result are to be found 
in P. L. Lions [45]; in particular the verification of (29) is discussed by 
the use of the results of Bakelman [2]. 

Let us recall that the case of H = H(x, t) was studied by Pogorelov 
[50] and that a complete proof of the existence of smooth solutions was 
first given by S. T. Oheng and S. T. Yau [12] using geometric arguments. 
The proof of this theorem is given in P.L. Lions [45]; it is based on a new 
approximation method of (3) by problems in RN\ relying on the idea of 
"penalizing the domain 0". The approximated problem may then be solved 
by using the relations with HJB equations and the results of Section I I I . 
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Finally, uniform a priori estimates are derived by the use of the classical 
Pogorelov estimates [50] and Calabi estimates [9]. In conclusion, let us 
point out that, when H = H(x, t), L. Oafarelli, L. Nirenberg and J. Spruck 
[8] recently showed that u eO°°(0) and that using their method, one is 
able to show that, in the above result, if w e WliOO(0) then ueG°°(0). 

Notes added in proofs: We saw recently that Theorem III .3 has heen obtain
ed independently by N. V. Krylov (Izv. Mat. Ser. 46 (1982), pp. 487-523). 

Furthermore, the O2»°(0) regularity has been obtained and applied to the 
Monge-Ampère equations independently by N. V. Krylov (Mat. Sbomilc 120 (1983), 
pp. 311-330; lev. Mat. Ser. 47 (1983), pp. 75-108) and by L. Caffarelli, J . J . Kohn, 
L. ISFirenberg and J . Spruck. 
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B. TYEBELL KOCKAFELLAK* 

Differentiability Properties of the Minimum 
Value in an Optimization Problem Depending 

on Parameters 

1. A central toj)ic in optimization theory is the study of the optimal value 
and optimal solution set 

p(v) = inf f(v,x), X(v) =argmin/(fl,œ), (1) 
xeA(v) xeA(v) 

in an optimization problem over xeBn which depends on a parameter 
vector v eRa. Often this is a prelude to minimizing or maximizing p(v) 
subject to further constraints on v9 as is the case for instance in decompo
sition schemes in mathematical programming and various problems of 
approximation or engineering design. The question of the possible conti
nuity and differentiability properties of the function p is then very im
portant. Such properties also turn out to be critical in the derivation of 
optimality conditions which characterize the points x eX(v). 

Let us normalize by focusing on behavior around v = 0. Assume that 
A(0) ^ 0 , the function / : RxRn is locally Lipschitz continuous, the 
set gph-4. = {(v, x)\ x e A(v)} c Rd xRn is closed, and that for some e > 0 
the set 

{(v,x)\ \v\^e,xeA(v),f(v9x)^a} 

is bounded for every a e R. Then p is lower semicontinuous on a neigh
borhood of v = 0 with p(0) finite and X(0) nonempty and compact. 
Our aim is to clarify the circumstances under which p is actually Lipschitz 
continuous in a neighborhood of v = 0 and has directional derivatives 
of various sorts. 

* Kesearch supported by tlie Air Force Office of Scientific Eesearcli, U.S.A.!1., 
under grant No. F49620-82-K-0012. 

[U19] 
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2. Ordinary one-sided directional derivatives 

p'{v, h) = lim tp(v+th)-p(v)yt (2) 
t->o+ 

exist only in rather special cases. One such case, among the first to be 
identified, is that in which / e <é!x and A (v) is a fixed set B for all v. Then 

p'(09h) = min Vvf(v9x)-h. 
xeX{0) 

The result can be attributed to Danskin [5], although the form in which 
we have stated it is somewhat different. If B is convex, the condition 
xeX(0) is equivalent, of course, to —Vxf(v, x) eNB(x) where NB(x) 
is the normal cone to B in the sense of convex analysis ([16]). 

An example where this applies is 

n n 

f(v,x) = J^ocjg^v), A(v) E=J3 ={x = (x1,...,xn)\ Xj^0,^xj = l } , 

with gj eV1. Then p(v) = min^t f ) , ...,gn(v)}. 
The case where / is a convex function and gph A is a convex set has 

also received attention. Then p is a convex function, so the derivatives 
#'(0; h) do exist. It has been shown by Golshtein [10] (see also Hogan [13]) 
that for any choice oî x e X(0) one has 

p'(v\h) = inf f(v,x-9h,k)9 
keA'(v,x;h) 

where gph A' is the tangent cone to gphJ. at (v9 x). In terms of the sub-
gradients o£ convex analysis ([16]), the equivalent formula is 

dp(v) = {se 2ü*| (s, 0)edf(09x)+NgphA(09 x)}. (4) 

Generalizations of (3) to nonconvex cases have been given by Dem'janov 
et al. [6], [7], under rather stringent assumptions. Other results along 
these lines are those of Hiriart-TJrruty [11], the marginal value theorem 
öf Golshtein [10] for nonconvexly parameterized convex programming, 
and certain extensions of the latter by Eockafellar [17], [21, Theorem 4]. 

3« More general results of the kind just mentioned involve additional 
structure for the constraint set A(v). In escaping from assumptions of 
either classical differentiability or convexity, such results also rely on 
new developments in subgradient analysis. 
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Suppose henceforth that 

A(v) = {xeRn\ B(v9x) eC, (v9x)eB}9 

where G c Rm and B c RdxRn are closed sets and B: RdxRn->Rm is 
locally Lipschitz continuous. A typical case in mathematical programming 
is 

0 = {(ul9..., um)\ Ui^O for i = 1, . . . , s , 

Ut = 0 for i = s + 1 , . . . , m}. (6) 

For a locally Lipschitz continuous function g: Rn->R, Clarke ([2]) 
introduced the directional derivatives 

g»(x; k) = limsup [g(xl' + tk)-g(x')l/t 
x'-*x 

and showed there was a unique, nonempty, compact convex set dg(x) 
(whose elements may be called "subgradients") such that 

gQ(x; k) s= max jfe-w. 
wedg(x) 

A detailed calculus has grown out of this concept; see Clarke [2], [3], [4], 
Hiriart-lTrruty [11], and Eockafellar [15], [18], [19], [20], [21] in parti
cular. It is known that g°(x; k) = gf(x'9 k) when g etf1 or g is convex; 
in the first case dg(x) reduces to the gradient Vg(x)9 while in the second 
case it is the usual subgradient set of convex analysis. 

Corresponding geometrically to Clarke's notion of "subgradient" is 
his definition of the normal cone NB(x) to an arbitrary closed set B c Rn 

at any point x e Bm
9 see [2], [15]. 

These concepts have been used by Clarke [1] to derive optimality condi
tions for mathematical programming problems with objective and con
straint functions that are locally Lipschitz continuous, and Clarke's 
result has been sharpened by Hiriart-TJrruty [12] and Eockafellar [21]. 
As background for the marginal value theorem that will be stated below, 
we first formulate a version of this result for the more general constraint 
structure in (5). Let 

K(x)={(y,z)eRmxRa\ y eNo(B(0,x)), 

(z,0)ed(f+y-B)(x)+ND(0,x)}, 

E0(x) = {(y9z)eRmxRd\ ye No{B(0, x)), (z, o) e Ô(yB)(x) + ND(0, x)}. 
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THEOEEM 1 (Multiplier Rule). Suppose xeX(O) is such that KQ(x) 
contains just (0,0). Then there is a pair (y9%) eK(x)9 in fact K(x) is 
a nonempty compact set. 

The constraint qualification K0(x) = {(0,0)} reduces in the case of 

• fe<ë\ Be^\ B=RdxRn
9 G as in (6), 

to the well-known one of Mangasarian and Fromovitz [14]. 
Theorem 1 may be derived from Theorem 1 of Eockafellar [21] by 

applying the- latter to the constraints 

0 =G(v9x9w) =F(v9x)—w9 (v9x9w) eBxC. 

By the same route one obtains the following as a special case of Theorem 
2 of Eockafellar [21]. 

THEOEEM 2. Suppose that for every xeX(0)9 the set K^(x) contains 
just (0, 0). Then p is Lipschitz continuous in a neighborhood of 0 and 

8p(0) e: co (J {z\3y9(y,z)eK(x)}9 
xeX(0) 

#°(0;A)< max z-h. 
xeX(0) 

(y,z)eK(x) 

In the case of assumption (7), this result was proved by Gauvin ([8], [9]). 
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Stopping problems in stochastic control 

The paper presents several characterization and regularity results on stopping for 
wide classes of Markov processes and general stochastic processes. The emphasis is 
put on the interplay between the various methods used: analytic, potential theore
tic and probabilistic. 

A switching strategy is a countable sequence (rn9 |n) of stopping 
times r ! < r 2 < . . . and JJ-valued random variables i-n9n^l, defined 
on a given probability space (Q,^,B) with, a specified filtration (^)<>0* 
Here ( JJ, %) is a measurable space of control parameters. Eandom variables 
fn are assumed to be &x -measurable. For many stochastic control prob
lems optimal or e-optimal strategies, turn out to be of the switching 
type. Impulse control problems, alternating control and stopping games 
are of this type. Eesults concerning this subject and diffusion processes 
were presented by Bensoussan [3] (on impulse control) and by Friedman 
[12] (on stopping games) at Vancouver IOM-74. In their addresses value 
functions and optimal strategies were characterized in terms of the 
associated variational and quasivariational inequalities. The discovery 
of this relationship revitalized the whole subject of optimal stopping, 
which had been an area of intensive research in the sixties and the early 
seventies [30], A recent account of the results obtained by analytical 
methods and for solutions of stochastic differential equations can be 
found in two monographs by A. Bensoussan and J. L. Lions, namely [4] 
and [5]. However, there are many reasons to go beyond this class of sto
chastic processes. Questions about the existence of optimal strategies 
and their structure can be asked and answered in a natural way for wider 
classes of processes. An important motivation for developing the theory 
for general Markov processes are problems with partial observations. 
Moreover, analytical methods require technical assumptions about the 
differential operators involved which are not so essential when probabil-

[1425] 
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istic or semigroup methods are used. Also when reducing alternating 
control problems to impulse control problems one ends up, with a singular 
Markov process constant in one direction. 

In this paper we present several characterization and regularity results 
on stopping obtained for general stochastic processes and in particular, 
for Markov processes. One of our aims is to show the interplay between 
various methods used, which makes the subject so appealing. 

I . Stopping problems for Markov processes 

Let X = (Q, 3F9 &i, xt, Bx) be a Markov process on a state space (B, S) 
which is a separable, locally compact metric space. One of the main con
cepts of the theory is the so-called value function. I t is a function defined 
for an arbitrary initial state in B as the supremum of the gain functional 
taken with respect to all admissible strategies. An intensively studied 
property of value functions, which usually implies the existence of optimal 
dtrategies, is their continuity. To formulate related results we denote by 
Ob

9G9G° and Gk the spaces of all continuous functions on B which are, 
respectively, bounded, with finite limit at infinity, vanishing at infinity 
snd with compact support. The set of all stopping times for X will be 
aenoted by Jt. 

L l . Continuity of value functions for Feller processes. Let X be a Feller 
process in the sense that for the associated semigroup (Bt)t>0 

BtO°czG0, O O , (1) 

PtfW-^fi®) a s * 40 for arbitrary / e 0° and x e B. (2) 

The following theorem was proved by M. Eobin [29] under an addi
tional assumption, which has recently been removed by L. Stettner, 
see [35]. In Eobin's proof the penalized equation (4) is the main tool. 

THEOEEM 1. If f e Gb and a is a positive constant, then the value func
tion v, 

v(x) = m-pB*(e-aTf(xT)), xeB9 (3) 

is continuous. Moreover, for arbitrary ß > 0 there exists a unique continuous 
solution vP of the equation 

Avß-avß + ß(f-tf)+ = 0, (4) 
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where A is the iveak infinitesimal generator of (Bt), and vß\v uniformly on 
compact sets as ß + oo. In addition, the moment 

is an optimal one. 

Function v is also called the a-reduite of / a n d denoted by Raf. The conti
nuity part of Theorem 1 was also obtained by Bismut [7] and can be 
deduced from an old result by Mackevicius [19]. If in the definition of 
the Feller property one requires instead of (1) a slightly weaker condition, 
PtO cz 0 for t > 0, then the theorem is no longer true [35]. An important 
and still unsolved question is to find a proper generalization to the undis-
counted case a = 0. Even if X is a Feller process on a compact space B and 
jf is continuous, the function R0f can be discontinuous [35]. However, 
one can prove some partial results. In particular, the following proposition 
holds, see [35]. In its formulation V is the associated potential operator 

+ 00 

7 = J Btdt. 
0 

PROPOSITION 2. If V: Oh->0°, then, for all f eO, v = B0f eOb. 

This result can be derived from Theorem 1. However, we will sketch 
a different proof, based on a duality argument introduced by Bismut [7]. 
By a discrete-time approximations one can directly show that v is lower 
semi continuous. L e t / e 0° andìet S denote the set of all excessive, bounded 
and continuous functions on B. If one shows that, for every x e B9 v(x) 
= mi{h(x); h^f, h e S}, then the upper semicontinuity of v will follow 
as well. I t is easy to check that the functional B, 

B(u) =inf{7&(a>);7t>/+M, heS}, ueC°9 

is convex and continuous at 0. Therefore B(0) = j?**(0) and one can calcu
late that JP**(0) = supK/j , / ) ; /* eJt(x)} where Jt(x) is the set of all 
non-negative measures /i on B such that </*,/> < / (# ) for all f e 8. The 
classical Eost theorem then implies that 

s u p « ^ / ) ; ^ - ^ ) } =sup^(/(Ä?T)), 

and the required identity follows. The generalization to arbitrary / e 0 
is straightforward. The method described above has been extended by 
Bismut to more complex situations of alternating a-nd impulse control 
problems, see [7] and [8]. Although the assumptions of the theorem are 
quite restrictive they do not imply a stronger result: itfeO0 then B0f e Gb

9 

see [35], 
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In the context of Feller processes continuity is the best regularity 
property of the value function one can ask for. Elementary examples 
show that even if / is very regular, say if / belongs to the domain of the 
strong generator, then in some cases RJ is not even in the domain of the 
weak generator ( a > 0 ) . 

The question of extending Theorem 1 to controlled Feller processes 
is discussed in Krylov [17] and Nisio [27]. To use penalization one needs 
more information on non-linear resolvent operators associated with sto
chastic control problems (see [5] and [40]). To imitate the proof sketched 
above one should first generalize the Eost theorem to the controlled case. 

An exact counterpart of Theorem 1 for stopping games was obtained 
by L. Stettner ([31] and [32]). If / , g are functions defined on B, / ^ g 
and r , o e Jt&vv arbitrary Markov times then the loss function for a stop
ping game is given by the formula 

Jx(r9 a) = B*(e-a^a(f(xr)Ir<a + g(xa)Ia<z))9 xeB. 

THEOREM 3. If X is a Feller process and f,,g e Gb, then the function w, 

w(x) = inf sup Ja (T, o)9 (5) 
XGM asdt 

is continuous and 

w(x) = supinfJx(r, a), xeB. (6) 
reJt azM 

Moreover, for an arbitrary ß > 0 there is a unique solution wß e Gb of the 
equation 

, (A-a)wß + ß((g-wß)+~(wß-f)+) = 0 (7) 

and wß->w uniformly on compact sets as j8f + oo. In addition, the pair 

r = i n f { ^ 0 ; / ( ^ ) =w(xt)}, a = inf {*> 0; g(xt) =w(xt)}, (8) 

is the saddle point of the game. 

Arguments based on convexity play an important role in more com
plex implicit stopping time problems arising in connection with impulse 
control. Let / and c be non-negative functions defined respectively on B 
and B xB and let r be a set-valued mapping from B into 2E. If h is a func
tion on B then Mh is defined by the formula 

Mh(x) = inf (c(x9 y) + h(y))9 xeB. (9) 
yer(x) 
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A typical implicit stopping time problem consists in finding a function 
vsuch that 

T 

v(x) =infJBP(J e-asf(xs)ds + e-aTMv(xr)\. (10) 
r 0 

The following theorem is useful in proving the existence and the regular
ity of a solution of (10). Let J£? be a linear space and X c «5? a convex 
cone such that every straight line L c JSP intersects JT along a closed 
subinterwal different from L. The cone X induces an order in 3?, i.e., 
a < b if and only if b — aeX. Let J^ denote a concave and increasing 
mapping from X into X and j f 0 the sub-cone X0 = {̂  G J T ; t? < y jtfn(0) 
for some y > 0 and n = 1 , 2 , . . . } . If v e X then, for every «oeJ?, ||w||„ 
= inf {e > 0 ; — ev < w < *w}. 

THEOREM 4. Jketf si be a concave and increasing mapping from X into 
MT. Then 

Bguation v = s/(v) has at most one solution in X0. (11) 

If v e X o is a solution of (11) then for an arbitrary v e X0, \\^n(v)—v\\y 
->0 geometrically as n-> + oo, 

If for h e jf0, j/(h) < h9 then (^n(h))n=lhZtmtm is a Oauchy sequence 
in the norm \\-\\h. 

This theorem is in the spirit of Krasnoselski's monograph [16]. The 
first two parts of the theorem are direct extensions of Theorem 4 from the 
author's paper [38]. 

A similar result was obtained in Hanòuzet and Joly [15]. The idea of 
applying it to impulse control and quasi-variational inequalities is due 
to Hanouzet and Joly. Paper [38] dealt with the Eiccati equation of the 
discrete-time regulator problem. Those two different control problems 
are mathematically similar because both concern controlled Markov 
chains, see [37] and Doshi [10]. 

The next theorem is a corollary of Theorem 4 and generalizes slightly 
a result by Eobin [28], who derived it in a different way using an estimate 
due to Menaldi [22]. To formulate it let s/ denote the operation defined by 
the right-hand side of (10) and h = Vaf the a-potential of / : Vaf 

= Y°e-aiPtfdt. 
0 

THEOREM 5. If X is a Feller process h e Ob
9 yh < M(0) for a positive 

y and M transforms Ob into Gb. Then equation (11) has exactly one solution 
v eOb an%d, for arbitrary v0 e Ob, 0O> 0, <s/n(v0)->v uniformly and geomet
rically fast as n\ + <x>. 
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Function v can be interpreted as the value function of an impulse 
control problem in which T(x),xeB denotes the set of all states to which 
x can be moved, c(x,y) the cost of a shift from x to y and f(x) the infini
tesimal cost at state x. Let B = {x: v(x) — Mv(x)} and let <£(•) be a measur
able selector of the multifunction x->{y e r(x); v(x) =c(x9 y) +v(y)}. 
Then the optimal strategy consists in making önpulses indicated by the 
function d each time the controlled process enters D, see [28] and [5]. 

1.2. Semigroup characterizations. The previously stated theorems charac
terized value functions either in terms of penalized equations or appro
priate approximation schemes. Different characterizations are based 
on the concept of the envelope. In particular the a-reduite Raf of Theorem 
1 can be obtained as the smallest function v e Cb satisfying the following 
set of inequalities: 

v >/> e~atBtv < v for all t^ 0. 

The earliest results for evolutionary problems were obtained by ÏTisio 
[27], Theorem 6 below, on an impulse control semigroup, is due to A. Ben-
soussan and J. L. Lions [5]. Its earlier version under additional assum
ptions was proved by J. Zabczyk [39]. Let (Qt) denote the free motion 
semigroup given by the formula 

t 

Qtv = f e-a9PJds + e-aiPtv, * > 0, 
0 

and assume that (Qt) is a continuous semigroup acting on the space 0* 
of bounded and uniformly continuous functions on B. Let M9 see (9), 
transform Gl into Gu. Put K = {g e C*f; g> 0, g < Mg}. 

THEOREM 6. There is a continuous semigroup (St) acting on K s%hch that 

(1) 8t are order preserving and contraction operators, 
(2) 8tv < Qtv for all t^O, ve Ga

9 

(3) (8t) is the maximal semigroup with properties (1) and (2). 

The stochastic control interpretation of (8t) is given by the formula 

t 

S,v (x) = inf W„ ( / «—/<*,) ds+ct + e-alv{oot)), 

where the infimum is taken with respect to all impulse strategies n and 
ct denotes the discounted cost of all impulses performed up to time t > 0. 



Stopping Problems in Stochastic Control 1431 

The proof of Theorem. 6 given in [5] was based on penalization. Nisio's 
approximation scheme was used in [40]. Connection with the Trotter-Kato 
formula and additional properties of 8(t) can be found in L. Barthélémy 
[2]. The geometrical interpretation of Theorem 6 is as follows. The flow 
(8t) is the maximal "restriction" of the flow (Qt) to the convex subset 
K of the linear space Ou. 

1.3. Variational characterizations. In many instances, stopping time prob
lems are mathematically equivalent to physical problems of minimizing an 
energy integral. This relationship for diffusion processes was discussed in [4] 
and [5]. However, similar characterizations take place under the minimal 
requirements that both problems can be reasonably formulated, which is 
exactly the setting of symmetric Markov processes and associated Dirich
let spaces. In this generality one can cover some stopping problems with 
irregular data including diffusion processes with only measurable coeffi
cients or integro-differential generators. The" first results were obtained 
by Krylov [17], then by Nagai [24], who studied also impulse control 
problems [25]. The game case was discussed in Zabczyk [41]. The following 
typical result is taken from [41]. We adopt the notation of Theorem 3. 
Moreover, let X be a symmetric Markov process on B and (S, B) the 
associated Dirichlet space, with F densely contained in the Hilbert space 
E = L2(B, m), where m is the reference measure. Put (fa(-, •) = &(-, •) + 
+ a((-, •))> where ((•, •)) is the scalar product on H, and K = {ueF*9 

/ < w< <7 m — a.e.}. 

THEOREM 7. Let f and g be quasi-continuous elements of F such that 
g^f m—ae. Then there is a quasi-continuous function w eK such that 

Sa(u9 u) ^ $a(w9 w) for all u eK 

and a properly exceptional set N c B for which the identities (5) and (6) 
hold and the pair (r, a) given by (8) is a saddle point for all x e B\JJ. 

Variational counterparts of Theorem 1 and Theorem 5 can be found 
in [24] and [25]. 

1.4. More general Markov processes. USTew and serious problems arise if 
one drops the assumption that X is a Feller process. To make the fixed 
point problem (10) meaningful one has to know that operations Ra and 
J / preserve some kind of regularity. This question has been recently 
treated by El Karoui [11] and by Lepeltier and Marchai [18], Let X be 

88 — Proceedings..., t. II 
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an arbitrary right Markov process. Let E be the Eay-Knight compacti-
fication of the state space B and (Pt) the extension of the initial semigroup 
(Pt) to functions defined on Ë. A function / > 0 defined on B is called 
Eay-analytic if it is a restriction to B of an analytic function / defined 
on B. In particular, a Eay-analytic function is universally measurable 
and every Borei function on B is Eay-analytic. 

THEOREM 8 (El Karoui [12]). For every bounded Ray-analytic function 
/ > 0, the a-reduite Raf is also Ray-analytic. Moreover, for an arbitrary 
probability distribution p on B, 

X 

and for an arbitrary a eJt 

RJ(a0) -esssup^/(^T-a)/((»T)| &a) P - a.s. 
x^a 

Analyticity is also an appropriate concept to deal with measurability 
of the transformation Jf, see [18]. 

1.5. Other questions. Of growing interest are impulse control problems 
with long run average cost criterion and problems with partial observation. 
Some existence results for the former have recently been obtained by M. Eo-
bin [29] and L. Stettner[33]. Many specific problems with partial obser
vation are discussed in Friedman [13] and the general theory for Feller 
processes on compact state space is the subject of paper [21] by Mazziotto 
and Szpirglas. An interesting impulse control problem with a long run 
average cost criterion and partial observation was solved by D. Gqtarek 
PL*]. 

II. Stopping problems for general processes 

One can sometimes get a better insight into stopping problems if instead 
of Markov processes one considers general stochastic processes. 

H.l . Snell's envelope and penalization. Let (Q, SF9 P) be a fixed probability 
space and (^t) a filtration satisfying the usual conditions. Let 0 denote 
the set of all bounded optional processes equal to zero at infinity and Jt 
the set of all (J^)-stopping times. A process v e & such that for arbitrary 
r > a 

va>B(vx\&a) P - a . e . 
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is called a strong supermartingale. From a classical Mortens result (see 
[11]), for an arbitrary / e (9 there is a minimal strong supermartingale 
v majorizing /. This is called SnelVs envelope of /. Moreover, for an arbit
rary a e Ji 

va = esssupJE/(/T|J^) P - a.s. (12) 

and in several important case the debut Ba = inf{tf> o;ft — vt} is the 
optimal stopping time in the sense that 

E(fDa\^a)>E(fr\^o) «Or X>0. 

General sufficient conditions for the existence of optimal stopping times 
have been given by Bismut and Skali [9] and generalized subsequently 
by many authors, see[ll]. An extension in which a smaller set of stopping 
times is given for optimization, say predictable stopping times, was ob
tained by El Karoui [11]. Here we present a way of calculating the Snell 
envelope extending the penalization method of [4] and [5]. We follow 
paper [34] by Stettner and Zabczyk. A right-continuous supermartin-
gale v is called the strong envelope of / if it is the smallest right-continuous, 
non-negative supermartingale such that v > / , dt®dP — a.s. The following 
is a probabilistic version of the penalization: 

For an arbitrary ß > 0 find a right-continuous process vß such that 
for all t > 0 

4-00 

«f = ßB ( / (f8 - v*)+ ds \&t) P - a.s. (13) 
t 

THEOREM 9. If f is a bounded, progressively measurable process such 
-f 00 

that B(j \fs\ds) < +oo, then for each ß > 0, there is a solution of (13) and 
0 

it is unique, up to indistinguishable processes. It increases with ß\ + oo and 
the limit process v = lim?/ is the strong envelope off. 

COROLLARY. Iff is an optional process then its Snell envelope v majorizes 
v and for the right-continuous process f, v is right-continuous as well and 
v = v. Assume that additionaly to the right-continuity of f we require regular
ity: if rnfr, xn eJt, then B(fx )->B(fT). It is then a consequence of (13) 
that the moment Ba = limBß, where Bß = inf {t&? o*; v\ < / J is optimal. 
This gives a different proof of a similar result in [9]. 

Strong envelopes appeared earlier in connection with the so-called 
Kac approach to the Dirichlet problem, see [34]. 
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The results here formulated show that the natural framework for 
penalization is the class of right-continuous processes. For more results 
in a similar spirit we refer to Morimoto [23] and Makowski [20]. 

II .2. Stopping games. The problem of giving general enough sufficient 
conditions for a stopping game to be closed or to have a saddle point 
is of great interest and has been studied-intensively. Let / and g be two 
bounded optional processes such that / ^ g and /«> = jr«, = 0. As in the 
markovian case, we define the loss functional J(r, a) =frIr<a +gaIa<x9 

r, a e Jt. The stopping game is said to be closed or to have value if w = w 
= w, where 

w = sup mîBJ(r, o), w = inf supJEU^r, a). 

Number w is then the value of the game. The discrete time analogue 
of the stopping game is always closed. However, this is not the case in 
the present situation. For a sequence (tn), strictly decreasing to zero, 
define deterministic processes / and g as follows: f(t) = — 1 if t = t2n__l9 

n = 1 , 2 , . . . , and f(t) = 1 otherwise; g(t) = 1 if t = t2n9n = 1, 2 , . . . , 
and g(t) = —1 otherwise. Then w = 1 w = —1. Examples suggest that 
the right-continuity of processes / and g should be sufficient for the exist
ence of the value.1 In this direction the following result, taken from paper 
[36] by Stettner, Zaremba and Zabczyk, can be proved: 

PROPOSITION 10. If bounded and cadlag processes f and g vanish at 
infinity then the stopping game is closed. 

Much more can be said if the following separability or Mokobodzki 
condition is satisfied, see [6] and [7]: 

There exist bounded9 non-negative strong supermartingales a and b such 
that 

g r < « - 6 < / P - a . s . (14) 

Condition (14) is connected with the following decoupling procedure, 
discovered independently and in different context by Bismut [6] and [7] 

1 This conjecture was recently confirmed by J . L. Lepeltier and M. A. Maingue-
neau in "Le jeux de Dynkin en théorie générale sans l'hypothèse de Mokobodzki". 
An elementary proof of the same result obtained independently several weeks later 
can be found in : XJ. Settner, J . Zabczyk and P . Zaremba, "On general two-persons 
stopping games", preprint 283, Institute of Mathematics, Polish Academy of Sciences, 
1983. 
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and ÏTakoulima [26]. One can formulate this procedure in the form of 
the following theorem, due to Bismut [7]. 

THEOREM 11. If (14) holds then there exist two bounded and non-negative 
strong supermartingales zx and z2 such that for an arbitrary a e M 

zi « eBBSup2B(«î +jU * ; ) , (15) 

zi = ess sup .»(«£-/, \sr„) P - a.s. (16) 
T>CT 

The process w = z1 — z2 is a natural candidate to be the value process 
in the sense that for an arbitrary aeJt: 

wa = ess inf ess sup B[J(t19 r2) | J^) 

= essinf essinfB(J(rt, r2) | &a) P — a.s. (17) 

In particular, if the debuts 

Bl = inf {t ^o;wt = ft), Bl = inf {t ^o;wt = gt} 

are optimal stopping times for problems (15) and (16) respectively, then 
(17) holds and the pair (B\, B2

a) is the saddle point, see [7]. As was pointed 
out by L. Stettner, see [1], identity (17) holds if / and g are only right-
continuous. It was proved by Alario-Nazaret [1] that (17) holds under 
even weaker conditions: lower semicontinuity from the right of/and upper 
semicontinuity from the right of g. 
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FENG KASOc 

Finite Element Method and Natural 
Boundary Reduction 

1. Introductory comments 

One of the major advances in numerical methods for partial differential 
equations made in the recent twenty years is the finite element method 
(FEM). The method is based on the variational formulation of elliptic 
equations and on the triangulated approximations. The first component, 
the variational principle, is an old one ajid leads to the classical Bayleigh-
Bitz method, which, though successful in the past, suffers from numerical 
instability and geometric inflexibility, originating from the analytic 
approximations adopted, but unnoticed in the pre-computer times due 
to the limited size and complexity of the problems then attacked. The 
second component, the triangulated local approximations, used but not 
exploited in full in the finite difference methods, is more elementary and 
much older. Dating back to ancient times, it was for a long time over
shadowed by the later achievements in analytic approximations, but re
vived eventually due to its innate stability and flexibility, which becomes 
important in the computer era. 

À judicious combination of the two old components, conventionally 
in juxtaposition, gives rise to the FEM, an innovation of general applica
bility, especially suited for problems of great complexity as well as for 
computer usage. In FEM, all the essential properties of elliptic operators, 
e.g., symmetry, coerciveness and locality are well preserved after dis
cretization. This leads, on the one hand, to an efficient computational scheme 
and, on the other hand, to a sound theoretical foundation, on which the 
Sobolev space theory of elliptic equations is invoked in a natural way, 
ensuring the reliability of the method in practice. Moreover, the logic 
of FEM is simple, intuitive and easy to be implemented on the computer, 

[1439] 
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whose capability is thereby fully exploited not only as an "equation solver" 
but also as an "equation setter"; there is already a vast body of software 
for engineering applications built around it. On the ground of all these 
reasons, the FEM has become the major methodology for computer solu
tion of elliptic problems, and, by and large, it will remain such in the fore
seeable future. 

It is also well known that the elliptic boundary value problems have 
equivalent formulations, in addition to the variational ones, in various 
forms of integral equations on the boundary. In recent years an increasing 
interest in the numerical solution has been observed, particularly in the 
finite element solution of boundary integral equations, leading to the 
boundary element method (BEM) in various versions. The boundary 
reduction has the advantage of diminishing the number of space dimen
sions by 1 and of the capability to handle problems involving infinite 
domains and, moreover, also cornered or cracked domains at the expense, 
however, of increased complexity in the analytical formulation, which 
is not easily available beyond the simplest cases. During reduction, some 
differential operators of a local character are inverted into integral oper
ators, which, being non-local, result in full metrices instead of sparse ones; 
this offsets, at least in part, the advantage gained in dimension reduction. 
So, the approach via integral equations, as it stands by itself, is rather 
limited in scope, lacking general applicability; and the BEM is not likely 
to replace the FEM. 

Nevertheless, there are many complicated problems in which several 
different parts are coupled together; boundary reduction could be judi
ciously applied to some parts of the domain with advantage for the purpose 
of cutting down the size or complexity of the problem, resulting in a modi
fied but equivalent boundary value problem on a reduced domain with 
artificial or computational boundaries carrying integral boundary condi
tions which correctly account for the full coupling between the eliminated 
and the remaining parts. There are also problems in which the coupling 
at the given boundary with the environment is assigned in an oversimpli
fied way in the conventional form of differential boundary conditions; 
boundary reduction could in some way be applied to the exterior domain 
to give a more complicated integral boundary condition for a more accurate 
account between the given system and its environment. 

The above motivations require that the boundary reduction should be 
compatible with the accepted variational formulation and finite element 
methodology and that the BEM should be developed as a component of 
the FEM, well-fitted in that framework, rather than as an independent 
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technique. I t is from this point of view that, among other things, a natural 
and direct method of boundary reduction, proposed by the present author 
[4, 5, 6] called canonical boundary reduction, will be discussed in the sequel. 

2« Case of the Laplace equation 

Consider, for example, the Neumann problem of the Laplace equation in 
a domain Ü in B2 with smooth boundary J* with exterior normal n9 

Q: -Au = 0 , (1) 

r> un — 9 w i t ì t l compatibility condition j g dx = 0. (2) 
r 

Here g belongs] to, say, E~ll2(r). This problem is equivalent to the vari
ational problem: find ueBl(Q) such that 

B(u, v) = B(v) for every veBl(Q)9 

r r (3) 
B(u,v) s= J gradwgradvdx, F(v) = J gvdx. 

a r 
The classical Fredholm boundary reduction consists in expressing the 
harmonic function as a layer potential 

r i i 
i(x) = B(x~x')0(x')dx', B(x) = — - l o g - — 

J 2TC \X\ 
W 

Then the jump condition of the potential gradient across the boundary is 

*»(«>) = fBn(x-x')(ï(x)dx'+Î0(x), i.e., (Il + Bn)a = un9 (5) 
r 

a Fredholm equation of the second kind in the unknown density a against 
the known data (2). Note that, after reduction, the essential properties 
of the original operator, i.e., symmetry, coerciveness and variational 
form, are not preserved. Moreover, a new function a is introduced on JT in 
addition to the trace data 

u\r = y0u, un\r = yxu 

of the original problem; this is inconvenient for coupling in complicated 
problems. So, from the practical and computational point of view at 
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least, the Fredholm reduction is unsatisfactory : it does not fit well with the 
FEM.' 

A partial improvement results from the G-reen formula 

j (vAtu — nA'v)dxt = f (vun.~uvn*)dx' (6) 
A r 

(xf is the dummy variable with the corresponding primed differential 
operators) and the choice v(x') = B(x—x')9 whence 

u(x) = f (îiBn, — un,B)dx'9 xeQ. 
r 

Then differentiation and passage to boundary, with jump conditions 
considered, give another Fredholm equation of the second, kind 

ìu(x)+ J Bn,(x — x')u(x')dxf = J B(x — x') un.(x') dx'9 

(ÌI+Bn,)u =Bun9 (7) 

with the Dirichlet trace data, instead of introducing a new function in 
(5) as unknown against the known Neumann data (2). This formulation 
is adopted in most BEM's; however, the kernel is similar to that in (5), 
and so the same difficulties remain. 

The most satisfactory approach is to choose v(x') in (6) to be the 
Green function G(x,x') satisfying 

-A'G(x,x') = ô(x'-x)9 

G(x9 x
1) = 0 for x' e T, 

G(x, x') = G(x'9 x) 

to obtain the Poisson formula 

u(x) = — JGn>(x,x')u(x')dx', xeQ, i.e., u =PyQu. (8) 
r 

Then differentiation and passage to boundary gives 

un(a>) = — JGn,n(x, x')u(x')dx', xeT, i.e., un = Ky0u, (9) 
r 

an expression of the Neumann data (as known) in terms of the Dirichlet 
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data (as unknown). The kernel K(x, x') = — G»'»(0j ®') is regarded as 
a limiting distribution kernel. So, the Neumann problem (l)-(2) or (3) 
is equivalent to the solving of the boundary integral equation 

K<P=g (10) 

for the unknown Dirichlet data y0u =<p on T9 leading to u in Q via the 
Poisson formula (8). 

The boundary integral equation (10) has, in turn, its own variational 
formulation, i.e., to find cp e H112 (r) such that 

B(cp,W)=B(W), V y e l Z ^ r ) , 

B(<p,w) = j j K(x,x,)(p(x,)w(x)dxdx,
9 B(ip) = f gipdx, (11) 

r r r 
A A 

where the trace forms B, B are inherently related to the original forms 
B, F by 

B(u, v) = B(yQu, y0v) for every u9 v eH1(Q), Au = Av = 0, (12) 

B(v) = F(y0v) for every v eEl(Q). (13) 

The symmetry and coerciveness properties of X follows directly from those 
of A via the trace theorem of Sobolev spaces and vice versa. 

Consider now a coupling problem 

Q: -Au = 0, (14) 

dQ = J \ : uni = g9 Jgdx = 0, (15) 

where the domain Q consists of two subdomains Q0 and Qt with their 
common boundary r with normal n directed to the exterior of the outer 
subdomain ß0 , which is for example infinite. The inner subdomain ßt 

is for example finite, and has an outer boundary r and an inner boundary 
rx with normal nx directed to the exterior of Qv The corresponding vari
ational problem is to find u e B1(Q) such that 

B(u,v) = B(v) for every veBl(Q)9 

B(u,v) = y^Bi(u9v)9 B{(u9v) = j gradu •gradua?, i = 0 , 1 , 

B(v) = j gudx. 
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Let K be the boundary operator induced by the Laplace operator in 
subdomain QQ on its boundary r. Then 

UQ(U9 V) = B0(yQu, y0v) = J~jB(x, x,)u(x,)v(x)dxdx'9 (16) 
r r 

and so the problem (14)-(15) is equivalent to a problem for a reduced do
main: to find u efffflj) such that 

B'(u9 v) = BQ(yQu9 YQV)+BX(U9 v) =. B(v) for every v eHl(Qx) (17) 

which is equivalent, in turn, to 

Qx: -Au = 0 , (18) 

rx:uni=:g, (19) 

r : un =Ku. (20) 

Note that, in this reduced problem, in addition to the original boundary 
rx with the natural boundary condition in local form (15), a new artificial 
boundary r is constructed to carry a natural boundary condition in 
non-local form (20), which accounts correctly, i.e., without approxima
tion, for the coupling between the deleted part Q0 and the remaining 
part Qx. 

We see that the boundary reduction just described is direct and natural 
in the variational formulation; it faithfully preserves all the essential 
characteristics of the original elliptic problem and is fully compatible 
with FEM. It is thus called the canonical boundary reduction, and the cor
responding integral equations — canonical integral equations. 

We give examples of Poisson formulae and canonical integral equa
tions for the Laplace equation over some typical domains in two dimensions. 

(1) Domain interior to the circle of radius B. 

27C 

1 ç (JR*-r*)u(R, d')dO' 
•f r%— 2.Krcos 

. (B,D--JLf •«*.•'>«• 
4TC J 

U(T 6) - - f ^ — " W * , «n«P- r < R 
U(r>0) " 2TCJ B*+r*-2Rrco8(d-d')> r<M' 

2rt 

- „ - „ ( Ö - 0 ' ) 
o Bam3- -
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(2) Domain exterior to the circle of radius JB. 

27T 

0 x 

O T T 

,n ny X r v(R,6')äd' 

o 22 sin2 .—-— 

(3) Upper half-plane above the line y = a. 

x r iy — a)u(x, a)ax 
— 00 

oo 

1 r u(x'. a)dxf 

— u(x,a) = , ' , 
— 00 

(4) Arbitrary simply connected domain Q. If w = /(#) conformally 
maps z e Q onto the interior \w\ < 1 of the unit circle, then [9] 

1 
— + an infinitely smoothing kernel. n\z-z'\2 

The canonical integral equation (9) was first introduced by Hadamard 
[7, 9]. The function —Gn*n(x,x') in it is a distribution kernel of high 
singularity of non-integrable type l/(# —a/)2, regarded as a "finite part" 
regularization of divergent integrals. It is in fact a pseudo-differential 
operator of order 1 and 

-Gn,n: Bs(r)->M8~l(r) for every real s. 

So, at the expense of higher singularity, the canonical integral equation 
has the advantage of being more stable than the Fredholm equation (5) 
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or (7) of the second kind with the kernel 

(ÌI + Bn,) or (%I+Bn): Es(r)->ES(P) for every real s. 

In addition, the choice in (6) of v(x')~ N(x9 x')9 the Neumann func
tion, satisfying 

-A'N(x,x') =(x'-x)9 

Nn,(x9x') = -IjL (L is the length of T) for x' eT9 

f N(x,x')dx' = 0 , if Q is bounded, 
r 

gives, as the inverse of (9), the integral equation 

u(x) = f N(x9x')u7ii,(x')dx', x'eT9 i.e., u == Nun9 
r 

first obtained by Hilbert [8] and extended to general second order elliptic 
equations by Birkhoff in the earliest paper which had ever discussed the 
importance of integral boundary conditions and coupling problems [2]. 
The kernel N(x9 x')9 called in that paper the albedo function after Fermi, 
has a weak singularity of the logarithmic type and induces a smoothing 
operator 

N: H8(r)->HS+1(F) for every real s9 

which is unfavourable to stability and leads to a variational principle 
which is not natural and not compatible with FEM in coupling problems. 

3. Canonical boundary reduction for general elliptic equations 

The canonical integral equations of a general variational elliptic equation 
or a system is a system of integral expressions of the Neumann boundary 
data in terms of the Dirichlet boundary data for the solutions of the given 
equation or system. 

Consider a properly elliptic differential operator of order 2m 

Au= £ (-l)]Q]ôQapa(x)dpu9 a^ed-f (21) 
\PÌM<m 
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with its associated bilinear form 

B(u,v)= JT Jamdpud*vdx (22) 

on a domain Q with Ö00 boundary J7 with exterior normal n. Correspond
ing to A and to the set of the Dirichlet trace operators 

y = (yo?..-?ym-ir> y*«* =K)%!r> i = 0> . . . , W - I , 

there is a unique set of boundary differential operators 

ß s=5(A»"->AB-i)2,> ft^ = ft(ff>w(a?),3)Mlr, 

such that the Q-reen formula 
m—l 

D(^j^) = JAwvdx+ JT1 JßjU-yjUdx (23) 

holds for smooth u, v. ßtu is the Neumann data complementary to the 
Dirichlet data y{u. 

From the basic assumption that the Dirichlet problem 

Q: Au = 0 , (24) 

JT: y^u = known, j=0,...9m— 1. (25) 

is uniquely solvable in space Ms(Q) with the known data y5u e EB"j~ll2(r)9 

it follows that the Poisson formula u = ]£P{YiU gives an isomorphism 

P=(P 0 , . . . ,P m _ 1 ) :^ ( J T)->f f i (ß ) , 
where 

2»(.T) - [J E8'^2(r)9 ES
A(Q) = {ueEs(fì) \ Au = 0}. 

Then the canonical system of integral equations is given by 

ßu = Kyu9 

i.e., 
m—1 

ßtu = ^ KiiYiu, * = 0 , . . „ T O - 1 , (26) 

jr^ = ftop,: Hs-i-ll2{r)-^Ea-{m-i-ll2)(r). 

89 — Proceedings..., t. II 
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It can be shown that K^ is a pseudo-differential operator of order 2m —1 — 
—i—j on the boundary manifold I7 and the matrix operator K is elliptic. 
Hence K induces a bilinear functional 

B(<p,v) = (Kq>,w)~ £ jKq{œ,ar)Vi[rf)n{m)âœW (27) 

which preserves the value of the bilinear functional 

B(u9 v) = B(yu, yv) for every u9 v eEs
A(Q). (28) 

Moreover, the formal transpose A of A is given by 

Au= JT (~l)M8pagp(x)dpu, 
\p\M<m 

with an associated bilinear functional 

jD(i4? v) = B(v9 u). 

Then it is easily seen that 

K(A) =K(A)9 B =J>, 

A is symmetric iff K(A) is symmetric, 

a is coercive iff K(A) is coercive, 

thus all the essential properties of A are faithfully preserved by B(A) 
and the following conditions are equivalent : 

(1) Find M e Es(fì) such that 

jQ:Au=09 r; ßiU = gi9 i=0,...9 m— 1. 

(2) Find ueHs(Q) such that 

m— 1 

D(^? v) = ^ (gi9 ytu) for every w eEs(Q). 

(3) Find <peT*(r) such that 

w—1 

£Ky9j=9i, * = 0 , . . . , w - l . 
*-o 
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(4) Find (p e T8(r) such that 

à(<Ptv)=2 fa« n) for e^ery ve TS(r)• 
wt-i 

E 
Note that the compatibility condition 

J^ (ffi) Viv) = 0 for every solution v of A*v *=* 0, ß*v = 0, 

i = 0 , . . . , m — 1, 

for (1) or (2) corresponds to the compatibility condition 

ro-i 

V (gfi? ^.) = o for every solution ip of K*w = 0 
1 = 0 

for (3) or (4). 
When the solution 9? = yu of (3) or (4) on J7 is found, the Poisson 

formula gives the solution u in Q. 
From the second Green formula 

j (uA'v — vA'u)dxf = f ßjUy'jV — ßjVyfadx' 

with i>(a?') chosen to be the Green function G(x, x') of A, which is the trans
pose G(x', x) of the Green function of A9 one gets the Poisson kernel 

Pjfaœ') = -ß'jG(x,
9x), i = 0 , . . . , m - l , » e i 3 , x' e/7 , (29) 

and the kernel of the canonical integral equation 

K^x.x') = -ßJiG{-°)(x'9x)9 i,j = 0 , . . . , m - l , x,xeT, (30) 

where the LHS is the limit distribution kernel (from the inner side) 

the first kernel on the left being formally evaluated on r, while B^ is 
a linear combination of derivatives of the delta-function ô(x — x) with 
support concentrated on the diagonal x = x' oî TxT, which corresponds 
to the jump of the potential. For concrete examples, see [6]. 
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4. Asymptotic radiation conditions 

Now we shall apply the techniques of Sections 2, 3 to the Helmholtz equa
tion together with Sommerfeld radiation condition at infinity 

lim r1'* {ur - iœu) = 0, (31) 
r->oo 

Q = {r>B}, F = {r =22}, 

Au = ~(A + co*)u = 0 in Q, 

B(ïI,V)— j (gradwgradfl — co*uv)dx. 
a 

The Poisson formula and the canonical integral equation are, respect
ively, 

u(r9 6) =P(co,r,B; 6)*u(B, 6), 

vico r Ì 2 - 0 Ì - — V E"{œr) rine r>j? 

-ur(r-9d) =K(co9B;0)*u(B9d), 

-rr, -r, ^ * V» , H$'(coB) 

(32) 

(coB) 

where * is the circular convolution in 0. K induces the bilinear functional 

B(<p,f) = f K(co,B-9d-d')-<p(d')f(d)dd'dd. (33) 
r 

If we consider the circle r = B as an artificial boundary for the elimination 
of the exterior domain r>B, then (32) is the exact of theoretical radiation 
condition, which is necessarily non-local. After finite element discreti
zation, a non-local operator becomes a full matrix with the storage require
ment 0(N2), JT being the number of boundary degrees of freedom. 
Due to the convolutional nature of the operator, in the present case of 
a circle, the resulting matrix is circulant and requires only O(N) storage. 
However, due to the analytical complexity of the kernel, the computa
tional effort is always expensive. Hence, much inl^erest has recently been 
taken in the study of the approximations of non-local boundary condi
tions by local ones, aiming at reasonable accuracy at a reasonable expense. 
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From the point of view of compatibility with the variational formulation 
and FEM for elliptic problems, it should be required that the approxima
tion of (32) be expressed as 

with the corresponding approximation of the trace variational form (33) 
by 

v i C &u &v 
£>c(y<>u, y0v) = 2J J Gj~Wd¥~dXt ( 3 5 ) 

j=o r 

A possible approach for the case of large co and B is to start from the 
asymptotic expansion of Hankel functions for large arguments 

where 

0 -^/7(-mi 
is an eyen polynomial in n of degree 2p. One can then deduce an asympto
tic expansion for 

E$(a>B) . \ n / i V , ,x J / ; ' = —ia > h r ^ d «o(»')> HM(œR) ïH\2COB
 pK " 

p =0 

where 

a0(n*) = aQ(nz) = 1, ax(n
z) = 2(w2-£), az(n*) = - 4 ( M 2 - J ) , 

a7c(n
2) = (2l-2)(n, h-l)-a2(n

2)(n, 7c-2)- ... —ak_1(n*)(n91). 

Take the mth truncation 

m / • \p 
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then the successive asymptotic radiation conditions are 

Ami ~~dr~= m\~W}u' m = 0 > 1 > -

In particular, 

du ^ . 
A0: —- == K0u = —%<oui or 

du I 1 \ 
Ax: - — = Kxu = \^-icou + — | u, 

eu „ / . i i \ » a « « 
jda: = K~u = I — *ft)H — « , 2 or 2 \ 2JS 8ß)J2a/ 2o)Ea 30a ' 

d*u du „ l , 1 i 1 \ I i 1 \ 
Ani = K~u = \ — l(ß-\ ~\u— I 1 r I 3 dr * \ ^2B 8(oB* 8a>*B3J \2coB* ^2co*B3J 

As a comparison we quote the absorbing radiation conditions, based 
on the factorization technique of pseudo-differential operators, given 
by Engquist and Majda [3], 

du I . 1 \ 

* l ! " IF- ( - •"+as)* ' 
• du I . 1 \ l i 1 \ d*u 

** --d7=[-i(o+ ™r-[i^+-Mwi-w> 
and the sequence, based on the asymptotic expansion of solutions of 
t he wave equation, given by Bayliss and Türkei [1], 

du I . 1 \ 
B^ = -dT+\-%0i+lB-)u = Çi> 

d2u / . 3 \ du I Sim . 3 \ 
öra \ Bf dr \ B 4JBa/ ' 

/ d 4Ä— 3 \ 
'** = \~dr~ ~ÎC0+ 2r i Bk~lU = 0> & = 2 » 3 » " -3 

Note that AQ is the Sommerfeld condition, JL1? ^/x and Bx are the same. 
Starting from index 2 the three sequences diverge, and, starting from 
i = 3, the 2̂ - and Bi are not expressible in the required form (34). The 

file:///2coB*
file:///~dr~
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differential operator E2p+l has the same order as KZp but is of higher 
accuracy, and so is preferable. 

It is to be remarked that the conventional boundary condition of 
the third kind du/dn = c0u, usually expressing the so-called elastic coupling 
between the system and its environment, is simply the crudest approxi
mation to the full coupling (32) in the present context. The next approxi
mation du I on = cou — oxd

2uld02, which reflects the coupling with the 
environment much better and involves hardly any more additional effort 
in the FEM implementation, deserves attention. The coefficients o19 in 
addition to c0, should be theoretically predictable as well as experimentally 
determinable, they are likely to have potentially wide applications in 
practice. In this sense, the approximate boundary condition Az seems 
to be the most interesting. 

For FEM solutions and the related numerical analysis for the canoni
cal integral equations here described, see [6, 10,11]. 
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Numerical Solution of Nonlinear Boundary Value 
Problems by Variational Methods. 

Applications 

1. Introduction 

The main goal of this paper is to describe some methods of solution of 
nonlinear boundary value problems for ordinary or partial differential 
equations founded on a variational approach. The variational approach 
is quite powerful at two levels at least: 

(i) The approximation by G-alerkin type methods such as finite 
elements, spectral methods, etc... 

(ii) The numerical solution of the approximate problems by efficient 
iterative methods. 

To illustrate the above generalities, we shall discuss in Sections 2, 3, 
4 the solution of nonlinear boundary value problems by least squares-con
jugate gradient methods and apply them to quite classical nonlinear 
problems in Fluid Dynamics such as the Navier-Stokes equations for 
incompressible viscous fluids and the full potential equation modelling 
the transonic flows of compressible inviscid fluids. 

In Sections 5, 6 we shall discuss the solution of a broad class of non
linear variational problems by augmented Lagrangian methods and apply 
the corresponding techniques to the solution of some "hard" problems 
in finite elasticity. 

The results of numerical experiments illustrate the possibilities of 
the methods discussed in this paper (more details about these methods 
can be found in [19], [20]). 

[145fi] 
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2. Least squares solution of a nonlinear Dirichlet model problem 

In order to introduce the methods that we shall apply in Sections 3, 4 
to the solution of fluid dynamics problems, we shall consider the solution 
of a simple nonlinear Dirichlet problem by least squares and conjugate 
gradient methods. In Section 2.4, we shall briefly discuss the use of pseudo 
are length continuation methods for solving nonlinear problems via least 
squares and conjugate gradient algorithms. 

2.1. Formulation of the model problem. Let QcRN be a bounded domain 
with a smooth boundary r = dQ; let T be a nonlinear operator from V 
= El(Q) to 7* = H~l(Q) (E~l(Q), the topological dual space of E](Q)). 
We consider the nonlinear Birichlet problem 

(2,1) 
Find ueE\(Q) such that 

— Au-T(u) = 0 in Q 

and we observe that (2.1) implies 

u = 0 on r. 

We do not discuss here the existence and uniqueness properties of the 
solutions of (2.1) since we do not want to be very specific about the oper
ator T. 

2.2. Least squares formulations of the model problem (2.1). 

2.2.1. Generalities. We shall consider least squares formulations of 
the model problem (2.1). An obvious least squares formulation consists 
in saying that the required function u minimizes the left-hand side of 
(2.1), in an L2(Q) least squares sense. That is, 

Min f\Av + T(v)\2dx9 (2.2) 
ver a 

where F is a space of feasible functions. Let us introduce f by 

-24£ = -Av — T(v) in Q9 

1 = 0 on r. 

Then (2.2) is equivalent to 

(2.3) 

Min '[\AÇ\*dx, (2.4) 
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where f is a (nonlinear) function of v, through (2.3). It is clear (see e.g. 
[10], [35]) that (2.3), (2.4) has the structure of an optimal control problem, 
where 

(i) v is the control vector, 
(ii) £ is the state vector, 

(iii) (2.3) is the slate equation, 
(iv) the functional occurring in (2.4) is the cost function. 
Another least squares-optimal control formulation is 

Min [\i\*dx (2.5) 
veV Q 

where £ still satisfies (2.3). This formulation has been used by Oea-Gey-
monat [11] to solve nonlinear partial differential problems (including the 
steady ÏTavier-Stokes équations). 

Actually, the two above least squares formulations may lead to a slow 
convergence, since the norm occurring in the cost functions is not appro
priate for the state equation. An alternate choice, very well suited to 
nonlinear second order problems, will be discussed in the next section. 

2.2.2. A E~l4east squares formulation of (2.1). Let us recall some prop
erties of E"1 ( Q), the topological dual space of EI (Q). If B2 ( Q) is identified 
to its dual, then 

El
0(Q) czL2(Q) c E-l(Q); 

moreover, A(=^\[2) is an isomorphism from JETj(ß)onto E~1(Q). In the 
sequel the duality pairing <•, •> between E~1(Q) and E](Q) is chosen 
in such a way that 

</>«> = J>*» VfeL2(Q), VveEl(Q). (2.6) 
a 

The topology of E'~1(Q) is defined by ||• ||*, where V/ e E"l(Û) 

M*= SUP ì^' (2-7) 
*EHj(ß)-{0} IMIHJ(O) 

A convenient x least squares formulation to solve the model problem (2.1) 

1 Convenient because the space EQ(Q) i n (2-8) *s a l ß 0 ^ n e space in which we wish 
to solve (2.1) (as follows from the properties of A and T). 
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seems to be 

Mn \\Av + T(v)\U. ^ (2.8) 
ueHj(fl) 

It is clear that if (2.1) has a solution, then this solution will be a solution 
of (2.8) for which the cost function vanishes. Let us introduce £ eE\(Q) 
by (2.3), so that (2.8) reduces to 

Min lldflU (2.9) 

where £ is a function of v through (2.3). 
Actually, it can be proved that if ||-||* is defined by (2.7) with <•, •> 

obeying (2.6), then 

II^IU = IWIflJcn) - ( / l^l1*»)* VveEl(Q). (2.10) 

It follows from (2.10) that (2.9) may be reformulated as 

Min J"|V£|2^ (2.11) 

where £ is a function of v through (2.3); (2.11) has also the structure of 
an optimal control problem. 

Bemark 2.1. [Nonlinear boundary value problems have been treated in 
[38] using a formulation closely related to (2.3), (2.11). 

2.3. Conjugate gradient solution of the least squares problem (2.3), (2,11). 
Let us define the function J : Jîj(û)->B by 

J(V) = i J\VS\2dx (2.12) 

where £ is a function of v through (2.3); then we may also write (2.11) as 

Find u eEUQ) such that 
0K ' (2.13) 

J(u)^J(v) \fveE\(Q). 
We shall use a conjugate gradient algorithm to solve (2.13). From among 
the possible conjugate gradient algorithms we have selected the PolaJc-
Bibière version (see Polak [45]), since this algorithm produced the best 
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performances in the various experiments we did (good performance of 
the Pola.k-Bibière algorithm are discussed in [46]). Let us denote by 
J'(-) the differential of J(-) ; then the Polak-Eibière version of the conju
gate gradient method, applied to the solution of (2.13) is 

Step 0: Initialization. 

u0eEl(Q) given, (2.14) 

compute g° eEl(Q) from 

-Ag° = J'(n°) in Ü, g° = 0 on r, (2.15) 

and set 

z" = g°. (2.16) 

Then for n^O, assuming un, gn
9 z

n to be Imown, compute un+1, gn+l
9 z1l+l by 

Step 1: Bescent. 

un+i ^vp-j^z»! (2.17) 

where %n is the solution of the one-dimensional minimization problem 

An eR, J(u%-lnz
n) < J(un-Àzìl) VA eR. (2.18) 

Step 2: Construction of the new descent direction. 

Befine gn+1eE](Q) by 

-Agil+1 =J'(un+1) in Q, g1l+l = 0 on T, (2.19) 

then 

JVgn+1'V(gn^1-gn)dx 

J\Vgn\2dx ' 
a 

zn+l ^gn+l + y ^ ( a § 2 1 ) 

n = n + l , go to (2.17). • (2.22) 

The two non-trivial steps of algorithm (2.14)-(2.22) are: 
(i) The solution of the single variable minimization problem (2.18); 

the corresponding line search can be achieved by dichotomy or Fibonacci 
methods (see, for example, [6], [45]). We have to observe that each evalu-
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ation of J(v) for a given argument v requires the solution of the linear 
Poisson problem (2.3) to obtain the corresponding £. 

(ii) The calculation of gn+1 from un+1
9 which requires the solution of two 

linear Dirichlet problems (namely (2.3) with v = un+l
9 and (2.19)). 

Bemarh 2.2. As stopping criterion for algorithm (2.14)-(2.22) we 
should use 

J(u*)<« or \\9n\\Hl{a)<e 

where e is a "small" positive number. • 

Calculation of J'(un) and gn: Owing to the importance of step (ii), let 
us describe in detail the calculation of J'(un) and gn: 

Let w e E\(Q); then j\v) may be defined by 

<J ' (« ) t «>- lha ^ » W W . (2.33) 
J-M) t 

we obtain from (2.3), (2.12), (2.23) 

<J'(v),w}= JVi'Vrjdx, (2.24) 

where rj eEl(Q) is the solution of 

Arj = Aw + T'(v)-w in Q9 

rj = 0 on r9 

(2.25) has the following variational formulation 

f Vfj-Vzdx = fVwVzdx-<T'(v)-w,zy VzeEl(Q)9 
o d (2.26) 
qeJHj(U). 

Taking z = £ in (2.26), we obtain from (2.24) 

<J'(«),w>= JVë-Vwaœ-(T'(v)-iDfft Vv9weEl(Q). (2.27) 
a 

Therefore J'(v) (e E~l(Q)) may be identified with the linear functional on 
E\(Q) defined by 

w-> J"V£- Vwdx-<T'(v)-w, £>. (2.28) 

(2.25) 
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I t follows from (2.19), (2.27), (2.28) that gn is the solution of the following 
linear variational problem: 

Find gneEl(Q) such that VweEl(Q) 

jVgn-Vwdx = | V £ n - Vwdx-(T'(un)-w, £n> (2'29> 

where £n is the solution of (2.3) corresponding to v = un. 

Remarle 2.3. I t is clear from the above observations that an efficient 
Poisson solver will be a basic tool for solving (2.1) (in fact a finite-dimen
sional approximation of it) by the above conjugate gradient algorithm. 

Bemarh 2.4. The fact that J'(v) is known through (2.27) is not at all 
a draw-back if a GalerMn or a finite element method is used to approximate 
(2.1). Indeed, we only need to know the value of (J'(v), w} for w belonging 
to a basis of the finite-dimensional subspace of E](Q) corresponding to 
the Galerkin or finite element approximation under consideration. 

Bemarh 2.5. The above methodology extends easily to the solution 
of nonlinear elliptic systems like 

dut dux „ . ^ 
-Aux + ux- \-u2-— =fx m Ü, 

dxx dx2 

. du2 du2 , . (2.30) 
~Auz + ux—ï-+uz—± = / 2 in Q9

 v ; 

oxx ox2 

ux s= u2 = 0 on r, 

where Q is a bounded domain of JB2 and where f19ft eE~~1(ü). Elliptic 
systems closely related to (2.30) occur in the solution of the time depend
ent Navier-Btohes equations by alternating direction methods (see Sec. 3). 

2.4. A nonlinear least squares approach to arc length continuation methods. 

2.4.1. Generalities. Synopsis. We would like to show in this section 
that the above least squares methodology can be (slightly) modified in 
order to solve nonlinear problems by arc length continuation methods 
directly inspired from H.B. Keller [29], [30] (where the basic iterative 
methods are Newton's and quasi-ÏTewton's instead of conjugate gradient). 
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As test problem, we have chosen a variant of the nonlinear Dirichlet 
problem (2.1); let us consider the following family of nonlinear Dirichlet 
problems (to be solved in El(Q)), parametrized by X eR: 

— Au = XT(u) in Q, 
(2.31) 

u = 0 on .T; 

(2.1) - corresponds to I = 1. 

2.4.2. Solution of (2.31) via arc length continuation methods. Follow
ing [29], [30] (for which we refer for justification (see also [43])), we 
associate to (2.31) a "continuation" equation; we have chosen (from among 
other possibilities) 

f\Vù\*dx + ì* = 1 , (2.32) 
a 

where ù = dujds, A = dXßs9 and where the curvilinear abscissa s is defined 
by 

ds = ÌÒX+ fVû' Vôudx9 (2.33) 
ß 

or equivalently by 

(ôs)* = (ÔX)*+ J Vu- Vôudx. (2.34) 
û 

We are considering in fact a path in E] (Q) xR whose arc length is defined 
by (2.32)-(2.34). Then, in order to solve (2.31), we consider the family 
(parametrized by s) of nonlinear systems (2.31), (2.32). In practice we 
shall approximate (2.31), (2.32) by the following discrete family of non
linear systems, where As is an arc length step, positive or negative (possibly 
varying with n) and where un ™ u(nAs): 

Take u° = 0, X° = 0 and suppose that ï(0)9 ù(Q) are given (2.35) 

(initialization (2.35) is justified by the fact that n = 0 is the unique solution 
of (2.31) if X =0 ) ; then for n^O, assuming that un~l

9 A»"1, un, ln are 
Jcnown9 we obtain {un+1

9 Xn+1} eEl(Q) xR from the solution of 

f - Aun+1 = Xn+1T(un+1) in Q, V ' ' (2.36) 
\u»+* = 0 on r , 
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and 

f V(#-^°)-Vw(0)to + (A1~A°)A(0) =As if n = 0 , (2.37) 
a 

J (Vu^-u*1)- VI 1 dx + (Xn+1-Xn) — ) = As 

• if * > 1 ; (2.38) 

obtaining ù(0) and A(0) is an easy task since we have (from (2.31)) 

-Au(0) = X(0) T(0) in Û, 
(0) =-0 on r, 

and therefore 

i2(0)(l+ f\Vu\*dx) = 1 , (2.40) 

where ü eE\(Q) is the solution of 

-Au =T(0) in Q, 

û =0 on T 
(2.41) 

(then clearly ù(0) = X(0)û). 
Relations (2.36)-(2.38) look like a discretization scheme for solving 

the Oauchy problem for first order ordinary differential equations', from 
this analogy we can derive many other discretization schemes for the 
approximation of (2.31), (2.32) (Bunge-Kutta, multisteps, etc.) and also 
methods for the automatic adjustment of As. 

2.4.3. Nonlinear least squares and conjugate gradient solution of (2.36)-
(2.38). Without going into details (for which we refer to [21], [47]) we 
can solve (2.36)-(2.38) by a variant of algorithm (2.14)-(2.22) defined 
on the Hilbert space E](Q) xR equipped with the metric and inner prod
uct corresponding to 

{v9 /*}-> J \Vv\2dx + ̂ ) (2.42) 
a 

it is clear that other norms than (2.42) are possible, however, in all cases 

40 — Proceedings..., t. II 
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the scaling of a conjugate gradient algorithm using a discrete variant of 

(or similar operators) (2.43) 
-A 0 

0 1 

will require an efficient solver and the conclusions of Sec. 2.3 (namely 
Eemark 2.3) still hold. 

Bemarh 2.6. To initialize the conjugate gradient algorithm solving 
(2.36)-(2.38) we have used {2Xn — Xn-1,2un — un""1} as initial guess to com
pute {Xn+1, u71*1} (this supposes As to be constant) ; with such a choice we 
obtain a much faster convergence than by taking {Xn, un} as initial guess. 

2.4.4. Applications. We describe in this section the solution of non
linear eigenvalue problems by the continuation methods described above. 
The first problem is the Bratu, problem and will be discussed in more details. 
The second one is the solution of the Von Karman equations for nonlinear 
elastic plates and will be discussed quite briefly. 

2.4.4.1. Formulation of the first test problem. We shall apply the methods 
described in Sections 2.4.2, 2.4.3 to the solution of the following classical 
problem (known sometimes as the Bratu problem) 

[ — Au = Xeu in Q, 
(2.44) 

1^=0 on r, 

where fi is a bounded domain in RNm
9 we have to observe that unless 

N = 1, the mapping T defined by 

T(v) =e% veÈ\(Q)9 

is not continuous from E\(Q) to E"1(Q). We consider only the case where 
X = 0, since if X < 0, the operator v->— Av — Xev is monotone which implies 
tha t (2.44) has a unique solution. 

If X > 0 , problem (2.44) has been considered by many authors; with 
regard to recent publications let us mention, among others, referenceâ 
P-L [15], [16], [39]-[41]. From the numerical point of view, problem 
(2.44) has been investigated in [13], [21], [31], [47] among others. 

2.4.4.2. Numerical solution of (2 Ai) by the methods of Sections 2.4.2, 
2.4.3. We have chosen the particular case of (2.44) where ß = ] 0 , l [ x ]0 , l [ . 
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The practical application of the methods of Sections 2.4.2, 2.4.3 requires 
the reduction of (2.44) to a finite-dimensional problem', this can done by 
finite elements or (owing to the simplicity of Q) by finite differences. 

Actually, the results presented here have been obtained using a finite 
element method with piecewise linear approximations (see [19], [21], 
[47] for more details). The continuation method (2.35)-(2.38) has been 
applied with As =0 .1 ; we observe that T(0) = 1 in (2.41); algorithm 
(2.35)-(2.38) ran "nicely" since an accurate least squares solution of the 
nonlinear system (2.34), (2.38) required basically no more than 3 to 4 
conjugate gradient iterations, even close to the turning point. 

We have shown in Figure 2.1 the maximal value (reached at xx = xz 

= 0.5) of the computed solution uh as a function of A; the computed 
turning point is at X — 6.8591 ... 

uJO.5,0.5) 

3.20 6.40 8.00 

Fig. 2.1 

2.4.4.3. A second test probier^. The least squares-continuation methods 
described in Sections 2.4.2, 2.4.3 have been applied to the solution of 
nonlinear problems more complicated than (2.44); let us mention here 
the Navier-Stokes equations for incompressible viscous fluids at high 
Eeynolds' number and also problems involving genuine bifurcation phenom
enon like the Von Karman equations for plates. The details of these calcu-
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lations can be found in [21], [47], [48]. We consider briefly here the 
Von Karmcm equations for thin clamped plates: 

N 'Find u,<peB\(Q) such that 

4** = A[0O, «] + !>, 1*]+/ in Q, 

A2q> = —[u9u\ in Q, 

(2.45) 

where: 
(i) Q(aR2) is the two-dimensional spatial domain assqciated to the 

thin plate under consideration, 
(ii) 0O and / are given functions, /being the density of external forces 

normal to the plate, 
(iii) X is a factor of proportionality for the external forces acting in 

the plane of the plate, 
(iv) M is the vertical displacement and <p is the so-called Airy function, 
(v) [-, •] is defined by 

d2v d*w d2v d*w d*w 
dx\ dx\ dx\ dx\ dxxdXs dxxdx^ 

52.0 54.0 56.0 

Fig. 2.2 

580 60.0 
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du dw 
(vi) u, <p e E%(Q) =>u = ~-— = <p = ~-— = 0 on the boundary r of Q. 

on on 
We have shown in Figure 2,2 the results obtained in [48] using an arc 

length least-squares combination method, whOiSe principles are the same 
as those discussed in Sections 2.4.2, 2.4.3. 

Figure 2.2 represents the maximum value of u on Ü versus X, for 
f ts 0 (continuous curve) and / a positive constant (dotted curve); we 
observe a bifurcation phenomenon at the first eigenvalue of the linear
ized problem; see [48] for more details. 

3. Application to the solution of the Navier-Stokes equations for incompress
ible viscous fluids 

We discuss briefly in this section the numerical solution of the Navier-
Stokes equations for incompressible viscous fluids. For more details, see 
[19], Chapter 7 and Appendix 3. 

3.1. Formulation of the lime dependent Navier-Stokes equations for incom
pressible viscous fluids. Let us consider a Newtonian incompressible viscous 
fluid. If Q and r denote the region of the flow (Ü c JK^, N = 2, 3 in 
practice) and its boundary, respectively, then the flow is governed by the 
following Navier-Stokes equations 

Oil 
— vAu + (u-V)u+Vp = / in ß, (3.1) 

dt 

V-u = 0 in Q (incompressibility condition). (3.2) 

In (3.1), (3.2) we have 

(a) V -rn:, — ì 5!_ 
d<a' 

(b) u = {wJfLi is the flow velocity, 
(c) p is the pressure, 
(d) v is the viscosity of the fluid, 
(e) / is the density of external forces. 

In (3.1), (u-V)u is a symbolic notation for the nonlinear (vector) term 

N 

\£'h*L-
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Boundary conditions have to be added; for example, in the case of the 
airfoil B of Figure 3.1, we have (since the fluid is viscous) the following 

u = 0 on dB =±rB', (3.3) 

typical conditions at infinity are 

W = M o a , (3.4) 

where u^ is a constant vector (with regard to the space variables at least). 

Fig. 3.1 

If Q is a bounded region in RN
9 we may prescribe as boundary condition 

u =g on r , (3.5) 

where (by the incompressibility of the fluid) the given function g has to 
satisfy 

Jg-ndr = 0, (3.6) 
r 

where n is the outward unit vector normal to T. 
Finally, for time dependent problem (3.1), (3.2) an initial condition 

such as 

n(x, 0) = u0(x) a.e. on Q, (3.7) 

with u0 given, is usually prescribed. 
Looking at the above equations, we observe three principal diffi

culties (even for flows with low Eeynolds' numbers in bounded regions £2), 
which are: 

(i) The nonlinear term (u-V)u in (3.1), 
(ii) The incompressibility condition (3.2), 

(iii) The fact that the solutions of the Navier-Stokes equations are 
vector-valued functions of x, t, whose components are coupled by (u-V)u 
and by the incompressibility condition V*u = 0. 
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Using convenient alternating direction methods for .the time discretiz
ation of the Navier-Stokes equations, we shall be able to decouple the 
difficulties due to the nonlinearity and to incompressibility. For sim
plicity, we suppose from now on that Q is bounded and that we have (3.5) 
as boundary conditions (with g satisfying (3.6) and possibly depending 
on t). 

3.2. Time discretization by alternating direction methods. Let At (> 0) 
be a time discretization step and 0 a parameter such that 0 < 0 < 1. 

3.2.1. A first alternating direction method. We first consider the fol
lowing alternating direction method (of Peaceman-Eachford type): 

u° = u09 (3.8) 

then for n > 0, un being hnown compute {wn+1/2, pn+112} and ww+1 by solving 

'Un+ll2-Un 

At/2 
• 6vAun+1l2 +V#n + 1 / 2 = /w+1>2 + (1 - 0) vAuil - (un- V) uninQ9 

\V.un+ip = 0 in Q, ( 3 ' 9 ) 

w n+l /2 = 071+1/2 Qn r ? 

and 

t un+1-un+1/2 

( 1 - 0 ) vA wn+1'2 + (w'l+1-V) un+1 = / n + 1 + 6vAun+1 - V ^ + 1 2 

in Û, 

U n + 1 =gn+1 on r9 (3.10) 

respectively. 

We use the notation f(x) = f(x9jAt)9 gj(x) *=g(x,jAt), and uj(x) 

is an approximation of u(x, jAt). 

3.2.2. A second alternating direction method. We now consider the 
following alternating direction method (of Strang type) : 

w° = u09 (3.11) 
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then for n ^ 0 and starting from un we solve 

— 6vAun+1l* + Vpn+1t* = fn+1l* + (1 - 0) vAun - (un -V) un in Û, 

y.un+U4 = 0 in Q^ un+lß = f fn+l/4 Q% p^ (gj^g) 

(1 _ 0) vAun+31* + (un+31*- V ) M W + 3 / 4 

= J»+B/4 + QvAun+U* _ y w + 1 ' 4 Ml Ö , (3.13) 

u » + 3 / 4 = ^ + 3 / 4 o n jr ? 

f un+l ai«+3/4 

- 6vAun+1 +Vpn+1 = fl+1 + (1 - 0)i^ww+3/4 - (un+*14- V)M W + 3 / 4 

4*/4 
m ß , (3.14) 

W-ww+1 = 0 in Q, un+1 =gn+1 on I \ 

3.2.3. Some comments and remarks concerning the alternating direction 
schemes (3.8)-(3.10) and (3.11)-(3.14). "Using the two alternating schemes 
described in Sections 3.2.1, 3.2.2, we have been able to decouple nonlinear
ity and incompressibility in the Navier-Stokes equations. We shall de
scribe in the following sections the specific treatment of the subprob-
lems encountered at each step of (3.8)-(3.10) and (3.11)-(3.14); we 
shall first consider the case where the subproblems are still continuous 
in space (since the formalism of continuous problems is much simpler), 
and then the discrete case where a finite element method is used to ap
proximate in space the Navier-Stokes equations. 

Scheme (3.8)-(3.10) has a truncation error in O(At); due to the symmet-
rization process that it involves, scheme (3.11)-(3.14) has a truncation 
error in 0(\At\2). 

We observe that ww+1/2 and un+ll*9 un+1 are obtained from the solution 
of linear problems ((3.9) and (3.12), (3.14), respectively) very close to the 
steady Smokes problem. Despite its greater complexity scheme (3.11)-(3.14) 
is almost as economical in use as scheme (3.8)-(3.10) ; this is mainly due to 
the fact that the "quasi" steady Stokes problems (3.9) and (3.12), (3.14) 
(in fact, convenient finite element approximation of them) can be 'solved 
by quite efficient solvers resulting in that most of the computer time 
used to solve a full alternating direction step ((3.9), (3.10) or (3.12)-
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(3.14)) is in fact used to solve the nonlinear subproblem ((3.10) or (3.13)). 
The good choice for 0 is 0 *= 1/2 (resp. 0 =1/3) if one uses scheme (3.8)-
(3.10) (resp. (3.11)-(3.14)); this follows from the fact that with the above 
choices for 0, many computer subprograms can be used for both the linear 
and nonlinear subproblems, resulting therefore in quite substantial com
puter core memory savings. 

Bemarh 3.1. A variant of scheme (3.8)-(3.10) is the following (it cor
responds to 0 = 1 ) : 

u° = uQ, (3.15) 

then, for n^Q and starting from un
9 

—— vAun+ll2+Vpn+ll2 =fn+1l2~(un-V)un in Ü, 
At'2 (3.16) 

y.un+lß = 0 i n Q7 un+l/2 = 0*1+1/2 on j ^ 

( un+1 —un*1l2 

At/2 

un+1 =gn+1 on P^l*, 

+ (un+ll2-V)un+1 =fn+1 + vAun+1!2 in Q, 
(3.17) 

where 

jm+i/2 ={œ\ x e r , gn+1l2(x)-n(x) < 0}. 

Both subproblems (3.16), (3.17) are linear', the first one is also a "quasi" 
steady Stokes problem and the second one, which is a first order system, 
can be solved by a method of characteristics. 

A similar remark holds for scheme (3.11)-(3.14). 
Such methods have been used by several authors, the space discret

ization having been done by finite element methods very close to those 
described in Section 3.5 of this paper (see [3], [28], [44] for a discussion 
of those characteristics-finite element methods for solving Navier-Stokes 
equations); these characteristics-finite element methods are slightly 
dissipative, which may be a drawback in some applications. 

Bemarh 3.2. In order to improve the well-posedness properties of the 
nonlinear steps (3.10) and (3.13) (and also to simplify convergence proofs) 
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one may replace the original nonlinear term B (u) = (u • V) u by 

B(u) = (u*V)u+iu(V-u)9 

following the lines of [52]; it is clear that B(u) = B(u) if V*u = 0. Ac
tually, the good property of B is that 

f B (v) • v dx = 0 Vi? sufficiently smooth 

such that v = 0 on T, even if V«i? # 0 

(see [52] for more details). 
The numerical results obtained using either JB or JB are practically 

identical, provided that At is "reasonably" small. 

3*3. Least squares-conjugate gradient solution of the nonlinear sub-
problems. 

3.3.1. Classical and variational formulations. At each full step of the 
alternating direction methods (3.8)-(3.10) and (3.11)-(3.14) we have 
to solve a nonlinear elliptic system of the following type: 

au — vAu + (u- V)u = / 'in Q, 
1 ' (3.18) 

u =g on T, 

where a and v are two positive parameters and where / and g are two given 
functions defined on Q and B, respectively. We shall not discuss here the 
existence and uniqueness of solutions for problem (3.18). We introduce 
the following spaees of Sobolev's type 

V0 - [El(Q)f7 ' (3.19) 

Vg = {v\ v e (E^Q))*, v = g on F}-9 (3.20) 

if g is sufficiently smooth, then Vg ^ 0 . 
We use in the following the notation 

N N NN 
wv = y uivi9 V M ' V I ? = y Vu^VVi = \ \ 

du* dv* 
Z-J JLJ dXj dXx 
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From Green's formula we have, for sufficiently smooth functions u and v, 
belonging to ^(Q))1* and V0, respectively, 

— j Au-vdx = jVu-Vvdx. (3.21) 
n a 

If u is a solution of (3.18) it is also a solution of the nonlinear variational 
problem 

Find u e Vg such that (3.22) 

a j u-vdx + v fVu-Vvdx+ f ((u-V)u)-vdx = f f-vdx VveV0, 

and conversely. We observe that (3.18), (3.22) is not equivalent to a prob
lem of the calculus of variations since there is no functional of v with (v • V) v 
as differential. Using, however, a nonlinear least-squares formulation 
like those discussed is Section 2, we shall be able to solve (3.18), (3.22) 
by efficient methods from nonlinear programming, like conjugate gradient, 
for example. The finite element approximation of (3.18), (3.22) is briefly 
discussed in Section 3.5. 

3.3.2. Beast-squares formulation of (3.18), (3.22). Let v e Vg', from 
v we define y ( = y(v)) e V0 as the solution of 

ay — vAy = av — aAv-\-(v V)v— f in Û, 

y = 0 on r. 

We observe that y is obtained from v via the solution of N uncoupled 
linear Poisson problems (one for each component of «/); using (3.21), it 
can be shown that (3.23) is actually equivalent to the linear variational 
problem 

(Find y e V0 such that Vs? e V0 we have 

la fy'&dx+ v fVyV&dx 
Q D (3.24) 

= a fv-zdx + v fVv-Vzdx+ / ((»• V)v)-&dx— Jf-zdx9 

which has a unique solution. Suppose now that v is a solution of (3.18), 
(3.22); the corresponding y (obtained through the solution of (3.23), 
(3.24)) is clearly 0. From these observations it is quite natural to introduce 
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the following nonlinear least squares formulation of problem (3.18), (3.^2) 
(which is a straightforward variant of the one discussed in Section 2.2.2 
for the solution of problem (2.1)): 

Find ueVg such that 
(3.25) 

\J(u)^J(v) VveVg9 

where J: (E1(£3))^-^R is the functional of v defined by 

J(v) « i f{a\y\* + v\xry\*}dx9 
a 

with y defined from v by the solution of the linear problem (3.23), (3.24). 

3.3.3. Conjugate gradient solution of the least-squares problem (3.25). 
We use the following generalization of algorithm (2.14)-(2.22) discussed 
in Section 2.3: 

Step 0: Init 

w° e Vg given-, (3.26) 

we define g°9w° e V0 by 

a Jg°-zdx + v JVg*-Vzdx = <J'(w°), s> Vs e V09 g° e V09 (3.27) 
a a 

w° =g°, (3.28) 

Then, for n^O, assuming that un,gn
9w

n are hnown9 we obtain un+1
9 

gn+\ wn+1 by 

Step 1: Bescent. 

[Find Xn eR such that 
(3.29) 

\J(un-Xnwn)<,J(iin--Xwn) WXeR9 

wn+i =un^2.nwn. m (3.30) 
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Step 2: Calculation of the new descent direction. 

(3.31) 
Find gn+1 e V0 such that 

a Jgn+1-zdx + v fVg^-Vzdx = <J'(ttn+1), s> Vs e VQ9 
a Q 

afgn+1 • (gn+1 -gn) dx + vf Vgw+1 -V (gil+1 -gn) dx 
Vn = af\gn\dx+vj\Vgn\*dx ' ( 3 , 3 2 ) 

a Q 

wn+l = gn+1 + ?nWn9 (3 33) 

% =n+l9 go to (3.29). • 
As we shall see below, applying algorithm (3.26-(3.33) to solve (3.25) 

requires, at each iteration, the solution of several Dirichlet problems for 
the elliptic operator al — vA. 

Calculation of J ' : By a method similar to the one used in Section 2.3 
we can prove that J'(v) can be identified with the linear functional from 
V0 to B defined by 

<ß'(v)9 s> = a jy-zdx + v fVyX?&dx + 

+ j y(#-V)vdx+ fy(v-V)zdx Vs e V09 (3.34) 

with y being the solution of (3.23), (3.24); it has therefore a purely inte
gral representation, a property of major importance in view of finite el
ement implementations of algorithm (3.26)-(3.33). 

From the above results, to obtain <J'(wn+1), s> we proceed as follows: 
(i) We compute yn+1 from un+1 through the solution of (3.23), (3.24) 

wi t ì i V = un+1. 

(ii) We obtain <J/(ttn+1), s> by taking v = wTC+1 and y —yn+1 in 
(3.34). 

Further comments on algorithm (3.26)-(3.33). Each step of algorithm 
(3.26)-(3.33) requires the solution of several Dirichlet systems for the 
operator al—vA-, more precisely, we have to solve the following systems: 

(i) System (3.23), (3.24) to obtain yn+1 from un+1, 
(ii) System (3.31) to obtain gn+1 from wn+1, yn+1 
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(iii) Two systems to obtain the coefficients of the quartic polynomial 
X->J(un-Xwn). 

Thus we have to solve 4 Dirichlet systems at each iteration (or equiv-
alently 4JV,scalar Dirichlet problems for al—vA at each iteration); from 
these observations it appears clearly that the practical implementation 
of algorithm (3.26)-(3.33) will require an efficient (direct or iterative) 
elliptic solver (in fact 3N problems suffice). 

The solution of the one-dimensional problem (3.29) can be done very 
efficiently since it is equivalent to finding the roots of a single variable 
cubic polynomial whose coefficients are known. 

As a last comment, we would like to mention that algorithm (3.26)-
(3.33) (in fact, its finite element variants) is quite efficient; when used 
in combination with the alternating direction methods of Section 3.2, 
to solve the test problems of Section 3.6, three iterations suffice to reduce 
the value of the cost function J by a factor of 104 to 106. 

Bemarh 3.3. The above method can be applied also to the variant of 
problem (3.18), obtained by replacing (u- V)u by (u- V)u + %(V-u)u in 
(3.18) (cf. Eemark 3.2), i.e., to the nonlinear Dirichlet problem 

au — vAu + (U'V)u+l(V'U)u=f in Q, 

u =g on T. 

3.4. Solution of the "quasi" Stokes linear subproblems. 

3.4.1. Formulation. Synopsis. At each full step of the alternating 
direction methods (3.8)-(3.10) and (3.11)-(3.14) we have to sojve a linear 
problem of the following type: 

fau — vAu+ Vp = / in Q9 

V - w = 0 in Q, ( 3 3 5 ) 

u =g on F [with f g-ndF=-o), 
\ r / , • . . * 

where a and v are two positive parameters and / and g are two given func
tions defined on Q and r, respectively. 

We recall (see, e.g., [18], [36], [50], [52]) that if / and g are sufficiently 
smooth, then problem (3.35) has a unique solution in Vg x (B2(Q)/R) (with 
Vg still defined by (3.20); p eL2(Q){R means that p is defined only up to 
an arbitrary constant). We shall briefly discuss in the following sections 
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some iterative methods for solving (3.35), quite easy to implement using 
finite element methods (other methods are discussed in [19], Chapter 7). 

3.4.2. Gradient and conjugate gradient methods for solving (3.35). A stan
dard method to solve (3.35) is defined as follows: 

p°eB2(Q), given, (3.36) 

then, for n > 0, define un and pn+l from pn by 

aun-vAun =f-Vpn in Q, 
' F ' (3.37) 

un =g on r, 
pn+l ==pn_QV.unm (ggg) 

Concerning the convergence of (3.36)-(3.38), one can prove (see e.g. 
[19], Chapter 7, [18], [52]) the following 

PROPOSITION 3.1. Suppose that 

0<Q< 2vlN; (3.39) 

we then have 

lim{un
9 pn) *= {u, p0} strongly in {E^Q))1* xB2(Q), (3.40) 

»-»-+00 

where {u, p0} is the solution of (3.35) such that 

jp0dx = jp°dx (3.41) 
a a 

(actually the convergence is linear). 

Bemarh 3.4. When applying algorithm (3.36)-(3.38) to solve the "quasi" 
Stokes problem (3.35) we have to solve at each iteration N uncoupled 
scalar Dirichlet problems for al — vA, to obtain un from pn. We see again 
(as in Sec. 3.3) the importance of having efficient Dirichlet solvers for 
al — vA. 

Bemarh 3.6f Instead of algorithm (3.36)-(3.38) we should rather use 
in practice the following conjugate gradient variant of it, whose convergence 
is much faster in most cases and which is, in addition, no more costly 
to implement: 



1478 Section 15: R. G-lowinski 

Bescription of the conjugate gradient algorithm: 
Step 0: Initialization. 

p°eL2(Q) given arbitrarily, 

solve 

and set 

au° — vA 
u° =g 

\u°=f-Vp° in Û, 
on F, 

g<> = V - M ° , 

w° = g°. 

Then for n ^ 0, we obtain pn+1
9 gn+l

9 wn+1 from pn, gn, wn by 
Step 1: Bescent. Compute %n e (El(Q))N as the solution of 

af' — vAf' = -Vwn in Q9 

0 on F, 

then set 

jwngndx f\gn\2dx 

Qn = fî-f'wndx fV'znwndx 
a a 

and finally 

p ,«+i Vn-QnWn. 

Step 2 : Calculation of the new descent direction. 

9 .n+l . nn 9n-Qn*-Xn, 

Yn 

„ro+1 

M—ma.** 
\\gn\\bia) '-
„m+l. r T ' =g"irl+ynw'n 

Then take n = n+l and go to (3.46). 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

Once the convergence of (3.42)-(3.51) tö p0 (that pressure solution 
such that jp0dœ = fp°d<c) has been settled we compute it from. p0 by the 
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solution of the Dirichlet system 

au — vAu =f—VpQ in Q, 

u =gr on r. 

3.4.3. Another iterative method for solving (3.35). This method is in 
fact a j>enalization variant of algorithm (3.36)-(3.38) and is defined as 
follows (with r a positive parameter) : 

pQeL2(Q) given, (3.52) 

then, for n > 0, define un and pn+1 from pn by 

aun—vAun — rV(V*un) =f—Vpn in Q, 

un ~g on r, 

pn+i ==pn_QV.unm (3.54) 

PROPOSITION 3.2. Suppose that 

0<Q<2(r + v/N); (3.55) 

then the convergence result (3.40) still holds for {un,pn}. 

For a proof see e.g. [19], Chapter 7. 

Bemarh 3.6 (About the choice of Q and r). In practice, we should use 
Q —r, since it can be proved that in that case the convergence ratio of 
algorithm (3.52)-(3.54) is 0(r""1),for large value of r. In many applications, 
taking r = IO4?, we have a practical convergence of algorithm (3.52)-(3.54) 
in 3 to 4 iterations. There is, however, a practical upper bound for r: this 
follows from the fact that for too large values of r, problem (3.53) will be 
ill-conditioned and its practical solution sensitive to round off errors. 

Bemarh 3.7. Problem (3.53) is more complicated to solve in practice 
than problem (3.37) since the components of un are coupled by the linear 
term V(V-un). Actually the partial differential elliptic operator in the 
left-hand side of (3.53) is very close to the linear elasticity operator, and 
close variants of it occur naturally in compressible and/or turbulent viscous 
flow problems. 

Bemarh 3.8. Other techniques for solving (3.35) are discussed in [19], 
Chapter 7. 

41 — Proceedings..., t. II 
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3,5, Finite element approximation of the time dependent Navier-Stokes 
equations. 

3.5.1. Generalities. Synopsis. We shall briefly discuss in this section 
a specific finite element approximation for the time dependent Navier-
Stokes equations. Actually this method which leads to continuous approxi
mations for both pressure and velocity is fairly simple and has been known 
for years; it has been advocated by Hood-Taylor [51], and also by other 
authors. Other finite element approximations of the STavier-Stokes equa
tions can be found in e.g. [18]-[20], [52], [53]. A most important reference 
for the theoretical study of the convergence of ike approximate solution 
of the time dependent ISTavier-Stokes equations is Heywood-Eannacher 
[26]. 

3.5.2. Basic hypotheses. Fundamental discrete spaces. We suppose 
for simplicity that Q is a bounded domain in Ä2. With !Th a standard finite 
element triangulation of Q, and h the maximal length of the edges of 
the triangles of Fh, we introduce the following discrete spaces (with Pk 

= space of the polynomials in two variables of degree < h) 

Si = {qh\ qheC»(Q), qn\T ePx VTe<Th}, (3.56) 

7* = K l ** e 0°(5) X C°(Q), vh\T eP2 x P a VT e 3T^9 (3.57) 

Voh = VonVh= K I v* * Vh, vh=0 on F}. (3.58) 

3.5.3. Space discretization of the time dependent Navier-Stohes equations. 
Using the above spaces El, Vh, Voh we approximate the time dependent 
Navier-Stokes equations as follows: 

Find {uh(t), ph(t)} eVhxEl Vtf 5* 0, such that 

{—^- -vhdx + v C\?uh-Vvhdx+ C(uh-V)uh-vhdx+ fvph-vhdx 
a Q Q Q 

= fh-^dw V» A e7 0 Ä , (3.59) 
a 

fV-uhqhd(e=0 VqheHl (3.60) 
a 

uh=gh on r, (3.61) 

uh(x, 0) = uoh(w) (uoh e Vh) ; (3.62) 
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in (3.59)-(3.62), fh and uoh are convenient approximations of / and u0, 
respectively, and gh is an approximation of g such that fgh n dr = 0 (for 

r 
the construction of gh see [19], Appendix 3, or [25]). 

We have thus reduced the solution of the time dependent Navier-
Stokes equations to that of a nonlinear system of algebraic and ordinary 
differential equations. We observe that the incompressibility condition is 
only approximately satisfied. The time discretization of (3.59)-(3.62) 
is discussed in Section 3.5.4 below. 

3.5.4. Time discretization of (3.59)-(3.62) by alternating direction methods. 
We now consider a fully discrete version of the scheme (3.8)-(3.10) 

discussed in Sec. 3.2.1; it is defined as follows (with At and 0 as in Sec. 2): 

K - uoh, (3.63) 

then, for n > 0, compute (from t*J) {ttf+1/2, jtf+I / l} e Vh xE\, and < + 1 e Vh, 
by solving 

u? + 1 ' a -u? 
f h h -vhdx + Qv fVun^2-Vvhdx+ fVp^W-Vj, dx 

Atß 
Q id 64 

= J f-+^-vhdx-(l-8)v jVul-Vvhdx- j (ulV)u%-vhdx WvheVm 

ß Q Q 

(3.64) 

/ V - < + 1 / 2 g Ä ^ = 0 VgAelTft, (3.65) 
£2 

< l + 1 / 2 e Vh, pl+W e E\, ul^2 = gl+W on F, (3.66) 

and then 

«.n+l «.»1+1/2 ah ~~ ah f h » vhdx + (l-0)v fVu^-Vvhdx + f «+1-VK+1-»A dx 
Atß 

iê A* 

f f%+1-vhdx -Ovf Vu?*1'2- Vvhäx - f VppW.vhdx Vvh 6 Voh, 
a a a 

(3.67) 

< + 1 e 7 7 „ ul+'=gl+l onT. (3.68) 
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Obtaining the fully discrete analogue of scheme (3.11)-(3.14) is straight
forward, Solving the linear and nonlinear subproblems encountered 
at each step of (3.63)-(3.68) can be done by the discrete analogues of the 
methods discussed in Sections 3.3, 3.4; for more details see [19], Chapter 
7 and Appendix 3, where the interest of efficient Poisson solvers as basic 
tools appears clearly. 

Modifying (3.64)-(3.67), to take into account the augmented nonlinear 
operator B introduced in Section 3.2.3, Eemark 3.2, is quite easy, but 
as mentioned before, it has no practical influence on the numerical results 
that we obtained. 

3.5.5. Numerical experiments. We illustrate the numerical techniques 
discussed in the above sections by presenting the results of numerical 
experiments where these techniques have been used to simulate several 
incompressible viscous flows modeled by the Navier-Stokes equations. 

3.5.5.1. Flow in a channel with a step. The first numerical experiment 
that we have done concerns a Navier-Stokes flow in a channel with a step 
at Ee = 191 ; the characteristics length used to compute the Eeynolds number 
is the height of the step. Poiseuille's profiles of velocity have been pres
cribed upstream and quite far downstream. The corresponding streamlines 
are shown in Fig. 3.2; we clearly see in Fig. 3.2 a thin separation layer 
starting slightly below the upper corner of the step, and separating a recir-
óulation region from a region where the flow is quasi potential. The results 
obtained for this test problem are in very good agreement with those 
obtained by several authors using different methods (see [19] and [42]). 

Fig. 3.2 The streamlines shown are those for which the streamfunction assumes values 
(n/15), for integers n between — 5 and +•15. The stepped (lower) boundary of the 

channel corresponds to n — 0 
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3.5.5.2. Flow around and inside a nozzle. This experiment concerns an 
unsteady flow around and inside a nozzle at high incidence and at Ee = 750 
(the characteristic length being the distance between the nozzle walls). 
We have shown in Fig. 3.3 a part of the finite element triangulation used 
for the computation and in Figs. 3.4-3.7 the streamlines at t = 0, 0.2, 
0.4, 0.6, respectively, showing clearly the creation and the motion of 
eddies, inside and behind the nozzle. 

Fig. S.3 
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4. Application to the calculation of potential transonic flows for compress« 
ibìe inviscidì fluids 

4 .1 . Generalities. The physical problem. The numerical simulation of 
transonic potential flows of compressible inviscid fluids is a non-trivial 
problem since 

(1) The equations governing these flows are nonlinear and of changing 
type (elliptic in the subsonic region of the flow, hyperbolic in the super
sonic region); 

(2) Shocks may exist corresponding to discontinuities of velocity, 
pressure and density; 

(3) An entropy condition must be included in order to eliminate rare
faction shocks since they correspond to unphysical situations. 

We suppose in the following that the fluids to be considered are com
pressible and inviscid and that their flows are potential and therefore 
quasi-isentropie, with weak shocks only; in fact, this is only an approxi
mation since usually a flow is no longer potential after a shock (cf. [32]). 
In the case of flows past bodies we shall suppose that these bodies are suffi
ciently thin and parallel to the main flow in order not to create a wake 
in the outflow. 

4.2. Mathematical formulation. Let Q be the region of the flow and r its 
boundary; it follows from [32] that the flow is governed by 

V-QU = 0 in Û, (4.1) 

where 

u = V<p. " (4.3) 

In the above relations <p is the velocity potential Q is the density of the fluid, 
y ( = 1.4 in air) is the ratio of specific heats and e* is the critical velocity. 

For an airfoil B (see Fig. 4.1) we assume that the flow is uniform on J ^ 
and tangential at FB. We then have 

dw dop __ 
— =ucou on rTO, - ^ - = ° on TB. (4.4) 
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Since only Neumann boundary conditions are involved the potential 
is determined up to an arbitrary constant. To remedy this we should 
prescribe the value of <p at some point within Qc\rB and, for example, 

Pig. 4.1 

we may conveniently use 

<p = 0 at the trailing edge (T.E.) of B. (4.5) 

In addition to (4.4), (4.5) another condition known as the Kutta-Joukowshy 
condition has to be prescribed; it requires "some" continuity of u, even 
at the corners, and is particularly important for lifting bodies. 

Since this condition is not specific of transonic flows (it occurs also 
for compressible inviscid subsonic flows and incompressible inviscid 
flows), it will not be discussed here (see [7], [8] for the numerical treat
ment of the Kutta-Joukowsky condition). 

Another most important feature of inviscid transonic flows is the 
existence of shocks) across a shock the flow must satisfy the Eankine-
Hugoniot conditions 

(QU- W)+ = (QU'n)_ (where n is normal at the shock line or surface), 

(4.6) 

the tangential component of the velocity is continuous. (4.7) 

As regards the entropy condition, it can be formulated as follows : 

Following the flow, we cannot have a positive variation of velocity 
through a shock since this would imply a negative variation of entropy 
which is an unphysical phenomenon. (4.8) 
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4.3. Leastrsqpiares formulation of the continuous problem. We will not 
consider here the practical implementation of (4.8) (it will be discussed 
briefly in Sec. 4.4) ; we consider only the variational formulation of (4.1)-
(4.4), (4.6), (4.7) and an associated nonlinear least squares formulation. 

4*3.1. A variational formulation of the continuity equation. We consider 
for simplicity the situation in Fig. 4.2 which shows a symmetric flow, 
subsonic at infinity, around a symmetric airfoil; thus the Kutta-Joukow-
sky condition is automatically satisfied. 

Fig. 4.2 

For practical purposes (other approaches are also possible) we imbed the 
airfoil in a "large" domain; using the notation of Section 4.2, the continuity 
equation and the boundary conditions are 

V-Q(<P)V<P = 0 in û (4.9) 

with 
i2 i i / (y- i ) 

[ y+1 c% J 

and 

dcp dw 
Q—-=0 on rB, e — = eoou„- n«, on rm. (4.11) 

on dn 

Define g on the set F( = rB\j rM) by 

g =0 on rÈ, g = g«, u^ n o n ^ . (4.12) 

Clearly, we have 

Q-^=g and jgdr = 0. (4.13) 
r 
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An equivalent variational formulation is 

J Q{w) VW -Vvdx = fgvdr VveE^Q), w eWhoo(Q)IR. (4.14) 
ß r ' 

The space Wli0°(Q) is a natural choice for w since physical flows require 
(among other properties) a positive density g; therefore, in view of (4.10), 
w must satisfy 

/ y + l \ 1 / 2 

\Vw\ < ô < 1 c* a.e. in Q. 
\y-lj 

4,3.2. A least squares formulation of (4.14). For a genuine transonic flow, 
problem (4.14) is not equivalent to a standard problem of the calculus of 
variations (as it would be for purely subsonic flows) ; to remedy this situ
ation and — in some sense — convexify the problem under consideration, 
we introduce a nonlinear least squares formulation of (4.14) as follows. 
Let X be a set of feasible solutions; the least squares problem is then 

MinJ(f) (4.15) 

with 

J(t) =i f\Vy(£)\2dx (4.16) 

where, in (4.16), y(£) ( =y) is a solution of 

Find y eE1(Q)jR such that 

JVyVv dx = J"e(f)V£-Vfl<fo- fgvdr VveE^Q). <4-17) 
ß ß r 

If (4.14) has solutions, these solve (4.15) and give the value zero to the objec
tive function J. 

4.4. Finite element approximation. We consider here only two-dimensional 
problems but the methods described have been applied to three-dimen
sional problems. 

4.4.1. Finite element approximation of (4.14). We still consider the 
nonlifting situation of Section 4.3.1; once the flow region has been embed
ded in a large domain Q, we approximate this latter domain by a polygonal 

file:///y-lj
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domain Ûh; with ff'u a standard triangulation of Qh9 we approximate 
EX(Q) (andinfact Whp(Û), Vp ^ 1) by 

SI = Kl vh e G^Q^v^eP^Te^} (4.18) 

where Px is the space of polynomials in two variables of degree < 1. We 
prescribe the value for the potential at T.E. ; this leads to 

Vh = {vheEl,vh(T.TZ.)=0}. (4.19) 

Clearly, 

dimBft = l + dim7Ä = number of vertices of &~h. (4.20) 

We then approximate the variational equation (4.14) (dropping h in Qh 

and Fh) by 

Find wh e Vh such that 

ö r 

where gh is an approximation of the function g of (4.13). Let Slh = {%}£̂  
be a vector basis of Vh. Then (4.21) is equivalent to the nonlinear finite-
dimensional system 

js=1 (4.22) 
j Q^VW^VW^X = fghWidr Vi = 1 , . . . , Nh. 

Q r 

With the above choice for E\ and Vh, there is no problem of numerical 
integration since, in (4.21) and (4.22), V(ph9Vvh (and therefore e(<ph)) 
are piecewise constant. 

4.4.2. Numerical implementation of the entropy condition. The numerical 
implementation of the entropy condition (4.8), in order to eliminate rare
faction shocks, is a non-trivial matter. Without going into details, we 
should mention that methods founded on the upwinding of the density 
have been implemented, producing rather good numerical results (see 
[9], [27] and also [19], Chapter 7, for technical details and further 
references). 
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The method for upwinding the density discussed in [9] leads to the 
following equation : 

fFind <ph e Vh such that 

Je(<Ph)V<Ph'Vvhdx+ fBh(<ph)vhdx = fghvhdr VvheVh9 ^ 2 3 ) 
Q p r 

in which Bh can be viewed as an artificial viscosity operator (see [9] for a full 
description of Bh). 

The solution of (4.23) by nonlinear least squares methods is achieved 
by the following variant of (4.15) : 

Min Jh(èh) (4.24) 

CP 

Pig. 4.3. a = 6°, ifoo = .6 
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(4.25) 

with. 

a 

where, in (4.25), yh is a solution of 

JVyh- Vvhdx = / e(hWh- Vvhdx+ fBhU!h)vhdx- fghvhdr. <4-26) 
a Q Q r 

The solution of (4.24)-(4.26) by a conjugate gradient algorithm (fairly 
close to algorithm (2.14)-(2.22)) is discussed in [19], Chapter 7, and [9]. 

Pig. 4.4. a = 6°, Mœ = -6 

4.5. Numerical experiments. 

4.5.1. Flows around a ÏTACA 0012 airfoil. Figures 4.3-4.5 show the 
pressure distribution and isomach lines for flows around a SAGA 0012 
airfoil at various M^ and angles of attack. 
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CP 

Fig. 4.5. a*= 0°, Jfoo=.8ß 



CP. 

Fig. 4.6. a = 0°, If«, = .00 
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These results are in good agreement with those obtained by other 
authors by quite different methods (mostly finite difference methods); 
see [19] and [9] for further references. 

4.5.2. Flows around a NACA 64006 airfoil. We have shown in Pigs. 
4.6, 4.7 the Mach distribution corresponding to flows around a ÏTAOA 64006 
airfoil for M^ = .89 and the angle of attack a = 0°. The flow on Fig. 

Fig. 4.6 

Proceedings..., t. II 
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4.6 (resp. 4.7) is symmetrical (resp. non-symmetrical); thus we have (at 
least) three solutions to the same problem (the third one is obtained 
from the one of Pig. 4.7 by symmetry with respect to the symmetry axis 
of the airfoil); these three solutions satisfy the continuity equation, the 
Eankine-Hugoniot, Kutta-Joukowsky and entropy conditions. Actually, 
the symmetrical one seems to be instable with regards to small nonsym-
metric perturbations; for more details, see e.g. [49]. • 

Fig. 4.7 
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5. Decomposition methods for variational problems by augmented Lagran-
gians. An application in finite elasticity 

5.1. Generalities. The main goal of this section is to give a brief account 
of solution methods for variational problems when some decomposition 
property holds ; introducing a convenient augmented Bagrangian, we obtain 
solution methods, taking advantage of the special structure of the problem 
under consideration; these methods are described and discussed in Section 
5.2. An application in Finite Elasticity is considered in Section 5.3. 

For more details and further references, see [20] and also [19], Chapter 6. 

5.2. Decomposition of variational problems. Associated algorithms. We 
follow [5] and [24], Appendix 1. 

5.2.1. A family of variational problems. In the sequel we consider real 
Hilbert spaces only; let V and E be two such vector spaces, equipped with 
the norms and scalar products ||-||, ((•,•)) a n ( l 1*1? ('?')> respectively. 
Let B eï£(V, E) and F, G be two functionals convex, proper, l.s.c, from 
E and V to R u { + oo}, respectively. We suppose that 

dom(ö)ndom(JPoJB) ^ 0 , (5.1) 

where 

dom((?) = {v | v e V, — oo < G(v) < + oo} 

and a similar definition for dom(FoB). We associate with V, E, B, F9 

G the following minimization problem: 

Find u e V such that 
(P) 

J(u)^J(v) VveV 

where J: V->R is defined by 

J(v) =*F(Bv)+G(v). (5.2) 

Since J(-) has a special structure, it is natural to look for methods taking 
advantage of this fact. 

Bemarh 5.1. Most of the following considerations can be applied to 
the solution of variational problems such as 

feB'Ax(Bu)+A2(u)9 (5.3) 
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where/ e V (the dual space of V) and where Ax, A2 are monotone operators 
from E to E' (dual space of E) and from V to V, respectively. In general, 
A = BfoAxoB+Az is not the gradient (or subgradient) of a functional 
(B' is the transposed operator of JB). 

5.2.2, A decomposition principle? We define a set W c F xfl" by 

W = {{v,,q}eVxE9Bv-q =0} , (5.4) 

Problem (P) is equivalent to 

fFind {u, p} e W such that 

l j (^#)<J>>2) V{v,q}eW, 
(H) 

with 

j(v,q)=F(q)+G(v). (5.5) 

Bemarh 5.2. Problems (P) and (II) are equivalent, but (II) has, in 
some sense, a simpler structure than (P), despite the fact that it contains 
an extra variable. This is due to the fact that the linear relation 

Bv-q=0 (5.6) 

can be efficiently treated using simultaneously — via an appropriate 
augmented Bagrangian — the penalty and Bagrange multiplier methods 
of solution. * 

5.2.3. An augmented Bagrangian associated to (II). Let r > 0; we define 
&r: VxExE->R by 

*r(«iffii») =*(S)+ff(«) + y \Bv-q\*ï(f*,Bv^q)r. .. (5ft) 

We easily prove that if {{^, p}, X} is a saddle point of J2?r over ( F xüf) x JT, 
then {u9 p} is a solution of-(II), i.e. M> is ^ solution of (P) (with p* = -B^). 

«. • . * - » » » ' f • * t - r , > 

5.2.4. J. jftVs* algorithm for solving (P). To solve (P) and (II) we look 
for saddle points of «#V using duality .algorithms Uk&thosë«xLiscûssed in [24] ; 
such an algorithm is defined a& follows : " " » r i" . . " * ' . . .. :. ì ... )7.: 

[,XQeE ''giyent •• (5.8) 
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then for n > 0, Xn being known, we compute un, pn and Xn+l by 

Find {un,pn} eVxE such that 
(5.9) 

&r« p*9 Xn) < Ser(v, q, Xn) W{v, q}eV xE, ' 

Än+i ^ ^+e(Bun-pn). (5.10) 

We have proved in [20], Chapter 3, that if F, B, G satisfy quite reason
able hypotheses and if 

then we have 

0 < Q < 2r, (5.11) 

strongly in V, (5.12) 
n-*+oo 

lim pn ~p( = Bu) strongly in E, (5.13) 

lim Xn = X % weakly in E, (5.14) 
n->+oo 

where u is the solution of (P), and where X is such that {{u, p}, X) is a saddle 
point of £?r on (V xE) xE. 

Bemark 5.3. To solve (5.9), we can use block-relaxation algorithms like 
those discussed in [12] (see [20] for more details); if we use these relax
ation methods to solve (5.9) and limit ourselves to only one inner iteration, 
we obtain the algorithm described in Sec. 5.2.5. 

5.2.5. A second algorithm for solving (P). It is defined by 

{u-\X*}eVxE given, (5.15) 

™en, for n > 0, un~~l and Xn being known, we compute pn, un, Xn+1 by 

&r(u
n~\ pn, Xn) < &r(u

n~l, q, Xn) \fq e E, pn e E, (5.16) 

&r(u
n, pn, Xn) < &r(v, pn, Xn) Wv eV, une V, (5.17) 

AB+1 = Xn+ Q(Bun-pn). (5.18) 

Bemark 5.4. Several variants of (5.15)-(5.18) can be derived; we may 
for example 

(i) interchange the role of q and v (see also Eemark 5.5), 
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(ii) update Xn between steps (5.16), (5.17); doing so we obtain the 
following variant of (5.15)-(5.18) (due to Gabay [17]): 

{u~\ A0} given in VxE, (5.19) 

then for. n > 0, nn~l and Xn being given, we compute pn
9 Xn+l12, un, Xn+1 by 

&r(u
n~l,pn, Xn)^&r(u

n~l, q, Xn) VqeE, pneE, (5.20) 

jii+i/2 = xn + (Bun'l-pn), (5.21) 

J2V(t*n, pn, Xn+112) < JPr[v, pn, Xn+112) Vv eV, une V9 (5.22) 

jn+l = r+ll2 + Q(Bun-pn)-9 (5.23) 

q and v play a more symmetrical role in (5.19)-(5.23) than in (5.15)-(5.18). 

Bemark 5.5. If one uses (5.15)-(5.18), it is suggested to solve in the 
second step the problem with the best ellipticity properties (cf. [20], 
Chapter 3, for the justification of such a choice). • 

As regards the convergence of (5.15)-(5.18), one proves in [20], Chapter 
3, that the convergence results (5.12)-(5.14) hold if 

1 + ^ 5 
° < e < — 0 — r - (5-24) 

5.2.6. Comments on the choice of Q and r. For a given r, it follows from 
various numerical experiments we have done that the optimal choice 
for Q is close to r. The choice of r is more complicated; theoretically, the 
speed of convergence of (5.8)-(5.10) increases with r, but the conditioning 
of problem (5.9) deteriorates as r increase. 

If one uses algorithms (5.15)-(5.19) and (5.19)-(5.23) with Q = r9 

the optimal choice for r is again a problem difficult to analyse. 

5.2.7. Belations with alternating direction methods. Algorithms (5.15)-
-(5.18) and (5.19)-(5.23) are closely related to alternating direction methods, 
as shown in [20], Chapters 8 and 9; for the convergence properties of these 
alternating direction methods and relations with the numerical integration 
of time dependent problems see [17], [37]. 

5.3. Application in finite elasticity. We apply the decomposition methods 
of Section 5.2 to the numerical solution of nonlinear problems in finite 
elasticity dealing with incompressible materials of the Mooney-Eivlin 
type (we follow here [20], Chapter 8, and [22]). 
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5.3.1. Formulation of the elasticity problem. A fundamental problem 
in finite elasticity is the calculation of the deformations and displacements 
of a solid body made of an homogeneous, isotropic, hyperelastic and incom
pressible material submitted to volume forces Q0f (Q0 is the density of the 
material) and superficial forces S0. Using a Bagrangian formulation, the 
functional of energy associated with a displacement field v is given by 

n(v) = J Qo(<r(v)-f0v)dx- fSo'Vdr, (5.25) 

where Q is the domain in RN corresponding to the reference configuration ; 
dû ( = dQxr\dÛ2) is the boundary of Q. The body being fixed along dÛx, 
we have denoted by o(v) the stored energy functional (per unit mass). 
For a Mooney-Eivlin material we have 

a(v) = Bx(Ix-2) if N = 2, (5.26) 

a(v) = Bx(Ix-3)+B2(I2-3) if N = 3, (5.27) 

where I{ is the ith. invariant of the tensor FF1, where 

F = J+XTv, (5.28) 

and where Bx, B2 are positive coefficients, material dependent. 
The displacement v satisfies the incompressibility condition 

d e t F ( u ) = l a.e. on Ü. (5.29) 

Bemarh 5.6. We have supposed in (5.25) that / and S0 are independent 
of v (dead load hypothesis); actually we refer to [22], [33], [34] where 
the algorithms to be described below are generalized to problems for which 
the above hypothesis is not satisfied. • 

It is reasonable to suppose that the displacements u corresponding to 
the stable equilibria satisfy 

u is a local minimizer over K of the functional II9 (5.30) 

where, for a Mooney-Rivlin incompressible material, we have 

K = {v e (E^fì^l v = 0 on dQx, det F(v) = 1 

a.e., J F ~ » e {B2(Q))N*N} (5.31) 

and where 77 is defined by (5.25)-(5.27). 
The existence of solutions for (5.30), (5.31) is proved in [2]. 
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We can give also a formulation founded on the following augmented 
Lagrangian (associated with the linear relation (5.28)), with r>0: 

<?r(v9G9p) =n(v)+ | - | |Vv+J-G?|] i2- jfl-(Vv+J-G)dx. (5.32) 
a 

This leads to the following formulation of the elastostatic problem: 

Find {u,F,X}eW =XxTx (B2(û))NxN
9 a stationary 

point of &r over W9 (5.33) 

where 

T ={6?| Ge(B*(Q))NxN
9 G~1e(B2(Q))NxN

9 det G =,1 a.e.}. 

The relations between formulations (5.30), (5.31) and (5.33) are discussed 
in [22], [33], [34] (together with other formulations). 

5.3.2. Solution of problem (5.30), (5.31). 

5.3.2.1. A first algorithm. It corresponds to (5.8)-(5.10) of Section 5.2 
and is defined by: 

X° is given in (B2(Q))NxN
9 (5.34) 

then for n^O, Xn being hnown, we obtain un
9 F

n and An+1 from the solution 
of 

^ , ( M % F - , r x ^ r ( « , G , r ) V { » , G } s i x Y , 
(5.35) 

K , Fn} e X x Y, 

r+i = r-Q{Vun+J-Fn), g > 0 . (5.36) 

Bemark 5.7. Problem (5.35) is equivalent to tlie nonlinear system 

&r{un, Fn, r) < £?r(a
n, G, A") VG s Y, Fn e Y, (5.37) 

' dv£?r(u
n, F", A") v = 0 V» e X, ww G X, (5.38) 

•whose solution using block relaxation methods leads to the algorithm there
after. 
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5.3.2.2. A second algorithm. I t corresponds to (5.15)-(5.18) of Section 
5.2 and is defined by: 

ur1 is given in X, X° is given in {B2(Q))N*N
9 (5.39) 

then for w > 0, u71"1 and Xn being hnown, we obtain Fn, un and Xn+l by the 
solution of 

&r(u
n~\ Fn, Xn) < ^r(u

n-\ G, Xn) VG eY,Fne Y9 (5.40) 

dv&r(u
n

9 Fn, Xn) • v = 0 VveX, un e X, (5.41) 

Xn+1 = Xn-Q(Vu1l+J-Fn)9 Q>0. (5.42) 

Problem (5.41), which is equivalent to 

Find un e X such that 

£>r(u
n

9F
n

9 Xn)^&r(v,Fn, Xn) VveX, ' 

is in fact an unconstrained minimization problem whose solution is rather 
easy, particularly if r is sufficiently large; if N = 2 the functional in 
(5.43) is quadratic, and solving (5.41), (5.43) is equivalent to solving a linear 
problem for a second order partial differential operator (close to the linear 
elasticity operator), independent of n, and whose finite-dimensional variants 
are linear systems for symmetric, positive-definite ma.trices, independent 
of n. Problem (5.40) is more complicated (apparently, at least); if N = 2, 
(5.40) leads to 

'Find F e (i2(ß))4 such that F1XF22-FX2F21 = 1 a.e. 

and minimizing the functional 

G-> / [ ^ - 2 ( » - ( % ^ + « 5 0 ) - A ö ) ö 0 ] t o ( 5 - 4 4 ) 

. on the set of the G e [B2(Q)Y such that GX1G22—G12G2X = 1 a.e. ; 

in (5.44) n is omitted, and the summation convention of repeated indices 
is used, ui§j = dUi/dXj and 6{j is the Kronecker symbol. Since (5.44) does 
not contain any derivative of 6? and JP, we can solve this latter problem 
pointwise as shown in [20], Chapter 8, [22], [33], [34], using a diagonal-
ization of the constraint F1XF22—FX2F2X = 1, via the transformation 

bx = (Fxl+F22)l\/2, b2 = (Fxx-F22)l)/29 
(5.45) 

&3 = (F12 + F2X) /j/2, b, = (Fx* - F21) / / 2 . 
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5.3.3. A numerical experiment. We suppose N = 2 ; we approximate 
(5.30), (5.31)' (and (5.33)) using a finite element method. We have used 
rectangular finite elements KeQh9 where Qh is a quadrangulation of Q. 
We approximate then the displacement v by «?Äe(J0(u)xö°(uj; such 
that 

vh\KeQxxQx VJBCGQA, (5.46) 

where 

Qi = {al "ï(^i? »2) = «00 + «10% + floi#2 + ̂ u00xx2}-9 (5.47) 

we require the incompressibility condition (5.29) at the center of each 
elementary rectangle K e Qh (which is equivalent to require it in an aver
aging sense). The convergence of the approximate solutions, as ä->0 is 
a very difficult problem, discussed e.g. in [33], [34]. 

In the following numerical experiments û is a two-dimensional bar 
containing a (non-propagating) crack. We have shown in Fig. 5.1 the right 

m 
Pig. 5.1 

Mg. 5.2 

half part of the bar, the crack and the quadrangulation Qh (or rather the 
right half part of it). We suppose that in (5.25), (5.26) we have Q0 == 1, 
Bx = 1, dQ2 = dû and that S0 corresponds to horizontal stretching forces 
whose density modulus is 2, these forces being applied at the extremities 
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of the bar. Under the action of these forces we have a stretching phenom
enon and we have shown in Figure 5.2 the equilibrium configuration, 
computed by a discretized variant of algorithm (5.34)-(5.36), with g = r 
= 10 ; the convergence is obtained in 20 iterations corresponding to 
a running time of 5 seconds on CDC 6400. We should observe with interest 
the behavior of the crack. 

One can find in [22], [23]? [33], [34] numerical experiments for other 
two-dimensional problems and also for axisymmetric and three-dimen
sional problems. 

6. Conclusion 

We have shown in this paper that variational methods can be applied 
to the numerical solution of large classes of nonlinear problems governed 
by partial differential equations, even for situations which are not equiv
alent, in a strict sense, to a problem of the calculus of variations. For 
a more complete discussion concerning these methods and their numerical 
applications, see, e.g. [19] and [20]. 
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Matrix Iterative Methods in Subspaces 

A new branch, has recently been formed and is now being actively developed 
in the field of iterative solution of finite-dimensional problems. This 
branch has been called iterative methods in subspaces. In this paper we 
present the use of these methods for solving systems of linear algebraic 
equations with real square matrices arising from finite difference and finite 
element methods. When implemented or theoretically investigated, these 
methods do not span an entire vector space but some of its subspaces 
associated either with the matrix of the original system (in the case of its 
singularity, for example) or with the properties of matrices participating 
in derivation of an iterative method. 

In the first part of the lecture we deal with some general topics of 
the theory of matrix iterative methods in subspaces for solving systems 
of linear algebraic equations. In the second part we show how this theory 
is applied to devising and studying the iterative methods for solving the 
systems arising from discretized kinetic transport and Poisson equations 
by the methods of grids. Here we limit ourselves to the simplest domains, 
operators, boundary conditions, grids and discretization methods. Detailed 
information can be found in the references. 

1. Some aspects of the theory 

Let us consider the system of linear algebraic equations 

Au-f (1) 

with real square matrix A of order n9 vector feimA = AEn9 where 
Fn is the space of ^-dimensional real vectors with the Euclidean scalar 
product ( , ) and norm || • || = ( , )1/2. Let us consider the following itera-

[1509] 



1510 - Section 15; Yn. A. Kjiznetsov 

tive method for the solution of (1) : 

# 6 U09 % (2) 
u* ^uk-1-H(Auk'1-f)9 h = 1 , 2 , . . . 

Here U0 is some closed subset of Fn such that the set TJA = {£: £ = Av —f, 
% e U0} is a subspace of Fn, and H is a (generally speaking) nonlinear 
operator acting from UA to Fn. 

For method (2) let us assume that 
— the subspace TJA is invariant with respect to method (2), i.e.' 

for any f e TJA we have f — AÊ(£) e UA
a

9 

— operator JB. is homogeneous of the first order and continuous où 
any nonzero vector £ eUA. 

Then the following theorem holds. 

THEOREM 1. If we can define a norm || • H* in TJA such that for any 
nonzero £ e UA 

u-AH(m*<m\*, (3) 
then method (2) converges for anyjnitial guess from TJ0. Moreover9 for any 
u° e UQ the sequence uk in this method converges to some solution û of (1) 
at the rate of geometrical progression i.e. 

\\uk-û\\^cqk\\u°-û\\9 (à) 

where c and q are some positive constants (q< 1). • . * 

Obviously, if det A = 0? then in general the vector tf'yòiUd.aépetid 
upon the initial guess u* e UQ. < , , 

Let us illustrate the use of the theorem for the successive oVerréìa^ar 
tion method. Let the matrix À of system (1) be symmetric and represented 
as A = A —F—FT

9 where A is a symmetric positive-definite matrix, and 
F an arbitrary matrix. Then one may easily; extend the known Ostrovsky-
Eeik theorem [22], [29] to the successive overrelaxätion method* " f 

B^u*-*-1). =* ^ u ^ W ) r * • - -s •: -• :. (5) 

Where Bm = —A—F. 

• 'THEOREM 2. Method (5) converges in Mn"if and only if either the matrix 
A]is pbsitive-semidêfiniïe and'co e(0,2) or-À is negatwe-sémidefiMtè and 
to* [0,2]: ' ' . . - ' • • 
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Actually, if det B0 ^ 0, then for method (5) 

(A+£\ £k) « (A+£k~l, £k"1)- ( -^-- l ) (AB^£k^9 £k"1)9 

where A+ is the generalized inverse of A. Then the sufficiency of the condi
tion of Theorem 2 in the case, for example, of A positive-semidefinite 
follows easily from Theorem 1 by setting 

\\£\U=(A+£9£yi*, £eTJA~ im A. 

Note that in [8], [11] other approaches were used in studying the conver
gence of the successive overtaxation methods in the case det J. = 0. 
Thus Theorem 1 provides a convenient technique for studying the conver
gence of stationary iterative methods in solving systems of equations with 
singular matrices. 

Now let us discuss a class of nonstationary iterative methods 
based on the idea of descent. Let M be some matrix such that a given 
subspace TJA is invariant with respect to the matrix AM, let U0 ~ {v : Av — 
—f e TJA, v e Fn} and let D be a self-adjoint and positive-definite matrix 
in TJA. Let us define the new scalar product (£, rj)D = (D£, rj) and the 
norm || • \\D = ( , )^2 generated by the matrix B in the subspace UA. 
For any given £ e UA consider the operator Ê: 

Ë(£)~H gy^AH)*-1^ (6) 

where r is some positive integer and the parameters y{ are chosen so that 

r 

U-AÊ(è)h> = min U-£at(AH)ie\\D. (7) 
ai»...,«,. i=al 

Consider the vector b(£)eEr with components b{(£) = ((AH)i£, £)D, 
i = 1 , . . . , r. Then, according to Theorem 1, the following theorem holds : 

THEOREM 3. The nonstationary method (2) with the operator Ë defined 
above converges on the set U0 (i.e.9 for any u° e U0) if and only if b(£) ^ 0 
for any nonzero vector £ eUA. 

COROLLARY 1. If for some positive tf < r the matrix (AS)1 is positive-
definite in UA with respect to the scalar product ( , ) D , i. e., [(AS)i£9 £)D 

> 0 for any nonzero £ e UA, then the method (2), (6), (7) converges. 

43 — Proceedings..., t. II 
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COROLLARY 2. If the matrix AH is a B-self-adjoint operator in UA9 

i.e., (AE£,rj)D = (£,AErj)D for all £,r}eUA, and TsLer(AE)nUA = 0 , 
then the method (2), (6), (7) converges for any r^2. 

Let us further assume that the matrix AS is D-self-adjoint and D-po-
sitive-definite in UA. Then to solve system (1) one often employs three-
term nonstationary iterative methods of the form 

u* G U0, .uk+l = uk-akE(Auk-f)-bk(u
k-uk-1) (8) 

with different choices of the sequences of parameters ak and bk. Assuming 
that u° e UQ consider the generalized conjugate gradient method (GOG) 
implemented with the following two-term formulae [9], [19]: 

#* = 

a* = 

E£°, lc=l, 

JEL£k-l-akpk^, Tc>l, 

(AE^Ap^)» IIÉ^IIW 

h 

UVU-^B ~ II^- 'IILIH ' (9) 

{èk-\Apk)D \\£k'lfDAR 

UPA II4P*IB> 

The number of steps h in (9) does not exceed the dimension of TJA 

(it will be shown below that for dim UA<4 n this remark is quite important 
in estimating the efficiency of the method). 

If we want to solve system (1) with accuracy s, i.e., to minimize 1/e 
times the JD-norm of the initial residue £°, then the number of steps Jc = Jce 

will be the least integer such that 2 l(Q"ke + Qke) < e, where Q ==[1 — 
-(wi/Jf)iyi]/PL + (w/Jlf)1/Ä] and m, M(0 < m < M) are the endpoints 
of the interval containing the nonzero part of the spectrum of AE. If 
we assume that m <̂  M, then the expression for he(s <^ 1) takes the form: 

til ^ ^ ( J f / m ^ l n ^ / e ) . 

I t is necessary to remark that in the methods discussed further on, the 
practical implementation of formulae (9) possesses some important compu
tational features due to the structure of subspaces TJA. Thus for such cases 
i"jb is more correct to call method (9) the generalized conjugate gradient 
method in a subspace TJA. 
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2. The method of simple iteration for kinetic transport equation 

Let us consider the kinetic transport equation for the plane (z, p) geometry 
[23]: 

i 

/*-äJJr+«* = "J | W + / > (*,A*)e(0,l)x[-l,l], (10) 

where a = o(z), os = as(z) and / = f(z) are continuous functions (or> os 

> 0). We seek the solution satisfying the boundary conditions u(0,p) 
=^0 for ^ e ( 0 , l ] and u(l, p) = 0 for ^ e [ — 1 , 0 ) . When we realize 

the discretization of this problem over the uniform grid in the variables 
z and p, we get the system (1) with matrix 

A=B-0 (11) 

of order n = It, where I is the number of mesh points in z, t is the number 
of mesh points in p (t is even). We can represent matrices B and 0 in the 
form 

B -
Bt 0 

0 j?f 
0=Zs®Q. (12) 

Let us describe these matrices [12]: Bt is a block-diagonal matrix of 
order n\2, each diagonal block being the lower triangular bidiagonal posi
tive-definite if-matrix of order V, Hs is a diagonal positive-semidefinite 
matrix; Q is a matrix of order t, an orthogonal projector of unit rank 

i 
(an analogue of the operator J j dp'); G is a symmetric positive-semi-

- i 
definite matrix; and A is a positive-definite ilf-matrix. 

One of the most widely used methods for solving the sets of equations 
arising from the discretization of kinetic transport equations is the so-called 
simple iteration method: 

Buk =Ouk~1+f. (13) 

I t follows from the theory of regular splitting of matrices [29] that for 
method (13) we have ^(B^ö) < 1 and hence the method converges for 
any initial vector uQeFn. 

Since for all h ^ 1 the vectors of residuals in method (13) satisfy £k 

= 0B~l£k~l
9 they belong to the subspace UA = CFn. Each vector £ of 
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this subspace is represented in the form £ ~ip®e, where y> is a vector 
from Bl (to be more exact, from HSF^9 and e is a vector of dimension t with 
all components equal to unity. Thus instead of" (13) one may consider 
the iterative process 

0uk = Guk^-CB-l£k-1, £k = OB-1?"1 (14) 

in UA, where two arrays of length I are sufficient for the representation 
of the vectors Guk and £k. In this case it is sufficient to perform 0(lt) 
arithmetical operations (taking into account the block structure of matrices 
B and G and using one additional array of length I) to compute the vector 
GB"11*""1 e JJA for the given vector £k~l e TJA. After r iterations by method 
(14)* the vector ur can be found as the solution of the system 

Bur =*Our+f+F. (15) 

This property of method (13) is widely used for its optimization, i.e., for 
deriving more efficient methods of solving the original system of equations 
[18]. Let us discuss one of the possible strategies [12]. 

The matrices 0 and 0+ are obviously self-adjoint and positive-definite 
operators in TJA. îfot too sophisticated computations show that the matri
ces B, -B"1, A and A"1 have the above properties as well. Moreover, it 
can be shown that for D equal to 0+ , J5""1 or A"1, the matrix AB'1 is 
D-self-adjoint and D-positive-definite in UA. Thus for solving system (1) 
with matrix A from (11) one may employ the generalized conjugate 
gradient method (9) in the subspace UA =s im G, by assuming H = B"1 

and choosing D equal to <7+, JB"1 or A"1. The computation formulae of 
this method are 

OB-1?, fc=l, 

(Z-GB-1)!0 , ä = 1 , 

K Z - O B - 1 ) ^ - 1 - « ^ , ^ , * > 1 , 

a* {{I-OB-1) ?-*,?-%' (16) 

Guk = Ou^-ßküPk, ? = t-l-ßuApk, 

((Z-ttB-*)g*-M*-% 

h = 1 , 2 , ..., r, 
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where I is the unit matrix. Naturally, the initial residual vector £° of 
method (16) should belong to UA, which, e.g., corresponds to the choice 
of u° as the solution of the system Bu° =f (in this case £° = —0u°). 

For any choice of the matrix D one may find an efficient algorithm 
for the implementation of method (16). When doing this, we always use 
the fact that the vectors Aph belong to the subspace UA. For example, 
since <7+ = Z£ ®Q and £*+ may be found explicitly, for D = 0+ and for 
any £, r\ e UA we have (£, rj)D = (£, rj)DQ, where D0 = r 1 ^ ®It (It is 
the unit matrix of order t). Therefore one needs only 0(1) arithmetical 
operations to compute scalar product in method (16). Thus, increasing 
negligibly the number of arithmetical operations per step (by 0(1) in 
comparison with 0(lt)) and using two additional arrays of length I one 
arrives at a method with essentially higher convergence rate (especially 
when Q(B~1G) is close to unity) with respect to method (13). Choosing 
D equal to B"1 or A"1 leads to the method with the same computational 
properties. 

This approach to the optimization of the method of simple iteration 
can be extended to the case of more general geometries, boundary condi
tions and discretizations of kinetic transport equations, as well as to the 
problems with nonisotropic scattering [13]. 

3. Extension method (fictitious components method) 

Let us consider Neumann's boundary value problem for 

-Au + u = / (17) 

in a bounded two-dimensional domain ß0 which, for example, is a union 
of a finite number of rectangles with sides parallel to the coordinate 
axes. Let Q0 be covered with a square grid of step h used for deriving the 
five-point difference equations approximating problem (17). Then we 
get the system of equations 

A>^o =/o (18) 

with a symmetric positive-definite matrix A0 of order n0 and a vector 
/0 e FnQ; here n0 is the number of grid nodes belonging to ß 0 . 

Instead of system (18) let us consider system (1) with matrix 

A0 0 

0 Ax 

(19) 
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of ord_er n > n0 and. with / -[*] GEn . System (1) is equivalent to the 

original system (18) in the sense that the first n0 components of any of its 
solutions u give the solution of system (18). The purpose of such an exten
sion is to raise the possibility of choosing the matrix E in method (9). 

Let us assume that E is some symmetric and positive-definite matrix 
of order n and pose the problem of finding the best matrix Ax from the 
family of all symmetric and positive-semidefinite matrices of order n—n0, 
to provide the most rapid convergence of method (9). The solution of this 
problem is given in Theorem 4. 

THEOREM 4. The problem formulated above is solved by talcing Ax = 0. 

Now the matrix procedure described above, which has been called 
the "fictitious components method" [21], will be employed to solve 
system (18). Let us consider the region Ü which is the minimum rectangle 
containing the region Q0. Then using a square grid with step h we appro
ximate the Neumann problem for equation (17) in the same manner but 
in the region Û, setting / = 0 outside Q0. As a result we have the system 
of algebraic equations with matrix 

B = £ l®I,+Ii®£< + Ii®I< (20) 

of order n = It, where I is the number of grid nodes in the rectangle along 
one variable, t is the number of nodes along the other variable, the lower 
indices I and t denote the orders of the matrices 

1 
Ä*~ 

1 - 1 
- 1 2 . 

. . 

• 

o 

0 

2 - 1 
- 1 1 

and I = d i a g { i , l , . . . , l , i } , 

respectively. 
For solving system (1) with matrix A from (19) with Ax = 0, let us 

employ the generalized conjugate gradient method (9) in the subspace 
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UA = imJ. with matrices D = A* and E = JB"*1: 

Pk 
B-1^, 7 c = l , 

[B^p-i-orf^, h>l, 

l l ^ l f e - i R = l l ^ l f e - i (21) 
| |^-2 | |2^1

? Pk \\pk\fA ' 

uk =uk^-ßkpk, Jc = 1 , 2 , ...,lce. 

I t follows from [1] that in view of the above assumptions the nonzero 
eigenvalues of the matrix AB~X are within the range [m, 1] where m is 
positive and independent of the grid side h. Thus by using the algorithms 
from [17], [27] for solving the system with matrix B, the following theorem 
holds. 

THEOREM 5. For solving system (18) with accuracy s it is sufficient to 
perform 0(lnln(l/A) ln(l/s)/A2) arithmetical operations. 

Now we choose TJA =im.A(I—B~1A), which is consistent with the 
choice of initial vector in method (21) e.g. using the formula Bu° = / . 
I t can easily be shown that any vector £ eVA has no more than 0(1 jh) 
nonzero components corresponding to grid nodes belonging to dQ0. By 
employing this fact, method (21) can be implemented by using only a finite 
^-independent) number of vectors of length 0(1 jh) and performing only 
0(1 Jh2) arithmetical operations per each step [17]. Thus the method 
requires O(|lne|/A2) + 0(ln|ln&|/7&2) arithmetical operations and can be 
considered as one of the most efficient methods for solving the class of 
problems formulated above [3]. A large number of papers (see [6], [25]) 
deals with the approaches discussed here and with some other ones for 
constructing methods of extension, including the methods solving the 
Dirichlet problem. 

4. Domain decomposition method 

Let us consider the Dirichlet problem for the two-dimensional Poisson 
equation in an Z-shaped region Ü such that Û = Qt\j J22; here Q± = (0,1) 
x(0,2) and J22 = (1, 2) x(0,1). Employing the conventional finite el

ement method with piecewise-linear test functions on a grid with step 
h =1/(Z+1), we arrive at system (1) with symmetric positive-definite 
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matrix A of order n = Z(3Z+2). If the first group of unknowns includes 
those corresponding to the inner nodes of the subregion Qx and the second 
group involves those of subregion Û29 while the unknowns of the range 
ß x n ß 2 are in the third group, then the matrix A can be written in a block 
form 

A±1 0 

0 

L13 

-0-22 - " -a 

A$i AQ^ A 33 

(22) 

Here A33 is a three-diagonal matrix of order I and matrices A1% and A22 

are the matrix analogues of the five-point difference approximations of 
the Laplace operator for rectangular subregions Qx and Q2. 

If the block iterative Gauss-Seidel method is used for solving the 
derived system (1), 

Btik^Cttk+f, B = 

A 

22 -^-23 

Atl 0 -O.J3 

0 J.22 A 

0 0 J. 33 

a ^B-A9 
(23) 

then the residual vectors £k of this method for all h > 1 belong to UA 

= imO, i.e., all components, excluding probably the last I ones, equal 
zero. One can see that the matrix B"1 is a self-adjoint and positive-definite 
operator in this subspace UA, hence for solving this system we can use 
the generalized conjugate gradient method (9) with matrices B = JL""1 

and E = B"1, assuming that the initial guess is, chosen as the solution 
of the equation BuQ = / (|° = -Gu°). 

It is known [14] that the eigenvalues of the matrix AB"1 of this version 
of method (9) lie within the range \dh, 1], where dt is a positive constant 
independent of h. Thus for solving the system with accuracy s, we need 
Jca = 0(|lne|/fe1/2) iterations. If the method is implemented following 
formulae (21) by solving the systems with matrices A1X and A22 using 
at each step e.g. 0(ln|ln7&|/7&2) arithmetical operations then it will be 
worse than many other existing methods for solving similar systems [26J. 
The situation changes drastically if we take into account the structure 
of the subspace UA. Let us introduce the matrix i23 with all elements 
equal to #ero except the last I diagonal elements that are equal to one, 
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Then the formulae for the generalized conjugate gradient method discussed 
above take the form: 

ttiPk 
RiB"1?, 1c = 1 , 

BiB-l^l-akBiph^19 * > 1 , 

(RtB"1^-1,^"1) 
ah ~ ~ (B.B"1^, £k~*) ' %~x>^6> (24) 

Guk = Gu^-ß.Op,, £k = p-l-ßkApM, 

(RsB-'t-1,^-1) 
(BBpk9Apk) 

here JBX = G, R2 = A and ^ J B " 1 = I-GB"1. 
Since all vectors participating in the process belong to the subspace 

UA9 i.e., contain no more than I nonzero components, implementation 
of all vector operations of an arbitrary Zsth step of method (24) needs to 
store only five vectors of length I and to perform 0(1) arithmetical oper
ations. Now there is one more problem to be discussed: how to compute 
the last I components of the vector B^"1 £, i = 1, 2, 3, for a given £ eUA. 
An algorithm has been derived in [14] which requires 0(1 jh2) arithmetical 
operations for solving this problem at a single run and 0(|ln7&|/7&) oper
ations for solving each subsequent task. I t is sufficient to store simultane
ously only a finite (independent of h) number of vectors of dimension 
0(ljh). Such algorithms belong to the class of methods of partial solution of 
systems of linear algebraic equations [14], [17]. 

Thus we have proved the following theorem: 

THEOREM 6. Let the vectors Gu° and £° of method (24) be computed. Then 
for implementing lce = 0(|lne|/7&1/2) steps of this method it is sufficient to 
make 

0(l/Ä2) + 0(|ln7i|-|lne|/Ä3/2) (25) 

arithmetical operations and to store only a finite (independent of h and e) 
number of vectors of dimension 0(ljh). 

I t should be noted that the vectors Gu°, £° e UA as well as all compo
nents of the vector ur (solution of the system of type (15)) can be compu
ted by using 0(ln|ln7&|/7&2) arithmetical operations. 
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Extension of this result to the case of more general boundary condi
tions, geometry of the domain and type of differential operators is discu
ssed e.g. in [15], [16]. 

Conclusion 

The iterative methods in subspaces which have been presented in the 
paper certainly do not include all their variety. At present this field of 
numerical solution of finite-dimensional problems is being intensively 
developed. Other interpretations of the methods in subspaces are of great 
interest, e.g. the finite-dimensional analogues of integral equations, imbed
ding ideas [7], as well as investigations of different versions of geometric 
decomposition methods as numerical processes in subspaces. Only some 
initial results have been obtained in the methods of partial solution of 
systems of linear equations [4], [14], [17], [28]. Studies in this field may 
lead to efficient new algorithms for implementing the methods in,subspa
ces, in particular the methods of extension and decomposition. The study 
of generalized conjugate gradient methods in terms of [5], [30] for optimi
zation of the computational processes in subspaces for nonsymmetric 
cases is of considerable interest. Certainly, investigations in this field 
will provide novel optimal [3] methods for solving a variety of problems 
of mathematical physics. 
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OHAELES A. MIOOHELLI 

Recent Progress in Multivariate Splines 

Spline functions constitute a powerful tool for computation. Since the 1946 
seminal paper of I. J. Schoenberg [2] which studied methods for smoothing 
data, spline functions have found diverse applications in science and 
engineering, too numerous to document here. The theory of splines has 
likewise been vigorously investigated by many people and their papers 
account for a significant proportion of the activity in approximation theory 
during the past twenty years. Almost all this material dealt with univariate 
splines. Multivariate splines were generally considered only within the 
context of the finite element method for solving PDE's. We now see a surge 
of activity directed towards a deeper understanding of spline spaces in 
higher dimensions. The theory is rapidly growing, but much more is needed 
to be done. Several recent conferences focused on these developments and 
it is hoped that new applications of multivariate splines will result. 

A key idea in this theory is a geometric method which suggests that 
smooth piecewise polynomials can be constructed as volumes of polyhedra. 
This idea can be traced back to an observation of H. B. Ourry and 
I. J. Schoenberg about univariate splines. It was later put into a multi
variate context by 0. de Boor and I. J. Schoenberg. 

Polyhedral splines are incredibly rich in detail. A useful method for 
their analysis was suggested by new results on multivariate interpolation 
which were reported on by 0. de Boor at the last International Congress of 
Mathematicians held in Helsinki, 1978. Formulae are now available for 
the computation of polyhedral splines along with their derivatives and 
integrals. In addition to their numerical usefulness, these formulae reveal 
many of the beautiful structural properties of polyhedral splines which 
otherwise might have been difficult to uncover. 

Spline spaces constructed from linear combination of polyhedra splines 
with good approximation properties have been found. In particular, 

[1523] 
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optimal error bounds by quasi-interpolants for approximating functions 
in Sobolev spaces have been obtained. Heedless to say, the construction 
of these spaces and the analysis of their approximation properties is much 
harder than in the one-dimensional case, 

One-dimensional spline approximation methods which are shape-preserv
ing (a property which is useful in computer-aid design) are available. 
The situation in higher dimensions has not been clarified and any infor
mation on polyhedral splines in this direction would be helpful. 

In another direction, substantial progress has been made in understand
ing bivariate spline spaces of fixed degree and smoothness over a given 
partition. For quite a while many questions concerning the dimension 
of these spaces and the construction of their explicit bases were left unsett
led. Eecent work by O. Ohui, L. L. Schumaker and E. W. Wang has added 
useful information to our understanding of this problem. Polyhedral 
splines are helpful in studying spline spaces over regular partitions. 

An extensive bibliography and an elaboration on the brief remarks made 
here can be found in the recent survey article on multivariate splines 
written jointly with Wolfgang Dahmen [1]. 
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M. J. D. POWELL 

On the Rate of Convergence of Variable Metric 
Algorithms for Unconstrained Optimization 

A procedure is described tha t is suitable for investigating rates of convergence of 
variable metric algorithms numerically. The usual rate seems to be the one tha t is 
given by Ritter [6], but, except when there are only two variables, we are unable to 
prove that Bitter's rate is achieved under mild conditions on the objective function. An 
example is given to show that , even though the objective function is twice continuously 
differentiable and uniformly convex, the Ç-order of convergence can be less than 
the JR-order. We also find that, if step-lengths of one are used instead of perfect 
line searches, then severe deterioration can occur in the rate of convergence. 

1. Introduction 

Variable metric algorithms are highly successful for calculating least values 
of differentiable functions of several variables, but their good properties 
have been established theoretically only when, the objective function is 
convex. Even in this case little is known about rates of convergence. We 
review some published results, and try to throw some new light on this 
subject. 

We let {F(x): oo eRn} be the objective function of the calculation. We 
assume that it is real valued and three times differentiable. A variable 
metric algorithm for minimizing F( •) uses n xn positive definite matrices 
{Bk : Jc = 1, 2, 3, ...} to form a sequence {œk : 7c = 1, 2, 3, ...} in Rn 

such that the inequality 

% i ) < % ) (1-1) 

holds for all 1c. Because it is usual to finish the calculation if a zero gra
dient vector is found, we assume that V F(œk) is non-zero for all h. The initial 
values xx and B± are data. 

[1525] 
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In order to obtain ^ + 1 from œk, the search direction dk is defined by 
the equation 

Bkdk - - V J F ( a ) . (1.2) 

Then, by considering the function of one variable {F(œk + adk)i aeR}9 

a step-length ak is chosen such that the point 

satisfies inequality (1.1) and the condition 

fc>0, (1.4) 

where dk and yk are the vectors 

The calculation ends if no acceptable step-length can be found, but, ex
cept for the effects of computer rounding errors, this should not happen 
if F(-) is bounded below. Finally, the iteration defines the matrix Bk+1

m
9 

we consider the case when it is given by the BFGS formula 

9.k -Bwik 9.k Lk 

FOT further details of this calculation, including line search techniques 
to determine ak, and the positive definiteness of the matrices {Bk: Jc 
= 1, 2, 3 , . . . } , the book by Fletcher [3] is recommended. I t is important 

to our analysis to note that, if Hk == Bk
 x, then Bk+X is the matrix 

Sk+1 ~ l1"̂  fc) Mk V" fo) + fc • ( 1 ' 7 ) 

If F(-) is convex and if its least value occurs at judt one point i n R n , M* 
say, then several line search techniques ensure that {œk: Jc = 1, 27 3 , . . .} 
converges to at* (Powell, [5]). Further, if V2J?(#*) is positive definite, 
then the superlinear rate of convergence 

l i m | f e + 1 - 2 * | | / | f e ^ * | | = 0 (1.8) 
k-^oo 

can be achieved by setting ak = 1 for all sufficiently large Jc. This rate 
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can also be obtained by "perfect'' line searches, which means that ak is 
the value of a that minimizes the line search objective function {F(œk + 
+ adk): a eJB}. 

Throughout this paper we assume that the sequence {œki Jc = 1 , 2 , 
3,...} is convergent to a point œ* at which VF(cf-) = 0 and V*F(x*) is 
positive definite. Because variable metric algorithms are invariant under 
affine transformations, we assume without loss of generality that V*F(œ*) 
= I and that m* = 0. We seek convergence results that are stronger 
than equation (1.8). 

Many published results are extensions of the fact that, if F(-) is a con
vex quadratic function, and if all line searches are perfect, then V F(œk) =. 0 
after at most n iterations. Thus Burmeister [1] shows that, for general 
F(-), the w-step quadratic rate of convergence 

fe+n-rii=°(fe-nia) (1-9) 
is obtained, while Bitter [6] gives the stronger relation 

ii&+»-rii -o(\\xk^f)9 (l.io) 

assuming that line searches are perfect or almost perfect. Further, making 
the additional assumption that the nxn matrices {Uk: Jc = 1, 2, 3, ...} 
are bounded away from singularity, where the columns of Uk are the 
vectors {dk+jl\\dk+j\\: j = 1 , 2 , . . . , » } , Schuller [7] establishes the limit 

te+n-rn = o(te-H>-i -srn ite-i-riD- <i-u) 
Using another additional assumption, Bitter [6] derives the stronger 
bound 

(&+*-^ll = O («&+,-* -®*ll Ite»-Sil) (1-12) 

and that, in the case V2F(œ*) = I, the columns of Uk become mutually 
orthogonal as &-> oo. However, because one can easily construct examples 
where one or more variables are not altered during the calculation, these 
assumptions should be questioned. 

Therefore Section 2 reports some numerical experiments that were run 
to test the rate of convergence of variable metric algorithms with perfect 
line searches for nonquadratic objective functions. The rate (1.12) was 
found to be usual for small values of n. However, without assuming that 
the matrices {Ok\ Jc = 1, 2, 3,...} are bounded away from singularity, 

44 — Proceedings..., t. II 
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at present we can only prove the relation 

fe-^-m =- o(te-s*ii tewi-gii)! (1.13) 
which is established in Section 3 because it is a little stronger than expres
sions (1.9) and (1.10). We note that equations (1.12) and (1,13) are the 
same when n = 2, and an example in Section 4 shows analytically that 
this rate of convergence can occur when there are two variables, but 
another example shows that different convergence behaviour is possible. 
Some remarks on the case when the number of variables is infinite are 
made in Section 5. All of the theory so far assumes perfect or almost 
perfect line searches, but the choice ak = 1 is usual in practice. Therefore 
Section 6 studies the rate of convergence for unit step-lengths, and we 
find that it is not nearly as good as before. Finally there is a brief discussion 
of our results and analysis and some suggestions for future work. 

2 . Numerical experiments 

In order to obtain useful information from many iterations of a variable 
metric minimization calculation, we let F(-) have the form 

^(S) = » 2 + # ( £ ) > ® e ^ i (2-1) 

where \Z(x)\ is 0(||#||3), and our computer programme allows for the 
quadratic part of expression (2.1) analytically. Further, instead of work
ing with the matrices {Bk: Jc = 1, 2, 3 , . . . } , we use and update the matri
ces 

Fk = Bk
l-I=Hk-I9 Jc =1,2,3, . . . (2.2) 

Thus xk+1 is the vector 

S&+1 = ®k + <*ék =®k-<*kHkVF(œk) 

= [^VZ(xk)--FkVF(cok)2 + (ak--l)dk, (2.3) 

so one can gain some accuracy by calculating xk+1 by a line search along 
dk from the point [—^Z(xk) —FkV_F(xk)]. However, these techniques alone 
do not avoid Serious loss of information due to computer rounding errors 
after only a few iterations. 

I t is necessary to find a way of separating the main contributions from 
xk to each of the next (n —1) search directions, but we do not know what 
these directions will be. Therefore we anticipate that Bitter's [6] hypothe-
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sis will hold, because then any n consecutive search directions will tend to 
be orthogonal. Therefore, for Jc > n, we express xk as a linear combination 
of orthonormal vectors {dM: i = 1, 2, ..., n}, where, for l < j < w , the 
vectors {âki: i = 1, 2 , . . . , j} span the same space as the search directions 
{^jc-i' i —1,2, ,.., j}. In other words, each iteration uses an orthogonal 
transformation of the variables such that, for j = 1, 2, ..., n, the first 
j new co-ordinate directions span the same space as the j most recent 
search directions. All relevant terms, including the error matrix Fk9 

are expressed in terms of these new co-ordinates, except that we invoke 
the original co-ordinates whenever we require a value of l_Z(x), which 
does not cause a serious error because this gradient is 0(\\x— x*\\z). 

The Jc-th iteration of the algorithm calculates the vector 

*ft = -lZ(xk)-Fk1F(xk) (2.4) 

using the new co-ordinates, and then, remembering equation (2.3), simple 
subtractions determine the coefficients {cki: i = 1, 2 , . . . , n} of the search 
direction 

n 

§.k = lk-®k = £°k&i- (2-B) 

Thus, using the construction that is described by Powell [4], one may ex
press the transformation from the current to the next co-ordinate system 
as a product of (n— 1) Givens rotations. These transformations are applied 
to Bk and to tk, and then, since dk is the new first co-ordinate direction, 
the last (n—1) components of xk+1 are the same as those of tk. The first 
component of xk+1 is calculated from the perfect line search condition 
^TY^te+i) ^ °- Finally the iteration calculates the matrix JB7.+1 to satisfy 
the quasi-Newton equation 

^*+i2> = ( & - # ) = lZ(xk)-V_Z(xk+l), (2.6) 

which is very straightforward, because, due to equation (1.7) and the 
new co-ordinates, the elements of Ek and Fk+l differ only in the first row 
and column. 

This method of calculation gives good relative accuracy on a floating 
point computer until underflow occurs. Therefore we extended the prog
ramme to handle the mantissa and exponent of each number separately. 
Thus all practical limitations on the smallness of the ratio llâ ll/HajiH 
were removed, and in some experiments this ratio was reduced to less 
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than IO"1000000. To test the accuracy of the method the programme was 
run in both single (7 decimals) and double (16 decimals) precision on 
a TBS-80 computer. Excluding attempts to simulate the pathological 
case that is presented in Section 4, the largest observed discrepancy in 
any number was less than 5 units in the sixth decimal place. 

Because the experiments were run on a micro-computer in Basic 
without a compiler, the number of variables was limited to 2 < n < 4. 
These limited tests showed excellent support for Bitter's [6] conclusions. 
In all cases it was easy to continue the calculation until any n consecutive 
search directions were mutually orthogonal to full machine precision. 
Values of log ||^Ä+1H/log [Î H were displayed, and the iterative procedure 
was stopped when three consecutive iterations kept the first six decimal 
digits of this ratio unchanged. In all cases the final ratio was the root 
in [1,2] of the polynomial equation 

dn-6n~l-l = 0 , (2.7) 

which is exactly the rate of convergence that is suggested by Bitter's 
bound (1.12). 

3 . A lower hound on the rate of convergence 

In this section the bound (1.13) is established under the conditions on 
{F(x): xeRn} and {xk: Jc = 1 , 2 , 3 , . . . } that are stated in Section 
1, assuming that all line searches are perfect. Because of the slack in 
some of the inequalities of our analysis, an attempt was made to improve 
on expression (1.13) for n > 3, but it was unsuccessful. 

LEMMA 1. As Jc-^oo the bounds 

isT+Ai -o(\\djndk+l\\) (3.1) 

cmd 

P*+AII = 0(l&ll2l&+ill/l&+ill) (3.2) 

hold for 1 < i < n+l, where dk is defined by equation (1.5). 

Proof. Equation (3.1) is satisfied when i = 1 because the perfect line 
search gives ô$Y_F(®k+i) = °? because the conditions on F(-) imply Y-^i^je+i) 
— ^A+i+0(fe+illa)? a n d because, due to the limit (1.8), we have lte&+1|| 
^ ||5Ä+1||. Moreover, since Hk is uniformly bounded (see Dennis and More, 
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[2], for instance), and since yk = àk + 0(\\ôk\f), expression (1.7) gives the 
relation 

Thus equation (3.2) is also true when i = 1. We complete the proof by 
induction, showing that, if the bounds (3.1) and (3.2) are satisfied, 
then they remain valid if i is increased by one. 

Because the step-lengths {ak: Jc = 1, 2, 3, ...} are uniformly bounded 
(Dennis and More, [2]), expressions (2.2) and (2.3) imply the relation 

Ëft-H+i *= a+*-a*+<l2^(a+<)+s*+<Y-F(2fc+<)] 
= (1 - ak^)xk+i - ak+iFk+iV F (xM) + 0 ( \\xk+i\\*). (3.4) 

We multiply this equation by 6k and use the inductive hypotheses to 
deduce that equation (3.1) remains true when i is increased by one. 

To prove that equation (3.2) also remains true, we replace Jc by Jc + i 
in expression (3.3) to deduce the bound 

Pw+AII = 0(PwAII) + 0(IÄ.AI/IB»+<ll) 
+ 0(l&+«ll l&ll). (3.6) 

Bemembering the limit (1.8), it is sufficient to show that each term on the 
right-hand side is Odiali2U^+JI/II^^H), which is straightforward by 
using the inductive hypotheses, the identity |3jf+<iÄ| = I(^ä+<+I —Sfc+i)3^! 
and the result of the previous paragraph. The proof of the lemma is com
plete. D 

THEOREM 1. Equation (1.13) is implied by tlie conditions that are stated 
in Section 1. 

Proof. Consider the non-zero vectors {dk+i : i = 0 , 1 , . . . , n} in Rn. 
Because there are (n+l) of them, one can deduce by a continuity/ 
compactness argument that there exists a positive constant Q such that 
the inequality 

holds for some 0 < j < i < n. Further, Lemma 1 and the identity ök+{ 

= xk+i+1 —xk+i imply the relation 

l & A t f l =0(l&+ill2l&+iH-ilD- (3.7) 
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Thus we obtain the bound 

\\àk+i\\ =0(P&+ilM&+i+ill), (3.8) 

which is equivalent to the expression 

U&-H-51I = 0(fe*r t*l l lfe+i+i-5*ID- (3-9) 

Because 0 < j < i < w, the theorem now follows from the limit (1.8). D 

4. Examples of convergence rates when n = 2 

The first half of this section presents an example to show that, when there 
are two variables, the convergence rate 

item -2*n ~ ife - r II iteb+i -ë*II > (4.1) 

which is suggested by the work of Sections 2 and 3, can be achieved. We 
let F(-) be the function 

F(x) = l£* + ir,*+i£\ x eR\ (4.2) 

where £ and r\ are the components of x. 
It is straightforward to deduce the relation 

fe+2|| ~sin0 f t+1fe+1 | |, (4.3) 

where 0A+1 is the angle between d!Ä+1 and — xk+1. Because the updating 
formula and the perfect line search give the equation 

Ä K = - Ä + i I ^ t e + i ) = 0, (4.4) 

we have tlie value 

sin2 0^., ==• [( h+i + £l+i ~ h - #) h+i + (Vk+i - Vn) Vk+iY 

~ ihhM- ift+i)?/Efeii iteH-iii]*, (4.5) 

where the last line depends on the perfect line search condition 

l %+i J U*+r Vk. 
(4.6) 
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It follows from expressions (4.3) and (4.5) that the required rate of con
vergence (4.1) is achieved, provided that the ratios {|£/J/||ayJ|: Jc = 1 , 2 , 
3, ...} are bounded away from zero. 

In order to satisfy this condition it is sufficient to ensure that the 
acute angle between +dk and the first co-ordinate direction is in the inter
val [w/6, 7r/3] for all Jc. Therefore we let £x = r\X9 we let dx = —y_F(xx), 
and we choose ||0j to be small. Let cpk+1 be the angle between dk+1 and 
djc. An argument that is similar to the derivation of expression (4.5) gives 
the relation 

<*>**<pk+l ~ C(ä+I—Ä)(f»+i+a+oivcitofcii ife+iiip 
= 0(|fe||a). (4,7) 

It follows that, by reducing ||a?x|| if necessary, we can make ^ I cos^^ l 
as small as we please. Thus our example can show the convergence rate 
(4.1). 

The other two variable example of this section is pathological. In 
a neighbourhood of the origin we let F(-) have the form 

F(x) =a(£)+£Va(£) + ri*[<p(£) + y)(r])i, (4.8) 

where £ and »7 are still the components of x, where a(>) is the function 

oo 

a(£) = [f /( l-!2)J f J [ l + (l2)3'L If I < 1, (4.9) 

where S(-) is the integral 

3(f) = Ja(6)dd, \£\<19 (4.10) 
0 

and where <p(-) and y(0 are chosen so that, if the components of x are 
£ =£3/(l+f2) and r\ = £2/(l + £2), f being any real number of small 
modulus, then we have the gradient 

VF(x) = i v ' " ' . (4,11) 
fa(t)/(l + f») 

It can be shown that these conditions are consistent, and that they allow 
]?(•) to be strictly convex and twice continuously differentiable. 
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We let cox and äx be the vectors (f1} 0) r and ( —1, Si)T, where Si is 
a small positive number. It follows from equation (4.11) and from the 
convexity of JP(-) that œa is the point (£/(l + £), £ / ( l + #))*. Thus, 
due to equation (4.4), ä% is orthogonal to the change in gradient 

V *•(£,)-V-FfeO =«(1!) 
-1/(1 + 1] 

-£/(! + 
f ) l 

(4.12) 

Hence a step along ^2 from <wa can lead to the point œ3 = (£ ,̂ 0)2*, which 
is the point that is calculated because V 2P(i»3) is the vector («(!?), Sla{SÌ))'r-
Thus ds is orthogonal to the change in gradient 

Vtf(5,)-VJF(5,) (4.13) r«(tì)-ÉÌ«(f1)/(l + ^) 
^ « ( ^ - ^ « ( ^ / ( H - l 2 ) ] 

Therefore d3 is a multiple of ( —1, £3)
T if «(•) satisfies the equation 

a(f) = ( l + l a ) ( l - l e ) a ( l 3 ) / [ l 2 ( l - l a ) ] . (4.14) 

Because the function (4.9) is the solution of this equation, it follows that, 
for all odd values of Jc, the variable metric algorithm calculates the points 

av CI- X{ :k+i Ëft+2 [?} (4.15) 

Thus an alternating convergence pattern occurs, whose JS-order is Vs but 
whose Q-order is only 1.5. 

5. The case when n = oo 

It is well known that, if F(-) is quadratic and if Bx = I, then the variable 
metric algorithm with perfect line searches gives the condition 

-FOW min F lœ± - ]? ftff^V F fa)), Jc > 1, 
ßl,ß2"~>ßk ' -

(5.1) 
i = i 

where G —V2F(-) (see Fletcher [3], for instance). This equation can allow 
the sequence {œk: Jc = 1 , 2 , 3 , . . . } to be identified and its convergence 
properties to be studied when n = oo. Thus Winther [9] proves that, if 
G is a compact perturbation of the identity matrix, then the superlinear 
convergence condition (1.8) is satisfied. However, Stoer [8] gives some 
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examples where the convergence rate is only linear, x being in the Hilbert 
space ï2, whose elements are square summable infinite sequences. Because 
neither of these cases is typical of finite element calculations, we consider 
the trivial problem of calculating the square integrable function {<»(*); 
—1 < t < 1} that minimizes the integral 

i 

' ( 2 ) - 1 J ( / i+ <)[»(*)]•*, (5.2) 

where [i > 1 is a constant. The spectrum of the second derivative operator 
G is the interval [^—1, / J + 1 ] , and we find that in this case the rate of 
convergence may only be linear. 

We let xx be the function {xx(t) = (p+t)"1] — 1 < t < 1}, because then 
Qt-^Ffa) is a multiple of the polynomial {(p+t)*'1; - 1 < J < 1}. 
Thus equations (5.1) and (5.2) imply the value 

i 

F(xk+1) = min J Ji/A+t)[(Ai + ï r ' -Pt*)] 1*! (5-3) 

where Pk_x is the space of algebraic polynomials of degree at most (Jc— 1). 
The right-hand side is least when p is the polynomial pk_1 that is defined 
by the equations 

i 

/ (ft+tmtt+t^-Pic-iitW'dt = 0, Z = 0, 1, ..., Ä - 1 . (5.4) 
- 1 

Therefore the function 

&(*) = l - ( 0 + ')ft-i( '), - K < < 1 , (5.5) 
is a multiple of the Legendre polynomial of degree Jc, which allows us 
to deduce the bound 

i 

\2f t l >l/[(2*+l)(/i+l)(2Ai)»], ft>l. (5.6) 

One can also establish the inequality 

JB-(a+1) < dft»/[(2*+l)(A«-l)(4/*"-4)*]. (5.7) 

file:///2ftl
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Because of the relation F(x) ~\\x--x*\\2, it follows that the JS-rate of 
convergence of the sequence {xk: Jc = 1 , 2 , 3 , . . . } is only linear, due to 
the infinite number of variables and to the continuous spectrum of the 
second derivative operator G. 

6. Step-lengths of one 

The computer programme that is mentioned in Section 2 was used to 
investigate the rate of convergence of variable metric algorithms that set 
ak = 1 for all sufficiently large Jc. Of course the superlinear rate of con
vergence (1.8) occurred, but in all cases the sequence {log \\xk+l ~x*\\fiog\\xk — 
—a?* H : Jc = 1 , 2 , 3 , . . . } only tended to one. This section studies the special 
case when there are only two variables, when F(-) is the quadratic function 

*(2)«*felSi « e t f , (6.1) 

and when the algorithm sets ak = 1 and uses the BFGS formula (1.6) 
for all Jc. 

For n = 2 and V2F(x*) == I, a fundamental clifference between perfect 
line searches and step-lengths of one is that perfect line searches give 
dk+1±dk as 7c->oo, but in the latter case dk+2 tends to be orthogonal to dk. 
Specifically, when F(-) is the function (6.1), equation (1.7) implies the 
identity 

and, due to the unit step-length, we have the equation 

&+« =^+ 1 - ( J+^4 - i ) I - F ( ^+ i ) = -^*+Ä+i . (6-3) 

Thus xk+2dk = 0, so, because the superlinear convergence gives xk+2 

— ~̂ &+2 + °(ll<?&+2ll)> w e deduce the bound 

ISH&I =o(\\dk+2\\\\dk\\). (6.4) 

Let xx and Bx be such that, for the function (6.1), x19 a?a, x3 and x4 

are all non-zero, which is the usual case, and, for Jc ^ 2, let y)k e [0, JTC] be 
the angle between xk and +dk_1. Further, for Jc > 2, let 0 and %k be the 
eigenvalues of Fk9 which is singular because of equation (6.2). Our analysis 
of the rate of convergence depends on relations between y)k9 Xk, ipk+1 

and 4 + 1 . 
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We assume without loss of generality that dk^x is a multiple of the 
first co-ordinate direction, which gives the values 

[0 01 
%h = L , a n d a = tell 

COS% j 

.±BinyAJ" 
(6.5) 

Thus it is straightforward to deduce the equations 

Ife+ill = sin fk 141 fell, (6-6) 

s^2%+i = cos2y;A/[cos>Ä+(l + 4 ) a s in 2
% ] (6.7) 

and 

V i = **«*" V*+i- (6.8) 

Hence A2, siny2
 a n d cos^a are all non-zero, because otherwise J02 or JE73 

would be zero which would give a?3 = 0 or a?4 = 0. I t follows from equation 
(6.7) that fk is in the open interval (0, %%) for all Jc. Further, in view of 
the values (6.6) and (6.8), all the points {xk: Jc = 1, 2, 3 , . . .} are non-zero. 

We require the fact that {X1t: Jc = 1, 2, 3, ...} converges to zero, but 
equation (6.8) shows only that this sequence tends monotonically towards 
zero. We therefore note that, because the positive definiteness of B2 

implies A2 > —1, the inequality 

0<(2 + Zk)"
1<c9 Jc^2, (6.9) 

holds, where S<1 is a constant. Moreover, equations (6.7) and (6.8) 
give the identity 

V i = 4 - i C o s 2 ^ s i n 2
% / [ e o s 2

% + ( l + 4 ) 2 s i n 2
% ] . (6.10) 

By seeking the value of ipk that maximizes the modulus of this expression, 
wc find the bound 

IViK(2 + A7J-U-il < c2IVil, fc>3. (6.11) 

Thus, not only does Kk tend to zero, but also the sum S\Xh\ is convergent. 
From this remark, and from the relation 

tan 2
% + 1 = ( i + ;y-2cot2

% 

= (l + AJ-^ l + ^ ^ H a n 2 ^ ! , (6.12) 

which is a consequence of equation (6.7), we deduce that the angles 
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{ipk : Jc = 1, 2, 3 , ...} are bounded away from zero. I t follows from equation 
(6.8) that the conditions 

IVil>^-2 |A2 
fc>2, (6.13) 

sin% > c 

4+11 

hold, where c is a positive constant. Thus equation (6.6) implies the inequal
ity 

te+ill^22fc-3|A2| \\xk\\. (6,14) 

I t is straightforward to deduce from expressions (1.8) and (6.14) that 
the ratios {log||^ft+1||/log||^Ä||: Jc = 1, 2, 3 , ...} tend to one. 

7. Discussion 

Our numerical experiments suggest that, when perfect line searches are 
used, the rate of convergence (1.12) is obtained, but, except when n=2, 
it is not known whether this rate can be proved under the conditions of 
Section 1, which are weaker than the conditions that are assumed by 
Bitter [6]. Equation (1.12) would imply that the JS-order of convergence 
of the sequence {fe— 0*||: Jc = 1, 2, 3 , . . .} is at least the root in [1,2] of 
the polynomial equation (2.7), but the second example of Section 4 shows 
that the Ç-order of convergence can be slower than the JB-order. I t would 
be interesting to find the least Q-order of convergence when F(-) is both 
infinitely differentiable and uniformly convex in a neighbourhood of of. 

I t is surprising that Section 6 shows a strong deterioration in the rate 
of convergence when step-lengths of one are preferred to perfect line 
searches, because in practice it is usually highly efficient to employ the 
BFGS formula and to set a f t = l o n most iterations. Perhaps it is sometimes 
very valuable to replace the BFGS formula by one that gives quadratic 
termination without perfect line searches. 

I t is hoped that the procedure of Section 2 and the given properties 
of variable metric algorithms for unconstrained optimization will help 
further study of rates of convergence. 
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DOMINIQUE FOATA 

Combinatoire des identités sur les polynômes 
orthogonaux 

L'étude comhinatoire récente des identités sur les polynômes orthogonaux est passée 
en revue. A titre d'illustration, on étahlit, par des méthodes conïbinatoires, une 
extension de la formule du noyau de Poisson pour les polynômes de Meixner. 

1. Introduction 

L'étude combinatoire des identités sur les fonctions spéciales a été entre
prise dans les dernières années par différentes écoles, "bostonienne ([27], 
[28], [29], [35], [36], [38]), californienne ([19], [24], [25], [26], [44]), 
lotharingienne ([13], [14], [16], [17], [18], [22], [39], [40], [41]), québé
coise ([20], [21], [31], [33]) et viennoise ([10], [11], [30]). Gomme le dit 
fort justement notre ami Adriano Garsia [26], "les fonctions spéciales 
et les identités des mathématiques classiques recèlent une information 
abondante. Cette information s'exprime sous forme de correspondances 
entre structures finies qu'il s'agit de dégager. Les identités classiques 
apparaissent alors comme de simples relations entre ces structures comptées 
suivant des statistiques appropriées. Une étude systématique est en 
cours et a pour but de déterrer cette information de la littérature classique. 
de riche inventaire de correspondances a permis d'établir de nouvelles 
identités et d'obtenir aussi des démonstrations très explicites des formules 
classiques." 

Du foisonnement des identités sur les fonctions spéciales, il n'est 
cependant pas facile de dégager l'essentiel de l'accessoire. Les formules 
importantes ont en général été motivées par des considérations analytiques 
ou géométriques. Par exemple, c'est en étudiant la positi vite de la série 
bilinéaire des polynômes d'Hermite qu'on a obtenu la formule explicite 
de Mebler ([2], [3]). On se doit donc de regarder en premier lieu ces 

[lfî41] 
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identités solidement motivées. Quant à établir de nouvelles identités par 
des techniques combinatoires, il faut être plus prudent, s'assurer de leur 
esthétique ou travailler de conserve avec l'analyste. 

Les formules qui se prêtent bien à un traitement comminatoire sont 
naturellement les identités entre séries de polynômes, comme dans la 
formule dé Mehler, où l'on peut utiliser avec succès les interprétations 
combinatoires courantes sur les séries comme la somme, le produit, la sub
stitution, l'exponentielle. On pourra trouver dans Joyal [31] un exposé 
élégant de l'algèbre combinatoire des séries, ou remonter à des mémoires 
antérieurs comme ceux de Bender et Goldman [8] sur les préfabs, de Bota 
et ses disciples ([35], [36]) sur le calcul ombrai, et encore de Stanley [38] 
ainsi que de Schützenberger et l'auteur [23]. 

Dans le corpus des séries de polynômes, on trouve des séries dites 
ordinaires et des séries exponentielles. Une belle application du traite
ment combinatoire des séries génératrices ordinaires a été faite par Shapiro 
[37] qui a obtenu une formule bilinéaire pour les polynômes de Tchebychev 
de chacune des deux espèces. 

Pour les séries génératrices exponentielles, on a pu utiliser avec profit 
l'identité sur la fonction exponentielle pour établir directement la formule 
de Mehler [17] ou la fonction génératrice des polynômes de Jacobi P$*ß)(x) 
[21]. Posant B = (1— 2xu+uz)xl2, cette dernière fonction génératrice 
s'écrit 

]?unP{°'ß)(x) =2a+ßR-1(l-u+R)~a{l+u+B)-ß (n>0) 

(cf. [5]). Lorsque a = ß = A —1/2, on en déduit une fonction généra
trice pour les polynômes ultrasphériques 

P$(œ) = ( ( 2 4 / ( H l / 2 ) n ) P r w - ^ W 

(cf. [42], p. 81, formule (4.7.16)), différente de la fonction génératrice 
usueUe j?unpW(x) = B"x (cf. [42], p. 82, formule (4.7.23)). C'est Volker 
Strehl ([39], [40], [41]) qui a su prolonger à la fois la méthode combina
toire développée en [21] pour établir cette toute dernière identité, et 
la méthode de Dumont [13] pour redémontrer un vieux résultat de 
Tricomi [43] dans le cas général. 

Les séries ordinaires et exponentielles n'épuisent pas le sujet. Lorsqu'on 
s'élève dans la hiérarchie hypergéométrique des polynômes orthogonaux, 
les séries utilisées deviennent des séries de faculté comme dans la formule 
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(1.1) ci-après, où l'on a posé 

(a)0 = 1 , (a)n = a(a+l) ... (a + n—l)9 (w > 1) 

et 

Par série de faculté, on entend une série du type 

2u»l{nl(y)n(ô)n)Pn 

où Pn est un polynôme (n > 0). 
Le but de cet article est tout d'abord de donner une démonstration 

combinatoire de l'identité suivante sur des séries de faculté 

2J(u*ln\)(ß)n JFii-n, - a ; y ; a ) » F i ( - n , -y; ô; b) 

- G - > ' 2 MAÔ)rrl ( â = ^ ) X 

( w ^ 0 ; r > 0 ) , (1.1) 

tout en faisant ressortir les lemmes combinatoires sur les permutations 
et injections, ensuite de faire le point sur les interprétations combinatoires 
des polynômes orthogonaux hypergéométriques. 

Notons que l'identité (1.1) n'est en fait qu'une extension de la formule 
du noyau de Poisson pour les polynômes de Meixner mn(x\ ß, c) définis par 

mn(x)ß,c) ^(ß^F^-n, -xißil-c"1), (1.2) 

cette formule du noyau s'écrivant 

]? {unl(ß)nnl)mn(x', ß, c)mn(y; ß, c) 

(n>0) (1.3) 

(cf. [2], p. 15, formule (2.40W), où mn(x;ß,c) = (ß)n Mn(x; ß, c)). En 
effet, lorsque / ? = y = < 5 c t a = & = 1 —cf1, le premier membre de (1.1) 

45 — Proceedings..., t. II 
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se réduit, moyennant (1.2), au premier membre de (1.3). Quant aux deux 
fonctions 2FX du second membre, elles se réduisent, par le théorème bino
mial à ((1— %lc)(l — u)~l)x"r et ((1 — ulc)(l—u)~iy~r

9 respectivement. 
On retrouve alors le second membre de (1.3). 

Comme l'a noté Richard Askey [6], on peut déduire analytiquement 
la formule (1.1) de la formule d'Erdélyi [15] sur les polynômes de Laguerre. 
Il n'y a donc pas lieu de discourir sur l'originalité d'une telle formule* 
En revanche, la méthode combinatoire développée est nouvelle. 

2. Endofbnctions de Meixner 

Comme dans [20], on appelle endofonction de Meixner sur un ensemble 
fini 8 tout couple <p = ((A, B),f) où ( A , B) est une partition ordonnée de S 
et / une application de 8 dans 8 dont la restriction fAàefk la partie A 
est injecta"ve et la restriction fB à B est une permutation de B. Soit cyc(/^) 
(resp. cyc(/jg)) le nombre de cycles de l'injection/^ (resp. la permutation 
fB). Le poids de cp = [(A, B),f) est défini par 

w(y, -x, -a;<p) = 7<*°VA)( ^xfMfB\^a)^, (2.1) 

où \B\ désigne naturellement le cardinal de B. Comme démontré dans 

[20], l'expression (y)n2Fx( -n, -x, y, a), égale à 2\i)(-"xUv+i)n-A-«)*, 

est le polynôme générateur des endofonctions de Meixner sur [n] = {1, 
2,..., n} par le poids w. En d'autres termes, on a 

(y)»»*i(-»! -0 ;y ; * ) = J£«*(y? - » * -«>9>)i (2.2) 

où <p varie dans l'ensemble des endofonctions de Meixner sur [n]. On a ainsi 
interprété combinatoirement le produit (y)w2-^

Ti( — ni —x) y\ a)i c'est-à-dire, 
à un changement de variables près, le polynôme de Meixner mn(x\ ß, c) 
(cf. (1.2)). 

Par ailleurs, posons wß{a) = /3oyo(o) pour toute permutation a d'un 
ensemble fini. L'identité 

W»=2»ß(o), (2-3) 

où la sommation est sur l'ensemble des permutations a de [n], est bien 
connue (cf. [34], p . 71). Il résulte alors de (2.2) et (2.3) que l'on a 

(0Uy)« i* i ( -»> -*;y;«)(<5)»2^i(-w, - y ; M ) 

= ]?wß{0)w(Y, -o«, -a;<p)w(ô, -y, -b;y), (2.4) 
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où la sommation s'étend à tous les triplets (a,cp,ip) avec a une permuta
tion de [w] et <p9 y) deux endofonctions de Meixner sur [n]. Le premier 
membre de (1.1) peut donc s'écrire 

^(unl(nl(yU6)n)) ^ wß(a)w(y, -x9 ~a;cp)w(ò, -y9 - 6 Î V ) . (2.5) 

D'autre part, en développant les fonctions g-̂ i e* e n appliquant le 
théorème binomial, on peut mettre le second membre de (1.1) sous la 
forme 

J[>"/(»i(y).^ x 

X(2r + i +j)s(y + r + *)„_,_,(ô + r +3)n-v-3 ( -®)r+i( -2/),+i X 

X(-a)r+i(-b)r+j (q + r + s+i+j = » ) . (2.6) 

Pour établir (1.1) il suffit donc d'établir l'identité polinomiale 

]?wß(cr)w(y, -x, -a;<p)w(ô, -y; - 6 ; y) 

= S Ukj) (ßWUß +r)i(ß + f)i(2r + i +]). X 

X (y+ r + i)n_r_i (ô+r +3)n-r-§ ( - 0)r+< ( - y )r+i X 

X ( - a ) ^ ( ~ & r + J ' (2 + y + s + i + j = W ) . (2.7) 

3. Lemmes coinbinaloires 

L'identité (2.7) est beaucoup moins effrayante qu'il n'y paraît, ca.r tous 
les termes ont une signification combinatoire qu'on va maintenant donner. 
Les trois lemmes ci-après sont extraits de l'article sur la formule d'Erdé-
lyi-Hille-Hardy pour les polynômes de Laguerre [22]. Comme dans (2.3), 
si Ji est une injection d'un ensemble fini, on pose wß(Ji) = ßcyGW. 

LEMME 3.1. 8i \A\ = i, \B\ =j et i + j = n, alors 

£wß(h) =(ß+j)t, (3.1) 

la sommation étant sur Routes les injections Ji de A dans A+B. 
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LEMME 3.2. 8oit (I, J, B) une partition ordonnée d^un ensemble telle 
que \I\ =i, \J\ =j9 \B\ =r. Alors • 

J£S(ß) =(ß)r(ß+r)i(ß+r)39 (3.2) 

la sommation étant étendue à Vensemble des permutations 6 de I + J+B 
à 0(J)nI = 0 . 

Soit (I, J, B, 8) une partition ordonnée d'un ensemble telle que 
\I\ = i9 JJ | = i, |J8| = r9 \8\ = s. Trois sortes de chemins dont les sommets 
sont pris dans I + J+B + 8 sont maintenant introduits, les a-chemins, 
les b-chemins et les ab-chemins. Les a-chemins (resp. 6-chemins) ont tous 
leurs sommets dans 8 à l'exception de l'extrémité qui est dans I (resp. 
J). Un a&-chemin a aussi tous ses sommets dans 8, à l'exception d'un 
seul, qui appartient à B et ne se trouve pas nécessairement à l'extrémité. 
Dans la Eigure 1, effaçons par la pensée toutes les flèches en pointillé et 
écartons le cycle en trait continu. Il ne reste alors que des a-9 6- et aô-che-
mins. 

Un graphe G dont les sommets sont les éléments de I + J+B + 8 
est dit Frdélyien sur (I9J9B98)ù ses parties connexes ne sont composées 
que de a-, b- et aô-chemins. 

Il sera commode de noter R'(G) l'ensemble des sommets de O qui 
sont les extrémités des «6-chemins. On a 

B'(G)czB + 8 et |B'(ff)| =*|B|. (3.3) 

LEMME 3.3. Si \I\ = i, \J\ =j, \B\ = r, \8\ = s9 le nombre de graphes 
Erdélyiens sur (I9J9B98)est égal à (i+j+2r)s. 

La démonstration de l'identité (2.7) consiste alors à associer, de façon 
bijective, à chaque triplet (o9 q>, ip) de la sommation du premier membre, 
une partition ordonnée (Q,B,8,I,J) de \n\ et une suite (a',Q,G,h9 

hf
9 | , !') ayant les propriétés: 

(i) a' est une permutation de Q ; 
(ii) 0 est une permutation de B + I + J satisfaisant à 6(J)r\I = 0 ; 
(iii) G est un graphe Erdélyien sur (I, J, B, 8); 
(iv) (resp. (v)) h (resp. A') est une injection de [^]\(-B'(ö)+I) (resp. 

[ri\\(R + J)) dans [w]; 
(vi) (resp. (vii)) | (resp. £') est une permutation de R'(G) +1 (resp. B+J)f 
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De plus, l'identité suivante doit être vérifiée: 

wß(o)w(y,-a;<p)w(69 -y, - 6 } y) 

= ( - a ) l * + J ' ( - 5 ) ^ ^ (3.4) 

Compte-tenu des lemmes 3.1, 3.2 et 3.3 et de (3.3), on voit que si 
une telle bijection est établie, la sommation du second membre de (3.4) 
donne bien le second membre de (2.7). Reste donc à établir la bijection 
annoncée. 

4. La correspondance 

Partons d'un triplet (a,cp,ip) avec a une permutation de [n], et 99 = 
((A,B),f), ip=((Ö,D),g) deux endofonctions de Meixner sur [w]. 
Quand on superpose les graphes de ces trois configurations sur un ensemble 
de n sommets étiquetés, on a d'abord les cycles de a — appelons-les 
ß-cycles — puis les chemins et cycles des endofonctions <p = [(A, B),f) 
et ip = ((Ö, D), #). Les n sommets se répartissent donc en quatre classes 
Anö, AnD, BnO et Br\D. D'après l'expression du poids donnée en 
(2.1), on peut considérer que les sommets de B (resp. D) portent la marque 
—a (resp. — b). On dira qu'un sommet est a-marquê, b-marqué ou ab-marqué, 
suivant qu'il appartient à BnO, Ani), ou BnD. Les sommets dans 
Anö sont non marqués. 

Deux sommets distincts v et v' sont dits liés si les trois propriétés 
suivantes sont satisfaites: 

(i) v est b-marqué et v' est a-marqué; 
(ii) v et v' sont dans le même ß-cyclem, 

(iii) les sommets appartenant à ce ß-cycle et situés entre v et v' sont tous 
non marqués. 

La partition ordonnée (Q, B, 8,1,J) associée à (a,oD,ip) est ainsi 
définie: si les sommets d'un même /î-cycle sont tous non marqués, tous 
ces sommets sont rangés dans la classe Q. Si un sommet est, ou bien 
a&-marqué, ou bien 6-marqué et lié, il est mis dans B. Si un sommet est 
a-marqué (resp. &-marqué) et non lié, il va dans I (resp. J). Enfin, 8 se 
compose de tous les sommets restants. Notons que S englobe aussi les 
sommets a-marqués et liés. 
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Dans la Figure 1, on a représenté les ß-cycles d'un triplet (or, <p, ip) 
avec les sommets marqués a, b ou ab. Les sommets non marqués apparais
sent comme de simples points; L'appartenance de chaque sommet à un 
bloc de la partition (Q, B, 891, J) est indiquée par la lettre correspondante. 
Les flèches en pointillé sont les arcs ayant pour origine les sommets qui 
sont, ou bien «ô-marqués, ou bien A-marqués, ou encore fe-marqués mais 
non liés. 

Effaçons les flèches en pointillé du graphe de la Figure 1. On obtient, 
d'une part, une collection de cycles dont tous les sommets sont dans 
Q — une permutation o' de Q — d'autre part, une collection de a-9 6- et 

R 
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1 •a « 
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I 
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J 
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— • a 

I 
I 
! 
I 
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Fig. 1 

a&-ehemins formant un graphe Frdélyien G sur (I,J9B, 8). De plus, comme 
chaque a- (resp., b-, resp. ab-) chemin contient exactement un sommet 
dans I (resp. J, resp. B), les arcs en pointillé sont la représentation graphi
que d'une permutation 0 de 1+J+B. Enfin, comme il n'y a pas de flèche 
en pointillé issue de sommet 6-marqué et lié, la permutation 0 satisfait 
à 0(J)nI = 0 . Evidemment cyc((r) =* cyc(c') + cyc(0), d'où 

u)ß(o) =wß(o')wß(6). (4.3) 

Les trois premiers éléments de la suite (or', 0, G9 h, h', £, $') ayant 
été définis, les quatre derniers sont simplement h =fA9 h' =gG9 S =fB 

et f = gD, c'est-à-dire, respectivement, les restrictions d e / à A, de g à C, 
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d e / à B et de g à B. Comme on a 

B=R'(G)+I et D=B + J, (4.1) 

ainsi que 

A = {n\\(B'(G)+I) et O = [n]\(JB + J ) , (4,2) 

les conditions (iv) et (v) de la section 3 sont bien vérifiées. De plus, d'après 
(2.1), (3.3), (4.1) et (4,2), il vient 

w(y, -x, -a;<p) = y°*Vj)( -œ)<*<Vji)( -a)
m 

= »y(Ä)W-.(f)(-«) ,B+I1 (4-4) 

et de même 

«(* , -2 / , - * Î V ) =^(Ä')^-2 /(n(-ö) I 2 2 + J r |- (4.5) 

Prenant en compte (4.3), (4.4) et (4.5), on obtient bien (3.4). 
Réciproquement, si l'on part d'une partition ordonnée (Q, B, 8,1, J) 

de [w] et d'une suite (o*', Ô,G, li, Ji', f, f ) ayant les propriétés (i)-(vii) 
de la section 3, il est immédiat de reconstruire le triplet (er, cp, ip). Les 
trois éléments a', 0,G fournissent la permutation a, et les couples (Ji9 S) 
et (A', f ) les endofonctions de Meixner cp et y;, respectivement. 

Ceci achève la démonstration de l'identité (1.1). 

5. Conclusion 

Un beau guide des polynômes orthogonaux hypergéométriques nous est 
propose par Askey et Wilson [7] qui les ont classés dans un diagramme 
respectant leur hiérarchie hypergéométrique. Nous reproduisons une 
partie de celui-ci dans la Eigure 2. Une flèche va du polynôme P au poly
nôme Q, si l'expression analytique de Q peut être obtenue de celle de P par 
une spécialisation des paramètres ou un passage à la limite approprié. 
Par exemple, la flèche allant du polynôme de Laguerre 1$ (x) au polynôme 
d'Hermite Hn(x) symbolise le passage à la limite 

Sn(x) ^ nllim(2la)n!*L$ (a-~x(2af2) (a->+ oo) (5.1) 

(cf. [42], p . 389, [4]). 
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Les interprétations combinatoires des polynômes apparaissant dans 
ce diagramme sont connues et sont compatibles, en ce sens que toutes 
les formules de passage ont des démonstrations simples dans la géométrie 
de ces modèles. Par exemple, la fòrmule (5.1) a une signification géométrique 
intéressante donnée par Strehl [41]. 

Hahn 

Jacobi Meixner 

Laguerre 

Hermite 

Fig. 2 

D'après Karlin-McGregor [32], le polynôme de Hahn a l'expression 
analytique 

Qn(x;a9ß,N) = £ (-n)k(-x)k(n + a + ß+l)k (0<fc<w). 
(a+l)k(-N+l)kJc\ 

Posant Bn = (a+l)n(—JSf+l)nQn(x'9 a, ß, N), on obtient 

(O^i^n). 

Par le lemme 3.1, on peut donc immédiatement obtenir une inter
prétation combinatoire des polynômes Bn. Cette interprétation n'a ce
pendant pas fourni des démonstrations vraiment nouvelles des formules 
concernant les polynômes de Hahn. En revanche, de l'étude combinatoire 
des Bn, on peut déduire la géométrie combinatoire de tous les polynômes 
apparaissant dans le diagramme. 

Si on se reporte à [2], chap. 2, on constatera que les noyaux de Pois
son ont été calculés par des méthodes combinatoires pour les polynômes 
dé Meixner (ici-même), de Laguerre [22] et Hermite [17]. 
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Signalons enfin que cette étude combinatoire des polynômes ortho
gonaux a aussi pour ambition de traiter les ^-polynômes. La principale 
difficulté vient que souvent plusieurs polynômes peuvent prétendre au 
titre de g-analogues des polynômes classiques. Il y en a déjà deux familles 
pour les seuls g-polynômes d'Hermite, comme l'a montré Désarménien 
[12]. Signalons, en revanche, la belle étude des g-polynômes de Laguerre 
par Garsia et Remmel [26] et une démonstration très élégante du ç-ana-
logue de la formule de Pfaff-Saalschütz par Andrews et Bressoud [1]. 
Il semble que pour les g-polynômes il faille opérer dans l'algèbre des 
partitions et non plus dans celle des endofonctions. Un modèle global 
reste à découvrir, peut-être celui des groupes formels comme une récente 
étude de Cartier [9] le laisse prévoir. 
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Recent Developments in Ramsey Theory 

Introduction 

Mathematics has often been called the science of order. From this viewpoint 
the guiding principle of Eamsey theory is perhaps best summed np by the 
statement of T. S. Motzkin: "Complete disorder is impossible". Bamsey 
theory is basically the study of structure preserved under partitions. 
Before stating some background material, we first introduce the following 
notation. We will adopt the usual convention of identifying the positive 
integer n with the set of its predecessors { 0 , 1 , . . . , n— 1}, where 0 corre
sponds to 0 . The symbol co denotes { 0 , 1 , 2 , . . . } , the set of natural 
numbers. For X^co,Jceco, [X]k denotes the set of ^-element subsets of X, 
and [-XJT denotes the set of infinite subsets of X (if there are any). The 
generic result in Bamsey theory is due (not surprisingly) to F. P . Bamsey 
[49]: 

Ramsey's Theorem (1930) 

For any Jc9r eco,if [cof = C±v . . . u 0 r then there exists X e [co]" such 
tJiat [X]k £ Oi for some i. 

An earlier result of Bamsey type was given by I. Schur [52] in 1916: 

If co =0^ ... \jGr then tJiere exist x,y,zeGi for some i sucJi that 
oo -]-y = z. 

The result of Schur was generalized successively as follows. 

THEOREM (Bado [47 ], Folkman [17], Sanders [51]). For all m e co, 
if œ = ÜJLU . . . u(7r tJien tJiere exists X e [œ]m such that for some i and all 
nonempty F £ X, £ a eOi. 

aeF 

[1556] 
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THEOREM (Hindman [34]). If co = CiU . . . uGr then there 
X G [co]" such that for some i and all finite nonempty F c X, ]? asGi. 

aeF 

A much weaker form of the Bado-Folkman-Sanders theorem was 
actually given by Hilbert in 1892 : 

THEOREM [33]. For all meco, if co = Ö±\J . . . u Gr then there exists 
Xe\œY and teco such that for some i and all nonempty F £ X,t + ]?a G C .̂ 

aeF 

Finally, we mention the result which will motivate much of what we 
discuss in this paper. This is: 

VAN DER WAERDEN'S THEOREM (1927) [63]. If co = 01u...KjOr then 
for some i, Gi contains arbitrarily long arithmetic progressions. 

The theorem of van der Waerden has proved to be an extremely fertile 
seed from which a major part of modern combinatorics has developed, 
especially through the work of Bado [47], [48], Erdös [16], [15], Both [50], 
Szemerédi [60], [61], Deuber [9] and many others (see [14], [31], [10]). 
A particularly important generalization was given in 1963 by Hales and 
Jewett. For a fixed finite set A, call a subset L ^ AN a combinatorial line 
if for some nonempty I £ N9L can be written as 

L = Lj = \J {(x09 x19..., xN_j): xi = a if i e I and xi = bt e A if i £ I}. 
aeA 

Thus, \L\ =\A\. 

HALES-JEWETT THEOREM [32]. For all finite A and r, there exists 
N(A, r) such that if JN"^ N(A, r) and AN = G±\J ... KJGV then some Gi must 
contain a combinatorial line. 

To see that this implies van der Waerden's Theorem, simply take 
A = t = { 0 , 1 , . . . , £—1} and identify the point x = (xQ,..., xN_x) eAN 

with the integer \x\ = ^xrf . The t points in any combinatorial line clearly 
ieN 

correspond to t integers in an arithmetic progression. Since t was arbitrary, 
a standard compactness argument yields van der Waerden's Theorem. 

The Hales-Jewett Theorem also implies the higher-dimensional ana
logues of van der Waerden's Theorem, first proved by Gallai (see [47]) and 
Witt [66]. 

THEOREM. If con = Ctu ... uOr then some Gi must contain for all 
Jc e co a homothetic copy of { 0 , 1 , . . . , Jc —l}n, i.e., all Jcn points 

{(ai±+b17 aiz+b2, ...,ain+bn): 0 < £ 1 ? ...,in<Jc} 
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for suitable a, fy e co. 

A much stronger "density" form of van der Waerden's theorem was 
conjectured by Erdös and Turân [16] nearly 50 years ago : If A s co satisfies 

\Ann\ „ , v limsup > 0 (*) 
?i-*oo n 

then A contains arbitrarily long arithmetic progressions. 
I t was shown by Both [50] in 1953 that (*) implies A has a 3-term 

arithmetic progression and by Szemerédi [60] in 1969 that (#) implies A 
has a 4-term arithmetic progression. Finally, Szemerédi [61] in 1974 in 
a brilliant combinatorial tour de force established the full conjecture. 
Szemerédi's Theorem and the higher-dimensional density analogues of 
van der Waerden's Theorem have fairly recently been proved by quite 
different techniques from ergodic theory and topological dynamics. This 
exciting work of Furstenberg, Katznelson, Weiss and others (see [22], 
[24], [20], [21]) has furnished a very stimulating link between these two 
branches of mathematics which is just beginning to reveal its full potential. 

I t is very natural to ask whether there is a corresponding density version 
for the Hales-Jewett Theorem. We can phrase this as follows : 

CONJECTURE.1 For all finite A mid e > 0 tJiere exists N(A, s) sucJi that 
if N^N(A,s) and B £ AN satisfies \B\ > s \AN\ tJien B must contain 
a combinatorial line. 

The conjecture, if true, clearly implies Szemerédi's Theorem. I t is 
known to be true if \A\ = 2 by the following argument. Assume without 
loss of generality that A = { 0 , 1 } . Identify with each point x = (<oQ9œ19 ... 
. . . , %_i) G AN the subset 8(x) c J by i e 8(x) iff xi = 1 (i.e., x is the 
characterstic function for 8(x)). Thus, a combinatorial line in AN corres
ponds to a pair of distinct subset X, Y s N with I d However, a well-
known result of Sperner [59] asserts that any family F of subsets of N in 
which X, Y e F, X =fi Y implies X <£ Y can have cardinality at most 

dm) ~(" 
2 \1 / 2 

— I -2N. 

Thus, for e fixed, if N is sufficiently large then (2/nN)112 < E and the 
assertion follows. 

If A is taken to be the finite field GF(3), then Brown and Buhler [5] 
have recently shown that any subset B of the affine space AN having at 

1 The author is currently offering US $ 1000 for a proof or disproof of this conjec
ture. 
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least e-3^ points must contain an affine line, provided N> jff(e). (Com
binatorial lines correspond to very special kinds of affine lines.) More 
generally, Furstenberg and Katznelson have now proved (unpublished) the 
following weakened form of the Conjecture. Let us write A = {a0, a17... 
..., at_^. Call a set L of t points of AN a twisted combinatorial line if for 
some nonempty I ^ N and di et, i el, L can be written as 

L = [J {(#0, xx,..., xN^x): xt — aj+dm ii i el and xi =bieA if i £1} 
jet l 

where index addition is modulo t. 
Thus, in a twisted line, the entries in each of the coordinates which 

vary have been cyclically permuted. 

THEOREM [23]. For all finite A and e > 0 there exists N(A, s) such that 
if N"^ ]$f(A, e) and B s AN satisfies \B\ ̂  s\AN\ then B must contain 
a twisted combinatorial line. 

This result implies as a corollary the fact that any subset B £ GF(q)N 

with |JS| > eqN always contains an affine line, provided N is sufficiently 
large (as a function of q and s). 

Partitions into infinitely many classes 

If we allow partitions of co of the form co = [J Gi then it is clear that the 
ieo) 

conclusion of van der Waerden's Theorem does not have to hold. For 
example, we could take Gt = {i}. However, in this case we have arbitrarily 
long arithmetic progressions which hit each Gi in at most one element. 
The following result of Erdös and Graham shows that one of these two 
possibilities must always occur. 

THEOREM [14], [11]. If co = [J G4 then either some Gi contains arbit-
ie<o 

rarily long arithmetic progressions or there are arbitrarily long arithmetic 
progressions hitting each Gi in at most one element. 

The idea behind the proof is basically this. If some Ĉ  has positive 
upper density then by Szemerédi's Theorem, 0i has the desired progressions. 
If not, then for If large the number of arithmetic progressions which have 
at least two elements in a single G{ is o(N2). Since there are at least ckN

2 

arithmetic progressions of length Jc for a fixed ck > 0, the desired conclusion 
follows. 

This result is an example of a so-called "canonical" partition theorem, 
first introduced by Erdös and Bado for Bamsey's Theorem [15]. Other 
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theorems of this type have recently been given by Baumgartner [2], 
Taylor [62], Voigt [64], [46] and others. One of the most striking theorems 
of this type is the canonical partition theorem for the ^-dimensional ana
logues of van der Waerden's theorem. As an illustration of the increased 
range of behavior the canonical partitions can have, consider the case 
n = Jc = 2. Suppose eo2 =* {J Git Let us say that (x, y) <^ (x', y') if (x, y) 

ieto 

and (x'9 y') belong to the same Ö,, Consider the following six partitions : 
(i) (x,y) ~(x',y') iff (x,y) =(x',y'), 
(ii) (x, y) ~ (x', y') for aU (x, y), (x', y') e co2, 
(iii) (x,y) ~(x',y') iff x =x', 
(iv) (x,y) ~(x',y') iff y =y'. 
(v) (x,y) ~(x',y') iff x+y =x'+y', 
(vi) (x, y) ~(x',y') iff x-y ^x'-y'. 
In Figure 1, we show the six different possibilities for the four vertices 

of a square in co2 (where, a, ß,... denote distinct classes). 

« . ß . 
y. à. 
• (i) 

a, a. 

ß . ß . 
(iv) 

a. a. 
a. a. 

(Ü) 

a. ß . 
y. ». 

(•y) 

a. ß . 
« . ß . 

(iii) 

a. ß . 
ß . Y. 

(Ti) 

Fig. 1. The six canonical partitions of {0, l}2. 

It follows from the following theorem that these are a complete set of 
canonical partitions, i.e., in any partition co* = {J G{ at least one of these 

ieco 

patterns must occur. 

THEOREM (Deuber, Graham, Prömel, Voigt [11]). All canonical parti
tions of con are given as follows : For a subspace V £ Rn over B, partition 
Rn into disjoint translates of V by 

Rn = U (7+a)-
CLEA 

TJiis induces a partition of con = U @ß (w^iere B ^s countable). TJiesepartitions 
ßeB 

form a complete set of canonical partitions of con. 
We remark that the only proof known for this result requires the use 

of the deep Furstenberg-Katznelson density version of the Gallai-Witt The
orem. 

46 — Proceedings..., I. II 
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Hales-Jewett revisited 

In order to describe the next series of results we will first recast the Hales-
Jewett Theorem into a different format. As usual, we fix a finite set A and 
assume A nco = 0 . For X s co, Jc e co, we let (X)k denote the set of partitions 
of X into Jc nonempty blocks. Furthermore, we let (X)A denote the set of 
partitions of XKJA into fc+|J.| nonempty blocks so that each block 
contains at most one element of A. Such partitions will be called A-parti-
tions of X \ J A . Finally, if Y G (X)h

A and m < Jc then ( Y)A denotes the set 
of ui-partitions Z of XuA having m+|Ju|blocks such that every block 
of Y is contained in a block of Z. Thus, Y is a refinement of Z. 

The theorem of Hales and Jewett can be restated as follows: 

THEOREM. For all finite A and rifN^N(A, r) and (N)°A = 0 a u . . . u C, 
then there exists X e (N)A s%bch that (X)\ c Gx for some i. 

This was generalized by .Graham and Bothschild in 1971 : 

THEOREM [29]. For all finite A and Jc,m,r eco, m^Jc, there exists 
N(A, Jc, m, r) such that if N^ N(A, Jc, m, r) and (N)A = Gxv ... uGr 

then there exists X e (N)A such tJiat (X)™ s Gi for some i. 

A very beautiful generalization of this has now just been proved by 
Carlson and Simpson. I t deals with infinite partitions of co. To state the 
result we first introduce the following topology on (co)m, the partitions of 
co having infinitely many blocks. Any partition X e (co)m induces an equiv
alence relation on co xco by having x,y eco equivalent iff they belong to 
the same block. The set of all binary relations 2a>xa> can be endowed with 
the usual product topology, where each factor has the discrete topology. 
In this way (co)œ becomes a topological space under the topology inherited 
from 2m><a>. The following result can in a certain sense be considered a dual 
to the usual Bamsey Theorem. 

CARLSON-SIMPSON THEOREM [7]. For any Jc e co, if (co)*0 = ö 3 u . . . \JG,, 

where each Gi is Borei then there exists X e (co)m such that (X)k £ Gif or some i. 

Carlson and Simpson in fact prove the stronger analogous result for 
JL-partitions of (oSfA and which can properly be considered as an infinite 
generalization of the Graham-Bothschild Theorem. I t should be pointed 
out that some condition on the Gi is necessary since otherwise a counter
example for (co)2

 =G1KJG2 can be easily constructed using transfinite induc
tion. 
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In addition to the preceding results, dual forms are proved in [7] for 
the Galvin-Prikry extension [25] of Bamsey's Theorem for the case of 
infinite subsets of œ, as well as for Ellentuck's generalization [13] of it, 
but space limitations prevent us from discussing them further. 

In another direction, Carlson (see [44]) has very recently obtained 
a beautiful theorem which unifies a large number of known Bamsey-type 
theorems, both finite and infinite. Again, space restrictions do not allow 
us to give a full description of this striking achievement here. However, 
we will now describe a key ingredient used in the proof, which is of signifi
cant interest in its own right. 

To begin with, for a fixed finite set A and a variable veA, denote by 
W(v) the set of all "variable words" of A, i,e., the set of all finite strings 
a0, at,..., am where a{ eAu{v} and a$ = v for at least one index j . For 
a e A and w(v) e W(v) we can form the string w(a) by simply replacing 
each occurrence of v in w(v) by a (i.e., we just "evaluate" w(v) at a). Let 
8 = 8(A,v) denote the set of all infinite sequences s = (sQ(v), sx(v),...) 
where s^v) e W(v). By a v-reduction of s we mean any sequence 
i = (t0 (0) - h (0) ? • • • ) formed from s in the following way. For each i e co, s{ (v) 
is replaced by fy(ft^) where b{ e AKJ {v}. Disjoint blocks of consecutive s^b^B 
are then concatenated, forming a sequence of strings t *= (t0(v), tx(v), . . . ) , 
where the symbol v must still occur at least once in each t^v), (thus, t e 8). 
Denote by B(s) the set of all v-veductions of s and by B0(s) the set of all 
tQ(v) for t «(«o^) , *!(«), ...)e22(5). 

MAIN LEMMA (Carlson). For any s e8, if B0(s) t= Gxu ... \jGr tJien 
tliere exists t eB(s) such tJiat B0(t) £ Gtfor some i. 

This deceptively simple looking statement conceals much of its inherent 
strength. As a simple application, we derive Hindman's Theorem (following 
[6]). Let co = Gxv . . . u(7r be given. Choose A = {0} and partition W(v) 
= Of u . . . uO* by defining: w(v) e G* iff w(v) has m 0's occurring in it and 
m e Gì. Applying Carlson's result for s = (v, v, ...) we are guaranteed the 
existence of t = (tQ(v), tt(v),...) eB0(s) = W(v) with B0(t) c of for some 
i. For any finite subset J ^ N, the word Wj(v) = £o(&o)*i(&i)--' ^ - 1 ( ^ - 1 ) 
G Of where 

{^ M j 
\0 if j 

G<7, 

Thus, if % denotes the number of 0's occurring in l{(v) then this implies 
J£ My G Ĉ . for all finite J , which is just Hindman's Theorem. 

je J 
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We should note here that Voigt [65] has very recently independently 
also obtained infinite generalizations of the Hales-Jewett and Graham-
Bothschild Theorems which are similar to, though somewhat weaker than, 
Carlson's Main Lemma. His proofs however are more combinatorial in 
nature whereas Carlson relies on the intricate use of idempotent ultrafilter 
arguments (which are often quite effective for problems of this type, e.g., 
see [35]). , 

Van der Waerden again 

The finite form of van der Waerden's Theorem (for two classes) asserts the 
following : For all A G co, there exists a least W( Jc) so that if {1, 2 , . . . , W(Jc)} 
= GxuG% then some Ĉ  must contain a ft-term arithmetic progression. 

The determination of the values and, in fact, even the growth rate of 
W(Jc) has proved to be extremely frustrating for combinatorialists. The 

known exact values are listed in Table 1. 

h 

w(k) 

1 

1 

Table 1 

2 

3 

3 

9 

4 

35 

5 | 6 

178 ? 

The best lower bound known is due to Berlekamp [4]: 

w(Jc+l) >Jc2k if Jc is a prime power. 

There is currently no known upper bound for W(Jc) which is primitive 
recursive. This is because all available proofs leading to upper bounds 
involve at some point a (perhaps intrinsic) double induction, with Jc as one 
of the variables. This leads naturally to rapidly growing functions like the 
Ackermann function which may help to explain the enormous gap in our 
knowledge here. The possibility that 1̂ (31;) might in fact actually have 
this Ackermann-like growth has been strengthened by the work of Paris 
and" Harrington [43], Ketonen and Solovay [37], and more recently Fried
man [18], who show that some natural combinatorial questions do indeed 
have lower bounds which grow this rapidly (and even much more rapidly, 
e.g., see [54], [55]). In spite of this potential evidence to the contrary, 
I am willing to make the following: 
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CONJECTURE. 

TF(fc)< 2 2 

for Jc > 1 ; wJiere tJie number of 2's is Jc. 

I t should be pointed out that while any partition of the set {1, 2, . . . , 9} 
= GXKJGZ always results in some Gi containing a 3-term arithmetic pro

gression (and this is true for any set homethetic to {1, 2 , . . . , 9}), other 
sets also have this property, e.g., {1, 3 , 4, 5, 6, 7, 8, 9, 11}. However, 
it can be shown [53] that no 8-element set has the property. In general, 
define 

W*(Jc) =min{ |X | : X^w,X = C^uC^some 
Gi contains a &-term arithmetic progression}. 

Thus, 

W*(3) - W(3) - 9 

and, in general, 

W*(Jc)^W(Jc). 

I t turns out perhaps unexpectedly that W*(Jc) can be strictly smaller than 
W(Jc). In particular, recent computations have yielded TT* (4) < 27, com
pared to TF(4) = 35. The characteristic function of a set which achieves 
the bound of 27 is given by: 

1001001101111111111111111111011001001. 

I t would be of great interest to know if W*(Jc) is in general significantly 
smaller than W(Jc), e.g., does 

W*(Jc)IW(Jc)->0 as ft->oo? 

As an abbreviation, let us write X->AP(Jc) to denote the fact that for 
any partition of X = GX\JG^, some Oi contains a 7c-term arithmetic pro
gression. Going in the other direction from W*(Jc), one might naturally 
ask whether there exist arbitrarily large sets X(Jc) with the properties: 

(i) X(Jc)->AP(Jc); 
(ii) Y-/+AP(Jc) for any proper subset Y a X(Jc). 
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In fact, the existence of arbitrarily large "critical" sets for both ifc-term 
arithmetic progressions as well as more general combinatorial lines in AN 

has just recently been established by Graham and JSeäetril [28]. From this 
work, it appears that even the structure of sets X(3) which satisfy (i) and 
(ii) for Jc = 3 can be exceedingly complex. 

Concluding remarks 

As mentioned earlier, we did not have the opportunity here to give more 
than a brief sketch of a few of the large number of exciting recent develop
ments in Bamsey theory. The interested reader will find more of these 
developments reported in the following references: [35], [57], [41], [27], 
[8], [1], [36], [42], [46], [38]. 

Finally, I remark that essentially no progress has occurred on the 
following (by now) old conjecture of Erdös on arithmetic progressions, 
which would imply Szemerédi's theorem and for which Erdös currently 
offers US$3000: 

CONJECTURE. If A s co and ]? lja = oo then A contains arbitrarily 
OEA 

long arithmetic progressions. 

A related perhaps easier conjecture is this : 

CONJECTURE. If A ^ co2 and J£ l/(£a+j2) = oo then A contains the 
(U)eA 

é vertices of a square. 
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L. G. KHAOHIYAN 

Convexity and Complexity in 
Polynomial Programming 

The problems to bo considered, in the talk are the problems of convex 
polynomial programming: minimize 

subject to 

f0(x19 ...9xn) (1) 

f1(x1,...9xn)^09 

(2) 
fm(x19 . . . , » „ ) < 0, 

where /0 , f x , . . . , fm are convex polynomials in Rn with integer coefficients, 
the polynomials being specified by blocks of their coefficients written in 
binary numerical system. Two basic cases studied in mathematical pro
gramming are the following: 

(i) the variables are real x = (x19..., œn) eRn
9 

(ii) the variables are integer x = (x19... 9 xn) e Zn
9 

the problems of latter type being also called diophantine. However, the 
mixed case x eRk xZn~k is sometimes also considered. 

The degree d of the problem is the maximum of the degrees dt of the 
polynomials, the heigJit h of the problem is the maximum modulus of the 
integer coefficients of the polynomials occurring in it, and the input length L 
of the problem is the number of binary symbols 0 and 1 needed for its 
coding. The reader should not be misled by identifying L with the sum 
of binary lengths of all non-zero entries of the problem, though, in fact, 
the only property of L needed below is : L > max {n9m9 log A}. 

[1569] 
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1. Bounds on solutions 

In order to consider the bounds on solutions of problems (l)-(2) with real 
and/or integer variables simultaneously, we give the following 

DEFINITION. A set Jf £ JBTO is called periodic if for any integer vector 
y e Zn we have Jf+y = Jf. 

We assume in the present section that the vector (x19..., xn) of un
knowns in problem (l)-(2) runs over some periodic set Jf'. In particular, 
the variables may be real (Jf = Rn), integer (Jf = Zn), real and in
teger (Jf = RkxZn~k), rational (Jf =Qn), etc. 

As usual, a system of inequalities (2) is said to be consistent in Jf if it 
has a solution x* eJf. Similarly, an optimization problem (l)-(2) is said 
to be feasible in Jf it if has an optimal solution œ* e Jf when the vector 
of variables runs over Jf. 

Note. It can be shown that a problem of convex polynomial program
ming (l)-(2) with integer coefficients is feasible in Rk x Zn~k if and only 
if its system of constraints (2) is consistent in Rk x Zn"k and its objective 
polynomial (1) is bounded from below on the set of real solutions of the 
system (2). 

To state the results of this section, we also need the concept of multi-
degree D of a system of inequalities (2). Let a = mm{n9 m} and let the 
inequalities of the system be ordered by decreasing degrees dx > d& 

a 

> • •. > dm. Then D = fj #*•In other words, the multidegree is the maximum 

of all possible products of the degrees of a distinct inequalities of the system. 
In particular, D < g^i^m}^ a n ( j adjoining further linear constraints to the 
system does not change its multidegree. 

THEOREM 1 [11]. Let Jf be an arbitrary periodic set in Rn. If the system 
of convex polynomial inequalities (2) of degree at most d9 d^2, of multi-
degree D and of height h is consistent in Jf, then it has a solution x* e Jf in 
the Fuclidean ball 

\\x\\<(hdnf**dl2ndl\ 

THEOREM 2. Let Jf be an arbitrary periodic set in Rn. If the problem 
of convex polynomial programming (l)-(2) of degree at most d9d^2, and 
of height h is feasible in Jf', then it has an optimal solution x* eJf in the 
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Fuclidean ball 
WxW^lidn)»2^-1, 

wJiere D is tJie multidegree of tJie system of constraints. 

We conclude the section with a brief comment on Theorems 1 and 2, 
To begin with, consider the problems of linear programming, which are 
of the degree not exceeding 2 and of multidegree 1. By Theorems 1 and 2, 
bounds on solutions of such problems in periodic sets are exponential in 
the input length, i.e., \\x\\ < Anloshn < 2p(L), where J. is a constant and p 
is a polynomial. As regards problems of convex polynomial programming 
of an a-rbitrary but fixed degree d > 2, we see that unlike the linear case, 
Theorems 1 and 2 restrict the bounds on solutions of such problems by 
a. two-stage exponential function in the input length, i.e., 

|]a?]| < J.ä2min{^™} jn^iogzm < 222J{L) 

p and A being a polynomial and a constant depending on d. On the other 
hand, the example of the system xx^ h, a?2> ?̂? •••> 0»> ^St-i? with «J 
even, shows that such super-exponential growth of the solution bounds can 
really be attained in any periodic set. 

2. Finding an exact real and/or integer solution 

In the present section we assume that the variables are real and/or integer 
m eRk xZn~k. As the coefficients of the problem (l)-(2) are integer, 
in case of its feasibility there exists an optimal solution x* *= (x*,..., x*) 
e Ak x Zn"k, each real component of whioh is an algebraic number. If we 
agree to code algebraic numbers x* by their (irreducible over Q) algebraic 
equations Pj(x*) = 0 and, if necessary, by rational segments x* e(a$, bf) 
not containing other roots of univariate polynomials pi e # [ • ] , we may 
consider exact algorithms of polynomial programming. Eor a problem 
(l)-(2) such an algorithm must check its feasibility and, if the problem 
is feasible, print an algebraic solution x* e Ak x Zn~k. Applying Theorem 2 
jointly with the decision procedure [1], we obtain 

THEOREM 3. There exists an exact algorithm for convex polynomial 
programming witli real andjor integer variables, wJwse running lime t is 
bounded by a two-stage exponential function in tJie input length, t < 22 . 

In the subsequent sections we shall consider less burdensome problems 
of convex polynomial programming, allowing an essential reduction of 
their computational complexity. 
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3. Regularization of systems of convex polynomial inequalities 

As we have mentioned in Section 1, the bounds on solutions of systems of 
convex polynomial inequalities in periodic sets can grow as 22P{L). The 
following result [11] shows that in some "computational sense" these 
bounds can be effectively reduced to 2P^. 

THEOREM 4. Consider systems of convex polynomial inequalities (2) 
of a fixed degree d^2in some periodic setJf. There exists a polynomial-lime 
in the input length L algorithm, called the 'regularization^ algorithm, which 
for any given system (2) finds a subsystem 

f{(x)<0, ieJISk { l , 2 , . . . , m } (3) 

and a sequence of integer vectors yx, ...9yreZn and natural scalars 
ôx,..., ôr e Z+ written in binary number system, r < min {n, m} +1, 
such that the following conditions hold. 

(i) The system (2) is consistent in Jf if and only if the subsystem (3) is 
consistent in Jf. 
, (ii) If the subsystem (3) is consistent in Jf9 then it has a solution x° e Jf in 

the Euclidean ball 

\\x\\ < (hdn)idMl2ndl2 < 2*W. (i) 

(iii) If a solution x° eJf of subsystem (3) in the ball (ê) is known, then 
a solution x* e Jf ofthe initial system (2) can easily be found from the formula 

x* =yr.2
dr+ . . . +y1-2

âi+x°. (5) 

Moreover, the binary representation of x* can be obtained from the binary 
representations of x°,y19 ...9yr9 d19..., dr in the form 

^.-thplace óVthplace òVthplace 
I I I (6) 

{a?*} = {yr}Q0 . . . 00{#,}00 . . . OOfyjOO .. . 00{x0} 

where { } stands for the binary representation of the coresponding vectors. 

Note 1. The running time of the regularization algorithm is bounded by 
an (absolute) polynomial in dnd

9 m9 log ft, the algorithm being independent 
OÎJf. 

Note 2. If all the parameters in the r.h.s. of (5) are written in binary 
numerical system, we call the representation (5) binary-exponential. Thus, 
we see from (6) that the use of the binary-exponential representation of 
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solution instead of the usual binary one enables us to contract the output 
information by omitting in its record a number of O's exponential in L. 

Note 3. If a vector x° from the ball (4) satisfies the subsystem (3) with 
an accuracy e e (0,1) 

Mafl)<89 ieJt9 (3') 

then the vector x* obtained by (5) satisfies the initial system (2) with the 
same accuracy e. 

4. Complexity of systems of convex diopliantine inequalities 

Applying Theorem 4 in the diophantine case Jf = Zn
9 we obtain the 

following results. 

THEORJBM 5 [11]. For a fixed d > 1 the problem of determining tlie con
sistency of systems of convex diophantine inequalities of degree at most d belongs 
to tJie class NP. 

Note. The problem of determining the consistency in Zn of a single 
convex quadratic inequality is JTP-complete. 

THEOKEM 6. If it is permitted to print integral solutions of nonlinear 
systems in binary-exponential form9 then for any fixed d > 2 tJie problem of 
determining tJie consistency and of finding a solution of systems of convex 
diophantine inequalities of degree at most d is polynomially transformable to 
tJie same problem for systems of linear diophantine inequalities. In particular9 

these problems can be solved for sure in exponential time t < 2P^, the latter 
assertion holding even for binary representation of the output. 

All in all, to solve systems of convex diophantine inequalities is not 
much harder than to solve systems of linear diophantine inequalities. 

5. The ellipsoid method 

Suppose that for a feasible in Rn problem of convex polynomial pro
gramming (l)-(2) a bound B is known such that the problem has some opti
mal real solution in the ball ||a?|| < B. Then, to solve the problem with an 
accuracy e e (0,1), i.e., to find its e-solution & 

fo(A)<f + *, (1«) 
fi(x)^e, ie{l92,...9m} (2e) 

where /* is the minimum value of the objective polynomial, the ellipsoid 
metJwd ([12], [8]) may be used. The following result estimates the com-
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plexity of the ellipsoid method for convex polynomial programming, 
taking into account finite precision of arithmetical operations performed 
over binary numbers in a digital computer. 

THEOREM 6. To find an s-solution â of a feasible in Rn problem (1) —(2) 
in the ball \\x\\ < B it suffices to perform 

) (7) 

elementary operations +, —, x, /, \/~9 max over numbers having in binary 
form 

I ^llog2(d
2hNBdn2/e) +30 (8) 

places, the operations being carried out approximately with the same number 
of digits as in the binary representation of the numbers. Here n, h, d are the 
number of unknowns, the height, and the degree of the problem, respectively, 
and N, M are the maximum and the total number of non-zero coefficients 
(monomials) of the polynomials /o>/i> •••i/m- ^n addition to the input in
formation the storage of n* + 6n such l-place numbers is also needed. 

Note 1. For linear programming problems (d = 19N< n+l) the esti
mates (7)-(8) can be improved: 

k < n*[3M +10.5n*]log2(8hnBle), 

ï<îloga(ftV3J3s/s5)+30. 

Note 2. For problems of convex quadratic programming with convex 
quadratic and/or linear constraints d = 2, JV< (n+2)2/2 the estimates 
(7)-(g) yield 

Jc < n2[4:.5M +13.5(n+2f]log2(32hn2B2ls)9 

Kllog2(hn*B2le) + 37. 

COROLLARY. For problems of convex polynomial programming of an 
arbitrary fixed degree d the ellipsoid method runs 'in polynomial time with 
respect to L and log (Bis). 

6. Finding an approximate real solution of systems of convex polynomial 
inequalities 

From Theorem 4, Ebte 3 in Section 3 and the last corollary follows 

THEOREM 7. There exists a polynomial-time with respect to input L 
and log(l/e) algorithm for finding an s-solution of systems of convex polyno-



Convexity and Complexity in Polynomial Programming 1575 

miai inequalities consistent in Rn
9 of an arbitrary fixed degree d, provided 

tJiat the output is printed in binary-exponential form. 

Note 1. If one insists on binary representation of the output, it is 
impossible to design such an algorithm allowing an enormous length of 
the output information. Thus, for d > 2, the binary-exponential represen
tation of the output is essential for the validity of Theorem 7. 

Note 2. The existence of a similar algorithm for systems of linear 
inequalities aggravated by a single non-convex quadratic constraint would 
imply P = NP. 

We now turn attention to some problems of convex polynomial program
ming which are exactly solvable in polynomial time. 

7. Polynomial solvability of linear programming 

I t is clear that any feasible in Rn problem of linear programming has 
a rational optimal solution x* e Qn — recall that only problems with integer 
coefficients are considered. Thus, in accordance with the definition from 
Section 2, an exact algorithm for linear programming must check the 
feasibility of an Lp, problem and find its optimal rational solution. An 
exact algorithm for linear programming, polynomial in L, was announced 
in [2] and described in [3]. Later on it was improved in [4]. 

THEOREM 8 [4]. TJiere exists an exact algorithm for linear programming 
requiring 

k <> a^ßlogAa <, a4ßlogJia 

operations +, —, x , /, max over 

I <, log/da £ alog7&a 

place binary numbers and additional to the input information storage of 
<, a* sucJv numbers. Here a =min{w,m} and ß =max{n , m} are the 

minimum and the maximum dimensionalities of tJie problem, Ji is the JieigJit 
of the problem, and A stands for the maximum modulus of the determinants 
of the extended matrix of coefficients of tlie problem. 

Note. Theorem 8 holds for linear fractional programming. 

8. Polynomial solvability of convex quadratic programming 

For problems of convex quadratic programming, consisting in minimiza
tion of a convex quadratic polynomial (1) under linear constraints (2), we 

47 — Proceedings.,., t. II 
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notice that again their feasibility in Rn implies the existence of a rational 
optimal solution. An exact algorithm of convex quadratic programming 
was described in [6] and improved in [9]. The latter result can also be 
improved as follows: 

THEOREM 9. TJiere exists an exact algorithm of convex quadratic pro
gramming which requires <, n41 (n+m)loghn elementary operations over 
<; nloghn-place numbers and additional to the input information storage 

of <> ri* such numbers, where n,m,h are of their usual meaning. 

Note. From Theorem 9 it follows that the problem of determining the 
consistency in real variables of systems of linear inequalities aggravated 
by a single convex quadratic constraint is polynomially solvable. This 
result can be extended to any fixed number of convex quadratic constraints 
[10, 9], The problem of whether there exists a polynomial algorithm for 
checking the consistency in real variables of general systems of convex 
quadratic inequalities is open. 

9. Polynomial solvability of convex polynomial programming with a fixed 
number of real and/or integer variables 

In [7] a polynomial algorithm was described for solving linear programming 
problems with a fixed number of integer variables. Using the technique of 
[7], one can immediately derive from [1], p. 135 and Theorem 2 the follow
ing result (see also [7], p. 13). 

THEOREM 10. There exists an exact algorithm, polynomial in m and 
log A, for convex polynomial programming with real and j or integer variables, 
provided that the degree d of problems and the number n of unknowns are fixed. 

Note. From Ebte in Section 4 it follows that unlike the linear case [7], 
there does not exist an algorithm, polynomial in n and log ft, for convex 
quadratic integer' programming with a fixed number of constraints unless 
P = NP. 

In conclusion, let us mention that this talk is an abridged version of 
the survey [5]. 

References 

[1] Collins G. E., Quantifier elimination for real-closed fields by cylindrical alge. 
braic decomposition. In: Automata Theory and Formal Languages, Lecture Note^ 
in Comput. Sci 33, Springer, Berlin, 1975. 



Convexity and Complexity in Polynomial Programming 1577 

[2] Xa'iHHH JI. T., nojiHHOMHajiLHHfi anropnTM B JiHiieöHOM nporpaMMHpoBaiiHH, 
ffAH CCCP 244, Xs 5 (1979); translated in: Soviet Math. Bold. 20, No. 1 (1979). 

[3] XaiHHH JI. T., üojiHHOMHajiBiiHe ajiropiiTMH B jiHHeftHOM nporpaMMnpoBairHH, 
2KB M u M®, T. 20, J\fe 1 (1980), translated in : USSR Clomp. Math, and 
Math. Phys. 20, Ko. 1 (1980). 

[4] Xa^HHH JI. P., 0 TOHHOM pemeHHH CHCTeni jiHiieaiiLix iiepaBencTB H aa^aii jiHHefi-
Horo nporpaMMHpoBairHH, SKBM u M® 22, Ks 6 (1982). 
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J. H. VAN LINT 

Partial Geometries 

1. Introduction 

The main purpose of this paper is to survey recent results on partial 
geometries. I t is now twenty years since Bose [1] introduced the concept 
of a partial geometry in order to study large cliques in strongly regular 
graphs. Several strong necessary conditions for the existence of strongly 
regular graphs also have consequences for the existence question for 
partial geometries. We give the necessary results for strongly regular 
graphs in Section 2. In Section 3 we define partial geometries and indicate 
results obtained prior to 1976. For most of the early work on partial 
geometries we refer to the survey by Thas [27] published in 1977. The 
recent results are divided into (i) nonexistence theorems (Section 4), 
(ii) new infinite classes (Section 5) and (iii) sporadic geometries (Section 6). 

2. Strongly regular graphs 

A strongly regular graph (notation srg(w, k, X, p)) is a graph (undirected, 
without loops or multiple edges) on v vertices which is regular with valency 
k and which has the following two properties : 

(i) for each pair {x, y} of adjacent vertices there are exactly A vertices 
adjacent to x and to y, 

(ii) for each pair {x, y} of nonadjacent vertices there are exactly /A 
vertices adjacent to x and to y. 

The complement of a srg(v, k, A, p) is a Bvg(v, I: = v — Jc—1, v— 2Jc + 
+ [i — 2,v — 2Jc + X). From this we find a necessary condition for the 
existence of a srg(-y, Ji,%, p), namely 

f>-2ft + / i - 2 > 0 . (2.1) 

Furthermore, a simple counting argument shows that 

k(k-X-l) = / * ( v - f c - l ) . (2.2) 

[1Ö79] 
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We exclude trivial graphs (disconnected graphs and their complements), 
i.e., we assume 

Q<p<k<v-~1. (2.3) 

Let A be the (0,1) adjacency matrix of a srg(v, k, X, p). Then A satisfies 

AJ =kJ, A2 + (f.i-X)A + ({jt,-k)I =*pj, 

where J is the all-one matrix. A has an eigenvalue k with multiplicity one 
and two other eigenvalues r, s (r >s) satisfying x% + (p — X) x + (p — Jc) = 0. 
The multiplicities of these eigenvalues are 

- ~*(*+l ) ( fc -s ) a n d < y , * ( r + l ) ( t - r ) y {2i) 

(k + rs) (r — s) (Jc + rs) (r —s) 

and they must clearly be integers ; (this is known as the integrality condition). 
In fact, iif^g then r and s must b£ integers. The other case (i.e., / = g) 
is called the half-case. In situations where we need all these parameters 
of a strongly regular graph we shall list them as srg(v, k, X, p;r,s,f,g). 

We now state three strong necessary conditions for the existence of 
a srg(v, k, X, ja). For more details and proofs we refer the reader to [2], 
[6]> [7], [26]. In Section 3 we shall sketch the proof of (2.8). 

(Krein conditions) (r+l)(k+r+2rs) < (Jc+r)(s+l)*, (9 _ 
($+l)(k + s+2rs)^(k+s)(r+l)K { ' 

(Absolute bound) v < | / ( / + 3 ) and v < %g(g+3). (2.6) 

If the first inequality of (2.5) holds with strict inequality, then (2.6) can 
be improved to 

«<*/(/+!>, (2-7) 

and similarly for the second inequality of (2.6). 

(Glaio bound) If p ¥=s2,p =£s(s+l), then 2(r+l)^s(s+l)(p+l). 

(2.8) 

3 . Partial geometries 

A partial geometry ^g(K,E,T) is an incidence structure with a set 0> of 
points and a set SH of lines with the following properties (if a point x is 
incident with a line L we write x e L9 if x and y are on a line we write 
w ~y): 
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(i) each line has K points, 
(ii) each point is on B lines, 
(iii) given a line L and a point x §é L, there are exactly T iDoints y e L 

such that x r^y. 
The point grapJi of a partial geometry has the points as vertices aud an 

edge {x, y} iff x ~y. The point graph of a pg(ÜL, R9 T) is strongly regular 
(possibly trivial) with parameters: 

\ T J7 (3.!) 
A - ( j r - 2 ) + ( J ü ~ l ) ( 2 7 - l ) , p = RT. 

The dual of a pg(J£", JS, 3?) is the pg(I2, K, T) obtained by interchang
ing the rôles of & and 3S. 

If an srg has parameters such that it could be the point graph of a partial 
geometry we call the srg pseudo-geometric and if it is indeed the point 
graph of a partial geometry we call the srg geometric. A pseudo-geometric 
srg is not necessarily geometric. Bose [1] proved the following theorem: 

THEOKEM. If an srg is pseudo-geometriG corresponding to ipg(K, R, T) 
and if 

2K>R(R-l)+T(R+l)(R2-2R + 2) 

tJien tlie graph is geometric. (3.2) 

The ideas of the proof of (3.2) were extended by Neumaier [24] and 
after a subsequent improvement by Brouwer this resulted in the claw 
bound (2.8). We now sketch the proof. Consider an srg(w, k, A, p; r,s,f,g). 
Let G be this graph. A clique G in G is called a grand clique if 0 is maximal 
and |0| >l(X+fj,)+l. An easy counting argument, using the definitions 
of A and p, shows that each edge of G is in at most one grand clique. The 
well-known Hoffman bound states that for any clique 0 in G we have 
|0| < 1+Jcl( —s) =: K and that equality holds iff each point not in 0 is 
adjacent to T: = /J,/( —s) points of G. The main idea of the proof of (2.8) is 
to show that certain restrictions on the parameters of G imply that each 
edge of G is in exactly one grand clique 0 of size K and that each vertex 
of G is in a constant number R of such grand cliques. This shows that G 
is geometric and corresponds to pg(iT, R, T). Finally, this is shown to be 
impossible, either because one of the parameters is not an integer or T > R 
or because the point graph of the dual partial geometry does not satisfy 
(2.5) or (2.6). If 8 is a coclique of size c in G and p is adjacent to all vertices 
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in 8, then (p, 8) is called a c-claw. By using the restrictions on the par
ameters of G and standard counting arguments on the vertices joined to p 
but not in S it is easy to show that for 1 < c < — s— 1 a c-claw can be 
extended to a (c+l)-claw in many ways and that no ( —s+l)-claw exists. 
I t follows that the vertices which can be added to any ( — s — l)-claw must 
form a clique. This argument shows that each edge is in a grand clique 
and the other properties stated above immediately follow from this fact. 

The parameters r,s,f, g of the point graph of pg(jBT, R, T) are given 
t>y 

r^K-T-X, .--M, f. ^ - 1 W - B - 1 ' 
T(K+B-T-1) 

_ (JC —1)(K-T){T + {K-1)(B-1)} 
9 T(K+B-T-1) ' 

For a pg(if, B, T) the Krein conditions become 

T(2E-1 ) 

• > 
(3.3) 

(R-1)(R + 1 ^ ^ — ^ > ( K - T ) \ ^ 1 + 
(K-1)(R-1) 

(K-2)(K-TY^(R-~1)(K-2T). 
(3.4) 

For the special case T = 1 (generalized quadrangles) the second of these 
inequalities states that K = 2 or (K— l)2 ^ R— 1. This is known as Hig-
man's inequality (cf. [17], [27]). Partial geometries can be divided into 
four classes: 

1. A pg with T = K (dually T = R) is a 2-(v, K, 1) design (dual 
design), 

2. A pg with T = R — 1 (dually T = IT —1) is a net (transversal design), 
3. A pg with 37 = 1 is called a generalized quadrangle, 
4. If 1 < T < min {K —1, R —1} then we call the pg proper. 

In this survey we do not discuss the first two classes. Nets were intro
duced by Brack in 1951 (cf. [3]) and Bose's result (3.2) was inspired by 
Brack's earlier work on nets [4] (e.g. the idea of grand cliques). 

In 1976 Thas [27] wrote a long survey paper about partial geometries. 
In that paper he described all constructions known at that time for general
ized quadrangles (notation: GQ(s ,t) = pg(s +1, t +1,1)) and two 
infinite classes of proper partial geometries. The parameters are 

(a) QQ(s,t) with (s,t) = resp . (q, 1), (q, q), (q, 2
2 ) , (3

2, g3), (q-1, q + 
+1) and their dual sets (here g is a prime power), 



Païtial Geometries 1583 

(b) K =2n-2m+l, R =2h-2h~m+l, T =(2m-l)(2h"m-l), 
0 <m< h, 

(c) K =2h,R ==2h+m-2h + 2m,T = 2 m - l . 

For these constructions and several combinatorial characterizations of 
generalized quadrangles we refer the reader to survey [27], which has 
a list of 57 references. 

4. Recent nonexistence results 

A. pg(4, 5, 2) does not exist. The smallest value of v for which there 
exists a pseudo-geometric srg which is not geometric is v = 28. This was 
shown in 1978 by F. de Olerck [9]. If we take the pairs from {1,2, . . . , n} 
as vertices and join two pairs by an edge iff they have an element in com
mon, we obtain the triangular graph T(n), which is a argil*), 2(n — 2),n — 
— 2,4) . Graphs with these parameters are unique for n ^ 8. For n = 8 

there are three other srg's (28,12, 6, 4), known as the Chang grapJis (and no 
others). We give the proof that T(8) is not geometric; the proofs for the 
other three graphs are similar. If T(S) were geometric, then lines would 
correspond to 4-cliques, i.e., to partitions of {1, 2, . . . , 8} into four X3airs. 
W.l.o.g. we can take (12)(34) (56) (78) as a line and in fact it is easy to see 
that w.l.o.g. there is only one choice for the lines through (12). After that, 
we have two possible choices for the line through (13) and (24). Both of 
them make it impossible to choose the remaining lines through (13). 

B. pg(6, 9, 4) does not exist. Clearly, the idea of 4A can be used for any 
pg(Z, 21 — 3 ,1 — 2), where for I ^ 4 we have the additional advantage that 
the corresponding srg is unique, namely T(2l). Of course, the number of 
possibilities increases rapidly. A successful search for the case I = 5 will 
be described in Section 6. In 1983 a similar search was carried out by Lam 
et al. [21] for the case Z = 6. I t took 183 days of computing on a VAX 
11/780. No pg(6, 9, 4) was found. This result has an extremely interesting 
consequence. As we shall see in Section 6, the existence of a projective 
plane of order 10 with a hyperoval would imply the existence of pg (6, 9, 4). 
Therefore no such plane exists and this means that the Steiner system 
$(3,12,112) does not exist either. 

C. pg(4, 7, 1) = GQ (3, 6) does not exist. I t is not known whether a 
srg(76, 21 , 2, 7) exists or not but Dixmier and Zara [12], [13] have shown 
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that, if it exists, it is not geometric. The proof given below is a slight 
modification of their proof. Suppose a pg(4, 7,1) exists. 

(i) Let x <i-*y9 tv(x,y):=* {z\ z <^#, z ~y}9 A(x, y): ={#1 z^x9 

z<+>y}. Then \tv(x9y)\ = 7,\A(x,y)\ = 3 9 . 
(ii) For i = 0 , 1 , . . . , 7 let JEQ be the subset of A(x, y) consisting of 

the points which are collinear with i points in tv(x9 y) and let %: = \Kt\. 

(iii) Elementary counting yields ^nt = 3 9 , ^i-nt = 105, ^ (*)% 

= 105. 
(iv) Let p and q be collinear points in A such that the line L through p 

and q does not meet tr(a?, y). Then for the other two points, a and 6, on L 
we have x ~a9y ^b, and the lines through x and a, resp* y and b meet 
tr (x, y) at different points. I t follows that if p e Kx then q e JBT5-l.. From 
this we find that (7 —i)^ = (2 +i)n5^, and hence n6 = 0. From (iii) we 
then find n0 = % = n7 = 0, nx = 4 , w2 = 12, n% = 15, % = 8., 

(v) Let p GK± and let 3) <̂» « e tr(#, y). From (iv) it iollows that the 
other two points on the line pz are both in J5C4. There are six lines through p 
not meeting tr(a?, y) and, on each we have a point in JEL4 by (iv). Since 
w4 = 8 , we see that each point in Kx is adjacent to each point in JBT4, 
contradicting p = 7. 

D. A nonexistence theorem for pg(ÜL, R, T) with K = R. The following 
result was announced by TL Ott at Oberwolf ach in late 1982 (of. [25]) : 

If -pg(K,K,T) exists and the corresponding srg has the eigenvalue 
K—T—l with odd multiplicity then 2JST— T— 1 is a square. 

The special case of generalized quadrangles yields the following necess
ary condition: 

If GQ(s, s) exists and s == 2 (mod 4)> .then J s is a square. The author 
of this survey has not seen the proof yet. 

5. New infinite classes of partial geometries 

A. pg(22n~ l, 22n~1 +1, 22ih~2). In 1979 Cohen [11] gave the first description 
of a pg(8, 9, 4). Subsequently Haemers and van Lint [16] gave a much 
simpler description of pg(9, 8, 4) using the action of PSL (2,8) on PG(1,8). 

These examples led F. de Clerck, B. H. Dye and J. A. Thas [10] to 
a third construction and subsequently the discovery of a new infinite 
sequence, namely the •pg(22n~1,22n~1+l,22n~2). The construction is as 
follows. Let $ + be a hyperbolic quadric in PG(4w —1,2). The set of maximal 
totally isotropic subspaces of Q* is divided into two disjoint families Dx and 
D a . If S is a projective apace of dimension 2n—2 on Q+, then Q* contains 
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two maximal totally isotropic subspaces through JT, one of each family. 
Together they determine a 2%-space which contains a unique hyperplane 
M (JT) through JT and not on Q+. We observe that Jf ( JT)\ JT has 22n~1 points 
not on Q+. Let îFbe a spread of Q+ consisting of elements of Dt. We define: 

& : = {points not on Q+}, 
&:= {all spaces Jf (JT) where JT is a hyperplane in an element of Ï7}. 

We call the elements of 3S lines and take natural incidence. Then (0% SS) is 
a pg(22n"1, 2 l n - 1 +l , 22'1-2). For a proof we refer to [10]. 

In [19] Kantor compares a number of constructions of strongly regular 
graphs, one of which is the above. He shows that, if 2n —1 is composite, at 
least three nonisomorphic partial geometries with the same parameters 
can be constructed. He also proves that the partial geometry pg(8, 9, 4) in 
the infinite sequence is isomorphic to the dual of the one constructed by 
Haemers and van Lint. They have A9 as the automorphism group! 

B. A possibly infinite sequence pg(32A+1, 327l+1 +1 , 2-327t). In [28] J. A. Thas 
generalized the construction given above, using hyperbolic quadrics in 
PG(4A + 3, 3). Again the construction depends on the existence of spreads. 
Only for the cases Ji = 0 and Ji = 1 it is known that such spreads exist. 
The case Ji = 0 leads to a trivial geometry but Ji = 1 gives a new partial 
geometry pg(27, 28,18). At present this is a sporadic example. 

C. New generalized quadrangles GQ (q, q2) with q = pr E= 2 (mod 3). 
In 1980 Kantor [20] found a new construction for generalized quadrangles 
with the parameters of known quadrangles and proved that for q > 2 the 
new quadrangles are not isomorphic to any known ones. The proofs are 
group-theoretic and quite difficult, but a fairly simple geometric description 
of the construction is possible. 

First, we must give the definition of a generalized liexagon. This is 
a bipartite graph of valency > 3 and diameter 6 such that for any two 
vertices x, y with d(x, y) < 6 there is a unique shortest path joining x to y. 
If we call one of the sets of vertices "points" and the other set "lines" 
and define incidence by adjacency, we obtain an incidence structure for 
which there are no m-gons with m < 6 and which has the following property: 

If a point x is not on line L and not collinear with any point of L then 
there is a unique point y on L and a unique point z such that «is collinear 
with x and with y. One can show that there are numbers s, t such that 
each line has s +1 points and each point is on t +1 lines (cf. [14]). 
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For his construction of generalized quadrangles Kantor uses the clas
sical generalized hexagon H(q) associated with the group G%(q) (cf. [29]). 
Consider a generalized hexagon H and fix a vertex x. If d(x, y) = i, we say 
that y is of type i. Define ^ : = vertices of type 1 or 4 and ^ : = vertices of 
type 0, 3 or 6. A point and a line are incident if they have distance 1 or 2. 
I t is immediately obvious that properties (i) and (ii) of the definition 
of a partial geometry are satisfied with K = q +1, R = g2 + 1 . To show 
that T = 1 one must distinguish five types of nonincident point-line pairs. 
The only ease which causes difficulties is a point of type 4 and a line of 
type 6 which have distance 6. To complete the proof one needs to know 
that fche hexagon does not contain four vertices which are pairwîse at 
a distance 4 and such that the shortest paths joining them are disjoint. For 
one of a dual pair of hexagons JT(g) this is the case. 

6* Sporadic partial geometries 

A. pg (5, 7, 3). In Sections 4A and 4B we considered partial geometries 
of type pg(Z, 2Z — 3 ,1 — 2) connected with the triangular graph T(2l). 
For Z ̂  4 this graph is unique. The classical method for constructing 
a pg(5, 7, 3) is to take a hyperoval & in PG(2, 8) and delete the points 
pf 0 from the plane and delete all exterior lines. The remaining set of points 
and lines (with the usual incidence) is a pg (5, 7, 3). By a computer search 
such as that described in Section 4B Mathon [23] showed that there are 
exactly two nonisomorphic pg's (5 ,7 ,3 ) , one of which is not derivable 
from a projective plane. 

B. pg(6, 6, 2). Â partial geometry with K = R = 6 and T = 2 was first 
constructed by van Lint and Schrijver [22]. We give a description of this 
geometry which is due to Cameron and van Lint [&]. In Z\ consider the 
subgroup G generated by ( 1 , 1 , 1 , 1 , 1 , 1 ) . For each coset a+G, the sum of 
the coordinates of the points is a constant i. We say that the coset is of type 
i. Let ja^ be the set of cosets of G of type i. We define a tripartite graph F 
by joining the coset a + G to the coset a + b + G for each b which has only 
one nonzero coordinate. Clearly, any element of séi has six neighbours 
in j/i+i and six in ^ + 2 . We can construct our partial geometry by 
taking some J ^ as point set and one of the two other classes ^ as line set. 
Incidence corresponds to adjacency. That K = J2 = 6 is clear. I t is also 
an easy exercise to show that T = 2. 

C. pg(5, 18, 2), The most interesting of the sporadic partial geometries 
was found by Haemers in 1981 [15]. In order to describe it we must first 
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present a useful description of the well-known Hoffman-Singleton graph 
[18] (abbreviated to Ho-Si). Let 0 be the set of 15 points of PG(3, 2) 
and let D be the set of 35 lines of this geometry. I t is known that D can be 
identified with the triples from {1, 2 , . . . , 7} in such a way that intersecting 
lines correspond to triples with one element in common. If we consider 
the 30 Steiner triple systems on {1, 2 , . . . , 7} and call two of them equiv
alent if they have exactly one triple in common, then we obtain two equiv
alence classes of fifteen triple systems. One of them corresponds to the 
points of PG(3, 2), the other to planes (both being represented by seven 
mutually intersecting lines). We now define a graph on the vertex set OuD 
by joining an element of G to an element of D if the point is on the line 
and by joining two elements of D if the corresponding triples are disjoint. 
We claim that this is the Moore graph srg(50, 7 , 0 , 1 ) , i.e., Ho-Si. All 
verifications are trivial except showing that there is a unique line adjacent 
to both elements of a non-adjacent point-line pair. This, however, follows 
from the fact that if {a, b, c} is not in a STS(7) then the triple system 
contains exactly one triple disjoint from {a, b, c}. 

Haemers5 construction of pg(5,18, 2) starts from the observation that 
one can construct G = srg(175, 72,20, 36) by taking the edges of Ho-Si as 
vertices and joining two of these vertices if the edges have distance 2 in 
Ho-Si (i.e., the edges are disjoint and there is a unique edge joining them). 
We do not prove this (but it is easy). 

The graph G is a nice example of the difficulties one usually encounters 
in trying to show that a pseudo-geometric srg is geometric. We have to 
find 630 lines of size 5, i.e., 630 5-cliques in G. First observe that two 
edges of Ho-Si which correspond to an edge in G define a unique pentagon 
in Ho-Si. Hence, we must find sets of five edges in Ho-Si which are pairwise 
in a pentagon. This implies that the five edges induce a Petersen subgraph 
(i.e., T(6)) in Ho-Si. In fact, a line of the geometry we must construct 
corresponds to a matching in a Petersen subgraph of Ho-Si. Now, Ho-Si 
contains 525 Petersen graphs and each of these has six matchings. We 
need only 630 lines, i.e., we must choose in some way a set of 105 'special? 
Petersen graphs in Ho-Si, such that each pentagon of Ho-Si is in a unique 
special Petersen graph. This is the point where real ingenuity enters 
the proof. 

Observe that a pentagon in Ho-Si cannot contain more than two 
points of G and then an elementary counting argument shows that there 
are 630 pentagons with one point in G and 630 pentagons with two points 
in 0. Call these two sets of pentagons 9X and ^ 2 • 

The next steps are proved by using the fact that our description of 
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Ho-Si shows that A7 is an automorphism group fixing the set G. I t acts 
transitively on both 0>x and 0>2. Let P 2 be a pentagon in SP2 containing the 
vertices x, y from G. Then it contains the vertex corresponding to the line L 
through x and y in PG(3, 2). If z is the third point on this line, then there is 
a unique Petersen graph in Ho-Si containing P2 and the edge {L, z}. This 
then determines a unique pentagon Px in 0>x containing the vertex z. 
We define rc by P x : = n;P2. Using our representation of Ho-Si one easily 
checks that % is one-to-one. 

Kbw we are done. The Petersen graphs P2\jnP2 are called special. By 
inspection we see that each of them arises in six different ways from the 
above construction. Hence, there are 105 special Petersen graphs and every 
pentagon is in exactly one of them. 

Since G is strongly regular and we have found the right number of lines 
for a pg(5, 18, 2), we are done (by a well-known theorem). 

Calderbank and Wales [5] have shown that this geometry can be 
described in terms of the 176 octads in a Steiner system 8(5, 8, 24) that 
contain a given point P and do not contain a given point Q. A third descrip
tion uses 175 subgroups of J.7. 
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L. LOVÂSZ 

Algorithmic Aspects of Combinatorics, 
Geometry and Number Theory 

One of the most spectacular successes in combinatorics in the last decades 
has been the development of combinatorial optimization. The discovery 
of computational complexity classes (most notably the classes P and NP) 
has provided the right framework for this rapid growth ; discrete mathemat
ical models from operation research supplied the field with problems of 
practical interest; and previously "pure" fields of combinatorics, such as 
graph theory or matroid theory, provided ideas and tools for mathematic
ally non-trivial results. The influence of ideas from computational com
plexity, however, goes beyond combinatorics and invades such fields 
of classical mathematics as number theory, group theory or geometry. 
Algorithmic aspects have shed new light on ancient mathematical prob
lems : for example, the problem of factoring an integer into primes, when 
viewed as an algorithmic problem, is far from being solved. The study and 
classification of finite simple groups has led to the development of efficient 
group-theoretical algorithms. 

But even in fields concentrating on algorithms, such as continuous 
optimization or numerical analysis, the ideas of computational complexity 
theory may bring new evaluation criteria and may lead to new algorithms. 
Much of the excitement and misunderstanding surrounding the ellipsoid 
method (which became well known after Khachiyan [6] applied it to 
linear programming, but which may be viewed in fact as a more general 
method of minimization of convex functions over convex domains) is due to 
this new concept of efficiency of algorithms. 

Another implication of this method is the algorithmic equivalence of 
the "optimization" and "separation" problems for convex bodies. It is 
clear that these two problems are logically equivalent: if we know the 
maximum value of any linear objective function over a convex body K9 

48 — Proceedings..., 1. II [1591] 
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then we know the body, and so we can find, for any point not in K9 a hyper-
plane separating it from K. But it is a quite surprising fact that if, say, the 
separation can be solved in polynomial time then the optimization problem 
can also be solved in polynomial time. 

But what kinds of convex bodies do we want to optimize on? One 
such class arises from combinatorial optimization problems. Here the 
geometrical algorithms mentioned above meet a development in discrete 
optimization which took place in the last two decades — the so-called 
polyhedral combinatorics. One can associate polyhedra with various 
combinatorial optimization problems. Somewhat surprisingly, it turns out 
that the separation and optimization problems for these polyhedra corre
spond to essentially different combinatorial problems. Hence the general 
geometrical equivalence principle mentioned above establishes the algo
rithmic equivalence of quite different combinatorial problems. There exist 
important combinatorial problems whose polynomial-time solvability 
can be established — so far — by these means only. 

It is very difficult to draw the border line between combinatorial 
optimization and integer programming — and the methods used in these 
fields also overlap considerably. But there is a third field of mathematics 
which is closely related: the classical field of the "geometry of numbers". 
Eoughly speaking, both integer linear programming (polyhedral combi
natorics) and the geometry of numbers are concerned with finding lattice 
points in convex bodies. But the conditions imposed upon these bodies 
appear to be so different that there is very little connection between these 
fields. This situation, however, is also changing. The breakthrough is due 
to the result of H. W. Lenstra, Jr., which says that integer linear program
ming in bounded dimension can be solved in polynomial time. The 
algorithm involves a refined basis reduction algorithm, a classical topic in 
the geometry of numbers. 

In this paper we survey the main ingredients of an algorithmic theory 
of combinatorics, geometry and number theory: the ellipsoid method, 
polyhedral combinatorics, and lattice algorithms. It is sometimes amazing 
how well these ingredients fit. We shall have to assume that the reader is 
familiar with the fundamentals of the theory of the complexity classes P 
and NP. 

There is an important point to emphasize here. It is fairly easy to 
understand the geometrical idea behind the algorithms below; but the 
details are usually tedious and quite often even difficult. Furthermore, to 
state the results in their natural generality, one has to define in a precise 
way several things, such as oracle algorithms, computation with irrational 



Algorithmic Aspects of Combinatorics, Geometry and Number Theory 1593 

numbers, weak and strong versions of numerical problems, and others. 
This task is undertaken in a forthcoming book by Grötschel, Lovâsz and 
Schrijver; see also their paper [4]. 

1. The ellipsoid method 

The ellipsoid method (Shor [10, 11]; Judin and îsFemirovskii [5]) is fairly 
well known and it would be superfluous to discuss its details. In its basic 
version, we want to find a point in a convex body K s Rn. Throughout 
the procedure, we have an ellipsoid E including K. The iteration step 
consists of checking whether or not the centre x of E belongs to K. If so, 
we are done. If not, we take a hyperplane H through x which avoids K. 
The hyperplane H cuts E into two halves. Ohoose the half containing K 
and include this half-ellipsoid in a new ellipsoid whose volume is smaller 
than the volume of E. It turns out that the volume of E tends to 0, and so 
sooner or later we must end up with a point in K. 

This is of course a very informal description, and one would have to 
argue long to fill in the details. But it is already clear from this sketch 
that the following information about K is needed : 

(a) an initial ellipsoid (usually a ball of some radius R about 0) in
cluding K\ 

(b) a lower bound b on the volume of K; 
(c) a way (subroutine, oracle) to check if a point x belongs to K and, 

if not, separate x from JT by a hyperplane. 
The important property of the ellipsoid method is that not only does 

it find a point in K but it does so in 0(w |log<5| + n2logR) steps, i.e., in time 
polynomial with respect to the length of binary encoding of the data (a) 
and (b), and with respect to the dimension n. So if the subroutine for (c) can 
be implemented in polynomial time (with respect to the size of some 
description of K), then the ellipsoid method alsq runs in polynomial time. 

Many versions of this algorithm have been found. First, one can vary 
the goals: e.g., instead of finding just one point in K, one can use a similar 
method to find a point in K which maximizes a linear objective function 
over K. Or one can turn things around: given an oracle which tells us the 
maximum value of any linear objective function over K, we can use the 
ellipsoid method to accomplish (c). Or one can use a rather more refined 
version (Judin and Nemjrovskii [5]) to find an ellipsoid E about K whose 
centre is "deep in K" in the sense that the concentrical homothetical 
ellipsoid obtained by shrinking E by a factor 1/(^+1) is contained in K. 
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Secondly, one can vary the conditions. Instead of the somewhat 
restrictive hypotheses (a) and (b), we could assume that K is a polyhedron 
which can be defined by a system of linear inequalities whose coefficients 
are bounded by an a priori known number. Or one can weaken (c) and only 
use an oracle to check whether x eK, provided a ball contained in K is 
also known a priori. 

All these variations of course are made possible by appropriate versions 
of the algorithm. Instead of the basic step which cuts the ellipsoid into two 
congruent halves, one uses other types of cuts: deep cuts, shallow cuts, 
parallel cuts, surrogate cuts, etc. For a survey of some of these versions, 
see Bland, Goldfarb and Todd [2], 

The most important consequence of the ellipsoid method is fche following. 
It is well known that a compact convex set K can be described as the 
convex hull of its extremal points as well as the intersection of its support
ing half spaces. The ellipsoid method implies that (under appropriate tech
nical hypotheses) these two descriptions are not only logically but algo-
rithmically equivalent: if we have a polynomial-time algorithm to check 
whether or not a given point belongs to K, then we can also check in 
polynomial time if a halfspace contains K and vice versa. 

(Let me remark that many fundamental results and notions in geometry 
lead to interesting and mostly unsolved algorithmic problems. For example, 
can the volume of a polytope be determined in polynomial time?) 

2. Polyhedral combinatorics 

Let us explain this technique on an example. Let G be a graph with an 
even number of points. A perfect matching of G is a system of mutually 
disjoint lines which pair up all points. The problem of existence, enumer
ation and structure of perfect matchings has been studied extensively; 
here we restrict ourselves to one approach to the perfect matching problems. 

Let us represent each perfect matching M by its incidence vector 
^M e jfjs(Qf) ^ jje(} ß ^ e n o t e th.e set of incidence vectors of perfect matchings, 
and let convtf be the convex hull of 8. We call convÄ the perfect matching 
polytope of the graph G. This polytope compresses a lot of information 
about perfect matchings ; here we discuss its application to an optimization 
problem. 

Let a weight c(e) be assigned to every line e e E(G). We are interested 
in finding a perfect matching of G with maximum weight. The weighting c 
may be viewed as a vector e e Äs(ö), and the weight of a perfect matching 
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M is just the inner product c*%M. Hence our problem is to find the maxi
mum of c-x over all x e 8. Now clearly 

max {co?: xe8} = max {ex: a?econv#}. 

The right-hand side expresses our task as the problem of finding the 
maximum of a linear objective function over a convex polytope. This is 
just a linear programming problem! However, to be able to apply any 
methods from linear programming (duality theorem, simplex method, 
etc.) we have to express oonv# as the solution set of a system of linear 
inequalities. I t is of course clear that such a (finite) set of linear inequalities 
exists, but how to find them? The following important result of Edmonds 
[3] gives the answer. For a set X £ V(G), we denote by V(X) the set of 
lines connecting X to V(G)— X. 

THEOREM. The perfect matcJiing polytope of a grapJi G is tJie solution 
set of tJie following inequalities: 

(i) x ^ 0, 
(ii) %v{v)-x = 1 for all points v e V(G), 

(iii) XV{Tì'<D è 1 for all T £ V(G), \T\ odd. 

This theorem has opened up a whole area of research, and inequalities 
for the convex hulls of many other combinatorially defined set of vectors 
have been found. Unfortunately, it is not always possible to find such 
a nice description; for polyhedra associated with JFP-compiete problems, 
even to decide whether a given inequality has to belong to such a system is 
an JVT-complete problem. 

If we apply the duality theorem of linear programming to the linear 
program 

maximize ex, 
subject to (i), (ii), and (iii), 

we obtain a min-max formula for the maximum weight of a perfect match
ing. But if we want to apply a linear programming algorithm (say, the 
simplex method), then there is a very substantial difficulty : the number of 
inequalities under (iii) is too large, even to write them down takes ex
ponential time. 

I t turns out that, from an algorithmic point of view, the fact that 
conv$ is a polytope is not really important. Since we cannot list all the 
inequalities needed to describe conv/S anyway, it does not matter whether 
their number is finite or infinite. The crucial point is that we should be 
able to check whether or not a given point x belongs to conv#; if we can 
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solve this problem, then we can optimize any linear objective function 
over convS using the ellipsoid method. 

So, given #eBB(Gt), we want to check (in polynomial time) whether 
the inequalities (i)—(iii) are satisfied. The groups (i) and (ii) can be checked 
by straightforward substitution; but to check (iii) in polynomial time we 
need a more involved method. In fact, here we have a new combinatorial 
optimization problem: viewing x as "weights", we are looking for a set 
T s V(G) with T odd and y^W-x minimal. Fortunately, this problem is 
simpler than the original: see the algorithm of Padberg and Eao [9]. 
But one can also use the ellipsoid method again and solve this problem in 
polynomial time. 

In fact, a very large number of combinatorial optimization problems 
which were solved by ad hoc polynomial algorithms or by no polynomial 
algorithm at all can be solved in polynomial time by a combination of the 
ellipsoid method and a very simple procedure called the Greedy algorithm. 
It is natural that such a general method cannot give algorithms which 
would be anywhere close to optimal as far as running time goes. The ellip
soid method can be used to establish the existence of a polynomial-time 
algorithm for certain problems, and thereby indicate that it is worthwhile 
totalook for efficient special-purpose algorithms for the same problems. 

3. Basis reduction in lattices 

In Section 2 we replaced a finite set 8 of. vectors by convtf; this enabled 
us to use techniques of convex geometry. Instead of taking convex com
binations, we could take linear combinations with integral coefficients. 
We then obtain a lattice, and we could hope to apply the techniques of the 
geometry of numbers. 

However, the algorithmic theory of lattices appears to be even less 
developed than the algorithmic study of convex bodies. For example, it 
was only recently shown by Bachern and Kannan [1] that the problem 
whether a lattice generated by a given set of vectors contains a further 
given vector can be solved in polynomial time. Also, combinatorially 
defined lattices have been studied to a very little extent only. For example, 
no analogue of Edmonds' theorem is known to describe the lattice gener
ated by the incidence vectors of perfect matchings of a graph. 

Here we shall discuss only one problem on lattices, that of basis reduc
tion. A basis of a lattice is a set of linearly independent generators. Let L be 
a lattice and bx,..., bn a basis of L. For the sake of simplicity, assume 
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that bx, ..., bn e Qn. Then Ide t^ , . . . , bn)\ = d e t i depends only on the 
lattice L. Trivially 

\bx\ ... \bn\ ^ detD. 

It was proved by Minkowski that every lattice has a basis bX9..., bn with 

2nlnlz T 2nlnl2 

\bx\ — \h\ ^ — d o t i . 

It is not known, however, how to find such a basis algorithmieally. But 
if we allow a little larger factor on the right-hand side, we can find such 
a "reduced" basis in polynomial time (A. K. Lenstra, H. W. Lenstra, Jr. 
and L. Lovâsz [7]): 

THEOEEM. Given n linearly independent vectors ax,...,ane Qn, we can 
find in polynomial time a basis bx,..., bn of the lattice L generated by 
a19 ...9 an, sucJi tJiat 

\bx\... \bn\ £ 2n^1^detL. 

This algorithm has many applications. It gives rise to polynomial-time 
algorithms for simultaneous diophantine approximation and for factoring 
polynomials over the rational field. In this paper we discuss an application 
which relates more closely to the topic: an interesting combination of the 
basis reduction algorithm and the ellipsoid method gives rise to an improve
ment of Lenstra's algorithm for integer programming in bounded 
dimension. 

THEOEEM. Let a^x <L bi(i = 1 , . . . , m; ai e Qn, b{ eQ) be a set of linear 
inequalities and P its solution set. Then we can find, in polynomial time, one 
of the following: 

(a) an integral vector xeP; 
(b) an integral vector e e Zn such tJiat 

max{<*•#: x eP} — min{ö-fl?: x eP} ^ 4n. 

The algorithm which achieves this can be sketched as follows. 
I. By quite standard tricks, we can reduce the problem to the case 

where P is bounded and full-dimensional. 
II. Then the "shallow cut" version of the ellipsoid method (due to 

Judin and ÏTemirovskii [5]) is used to find an ellipsoid E including P such 
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that the concentrical ellipsoid E' obtained from E by a homothetical trans
formation with ratio lj(n+l) is contained in P. 

III. Finally, we consider E as the unit sphere of a Euclidean norm 
||• || onRn and find a reduced basis bx,..., bn of the lattice Zn with respect 
to this norm. Then a simple computation shows that either the linear func
tion 

ex = det(61? ..., bn_l9 x) 

satisfies (b) or else an integral point in P can be obtained from the centre 
of E by. rounding. 

Note that the running time of this algorithm is bounded by a poly
nomial in n and the space needed to write the original inequalities. If we 
want to go further, we have to confine ourselves to algorithms that are 
polynomial in the space needed to write the inequalities but may be expo
nential in the dimension n. Such an algorithm is still polynomial in every 
given dimension. 

To solve the problem whether or not P has an integral point, we can 
run the above algorithm. If it ends with (a), we are done. If it ends with (b), 
then we add a constraint ex =k (keZ9 min{<?•#: xeP} <>k 
g max {c • x : x e P}) to the given inequalities and solve at most 4W problems 
of lower dimension. 
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1. Introduction 

The branch of computer science concerned with the correctness and. 
efficiency of algorithms has developed rapidly over the past two decades. 
An algorithm is said to be correct if, for every input presented to it, it 
produces the desired output. The efficiency of an algorithm is usually 
established by deriving an upper bound on its execution time. Such a bound 
states that, on every input, the number of steps executed by the algorithm 
does not exceed some specified function of the size of that input. The more 
slowly this function grows, the more efficient the algorithm is considered 
to be. 

Many important algorithms have been proven to be both correct and of 
nearly optimal efficiency. Such results are obviously excellent guidelines 
for the selection of an algorithm to be used in practice. Unfortunately, 
there is a large class of problems for which the stated criteria are too 
severe to be usefully applied, since they demand correct and efficient 
behavior of the algorithm on every input that may be presented. An 
example is the linear programming problem, for which the simplex method 
is the algorithm of choice. The simplex method is correct, since it produces 
an optimal solution to every linear programming problem presented to it, 
but it is not efficient according to the usual worst-case criterion, since 
there is a family of contrived inputs for which it experiences a combina
torial explosion in running time. Nevertheless, the simplex method performs 
so well on typical inputs that practitioners are quite willing to overlook its 
theoretical imperfections. 

The criteria of correctness and worst-case efficiency are particularly 
inapplicable to the class of ÏTP-hard combinatorial problems. There is 
strong circumstantial evidence, although no conclusive proof, that these 

* Eesoarch supported by NSP Grant MCS-8105217. 
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problems are intractable, in the sense that no correct algorithm for such 
a problem can run within a polynomial time bound. If this folk belief 
about the intractability of KP-hard problems proves correct, then every 
algorithm for such a problem must inevitably be imperfect : there will be 
some inputs for which the algorithm either runs too long or fails to give 
a correct result. Nevertheless, such imperfect algorithms can be useful if 
they do not fail too often, especially if the failure is detectable. 

One way to validate or compare imperfect algorithms for NP-hard 
combinatorial problems is simply to run them on typical instances and see 
how often they fail. This paper explores a complementary theoretical 
approach, in which we assume that the problem instances presented to the 
algorithm are drawn from some natural probability distribution. On this 
assumption we investigate the probability that the algorithm fails. While 
probabilistic assumptions are always open to question, the approach seems 
to have considerable explanatory power, and it certainly provides an 
interesting new realm for the application and extension of a variety of 
results in probability theory. 

In Section 2 we apply the probabilistic approach to the problem of 
partitioning a given set of numbers into two subsets, A and B, such that 
the sum of the elements in A is as nearly equal as possible to the sum of 
the elements in B. Determining an optimal partition is very hard, but we 
show that a remarkably simple algorithm gives an excellent approximate 
solution with high probability. Section 3 is concerned with the construction 
of Hamiltonian circuits, matchings, maximum cliques and minimum 
colorings in random graphs. The development can be viewed as the exten
sion of the classical Erdös-Eenyi theory of random graphs in a highly 
constructive direction, in which we are concerned not only with the prob
ability that a random graph has a certain property, but also with the 
probability that an efficient algorithm will succeed in establishing that the 
property holds. Finally, in Sections 4 and 5 we show that certain simple 
and efficient algorithms have a high probability of producing near-optimal 
solutions to random instances of the notorious traveling-salesman problem. 
Section 4 takes up the asymmetric version of the problem, and the Eucli
dean version is discussed in Section 5. 

2. Â partitioning problem 

Alice and Bob are the heirs to an estate. The estate consists of n indivisible 
assets, each of which must go either to Alice or to Bob. How shall the 
two heirs divide the estate so that each receives approximately half the 
total value? Abstractly, the data for this problem is a set 8 of n positive 
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real numbers (the values of the assets), and a division of the estate is 
a partition of 8 into two subsets, A and B. Associated with any such 
partition is a cost A(A9 B) = | £ a— £ b\. The partitioning problem asks 

aeA beB 

for a partition of minimum cost. 
To set the stage for a probabilistic analysis, let us assume that the ele

ments of 8 are drawn independently from a probability distribution over 
the interval (0,1) with a continuous density function. Under this assump
tion the exact solution of this ÏTP-hard problem appears immensely 
difficult, even if we allow a small probability of failure. We shall show, 
however, that a certain simple and fast differencing algoritJim has a high 
probability of giving a partition A, B of. microscopically small cost. 

The algorithm starts with the set 8. It repeatedly chooses two numbers 
from the current set, and replaces them by the absolute value of their 
difference. This differencing process continues until only one number t 
remains. Then, by tracing back through the steps it has executed, the algo
rithm constructs a partition J., B of the original set 8, suchthat A (A, B) 
= t. We leave it to the reader to show how this partition is constructed. 

Many versions of the differencing algorithm are possible, corresponding 
to different rules for choosing the two elements to be differenced at each 
step. For one simple choice rule the following can be proven [10]: with 
probability tending to 1 as w-*oo, A (A, B) < e~°(losn) . Here c is^positive 
constant determined by the distribution from which the elements of 8 are 
drawn. 

This result shows that the differencing algorithm indeed tends to 
give a partition of extremely small cost, but the cost of an optimal partition 
tends to be even smaller; with probability tending to 1 asw->oo, there, 
exists a partition of cost < dn22~n where the constant d is associated with 
the distribution from which the elements of 8 are drawn. This latter result 
is proved by a technique known as the second moment method, as follows : 
let the random variable Z denote the number of partitions A9 B of 8 such 
that A (A, B) < dn22~n. Then the value of Z is a nonnegative integer. By 
showing that the expectation of Z is suitably large and its variance suitably 
small, and then applying Ohebyshev's inequality, one finds that Pr [Z = 0] 
tends to zero. This proof is nonconstructive, and no efficient algorithm 
is known which has a high probability of producing a partition of cost 
less than e~c{loen^ 

3. Algorithmic theory of random graphs 

3.1. Matchings and Hamiltonian circuits. The sample space GntP of labeled 
graphs on the vertex set {1,2, ...,n) is defined by the following rule: 
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each possible edge is present with probability p, and the occurrences of 
distinct edges are independent events. Erdös and Eényi ([6], [7]) demon
strated almost twenty-five years ago that certain properties of graphs 
drawn from these sample spaces are sharply predictable. One of their 
results concerns the property that a perfect matching exists. Let n range 
over the positive even integers. Then, for each real number c, 

Pr [A graph drawn from G iogn+c has a perfect matching] > exp ( — e~û). 
n, ^ W-M30 

In view of this result, the function p(n) = (logn)jn is called the threshold 
for the existence of a perfect matching. As the probability of an edge 
being present passes p(n) the probability that a perfect matching exists 
jumps abruptly from a very small value to a value close to 1. For many 
years it was an open problem to determine the threshold for the existence 
of a Hamiltonian circuit. It has recently been shown that the threshold 
for this property is p(n) = (iogn+loglogn)ln ([15], [16]). 

Threshold theorems in the theory of random graphs are usually proved 
by nonconstructive counting arguments, but they can also be proved 
constructively, in a way that sheds light on the power of'algorithms. 
Angluin and Valiant [1] have given a fast algorithm that produces a Ha
miltonian circuit with high probability when n is sufficiently large and 
p >c(logn)/n9 where c is a sufficiently large constant. In this algorithm 
the graph is represented by a set of edge lists : the edge list for vertex u 
contains all the edges incident with u. The algorithm starts with a trivial 
path containing one vertex and no edges, and tries to build successively 
longer paths. At a general step the algorithm has a path P from u to v. If 
the edge list of v is empty then the algorithm reports failure and halts. 
Otherwise it draws a random edge {v9 w} from the edge list of v and uses 
that edge to construct a new path. If w does not lie in P then the new path is 
constructed by adjoining that edge to the end of P, creating a path from u 
to w. If w lies in P then a new path is obtained by adding {v9 w} to P and 
deleting the first edge on the segment of P from w to v. The edge {v, w} is 
also deleted from the edge lists of v and w. The process continues until all n 
vertices lie in P, and the algorithm then proceeds in a similar fashion until 
the two end points of the current path are adjacent in the original graph, 
so that a Hamiltonian circuit is created. Analysis of the algorithm shows 
that, whenp = c(logn) \n with the constant c suitably large, the probability 
that a Hamiltonian circuit will be created before an empty edge list is 
encountered tends to 1 as n->oo. Shamir [19] gives a more complex, but 
still highly efficient, path-building algorithm which constructs a Hamilto
nian circuit with high probability when p >(logn+3 loglogn+w(n))jn9 

where w(n) is any unbounded nondecreasing function. 
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Angluin and Valiant also give similar algorithmic proofs of thresholds 
for the existence of perfect matchings and directed Hamiltonian circuits. 
Karp and Sipser [13] give a.n algorithm for the construction of matchings 
in sparse random graphs. The graphs are drawn from G9ltP wherejp = cj(n — 1) 
so that the expected degree of a vertex is the constant c. The algorithm 
builds up the matching edge-by-edge. As each edge is added, its end points 
and their incident edges are deleted from the graph. If the current graph 
has a vertex of degree 1 then the edge to be added is chosen at random 
from among the edges incident with degree-1 vertices. Otherwise, the 
edge to be added is chosen at random from the set of all edges. Let M* be 
the number of edge's in a maximum matching, and let M be the number 
of edges in the matching produced by the algorithm. Then, for every 
e > 0, the following statements hold with probability tending to 1 as 
n-^oo: J f*-Jf < ewand \M* — A(o)n\ < en where A(c) = L-W+L(l-W) 
and (L, W) is the least positive fixed point of L = ô-*(i-w^ 
W = 1 — e"XL. Thus the algorithm tends to construct a matching of nearly 
maximum size, and the probable size of a maximum matching is sharply 
predictable as a function of c9 the expected degree of a vertex. 

3.2. Cliques and colorings. Matula [17] has shown that the size of a maxi
mum clique in a dense random graph can be predicted with remarkable 
precision. Here "dense" means that p remains fixed as n->oo, so that 
a fixed proportion of the possible edges tend to be present. Let z(n9p) 
= 2log1iPn—2log1iJßlog1fPn + 21og1iP%e+l. Let the random variable 

Z(n9 p) denote the size of a maximum clique in a graph drawn from Gn>p. 
Then, for every e > 0, 

lim T?r[z(n,p)--e < Z(n,p) <^z(n9p) + è\ = 1. 

Matula's proof uses the second moment method. He considers the random 
variable X(n,p,Jc) defined as the number of cliques of size k in a graph 
drawn from GUtP. When k >z(n,p), it follows that E[X(n,p, k)] <^ 1. 
Hence, by Markov's inequality, a clique of size k is unlikely to exist. When 
k^z(n,p),E[X(n,p,k)] > 1 and Var[X(w,p, Jc)] is small; hence, by 
a variant of Ghebyshev's inequality, a clique of size Jc is very likely to exist. 
Belated results have been obtained by Bollobas and Erdös [4], and Grim-
mett and McDiarmid [9]. 

The sequential algoritJim [9] builds up a clique Q by the following 
inductive rule : vertex i lies in Q if and only if i is adjacent to every vertex 
in Qn{l, 2, ...9i—l}. With high probability the sequential algorithm 
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produces a clique of about half the size of a maximum clique. Ho poly
nomial-time algorithm is known which performs decisively better. Ohvâtal 
[5] has proved an interesting negative result indicating that it is hard to 
find maximum cliques in random graphs. He considers a broad class of 
enumerative algorithms, each of which is guaranteed to produce a maxi
mum clique. He shows that, for almost all graphs drawn from GntP9 where 
p = cj(n—l) and c is a sufficiently large constant, the execution time of 
every algorithm in the class is greater than exp(dn), where d is a positive 
constant related to c. Thus, finding maximum cliques appears to be hard 
not only in the worst case, but almost always. 

The chromatic number of a random dense graph has been studied by 
Erdös and Spencer [8] and by Grimmett and McDiarmid [9]. Let G be 
drawn from GUsP and let %(G) denote the chromatic number of G. Then, for 
every e > 0, (1 — s)njz(n, 1 —p) < %(G) < 2(1 + s)nlz(%91 —p), with 
probability tending to 1 as n->oo. The lower bound follows from Matula's 
results on cliques in random graphs, simply by noting that G, the comple
ment of G, is a random graph drawn from Gntl_p, and that every color 
class in a coloring of G is a clique in G. The upper bound follows from the 
analysis of a sequential coloring algorithm, which goes through the vertices 
in a single pass, assigning to each vertex as a "color" the least positive 
integer that has not already been assigned to one of its neighbors. Koräunov 
has reportedly shown that the chromatic number in fact tends to be 
close to n\z(n91— p). It would be very interesting to have an algorithmic 
proof of this fact. 

It is an open question whether the chromatic number of a random 
graph can be computed exactly in polynomial expected time. McDiarmid 
[18] considered a natural class of enumerative algorithms for finding the 
chromatic number, and showed that every algorithm in the class experien
ces superexponential growth in its expected running time as a function 
of the number of vertices. On the other hand, Bender and Wilf [3] show 
that, for each fixed k and p, a simple enumerative algorithm will decide, 
in a constant expected number of steps, whether a graph drawn from 
GntP is ft-colorable. Of course, the answer will almost always be "ïTo" when 
wis large. 

4. The assignment problem and the asymmetric traveling-salesman problem 

The traveling-salesman problem (TSP) is the problem of constructing 
a closed path (or tour) of minimum total distance through n points, given 
the distances between all pairs of points. Let ci5 denote the distance from 
i to j . Then the problem can be restated as follows : find a cyclic permuta-
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n 
tion ut to minimize £ oit„^{). We consider the asymmetric case, in which 

the Cy are nonnegative but are not required to satisfy symmetry 
(Gij = €a) o r * l i e triangle inequality (o^^o^ + o^). 

The asymmetric TSP is ITP-hard, but it can be solved approximately 
by a patching algorithm based on a related problem called the assignment 
problem. The assignment problem asks for a permutation o, not necessarily 

n 

cyclic, to minimize J5J %<,{%)• The assignment problem can be solved in 

polynomial time. 
The patching algorithm converts the optimal solution to the assignment 

problem to a cyclic permutation by applying a sequence of patching 
operations. Given a permutation x, the i— j patching operation creates 
a new permutation %' defined by: %'(i) = r( j ) ; r'(j) = r(i) ; r'(k) = r(k) 
for k${i,j}. The cos« of this operation is ty.rtf) + ^ < ) ~ °M<) ~°i.*0)' 
At a general step the i — j patching operation of minimum cost is selected, 
subject to the constraint that i lies in the longest cycle of the current 
permutation and j lies in the second-longest cycle. The effect is to join the 
two longest cycles together. 

On the assumption that the Oy are independent random variables 
uniformly distributed over [0,1] the patching algorithm tends to give 
an excellent apixroximate solution to the TSP. The random variables of 
interest are JL*, the cost of an optimal assignment, T*, the cost of an 
optimal tour, and Tn, the cost of the tour produced by the patching 
algorithm. Olearly J L * < T * < T n . Computational experiments indicate 
that JL* tends to be close to 1.6. I t can be shown that, with probability 
tending to 1 as n-^oo, 1 +l/e < J.* < 2. Analysis of the patching algorithm 
shows that E[(Tn-Tl)ITl] =0(n~112). Underlying the proof is the 
fact that the optimal assignment is a random permutation of {1, 2, . . . , n}. 
Hence the number of cycles to be patched together tends to be close to 
logn, and almost all the elements lie in a few long cycles. I t follows that 
the expected cost of the patching operations is small. 

I t is an open question whether, under the stated probabilistic assump
tions, the asymmetric TSP can be solved exactly in polynomial expected 
time. 

5. The Euclidean TSP 

In the Euclidean TSP the points to be connected lie in the plane and %is 
the Euclidean distance between i and j . An optimal tour corresponds to a 
polygon of minimum length through the n given points. The study of 

49 — Proceedings..., t. II 
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random Euclidean TSPs was initiated by Beardwood, Halt on and Ham
mersley in [2], where the following is proved. Let {X£, l<i< oo, be 
independent random variables uniformly distributed over the unit square, 
and let L* denote the length of a shortest closed path through {Xx, X2,... 
...,Xn}. Then there is a constant c such that, with probability 1, 
Km (Ll/Vn ) = c. A short proof of this result is given in [14]. 
71-9-00 

The study of cellular dissection methods for the approximate solution 
of random Euclidean TSPs was begun in [11] and [12]. Such a method uses 
a divide-and-conquer strategy to construct a tour through {Xx, X2,..., Xn], 
as follows. If R is a subrectangle of the unit square containing r cities, one 
can make a vertical cut dividing R into a left subrectangle and a right 
subrectangle with a city on their common boundary, such that each of the 
two subrectangles has at most r\2 cities in its interior. Horizontal cuts are 
similarly defined. These cuts can be used to dissect the unit square into 
subrectangles, each containing at most t cities, where t is a parameter 
depending on n. The cuts are performed in rounds. In an odd-numbered 
round, every subrectangle with more than t cities is divided by a vertical 
cut. In an even round, horizontal cuts are used. Then, using an enumerative 
method, an optimal tour is obtained through the t or fewer cities in each 
subrectangle of the final dissection. I t is then an easy matter to create 
a tour through all n cities, of length less than or equal to the sum of the 
lengths of the tours in the subrectangles. Let Ln denote the length of 
the tour so produced. Then Ln—i* < a]/nl(t+l) , where a is an absolute 
constant. If t is chosen proportional to logn then the algorithm runs in 
polynomial time and, with probability 1, the relative error (Ln—Ll)IL* 
tends to zero. 

Although the cellular dissection method has good asymptotic properties, 
other fast algorithms tend to produce better tours when applied to random 
problems with a few hundred cities. Eor example, the 3-opt method starts 
with a random tour and repeatedly improves it by replacing up to 3 edges. 
The process stops when it reaches a local optimum, where no such replace
ment reduces the length of the tour. Up to now, no one has succeeded in 
carrying out the probabilistic analysis of such a local improvement method. 
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A. A. LETIOHEVSKIJ 

Abstract Data Types 
and Finding Invariants of Programs 

A program as a mathematical object is a discrete dynamical system 
that generates processes of computations. In simple dynamical models of 
sequential computations this system consists of two components : the control 
component and the information environment. 

In this paper the problem of finding invariant relations of programs 
is considered. Generally, this problem may be formulated as follows. What 
can we say about the state of the information environment at the moment 
when the control component is in a given state? It is well known that this 
question is the main one when we try to prove the correctness of a 
program by means of the Floyd or Hoare methods. In [9] it was shown 
that many optimizing procedures reduce to the problem of finding 
invariants. A similar approach was used in [5]. 

The solution of the problem under consideration depends on the 
language that is used to express the properties of the information envi
ronment. If this language is a language of the first order predicate calculus 
then we can easily describe all invariants by using methods of algorithmic 
logic. However, such a description is very difficult to work with because 
it may, for instance, use the Godei numbering of all ways in the program. 
So it is natural to consider the problem for simple restricted languages. 
Important examples of such languages are the language of equalities and 
the language of atomary conditions. These languages are considered here. 
Some special cases were considered previously in [1, 2, 4, 15]. 

As a standard model of a program we use here the notion of an inter
preted £7~Y-scheme of a program or ÏJ-Y-program. Let D be a data 
domain on which operations denoted by symbols of signature Q and 
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predicates denoted by symbols of signature II are defined. Hence D is a 
universal ß-algebra and an ß-i7-algebraic system. Consider a set R of 
variables and the set B = BR of memory states. Propositional functions 
of atomary conditions of the type n (tx,..., tn) where wee II and tx,..., tn are 
terms constructed of variables by means of operations from Q, are called 
elementary conditions. An assignment is an expression of the type (rx 

: = tx, ..., rn: =tn),whemr1, ..., rn are variables, tx,..., tn — terms over R. 
In a given memory state the terms assume values in D and elementary 
conditions in {0,1}. Each assignment y =*(rx: = tx,..., rn: =tn) defines 
a transformation of the set JB. If 6 G B, then V =* y(b) is a memory state 
after the simultaneous assignment of the values tx,..., tn computed on 6 
to all of the variables rx,..., rn. In other words the state 6' is defined by the 
following relations: 

V(U) =&(«,), b'(s) =6(s) if s *ri9 i ~l,...,n. 

Let Z7 be some set of elementary conditions and Y a set of assignments. 
A C-Y-program A is a set of states together with a set of transitions. Each 
transition is a 4-tuple (a9 u, y, a') where a, a' e A are states of the pro
gram, u e TJ, y e Y. A set A0 of initial states and a set A* of terminal 
states are picked out in A. If (a, u, y, a) is a transition of A, then we write 
a~->a' or a—>a'9 if A is fixed. A process of computations of a U-Y-pro
gram A with a given initial state b0 eB of information environment is 
a finite or infinite sequence of pairs (a0, b0)(ax, bx) ... such that for each 
pair (a{9 ai+1) there is a transition ai—>ai+l and u(b^ = 1, bi+1 = y(b{). 
The process is called initial if a0 e A09 and terminal if it is a finite initial 
process with the last pair (an, bn) such that ane A*. The program is not 
assumed to be determinate, and so, generally speaking, the next step of 
the process of computations is not uniquely defined. The program A com
putes the relation fA a B2, which is defined as follows: (6, b') efA othere 
exists a terminal process (aQ,b)... (an, b') such that aQ e A0, an e A*. 

Suppose that each statement of the language L used to express the 
properties of the information environment may be expressed by the for
mula p(rx,...,rn) of the first order predicate calculus in which only rx,...,rn 

are free variables and which is interpreted on the domain B. The signatures 
of functional and predicate symbols of this calculus contain the signatures 
Q and II, respectively. Sentences of the language L will be called conditions 
or L-conditions. 

The condition p(rx, ...9rn) is called an invariant of a state aeA if 
it is true every time when the program is passing through this state, that 
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is, p[b(rx),..., b(rn)) = 1 for each initial process of computations 
...(a,b)... . If some inital conditions ua(rx,..., rn) a.re given for each 
initial state a e A09 then p(rx,..., rn) is called an invariant (or a relative 
invariant for the given initial conditions) if p(b(rx),..., b(rn)) = 1 for any 
initial process (a09 b0)... (a, b) ... such that uaQ(b0(rx),..., b0(rn)) = 1. 

If Jf is a set of ^-conditions then D( M) denotes the set of all n-tuples 
z = (zx, ...,zn) eDn such that, for any condition ue M, it is true that 
u(z) =u(zX9 ...9zn) - 1 . Let R = {rx, ..., rn}, y = (rx: ^tx(r), ... 
• ..9rn\ =tn(r)), r =(rx, . . . , r n ) . The set I(M, u,y)w defined by the condi
tion: v(r) eI(M,u,y)ov(t(z)) =1 for all zeB(Mu{u}) where t(z) 
= (tx(z),..., tn(z)). If M is the set of all invariants of a state a, then 
I(M, u9 y) is the set of all invariants of a state a1 if the program inclu
des only one transition a—>a'. If it is possible to compute the sets I(M,u9y) 
for any elementary condition u and assignment y, then for any state a of 
the program A the set of invariants Ia can be obtained by the formula 

00 

h = U W, 
where Jlf^1) = I(JMg), % , y j n ... nI(M™, uk,yk), a ^ a , i = 1 , ... 
..., 7c being all the transitions that lead to the state a, JfJ> being the 
initial invariant set for a. Por an initial state a the set M^} may be defined 
as the set of all consequences from the initial condition for this state, and for 
other states the set M$ may be defined as the set of all identities of the 
algebra D. The sets i O c JfW c ... form an increasing sequence that 
can be infinite or stabilized at some finite step. If the sequence is infinite, 
then an approximate solution of the invariants problem can be obtained 
by the set M^ computed at some finite step. This approach was considered 
in [10,11] and applied successfully to solve the invariants problem in some 
special cases. 

The sets M^ are generally infinite. The notion of a basis for a set of 
.^-conditions may be introduced and used for constructive determination 
of such sets. The set of all D-conditions that are consequences of M on B 
is called the D-closure of M and is denoted by 0D(M). The set M is called 
D-closed if it is equal to its closure. A subset N c M is called a D-basis 
of if if 0D(N) = M. The sets M^ are D-closed. If they have finite 
JD-bases, then these bases can be used for constructive determination of 
the sets Mjp. So the problem of finding invariants is reduced to the solu
tion of the following three main problems : 

(1) Eolation problem: a J9-basis of a J9-closed set M being given, 
find a D-basis of the set I(M,u,y). 
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(2) Intersection problem: D-bases of D-closed sets Mx and M2 being 
given, find a D-basis of MxnM2. 

(3) Stabilization problem: D-bases of D-closed sets J$x and M2 

being given, determine whether Mx = M2. 
All these problems concern the algebra D and their solutions depend 

only on the properties of this algebra. Moreover, if the language L is the 
language of equalities or the language of atomary conditions, then the 
solutions depend only on the properties of a variety or quasivariety 
that contains the algebra D. So it is possible to use many classical algebraic 
results for their solution and the algebra D can be replaced by the free 
algebra of a proper variety or quasivariety. I t also means that D is consi
dered as an abstract data type in the manner of ADJ [14]. 

Let us consider in more details the case of an equality language L. 
In this case it is natural to ignore elementary conditions and to consider 
the set I(M9y) = I(M,l,y) instead of I(M,u,y). Let us denote by 
TD(R) the free algebra of the least variety that contains D. Every set Jf of 
equalities can be identified with a binary relation defined on the set 
T(R) of ß-terms over R. The D-closure of this relation is a congruence 
of the absolutely free algebra T(R) and since all identities of TD(R) are con
tained in this closure, it induces a congruence of TD(R). Then the quotient 
algebra Tn(R)/GD(M) can be constructed. Let y = (rx: =tX9 ...,rn 

: = tn) be an assignment. For. any equality set Jf, the homomorphism 
VV,M- TD(R)^TD(R)IGD(M) can be defined by setting yVtM(r%) = 
% (mod(7jD(Jf)). In [10] it was shown that the set I(M,y) is the kernel 
of this homomorphism and the quotient algebra TD(R)jI(M,y) is 
isomorphic to the subalgebra F[tx,..., tnfoî the algebra F = TD(R)jOD(M) 
generated by the elements tx,...,tn taken modGD(M). These facts are 
basic for constructing the algorithms to compute a basis for the set 
I(M,y). 

The free algebra of some variety is called hereditarily free if any of its 
subalgebras is free in the same variety. Absolutely free algebras, free 
abelian groups, free groups, and finite-dimensional vector spaces are 
examples of hereditarily free algebras. For all these examples the sequence 
Mjjp always terminates after finitely many steps and algorithms for 
computing the sets of invariants are constructed. For some of these 
algorithms, fairly good estimates of the time complexity are obtained. 
For example, the upper bound for the time complexity of the algo
rithm of finding invariants in the case of the absolutely free algebra 
Tn(R) is 0((mn)'z) where n is the number of states and m — the number 
of variables, [6]. 
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In the case of linear spaces and free abelian groups the time complexity 
is 0(nm*), [7]. In the case of linear spaces, abelian groups and free groups 
every equality tx = t2 can be represented as tx — t2 = 0 or txt2

l = 1 and 
a D-closed set Jf of equalities can be identified with the corresponding 
subspace or subgroup. The main part of the algorithm of finding invariants 
in this case is reduced to the classical problem of constructing a basis of 
a subspace or of a subgroup. For the free groups the solution of this 
problem can be obtained by the ÏJielsen-Schreier algorithm, but the com
plexity of this algorithm is exponential. In [12] an algorithm with com
plexity 0(n*) for constructing a basis of a free group is presented. It is 
interesting to note that this result was obtained by a formal transformation 
of the Nielsen-Schreier algorithm in the spirit of the ideas of V. M. Glushkov 
[3], S. L. Krivoy constructed an algorithm for finding a basis of 
a intersection of free groups by means of an effective algorithm for 
finding a basis of a subgroup with complexity 0(nn). This algorithm is 
used for solving the intersection problem. 

The above-mentioned kinds of algebras can be very often met with in 
practice. Absolutely free algebras, for instance, are used in manipulations 
of formula or data structures. String manipulations are connected with 
free semigroups that are not hereditarily free. But every free semigroup 
can be immersed in a free group and the question of finding the invariants 
for semigroups is reduced to the same question for groups. Let D be the 
set of rational numbers. If we use only addition and subtraction in the 
program, then TD(R) is the free abelian group generated by R. The introduc
tion of constants (every program uses only a finite number of them) in
creases the rank of this group. If multiplication by constants is used, 
then TD(R) is a linear space. But if multiplication of any two elements of D 
is allowed, then TD(R) is the ring of polynomials with integer coefficients. 
This algebra is not hereditarily free. However, the classical results of com
mutative algebra can be used. Each equality in the algebra of polynomials 
can be represented as t — 0 and therefore can be identified with an element 
of TD(R). Every D-closed set is an ideal of TD(R). Hence, by the theorem 
of Hubert, each ideal has a finite basis and the sequence M$ cz M$ cz ... 
is stabilized after a finite number of steps. The solution of the main problem 
can be obtained from the results of [13]. 

If L is an atomary condition language, then D must be considered as 
an algebraic system. In this case TD(R) is the free algebraic system of the 
least variety that contains D and J( Jf, u, y) is the kernel of the homomor
phism yMtUtV: TD(R)->TD(R)/CD(Mv{u}) defined by condition YMtuty(ri) 
= ^.(moda23(Jfu{^})). 
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The language of linear inequalities for programs that use addition, 
subtraction and multiplication by constants is an important case of the 
problem of finding invariants of atomary conditions in practical applica
tions. The system TD(R) in this case is a linear space with the inequality 
h < t2, which is true only if tx = t2. Every set of conditions can be iden
tified with a subset of TD(R), inequalities of the type tx^.t2 being trans
formed to tx—12 < 0 and identified with the elements tx—12 of Tn (R). The 
sets 1£W are in this case linear convex cones generated by a finite number of 
generators and the sequence M$ c Jf ̂  cz ... can be defined constructively. 
But it is easy to give many examples when the above sequence is infinite. 
The problem of determining the limit for Jf^ is difficult and a satisfactory 
approximate solution can be obtained by using M$ with a sufficiently 
large n. Essential influence on the result is exerted by the choice of initial 
sets Jf̂ 0). To construct them other methods of finding invariants can be 
used, for instance the method of [2]. 
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Efficient Algorithms for Network Optimization 

This paper is a survey of recent improvements in algorithms for four classical network 
optimization problems. The problems we consider are those of finding minimum spann
ing trees, shortest paths, maximum network flows, and maximum matchings. For 
each problem we summarize the history of work on the problem and the current state 
of the art. We conclude by discussing the techniques that have led to the most ef
ficient known algorithms. 

1. Introduction 

The field of combinatorial algorithms lias flourished in recent years as 
computer scientists and others have concentrated on the development and 
analysis of efficient algorithms. We shall survey the fruits of this labor in 
one area, that of network optimization. A network is a graph, either 
directed or undirected, in which the edges (and possibly the vertices) have 
associated real numbers representing for example costs or capacities. The 
goal of a network optimization problem is to find a subgraph of a given 
network that satisfies certain constraints and maximizes or minimizes 
some function of the edge numbers. Network optimization has many 
obvious and not-so-obvious applications in such areas as the design of 
telephone, highway, and computer networks, the routing of traffic and 
produce, assignment of workers to tasks, resource allocation, and schedul
ing. 

Many important network optimization problems, including the no
torious minimum tour or "traveling salesman" problem, are 3sTP-complete 
([37]) and thus unlikely to have polynomial-time algorithms. However, 
there are efficient algorithms for many other such problems, including the 
four we shall study: finding minimum spanning trees (Section 2), finding 
shortest paths (Section 3), finding maximum flows (Section 4), and finding 
maximum matchings (Section 5). For each of these problems, we provide 
a brief historical survey and an examination of the most efficient currently 
known algorithms. In Section 6 we draw some conclusions about the 
general techniques that are used in the best algorithms. Further discussion of 
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network optimization problems can be found in the survey papers of Klee 
[49] and Tarjan [70], [71], and the books of Lawler [55], Papadimitriou 
and Steiglitz [62], and Tarjan [72]. 

In our discussion we shall use standard graph-theoretic terminology; 
see [55], [62], [72], When stating time bounds for algorithms, we shall use 
n, m, and N to denote the number of vertices, the number of edges, and 
the maximum absolute value of any edge number in the problem graph, 
respectively. We assume n ^ 2 and m > ( 1 + e)n for some fixed positive s. 
(This simplifies some of the time bound formulas.) We assume a random 
access machine ([1], [10]) as our model of computation. We use the uniform 
cost measure of running time: each arithmetic or logical operation requires 
one unit of time, independent of the magnitudes of the numbers involved. 

We must be careful in using this cost measure. If the machine is allowed 
to manipulate numbers of arbitrary size or precision in unit time, then it 
can perform hidden parallel computation by encoding several numbers 
into one. We can prevent this by charging for an operation a time propor
tional to the number of bits (binary digits) needed to represent the operands 
(the logarithmic cost measure). Alternatively, we can limit the size of 
integers allowed to those representable in 0 (log n) -bits and restrict the 
operations we allow on the edge values. We shall adopt the latter approach ; 
all the algorithms we shall study in subsequent sections manipulate only 
0(logw)-bit integers and use only comparison, addition, and sometimes 
multiplication of edge values, with no clever encoding. 

The fundamental distinction involved here is whether we wish to treat 
real numbers as having infinite precision, with unit cost per arithmetic 
operation, or as having finite precision, with a cost per arithmetic operation 
proportional to the number of bits. To illustrate this distinction, let us 

n 

consider the linear programming problem: minimize the function J£ c^, for 
n 

variables xx, oo2, ..., xn satisfying the inequalities ]£ a^ xi < bj for 1 < j < m, 

where the c/s, a#*s and &/s are real numbers. 
The simplex algorithm of Dantzig [11] solves linear programming 

problems very efficiently in practice and on the average; it assumes 
infinite precision real numbers with the unit cost measure. However, 
carefully constructed examples show that the simplex algorithm runs in 
exponential time in the worst case ( [50]). On the other hand, the "ellipsoid" 
method was recently shown by Khachian [48] to run in polynomial 
time in the worst case, for finite precision real numbers with logarithmic 
cost measure. Khachian's algorithm is apparently much slower than the 
simplex algorithm in practice ([12]). It is still an open problem to determine 
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whether there is an algorithm for linear programming that runs in poly
nomial time for infinite precision real numbers with unit cost measure. 

2. Minimum spanning trees 

Let G be a connected, undirected graph, each of whose edges e has a real-
valued cost c(e). The minimum spanning treeproblem is that of finding a spann
ing tree of G of minimum total edge cost. Of the problems we shall con
sider, this one has the longest history; the first fully realized minimum 
spanning tree algorithm was presented by Boruvka in 1926 ([5]). Graham 
and Hell's paper [39] is an excellent historical survey. 

All the known efficient minimum spanning tree algorithms are special 
cases of a general greedy method, in which we build up a minimum spanning 
tree edge-by-edge, including appropriate small-cost edges and excluding 
appropriate large-cost ones. We shall formulate this method as an edge-col
oring process. We begin with all edges uncolored and repeatedly apply one 
or the other of two rules, which color an uncolored edge either blue (accep
ted) or red (rejected). In order to formulate the blue rule, we need the 
concept of a cut. A cut in a graph G = ( V, E) is a partition of the vertex set 
V into two nonempty parts, X and X = V — X. An edge crosses the cut if 
it has exactly one endpoint in each part. The coloring rules are as follows : 

BLUE EXILE. For any cut tJiat no blue edges cross, select a minimum-cost 
uncolored edge crossing tJie cut, and color it blue. 

B E D BXJLE. For any simple cycle containing no red edges, select a maxi
mum-cost uncolored edge on tJie cycle and color it red. 

This coloring algorithm maintains the invariant that there is always 
a minimum spanning tree containing all of the blue edges and none of the 
red ones. Furthermore, as long as at least one uncolored edge remains, some 
rule is applicable. I t follows that the algorithm colors all the edges, and 
that when the algorithm stops the blue edges define a minimum spanning 
tree. (For proofs see [72].) 

As the algorithm proceeds, the currently blue edges define a set of trees 
that we shall call the blue trees. Initially each vertex is in a one-vertex 
blue tree. As edges are colored blue, the blue trees merge to form bigger 
blue trees, until finally only a single blue tree spanning all the vertices 
remains. We obtain different versions of the algorithm by altering the 
order in which the rules are applied. 

Most of the known efficient versions of this algorithm emphasize 
the blue rule. There are three "classical" methods. Perhaps the simplest 
is due to Kruskal [53]: color the edges in nondecreasing order by cost, 
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coloring an edge blue if its endpoints are in different blue trees and red 
otherwise. 

Efficient implementation of Kruskal's algorithm requires two data 
structures. We need a data structure to keep track of the vertex sets of 
the blue trees ; these sets are updated by union Operations. Any of the 
standard disjoint set methods (see [1], [69], [73]) will suffice for this 
purpose. We also need a method for sorting all the edges, or at least 
of repeatedly obtaining af smallest remaining uncolored edge. The time 
for sorting edges dominates the time for manipulating vertex sets, and 
Kruskal's algorithm runs inO(mlogn) time. An intriguing implementation 
due to Brennan [6] performs the sorting concurrently with the edge coloring 
using Hoare's QUIOKSOET algorithm ([40]), running the sorting algorithm 
only long enough to identify the successive smallest edges needed by the 
coloring process. Brennan reports good experimental results with this 
method. 

If the edges are presorted, or if they can be sorted fast (e.g. the costs are 
small integers and thus radix sorting ([1], [51]) can be used), then the set 
manipulation time dominates the running time of Kruskal's algorithm. In 
this case the total time is 0 [ma (m9 n)), where a is an inverse of Ackermann's 
function ([69]). 

The second and most recent of the classical methods was discovered 
by Jarnik ([42]) and independently rediscovered by Prim ([65]) and 
by Dijkstra ([15]): For a fixed start vertex s, repeatedly apply the blue 
rule to the cut one of whose parts is the vertex set of the blue tree containing 
s. Since throughout the process there is only one blue tree containing more 
than one vertex, this algorithm does not need a data structure to represent 
the vertex sets of the blue trees. The most efficient implementations of 
the method maintain, for each vertex v not yet in the blue tree T containing 
s, a minimum-cost edge {u, v} such that u is in T; this edge is a candidate 
to become blue. The general step is to select the minimum-cost candidate 
edge, color it blue, and update the set of candidate edges. If the set of 
candidate edges is stored as an unordered set, each iteration of the general 
step takes 0(n) time, and the total running time of the algorithm is 0(n%). 
If the set of candidate edges is stored as a heap ([43], [75]), so that finding 
the minimum-cost candidate edge is an inexpensive operation, then the 
total running time is 0(mlogmfnn) ([43], [72]). ' 

The third classical method is that of Boruvka [5], independently 
rediscovered by Ohoquet ([9]), Lukaszewicz et al. ([56]), and Sollin ([4]). 
The method consists of repeating the following step until there is only 
one blue tree: for every blue tree, select a minimum-cost uncolored edge 
with exactly one endpoint in the tree, and color all the selected edges blue. 
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An edge can be selected twice in the same iteration of the general step, 
once for each of its endpoints ; it is of course only colored once. As stated 
the method is a parallel, not a serial algorithm, and it is guaranteed correct 
only if the edge costs are distinct. We can handle nondistinct edge costs by 
assigning identifiers to the edges and ordering the edges lexicographically by 
cost and identifier. If we do this, and also color the edges one-at-a-time, the 
method can be regarded as a special case of the general greedy algorithm. 

Implementing the method requires maintaining, for each blue tree, 
the set of vertices it contains and the set of uncolored edges incident to 
at least one vertex in the tree. To store the vertex sets, we can use any of 
the standard disjoint set data structures. To store the uncolored edge sets, 
we can use any data structure for meldable heaps ( [1], [51], [72]) (sometimes 
called mergeable priority queues). With a careful implementation and 
a non-trivial analysis, one can obtain a version of Borûvka's algorithm, 
that runs in O(mloglogw) time. Tao ([76]) devised the first such method; 
a simplified method was proposed by Gheriton and Tarjan ([7]). 

This method has the following drawback: During the process of finding 
a minimum-cost edge with only one endpoint in a blue tree, we may 
encounter many edges with both endpoints in the blue tree (such edges 
may be colored red). The algorithm spends most of its time examining such 
potentially red edges. If the graph is sufficiently dense (i.e. the ratio 
mjn is high), one can improve the algorithm by intermittently carrying out 
global "purges" that color red all uncolored edges except a minimum-cost 
edge joining each pair of blue trees that have at least one edge between 
them. This addition improves the running time of the algorithm to 
0(mloglogminn)9 making it asympotically as fast as any algorithm on both 
sparse and dense graphs ([7], [72]). 

The greedy method that is at the heart of all the minimum spanning 
tree algorithms can be substantially generalized. The standard general
ization, discovered independently by Edmonds ([20]), Gale ([33]), and 
Welsh ([74]), is to matroids. Becently Korte and Lovâsz have invented 
an even more general structure on which the method works, called the 
greedoid ([52]). 

3. Shortest paths 

Let G be a directed graph, each of whose edges e = (v, w) has a non-negative 
length denoted by 1(e) or l(v9 w). The lengtJv of a path p consisting of a se-

k 

quence of edges eX9e2,...,eh is l(p) = J£ l(ei). The sJwrtest patJi problem 

50 — Proceedings..., t. II 
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is that of determining, for each member of a specified set of vertex pairs 
s, t, a path from s to t of minimum length, called a shortest path. The 
length of a shortest path is the distance from s to t9 which we denote by 
d(s, t). We shall discuss three versions of this problem: 

SINGLE PAIR. For a single pair of vertices ~s, t, find a shortest path from 
s to t. 

SINGLE SOURCE. For a given source vertex s, find a shortest path from 
s to v for^every vertex v. 

ALL PAIRS. For every pair of vertices s, t, find a shortest path from s to t. 

Of these problems, the single source problem is the fundamental one: 
all known single pair algorithms at least partially solve a single source 
problem, and the all pairs problem can be solved as n single source problems. 
Therefore we begin with the single source problem. 

For simplicity let us assume that every vertex is reachable from the 
source vertex s. Shortest paths have two important properties that are 
useful in algorithms for finding them. There are shortest paths from s to 
every vertex if and only if G contains no negative cycle (a cycle of negative 
length). If there are such shortest paths, there is a spanning tree rooted 
at s containing shortest paths from s to every vertex. Such a tree is called 
a shortest path tree. We can regard the goal of an algorithm for the single 
source problem as to exhibit either a shortest path tree or a negative 
cycle. If a shortest path tree exists, it suffices to compute d(s, v) for 
every vertex v, since a shortest path tree is easy to construct in 0(m) time 
given these distances. 

Ford ([26], [27]) proposed a general algorithm for the single-source 
problem that can be regarded as a special case of the simplex algorithm 
(see [62]): Begin with d(s9 s) = 0 , d(s9v) = oo for v # s , and repeat 
the following step until it no longer applies: 

LABELING STEP. Select cm edge (v, w) such that d(s9 v) + l(v, w) < d(s, w), 
and replace d(s9 w) by d(s9 v) + l(v9 w). 

This algorithm terminates with correct distances if and only if there is 
no negative cycle. The efficiency of the algorithm depends heavily on the 
order of edge selection. Most efficient implementations are versions of the 
following refinement, which we call the labeling and scanning algorithm 
([38]). Each of the vertices is in one of three states: unlabeled, labeled, or 



Efficient Algorithms for Network Optimization 1625 

scanned. Initially the source vertex is labeled and every other vertex is 
unlabeled. We repeat the following step until there are no labeled vertices. 

SCANNING STEP. Select a labeled vertex v and scan it, tJiereby converting 
it to tlie scanned state, by applying tJie labeling step to every edge (v,w) sucJi 
tJiat d(s, v) + l(v, w) < d(s, w). (SucJi an application converts w to tJie labeled 
state.) 

There are three theoretically important versions of the labeling and 
scanning algorithm, distinguished by the order of vertex scanning and 
appropriate for different kinds of graphs. The first, breadtJi-first scanning, 
maintains the set of labeled vertices as a queue, removing vertices for 
scanning from the front and adding newly labeled vertices to the rear. This 
method, a reformulation of algorithms discovered independently by Moore 
([59]) and Bellman ([2]), runs in 0(nm) time if the graph is free of negative 
cycles. With appropriate modifications, the algorithm will locate a negative 
cycle in 0(nm) time if there is one. A variant of breadth-first scanning 
that seems to work well in practice ([14]) is to put vertices converted from 
scanned to labeled on the front instead of the rear of the queue ([63]). 
Unfortunately, this method runs in exponential time in the worst case 
([47]). 

If all edge lengths are non-negative, shortest-first scanning, proposed 
by Dijkstra ([15]) gives a better worst-case bound: scan the labeled vertex 
v such that d(s,v) is minimum. With this method each vertex is only 
scanned once. The method is analogous to the Jarnik-Prim-Dijkstra 
minimum spanning tree algorithm and has essentially the same implemen
tation and the same time bound, namely 0(m\ogmfnn) ([44], [72]). 

The third important scanning order, topological scmning, is appropriate 
when the graph has no cycles at all : scan the vertices in topological order, 
i.e. any order such that, if (v, w) is an edge, v is scanned before w. Topo
logical scanning is used in the well-known program evaluation and review 
technique (PEET) and produces shortest paths in 0(m) time. 

If the edge lengths are integers, the single source problem can also be 
solved by scaling techniques, as recently discovered by Gabow ([31]). 
Gabow's most interesting result is for the single source problem with 
general integer edge lengths. He gives an 0(n^mlogN) algorithm (recall 
that N is the maximum absolute value of any edge length) that works by 
reducing the shortest path problem to an assignment problem and solving 
the assignment problem by scaling (see Section 5). 

We can solve the single pair problem for a pair s, t by solving a single 
source problem for s, running the algorithm until the distance from s to Hs 
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known. Alternatively, we can reverse the directions of all edges and solve 
a single source problem for t. We can even combine these, methods by 
simultaneously growing a shortest path tree forward from s and the reverse 
of a shortest path tree backward from t, stopping when the two trees 
overlap in an appropriate way. Although this bidirectional search technique 
([60^, [66]) does not improve the worst-case running time, it can reduce 
the time in practice. 

For very large sparse graphs such as arise in artificial intelligence 
applications, there is not enough time in practice even to examine the 
entire graph. For such situations AI researchers have proposed various 
heuristic search techniques for the single source problem. These ao?e intended 
to examine only vertices likely to be on a shortest path from s to t. The 
efficiency of both undirectional and bidirectional heuristic search depends 
on how easy it is to compute a good distance approximation. See [13], [61]. 

There are two main algorithms for the all pairs problem, one suited 
for very dense graphs, the other for sparse graphs. Floyd ([24]) proposed 
a straightforward dynamic programming algorithm that runs in 0(n*) 
time: Initialize d(v9v) = 0, d(v9 io) ~= l(v9 io) if (vtw) is an edge, and 
d(v,w) = oo iî v =^w and (v9 w) is not an edge. Then, for each vertex u9 

carry out the following step: 

LABELING STEP. If d(u9 u) < 0, stop: there is a negative cycle. Otherwise, 
for each pair of vertices v, w such that d(v, u) + d(u9 w) <d(v9w)9 replace 
d(v9w) by d(v,u) + d(u,w). 

Another more complicated method is to solve one single source problem 
using breadth-first scanning, use the distances so computed to transform 
the edge lengths so that they are all nonnegative, and repeatedly use 
shortest-first scanning. The edge length transformation, which preserves 
shortest paths, is based on linear programming duality. This method runs 
in 0(nm\ogmfnn) time (see [72]). 

Fredman [28] has devised another all pairs algorithm that runs in 
0(w3(loglogw)1/3/(logw)1/3), which though very interesting theoretically 
is apparently too complicated to be practical. Further information on 
early shortest path algorithms can be found in [17]. 

4. Maximum flow 

Let G =(V,F) be a directed graph with two distinguished vertices, 
a source s and a sink t, each of whose edges e has a non-negative capacity 
c(e). A flow on G is a non-negative function on the edges such that 
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0 </(e) < c(e) for every edge e and J} f(u, v) = J} f(v, w) for every 
{u>v)eE (v,w)eE 

vertex v <£{s9t}. 
The value of a flow/ is ]? f(s, v). The maximum flow problem is that 

(s,v)eE 

of finding a flow of maximum value, called a maximum flow. 
The fundamental theory of network flows was developed by Ford and 

Fulkerson ([25], [27]) and is an outgrowth of linear programming. As in 
the case of minimum spanning trees we need the notion of a cut, which for 
network flows we define to be a vertex partition X, X such that s e X and 
t e X. The capacity of the cut is J} c(v,w))ii / is a flow, the flow across 

(v,w)eE 

the cut is J£ f(v, w) — J5J f(v, w). The flow across any cut is equal 
veX,weX veX,weX 
{v,w)eE {v,w)eE 

to the flow value and is at most the capacity of the cut. Fordand Fulkerson's 
main result, the max-flow, min-cut tJieorem, states that the maximum flow 
value equals the minimum cut capacity. 

Ford and Fulkerson proved this theorem by devising an algorithm 
that, given a flow /, either finds a cut whose capacity equals the flow 
value or finds a way to increase the flow value. The algorithm uses a resid
ual graph R, whose vertex set is V and whose edge set contains two kinds 
of edges : for each edge (v,w) e F such that/(A , w) < c(v, w), a forward edge 
(v,w) with residual capacity r(v,w) = c(v,w)—f(v,w); and, for each 
edge (v, w) e F such that f(v, w) > 0, a bacJcward edge (v, w) with residual 
capacity r(w, v) =f(v,w). (Technically R is a multi graph, i.e. it may 
contain multiple edges.) 

If (v, w) e R is a forward edge, we can increase the net flow from v to 
w in # by up to r(v, w) units by increasing the flow on (v, w) ; if (w, v) e R is 
a backward edge, we can increase the net flow from w to v in G by up to 
r(w, v) units by decreasing the flow on (v, w). The flow / is maximum if 
and only if there is no path from s to t in G. If thete is such a path, called an 
augmenting path, we can increase the value of / by altering the flow on the 
corresponding edges in G. If there is no augmenting path, the set of vertices 
reachable from s in JB defines a cut whose capacity equals the value of/. 

Ford and Fulkerson's augmenting path method for finding a maximum 
flow consists of beginning with the zero flow and repeating the following 
step until it no longer applies: 

AUGMENTING STEP. If t is reacJiable from s in tJie residual graph R for 
the current flow, find an augmenting path p9 let A be tJie minimum of tlie 
residual capacities of tJie edges on p, and increase tJie flow value by A by 
altering tJie flows along tJie edges in G corresponding to the edges on p. 
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If all capacities are integers, Ford and Fulkerson's algorithm produces 
an integer maximum flow in 0(nN) augmentations. (Eecall from Section 1 
that N is the maximum capacity. Each augmentation increases the flow 
value by at least one unit and at most (n— 1)N units can flow through 
the at most n—1 edges leaving s). Constructing R and performing a single 
augmentation takes 0(m) time, so the total time bound is 0(nmN). 

Unfortunately, if the capacities are arbitrary real numbers, the algo
rithm need never terminate, and successive flow values, though they will 
converge, need not converge to the maximum flow value ([27]). However, 
by careful choice of augmenting paths, the method can be made efficient. 
Edmonds and Karp ([21]) proposed two methods. If augmentations are 
made along paths of fewest edges, the number of augmentations is 0 (nm), 
giving an overall time bound of 0(nm2). (Each augmentation takes 0(m) 
time.) If augmentations are made along paths maximizing A, the increase 
in flow value, the number of augmentations is 0(mlogN) and the overall 
time bound is 0[m%(\ogminn)i}.ogN)), assuming integer capacities. (Find
ing each augmenting path requires running an algorithm analogous to 
Dijkstra's shortest path algorithm.) 

Further improvements in maximum flow algorithms are all based on 
the work of Dinic ([16]). Dinic, who worked independently of Edmonds 
and Karp, showed that the maximum flow problem can be reduced to the 
solution of at most n— 1 blocking flow problems on acyclic graphs. By 
a blocking flow we mean a flow such that in the residual graph there is no 
augmenting path containing only forward edges. (That is, to increase the 
flow value we must reroute some of the flow.) Dinic proposed a blocking 
flow algorithm with a running time of 0(nm), giving a time bound of 
0(n2m) for the maximum flow problem. Improved algorithms for finding 
a maximum flow using Dinic's approach were discovered by Karzanov 
([46]) (0(n*)), Oherkasky ([8]) (0(n2m112)), Malhotra et al. ([57]) (0(n*) but 
simpler than Karzanov's method), Galil ([34]) (0(w5/3m2/3)), Galil and 
ÎTaamad ([36]) (0(nm(logn)*)), and Sleator and Tarjan ([67], [68]) 
(0(nmlogn)). The last of these methods achieves its speed mainly through 
the use of very sophisticated data structures. The most recent maximum 
flow algorithm, recently devised by Gabow ([31]), uses a simple scaling 
technique and runs in 0(nmlogN) time, assuming integer capacities. 

A more complicated network flow problem that is not as well under
stood as the maximum flow problem is the minimum cost flow problem. 
Each edge e9 in addition to having a capacity o(e)9 has a cost a(e) per unit 
flow; we seek a maximum "flow / minimizing the total cost J£ ß(e)/(0). 

es E 

One way to find a minimum cost flow is to use the augmenting path 
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method, choosing augmenting paths that minimize the incremental cost. 
This method, though quite satisfactory in practice, is not efficient in the 
worst case; indeed, it has the same convergence problems as Ford and 
Fulkerson's original maximum flow algorithm. Edmonds and Karp ([21]) 
proposed a scaling algorithm that finds a minimum cost flow in a time 
bound polynomial in n, m, and logN, assuming integer capacities. The 
problem of finding a polynomial-time minimum cost flow algorithm as
suming arbitrary infinite-precision real-valued capacities under the unit 
cost complexity measure is still open. Further information on network flow 
problems and their applications can be found in [64]. 

5. Matching 

Let G be an undirected graph with a real-valued weigJitw(e) on each edge e. 
A matcJiing is a set of edges no two of which have a common endpoint. 
A vertex is matclied if it is an endpoint of an edge in the matching and 
free otherwise. The maximum matcJiing problem is that of finding a matching 
whose edges have maximum total weight. There are four important 
versions of this problem: 

MAXIMUM CARDINALITY BIPARTITE MATCHING. G is bipartite (i.e., 
there'is a vertex partition X, X such that all edges have one endpoint in X 
and one in X), and all edge weights are one. 

TEOî) ASSIGNMENT PROBLEM. G is bipartite ; the edge weigJits are arbit
rary. 

MAXIMUM CARDINALITY ITONBIPARTITE MATCHING. G is arbitrary; 
all edge weights are one. 

WEIGHTED NONBIPARTITE MATCHING. Both G and tJie edge weigJits are 

As in the case of network flows, augmenting paths play an important 
role in matching algorithms. An augmenting patii p with respect to a match
ing is a simple path from one free vertex to another whose edges are 
alternately in the matching and not in the matching. By adding to the 
matching every unmatched edge on p and deleting every matched edge on 
p, we can increase the cardinality of the matching by one. Berge ([3]) 
proved that a matching is of maximum cardinality if and only if there is no 
augmenting path. Thus we can find a maximum cardinality matching by 



1630 Section 17: E. E. Tarjan 

starting with the empty matching and repeatedly finding an augmenting 
path and swapping its matching and nonmatching edges. 

In the case of bipartite graphs, it is easy to find an augmenting path, 
if one exists, in 0(m) time. Thus maximum cardinality bipartite matchings 
can be found in 0(nm) time. Hopcroft and Karp ([41]) discovered a faster 
algorithm for this problem that finds all augmenting paths of a given 
length at once (where length is measured by the number of edges) and 
proceeds from shortest to longest length augmenting paths. With this 
method, most of the augmenting paths are short, and the overall time 
bound is 0(]/nm). The Hopcroft-Karp algorithm can be interpreted as 
Dinic's algorithm applied to an appropriate network; a maximum-value 
flow in the network corresponds to a maximum cardinality matching 
in the bipartite graph ([23]). 

On nonbipartite graphs it is much harder to find augmenting paths. 
Edmonds ([18]) discovered an elegant method that involves shrinking 
certain odd cycles, called blossoms* With improvements in implementation 
suggested by Gabow [29], [30], Edmonds' algorithm finds maximum cardi
nality nonbipartite matchings in, 0(nma(m, n)) time. (Secali from Sec
tion 2 that a is an inverse of Ackermann's function.) Use of a recently 
discovered linear-time set union algorithm ([32]) reduces the running time 
to 0(nm). Even and Kariv ([22]), in a remarkable achievement, extended 
the Hopcroft-Karp algorithm to the nonbipartite case, obtaining a running 
time of either 0(w2,5) or 0(Vnmloglogn), depending upon the exact 
implementation details. Micali and Vazirani ([58]) obtained a simplified 
algorithm with an improved running time of 0(Vnm)9 matching the best 
time bound for the bipartite case. 

When the weights are arbitrary, augmenting paths must be selected 
in an order that depends upon the weight. We define the weight of an 
augmenting path to be the sum of the weights of its matching edges minus 
the sum of the weights of its nonmatching edges. We can find a maximum 
weight matching by beginning with the empty matching and repeatedly 
augmenting using a maximum-weight augmenting path, continuing until no 
augmenting path has positive weight. 

This algorithm can be implemented on bipartite graphs using Dijkstra's 
shortest path algorithm to find maximum-weight augmenting paths and 
transforming the edge weights after each augmentation to make them 
nonpositive. The resultant algorithm, geneïally called the Hungarian 
method ([54]), runs in 0(nm\ogm!nn) time ([72]). Edmonds, using his blossom 
shrinking technique, extended the algorithn? to nonbipartite graphs ([19]). 



Efficient Algorithms for Network Optimization 1631 

Depending upon the implementation, the algorithm runs in either 0(n*) 
time or O(nmlogn) time ([29], [35]). 

The assignment problem for integer edge weights can also be solved 
by scaling. Gabow ([31]) has a method that runs in 0(w3/4mlogJV) time. 
Whether the method extends to nonbipartite graphs is an open problem. 

6. Conclusions 

The various efficient algorithms for network optimization combine at 
least four important kinds of ideas. First are ideas arising from linear 
programming, in particular duality and the simplex algorithm. The 
augmenting path technique can be viewed as a combinatorial expression 
of this algorithm. Second is the greedy method, which is not only explicitly 
used in the various minimum spanning tree algorithms but is also implicit 
in Dijkstra's shortest path algorithm/Third are sophisticated data struc
tures for representing ordered and unordered sets, trees, and graphs, es
pecially as they change over time. Fourth is the idea of scaling. 

There is no reason, to believe that any of the algorithms we have dis
cussed is asymptotically optimal; indeed further improvements may well 
be possible. It seems likely that such improvements will come from the 
development of more sophisticated data structures and from further 
exploitation of scaling. Perhaps an even more important line of research 
is to study the practical efficiency of the various algorithms to determine 
the effect of theoretical improvements on actual performance. 

References 

[1] Aho A. V., Hopcroft J . E., and Ullman J . D., The Desigli and Analysis of Computer 
Algorithms, Addison-Wesley, Reading, MA, 1974. 

[2] Bellman R. E., On Routing Problem, Quart. Appi. Math. 16 (1958), pp. 87-90. 
[3] Berge C , Two Theorems in Graph Theory, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 

pp . 842-844. 
[4] Berge C and Ghonila-Honri A., Programming, Games, and Transportation Net

works, John Wiley and Sons, New York, NY, 1965. 
[5] Borùyka O., O Jistém Prohlémn Minimâmim, Trâca Moravslcé PrirodovMechè 

Spoleënosti 3 (1926), pp. 37-58. 
[6] Brennan J. J., Minimal Spanning Trees and Partial Sorting, Op. Bes. Leiters 1 

(1982), pp. 113-116. 
[7] Cheriton D. and Tarjan R. E., Finding Minimum Spanning Trees, SIAM J. 

Comput. 5 (1976), pp. 724-742. 
[8] Cherkasky R. V., Algorithm of Construction of Maximal Elow in Networks with 

Complexity of 0(Y2\/E) Operations (in Russian), Mathematical Methods "of Sol
ution of Economical Problems 7 (1977), pp. 112-125. 



1632 Section 17: E . E. Tarjan 

[9] Choquet Gr., Étude de certains réseaux de routes, C. R. Acad. Sci. Paris Sêr. A 
206 (1938), pp. 310-313. 

[10] Cook S. A. and Reckhow R. A., Time-Bounded Random Access Machines, J. 
Comput. Sys. Sci. 7 (1973), pp . 354-375. 

[11] Dantzig G. B., Linear Programming and Extensions, Princeton University Press, 
Princeton, NJ, 1963. 

[12] Dantzig G-. B., Comments on Khachian's Algorithm for Linear Programming, 
Technical Report SOR 79-22, Dept. of Operations Research, Stanford University, 
Stanford, CA, 1979. 

[13] de Champeaux D., Bidirectional Heuristic Search Again, J. Assoc. Comput. 
Mach. 30 (1983), pp . 22-32. 

[14] Dial R., Glover F . , Karney D., and Klingman D., A Computational Analysis 
of Alternative Algorithms for Finding Shortest Path Trees, Networks 9 (1979), 
pp . 215-248. 

[15] Dijkstra E. W., A Note on Two Problems in Connexion with Graphs, Numer. 
Math. 1 (1959), pp . 269-271. 

[16] Dinic E. A., Algorithm for Solution of a Problem of Maximum Flow in a Network 
with Power Estimation, Soviet Math. Bokl. 11 (1970), pp . 1277-1280. 

[17] Dreyfus S. E. , An Appraisal of Some Shortest-Path Algorithms, Operations 
Research 17 (1969), pp. 395-412. 

[18] Edmonds J., Paths , Trees, and Flowers, Gonad. J. Math. 17 (1965), pp. 449-467. 
[19] Edmonds J., Matching and a Polyhedron with 0-1 Vertices, J. Res. Nat. Bur. 

Standards 69B (1965), pp. 125-130. 
[20] Edmonds J., Matroids and the Greedy Algorithm, Math. Programming 1 (1971), 

p p . 127-136. 
[21] Edmonds J . and Karp R. M., Theoretical Improvements in Algorithmic Efficiency 

for Network Flow Problems, J. Assoc. Comput. Mach. 19 (1972), pp. 248-264. 
[22~] Even S. and Kariv O., An 0{n2'5) Algorithm for Maximum Matching in General 

Graphs. In: Proc. Sixteenth Annual IEEE Symp. on Foundations of Computer 
Science{1975), pp. 100-112. 

[23] Even S. and Tarjan E. E., Network Flow and Testing Graph Connectivity, SIAM 
J. Comput. 4 (1975), pp. 507-518. 

[24] Floyd R. W., Algorithm 97: Shortest Path, Comm. ACM 5 (1962), p . 345. 
[25] Ford L. R. J r . and Fulkerson D. R., Maximal Flow Through a Network, Gonad. 

J. Math. 8 (1956), pp . 399-404. 
[26] Ford L. R. Jr . , Network Flow Theory, Paper P-923, The Rand Corporation, Santa 

Monica, CA, 1956. 
[27] Ford L. R. Jr . and Fulkerson D. R., Flows in Networks, Princeton University 

Press, Princeton, NJ , 1962. 
[28] Fredman M. L., New Bounds on the Complexity of the Shortest Pa th Problem, 

SIAM J. Comput. 5 (1976), pp. 83-89. 
[29] Gabow H. N., Implementation of Algorithms for Maximum Matching on Non-

bipartite Graphs, Ph . D. Thesis, Department .of Electrical Engineering, Stanford 
University, Stanford, CA, 1973. 

[30] Gabow H. N., An Efficient Implementation of Edmonds' Algorithm for Maximum 
Matching on Graphs, J. Assoc. Comput. Mach. 23 (1976), pp . 221-234. 

[31] Gabow H. N., Scaling Algorithms for Network Problems. I n : Proc. 24th Annual 
IEEE Symp. on Found, of Comp. Sci. (1983), pp. 248-258. 



Efficient Algorithms for Networks Optimization 1633 

[32] Gabow II. N. and Tarjan R. E., A Linear-Time Algorithm for a Special Case 
of Disjoint Set Union, J. Comput. Sys. Sei., to appear. 

[33] Gale D., Optimal Assignments in an Ordered Set: an Application of Matroid 
Theory, J. Combinatorial Theory 4 (1968), pp. 176-180. 

[34] Galil Z., An 0(Y5l3E2l*) Algorithm for the Maximal Flow Problem, Ada Informat. 
14 (1980), pp. 221-242. 

[35] Galil Z., Micali S., and Gabow II., Maximal Weighted Matching on General Graphs. 
In : Proc. Twenty-Third Annual Symp. on Foundations of Computer Science (1982), 
pp. 255-261. 

[36] Galil Z. and Naamad A., An 0 (EY log2 Y) Algorithm for the Maximal Flow Prob
lem, J. Comput. Sys. Sci. 21 (1980), pp. 203-217. 

[37] Garey M. R. and Johnson D. S., Computers mid Intractability. A Guide to tlie 
Theory of NP-Completeness, W. H, Freeman, San Francisco-, CA, 1979. 

[38] Gilsinn J. and Witzgall C , A Performance Comparison of Labeling Algorithms 
for Calculating Shortest Path Trees, National Bureau of Standards Technical 
Note 772, U.S. Department of Commerce, 1973. 

[39] Graham R. L. and Hell P . , On the History of the Minimum Spanning Tree Prob
lem, Ann. Hist. Comput., to appear. 

[40] Hoare C. A. R., Quicksort, Comput. J. 5 (1962), pp. 10-15. 
[41] Hopcroft J . E. and Karp R. M., An n^2 Algorithm for Maximum Matching in 

Bipartite Graphs, SIAM J. Comput. 2 (1973), pp. 225-231. 
[42] Jarnik V., O Jistém Problému Minimâlnim, Prdca Moravskê PUrodovëdecké 

Spolecnosti 6 (1930), pp . 57-63. 
[43] Johnson D. B., Priority Queues with Update and Finding Minimum Spanning 

Trees, Info. Proc. Letters 4 (1975), pp. 53-57. 
[44] Johnson D. B., Efficient Algorithm for Shortest Paths in Sparse Networks, 

J. Assoc. Comput. Mach. 24 (1977), pp. 1-13. 
[45] Kariv O., An 0(n2,5) Algorithm for Maximum Matching in General Graphs, Ph . 

D. Thesis, Department of Applied Mathematics, Weizmann Institute of Science, 
Rehovot, Israel, 1976. 

[46] Karzanov A. V., Determining the Maximal Flow in a Network by the Method 
of Preflows, Soviet Math. Bold. 15 (1974), pp. 434-437. 

[47] Kershenbaum A., A Note on Finding Shortest Pa th Trees, Networks 11 (1981), 
pp. 399-400. 

[48] Khachian L. G., A Polynomial Algorithm for Linear Programming, Soviet Math. 
Bold. 20 (1979), pp. 191-194. 

[49] Klee V., Combinatorial Optimization: What is the Stato of the Art, Math. Op. 
Res. 5 (1980), pp. 1-26. 

[50] Klee V. and Minty G. J. , How Good is the Simplex Algorithm ? In : O. Shisha 
(ed.), Inequalities III, Acadomic Press, New York, NY, 1972, pp. 
159-175. 

[51] Knuth D. E., The Art of Computer Programming, Vol. 3. Sorting and Searching, 
Addison-Wesley, Reading, MA, 1973. 

[52] Körte B. and Lovâsz L., Mathematical Structures Underlying Greedy Algorithms. 
In : F . Gócseg (ed.), Fundamentals of Computation Theory, Lecture Notes in Com
puter Science 117, Springer-Verlag, New York, NY, 1981, pp. 205-209. 

[53] Kruskal J. B., On the Shortest Spanning Subtree of a Graph and the Traveling 
Salesman Problem/ Proc. Amer. Math. Soc. 7 (1956), pp. 48-50. 



1634 Section 17: R. E. Tarjan 

[54] Kuhn H. W., The Hungarian Method for the Assignment Problem, Naval Res. 
Logistics Quarterly 2 (1955), pp. 83-98, 

[55] Lawler E. L., Combinatorial Optimization: Networks and Matroids, Holt, Rinehart 
and Winston, New York, NY, 1976. 

[56] Lukaszewioz J., Florek K., Perkal J., Steinhaus H., and Zubrzyoki S., Sur la 
liaison et la division des points d'un ensemble fini, Oolloq. Math. 2 (1951), pp. 
282-285. 

[57] Malhotra V. M., Kumar M. P., and Maheshwari S. N., An 0(I7|3) Algorithm for 
Finding Maximum Flows in Networks, Info. Proc. Letters 7 (1978), pp. 277-278. 

[58] Micali S. and Vazirani V. V., An 0 ( / | F | •!•#!) Algorithm for Finding Maximum 
Matching in General Graphs, Proc. Twenty-First Annual IEEE Symp. on Foun
dations of Computer Science (1980), pp . 17-27. 

[59] Moore E. F., The Shortest Path Through a Maze. In: Proc. Int. Symp. on the 
Theory of Switching, Par t I I , April 2-5, 1957, The Annals of the Computation 
Laboratory of Harvard University 30, Harvard University Press, Cambridge, 
MA, 1959. 

[60] Nicholson T. A. J., Finding the Shortest Route Between two Points in a Network, 
Comput. J. 9 (1966), pp. 275-280. 

[61] Nilsson N. J., Problem-Solving Methods in Artificial Intelligence, McGraw-Hill, 
New York,. NY, 1971. 

[62] Papadimitriou C. H. and Steiglitz K., Combinatorial Optimisation: Algorithm's 
and .Complexity, Prentice-Hall, Englewood Cliffs, NJ, 1982. 

[63] Pape U., Implementation and Efficiency of Moore-Algorithms for the Shortest 
Route Problem, Math. Programming 7 (1974), pp. 212-222. 

[64] Picard J . -C , and Queyranne M., Selected Applications of Maximum Flows and 
Minimum Outs in Networks, Rapport Technique No. EP-79-R-35, Département 
de Génie Industriel, École Polytechnique de Montréal, 1979. 

[65] Prim B. C , Shortest Connection Networks and Some Generalizations, Bell System 
Techn. J. 36 (1957), pp. 1389-1401. 

[66] Pohl I., Bi-Directional Search. In: B. Meltzer and D. Michie (eds.), Machine 
Intelligence 6, Edinburgh University Press, Edinburgh, Scotland, 1971, pp. 124-
140. 

[67] Sleator D. D., An 0(nm log n) Algorithm for Maximum Network Flow, Technical 
Report STAN-CS-80-831, Computer Science Department, Stanford University, 
Stanford, CA, 1980. 

[68] Sleator D. D. and Tarjan R. E., A Data Structure for Dynamic Trees, J. Computer 
and System Sciences 26 (1983), pp . 362-391; see also Proc. Thirteenth 
Annual ACM Symp. on Theory of Computing (1981), pp. 114-122. 

[69] Tarjan R. E., Efficiency of a Good but not Linear Set Union Algorithm, J. Assoc. 
Comput. Mach. 22 (1975), pp. 215-225. 

[70] Tarjan R. E., Complexity of Combinatorial Algorithms, SIAM Rev. 20 (1978), 
pp. 457-491. 

[71] Tarjan R. E., Recent Developments in the Complexity of Combinatorial Algo. 
ri thms. I n : Proc. Fifth IBM Symp. on Math. Found, of Comp. Sci., IBM Japan, 
Tokyo, 1980, pp. 1-28. 

[72] Tarjan R. E., Bata Structures and Network Optimization, Soc. Ind. and Appi. 
Math., Philadelphia, PA, 1983. 



Efficient Algorithms for Network Optimization 1635 

[73] Tarjan R. E. and van Leeuwen J., Worst-Case Analysis of Set Union Algorithms, 
J. Assoc. Comput. Mach., to appear. 

[74] Welsh D. J., Kruskal's Theorem for Matroids, Proc. Cambridge Philos. Soo. 64 
(1969), pp. 3-4. 

[75] Williams J. W. J., Algorithm 232: Heapsort, Oomm. AOM 7 (1964), pp. 347-348. 
[76] Yao A., An 0(|JE[|loglog|7|) Algorithm for Finding Minimum Spanning Trees, 

Info. Proo. Letters 4 (1975), pp. 21-23. 

BELL LABORATORIES 
MURRAY HILL, NJ 07974 
U.S.A. 





Proceedings of the International Congress of Mathematicians 
August 16-24, 1983, Warszawa 

L. G. VALIANT 

An Algebraic Approach 
to Computational Complexity 

The theory of computational complexity is concerned with identifying 
methods for computing solutions to problems in a minimal number of 
steps. Despite the diversity of application areas from which such problems 
can be drawn this theory has been successful in identifying a small number 
of fundamental questions on which a sizable fraction of the field hangs. 
A prime example is the P = ?ÎTP question of Cook [4], concerning discrete 
search problems. Unfortunately the techniques currently known for 
proving that particular problems inherently require a certain number of 
steps are rudimentary. Hence these fundamental questions appear far 
from resolution. 

In contrast with our ignorance about the absolute difficulty of compu
ting problems, much is known about their relative difficulty. For example 
there are numerous results that relate pairs A and B of problems in the 
following way: If there exists a polynomial time algorithm for B (i.e. one 
that for some constant a solves B for inputs of size n in na steps) then there 
exists a polynomial time algorithm for A also. Such results do not depend 
on or determine whether the absolute complexities are w2 and 2n or any 
other function of n. 

Our purpose here is to give a brief discussion of a very strict notion of 
reducibility called ^-projection. Further details can be found in [19] where 
it was introduced and in [8, 15, 20]. The remaining references at the end 
of this paper describe work relevant to it in various ways. 

The remarkable property of this notion of reduction is that in spite 
of its demanding and restricted nature numerous natural problems that 
superficially look dissimilar can be related by it. It is applicable to a variety 
of algebraic structures among which rings of multivariate polynomials and 
Boolean algebra are important examples. It can be used to give an account 
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1638 Section 17: L. G. Valiant 

of the relative difficulty of computational problems almost without 
having to define models of computation. 

A computation problem, such as that of evaluating the determinant of 
a square matrix, is represented by an infinite family of instances of it, 
each corresponding to a different number of arguments and indexed by this 
number. The family DET will be the set {DET^ DET4, DET9,...} where 
DETm is the m variable polynomial that is the determinant of a Vm xVm 
matrix. Such a family is always defined with respect to a particular ring 
or field from which the constant coefficients are drawn. A second example 
is PEEM =* {PEEMu PEBM4, PEEM9,...} where PEEM™ is the per
manent of a Vm xVm matrix. Eecall that the permanent has the same 
set of monomials as the determinant but the coefficient of each mono
mial is now positive. 

It is interesting to contrast these two particular problems because 
one is easy to compute while the other is apparently hopelessly difficult. 
Gaussian elimination methods can be used to compute anwxw determi
nant in 0(nz) arithmetic operations while more recent techniques do even 
better [5,16]. On the other hand the best algorithm known for computing 
the permanent takes 0(n2n) steps [9,13]. Even the multiplicative factor of 
n in this* bound appears difficult to remove. 

The relationships which we explore among such pairs of families are 
öf the following kind. If A{(y19 ..., y{) and Bj(x19..., oof) are polynomials 
over the ring JB we say that At is a projection of B5 if there is a substitution 
a: {oo1,..., xj}-^{y1,..., #JUJB such that Ai(yX9...9y^ is identical to 
B^(o(x1), ..., a(xf)). For example, A2(y1} y2) = #i+#2 is the projection of 
DET4(^U, x12, x21, x22) under the substitution a(xn) =y19 G(X12) =

33/2> 
a(x21) = —1, and a(x22) = 1. Further a family J. is a projection of a family 
B if for all A{ e A, A{ is a projection of some Bj eB. 

Now it so happens that the two families PEEM and DET are projections 
of each other. This in itself, however, is of little practical interest since the 
definition permits that PEEM9, for example, be the projection of DET^ only 
for enormous values of j . Hence we need to add the following quantifi
cation. A family A is a p-projection of family B if for some constant a9 

for all Aî G A, Ai is a projection of some Bj e B with j < ia. 
In the investigations described here the following kind of question 

is central : Is PEEM a ̂ -projection of DET ? One aspect of the computational 
relevance of this question is immediate. If we could give a positive answer 
to this question then we would have a polynomial time algorithm for the 
permanent. The algorithm would consist simply of the determinant 
algorithm applied after the appropriate initial substitution of variables. 
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Complexity-theoretic results state that the particular question raised 
above has broader significance in at least two directions. 

First, it can be shown that the permanent exemplifies a large class, 
called pD (p-definable)9 of families of polynomials in the sense that all 
members of the class are ̂ -projections of it [19, 20]. The class is essentially 
that of multivariate polynomials in which the degree grows only poly-
nomially in the number of arguments and in which the coefficient of 
each monomial is easily computed from the specification of the variables 
in the monomial (cf. the permanent and determinant). The degree con
straint turns out to be quite natural and we shall assume it in the discussion 
to follow. The class pB contains all such families that can be computed 
in a polynomial number of steps and, in addition, includes a large number 
of other families for which no such fast algorithms are known. Examples 
of the latter are most reliability problems such as the following. Consider 
a network with nodes {1 , . . . , n} where the connection between node i and j 
has probability p{j of not failing. Then thé probability EEL that nodes 1 and 
n are connected to each other is a polynomial in the variables {$>%}. Further 
examples of such ^-definable families abound as generating functions for 
combinatorial problems. For example HO is one such function defined for 
the Hamiltonian circuit problem for graphs in a natural way. 

A family in pB of which every member of pD is a ^-projection is called 
complete for pB. That there should be natural complete problems is not 
self-evident. However, it turns out that PEEM, HO and EEL, and many 
others are all complete for pB with respect to appropriate rings. These 
families are therefore jp-projection of each other also. The proofs of these 
facts support the stronger statement that these ^-projections are strict 
in the sense that two or more variables are never mapped to one. Hence 
these polynomials can be obtained one from the other by simply fixing 
some variables as constants and renaming the others. 

Hence the importance of the permanent is due essentially to the fact 
that a wide variety of other polynomials can be expressed succinctly 
in terms of it. Our interest in the permanent versus determinant question 
stems from the second fact that the determinant also has a large class of 
polynomials that it can efficiently encode and this class is, to a first 
approximation, the class of all polynomial families that can be computed 
fast. We can conclude therefore that the permanent is a ^-projection of 
the determinant if and only if the permanent and all the other families 
complete in pB can be computed fast. Hence a major computational 
problem has been reduced to a purely algebraic one. 

Unfortunately, there is a huge gap in our current understanding of 

51 — Proceedings..., t. II 
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the above question. It is known that a>n nxn determinant cannot be 
mapped to an nxn permanent if n exceeds two, even if substitutions 
by arbitrary linear forms are allowed [l£, 18]. The possibility that an 
(n +1) x (n +1) determinant suffices, however, remains open. On the other 
hand there is substantial historical evidence that fully exponential growth 
is necessary since the contrary would imply fast algorithms for NT-complete 
problems and more. 

The previously quoted result about the universality of the determinant 
for describing easy to compute problems needs one qualification concerning 
the model of computation assumed. It states that any polynomial is the 
projection of a determinant of size no larger than the minimal formula or 
expression for the polynomial. Whether the same result holds if we replace 
formula by the more basic model of computation,' the straight-line pro
gram, remains an important open question. The relationship between 
the two measures of complexity is bounded by a growth factor of nloen 

(called quasipolynomial) which is much less than the truly exponential 
factors (i.e., exp(we) for some e>0) which constitute the gaps in our 
current knowledge aboit all the relevant questions. 

The class of functions that can be obtained as a projection of a given 
function J. is a precise description of the class of functions that can be 
computed using a chip or program package for A directly, without the 
need for further programming. Hence the result for the determinant gives 
mathematical meaning for why the determinant and linear algebra itself 
is such a ubiquitous computational tool. 

Boolean algebra is an equally fertile ground for carrying out an in
vestigation akin to that described above for the multivariate polynomials. 
Here we define a projection to be substitution of variables by variables, 
negations of variables or constants. Eeductions by such ^-projections can 
be shown to be sufficient in many cases where only looser notions of 
reductions were known previously. Also, they can be shown to hold between 
easy to compute functions wehere such looser notions are meaningless. 

Among specific results it can be shown that any polynomial time 
computable family is the ^-projection of a family.of linear programming 
problems [20]. This provides some explanation of the ubiquity of linear 
programming in combinatorial optimization. When we consider parallel 
rather than sequential computations, the transitive closure problem is 
universal, and this is again supported by much empirical evidence. For 
hard to compute combinatorial search problems one can get essentially 
the well-known NP-complete class [15, 19]. The algebraic approach 
provides an arguably simpler formulation than the now classical theory 
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using Turing machines. Such questions as P = ?NP are shown to be essen
tially equivalent to questions of whether one fixed family of Boolean 
functions is a ^-projection of another. 

A major motivation of studying this very strict notion of reducibility 
is the expectation of being able to prove negative results.' One such theorem 
states that the symmetric Boolean functions are not very expressive in that 
there exist functions with polynomial bounded formulae that are not 
the ^-projection of any family of symmetric functions [15]. A slightly 
more powerful family is the one for detecting whether an undirected 
graph is connected. This has the same shortcoming if the ^-projections 
are restricted to be monotone (i.e., substitutions by negated variables 
are disallowed [15]), but becomes ^-universal under general ^-projections 
[3, 14]. 

Early work in computer science, such as that of Turing, concentrated 
on the notion of uniformity in computation, the notion that a fixed finite 
program is a description of potential behaviour on an infinite number of 
different inputs. Empirical evidence suggests that this notion may not 
be all-important in distinguishing polynomial time from exponential 
time computability. In trying to write a fast program for solving the 
Travelling Salesman Problem (TSP) it does not appear to make our task 
any easier to restrict ourselves to solving instances with exactly five 
hundred cities. For this reason in our algebraic theory of Boolean complexi
ty we have excluded this notion of uniformity altogether, and thereby 
gained much simplicity. The notion can be added back (e.g., logarithmic 
space computable ^-projection) with no difficulty. At present we do not 
believe, however, that the notion of uniformity will be central in ultimately 
resolving the important open questions. 

We can summarize our approach as one in which tJie algebraic relation
ships among the natural computational problems are central and relations 
with computational models are almost secondary, We can caricature the 
advantage of this by considering again the Travelling Salesman Problem. 
On conventional models of computation this problem is always clumsy to 
discuss because it involves both reaL numbers and discrete choices. I t 
becomes very easy to discuss, however, in the context of an appropriate 
algebra. Consider the set of rationals with the two binary operations 
of minimization and addition (to correspond to conventional addition and 
multiplication respectively). Many combinatorial optimization problems 
can be expressed naturally as polynomials in this algebra. TSP is Min< {wj 
where minimization is over all Hamiltonian circuits in the associated 
graph and wi is the sum of the weights on the ith such cycle. I t turns out 
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that TSP is complete for _p-definable polynomials in this algebra. Hence 
we have some explanation of the difficulty of TSP among combinatorial 
optimization problems without having to mention any specific model of 
computation. 
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Forced and Coupled Oscillators 
in Biological Applications 

The title of this paper involves forced and conpled oscillators. There is 
a subtitle as well : one approach to doing applied mathematics in an area of 
sometimes overwhelming complexity. The examples are taken mainly 
from the physiology of electrically excitable tissue, including nerve, 
heart and smooth muscle. To make my point about modelling, I shall 
also discuss an oscillatory chemical reaction known as the Belousov-
Zhabotinskii (BZ) reaction, which is not exactly biological, but whose math
ematical properties have much in common with the above tissues. For all of 
these examples, I shall examine the question: how much of the extremely 
complex pheonomena one sees is understandable on very general mathemat
ical grounds, independent of detailed facts about the physiology/chemis
try ? Though the motivation of the question is not initially mathematical, 
it leads very quickly into deep mathematical problems. 

The phenomena I shall discuss are all concerned with coupled systems 
(finite or infinitely many), each of which is oscillatory or "almost" oscil
latory in a sense I shall describe below. From a mathematical point of view, 
a "biological" oscillator is any biological system which undergoes regular 
periodic changes. In practice, however, oscillations occurring in biological/ 
chemical settings usually have some extra properties. For example, they 
tend to be quite stable, in amplitude and form, to perturbations of the 
system. Thus, they are effectively modelled by systems of differential 
equations with stable limit cycles, in contrast to those oscillations in mech
anical systems which are described by Hamiltonian equations or perturba
tions of them. (For an early example, see [33].) 

The "almost" oscillatory systems — cardiac tissue, nervous tissue, 
smooth musclfe such as intestine — are "excitable", a term hard to define 
precisely, but easy to apply in practice. An excitable system (mathemat
ical, biological or chemical) is one with a stable rest point, and having 
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the additional property that some trajectory starting "near" the rest point 
moves "far" away before returning to equilibrium. (See Fig. la for the 
phase plane diagram of a mathematical 2-dimensional excitable system.) 
The classic Hodgkin-Huxley equations used to describe the behavior 
of electrical impulses in nerves are excitable, as are the FitzHugh-ÎTagumo 
equations, a simplified version of them ([36]). 

Small perturbations can change an excitable system into an oscillatory 
one. (See Figure lb.) For example, nerve preparation, stimulated by 

Fig. la. A two-dimensional excitable system having three critical points. The light 
lines are isoclines; the heavier ones are trajectories. 

Fig. lb. A nearby oscillatory system. 



Forced and Coupled Oscillators in Biological Applications 1647 

current, can oscillate (cf. [3d] and its references); chick heart cells ([40]) 
can be made to change between excitable and oscillatory by chemical 
perturbations. The BZ reaction has an alternate, but close, recipe in which 
it is excitable rather than oscillatory ([43]). Some tissues, like cardiac 
tissue and intestinal tissue ([9]) contain a mixture of two kinds of cells, 
with the oscillations forcing the excitable cells. In such a context, it is not 
always clear what are the "natural" properties of the underlying cells 
(e.g. compare the models of [17] and [23].) 

Chemical patterns 

I shall start of discussing some older work on the BZ reaction ([21], [25], 
[26], [27], [28]). (For a partial bibliography of othter work on this reaction, 
see [42] and [45].) The Belousov reaction ([1]) was among the first oscil
lating chemical reactions to be discovered. With appropriate indicators, 
this fluid turns alternately bright blue and deep red, with a period of the 
order of two or three cycles/minute, for up to several hours. Zhabotinskii 
and Zaiken ([46]) noticed that the same fluid, when placed in a layer and 
covered to prevent convection, spontaneously produces intricate patterns 
of concentric circles. Winfree was the first to recognize the analogy with 
cardiac tissue ([43]); he modified the recipe to make the reaction excitable 
and saw that the resulting layer of fluid could sustain patterns similar 
to those seen in pathological sheets of cardiac tissue, notably rotating 
spiral waves of electrical activity. Similar patterns are seen in part of the 
life cycle of colonies of the social amoeba Bictyostelium discoideum, and 
there is reason to believe that a similar mathematical description of the 
pattern formation is valid ([6]). 

Ignoring, for the moment, the analogy with cardiac tissue, I shall dis
cuss the patterns in the BZ reaction. While extremely complex, this 
reaction is still much simpler than biological systems, at least from the 
modelling point of view. That is, one knows that the only physical processes 
taking part in the pattern formation are chemical reactions and diffusion, 
Thus, it is possible to write down the form of the equations which govern 
the creation and evolution of the patterns: 

ct =F(c)+KV2c9 (1) 

where c = (o19 ..., cn) is a vector of chemical concentrations, F: Rn-+Rn 

is smooth, K is an n xn positive definite matrix, and V2c is the spatial 
Laplacian. Here 

ct = F(c) (2) 
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are the kinetic equations representing the chemical reaction, and the 
Laplacian models diffusion. If there are heterogeneous particles in the 
solution, F may depend on the spatial variable x as well as c. 

It remains to say what are F(c) and K. Much is known about the 
BZ reaction, and there is a good model, due to Field, Uoyes and Koros 
[30], of the chemical mechanism. However, the interest in this reaction 
is not mainly for itself, but as a chemical example of spontaneous pattern 
formation. Thus, instead of asking whether (1) has solutions representing 
the observed patterns when (2) is the above model, we raise a broader 
question: what are the properties of F and K that make the pattern 
formation possible? This question recently .took on more depth with the 
discovery of new oscillating chemical systems which form the same patterns 
([11]). 

The picture is not entirely filled in, but so far there have emerged some 
remarkably simple answers. In order to describe the mathematical work, 
more must be said about the chemical phenomena. In detail, the patterns 
that form are never the same, and, indeed, are constantly changing over 
time. However, there are some features which are present every time one 
performs the experiment. For example, there are always sets of outwardly 
moving concentric rings, known as "target patterns". (See [26] for a pic
ture.) Within a given one, the spacing of rings is constant, as is the speed of 
outward propagation and the frequency of oscillation at any given point 
within the target pattern; all these parameters change from one target 
pattern to another. Where two such patterns abut, there is an abrupt and 
visible change in these parameters, analogous to a shock in gas dynamics. 
This shock moves in a way predictable from the frequencies and wave
lengths of the patterns it separates. With a small initial movement of 
the fluid, rotating spirals may also be formed. 

The first mathematical task is idealization: to pick out from the 
observations a picture amenable to mathematical description. For the BZ 
patterns, the simplest idealization is that of a periodic plane wave, obtained 
by focusing attention on a neighborhood of a radial line of a target pattern, 
ignoring the center and pretending the target pattern has infinite extent. 
(Such an idealization, and other more comprehensive ones to be discussed, 
make sense because of the observation that the development of a piece 
of the overall pattern appears to be virtually independent, on the time 
scale considered, of all but a small neighborhood of itself.) 

Mathematically, a plane wave is a function c(x, t) which is actually 
dependent only on the single variable t — a-x. We may now ask: under 
what hypotheses on (2) and K does (1) have periodic plane wave solutions? 
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As a partial answer, one has a very general sufficient condition: if (2) has 
a stable limit cycle, then (1) automatically has a one-parameter family 
of periodic plane wave solutions, parameterized by \a\ ([26]). These sol
utions are stable for \a\ small if E is not too far from the identity ([21]). 
Thus one might expect, as is turning out ([11]), that oscillating chemical 
systems other than the BZ reaction can support pattern formation. (The 
condition on (2) is not necessary: the excitable version of the BZ reaction 
can support propagating plane waves, as can an excitable axon of a nerve. 
The Hodgkin-Huxley and FitzHugh-Nagumo equations, which have 
the form (1) with K semidefinite and (2) excitable, have been shown to 
have travelling wave solutions. For references, see [35].) 

We go on to ask if all of the other features described above are conse
quences of merely the existence of a stable oscillation for (2). Take, for 
example, the "shock" separating a pair of target patterns. Here, an appro
priate idealization focuses on the line joining the pair of centers, considered 
to be many, many wavelengths apart. The mathematical description is then 
a pair of plane waves, propagating inward from ± °°? modulating from 
one to the other over a finite, identifiable region that may itself propagate. 
It is much harder than for plane waves to find such a solution to (1) ; as 
a first step, one has recourse to specific model equations for (2). 

One such caricature retains nothing of the particular properties of the 
BZ reaction but its ability to oscillate. The F and K of (1) are given by 

r A coi 

where I = A(|c|a), co = co(\c\2), with A(l) = 0, A'(1)<0; equation (2) 
with this F has a stable limit cycle at \c\ = 1. This system has the great 
advantage that its symmetry makes it possible to guess at the form of 
solutions, which allows a reduction of some problems in partial differential 
equations to ones in ordinary differential equations. Indeed, the symmetry 
suggests the use of polar coordinates in concentration space: ox = rcosô, 
c2 = rsin0. One may then look for solutions in which the amplitude r is 
a function of space, but not of time: r = r(x). It then follows from the 
structure of (1), (3) that 0(x, t) has the form 

X 

6(x, t) -= at— j a(x)dx. (4) 
a 

This leads to a third order, nonlinear ordinary differential equation for 
r(x),'r'(x) and a(x), with parameter a. The natural boundary conditions 
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for a shock solution are 

r(x)->r± and a(x)->a± as #->±oo, (5) 

where r = r± and a = a± are the amplitudes and wave numbers of the 
plane waves at ±oo, with «- >«+• 

Under one further hypothesis, it is shown in [21] that there absolutions 
to (1), (3) with r = r(x), (4), (5), for an open set of parameters r±. (Given 
r± , and the functions X and co, a± are determined up to sign; with these 
determined, a is fixed.) The hypothesis is that co'(r) < 0; this can be 
interpreted as a statement about the dispersion function, or relation 
between frequency and wave number, of the family of plane wave solutions 
discussed above, a statement which is well defined for general systems of 
the form (1) having a family of plane wave solutions (and checkable in 
a physical system without knowing F). Under this hypothesis one can 
show, at least formally, that shock solutions exist for open sets of pairs 
of plane waves, as before; it remains a challenge, related to the mysterious 
mathematical fiction of "slowly varying waves", to understand the general 
result in a rigorous way. 

For more complicated idealizations, such as target patterns or spirals of 
infinite extent, the patterns are not yet understood in the sense of this 
program, that is, as consequences of general, checkable hypotheses. (Such 
solutions have been shown to exist for models of the form (1), (3) ([8], [16], 
[19], [27], [28]), and the work shows the intricacy of the structure of the 
solutions to (1), (3), which contain "horseshoes" of spatially bounded, 
time periodic solutions ([24], [27]). See also [14].) One exception to the lack 
of generality concerns target pattern solutions in the presence of inhomo-
geneities, which are known to facilitate the formation of target patterns. 
P. Hagan has shown, formally ([18]), that if (2) has a limit cycle, and 
there is an impurity which acts locally to increase the frequency, then 
(with some technical assumptions about scaling and the size of the fre
quency increase) the target patterns form and are stable. This was proved 
for X -co systems ([25]), but remains to be proved for general F such 
that (2) has a limit cycle. 

The largest open questions concern the formation of these patterns in 
excitable systems, for instance cardiac tissue. One difficulty is the absence 
of an easy to study caricature; although À — co systems may be modified to 
be excitable, such modifications lose the advantage of symmetry. Numeri
cal work ( [44]), plus work on discrete versions (see [20] and references in it), 
suggest spiral solutions should exist in equations that model excitable 
media. 
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Parabolic bursting 

I turn now to some biological phenomena, in the same spirit as the dis
cussion of the BZ reaction. The aim, as before, is to understand dynamical 
behavior as a consequence of general, but checkable, mathematical hypoth
eses which might be satisfied in a variety of chemical/physical circum
stances. The first phenomena is known as "bursting", and it occurs in 
a large class of cells (including neural, cardiac and smooth muscle) which are 
electrically excitable; bursts are series of action potentials (spikes), or 
rapid changes in trans-membrane potential, which alternate with periods 
of quiescence. Even on a mathematical level, there are many ways in 
which bursting patterns can be accomplished ([4], [36]). I shall concentrate 
on a subclass of bursting phenomena known as parabolic bursting, some 
well-studied cases of which are the ganglion cells of the mollusc aplysia 
and the smooth muscle of mammalian gastro-intestinal tract ([2]). In 
parabolic bursting, the interspike intervals first decrease and then increase 
again. Furthermore, the spikes appear to "ride the crest" of a slower, 
almost sinusoidal oscillation, which remains when chemicals are used to -
suppress spike formation. 

For nervous tissue, including aplysia, there is a (successful) tradition 
of looking for explanations of the dynamics of the trans-membrane poten
tial in the framework of the Hodgkin-Huxley equations or variations of 
them ([4], [32]). However, functions performed by cells are tightly coupled, 
and although, for purposes of modelling, it is essential to focus on some 
processes and ignore the others, it is by no means a priori obvious what 
processes are essential to a given behavior. In the case of parabolic bursting, 
some (but not all!) important qualitative behavior, plus the response to 
a lot of pharmacological, temperature and electrical perturbations, seems 
easier to understand if one pays more attention to the other functions of 
the cell, and less to the details of the voltage regulated ion conductances 
described by Hodgkin-Huxley like equations. In particular, if one takes 
into account the strong evidence for a slow (period of the order of a min
ute) metabolic oscillation coupled to the membrane potential, one can 
understand the above behavior from general features of the mathematical 
properties of excitable cells, independent of detailed knowledge of the 
ion currents or even explicit identification of the slow oscillation. (The 
problem of modelling a biological system is complicated by the wealth of 
plausible candidates for mechanisms, as well as the possibility that a given 
set of behavior is due, independently, to more than one mechanism. 
Some physiological arguments for and against the model to be discussed 
below are given in [13].) 
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Mathematical models of excitable tissue, with trans-membrane potential 
V as one variable, usually have the property that V = 0 along a curve 
or surface that is "cubic-like" in V ([4], [36]). From this, and physiologi
cally realistic assumptions on the other variables (cf., e.g. [4], [13], [15]), 
it is easy to construct models of excitable tissue with the following property : 
a perturbation óf some parameter changes the system from oscillatory 
to excitable, preserving the existence of an attracting, invariant circle. 
(The latter is a limit cycle for the oscillatory system, and a circle with two 
critical points for the excitable one. See Figures la,- b.).Thus, we are led 
to study equations of the forms 

*« = /(*) + e2Ô^,*f), xeRn, (6) 

m~8h(x,y), yeR™. (7) 

Here, the components of x are those variables involved in spike formation, 
those of y the ones involved in the slower (possibly metabolic) oscillation. 
For e =» 0, equation (6) is assumed to be exactly on the border between 
oscillatory and excitable; i.e., the attracting invariant circle has a single 
critical point, x = 0, which is a saddle-sink. (g(x,y) may have terms 
independent of y, so, for e small, the equation for x (without coupling) 
may be excitable or oscillatory.) The other hypothesis is on (7): for as = 0 , 
(7) is assumed to have a stable limit cycle solution, e turns out to measure 
the ratio of the spike time to an average interspike interval, and there 
may be many spikes per slow period. 

For different choices of g(x,y) or h(x,y), equations (6), (7) can be 
shown to display slow oscillations, bursting, and another form of oscil
latory behavior known as "beating"; the latter refers to periodic spiking 
with no apparant superimposed slower time scale. (This behavior is found 
in some aplysia cells, and chemical perturbations can change "bursters" to 
"beaters" and visa versa ([5]).) More specifically, there is a change of 
variables that exhibits (6), (7) as a singularly perturbed equation whose 
(nonuniform) limit as e->0 contains an invariant torus. The differential 
equation on the torus has the form 

dT,= (l-cos0) + (l + cos0)[a + £jT(T)], (8) 

where a, ß and H(r) depend on g and h, and r = cet for an appropriate 
constant c. (S(r) is normalized to have zero average value and a maximum 
of 1.) Equation (8) can be transformed into a Hill's equation by letting 
tan (6/2) = —vjv. One then gets 

«V* = -la + ßE(r)Jv. » (9) 
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Fixing H(r) and varying a and /?, one passes through countably many re
gions in parameter space for which the solutions to (9) are unstable, 
separated by regions in which the solutions to (9) are quasiperiodic. Small 
amplitude slow oscillations, beating, and parabolic bursting turn out to 
correspond to different regions of a, ß space. In particular, for (a, ß) in 
the jth unstable region for (9), equation (8) is structurally stable, and has 
a globally stable solution with j spikes per burst. If (a, ß) belongs to a quasi-
periodic region for (9), solutions to (8) have a mixture of j or j +1 spikes per 
burst; the pattern can be computed in terms of a rotation number ([13]). 
Low amplitude oscillations turn out to correspond to a < ~\ß\, and beating 
to ß <^ 1, a moderate. Because of the nonuniformity of (the transformed 
version of) equations (6), (7) to (8), it requires work to show that these 
solutions still exist for (6), (7); this has been proved for bursting solutions 
only if the number j of spikes per burst is not too large for a fixed e (j grows 
as e->0) ([13]). To interpret responses of cells to electrical and pharmacol
ogical perturbations, one has to impose further, but weak, restrictions on 
f(x) (i.e., qualitative similarity to the Hodgkin-Huxley equations). 

The analysis of (6), (7) in terms of Hill's equation uncovers some 
further surprising relationships between the dynamics of biological oscil
lators and that of the BZ reaction. Unlike the previous discussion of the BZ 
reaction, we are now concerned only with temporal behavior, in a fluid 
mixed so that no spatial pattern can occur. As mentioned previously, 
in such a stirred "batch reactor", this fluid may bo oscillatory or excitable, 
depending on the recipe. More complicated dynamics can be obtained by 
running the reaction in a "continuously stirred tank reactor", familiar to 
chemical engineers as a OSTE. In a OSTE, fresh chemicals are added at 
a constant rate, and reacting fluid is drawn off at the same rate.- The 
dynamics of the reaction turns out to depend in an important way on this 
flow rate. In fact, as the rate is changed, the system appears to pass 
through a succession of parameter regions analogous to those of Hill's 
equation ; regions with periodic output alternate with regions in which the 
output is not periodic ([22], [41]). In the jth periodic region, one sees 
a bursting pattern with one large oscillation and j — 1 smaller ones in each 
burst. In a nonperiodic region, the output is a mixture of j-bursts and 
0'+l)-bursts. The latter regions are cottimonly referred to as chaotic; 
indeed, the experimentally measured power spectrum of the output 
contains broad band noise, as opposed to the clear peaks in the periodic 
regions. It is interesting to note that these features are mimicked by 
equation (8) (including the broad band noise for some limited regions of 
a, ß space), in spite of the fact that a differential equation on a torus 



1654 Section 18: N. Kopell 

cannot have strange attractors. Another connection of equation (9) to 
"chaos" is the bifurcation from a periodic to a nonperiodic region, which is 
reminiscent of the scenario of "intermittency" ([29]). For a three-dimen
sional model of bursting in the BZ reaction (in some parameter regions) see 
[37]. 

Before leaving the subject of bursting, I would like to mention the 
work of G. Oarpenter ([4]) in the qualitative spirit of this paper. She showed, 
for a different (nonparabolic) kind of bursting that certain qualitative 
features of the Hodgkin-Huxley equations alone were sufficient to account 
for the bursting (and the fine structure of the interspike intervals) in 
electrical signals that propagate as traveling waves down the axon of 
a nerve cell. 

Frequency plateaus 

For this example, I shall go back to the problem of spatial patterns. Heart 
muscle tissue, with its (abnormal) spatial patterns, has already been 
mentioned. Another important excitable/oscillatory system with spatial 
differences in dynamics is smooth muscle in mammals, e.g., in the gastro-in
testinal tract. In normal mammalian intestine there is an endogenous slow 
electrical oscillation in the trans-membrane potential of some of the 
muscle cells. These oscillations exist even when the muscle is not active; 
contraction of the muscle is associated with bursts of action potentials 
discussed above ([9]). 

The frequencies of the slow oscillations are not uniform; indeed, 
along, say, the small intestine, there is a gradient in the frequency (which 
is higher in the oral than in the lower or aboral part) ; along some lengths of 
intestine, this frequency gradient is almost linear. The above information 
is found by experiments in which small segments of the intestine are 
excised and then? intrinsic frequency measured. In the live animal, one 
does not see this linear gradient. Instead, there are frequency "plateaus", or 
stretches of intestine with constant frequency, separated by jumps in 
frequency at places that do not appear to have physiological significance. 
The frequency on a given plateau is at least as high" as the highest of the 
natural frequencies along that segment. 

The slow wave electrical activity has been modeled by several investi
gators ([3], [10], [31], [38], [39]) as a chain of loosely coupled oscillators, 
mostly Van der Pols with almost-sinusoidal limit cycles. The exact form of 
the oscillators, the gradient in frequencies, the form and strength of the 
coupling and the amount of inhomogeneity and/or anisotropy in the 
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coupling vary among those authors. For a variety of related equations, 
they produced simulations (digital or electronic) which yield frequency 
plateaus. The first mathematical task was to understand, analytically, the 
dynamical behavior of those models in a context as free as possible of the 
unknown details of the oscillators and the coupling. 

The equations are very close in form to those described in the first part 
of this paper; they can be thought of as discretized versions of reaction — 
diffusion equations: 

^ = F(Xk) + sRk(Xk, e) + sB[Xk+1--(l + a)Xk + aXk_1], 

l < f t < w + l , XQ EEO ^Xn+2. (10) 

Here Xk e Rm
9 B is an m xm matrix, e <̂  1, and a —1 is a measure of the 

anisotropy in the coupling. The reaction part of this equation 

äXh =F(Xk) + sRk(Xk,e) (11) 
dt 

is assumed to have a stable limit cycle with frequency 2njcok, where cok 

changes monotonically (but weakly) with Tc. 
For e small (i.e. weak coupling and a weak gradient), it turns out that 

the behavior of (10) depends on very few of the details of F, {Rk} and D. 
In particular, in the m(w+l)-dimensional phase space of (10) there is an 
(w+l)-dimensional stable invariant manifold on which the dynamics can 
be represented as a "phase equation". This equation has the form 

ddl = 0 ( 1 ) , (12.a) 
dt 

d<ph - ß [zfÄ+jff(% +J + a S ( ~ ^ ) - H ( ^ ) - a f f ( - - - ^ _ 1 ) ] + 0(ß2), (12.b) 
dt 

h = 1 , . . , , M , H(<p0) = 0 ^S((pn+l), 

where 0 is the phase of the ifcth oscillator, <pk == dk+l — 8k, and eAk == cok+1 — 
— œk. H is a smooth, 2^-periodic function. (If F has the form (3) then 
E(cp) = J. sin p + JB [cos 99— 1] for some A and B.) 

To lowest order, equation (12b) decouples from (12a) and can be treated 
as an n-dimensional system 

d(pk 

dt 

52 — Proceedings..., t. II 

= Ak +H(<Pk_1) +aE( -<pk) -S(<pk) - aH( -cpk_x), (13) 
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where r = et. Even (13) is quite complicated, with rich mathematical 
questions, and the existence of frequency plateaus is not obvious. For 
a simple choice of M (namely H = sinç? or any odd function of <p qualitat
ively like sin<p), a = 1, and Ak === — ß for some ß (a linear frequency gradi
ent), it can be seen how frequency plateaus arise as the gradient becomes 
steeper ([12]): for ß sufficently small, there is a unique critical point of 
(13) which can be interpreted as a "phase-locked" state of (11), i.e., a state 
in which all oscillators run at the same frequency, with fixed phase rela
tionships between them. (This is discussed in [7] in the context of lamprey 
swimming). At some critical value of ß, all critical points of (13) disappear, 
and a large amplitude limit cycle appears (not by a Hopf bifurcation). 
This limit cycle turns out to correspond to a pair of frequency plateaus 
with a jump in frequency between them; the homotopy type of the limit 
cycle as a subset of the phase-space of (13) turns out to indicate the position 
of the jump. 

The above pair of frequency plateaus differ from the experimentally 
observed ones by being too symmetric; unlike the real plateaus, whose 
frequency is at or above the intrinsic frequency of each oscillator, for the 
above simple problem, the plateau frequencies are forced to be symmetric 
with respect to the midpoint of the intrinsic frequency gradient. However, 
numerical computation and formal arguments ( [12]) suggest that if H is not 
an odd function of its argument, then many properties of the solutions are 
quite different; in particular, the symmetry is broken, and the plateaus 
may lie uniformly above the natural frequencies. More work is needed to 
understand this. 

There are many mathematical problems that remain in trying to 
understand the behavior of smooth muscle tissue. As previously mentioned, 
the above model treats the intestine as a chain of loosely coupled oscil
lators. The real tissue, however, has a complicated architecture, with several 
layers and with a mixture of excitable and oscillatory cells ([9]). Will 
a more accurate mpdel of the tissue still behave like a chain of coupled 
oscillators? More importantly, it remains to understand the plateaus and 
the bursts in the context of the function of the tissue, which involves 
peristaltic movement and mixing of material. This will involve looking 
at the mechanical responses of the cells, which are coupled to the electrical 
opes. 

For each of the phenomena discussed above, the scientific program is 
to look for very general (and, if possible, checkable) hypotheses which can 
account in (qualitative) detail for the observed dynamics. The role of 
mathematics in the applications is to help identify the appropriate level 
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of explanation, i.e., to sort out which phenomena occur for very general, 
perhaps qualitative reasons, and which require a more detailed understand
ing of the biology /chemistry. For example, the patterns in the BZ reaction 
appear to be a consequence of not much more than the existence of the 
oscillation in the homogeneous fluid; if so, further details about the oscil
lations will not help understand the patterns. The role of the phenomena 
in the.mathematics is a classic one, familiar from physics and mechanics: 
to guide one through very complicated equations to fertile mathematical 
questions. 
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On Fractal Geometry, and a Few 
of the Mathematical Questions It Has Raised 

In Memoriam Waclaw Sierpinshi (1882-1969), etexplorateur de V'infini" 
In Memoriam Szolem Mandelbrojt (1899-1983) 

This presentation is meant to sketch a few scattered problems in diverse 
branches of pure mathematics. Some have been solved, more or less 
completely, but others remain open. Their importance and difficulty are 
quite varied, but they are alike in two ways. Firstly, they all arose in the 
course of very practical investigations into diverse natural sciences, some 
of them old and well-established, others newly revived and a few of them 
altogether new. Secondly, they involve in essential fashion the "monster 
shapes" that had until now been viewed as belonging to chapters of mathe
matics devoid of any contact with the real world. For these two reasons, 
these mathematical problems prove central to an issue of consequence. 
Does pure mathematics exist as an autonomous discipline, that can—and 
ideally should—develop in total isolation? Or is the existence of totally 
pure mathematics a myth? 

After I finish presenting this sample of problems, I shall show a collec
tion of slides that demonstrate what certain shapes of mathematics really 
look like. The need to draw these shapes arose in the course of my work 
because of their scientific importance: they help my ideas and theories 
become accepted, and they help me generate new ideas and theories. Yet 
many of these shapes seem to strike everyone as being of exceptional and 
totally unexpected plastic beauty. Some have the beauty of the mountains 
and the clouds that they are indeed meant to represent, and others seem 
wild and unexpected at first, but after a very brief inspection come to 
appear as totally familiar. As a result, these slides prove central to a different 
philosophical issue. What is beauty, and is there any relation between 

[1661] 
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the beauty of these mathematical pictures and the beauty that a math
ematician sees in his trade after long and strenuous practice? 

We shall leave this second question aside, but shall face—implicitly 
but very pointedly —the question of what the relation is between pure 
mathematics and the outside world. Most scholars answer that "it depends". 
Obviously, there are some branches of mathematics in which physics, 
numerical experimentation and geometric intuition are very beneficialpbut 
elsewhere in mathematics physics is irrelevant, computation is powerless, 
and intuition is misleading. 

The irony is that history has consistently proven the above distinction 
to be unreliable : as branches or branchlets of mathematics develop, they 
suddenly either lose or acquire deep but unforeseen connections with the 
sciences—old and new. Also, numerical experimentation—which Gauss 
had found invaluable but whose practice had not changed until yesterday — 
has seen its power multiply thanks to computers —and in particular, thanks 
to computer graphics. Finally, the geometric intuition built on the practice 
of Euclid and of calculus is proving not to be something immutable, but 
can be retrained. 

In no case that I know is this irony nearly as intense as in fractal 
geometry, a new branch of learning that I conceived, developed and put 
to use in models and theories relative to diverse sciences, and which has now 
become widely practiced. My latest book on this topic [1] will be referred 
to in the sequel as FGÏT. Even more specifically, there m profound irony in 
the fact that the present lecture is being delivered in the city where Waclaw 
Sierpinski was born, and where he labored to establish a marvelous school 
that viewed itself as devoted exclusively to Fundamenta Mathematicae and 
contributed mightily to the list of monsters. I do not know how Sierpinski 
felt about the philosophical problem we are discussing, but concentration 
upon foundations did contribute to the gulf between mathematics 
and physics. In the last few years, however—largely by my work, that of 
my colleagues and now that of many scholars —the situation has changed 
dramatically. 

The present catalogue is far from exhausting the pure mathematics 
component of fractal geometry. I t uses freely the term fractal, which I 
coined from the Latin word for "rough and broken up", namely fractus. 
Loosely, a "fractal set" is one whose detailed structure is a reduced-scale 
(and perhaps deformed) image of its overall shape. At the end, I shall say 
a few more systematic words about fractals and about fractal geometry as a 
systematic discipline. "Dust " will be used to denote a totally disconnected set. 
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Two fractal curves by Sierpinski, and the new roles they find in physics 

Breaking all logical and historical sequence, let us honor Sierpiiiski by 
beginning with fractal shapes that he investigated deeply in the 1910's [2], 
One of these shapes had been known for a long time as the "carpet", and 
the second has received from me the name of "gasket". The Sierpiiiski 
carpet was originally introduced to show that a plane curve can be "topo
logically universal", that is, can contain a homeomorphic transform of 
every other plane curve. The construction starts with a square, then 
divides it into 9 equal subsquares and erases the middle one, which I 
call "trema" (Greek for "hole"). Then one proceeds in the same fashion 
with each remaining subsquare, and so on ad infinitum. The Sierpiiiski 
"gasket" was originally introduced to show that a curve can have branching 
points everywhere. The construction starts with an equilateral triangle, 
then divides it into 4 equal subtriangles and erases the middle one as trema. 
Then one proceeds in the same fashion with each remaining subtriangle, 
and sov on ad infinitum. During the nineteen-twenties, the distinction 
between the carpet and the gasket became essential to the theory of 
curves of P. Urysohn and K. Menger, these being the prime examples 
of curves having, respectively, an infinite and a finite "order of ramifica
tion". 

Needless to say, these shapes and this notion were meant to be anything 
but "applied mathematics". As a matter of fact, some mathematicians 
took the "gasket" as prime evidence that geometric intuition is powerless, 
because it can only conceive of curves having scattered branch points, 
but not having branch points everywhere. I confess that contemplation 
of the Eiffel Tower had long made me harbor doubts about this contention. 
Gustave Eiffel had designed his Tower to have many multiple points, 
and wrote that he would have made it even lighter, with no loss of strength, 
had the availability and cost of finer materials allowed him to increase 
the number of double points even further. The intellectual step from the 
Eiffel Tower to the Sierpiiiski gasket is one that my intuition was easily 
trained to take. 

But let us go back to more serious questions. Lately, the Sierpiiiski 
carpets and gaskets and the order of ramification had come to be seldom 
mentioned by mathematicians. Where should one go to find the latest 
facts about these notions ? The surprising answer is that one should go to 
journals in physics, because the statistical physics of condensed matter has 
come to view these notions as "unavoidable". Let me give three examples. 
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(Further examples are found in Mandelbrot, Proceedings of Stat. Phys. 
15, in J. Stat. Phys. 34 (1984), p . 895.) 

Percolation clusters at criticality 

A first need for Sierpinski's creations arose in the study of the important 
notion of percolation cluster at criticality. When seeking a model to com
bine all the geometric features of a percolation cluster's "backbone", 
I went straight to the Sierpiiiski gasket. Then a group of physicists and 
I took multi-dimensional variants of the gasket, and confirmed their 
usefulness as models of percolation cluster backbones (FGIT, p. 133; 
Gefen, Aharony, Mandelbrot and Kirkpatrick, Phys. Rev. Lett. 47 (1981), 
p. 1771). Once ridden of the cobwebs of abstraction, the gasket proves 
a very practical and enlightening geometric tool to work with. Physicists 
make it the object of scores of articles, and invent scores of generalizations 
that were not needed in 1915. 

The Ising model of magnets 

Magnets are commonly modeled by a model due to Lenz but credited to 
Ising. A second reason for the physicists' interest in the work of Sierpinski 
resides in Onsager's finding, that in Euclidean space RE it is necessary 
and sufficient that F > 1 for magnets to exist. Long open implicit question: 
to which of the innumerable mathematical differences between the.fi73, for 
E = 1 and H > 1, can the existence of magnets be traced? Partial answer: 
We studied numerous specific examples of the Sierpinski curves and related 
fractal lattices, and found that magnets can exist when and only when 
the order of ramification is infinite (FGÏT, p. 139; Gefen, Mandelbrot 
and Aharony, Phys. Rev. Lett. 45 (1980), p. 855). Conjecture. The above 
answer is of general validity. This raises a difficult Unsolved problem: 
to rephrase the criterion of existence of magnets, from the present indirect 
and highly computational form, to a direct form that would give a chance 
of proving or disproving this conjecture. 

Actual geometric implementation of the fractional-dimensional spaces of 
physics" 

Physicists are very successful with a procedure that is mathematically 
very dubious. They deal with spaces whose properties obtain from those 
of Euclidean spaces by interpolation to "noninteger Euclidean dimensions". 
For example, the dimension may be 4 — e or 1 + e, with an infinitesimal 
£. Calculations can be carried out, in particular, expansions can be per-

http://the.fi73
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formed in e, and then the "infinitesimal" e is then set to 1. Mathematically, 
these spaces remain unspecified, yet the procedure turns out to be extreme
ly useful. Mathematical problems. To show that the properties postulated 
for those spaces are mutually compatible, to show that they do (or do 
not) have a unique implementation, to describe their implementation 
constructively. Very partial solution. A very special example of such 
space has been implemented indirectly (FGN", 2nd printing, p. 462, and 
Gefen, Meir, Mandelbrot and Aharony, Phys. Rev. Lett. 50 (1983), p . 145). 
AVe showed that the postulated properties of certain physical problems in 
this space are identical to the limits of the properties of corresponding 
problems in a Sierpiiiski carpet whose "lacunarity" (as I had defined it in 
the study of galaxies ; see below) is made to converge to 0. 

Peano and Koch fractal curves and the measurement of the Earth 

The Sierpinski curves were among the "great counterexamples" against 
previously held intuitive ideas about mathematics. Their numbers had 
been growing since Weierstrass demonstrated that a continuous function 
can be nondifferentiable, and since Cantor and Peano demonstrated that 
dimension is a notion that cannot be trusted to intuition. To quote J. Dieu-
donné, "Some mathematical objects, like the Peano curve, are totally 
non-intutive... extravagant." Until recently, this view was universally 
accepted as established beyond discussion. However, (FGKT, Chap. 7), 
I made the Peano curve become-viewed as eminently intuitive, by showing 
it to be the logical extrapolation of a natural simplified geometric model 
of the cumulative shores of all the rivers in the fluvial tree! Similarly for 
the Koch nondifferentiable and nonrectifiable "snowflake curve" (FGîsT, 
Chaps. 5-6): I used it as the logical extrapolation of a natural simplified 
geometric model of coastlines. (Hugo Steinhaus and two or three other 
scholars had made this remark, but failed to develop it.) Not only have the 
"great counterexamples of analysis" thereby become very useful in the 
sciences, but their most obvious and indisputable usefulness has been to 
bring geometry back to the source indicated by the etymology of "ge
ometry" = the measurement of the Earth. The fractal geometry of the 
relief that I developed is founded on the old counterexamples! 

Cantor-like fractal dusts. Interplay between their roles in physics and in 
the theory of sets of Fourier multiplicity 

The first of several things I have to say about Cantor sets concerns an 
example of multiple mutual interplay between pure probability theory, 
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the theories of noise and turbulence, and the theory of sets of multiplicity 
of Fourier series. The latter are sets «^ in [0, 2rc], such that there exists 
a Fourier series that converges to 0 f or x $ £P, yet is not identically zero. 
The problem of whether such sets exists was raised by G. Cantor; in fact, he 
designed his ternary set thinking it may be a set of multiplicity. But it is 
not one. I t gradually became clear (largely thanks to E. Salem) that 
a deterministic Cantor set is a set of Fourier multiplicity only if it has 
some very specific number-theoretical properties. Or it can be a suitable 
random set, but the examples known before 1965 were very contrived. 

Before I knew anything of the above problem, I had injected the 
Cantor set in physics when I needed a first approximation to represent 
certain error patterns in telephone transmission. Then, as a second approxi
mation, I turned to a randomized variant, the "Levy fractal dust", also 
called "stable subordinator set" (FGN", Chaps. 8 and 32). This set appeared 
desirable because it combined self-similarity properties with a total lack of 
irrelevant structures. I proposed that the proper measurement of a chan
nel's "noisiness" was not the average number of errors, as had seemed 
obvious, but was a totally unexpected quantity : the Hausdorff-Besicovitch 
dimension. 

In this framework, acquaintance with sets of multiplicity led me to 
formulate the following Problem : Is the Levy dust a set of Fourier multiplic
ity? The answer (J. P. Kahane and Mandelbrot, Comptes Rendus (Paris) 
161 (1965), p . 3931; see FGN", p. 360) is to the affirmative. Other "natural" 
sets of multiphcity followed; it is worth pointing out that their seeming 
"natural" may perhaps be related to their link with the description of 
nature. 

In a related development in a very different part of physics, "devil's 
staircase" functions, which vary only on Cantor-like fractal dusts, have 
become very important in the study of physical systems with incommen
surable frequencies. 

Conjecture and problem concerning the fractal (Hausdorff-dimensional) 
properties of the singularities of the Navier-Stokes and Euler equation 
of viscous and nonviscous fluid motion 

The above-mentioned work of mine on noise records that can be repre
sented by Cantor sets was done in 1962, near-simultaneously with A. IS". 
Kolmogorov's work on the intermittency of turbulence. After numerous 
experimental tests, designed to create an intuitive feeling for this phenom
enon (e.g., after listening to turbulent velocity records that were trans-
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formed to be made audible), I was able to extend my newly developed meth
ods to turbulence. This led me circa 1964 to the following Conjecture. The 
property of being "turbulently dissipative" should not be viewed as 
attached to domains in a fluid, but as attached to fractal sets whose 
intersection with a straight line is a Cantor-like fractal dust having a Haus-
dorff dimension in the range from 0.5 to 0.6. The corresponding full sets in 
space should therefore be expected to be fractals with a Hausdorff dimen
sion in the range from 2.5 to 2.6. 

Actually, Cantor dust and Hausdorff dimension are not the proper 
notions in the context of viscous fluids, because viscosity necessarily 
erases the fine detail that is essential to Cantor fractals. Hence the follow
ing Conjecture (FGN", Chap. 11 and Mandelbrot, Comptes Rendus 282A 
(1976), p. 119). The dissipation in a viscous fluid occurs in the neighborhood 
of singularity of a nonviscous approximation following Euler's equations, 
and the motion of a nonviscous fluid acquires singularities that are sets of 
dimension about 2.5 to 2.6. Open mathematical problem. To prove this 
conjecture, under suitable conditions, or to disprove it. 

Comment A. Several numerical tests of this conjecture have been 
carried out, and are in agreement with it (e.g. Ohorin, Comm. Pure and 
Appi. Math. 34 (1981), p. 853). See also Henschel and Procaccia, Phys. Rev. 
Lett. 49 (1982), p. 1158. Comment B. I also conjectured that the Navier-
Stokes equations have fractal irregularities, of much smaller dimension. 
This conjecture had led to extensive work by V. Scheffer, and then others, 
especially by E. Temam and 0. Foias. Comment 0. A few years after my 
work, Cantor-like dusts also entered in the study of the transition from 
laminar to turbulent flow, through the work of Euelle and Takens; see 
these Proceedings, p. 237, the contribution by David Euelle. 

Postscript 

Numerous facts about the above conjectures are reported in these 
Proceedings, p. 119, in the contribution of Peter D. Lax, which also contains 
an extensive bibliography. 

The large scale structure of the universe: role of Cantor-like fractal dusts 
in describing the distribution of galaxies 

Upon examining various models of the distribution of galaxies and clusters 
of galaxies, I observed their resemblance to spatial Cantor sets, and con
cluded that their main ingredient was postulated self-similarity. The reason 
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why these models had been dismissed as unrealistic (and most had been 
forgotten), seemed to lie in their excessive regularity and the unreasonable 
feature they had, of implying that the Universe has a "center". Both 
features proved capable of being corrected (FGN, Chaps. 9 and 33 to 35). 
First, I advanced a model, now called The Seeded Universe, constructed 
with the help of a three-dimensional generalization of the Levy dust that 
had proved (see above) to be a set of Fourier multiplicity. This generaliz
ation's Hausdorff-dimensional properties were known. Its correlation prop
erties (Mandelbrot, Comptes Rendus (Paris) 280A (1975), -p. 1551) are 
nearly identical to those of the computer-processed galaxy maps. 

Actual simulations, however, revealed clear-cut discrepancies, and in 
particular the fact that the Seeded Universe was visually far more "lacunar " 
than the real world. I gave a precise meaning to this notion of lacunarity, 
and devised a second model, now called The Parted Universe, in which 
lacunarity can be adjusted at will, and can be fitted to the actual distribu
tion. The idea is to "cut-out" from fi3 a collection of suitably sized and 
distributed open sets called "trémas". An heuristic argument gave a certain 
value for the remaining set's Hausdorff dimension, and one could not fail 
to Conjecture that this was the correct value. Confirmation. This last 
conjecture was proven in JB by Mandelbrot, Z. Wahrsch. 22 (1972), p. 145 
and in RE with F > 1 by Y. El. Hélou (Comptes Rendus (Paris) 287A 
(1978), p. 815) and in generalized form by U. Zähle (Trans. 9th (1982) 
Prague Conference on Information Theory, p. 295, and Math. Nachr. 
116 (1984), p. 325). 

Remark A. Several physical arguments based on Newtonian attraction, 
when combined with self-similarity, predict the fractal dimension B = 1. 
Open mathematical problem. Prove (or disprove), using potential theory, 
that B = 1 should be found in every model based on Newtonian potential. 

New aspects of Brownian motion and of related fractal curves 

My assertion, that I was the first to put the old counterexample of analy
sis to use in physics, has of course a very notable exception: Norbert 
Wiener's Brownian motion process B(P) is (a.s.) a nondifferentiable curve, 
and it has drawn immense interest from both mathematicians and physi
cists. My new applications raise further problems and also require a gener
alization—which I called the fractional Brownian BH(P)— namely the 
random function fromRT i n t o R E whose increments BU(P)—BH(P') are 
Gaussian variables of zero mean and variances equal to |P —P'\2H. The 
ordinary Brownian case corresponds to S = 1/2. 
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A natural random universal curve. Eeturning to Sierpiiiski, let me 
mention my Conjecture (FGN, p. 243) that to obtain a topologically 
universal plane curve it suffices to draw a piece of ordinary Brownian 
motion, with S = 1/2, B in R2 and P in JB, and to extract a "perfect 
wiggle" if, defined as a portion contained between successive returns to 
the same point. A proof h^ been provided by S. Kakutani and N. Tongling 
(unpublished). Brownian motion had been previously shown to be universal 
in other ways. 

The self-avoiding Brownian motion. The complement of the perfect 
wiggle if contains (a.s.) one unbounded component and an infinity of 
bounded components. The boundary of the unbounded component was 
dubbed "self-avoiding Brownian motion" in FGN. Conjecture: The di
mension of this last fractal curve is 4/3. Problem. To determine the distri
bution of the areas of the bounded components. 

Islands. Now let JB be in JB and P in JB2. An "island" is the set of values 
of BH(P) for P's lying within a Jordan curve called "coastline", such that 
Bn satisfies BH(P) = 0 and also satisfies BH(P) > 0 at all interior points 
close to the boundary. Problems: Derive the dimension of an island's 
boundary. (The zero-set where BH = 0 is of dimension 2 —JET.) 

Cups. For each P within the coastline, define B^(P) as the infinimum, 
over all continuous curves from P to a point on the coastline, of the maximum 
of BH(P) on such a curve. A maximal connected open domain of constant 
Bg(P) is called "cup" in FGN. The boundary of the unbounded com
ponent of the closed complement of a cup will be called a cup's "outer 
boundary". Problem. The union of outer cup boundaries is a ramified ran
dom fractal set. Study its structure. Is it a universal curve? 

Some random fractal measures, and the fixed points of related smoothing 
transformations of probability distributions. Multiplicative chaos 

Consider the following array of i.i.d. random variables: G r.v. W(g), then 
C2 r.v. W(g, h), then O3 r.v. W(g, h, h), e tc . . . Given a point I e [ 0 , 1 ] , 
write it in base (/as< = 0 , t 1 , t 8 , . . . , t f t , . . . Define X'n(t) = W(*I)W(*BJ h) 

t 

"RPX'i? 2̂> *a)• • • T^Cu *2> • • • > U> a n d -^n(') = / ^n(s)*• Problems, con-
0 

jeclures and partial answers. Mandelbrot (Comptes Rendus (Paris) 278A 
(1974), pp. 289 and 355) posed and solved in part many problems that are 
relative to a variety of classes of W% and concern the weak or strong 
convergence of Xn(t) to a non vanishing limit X(t), the numbers of finite 
moments of X(t) and the dimension of the set of t's on which X(t) varies. 
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Partial answers. J. P. Kahane and J . Peyrière (Adv. Math. 22 (1970), 
p . 131) confirmed and/or extended several of these conjectures and the
orems; for example, FW log^W is a codimension. 

Take G i.i.d. r.v. Wg, and C i.i.d. r.v. Xg having the same distribution as 
o-i 

the X(l) in the preceding paragraph. The weighted average (1/0) Jj WgXg 

has the same distribution as each Xg, meaning that X(l) is a fixed point 
of the weighted averaging operation. For "multiplicative chaos", see also 
Mandelbrot, Lecture Notes Phys. 12 (1972), p. 333. 

Groups based upon inversions. Explicit construction of the fractal limit set 

The next case story does not involve physics, but involves new geometric 
intuition triggered by long examination of sample limit'sets drawn by 
computer, followed by the construction of further samples to test the 
original hunches. Consider the group 0 based upon inversions in a ^gener
ating configuration" of Jf > 4 given circles. I t is known since Poincaré 
and Klein that, when the group is "Kleinian", the transforms of -any 
initial point P 0 by increasingly long words in this group converge to a limit 
set JSP independent of P 0 . Long-standing problem. To characterize S£ directly 
by a series of approximations that converges rapidly in simple generating 
configurations. Solution (FGN, Chap. 18, and Mathematical Intelligencer, 5 
(2) (1983),-p. 9). I showed that the (open) complement of „§? is approximated 
by a finite union of "or-discs", each ff-disc being the union of an open disc 
constructed in a specified fashion, and of its transform under the group @. 

Iterates of the complex map #->#2 —^. The ^"*-sets and the ^#-set 

Fatou and Julia appear to have been exceptionally successful in their 
study of the iterates of rational functions of a complex variable, circa 
1918. Indeed —apart from the proof of the existence of Siegel discs —their 
theory remained largely unchanged for sixty years. The fundamental 
discovery was that the repeller set of this iteration—now ordinarily called 
Fatou set, or Julia set, or J^-set— is typically a fractal: a nonanalytic 
curve or a "Cantor-like" dust. These sets were called "very irregular and 
complicated". The computer — which I was the first to use systemati
cally here (Fig. 1) — \reveals they are beautiful. 

My work started with the quadratic map z->z2—p. 
To investigate how the shape of J5** depends upon the value of p, 

I explored numerically the set of parameter values [i in the complex plane, 

file:///reveals


Fractal Geometry and Some Mathemetioal Problems 1671 

Fig. 1. Numerical approximation ol the Julia ^"*-set of the map z-+82—fl in a case 
when the limit sot is made of the point as infinity and of 100 other points. The points 
in the light (resp., black) domain have already iterated into the neighborhood of 
infinity (resp., of the bounded cycle), and the iterates of the points in the gray domain 

aro still wandering around. 

53 • Proceedings..., t. II 
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such that 3F* is connected. See FGN, Chap. 19; Ann. NY Acad. Sci. 357 
(1980), p. 249; Physica 7D (1983), p. 224, and several short papers in the 
book Chaos, Fractals and Bynamical Systems, eds. P . Fischer and W. Smith, 
New York, Marcel Dekker, 1984. This set—now called "u?-setM to echo 
"J^-set" — proved to be a most worthy object of study, first for "experi
mental mathematics" and then for mathematics. I t is illustrated on Fig. 2. 

Empirically observed structure of the Jt-set. I t is best described in the 
terminology of chemistry. Atoms. The ^#-set contains a denumerable 
infinity of atoms, some of them cardioid-shaped and others near-discs. The 
interior of an e^-atom is a maximal domain of ^'s such that the correspond
ing J^-sets are topologically identical. Nuclei. Each atom includes as 
nucleus a superstable value of \i. Molecules. Denumerably infinite numbers 
of atoms,Jneluding one and only one cardioid, are "bonded together" into 
"molecules", one of which is a large continent and the other are tiny specks. 
Any two atoms in a molecule can be joined by a continuous path that 
crosses a finite number of bonds and other atoms. The molecules' shapes 
are smooth maps of each other. DeviVs polymer. The molecules are glued 
together via a "devil's polymer": any two molecules can be linked within 
the ^ - s e t by curves that cross an infinite number of other molecules, and 
the points along such links that are not in a molecule's interior form a Can
tor set. The empirical n~2 law. Change the coordinates of z so that the 
map reads z->f(z, A) = Xz(± — z) ; this replaces jn, by A, such that ß = A2/4 — 
— A/2. Then the continental molecule in the «^-set becomes exceptional 
in that it is not based on a cardioid, but on the unit circles |A| = 1 and 
|A — 21 = 1. The points A = exp(2ram/w), with integer m and n, are points 
of bifurcation of a limit point cycle into a cycle containing n points. When
ever the map f(z, A) has, a limit cycle, denote one point in the cycle by 

'zx and let fn(zx, A) denote the value of dfjds at z = zk. I t is observed that, 
for all n, the radial derivative oifn(zx, A) is exactly n~2. A more general 
formulation is given on p. 1674. 

Mathematical problem: Prove (or disprove) that the Jt-set is connected. 
Solution. A. Douady and J. Hubbard have given an affirmative answer 
(Comptes Rendus 2941 (1982), p . 123). Unsolved mathematical problems. 
Prove (or disprove) that the boundary of the *#-set is of dimension 2. 
Prove or disprove the empirical n~2 law above. Prove or disprove that 
when ii ^ 0 is the nucleus of a cardioid-shaped atom, the ^*-set is the 
union of atoms having smooth boundaries. Characterize the class of 
rational or analytic mappings of the complex plane for which the «^-set 
is made—either exclusively or in part—of ^-molecules that are analytic 
maps of those of the *#-set of z->z*—ft. 
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Fig. 2. Numerical approximation of the ^f-setof the map #->#2—#, after Mandelbrot 
[1]. For esthetic effect, its coordinate axes are not drawn; the real axis is vortical 
and is directed up, and the points where it intersects the cardioid are of abscissas 
— 1/4 and 3/4. The scattered dots are small molecules belonging to the ^ - s e t . They 
are linked to the big molecule by a "polymeric " structure that is not visible here. 
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Postscript added in proof (May 1984) 

The n~2 law I stated in Chaos, Fractals and Bynamical Systems (op. cit.) 
is more general. In the set of A such that/(#, A) has a stable cycle of finite 
size, define g(X) = \(òjòz)fn(z, X)\z==Zx, where zx is a point in the cycle 
and n its size. Consider a point A0 that belongs to the boundaries of two 
distinct «^-atoms, of respective cycle sizes m and nm; I conjectured 
that the two atom boundaries have a common tangent at A0. Take the 
right and left derivatives of \g(X)\ along a direction orthogonal to this 
tangent; I conjectured that the ratio of these derivatives is — n~~2. The 
class of validity of this law is bound to be related to the class discussed 
on p. 1672 (last lines). ' 

While the n~2 law is local, it has perceptible global effects. Where 
the atoms of low cycle size are near-cardioids or near-discs, the near-discs' 
inverse "radii" also nearly obey the n~2 law, leaving the ^-molecule's 
shape to be determined by its cardioid's shape. 

In April 1984, J. Guckenheimer and B. McGhee (to be published) 
proved my conjectured n~2 law for the quadratic map, gave wide suffi
cient conditions for its validity, and sketched generalizations. 

On the notion of "fractal" 

Though precision is of the essence in mathematics, the present text had 
abstained frc>m defining my term fractal, but applied it to denote several 
sets that were already known to this audience of mathematicians. These 
sets did not warrant a common name as long as they served only fleetingly 
as "counterexamples", because any kinship one might have seen between 
them had no consequences. A common name became essential, however, 
when these sets were made essential in science, and when analogous —then 
not so analogous—sets started being constructed in very large numbers, 
as the tools of the fractal geometry of nature. I have heard mathemati
cians echo Molière, and joke that they had long been studying fractals 
without knowing they were fractals, but of course many writers had 
studied the additive group without knowing it was a group! 

But how should a fractal set be defined? In 1977, various pressures 
had made-me advance the "tentative definition", that a fractal is "a set 
whose Hausdorff-Besicovitch dimension strictly exceeds its topological 
dimension". But I like this definition less and less, and take it less and less 
seriously. One reason resides in the increasing importance of the "border
line fractals", for example of sets which have the topologically "normal" 
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value for the Hausdorff dimension, but have anomalous values for some 
other metric dimension. I feel—the feeling is not new, as it had already 
led me to abstain from defining fractal in my first book of 1975 —that the 
notion of fractal is more basic than any particular notion of dimension. 
A more basic reason for not defining fractals resides in the broadly-held 
feeling that the key factor to a set's being fractal is invariance under 
some class of transforms, but no one has yet pinned this invariance satis
factorily. 

Anyhow, I feel that leaving the fractal geometry of nature without 
dogmatic definition cannot conceivably hinder its further development. 

General references 

Note: For specific references, see the tesb or the bibliography of Ref. [1], 

[1] Mandelbrot B., The Fractal Geometry of Nature, W. H. Freeman and Co., New 
York, San Francisco and Oxford, 1982. The second and later printings include an 
Update and additional references. Earlier versions of this essay were Les objets 
fractals : forme, hasard et dimension, Flammarion, Paris, 1976, and Fractals; Form, 
Chance and Dimension, Freeman, 1977. 

[2] Sierpinski Waclaw, Oeuvres Choisies, Editions Scientifiques de Pologne, Warszawa, 
1974. 
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YIL M. SVIBEZHEV 

Modern Problems of Mathematical Ecology 

The recent years witnessed a real outburst in the number of works on math
ematical modelling in ecology. Of course, one may suppose that this is the 
result of a sharp rise of interest in ecological problems in general and the 
popularity of the subject. But this is only one aspect. The other reason is 
that ecology represents a branch of biology (probably, together with 
genetics and the theory of evolution) that uses mathematical methods on 
such a wide scale that we may now speak about the birth of a new science — 
mathematical ecology. 

What does mathematics get from this synthesis? 
Firstly, ecology gives new fields for applying classical mathematical 

methods. 
Secondly, ecology draws the attention of mathematicians to many 

problems the interest in which previously subsided due to the lack of 
either encouraging results or useful practical applications. 

Finally, ecology offers new possibilities of posing mathematical prob
lems. 

Mathematics in turn provides a method of research without which 
many investigators of theoretical ecology would be in danger of falling 
into obscure sophistications, loquacious but fruitless. 

To substantiate the above claims we shall illustrate each point by 
concrete examples. 

1. "Predator-prey" system—a classical object of mathematical ecology 

One of the most popular models in mathematical ecology is the model of 
a two-population system, one of which being food for the other. Such an 
interaction is widely spread in nature, it is called "predator-prey" inter
action. The model itself is described by a system of two ordinary differen-

[1677] 
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tial equations of the form 

dx 
"dt 

a(x)x—V(x)y9 

dy 
—- = JcV(x)y — my9 

(1.1) 

where x(t) and y(t) are the numbers of preys and predators, respectively, 
and the functions a(x) and V(x) must satisfy some conditions to be eco
logically sensible. Evidently, system (1.1) represents a wide field of applica
tions of the methods of qualitative theory of differential equations. Let us 
review in brief some results obtained (see for example [7], [8]). 

One of the basic problems of ecology is: "Can the predator control 
the prey population? " Since a(x) is a function describing the prey self-regu
lation, when we investigate this problem it is natural to assume that 
a =» const, i.e., in the absence of the predator the prey population grows 
according to the Malthus principle. In this case the dynamics of the system 
significantly depends on the form of the trophic function, the rate of prey 
consumption by the predator. All the variety of trophic functions can be 
divided into two classes (see Fig. 1). Class I is characteristic for invertebrate 

Mg. 1. Trophic functions classes: I — "silly" predator, II — "clever" predator. 

predators, whereas Class II — for organisms, exhibiting a rather complex 
behaviour (e.g., the ability to learn). Many vertebrates manifest such 
a behaviour. We shall refer to the predators of Class I and Class II as "silly" 
and "clever" respectively. 

An analysis of system (1.1) for V (x)^ belonging to these two classes 
has shown that1 the "silly" predator cannot control the prey population, 
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i.e., the non-trivial equilibrium {a?*, y*} of system (1.1) is always globally 
unstable. If the predator is "clever" (i.e., V(x) belongs to Class II), then 
the behaviour of the system is much more interesting. In this case either 
a stable non-trivial equilibrium is observed or there arise limit cycles in its 
neighbourhood. Let Sc stand for the region bounded by the Volterra oval 

- ) •{-Y)-C, X - . K , * yly* 

with the centre at the point {x*, j/*}. Let us assume that, in a neighbourhood 
oîx*9 

V(x)x* 
w(x) =• 

Hence \w(x)—1| ^ e. 

V(x*)x 

Consider the integral 

W 
Sc 

dxdy. 

Then if there exists a C* such that 

W{&) =0, V((f) ^ 0 , 

then there exist p, A > 0 such that : 
(a) for every e < A, system (1.1) with a = const, has a limit cycle 

in the ^-neighbourhood of the Volterra oval with a constant C* ; the limit 
cycle tends to the oval as e->0. 

(b) this cycle is stable when W ( C*) > 0 and unstable when XF' (C*) < 0. 
The transformation of variables in (1.1) 

I =ln(a?/a?*), r\ =ln(yjy^), x = at 

gives 

dr 
= l-w(è)e\ 

dr] 

dr 
= à\w(è)e*-y\, Ô m (1.2) 

Let w(Ç) = l + e<p(f) where e is a small parameter. Actually, eç?(£) repre
sents the deviation of the more realistic trophic function from a hypothetic 
one of the Volterra (linear) type. The application of the Krylov-Bogolubov 
method to the system gives the following results ([6], [7], [8]) : 
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Let 

Then depending on the signs of a, b, c, B we get different'variants of the 
system^ behaviour (r being the amplitude of the limit cycle). 

(1) a, b, c> 0 or a, c > 0; b,B <0: r = 0 — stable equilibrium with 
no limit cycles. 

(2) a,b >0-, c < 0 or a>0; b, c <0: r = 0 — stable equilibrium 
with an unstable limit cycle r = r2. 

(3) a,c, B > 0 ; b < 0 : r = 0 — stable equilibrium, r = rx stable 
cycle, r =* ra — unstable cycle (rx > r2). 

(4) a, b, c < 0 or a, c, B < 0; 6 > 0: r = 0 — unstable equilibrium, 
there are no limit cycles. 

(5) a, b < 0; c > 0 or a < 0 ; 6, ö > 0 : r = 0 — unstable equilibrium, 
r = r± — stable cycle with self-exciting from zero. 

(6) a, ö < 0; b,B > 0: y = 0 — unstable equilibrium, r = r x — stable 
cycle with self-exciting, r =r2 — unstable cycle (r2 >rx). 

Suppose now that system (1.2) is in a random environment. Then the 
equations for the amplitude and phase are 

dr sr 
— - = — —-(a+6r 2 + cr4) + (T1^1, 
dr 2 

- T " = }/ô + V (a + br* + cr") + a*n*> dr 2 

where nx and n2 are <3-correlated white noises of constant intensity. 
The expression for the stationary density of the probability of the 

amplitude is 

i r2 t b c \) 
P0(r) = const-y exp < 2"r + 7 r 2 + 7 r ' (•'••*) 

The phase is distributed uniformly (if we neglect the phase overlap). The 
function will have either one maximum in the neighbourhood of the equilib
rium or a stable cycle, or two maxima, the latter case being possible only 
in the presence of two limit cycles : an unstable inner one and a stable outer 
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one. Consequently, the predator-prey system in random environment 
over large time intervals reveals four types of behaviour, namely : 

1. The trajectories of the system leave the neighbourhood of the 
equilibrium, either quickly if there is no stable cycle in the neighbourhood 
or slowly if there are a stable inner cycle and an unstable outer cycle; 
the system will remain in the neighbourhood of the stable cycle for some 
time. 

2. The diffusion of the trajectories around the stable equilibrium 
takes place if there are no limit cycles. The most probable values of the 
amplitudes of random oscillations lie in the neighbourhood of the stable 
point. 

3. If the equilibrium is unstable and the stable limit cycle exists, 
then it becomes fuzzy, the stationary distribution being unimodal and its 
maximum lying to the right of the limit cycle amplitude. 

4. The diffusion of the trajectories with the most probable values 
of the amplitude of the random oscillations lies in the neighbourhood of 
the stable equilibrium and the stable outer limit cycle (intensity of pertur
bations is sufficiently low). 

Mow let us try to answer another question: how much does the popula
tion dynamics of the system depend upon the ethological (behaviouristie) 
characteristics of the prey? The question is of importance as we have 
found out that the dynamics of the system depends essentially upon the 
fine structure of the trophic function, the latter in turn being a result of 
the predator's hunting strategy. 

Now we pass to the behaviour of the prey. The simplest hypothesis 
about the "reasonableness" of the behaviour of the prey is the hypothesis 
of a collective behaviour (mutual aid) improving (up to a certain limit) 

Pig. 2. Relative rate of population growth as a function of population size for collective 
behaviour (reciprocal help) ; a' (x0) = 0, a" (xQ) < 0. 
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characteristics of the prey population, for example the relative rate of 
its growth. If we accept this hypothesis, the function a(x) must take the 
form given in Fig. 2. But making this aspect of the problem more complex, 
we simplify the other one: V(x) = ßx, i.e., the trophic function is of the 
Volterra type. Then (1.1) may be written in the form 

dx dy 
~ = xia(x)-ßy-\, — =y(kßa>-m). (1.5) 

Denote œ* =m[lcß,y? = a(x*)jß, ß0 = mTc/xQ. Let the parameter ß change 
in a small neighbourhood ß0, so that 

m | » * ) ] 2 

/J2 -> .J: i LL- , 
P " 4 & 2 a(a>*) ' 

i.e., small variations of ß are considered. Since we deal here with a typical 
Hopf bifurcation, by applying a more or less standard technique we get 
the following picture of the dynamic behaviour of the system: 

(a) for a'"(x0)x0< —2a"(a?0) and for ß > ßQ in the neighbourhood of 
{x*, 2/*} there appears a stable limit cycle, 

(b) for a,,f(xQ)x0 > — 2a" (xQ) and for ß < ß0 in the neighbourhood of 
{x*9 #*} there appears an unstable limit cycle. I t should be noted that 
ß < ß0 if a?* > x0. Since the trajectories (1.5) are bounded and point {xx, 0} is 
a saddle point, this unstable cycle is certainly surrounded by a stable 
limit cycle. The question of the existence of a third, a fourth, etc. limit 
cycles remains open. 

Since both the trophic function V(x) and the prey self-regulation func
tion a(x) are nothing but the aggregated averaged description of the 
ethological (behaviour) characteristics of predator and prey, the foregoing 
results lead us to the following ecological conclusion: the complex ethology 
manifesting itself at the level of individuals gives rise to a great diversity 
of the dynamic behaviour of populations, even in such an ecologically 
simple system as the "predator-prey" one. 

I t appears that we have succeeded in illustrating the possible applica
tions of classical methods of the qualitative theory to a classical ecological 
problem. Here we shall not dwell upon the ecological interpretations of the 
mathematical results obtained. We shall only mention that these conclusions 
could not have been obtained in other ways. Certainly, there remain 
numerous other problems which are still to be solved and we hope that 
we have managed to draw attention to them. 
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2. Lagrange stability and ecological stability 

In the previous section we used well-known mathematical methods for 
solving ecological problems; now we shall show how ecological "demands" 
make it possible to treat an old mathematical problem (not considered to be 
of interest before) in a new light. 

We begin with a small ecological essay. One of the most common defi
nitions of stability of the biological community is the requirement to 
maintain the number of species. I t means that, on the one hand, none of the 
species dies out, and on the other, none of them grows infinitely. 

If this happens in a model, the model is inadequate. Let the population 
sizes of species in the community be non zero and not grow to infinity and 
suppose that there exists no stable non-trivial equilibrium. Nevertheless, 
none of the species dies out in such a community. I t means that the 
trajectories of the model are bounded from above and below in the positive 
orthant. However, if we consider here the Lyapunov stability, the commu
nity will be unstable; on the other hand, it will be stable if stability is 
understood ecologically. 
. Such a type of stability has long been known and is referred to as the 

Lagrange stability. However, while Lyapunov's theory is well-developed, 
we cannot say that about the Lagrange stability, though the latter is more 
suitable for ecology. 

Suppose that the dynamics of a biological community is given by a sys
tem of ordinary differential equations: 

dN{ 

dt 
F^N,,...,^), i=l,n (2.1) 

with initial conditions -2^(0) — N°{ where N^t) are the sizes of the popula
tions in the community. For our model to be biologically sensible, the follow
ing conditions must be fulfilled: N{(t) ^ 0, i = 1, n for all t^ 0, N% ^ 0, 
meaning that the set P11 (i.e., the positive orthant of an ^-dimensional 
space) is an invariant set for system (2.1). 

Let ÜQ and Qn be closed finite domains lying within Pn. We shall call 
a community, described by the model (2.1), ecologically stable, if for any 

N° = {N[, ..., NI} e ÛJ there exists Qn(Q%) such that N(t) = {Nx(t), ..., 
Nn(t)} e Qn for all t > 0, or in formal terms: 

VN° e ß0
n 3Qn(üll) cz IntPn: V* > 0 , N(t) e Qn. 
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Since all N* are positive, th$n by substituting ft = ln(JVJJVj) in (2.1), 
we get 

dt 
= ^ ( ^ , . . . , 4 ; ^ , . . . , ^ ) , * = l , n i (2.2) 

with initial conditions ft(0) = 0,£ = l , w . 
Evidently, for JKr

<(t)-* + oo we have ft(tf)->+oo and for JST^fj-^O we 
have ft(*)-> — oo (for finite jyj). Thus the solutions of system (2.2) are 
defined in the whole phase space Rf (not only in the positive orthant). 
Since the conditions ^ ( 0 , . . . , 0; N°19..., Nl) = 0 are not' cObligatory, 
i.e., |* = 0, i = 1, n is not the solution to (2.2), we rearrange (2.2) to the 
form 

- ^ = 0t{iu ..., fB; jy«,..., #J) + B„ • =ÏTu, (2.3) 

where 

s, = f t (o, . . . ,o; jy;,...,jyi). 

If we now formulate for (2.3) the problem of the Lyapunov stability 
of the trivial solution £* = 0, i =l,n under permanent perturbations 
and find the domain of stability in the space of parameters {JfJ,..., N%}9 

then the solution of this problem will imply the solution of the problem 
of ecological stability in system (2.1). The proof of this statement obviously 
follows from the Lyapunov stability definition and the properties of the 
mapping Pn=>R™. 

Thus we have reduced the analysis of the Lagrange stability to the 
problem of the Lyapunov stability. By Malkin's theorem [4] the solution 
I* =. 0, i = 1, n is Lyapunov stable if it is asymptotically stable for the 
system ft = <^(ft, . . . , fn; N[,..., N°n), i =* 1, n, with Bi sufficiently 
small. 

Let us clarify all the above by an example. Suppose the population 
dynamics is given by the equation 

^ = r W l - ^ W - f c ) , • 0<Jo<K (2.4) 

(this is the so-called population with lower threshold number). The phase 
picture of this equation is presented in Fig. 3. Evidently N(t)->0 for 
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N0 < 1c and the population is destined to extinction, i.e., there is no ecologi
cal stability. 

On the other hand, the equilibrium N* = K is asymptotically stable. 
Let us see whether we can prove the ecostability of this population, by 
using the method described above. Substituting £ = 1n(NIN0) we get 

dt 
= r ( 1 _ J i r ~ ) {N°e$ ~h) = 0{i' N°)+B> 

* ( f , jy 0 ) = 
rN0 

(2.5) 

K 
(K + h-2N0)Ç + o(Ç), 

Pig. 3. Population phase portrait with lower threshold nurnoer of population. 

where 

B 
• ( * - * ) 

(N0~Jc). 

I t is obvious that the solution f* = 0 for f = <P(f, NQ) is asymptotic
ally stable for N0 > %(K + fo). Besides, if, for example, the Malthusian 
parameter r is small, then B is small, too. Then, according to the Malkin 
theorem, the trivial solution f* = 0 is stable (in Lyapunov's sense) under 
a permanent perturbation B. Consequently, we can state that for NQ 

> |(JBL + &), the function N(t) will be bounded from above and below for 
all t > 0, i.e., the population will be ecologically stable. 

Note that by using this method we have obtained a stronger restriction, 
namely the population is ecologically stable for all N0 > h. This condition 
is after all natural, since the Lyapunov stability conditions are the suf
ficient ones. ^ 

Clearly, the requirement for the non-trivial equilibrium N* in (2.1) (if 
it exists) to be stable, is not, in general, a necessary condition for the 
ecostability. However, there exists quite a wide class of ecological models 



1686 Section 18: Yu. M. Svirezhev 

in which the conditions of ecological stability and the existence of a positive 
stable equilibrium in Lyapunov's sense turn out to be equivalent. This 
class contains the communities called conservative and dissipative (accord
ing to Volterra) [7], [8]. We mean here systems of the type 

^ = Ni(8i--£yijNj), i,j = l 7 n 

-fr
ill which there is a single positive equilibrium N = {Nx, ..., Nn} and the 
quadratic form Jj£]? aiyiiNiNi

m
9 i,j =l,n (where ai > 0 ) is either ident-

i i Ò 
ically zero or positive definite. 

3 . Competition for resource, the self-thinniiig out problem and "Sckço-
dînger" systems 

In this section we shall try to show how the attempts to solve some ecologi
cal problems result in new non-traditional formulations of mathematical 
problems. 

Suppose we have the biomass distribution N(x, t) and the consumed 
resource (nutrients) distribution R(x,t), -~oo <x < + oo. We assume that 
the uptake rate of the resource, located at point £ by the unit of biomass, 
located at point x, is equal to 

P(\x-g\)VlR(e,t)J. 

Here P( \x —1|) can be represented by the density oE the normal distribution 
with the centre at the point œ and variation a\ Then the equations of this 
model will take the form 

dB(x, t) +°° 
m Q- j P(\x-S\)ViB(tD,t)-]JSr(i,t)dS, 

8N(x, t) r 
^ - « f c J P(W-Ç\)V[R(Ç,t)]N(x,t)ai-mN(x,t). 

— OO 

Here Q is the input flow óf resource, Jc is the efficiency, and m is a coefficient 
of natural mortality. Considering a 4, L, where L stands for the specific 
scale in the problem (which corresponds to the assumption that the radius 
of the effective interaction between the consumer and the resource is small), 
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we bring (3.1) to its asymptotic analogy: 

__,_7(jj){jr+T-sr[. 
8N f o*rm.ldB\* „,d*R 

dt » H ^ r e r + ^ - ' - <3'2> 
This system is interesting in itself but to understand better what it 

really is we shall take V(R) = aR and linearize it in the neighbourhood of 
a spatially homogeneous stationary solution {R*, N*} where _B* = mjJca, 
jy* =JcQlm. Denoting Zx =R~R* and Z2 =N — N* and considering 
Q, m9 Jc to be constant, we get 

dZ •> d2Z 
-*- = M+D—9 Z=&uZ& (3.3) dt dx* 

where 

F— ahQIm —mile] 

[ aJc2Q/m 0 J ' 

0 —mo2l2Jc] 

ale2Qo2 /2m 0 J 

Since the eigenvalues of the matrix B are purely imaginary, system (3.3) 
is not parabolic, according to Petrovsky. Similar equations arise in quantum 
mechanics and therefore we shall refer to these systems (3.1)-(3.3) as 
"Schrödinger" ones. Practically there is no theory of such systems, whereas 
their solutions (if they exist) may have fairly interesting properties. In 
particular, there may exist spatially periodic discontinuous solutions 
belonging to the type of finite functions. Such solutions describe the so-
called "self-thinning out" processes in plant communities when from an 
initial everywhere continuous distribution of biomass there arises a stable 
discrete structure. However, these are only hypotheses and this new 
mathematical object — "Schrödinger systems" — should be subjected to 
profound investigation. 

4. Models of spatially distributed ecosystems—ecologically active media 

Account of the movements of individuals over the areal forces us to con
sider a spatial generalization of the "predator-prey" or "resource-consumer" 
models. So this naturally gives rise to the concept of an ecologically active 
medium, in which there may occur either the propagation of nonlinear 
population waves or the rise of stationary stable distributions of popula-

54 — Proceedings..., t. II 
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tions nonhomogeneous in the space (even in a homogeneous environment), 
the so-called dissipative or spatial structure (SS) [1], [3]. 

Since random migration of individuals is quite well described by 
the diffusion terms (where the "diffusion" coefficients are uniquely defined 
by the radii of inidividual activity), the models of spatially distributed 
ecosystems are systems of the quasi-linear parabolic type 

dS± = BiANi+f^,..., Nn)9 i - Ï7S, (4.1) 
dt 

where N{(x, t) are the population densities for the ith. species at point 
a> == {x19..., xm} G Q9 û being the total areal of the ecosystem. The func
tions ft stand for the local interactions of populations. On the boundary r 
of the domain, the boundary conditions are to be specified to provide 
a correct solvability of the initial value problem, for instance the condition 
of the non-permeability of the boundary 

dN 

8n 
= 0, n is a normal to r. (4.2) 

r 

For n = 1 there are classical results indicating the absence of SS in convex 
domain under conditions (4.2). ]STow we shall quote the result generalizing 
the above assertion [4]. 

Let f(N) be such that there ace no two roots of equation f(N) = 0, 

NÎ < Nt such that F(N) = / f(N)dN for N e (N*19 N%) and F(N%) = 0. 

Then no stationary bounded solution of the equation 

dN 
dt 

=^AN+f(N), XGR, 

except the constant one is stable. The stability is understood here in the 
sense of the norm G(R). 

It follows that the search for SS should begin either on areas of a more 
exotic configuration (e.g., non-convex) or for interacting populations 
(n > 2). The most natural approach is based on the investigation of the 
character of stationary bifurcation of the solution under variations of 
JD{ in (4.1). Let n = 2. Then (4.1) and (4.2), in the neighbourhood of the 
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nontrivial stationary distribution {N*9 N*}9 take the form (^ = Ni — N*); 

= 0, (4.3) &u> - ^ , - , „-> J - > ,-*\ ^ — = D(X)Au+Au+g(u),— 

where J. = [ay] is the matrix of the linearized system, D = diag{l, X}9 

g(u) is a nonlinea-r component, considered to be small. It turns out that 
necessary and almost always sufficient conditions for the existence of 
a critical value À0 > 0, in the neighbourhood of which there exists a family 
of stationary spatially nonhomogenous solutions of (4.3) are the following: 

(1) det J. > 0 , 
(2) tr J. < 0, 
(3) axl < 0 

if a 2 2>0 or axx>\n1\9 where ni9 i = 0 , 1 , . . . is the ith eigenvalue of 
the Laplace operator in the domain Q. 

If the domain Q is not too symmetrical, one of the two semibranches 
of this family corresponds to the stable solution, i.e., to SS. If this is not 
the case (e.g., the domain Q is one-dimensional) then additional verifica
tion of stability is needed. 

Among the systems of the (4.1)-type a special place is held by those 
having some Bi equal to 0. Such systems are not parabolic in Petrovsky's 
sense and that is why this case gives rise to complex mathematical problems 
connected with the existence and stability of solutions. Here is one of the 
results on linear stability of a stationary spatially homogeneous solution. 

Let system (4.1), linearized in the neighbourhood of that solution, 
have the form (u{ ^Nt — N^): 

-^-^DAu + Au, u(x,t)eRn, xeRm, (4.4) 
dt 

where A and B are real nxn matrices, D being diagonal with non-negative 
elements. If there is a ô > 0 such that for each s > 0 the eigenvalues of 
the matrix A + ôF — Ds lie in the left half-plane, then the trivial solution 
of (4.4) is stable with respect to the perturbations uQ(x) e 0°°(Rn). 

Note, that from the ecological point of view such an approach is by no 
means exotic since D{ H= 0 correspond to species of plants. As an example 
let us consider the "resource-consumer" system with immovable resource. 

B.-Q-v(R)]sr, 

— = DAN + lW(R)-m-\N. 
in 



1690 Section 18: Yu. M. Svirezhev 

Here R(x, t) and N(x, t) are the densities of the resource and consumer 
respectively, given in the one-dimensional infinite areal. Applying the 
previous statement to system (4,5) one can easily prove the linear stability 
of the stationary distribution 

N* = JcQ/m, R* = V~l(mß). 

In the case of a local outbreak of the consumer population this 
distribution is settled following the wave, propagating at a velocity 
v ~ 2]/D\]kV(oo) —m\ . If Q E= 0 (i.e., the resource is unrenewable) and 
the initial resource density is R0, then the outbreak of the con
sumer population generates a single wave, spreading at a velocity of 
v = 2]/D{W(RQ)-m\ [1]. 

However, if the areal contains so-called "dead zones", i.e., regions x in 
which RQ(x) = 0, then the wave velocity in the zone will be close to the 
value 

% = \_W(°o)-m\*VDlhV(oo) . 

What is curious is that vz does not depend on the size of the zone. 
And what is the picture if the resource is being restored according to 

the Malthusian or logistic law, i.e., if 

Q(R) = a(R)R, a(0) > 0 , a'(JB) < 0, a(E*) « 0? 

This model is nothing but a spatial generalization of the "predator-prey" 
system. It turns out that for appropriate parameter values in automodel 
variables £ = x + vt there exist periodic solutions. In real variables they are 
represented by "wave packets" or "wave pattern" — successions of 
running waves. This means that the local outbreak of the consumer arising 
at a certain time starts to work as a generator of waves propagating over 
an ecologically active medium occupied by the consumer. The minimum 
velocity of those waves is 

vmi31=2VDiW(R*)-m\. 

The topic is discussed in detail in oux paper [6]. 
In this section we have attempted to show how the study of nonlinear 

waves (the dissipative structures may also be included in this class) in 
models of spatially distributed ecosystems gives rise to a new class of 
problems which are of both theoretical and practical interest. The main 
problem here is to prove the convergence of the solution to a stationary 
wave (being at rest or running) for a sufficiently wide class of initial 
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conditions. This problem is solved only for very simple models (cf. the 
classical works of Kolmogorov, Petrovsky and Piskunov), thus represent
ing a wide field of action. Another important class of problems is the 
generation and propagation of waves in active two-dimensional ecological 
media in a plane areal. 

It seems that nothing has been done in this direction, except for a lot 
of computer experiments. 

5. Strange attractors in simple ecosystems 

Recently it has become quite popular to look for examples of complex 
dynamic behaviour in systems of ordinary differential equations which a»re 
known as strange attractors. Such behaviour does not appear to be very 
exotic in ecology. Consider the model of a simple ecosystem: a closed 
trophic chain with three levels. If N0 is the resource concentration (e.g., 
nutrients) and Nj are the biomasses in the trophic levels, then this chain 
is described by the equations 

i = 1 , 2 , 3 , Ft^0, No^C-l^ + Nz + Ns). ^ 

Here Vt(Nt) are trophic functions, G = const is the total amount of 
matter in the system. Let 

• I T 

V0 = a0N0, 7,(^,) - ~ ~ - > i = 1, 2, 3. 

For this case B. I. Tatsalo and myself succeeded to prove analytically 
the possibility of generating a cycle as a result of the Hopf bifurcation and 
also the existence of a stable limit cycle for large a0 r^l/e. The system was 
studied numerically for mx = 0.1, m2 = m3 = 0.2, a = 6 = 0.2 and for 
different values of the parameters G and a0 (0.2 < a0 < 0.38). The system 
develops in the following way: for 0 = OJ s= Oj(a0) the Hopf bifurcation 
results in the stable liinit cycle yi=*yi(Ö); for G = ö°2 two 
cycles are generated : the stable y2 and the unstable y3 (i.e., for 0->G°2+ they 
unite through +1) ; for G = C° the cycles unite and vanish. Oonsequently 
the bifurcation doubling takes place at points GX,G2, 03, i.e., for G = Gx 

the cycle y2 loses stability, its multiplicator passes through —1 and in the 
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neighbourhood there arises a stable cycle with a doublé period which goes 
through the same bifurcation at G = G29 etc., where Gn-^G(Xi = G^Q). 
Taking a0 = 0.34 we get the following values of the parameters : üj ~ 9.447, 
Gl = 30.55, G\ =* 36.251, Gx - 33.04, G2 => 34.835, 03 = 35.41, 04 

= 35.541, . . . , Gn ~35.58. 
Feigenbaum's constant calculated according to the above values of GB9 

04 , G5 is 

°5 —°4 

and so it is close to the theoretical one: 

^ « l i m 0 » " " 0 - 1 
*T 

M->00 ^Tl+1 " •CL 
~ 4 . 6 6 . 

The analysis of curves G^ao) and Gl(a0) gives a very interesting result 
(see Fig. 4): in the hatched domain "the pre-turbulent regime" (pre-Sto-

i 

Pre-stochasticity 

_i . . i 

CS(«Q) 

Stochasticity 

. 
0 0.1 0.2 0.3 0Â a0 

Fig. 4. Existence domains of different dynamic regimes for the closed trophic chain. 

chastieity) exists when there are both a strange attractor resulting from 
an infinite chain of the Feigenbaum doubling and a stable limit cycle. 
Complete stochasticity is observed for G > C3, i.e., when the stable cycle 
vanishes. I t is interesting that stochasticity was previously observed in 
the classical Lorentz system, but there the strange attractor did not 
appear as a result of bifurcation doubling. What has been said above, 
indicates the possibility of the generation of strange attractors of a new 
type, even in simple ecosystems. 
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Conclusions 

In this report abstaining from superfluous mathematical strictness, we have 
tried to show what an extensive field of action the new science of math
ematical ecology offers to mathematicians. 

Since previously the main clients of mathematics were the physical 
sciences, it was physics that- to a great extent determined the interest in 
this or that field of mathematics. With the rise of a need for mathematical 
ecology many mathematical methods, developed for physics, turned out 
to be inapplicable. The need for new methods (or non-traditional applica
tions of the old ones) entailed the formulation of new problems. Mathema
tical physics took shape as a science in the 19th century, whereas the 20th 
century may be considered as marking the birth of mathematical ecology, 
ecology being the science about our home, the home we live in. 
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HANS EKEUDENTHAL 

The Implicit Philosophy of Mathematics 
History and Education 

Here you are : both of the subjects of our section of this congress united 
in one title, and as though this were not yet enough, philosophy, once the 
third in this illustrious company, resurrected — though, of course, philos
ophy not meant the way it is understood in section II, that is, as a mature 
offspring of mathematics itself and equally ranking with other offsprings. 
I mean it rather the way it is meant when you ask someone "tell me, 
what is your philosophy?" It is implicit philosophy which does not need, 
nor ask for, formalized language to be made explicit. 

I have omitted one thing in the title, for brevity's sake. I should have 
added "in their mutual relation". Should I really have? I introduced 
"philosophy" in the singular rather than in the plural, that is, one philos
ophy behind both history and education, or if they are two, that one 
that is common to both. 

Philosophy of history often means what we can learn from the past to 
cope with the future. In our particular case it could mean what we can 
learn from the history of old mathematics for the sake of teaching young 
people. Strangely enough nobody has ever looked at the converse idea, 
that is, what can we learn from educating the youth for understanding 
the past of mankind? This idea looks odd, but I will show you it is not as 
far-fetched as you might believe. 

À century ago biologists were the first to assert the so-called biogenetic 
law: that ontogenesis is an abridged recapitulation of phylogenesis, that is, 
that the individual in its development briefly repeats the development of 
its kind. We know for sure that this law is not true in this trivial way. But 
neither is it true that the new generation starts just at the point where its 
predecessors finished. Our biological, social, and mental life starts somewhe
re in the past of our race, at stages where man was not yet what he is now. 

[1695] 
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The young learner recapitulates the learning process of mankind, though 
in a modified way. He repeats history not as it actually happened but as it 
would have happened if people in the past had known something like what 
we do know now. It is a revised and improved version of the historical 
learning process that young learners recapitulate. 

"Ought to recapitulate" — we should say. In fact we have not yet 
understood the past well enough to really give them this chance to recap
itulate it. Let me show this by examples, which are more convincing than 
abstract statements can ever be. 

Negative numbers 

Negative numbers were a conquest of the 16th century. Why weren't they 
welcomed earlier? Well, there is little need to calculate 3—5 or to solve 
equations like 2a?+ 7 = 3 . Even quadratic equations, known as early 
as Babylonian antiquity, like x% + x — 2 =̂ =0, did not provide a strong 
enough incentive to extend the number domain to negative numbers. In 
contrast, fractions and even irrational numbers are almost as ancient as 
natural numbers, thanks to the necessity of dividing and measuring. It 
was the destiny of the marvellous formula used in solving the cubic equa
tion to open up the clogged channel of history; Three solutions forced 
themselves upon the enchanted solver. Who would dare to despise this 
wealth and throw away part of it? So negative numbers knocked at the 
door and they were welcomed as were imaginary numbers, which knocked 
as forcefully. Welcomed? Yes, and no. It was only as late as the 19th 
century that the last resistance to negative and imaginary numbers was 
conquerred. Eor a long time people seriously doubted whether man was 
allowed to create new numbers beyond the realm created, as they believed* 
by nature. 

Meanwhile experience and history have taught us revolutionary 
'lessons. If some beautiful formula, some theorem, some theory refuses to 
apply as generally as we would like it, we now put the blame not on the 
formula, the theorem, the theory, but on the problem to be solved. Prob
lems are often being adjusted to the solution rather than the other way 
round. 

The cubic equation was one of the first examples of this behaviour. 
Pressing the solution at any price led to negative and imaginary numbers. 
The first extension of natural numbers, towards fractions, had been much 
less controversial. Prom the first mathematical documents onwards we 
meet with fractions. Soul-searching in this domain was of a much later 
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date, in Greek mathematics, when philosophers forbade breaking the unit. 
Greek mathematicians replaced fractions with ratios while calculators in 
commerce and science persisted in using fractions. Indeed, fractions are 
the natural tool if magnitudes are measured and divided. 

* Mathematics in the Greek sense is about numbers, and as far as 
geometry is concerned, about magnitudes — a view that mathematicians 
in more recent times have tried to share, at least in theory. The negative 
numbers originated from the formal algebraic need for general validity 
of solving formulae, but not until the algebraization of geometry (the 
so-called analytic geometry of former times) did they become effective — 
I mean effective in terms of real contents. The idea to use algebra to 
describe geometric figures and solve geometric problems is older than 
Descartes. We owe to Descartes the tendency to use one coordinate system 
(to express it in modern terms), independently of the figure and the prob
lem. Descartes still had some trouble with negative numbers. Indeed, 
numbers were introduced as magnitudes; letters indicated magnitudes, 
thus positive numbers. But those who applied Descartes' method could no 
longer avoid having letters mean negative numbers also. If straight lines 
are to be described algebraically in their totality, if curves are to be describ
ed algebraically in any situation, one cannot but admit negative values for 
the variables. The need for 

general validity of algebraic solution methods, 

to which the negative numbers owed their existence, is from the 17th 
century onward reinforced by the need for 

general validity of descriptions of geometric relations. 

The second need, more directed towards contents than the formal algebraic 
one, is the most natural and compelling. It is actually responsible for the 
success story of negative (and also of complex) numbers. 

If negative numbers are introduced, it does not suffice to claim their 
mere existence — this is often didactically overlooked, as also happens 
with rational numbers. Negative numbers become operational by their use 
in calculations, obeying certain laws which are uniquely determined as 
extensions of certain laws governing the positive numbers. This is 

the algebraic permanence principle, 

which includes what I just called the 

general validity of algebraic solution methods, 

and virtually it is the same idea, albeit formulated in a broader view. 
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I recall a few examples of the algebraic permanence principle. 

(_3) + (-4) - - ( 3 + 4) 

is proved by starting with the definition equations for — a9 

(~3)+3 ^ o , (-4) + 4 - 0 , 

adding them formally, then using commutativity and associativity, in 
order to arrive at the definition equation 

((-3) + (-4)) + (3+4)=0 

for - ( 3 + 4). 

Or: Starting with the same definition equations, one proves 

( -3 ) . ( -4 ) = 3.4, 

by multiplying distributively the first by 4 and the second by —3, 

4-(-3) + 4-(3) = 0 , ( -3)-( -4) + (~3).4 = 0 
and subtracting them from each other. 

Or: With Va defined as the x making x2 = a9 one gets 

j/fl }/b = ]/àb 

by multiplying the definition equations 

œ2 — a9 y2 =b 

to get 

(wyY =>x2y2 = ab. 

Similarly, if operations are to be extended, 

a1*" = n\/ä 

because both terms have the same w-th power. ** 
Por a century the algebraic permanence principle has been ridiculed as 

a sham. The axiomatic method should have taught us sounder lessons. It is 
the way we always proceed when extending mathematical definitions. It is 
the way we find out how to extend mathematical objects in a reasonable 
and unique way, to prove the uniqueness of the extension, and to prepare 
the construction that proves the intended extension. It is the way negative 
numbers have been taught until quite recently, when new didactic ideas 
emerged. I will focus on one of them only, the number line, on which 
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negative numbers are viewed as movable vectors which are being operated 
on as such. It is so splendid an idea that one marvels why it has not 
worked didactically. P. M. van Hiele has been the first to indicate the 
reason, which is so simple that one marvels even more why nobody before 
him hit upon it: dimension one is the least appropriate to give vectors 
the chance they deserve. If you do not believe it, look up in all those 
textbooks the desperate attempts visibly to separate, add and subtract 
vectors, which unfortunately in one dimension cover and eclipse each 
other. 

In Van Hide's newest approach negative numbers arise in a two-di
mensional frame. A number pair 

[~~3, 4 -] means 3 steps to the right, 4 steps upwards, 
P—3, 4 ~~| means 3 steps to the left, 4 steps upwards, 
r"3, —4 H means 3 steps to the right, 4 steps downwards, 
[""—3, —4 H means 3 steps to the left, 4 steps downwards. 

The left-right and up-down are those of the drawing plane, with horizontal 
and vertical axes on which the numbers of steps can be read in units. By 
performing such operations in succession one describes or prescribes 
rectilinearly constructed drawings in the plane. Adding the vectors is 
nothing but performing these operations in succession. Thus 

T3, -4n+r -ß , 2 n 
arises in a natural way and defines as naturally what it is 

3 + (-6) and (~4) + 2. 

In the two-dimensional model the laws governing the operations of addition 
and multiplication are visually obvious by virtue of the model's geometric 
-meaning. 

In van Hide's many-sided approach this extension of the number 
domain is applied to extend the definitions of functions introduced ea-rlier 
by means of tables such as 

X-+X — 3 , 
x->x + 3, 
X-+Z—X, 

x->2x. 
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Let us now have instruction starting with these functions. But before 
doing so let us turn once moïe back to history and remember that negative 
numbers were first invented to * extend broader validity to certain algebra
ic solving methods while soon their indispensability in geometry became 
overpowering — I mean their indispensability in the algebraized geometry 
such as developed after Descartes. Negative numbers would have remained 
a nice plaything, and the operations, motivated by algebraic permanence, 
mere rules of a game, which could have been fixed in another way, were it 
not that geometry had seized upon them. Negative numbers are indispen
sable if the whole plane is to be described by coordinates and planar 
figures are to be grasped in their whole extension by equations. The 
simplest figures in the plane, lines, are then translated by the simplest 
equations, those of the first degree, called linear because of their relation 
to straight lines; circles and other conies are fitted by second degree 
equations. I think that both in phenomenological analysis and didactics 
too little/emphasis is laid upon this fact: 

the justification of the numerical operations and their laws by the simplicity 
of the algebraic description of geometrical figures and relations. 

Briefly stated: 

Algebra is valid because it functions in geometry. 

It is strange that so far this insight has not, if at all, strongly enough been 
pronounced. In history it has never been used against people who argued 
against negative numbers. In teaching algebra it should be our duty to 
convince the learner of the validity of the operations and their properties 
so forcefully that he cannot but accept them. The most convincing argu
ment is to show him the operationality of algebra in geometry. This, 
I believe, should be our policy in teaching negative numbers. 

Here "geometry" does not mean an axiomatic structure but what is 
visually obvious or conceptually follows from what is visually obvious — 
a visuality that neither requires involved explanations in the vernacular' 
nor sophisticated elaboration. The one-dimensional medium, the straight 
line, has not enough visual structure; two dimensions is the minimum 
that is required, and with a view to the graphic possibilities the most 
appropriate medium. ** 

Let us repeat history in a modified way : turning 

the algebraic permanence principle 
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into 

1701 

the geometrical algebraic permanence principle, 

now applied not to extend solving formulae but to extend such functions as 

X-+X — 3 , 
x->x + 3, 
x->3—x, 
x->2x9 

which only imperfectly reflect geometric figures. 

-i—• 1 2 3 A 5 

I need not explain to you in detail how negative numbers, their operations 
and the laws governing them arise didactically in this context. 

And perhaps you will also grasp what I meant when at the start I 
claimed that teaching the young can teach us historical lessons. 

Let us now turn to another subject. 

Variables 

* Por centuries "variable" meant — in mathematics and elsewhere — 
something that really varies, something in the 

as well as in the 

physical, social, mental 

mathematical 

world that is 

perceived, imagined, supposed 
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as varying, that is in addition to 

the time that passes, 
the path that is covered, 
the aim that changes, 
the water that is rising, 
the temperature that oscillates, 
the wind that is changing, 
the days that lengthen, 
the mortality rate that decreases, 
the progressive rate of income tax, 

also the 

variable mathematical objects 

by which these phenomena are described. From the 

variable physical, social, mental 

phenomena one is led to 

variable numbers, magnitudes, points, sets, 

in general 
variable mathematical objects. 

Locutions like 

the number e approaches (converges to) 0, 
the point P runs on the surface S9 

the element x runs through the set S, 
the number e is approached by the sequence ( 1 + 1 \n)n 

if n goes to inf 

witness this kinematic aspect of the "variable". I t is true that in the 
course of, say, the past half century such locutions have been outlawed by 
purists. Indeed one can dispense with them, 

xn converges to 0 

can be written as 
iimnxn = 0 

and be defined, with no kinematics involved, by 

for every e > 0 there is an n0 such that \xn\ < e for n^n0*9 

x runs through the set S 
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can very simply be written as 

x G S. 

Well, one can dispense with that kind of kinematics provided one has once 
possessed it, learned to use it and then to eliminate it — this is a general 
didactical feature. #* 

As soon as names were needed for mathematical variables they were 
indicated by letters. But at that time letters had already been in use in 
mathematics for about two millennia, in geometry to indicate arbitrary 
points, in geometrical algebra for arbitrary magnitudes, and in number 
theory for arbitrary whole numbers, as witnessed by Euclid's Elements. 
I did not say variable points, magnitudes, numbers — I did say arbitrary 
ones, and this is a fundamental difference. One letter meant one indi
vidual point, one magnitude, one number, though it did not matter, or 
was taken as unknown, which one. Letters were used in mathematics as 
polyvalent names. 

Polyvalent names are a well-known feature in the vernacular, too. 
Proper names such as "Warsaw" for a particular city, and "Poland" for 
a particular country, are rare — we cannot afford too many. We cannot 
afford a proper name for each particular mouse, or table, or stone, so we 
use the same for each of them, and in each particular case by a specific 
way of binding indicate which one is meant : this mouse, or that table or 
the first stone of the Academy building. "I" is such a polyvalent name, 
bound by the mere fact of pronouncing it to the person that says it. "Here" 
and "there" are polyvalent names which can be bound to places, "thing" is 
one that may apply to anything whatsoever. 

Mathematics has proper names, even an infinity of them, — I mean the 
vocabulary of natural numbers, constructed in an algorithmic way. Com
pared with the rich variety of polyvalent names in the vernacular, the 
stock available in mathematics looks poor: the letters of the alphabet or of 
a few alphabets, sometimes enriched by subscripts, accents, dots and 
dashes. Unlike the polyvalent names in the vernacular they are not restrict
ed to particular species of things such as mice, tables, stones. They are 
general purpose polyvalent names, which can mean everything mathema
tical. Accordingly they were used to formulate general laws like 

(a + b)* =a2 + 2ab + b* 

or to ask for a solution as in 

x2 + x —2 =0; 

55 — Proceedings..., t. II 
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such polyvalent names were called indeterminates or unknowns. Por a long 
time it was a much discussed topic whether literal algebra instruction 
should start with the one rather than the other use of the letters. 

What is your reaction to this story? Shrugging, incredulity, astonish
ment, or a half-smile? Or are you sorry about the lost paradise of the good 
old time? Today, it is all variable, indeed, as you know, and nothing else. 
But as a historian you may ask who brought this change about, and when it 
happened. You may even ask when people became accustomed to it and 
when they started teaching it this way. I confess I have not investigated 
this. I do not even know when I myself got acquainted with the extended 
use of the word "variable" and when I myself started using it. 

Anyway it is clear that it started in formal logic. When logicians looked 
into the status of the "letters", the fact that for such a letter you may 
substitute whatever you like might have suggested the term "variable", 
but with the reservation that it was a mere metaphor, because there was 
nothing in it that really varies. I t was a highly suggestive metaphor; yet 
whilerusurping the term "Variable", logicians even went one step further 
in hollowing it out : a variable was not even a name, let alone a polyvalent 
name, but a mere placeholder, that is, a hole to be filled by names, and 
only for opportunity's sake are different kinds of holes being distinguished 
by different symbols. 

Even more serious things happened as logicians and purists usurped 
the term covering the genuine mathematical variable. Its original meaning 
shifted, got lost. Mathematical terminology was stripped of its kinematic 
undertones. Terminology like that mentioned earlier, as time that passes, 
numbers approaching a limit, points running on a surface, was exorcised. 

* Lumping concepts of various origin together, using one name for 
things that stripped of their frills boil down to the same, is one of the 
important characteristics of our mathematical activity. Here we have met 
with such an historical occurrence: 

polyvalent name 
and 

variable object 

related with each other and confounded. #* 
You may like it or not but it is a fact in mathematics that more unity 

is a precondition of more profound understanding and continuing progress, 
and that reshaping mathematical language is a highly valuable activity. 
But as historians we are not asked what we like. We have to be conscious 
of the reasons why things were viewed differently in the past — in fact 
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they were good reasons — and of the reasons why things changed — these 
were equally good reasons. Moreover, as educators we have to find out at 
which point learners should start to recapitulate history. Finally, if we are 
both historians and educators, the one ought to learn from the other to 
understand his task more profoundly. 

* Fortunately : expellas naturam furca, tarnen usque recurrit — nature 
though driven out with the fork, nevertheless returns. The mathematical 
purism — of high value within mathematics — is a forced and less satisfac
tory language as soon as one steps out of mathematics. The abundance of 
variable objects in the half-way mathematized vernacular can be elim
inated by linguistic sophistication but by this linguistic measure they 
are not disposed of. And — even more important — in order to be elim
inated by linguistic tricks, they must once have been experienced by the 
learner. Indeed, there is no other way to guarantee that he will be able to 
restore them as he needs the vernacular to recognize and apply mathe
matics in the real world. The world is a realm of change, describing the 
world is describing change, and to do this one creates variable objects — 
physical, social, mental, and finally mathematical ones. There exist many 
languages of description, or rather many levels of describing. On a high 
level of formalization the variable mathematical objects may be forsaken, 
but on less formalized levels they are a genetically and didactically indispens
able link with the physical, social, and mental variables, which on their 
part are indispensable tools. ** 

It is shocking that textbooks in the wake of New Math try to teach 
mathematics as though it were nothing but an impeccable language, which 
as it happens most of the students are unable to grasp and speak, and 
that researchers conduct subtle investigations to find out whether students 
understand variables as polyvalent names or as mere place-holders while it 
never crossed their mind that variables should and could be understood 
as variable objects. It is no less shocking that historians are not alarmed 
enough by the obvious failure of this kind of instruction to look more pro
foundly into history in order to find out what history can teach education. 

Let me put this in an even broader context by my third and last 
example. 

Inversion and conversion 

Viewed historically, mathematics has grown not only in substance and 
subject matter. It is as much, and perhaps even more, a process of reshap
ing and remodelling, of turning things upside down and inside out. 
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In Greek mathematics conies originated from the problem of solving 
quadratic equations, or, as the Greeks formulated it, the problem of 
applying an area F to a, line segment a * either exactly, that is ax = F, 

or so that a square falls short: (a—x)x = F, 

F x2 

[ J 

^ ü > 

or so that a square exceeds: (a+x)x = F. 

X 

1 

^ a „ 

*2 

These three cases are distinguished with the Greek words for agreement, 
falling short, and excess as 

parabolic, elliptic, hyperbolic 

application. This, then, is the origin of our terms for the conies. 
If F is given as a square with side y, then the above equations become 

ax = y*, 
(a—x)x = y%, 
(a+x)x =y2, 

respectively, which are indeed the equations of parabola, ellipse, hyper
bola. ** This was the way these curves were first encountered, by solving 
quadratic equations, and only afterwards was it discovered that they 
represent the planar sections of a cone. I t was Apollonius who inverted 
the course of history and started with conic sections to derive their "symp
toms", that is equations, from the geometrical data. 

After Descartes had developed what was called analytic geometry, 
the view was again turned round: quadratic equations, now in a more 
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general setting, became the source of conies, and their relation to cones, 
though easily proved by Daoidelin's method, was played down, as a minor 
subject, at present probably unknown to many users of mathematics. 

Or look to a side track, projective geometry: Pascal's theorem on the 
inscribed hexagon used as a defining property in Steiner's approach to 
conies by means of projectively related pencils. Or to projective invariance 
of the harmonic quadruple as a means of defining projectivity of mappings 
in von Staudt's approach. 

The foregoing are examples of straight inversion of view. A more 
sophisticated example of refashioning, again of Greek mathematics — let 
us call it conversion — is the elimination of proportion and similarity 
arguments from elementary geometry by means of area transformation. 
There can be little doubt that the so-called Pythagorean theorem, known 
as early as 2000 B.O. in Babylonia, was first discovered and proved by 
similarity arguments, by which it is almost trivial. Though it can also 
easily be proved by congruence arguments, neither Euclid's proof nor the 
one that very likely preceded it in history, was that easy. They show that 
Euclid's predecessors had exerted themselves to avoid similarity arguments. 
The tool they invented was the transformation of areas, say of rectangles, 
that is, the replacement of the proportion 

a : b = c: d 

by the equality of >areas 

ad = be. 

In the case of the Pythagorean theorem, which deals with areas, this is 
not a far-fetched idea. But they extended similarity avoidance as a prin
ciple, which is pursued in the most terrifying way in the construction of 
the regular pentagon — important for the regular solids. The construction, 
if carried out by simila-rity and the golden section, which is a proportionality 
concept, is almost trivial. Euclid's way, by congruence arguments, is 
a masterpiece of contorted thought, and an appalling example of blocking 
understanding by dogmatism. 

When did this proportions and similarity avoiding dogmatism come 
about? Was it some time before a satisfactory theory of proportion was 
developed ? But why should it have been preserved afterwards ? By mere 
tradition or because it was such a marvellous piece of mental gymnastics ? 
Or was it craving for purity of method, "do not do with similarity what 
you can achieve by congruence"? 
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Unfortunately here Euclid's Elements stopped the pre-Euclidean 
process of reshaping and remodelling. This situation lasted two millennia. 
It needed a new undogmatic view to rescue the mathematics that was at 
a dead end, driven there by the rigorous Greek mental discipline. History 
always repeats itself. However, today traditions and dogmatisms enjoy 
a much shorter life than those that once blocked the development of 
mathematics for almost two millennia. Today no structure of and within 
mathematics is safe from inversion and conversion. 

But the phenomena of inversion and conversion as a mathematical 
virtue are not restricted to what can be called the macro level. Individual 
inventors and inventions are permeated by their influence. Eb mathemat
ical idea is published in the way it was discovered. Techniques have been 
developed and are used, if a problem has been solved, to turn the solution 
procedure upside down, or if it is a larger complex of statements and 
theorems, to turn definitions into propositions, and propositions into 
definitions, the hot invention into icy beauty. This is what happens on 
what I would call the meso level of the history of mathematics. But it 
extends to even smaller constituents of our mathematical activity, the 
micro level. As an example let us look at the definition of continuity. 
Intuitively: a small change of one variable causes a small change of another. 
By formalization this is inverted so that the e precedes the <5: "for every 
e > 0 there is a <5 > 0 such that...". This inversion is required by the 
difference in flavour between two usep of the word "small": small enough, 
and as small as you like, where the arbitrariness of the second conditions 
the sufficiency of the first. This is a paradigm of the micro inversion which 
takes place whenever we switch from one view to the other : in order to 
effect some B we have to adjust D to arrive at B. 

Let us now turn to education. Years ago I coined the term "antidi-
dactical inversion" (see for instance Mathematics as an Fducational TasJc, 
p. 122) and illustrated it by a number of examples. One of them was 
Peano's axioms, deriving complete induction from them, in order to 
apply this principle. The historical course was the inverse, and so should it 
be in didactics. ïTobody can become conscious about complete induction 
before having unconsciously applied it, and nobody can formulate complete 
induction unless he has noticed it. Nobody can grasp Peano's axioms 
unless he can formulate complete induction. This is the didactical order and 
the historical order. Applying complete induction unconsciously, becoming 
conscious of it, formulating it, and building it into Peano's axioms. People 
who teach mathematics as a ready-made system prefer antididactical 
inversion. 
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Let us be satisfied with this one example. If mathematics teaching 
proves to be a failure, the reason is often, if not always, that we do not 
realize that young people have to start somewhere in the past of mankind 
and somehow repeat the learning process of mankind. This is the lesson 
historians and educators can learn from each other. 
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A. B. norOPEJIOB 

O npenoflaBamiH reoMeTpira B HiKOjie 

B nocjießHHe nojiBena cne^iamicTH-MaTeMaTHKH, ne^arorn H ncuxo-
jiorn OJKHBJICHHO oôcyn^aaioT npoöjieMy MaTeMaTiraecKoro o6pa30BaiiHH 
Booôme n niKOJibnoro MaTeMaroraecKoro o6pa30BaiiHH B HacraocTH. B xojje 
BToro oßcywHenHH BHCKasHBairacb *iacTO coBepnieHno npoTHBononoJK-
HHe TOHKH 3penHH. Bo Miiorax CTpaiiax Straa npoBe^eHa pe$opMa MaTe-
MaTH^ecKoro o6pa30BaiiHH. Tanan pe$opMa ÔBijia npennpnHHTa H B naiiieä 
cTpane (CCCP) B Komje 60-x roftOB. K comajieHHio, pe3yjibTaT He onpaB-
ßaji oîKnaaHHË. B CBH3H C 9THM cneijHajiLHaH KOMHCCHH AKaßeMHH nayn 
CCCP non npeaceaaTejitCTBOM aKajjeMHKa H. M. BnnorpanoBa, H3y*iHB 
nojioTKenne jjejia c npenojjaBaHHeM MaTeMaTHKH B o6meo6pa30BaTejn>Hi>ix 
niKOJiax cTpaHBi, npHHHjia HOByio nporpaMMy, 6jiH3Kyio K TpaßHijHOHiioö 
nporpaMMe jjope^opMeHHoro nepno^a. KOMHCCHH npeßjiojKHjia Miie npea-
cTaBHTb npoeKT coBpeMeHnoro niKojibiioro yneöiiHKa no reoMeTpHH Ha 
TpajJHIJHOIIHOä OCHOBC 

TaKofi yneßmiK MIIOö 6LIJI npeflCTaBjien, KOMHCCHH op;o6pHJia ero. 
B Te^eiine Tpex jieT yneßHHK npoxoßHJi anpoÖaijHio B MaccoBOH mnojie 
H B HacTOHmee BpeMH MniiHCTepcTBOM IIpocBemeHHH CCCP BBeßeii npan-
TH^ecKH BO Bcex o6meo6pa30BaTejii>iiHx niKojiax CTpaiibi. 3TOT ywÔHHK 
OÔ'LeMOM OKOJIO 300 CTp. yKOMnjieKTOBaiI HeoÔXOftHMBIM KOJIHTOCTBOM 
ynpamneiiHii H paccraTan na nHTB jieT oÖy^eiiHH c 6 KJiacca (B03pacT 
12 jieT) HO 10 KJiacca (B03pacT 17 JieT). 

B nacTOHUieM ROKjiaae H xoTen 6 H H3JIOJKHTI> ocuoBiiue cooöpame-
HHH, KOTopBiMH H pyKOBojjcTBOBajicH, npejjnaran 3TOT yneSiiHK, H noKa-
3aTB, KaK OCHOBHLie BOnpOCBI, KOTOptie 6bIJIH npe^MeTOM RHCKyCCHH 
cpeju* MaTeMaTHKOB, peniaioTCH B yneßHHKe. 

1. Hanajio iKJioxceiiHsi 

npe?KKe Beerò H o6pamaioci> npocTo K ontrry (jKH3neHHOMy ontiTy) y^a-
merocH (eMy y?Ke 12 TOT) H renaio aKijeHT Ha neKOTopLix xoponio H3BecT-
HHx eMy CBoöcTBax npocTefiuiHx $n ryp . 9TH cBoficTBa no3>Ke 6y;n;yT 

[1711] 
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Ha3BaHti aKCHOMaMH. OôpamancB K pncyHKy, H roBopio: KaKaa 6BI HH 
ÔBijia npHMan, cymecTByiOT TOHKH, jieJKaume Ha npHMofi, H TO^KH, ne 
npHHanjiejKamne eö. flajiee H roBopio, HTO nepe3 jspe TO^KH MO>KHO npo-
BecTH, H npHTOM TOJIBKO ojxny npHMyio. Bee 3To xopomo H3BecTHO y^ame-
MycH, Tan KaK eMy, HaBepHoe, HeojjHOKpaTHo npnxoftHjiocB npoBosHTB 
Tanyio npHMyio B CBH3H c HHCTO npaKTH^ecKHMH sa^a^aMH. 

OôpamaacB K pncyHKy, Ha KOTopoM H3o6pa5KeHa npHMan c TpeMH 
TOHKaMH Ha Heß, H roBopio: H3 Tpex TOTOK Ha npHMoä o^Ha H TOJIBKO 

opiHa jieîKHT Memjjj jjByMH HpyrnMH H yKa3BiBaio Ha 3Ty Towy. CBOëCTBO 

B3anMHoro pacnojioîKeHHH npe«MeTOB, KOTopBie MBI BBipa?KaeM cjioBaMH 
„ziemaTh Mempy" xopomo H3BCCTHO y^ameMycn. no3TOMy Moe yrçepm-
neHHe o pacnonojKeHHH Tpex TOWK Ha npnMoË He BBi3BiBaeT BonpocoB 
HjiH HenoyMeHHA. JJajiee, oßpamaacB K pncyHKy, Ha KOTopoM npoBe-
ReHa npHMan, H roBopio, w o 0Ha pa30HBaeT njiocKoôTB Ha «Be nojiy-
njiocKocTH. 3TO HCHO, HO HV Ao6aBjiHio: 0Tpe30K, coeHHoHiomnfi T O W H 
ojpioË nonynnocKocTH, He nepeceKaeT npHMyio, a 0Tpe30K, coeftHHHiomHË 
TOHKH pa3HBix nojiynjiocKocTeË, nepeceKaeT ee. 9THM noncHeHHeM CBOë-
CTBO pa36neHHH HJIOCKOCTH Ha HBe nojiynjiocKocTH npHoöpeTaeT TOTOBIE 

CMBICJI. 

AKijeHT Ha 0TMe*ieHHBie CBoËCTBa ycHjiHBaeTCH npHMepaMH peineHHH 
saaan c HcnojiB30BaHHeM 3THX CBOëCTB. HanpnMep, nana npHMaa H TpH 
TO^KH A, B, C, He jieHramne Ha 3TOë npnMoË. H3BCCTHO, w o OTpesmi AB 
H BC nepeceKaioT npnMyio. nepeceKaeT JIH npHMyio 0Tpe30K AC ? TJIH^H 

Ha nepTeJK, y^aïunËcn cpa3y oTBenaeT Ha Bonpoc. A y^HTejiB HOHCHHCT 

oTBeT, ccBinancB Ha oTMe îeHHoe CBOëCTBO pa36neHHH njiocKOCTH Ha jspe 
nojiynjiocKocTH. 9TO oôtHCHeHHe no3?Ke 6yji;eT Ha3BaHO AOKasaTejiBCTBOM. 

flaaiee H BBomy aKCHOMBi MepBi EJIH 0Tpe3K0B H yrjioB. H roBopio: 
KaHînBiË oTpe30K HMeeT onpeHejieHHyio HJiimy H HJiHHa 0Tpe3Ka paBHa 
cyMMe HJiHH HacTeË, Ha KOTopBie OH pa36nBaeTCH JIIOôOë ero TO^KOë. 

KoHe^Ho, HJIH ynamerocfl 3TO He HOBO. TpynHO npeacTaBHTB ce6e y^ame-
rocH 12 jieT, KOTopoMy He npnxoEHjiocB 6BI H3MepHTB paccTOHHHe, nojiB-
3yflCB npH 3TOM aAHHTHBHOCTBK) MepBi. 

ÏÏpaBjja, Moe yTBepJKjçetiHe 0 cymecTBOBaHHH HJIHHBI 0Tpe3Ka BOBce 
He npennojiaraeT KaKoro-jinöo H3MepeHHH. IIoHHTHe HJIHHBI OTHOCHTCH 

B HaHHOM H3JI0JKeHHH K *!HCJiy OCHOBHBIX nOHHTHË. Ho H 06 3T0M yMaJI-
HHBaiO. 

AKCHOMy MepBi HJiH 0Tpe3K0B yqamnËCH, Ha^HHaiomM nsy^aTB reo-
MeTpHio, H cneijHajiHCT-MaTeMaTHK noHHMaioT no-pa3HOMy. OjjHaKO 
MOJKHO nOKa3aTB, »ITO OHH npH 3T0M HMdOT BBH^y O^HO H TO JKe MHCJIO, 
H6O, nocTyjinpoBaB TOJIBKO cymecTBOBaHHe HJIHHBI H ee aaaHTHBHOCTB 
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npH oSBiHHott npoijeaype H3MepeiiHH, KOTopyio npeßCTaBjiHeT ce6e y^amiiö-
CH, MBI nojiymiM TOT me pe3yjiBTaT. 

Anajiorarao BBORHTCH aKCHOMa MepBi EJIH yrjioB. 3aTeM, oßpamancB 
K onBiTy ynamerocH, fl yTBepjKflaio BO3MOHüIOCTB OTJIOJKHTB 0Tpe30K 
«aiiHOö HJiHHBi na jjamiOM Jiyne H3 ero nanajiBiioË TOHKH H yroji e 3ap;an-
HOö rpa^ycHoË MepoË. MiioroHHCJieHHBie npnMepBi ynpaHUienHiï 3a-
KpenjiHioT CBoËCTBa MepBi HJiH 0Tpe3K0B H yrjioB. CooTBeTCTByiomne OÖT̂ H-
cneiiHH y^HTejiH c HcnojiBSOBaHHeM CBOëCTB MepBi TOTOBHT ynamerocn 
K BBeflCHHIO nOHHTHH TeopeMBi H Ce ROKa3aTeJIBCTBa. 

BßeßeHHe MepBi JJJIH 0Tpe3K0B H yrjioB ecTecTBeimo npHBO^HT K COOT-
BeTCTByiomeMy onpejuejieHHio paßencTBa «JIH 0Tpe3K0B H yrjioB. HMeimo, 
OTpe3KH Iia3BIBaiOTCH paBHBIMH, eCJIH OHH HMeiOT OftHIiaKOByiO tfJIHUy. 
YrjiBi iia3BiBaioTCH paBHBIMH, ecjiH OHH HMeiOT oHHHaKOByio rpa^ycuyio 
Mepy. MBI nojiaraeM, HTO yiamnËcn, npHCTynaiomnE K H3yienHio reo-
MeTpHH, BpHn JIH noiiHMaeT paßeHCTBo 0Tpe3K0B H yrjioB Hiiane, TOM 
3To CKa3ano B jjaHHOM onpeaejieHHH. 

riocjie Toro, KaK onpe^ejieHo noHHTHe paßencTBa JçJIH OTpe3KOB H yr-
JIOB, ecTecTBeiiHO BBOJJHTCH noHHTHe paßencTBa JJJIH TpeyrOJIBHHKOB. 
HMeimo, TpeyrojiBHHKH ABC H AXBXCX na3BiBaioTCH paBHBIMH (AABC = 
= AAiJBjCx), ecjiH y HHX <A = <AX, <B = <BX, <C = <CX, AB = 
- AXBX, AC = AXC19 BC = BXCX. 

Tpaai-mHOHHBiË npneM HOKa3aTejiBCTB, CBH3amiBiË e nepeMemenneM 
TpeyrojiBHHKOB B 3anaHHoe pacnojiomeHHe, B HaineM H3jioJKeiiHH ocHOBaH 
Ha aKCHOMe cymecTBOBaiiHH TpeyrojiBHHKa, paBHoro ftairaoMy. OßpamancB 
K pHcyiiKy, H roBopio: nycTB MBI HMeeM TpeyrojiBHHK ABC H Jiy1! a. I le-
peMecTHM TpeyrojiBHHK ABC Tan, HTOöBI ero BepuiHHa A nonajia B Ha^ajio 
jiyqa, BepuiHHa B — na jiy*i, a BepuiHHa C — B 3anaHHyio nojiynjiocKocTB 
OTHOCHTejIBHO jiy*ia a H ero npo^ojimeiiHH. nojiynemiBiE npH 3TOM Tpey
rojiBHHK, o6o3HaHHM ero AXBXCX, paBeH TpeyrojiBHHKy ABC. V^ame-
MycH STO HCHO. Oß^HCHeirae saKaH^HBaeTCH yTBepJKHeHHeM: JJJIH jjaHHoro 
TpeyrojiBHHKa H namioro jiy^a cymecTByeT paBHBiË eMy TpeyrojiBHHK 
B 3aaaHHOM pacnojioMKeiiHH. 9TO yTBepEKHeiiHe H ecTB aKCHOMa. Haranguée 
oÖBHCiieHHe, npeAUiecTByiomee $opMyjiHpoBKe aKCHOMBi, aejiaeT ee ncno-
JIB30BaHHe B TpaflHIJHOIIHBIX HOKa3aTeJIBCTBaX IiarjIHAHBIM H npOCTBIM. 

CniicoK aKCHOM 3aKaiiHHBaeTCH ancnoMOË napajiJiejiBHBix. 9Ta aKcno-
Ma, B oTJiiraie OT ocTajiBHBix, ue apryMeiiTHpyeTcn HHKaKHMH Harjin;q-
HBiMH cooôpajKeiiHHMH. 9TO Bnojine ecTecTBeiiHO. 

riocjie Toro KaK ociioBHBie CBoËCTBa (aKCHOMBi) 3aKpenjieiiBi MHoro-
HHCJieilHBIMH ynpamiieilHHMH C o6T>HCHeHHHMH, OnHpaiOmHMHCH Ha OCHOB-
HBie CBoËCTBa, BBOJJHTCH noiiHTue TeopeMBi H ee HOKa3aTejIBCTBa, KOTO-
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pBie TaKHM o6pa30M nojiyqaioT eoBepineHHO onpeftejieHHBiE CMBICJI. B Ka-
*iecTBe HjiJiiocTpaB[HH TeopeMBi H ee ftOKa3aTejiBCTBa MOJKCT 6BITB npn-
BeaeHO peineHHe Jiioöoro ynpanmeHHH e oötncHeHHeM, onnpaiomiiMCH Ha 
OCHOBHBie CBOHCTBa (aKCHOMBi). 

2. OrporocTb H AocrynHocTi» H3Jio5KeHiiH 

nOHHTHH CTpOrOCTH, a TeM ÔOJiee HOCTynHOCTH H3JIOHKeHHH, HBJIHIOTCfl 
BeCBMa OTHOCHTejIBHBIMH. H CMdO yTBepHîflaTB, HTO H3JIOHîeHHe B HaHHOM 
yneÖHHKe cTporoe c TOTOH 3peHHH cnei^najiHCTa-MaTeMaTHKa H npocTo 
c TOHKH 3peiiHH y*iamerocH, H3y*iaiomero npeßMeT. npHBeay cooTBeT-
CTByromne apryMeHTBi. H a m y c «ocTynHocTH H3jio?KeHHH. 

npe îKne Beerò H ncxoîKy H3 Toro, HTO TpajjHijHOHHoe H3JioH?eHHe 
npejpieTa B y^ieÖHHKax npoinjiBix jieT 6BIJIO 6e3ycjioBHO npocTo H nocTyn-
Ho y^amHMCH. 9 T O H3Jio?KeHHe co3joçaBajiocB H coBepnieHCTBOBajiocB Be-
KaMH, npH^eM OJJHHM H 3 OCHOBHBIX cooSpajKeHHË npn BTOM öBIJIO Tpeßo-

BaHHe npocTOTBi H AocTynHOCTH. H3Jio3KeHHe B MoeM y^eßiiHKe 0TJiH*raeTCH 

OT TpaHHIJHOHHOrO TOJIBKO Ha^ajIOM, KOTOpOe, KaK MBI BHAejIH, npocTo 
H He MOHîeT C03naTB KaKHX-JIHÔO TpyHHOCTeË. 

Planano H3jiOH«eHHH, BnojiHe CTporoe, nocTeneHiio nepexojjHT B Tpa-
HHn;HOHHoe KaK no $opMe, TaK H no cojjepjKaHHio. A OHO K TOMy BpeneHH 
yme BnojiHe 6e3ynpe*rao. B e e 3TO aaeT HaM ocHOBaHne yTBepHKHaTB, 
HTO H3jioHteHHe npeHMCTa B jjaHHOM yneßiiHKe npocTo H HocTynHo y*ia-

IIJHMCH. 
Cpe^H cnei^najiHCTOB H ne^aroroB pacnpoerpaHeHo MHeHne o TOM, 

^TO nocjie^oBaTejiBHo HeftyKTHBHoe H3Jio5KeHHe reoMeTpHH B niKOJie He 
ocymecTBHMo. H3jioHîeHHe jjairaoro y^ieÔHHKa yöeßHTejiBHo, onpoßepraeT 
3T0 MHeHHe. H o B 3TOM HeT misero yftHBHTejiBHoro. npocTOTa H ROCTyn-
HocTB B HauieM y^eÖHHKe 0Ka3ajiacb BO3MOHîHOë, 6jiaroji;apH eneijiiajiBHOE 
CHCTeMe aKCHOM, KOTopan nepeHOCHT cymecTBeHHBie TpyjjHOcra: H3JIO-
HîeHHH B Hpyryio oöjiacTB — TeopHio BemecTBeHHBix raeeji. 

IIpHMeHHTejiBHo K aKCHOMaTHKe 9ßKjiHji;a-rHjiB6epTa nocjiejuoBaTejiB-
HO HCHyKTHBHOe H3JI03KeHHe reOMeTpHH B HIKOJie, KOHe^HO, HeB03MO>KHO. 
TaKoe H3jio?KeHHe BCTpe^aeT HenpeojjojiHMBie Tpy^HOCTH JJJIH noHHMaHHH 
yqamnxcH y?Ke B Havane H3jio5KeHHH, npn BBeßemiH MepBi EJIH 0Tpe3K0B 
H yrjioB. B HaineM H3jio?KeHHH 3TH Tpy^HocTH CHHMaioTCH TeM, *ITO cyme-
CTBOBaHHe MepBi HJiH 0Tpe3K0B H yrjioB nocTyjiHpyeTCH, a $opMa, B KOTO-
poË 3T0 npenoRHocHTCH y^ameMyen, onnpaeTCH Ha HarjiHAHBie npejj;-
CTaBJieHHH 06 H3MepeHHH. 
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TenepB o CTporocra H3jioraeiiHH B yneßiiHKe. B BTOH CBH3H nocTaBHM 
Bonpoe: HBjineTCH JIH H3Jio?KeiiHe sjieMeiiTapiioE reoMeTpiiH B COHHIICHHH 

THjiBßepTa „OcHOBaiiHH reoMeTpHH" CTporiiM? ECJIH RSL, TO H cMeio yTBepm-
HaTB, HTo H3jiomeHHe B naiiHOM yneßiiHKe HBjineTCH Tami<e CTponiM. 
Olio onupaeTCH Ha nojmyio ue npoTHBopeHHByio CHCTeMy aKCHOM (SKBH-

BajieiiTiiyio CHCTeMe aKCHOM FnjiB6epTa), a HOKasaTejiBCTBa npoBe^eiiBi 
nojiHO, 6e3 nponycKOB apryMeiiTOB. 

3. O coBpeMeiiHocTH yneöiiiiica 

H CMeio yTBep^^aTB, ITO npejjjiaraeMBiß y^eôiiHK HBJIHCTCH Bnojine COB-

pcMCHiiBiM, ne CMOTpH na ero Tpaftimnonnyio oeiioBy. B BTOë CBH3H npe^Ae 
Beerò cnenyeT o6paTHTB BHHManne na aKCHOMaTimecKoe nocTpoeHHe H3JIO-

>KemiH, xapaKTepnoe JJJIH coBpeMeiniBix MaTeMaranecKHX TeopnË. XOTH 
oömne MaTeMaTHHecKHe noiiHTHH, Tamie KaK noiiHTHH MHOJKecTBa, oTo6pa-
jKeniiH, ÖHiiapHoro OTHOIHCHHH, rpynnBi H np. B yneßiiHKe He <|>opMH-
pyiOTCH, OHH BBOftHTCH H o6CTOHTejIBIIO H3yHaiOTCH lia KOHKpeTHOM Ma-
Tepnajie yTOÖmiKa. MBI nojiaraeM, icy^a Bamnec £OKa3aTB rpynnoBBie 
CBoËCTBa napajijiejiBiioro nepenoca, neM BBO^HTB nounrae Tpaii3HTHBiioË 
rpynnBi H 6e3 cooTBeTCTByiomnx HOKa3aTejiLCTB npHBecTH napajuiejiB-
iiBin nepenoc B Ka^iecTBe npHMepa TaKoË rpynnBi. 

B y^eÖHHKe H3jiaraeTCH MeTOA KoopAHiiaT H 3jieMeiiTBi BeKTOpnon 
ajire6pBi, a Tannée noKa3BraaeTca 3$$CKTHBHOCTB 3THX MCTO^OB npn 
penienHH sa^an H HOKa3aTejiBCTBe TeopeM. Ho HM ue jjaeTCH npeAnoHTeiine. 
MLI nojiaraeM, HTO B IHKOJIBHOM H3jio>KeiiHH npeftMeTa OCHOBHBIM ßOJiJKen 
ÖBITB CHHTCTH êCKHE MeTO^. HMCHHO 3TOT MeTOß CnOCo6CTByeT pa3BHTHIO 
jiornliecKoro MLimjieHHH, HHTYHIJHH H npocTpaiiCTBeniiBix npejjCTaBjieHHE. 
A 3T0 HBJineTCH TjiaBiioË sajjaHeË npenoHaBaHHH reoMeTpnn B HIKOJIC 

TcOMeTpHH CBOHMH MeTOJjaMH npOIIHKaeT BO BCe OÖJiaCTH COBpeMeHHOH 
MaxeMaTHKH, nosTOMy o6e;n;iiHTB IHKOJIBHJIO reoMeTpnio, CBOAH ee K ana-
jiHTiniecKHM BLiKjiaHKaM, npeftCTaBjiHeTCH nenpaBHjiBHBiM H ne coBpe-
MeHHBIM. 

4. O npenoAaBaiiiui reoMeTpim no yneöumcy 

Oön^enpHHHTo CHHTaTB, HTo npeno^aBaiine ecTB HCKyecTBo. "4TO6BI no-
CTIiniyTB 3TO HCKyCCTBO, IieoÔXOAHMO (HO lie HOCTaTOHHO) HMeTB BBICOKyiO 
npocJeccHOHajiBHyio noftroTOBKy. B STOH CBH3H H nonroTOBiui Kypc reo
MeTpnn HJIH CTy^eiiTOB neßarorHTOCKHX BJ^OB (o6rteM OKOJIO 300 CTp.). 
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OcoßeHHocTBio 9Toro Kypca HBjiaeTca TO, mo OH BO Bcex CBOHX TOCTHX 

npHMo HJiH KocßeHHo oßpamen K 3jieMeHTapH0Ë reoMeTpHH. OH Haira-
HaeTCH IHKOJIHBIM H3Jioa«eHHeM TeMBi KoopjjHtiaTBi H BeKTopBi, *ieM oßecne-
HHBaeTcn npeeMCTBeHHocTB niKOJiBHoro H3JIOJK6HHH By30BCK0My. Kypc 
COCTOHT H3 ^eTBipex npHMepHO paBHBix no oôteMy nacTeË: aHajiHTH^ecKoË 
reoMeTpHH, p;H$$epeHBCHajiBHOË reoMeTpHH, ocHOBaiiHË reoMeTpHH H He-
KOTopBix pa3RejioB 3jieMeHTapH0Ë reoMeTpHH. 

OpHrniiajiBHoE HBjineTCn TpeTBH lacTB Kypca. B OTJIHHHC OT Tpa-
HHIJHOHHBIX KypCOB, rße OCHOBHBie BOnpOCBI, CBH3aHHBie C aKCHOMaTH-
TOCKHM nocTpoeHHeM reoMeTpHH, peniaioTCH Ha ocHOBe aKCHOMaTHKH 
TnjiBÖepTa (HJIH BeËjin), B jjaHHOM Kypce Bee 3TO H3jio?KeHHe onnpaeTCH 
Ha HIKOJIBHyK) aKCHOMaTHKy. TaKHM o6pa30M, BonpocBi HenpOTHBOpe^HBO-
CTH, nOJIHOTBI H He3aBHCHMOCTH aKCHOM peHiaiOTCH no OTHOHieHHK) K aKCHO-
MaTHKe, KOTopan xopomo H3BecTHa H HccjieftoBaHHe KOTopoË npeftCTaBjineT 
6e3ycjioBHBiË npo$eccHOHajiBHBiË HHTepec 

n o 3aMBicjiy aBTopa, EBa y^eÔHHKa HJIH HIKOJIBI H By3a, o KOTopBix 
Hijia pe^B, BOJIJKHBI oßecne^HBaTB pa3yMHoe peniemie npo6jieMH MaTe-
MaTHHecKoro o6pa30BaHHH Ha aaHHOM 3Tane npnMeHHTejiBHo K reoMeTpHH. 
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The Structure and Laws of Thermodynamics 

In the light of past experience as well as recent research, it has become 
clear that for the stndy of phenonienological thermodynamics — namely, 
the oyer arching non-statistical subject — the appropriate primitive vari
ables a.re work, heat, and hotness. A physical system of whatever sort — for 
example, a body of gas or a viscous fluid, an. elastic solid or a chemically 
reacting mixture — whose interactions with its exterior are reflected by 
various transfers of work and heat is thus called a thermodynamical system. 

Notwithstanding the broad range of intended application, the study 
of thermodynamics has always been impeded by an inadequate presenta
tion of its foundational aspects. Thus Kelvin could write "A mere quicksand 
has been given as a foundation for thermometry" and Cardwell could add 
only recently "The student is usually introduced to the concepts of thermo
dynamics ... in a way which does violence to credibility". While there have 
been occasional attempts to clarify the situation — a notable but not 
entirely successful one being due to Carathéodory (see [24]) — it has 
only been in the past several years that a concerted effort has been under
taken, involving the work of a number of mathematicians in various 
different centers. The goals of this research fall into four related cat
egories : 

I. To find an appropriate general structure in which to express the 
fundamental concepts of the subject. 

II. To formulate the laws of thermodynamics in ways which are clear 
and concise, physically reasonable and useful. 

III. To prove existence of the mechanical equivalent of heat and the 
absolute temperature scale, in analytically precise terms. 

IV. To define the concepts of internal energy and entropy for material 
systems, and to characterize those systems for which these functions can 
be shown to exist. 

[1717] 
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The purpose of this paper is to outline some recent results which have 
been obtained in these directions. In particular, for the first three a clean 
and precise theory has emerged, while for the fourth there is important 
new understanding of the crucial issues and how to treat them. 

It should finally be emphasized that the discussion is not directed 
toward specific problems for particular material systems, as important 
as these may be. Bather, I am concerned with providing a general structure 
within which special physical systems can appear as special cases. This 
point of view clearly reflects the beliefs of the founders of thermodynamics 
(however much they may have limited themselves in practice to the 
treatment of special systems) and moreover closely parallels modern ap
proaches to continuum physics. 

1. The formal structure presented here was first developed during the 
period 1977-1979 in papers of the author [13], [14], [15] and in 1978-1980 
by M. Silhavy- [17], [18], [19], approximately at the same time but entirely 
independently. Silhavy's development requires considerably deeper topo
logical and measure theoretic considerations, and accordingly we follow 
the approach in [13], [14], [15]. A related approach to the foundations of 
thermodynamics is due to Eeinberg and Lavine [7]. In their treatment 
the concept of hotness is not taken as fundamental, though as in äilhavy^s 
method fairly deep measure and function theoretic ideas are required. 

It is convenient to begin with the basic concept of hotness, represented 
by a thermal manifold #P consisting of the set of hotness levels L open to 
material systems. We assume that 3ft is a totally ordered set, with order 
relation >-. The sentence L2 >• Lx will be read "L2 is hotter than Lx". 

A temperature scale is a strictly increasing map from ffl into the reals JB. 
If tp is a temperature scale then ip(L) is called the temperature of L in the 
scale ip. 

Fundamental to thermodynamical structure is the concept of a ther-
modynamical system, examples of which might be a body of gas or an 
elastic solid, to name two particularly simple cases. Every thermodynamical 
system £f comes endowed with a set P(£f) of processes which the system 
may undergo, together with a subset P07G(^) of cyclic processes of the 
system. To every process P e P(&*) there correspond real numbers W(P) 
and Q(P), respectively the total work done by the process P and the total 
heat used by the process P. Formally 

W: P(#>)-*R, Q: P(&)-*R. 

We adopt the standard sign convention that W(P) > 0 if work is done by 
the system on the exterior environment and W(P) < 0 if the exterior 
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environment does work on the system. Similarly Q(P) > 0 if heat is 
supplied to the system, while Q(P) < 0 means that the system has supplied 
heat to the environment. 

We require one more primitive concept, namely a more rsfined and 
subtle measure of the heat used by a process than is directly given by the 
total heat Q(P). The reason fpr this, of course, is that heat supplied at one 
temperature is very different than heat supplied at another. To this end, 
we suppose (in accord with intuition) that to every process P e P(£?) and 
every hotness level Lejf there is associate^. a real number Q(P9Z) 
representing the total or net heat transferred to the system during the 
process P at hotness levels L' not exceeding L. Forjnally we have 

Q: P(?)xœ->R. 

The function Q(P9') is called the accumulation function of the process P. 
The accumulation function expresses analytically the essential proper

ties of the gelation between heat and hotness for a given process P. For 
example, during a process P the total heat added between the hotness 
levels L1 and L2 (with Lx -< L2 say) is given by Q(P9L2) — Q(P9 Lx). 
It follows in particular that the accumulation function of an isothermla 
process P (operating at a single hotness level L0) is constant except for 
a single jump at L09 the jump being positive if Q(P) > 0 ancl negative if 
Q(P) < 0. Similarly if the system only absorbs heat during a process P — 
but never emits heat — then Q(P9<) is monotonicaUy increasing. In the 
same way, if P is adiabatiß — that is, exchanges no heat whatsoever with 
its environment — then Q(P9

m) ^=0. 
For any given process P of a system £? one may suppose that heat is 

exchanged with the environment only op some bounded range of 
hotnesses. Eeflecting this fact, we assume that the accumulation, function 
has the following property. 

(1) For every P e P(S?) there exists a lower hotness level, denoted by 
Ll9 such that 

Q(P,L) = 0 when L -< Lt 

and an upper hotness level, denoted by Lu9 such that 

Q(P9 L) = Q(P) when L > Lu. 

In addition we suppose a minimal degree of regularity for the accu
mulation function, namely 

(2) For every PeP(S?) the function Q(P9-) is bounded and has at 
most a denumerable number of discontinuities. 

56 — Proceedings.,., t. II 
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A final necessary concept is the idea of products of thermodynamical 
systems. The well-known heuristic arguments presented in standard 
treatments of thermodynamics to justify the classical efficiency theorem^ 
arguments which ultimately go back to Oarnot, involve comparing Oarnot 
cycles for two different systems by forming a third (union) system for 
which the heat and work are found by adding the corresponding quantities 
for the original systems. In effect, the union idea involves taking the heat 
emitted by one body and transferring it to a second body, with a correspond
ing reduction of the heat supplied to the second system from its other 
surroundings. These well-known but nevertheless somewhat vague ideas 
require a formal description. 

Let 9>x and 9>2 b© a P^ir ot physical systems. The product system, 
^©5^2, is characterized by its processes and their work and heat func
tions, which are required to satisfy the following conditions : 

(i) P(Sex®^2) = P(*y xP(ST2)9 

(Ü) P o y o ( ^ e ^ ) = JPoyo(^) XPoyo(^2), 
(iii) W(PX @P2) > 0 if W(PX) + W(P2) > 0, 

. (iv) e(Pi0P2) < 0 HQ(P1) +Q(P2) < 0 , 
(v) Q(Px®F^)>d HQ(P9-)+Q(P,-)>0.i 

Here Pi@P2 denotes the union process (in P(« î©«$%)) corresponding to 
the pair of processes PxeP(^x)9 JP2eP(£f2). 

I t is open to question whether the doncept of a product system should 
be meaningful for all conceivable pairs of thermodynamical systems. To 
avoid such metaphysical points, we shall henceforth restrict the formation 
Of product systems only to special and distinguished pairs of systems, 
which will be called thermodynamically compatible systems (or simply 
compatible systems). Thus if &>x and 5% are a pair of compatible systems, 
then the product system &?

x®9?
2 is itself assumed to be a meaningful 

thermodynamical system satisfying the laws of thermodynamics. 

2. Since the mid nineteenth century, a first principal of thermodynamics 
has been the basic interconvertibility. of work and heat. Stated without 
recourse to special assumptions regarding state spaces and internal 
energy, this principle asserts that there exists a universal constant f > 0 
such that W(P) = #Q(P) for any cyclic process P of any physical system. 

1 This is a weaker formulation of the union axiom than is usuaUy stated. For the 
strong version of the axiom one requires that W(PX©P2) = W(Px)-\-W(P2)»

 a n i 

$(PieP a ) = ê(Pi)+e(P2). 
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A particular feature of this formulation which may strike one as 
unusual is the appearance of the universal constant / . In developing the 
theory of absolute temperature, for example, the existence of this canonical 
scale is not postulated, but rather is derived from more basic laws. It would 
therefore seem more appropriate to state the first law without reference to 
an absolute equivalent of work and heat, and to demonstrate (within the 
theory) that such an absolute equivalent must exist. Once one turns in 
this direction, however, a number of alternatives present themselves, and 
it is not immediately clear which of these should be taken as the funda
mental expression of the relation between work and heat. 

Because it appears desirable to maintain the greatest generality, we 
shall present here a version of the first law which expresses only the most 
certain of our beliefs about heat and work, consistent with the requirement 
that we can develop from it a satisfying and general theory. If we give 
some thought to the gist of the first law, namely that work can only be 
produced at the expense of heat energy, we are led to the following for
mulation. 

WEAK FIRST LAW. If W(P) > 0 for a cyclic process P of a thermody
namical system £f9 then also Q(P) > 0. 

This version of the first law has been noted by Silhav^ in his fundamen
tal paper [17], though in his context some additional topological consi
derations appear which are extraneous to our purposes. Moreover Silhav^ 
does not emphasize this statement as an independent expression of the law 
(see [17], Part II, Theorem 2.2.1; [18], Part 1, Sections 4.6, 4.7; and [18], 
Part II, Section 4.12). Another interesting version of the first law, not 
involving a mechanical equivalent of heat, is due to Truesdell ([22], [23]). 

The weak first law formalizes the idea that positive work can be obtained 
from a cyclically operating process only when a positive total amount 
-of heat is supplied to the system during the process. While representing 
a generally weaker requirement than the strict interconvertibility of heat 
and work, it nevertheless carries great conviction and provides all the 
normal conclusions drawn from the stronger statement. Of course the 
weak first law (as stated above) is logically consistent with the strict 
interconvertibility of work and heat in the sense that if the latter is asserted 
to hold, then the weak first law is an obvious consequence. 

To obtain strict interconvertibility, certainly a desideratum, we shall 
also consider a stronger version of the first law, again due to Silhav^. 

STRONG FIRST LAW. For a cyclic process P of a thermodynamical system 
.£f9 the conditions W(P) > 0 and Q(P) > 0 are equivalent. 
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The principal goal of elementary thermodynamics is to provide analytic 
tools for studying thermal systems. The following result, essentially due to 
Silhavy- (see [17], Part I, Sect. 2.1), is a consequence of the Weak First Law. 

THE ENERGY INEQUALITY. Let °ti be a collection of thermodynamic 
systems containing a perfect gas &9 and suppose each system SP in °H is com
patible with &. Then there exists a unique (universal) constami jf>0 such that 
for every cyclic process P of every system S? in <% we have W(P) < #Q(P). 

The energy inequality, as an axiom, was first stated by E. L. Fosdick 
and the author [8]; fqr a demonstration of the present form, see [16]. 
The energy inequality of course applies only to systems £f in the collec
tion °U. Since we may assume, realistically, that any system Sf of interest 
belongs to such a collection it follqws that the relation W(P) < <?Q(P) can 
be presumed to hold for cyclic processes of arbitrary thermodynamic 
systems. The constant $ is called the mechanical equivalent of heat. 

When the Strong First Law is posited instead of the Weak Law9 and the 
strong union axiom is assumed (see footnote, Section 3), a similar proof 
yields the conclusion 

W(P) = fQ(P) 

for all cyclic processes P of systems y in the universe <2f. That is, the 
Strong First Law is equivalent to the interconvertibility of heat ^nd work 
for arbitrary cyclic processes. In what follows we shall assume the nor
malization $ == 1. 

3. The second law of thermodynamics involves more subtle ideas than 
the first since it deals with the quality of heat at different hotness levels. 
Moreover, the physical notions which originally motivated the various 
nineteenth century statements of-the second law are fairly obscure, requir
ing some effort to phrase clearly. 

The first essentially correct formulation of the second law is due to 
Eudolf Olausius, namely 

A passage of heat from a colder to a hotter body cannot take place 
without compensation [3]. 

While this is not at all precisely stated, we may consider it to mean that 
if a cyclic process absorbs heat at a hotness level LQ and emits heat at 
a hotness level Lx >• L0 then necessarily W(P) < 0. That is, the accumu
lation function of a cyclic process P with W(P) ^ 0 cannot have either of 
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the forms shown: 

172a 

This version of the second law is not easily applicable to the case of 
general thermal processes without the further intervention of sophisticated 
topological notions. On the other hand, a slightly stronger formulation of 
essentially the same idea can be given which avoids this difficulty. In 
particular, since graphs of the above two types are disallowed by Olausius's 
version of the second law, it seems equally the ease that no linear combi
nation of such graphs could occur as the accumulation function of a cyclic 
process with W(P)^0. Indeed, such an accumulation function would 
represent a process which raises various low temperature heat supplies to 
various higher temperatures, without the need of doing work on the system. 
In the same way, any closure of such linear combinations would also 
appear impossible for cyclic processes (by continuity considerations) at 
least if W(P) > 0. But the set of such closures coincides with the set of 
non-negative accumulation functions. We are thus led to the following 
general version of the second law (see Serrin [13], [14]). 

SECOND LAW. If W(P) > 0 for a cyclic process P of a thermodynamical 
system £?, then there is some hotness level L0for which Q(P9 L0) < 0. 

The reader will surely notice the interesting relation between the 
(weak) First Law and the Second Law, namely that when W(P) > 0 the 
former requires a positive value for Q(P) while the latter implies 
a negative value for Q(P, • ) at some hotness level. This allows the two laws 
to be stated in a simple combined form, a form whose impressive elegance 
cannot help but be remarked. 

COMBINED LAWS. For any cyclic process P with W(P) > 0 there folds 

Q(P,L)>0 
Q(P,L)<0 

for some L >- Lu9 

for some L < Lu. 

The Second Law is an intrinsic statement about the relation between 
work and heat in cyclic processes. In parallel with the discussion of the 



1?24 Section 19: J. B. äerxin 

First Law in the previous section, the Second Law also has an equivalent 
analytical formulation of great usefulness. We state this as follows (see 
[13], [14] and, from other standpoints, also [7], [17], [18], [19]). 

THE ACCUMULATION INEQUALITY. Let the hypotheses of the energy 
inequality hold. Then there exists an (absolute) temperature scale T on the 
hotness manifold 3tf9 with T(3tf) ==R+

9such that for every cyclic process P of 
every thermodynamic system Sf in $1 we have 

UVJ 

/ 
« ( P ' i ) f f i < 0 , 

T2 

where L =*L(T) is the hotness level associated with the temperature T in the 
scale T. Any temperature scale T with the above property either agrees with 
the perfect gas scale of & or is a positive constant multiple of this scale. 

The accumulation theorem immediately accomplishes two purposes: 
it establishes the concept of absolute temperature without ambiguity, and it 
characterizes once and for all the allowable behavior of the accumulation 
function of any cyclic process. 

Indeed the accumulation theorem implies the second law, for if Q(P9*) 
> 0 and W(P) > 0 then by the first law Q(P) > 0 so that the accumulation 
integral must be positive, and the process hence cannot by cyclic. 

The reader should observe that the accumulation integral is well-defined 
and finite, as follows easily from properties (1) and (2) of the accumulation 
function given in Section 1. 

The accumulation inequality is a generalization of the Olausius inequal
ity. In particular, should Q(P9-) be of bounded variation then we can 
obviously write 

00 

J —F~dT=) —T—' 

the latter integral representing the "sum" of the heats added divided by 
their absolute temperatures. The advantage of the accumulation integral 
compared to theOlausius integral is that it can be expressed analytically 
in terms of clearly formulated primitive concepts, and at the same time 
is applicable to a broader class of processes since its existence relies only 
on the structural properties (1) and (2) of the accumulation function. 
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For a proof of the accumulation inequality see [15] or, in a more 
general setting, [6]. In these papers it is also shown how to replace the 
perfect gas 0 by less special model materials — essentially those with 
a suitably rich supply of Oarnot cycles. 

4. In order to provide a concrete framework for the notions of internal 
energy and entropy it is necessary to introduce the idea of a state space, 
and an associated state structure. At the simplest (and most general) 
level this may be defined as follows. 

A stale structure for a system £f consists of a set 2, whose elements are 
called states of the system, and a corresponding family of processes P2(£?) 
c P(y), with each process P eP^SP) having a well-defined initial state 
PieS and final state PfeZ2 Moreover if P is a cyclic process in Ps(9>) 
then P{ =Pf. (In practice, a state structure should also be compatible 
with the notion of a process P following another process P ' , and should 
include in this case the axiom P{ = P'f.) 

We shall say that a system 9* has an internal energy corresponding to 
the state structure (2, Ps) if there exists a function U: E-+R such that 
AU^Q(P)-W(P) for each P ePs(SP). Here AU denotes the difference 
between Z7 evaluated at the final state and the initial state of P, that is 
A TJ s U(Pf) — TJ(Pi). Eoughly speaking, then, a function TJ is an internal 
energy for a system if it is a lower potential for the difference Q(P) — W(P). 

If P G P0YQ(£f)c\PE(£r) then necessarily Pi = Pf and in turn A TJ = 0. 
Consequently we recover the energy inequality W(P) < fQ(P) from the 
above formula (this in fact being the motivation for the definition of internal 
energy). 

In parallel with the Strong First Law, we may also introduce the 
idea of a (strong) internal energy, in which the inequality ATJ<, Q(P)~ 
— W(P) is replaced by the stronger requirement 

AU =Q(P)-W(P). 

Turning to the second law it is natural to proceed in a similar way, but 
now based on the accumulation inequality. For convenience in formulation, 
we introduce the abbreviation Ä(P) for the integral appearing in the 

2 Formally, the assignment of initial and final states can be considered as 
a pair of mappings 

iiPs(Sr)-+29 i(P)~Pif 

f:Ps(y)-+2, f(P) = Pf. 
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accumulation theorem; thus 

~ a(P. TA 
dT) *r> - / Q(P9L) 

T2 

naturally, once one has a (definite) absolute temperature scale in hand one 
can define Ä(P) whether or not the process P is cyclic. This being Under
stood, we shall say that a system 9> has an entropy corresponding to the 
state structure (E9 Ps) if there exists a function S: 27->JB such that 

AS>Ä(P) 

for each P e PS(SP). Again roughly speaking, the entropy is an upper 
potential for the accumulation integral Ä(P). 

If P e P0yo(^)nP27(«9j?) then of course AS =* 0 so that we recover the 
cyclic condition Z(P)< 0 stated in the accumulation theorem. Another 
case of interest is that of an adiabatic process, for which Q(P9-) = 0 . In 
this situation one has Ä(P) = 0 whence in turn the entropy hypothesis 
yields 

AS>09 

the celebrated condition of spontaneous entropy increase. 
It is one of the principal conclusions of classical thermodynamics that 

simple reversible systems necessarily possess both an internal energy and 
an entropy. This result can be obtained within the present structure as 
a direct and simple consequence of the energy inequality (Weak First Law) 
and the accumulation inequality (Second Law), cf. [14], [16]. Thus for 
simple reversible systems the existence of internal energy and entropy is 
equivalent to the First and Second Laws. 

A principal problem of modern thermodynamics is to characterize 
those systems for which the same conclusion holds (Goal IV in the intro
duction). Important work in this direction was initiated by Ooleman and 
Owen [4] and has been continued in a series of more recent papers [5], [6], 
m [13], [20], etc. 

In his dissertation Eicou [11] has proved the remarkable result, that if 
a state structure is deterministic for a given system (that is, if the condition 
P'{ = Pf implies that the process P ' can follow P) then the system must 
have an internal energy and an entropy (see also [12]). 

5. Phenomenological thermodynamics studies and interrelates two basic 
physical quantities, heat and work. There are two intrinsic principles 
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governing this interrelation — the first and second laws of thermodynamics. 
Each states a reasonable, even if somewhat pessimistic, conviction about 
the physical world. There are, next, analytical formulations of these 
laws — first, the energy inequality (or the interconvertibility of heat and 
work for cycles, if the Strong First Law is used), and second, the accumula
tion inequality. These analytical formulations pave the way to all direct 
applications of the theory. They rely in turn on two derived scale concepts — 
the Joule mechanical equivalent of heat and the Kelvin absolute tempera
ture scale, each among the greatest conceptions of nineteenth century 
physics. Finally, there are two fundamental potentials, or more accurately 
semi-potentials — the internal energy and the entropy — which extend 
the direct cyclic principles to much broader classes of thermal processes. 
On this structure hangs the science of heat, from the elementary theory of 
reversible systems, to Gibbs' magnificent conception of thermal and 
chemical equilibrium, to sophisticated theories of material dynamics. 

The most far-reaching implication of the structure, however, is the 
fact that it is not limited to equilibrium. In fact, a dogmatism which would 
lay this restriction on thermodynamics would in turn invalidate a massive 
sector of thermal physics, including heat transfer theory, compressible 
fluid mechanics, shock wave theory, and combustion theory. Conversely, 
allowing thermodynamics a natural scope beyond equilibrium yields 
a powerful and far-reaching theory with which to attack those dynamical 
problems where hotness and heat play a crucial role. 
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