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Geometry of Banach Spaces and Harmonic Analysis 

J. BOURGAIN 

1. Introduction. I intend to report on several results interrelating harmonic 
analysis, geometry of convex sets, and finite-dimensional Banach space theory. 
Part of this report, especially the work on high-dimensional convex sets, is related 
to the exposé of V. D. Milman in these proceedings. In §1 of my report, I will 
discuss recent research on the behavior of the maximal operator associated to a 
convex symmetric body in R n for large n. It finds its origin in the work of E. 
Stein [Stl] on the spherical maximal function, and the paper of E. Stein and J, 
O. Stromberg [St-Str]. In [B2] and [B3], we succeeded in developing part of 
this theory in its full generality. On the other hand, several interesting questions 
are still unsolved at present, even in the particular case of the euclidean ball. 

It was proved in [B4] that the maximal operator corresponding to the circular 
means in the plane 

M(1)f{x) = sup f \f(x + ty)\a {dy) (1.1) 
t>oJ 

(a = normalized arclength measure of the circle) is a bounded operator on 
LP(R2) for p > 2. The two-dimensional case was left open in [Stl] and 
[St-W]. The latter result and some of its consequences are discussed in §2 of 
this exposé. 

In §3, progress on the theory of Sidon sets and the dichotomy problem for 
restriction algebras is described, starting from the remarkable discoveries of G. 
Pisier in the late seventies [PI]. The most recent result here is an affirmative 
solution to the so-called "cotype-dichotomy" for invariant subspaces of C{G), G 
a compact Abelian group, a problem proposed by A, Pelczynski [K-P]. 

2. Geometry of convex sets and maximal operators. We denote by B a 
convex symmetric body in R n of n-dimensional volume VolB = 1. For a locally 
integrable function / on R n , define 

MBf{x) = sup / \f{x + ty)\dy (2,1) 
t>o JB 
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872 J. BOURGAIN 

generalizing the classical Hardy-Littlewood maximal operator. Denoting 

\\f\\v=(f \f(x)\pdx) \ ||/||i1oo = BupAm[|/|>A]> 

V R » / A>0 

let Cp(B) (resp. CiiOQ(B)) be the smallest constant for which the following in
equality holds: 

| |M B /H P <C p ( f l ) | | / | | p ( p > l ) , (2.2) 
resp. 

llAfe/IU.00 < C L O O C ^ H / I U . (2.3) 

The finiteness of these constants is well known. Our attention goes here to their 
dependence on the set B and, in particular, the dimension n. 

A first motivation for this study is the dimension-free character of the 
Littlewood-Paley theory [St2]. Let [Pt)t>o be the Poisson semigroup on R n , 
A ( 0 =*"*'*'• Define u(x,t) = (f*Pt)(x). Then [St2] 

s u p | / * P t | 
t>0 

<c(p)\\f\\P (1 < p < oo) 

(maximal inequality) 

(2.4) 

and for 1 < p < oo 

f f°° fin ^ ì II ( f°° Ì 1/21 

<c(p)\\f\\p (2.5) 

(gr-function inequality) 

where the constant c(p) is independent of dimension. These facts will play a 
role in the proof of the main result stated below. The second motivation is the 
dimension-free maximal inequality for the euclidean balls £n = {x G R n : |a;| = 
( E ^ ) 1 / 2 < !} proved in [St-Str]. Thus we consider 

It is shown in [St-Str] that 

Cp{£n) < C(p) independent of n for p > 1. (2.6) 

Their argument uses the geometry of the euclidean ball and does not generalize 
to arbitrary convex symmetric bodies. We will come back on it in §2. 

THEOREM 1 [B2, B3] . Cï(B) is bounded by an absolute constant Also 
Gp(B)<C(p)forp>l 

Here B refers to a general convex symmetric body in R n . 

The restriction p > | seems to be of a technical nature. However, even for 
the cartesian cube [|, ^ ] n , the maximal inequality with constant independent of 
n is not proved for p > | . 

Notice that if v G GL(Rn) is a linear permutation of R n , then Mv^f = 
Mfl(/ O U J O ü " 1 , Hence GP(B) = Gp(v(B)) is an affine invariant 

We now invoke the following geometrical fact. 
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LEMMA 1. There is an affine position B± of B, VolBi = 1, such that for 
some constant L (depending a priori on B) the Fourier transform 

t(0 = I 
JBi 

e-M{w,Ç) dx 

of the indicator function X of B\ satisfies the estimates 

ii-*(oi<cxiei, \t(t)\<c(L\e\r\ 

where G is an absolute constant 

(2.8) 

This special position B\ of B is obtained by diagonalization of the covariance 
matrix 

ß — L?Inn where /?# = / XiXj dx. 

The proof of the inequalities (2.8) then involves the Brunn-Minkowski theorem 
[B-Z]. 

Write now X = Pi + (X-PL) and apply to K = X—PL the following general 
X2-estimate, 

LEMMA 2. Let K G L1(Rn) and define for j G Z 

aj= sup |tf(fl|, ß3'= sup |<V£(fl,0|. 
2J<|^|<2J+1 2J'<|£|<2J + 1 

Then 

sup|/*üC t | 
i>0 

< CT(K)\\fh where T{K) = £ a1/* fa + ft)1'2. (2.9) 
2 

This fact is a simple consequence of ParsevaPs formula. 
The boundedness of Cz(B) in Theorem 1 then follows from (2.4), (2.8), and 

(2.9). To obtain the bound on CP(B), we use an Invariant of Lemma 2 which 
is derived from (2.5), see [B3]. 

LEMMA 3. Assume K G Z1(RW), K > 0, satisfies in addition to 

\K(0\<C\t-r\ \l-K(0\<C\t\, 

the condition 
d{

t
j)K(tO\t=i <G forj<r). (2.10) 

Then 

|( <A(CiP)\\f\\p forl + ±j<p<2. (2.11) sup|/*Ät| 
t>0 

Again let us point out that the estimate (2.11) is dimension-free. In the 
context of Theorem 1, it is applied with r\ = 1. 

REMARKS. 1. The estimate on CP(B) for | < p < 2 is due independently to 
T. Carbery. 

2. The number L appearing in Lemma 1 is inverse-proportional to the volume 
of the central sections of B± in codimension 1 (up to an absolute constant). 
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One may choose L > 1 while the problem of the upper estimate is unclarified 
presently. This amounts to the following geometrical question: Is there a fixed 
constant c > 0 such that every centrally symmetric convex set of volume 1 has 
a codimension 1 central section of volume at least c. 

3. The use of Lemma 3 enables us, in certain cases, to remove the restriction 
p > | in Theorem 1. This is the case for the euclidean ball (providing an 
alternative proof of (2.6)) and more generally the J^-ball [x G Rn : (52 xiY^r < 1] 
(n —> oo) where r is an even number. 

Based on a refinement of Vitali's covering lemma, E. Stein and J. O. Stromberg 
showed in [St-Str] that 

THEOREM 2. Cit00(B) < Cnlogn for any convex symmetric body B in Rn. 

This result is purely geometrical and derived from 

LEMMA 4. Let {Ba}a be a finite collection of (tballs,f (= translates of dilates 
of the given B). Denote by S* the ball with the same center as Ba and n-fold 
radius. Then there is a subcollection S i , . . . , BN satisfying 

m(\jBa\ <Cml [JBj J, (2.12) 

^3m^< Cnlogn (2.13) 

(C = constant) where Ij = Bj\(Bi U • • • U Bj-\). 

One might hope to improve the estimate (2.13). 

3. Spherical averages and applications. Let k > 2 and denote by <7fc_i 
the normalized invariant measure of the unit sphere S^ - 1) = [x G Rfc: \x\ = 1] 
in Rfc. Consider the spherical averages 

Atf{x) = I f{x + ty)ak^ {dy), t > 0, 

where / is a bounded measurable function on Rfc. Let also 

M(fc_1)/ = sup|A t/| 
*>o 

be the corresponding maximal operator. 
In [Stl], E. Stein proved 

THEOREM 3. // k > 3 and p > k/(k — 1), then there is an inequality 

| |M(*-i) / | |P<c(MI| / | |P . (3.1) 
This inequality fails for p = k/(k — 1). 

Stein applied estimates related to (3.1) in studying the behavior of solutions 
u = u(t, x) of the wave equation 

LU = 0' L = W?~^jk? wheni-0. 
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Recent developments in this direction appear in the joint work of E. Stein and 
C. Sogge. 

Notice that if k > 3 is a fixed dimension and n > A, then integration on the 
Grassmannian of fc-dimensional subspaces of Rn leads to the inequality 

I |W(»- I ) / I IP< / HX(Jb-i)(/o^)||pdr7 (3.2) 
JO(n) 

where 0(n) is the orthogonal group and Mjc-i is defined with respect to the first 
k variables. Thus by (3.2), c(fc,p) in (3.1) may be replaced by c{p). Integration 
in polar coordinates then implies (2.6) for the euclidean ball. 

The proof (3,1) relies mainly on the L2-estimate given by Fourier analysis, In 
the circular case, M(i) is unbounded on L2(R2) explaining the difficulty in ob
taining the two-dimensional statement. The next fact was only proved recently, 
combining Fourier analysis with geometrical techniques. 

THEOREM 4. 

||A<(i)/l|p<C(p)||/||p forp>% (3.3) 

This enables us to answer some rather old questions such as 

COROLLARY 5. No planar measure zero set contains circles with arbitrary 
center. 

A subset A of Rfc has positive upper density provided 

where B(0,R) = {x G R*, |z| < R}. 
Y. Katznelson and B. Weiss obtained the following fact combining methods 

from probability and ergodic theory. 

THEOREM 6. Whenever A is a subset of R2 with positive upper density, 
there is a number I = 1(A) such that \x — y\ = lf for some x,y G A, whenever 
V>L 

In [B5], a simple proof is given using circular means. The latter argument 
permits several variants, for instance, the following higher-dimensional version 
of Theorem 6. 

THEOREM 7, Assume A C R*; 6(A) > 0, and V is a set of k points span
ning a (fc — 1)-dimensional hyperplane. There exists some number I such that A 
contains an isometric copy ofl'V whenever V > L 

Some problems arising in this context are open. For instance, does the state
ment in Theorem 7 hold when k = 2 and V is a nondegenerate triangle? 

4. Sidon sets and the dichotomy problem for restriction algebras. A 
still open problem in Harmonic Analysis is the dichotomy conjecture for restric
tion algebras (see [G-M] for a discussion). Here we will consider the following 
version of it. Let G be a compact Abelian group, V = G the dual group of G. For 
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A C r , define A(A) = {/| A: / G L1(G)}i i.e., the restriction algebra of Fourier 
transforms of ^-functions on G. 

CONJECTURE (*). Either A is a Sidon set or any function operating on A(A) 
is analytic. 

Recall that F: [—1,1] —• C operates on A(K) provided <p G A(A), cp(i) € 
] — 1,1[ for 7 G A ==> F o (p G J4(A). For A(A) to be analytic, it is necessary and 
sufficient that for some c > 0 and for t large enough 

,ct N(A,t)= sup ||ef t*||>e' 
<pEA(A),<p real 

lividi 

Here \\<p\\ stands for the quotient norm 

|M| A ( A ) = inf{||/ | |i : / e &{€!), fa) = <p(l) for 7 e A}. 

Despite the counterexamples of M. Zafran [Z] and G. Pisier [P2] to the di
chotomy problem in the context of homogeneous Banach algebras, I think that 
the results mentioned in this section give significant support to the conjecture 
stated above. 

A subset A of T is a Sidon set provided there is a constant C > 0 such that 
for all scalar sequences (a7)^eA> 

Z X T >£W (4-2) 
C(G) 

holds. Here C(G) is the space of continuous functions on G equipped with the 
supremum norm, and the characters T are seen as functions on G. The smallest C 
satisfying (4.2) will be denoted S (A), the Sidon constant of A. Concrete examples 
of Sidon sets are dissociated sets. A subset A of T is dissociated provided that 
any (±1,0)-relation of the elements of A is trivial. Thus 

^ e 7 7 = 0 (inT), e7 = 0 ,1 , -1 => e1 = 0 for 7 ^ 0. 
A 

In the case of dissociated sets, the interpolating measures are given by the stan
dard Riesz-products. The following theorem, due to G. Pisier [PI] makes the 
connection with the more abstract notion of Sidon sets (see also [B6] for a dif
ferent approach). 

THEOREM 8. For a subset A ofTj the following conditions are equivalent: 
(i) A is a Sidon set. 
(Ü) II/HL*2(G) ^ C| | / | |La(G ) for s u p p / C A. 
(iii) There is 6 > 0 such that any finite subset Ai of A contains a dissociated 

subset A2 C Ai with |Aa| > <5|Ai|. 

Here L^2(G) refers to the Orlicz function ex —1. 
In [G], C. Graham pointed out that an affirmative solution to (*) implies the 

following fact, proved in [B7]. 
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THEOREM 9. Let A be a subset of Y for which the restriction algebras of 
Radon measures and discrete measures coincide, i.e., B(A) = Bd(A). Then A is 
a Sidon set and hence a Helson set in the Bohr compactification. 

Lower estimates on N(A,t) can be obtained from 

LEMMA 5. Let I > 0 be an integer. Suppose there exist f with f finitely 
supported by A and points &i , . . . , x\ EG such that 

/(0) = I l / lu = 1, (4.3) 

< B for all y eG. (4,4) 
sc{i,..„0 \ kes / 

Then, for 0 <t < cl, N(A^t) > ect/B where c > 0 is numerical. 

This criterion applies to solve the dichotomy problem for the tensor-algebras 
(see [G-M] for background). Thus [B8] 

THEOREM 10. Let I,J be discrete spaces and E a subset of I x J. Then 
either E is a V-Sidon set (= a finite union of sections) or the restriction algebra 
V(E) = CQ(I)®CQ(J)/EX is analytic. 

For a subset A of T, define CA = {/ G C(G): s u p p / G A}, the subspace 
of C(G) of those functions with Fourier transform supported by A. Results of 
N. Varopoulos [V] and G. Pisier [P3] led to the so-called "cotype dichotomy" 
problem; see [K-P]. In a sense, this dichotomy is a Banach space version of (*). 
It was solved recently in joint work with V. D. Milman [B-M]. 

THEOREM 11 . Either A is a Sidon set (& CA has cotype 2) or CA con
tains /£°-subspaces (uniformly) of arbitrary large dimension (<& CA has no finite 
cotype). 

We recall the definition of cotype. A normed space X has cotype 2 < q < oo 
with constant Gq(X) provided 

Cq(X) Aver 
±i J2 ±xi 

l<i<r 
>-(E\ VW) 

1/9 

whenever {a^}£=1 is a finite sequence of vectors in X. This notion plays an 
important role in the finite-dimensional theory of normed spaces (cf. the exposé 
of V. D. Milman). The proof of Theorem 11 is nonconstructive and combines 
results from harmonic analysis and geometry of Banach spaces. One of the facts 
involved is 

LEMMA 6. For a finite subset E ofT, define 

d(E) = min{d | CE is 2-isomorphic to a subspace of I™}. 

Then A C T is a Sidon set if and only if 

log d(E) 
T = inf 

ECA 
E finite 

\E\ 
>0 . 
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The notion a(E) is closely related to the concept of arithmetical diameter 
considered by Katznelson and Malliavin in [K-M]. 
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Cyclic Cohomology and 
Noncommutative Differential Geometry 

A. GONNES 

Cyclic cohomology appeared independently from two different streams of 
ideas, algebraic üf-theory and noncommutative differential geometry. I shall 
try to explain in this paper the meaning of noncommutative differential geom
etry, Its main object is a new notion of space, The need for considering such 
spaces and developing for them the analogues of the usual tools of differential 
geometry is best understood in the following two examples. In both, one tries to 
prove a result of classical differential geometry, and a heuristic proof is possible 
provided one accepts the new notion of space. 

First example. 

THEOREM (LICHNEROWICZ, 1961). If M is a compact spin manifold 
whose Â genus is nonzero, then it is impossible to endow M with a Riemannian 
metric of strictly positive scalar curvature, 

The proof of the result uses a simple global idea. By the Lichnerowicz identity, 
the square of the Dirac operator is V* V + \x where V* V is a positive operator 
and x is the scalar curvature. Thus for x > 0> the Dirac operator has index 
equal to zero. But by the index theorem index (Dirac) = A(M) ^ 0. Q.E.D, 

A stronger result about the nonexistence of metrics with positive scalar cur
vature is the following 

THEOREM [14]. Let M be a compact oriented manifold with A(M) ^ 0. 
Then there is no integrable spin subbundle F of TM with strictly positive scalar 
curvature. 

Let me give a heuristic proof of this result which will work when we get the 
right tools. The idea is the following: Given an integrable subbundle F of the 
tangent bundle of Af, one can a priori integrate it and get a foliation of M which 
creates a new space B of leaves of this foliated manifold. (See Figure 1.) 

Now A(M) is the index of the Dirac operator, at least if M is spin, or, equiv
alenti^ it is the pushforward 7r!(L) of the trivial line bundle L on M by the 
map 7r: M —• pt. As TT = 7Ti O 7T2, where 7T2 is the projection of M on the space 
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^ Pt 

FIGURE 2 

V = K(TT,1) 

of leaves B, one has 7r!(L) = 7Ti! (7^ !(£)), but 7r2}.(L) G K(B) is the index of 
the family of Dirac operators along the leaves and hence is zero since the scalar 
curvature of leaves is strictly positive. This reasoning does work if one has just a 
fibration; one then applies the index theorem for families. However, in general, 
given an integrable subbundle F it is impossible to decide whether it creates a 
fibration or a foliation. For instance, on the two torus T 2 = R 2 / Z 2 the equation 
dy = Odx defines a fibration iff 6 is rational. Thus it is impossible to restrict 
to the case of fibrations, and one needs to handle spaces such as the space B of 
leaves of an arbitrary foliation. One needs new tools to understand and use such 
spaces because when just viewed as ordinary topological spaces they are of no 
use; in general they would carry the coarse topology and K(B) would be trivial. 

Second example. We now pass from the space of leaves of a foliation to another 
example related to discrete groups. It comes from a problem stated by Novikov— 
the homotopy invariance of the higher signatures. Let M be a compact oriented 
manifold and (p a map from M to a üC(7r, 1) space V. For instance, one could take 
for <p the map which classifies the universal cover of M. For each cohomology 
class (jj € i /*(F, C) = H*(TTî C), the higher signature of the pair (M, ip) is given 
by the scalar (ZM • V*^), [M]) where CM is the L genus of M and <p*(w) the 
pullback of a; by <p. The problem is the following: Is the well-defined number 
above a homotopy invariant of the pair (M, ip)l (See Figure 2.) 

When V — pt, one gets the ordinary signature of M, which is a homotopy 
invariant. By the work of Wall and Miscenko, on equivariant surgery theory, 
one can assign a 7r-equivariant signature to the covering M of M pullback by 
<p of the universal cover V of V. Moreover, this equivariant signature belongs 
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(neglecting torsion) to the Witt group of the group ring CTT and is a homotopy 
invariant, Signature^ (M) E Witt(C7r). When IT is commutative, one can prove 
the homotopy invariance of higher signatures as follows. There is indeed a space 
assigned to the group 7r, the space of characters, i.e., the dual 7r, which is Haus-
dorff and compact, finite-dimensional if 7r is finitely generated. Then the group 
ring CTT embeds as a subring of the ring C(it) of continuous functions on it: 

CTT C C(TT). 

The diagonalization of quadratic forms on G (IT) yields a map from the Witt 
group of CTT to the K° group of TT\ 

WittC7T^# 0 (7r ) . 

Now any 
u>eHn(V>C) = Hn(w,C) 

is represented by a group cocycle (^(g1,,,., gn) totally antisymmetric in the #ns, 
One then defines uniquely a current G on w by the equality: 

{c,f0df1A-..Adfn)= £ /0(ff°)/1(ff1)--- /B(ffBMff1 . -- .PB) 

n0v=i 
where the /* are functions on TT SO that their Fourier transform /* are functions 
on the group TT itself. The current G is closed because u is a group cocycle. 

The main lemma, then, which is a corollary of the index theorem for families, 
says that if you pair G with the Chern character of the equivariant signature 
you get the higher signature; 

(C,Ch(Signature7r(M))) - (ßM • p » , [M]). 

Thus the right-hand side is a homotopy invariant. Q.E.D. 
In general, when TT is not commutative, there is no interesting space of charac

ters and one cannot really talk about the dual of IT as a space. However, and this 
will be the key to this discussion, one can assign a noncommutative (7*-algebra 
to 7r; it is the completion of the group ring GIT acting in the Hilbert space 12(TT). 

A careful scrutiny of the two previous examples reveals that one needs, in 
order to proceed, a suitable generalization of the notion of space, which would 
allow one to handle both leaf spaces and duals of noncommutative groups as if 
they were ordinary spaces. 

Grothendieck Category of sheaves on X 

Space X 

Gelfand 

Algebra of complex functions on X 

Space"* 

„Topos 

"Noncommutative (7*-algebras 
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The basic idea underlying the new notion of space discovered by Grothendieck 
—and which he named "topos"—is that in an ordinary topological space the 
main part is not so much played by the points and their proximity relations, but 
by the category of sheaves on the space. Indeed the original topological space 
can be recovered from this category, and, moreover, if one keeps only the truly 
relevant conditions satisfied by such categories one obtains the notion of topos 
which plays a fundamental implicit role in the new algebraic geometry. The new 
notion of space that we shall deal with is based on a similar idea, but assigns 
a specific role to the complex numbers C or, equivalently, to functional analy
sis. It goes back to Gelfand's theory of C*-algebras. It asserts that a compact 
topological space X is characterized by the *-algebra G(X) of complex-valued 
continuous functions on X and that such algebras are the most general commuta
tive C*-algebras. That there is no good reason to restrict oneself to commutative 
C*-algebras versus noncommutative ones, goes back to the early development of 
quantum mechanics with the discovery by Heisenberg of matrix mechanics. In 
understanding, from a very positivistic point of view highly enforced by exper
imental evidence in spectroscopy, the interaction of matter with the radiation 
field, Heisenberg showed that the usual observables of classical mechanics have 
to be replaced by matrices which violate the commutativity of mutliplication. 
Thus the phase space of quantum particles is an early example of the new type 
of spaces that we shall deal with. To take this second idea of space further, we 
need many examples, each being used as a small laboratory in which to test ideas 
and to see what works. We summarize a few examples in the following table: 

Space Algebra 

X G(X) 

X = 7rdualof C*(TT)DCTT 

a discrete group (completion in 12(TT)) 

X = M/F leaf space G* (M, F) 

Example: Kronecker foliation VU = (exp2iTiO)UV 

X = Q/G orbit space CQ(Q) X G crossed product 

We have already discussed the first example. The second comes from folia
tions. There is a very natural C*-algebra coming from operators which differ
entiate only in the leaf direction, and are elliptic in that direction. These turn 
out to have natural parametrices; they are invertible modulo operators which 
are smoothing in the leaf direction. These operators constitute a C* -algebra, 
C*(M,F). An example would be to take the Kronecker foliation of the two 
torus, which is induced by the equation dy = Odx where 0 is irrational. In that 
case you get a C*-algebra generated by two unitary elements which do not com
mute, but do commute up to a phase A = exp27ri0. This is an algebra with 
which one may do many computations, exactly as if one were computing with 
the ordinary functions on the two torus using Fourier analysis. 
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Another very important example was discovered by Bellissard [6] from solid 
state physics and the quantum Hall effect. In the study of disordered systems, 
the Hamiltonian Hu is labelled by a parameter u) G fi. Moreover, ifw fails to 
commute with i?rx(w) where T is the action of the translation group on the 
parameter space fi. Thus the translates of the Hamiltonian generate a non-
commutative C*-algebra, which corresponds to the "energy spectrum" of the 
system. 

Given these examples one needs the right tools, The first comes from my orig
inal field of study: "von Neumann algebras." These algebras together constitute 
exactly the noncommutative analogue of measure theory. Their classification 
and understanding have now reached a fairly complete and satisfactory stage, 

But what we need then is a little more than just measure theory; we need 
topology. I will now describe the basic tool in topology, first introduced by 
Grothendieck in algebraic geometry, and then by Atiyah for the purposes of 
topology. That tool is if-theory. There is a quite simple relation between com
plex vector bundles over the space X and projective modules over the algebra 
A = G(X)\ this is the Serre-Swann theorem: 

Ki(X) = Ki(A = G(X)). 

It allows us to do lf-theory of spaces by doing linear algebra where the field 
C is replaced by the ring A. Then the group of dimensions of finite projective 
modules is the üf-group KQ(A). The Bott periodicity theorem tells us that the 
/f-groups of a C*-algebra A are the homotopy groups of the gauge group, i.e., 
of the unitary group U of infinite matrices over A: 

Kì(A)=TTH1(U). 

Whenever a space is constructed by patching together two spaces, such that 
one has a short exact sequence of algebras, there is a corresponding long exact 
sequence of üf-groups, which is shortened thanks to periodicity: 

Ko(J) >• K0(A) 

Ki{A) -< K^J)* 

Moreover, there is a general principle which is absolutely crucial. Above, we 
used twice the index theorem for families. Now the principle is that a "space" X 
will be described by a noncommutative algebra A, and that when one has a family 
(Dx), x G X indexed by X, such as the family of leafwise Dirac operators indexed 
by the space of leaves, then the index of this family belongs to K°(X) = Ko(A). 
This principle is very important because it allows us to translate into if-theoretic 
terms the basic analytical properties such as: 

• The vanishing of the index of the family of leafwise Dirac operators: 

Index(DiracL)LGM/F = 0 

when the scalar curvature of leaves is strictly positive. 
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• The homotopy invariance of the 7r-equivariant signature: Signature7r(M) G 

The first vanishing above takes place in the if-group KQ(C* (M, F)). Both K-
groups are countable abelian groups but are at first extremely mysterious objects, 
being defined through the above C*-algebras. When dealing with ordinary spaces 
one gets some intuition about their if-groups, but this is less clear when dealing 
with C*-algebras. The first real breakthrough which got everything started was 
done by Pimsner and Voiculescu [26] who, in particular, computed the if-groups 
for the Kronecker flow foliation discussed above. It allowed P. Baum and the 
author to guess what the answer should be in both general and geometric terms. 
The situation is described as follows: We construct both a geometric group, 
the if-homology of the classifying space, and a map ß to the if-group of the 
C*-algebra. The classifying space makes sense in all the above situations since 
topologists have a way of making sense, up to homotopy, of spaces like the leaf 
space of a foliation or the orbit space of a group action. What they do is to 
amplify the space, say M, on which the group T acts, by crossing M with a 
contractible space ET on which T acts freely; then the quotient M x r E T makes 
sense and is "nomotopic to M/ r . " 

if * (Classifying space) -̂ » K (G* -algebra) 

The map fi is difficult to construct [5, 4, 12, 24] and even when one deals with a 
one point space, its mere existence is the Atiyah-Singer index theorem [5]. It is 
essentially a Poincaré duality map to the extent that it reverses functorialities. 
The main problem of the theory is to handle this map p,\ all computations so 
far indicate that it is a bijection [4, 23, 24, 27]. An important tool developed 
by the Russian school, by Miscenko and Kasparov in particular, and also by 
Atiyah, Brown, Douglas, and Fillmore (cf. [23, 24, 1, 7]), is if-homology for 
C*-algebras. Since this theory played a crucial role in the understanding of the 
analogue of de Rham's theory of currents for the above spaces, I shall sketch 
it briefly. For ordinary spaces, if-homology is defined, using duality, by a gen
eral theorem which states that given any cohomology theory (such as if-theory) 
there is a corresponding homology theory, called here if-homology. One wants 
to realize this homology theory concretely. It is quite striking that if one was 
very conservative and wanted to stick to ordinary spaces, not accepting "spaces," 
one would not be able to describe the theory if-homology (X) (there is a ifeven 
and if odd) as homotopy classes of maps from spaces Zeyen,Z0^ to the space 
X. However, with "spaces" this is possible; Zey is obtained by glueing together 
two contractible "spaces," and the C*-algebra G(Zey) is the noncommutative 
algebra Aey of pairs of operators (a;, y) in Hilbert space k whose difference x — y 
is a compact operator. Similarly C(Z0dd) = A)dd5 which also appears in Beyond 
Affine Lie Algebras, by I. Frenkel, is the algebra of 2 x 2 matrices (XìJ) of opera
tors, such that x\2 and £21 are compact. Of course a "continuous map" from Zey 

to X is given by a homomorphism from C(X) to C(Zey), i.e., a homomorphism 
from the C*-algebra A = C(X) to Aey. This is called a Fredholm module over 
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A because it amounts to giving a Z/2 graded Hilbert space, h © h with grading 
e = [ J J \ ] , with a left A-module structure such that 

(1) ea = aeVae A, 
(2) [F, a] is compact Mae A where F = [ ° J ] . 

There is a similar notion of odd Fredholm module. On any even-dimensional 
compact spin0 manifold, the module of L2 spinors, with Z/2 grading given by 
the 75 matrix [5] and operator F given by the phase F = .D|.D|-1 of the Dirac 
operator, is a Fredholm module which represents the fundamental class of the 
manifold in if-homology [5]. If one puts together this notion of a Fredholm 
module with the ideas of Helton and Howe, Carey and Pincus [18, 9] on operators 
commuting modulo trace ideals, one is led to the noncommutative analogue of de 
Rham's theory: cyclic cohomology. Helton and Howe associated to any operator 
T, normal modulo trace class operators, a de Rham current on R 2 with boundary 
carried by the essential spectrum of T. Their work was very inspiring because it 
showed that the calculus of differential forms could be born from purely operator 
theoretic considerations in Hilbert space. This is what is done in [11]; given a 
Fredholm module over A, one can define differential forms on the corresponding 
"space," not by using local charts and patching these together but directly as 
operators in Al- It is exactly the same step as the replacement, in quantum 
mechanics, of Poisson brackets by commutators. Thus 

da = i[F, a] Mae A 

defines the differential of a function. The forms of degree q are obtained as sums 
of products of 1-forms: QQ = {$2%° dx1 • • • dxQ, a:-7 G ^4}. In this way, one gets 
a graded differential algebra; the product is the product of operators and the 
differential is given by 

du = i(Fu - (-l)quF) for Lj e nq. 

One has d2 = 0, and the main point is to obtain an integration of forms u) —• 
/ W G C satisfying f dw = 0 and f U2W1 = (-l)QlQ2 Ju\U)2. 

The formula which works is quite simple: f w = Tracera;). This is where the 
dimension appears, the trace only makes sense if OJ is a trace class operator. By 
the Holder inequality this holds, for any CJ G f2n, provided [F,a] G Jßn Va G A. 
Here, for every real number p G [l,oo], jßp is the ideal of compact operators T 
with X)^g(l^l)p < °°5 where Ag(|T|) is the qth. eigenvalue of the absolute value 
of T. The dimension of a Fredholm module over an algebra is the infimum of 
the p's for which [F, a] G ßp Va G A. For the fundamental class of a manifold 
M described above, it yields the dimension of M. In general it need not be an 
integer. Given an even Fredholm module of dimension p on A one can integrate 
only the forms u) G fin of degree > p. Moreover, odd forms have integral 0. 
Thus the above construction yields for each even integer n > p, the functional 
rn called the n-dimensional character of the Fredholm module: 

r n ( a ° , . . . , a n ) = f aóda1---dan W G A. 
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Carefully analyzing these functionals led me to discover cyclic cohomology in 
1981. It was discovered independently from algebraic if-theory by Feigin and 
Tsigan [17, 30], replacing group homology by Lie alagebra homology in the 
basic construction of Quillen's algebraic if-theory. It also appeared, at least in 
implicit form, in the work of Hsiang and Staffeld on the algebraic if-theory of 
spaces [20]. It is of course quite striking that from different streams of ideas one 
gets to the same theory: cyclic cohomology. 

A crucial and simple lemma is the following. 

LEMMA. Let A be an algebra and r an (n+1) -linear map AxAx- --xA —> C 
such that 

(1) r(a\ ..., an, a0) = (-l)nr(a°, ...,an) W G A; 
(2) E S ( - 1 ) M û ° . • • •. ajai+\..., an+1) + ( - l ^ + M a ^ a 0 , . . . , an) = 0 W 

e A. 
Then the map e G A, e2 = e —• r(e,..., e), gives a morphism of KQ(A) to C. 

In fact ifo(^) is generated by idempotents e2 = e in matrices over A, Mq(A) = 
Mq(C) ® A, and one has to extend r to Mq(A) by the equality: 

rq(m° <8> a 0 , . . . ,mn <g> an) = Trace(m° • • • mn)r(a°, ...,an) (*) 

VmJ eMq(C), a? e A. 
Here are a few examples of functionals r satisfying (1) and (2): 
EXAMPLE a. Let A = C°°(M), the algebra of smooth functions on a compact 

manifold, and C a closed current on M of dimension k. Then r ( / ° , . . . , fk) = 
(C,f°df1 A • • • A dfk) Mp e A has exactly the properties (1), (2) of a cyclic 
cocycle. In fact r satisfies ra = sign(o-)r for any permutation of { 0 , 1 , . . . , fc}, 
but since Trace(m° • • • mk) is invariant only under cyclic permutations it is only 
(1) which is satisfied by all rq. One has Ko(A) = K°(M) and the lemma gives 
back the ordinary Chern character, viewed as a pairing with the homology of M. 

EXAMPLE ß. Let TT be a discrete group, A = CTT the group ring, and 
<d e £n(7r,C) a group cocycle suitably normalized so that ^(g1,... ,on) = 0 
if g1 • • • gn = 1. Then the equality 

T{g°,...,gn)=0itg0---gn?l V € ir, 

T(g0,...,gn)=u(g1,...,gn)iîg°g1---gn = l Vg* € TT, 

defines an n-cyclic cocycle r o n i l . Moreover, extending r to infinite matrices 
over A one can show that 

(r,Signature7r(M)) = (£M • <p*(u), [M]) 

with the notations of the higher signature problem. The cyclic cohomology of 
group rings is computed by Burghelea in [8]. 

EXAMPLE 7. For each even n > p, the n-dimensional character rn of a 
Fredholm module over A is a cyclic cocycle. Moreover, the pairing with KQ(A), 

(rn ,e), is given for any idempotent e by the index of a Fredholm operator, and, 
in particular, lands in Z c C. It corresponds to the Z-valued pairing between 
if-theory and if-homology, which ensures that it is highly nontrivial. 
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Given any algebra A, there is a trivial way to construct cyclic cocycles on A, 
namely r = b(p where (p G C^" 1 is an n-linear functional on A satisfying (1), 
and b(p its Hochschild coboundary given by formula (2). The relevant group is 
the quotient H%(A) = Z^^/bC^1, where Z% = Kerb, and is called cyclic 
cohomology of A. It turns out that just by working with Example 7, of Fredholm 
modules, all the properties of cyclic cohomology fall into one's lap. First a 
Fredholm module has many characters rq, one for each even integer q > p, and it 
would be unreasonable to expect that 7"g+2>Tg+4>... bring new information not 
contained in rq. Explicit computations show that there is a natural periodicity 
operator 

S:H%(A)^HZ+2(A) 
given in fact by cup product by the generator of H2(C) and such that rq+2k = 
Skrq in H^2k(A). Then, in order to find the smallest n for which rn is defined, 
one needs to determine the image of S. But by construction, the complex (C%,b) 
is a subcomplex of the Hochschild complex (Cn,b) where Cn is the space of all 
(n + l)-linear functionals on il, It turns out that r G Im S iff r is trivial in 
the latter complex, whose cohomology Hn(A,A*), the Hochschild cohomology 
of A with coefficients in the bimodule of linear forms on A, is computable by the 
general methods of homological algebra. The final point is the construction of 
a natural operator B from Hochschild cohomology Hn(A,A*) to H'^~1(A) and 
the proof of the exactness of the following sequence: 

D VffJ(/0 -^ H^2{A) -4 Hn+2(A,A*) 

B >-Hl+\A) •£• HZ+3(A) -4 Hn+3(A, A*)^ 

Thus Hochschild cohomology and cyclic cohomology from an exact couple which 
together with the associated spectral sequence becomes a basic tool to compute 
cyclic cohomology of algebras. The power of this tool is illustrated by two 
examples: 

EXAMPLE a. Let M be a compact manifold, A = G°°(M). Imposing obvi
ous continuity conditions to cochains one finds that the Hochschild cohomology 
groups Hq(A,A*) are identified with the space Qq of de Rham currents of di
mension q on M. The map I o B of the exact couple is the de Rham boundary 
d*, and one gets 

H\(A) = {Kerd* C Qq} + iJ g_ 2(M,C) +Hq-4(M,C) + • • • . 

The de Rham homology of M identifies with the periodic cyclic cohomology of 

EXAMPLE b. Let (M,F) be a foliated manifold, A = C*(M,F) the cor
responding C*-algebra. In A there is a natural dense subalgebra A of smooth 
elements and one has to compute its cyclic cohomology. One has 

Hp„{A) = # ; (Classifying space) 
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where the right-hand side is the cohomology with complex coefficients of the 
classifying space of the holonomy groupoid or graph of the foliation. The index r 
means that this cohomology is twisted by the orientation of the transverse bundle 
r of the foliation. Using sheaves on M and the naturality of the construction of A, 
one constructs a localization morphism AM? which is a far-reaching generalization 
of the Ruelle-Sullivan current: 

and one reaches the following cohomological formulation of the longitudinal index 
theorem for foliations [12]. 

THEOREM. Let (M,F) be a compact foliated manifold, D a longitudinal 
elliptic operator, and r a cyclic cocycle on A. Then 

(r,Index(D)) = {XM(r)Td(Fc)ChaD,[M}) 

where OB is the longitudinal symbol of D. 

There is, however, still a really hard step in order to use cyclic cohomology 
as ordinary de Rham theory for our "spaces"—such as the space of leaves of a 
foliation—and to prove Theorem 2 of this paper, for instance [14]. The point is 
that A C A, in Example b, is not in general an isomorphism in if-theory, and the 
analytic information lies in if (A) not if (A). This problem is fully resolved in [14] 
for the transverse fundamental class of M/F and all classes coming by pullback 
of the Gelfand-Fuchs cohomology by the map B (Classifying space) —• BTq. 

The difficulty is that for a general foliation it is impossible to reduce the 
transverse structure group to a compact group. Equivalently, for a group of 
diffeomorphisms acting on a manifold, one cannot find an invariant Riemannian 
metric. The result implies, in particular, the Novikov conjecture for Gelfand-
Fuchs cohomology classes on BÇDiff N) for any N. 
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Opérateurs de Calderón-Zygmund 

GUY DAVID 

I. Introduction. Des opérateurs d'intégrale singulière apparaissent natur
ellement dans de nombreux problèmes, notamment d'équations aux dérivées 
partielles ou de théorie du potentiel. Nous nous bornerons dans cet exposé à 
étudier une classe d'opérateurs d'intégrale singulière introduite par Calderón et 
Zygmund [CZ]. Les méthodes utilisées pour prouver la continuité sur L2 de tels 
opérateurs sont souvent très proches de celles avec lesquelles on traite d'autres 
intégrales singulières (comme la transformée de Hilbert le long d'une courbe, ou 
certaines intégrales oscillantes, ou encore la fonction maximale sphérique). Nous 
renvoyons à ce sujet à l'exposé de E. M. Stein. 

Précisons un peu le type d'opérateurs dont nous allons parler. Par "noyau 
standard" sur R n , nous entendrons une fonction K, définie sur R n x Rw privé 
de la diagonale, et telle que, pour un G > 0 et un S e]0, 1], 

\K(x,y)\<C\x-y\-n, (1) 

et 
\K(x',y) - K(x, y)\ + \K(y,x') - K(y,x)\ < C\x' - x\8/\x - y\n+s (2) 

pour \x' -x\< \\x -y\. 
DEFINITION 1. Nous appellerons dans la suite opérateur d'intégrale singulière 

(en abrégé SIO) tout opérateur linéaire continu de C£°(Rn) dans (CQ>(Rn))' qui 
a la propriété suivante: il existe un noyau standard K tel que, si / et g sont deux 
fonctions-test à supports disjoints, la distribution Tf appliquée à g soit donnée 
par (Tf,g) = Jf K(x,y)f(y)g(x)dxdy. 

Cette définition, introduite par Coifman et Meyer, a l'avantage sur la définition 
habituelle d'être bien plus flexible. Notons que l'identité est un SIO, associé au 
noyau K = 0. 

Il est maintenant classique que, si T est un SIO et si de plus T est continu sur 
L2 (c.à.d. peut être prolongé en un opérateur borné sur L2), alors T est aussi 
continu sur Lp pour 1 < p < +oo, peut être étendu en un opérateur continu de 
l'espace atomique H1 dans L1 et, dualement, de L°° dans BMO (les fonctions à 
oscillation moyenne bornée de John et Nirenberg). Il faut encore pouvoir décider 
si un opérateur donné est borné sur L2. 

© 1987 International Congress of Mathematicians 1986 
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IL Le théorème de Coifman, Mcin tosh et Meyer. L'exemple fondamen
tal est donné par le noyau de Cauchy sur un graphe lipschitzien. Si A\ R —• R 
est une fonction lipschitzienne, l'opérateur de Cauchy sur le graphe de A peut 
être défini par 

ÛAf(x) = v.p. [x-y + i(A(x) - A(y))]~1f(y) dy pour / assez régulière. 

Après des résultats partiels de Calderón [Cl], Coifman-Meyer [CM1] et 
Calderón [C2], Coifman, Mcintosh et Meyer ont montré en 1981 le résultat 
suivant. 

THÉORÈME 1 [CMM]. L'opérateur CA est borné sur L2(R) pour toute fonc
tion lipschitzienne A. 

Ce résultat a une importance considérable car, en plus de ses conséquences 
directes (citons par exemple l'existence, pour toute fonction / de carré integrable 
sur le graphe de A, d'une décomposition / = /+ + /_ , où /+ (resp. /_) s'étend 
en une fonction analytique au-dessus (resp. au-dessous) du graphe) il permet 
de démontrer la continuité de nombreux autres opérateurs, comme le poten
tiel de double-couche associé à un graphe lipschitzien C R n + 1 (voir [CDM]). 
Le théorème 1 a eu très rapidement de nombreuses applications, notamment à 
la solution d'équations aux dérivées partielles sur des domaines peu réguliers. 
Citons seulement [DK1, D K V 1 , DKV2, VI] . 

En plus des démonstrations originales de [C2] et [CMM], on dispose main
tenant de plusieurs manières d'aborder la continuité de CA- Signalons une 
démonstration de S. Semmes, qui ne donne pour le moment que le cas où ||-A'||oo 
est assez petite, mais qui peut être utilisée pour d'autres problèmes. Donnons 
une idée de la stratégie. 

Soient T le graphe de A et H+(T) (resp. H?L(T)) l'espace de Hardy des traces 
sur T de fonctions analytiques au-dessus (resp. au-dessous) de T, et qui sont 
uniformément dans L2(T + ie) pour e positif (resp. négatif). La continuité de CA 
est équivalente à l'existence, pour toute fonction / E L2(T), d'une décomposition 
/ = / + + / - , où f± G H± (r) . La fonction F, égale au-dessus de T à l'extension de 
/+ et au-dessous de T à l'extension de — /_ , est donc analytique hors de T et a un 
saut égal à / sur T. On décide de chercher F sous la forme F = G o / j - 1 , où p est 
un homéomorphisme bi-lipschitzien de C qui envoie R sur T. Soit p, = dp(dp)~1 

la dilatation complexe de p\ la fonction G vérifie alors (d — pd)G = 0 hors de R, 
et a le saut g = / o p"1 sur R, On appelle C(g) l'intégrale de Cauchy de g; C(g) 
est donc analytique hors de R; on note G(g)f sa dérivée et h(z) = p(z)C(g)f(z) 
pour z ^ R. Alors H = G-G(g) n'a plus de saut sur R, et vérifie (d-pd)H = h. 

Il s'avère aussi qu'on peut choisir p assez régulière pour que p vérifie certaines 
estimations quadratiques du type "mesures de Carleson," qui à leur tour permet
tent de résoudre l'équation (d - pd)H = h quand g EL2. Voir [Sel] pour plus 
de détails. 

On sait aussi démontrer le théorème 1, à partir du cas où HA'Hoo est assez 
petit, par une méthode de perturbations. L'idée est de trouver, pour tout A 
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et tout intervalle compact, une fonction A telle que HÂ'Hoo < ïoll^-'lloo? et qui 
coincide avec A sur une part significative de l'intervalle. Si l'on sait déjà que C^ 
est borné dès que ||A'||oo < IOII^'IIOOJ

 o n peut en déduire un contrôle local de 
ÇA, que l'on transforme en contrôle global en utilisant des inégalités aux bons 
A, ou tout autre outil équivalent. Cette idée, déjà utilisée dans [CM4] pour 
l'étude des courbes corde-arc, puis dans [Dv] pour les graphes lipschitziens, a 
été bien perfectionnée par T. Murai et P. Tchamitchian. C'est ainsi que T. Murai 
démontre le 

THÉORÈME 2 [Mu2]. La norme de CA sur L2(K) est inférieure à 
G(l + \\A'\U^. 

Notons que cette estimation est la meilleure possible. Il est assez surprenant 
que, de toutes les méthodes connues pour prouver la continuité de CA> ce soit 
une méthode de perturbations successives qui donne le meilleur résultat. Comme 
l'a remarqué S. Semmes, le théorème 2 permet de montrer que le noyau 
\(A(x) — A(y))(x — y)_1\(x — y)-1 définit un opérateur borné sur L2(R) lorsque 
A: R —• R est lipschitzienne. 

III. Critères de continuité sur L2. Une autre voie de recherches est 
de trouver des conditions générales qui entraînent la continuité sur L2 d'un 
opérateur d'intégrale singulière T. Lorsque T n'est pas un opérateur de convo
lution, on ne peut pas appliquer Plancherel directement. On peut par contre 
utiliser avec une certaine efficacité le lemme de Cotlar, Knapp et Stein sur les 
sommes "presque-othogonales" d'opérateurs sur un espace de Hilbert (il était 
déjà question d'appliquer ce lemme à des opérateurs d'intégrale singulière dans 
[F]). On obtient ainsi un premier critère de continuité sur L2. 

THÉORÈME 3 [DJ]. Soit T un SIO. Alors T s'étend en un opérateur borné 
sur L2(Rn) si et seulement si TI G BMO, lT\ G BMO et T est faiblement 
borné. 

Rappelons que, bien que 1 ne soit pas à support compact, T l peut être défini 
à une constante additive près; le transposé *T est donné par (*T/, g) = (Tg,f). 
Enfin, pour x G R n et t > 0, notons A(x,t) l'opérateur de translation-dilatation 
défini par A(x,t)f(y) = t~n/2f((y — x)/t). Nous dirons que T est faiblement 
borné si les opérateurs A_1(x,t)TA(x,t), (x,t) G R+ + 1 , sont uniformément 
bornés de C£°(Rn) dans (C£°(Rn))'. Ainsi, "T est faiblement borné" traduit 
seulement une certaine stabilité, vis à vis à des translations et des dilatations, 
des inégalités qui permettent de définir T. 

Disons deux mots de la démonstration du théorème 3. On commence par 
soustraire à T deux opérateurs que l'on sait traiter (des paraproduits, par ex
emple), pour se réduire au cas où T l = *T1 = 0 dans BMO. Ensuite, fidèle à 
la tradition, on découpe T en petits morceaux de la manière suivante. On se 
donne une fonction (p G C£°(Rn) positive, radiale, d'intégrale 1 et l'on note Pt 
l'opérateur de convolution par (pt(x) = t~n<p(x/t) et Qt = —t(dPt/dt). Ainsi, 
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Qt est l'opérateur de convolution par la fonction ipt(x) = t~niß(x/t), où I/J est 
une fonction semblable à (p, mais d'intégrale nulle. 

On écrit 

T = lim PtTPt = - / irAPtTPt) dt = / QtTPt- + / PtTQ 
*->o Jo dt Jo t Jo 

dt 

Les propriétés T l = 0 et *T1 = 0 permettent de montrer que le découpage de 
l'opérateur 

rQtTpS en W ' " Q t T P t T 

satisfait aux hypothèses du lemme de Cotlar-Knapp-Stein; on en déduit le théo
rème. 

Notons que, bien que le théorème 3 permette de réduire à quelques intégrations 
par parties la démonstration de la continuité de CA lorsque \\Af ||oo est assez petit, 
il ne permet pas de traiter le cas général où ||J4'||OO < +oo, 

On peut aller plus loin dans la direction du théorème 3. A. Mcintosh et 
Y. Meyer ont remarqué que, si ò G L°° est une fonction telle que, pour un 6 > 0, 
Reb(x) > 6 pour tout x, alors on a le résultat suivant [McM]. Si T est un 
SIO, si Tb = 0 et lTb = 0, et si {b}T{b} est faiblement borné (où {b} désigne 
l'opérateur de multiplication par b(x)), alors T est borné sur L2. Ce résultat 
entraîne le théorème 1: on prend b = 1 + %A! et on remarque que Tb = lTb = 0 
par la formule de Cauchy. 

En fait, on peut démontrer un résultat un peu plus général encore. On dit que 
la fonction bornée b: R n —• C est "para-accrétive" si, pour tout x G R n et tout 
d > 0, il existe un cube Q, dont le centre x' vérifie la;' — x\ < Cd, dont le côté r 
vérifie (1/G)d < r < Gd, et tel que |(1/|Q|) JQ b(u) du\ > 6. (Bien entendu, les 
constantes G et 6 > 0 sont indépendantes de x et de d.) 

THÉORÈME 4 [DJS]. Soient 6i et 62 deux fonctions para-accrétives et T un 
SIO. Alors T est borné sur L2(Rn) si et seulement siTb1 G BMO, lTb2 G BMO 
et {&2}T{öi} est faiblement borné. 

Ce théorème se démontre un peu comme le théorème 3. Il faut cependant 
remplacer les opérateurs Pt et Qt définis plus haut par des décompositions de 
l'identité adaptées aux fonctions 6̂ , ce qui soulève quelques difficultés techniques. 
On est ainsi amené à utiliser les techniques de décomposition de Littlewood-Paley 
sur un espace de nature homogène, et à modifier un peu le lemme de Cotlar-
Knapp-Stein. 

IV. Opérateurs multilinéaires et estimations polynomiales. La man
ière la plus classique d'attaquer l'opérateur CA est de le décomposer en série de 
puissances (les commutateurs de Calderón). Ainsi, 

CAf = ÎTikTk(A',...,A',f), 
fc=0 
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OÙ 

Th{ai,a,2,...,ak,f) =v .p . / 
A1(x)-A1(y) Ak(x)-Ak(y) f(y) 

x—y x — y x—y 

où l'on a noté Ai(x) = f£ o,i(t) dt. 
Lorsqu'on applique le théorème 3 dans cette situation, on utilise le fait que 

remplacer / par 1 permet de ramener l'étude d'un opérateur (k -f- l)-linéaire à 
celle d'un opérateur fc-linéaire, ce qui donne une chaîne d'estimations comme 

\\Tk(A',...,A',.)\\L2iL2<C\\Tk(A',..., A ' , 1 ) | | B M O 

= G\\Tk-1(A
f,...,Af)\\BMO 

<C\\Tk-1(A',...iA'i.)\\LaotBMO 

<CC'\\Tk-M',-'.iÄ,.)\\L2iL*<..-. 

On obtient une majoration de Tk en k étapes et, à chaque étape, on perd une 
constante multiplicative. On pourrait donc craindre que ce type de démonstra
tion ne puisse fournir que des estimations de normes en Ck. Il n'en est rien, et 
M. Christ et J.-L. Journé ont pu, avec des méthodes similaires, obtenir des 
estimations polynomials en k de la norme certains opérateurs fc-linéaires (dont 
le k ième commutateur de Calderón). 

Assez curieusement, certaines améliorations du formalisme jouent un rôle im
portant. Ainsi, on a vu que pour prouver que T est continu, on avait envie 
d'écrire T = /0°° Tt dt/t avec, par exemple, Tt = PtTQt + QtTPt. On a en fait 
intérêt à étudier directement ce que les auteurs de [CJ] appellent une e-famille. 

DÉFINITION 2. Soit 0 < e < 1. On appelle e-famille une famille T = (Tt)t>o 
d'opérateurs donnés par leur noyau Tt(x,y), où 

lT^)l<C(f + | ^ y | ) w + £ , (3) 

et 

|r,(*,g)-r,(^)|<C(J^),
(( + | ; ; y | ) „ t , (4) 

pour tous x, y, et y1 G R n tels que \y' -y\ < \(t + \x-y\). 
On dira que T est bornée si, pour tout / G L2, /0°° \\Ttf\\l dt/t < C | | / | | | . 
Il y a une correspondance entre SIO faiblement bornés d'une part, et e-

familles d'autre part. Ainsi si T est un SIO faiblement borné, alors (QtTPt)t>o 
et (PtTQt)t>o sont des e-familles. Réciproquement, si (Tt)t>o est une famille 
d'opérateurs donnés par des noyaux Tt(x,y) vérifiant (3) et 

|v.r«(.iy)| + |v,2i(*,i,)| < j { t + ìx^yì)n+e, (5) 

alors T = fTt dt/t est un SIO faiblement borné. 
Le Théorème 3 a un analogue dans le langage des e-familles. 

THÉORÈME 5 [CJ]. Soit T = (Tt)t>o une e-famille. Alors T est bornée 
si et seulement si p = \Ttl(x)\2dxdt/t est une mesure de Carleson sur R " + 1 
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(c.à.d. que \\p\\c = swpB p(Bx]0, r[)/|£?|, où la borne supérieure est prise sur 
toutes les boules de B de Rn et où r est le rayon de B, est fini). De plus, 

\Tta(x)\ 
idxdt 

< a \Ttl(x)f 
tdxdt 

+ G\\a\U (6) 

où la constante C dépend des estimations (3) et (4). 

Nous attirons l'attention du lecteur sur le fait que, dans (6), le premier terme 
du second membre n'est précédé d'aucune constante. C'est un peu comme si, 
dans le théorème 3, on avait montré que | |T||LOOJBMO < | |T1| |BMO + C pour, 
disons, tout SIO antisymétrique faiblement borné! 

La démonstration du théorème 5 est encore une application relativement di
recte du lemme de Cotlar-Knapp-Stein. 

On peut maintenant donner une idée de la manière dont Christ et Journé ob
tiennent des estimations polynômiales en k sur la norme du fcième commutateur 
de Calderón. On considère la forme (k + 2)-linéaire F définie par 

F(fi» - • • ? fk> / M - I > //c+2) = (Tk(fi,..., fk, /jb+1), /jb+a) 

= lim// f[[Xfi(t)dt 
£\0jJ\x-y\>£ [fJ[Jy 

On remarque aisément que, dans la forme F, les (fc + 2) fonctions jouent des 
rôles semblables. Plus précisément, si l'on fixe k d'entre elles dans L°°, alors 
F définit une forme bilinéaire entre les deux dernières fonctions, et cette forme 
bilinéaire provient d'un SIO. (Dans le langage des auteurs de [CJ], F est une 
forme (fc + 2)-linéaire d'intégrale singulière.) 

On transforme maintenant Tk(a, a,...,a,.) en somme d'e- familles en écrivant 

(Tk(a,a,...,a,f),g) 

= F(a,...,a,f,g) 

//c+i(y)//c+2(z) 
dydx 

(x-y) fc+i' 

i 
fOO 

00 g 
t^[F{Pta,Pta,. .,Pta,PtftPtg)]j 

f°° dt f°° dt 
= J F(QtaiPta,...>Ptg)j + --- + J F(Pta,... ,Ptf,Qtg)j. 

On peut maintenant utiliser le fait que F est une forme (fc + 2)-linéaire 
d'intégrale singulière pour appliquer le théorème 5 en cascade et remplacer les 
fonctions a par 1 les unes après les autres. Pour chacun des (fc + 2) termes de la 
somme, il faut moins de (fc+1) applications du théorème 5 pour se réduire au cas 
où a = 1. De plus, les constantes qui interviennent dans (3) et (4) sont de l'ordre 
de (1 + fc)2e; on obtient donc une estimation (1 + fc)2+2e|H|£o pour la norme du 
fcième commutateur de Calderón. En utilisant un peu mieux l'antisymétrie des 
commutateurs, les auteurs de [CJ] obtiennent en fait 

||rfc(a,o,...,o,.)||L«.x.» <Gfi(l + *)1 + 6 | |o | |*, (7) 

pour tout 6 > 0. Cette estimation est d'ailleurs la meilleure connue actuellement. 
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Le lecteur a deviné que le théorème 5 peut être appliqué à d'autres opérateurs 
multilinéaires. On peut même, avec plus de travail, l'utiliser pour contrôler des 
opérateurs dont le noyau ne vérifie pas (2). 

On se place en dimension n > 2, et on se donne un opérateur de convolution 
de Calderón-Zygmund T. On note K(x — y) son noyau-distribution (hors de 
la diagonale, K(x — y) est une fonction qui vérifie (1) et (2), et de plus T 
est borné sur L2). Pour toute fonction bornée a et tous x,y G R n , on note 
m[Xiy]a = ft=Q a(x + t(y — x)) dt la moyenne de a sur le segment [x, y]. Bien que 
m[x,y]Q> soit en général une fonction très peu régulière de x et de y, le théorème 
5 permet de démontrer le résultat suivant. 

THÉORÈME 6 [CJ]. Si ai,..., ak sont k fonctions bornées définies sur Rn, 
alors la formule 

k 

(Tkf,g) = jj K(x,y) n^w]^ f(y)g(x)dxdy 

U=i 
définit un opérateur borné sur Lp pour 1 < p < +oo, et 

k 

||Tfc||LP,LP < C(p, 6)(1 + k)2+s n IKIloo 

pour tout 6 > 0. 

V. Ondelettes et algèbre de Lemarié. Rappelons que la famille des opér
ateurs d'intégrale singulière T bornés sur L2(Rn), et tels que T l = *T1 = 0 
dans BMO, est une algèbre, que nous noterons A (voir [Ll] ou [Ml]). La 
découverte par Y. Meyer d'une nouvelle base de L2 a permis de construire 
quelques opérateurs non banaux de A. 

Soient iß: R —• C une fonction, et J = [k2~3, (k+l)2~3] un intervalle dyadique. 
Nous noterons ißj(x) = 23l2iß(23x — fc) (cette notation peut être justifiée par le 
fait que si iß était à support dans [0,1], alors ißi serait à support dans I). 

THÉORÈME 7 [LM]. // existe une fonction iß G S(R) telle que les ißj, I 
intervalle dyadique, forment une base orthonormée de L2(R). 

Si on oubliait la contrainte "iß est dans classe de Schwartz," le système de 
Haar conviendrait. Signalons aussi qu'on ne peut pas choisir iß G C£°(R). 

Pour faciliter l'exposé, nous avons pris le parti de rester en dimension 1. 
Toutefois, les résultats que nous mentionnons sont encore valables en dimension 
n > 2. On construit une base de L 2(R n) à partir de iß comme on le fait avec le 
système de Haar. La base en question est obtenue à partir de (2n — 1) fonctions 
de base, qui sont elles-mêmes des produits tensoriels de fc fonctions ip (pour 
1 < fc < n) et de (n — fc) fonctions <p, où (p est une autre fonction de S(R), mais 
qui vérifie f (p = 1 alors que / iß = 0. (La fonction (p joue le rôle de l[0ji] dans 
le système de Haar.) 

L'avantage principal des ißi (qu'il est convenu d'appeler une base d'ondelettes) 
sur le système de Haar, par exemple, est que les ißi sont dans tous les espaces 
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fonctionnels raisonnables. On en déduit aisément que (ißj)i est aussi une base 
inconditionnelle de Lp, 1 < p < +00, et même de l'espace atomique H1. De 
même, l'appartenance d'une fonction / à un espace fonctionnel donné est, pour 
la plupart des espaces fonctionnels usuels, caractérisée de manière simple par la 
taille (ou la décroissance) des coefficients / f(x)ißj(x)dx. 

Revenons à l'algèbre A, et donnons un exemple d'opérateur d'intégrale sin
gulière qui peut être construit à partir d'ondelettes. Il s'agit d'un opérateur T G 
A, inversible sur L2(R), mais dont l'inverse n'est pas un opérateur d'intégrale 
singulière, et n'est d'ailleurs pas continu sur Lp pour un p ^ 2 fixé à l'avance. 
(Le premier exemple d'un tel opérateur a été construit, toujours en utilisant des 
ondelettes, par P. Tchamitchian [T2]; nous présentons ici un exemple de P. G. 
Lemarié.) 

Soit ißi, I intervalle dyadique, la base du théorème 7. Pour tout intervalle 
dyadique J, on note 7 le fils de gauche de I (c.à.d. que si I = [k2~3, (fc + 1)2~3], 
alors 7 = [k2~3, (fc+ ^)2~3]). Soit S l'opérateur de L2(R) défini par S(fa) = ißj 
pour tout I dyadique; S est clairement une isométrie de L2(R) sur son image, 
On vérifie aisément que le noyau de S est 

K(x,y) = ^ißjWMv) = Y^J22J^(2Hlx - M)iß(23y - fc) 
I j k 

et est un noyau standard. Comme iß est d'intégrale nulle, on a aussi SI = *JS1 = 
0, donc S E A. 

Choisissons T = 1 - rS. Clairement, T G A, et T est inversible sur £ 2 (R) 
pour \r\ < 1. De plus, 

T~l(iß) = iß + rS(iß) + r2S2(iß) + • • • 

= ^ + ^ [ o , i ] + ^ [ 0 j i ] + - " -

Si p > 2 est fixé à l'avance, on peut choisir r assez proche de 1 pour que 
T~1(^) ne soit pas dans LP(R), et T est le contre-exemple cherché. 

BIBLIOGRAPHIE 

[Bd] G. Bourdaud, Sur les opérateurs pseudo-différentiels à coefficients peu réguliers, 
Thèse d'Etat, Univ. Paris VII, 1983. 

[Bl] J. Bourgain, High dimensional maximal Junctions associated to convex sets (à 
paraître). 

[B2] , On the spherical maximal function in the plane (à paraître). 
[Cl] A. P. Calderón, Commutators of singular integral operators^ Proc. Nat. Acad. Sci. 

U.S.A. 53 (1965), 1092-1099. 
[C2] , Cauchy integrals on Lipschitz curves and related operators^ Proc. Nat. Acad. 

Sci. U.S.A. 74 (1977), 1324-1327. 
[C3] , Commutators, singular integrals on Lipschitz curves and applications, Proc. 

Internat. Congr. Math. (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, pp. 85-96. 
[CZ] A. P. Calderón et A. Zygmund, On the existence of certain singular integrals, Acta 

Math. 88 (1952), 85-139. 
[C...W] H. Carlsson, M. Christ, A. Cordoba, J. Duoandikoetxea, J.-L. Rubio de Fran

cia, J. Vance, S. Wainger et D. Weinberg, Lp-estimates for maximal functions and Hilbert 
transforms along flat convex curves in R2, Bull, Amer. Math. Soc. 14 (1986), 263-267. 



898 GUY DAVID 

[Ch] M. Christ, Hilbert transforms along curves. E: A flat case, Amer. J. Math, (à 
paraître). 

[CJ] M. Christ et J.-L. Journé, Polynomial growth estimates for multilinear singular 
integral operators, Acta Math, (à paraître). 

[CGI] J. Cohen et J. Cosselin, The Dirichlet problem for the biharmonic equation in a 
bounded C1 domain in the plane, Indiana Univ. Math. J. 32 (1985), 635-685. 

[CG2] , Adjoint boundary value problems for the biharmonic equation on C1 do
mains in the plane, Ark. Mat. 23 (1985), 217-240. 

[CDM] R. R. Coifman, G. David et Y. Meyer, La solution des conjectures de Calderón, 
Adv. in Math. 48 (1983), 144-148. 

[CDeM] R. R. Coifman, P. G. Deng et Y. Meyer, Domaine de la racine carrée de certains 
opérateurs différentiels accrétifs, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 2, 123-134. 

[CMM] R. R. Coifman, A. Mcintosh et Y. Meyer, L'intégrale de Cauchy définit un 
opérateur borné sur L2 pour les courbes lipschitziennes, Ann. of Math. 116 (1982), 361-
388. 

[CM1] R. R. Coifman et Y. Meyer, Commutateurs d'intégrales singulières et opérateurs 
multilinéaires, Ann. Inst. Fourier (Grenoble) 28 (1978), no. 3, 177-202. 

[CM2] , Au-delà des opérateurs pseudo-différentiels, Astérisque 57, Société Mathé
matique de France, Paris, 1978. 

[CM3] , Le théorème de Calderón par les méthodes de variable réelle, C. R. Acad. 
Sci. Paris Sér. A-B 289 (1979), no. 7, 425-428. 

[CM4] , Une généralisation du théorème de Calderón sur l'intégrale de Cauchy, 
Actes de la Conférence d'Analyse de Fourier, El Escoriai, 1979. 

[Dh] B. Dahlberg, Weighted norm inequalities for the Lusin integral and the non-
tangential maximal function for functions harmonic in a Lipschitz domain, Studia Math. 
67 (1980), 297-314. 

[DFK] B. Dahlberg, E. Fabes et C. Kenig, A Fatou theorem for solutions of the porous 
medium equation, Proc. Amer. Math. Soc. 91 (1984), 205-212. 

[DJK] B. Dahlberg, D. Jerison et C. Kenig, Area integral estimates for elliptic differen
tial operators with non-smooth coefficients, Ark. Mat. 22 (1984), 97-108. 

[DK1] B. Dahlbert et C. Kenig, Hardy spaces and the Lp-Neumann problem for La
place }s equation in a Lipschitz domain, Preprint. 

[DK2] , Area integral estimates for higher order boundary value problems on Lip
schitz domains (à paraître). 

[DKV1] B. Dahlberg, C. Kenig et C. Verchota, Boundary value problems for the systems 
of linear elastostatics on Lipschitz domains, Preprint. 

[DKV2] , The Dirichlet problem for the bilaplacian in a Lipschitz domain, Ann. 
Inst. Fourier (Grenoble) (à paraître). 

[Dv] G. David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, 
Ann. Sci. École Norm. Sup. 17 (1984), 157-189. 

[DJ] G. David et J-L. Journé, A boundedness criterion for generalized Calderón-Zyg-
mund operators, Ann. of Math. 120 (1984), 371-397. 

[DJS] G. David, J-L. Journé et S. Semmes, Opérateurs de Calderón-Zygmund, fonctions 
para-accrétives et interpolation, Rev. Math. Ibero-Americana (à paraître). 

[DxR] J. Duoandikoetxea et J-L. Rubio de Francia, Maximal and singular integral oper
ators via Fourier transform estimates, Invent. Math. 84 (1986), fase. 3, 541-561. 

[FJK] E. Fabes, D. Jerison et C. Kenig, Multilinear Littlewood-Paley estimates with 
applications to partial differential equations, Proc. Nat. Acad. Sci. U.S.A. 79 (1982), 5746-
5750. 

[FJR] E. Fabes, M. Jordeit et N. Rivière, Potential techniques for boundary value prob
lems on C1 domains, Acta Math. 141 (1978), 165-186. 

[F] C. Fefferman, Recent progress in classical Fourier Analysis, Proc. Internat. Congr. 
Math. (Vancouver, B.C., 1974), Vol. 1, Canad. Math. Congress, Montreal, Que., 1975, pp. 
95-118. 

[JN] F. John et L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure 
Appi. Math. 14 (1961), 415-426. 



OPÉRATEURS DE CALDERÓN-ZYGMUND 899 

[Jl] J-L. Journé, Calderón-Zygmund operators, pseudo-differential operators, and the 
Cauchy integral of Calderón, Lecture Notes in Math., Vol. 994, Springer-Verlag, 1983. 

[KS] A. W. Knapp et E. M. Stein, Intertwining operators on semisimple Lie groups, 
Ann. Math. 93 (1971), 489-578. 

[LI] P. G. Lemarié, Algèbre d'opérateurs et semi-groupes de Poisson sur un espace de 
nature homogène, Thèse de 3ème Cycle, Orsay, 1984. 

[L2] , Continuité sur les espaces de Besov des opérateurs définis par des intégrales 
singulières, Ann. Inst. Fourier (Grenoble) 35 (1985), fase. 4, 175-187. 

[LM] P. G. Lemarié et Y. Meyer, Ondelettes et bases hilbertiennes, Rev. Math. Ibero-
Americana (à paraître). 

[McM] A. Mcintosh et Y, Meyer, Algèbre d'opérateurs définis par des intégrales sin
gulières, C. R. Acad. Sci. Paris Sér. I Math., 301 (1985), no. 8, 395-397. 

[Ml] Y. Meyer, Les nouveaux opérateurs de Calderón-Zygmund, Colloque en l'honneur 
de L. Schwartz, Vol. 1, Astérisque 131 (1985), 237-254. 

[M2] , Intégrales singulières, opérateurs multilinéaires, analyse complexe et équa
tions aux dérivées partielles, Proc. Internat. Congr. Math, (Varsovie, 1982), Polish Scientific 
Publishers. 

[M3] , Real analysis and operator theory, Proceedings Notre-Dame 1984, Sympos. 
(à paraître). 

[Mul] T. Murai, Boundedness of singular integral operators of Calderón type V, Adv, 
in Math. 59 (1986), 71-81. 

[Mu2] T. Murai, Boundedness of singular integral operators of Calderón type VI, Pre
print Series, College of General Education, Nagoya, no. 12, 1984. 

[NVWW] A. Nagel, J. Vance, S. Wainger et D. Weinberg, Hilbert transforms for convex 
curves, Duke Math. J. 50 (1983), 735-744. 

[R] J-L. Rubio de Francia, A. Littlewood-Paley inequality for arbitrary intervals, Rev, 
Math. Ibero-Americana, 1 (1985), no. 2, 1-13. 

[Sel] S. Semmes, Estimates for (d — pd)~x and Calderón's theorem on the Cauchy 
integral and Quasiconformai mappings and chord-arc curves, Trans. Amer. Math. Soc. (à 
paraître). 

[Se2] , The Cauchy integral, chord-arc curves and quasiconf ormai mappings, Pro
ceedings of the Symposium on the Occasion of the Proof of the Bieberbach Conjecture, Math. 
Surveys Monogr., Vol. 21, 1986, pp. 167-184. 

[St] E. M. Stein, Singular integrals and differentiability properties of functions, Prince
ton University Press, Princeton, N.J., 1970. 

[SW] E. M. Stein et S. Wainger, Problems in harmonic analysis related to curvature, 
Bull. Amer. Math. Soc. 84 (1978), 1239-1295. 

[Tl] P. Tchamitchian, Estimations précises des normes de certains opérateurs d'inté
grales singulières, preprint, Ecole Polytechnique 91128 Palaiseau Cedex, France. 

[T2] , Calcul symbolique sur les opérateurs de Calderóne Zygmund et bases incon
ditionnelles de L 2(R), C. R. Acad. Sci. Paris (à paraître). 

[VI] G. Verchota, Layer potentials and boundary value problems for Laplace's equation 
in Lipschitz domains, Thesis, Univ. of Minnesota, 1982; J. of Funct. Anal. 59 (1984), 572-611. 

[V2] , The dirichlet problem for polyharmonic functions on Lipschitz domains, 
Preprint, 

C E N T R E D E M A T H é M A T I Q U E S , E C O L E P O L Y T E C H N I Q U E , 91128 P A L A I S E A U C E D E X , 

FRANCE 



Proceedings of the International Congress of Mathematicians 
Berkeley, California, USA, 1986 

Singular Minimizers in the Calculus of Variations 

A. M. DAVIE 

1. Introduction. Consider the following variational problem: find an abso
lutely continuous function u o n [a, b] which minimizes the functional 

rb 

I(u) = / f(x,u(x),v!(x))dx 
Ja 

subject to the boundary conditions u(a) = a, u(b) = ß. Here f(x,u,p) is always 
assumed to be a nonnegative C°° function on [a, 6] x R x R. 

The subject of this article is the occurrence of singularities in minimizers 
of such functionals. The classical theory developed by Tonelli and others in 
the 1920s and 1930s gave conditions for existence and regularity of solutions. 
Assuming / is strictly convex in p, Tonelli proved a partial regularity theorem 
which asserted that any minimizer is smooth outside a closed set of measure 
zero. Examples where this singular set is nonempty were first described recently 
by Ball and Mizel [1, 2], who gave detailed analyses of a number of examples. 
Closely related are some older examples of Lavrentiev [6] and Mania [7], showing 
that the infimum over the absolutely continuous functions may differ from that 
over the smooth functions. We shall describe some of these results and some 
recent further developments. 

We denote by fi the set of real-valued absolutely continuous functions u on 
[a, b] satisfying u(a) = a, u(b) = ß. The partial derivatives of / will be denoted 
by fXi fu, /p, etc. We say / has superlinear growth if there is a function <p(p) 
such that f(x,u,p) > <p(p) for all x,u,p and 

^(p)/bl -> °° as bl —>• °°. 

2. Existence and regularity theorems. The classical existence theorem 
of Tonelli [8] is as follows: 

PROPOSITION 2 . 1 . Suppose fpp > 0 (i.e., f is convex in p), and f has 
superlinear growth. Then there exists u G fi minimizing the functional I. 

Briefly, the proof runs as follows: pick a sequence un G fi with I(un) converg
ing to the infimum. The superlinear growth condition implies that the sequence 
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uf
n is weakly compact in Lx[a,b], so passing to a subsequence we have uf

n —• u' 
weakly in L1. The convexity in p gives a lower semicontinuity property of / so 
that I(u) < liminf I(un). Thus u is a minimizer. 

Tonelli and others have proved stronger versions of Proposition 2.1, in which 
/ is only required to have superlinear growth in p outside a suitably small set of 
(x,u) values. For details, see Cesari [3, Chapter 12], 

Turning to regularity theorems, we first mention a standard result [3, §2,6], 
LIP denotes the set of Lipschitz continuous functions on [a, 6], 

PROPOSITION 2.2. Suppose fpp(x,u,p) > 0 for all x,u,p and suppose the 
infimum of I over fin LIP is attained by uo G fi n LIP. Then UQ G C°°[a, b] and 
satisfies the Euler-Lagrange equation 

fu(x,u0(x),u'0(x)) = (d/dx)fp(x,u0(x),uf
0(x)). 

In other words, any Lipschitz continuous minimizer is smooth. However, we 
have no analogue of Proposition 2,1 asserting the existence of Lipschitz minimiz
ers, For general minimizers we have the following partial regularity theorem of 
Tonelli [8], 

PROPOSITION 2.3. Suppose again that fpp > 0 and now suppose UQ attains 
the infimum of I over fi. Then uo has a (possibly infinite) derivative at each 
point of [a, b], and uf

0: [a,b] —• R U {oo, — oo} is continuous. Moreover, if E = 
{x\ UQ(X) = oo or -oo} , then E is closed and has measure zero} and UQ is C°° 
outside E. 

For a proof see [2, Theorem 2.7], 
In the following sections various examples are described which show that any 

closed set of measure zero can occur as the singular set E of a minimizer for 
a suitable problem satisfying the hypotheses of Proposition 2.1. The Euler-
Lagrange equation always holds outside E, but the examples show that it may 
not be possible to regard fp in any meaningful way as an integral of fu. 

We note some further results in special cases, without making any attempt to 
give the strongest statements known: 

PROPOSITION 2.4. (a) J / / depends only onu andp, then for any minimizer 
uo of I over fi we have 

f(u0(x),u,
0(x)) - ut

0(x)fp(u0(x),ut
0(x)) = const. 

(b) / / / depends only on x and p, then for any minimizer UQ of I over fi we 
have 

fp(x,u'Q(x)) = const. 

For this and stronger results due to Tonelli, see Ball and Mizel [2, Corollaries 
2.4 and 2.5]. 

COROLLARY 2.5. Suppose f depends only on u andp, and fpp > 0. Then 
for any minimizer UQ we have that fp(uo(x),UQ(x)) is continuous on [a,b], 
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This follows by an elementary argument from Proposition 2.4(a) using the 
convexity of / and the fact, which follows from Proposition 2.3, that |wó(a;)| —• oo 
as x approaches the singular set E. 

If / has superlinear growth, then fp —> oo as p —> oo. Hence from Corollary 
2.5 and Proposition 2.4(a) we obtain 

PROPOSITION 2.6. Suppose fpp > 0, / has superlinear growth, and either f 
depends only on u and p or f depends only on x and p. Then any minimizer of 
I over fi is in C°°[a,b]. 

See [2, Theorem 2.10] for stronger results. See also [9] for related results. 
Finally we mention a result of Clarke and Vinter [4]: if / is a polynomial in 

x, u, and p and fpp > 0, then for any minimizer the exceptional set E is at most 
countable with finitely many limit points. 

3 . Examples related t o the Lavrentiev phenomena. Lavrentiev [6] 
gave an example of a problem for which the infimum over smooth u is strictly 
greater than that over all absolutely continuous u. Mania [7] gave a simpler 
example, as follows: 

Let fo(x,u,p) = (x — us)2pG on the interval [0,1] with boundary conditions 
u(0) = 0, ti(l) = 1. 

Clearly the corresponding functional Io has infimum zero over fi, obtained by 
u>o(x) = x1/3. Mania showed however that there exists c > 0 such that IQ(U) > c 
for all u G fi such that u has a finite derivative at x = 0. Proof of this and further 
results on the Lavrentiev phenomenon can be found in Cesari [3, Chapter 18]. 

Modifying arguments of Ball and Mizel [2], we show how Mania's example 
yields examples of nonempty singular sets E in the situation of Proposition 2.3. 
To do this we add a small term to /o to obtain fpp > 0: 

Let f(x,u,p) = fo(x,u,p)+ef1(p), where fx(p) = (1 + p 2) 2 / 3 . 
Note that ii(i«o) < oo5 where / is the functional corresponding to / . 
Now fpp > 0, / has superlinear growth, and Proposition 2.1 implies the 

existence of v G fi minimizing I = IQ + el±. If v'(Q) is finite, then by Mania's 
result I(v) > Io(v) > c; since I(UQ) = eIi(uo), this contradicts the minimality 
of v, provided e is small enough. Thus v has a singularity at 0, i.e., the set E 
contains 0 (in fact E = {0}). 

The singularity obtained thus is at an end-point of the interval; we can get 
an internal singularity, using the same / on the interval [—1,1], with boundary 

-conditions^ (4-)-==l=^ 
Ball and Mizel [2] give a detailed analysis of a similar problem: 
f(x,u,p) = (x2 — u3)2p14+ep2 on the interval [0,1] with boundary conditions 

«(0) = 0, u(l) = k. 
Amongst other things it is proved [2] that for s small enough any minimizer 

has infinite derivative at 0. While the proof is similar to Mania's argument, this 
problem does not exhibit the Lavrentiev phenomenon (to get which the p14 term 
should be replaced by \p\8 for s > 15). 
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Ball and Mizel also discuss the problem: 
f(x,u,p) = (x4 — u6)2ps + ep2 on [—1,1] with suitable boundary conditions, 

They show that for e small enough, this example gives singular minimizers for 
s > 26 and the Lavrentiev phenomenon for s > 27. Moreover for s > 27 the 
infimum of J over fiflLIP is obtained by a C°° function u (a "pseudominimizer"). 

The arguments described above can be modified to construct, given a closed 
subset E of [a, b] having measure zero, an example of a minimizer whose singular 
set is precisely E. To do this we first find a function v on [a,b] with vf G L2, 
v' > 0, v'(x) —• oo as x —y E, and v G C°° outside E, Then we construct / of 
the form 

f(x,u,p) = {<p(u) - (p(v(x))]2ip(p) + ep2, 

where <p, if) are suitable smooth functions, such that (p o v is smooth, and ip is 
convex and rapidly increasing as p —> oo. For details see [5]. 

In all the examples described in this section / has superlinear growth, and 
consequently for any minimizer fp(x,u,uf) —• oo as x —> E. Thus fu(x,u,uf) 
cannot be in L1 if E is nonempty, so the Euler-Lagrange equations fail to the 
extent that fp cannot be expressed as the Lebesgue integral of fu. Ball and Mizel 
[2] give detailed analyses of the Euler-Lagrange equations in their examples. 

4. Examples where / depends only on u and p. Such examples were 
given by Ball and Mizel [1, 2] who showed that given any closed set E Ç [a, 6] 
of measure zero, one could construct f(u,p) with fpp > 0 and 

| p | < / ( u , p ) < c o n s t ( l + p ) 2 (1) 

such that J has a unique minimizer u$ in fi with singular set E; moreover 
fu $ L1[o, 6], implying failure of the Euler-Lagrange equations. 

Note that by Proposition 2.6 no such example can have superiinear growth, 
so the lower bound in (1) is essentially optimal. 

The construction allows one to specify UQ in advance, provided it satisfies the 
following condition: 

uo G fi, uf
Q: [a, b] —• RU{oo} is continuous and strictly positive, , . 

and UQ is C°° outside E = {u'0 = oo}. 

The idea of the construction is as follows: 
Let g be the inverse function to uf

0, defined on [a,ß]. Then uo minimizes 
fa W(u>(x))uf(x)]2 dx. f(u,p) is constructed so that 

/ ( U , p ) > [ 0 ' ( U ) p ] 2 + p (2) 

with equality when u = Uo(x), p = u'0(x), i.e., when p = l/g'(u). f also satisfies 
fpp > 0 and (1). 

It then follows that uo is the unique minimizer of the corresponding functional 
J. 
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The construction is generalized in [5] by replacing the last term p in (2) by 
p(u)p, where p is a given positive continuous function, smooth outside uo(E). In 
this way the following is proved: 

Suppose WQ satisfies (*) and a is a positive continuous function on [a, b], which 
is C°° outside E. Then we can find f(u,p) with fpp > 0 such that UQ is the 
unique minimizer of the corresponding functional I and moreover 

fp(u0(x), uf
0(x)) = <J(X), x G [a, b]\E. 

The hypothesis that a be continuous is necessary in view of Corollary 2.5. This 
result illustrates the failure of the Euler-Lagrange equations; for example, one 
could choose E to be a perfect set and a to be constant on each complementary 
interval of E—then fu(uo, u'Q) — 0 a.e. but fp—o need not be constant. 

5. Examples where / depends only on x and p. In this case Proposi
tion 2.4(b) states that all minimizers satisfy the Euler-Lagrange equation, which 
reduces to 

fp(x, uf(x)) = constant. (3) 

Conversely, a straightforward argument using the convexity of / shows that any 
u G fi satisfying (3) is a minimizer; moreover if fpp > 0 there can be at most 
one minimizer. 

We describe some examples from [5] where fpp > 0 but there is a minimizer 
with nonempty singular set. Note that in view of Proposition 2.6 such examples 
cannot have superlinear growth. 

EXAMPLE 5.1. f(x,p) = (l+p2)1/2+x2p2 on [-1,1] with boundary conditions 
u(-l) = -a, u(l) = a (a > 0). 

In this example, analysis of the equation fp = G yields the following conclu
sions: there is ao > 0 (corresponding to G = 1) such that if a > «o there is no 
minimizer in fi, whilst if a < ctQ there is a unique minimizer, which is smooth if 
a < «o but if a = ctQ it has singular set E = {0}. 

EXAMPLE 5.2. f(x,p) = (l+p2y/2 + x2p4 on [-1,1] with the same boundary 
conditions as 5.1. 

In this case a unique minimizer exists for all a > 0. There exists a± > 0 such 
that if a < ufi, then the minimizer is smooth, whilst if a > a±, then E = {0}. 

These examples can be extended to yield an arbitrary closed set of measure 
zero as singular set. More precisely, given UQ satisfying condition (*) on [a, b] 
one can find (p G C°°[a, b] and ip G C°°(R) such that 

satisfies fpp > 0 and UQ is the unique minimizer of the corresponding functional 
/ over fi. 

6. A jump discontinuity in the Euler-Lagrange equations. Finally we 
show how the methods of §§3 and 5 can be combined to obtain an example of a 
minimizer satisfying fu = 0 and whose singular set consists of a single point at 
which fp has a jump discontinuity. Note that in view of the results of §2, in any 
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such example / must depend on all three variables x, u, and p and cannot have 
superlinear growth, 

We start with Example 5.2, 

f0(x,p) = (l+p^ + xV, 
and denote the corresponding functional by Jo. We try to produce a discontinuity 
in fp by combining different minimizers on [—1,0] and [0,1]. Choose a% and as 
with o?3 > OLI > ûfi, where a± comes from Example 5.2, and let u^,u^ be the 
corresponding minima. Now define v on [-1,1] by 

U2(x), x>0, 

us(x), x<0. 

Then v minimizes Io{u) subject to the boundary conditions u(—1) = —as, u(l) = 
o?2 together with the internal condition u(0) = 0. To eliminate the internal 
condition we consider 

f(x,u,p) = f0(x,p) + Kf1(x,u,p), 

where f\(x,u,p) = (h2(u) — x)2(hs(u) -x)2p&, where hi, defined on [—ai,ai], is 
inverse to uf, one can check that h% and hs are smooth, and extend them to R. 

Then h(v) = 0 and by methods similar to those of §3 it can be shown that 
h(u) > x > 0 if u(0) ^ 0 and u satisfies the boundary conditions u(—1) = —0:3, 
u(l) = «2- It follows that if K is large enough, then v minimizes I = Io + KI\, 
subject to these boundary conditions. 

Moreover fp(x,v,v') = (fo)p(x,v,vf) is constant on both [—1,0) and (0,1] 
but the two constants differ. 
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Perhaps the most profound distinction between classical and quantum physics 
is Heisenberg's principle that one must represent the basic variables of physics, 
such as energy or momentum, by operators rather than by functions. It was von 
Neumann's conviction that a corresponding "quantized mathematics" should be 
formulated. Over the last five decades, it has been the goal of operator algebraists 
to "quantize" functional analysis and, more recently, topological and differential 
geometry. The procedures for accomplishing this are only partially understood, 
but they invariably entail replacing functions by operators. 

The most obvious novelty of operators is that they need not commute, this 
being a reflection of the uncertainty principle (see [23, pp. 78-79]). There 
is, however, a more subtle phenomenon associated with operators: a matrix 
of operators may be interpreted as another operator. If one keeps track of this 
additional matricial structure, with its attendant matrix orders and norms, one 
discovers that much of classical functional analysis has quantized analogues. 
Although the usual order and norm structures are potentially of interest (see [19, 
1], and the beautiful work of Friedman and Russo [32, 33]), it is the matricial 
orderings and norms that have played a decisive rôle in the algebraic classification 
of the operator algebras (see [7] and the recent work of Cowling and Haagerup 
introducing new invariants for factors). 

In this report we shall outline some of the recent developments in the matricial 
norm theory, concentrating especially on multilinear functions. As pointed out 
by Paulsen and Smith [25], the quantized multilinear theory is in some ways 
much simpler than the classical theory. We shall consider this phenomenon in §2. 
The multilinear theory has proved to be especially useful for proving new results 
on the Johnson-Kadison-Ringrose versions of Hochschild cohomology [6]. This 

-application4s-discussediir§37^Finall^ 
bilinear functionals may be regarded as the key ingredient in Haagerup's proof 
that nuclear C*-algebras are amenable. 

We will assume all vector spaces to be complex. Given a vector space V, we let 
Mmjn(V) be the vector space of m x n matrices [vij], Vij G V, 
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Mn(V) = Mn,n(V), and Mn = Mn(C). Given a linear map of vector spaces 
(p:V -• W, we define (pmn:Mmn(V) -» Mmn(W) by <pmn([vij]) = [<p{vij)]} and 
we let <pn = <pnn. Given complex Hilbert spaces H, K we let B(H,K) denote 
the Banach space of bounded operators T\H —• K, and 8(B) = B(H,H). As 
stressed above, we may interpret an m X n matrix T = [Tij], Tij G ß(H,K), as 
an element of B(Hn,Krn): given x^= (x3) e Hn, we have that 

(Ta)'= £><,*>. 

1. Quantized linear functionals. We begin by contrasting function spaces 
with operator spaces. A function space V is a linear space of continuous complex 
functions on a compact Hausdorff space X, provided with the usual uniform norm 

\\f\\=Sup{\f(X)\:x€X}. (1) 

As is well known, any normed vector space is linearly isometric to a function 
space; hence 

• normed vector spaces are just abstract function spaces. 
As suggested by its name, 

• the first purpose of functional analysis is to determine the functionals, i.e., 
the bounded linear functions F: V —• C on a given normed vector space V. 
For the Banach space C(X) of all complex continuous functions on X, the func
tionals are just the complex Radon measures p, Thus 

• the strategy for determining the functionals F: V —> C is to fix an embedding 
V *—> C(X)} and to then use the Hahn-Banach Theorem to extend F to a measure 
p:C(X)-+C. 

An operator space is defined to be a linear space V of operators on a Hilbert 
space H. We may impose the standard operator norms 

||r|| = Bup{||r(0||:||€|| = i, f e f i "} (2) 

on each of the spaces MnCV) C B(Hn) (n E N). We say that a vector space is 
matricially normed if, as in this case, norms are provided on the matrix spaces 
MnCV) (n G N). Using matrix multiplication to define av and va for a G M n 

and v G MnCV), we may regard MnCV) as an M n bimodule. In the following 
we let M n = B(Cn) have the usual operator norm. 

THEOREM 1 (RUAN [28]). Suppose that V is a matricially normed vector 
space. Then V is completely isometric (see below) to an operator space if and 
only if these norms satisfy 

UHI < NI IH, UHI < IMI NI, (Ri) 

||v®w||=max{||i;||,||fi;||} (R2) 

for all v E Mn(V), w G Mm(V), and a G M„ = Mn(C). 
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Thus 
• matricially normed spaces satisfying (Ri) and (R2) are just the abstract 

operator spaces. 
In contrast to normed vector spaces, the dual of an operator space with the 

dual matricial norms will not be an operator space, since (R2) is not self-dual. 
By inserting zero entries, we may enlarge mxn matrices to square matrices. This 
provides an unambiguous definition for norms on each of the spaces Mm j n (V) 
when V is an operator space. 

The appropriate morphisms for operator spaces take into account the matricial 
norms. Given a linear map <p: V —• W, we define the completely bounded norm 
of cp by 

IM |cb=sup{ | | p n | | : n€N} > 

and we say that (p is completely bounded (resp., a complete contraction, resp., a 
complete isometry) if ||^||Cb < 00 (resp., ||p||Cb < 15 resp., each of the maps cpn 

is an isometry). 
In quantized functional analysis, we replace functionals by operator-valued 

functions. As formulated by Arveson (who, however, is not to be blamed for the 
terminology): 

• the first purpose of quantized functional analysis is to determine the "op
eratorals," i.e., the completely bounded linear operator-valued functions (p: V —• 
B(H) for a given operator space V and general Hilbert spaces H. 

A (concrete) unital C*-algebra A is an operator space that is closed under 
multiplication, the ""-operation, and the norm-topology and contains the identity 
operator. If A is also closed in the weak operator topology it is said to be a von 
Neumann algebra. C*-algebras play the part of G(X) in the quantized realm. 
In this analogy, the operatorals (p:A—> B(H) on a C*-algebra A correspond to 
"quantized measures." Once again, these are in a sense "known." In fact, C*-
algebra theory began with the determination of a very special class of quantized 
measures. A bounded linear map (p:A —• C = B(Q) is a state if it preserves 
order and satisfies (p(l) = 1. (For commutative C*-algebras these are just the 
probability measures.) The states on a C*-algebra are completely bounded, and 
they are described by the Gelfand-Naimark-Segal Theorem: they must have the 
form (p(a) = 7r(a)£- £ where 7r: A —• B(K ) is a *-homomorphism for some Hilbert 
space K (i.e., a "representation" of A on K) and f G K. It has only recently 
been realized that this result has a generalization to all "operatorals" : 

THEOREM 2 (SEE [26, 31]) . Suppose that A is a C*-algebra and that 
<p: A —*• B (H) is a completely contractive linear map. Then 

tp(x) = S0TT(X)S1 (X G A), 

where ir: A —• B(K) is a representation, and 

H^K^H 

is a diagram of contractions. 
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The Hahn-Banach Theorem has an operator space analogue. This important 
result was first proved by Arveson [2] for operator spaces that contain the identity 
operator and unital maps, and was subsequently extended to the general case 
by Wittstock [30, 31] (see also [24]). 

THEOREM 3. Given operator spaces V C "W we may extend any complete 
contraction <p: V —• B(H), to a complete contraction iß: W —• B(H). 

Thus as was emphasized by Arveson [2] we have: 
• the strategy for determining the operatorals <p: V —• B(H) is to fix an em

bedding V <—> B (G) and to then use the matricial form of the Hahn-Banach 
Theorem (Theorem 3) and Theorem 2 to extend (p to a complete contraction 
iß: B{G)->B(H) of the form iß(x) = S0TT(X)S1 . 

2. Quantized multilinear functionals. The norm of a multilinear map of 
normed vector spaces <p: Vi X • • • X Vr —• W is defined by 

II^H = Bup-CH^C«! «,.)| |: ||Vl|| Htvll = 1>. 

We may regard (p as a linear function on the tensor product Vi ® • • • ® Vr. We 
then find that \\(p\\ is just the usual operator norm of the linear map 

<p:Viè--&Vr -+W> 

where Vj® • • • ®Vr denotes V\ ® • • • ® Vr with the projective norm 

Hr=^{Ell"ill" ,ll«îl|:« = Ef'ï®---®wrJ 

(we do not bother to take the completion). This tensor product is associative, 
and given contractions, <Pk'Vk —>Wk, the corresponding linear map 

pi (8) • • • ® <pr: V ie • • • ê>Vr -> Wiè • • • &Wr 

is again a contraction. The strategy that we used to determine the functionals on 
a normed vector space does not extend to multilinear functions for two reasons: 

• the bounded bilinear maps (or "bimeasures") F:C(X) x G(Y) —• C are 
generally not described by measures on X xY (see [12]), 
and one cannot use the Hahn-Banach Theorem to extend multilinear functions 
since 

• given inclusions Vk e-̂  Wk, the corresponding map Vie) • • • é>Vr —» Wié) • • • 
é)Wr need not be isometric. 

Given a multilinear map of operator spaces 

we again extend it linearly to a map <p\ "Vi ® • • • ® \ —• W. Given a sequence of 
integers n = no,. . . , nr = n and matrices v3- G Mnj_linj ("Vy), we define 

Vi 0 • • • 0 Vr G MnCVi ® • • • ® Vr) 
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by "matrix multiplication" : 

vi 0 • • • 0 vr(i,j) = ^2 v i ( ^ *i) ® • • • ® vr(kr-i,j). 
fci,...,A:r_i 

The completely bounded norm of a multilinear map (p is defined by 

IMIcb = sM\\<Pn(vi 0 • • • 0 vr)\\: \\vi\\, • • • IKH < 1, n G N}. 

This definition is due to Christensen and Sinclair [5]. The Haagerup norm || \\h 
on M n (Vi ® • • • ® Vr) is given by 

HU = i n f | ^ | K | Klh« = 5^wj0---©i^l 
3 

= infflK || • • • \\vr\\: u = viG---Gvr} 

([10, 11]—this definition was motivated by results in [15]). Letting Vi®h • • -®/i 
Vr denote Vi®- • -®Vr with these matricial norms, we have that \\tp\\cb is precisely 
the completely bounded norm of the linear map 

<p:Vi®fc .- .® f c Vr ->1V. 

The Haagerup tensor product is associative, and using Ruan's criterion (Theorem 
1), it is a simple matter to prove that the Haagerup tensor product of operator 
spaces is again an operator space. (This was first proved in [25].) It should be 
noted that the equality in (3) requires some care. It suffices to show that the 
second definition indeed gives a norm. The case r = 2 is discussed in [10], and 
the general result follows from associativity. 

If one is given complete contractions, <pkm- V& —• 144, the corresponding linear 
map 

tpi ® • • • ® (pr- Vi ®fc • • • ®h Vr - • Wi ®h • • • ®fc TVr 

is a complete contraction. If the <pk are only contractive, then the tensor product 
map need not be bounded. For a C*-algebra A, the multiplication map A x A —> A 
is completely contractive; hence given completely contractive maps <pi, <P2- Vfc —• 
A, the product map <pi<P2m. Vi ®^ V2 —> A is again a complete contraction. This 
is generally not the case for any of the usual C*-algebraic tensor product norms, 
and this is why C*-algebraic tensor products are inappropriate for the study of 
cohomology. 

In striking contrast to the function case, one can describe the multilinear 
operatorals on C*-algebras, and the Haagerup tensor product is "injective": 

THEOREM 4 [5]. Suppose that Ak (k — \,...,r) are C*-algebras and that 
<p: Ai x • • • x Ar —> B(H) is a complete contraction. Then 

< (p(xi,...,xr) = S07Ti(xi)Si • ••Sr-i7rr(xr)Sr, (4) 

where Kk-Ak^ B(Kk) are * -representations, and 

HhKr V Kr-i -> >Ki^H 
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is a diagram of contractions. (The Ŝ  are referred to as "bridging maps)} between 
the representation, spaces.) 

THEOREM 5. Suppose that one is given operator spaces V& <—* Wk. Then the 
resulting injection Vi ®^ • • • ®^ Vr —• Wi ®/i • • • ®b Wr is completely isometric. 

Thus it is clear that 
• one may use the one variable strategy to determine the completely bounded 

multilinear operatorals on operator spaces. 
A recent discovery has shed considerable light on Theorem 4. As mentioned 

above, the tensor product Ai ®^ • • • ®/i Ar is an operator space. In fact there is a 
canonical realization of this tensor product. The (nonamalgamated) free product 
Ai * • ' • * Ar of the C*-algebras Au..., Ar is the C*-algebraic envelope of the 
algebraic free product 

Ee* 

U3q> 

'fy.> 

*P =31, 

HÌ3i, 

J2 ^ , ® • • • ® ^„ 
.(»i>"->*p)ez>p 

where Dp = {(»'i,... ,iP)'-ih i **-i}) and the *-algebraic operations are given 
by 

where a^ G ̂  and b3k G Bfc, and 

(ai1®.--®a<p)* = oJp®-

THEOREM 6 [6]. TAe natural inclusion 

A i ® ä • • • ® f c 4 r - • ^ 1 * 

is completely isometric. 

•®a?x. 

* ^ r 

Using Theorem 3, a complete contraction ^ : i l i X " ' X i l r —• S(Jï) may 
therefore be extended to a complete contraction iß: Ai * • • • * Ar —• B(H). Prom 
Theorem 2, we may then write iß(u) = Son(u)Sr for some representation ir: AI * 
• • • * Ar —• B(K). Using the universal property of free products, we have corre
sponding noncommuting representations irk'. Ak —> B(K) with 

7r(ai ® • • • ® or) = 7Ti (ai) • • • 7rr(ar). 

Thus we obtain Theorem 4 with Si = • • • = Sr-i — I. 

3. Bounded and completely bounded cohomology. The time develop
ment of a quantum system may be thought of as a one-parameter automorphism 
group on the C*-algebra of observables. Since such groups are generated by 
derivations of the C*-algebra, considerable attention has been devoted to the 
theory of derivations. In the 1960s, this culminated in the theorem of Kadison 
and Sakai that a bounded derivation of a von Neumann algebra must be inner 
[20, 29]. In the 1970s, Johnson, Kadison, and Ringrose developed norm and 
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weak continuous Hochschild cohomology theories for operator algebras and their 
bimodules (see [18, 21, 22, 27]). These have been used to study liftings of 
derivations, as well as perturbations of representations and algebraic structure. 

The incorporation of the norm and weak topologies into Hochschild cohomol
ogy by Johnson, Kadison, and Ringrose required considerable ingenuity, and a 
number of basic problems remain open. Among the questions considered by 
these authors were: 

• Given a von Neumann algebra R, does one have that H^(R, R) = 0 for r> 
2? (For r = 1 this is just the Kadison-Sakai result that all bounded derivations 
of R into itself are inner.) 

• Given a von Neumann algebra R Ç B(H), are all bounded derivations of R 
into B(H) inner? 
They showed that the first statement is true if R is injective. Erik Christensen 
[3, 4] showed that the second is true if R is either properly infinite, or has a 
cyclic vector. 

There are many cases in which one can restrict to completely bounded cocyles 
[6]. Thus one is reduced to studying completely bounded cohomology, which 
in some cases is much more computable than the bounded theory. It is this 
phenomenon which we will briefly illustrate. 

Let us suppose that A Ç B(H) is a concrete C*-algebra on a Hilbert space 
H. We define the completely bounded cochains C£b = G^h(A, B(H)) to be the 
completely bounded r-linear maps 

ip:Ax---xA-+B(H). 

We define the coboundary map 6 = 6r: C£b —• C^1 in the usual manner: 

6(p(ai,..., a r+i) = ai£>(û2, • • •, «r+i) - <p(aiu2, • • •, flr+i) 

+ (p(a!,a2a3,..., a r + i ) h (-l)r+1<p(ai,a2,..., ar)ar+i. 

The completely bounded r-cocyles Z£h = Z£h(A,B(H)) Ç Cr
ch(A,B(H)), and r-

coboundaries Br
ch = Br

ch(A,B(H)) Ç CT
ch(A, B(H)) are defined by Zr

ch = ker 6r, 
and B£h = range <5r-i- The completely bounded Hochschild cohomology groups 
are defined by üf£b = H*h(A, B(H)) = Zlh/B

r
ch. If we instead consider bounded 

cochains, we obtain the bounded Hochschild cohomology H^(A,B(H)) of John
son, Kadison, and Ringrose. 

It was shown in [4] that completely bounded derivations of A into B (H) are 
necessarily inner. Since derivations are just 1-cocycles, this is equivalent to the 
statement that H*h(A,B(H)) = 0. More generally we have: 

THEOREM 7 [6]. Suppose that A Ç B(H) is a unital C*-algebra. Then for 
allr>l,H£h(A,B(H)) = 0. 

COROLLARY 8 [6]. Suppose A Ç B(H) is a unital C*-algebra such that the 
weak closure R = A is properly infinite or R = Ro ®vn M, where M is the 
injective Hi factor. Then Hr

c(A,B(H)) = 0. 
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Corollary 8 follows from the fact that for the specified algebras, the bounded 
and completely bounded cohomology in dual modules often coincide. This re
quires some careful averaging techniques, which we shall not consider here, Since 
it is a particularly beautiful application of Theorem 4, we shall outline the proof 
of Theorem 7. 

Given a completely bounded cochain (p: A X • • • x A —• B (H), a standard 
cohomological argument shows that we may assume that (p is reduced, i.e., 
(p(ai,..., ar) = 0 if ajc — 1 for any k. From Theorem 4 we may let 

ip(ai,...,ar) = Soffi(ai)Si - • • Sr~iwr(ar)Sr, 

for suitable representations 7Tjc' A ~* B(Kje) and operators S^, Regarding Kk as 
an A module, we may notationally suppress the 7T/p, giving us 

tp(a>i)... ,ar) = SodiSi • • • S r _ ia r S r . 

Since <p is reduced, we may, after modifying the Sfc, assume that S/c-iSfc = 0, 
k = 1 , . . . , r. Due to the cancellation of adjacent Sfc, a simple computation shows 

6ip(ai,...,ar+i) = [So,a1][Si,a2]- "[Sr-uar][Sr,ar+i], (5) 

where we use the usual commutator notation. Since (p is a cocycle, 

[So,ai][Si,a2] • • • [S r_i ,a r ] [S na r+i] = 0 

for all a/c G A. Letting Q be the projection on the join of the ranges of the 
operators [S r ,a r+i], ar+i G A, we conclude that 

[So,ai][Si,aa]..-[S r-a,Or]Q = 0. (6) 

Recalling that the commutator is a derivation in each variable, we have for any 
ar G A, 

a r[S r ,a r+i] = [S r ,a ra r+i] ~ [Sr,ar]ûv+i; 

hence it is evident that ar leaves QKr invariant, i.e., [ar,Q] — 0. Thus 

[(1 - Q)Sr,ar] = [1 - Q,ar}Sr + (1 - Q)[Sr,ar) = 0. 

Letting 
^ ( a i , . . . , a r - i ) = SbaiSi •• 'ar-iSr-i(l -Q)Sr, 

the calculation for (5) gives us that 

(Siß)(ai, ...,ar) = [S0, ai] • • • [S r_2 , a r _i ] [S r - i ( l - Q)Sr, ar] 

= [So, Oi] • • • [S f_2,ar-l] 

X {[Sr_i, Or](l - Q)Sr + Sr_i[(1 - Q)Sr, ar)} 

= [S0iai]-. .[Sr-2)ar-i){[Sr-uari(l - Q)Sr} 

= [Sojfli] ' • • [S r-25a r-i][S r_i,o r]S r 

= p ( o i , . . . , a r ) , 

where in the second to last step we used (6). 
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4. Amenability. The notion of amenability appears in various guises in 
algebraic analysis. Suppose that G acts isometrically on a normed vector space 
V, i.e., V is a left Banach G module. Then G has a dual action on the dual 
Banach space V*. G is said to be amenable if it has either of the following 
equivalent properties: 

(a) Any bounded derivation of G into a dual Banach G-module V* is inner. 
(b) G has an invariant finitely additive probability measure p G 1X(G)**. 

Amenability provides an important dichotomy for discrete groups. In particular, 
a group G is amenable if and only if the regular representation weakly contains 
all of the irreducible unitary representations (see [13]). 

The notion of an amenable Banach algebra was formulated by Johnson [16, 
17]. Let us suppose that V is a normed vector bimodule for a unital Banach 
algebra A. (We assume that the operations A x V —• V, V x A —• V are 
contractions.) Then under the dual operations, V* is a dual Banach bimodule. 
An element v* G V* is central if av* = v*a for all a G A. We say that A is 
amenable if it has either of the following equivalent properties: 

(a) Any bounded derivation of A into a dual Banach bimodule is inner. 
(b) The A bimodule (A® A)** has a central element M such that ir(M) = 1, 

where ir:(A®A)** —• A** is the second adjoint of the multiplication map (a, b) —* 
ab. M is called a "virtual diagonal." 

Connes and Haagerup proved that if A is a C* -algebra, then A is amenable if 
and only if it is nuclear, i.e., the von Neumann algebra A** is injective [8, 14]. 
This result was surprisingly difficult to prove, and in particular, the implication 
A nuclear => A amenable remained open for several years. The proofs for both 
implications require that one consider the von Neumann algebraic analogue of 
amenability. 

A dual bimodule V* for a von Neumann algebra is said to be normal if the 
maps r »-• rv* and r H-> v*r are cr-weak, weak* continuous (v* G V*), and a 
derivation 6: R —• V* is normal if it is also continuous in those topologies. In 
order to define the analogue of a virtual diagonal, we must introduce a normal 
version of the projective tensor product [9]. To do this, we define BilCT(£, R) Ç 
(Ré)R)* to be the bounded bilinear functionals F(r, s) which are normal in each 
variable, and we define the normal projective product by 

R®aR = [BiF(R,R)]*. 

A von Neumann algebra R is said to be normally amenable if it satisfies either 
__of_the_following_equivalent_pr_oper_ties: 

(a) Any bounded normal derivation of R into a normal dual Banach bimodule 
is inner. 

(b) The R bimodule £®°" R has a central element M such that 7r(M) = 1, 
where ir: R®a R —• R is the unique weak* continuous extension of the multipli
cation map R ® R —• R. 
As opposed to the Banach algebra case, it is hard to prove that these conditions 
are equivalent. The difficulty is that R®a R is not a normal dual module; hence 
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one cannot directly apply (a). This problem is circumvented by considering 
instead the normal Haagerup tensor product 

where Bil£(£, R) Ç (R<g>h R)* consists of the completely bounded bilinear func
tionals F(r, s) which are normal in each variable. This is a normal dual bimod
ule, and thus (a) may be applied to prove the existence of a central element 
M G R ®5J R for which w(M) = 1, A tricky application of the Grothendieck-
Pisier-Haagerup inequality enables one to "lift" this to a normal virtual diagonal 
M G £®CT R. We refer the reader to [9, 10] for the details. 
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Corona Problems, Interpolation Problems, 
and Inhomogeneous Cauchy-Riemann Equations 

JOHN B. GARNETT 

Let Ü be a complex analytic manifold and let /i,/2> •. • > /JV be bounded an
alytic functions on Q, written fj G H°°(ü). The corona theorem for Q is the 
statement: there exist g\, g<i,..., g^ £ H°°(Q) such that 

fiQi + -- + fN9N = 1, (1) 

if the necessary condition 

£|./y(z)|>»?>o, zen, (2) 

holds. This lecture surveys what is known to date on corona problems in general 
and outlines the proof of a recent corona theorem in the plane. We emphasize the 
connections with interpolating sequences and inhomogeneous Cauchy-Riemann 
equations. 

With (2) and a partition of unity it is easy to find G°° bounded functions 
0i, 02 > • • • ? (/>N such that 

/ i 0 i + " - + /jvfor = l, (3) 

but the functions c/)j may not be analytic. Following Hörmander [8], we write 
9j = fy ~ aj a n d seek bounded functions ot\, OL<I, .,., a^ on Ü satisfying 

N 

T,fw = ° (4) 
3 = 1 

and solving the inhomogeneous Cauchy-Riemann equations 

Ba^dh, l<j<N, (5) 

where, in C d , 

dh = Y) -^- dzk 

Research supported by National Science Foundation Grant MCS-8002955. 

© 1987 International Congress of Mathematicians 1986 

917 



918 J. B. GARNETT 

and 
_d_ _ 1 (_d_ . d \ 
dzk 2 \dxk dyk) ' 

so that dh = 0 exactly when h is analytic. 
To reduce the algebra we fix JV = 2. In that case (4) is equivalent to 

= -fiR, J ^ I ' T o > W 

and by (2) 12 is bounded if and only if both a± and «2 are bounded. Then (5) 
holds if and only if 

SR =**=-*+*, (5') 
h li 

in which the two right sides are equal by (3). Thus for N = 2 the corona 
theorem holds for fi if and only if every equation (5'), arising from (2) and (3), 
has a solution bounded in fi. 

1. For the unit disc, or upper half plane U, Carleson proved the corona the
orem in 1962 [2]. His proof amounts to constructing 0i and 02 so that 

1 Ö01 - 1 002 

satisfies the hypothesis of his: 

THEOREM 1. Assume y\G(x,y)\ G L°°(U) and assume \G(x,y)\dxdy is a 
Carleson measure: ffQ\G\dxdy < Ah whenever Q = {xo < x < xo + h, 
0 < y < h}. Then dR/dz = G has a solution in U such that ||Ä||£,oo(^) < Ci A. 

In 1980 T. Wolff found another solution to the 9-problem (5) with 

THEOREM 2. Assume G(x,y) G CX(U) and assume 

y\G\2dxdy and y\dG/dz\dxdy 

are Carleson measures: 

ff ylGfdxdy^Ath, ff y\dG/dz\dxdy < A2h 

for all Q as in Theorem 1. Then dR/dz = G has a solution in U satisfying 
\\R\\L~W<C2yfT1+CzA2. 

Theorem 2 yields Wolff's surprising proof of the corona theorem for U and a 
generalization. 

THEOREM 3. Assume / i , / 2 , . • • , / N and g are H°° functions U such that 
\g\ < I/1I + I/2H H/jvl- Theng3 lies in the ideal generated by {f\,fi,...,fN}, 
that is, there are g\,g<i,.. .,gN G H°°(U) such thatg3 = 01/1+ #2/2H \~9NfN-

Problem 1. Under the hypothesis of Theorem 3, is g2 in the ideal generated 
by { /1 , . . . , /AT}? Rao [16] has shown that g need not be. 

file:///~9NfN
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A difference between Theorem 1 and Theorem 2 is that the hypothesis of 
Theorem 1 depends only on |G|, whereas Theorem 2 can hold for G and not 
for G. See [6] and [11] for more on these results. We use a form of Theorem 1 
below. 

The corona theorem for U has two other proofs. Varopoulos [21] has a prob
abilistic argument somewhat akin to Wolff's. Berndtsson and Ransford [1], and 
also Slodkowski [18], have found a new point of view in the theory of analytic 
mult ifunct ions. 

2. In 1970 B. Cole exhibited an open Riemann surface for which the corona 
theorem is false. This surface can be enlarged to make a counterexample in C 3 

that is a domain of holomorphy and smooth and strictly pseudoconvex at all but 
one boundary point. See [5]. Sibony [17] has found domains of holomorphy fii ^ 
fi2 C C 2 such that all function in H°°(Qi) have extensions in 7f°°(fi2). Recently 
M. Hayashi found such Riemann surfaces fii ^ fi2. We have no nontrivial 
example of a domain in C2 for which the corona theorem is true. 

In the ball of Cd Varopoulos [19] has shown (1) has analytic solutions in the 
class fip<oo-^Pj a n d a similar result is true for polydiscs, see [20], [4] and [14]. 
For both the ball and the polydisc generalizations of Theorem 1 or Theorem 2 
are known but they have the weaker conclusion R(z) G f l ^ o o - ^ - Examples 
with R(z) £ L°° exist, but those for bad R,G = dR has not come from a corona 
problem. 

Problem 2. In the ball or polydisc find a counterexample to the corona theo
rem. 

3. For open subsets of compact Riemann surfaces the corona question has not 
been resolved (the examples lie on no compact surface), and since the d-problem 
is easy when the partition of unity has compact support in fi, it is enough to 
consider plane domains. Here much is known (see [12] and its bibliography), 
but the general case is still beyond reach. However we can solve the problem 
assuming a symmetry, and with Peter Jones we have proved: 

THEOREM 4. Assume fi = C\E where E is a compact subset of the real 
axis. Then the corona theorem is true for fi. 

Carleson [3] proved Theorem 4 under the extra hypothesis 

m(Er\(x-t, x + t)) >ct (6) 

for all x G E and all t > 0. Write fi ?= U/Y with V a Fuchsian group, 
Then #°°(fi) = {/ G H°°(U): f o S = f for all S G T}. Using (6) and 
harmonic measures, Carleson constructed a "partition function" P G #°°(Zi) 
such that J2ser-P(Sz) = *> 12ser\^(^z)\ - Const. For a corona prob
lem on fi solutions Gj(z) on U then become solutions gj(z) G H°°(Q) 
via gj(z) = Y2serP(Sz)Gj(Sz). See [12] for a different proof and a refine
ment. However, partition functions sometimes do not exist for the domains in 
Theorem 4. 
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4. Theorem 4 motivates the constructive attitude taken on results like Theo
rem 1 in, for instance, [6] and [10]. We have two half planes, but (5') must also 
hold on R\E. The paper [7] with P. Jones has the details of the sketch below. 

Suppose / i , / a G H°°(Q) satisfy (2) and ||/j||L°°(n) < 1- Set e = r//4 and 

fMO = {*e n: ì fE { x _ ^ l + y2 * > e} , «2(e) = n\ÏÏ!(e). 

LEMMA 1. On fifc(e) öftere are solutions G\1 and G^l of (1) swc/i £Aa£ 

IIGi-ÏIU-Cn») <C(e). 
PROOF. For fii(e) this follows from Carleson's theorem for U because all 

components of fii(s) are simply connected. For fÎ2(e) we symmetrize: 

Jj \z) - 2 ' J3 { } ~ 2i 

Then ff G H°°(ü), \\ff\\ < 1 and lm(ff) = 0 on R \ £ . Thus by the Poisson 
formula 

\lmff(z)\<e, zeü2(e), .7 = 1,2. 

Consequently 

#(*) = (/ft*))2 + (/rw)a + (/a
+W)a + (/a-(*))

a 

satisfies Reff(^) > r/2/4 on ffefc) and G^l = (ff — ifJ)/H are solutions on 

n2(e). 
By Carleson's original construction there is a symmetric contour T C fii (e/2) 

D fi2 (e) such that arc length on r + = T n Zi is a Carleson measure with absolute 
constant A and such that T separates fli(e) from fi2(e/2). For a = a(e) let P + 

be the hyperbolic neighborhood of T + , 

D+ = {zell: inf |z - ç\/y < a} 

and set P = P+ U {z: z G P+}. Take symmetric $ G C°°(fi); 0 < V < 1, ^ = 1 
on fi2(^/2), V = 0 o n fiifc)» with |yV^| < c(a)xp. Then xu|V^|da;d2/ is a 

Carleson measure, with constant G(e)A, having support in D+. By Lemma 1 
there are smooth solutions of the form <j>j = G\- L2(l - VO + Gjjiß, and for these 
the right side G(x, y) of (5') satisfies 

\G(x,y)\ < ^l\V^(x,y)\ < ^MXP(x,y). 

Therefore Theorem 4 is a consequence of this extension of Theorem 1: 

LEMMA 2. Assume \yG(x,y)\ < C'(e)xD(x,y). Then dR/dz = G has a 
solution in the domain fi satisfying 

||Ä|U-(n) < G(e)A. (7) 

To prove Lemma 2 we may replace Gdxdy by xuG(x,y)dxdy. Cover £+ by 
squares 

Sn = {zn = *n(?) = **(0) + »„ (0 ) : 0 < Ref, Imf < a/2} 
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with disjoint interiors. Then xuG(x, y) dxdy is an average of discrete measures 

Mc = £ a n(f) l / rA„, *» = Zn^> 

mth\an(ç)\<C(e). 
For each f, 

|*n-Sro|/j/n>a/4, m ^ n, (8) 

so that by the Carleson measure condition {zn} is an interpolating sequence for 
H°°(U): given {6n} G Z°° there is F G JÏ°°(Zi) such that 

F(zn) = bn, n = l ,2 , . . . . (9) 

LEMMA 3. If(S) holds and if zn G P+ /or a//n, i/ien {zn} is an interpolating 
sequence for H°°(Q), that is, (9) has solution F G H°°(Q), and \\F\\H°O(ü) < 
C(e)supn|ôn|. 

Accept Lemma 3 for now. Let B = B$ be the half plane Blaschke product 
with zeros zn(ç) and let F = Fc G if°°(fi) solve (9) with 

bn = -an(ç)ynB
,(zn)/27ri, 

Then .F/S has an analytic continuation to fi\{#n} and, as distributions on fi, 

d{F/B)ldz = VLi. 

Moreover 
\F/B\ < c(e,a)yn/\z - zn\, z near zn, 

\F/B\ < c(e,a) on f | { k ~ ^ | > 2m/n}, 

and, by its construction, F/B is measurable in <;. Consequently the average 

R(z) = jjiFtlBt) d^drj, Ç = Ç + ir], 

satisfies (7) and dR/dz = G. 
Thus the corona theorem for fi depends on the H°°(Q) interpolation result 

of Lemma 3. We outline its proof in the special case 

inf FT \(zk-zn)/(zk-zn)\ > 1-70O, 

with 7(e) small; that is sufficient for the Theorem because {zn} can be parti
tioned into a finite union of such sequences. 

If 7(5:) is small then by the definition of fii(e) there are disjoint sets En c 
En{\t- xn\ < tyn/e} such that 

>(zn,En) = ±[ y-^-—dt>e-
n JEn(xn-t)2+yl 3 

and w(zni\JkunEk < ß(e). Then thçre exist real functions un such that 

Klloo < G(e), (10) 

un has support En, (11) 

m 
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and 

Writing 

and 

undt = 0. (12) 

If y 
U«W = «J (x-t)*+y*Unit)dt 

1 f (x-t)un(t) 
Un^~nJ (x-t)*+y* i

dt 

r 
for the Poisson integral and its conjugate, we can also get 

un{zn) = 0, (13) 

Ùn{zn) = f, (14) 

and 

J2 \Zk{*n)\<Ci(e)ß. (15) 
Vk\yk<yn 

Let — 1 < cn < 1 and set F(z) = exp£)cn(un(;z) +i(un(z)). Since the En are 
disjoint e~c(£) < \F(z)\ < eG^, by (10), and since J2cnUn(t) is supported on 
E, F(z) reflects to be analytic on fi and \F(z)\ < eG^e\ z G fi. Moreover using 
(12)—(15) we can choose the cn inductively so that 

in*«)-(MiMoo)i<è 
if ß(e) is small. An iteration then yields (9). An argument without Blaschke 
products is given in [7]. 

To eliminate the use of symmetry we pose 
Problem 3. If E is a compact subset of a Lipschitz graph in the plane, prove 

the corona theorem for fi = C\E. 
This istrue if E has the density condition (6) for arc length on the graph. C. 

Moore has treated the case of a C 1 + £ graph [15]. 
Problem 4. Let E = K x K where K is the usual Cantor set. Is the theorem 

true for fi = C\K1 
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BepoHTHOCTb B reoMeTpHH 6aHaxoBbix 
npocTpaHCTB 

E. j \ . rjiycKMH 

9Ta CTaTbH nocBHmeHa HeKOTopbiM pe3yjibTaTaM reoMeTpHH 6aHaxoBwx 
npocTpaHCTB, nojiyMeHHbix ÖJiaroAapa npHBjieneHHio TeopeTHKo-BepoHT-
HocTHbix cooöpaaceHHfl. KjiaccHHecKHM cnocoö AOica3aTejibCTBa cymecTBO-
BaHHH oÖT>eKTOB, oÖJiaAaioiAHx cneijHajibHbiMH CBoftCTBaMH, BbiflBJieHHeM 

TOrO, HTO OHH 3anOJIHHK)T MHOIHCeCTBO ÖOJIbUIOH Mepbl, CTaJI HHTeHCHBHO 
Hcnojib30BaTbC5i B reoMeTpHH SaHaxoBbix npocTpaHCTB c cepeAHHbi 70-x 
roAOB. K 3T0My BpeMeHH 6biJiH HattAeHbi AOCTaTOHHO npo3panHbie Bepo-
«THOCTHbie AOKa3aTejibCTBa TeopeMbi /iBopeu.Koro o non™ eBKJiHAOBbix 
ceneHHHx BbinyKJibix Teji (B. J\. MwjibMaH [38], <I>Hrejib [14], IIIaHKOBCKHH 
[52]) H noHBHjiCH 3HaMeHHTbitî npHMep 3H(J)JIO [13] npocTpaHCTBa 6e3 
CBOflcTBa annpoKCHMaqHH, KOHCTpyKiiiHH KOToporo noHTH cpa3y npn-
oÔpejia BepoÄTHOCTHbiH xapaKTep (A. ^ S B H [11], CM. TaioKe MHTAFHH 
[39]). EtpHMepHO B TO ace BpeMH noaBHjica 3HaHHTejibHbift HHTepec 
K H3yneHHK) KOHeHHOMepHbix HopMHpoBaHHbix npocTpaHCTB (HHane npo
cTpaHCTB MHHKOBCKoro). MHorHe Bonpocbi TeopHH 6aHaxoBbix npocTpaHCTB 
nojiyHHjiH coAepacaTejibHyio HHTepnpeTaijHK) Ha KOHenHOMepHOM ypoBHe, a 
pemeHHe paAa 6ecKOHeHHOMepHbix npo6jieM 6wjio nojiyneHo «CKJICHKOH» 
KOHeHHOMepHbix pe3yjibTaTOB. u p « STOM Ha nepBbiH njiaH BbiABHHyjiacb 
npo6jieMa cymecTBOBaHwa KOHeHHOMepHbix npocTpaHCTB H onepaTopoB c 

3aAaHHbIMH CBOHCTBaMH. PfeynaH HOpMbI CJiynaHHblX MaTpHA, SJieMeHTbl 
KOTOpblX He3aBHCHMO npHHHMaiOT 3HaHCHHfl ± 1 C BepOflTHOCTbK) 1/2, BeH-
HeT, TyAM3H H HbioMeH [3] 3aBepuiHJiH onncaHHe KJiaccoB (p, g)-a6cojiK)THo 
cyMMHpyion^HX onepaTopoB B rwjiböepTOBOM npocTpaHCTBe. /JajibHenuiee 
H3yneHHe cjiynafiHoro noAnpocTpaHCTBa — o6pa3a TaKott MaTpHu,bi no3Bo-
jiHjio HM coBMecTHo c /JopoM H ,Z]>KOHCOHOM [2] nocTpoHTb npHMep HeAonoji-
HHeMoro rHJibßepTOBa noAnpocTpaHCTBa B npocTpaHCTBe Lp npn 1 < p < 2. 

Bocnojib30BaBiiiHCb AJia paBHOMepHoft annpoKCHMau,HH eBKJiHAOBa mapa 
cjiynaftHO BbißpaHHbiMH noAnpocTpaHCTBaMH, B. C. KaniHH [32] cyMeji nojiy-
HHTb TOHHbie B CTeneHHOH uiKajie OACHKH (a npw n x N H TOHHbie nop^AKn) 
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nonepeHHHKOB dn(B^,1^) (CM. onpeAejieHHH Huace). TeM caMbiM öLIJI HC-
nepnaH CTapbitt Bonpoc o nop^AKax nonepenHHKOB COÖOJICBCKHX KJiaccoB. 
MccjieAOBaHHe BJIODKCHHH, BO3HHKHIHX B paÔOTe B. C. KauiHHa, no3BOJiHJio 

4>Hrejno, KßaneHK) H IïejiHHHCKOMy [16] nocTpoHTb RJIR Ka^cAoro n n-MepHoe 
npocTpaHCTBo, y KOToporo JIIOÖOH 6a3Hc HMeeT KOHCTaHTy 6e3ycjioBHOCTH 
nop^AKa He HH ĉe yjn; T.e. n-MepHoe npocTpaHCTBo e HaHxyAinen no 
nop^AKy 6e3ycjiOBHOß 6a3HCHOtt KOHCTaHTOtt. (CM. TaK^ce pa3BHTHe SToro 
pe3yjibTaTa B paÔOTe <ï>HrejiH H /Î KOHCoHa [15]-) CnncoK pe3yjibTaTOB 6a-
HaxoBoft reoMeTpHH, B KOTopbix peuiaiomjio pojib HrpaiOT BepoHTHocTHbie 
coo6paMceHHH MOMCHO npoAOJiacaTb em,e oneHb AOJiro. He HMea BO3MO:HC-
HOCTH 9TO CAeJiaTb, ocTaHOBHMCH noAPoÖHee Ha cjieAyiomHx A^yx Bonpocax: 
(1) CTOxacTHHecKHft Bbi6op npocTpaHCTB MHHKOBCKoro co cneiniajibHbiMH 
CBottCTBaMH; (2) Hcnojib30BaHHe cjiynaflHbix noAnpocTpaHCTB Rjia on,eHOK 
nonepeHHHKOB. K co:acajieHHK), 3a paMKaMH 3Toro oÖ3opa ocTaiOTcn nccjie-
AOBaHHH no 4)aKTopH3au,HH cjiynattHbix onepaTopoB (CM., HanpHMep, [4,10]); 
HCCJieAOBaHHH, npHMbiKaioiAHe K TeopeMe /jBopeu,Koro (CM. [17], paöoTbi B. 
J\. MnjibMaHa nocjieAHHX JieT H 6H6jiHorpa<J3Hio K HHM), B nacTHocTH, H3HIU,-
Hoe AOKa3aTe;ibCTBO rHnoTe3bi Majiepa AaHHoe BypreßHOM H MnjibMaHOM 
[8]; BocxoAHiAHe K pa6oTe M. H. KaAeu,a [29] 3aMenaTejibHbie pe3yjibTaTbi 
flacoHCOHa, IIIexTMaHa [28] H riH3be [45] o BJIO^CCHHHX npocTpaHCTBa H AP-

0. GraHA&pTHbie o6o3HaneHHH. Hn^ce (•,•) — CKajiapHoe npoH3BeAeHHe, 

vol HUH voln — jieÔeroB o6i>eM B R n ; S 7 1 - 1 C R n — eAHHHHHaa c(}>epa, 

/xn-jie6eroBa Mepa Ha Sn~1, HopMHpoBaHHaa ycjioBHeM ßn(Sn~l) = 1. 

CTaHAapTHafl rayccoBa Mepa B npocTpaHCTBe R n onpeAeJiaeTca njioT-

HOCTbK) (27r)~n / 2exp(-2^r=i xi/%) H o6o3HanaeTCH 7 n . GUîN — MHoro-

o6pa3He Bcex n-MepHbix noAnpocTpaHCTB npocTpaHCTBa R^; fin)N — 

yHHTapHO-HHBapHaHTHafl BepoHTHOCTHan Mepa Ha Gn,;v. 

lp — n-MepHOe (B 3aBHCHMOCTH OT KOHTeKCTa BeiAeCTBeHHOe HJIH KOM-
njieKCHoe) HopMnpoBaHHoe npocTpaHCTBo C HOpMOH 

/ n \ VP 

\\X\\P= \J2\xi\P ) > l < p < o o ; ||a:||oo = max |a*|. 
\ tm"^ I l<.i<.n 
\i=l / 

Bn — eAHHHHHbift map aToro npocTpaHCTBa. ByKBofi c o6o3HaHaK)Tca 
pa3JiHHHbie B pa3Hbix MecTax nojiOECHTejibHbie KOHCTaHTbi. CTaHAapTHbiM 
o6pa30M Hcnojib3yK)TCH o6o3HaneHHH O(-) H o(-). MHorAa BMecTO <p = 0(ip) 

nHineM ip -<i/). 3anncb (pxiß 03HanaeT, HTO (p -< iß H ij) < (p. 

1. KoHeHHOMepHbie npocTpaHCTBa co cneijHajibHbiMH cBoftcTBaMH. 

IlycTb X, Y — H30Mop4>Hbie 6aHaxoBbi npocTpaHCTBa. BejiHHHHa 

d(X,Y) = mf{\\T\\ HT"1!!: T: X -> Y — JiHHettHbift H3OMOP4)H3M} 
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Ha3biBaeTca AHCTaHijHen BaHaxa-Ma3ypa Mê CAy npocTpaHCTBaMH X H Y. 
CoBOKynHOCTb Bcex HopMHpoBaHHbix npocTpaHCTB (})HKCHpoBaHHOH pa3Mep-
HOCTH n C MepOH ÖJIH30CTH logd(- , ' ) HBJIÄCTCH MCTpHHeCKHM KOMnaKTOM. 
OH Ha3biBaeTCH KOMnaKTOM MHHKOBCKOIX) H 6yAeT o6o3HaHaTbca SD^. 

BOriPOC. KaK BeAeT ce6a e POCTOM n BejiHHHHa 

diamaWn = sup{d(X, Y) : X, Y e OJU? (1) 

ToHHoe 3HaneHHe diam Tin H3Becrao TOJibKo A-na cjiynaa n = 2 : diam9Jt2 = 
3 /2 (CTPOMKBHCT [49]). KjiaccHHecKHft pe3yjibTaT fl^coHa [27] noKa3biBaeT, 
HTO s\xp{d(X,Iz)'- X E Tin} = y/n. OTCìOAa HeMeAJieHHO nojiynaeTCH, HTO 
AJIH JIK)6bIX X,Y e Tin 

d(X,Y) < d(X,l%)d(l%,Y) < n. 

TeM caMbiM y/n < dìamTln < n. OrpaHHneHHe cynpeMyMa B (1) Ha Te HJIH 
HHbie noAMHOMcecTBa Tin npHBOAHT KO MHorHM HHTepecHbiM 3aAanaM. upn 
3TOM oöbiHHo yAaeTCH nojiyHHTb oijeHKy nopaAKa y/n (CM., HanpHMep, [58,59, 
12, 9]). TaK, HanpHMep, O6CTOHT AeJio B enynae, KorAa npocTpaHCTBa X, Y 

oÔJiaAaiOT 1-cHMMeTpHHHbiM 6a3HcoM (H. ToMHaK-JIerepMaHH [59]). J\JISL 

nojiyneHHH TaKHX ou;eHOK oneHb njioAOTBopHbiM OKa3ajiocb Hcnojib30BaHHe 
BepoHTHOCTHbix cooöpaaceHHH (CM., HanpHMep, [58, 12]): Ha MHoacecTBe 
onepaTopoB T, ocymecTBjiflioiAHx H30MOP<J)H3M Me^cAy npocTpaHCTBaMH X 

H y , cnei^HajibHbiM o6pa30M BBOAHTCH BepoaraocTHaa Mepa. Ilpn yAaHHOM 
ee Bbiöope 3aAana OACHKH cpeAHero OTHOCHTejibHo STOH Mepbi 3HaneHHH 
||T|| UT -11| OKa3biBaeTCH cpaBHHTejibHO npocTOfl H npHBOAHT K Hy ĉHOMy 
pe3yjibTaTy o BejiHHHHe d(X, Y). 

IlonbiTaeMCfl HaHBHO npHMeHHTb STOT noAXOA K cjiynaio X = Y = ln, 

3aAaB Ha MHoacecTBe JIHHCHHWX H30MOP4)H3MOB rayccoBy Mepy (nocjieAHee 
03HanaeT, HTO onepaTop T 3aAaeTca MaTpHu,eH (Uj), ajieMeHTbi Uj KOTopott 
— He3aBHCHMbie CTaHAapTHbie rayccoBbi BejiHHHHbi). HeTpyAHO 3aMeTHTb, 

HTO B 3T0M CJiyHae C ÔOJIbHIOH BepOÄTHOCTbK) BbinOJIHfleTCÄ HepaBeHCTBO 
||T|| HT"11| >- n. 3 T O HaTajiKHBaeT Ha Mbicjib, HTO HeMHoro «noAnopTHB» 
npocTpaHCTBo ln, MOXCHO nocTpoHTb npocTpaHCTBa X H Y TaK, HTo6bi AJia 
jiioöoro H30Mop4)H3Ma T: X^Y BbinojiHHjiocb HepaBeHCTBO ||T|| HT1-1!! > cn 

(c > 0) — aOcojuoTHaa KOHCTaHTa). 3 T O AeflcTBHTejibHo TaK. 

TEOPEMA 1 [19]. CnpaBenJiHBa oufiHKa diam Tin ~ n. 

——KaK^y^e OTMeHajiocbroAeHKa diam=2J^^ 

#BHO onHcaTb npocTpaHCTBa XnìYn E Tlnj AJifl KOTOpblX c HeKOTOpOtt 
aöcojiiOTHOH KOHCTaHTon c > 0 cnpaBeAJiHBO HepaBeHCTBO d(Xn,Yn) > cn, 

OAHaKo AO CHX nop He yAaeTCH. Rnn AOKa3aTejibCTBa TeopeMbi 1 HC-
nojib3yeTCH CToxacTHHecKHtt Bbiöop npocTpaHCTB Xn H Yn. FEpH peajiH3aAHH 
TaKoro noAXOAa Ha Tin x %Ki HyacHO BBCCTH BepoaTHOcrayio Mepy H 
AOKa3aTb, HTO HepaBeHCTBO d(X, Y) > en BbinojiHaeTca c nojioacHTejibHon 
BepoHTHOCTbK). B HacToamee BpeMä cTpyKTypa KOMnaKTa Tin eu^e Majio 
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H3yneHa, B nacTHOCTH, He noHHTHO, KaKOBbi HaHÖojiee ecTecTBeHHbie Mepw 
Ha Tln (H Ha Tin x S^n)- Rjin Hamnx Aejiett yAOÖHOH 0Ka3biBaeTca cjie-
Ayionjafl BepoHTHOCTb P Ha Tin x2Dîn> onpeAeJieHHe KOTopott HHcnHpnpoBaHo 
paccyMCAeHHHMH npeAnocjiaHHbiMH (J)opMyjiHpoBKe TeopeMbi 1. 

ConocTaBHM nocjieAOBaTejibHocTH F = ( / i , . . . , / 2 n ) 3JieMeHTOB R n npoc
TpaHCTBo Xp G Tln) eAHHHHHbiH map KOToporo coBnaAaeT c MHOMCCCTBOM 
AJP = com{Bn,±fi,... , ± / 2 n } . Mepa u Ha Tin HHAyimpyeTca npn OTO-
6pa»ceHHH F—>XF) KorAa sjieMeHTbi fi,...,fin cjiynattHO H He3aBHCHMO 
BbiÖnpaiOTCH H3 (Sn~1,fin). Mepa P paBHa u x v. 

ITPEflJIO^KEHHE 1. CymecTByeT a6comoTnasi KOHCTaHTa c > 0 Taxa*, 
^TO, ecjiM npocTpaHCTBo Y npHHaRjiexoiT nocuremo uepbi u, TO u — Mepa 
Tex X G Tin, Rnx KOTopbix HattßeTCä oneparop T H3 X BY c HopMoU \\T\\ < 

cyfn | det T\ 1/n MeHbiue 2~n2. 

KaK X TaK H Y B npeAJioaceHHH 1 HBJIHIOTCH npocTpaHCTBaMH BHAa Xp. 

TaKoe npocTpaHCTBo — STO cneu,HajibHbiM o6pa30M HopMHpoBaHHoe R n . 
TeM caMbiM H B X H B Y HMeeTca (J)HKCHpoBaHHbiH 6a3Hc, HTO no3BOJineT 
OTOMCAecTBHTb JH060H onepaTop M3 X B Y c cooTBeTCTByiomeft MaTpwijeH. 
ITosTOMy, MOäKHO roBopHTb 06 onpeAeJiHTejie onepaTopa H O ero AGHCTBHH B 
ApyroM nape npocTpaHCTB Toro »ce BHAa. 

TeopeMa 1 HeMeAJieHHO BbiBOAHTca H3 npeAJiOMceHHH 1. Ero AOKa3a-
TeJIbCTBO ACJIHTCH Ha ABe OTHOCHTejIbHO He3aBHCHMbie nacTH: Bo-nepBbix, 
AOKa3biBaeTCÄ, HTO AJIH JiK)6oro onepaTopa S, IdetSl = 1, H Jiioöoro e > 0 
BbinojiHeHo (A — aOcojiiOTHaa KOHCTaHTa) 

v{XeTln: \\S\\X-+Y < 2ey/n} < (Ae2)n*. 
Bo-BTopwx noAÖHpaeTCH KOHCHHoe MHOHCCCTBO onepaTopoB M, Card M < 

(A/e)n , 3aBHCHiAee TOJibKo OT Y H e, TaKoe, HTO KaK TOJibKo HattAyTca 

npocTpaHCTBo X H3 HOCHTejiH v H onepaTop T H3 X B Y c HOPMOH | | T | | X - + Y < 

Ey/nldetT]1/71, TO HattAeTCÄ onepaTop SEM CO cjieAyiomHMH CBOHCTBaMH: 

|detS | = 1 H US - |de tT |~ 1 / n T| |x -^y < £\/n (npw STOM aBTOMaTHnecKH 

\\S\\X^Y < ^ey/n). 

CpaBHeHHe (2) c MoiAHOCTbio M npn e = c = \A? AOKa3biBaeT npeAJio^ce-
HHe 1. 

/I|OKa3aTeJIbCTBO (2) JierKO BbIBOAHTCH H3 He3aBHCHMOCTH BeKTOpOB / i , . . . , 
/ 2 n , onpeAejiaioiAHX eAHHHHHbifl map cjiynattHoro npocTpaHCTBa X — Xp, H 
H3 cjieAyioiAeft OACHKH pacnpeAejieHHH Ha (S" 1 - 1 , /^ ) cjiynaflHOH BejiHHHHbi 
| |S7||y nepe3 JieöeroB oÔ^eM vol B y eAHHHHHoro mapa npocTpaHCTBa Y: 

fin{f e S71'1: US/H y < A} < \n\debS\-1 vol BY/vol BÇ. (3) 

npw 3T0M HepaBeHCTBO (3) npHMeHHeTCH npn À = Isy/n, a vo l f?y ou,eHH-
BaeTCH 3a cneT Toro, HTO eAHHHHHbiß map npocTpaHCTBa Y HMeeT HeÖojibmoe 

HHCJIO KpaHHHX TOHeK (CM. [33]). < 
HepaBeHCTBO (3) Öbijio BnepBbie oÖHapy^ceHo H Hcnojib30BaHO B 6aHaxoBoft 

reoMeTpHH IIIapeKOM [56]. OHO Jierjio B ocHOBy BBeAeHHoro IIIapeKOM 
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H ToMHaK-üerepMaHH [57] BaacHoro noHHTHH «oô'beMHoe OTHomeHHe npo-
CTpaHCTB MHHKOBCKOrO». 

B KanecTBe MHoacecTBa M SepeTCH MHHHMajibHaa £-ceTb (B MeTpHKe, 

nopO^KAÖHHOH /2_onePaTOpHOH HOpMOtt) MHOHCeCTBa MaTpHII, T TaKHX, HTO 

||r||,»_>y < i H | d e t r | = i . 

3aMenaHHH. 1. HocHTejib Mepw v — oneHb cneijHajibHoe noAMHo-
3KecTBO Tin — 3TO <}>aKTop-npocTpaHCTBO npocTpaHCTBa If*. MHane 
roBopa, Mepy v MOHCHO paccMaTpHBaTb, KaK BepoHTHocTb Ha MHoro-
o6pa3HH G2n,3n ßcex 2n-MepHbix noAnpocTpaHCTB l^1. üpn TaKOM B3rjiHAe 
npHBWHHee paccMaTpHBaTb Mepy v Ha G2n,3n yHHTapHo-HHBapnaHTHyK) B 

/fn-CMbICJie. OHa OTJIHHaeTCH QT Mepbl V, HO AOBOJIbHO ÖJIH3Ka K Heü 
H TaK^ce MOMceT Hcnojib30BaTbca AJIH AOKa3aTejibCTBa TeopeMbi 1. JXJIR 

onpeAeJieHHH Mepw v B TepMHHax, aHajiorHHHbix onpeAejieHHio v, HaAO 
BMecTo MHOJKecTB AF paccMOTpeTb MHo^cecTBa c o n v { ± / i , . . . , ± / 3 n } , a 3Jie-

MeHTbl / l , . . . , / 3 n He3aBHCHMO BblÖHpaTb H3 (R W , 7 n ) . BjIH30CTb Mep V 
H v oöycjiOBJieHa TeM, HTO BO-nepBbix, npn ÖojibuiHx n rayccoB BeKTop / 
pacnpeAeJieH B OCHOBHOM B OKPCCTHOCTH c<}>epbi y/nSn~1

ì a BO-BTopwx, KorAa 
/ i , . . . , / n He3aBHCHMO npoöeraiOT ( R n , 7 n ) , o6i>eM «oKTasApajibHoro» MHO-
XCeCTBa COnv{±/i , . . . , ± / n } OKa3bIBaeTCÄ AOBOJIbHO ÖOJIbIHHM C BepOHT-
HOCTbK) ÖJIH3KOH K 1. 

2. Flo aHajiorHH c onpeAejieHHeM Mep v, v ecTecTBeHHo BBCCTH Mepbi 

fk,B} ^k,B na Tin. Mx onpeAejieHne oTjinnaeTCJi TeM, HTO BMCCTO 2n TOHCK 

fii • • • ? fin öepeTCH k TOHCK, a «OKTasAP» Bn 3aMeHaeTca APyrHM BbinyKjibiM 
AeHTpaJIbHO-CHMMeTpHHHbIM TeJIOM B. HHTepeCHbl pa3JIHHHbie Bonpocbi 
OTHOCHTeJibHO noÄBjiaioiAHXCfl TaKHM o6pa30M cjiynaftHbix npocTpaHCTB 
MnHKOBCKoro. OAHH H3 npocTettuinx cpeAH HHx — Bonpoc 06 oueHKe 
cpeAHHX 3HaneHHH HHTepecHbix no TeM HJIH HHMM npnHHHaM 4>yHKAHOHajioB 
na Tin. 

B [24] TopAOH BBeji cjieAyioiAee noHATHe, onHCbiBaioniiee CTeneHb CHM-
MeTpHHHOCTH npOCTpaHCTB MHHKOBCKOrO. KoHCTaHTOH aCHMMeTpHH s(X) 

X G Tin Ha3biBaeTCfl HHìHCHHH rpaHb nnceji A, oSjiaAaioiAHX cjieAyioniiHM 
CBOHCTBOM: cynjecTByeT rpynna G oöpaTHMbix jiHHeflHbix onepaTopoB B X 

TaKaa, HTO Kâ CAWH onepaTop, KOMMyrapyioiAHH co BCCMH g E G, HMeeT BHA 
a i d (Id — T05KAecTBeHHbiH onepaTop) H sup{||gf|| : g G G} < A. 

TaK KaK d(-X", JJ) < yfn AJIA Jiioôoro X G Tin, TO H S(X) < y/n. TOHHMH 

nop^AOK pocTa BejiHHHHbi sn = sup{s(X) : X G Tin} BMHHCJICH MaHKeBHHeM 

TEOPEMA 2 [36]. CnpaBenjiHBa oixemca sn x n 1 / 2 . 

B ocHOBe AOKa3aTejibCTBa 3Toro pe3yjibTaTa jieiacHT cjieAyioiAaa KOH-
CTpyKAHÄ. riycTb X, Y G (Tin,^OmBi) — He3aBHCHMbie cjiynaHHbie 
npocTpaHCTBa. IIOJIOECHM Z = X ©2 Y (T .C Z — npocTpaHCTBo nap 

z = (x,y), x e X, y E Y, CHaö^ceHHoe HOPMOH ||;?|| = (||z||2 + | M | 2 ) 1 / 2 ) . 
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BbIHHCJieHHe MaTeMaTHHeCKOrO OMCHAaHHH BeJIHHHHbl s(Z) H npHBOAHT K 
TpeÖyeMOMy pe3yjibTaTy. 

IIpHMep 9H4>JIO npocTpaHCTBa 6e3 cBottcTBa annpoKCHMai;HH nopoAHJi cjie-
Ayiomjio KOHeHHOMepHyio npoÖjieMy: cyiu,ecTByeT JIH nocjieAOBaTejibHocTb 
npocTpaHCTB Xn G 3D?n c HeorpaHHHeHHo pacTymett 6a3HCHoft KOHCTaHToft? 
HanoMHHM cooTBeTCTByioiAHe onpeAejieHHfl. C JHOÖWM 6a3HCOM xi,...,xn 

npocTpaHCTBa X accou,HHpyeTCH nocjieAOBaTejibHocTb npoeKTopoB Pi,..., 

Pn: 
k 

Pk \^2<XiXi) =^2aiXi. 
i=i 

Ba3HCHaa KOHCTaHTa cHCTeMbi xi,...,xn onpeAejiHeTCH KaK b({xi}f=1) = 

SUp1 < f c < n ||Pfc||- HHMCHHH rpaHb BeJIHHHH b({Xi}t=1) no BCeM B03MOJKHbIM 
6a3HcaM {Xì}ìI=1 Ha3biBaeTCH 6a3HCHott KOHCTaHTott npocTpaHCTBa X H 

o6o3HanaeTCH b(X). Vis TeopeMbi flaKOHa [27] cjieAyeT, HTO b(X) < y/n. 

B [20] AOKa3aHO, HTO AJIä KaäKAoro n HaftAeTCH npocTpaHCTBo X G Tin, 

o6jiaAaioiH,ee cjieAyioiAHM CBOHCTBOM (C > 0 — a6cojnoTHaji KOHCTaHTa) 

.._.. minlrank P, n-rank P} _ n ^ ,Ä. 
\\P\\ > c . . - , AJIä Jiioooro npoeKTopa P B X. (4) 

y/n\ogn 

B nacTHOCTH, b(X) > 2 1cy/n/logn. Bojiee Toro, cnpaßeAJiHB cjieAyiomHH 
pe3yjibTaT. 

TEOPEMA 3 [20]. Flycrb X G Tin cjiyvattHoe npocrpaHCTBO c pacnpej^e-

jieHMeM ^ n 2 j n - i /2 B «. B 3T0M cjiynae BepoxTHOCTb COÔMTHSI (4) CTpeMHTCx K 1 

c pOCTOM n. 

Mcnojib3yfl HeMHoro Apyryio BepoHTHOcrayio KOHCTpyKAHio, IIIapeK [53] 
He3aBHCHMO AOKa3aji cjieAyioiAHH pe3yjibTaT, ycTaHaßJiHBaioiAHH npaBHJib-
HblH nop^AOK BeJIHHHHbl 

TEOPEMA 4 [53]. Rna KaxcRoro n cymecTByeT Xn G Tin Taicoe, HTO /^JIX 

jiioÖoro npoeKTopa P B Xn paHra [n/2] BbinojiHeHo \\P\\ > on1/2 (6 > 0 — 
aÖcomoTHax KOHCTaHTa). B nacTHOCTH, b(Xn) > Sn1/2. 

Pa3BHBaa CBOK) KOHCTpyKujHio, IIIapeK [54] cyMeji «cKJieHTb» H3 KOHCH-
HOMepHbix npocTpaHCTB 6ecKOHeHHOMepHoe ÖaHaxoBO npocTpaHCTBo 6e3 
6a3Hca co CBOHCTBOM orpaHHHeHHOH annpoKCHMaAHH H pemHTb TeM caMbiM 
OAHy H3 nocjieAHHX npoÖJieM, nopo:»CAeHHbix npHMepoM 3HC})JIO. (B CHjiy Teo
peMbi riejiHHHCKoro [42] HajiHHHe CBOHCTßa orpaHHHeHHOH annpoKCHMau,HH 
y ÔaHaxoBa npocTpaHCTBa 03HanaeT, HTO OHO H3OMOP<J)HO AonojiHaeMOMy 
noAnpocTpaHCTBy npocTpaHCTBa c 6a3HCOM.) 

KjiaccHHecKHfl pe3yjibTaT KaAeija H CHoÔapa yTBepMCAaeT, HTO KaKOBo 
6bi HH ÖbiJio n-MepHoe noAnpocTpaHCTBO L ÖaHaxoßa npocTpaHCTra X, 

HaflAeTCH npoeKTop P : X—>L TaKott, HTO | |P|| < y/n. TeopeMa 4 AOKa3biBaeT 
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cymecTBOBaHHe n-MepHoro npocTpaHCTBa, B KOTOPOM 3Ta oijeHKa He MoaceT 
6biTb cymecTBeHHO yjiynmeHa HH RJIZ KaKoro noAnpocTpaHCTBa pa3MepHocTH 
[n/2], IIpHMep TeopeMbl 3 npHBOAHT K HeTpHBHaJIbHblM OAeHKaM CHH3y HOpM 
Bcex npoeKTopoB, paHr H KopaHr KOTopwx ôojibiue y/nlogn. Ro CHX nop, 
OAHaKO, He HCHO, cymecTByeT JIH nocjieAOBaTejibHocTb npocTpaHCTB Xn G Tin 

H HeorpaHHHeHHO B03pacTaiom;a^ <J)yHKU,HÄ (p TaKne, HTO RJW jno6oro 
npoeKTopa P B Xn paHra He Bbime n/2 + 1 BbinojraeHo ||P|| > £>(rankP). 

B 3aMeHaTejibHOH paÔOTe riH3be [44] nocTpoeH npnMep 6ecKOHeHHo-
MepHoro 6aHaxoBa npocTpaHCTBa, KOTopoe, B nacTHocTH, o6jiaAaeT cjie-
AyioiAHM CBOHCTBOM: AJIH Jiioöoro KOHeHHOMepHoro npoeKTopa P B HCM C 
HeKOTopoß a6cojiK)THOH KOHCTaHTOH c > 0 BbinojiHeHo ||P|| > cy/rankP. 

Ro CHX nop Bee paccMOTpeHHa 6MJIH Ben^ecTBeHHbiMH. Hx nepeHeceHHe 
Ha KOMnjieKCHbiH cjiynaH He CJIOHCHO. HaAO npocTO CMOTpeTb Ha n-
MepHoe KOMnjieKCHoe npocTpaHCTBo, KaK Ha BemecTBeHHoe npocTpaHCTBo 
pa3MepHOCTH 2n. HanpHMep, onpeAejieHHe Mep z/&,£ MOAHcJïHAHpyeTCH npn 
3T0M cjieAyioiUHM o6pa30M. IlycTb AJia m = l,...,k £ m , r}m G R n , a 
fm = £ m + %r\m G C n . ßajiee B C C n — (})HKCHpoBaHHoe aöcojiiOTHo-
BbinyK/ioe noAMHoacecTBo C n . OnpeAeJiHM MHOECCCTBO Ap (F = (fi,..., /*)) 
paBeHCTBOM 

{ k k \ 

*GCn:3A0,...,AfcGC, £ |Am| < 1, z G \0B + £ Am/m I 
m=0 m = l ) 

H nycTb Xp — n-MepHoe HaA nojieM C HopMHpoBaHHoe npocTpaHCTBo 
c eAHHHHHbiM mapoM A#. Mepa v^B HHAyupipyeTCA npn oToôpa^ceHHH 
F-+XF, KorAa f m ,rç m He3aBHCHMO npoÖeraiOT (S 7 1 ™ 1 ,^ ) . 

rtpn «BemecTBeHHOM» noAxoAe K KOMnjieKCHbiM npocTpaHCTBaM ec-
TecTBeHHO B03HHKaeT Bonpoc, He onpeAejiaeTca JIH KOMnjieKCHa.» cTpyKTypa 
Bem,ecTBeHHOH reoMeTpneft npocTpaHCTBa. HHane roBopa, cymecTByiOT 
JIH KOMnJieKCHO HeH30MOp(J)Hbie ÔaHaXOBbl npOCTpaHCTBa H30MOp(J)Hbie B 
BemecTBeHHOM CMbicjie. Run ftopMyjinpoBKH aHajiorHHHoro Bonpoca B 
KOHenHOMepHOM cjiynae BBeAeM cjieAyion^ne o6o3HaneHHa. IlycTb X, Y — 
n-MepHbie HaA nojieM KOMnjieKCHbix nnceji HopMHpoBaHHbie npocTpaHCTBa. 
IIojioacHM 

dc(X,Y) = inf {||T|| H^T-=L|| :T:X->Y — (KOMnjieKCHO-)jiHHeHHbiH 
oÖpaTHMbifl onepaTop}, 

""~3R(Xrr)^mff || S |r || ~S~~ t||rST^r=TT^==nBëaEêcTBë^ 
oSpaTHMbiH onepaTop}. 

BOITPOC. BepHo JIH, HTO paBeHCTBo dn(X,Y) = 1 BjieneT dc(X,Y) < K 

(K — aöcojnoTHaa KOHCTaHTa)? 

OTpnuaTejibHbiH OTBeT Ha 3TOT Bonpoc AaJi BypreflH [7]. J\JISL TOHHOH 4>op-
MyjinpoBKH ero pe3yjibTaTa noHaAOÔATCH cjieAywmHe onpeAejieHH«. IlycTb 
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X — KOMnjieKCHoe ÖaHaxoßo npocTpaHCTBo. Hepe3 X o6o3HaHHM KOMnjieK-
CHoe SaHaxoBO npocTpaHCTBo, coBnaAaiomee c X no 3anacy sjieMeHTOB, B 
KOTopoM npoH3BeAeHHe Aoa; cKajiapa A Ha sjieMeHT x G X onpeAejiaeTCÄ 
paßeHCTBOM Xo x ^= Xx (X — KOMnjieKCHo conpHMceHHoe c A). Onepan,HH 
cjioHceHHH H HopMa B X HacjieAyiOTCfl H3 X (reu caMbiM B Bem;ecTBeHHOM 

CMbICJie X H X H30MeTpHHHbl). 

IlycTb 6aHaxoßo npocTpaHCTBo X oTOäKAecTBJieHO c jiHHeßHbiM noAMHo-
»cecTBOM npocTpaHCTBa I2 (HJIH ln). Hepe3 XQ, 0 < 6 < 1, 6yAeM o6o3HanaTb 
npocTpaHCTBo [X,l2]e$} nojiynaioiAeecji nyTeM BenjecTBeHHOH HHTepnojia-
AHH (onpeAejieHHe CM., HanpHMep, B [5]). üOJIOMCHM XQ = X, Xi = l2 (HJIH 

in 
TEOPEMA 5 [7]. TlycTb Xn — KOMnjieKCHoe n-MepHoe cjiynaitHoe npo-

crpaHCTBO c pacnpexejieHHeM V^A 0 - Torna c HeKoropoit aÖcojnoTHoü KOH-

craHToit 6 > 0 BepoxTHocTb Toro, HTO dc(Xß;,Xe) > (ôn/logn)1-0 ïIOJIOTKH-

TeJIbHa M CTpeMMTCH K 1 C POCTOM n KaKOBO 6bl HM 6bIJIO 0 G [0, 1]. 

KpoMe Toro, EyprettHy yAajiocb TaKäKe noKa3aTb, HTO C 6ojibuioH Bepo-
HTHOCTbK) npOCTpaHCTBO XQ HCJIb3H «XOpomO» BJIOMCHTb B npocTpaHCTBo 
XQ +I2, HTO n03BOJIHJIO eMy «CKJieHTb» H3 HHX ÔeCKOHeHHOMepHOe ÔaHaXOBO 
npocTpaHCTBo Z ne H3opMop4>Hoe Z. 

CyAfl no ccbiJiKaM, 6JIH3KHH K TeopeMe 5 pe3yjibTaT AOKa3aH IIIapeKOM 
[55]. MaHKeBHHy [37] yAajiocb oÖHapyasHTb OSIAHH 4>aKT, H3 KOToporo, 
KaK nacTHbie cjiynan nojiynaiOTca yTBepasAeHHH rana TeopeM 2-5, npaBAa, 
c HecKOJibKO xyAiHHMH ou,eHKaMH (oTJiHHaiomHMHCH OT HaHJiynninx jiora-
pH(})MHHeCKHM MHOECHTCJieM). 

OopMyjinpya TeopeMbi 1-5, Mbi He yTOHHÄjra, c KaKon CKopocTbio Mepa 
cooTBeTCTByionj.HX MHOMcecTB CTpeMHTCH K 1. Ha caMOM AGJie npn AOKa3a-
TejibCTBe 3THX yTBep^CAeHHH nojiynaiOTCH 3KcnoHeHAHajibHbie on,eHKH RJISI 

Mepbi AonojiHHTejibHoro MHo^cecTBa. Mbi He ocTaHaBjiHBaeMCH Ha STOM 
noApoÔHO, nocKOJibKy RJIR reoMeTpHHecKHX npHjio^ceHHH BaiacHa jinmb 
nojioMCHTejibHOCTb Mepbi, AaionjaH TeopeMy cymecTBOBaHHH. 

2. AnnpoKCHMau,HH cjiynaHHbiMH noAnpocTpaHCTBaMH. IlycTb L — 
jiHHettHoe noAnpocTpaHCTBo ÖaHaxoßa npocTpaHCTBa X, a B — HeKo-
Topoe noAMHOMcecTBo X. OTKJIOHCHHCM MHODKecTBa B OT L Ha3biBaeTca 
BejiHHHHa 

p(B,L) = px(B,L) = sup inf ||a: - y\\. 
xEBVZL 

KojiMoropoBCKHe nonepenHHKH MHO^cecTBa B onpeAeJiaiOTCH paßeHCTBOM 

dn(B,X)= inf px(B,L); 
Ln: d imL n <n 

HH(j)HMyM ÔepeTCH no MHO^cecTBy Bcex noAnpocTpaHCTB pa3MepH0CTH He 
Bbiine n. 9 T O noHATHe BBCACHO B 1936 r. A. H. KojiMoropoBbiM [34]. Bonpoc 
o CKopocTH y6biBaHHH nonepeHHHKOB ecTecTBeHHbiM o6pa30M o6o6ni;aeT 
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KJiaccHHecKyio 3aAany TeopHH npHÖJiHEceHHH o cTeneHH annpoKCHMaijHH 

KJiacca c{)yHKAHH 4>HKCHpoBaHHbiMH KOHeHHOMepHbiMH noAnpocTpaHCTBaMH 

(ajireÔpaHHecKHMH HJIH TpnroHOMeTpHHecKHMH nojiHHOMaMH H T.n.). Mc-

TopnnecKH nepBOH 3aAaneH STOH oÔJiacTH ABHJICä Bonpoc 06 oueHKe no-

nepeHHHKOB coSojieBCKHx KJiaccoB Wl
v B Lq. Yace B nepBbix paßoTax Ha 3Ty 

TeMy (C. B. CTenKHH [48], M. 3 . COJIOMHK H B. M. THXOMHPOB [46]) BbiHBHjiacb 

TecHan CBH3b Mê CAy 3aAanen o nonepenHHKax dn(Wp,Lq) H KOHenHOMepHbiM 

BOnpOCOM O paBHOMepHOH OAeHKe BeJIHHHHbl dn(Bp\lq). CpaBHHTeJIbHO 

HecjioxcHO BbiHHCJiHTb TOHHbie 3HaneHHH nonepeHHHKOB dn(Bp,l^) npn 

1 < Q < V < ° ° (CM-> HanpHMep, [43, 47]). ÛAHaKO Aaace cKOJibKO-HHÔyAb 

C0Aep»caTejibHaÄ on,eHKa BCJIHHHH dn(Bp,l£) npn max{2,p} < q < 00 0Ka3bi-

BaeTCfl TpyAHOft. Jlnnib B 1974 r., BOcnojib30BaBmHCb A-HA annpoKCHMau,HH 

«OKTaSApa» Bi CneiJHaJIbHblMH HHBapHaHTHbIMH OTHOCHTeJIbHO AHKJIHH-
ecKoro CABHra noAnpocTpaHCTBaMH, P. C. HcMarnjioB [26] cyMeji nojiynHTb 

coAep^caTejibHyio B mnpoKOH oSjiacTH H3MeHeHHH n H N ou,eHKy BejiHHHHbi 

dnfò^,^). ripH 3T0M HM 6bIJIO BBeAOHO BaXCHOe nOHHTHe — TpnroHO-

MeTpHHecKHfl nonepeHHHK — AO CHX nop enje Mano H3yneHHoe (aBTopy 

H3BecTHbi jiHinb ABe nyÖJiHKaijHH Ha 3Ty TeMy: 3 . C. ECJIHHCKHH [1], H. 

MaKOB03 [35]). 
OneHb njiOAOTBopHbiM B STOM Kpyre BonpocoB oKa3ajica BCPOHTHOCTHMH 

cnocoö paccyDKACHHH, BnepBbie npHMeHeHHbiH AJIä OL^HKH nonepeHHHKOB 

B. C. KamHHbiM [30, 32]. CxeMa ero paccyacACHHH TaKOBa: BBCACM Ha MHoro-

o6pa3HH Bcex n-MepHbix noAnpocTpaHCTB npocTpaHCTBa X BepoHTHocTkyio 

Mepy. Rna ou,eHKH nonepenHHKa dn(B,X) 6yAeM Hcnojib30BaTb cpeAHee 

OTHOCHTejibHO STOH Mepw 3HaneHHe oTKJiOHeHHÄ px(B,L). n p n yAaHHOM 

Bbiöope BepoÄTHocTHOH Mepw, cpeAHee 3HaneHHe, o KOTOPOM HAöT penb, 

6yAeT 6JIH3KO K dn(B,X), a ero BbiHHCJieHHe MOEceT 0Ka3aTbCH 3HaHHTejibHO 

npome HenocpeACTBeHHOH ou,eHKH nonepenHHKa. ripn peajiH3an,HH TaKoro 

noAXOAa RJia OACHKH dn(Bl} ,1^) B. C. KamHH cjieAyioiAHM o6pa30M BBCJI 

Mepy Ha Gn,N- nycTb A = (CLìJ) — cjiynaHHaa n x JV-MaTpHija, sjieMeHTbi 
KOTOpOH He3aBHCHMO npHHHMaiOT 3HaHeHHÄ ± 1 C BepOflTHOCTbK) 1/2. Hyac-

Haa Mepa Ha MHoroo6pa3HH Gn,N HHAyAHpyeTca npn nepexoAe OT MaTpnn,bi 
A K n-MepHOMy noAnpocTpaHCTBy R ^ — ee o6pa3y. B. C. KamHHy yAajiocb 

AOKa3aTb, HTO npH TaKOM Bblßope Mepbl Ha Gn,N C ÔOJIbHIOH BepOHTHOCTbK) 

BbinojiHeHO (e — aÓcojHOTHaa KOHCTaHTa) 

plN(B»,L) < c(ìog(N/n) + 1)3/2/NAL 

KaK yace oTMenajiocb BO BBCACHKH, STO AaeT TOHHyio B CTeneHHOH mKajie 

oi^eHKy (a npn n x J V w TOHHWH nopaAOK) nonepeHHHKOB dniB^J^)-

PaccyacAeHHÄ B. C. KamHHa ynponjaiOTCÄ, ecjiH nepenra K yHHTapHO-

HHBapnaHTHOH Mepe ßn,N na MHoroo6pa3HH Gn,N s eex n-MepHbix noA-

npocTpaHCTB npocTpaHCTBa R ^ . n p n STOM yuaeTca nojiynHTb H öojiee 

TOHHbie oueHKH. nojie3HO HMeTb B BHAy, HTO Mepa jjLn,N HHAyAHpyeTCH (npn 
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nepexoAe OT MaTpHijbi K ee o6pa3y) cjiynaHHOH nxiV-MaTpHn,eH T = (gd), 
sjieMeHTbi KOTopoH He3aBHCHMbie rayccoBbi cjiynaftHbie BejiHHHHbi. 

TEOPEMA 6 ([21, 18], CM. TaKHce [60]). flnx L G Gn,N c nojioxcHTejibHoa 

fjintN-BepoxTHocTbK) (cTpeMauißltcn K 1 c pocTOM n) BbinojiHHWTCH HepaseH-
CTBa (c < oo — aÖcomoTHan KOHCTaHTa) 

plN(B$,L) < cmmi^N^/y/n} npn q < oo; (5) 

pl&(B»,L) < cmin{ l , y/(\og(N/n) + l)/n}. (6) 

9 T H ou,eHKH AaiOT npaBHJibHbitt nopaAOK cooTBeTCTByioiAHX nonepeH
HHKOB [21, 18]. HecjioHCHbie paccy:>KAeHHfl HHTepnojiHU,HOHHoro xapaKTepa 
[22] no3BOJiHK)T c HX noMonjbK) 3aBepmHTb HccjieAOBaHHe Bonpoca o nopaA-
Kax nonepeHHHKOB dn(B^ ,1^) npn 1 < p < q < oo H 2 < p < g = OO. 
CjieAyion^HH pe3yjibTaT noKa3biBaeT, HTO C TOHKH 3peHHH annpoKCHMau,HH 
B /££ cjiynanHbiMH noAnpocTpaHCTBaMH MHO^cecTBa B^ npn 1 < p < 2 

OKa3bIBaK)TCH Hepa3JIHHHMbIMH. B TO ̂ Ce BpeMH, KaK nOKa3bIBaeT H3BeCTHbIH 
pe3yjibTaT B. C. KauiHHa [31] (CM. TaKMce Xejuinr [25]), npn n = o(N) 

nonepeHHHKH dn(B± ,/££) H dn(B!} ,1^) HMeiOT pa3Hbin nopjiAOK. MHane 
roBopa, npn 1 < p < q < oo HJIH npn 2 < p < q = oo noAnpocTpaHCTBO 
H3 (GniNißntN) oÖmero nojio^ceHHÄ noHTH SKCTpeMajibHO RJISL nonepenHHKa 
dn(Bp, lj/), a npn l < p < 2 < g = oo HeT. 

TEOPEMA 7 [23]. RJIH L G Gn^ c nojioxcHTejibHoii p,n,N-BepoxTHocTbio 
(cTpeMRUietîCR K 1 C POCTOM n) BbinOJIHRlOTCSI HepaBeHCTBa (0 < Ci < C2 < 00 
— aÔCOJIIOTHbie KOHCTaHTbl) 

ci min{l, y/(\og(N/n) + l ) / n } < Pl^(B^,L) < c2 min{l , ^(\og(N/n) + l)/n} 

KaKOBO 6bl HM 6bIJIO p, 1 < p < 2. 

HeAaBHO B. Kapji (jiHHHoe cooÖmeHHe) nepeAOKa3aji OCHOBHOH pe3yjibTaT 

[18] dn(B^\l^o) > cmin{l , \ / ( log(N/n) + l ) / n } H AOKa3aji HepaBeHCTBO 

dn(TB?, O < c\\T\\ mm{l, y/(log(N/n) + l ) /n } , 

rAe T — npoH3BOJibHbiH onepaTop, AGHCTByioiAHH H3 1% B l£. 

,HoKa3aTejibCTBO HepaBeHCTB (5), (6) yAoÖHO npoBOAHTb B ABOHCTBeHHbix 
TepMHHax. TaKOH noAXOA Hcnojib30Bajica B. C. MnTHrHHbiM [40] npn 
nepeH3JioMceHHH pe3yjibTaTa B. C. KauiHHa [32]. nycTb X,Y — iV-MepHbie 
ÖaHaxoBbi npocTpaHCTBa, npnneM X (J)HKCHpoBaHHbiM o6pa30M BJIOMCCHO B Y, 

B — eAHHHHHbiH map npocTpaHCTBa X. I4cnojib3yH TeopeMy XaHa-BaHaxa, 
HecjioMCHO noKa3aTb (CM., HanpHMep, [26]) HTO A-HH Jiioöoro noAnpocTpaHCTBa 
LCY 

pY(B,L) = fmp{\\z\\x*/\\z\\y '.z^0,ze L^}. 

3Aecb H AaJiee X*,Y* — conpjDKeHHbie K X,Y npocTpaHCTBa, a L1- c Y* — 

noAnpocTpaHCTBO (JjyHKnjMOHajiOB, aHHyjinpyiomnx L. HOJIOMCHM 

KW = {zeY*:\\z\\x.<\\\z\\Y-}. (7) 
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B 3THX o6o3HaneHHHx yTBepMCAeHHe dn(B,Y) < X SKBHBajieHTHo TOMy, HTO 
HaftAeTCH noAnpocTpaHCTBO Ln C Y* Kopa3MepHOCTH He Bbiuie n TaKoe, 
HTO Ln D K(X) = 0. TaKHM o6pa30M, 3aAana 06 ou,eHKe nonepeHHHKOB 
CBOAHTCH K BOnpOCy O TOM, HaCKOJIbKO MaJIOH MÔ CeT 6bITb KOpa3MepHOCTb 
noAnpocTpaHCTBa, He nepeceKaioiAero 3aAaHHbin KOHyc. OTBeTHTb Ha STOT 
Bonpoc noMoraeT cjieAyionjee npocToe yTBepacAeHne. 

nPE/lJIOJKEHHE 2. IlycTb f±,..., fm G B?, m <2n, a BeKTop z eRN 

TaKOBy HTO H2II2 > 12. ECJIH V = COnv{/i,.. . , /m} — BbinyKJIblft MHO-
rorpaHHKK e BepinmiaMH / i , . . . , / m , a 

K = {x G RN : x = Oì(Z + v), a > 0, v GV} 

— KOHHHeCKaX OÖOJIOHKa MHOXZeCTBa Z + V, TO BbinOJIHXeTCX OUfiHKa 

VnML e GnìN :L±nK?0}< 2~n. 

/tOKA3ATEJIBCTBO. HanoMHHM CHanajia, HTO BepoaTHocTHaa Mepa 
p,UìN HHAyî npyeTCH npn OTo6pa?KeHHH T—•ImT rayccoBOH Mepoft ^n,N 
Ha npocTpaHCTBe n x iV-MaTpnij, OTOECAecTBjieHHOM CTaHAapTHbiM o6pa30M 
e RnN. ECJIH noAnpocTpaHCTBO L onpeAeJieHO, KaK ImT, TO ycjiOBHe 
L1- H K ^ 0 SKBHBaJieHTHO TOMy, HTO HaHAeTCÄ v G V TaKoe, HTO (T* — 
TpaHcnoHHpoBaHHaH MaTpnija) v + z G kerT*. ÜHane roßopa, T*v = —T*z. 
TeM 6ojiee ||r*v||2 = ||r*^||2 H, no onpeAeJieHHK) MHoacecTBa V, 

m « ||r*/zlb > lir^Ha. 
l<2<m 

TaK KaK cyMMa He3aBHCHMbix rayccoBbix cjiynattHbix BCJIHHHH cHOBa 
rayccoBa cjiynaHHaa BejiHHHHa, BeKTopw r*/i/||/i||2 H r*z/||2||2 HMCIOT 

pacnpeAejieHHe 7«. JXJIR Haninx ijejieH AOCTaTOHHO cjieAyionjnx sjieMeH-
TapHbix oî eHOK pacnpeAejieHHÄ HopMbi rayccoBa BeKTopa g G (Rn ,7n) . 

ln{g: \\g\\Î > 4n} < 16-"; 

7 n { f f : | M l l < n / 3 6 } < 2 ( 2 ^ ) - " . 

OcTaeTca 3aMeTHTb, HTO, ecjiH maxi<i<m ||r*/*||2 > ||r*^||2, TO JIH6O 

max ||rV*||a/||/*||3 > 2^5, 
l<i<m 

JIH6O 

||r^||2/||^||2<v^/6. 
— GJIE^GTBHEv"TlycTE-Rjia r===^tpTry2n^=haajiaHbi-MHororpaHimKvr 
Vi C B2 » aJieMeHTbi z% G RN Tanne, KaK B npeaJioxceHKH 2. K{ = con{^+Vi} 
— KOHHHecKax OÖOJIOHKa MHOTKecTBa Zi +Vi. Tona cymecTByeT noßnpoc-
TpaHCTBo Ln C Rn Kopa3MepHOCTH n TaKoe, HTO Ln H (IJÏ^1 K%) = 0 . 

TeM caMbiM AJi« OACHKH nonepeHHHKOB AOCTaTOHHO noKpwTb KOHyc K(X) 
H3 (7) «He6oJibuiHM» HHCJioM KOHycoB cneijHajibHoro BHAa. MMCHHO Ha STOM 

nyTH SbiJia AOKa3aHa TeopeMa 6. 



BEPOÄTHOCTb B TEOMETPMM BAHAXOBblX nPOCTPAHCTB 935 

B 4>opMyjiHpoBKe npeAJioiaceHHfl 2 npeAnojiarajiocb, HTO MHoacecTBO V — 
MHororpaHHHK c «HeÔojibmHM» HHCJIOM BepmHH. TeoMeTpHnecKH STO oneHb 
HarjiHAHO, OAHaKO, npn AOKa3aTejibCTBe Hcnojib30Bajiocb Jinmb cjieAyionj;ee 
CBOHCTBO TaKHX MHOMcecTB (KaK H paHbine T — rayccoBa n x JV-MaTpni^a): 

lnN{T: s u p { | | r a : | | 2 : ^ G y } > 4 v ^ } < 8 - r i . 

M3onepHMeTpHHecKoe CBOHCTBO rayccoBOH Mepbi [51] HJIH [6] noKa3bißaeT, 
HTO TaKaa oijeHKa HMeeT MecTo, ecjin cnpaßeAJiHßo HepaBeHCTBO 

h!(V)= f 8up{\(^x)\:xeV}dln(0<cV^ 

(c > 0 — HeKOTopaa aÖcojnoTHaa KOHCTaHTa). 
Bo3HHKaeT Bonpoc, KaKHe BHyTpeHHHe xapaKTepncTHKH KOHyca K no3Bo-

JIäIOT nocTpoHTb ero noKpwTHe K = U^Lï"1 ^* TaKoe, HTO Ki = con{Vi + Z{}9 

npnneM ||^i||2 > 12, Vi C Bc/ n hi(Vi) < Cy/n? OTBCT Ha Hero yAajiocb 
nojiyHHTb üasKopy H ToMHaK-JIerepMaHH, HTO npHBejio HX K cjieAyiomeMy 
H3Hm,HOMy pe3yjibTaTy. 

TEOPEMA 8 [41]. TïycTb K — KOHyc B RN. CymecTByeT aÖcomoTnan 

KOHCTaHTa C < OO TaKaX, HTO, KaK TOJIbKO npH H€KOTOpOM n h\(K fi BÎ/) < 

Cy/n cnpaßeßjiHBa oi^eHKa 

»niN{L G Gn,N :L±nK^0}< 2~n. 

/loKa3aTejibCTBo TeopeMbi cynj,ecTBeHHO onnpaeTca Ha sHTponHHHbie 
OAeHKH RJIR rayccoBbix cjiynattHbix npou,eccoB, nojiyneHHbie B. H. Cy-
AaKOBbiM [50]. 

CjieAyioiAee npocToe yTBep:>KAeHHe, BbiTeKaiom.ee H3 H3onepHMeTpn-
necKoro CBOHCTBa rayccoBOH Mepbi noKasbisaeT, HTO, C TOHHOCTMO AO 
KOHCTaHTbi, ycjiOBHe hi(K Ci B2) < Cy/n äBJIHCTCH HeoÖxoAHMbiM RJIR pea-
JIH3aUHH H3JIOECeHHOH CXeMbl. 

ÜPE/VIO^KEHME 3. TlycTb A c \JieiAi c B2 • Torna c HeKOTopoH 
aÖcojHOTHOü KOHCTaHTott c cnpaßeRjiHBa oujdHKa 

hi(A) < maxhi(Ai) + cyflog Card/ . 
i t i 

IIpeACTaBjiÄeTCH HHTepecHbiM cjieAyioiAHH Bonpoc. 

BepHo JIH, HTO ecjin KOHyc K C RN TaKOB, HTO /injjv-Mepa noAnpocTpaHCTB 
L £ GUìN TaKHX, HTO K n L1- ^ 0 , AOCTaTOHHO Majia (HanpHMep, MeHbme 
1/2 HJIH l / 2 n ) , TO h\(K fi B2) < Cy/n (c — a6cOJIK)THaH KOHCTaHTa). 

B HeKOTopoM oneHb cjia6oM CMbicjie 3TO AencTBHTejibHO TaK, KaK noKa3bi-
BaeT cjieAyion;ee sjieMeHTapHoe HaÖjnoAeHHe aBTopa H B. C. I^npejibcoHa. 
rtycTb KOHyc K H noAnpocTpaHCTBO L G Gn,N TaKOBbi, HTO K CiL1- = 0 . 
TorAa RJISL jnoÖoro e > 0 HaftAeTCfl jiHHeflHoe npeo6pa30BaHHe T TaKoe, HTO 
TKC\Br/ Jiê CHT B e-0KpecTH0CTH HeKOToporo n-MepHoro noAnpocTpaHCTBa. 
CjieAOBaTejibHO, h\(TK n Bî/) < c(y/n + e\/N) c HeKOTopon aöcojnoTHOH 
KOHCTaHTOH c. ßpyrHMH cjiOBaMH, TpeÖyeMbiH pe3yjibTaT nojiynaeTCH, ecjin 
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BMecTO oÖbiHHoro CKajiÄpHoro npoH3BeAeHHÄ B R ^ paccMaTpHBaTb (})opMy 
{Tx, Ty) c HaAJieacaïAHM T. 
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1. Introduction. In this article we use the definitions of von Neumann al
gebra theory appearing in Haagerup's paper [H] in these proceedings. 

So let M be a type Hi factor with (unique) normalized trace tr : M —• C 
(tr(l) = 1, tr(a&) = tr(6a)). Whenever M acts as a von Neumann algebra on a 
Hilbert space #, there is a uniquely defined number (ÌìUìM(^) £ [0, co] satisfying 
d i m M ( © ~ i % ) = £ ~ i d i m M ( ^ ) , d imM (^) = dimM(K') iff M and W are 
isomorphic M-modules, and dim^(L 2 (M, tr)) = 1 where L2 (M, tr) is the Hilbert 
space obtained from M by completion with respect to the inner product (a, b) = 
tr(6*a). This number dimjtf(W) is the coupling constant of Murray and von 
Neumann [MvN] and was originally defined as tTM{P[Mfç])/toM'{P[Mt]) where 
f ^ 0 is an arbitrary vector in )1 and P[Mç\ denotes the orthogonal projection 
onto the closure of the subspace M£ Ç #. (The other symbols have their obvious 

" meanings, M' being the commutant of M.) This definition presupposes that M' 
is also a Hi factor. If this is not so, one puts dim.M{M) = oo. 

It is important to note that, for any Hi factor M, {dmiM(#) | M a Hilbert 
space over M} = [0, oo]. This is a formulation of the "continuous dimensionality" 
that so fascinated Murray and von Neumann. It is also important in Connes's 
noncommutative integration theory [CI] where real-valued Betti numbers are 
associated to foliated compact manifolds with invariant transverse measure. 

The elementary example of this paragraph will serve as motivation for the 
definition that follows. If T is a discrete group, all of whose (nonidentity) conju-
gacy classes are infinite (an i.c.c. group), and To is an i.c.c. subgroup of T, then 
the von Neumann algebras UT and [/To on Z2(r), generated by left translations 
by the appropriate group elements, are both Hi factors, and the coset decompo
sition of T over TQ shows immediately that dim[/r0(/2(r)) = [T: To]. Note also 
that Z2(r) is the same as L2(UT) so we have 

dmW£2(t/r)) = [r:r0]. (i) 
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Note that the left-hand side of equation (1) only involves Hi factors. So we 
are led to make the following definition. 

DEFINITION 2. If N Q M are Hi factors (with the same identity), define 
[M: N], the index of N in M, by 

[M: N]=dimN(L2(Mitr)). 

With this definition one may interpret the following result of M. Goldman [G] 
as being an analogue of the fact that a subgroup of index 2 of a group is normal. 

THEOREM 3 [G]. IfNQM are as in Definition 2 and [M: N] = 2, then 
there is auE M with uNu* = JV, u2 = 1, and M = N © Nu. 

Both the examples from To < T and Goldman's theorem give the impression 
that the index [M : N] is a discrete object, but its definition suggests an arbitrary 
real number between 1 and oo. The next result shows that neither impression is 
correct. 

THEOREM 4 [Jl] . (a) / / [M: N] < 4, there is an n e Z, n > 3, with 
[M: N] =4cos27r/n. 

(b) If r = 4 cos2 7r/n, n as above, or r G R, r > 4, there is a pair N Ç M of 
III factors with [M: N]= r. One may suppose N and M hyperfinite. 

The appearance of these numbers 4 cos2 7r/n was not at all expected a priori. 
Note that 1 = 4cos2?r/3, 2 = 4COS2TT/4, and 3 = 4COS2TT/6. The first "new" 
index value is 4 cos2 7r/5 ~ 2.6180339, the square of the golden ratio. 

We would like to add that, as first pointed out by Connes, the continuous 
variation of [M : N] may be illusory since the examples that realize the numbers 
between 4 and oo are "reducible" in the sense that Nf CiM contains elements 
other than scalars. If one imposes the irreducibility condition iV 'nM = C, then 
the smallest known value of [M : N] (greater than 4) is 3 + \/3. The current 
feeling is that there should be a gap between 4 and the next irreducible index 
value. 

2. Proof of Theorem 4(a). We shall outline a proof of Theorem 4 which 
makes a connection with Coxeter-Dynkin diagrams. The proof relies on an anal
ysis of inclusions of finite-dimensional von Neumann algebras. 

A finite-dimensional von Neumann algebra is semisimple, so is a direct sum 
of full matrix algebras over C. We shall represent such an algebra by a finite set 

-of vertices^correspondingtorthe^simple directsurnmandsptogetherwith^integers— 
giving the size of the matrix algebras. For instance, C©Ms(C)©M2(C) would be 

1 3 2 

represented by • - •. With this convention a pair A Ç B of such algebras can be 
represented by a graph (Bratteli diagram) where the number of edges connecting 
a vertex of the smaller algebra to a vertex of the larger one has the obvious 
"multiplicity" meaning. For instance, the diagonal inclusion of Af2(C) ®Ms(C) 
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in M ö ( C ) would be represented by the diagram 

5 

and the inclusion 

of M2(C) in MQ(C) would be represented by the diagram: 

i 
In general the matrix A^ is defined as the matrix whose rows are indexed by the 
vertices of A, whose columns are indexed by those of B, and whose entries are 
the multiplicities. 

The other ingredient of the proof of Theorem 4 is the iteration of a certain 
basic construction which is made as follows: given N Ç M finite von Neumann 
algebras with the same identity, and a faithful normal trace tr on M, one lets N 
and M act on L2 (M, tr) as before and one considers the von Neumann algebra 
JN'J where J is the extension to L2(M, tr) of the * operation. Since M = J M'J 
[D], one has N Ç M Ç JN'J. If there are several algebras present we will use 
J M to denote the J on L2(M,tr). 

In the case that TV and M are finite factors, one has 

PROPOSITION 5. (i) JN'J is a Hi factor <& [M: N] < oo. 

(ii) If (i) is satisfied, then (a) [JN'J: M] = [M: N]\ (b) N' DM is finite-
dimensional] (c) [M: N]> dim(iV' DM). 

In the case that M is finite-dimensional, the following result holds. 

PROPOSITION 6. Affl'J = (A%y (independent of the trace). (Here we have 
identified the center of N with that of N' and so JN'J, which allows us to make 
the correspondence between rows of kj^ J and columns of Ajyf and vice versa.) 

To illustrate Proposition 6, suppose N Ç M were given by 
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Then N Ç M Ç JN'J would have the diagram 

3 4 

\ / \ 
3 1 3 

2' 1 

Given a subfactor N Ç M of finite index, the next step in the proof is to 
iterate the above construction to obtain a tower Mi of Hi factors with MQ = N, 
Mi = M, and Mi+i = JMìM-^JMH where JM{ is the involution on L2(Mi,tr). 
By finite dimensionality one obtains a tower dMi = N'nMi of finite-dimensional 
von Neumann algebras with corresponding matrix Â  = AdM

i+1. The proof of 
Theorem 4(a) will follow easily from the following result. 

PROPOSITION 7. (i) There is an isomorphism of JdMi(dMi-i)'JdM{ onto a 
two-sided ideal of <9M^+i which gives a containment of (Ai)1 as a submatrix of 
Ai+i-

(ii) dimöM; = trace((nl=i A*)ttlU A,)*). 
(iii) IfAk = (Afc-i)*,- then Ap = (Ap_i)* for allp>k and [M: N] = \\Ak\\

2. 

It follows from Proposition 7(i) that ||Ai|| is a nondecreasing function of i, 
and then from 7(ii) that dimM^ grows asymptotically at least as fast as ||A^||2A: 

for any i. But [Mk: N] = [M: N]k, so by 5(c) ||A;||2 < [M: N] for all i. If 
[M : N] < 4, the Â  are then a nondecreasing sequence of 0-1 matrices of norm 
< 2. By [Bo, GHJ] the possible values of these norms are precisely the set 
{2 cos7r/n | n = 3 ,4 , . . .} . So by strict monotonicity of the norm there must be 
a k for which A& = (Afc_i)*. By 7(iii) we are through. 

In fact, one obtains more information from this proof than just the values 
4 cos2 ir/n. It follows from [GHJ] and the connectedness of the Bratteli diagram 
that if k is such that A& = (A^-i)*, then Ak must be the adjacency matrix for 
a bipartite structure on one of the Coxeter-Dynkin diagrams An, n > 3, Dn, 
n > 4, E6, E7, or Eg, and then [M: N] = \\Ak\\2 = 4cos27r/r where r is the 
Coxeter number of the diagram. For instance, one might have the inclusion 
(dM)2 Q (dMs) given by the Bratteli diagram 

which corresponds to the Coxeter-Dynkin diagram EQ, [M: N] = 4cos27r/12. 
The question of which diagrams arise from subfactors is interesting. Ocneanu 

has added to dM a "comultiplication" coming from the J^'s which completely 
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axiomatizes their structure even in index > 4. He claims that D& is impossible, 
whereas An and D4 are relatively easy to construct. Bion-Nadal has shown that 
the construction of the next section realizes E$. 

Proof of Theorem 4(b). Let us first dispose of the case r > 4. The hyper-
finite Hi factor R has fundamental group = R [D], so choose a projection p G R 
with tr(p)"1 + tr(l - p)""1 = r and an isomorphism 0: pRp —• (1 — p)R(l — p). 
Let M = R and N = {x + 0(x) \ x e pMp). One checks [M : N] = r. Notice 
though that this proof relies on the fundamental group. Pimsner and Popa [PP] 
have shown that for Hi factors with Connes' property T (and hence countable 
fundamental group—see [C2]), the set of index values for subfactors is countable! 

We now suppose r = 4 cos2 n/n, n = 4,5,6, Let A C B be an inclusion of 
finite-dimensional von Neumann algebras whose Bratteli diagram is a Coxeter-
Dynkin diagram with Coxeter number n (to obtain 4 cos2 ir/n). Let q — e2ni/n. 

FIGURE 13 

There is a unique trace tr on B which admits an extension to JBA'JB satisfying 

tr(xgs) = ztr(x) îOTXEB, (8) 

where QB '• B —• B is q on A and —1 on the orthogonal complement of A, and 
z=(q + l)-\ 

Iterating this process as before, one obtains a tower Bi of C*-algebras together 
with elements gi = CB{ which define an endomorphism $ : \ji Bi —• |J^ Bi by 
§(x) = lim/c_>oo(0i02 • • • 9k)%(gi92 • • • 9k)*- Then $ preserves the trace on |J; Bi, 
so applying the GNS construction one obtains a Hi factor M from |Ji B% a n d 
$ : M —• M. One may show that [M: $(M)] = 4cos2 w/n. 

Hecke algebras and braids. In the proof of Theorem 4(b) we used a se
quence of elements gi in the tower construction. It is easy to see that they satisfy 
the relations 

9Ì = {Q- l)9i + q, 

9i9i+i9i = g%+i9%gi+ii 

9i9j = 9j9i for \i - j \ > 2. 

(9) 

(10) 

(H) 
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If q is a prime power, relations (9), (10), and (11) are known [Bo] to present 
the commutant of G = GLn(Fg) acting on the complex-valued functions on G/B, 
B being the subgroup of upper triangular matrices. This is called the Hecke 
algebra H(q,n-\-1) of type An\ the name also applies to the algebra presented 
by (9), (10), (11) for any value of q. Thus the Hecke algebra is represented 
(not faithfully) in the tower. When q = 1, relations (9), (10), and (11) present 
the group algebra of the symmetric group, and one may deduce much of the 
structure of the Hecke algebra from that of the symmetric group. 

Relation (8) suggests that there might be traces on H(q, n + 1) defined by 
tr( l) = 1 and 

tr(a;0n) = ztr(x) for x G H(q, n) (12) 

for arbitrary values of z. This was proved by Ocneanu (see [HKW, J2 , W]) who 
also determined the values of (q, z) for which the Hecke algebra admits a von 
Neumann algebra structure for which tr(a*a) > 0. Wenzl calculated the indices 
of the corresponding subfactors defined using limfc->oo g\gi'-'Qk as in the proof 
of Theorem 4(b). See [W]. 

Artin showed that relations (10) and (11) present the braid group Bn on n 
strings where the n — 1 g^s correspond to the n - 1 o^'s as in Figure 13. 

<* € B3 ( / ) ^ a 

FIGURE 14 

Thus for q ^ 0 there is a representation 7r of Bn in H(q, n) defined by nfa) = 
gi. At present there is no geometric interpretation of this representation though 
it does contain (as a direct summand) the Burau representation which can be 

lïeHïïœdn^m^^^ 
cover of the disc minus n points. It is not known whether or not 7r is faithful for 
n > 3. The special values q = e±2W™ correspond to the values for which ir may 
be unitarized (though one must take a quotient of the Hecke algebra—see [W]). 

The definition of $ in the proof of Theorem 4(b) was suggested by the well-
known braid group relation (G\-- • 0n)o~i(ai • • • a n ) _ 1 = 0^+1 for i < n. 
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Braids and links. A braid a G Bn may be closed to give the oriented link 
à as in Figure 14. 

Any tame oriented link in Ss may be obtained in this way (Alexander) and the 
equivalence relation on braids defined by isotopy of their closures was described 
algebraically by Markov. (For a general reference see [Bi].) It is generated by 
types I and II Markov moves which are the following: 

type I : a G Bn & ßaß"1 G Bn, type II : OL G Bn <* aa*1 G B n + i . 

One may consider the function of q and z on the disjoint union of the braid 
groups defined by a —• tr(7r(û;)) where tr is defined by relation (12). This 
function is invariant under type I Markov moves, and because of the similarity 
of (12) and type II Markov moves, it may be renormalized to give a link invariant. 
It is convenient to change variables by putting A = (1 — q + z)jqz. One then has 
the result that 

Xa{q'X) = (Jx(l-q)T * (V/X)6tr(7r(a)) 

depends only on a where the image of a G Bn in Z under abelianization is e. 
Relation (9) translates into the fact that if L+, L_, and Lo are three links 

with projections differing in only one crossing where they are as in Figure 15, 
then 

-^xL+-^qxL_ = (^-^)xLo. (16) 

'+ 

l ink 

-> 

graph 

FIGURE 17 
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The existence of such a link invariant was proved in [F+], Ocneanu using the 
approach outlined above. Note that if L is the unlink with c components, 

c-1 
/ An — i i 

\VX(l-q)J 
The invariant XL has been found to be quite powerful. It contains the Alexan

der polynomial via the specialization AL(£) = Xi,(t, 1/t), but is also very sen
sitive to mirror image asymmetry. There is no known nontrivial knot with the 
same X as the unknot. It is easy to see that X can be made into a two vari
able Laurent polynomial PL via the popular substitution m = i(y/q - 1/^/g), 
; = i/y/Xy/q. The invariant is multiplicative under connected sums and is unal
tered if all orientations of a link are reversed. But it is very sensitive to reversal 
of the orientation of a single component. 

There is another specialization of XL which is proving to be of particular 
interest. It is VL(£) = Xi,(t,t) and has the remarkable property that it only 
changes by a power of t if the orientation of any component of a link is changed. 
V L ( 0 comes from precisely the Hecke algebra quotient given by the proof of 
Theorem 4(b), and was actually noticed before the discovery of XL (see [J3]). 

Kauffman has given an explicit formula for VL(£) (a "states model") which 
can be calculated from an arbitrary link projection. In the case of an alternating 
link, this exhibits VL as a specialization of the Tutte polynomial of the graph 
associated to the checkerboard shading of the link projection (Figure 17). 

These ideas enabled Kauffman, Murasugi, and Thistlethwaite to develop pow
erful methods for handling alternating projections of a link—in particular, solv
ing some century-old problems of Tait. 

In another line of development, Figure 15 was extended to include the "Loo" 
caseQC- This is not orientable and Brandt, Lickorish, Millett, and Ho defined a 
polynomial QL(X) of unoriented links by QL++QL- = Z(QL 0+QLOO)- Kauffman 
improved on this by first defining an invariant R of regular isotropy (the move 
Ä.<=>— is not allowed) by the same formula as for Q and R(SL) = aR(-), 
R(9>.) = a~1R(-). If one then gives the link diagram an orientation, one defines 
FL(CL,X) = a~w(LÌR(a,x) which is a link invariant (where w(L) is the sum of 
the signs of the crossings). 
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and Unique Continuation Theorems 

CARLOS E. KENIG 

1. Introduction, background, and history. It is well known that if 
P(x,D) is an elliptic differential operator, with real analytic coefficients, and 
P(x,D)u = 0 in an open, connected set fi C R n , then u is real analytic in fi. 
Hence, if there exists XQ G fi such that u vanishes of co order at xo, u must be 
identically 0. If a differential operator P(x, D) has the above property, we say 
that P(x,D) has the strong unique continuation property (s.u.c.p.). If, on the 
other hand, P(x,D)u = 0 in fi, and u = 0 in fi', an open subset of fi, implies 
that u = 0 in fi, we say that P(x,D) has the unique continuation property 
(u.c.p.). Finally, if P(x, D)u = 0 in fi, and supp w c i T c Ü implies that u = 0 
in fi, we say that P(x,D) has the weak unique property (w.u.c.p.). 

Through the work of Hadamard [19] on the uniqueness for the Cauchy prob
lem, and Holmgren's uniqueness theorem (which are strongly related to the 
unique continuation property), it became clear that it would be desirable to 
establish the unique continuation property for operators whose coefficients are 
not necessarily real analytic, or even of class C°°. The first results in this di
rection are to be found in the pioneering work of T. Carleman [12] in 1939. He 
was able to show that P(x,D) = A + V(x) in R2 has the s.u.c.p. whenever 
the function V(x) is in L^C(K2). In order to prove this result he introduced a 
method, the so-called Carleman estimates, which has permeated almost all the 
subsequent work in the subject. In this context, a Carleman estimate is, roughly 
speaking, an inequality of the form 

\\e»f\\mo)<C\\e»*f\\mtr), 

for all / G CQ°(U), U an open subset of R2 , and a suitable function 0, where the 
constant C is independent of A, for a sequence of real values of À tending to oo. 
As we shall see later on, such estimates readily give the s.u.c.p. for A -I- V(x), 
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V G Zq£c(R
2). By now, there is a large literature of applications of Carleman-

type estimates to uniqueness questions. (See Hörmander [25].) 
Carleman's result was extended to R n by C. Müller [34] in 1954. Subse

quently, there was a great flurry of activity in the subject, in the late fifties 
and early sixties. Most notable among these works are the contributions of H. 
0 . Cordes [15], N. Aronszajn [5], L. Nirenberg [36], the fundamental work of 
A. P. Calderón [11] on the uniqueness for the Cauchy problem, the work of L. 
Hörmander [20, 21], of N. Aronszajn, A. Krzywicki, and J. Szarski [6], and of S. 
Agmon [1]. In the context of the strong unique continuation property, the best 
result was the one of Aronszajn, Krzywicki, and Szarski [6], who showed that if 
{a>jk(%)} is a real, symmetric, positive definite, n X n matrix that is Lipschitz 
continuous for x G R n , and if u verifies the differential inequality 

d2 

oxjOXk H ^ 

QOt 

-—u(x) 
dx<* K J (*) 

in a connected neighborhood of 0 in R n , and u vanishes of infinite order at 0, 
then u must be identically 0 if Ca(x) G Lj£c(Rn). They established their result 
by means of an appropriate Carleman estimate. Moreover, an example of Plié 
shows that the regularity assumed on the coefficients {a,jk(x)} is optimal. In fact 
A. Plia [37] showed the existence of a nonzero solution u, vanishing in an open 
set, whenever {a>jk(%)} are Holder continuous of any order < 1. At this point 
we would like to mention the recent work of N. Garofalo and F. H. Lin [17], 
who established the result of Aronszajn, Krzywicki, and Szarski without using 
Carleman estimates, but using instead real variable methods and the theory of 
AQQ weights developed by B. Muckenhoupt a.nd others [33, 14]. 

Recently, there has been growing interest in establishing unique continuation 
results for solutions of differential inequalities such as (*), with IP conditions, 
p < oo, on the lower-order coefficients (see Simon [44] and Kenig [29] for sur
veys of these problems). The reason for interest in these questions comes from 
mathematical physics. Suppose, for example, that we consider the Schrödinger 
operator H = - A + V(x) as a selfadjoint operator on the Hilbert space L 2 (R n ) . 
Here HQ = —A is the kinetic energy, and V(x) the potential energy. V(x) is 
not supposed to be smooth, continuous, or even locally bounded. In fact, the 
Coulomb potentials (V(x) = l/\x\) are unbounded, and appear in models for 
hydrogen atoms. 

A useful division of the spectrum of H (see, for example, Reed and Simon 
[38] for the precise definitions) distinguishes among av, the point spectrum, 
consisting of eigenvalues, isolated or not, and acont, the continuous spectrum, 
which is associated to the restriction of H to the part of L 2 (R n ) orthogonal to 
eigenvectors. The definitions allow for the possibility that 0-cont

 a n d 0P intersect. 
In one-body physics, the potential V tends to 0 at oo, and typically 

0"cont = [0, OO), <7p H O-cont = { 0 } Or 0 . 
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This is expected on physical grounds. The relationship of this decomposition 
to quantum physics is that orp comprises the energy of bound states, and the 
spectral subspace associated with aCont consists of dynamical states that may 
participate in scattering. The reason why one expects on physical grounds that 
ffp D <7cont = {0} or 0 is that if the potential V tends to 0 at oo and the energy 
of a particle is positive, one expects that quantum fluctuations would eventually 
propel the particle to a place where its motion would not be confined, and this 
would of course make the bound state large, and hence, not in L 2 (R n ) . In 1929, 
von Neumann and Wigner [54] constructed an example of a one-dimensional 
potential V(x) that goes to 0 at oo, but with positive eigenvalues. (See also Reed 
and Simon [38] for a study of this example, as well as Reed-Simon [38, Vol. 4, 
Ex. 2, XIII] for a different kind of 3-dimensional example.) Thus we see that the 
problem of determining for which potentials we have no positive eigenvalues is a 
difficult one. The most successful philosophy for eliminating positive eigenvalues 
in dimension greater than one has been developed by T. Kato [28], S. Agmon [2, 
3], B. Simon [43], and others. To illustrate this philosophy, let us assume that 
V has compact support, say supp V C {\x\ < R}. Suppose that u G L 2 (R n ) , 
E > 0, and [-A + V(z)]w = Eu in R n . By our support assumption on V, we 
have 

-Au-Eu = 0 in |z| > R,E>0,ueL2(\x\ > R). 

A classical theorem of Rellich [39] now shows that u = 0 for \x\ > R. We 
then have {-A + [V(x) - E]}u = 0 in |z| < 2R, supp u C {\x\ < R}. If we 
knew that {-A + [V(x) — E]} has the w.u.c.p., we would then conclude that 
u = 0, and we would be done. As was mentioned before, V need not be locally 
bounded, and this leads us to study the unique continuation property when the 
lower-order coefficients are in Lp classes. Similar considerations, also connected 
with mathematical physics, lead us to also study operators where we replace the 
Laplacian A by the Dirac operator D. 

The first results on the unique continuation property for operators of the form 
A + V(x), V G £f o c(R n) ,p < oo, seem to be due to A. M. Bérthier [8, 9] in 
1979 and to V. Georgescu [18] also in 1979. Bérthier proved the w.u.c.p. if p > 
max(n — 2, n/2), while Georgescu proved the u.c.p. if p > max(2, (2n —1)/3). M. 
Schechter and B. Simon [42] proved the u.c.p. if p > 1 for n = 1,2, p > (2n —1)/3 
for n = 3,4,5, and p > n - 2 if n > 6, while Saut and Scheurer [40] proved the 
u.c.p. for p > 2n/3. Also, Amrein, Bérthier, and Georgescu [4] proved the 

=xuTc;prförTr^^21fw==^^ 
Hörmander [24] showed the u.c.p. for solutions of (*), with (a3k(x)) Lipschitz 
continuous, Ga[x) G Lf0

(^a|)(Rn), where p(0) = 2, when n < 4; p(0) > 2 when 
n = 4, and p(0) = (An — 2)/7 when n > 4; and p(l) > 2 when n > 2 and 
p(l) > (3n - 2)/2 when n > 2. 

(See also the work of E. Sawyer [41] in R3 , under a different kind of assump
tion on V.) 
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To clarify this myriad of results, let us restrict our attention to A + V(x), 
V G Lf0C(Rn). For n = 2,3,4, the best results are those of Amrein, Bérthier, 
and Georgescu [4], who proved the s.u.c.p. for p > n/2. For n large, the best 
results are those of Hörmander [24], who proved the u.c.p. when p > (4n — 2)/7. 

EXAMPLE [27], Let u(x) = exp(-log l/ |a: |)1 + e , e > 0. Then u vanishes at 
0 of oo order, while V(x) = -Au(x)/u(x) ~ (log l/|a:|)2e • l / | z | 2 G £fo c(Rn) for 
all p < n/2. Hence the s.u.c.p. cannot hold for p < n/2. 

In 1984, D. Jerison and C. Kenig [27] were able to show that V G L^(Rn) 
implies that A + V(x) has the s.u.c.p. This shows that for the s.u.c.p., L*JC (R n ) 
is the sharp class in the scale of Lp spaces. 

In 1985, D. Jerison [26] gave an alternative proof of the result of Jerison and 
Kenig [27], and was also able to show that the operator D + V(x), where D is 
the Dirac operator, and V(x) G L^0C(Kn), 7 = (3n — 2)/2, has the u.c.p. In the 
case, n = 3, 7 = 7/2. This improved previous results of Bérthier and Georgescu 
(1980) [10], who had obtained 7 = 5. The natural conjecture for the u.c.p. for 
D+V(x) is that V G L^oc(K

n). Jerison's result falls short of this conjecture, but 
he proved that his result is the best one can obtain by the method of Carleman 
estimates. 

Finally, in 1986, C. Kenig, A. Ruiz, and C. Sogge [30] observed that to prove 
the w.u.c.p. for A + V(x), V(x) G L n / 2 (R n ) , it sufficed to prove the Carleman 
estimate 

II*A*B«IILP'(R») < C| |eA^AW | |Lp (Rn), - - - = - (**) 
P P n 

whose proof is simpler than the Carleman estimate proved by Jerison and Kenig 
in [27], to obtain the s.u.c.p. (See §2 for this result.) 

If one makes the substitution eXXnu = v, one sees that (**) is equivalent to 
the estimate 

1 1 2 
IMILP'(R») ^ C 2A-*- + A2 

oxn 
(**') 

LP(Rn) p pf n 

Thus one is led to the idea of proving Sobolev-type estimates for second-order 
constant coefficient operators, which are uniform in the lower-order terms. This 
was accomplished for operators P(D) with constant complex coefficients, and 
principal part Q(D), where Q(£) is a nonsingular real quadratic form on R n , 
i.e., Q(C) = - f i tf + f-+1 + • • • + Ç*. In this setting, Kenig, Ruiz, and 
Sogge [31] proved the uniform Sobolev inequality 

IMLP'(R») < c||p(i?HL,(R»), \ - ^ = £, (s) 
p p n 

where G depends only on n. 
(S) in turn implies Carleman estimates and unique continuation theorems for 

operators whose top-order terms are not necessarily elliptic, and include, for 
example, the wave operator 

• - — - — - d2 

9a;2 dx\ dx\ ' 
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(S) yields global and local unique continuation theorems. For the global ones, 
let p be as in (S), and suppose that (dau/dxot) G L p(R n) , \a\ = 2. Assume 
also that u vanishes on one side of a hyperplane, that P(D) is as in (S), and 
that \P(D)u\ < \Vu\, where V G L n / 2 (R n ) . Then u = 0. If the hyperplane is 
characteristic for P(D) (and hence we are in the nonelliptic case), there are well 
known examples (see, e.g., [25, vol. I, pp. 310-311]) of C°° functions u, with 
P(D)u = 0, and which vanish on one side of the hyperplane. These examples 
however do not have the growth property (dau/dxa), \a\ = 2 G L p (R n ) . As 
far as local theorems, one can use a reflection across convex "spheres" as in 
Nirenberg [36], when the principal part of P(D) is A or D. In the case when 
it is A, this shows that the u.c.p. for A + V(x), V G L^c (R n) , follows from 
(**). When it is D, if T is the light cone T = {x:x\ > \x'\,x' — (x<i,... ,xn)}, 
and (dau/dxa), \a\ = 2, belong to L*oc(T) (p as in (S)), \P(D)u\ < \Vu\ in T, 
with V G Lfoc (T), then, if u vanishes for large x\, it must vanish identically. 
Similar results, under the stronger assumption V G L™C(T), were obtained by 
Hörmander [23]. 

Let us now illustrate the mechanism for passing from Carleman estimates to 
unique continuation theorems. For example, let us show that if Au G L p (R n ) , 
1/p - 1/p' = 2/n, V G L n / 2 (R n ) , \Au\ < \Vu\, and supp u C {xn > 0}, then 
u = 0. We will use (**) for A < 0. It is enough to show that there exists p > 0 
so that u = 0 in Sp, where Sp = {x G R n : 0 < xn < p}. Choose p so small that 
if C is as in (**), G\\V||L«/2(s„) < V2- T h e n 

< C\\eXx"Vu\\LP{sp) +C| |eA^AW | |L P ( RnX S p ) 

< h\\eXXnu\\Lp'(sp) +C\\eXx»Au\\LP{B.n\sp) 

The third inequality follows by Holder's inequality, our choice of p, and 1/p — 
1/p' = 2/n. Hence, \\ex{Xn-p)u\\LP.{Sp) < 2C||Au||Z/P(Rn), uniformly for all 
A < 0, which shows that u = 0 in Sp. 

In the rest of the paper, we will attempt to describe some of the main points 
in the proofs of the Carleman estimates in the works of Jerison and Kenig [27], 
Jerison [26], and Kenig, Ruiz, and Sogge [31]. 

The main underlying theme is the application of the ideas and methods of 
classical Fourier analysis, such as oscillatory integrals [13, 22, 49], restriction 
theorems for the Fourier transform [52, 51, 49], complex interpolation [46], and 
the uncertainty principle [16] T to problems arising in mathematical physics and 
partial differential equations. 

The connection between restriction lemmas for the Fourier transform and 
Carleman estimates seems to have been first observed by Hörmander [24]. He 
used the L2-restriction theorem for R n . His Carleman estimates, unlike (**), 
the estimate in [27], and (S), involve L2 norms in the right-hand side (and 
the "convex" weights ex^Xn~^x^), and for this reason his unique continuation 
theorems involve potentials in "worse" Lp spaces. On the other hand, the use of 
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the L2 norm expédiâtes the passage to variable coefficients. This is accomplished 
exploiting the "convexity" of the weights, via the so-called "Treves identity" [53]. 
This is an example of the uncertainty principle, as was pointed out by Jerison 
[26]. 

The Carleman estimate in [27] was proved by complex interpolation in a 
manner resembling the proof of the L2 restriction theorem. Later, D. Jerison 
[26] used the discrete restriction lemma of [45] for S""""1, to give a new proof of 
[27]. Jerison also combined this with ideas related to the uncertainty principle 
and "convex" weights to prove Carleman estimates for the Dirac operator. 

Finally, C. Kenig, A. Ruiz, and C. Sogge [30] used the mapping properties of 
the Stein-Tomas operator (which is the main tool in proving the L2 restriction 
theorem) in R n (as opposed to R n _ 1 ) to prove (**). Similar ideas, involving 
Strichartz's [51] generalization of the Stein-Tomas operator for quadratic forms 
of arbitrary signature, led to the proof of (S) in [31]. 

2. Schrödinger operators of the form A + V(x), V G L^(Rn). The 
main point in the work of Jerison and Kenig [27] was the following Carleman 
estimate: 

THEOREM 2 . 1 . Let n > 3, 1/p - 1/p' = 2/n. Suppose that X > 0 is not 
an integer, and let 6 be the distance from A to the nearest integer. There is a 
constant C, depending only on 6 and n} such that for every u G Co°(Rn \0) ; 

\\\X\~Xu\\LP,(Knidx/\X\n) < C\\\x\-X+2Au\\Lp(Kntdx/\x\n). 

This inequality was proved by complex interpolation. Fix A, and consider the 
analytic family of operators Tz, depending on A, given by 

T,g = \x\-xÒT'l\\x\x-g), 

modified by a Taylor series of order the integer part of A. Theorem 2.1 follows 
from estimates for Tz. By E. Stein's interpolation theorem [46], we need an 
L2 —* L2 estimate when Re z = 0. Because of rotation and dilation invariance, 
using polar coordinates (r,oS), we study Tz(r

iriPk(w)), where P& is a spherical 
harmonic of degree fc. We have: 

2~* r(|(fc - A - iti)) • r( | (n + fc + A - z + n/))' 
rir>Pk(u). 

Lr(af*)r(è(*-A + «-»i?))-r(ì(» + fc + A + ^)). 
When Re z = 0, Stirling's formula shows that the expression in brackets is 
bounded independently of fc, A, and r], with bound depending only on 6. This 
gives the desired L2 —• L2 estimate. 

At the other end point of the interpolation, Re z — n, and Tz is essentially 
a logarithmic potential. It was proved in [27] that in this case Tz'.L1 —» X, 
where X is an enlargement of L°°, which has the same complex interpolation 
properties as L°°, but allows logarithmic singularities. This estimate follows 
by a uniform asymptotic estimate for the hypergeometric function. (See [27].) 
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E. M. Stein [48] observed that one could bypass the space X and the hyperge-
ometric function, by noting that when n — 1 < Re z < n, the kernel of Tz is 
pointwise dominated by the one for fractional integration of order Re z. This 
also gives Lorentz space estimates. 

3. The Schrödinger operator revisited, and the Dirac operator. We 
will now discuss Jerison's work [26]. Introduce polar coordinates in R n , x = eyuj, 
u G S71"1, y G R. In those coordinates, 

dy2 

where As denotes the spherical Laplacian. Let us start out by outlining Jerison's 
proof of Theorem 2.1. Because of the above formula, if Pk is a spherical harmonic 
of degree fc, then 

|z|-A+2A(|a;| V^P*(o ; ) ) = -(fc - (A + ir,)) • (fc + n - 2 + A + i^e^P^uj). 

(Notice that this is the same formula as the case Re z = 2 of Tz in §2.) 
Let o\(r], fc) = — l/(fc — A + irj)(h + n — 2 + A + ir)), and let &. denote the 

projection operator from L 2 (S n _ 1 ) to the space of spherical harmonics of degree 
fc. Also, let f(r]i^) = J_TO eiriyf(y,üj)dy denote the partial Fourier transform 
in y. For / G Cg°(R x S71'1), let 

0 0 -t /«OO 

*=s27r J-°° 
It is then easy to see that Theorem 2.1 is equivalent to 

I I^A/I ILP^RXS«" 1 ) ^ C | | / | | L P ( R X S » - I ) ' 

for all / G C^ÇRxS71'1). Now let {9ß}%=Q be a partition of unity of the positive 
real axis with supp 0O C {r:r < 1}, supp 0N C {r:r > A/400}, supp Oß C 
{r:2ß~2 < r < 2ß), 2N < A/10 < 2JV+1. Consider the operator Rß

x, analogous 
to R\, but with symbol aß(rj, fc) = 0ß(\k — A + ir]\)ax(r], fc). Note that aß(rj, fc) 
for ß < N — 1 is supported where |fc — A + ir\\ < 2ß, and hence there are at most 
2^ + 1 nonzero terms in the sum over fc which defines Rß, and the value of fc is in 
each case comparable to A. We can now apply the following "discrete" version 
of the restriction theorem, due to C. Sogge [45]. 

LEMMA 3 . 1 . There is a constant C such that 

l l & f f l l L P ' ^ - i ^ ^ - ^ l l f f l l L P C S » - ! ) . 

where p is as in Theorem 2.1. 

In fact, using the formula 

/

+ß 
Kß

x(y-y')f(y',-)(u)(dy% 
-OO 
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where 
oo -, /»-foe 

Kx(s) = E è ^(r),k)e^dr,^ 
A;=oZ7r J-°° 

we see that for ß < N—1, the integration in r\ is over an interval of length < 2^ + 1 . 
Hence, by Lemma 3.1 and integration by parts in r\, it follows that K\(s) is 
a bounded operator from Lp(Sn~1) to Lp (Sn~1) whose norm is bounded by 
C2^A~2/n(l + |2^s|)-1 0 . If we now let 1/r + 1/p = 1/p' + 1, i.e., 1/r = 1 - 2/n, 
Minkowski's integral inequality and Young's inequality show that 

ll^f/llLP'(RXfl-i) ^ OA- a / w 2 a ^| | / | |LP(Rx5-i ) . 

But X^^To1 22/3/iV ^ A 2 / n > w h i l e Ä ^ / c a n b e controlled by ordinary fractional 
integration, and hence Theorem 2.1 follows. 

The Dirac operator is D = X^?=i otjd/dxj, where ay are skew hermitian 
matrices with a* = —OùJ, aja^otk^j = —l&jk, °tj £ GL(ra, C), where m = 2 n / 2 

if n is even, and m = 2(n + 1) /2 if n is odd. It is easy to see that £>* = D, and 
D2 = —A. Jerison observed that the analogue of Theorem 2.1 fails for D. In 
fact if 

| | |^rAw||L9( t / jc^) < C\\\x\-x+1Du\\LP(u,cm) 

for all u G Cfi°(U,Cm), U = {x G Rn:a < \x\ < b}, 0 < a < b, uniformly for a 
sequence of A —• oo, then q < p. Serious difficulties remain even if one replaces 
|a;|~A by ex^x\ where 0 is any smooth real-valued function, not identically 
0. The corresponding inequality can then only hold if 1/p — 1/q < I /7 , 7 = 
(Sn — 2)/2. This is unfortunate, because the conjectured gap was I / 7 = 1/n. 
On the positive side, Jerison proved 

THEOREM 3.2. Let 0 < a < b < 1, n > 3, U = {x G Rn:a < \x\ < b}. Let 
<j>(x) = (log|a:|)2/2, q= ( 6 n - 4 ) / ( 3 n - 6 ) , i.e., 1/2-1/q = I /7 , 7 = ( 3 n - 2 ) / 2 . 
Then there exist G = C(n, a, b) such that, for all A G R, 

| | e A ^ | | L 9 ( t / j C - ) < C\\ex*Du\\L2{UiCm), 

forallueC§°(U,Cm). 

The above theorem easily implies the u.c.p. for solutions of Du = Vu, V G 
L^oc(Rn, GL(m,C)), 7 = (3n - 2)/2, with Du G L2(Q, C m ) . 

In order to prove Theorem 3.2, Jerison considered eXy eyDe~Xy . This equals 
aA\, where à is unitary, A\ = d/dy — (Xy + L), and L is a first-order operator 
on the cj variables. A\ is now variable coefficient, and this gives the improved es
timate A\ > CA1/2. (This is an instance of the uncertainty principle.) However, 
to find a left inverse for A\, one then has to use "pseudodifferential" opera
tors. Jerison found an exact left inverse, using the formula for the left inverse of 
(d/dy — y) on R, given in Nagel and Stein [35]. He then bound the left inverse 
using Lemma 3.1 and a device of P. Tomas [52] to obtain Lq —• L2 estimates 
from Lp —• Lp estimates. See [26] for the details. 
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4. Uniform Sobolev inequalities for second order constant coeffi
cients operators. In this section we will outline some of the ideas in the work 
of C. Kenig, A. Ruiz, and C. Sogge [31]. Let Q(fl = - £ 2 # + 3 + i + - • -+C 
be a nonsingular real quadratic form on R n . Let P(D) be a constant coefficient 
operator, with complex coefficient lower-order terms, and whose principal part 
is Q(D). 

THEOREM 4 . 1 . Letn>3, and let 1/p - 1/p' = 2/n. Then there exists a 
constant G depending only on n such that, for all u G Co°(Rn), we have 

| |«| |LP(R«)<C||P(I>)U | |LP- (Rn) . 

As was remarked in the introduction, Theorem 4.1 yields unique continuation 
theorems for operators whose principal part is not necessarily elliptic. 

Let H% and H™ be the open subsets of R n on which Q is strictly positive 
and negative respectively. Also, let S+ _ 1 and S™-1 be the level sets S± _ 1 = 
{£'-Q(€) — u } - There are canonical measures du± on 5 ± - 1 so that on H±, 
d£ = p n _ 1 dpduj±. The key ingredient for Theorem 4.1 is 

LEMMA 4 .2 . Letn>3,Q,p as above. Then, for f G Cg°(Rn) 
(a) 

Jsi'1 

}du)± < C1 | / | |LP(R») î 
L P ' ( R " ) 

(b) there exists an absolute constant C, such that, for all z EC, 

II«IIL>'(R«) < C\\[Q(D)+z}u\\LP(Rn), u e C0°°(R"). 

In the Euclidean case (when Q is elliptic), (a) is due to Stein-Tomas [52], 
while the other cases are due to Strichartz [51]. (b) does not seem to be in the 
literature; however, its proof involves only simple modifications of the proof of 
(a). 

The difficulty in establishing Theorem 4.1 comes from the fact that the symbol 
of P(D) may vanish away from the origin. However, if this is the case, the zero 
set of P(£) always lies on a "sphere," which explains the relevance of Lemma 
4.2. 

It is not hard to see that it is enough to prove Theorem 4.1 in the case when 
P(D) = Q(D) +a + e{d/dxj + iß}, where a = ±1, e, ß G R\{0}, j = 1 or n. 
We will deal with the case j = n, o = 1, the other ones being similar. We are 

_thus jceduced _to_prov ing_the_multiplier__theorem-

/(*) 
Q ( 0 + 1 + **(&+/?) 

Let m ( 0 = (Q(0 + 1 + ie(Çn + ß))'1, and let x{t) = 1, for \t\ G [1,2], and 
0 otherwise. Set Xk(£n) = x(2fc(£n + /?)), and define mk(Ç) = Xk(£n)m(Ç). 
Because of Littlewood-Paley theory (see [47]), the fact that p < 2 < p', and 
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Minkowski's integral inequality, it suffices to show that there is a constant G, 
independent of fc, e, and ß, for which 

\\{mk{i)f{OV\\v<C\\f\\P. 
To prove this last estimate, we use (b) in Lemma 4.2, with z = 1 + ie2~k. 

We are then reduced to showing that 

<C\\f\\P-
P' 

(Q(fl + 1 + ie(tn + ß))(Q(0 + 1 + te2-*) 

Let Tfc be the above multiplier, and use polar coordinates £ = pu associated to 
Q. It is easy to see that Minkowski's integral inequality and Lemma 4.2(a) give 

l|T*/||p' 

ef(f^)(Cn+ß-2-k)xkUn)ei'""x 

<Ef / 
±J° Par1 

/»OO 

+ Jo 

(±p2 + 1 + ie(Çn + ß))(±p2 + 1 + ie2~k) 
duj± rJl-l 

ef(QXk(tn)(tn+ß-2-k) 
(±p2 + 1 + ie(£n + ß))(±P2 + 1 + ie2~k) 

dp 

dp. 

Since 1 = n — 1 — 2n/p', the definition of Xfc shows that this last term is bounded 

by 

Cll/ll, f 
Jo 

e2-k, 

(p2 - I)2 + (e2~k)2 

which gives the desired inequality. 
In the case when Q(D) = A, one can prove that 

dp, 

\\u\\Ls(Kn) <C\\P(D)u\\Lr{nn), 

for the optimal range of s and r (see [31]). Also, iîP(D) = Q(D)+Y^=1 ajd/dxj 
+6, a / s real, |Re b\ > 1, then ||w||Lr'(R„) < C||P(2?)u||Lr(Rn) for 2/(n + 1) < 
1/r - 1/r' < 2/n (see [31]). This generalizes some results in [50] and [32]. 

5. Some open problems. To conclude, we would like to point out a few 
open problems. 

(a) Does the unique continuation property hold for 

D + V, V G L?oc(n,GL(m,C)), 

where D is the Dirac operator of §3? As was pointed out in §3, the corresponding 
Carleman estimates are false. 

(b) Does the unique continuation property hold for A + Yi,Vi(x)d/dxi, where 
Vi G LJJ)c(R

n)? This question is closely tied to the previous one. It is known 
that the u.c.p. holds if the Vi G L£ c (R n ) , 7 = (3n -2 ) /2 (see [24, 7]). However, 
it is also known, just as for the Dirac operator, that this is the best exponent 
that Carleman estimates can yield. 

(c) Variable coefficient problems: For example, does the s.u.c.p. or even the 
w.u.c.p. hold for operators of the form P(x,D) = J2ajk(%)(d2/dxj dxk) + V(x), 
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where a,jk(x) is an elliptic, Lipschitz continuous real symmetric matrix, and 
V(x) G L^c (Rn)? We could also ask whether the uniform Sobolev inequalities 
of §4 hold for operators with Ylajk(%)(d2/dxjdxk) as principal part. Part of 
the difficulty comes from the need of a very precise knowledge of the left inverses 
of such operators. 

(d) The last question bears on the distinction between the s.u.c.p., w.u.c.p., 
and u.c.p. As was pointed out in the introduction, there are examples of poten
tials V G Lfoc(Rn), p < n/2, for which the s.u.c.p. for A + V does not hold. As 
far as we know, there are no examples known of potentials V G L1

1
oc(R

n) such 
that the u.c.p. for A + V does not hold. Indeed, it is possible that the u.c.p. 
holds for A + V, whenever V G L1

1
oc(R

n). This would be of interest for the 
application to the absence of positive eigenvalues. 
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The Concentration Phenomenon and Linear Structure 
of Finite-Dimensional Normed Spaces 

VITALI D. MILMAN 

1. Notations, basic notions, and introductory results. The first part of 
this presentation will deal with what we call today the Local Theory of Normed 
Spaces, i.e., the theory of the linear structure of finite-dimensional normed spaces 
with main emphasis on asymptotic properties when the dimension of the spaces 
increases to infinity. A family of such spaces often represents, in our view, a 
useful substitution for the notion of an infinite-dimensional normed space and 
possesses a remarkable and rich structure. 

Let X = (Rn, || • ||) be an n-dimensional normed space (n > 2) equipped also 
with a euclidean norm (Rn, | • |) and, as a consequence, with the inner product 
(x,y) such that (x,x) = \x\2. Then the dual norm || • ||* is naturally defined by 
M * = sup{|(z,2/)| : jlvll < 1} and the dual space X* = (Rn, || • ||*). 

The following family of n-dimensional spaces (^-spaces for 1 < p < oo) 
plays a special role in the Local Theory: £% = (Rn, \\ • \\p) where, for p < oo, 
||(oi)?=i e Rn\\p = C£î Kl*)1/? and, for p = oo, ||(o0?||oo = maxi<i<n |a<|. 

Let the multiplicative distance (the Banach-Mazur distance) between two 
normed spaces X and Y be (assuming dimX = dim y < oo) 

d(X,Y) := inf{||r|| • | | r _ 1 | | over all linear isomorphism T : X -> Y}; 

and dx := d(X,£fmX). Obviously d(X,Y) > 1 while d(X,Y) < 1 + e means 
that X and Y are close (we say (1 + e)-isomorphic). In geometrical language 
this means that the two unit balls K(X) = {x G X : ||a:|| < 1} and K(Y) may 
be put, by an affine transform (say <p : Y —• X), in the same linear space in a 
position so that K(X) C <p(K{Y)) C d(X,Y)K(X) c (l + e)K(X). Hence, after 
such an affine transform the two convex bodies K(X) and K(Y) become close 
in the geometric sense. We also denote by D the unit ball of the euclidean space 
(Rn, | - | ) . Throughout this note we denote by c and C some numerical positive 
constants. 

First, we give a picture of a geometrical structure of a convex symmetric body 
in Rn in terms of its central linear sections. 

© 1987 International Congress of Mathematicians 1986 
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We write tp ^ X if X contains a fc-dimensional subspace E such that 
d(E,£p) < 1 + e (i.e., X contains a (1 + e)-isomorphic copy of £*). To describe 
the linear structure of X, we introduce the following integer functions: 

kp{X\€)i=mp{k\t^X} . 

The first result of the Local Theory is Dvoretzky's Theorem [D] of 1960 which 
was conjectured also by A. Grothendieck [G]: 

1.1. DVORETZKY THEOREM. (Real case [D]; another proof which covers 
also the complex case [Mil].) 

(a) For any e > 0 the integer function 

fc2(n; e) = M{k2(X;e)\X = (Rn, || • ||)} -* oo (n -+ oo) . 

(b) [Mil] Moreover, k2(n;£) > c(e)logn where c(e) > 0 depends only on 
e > 0 and this estimate is exact: A^C^L; 1) < clog n. 

The logarithmic estimate in Theorem 1.1, although exact in the general case, 
can be improved significantly in most cases. 

1.2. THEOREM [Mil ] . k2(X;£) > c(£)n/d2
x where c(e) > c£2/logl/£. 

Recently Gordon [Go] took out the logarithmic factor and showed that, in
deed, c(£) > C£2. 

By Theorem 1.2, if a family of spaces {Xn} has a uniformly bounded distance 
from £2 (i.e., dxn < Const.), then k2(Xn

m,£) is proportional to n; by this reason 
we shall estimate only k2(Xn',l) which is simply denoted as k(Xn) or, also, 
k2(Xn). 

1.3. THEOREM [FLM]. k(X)k(X*) > cn2/d2
x (recall, n = dim X). 

In comparison with 1.2 it means that either k(X) or k(X*) is at least cn/dx-
1.4. It is well known [J] that dx < \ /dimX and therefore in Theorem 1.3 

we also have k(X) • k(X*) > cn. Note also that if dx is close to the extremal 
case, that is dx > Cy/n (for some fixed constant c > 0 and n large enough) 
then, by [MiW], X contains a (1 + s)-isomorphic copy of t![\ to be precise, 
kx(X\£) > c ( logn) a ( d */^ ' £ ) where a function a(A,e) > 0 for A > 0, £ > 0, and 
a(l, £) = 1 for any £ > 0. 

(The above result was extended along the same lines by W.B. Johnson, Pisier 
[PI], Kashin [KS], J. Bourgain, Tomczak-Jaegermann [Tl].) 

It is clear today that this theorem represents an example of a very general phe
nomenon: an "extremely bad" property of a space usually involves l\-subspaces. 

1.5. One of the most important new ingredients in the modern study of 
the linear structure of normed spaces (finite- and infinite-dimensional) are the 
(probabilistic) notions of type and cotype. These concepts were introduced by 
Hoffmann-J0rgensen [H J] but they became of key importance through results of 
Maurey and Pisier (see, for example, [MP]). 
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DEFINITION. X has cotype q (type p) with cotype q constant Cq(X) (type p 
constant TP(X)) if, for any k and xi,...,Xk C X, 

( k \ V« / fc \ 1/2 

( Ç N M <cq{x) [A^iiÇwin • 

/ (k \ l , p ( k \1/2 

Similarly, TP(X) f £ | M P J > [ A v j J l J ^ H 8 J 
We also use these definitions for a family X of spaces and, e.g., Gq(X) means the 
supremum of Gq(X) for X e X. (Examples for intuition: C2(£2) = T2(t2) = 1 
and, conversely, [Kw] dx < C2(X)T2(X)', for 1 < p < 2, Lp-spaces have cotype 
2 and type p; for oo > p > 2, Lp-spaces have type 2 and cotype p.) Note that by 
[T2] it is enough, in the above definition, to consider k < n = dimX to define 
C2(X) and T2(X) up to a factor, say 4. (See also the extension of this result to 
Cq and Tp by [Kö].) For information on basic results involving notions of type 
and cotype we refer to the monographs [MiSch, T l , Pi2] and the reports [F, 
Pi3 , and Pel]. The notions of type and cotype becomes an important key which 
shows what kind of tools have to be applied to the study of a given normed space 
(or a family of spaces). These notions often enter into proofs in a significant way 
even when the result does not involve these notions. The following theorems give 
such examples. 

1.6. Dichotomy principle [FLM]. Let X = {Xt} be a family of finite-dimen
sional normed spaces (with sup dimXt = oo). Then there either exists an 
a > 0 such that k2(Xt) > c(dimXt)a, or a sequence of spaces Xtn such that 
koo(Xtn\e) —• oo (n-+oo) for any £ > 0 (i.e., in the second case, Xtn contains 
a (1 + e)-isomorphic copy of £*, of an increasing (with n —• oo) dimension). 

1.7. [A1M1] For any X = (Rn, \\ • ||), k2(X) • k^X; 1) > ec\fi°sn~. 
(We note that a geometrical interpretation of the results 1.1-1.7 gives the 

existence of special central symmetric sections of symmetric compact bodies.) 
The following few formulas demonstrate, in a more straightforward way, the 

connections of type-cotype notions with the linear structure of a space: 
1.8. (i) [FLM] k2(X) > c(dimX)/C2(X)2 and also > c(dimX)2/y[Cq(X))2 

(Examples: for 1 < p < 2, k2(t%) > cn; for p > 2, k2(£
n) - cn2/p.) 

The dual version of the case p = 1 has an interesting geometrical interpreta
tion: Fix £ > 0 and let n > GkJ£2 (C is a numerical constant); then there exist 
intervals {Ii}^ C Rk of length 1 centered at O e Rk such that the convex body 
K = Y^i h has Hausdorff distance at most £ from some euclidean ball. 

(ii) [Pi4] kp(X; £) > c(p\ £)Tp(X)o, where \ + \ = 1 ( 1 < p < 2); an even 
stronger result is true: TP(X) can be substituted by a larger number STP(X)-
stable type p constant of X which is not introduced here. (The case p — 2 is 
also true; see [MiSch].) 

The last result generalizes the [JSch]-formula kp(£
n,£) > c(p,£) • n for 1 < 

p < 2. Another generalization of this formula is the following recent theorem of 
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Schechtman: 

1.9. [Schl] (i) Let 1 < p < 2 and Xk be any k-dimensional subspace of 
Lp[0,1]. Then for any 0 < r < p, £™ contains a (1 H- £)-isomorphic copy of Xk 
for allkl+rlv<c(r,£)-n. 

(ii) Let 2 < p < oo and Xk be any k-dimensional subspace of Lp[0,1]. Then 

Xk^tp* for allk1*?/2 < c(p,£)n. 

1.10. An important tool of the type-cotype theory is Krivine's theorem [Kr] 
which we state in the quantitative variant, following [AmM2]: 

kP(X,e) > C l ( e ; r ) f e ( X , r f W . 

1.11. Rademacher projection. Let 

L2(X) = {/ : [0,1] -> X = (R», || • ||) | H/IU, = (jf1 ||/(0||3cft) < oo}. 

Consider the subspace Rad(X) = {/ G L2(X) : f(t) = Yn ri(t)%i where 
Xi E X and r«(tf) is the ith. Rademacher function on [0,1]}. The following nat
ural projection is called the Rademacher projection Radx : L2(X) —» Rad(X), 
R a d x / = Yiri{t)xi where Xi = (/,/•«) = / 0 f(t)ri(t)dt G X. Note that this 
projection is, in a sense, a type of linearization (see, e.g., [BMW and Pi2]). 
Because of this the logarithmic bound 1.12(a) below is extremely useful. 

It follows straightforwardly from the definitions of type, cotype, and Radx 
that Gq(X) < TP(X*) < \\Rsdx\\Cq{X) for 1/q + l/p = 1 (i.e., a duality relation 
up to URadxIl). 

1.12. The following bounds of Pisier [Pi7 and Pi5] have a crucial importance 
in the theory: 

(a) | |Radx|| < clog(dx + 1)> (and this is, in general, exact [BI]); 
(b) ||Radx|| < f(k\(X, 1)), where f(t) is defined and finite for any t < oo 

and f(t) —• oo if t —• oo. 

All previous examples could lead to the conclusion that the power-type esti
mates on dimensions of subspaces which we are looking for are typical, while a 
proportional type (which we had in some examples) is an exceptional one. How
ever, we will show next that there exists a nontrivial theory of subspaces of a 
proportional dimension. 

2. A proportional theory; applications to classical convexity theory. 
Jn=thisHseetion=we=study4inear=subspaGes=and=^ 
of a proportional dimension Xn. We also equip IRn with a euclidean norm | • | 
and D — {x G Rn | \x\ < 1} is the euclidean ball. Denote sX a subspace of X 
and qY a quotient space of a space Y. 

2 . 1 . THEOREM [Mi2, Mi3]. For any space X = (Rn, \\ • ||) and any 1/2 < 
A < 1 , there exists qsX—a quotient of a subspace of X—such that dim qsX > 
Xn and dqsX < C(l - A)"1 log(l - A)"1. 



FINITE-DIMENSIONAL NORMED SPACES 965 

One of the direct consequences of this theorem is the inverse form of Santalo's 
inequality [S]. Let K C Rn be a convex compact body with the origin 0 belonging 

to the interior K of K. Then K° = {x G Rn \ (x,y) < 1 for any y G K} is the 
dual body. Consider 

v.r. K/D'WojolK/VolD)1/*1 

(the volume ratio of K by D). 

2 . 2 . THEOREM [BMil]. There exists a numerical constant c > 0 such that 
o 

for any integer n and any convex body K C Rn, 0 EK, 

c < (v.r. K/D) - (v.r. K°/D) . 

2.3. Theorem 2.1 opens a new opportunity to study different kinds of volume 
inequalities. An important observation in this approach is a "weak dependence" 
of volume on dimension in the following sense. Let K be a symmetric convex 
compact body in the euclidean space (Rn,\ • |). Denote sK = K fl (sRn) (as 
before sRn is a subspace of Rn), qK = Proj K (the orthogonal projection of K 
on a space qRn), and 

dK = d(K, D)d= inf {a • 6 | D C bK C abD}. 

Then [BMil] v.r.(sKfsD) = v.r(K/D)(l + o(l)) (where o(l) - • 0 if n -+ oo) if 
(n - dim(sRn))/n ~ o(l/\ogdK). (Similarly for qK.) 

2.4. Isomorphic symmetrization. By §2.3, Theorem 2.1 allows us, with no 
essential change of volume and with a small decrease of dimension, to replace 
the symmetric convex body K (viewed as the unit ball of a space X) by another 
convex body K\ (the unit ball of X\ — qsX) which is much closer to a euclidean 
ball than the original K (say dx1 < C(logdx)2)> and so on. Finally, after a 
finite number of steps, we pass to a space Y in some fixed neighborhood of the 
euclidean space (again with no essential change of v.r. of the unit.ball of Y with 
respect to K). Therefore we have a symmetrization type procedure, but in an 
isomorphic sense (and not the isometric one), because the numerical constant C 
in Theorem 2.1 does not allow us to approach the euclidean space isometrically. 
We come to some (fixed, independent of n) neighborhood of an ellipsoid but 
cannot come (as some examples indeed show) too close to it. The following 
result gives an example of an application of such a symmetrization. 

2 .5 . THEOREM. ([Mi4] The inverse form of the Brunn-Minkowski inequal
ity.) For every convex compact body K C Rn there corresponds an affine trans
form UK ' Rn —» Rn(det UK = 1) such that for any two such bodies K\ and K2, 
and any £ > 0, 

{VO^UK^+WKM}1/" < ̂ {(Voltf!)1/" + e(Voltf2)1/n} 

for some numerical constant G independent ofn and the bodies K{. At the same 
time this inequality is satisfied also for the polar bodies ( u ^ i f i ) 0 and (UK2^2)°-

(For a new simplified proof of this theorem see [Pi8].) 
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2.6. One important special case of the well-known Pietsch problem (about 
duality of entropy numbers) can be solved using Theorem 2.5. Let N(K±,K2) 
denote the covering number of K\ by K2, i.e., 

N(KUK2) = min j N G N\3xu. ..,xNGRn, and Kx C (J(s< + K2) \ . 

(K± and K2 are compact convex symmetric bodies in Rn.) Then, by [KMi], 
there exist constants 0 < c and C such that for every n and every two bodies 
Kt and K2 in Rn, 

e < [N{KuK2)/N{KlìKl)]1ln < G . 

Note that a proof of Theorem 2.5 uses Theorem 2.1 and all techniques in
volved in 2.1-2 A. However, being proved, Theorem 2.5 implies 2.1 in a stronger, 
"probabilistic" version. We state a consequence of this improvement. 

2.7. [Mi4, Mi5] There exists a function G(X,p) depending on 0 < A < 1 
and 0 < p, < 1 only such that any X = (Rn, || • ||) has a basis e = {ei}n with the 
following property: for every Ac [1, . . . , n], \A\ = [An], and every subset B C A, 
k = \B\ = [iL\A\]} 

d(svaxL{ei}ieAlsy&n{ei}ieA\BAÌ) < C(X,ß) . 

2.8. Problems. We would like to raise a few questions in the direction of a 
"proportional" theory, which we consider to be a current important direction of 
investigation. 

PROBLEM 1. Is there an absolute constant G such that every X = (Rn, || • ||) 
contains a subspace E, dim.E > n/2, such that C2(E*) < C? 

(In other words, does any X have a qX such that dim qX > n/2 and C2 (qX) < 
CI) 

If this problem has a positive answer then a number of open problems in Local 
Theory would be solved. We list some of them below. 

PROBLEM 2. Does any X = (Rn, \\ • ||) contain a subspace E, dim E > n/2, 
such that T2(E) < f(q;Gq(X))l 

(I.e., T2(E) depends only on the cotype q constant of X for q < oo.) 
Problem 2 follows from Problem 1 using [Pi6]. An even weaker version of this 

problem is open: 
PROBLEM 3. Does any X = (Rn, \\ • ||) contain a subspace E, dimE > n/2, 

such that ||RadB|| < f(q\Cq(X))l 
~™TSü?'slollWingl^estiön wouIdTollöw froirrProblënT3Xsêë [PI7] J T ^ -

PROBLEM 4. Let X = (Rn, || • ||) A ££. Is it true that N > exp(cn) for 
c = c(q\ Gq(X)) > 0 if q < oo, Gq(X) < oo? 

We recall also the well-known problem (closely related to the above discus
sion). 

PROBLEM 5. Do a number G and an integer function fc = fc(n) —> oo 
(n —• oo) exist such that every X — (Rn, || • ||) contains a fc-dimensional subspace 
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B M I such that there exists a projection P : X —> E, \\P\\ < C, and E has a 
2-symmetric basis? 

The positive solution for Problem 5 (in a slightly weaker form) would also 
follow from the positive solution of the following question. Let u : £$ —• X and 
e = {ei}1} be an orthonormal basis in £%. Define re(u) = Avgg._-j.jll J2i £iuet\\* 

PROBLEM 6. Is it true that there exists a numerical constant G such that 
for every X = (Rn, || • ||) we may find a linear map u : £% —• X and orthonormal 
bases e = {eìyi and r\ — {y\Ci\ such that 

Another extremely interesting direction (connected with §1.8) is reflected in 
the following question: 

PROBLEM 7. Construct explicitly large ^-subspaces in ££ (or, similarly, in 

Note that Problem 4 was solved in one special case by [BMi2] and it implies 
a solution of the so-called dichotomy of cotype problem for invariant spaces: 

2.9. THEOREM [BM12]. Let A be a subset of the dual group T of a compact 
Abelian group G. Then either A is a Sidon set (and then the space CA of functions 
f in C(G) whose Fourier transform f is supported by A has the cotype 2 property), 
or this space CA has no finite cotype. 

(In the "local" form, using notations from §1, Theorem 2.9 states that 

fcoo(CA;l)>/(d(CA,4A|)) 

where f(t) —• oo ift—> oo.) 

2.10. The first steps of the proportional theory have already led to a new 
development. Starting from some knowledge about a linear structure of a space 
X we are able in some cases to recover its global geometrical properties. For 
example: 

THEOREM [MiP]. Let a normed space X, dimX = oo, satisfy the following 
condition (so-called a weak cotype 2 property) : there exists a constant 0 < £ < 1 
such that k2(E) > £dimE for every finite-dimensional subspace E *-*• X. Then 
there exists a constant C(= C(è)) such that the volume ratio 

v.r. E < G (*) 

for every finite-dimensional subspace E <-• X. 

Recall a definition of v.r. E d= (VolK(E)/VolD(E))1fûimE where K(E) is 
the unit ball of E and D(E) is the maximal volume ellipsoid inscribed in K(E). 
This definition was introduced by [SzT] to generalize the important property of 
£% noted by [K](see also [Sz]). In particular, (*) leads to a conclusion that for 
every A < 1 every subspace E «-* X contains a C(A)-isomorphic copy of £$ for 
k> XdimE. 

http://Avgg._-j.jll
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3. Applications to finite metric spaces. The spirit of the theory dis
cussed in the first two sections, and the techniques developed, found unex
pected applications in the study of finite metric spaces and (nonlinear) Lips
chitz maps. There has been a growing interest in understanding the similarity 
between asymptotic properties of finite-dimensional normed spaces and finite 
metric spaces. Some known examples ([Gr2, MarP, JL, BMW, JLSc, B2, 
BFM]) indicate that there is a close analogy between the results obtained for 
metric spaces and the previously-known results from the Local Theory of Normed 
Spaces, where the role of the dimension of a normed space is played by the log
arithm of the cardinality of the finite metric space. We present some results. 

Let (X,px) and (Y, py) be metric spaces. Define 

| | / : X - • Y\\Lip = s\xp{pY(f(x1), f(x2))/px(xix2) \ xx ^ x2} . 

3 . 1 . THEOREM [MarP]. Let 1 < p < 2 and a finite set F C LP[0,1], 
\F\ = k. Let f : F —• £2. Then there exists an extension f : Lp —• £2 (i.e., 
f \F= f) such that 

il/IU^ < c(iogfc)1/^-1/2 - | | / iu^ . 

3.2 . THEOREM [JL]. Let X be any normed space and a set F C X, \F\ = k. 

For any map f : F —> £2 there exists an extension f : X —• £2 such that 

| | / l k P < C ( l o g f c ) 1 / 2 - | l / l k p . 

3 . 3 . THEOREM [JLSc]. Let S be a metric space andX be a normed space. 

Let T C S, \T\ = k. Then any map f : T —> X has an extension f : S —• X 

such that W/WLìP < C(log*)||/||LtP-

3.4. The last result involves logfc instead of (logfc)1/2 which is expected from 
the Local Theory. It could correspond to another difference between the linear 
and nonlinear theories discovered by Bourgain [B3]: The Lipschitz distance of 
an n-point metric space to the (best chosen) n point subset of the Hilbert space 
is at most ~ logn and this is the right order (up to a log log n) and not (logrc)1/2 

as would be expected from the Local Theory (compare with §1.4). 
3.5. The notion of type (see §1.5) can be put in a nonlinear context and 

be considered for any metric space (a "metric type" by [BMW]). Such a view 
brings new connections also for linear spaces. For example: 

THEOREM [BMW]. Let C% = { - l , l } n be the n-cube with the Hamming 
metric (i.e., p(£,fj) = ^ Yli \£i ~~ Vìi for î*7 C C2) and let a normed space 

^X—eontain^a^G-Lipschitz-capy-of-GjT-iTe^j-there^ 
such that H/HLZP • | | / _ 1 |im/ \\LìP < G. Then (using the terminology of §1) 
k\(X; 1) > ij)(nm, C) where ip(n; G) —• oo if n —• oo for any fixed G < oo. 

3.6. Strangely, type and cotype behave differently when we try to extend these 
notions to the nonlinear theory. The metric type (corresponding to Rademacher 
type) can be extended, as we noted in §3.5. However, this is not the case with 
the notion of cotype. There is no notion of a nonlinear cotype (corresponding to 
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Rademacher cotype). However, it is reasonable to assume that a right notion of 
nonlinear cotype would be connected with (nonlinear) maps of euclidean spheres 
Sn (or £-nets on such spheres) into metric spaces (such antipodal maps were 
considered in [AmMl and 2]). Therefore it would be an extension of Gaussian 
cotype. (Note that Gaussian type cannot be extended to a nonlinear case.) 

Most questions in this direction are still far from being clarified at this mo
ment. 

4. The concentrat ion phenomenon, Levy families. In this section we 
describe one of the main concepts used to develop the asymptotic theory of 
finite-dimensional normed spaces—the so-called concentration phenomenon of 
invariant measures on high-dimensional structures. Let (X,p,p) be a metric 
compact set with a metric p, diam. X > 1 and a probability measure p,. Define 
the concentration function a(X\ £) of X by 

a(X\e) = 1 - w£{/i(Ae)\A be a Borei subset of X, p{A) > i) (4.1) 

(here Ae = {x G X\p(x,A) < £}). The isoperimetric inequality for the euclidean 
sphere Sn , equipped with the geodesic distance p and a rotation invariant prob
ability measure \xn, implies that 

a ( S n + 1 ; e) < y/w/8exp(-£2n/2) -> 0 for n -> oo (4.2) 

for any fixed £ > 0. Following this example (observed in the twenties by P. Levy 
[L]), we call a family (Xn,pn,pn) of metric probability spaces a Levy family 
[GrMl] if for any £ > 0, ot(Xn, £ • diam Xn) —• 0 forn —• oo, and a normal Levy 
family [AmM2] with constant (c\\c2) if 

a(Xn\£) < c\ exp(—c2£
2n) . (4.3) 

(The factor diam Xn in (4.3) is omitted because this way most of the exam
ples below become normal Levy families with their natural metric and natural 
enumeration.) 

Let / G C(X) be a continuous function on a space X with the modulus of 
continuity Wf(é). Define a median Lf (called in Local Theory also a Levy mean) 
as a number such that JJL{X G X : f(x) > Lf} > \ and p,{x G X : f(x) < Lf} > 
f Then p{x : \f(x) - Lf\ < wf{e)} > 1 - 2a(X,e). This means that if a(X,£) 
is small, then "most" of the measure of X is concentrated "around" one value of 

Note that back in 1911, E. Borei pointed out the following geometric in
terpretation of the law of large numbers: let Cn = [—l,l]n be the cube in 
Rn with the standard euclidean distance "dist." Then diam Cn = 2y/n. Con
sider a linear functional / , f(x) = Yli xi 0-e-5 Ker / = ( 1 , . . . , l)-1). Then 
(l/2")Vol{x G Cn : dist(z,Ker / ) > £yß} = P{\± £ i fc| > e|(fc)?=i are uni
formly distributed in [—1,1] independent random variables} < ciexp(—c2£2n). 
Therefore, "most" of the volume of Cn is concentrated near a "small slice" (rel
ative to the diameter). 
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Comparing this example with the definition of a Levy family we see that the 
concept of a Levy family (and especially a normal Levy family) generalizes the 
concept behind the law of large numbers in two directions: (a) The measures are 
not necessarily the product of measures (i.e., no condition of "independence") 
and (b) Any Lipschitz function on the space is considered instead of linear func
tionals only. 

It still surprises me that normal Levy families are a typical phenomenon and 
not a very rare one. We shall list below many examples of such families. Most of 
them have found an intensive use in Local Theory and, moreover, were discov
ered for Local Theory purposes. It is usually a nontrivial task to estimate the 
concentration function a(X\é) and, consequently, to prove that a family {Xn} 
is a Levy family. At this point we have to use different techniques. 

4.A. Isoperimetric inequalities technique. 
4.A.I. Riemannian case. Let p>x be a normalized riemannian volume element 

on a connected riemannian manifold without boundary X and let R(X) be a 
Ricci curvature of X. 

THEOREM. (Gromov [Grl]; see also [GrMl] and App. 1 in [MiSch]). Let 
A Ç X be measurable and let £ > 0; then flx(Ae) > ß(B£) where B is a ball on 
the sphere r-Sn with n = dimX, andr such thatR(X) = R(r-Sn)(= (n-l)/r2) 
and p>x(A) = ß(B), p, being the normalized Haar measure onr • Sn. 

4.A.2. Examples [GrMl]. (a) The above theorem shows that the family 
of orthogonal groups {SO(n)}ne^ equipped with the Hilbert-Schmidt operator 
metrics and the Haar normalized measures is a normal Levy family with con
stants c\ = y/ïf/S, c2 = 1/8. (This example of a Levy family was applied in 
topology by [GrMl].) 

(b) Similarly the family Xn = USn (ran-times), n = 1,2,..., with the prod
uct measure and the natural Riemannian metric is a normal Levy family with 
constants c\ = y/n/8, c2 = 1/2. 

(c) Of course, homogeneous spaces of SO(n) inherit the property of being a 
Levy family. It follows that any family of Stiefel manifolds {Wn~Jbn}2Li w ^ 
1 < kn < n, or any family of Grassman manifolds {Gn,Jfcn}£Li w ^h 1 < kn <n, 
is a normal Levy family with constants c\ — \J^/% and c2 = 1/8. The last 
families were also considered earlier (without exact estimate on the concentration 
functions ot(X\ £)) and applied to infinite-dimensional integration by [Mi6] and 
[Mi7]. 

(d) It could be shown also that the family of cubes Gn (and torus Tn) is a 
normal Levy family (after normalizing their natural ^-metrics in such a way 
that diam Cn = 1). 

4.A.3. The family {Rn} equipped with the Gaussian measure and ^-metric is 
a normal Levy family. This useful translation of the Levy result (4.2) was done 
by C. Borell [Bo]. 

4.A.4. Combinatorial case. If E2 = {—l;l}n has the normalized Hamming 
metric d(s, t) = \{i : Si ^ U}\/n and the normalized counting measure then 
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a(E2i£) < £ exp(—2£2n). (See [AmMl], which uses an isoperimetric fact from 
Par].) 

4.A.5. Convex bodies in Rn with the Lebesgue probability measure. The use 
of Brunn's theorem and the Brunn-Minkowski inequality gives us partial results 
in this direction (see [Bo, GrM2]). However, in the case of uniformly convex 
bodies, an isoperimetric inequality from [GrM3] estimates their concentration 
functions and gives new examples of Levy families. 

4.B. Martingale approach. This approach was initiated by Maurey [Ma], who 
showed that 

4.B.I. The group n n of permutations of { 1 , . . . , n} with the normalized Ham
ming metric d(7Ti,7T2) = \{i : n±(i) ^ w2(i)}\/n and the normalized counting 
measure has a{Yln,£) < exp(—£2n/64) (i.e., {n n } is a normal Levy family). 

(A number of interesting averaging formulas for vector-valued functions on 
n n were considered and used in Local Theory; see [Sc, KwSc].) 

4.B.2. The approach of §4.B.l. was developed and extended by G. Schechtman 
[Sch2, Sch3] with many new examples of Levy families. 

EXAMPLE (see [MiSch], Chapter 7.12). Let G be a group, compact with 
respect to a translation invariant metric. Let G = Go 3 Gi 2 • •• 2 G n = {1} 
be a sequence of closed subgroups of G. If a^ = diam(Gfc_i/G/c), fc = 1 , . . . , n, 
then a(G\£) < 2 e x p ( - e 2 / 1 6 £ ï a2

k). 
4.C. Laplacian operator approach. Let M be a compact connected Riemannian 

manifold with p being the normalized riemannian volume element of M. Then 
the Laplacian -A on M has its spectrum consisting of eigenvalues 0 = Ao < 
A i ( M ) < - . , 

4. C. 1. THEOREM [GrMl] . The concentration function 

3 
a(M;£) < -exp(-£VAi(M)log3/2) . 

4.C.2. The approach can be interpreted in the discrete case (especially for 
the Cayley graphs); see [A1M2]. The use of representation theory and the T-
property of Kazhdan [Kaz] gives us new Levy families different in spirit from 
any discussed above. These families found interesting applications in computer 
science for explicit constructions of superconcentrators [A1M2]. 

5. The concept of a spectrum. The concept of concentration described 
in §4, is often used in Local Theory through another concept of "spectrum" of 
uniformly continuous functions on high-dimensional structures. It will be easier 
to emphasize the main idea in an infinite-dimensional language. 

5.1. Let X be an infinite-dimensional Banach space, S — S(X) = {x G X \ 
\\x\\ — 1} and let UC(S) be the space of all uniformly continuous functions on 
S. If / G UC(S) then a G R belongs to the spectrum S(f) of the function / iff 
for every £ > 0 and every n G N there exists a subspace E «-* X, dim E = n and 
\f(x) -a\ < £ for any x G S n E. 

THEOREM [Mi8]. For every f G UC(S), the spectrum S(f) ^ 0. 
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(Using this theorem, we choose a function / in such a way that / = Const. 
means a given geometrical property; then, by the theorem, we find subspaces 
of any large dimension, where this property is "almost" satisfied; see [Mi8] for 
such examples.) 

A few more examples in the same spirit; let S°° = S(£2): 
5.2. If 1̂ 00,2 = {(%'•> y)\% and y G 5°° and x±y} is a 2-Stiefel manifold then we 

may similarly define the spectrum S(f) for / G UC(Woot2) and, again, S(f) ^ 0 
for every / G UC(W00ì2). 

5.3 . THEOREM [Mi7]. Let f e UG(S°° x S°°). There exists a continuous 
function <p(t), — 1 < t < 1, such that for every £ > 0 and any n G N there exists 
a subspace E <—• £2, dimiS = n, and \f(x;y) — cp((x,y))\ < £ for every x and 
y G S°° fi E (here (x, y) is the inner product of x and y). 

5.4. The main observation beyond the notion of spectrum is that the uniformly 
continuous function on infinite-dimensional G-spaces depends "essentially" only 
on orbits (as is the case in Theorem 5.3). Of course we may interpret the 
word "essentially" in different ways. An interpretation by measure will bring 
us back to the Levy family-notion. However, considering substructures (say, 
linear subspaces in §5.1-5.3) where a function is "almost" constant, we come to 
the concept of spectrum. This notion is discussed precisely in [Mi7, Mi8] and, 
in a more general context of G-spaces, in [GrMl]. (For the case of riemannian 
manifolds, see Gromov [Gr2].) Note, that the well-known Ramsey type theorems 
in Combinatorics are very close in spirit to the discussed notion of spectrum. 
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rOMeOMOp4>H3MbI OKpyXŒOCTH, MOAH(J)HKaiJ,HH 

4>yHKii,HÖ n pHAbi Oypbe 

A. M. OJIEBCKMÏÏ 

BseAeHHe. Mbi paccMaxpHBaeM PHAM Oypbe HenpepbiBHbix <J)yHKU,HH, 

onpeAeJieHHbix Ha OKpyacHOCTH T = R/27rZ: 

/~£/(n)e»*. (1) 
nez 

TeMa Hauiero AOKJiaAa COCTOHT B cjieAywmeM: KaK COOTHOCHTCH ocHOBHbie 

CBOÄCTBa pa3Jio^ceHHß (1), TaKHe KaK paBHOMepHaa cxoAHMocTb paAa 

HjiM cyMMHpyeMOCTb npeo6pa30BaHHH 4>ypbe, c TonojiorHnecKOH H MeTpn-

necKofl CTpyKTypofl <})yHKi;HH. B KaKOtt Mepe ynoMjmyTbie cBOHCTBa MoryT 

6biTb yjiynnieHbi nocpeACTBOM npeo6pa30BaHHH, coxpaHHioiii;Hx HJIH Majio 

MeHHioiUHx 3Ty CTpyKTypy. B KanecTBe TaKHX npeo6pa30BaHHH paccMa-

TpHBaKyrca: 

roMeoMop(})H3Mbi oKpŷ CHOCTH Ha ce6a; BaxcHo pa3JiHnaTb cpeAH HHX 

a6cojiK)THO HenpepbiBHbie H CHHryjiapHbie roMeoMop<}>H3Mbi; 

TaK Ha3biBaeMbie «HcnpaBjieHHH», T.e. H3MeHeHHÄ 3HaneHHH <J3yHKu;HH Ha 

npoH3BOJibHbix MHO^KecTBax MajiOH jieôeroBOH Mepbi. 

CorjiacHO TeopeMe >K. riajia (1914), yjiyHiueHHOH T. BopoM (1935) AJIA 

Kâ CAOH AettCTBHTejibHOH <}>yHKij;HH / G C(T) MOXœO yKa3aTb roMeoMop-

(J)H3M (p: T —• T TaKOH, HTO cynepnosHUHH F = / o ip HMeeT paBHOMepHO 

cxoAÄmeecH pa3Jio»ceHHe (1). MCTOA AOKa3aTejibCTBa no3BOJiaeT OAHOBpe-

MeHHO AOCTHHb AOCTaTOHHO ßbicTporo yöbiBaHHÄ K03(})(J)Hij1HeHT0B Oypbe, B 

HaCTHOCTH, yCJIOBH« 

F G lp(Z) Vp > 1. (2) 

/ïojiroe BpeMÄ ocTaBajiocb HeacHbiM KaK OöCTOHT AöJIO npn p = 1. 

=MO^HO=-JIH—npoH3BOJibHyK>=Beui;eeTBeHHyK)-^yHKUHK)=/=e=0(=F)==npHBeeTH= 

HaAJie»caiii;eH 3aMeHoft nepeMeHHott B ajireöpy A(T) aöcojiiOTHO CXOAHHJHXCJI 

p^AOB <t>ypbe? 3Ta 3aAana, nocTaBjieHHaa H. H. JIy3HHbiM, B 3HaHHTejibHOH 

Mepe CTHMyjiHpoBajia HccjieAOBaHHÄ nocjieAHHx jieT no AäHHOH TeMe. 

B 3aAane HcnpaBjieHH« BaacHyio pojib HrpaeT TeopeMa R. E. MeHbinoBa 

(1940), ycHjiHBaioiAafl KJiaccHnecKoe C-CBOHCTBO JIy3HHa. CorjiacHO STOH 
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TeopeMe RRSI Kâ CAOH (J)yHKii,HH / G C(T) MOXCHO yKa3aTb (})yHKAHK) F c 
paBHOMepHO CXOA^IAHMCH pHAOM Oypbe, OTjinnaiomyiocH OT / Ha MHO-
xcecTBe, Mepa KOToporo MeHbuie HanepeA 3aAaHHoro nojioacHTejibHoro e. 

MOXCHO JIH noAOÔHbiM o6pa30M AOCTHHb ycjioBHfl (2) npn KaKOM-HHÔyAt 
p < 2, HJIH, KaK roBopHT, ycTpaHHTb ocoÖeHHocTb KapjieMaHa — 3TOT 
Bonpoc TaK^ce AOJiro ocTaBajica oTKpbiTbiM. 

Hnace Â CTCH 0630p pe3yjibTaTOB AOKjiaAHHKa, coAepxcaïAHx, B nacTHocTH, 
pemeHHH o6ewx nocTaßjieHHbix 3aAan, a TaKMce paÔOT APyrwx aBTopoB 
no CMexcHbiM BonpocaM. Mbi OTMCTHM HeKOTopbie HepeuieHHbie 3aAann 

(pa3JIHHHOH CTeneHH TpyAHOCTH). B 3aKJIK)HHTejIbH0H HaCTH Mbi 3aTpoHeM 
HeKOTopbie acneKTbi OÔHJHX opToroHajibHbix pa3JioxceHHH. 

1. ITpocTpaHCTBa U H A P . 

1. Hepe3 U(T) o6o3HanaeTCH ÔaHaxoBO npocTpaHCTBo (J)yHKii,HH, npeA-
CTaBHMblX paBHOMepHO CXOAHIU.HMCH pHAOM (1), C HOpMOH 

11/11 = suP II J2 hnVnt\\c(Ty 
V \n\<v 

Hepe3 AP(T) — npeo6pa30BaHHe <I>ypbe npocTpaHCTBa /P(Z), c HOPMOH 

I I / I I = n/n«,. 
Bo3HHKHyB B paMKax rapMOHHHecKoro aHajiH3a, STH npocTpaHCTBa npeA-

CTaBjiÄiOT HHTepec c pa3jiHHHbix ToneK 3peHHH. B nacTHocTH Ai (= A) 

ÄBjiHeTCÄ MOAeJibHbiM npHMepoM B TeopwH SaHaxoBbix ajireÔp, Ha KOTOPOM 
BnepBbie 6bijiH ocMbicjieHbi HeKOTopbie MACH STOH TeopHH. B HccjieAOBaHHH 
AaHHbix npocTpaHCTB c ycnexoM Hcnojib3yK)TCH cToxacTHHecKwe MeTOAfci; 
HeKOTopbie CBOHCTBa oÖHapyxcHBaiOT apHÒMeTHHecKyio npwpoAy. 

KjiaccHHecKHH acneKT P^AOB <ï>ypbe COCTOHT B HCCJieAOBaHHH MeTpn-
necKHX H AH(J)(l)epeHii1HajibHbix CBOHCTB {J)yHKu,HH, o6ecneHHBaioin,Hx ee 
npHHaAJiexcHOCTb paccMaTpHBaeBbiM npocTpaHCTBaM. HanpHMep, TeopeMa 
XaycAop4>a-K)Hra: Lq C Aq/q-i, 1 < q < 2 noKa3biBaeT, KaK c yBejinneHHeM 
q noBbimaeTCH CTeneHb cyMMHpyeMocTH npeo6pa30BaHHH Oypbe. ü p n q > 2 
noAOÔHbiH 3(})4)eKT He HMeeT MecTa: Aa^ce HenpepbiBHaa 4)yHKii,HH MoxceT He 
npHHaAJiexcaTb HHKaKOMy KJiaccy Ap c p < 2. B TaKHX cjiynaax roBopHT, HTO 
/ o6jiaAaeT KapjieMaHOBCKoft ocoöeHHOCTbio. ^BHHceHHe no rëjibAepoBCKOH 
uiKajie Ha(T) npHBOAHT K AaJibHenuieMy yjiynmeHHio CKopocTH yöbißaHHH 
npeo6pa30BaHHH <ï>ypbe: 

HacAp, a >a(p) = 1/p - 1 / 2 , (3) 

npnnëM pe3yjibTaT OKOHnaTcneH: A-NH KaacAoro p, 1 < p < 2, KJiacc Ap 

yxce He coAep^CHT ijejiHKOM Kjiacca TëjibAepa c KPMTHHCCKMM noKa3STejieM 

a(p) (C. H. BepHiiiTeHH, O. Cac). IïpHHaAJieDKHocTb U(T) TpeÖyeT MeHbuieft 
rjiaAKOCTH; cooTBeTCTByiomee HeyjiynuiaeMoe ycjiOBHe BbipaacaeTCH B Tep-
MHHax MOJiyjiH HenpepbiBHocTH: ujf(6) = o(lnl/6)~lm, OHO TCCHO CBH3aHO c 
^orapH(J)MHHecKHM pocTOM KOHCTaHT JIe6era. 
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2. yÒJIOBHH TJiaAKOCTH, BnpOHeM, CXBaTblBaiOT JIHUIb «nOBepXHOCTHblH 
cjioH» npocTpaHCTB U H Ap. HaHÔojiee TOHKHC HX CBOHCTBa onpeAeJiaiOTca 
4>yHKLiiHHMH c MeAJieHHO yObiBaiomHM MOAyJieM HenpepwBHocTH. XapaK-
TepHa C 3T0H TOHKH 3peHHH HeyCTOHHHBOCTb OTHOCHTeJIbHO TJiaAKOH 3a-
MeHbi nepeMeHHOH. CorjiacHO TeopeMe A. BëpjiHHra-H. XejicoHa, 3 . JL 
JIen6eH30Ha roMeoMop<J3H3Mbi oKpŷ CHOCTH, HHBapnaHTHO AencTByiomHe B 
ajireöpe A(T), CBOAHTCH K noBopoTy H CHMMCTPHH. IlpeACTaBjiHeTca Bepo-
«THbiM, HTO noAOÖHbiH pe3yjibTaT cnpaBeAJiHB H RJISL U. IlepBbie npHMepbi 
B 3T0M HanpaBJieHHH yKa3aHbi IT. TypaHOM. /JajibHettniHe pe3yjibTaTbi npn-
HaAJie^caT >K. KjiyHH H JI. Ajinapy. llocjieAHHH, B nacTHocTH, AOKa3aji 
[1], HTO AJia JiK)6oro HejiHHeHHoro aHajiHTHHecKoro AH<|>4)eoMop4>H3Ma (p 

oKpŷ CHOCTH HaHAeTca (fryHKii.Hfl / G U, Wf(S) = 0 ( ln l /<5) - a ! , TaKaa, HTO 
/ o (p £ U. B oTHOuieHHH Ay KaxceTca, HeH3BecTHO, MOMCHO JIH COnpOBOAHTb 
ynoMÄHyTyio Bbiuie TeopeMy Tpëx aBTopoB cooTBecTByiomeH OACHKOH rjiaA-
KOCTH; HanpHMep, BepHO JIH, HTO AJIH jnoôoro HejiHHeHHoro roMeoMop(}>H3Ma 
<p MOMCHO yKa3aTb / G A fl H1/2 TaKyio, HTO f o (p £ A? HaM HeH3BecTHo 
TaKMce, paccMaTpHBajiCM JIH Bonpoc o roMeoMop<})H3Max, AeftCTByioiAHX B AP> 

p> 1. 

OTMCTHM eiAe cjieAyiomyio TeopeMy P. Kay(J)MaHa (1974), CM. [11], B 
aHajiHTHHecKOM cjiynae AOKa3aHHyio paHee AjinapoM: nycTb (p — roMeo-
Mop4>H3M KJiacca Cu, v > 3, npnnëM npoH3BOAHbie <p^k\ 2 < fc < v, He 
oöpaiAaiOTCH B Hyjib oAHOBpeMeHHO. TorAa <p nepeBOAHT A(T) B U(T). 

3. npocTpaHCTBo U, B OTJiHHHe OT A He o6pa3yeT ajireßpbi OTHOCHTejibHO 
noToneHHoro yMHO^ceHHa (P. CajieM). Bo3HHKaeT Bonpoc: KaKOH 3anac 
(JiyHKAHH MOMCHO nOJiyHHTb, HCXOA« H3 SJieMCHTOB U, npHMCHHH KOHeHHOe 
HHCJio onepauHH yMHoaceHHH H cjioaceHHa? HHMMH cjiOBaMH, KaKOBa 

MHHHMajibHaÄ ajireöpa, coAepiHcamaa U1 OTBCT AaëT cjieAyiomaa 

TEOPEMA 1 [25]. Ajireöpa (pyHKi^Hii, nopoxcxeHHax U(T), coBnanaeT c 

ajireöpott Bcex HenpepbiBHbix (pyrnciiHii na oicpyxcHOCTH. ToHHee, Kaxcnax 

f G C(T) npencTaBHMa B Bitßfi 

f = <Pi-<P2 + <Ps, Pi e U(T), 1 < i < 3. (4) 

TIpM 9T0M CneKTp rapMOHHK, BXOftHmHX B pa3JIOXCeHHe (1) COMHOXCHTeJieft 

(pii2 MoxcHO cocpenoTovHTb, cooTBeTCTBeHHO, Ha nojioxcHTejibHOii M orpmxa-

TejibHOtt nojiyocxx. ECJIM f npoÖeraer 3aRaHHbiti KOMnaKT B C(T), TO (pi B 

JÄj^MOMHCLBblSpaTb^yHMBepcaJIbHOii. 

HaBOAHû HM cooôpaxceHHeM (He AaiomHM, BnponeM, HHKaKHx yKa3aHHH 

K AOKa3aTejibCTBy) MoxceT cjiyacHTb conocTaBjieHHe AByx KJiaccnnecKHx 

4)aKTOB: npoH3BeAeHHe AByx CXOAHIAHXCH PJIAOB — cyMMHpyeTca MCTOAOM 

He3apo; paA Oypbe JIIOöOH HenpepwBHOH cJjyHKî HH cyMMHpyeTca 3THM 

MeTOAOM. He HCKJUOHCHO, HTO KaxcAaa / G C(T) <J>aKTopH3yeTCH B BHAe 

/ = Pi • <P2, Pi e U. 
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2. HeycTpaHHMbie OCOöCHHOCTH. npHBOAHMbie HH^ce pe3yjibTaTbi noKa-
3biBaK)T, HTO oco6eHHOCTH KapjieMaHOBCKoro THna B o6in,eM nojioxceHHH 
oÖHapy^CHBaiOT ycTOHHHBOCTb no oTHOineHHK) K npoH3BOJibHOMy BapbHpo-
BaHHK) 4)yHKi;HH, coxpaHfliomeMy ee 3HaneHHfl Ha KaKOM-jin6o MHoxcecTBe 
nojio^CHTejibHOH jieÖeroBOH Mepbi. B STOM OTHOHICHHH KJiaccbi Ap, p < 2, 
npHHunnnajibHO OTJinnaiOTCH OT U. 

1. TeopeMa MeHbinoBa npHBejia K nocTaHOBKe cjieAyiomero Bonpoca (CM. 
[27]): MOMCHO JIH RJISI JIK)6OH HenpepbiBHOH (J)ynKii,HH / yKa3aTb 4)yHKn,Hio 
F} OTJiHHaioiAyiocH OT Hee Ha MHO^cecTBe Majiott Mepbi H npHHaAJieiHcamyio 
KJiaccy AP(T) npn KaKOM-jiHÔo p < 2. OcTaBajica HencHbiM Aa^ce cjiynan 
p = 1, xoTH B OTHomeHHH 3Toro cjiynaa n . JL yjibHHOBbiM 6bijia BbicKa3aHa 
rnnoTe3a, HTO OTBCT — OTpHU,aTejibHbiH. /]pKa3aTejibCTBo 6MJIO nojiyneHo 
cnycTÄ 10 JieT pa3JiHHHbiMH MeTOAaMH B [13] H [22]. nepBaa ny6jiHKan,HH 
npHHaAJie^CHT M. KainiejicoHy [13], nocTpoHBuieMy npHMep (J)yHKu,HH / G 
C(T), He HcnpaBHMOH B A(T). MeTOA STOH pa6oTbi, ocHOBaHHbi» Ha 
CBOttCTBax TaK Ha3biBaeMOH Mepw PyAHHa-IIlanHpo, cneu,H(})HHeH H He 
npHMeHHM npn p > 1; nocTpoeHHaa TaM 4)yHKu,HÄ / , KaK OTMeneHo B [13], 

HMeeT JIHUIb JIOrapH(J)MHHeCKHH MOAyJiB HenpepblBHOCTH. 

Hani noAXOA no3BOJiHJi nojiynHTb 6ojiee cwjibHbie pe3yjibTaTbi. 

TEOPEMA 2 ([22]; noAPOÔHee CM. [24]). Rjia KayKj^oro p, I < p < 2, 

cymecTByer (fryHKiiHx f c KpHTiwecKMM noKa3aTejieM rjiaRKOCTn: f G Ha(p\ 

KOTopan HHKaKHM McnpaBJiemteM Ha MHoxcecTBe HenojiHoU Mepbi He Moxcer 

6biTb npHBexeHa B KJiacc AP(T). 

TlpU STOM OKa3bIBaeTCH, HTO 3(})(j)eKT HeHCnpaBHMOCTH HBJIüeTCÄ THnHH-
HbiM. Tpy6o roBopn, oÖ^eM KJiacca Ap CJIHUIKOM Maji, HTOÔM B nero MO^CHO 

öbijio «HcnpaBHTb» Jiioöyio HenpepbiBHyio HJIH Aa^ce rëjibAepoBy (fryHKUHio. 

noÄCHHM MeTOA A0Ka3aTejibCTBa B OTHocHTejibHO 6ojiee npocTOM cjiynae 

p = 1. Mbi paccMaTpHBaeM AHCKpeTHbiH BapwaHT 3aAann HcnpaBjieHHa. 
nyCTb B Gn HapHAy C KaHOHHHeCKHM 6a3HCOM {efc} npOH3BOJIbHO (J)HK-
cnpoBaH ein;e OAHH opTOHopMHpoBaHHbin 6a3wc {r„}. PaccMOTpHM Ky6 
Q = {x\ \(x,ek)\ < 1/n Vfc} (nrpaiomHH pojib eAHHHHHoro inapa B npo
cTpaHCTBe Hl/2(T)). OneBHAHO, Z^K^7"^)! < 1 (z £ Q)- 0Ka3biBaeTca, 
AJiH 6ojibuiHHCTBa BeKTopoB Ky6a 3Ta ou,eHKa He Mo^ceT 6biTb cymecTBeHHO 
yjiynuieHa nocpeACTBOM npoH3BOJibHoro H3MeHeHHa 4>HKCHpoBaHHOH AOJIH 
KOopAHHaT (x,ek). ToHHee, npn 3aAaHHbix nojioacHTejibHbix 6, h oTHecëM 
BeKTop x E Q K MHO^cecTBy X(n,0,h), ecjin HattAeTca BeKTop x G C n , RJIR 

KOToporo 

J2\&T»)\<h> 
npHHeM BbinojiHaeTCH ycjiOBHe 

card{fc; (a; - x, e^) = 0} > On. (5) 
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MOHCHO noKa3aTb, HTO npn Kâ cAOM 9 H AOCTaTOHHO MajioM h(8) OOT^M MHO-
3KecTBa X(n, 8, h(0)) B OBeni;ecTBjieHHOM npocTpaHCTBe R 2 n 3KcnoHeHu,HajibHo 
Maji no napaMeTpy n. 

riepexoA OT AHCKpeTHOH 3aAaHH K HCXOAHOH ocyiAecTBjiaeTca Ha ocHOBe 
CBH3H MeîKAy npeo6pa30BaHHeM Oypbe Ha rpynne OKpyaKHocTH H Ha eë 
AHCKpeTHOH noArpynne. B pojin rv BbiCTynaiOT xapaKTepw nocjieAHen. 

BapbHpoBaHHe p no3BOJiHeT nojiynHTb cjieAyioiAHH pe3yjibTaT. 

TEOPEMA 3 [22, 24]. CymecTByer fyyHKuvsi. f G C(T), oÖJianaiomax 

TeM CBOîiCTBOMj HTO KaTKRax (fryHKiiHx F G C(T), coBnaRaioman c Heu Ha 

KaKOM-HHÔyab MHOTKecTBe nojiosKHTejibHOîi Mepbi, oôJiaaaeT ocoÖeHHOCTbio 

KapjieMaHa. 

OyHKUiHH / MOMceT 6biTb BbiôpaHa H3 Jiioßoro KOMnaKTa H^ c 3aAaHHOfl 
Ma^copaHTOH u(S) MOAyJifl HenpepbiBHocTH, HMeionjeH nopHAOK yÔbiBaHHa K 
HyjiK) MeAJieHHee JIK)6OH CTeneHH. 

PÏ3 MeTOAa AOKa3aTejibCTBa CTaHAapTHbiMH npneMaMH BMBOAHTCä, HTO 
MHoacecTBO (tyHKii.HH / B TeopeMe 3 — TonojiorHHecKH MaccHBHo: Aonojme-
HHe K HeMy ecTb cnëTHan cyMMa HHrAe He njioTHbix MHOECCCTB. 

2. B AaJibHenuieM 3Ta TeMa pa3BHBajiacb C. B. XpynjeBbiM [30], pe3yjibTaT 
KOTOpOrO OTHOCHTCÄ K CJiyHaK) p = 1. nOJIb3yHCb MeTOAOM paSoTbi [22], STOT 
aBTop noKa3aji, HTO TpaeKTopHH HeKOTopbix ecTecTBeHHbix c BCPOHTHOCTHOH 
TOHKH 3peHHH cjiynaHHbix npon,eccoB noHTH HaBepHoe HencnpaBHMbi B KJiacc 
A(T). BnponeM rjiaAKOCTb STHX TpaeKTopHH HecKOJibKo ycTynaeT ycjiOBHio 
/ G i ï 1 / 2 TeopeMbi 2. 

OTMCTHM enje, HTO TeopeMa 2, 6yAynn oKOHHaTejibHoft B CMbicjie rjiaA-
KOCTH no TëjibAepy, ocTaBjiaeT B03MOMCHOCTb RJIR HeKOToporo yTOHHeHHH 
B ôojiee noApoÔHOH niKajie KJiaccoB H03. B Kâ CAOM JIH KJiacce Hu, ue 

Bjio ĉeHHOM B A(T), MOECHO yKa3aTb HencnpaBHMyio 4>yHKii;HK) — STOT 
BOnpOC OCTaeTCH OTKpbITbIM. 

3. KoHeHHOMepHbiH BapnaHT 3aAann HcnpaBjieriHfl, yKa3aHHbin Bbime, 

npHBëji K cjieAyiomen nocTaHOBKe Bonpoca. nycTb nonpeacHeMy {e^} — 
KaHOHHHeCKHH, a {TU} — JIK)60H APyrOH OpTOHOpMHpOBaHHblH 6a3HC B Cn. 

BßeAeM aHajiorH HopM B C n U: 

\\x\\c = max |(z, efc)|; \\x\\u = max || ^ ( x , T „ ) T U \ \ G . 
v<q 

MO5KHO JIH AJia Jiioôoro x G C n H jiK)6oro 0, 0 < 8 < 1, yKa3aTb «HC-
^^ä^jieHlibffiF BeKTopTTc ycjiOBHëM" (BJ^TaF^^TOÔbr BW^jmäjiöcb He^ 

paBeHCTBo: \\x\\u < ^ W I M I c ? B cjiynae AHCKPCTHOH TpnroHOMeTpHHecKOH 
CHCTeMbi {TU} nojioDKHTejibHbiH OTBeT Ha Hani Bonpoc AaJi B. C. KauiHH [14], 
Hcnojib30BaBiHHH MeTOA cjiynaHHOH paccTaHOBKH 3HaKOB. 06m,HH cjiynan 
OCTaeTCH OTKpbITbIM. 

4. OTMCTHM eme OAHy HepemeHHyio 3aAany, OTHOcamyiocfl K AaHHOMy 
Kpyry BonpocoB. HaMH ôbijia AOKa3aHa (1961) cjieAyioiAaa TeopeMa: cy-
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mecTByeT 4>yHKn,HH / G C(T), p«A <ï>ypi>e KOTopoft (1) nocjie HeKOTopon 
nepecTaHOBKH HJICHOB pacxoAHTca noHTH BCiOAy- 9Ta TeopeMa HMeeT 
AaBHioK) HCTopHio: c ycjioBHeM / G L2 OHa 6bijia C(J)opMyjiHpoBaHa A. H. 
KojiMoropoBbiM em,e B 1926 roAy (noApoÔHOCTH CM. B [21, rji. 3]). 143 o6m,en 
TeopHH opToroHajibHbix P^AOB cjieAyeT, HTO / He MO ĉeT Jie^caTb B lp, p < 2. 
Mbi HMeeM AeJio, TaKHM o6pa30M, c ocoöeHHocTbio 6ojiee CHjibHott, neM 
KapjieMaHOBCKaH. «HBJIHCTCH JIH OHa ycTpaHHMon, T.e. Ka^cAyio JIH <})yHKij,Hio 
MOECHO HcnpaBHTb Ha MHo^cecTBe MajioH Mepbi TaK, HTo6bi pHA <3>ypbe 
nojiyneHHOH (JiyHKAHH CXOAHJICH noHTH BCiOAy npn JIK)6OH nepecTaHOBKe? 

nOJIO^CHTeJIbHblH OTBeT KaiHCeTCfl ÔOJiee BepOflTHblM. 

3. ITpoAOJiMceHHe c KOMnaKTOB Mepbi Hyjib. B OTJIHHHC OT npeAfeiAymero 
B 3TOM naparpa(J)e Mbi paccMaTpHBaeM CHTyan,Hio, KorAa 3HaHeHHH 4>yHKi;HH 
He pa3pemaeTCH MeHHTb Ha 3aAaHHOM KOMnaKTe E C T. Penb HACT O 
B03M03KHOCTH HHTepnOJIflU,HH npOH3BOJIbHOH 4)yHKU,HH / G C(E) B KJiaCC 

U(T) HJIH Ap(T)} p < 2. XopOUIO H3BeCTHO, HTO B 060HX cjiynaax AJI^ 

nojiOMCHTejibHoro penieHHH HCOÖXOAHMO, HToöbi E HMeji Mepy Hyjib. Hepe3 

B(E) o6o3HanaeM cy^ceHHe 3aAaHHoro cJ)yHKij,HOHajibHoro npocTpaHCTBa 

B(T) Ha KOMnaKT E. 

1. B cjiynae A(T) y»ce RJIB. cnëTHbix KOMnaKTOB MoryT B03HHKaTb 

npenHTCTBHH apn<{)MeTHHecKoro xapaKTepa. KoMnaKT E Ha3biBaeTca xeji-
COHOBCKHM, eCJIH A(E) = C(E). CoOÖpâ CeHHH ABOHCTBeHHOCTH AaiOT 

3KBHBajieHTHyio (J)opMyjiHpoBKy B TepMHHax npeo6pa30BaHH5i <3>ypbe Mep, 
cocpeAOToneHHbix Ha E. MHO^cecTBa XejicoHa noApoÖHO H3ynajiHCb (CM., 
HanpHMep, [10]). CmJibKo-HHOyAb 3(})(J)eKTHBHOH Hx xapaKTepH3au,HH He 
cyiAecTByeT. PÏ3BecTHO, HTO xejicoHOBocTb TecHO CBH3aHa c panjwoHajibHOH 

He3aBHCHMOCTbK). 

AHajiorHHHoe noH^THe BBOAHTCA H Ha fc-MepHOM Tope Tk. 3Aecb 
B03HHKaK)T HHTepeCHbie CBH3H C TeOMeTpHHeCKHMH XapaKTepHCTHKaMH 

MHOMcecTB. HanpHMep, MaKA^Œ H ByAßopA AOKa3ajiH [19], HTO Ka^c-
Aaa BbinyKJian KpHBaa B T2 — He xejicoHOBa; B TO ace BpeMH rpa(})HK 
JIHnUIHU,eBOH (JiyHKAHH MÔ CeT 6bITb MHOECeCTBOM XejicoHa. 

2. npn HHTepnojiHAHH B AP) p > 1, cjieAyeT AonojiHHTejibHO Tpe6o-
BaTb HenpepbiBHOCTb. CooTBeTCTByiomee ÖaHaxoBO npocTpaHCTBo A^(T) 

B03HHKaeT KaK nepeceneHHe AP(T) c C(T) c HOPMOH, paBHOH MaKCHMyMy H3 
AByx HopM. CooSpaMceHHH ABOHCTB6HHOCTH 3Aecb eni;e MeHee 3(J)(J)eKTHBHbi, 
nocKOJibKy conpn^ceHHoe K A° HBHO He onncaHo. CKa^ceM, HTO KOMnaKT 
E C Tk p-xejicoHOBCKMft, ecjin A^(E) = C(E). JlerKO noKa3aTb, HTO JIIOÔOH 

CHëTHblH KOMnaKT p-XCJICOHOBCKHH npH JIK)60M p > 1. RjlR KOMnaKTOB Mepbi 
Hyjib STO y^ce He TaK. Bojiee Toro, cnpaBeAJiHBa 

TEOPEMA 4 [21]. Rjia JHO6OH HenpepbiBHOit (pyHKiinn f £ AP(T) (p < 2 
— 4>HKCMpoBaHo) HaitReTcx KOMnaKT E Mepbi Hyjib TaKoft, HTO cyxceHne f \E 

He npMHafijiexcHT A^(E). 
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S T O 03HanaeT, HTO KapjieMaHOBCKHe OCOöCHHOCTH Bcer^a npeAonpe-
AejiÄiOTCÄ 3HaneHHÄMH (fryHKAHH Ha HeKOTopbix KOMnaKTax HyjieBOH Mepbi. 

B 3THX Bonpocax ecTecTBeHHO npHBjieKaTb öojiee TOHKHC, neM jieöeroßa 
Mepa, MeTpHHecKHe xapaKTepncTHKH, HanpHMep, xaycAop4>OBy pa3MepH0CTb. 
npHBeAeM pe3yjibTaT, HeAaBHO nojiyneHHbiH B STOM HanpaBjieHHH B. H. 
^eMeHKO. 

TEOPEMA 5. ECJIH KOMnaKT E C Tk MMeeT xaycRopftoBy pa3MepHOCTb X, 

TO E — p-xejicoHOBCKM& npn p> po = 2fc/(2fc - A). IIpu p < p0 cymecTByeT 

KOHTpnpHMep. 

3. AHajiorHHHaa 3aAana RJIX U(T) (CM. [21, CTp. 79]) ßbijia nojiHocTbio 
pemeHa R. OÖepjiHHOM. 

TEOPEMA 6 [20]. J\JISI moöoro KOMnaKTa E C T Mepbi Hyjib HMeeT MecTo 
paBeHCTBO U(E) = C(E). 

MHTepecHo, H, 6biTb MoaceT, HeoECHAaHHo, HTO STOT pe3yjibTaT nojiyneH 
KaK cjieACTBHe TeopeMbi JI. KapjiecoHa o CXOAHMOCTH noHTH BCiOAy £2-P*IAOB 
Oypbe. Bo3MO>KHOCTb Hcnojib30BaHHe 3TOH TeopeMbi npn HccjieAOBaHHH 
npocTpaHCTBa U Öbijia oÖHapyaceHa C. A. BnHorpaAOBbiM [5], noKa3aßniHM, 
HTO HepaBeHCTBO JI. KapjiecoHa-P. XaHTa (orpaHHHeHHocTb onepaTopa Maxco-
paHTbi nacTHHHbix cyMM) no3BOJiaeT AaTb HeTpHBHajibHyio on,eHKy CHH3y 
AJIä HopMbi (fryHKijHOHajia $ : / —> fT f dp HaA U: 

\\9\\u* > X s u p mes{2/; (Gp)(y) > s}; (6) 
8>0 

3Aecb Gp, — npeo6pa30BaHHe KouiH-CTHJiTbeca Mepbi p, K > 0 — aßcojiiOT-
Haa nocToaHHaÄ. 3 T O HepaBeHCTBO BMecTe c acHMnTOTHKOH npeo6pa30BaHHH 
KOUIH CHHryjiHpHbix Mep (I\ Byjib, 0 . JI. UepeTejiH H AP-) npHBOAHT K 
TeopeMe 6. noApoÔHbin 0630p no STOH TeMe, coAcpacamHH paA Aonoji-
HHTejibHbix pe3yjibTaTOB, AaH C. A. BnHorpaAOBbiM H C. B. XpymeBbiM 
[6]. 

Bonpoc o B03MOHCHOCTH KOHCTpyKTHBHoro AOKa3aTejibCTBO TeopeMbi 06ep-
jiHHa ocTaeTC« OTKPHTMM. BbiJio 6bi HHTepecHo, no KpaHHen Mepe, BW-
AeJIHTb AOCTaTOHHO UIHpOKHe KJiaCCbl KOMnaKTOB,' RJIR KOTOpblX M03KHO 
yKa3aTb HBHyio KOHCTpyKAHK) HHTepnojinpyion^ero onepaTopa. OTMCTHM B 
CBH3H c 3THM cjieAyionj;ee npeAJiOMceHHe ßK. -ü . KaxaH, PI. KainiejicoH, CM. 
[11]): ecjie E — KaHTopoBCKoe MHOECCCTBO Ha oKpy^cHOCTH, TO KaacAaa 4>yHK-
IJHä / G C(E)} nocjie JIHHCHHOH HHTepnojumHH Ha CMCHCHMX HHTepBajiax 

=nonaAaer-=B= 

PÏ3 Apyrwx npHjio^ceHHH HepaßeHCTBa (6) OTMCTHM pe3yjibTaT C. B. 
KncjiÄKOBa, AaiomHH TOHHyio ou,eHKy HopMbi onepaTopa «HcnpaBjieHHfl» B 
CMbicjie MeHbinoBa. 

TEOPEMA 7 [15]. RJISL JHO6Oü $yHKU,mi f G C(T) H jno6oro e > 0 cy-

mecTByeT <j)yHKu,Hx F, oTJiHHHasi OT f na MHoxcecTBe Mepbi < e, npnnëM 

BbinojiHxeTcx HepaBeHCTBO: \\F\\u < Kln(l/e)\\f\\C(T)-



r0ME0M0P4>M3MbI OKPŷ CHOCTM M P^AW *yPbE 983 

MeTOA MeHbiuoBa AaëT He onTHMajibHyio ou,eHKy: \\F\\u < l f ( l / £ ) | | / | | c , 
HO 3aTO OH npeATjHBJiaeT npo3paHHyio KOHCTpyKu,Hio HcnpaBjiHion;ero one
paTopa (CM. [2, 21, 30]). 

4. roMeoMop<j)H3Mbi oKpy^CHocTH H ajireSpa A(T). 

I. TeopeMa najia-Bopa, npHBeAeHHaa BO BBCACHKH, noKa3biBaeT, HTO 

npHHaAJiê CHOCTb Beiu,ecTBeHHOH HenpepbiBHOH (JiyHKu,HH / npocTpaHCTBaM 

U HJIH AP) p > l , He HaKJiaAbiBaeT Ha Hee c TonojiornnecKOH TOHKH 3peHHH 

HHKaKHX orpaHHHeHHH. AHajiorHHHaH 3aAana RJIX p = 1 öbijia nocTaBjieHa 

H. H. JIy3HHbiM (CM. [2, CTp. 306]). PenieHHe öbijio nojiyneHo B Hamen 

paÔOTe [23]. OKa3ajiocb, HTO cymecTByeT TonojiorHnecKHH HHBapnaHT, 

cnocoßHbiH pa3jiHHaTb KJiaccbi C(T) H A(T). OH yHHTbiBaeT xapaKTep 
OCAHJIJIHÎ HH (J)yHKU,HH B JieBOH H npaBOH nOJiyOKpeCTHOCTHX npOH3BOJIbHOH 

TOHKH. OcHOBHyio pojib HrpaeT cjieAyioiAHH (J)aKT: ecjii* F npeRCTaßjiaeT 

coÖoit BbicoKonacTOTHoe ÖHeHne CRHHHHHOPL aMnjmTyRbi npn t > 0, H aH-

HyjmpyeTcx npu t < 0, TO \\F\\A(T) Hen36e>KHO BejiHKa, npnneM oneHKa 

CHJf3y 9TOÜ HOpMbI 3aBHCHT TOJIbKO OT HaCTOTbl. ToHHafl (J)OpMyJIHpOBKa 

TaKOBa (CM. [24, jieMMa 3.3]): nycTb B HeKOTopoß 7-OKpecTHocTH Hyjia 

4>yHKUHH F HMeeT BHA: 

smNg(t) 0<t<7, 
0 - 7 < t < 0, 

rpfi g — npoH3BOJibHaa CTporo BOspacTaaiomaH fyyuKujAR Ha [0,7], #(0) = 0, 

9(l) = K. TorAa BbinojiHaeTCfl HepaBeHCTBO: 

w-{; 

\\F\\Am>K\ifN. (7) 

rp\e K H a — aÖcojiiOTHbie nojio^CHTejibHbie nocToaHHbie. 

CTOHT 3aMeTHTb, HTO eCJIH BbIXOA Ha Hyjib npOHCXOAHT B pe^cHMe 

3aTyxaiomHX KOJieöaHHH, TO 3(})<})eKT TepaeTCÄ. HCHO, HanpHMep, HTO 

4>yHKi;H5i FN(ì) = a(t)smNt rjiß a(t) — HHAHKaTop OTpe3Ka [6,ir — 6], 

jiHHeßHO HHTepnojinpoBaHHbiH Ha ynacTKax [0,6] H [IT —6,ir], yAOBJieTBopaeT 

OAeHKe ||.FV|U(r) <K(6). 

OTMeTHM, HTO OIjeHKH CHH3y RJIB. BeJIHHHHbl ||e*N9f||,4 B03HHKaK)T npH 

HCCJieAOBaHHH aBTOMop(j)H3MOB ajireöpbi A(T)\ B nacTHocTH, A-na rjiaAKHX 

HejiHHettHbix g OHH ocHOBaHbi Ha jieMMe BaH Aep KopnyTa. OAHaKo, 

B OTjiHHHe OT (7) 3TH oijeHKH HOCHT acHMnTOTHHecKHH xapaKTep no TV 

npn 4>HKCHpoßaHHOH g\ HaM TKe HeoÖxoAHMa HMeHHo paBHOMepHOCTb no 

g. BaMCHyio pojib B AOKa3aTejibCTBe HepaBeHCTBa (7) HrpaeT aHajiorna c 

MeTOAOM n . K03Ha OU,eHKH Li-HOpM 3KCnOHeHU,HaJIbHbIX CyMM [16]. 

HepaBeHCTBO (7) npHBOAHT K TeopeMe, Aaiomen OTBCT Ha 3aAany JIy3HHa: 

TEOPEMA 8 ([23], noApoÔHee CM. [24]). CymecTByeT BeuißCTBeHHaa (fryHK-

AJfji / G C(T)j oOJiaxaiomax TeM CBOHCTBOM, HTO cynepno3Hu,Hx eë F = fo(p c 

npoH3BOJibHbiM roMeoMop4>H3MOM tp oKpyxcHocTH T na ce6x He npHHaRJieTKHT 

ajireÔpe A(T). 
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OyHKAHH / , KOTopyio Mbi cTpoHM, HMeeT MOAyJit HenpepbiBHOCTH nop^AKa 
0 ( l n l / o ) _ a . HeH3BecTHO, B KaKon Mepe 3Ta rjiaAKocTb 6jiH3Ka K MaKCH-
MajibHO BO3MO?KHOH; B nacTHocTH, He HCKJUOHCHO, HTO rëjibAepoBbi (J)yHKu1HH 
nocpeACTBOM HaAJieaEcameH 3aMeHbi npHBOAHTca B A(T). 

2. napajiJiejibHo c Hametî paôoTott [23] >K-n. KaxaH H M. KainiejicoH 
[12] pa3BHjiH ApyroH noAXOA K npoßjieMe JIy3HHa, no3BOJiHBniHH, BnponeM, 
nojiyHHTb jinmb cjieAyioiAHH pe3yjibTaT: cynjecTByeT napa Bem;ecTBeHHbix 
4>yHKn,HH / i H f2ì He npHBOAHMbix B A(T) OAHOBpeMeHHO OAHOH H TOH ace 
3aMeHOH nepeMeHHOH. 3 T O T noAXOA ocHOBaH Ha cjieAyioiAHx cooopaaceHHJix: 
«njioxne» 4>yHKqHH MoryT npHBOAHTbca B A(T) TOJibKo c noMoiAbio BecbMa 
HerjiaAKHx 3aMeH; oAHaKO, TaKHe 3aMeHbi BWBOAHT «xopomne» 4)yHKU,HH H3 
3Toro npocTpaHCTBa (noAPOÔHee CM. [11, 24]). 

HHTepecHO, HTO STOT pe3yjibTaT (H npHBOAHiAHe K HeMy coo6pa»ceHH5i) 
coxpaHHK)TCH npn Majibix B03Mym;eHHHx KJiacca A(T). OnepeAejiHM AJIA 
3aAaHHOH HHCJiOBOH nocjieAOBaTeJibHocTH e(n), ra G Z, KJiacc <J3yHKn,HH 

A . = {F: £ | £ ( n ) e ( n ) | < o o } . 

TEOPEMA 9 (KaxaH, KaijHejicoH, CM. [11, 24]. CymecTByeT nocjienoBa-

TejibHOCTb e(n) —> 0 (\n\ —> oo) M napa BeuißCTBeHHbix djpyHKu^nîï fi,f2 G C(T), 

He npuBORHMbix ORHHM H TeM xce rOMeOMOp4>M3MOM cp B KJiacc A£. 

B TO ace BpeMH TeopeMa 8 c STOH TOHKH 3peHHfl oKOHHaTejibHa H 
He AonycKaeT noAOÔHoro ycHjieHHa. 3TO cjieAyeT H3 pe3yjibTaTa, npn-
HaAJieacam;ero A. A. CaaKjmy: 

TEOPEMA 10 [26]. Ran jnoôott nocjienoBaTeiibHOCTH {a(n)} £ h(N) 

(npn MHHHMajibHbix ycjiOBHxx peryjixpHOCTH) H RJIR JIIOôOH BeuiecTBeHHoit 

<fryHKU,HH f G G(T) cymecTByeT roMeoMop<pH3M (p, TaKoit, HTO F = f o ip 

yROBjieTBopxeT ycjiOBMio F(n) = 0(a(\n\)). 

HTO KacaeTca KJiacca U, TO B Hero MOECHO OAHOBpeMeHHO npHBecTH He 
TOJibKo napy 4>yHKu,HH, HO Aaace JIIOöOH KOMnaKT npocTpaHCTBa C(T). 

TEOPEMA 11 (KaxaH, Kaii,HeJicoH, 1978, CM. [11]). Run Jiioöoro MORyjiz 

HenpepbiBHOCTH LJ MOXCHO yKa3aTb roMeoMop4>H3M (p OKpyxcHOCTH, TaKon HTO 

fo<peU npn Bcex f G H". 

IIocjieAHHe Äße TeopeMbi ocHOBaHbi Ha HACHHO 6JIH3KHX coo6paaceHH5ix, 

HanoMHHaioiAHX MCTOA HcnpaBjieHHa MeHbmoBa. 
__BbIJIO=i)bl-„HH^epe_CHO_.BbIJLCHHTb^^ 
K03(J)(})HAHeHTHoro ycjiOBHa: f°p(n) = o ( l / |n | ) , o6ecneHHBaiom;ero npn-
HaAJieacHocTb npocTpaHCTBy U(T). 

5. Pojib cHHryjHipHbix roMeoMop(J)H3MOB. 3aMeHa nepeMeHHOH cTHpaeT 
rpaHb, OTJiHHaK>m,yK) (fryHKAHio KJiacca A^(T)y p > 1, OT npoH3BOJibHon 
HenpepbiBHOH. 0Ka3biBaeTca, OAHaKO, HTO STOT 3(j)4>eKT HOCHT HHCTO Tono-
jiornHecKHH xapaKTep. MeTpnnecKaH CTpyKTypa 4)yHKU,HH noA ACHCTBHCM 
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«yjiynmaioiAero» roMeoMop(J)H3Ma B o6m,eM nojioaceHHH HeH3Ôe»CHo HCKa-
acaeTCH. 

roMeoMop(})H3M (p Ha3biBaeTCH CHHryjixpHbiM, ecjin OH nepeBOAHT HeKO-
TOpoe MHOMCeCTBO nOJIHOH Mepbi B MHOMCeCTBO Mepbi Hyjib. 

TEOPEMA 12 [24]. 1. J\JISI KayKRoro p G [1,2[ MOTKHO yKa3aTb (pyHKU.Hio 

f, npHHaßJiexcauiyio KJiaccy Tejib^epa e KPHTMHCCKHM noKa3aTejieM a(p) (3) 
Taicyiö, HTO ecjin f o cp G AP(T), TO roMeoMop4>H3M (p — CHHryjixpHbift. 

2. CymecTByeT (pyHKiiHx f G C(T)} cynepno3HUHx KOTopoft e JIIOOMM 

HecHHryjixpHbiM roMeoMop$H3MOM oOjiaßaeT ocoöeHHocTbio KapjieMaHa. 

9TOT pe3yjibTaT HACHHO 6JIH30K TeopeMaM §2; AOKa3aTejibCTBo ocHOBaHO 

Ha cooTBeTCTByioni,eH MOAH(})HKan,HH Hcnojib30BaHHoro TaM MeTOAa. MOMCHO 
ocym,ecTBHTb CHHTC3 ynoMHHyTbix pe3yjibTaTOB. CKaaceM, HTO (^HKAHH / 
H g, onpeAeJieHHbie Ha OKpyacHOCTH, conpnTKeHbi, ecjin MOIHCHO yKa3aTb KOM-
naKTbi F,G C T nojioacHTejibHOH Mepbi H HecHHryjiapHbiH roMeoMop(})H3M 
ip; F —> G TaK, HTO BbinojiHHeTCH paBeHCTBo: / \p= go (p. 

TEOPEMA 13. 1. ßjix KaTKRoro p G [1,2[ cymecTByeT (fryHKixHn f G 
Ha(p)(T), He conpxTKeHHasi HH C KaKoit (pyHKi^Meit KJiacca AP(T). 

2. CymecTByeT f G G(T) TaKax, HTO KaxcRax conpxxceHHax c Heft $yHKu,Hx 

oöJiajiaeT ocoÖeHHOCTbio KapjieMaHa. 

OcTaeTca OTKpbITbIM Bonpoc, TaK^ce yKa3aHHbin JIy3HHbiM (CM. [2]): 
MODKHO JIH npoH3BOJibHyio / G C(T) npHBecTH B U(T) nocpeACTBOM a6-
cojiiOTHO HenpepbiBHoro roMeoMop(|)H3Ma. üojioHCHTejibHbiH OTBCT KaaceTCH 
6ojiee BepoHTHbiM. 

6. HHBapnaHTHbie noAMHoacecTBa. npeACTaBJiaeT HHTepec onncaHHe HH-
BapnaHTHbix nacTen paccMaTpHBaeMbix <J)yHKn,HOHajibHbix KJiaccoB, T.e. co-
BOKynHOCTH 3JieM6HTOB, OCTaiOIAHXCfl B 3aAaHHOM KJiaCCe npH ACHCTBHH 
JIK)6orO rOMeOMOp(})H3Ma OKpŷ CHOCTH. PÏHblMH CJIOBaMH, penb HAeT 06 
HeyjiynmaeMbix ycjiOBHHX npHHaAJieiacHOCTH 4)yHKu,HH AaHHOMy KJiaccy, 
BbipaaceHHbix B TonojiornnecKH HHBapnaHTHbix TepMHHax. B OTHomeHHH U 

3Ta 3aAana pemeHa A. EepHuiTeftHOM H J[. BaTepMaHOM [3] B TepMHHax rap-
MOHHHecKOH BapHanjHH. JlerKO noKa3aTb, HTO HHBapnaHTHafl nacTb ajireöpbi 
A(T) — TpHBHaJIbHa: COCTOHT H3 KOHCTaHT. J[jl5l KJiaCCOB Ap, HJIH Ap, p > 1, 
Bonpoc He pemeH. 

noAOÔHbie Bonpocbi MoryT 6biTb coAepacaTejibHbi H RJIR APyrnx KJiaccoB 
4>yHKAHH H RJIR APyrHX rpynn npeo6pa30BaHHH. B nacTHocTH, 0 . J[. 

LJepeTejiH [31] H3ynaji «nepecTaHOBKH» (J>yHKij,HH, T.e. yHHTapHbie onepaTopbi, 
OTBenaioiAHe oöpaTHMbiM coxpaHHiom,HM Mepy OToÖpaaceHHHM oKpyacHocTH 
Ha ceÔH. OAHH H3 ero pe3yjibTaTOB COCTOHT B TOM, HTO HHBapnaHTHaH nacTb 
KJiacca ReH1^) (H1 — KJiacc XapAn) no OTHOIUCHHIO K yKa3aHHOH rpynne 
onepaTopoB coBnaAaeT e KJiaccoM L l n + L. MuTepecHoe MeTpHHecicoe ycjioBHe 
B03HHKaeT npn onncaHHH HHBapnaHTHOH nacTH AonojiHeHHH npeAbiAymero 
KJiacca AO L(T). 
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OTMCTHM enje cjiejiyioiAHtt pe3yjibTaT A. B. ryjiHcauiBHJiH [8]: KaacAaa 
4>yHKAHfl / G L(T) MoaceT 6biTb npHBeAeHa B KJiacc f]p>2Ap(T) «nepe-
CTaHOBKOH», TOHCACCTBeHHOH BHe MHOMCeCTBa MaJIOH Mepbi. 

K 3TOMy >Ke Kpyry OTHOCHTCH Bonpoc o cooTHomeHHH TonojiornnecKHX 
H AH(})<})epeHij,HajibHbix CBOHCTB «jjyHKAHH. A. BpyKHep H K. To^Mau BnepBbie 
paCCMOTpeJIH BOnpOC OO yCJIOBHJIX npHBOAHMOCTH (})yHKAHH nocpeACTBOM 

roMeop(})H3Ma OKpyDKHocTH B KJiacc G1^). 0Ka3ajiocb [4], HTO AJIH 3Toro 
HeoÔxoAHMO H AOCTaTOHHO BbinojiHeHHe cjieAyiomnx AByx ycjiOBHti: 

1° / HMeeT orpaHHHeHHyio BapnaAHio; 

2° / -o6pa3 MHOHcecTBa KPHTHHCCKHX TOHCK Ef HMeeT Mepy Hyjib. (no 
onpeAejieHHK) to E Ef, ecjin / He HBJIäCTCH nocTOHHHOH HJIH CTporo MOHO-

TOHHOH HH B KaKOH OKpecTHOCTH *o-) 06o6njeHHe Ha APyrne KJiaccbi 
rjiaAKOCTH nojiyneHO B. B. JleöeAeßbiM [18]. üpHBeAeM ero pe3yjibTaT, 
BnepBbie onyöJiHKOBaHHbift B [24]. 

TEOPEMA 14. <PyHKU,Mx C(T) npHBopjATcsi nocpepfiTBOM roMeoMop<j)H3Ma 

B KJiacc Ck(T) (HaTypajibHoe k — $HKCHpoBaHo) ecjiM H TOJibKo ecjin Bbinoji-

HeHO npexbixymee ycnoBne 2° n ^ lu^l1/* < oo, rue wv — KOJieÔaHH^ f Ha 

CMe>KHbix c Ef HHTepBajiax. B cjiynae, ecjin STO HMeeT MecTo npn Bcex k, 

(fryHKU^HX f npHBORHTCa B G°°. 

AHajiorHHHbiH pe3yjibTaT He3aBHCHMO nojiynnjin M. JlamKOBHH H J\. 

npeflc [17]. 

MHTepecHo 6bijio 6bi HatîTH MHoroMepHbie aHajiorn STHX pesyjibTaTOB. 
BO3MOXCHO, HTO STO 3aAana CBÄ3aHa c MeTOAaMH A. C. KpoHpoAa-A. T. 

BHTymKHHa, CM. [7]. 

7. 0 6 opToroHajibHbix pa3JioxceHHJix. 

1. OAHH H3 HToroB pa3BHTHH TeopHH opToroHajibHbix P^AOB 3a nocjieA-
HHe 25 JieT COCTOHT B 6ojiee oTnëTJiHBOM oco3HaHHH rpaHH, oTAejiJiioiAeH 
oôiAHe 3aKOHOMepHOCTH, npncyiAHe ßceM nojiHbiM HJIH BceM orpaHHHeHHbiM 

OpTOHOpMHpOBaHHblM CHCTeMaM (JjyHKIliHH (OHC), OT APy™X CBOHCTB, TAe 
B03M0HCHbi, noA^ac, Heo^CHAaHHbie KOHTpnpHMepw. TaK 6bijio ycTaHOBjieHO, 
HTO OHC \Pn He MoxceT 6MTB paBHOMepHO orpaHuneHa OAHOBpeMeHHO co 

CBOHMH (fryHKiiHXMH JleÔera Ln (OJICBCKHH, 1965). TonHee, ecjin 

\pn(x)\<K, (8) 

TO Ha HeKOTopoM MHOxcecTBe nojioyKHTejibHOti Mepbi BbinojiHxeTCx COOT-

HomeHHe 

firn £n(x) = œ. (9) 
n—>oo 

3 T O 03HanaeT HeB03MOHŒocTb orpaHHHeHHOH OHC, AocTaBJiaiom;eH Kâ cAOH 
HenpepbiBHOH (])yHKAHH BCiOAy cxoAfliAeeca pa3JioHceHHe <E>ypbe, HJIH KaxcAOH 
(J)yHKAHH KJiacca L — pa3JioEceHHe, cxoAaiAeeca B cpeAHeM. HyTb no3>Ke 
(1966) HaMH ôbijia AaHa TOHHaa ou,eHKa CKOPOCTH pocTa 4>yHKU,HH JIe6era 
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paBHOMepHO orpaHHHeHHbix OHC: RJIR ÖecKOHenHO MHornx n BbinojiHaeTca 
HepaBeHCTBO 

Cn(x) > a Inn (Vz G E, mes E > 0). (10) 

OHa AaeT ou,eHKy CHH3y CKOPOCTH pacxoA»MocTH PHAOB <l>ypbe no CHCTeMaM 
(8). OAHaKO, B OTJiHHHe OT TpnroHOMeTpHHecKoro cjiynan, cooTHomeHHe (10) 
He BJienëT 3a CO6OH cooTBeTCTByiouiett rjiaAKocTH 4)yHKii,HH c pacxoAHiAHMca 
pHAOM <J>ypbe: MO^CHO nocTpoHTb nojiHyio paBHOMepHO orpaHHHeHHyio OHC, 
AOCTaBJiHK)in;yK) KaiacAOtt 4)yHKH,HH, npHHaAJie^amen HanepeA 3aAaHHOMy 
KJiaccy iJ w , paBHOMepHO cxoAam,eecfl pa3jio^ceHHe. noApoÖHo 06 STHX 
pe3yjibTaTax CM. [21, rji. 1]. 

3Ta TeMa B AaJibHeftnieM pa3BHBajiacb APyrnMH aBTopaMH (C. B. BoHKapeß, 
C. IIIapeK, >K. ByprettH H AP-)- B nacTHocTH, nepBbift H3 HHX noKa3aji (1975), 
HTO HepaBeHCTBO (9) BMecTe c MCTOAOM A. H. KojiMoropoBa nocTpoeHHa 
pacxoAHni;HxcH p5iAOB Oypbe no3BOJiHeT CTpoHTb no CHCTeMaM (8) pnRhi 

KJiacca L, pacxoAHiAHeca Ha MHO^cecTBax nojioiacHTejibHoft Mepbi. 

fljifl nojiHbix OHC ÖbiJi pa3BHT noAXOA, ocHOBaHHbifi Ha HeKOTopbix 
cneAHajibHbix CBOftCTBax KJiaccHnecKoft cncTeMbi Xaapa Xn- BnepBbie 
OH ÖbiJi anpoÖHpoBaH npn AOKa3aTejibCTBe HCBO3MOMCHOCTH nojmoft OHC 
6e3ycjiOBHOH CXOAHMOCTH (OJICBCKHH, YjibaHOB, 1961). B AaJibHeftnieM 
oÔHapy^cHJiacb SKCTpeMajibHaa pojib cncTeMbi Xaapa cpeAH Bcex nojiHbix 
CHCTeM. Tpy6o roßopa, HaMH 6biJio noKa3aHo (1966), HTO ecjin B HeKOTopoM 
KJiacce (JiyHKAHH, HHBapnaHTHOM oTHOCHTejibHO coxpaHÄK>ni,Hx Mepy npe-
o6pa30BaHHH OTpe3Ka, HMeeT MecTo HeKOTopoe HBJieHHe pacxoAHMOcTH p«Aa 
Oypbe, TO TaKoe HBjieHHe HeH30e»CHo AJia JHO6OH nojmoft OHC, CM. [21, rji. 3]. 
3TOT pe3yjibTaT HMeeT psA npHjio^ceHHH (OAHO H3 HHX — npHBeAeHHaa Bbime 
TeopeMa 4). noAXOA, ocHOBaHHbitt Ha CHCTeMe Xaapa, 6biji BnocjieACTBHH 
(1973) npHMeHeH O. I \ ApyTiOHHHOM B 3aAane npeACTaBJieHHji H3MepHMbix 

(J>yHKII,HH nOHTH BCiOAy CXOAHIAHMHCH pHAaMH; HM 6bIJI BbiAejieH mnpoKHH 
KJiacc OHC, BKjiiOHaioiAHH KJiaccHHecKHe cncTeMbi H Hx nepecTaHOBKH, 
AJiH KOTopbix 3Ta 3aAana HMeeT nojio^CHTejibHoe pemeHHe. B TO ^ce 
BpeMH cymecTByeT npHMep nojmoft OHC, RJIB. KOTopoft TaKoe npeACTaBJieHHe 
HMeiOT jinmb (})yHKAHH KJiacca L2 (B. C. KamHH, 1977). OTMCTHM em,e, HTO 
CBOHCTBO «ecjiH PHA Oypbe <j)yHKAHH / no nojiHOH OHC CXOAHTCH noHTH 
BCiOAy, TO cyMMa ero paBHa / » MoaceT HapymaTbcn B npocTpaHCTBax, nyTb 
pacuinpaioiAHX L2 [21, rji. 4]. 

2. HeKOTopbie pe3yjibTaTbi, npHBeAeHHbie B AOKJiaAe, TaK^ce MoryT 
npeACTaBHTb HHTepec c TOHKH 3peHH« BO3MOMCHOCTH HX pacnpocTpaHeHHH 
Ha 6oJiee HJIH MeHee o6mHe KJiaccbi OHC. nycTb 

^ = {/;(/,*n)eU-
/JncKpeTHaa 3aAana HcnpaßjieHHH (§2), He npeAtaBjiaa HHKaKHx TpeöoßaHHft 
K B3aHMHOMy pacnojioaceHHio 6a3HCOB, HaBOAHT Ha Mbicjib, HTO aHajiorn 
TeopeM 2, 3 cnpaßeAJiHBbi B 6onee oÔnjeft CHTyaAHH. B nacTHOCTH, HeTpyAHO 
pacnpocTpaHHTb STH TeopeMbi Ha CHCTeMy Yojima H 6JIH3KHC K Heft. JXJIR 
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cncTeMbi Xaapa cooTBeTCTByioiAne aHajiorn Ha ocHOBe 6ojiee npocToro 
noAxoAa 6bijiH em;e paHbme nojiyneHbi K). C. <Ï>PHAJIHHAOM [29]. C APyron 
CTopoHbi, cymecTByeT npnMep A. A. TajiajiHHa (1964) nojiHoft OHC \P, 
no KOTopoH KaiHCAaa (fcyHKujHH HcnpaBHMa B KJiacc Af. TaKoft npnMep 
M05KHO OpraHH30BaTb H3 paBHOMepHO OrpaHHHeHHblX TpHrOHOMeTpHHeCKHX 
nOJIHHOMOB [29]. BbIJIO 6bl HHTepeCHO BblAeJIHTb AOCTaTOHHO OÖlAHft KJiacc 
OHC, AJifl KOTopbix HMeiOT MecTO TeopeMbi o «HencnpaBHMOCTH». CjieAyeT 
OTMeTHTb, HTO HenpepblBHbie (J)yHKAHH C KapjieMaHOBCKHMH OCOOeHHOCTÄMH 

cynjecTByiOT no JIIOÖMM nojiHbiM OHC (OJICBCKHH, 1961). TaKxee AJIä TaKHX 

CHCTeM KJiaccbi Ha(pi He BjioaceHbi B Ap (B. C. MHTHPHH, C. B. BoHKapeß, 
1964). 

B oTHomeHHH 3aAaHH JIy3HHa o roMeoMop<})H3Me OTMCTHM, HTO AJia 
cncTeMbi xapaKTepoB rpynnbi p-aAHHecKHx uejibix nnceji cooTBecTByioiAHH 
aHajior STOH 3aAann HMeeT nojio^CHTejibHoe pemeHHe (M. TaTecyn [32]). 

n o noBOAy TeopeMbi 12 3aMeTHM, HTO He HCKJiioneHa BOSMODKHOCTB ee 
pacnpocTpaHeHHH Ha jnoßbie nojiHbie OHC. 

Bonpoc o roMeoMop(J)H3Max, AencTByioiAHX B KJiaccax Av, noBHAHMOMy, 
He HCCJieAOBajiCH AJIA CHCTCM, OTJIHHHWX OT TpnroHOMeTpHHecKoft (B nacT-

HOCTH, AJIä cncTeMbi Xaapa). n . JI. YjibHHOB, ocynj;ecTBHBmHft, HaHHHaa c 
60-x roAOB, mnpoKoe HCCJieAOBaHHe CBOHCTB CHCTCMW Xaapa, H3yHHji Bonpoc 
o BHeuiHHx cynepno3HAHHx, ACHCTBVIOIAHX B KJiaccax A\. OH AOKa3aji [28], 
HTO (fryHKAHfl $ : R —• R oôjiaAaeT TeM CBOHCTBOM, HTO f€A*=>$of€Ai 

ecjin H TOJibKo ecjiH OHa jinnmHAeBa. 3 T O ycjioBHe cynjecTBeHHO cjiaßee 
(jiOKajibHo) ycjiOBHH aHajiHTHHHOCTH, (JwrypHpyioiAero B cooTBeTCTByiom,eft 
TeopeMe n . JleBH-M. KaAHejicoHa, oTHocaiAenca K A(T). YjibaHOB npeA-
nojio^cHJi, HTO AaJibHeftmee ocjiaÖJieHne ycjiOBHH Ha $ HCBO3MOECHO B KJiacce 
nojiHbix OHC; STO corjiacyeTca c ynoM5myTOH Bbime sKCTpeMajibHOH pojibio 
cncTeMbi Xaapa. 
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Generalizations of Fatou's Theorem 

THOMAS H. WOLFF 

By Fatou's theorem we mean that a positive harmonic function on the unit 
ball B C R n has radial limits almost everywhere. It is tempting to try to 
generalize this result to other elliptic equations, and we will describe what is 
known along these lines for equations with bad coefficients and certain nonlinear 
equations. 

1. Linear equations. Consider, e.g., a divergence-form elliptic equation 
Lu = dìv(AVu) = 0 where A: B —• positive symmetric n x n matrices is 
measurable. Suppose L is uniformly elliptic on compact subsets of B (by uni
formly elliptic we mean here that the eigenvalues of A (x) are bounded from 0 
and oo independently of x). Suppose also that the Dirichlet problem is solv
able with continuous boundary data. For fixed z G B one can then define 
harmonic measure UJZ by the rule fdBudu)z = u(z) when u is continuous on B 
and Lu — 0 on B. For two different 2's the corresponding c^'s are boundedly 
absolutely continuous to each other by (Moser's) Harnack inequality, and the 
density Kz = du)z/du)Q: dB —• R + is called the kernel function. 

In many cases it is possible to prove a result of the following type: if u: B —• 
R + and Lu = 0 then limr_>i u(rz) exists a.e. (du). This result has been 
proved, e.g., for equations uniformly elliptic on B by Ancona [1], Caffarelli-Fabes-
Mortola-Salsa [5], and for the Laplacian of a metric with curvature bounded 
between two negative constants by Anderson-Schoen [3]. (In the second case, 
coordinates should be chosen so that the geodesic spheres centered at 0 are Eu
clidean spheres.) Recently Ancona [2] has proved a very general version which 
includes all or most of the previous results. There are two parts to the arguments: 

(i) a representation formula, generally u(z) = f Kz(Q)dp(Q) for some posi-
tive measure p on dB\ 

(ii) an analysis of Kz leading to an L1(duJo) —• weak L1(duo) estimate for 
the radial maximal function Np(Q) = supr u(rQ), from which Fatou's theorem 
follows as in the classical case. 

The author is an Alfred P. Sloan Foundation Fellow. Research supported by National 
Science Foundation Grant DMS-84-07099. 
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All this is highly nontrivial; I'll just try to give the formal outline. For \z\ < 
r < 1 define also Kr

z = dul/du^ where ur
z is harmonic measure on \z\ = r 

for the Dirichlet problem for L on rB. Since u is continuous on \z\ < 1 it is 
immediate that u(z) = f\z\=r KT

zdpr where dpr — udu^. The pr are positive 
measures with mass u(0) so they have a w* cluster point as r —• 1. That 
means that the representation formula follows provided Kr

z(rQ) —* KZ(Q) for 
fixed z E B, uniformly over Q E dB as r —> 1. This convergence is proved 
in the above papers; the tool seems to be the boundary Harnack type theorem 
according to which two positive solutions vanishing continuously on an open set 
of dB must vanish at the same rate on any smaller open set. To prove the weak 
type 1 estimate, one defines also the Hardy-Littlewood type maximal function 
Mp(Q) = BiipD p(D)/u)o(D), where D denotes a surface ball (intersection of 
a ball with dB) centered at Q. Two estimates are then required: the doubling 
property UQ(2D) < Cuo(D), which implies by a standard covering argument that 
Mp E weakL1(dujo), and a suitable decay property of KZ(Q) as z moves away 
from Q in order to bound Np by Mp pointwise. Again we refer to the papers. 

If there is a natural measure dO on dB (e.g., Lebesgue measure, in the case of a 
uniformly elliptic equation) then one can try to prove the results with respect to 
this measure or to show, in other words, that du and d9 are mutually absolutely 
continuous. For the Laplacian on a Lipschitz domain, this is a famous result 
of Dahlberg. For general uniformly elliptic equations it is not true (see [4]; 
they pull back the Laplace equation in R2 by a quasiconformal mapping whose 
restriction to the unit circle is a singular homeomorphism of the circle to itself), 
but a theorem of Fabes- Jerison-Kenig [8] (also [6]) gives optimal regularity on the 
coefficients for it to hold. Formally speaking again, if the operators u(z) —> u(rz) 
are bounded in L2(dO) then du < dO with du/dO E L2, and the L2 boundedness 
is proved in [8] using, among other things, extensions of the techniques used 
for the Cauchy integral on Lipschitz curves. This even gives that du is an A^ 
weight with respect to dO, so dO < du also. In the setting of the Anderson-
Schoen results, one can make sense of the absolute continuity question by taking 
dO = geodesic angle at a fixed point p, at least if one knows that the different 
döp's are mutually absolutely continuous. For negatively curved two-dimensional 
surfaces with compact quotients the dôp's are absolutely continuous to each 
other, but usually they are all singular to du (communicated by A. Katok). 

Fatou-type theorems have also been proved for divergence-form parabolic 
equations taking limits as the time t —• 0. See references in [7]. In this case 
the parabolic measure is always absolutely continuous since the necessary L2 

bound is just the usual L2-decay for selfadjoint parabolic problems. 

2. Some nonlinear situations. We want to discuss counterexamples for 
the p - Laplacian Zvu = div(Vu|Vu|p~2) = 0, 1 < p < oo, p ^ 2. First we 
note that there is (at least) one nonlinear equation for which a Fatou theorem 
has been proved, the parabolic porous medium equation ut = diY(uk~1Vu) [7]. 
Comparing this equation with the p-Laplacian one sees why Lv should behave 
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worse. The porous medium equation remains uniformly parabolic except as 
u —• 0 or oo, so (especially since the parabolic meaure is absolutely continuous) 
one can hope to apply the linear theory and this is actually done in [7]. On 
the other hand, the p-Laplacian is far from uniformly elliptic if u behaves at all 
badly at the boundary. 

The following result is shown for p > 2 in [12] and for p < 2 by John Lewis 
[9]: there are bounded functions u: R+(= {(x,y) E R2: y > 0}) —• R with 
JßpU = 0 such that limy-+o u(x,y) exists almost nowhere. To prove this, one 
uses the principle that nontrivial a.e. convergence theorems are possible only 
when there is some sort of cancellation. This is seen clearly in the classical 
Khinchin theorem that a series Y^^k, ^k bounded iid's, {a^} E I2, converges 
almost surely when the {r^} have mean zero, but certainly not otherwise. For 
harmonic functions the cancellation is given by the mean value property. For 
the p-Laplacian the necessary cancellation fails by the following lemma [12, 9]: 
there are smooth bounded functions / : R+ —• R, Zvf = 0, 1-periodic in the 
first variable, and such that JQ f(x,0) dx =fi 0, l i m ^ - ^ f(x,y) = 0. One can do 
a type of rudimentary harmonic analysis with dilates of the functions / playing 
the role of characters: let (ß(x) = f(x,0). If Tn —• oo rapidly, then (because 
/ ( ^ / 0) there are series of the form a(x) = YlajIJj{x)(l>(J'jx)i iaj} ^ '2> 
11Z/j 11oo < 1, II-LJHLìPI < 2j'-i) which have bounded partial sums but diverge 
almost everywhere. For n < oo, let &n be the solution of the Dirichlet problem 
for Cp with boundary values the nth partial sum of the series a. The fact that 
f(x, y) —> 0 as y —• oo can be used to show that the an converge uniformly on 
compacts of R+. The limit function will be a solution of Jßp = 0 whose limiting 
behavior as y —• 0 is asymptotic to the series a, hence boundedly divergent a.e., 
thus finishing the proof. 

Attempts have been made to define harmonic measure for the p-Laplacian, 
although due to the nonlinearity of the equation one does not expect this set func
tion to be additive. The good approach seems to be that of Martio and cowork
ers (e.g., [10]) based on the Perron process: if Q is a domain and E C dQ then 
Up(E,z) = mi(u(z): tvu > 0 on fi, lim inf z_»# 11(2) > 1, lim inf z->dnu(z) > 0). 
In this context the construction of [12, 9] can be used to show that sets with full 
Lebesgue measure on the boundary of a half-space may have zero p-harmonic 
measure. On the other hand, it is not known whether radial limits exist almost 
everywhere with respect to p-harmonic measure. 

3. The Laplacian. Recently there has been work on absolute continuity 
-^an^Tingülärity properties"öf ̂ armonkrmeasure^ for the^I^teiäjTltFTlümäins^ 

worse than Lipschitz—in fact, completely arbitrary. The results are mostly due 
to Makarov ([11] and his article in these proceedings). When n = 2, harmonic 
measure always puts full mass on some set with a-finite one-dimensional Haus-
dorff measure, and in the simply-connected case it puts no mass on any set with 
dimension less than one. Partial results have been proved in higher dimensions 
by Bourgain. One could try to make sense of nontangential behavior on these 
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wild domains using the lines of steepest descent of the Green's function (I learned 
of this possibility from P. Jones) but apparently no results are known. 
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A Class of Markov Fields with Finite Range 

TAIVO ARAK 

1. Introduction. The theory of Markov random fields with continuous pa
rameter has been developed by Wong [10], Pitt [8], Molchan [4], and Rozanov 
[9] (for other references see, e.g., [9]). Interest in the theory especially increased 
after Nelson [5-7] had shown its connection with quantum field theory. Prom 
this new point of view the Gaussian case as studied before seems at present to 
be of less importance, as it corresponds to physical systems without interaction. 

One can get non-Gaussian fields from a Gaussian one by multiplying the 
corresponding probability measure by a multiplicative density functional (see [5, 
9]). And until quite recently this was the only way known, except for a small 
number of specific examples of other kinds. 

In this paper, construction is given which leads to Markov fields with finite 
number of values. The fields to be considered are defined on a bounded convex 
region T C R2, and they belong to a class of fields called polygonal, for their 
realizations having constancy domains of polygonal form. 

Some polygonal Markov fields can be extended to the whole plane R2 in such a 
way that the resulting field will be invariant under all Euclidean transformations 
of R2. But none of them satisfy another condition necessary for applications in 
quantum field theory, namely, the condition called by Nelson [6] the reflection 
property. Nevertheless this new class of fields may prove to be useful in other 
applications, if only because it contains isotropic fields—the property which is so 
often present in real physical situations, and which cannot be achieved in lattice 
models. 

Some particular cases of constructions to be dealt with (including those given 
in §4) have been published in [1] and [2]. In the present extent of generality 
the results have been obtained together by D. Surgailis and the author. The 
complete=proofs^wilUbe^publishedJn^[3]. 

2. Polygonal fields. 
2.1. The space of realizations. We define the main probability space fir (the 

space of realizations) as a set of functions of special type given on a bounded 
convex open domain T C R2 and taking values from a finite ordered set J. First 
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let Qy be the set of all measurable functions u\T —* J such that 

u(z) = inf lim sup{u(z') : \\zf - z\\ < e, z' E T \ X}, (1) 
J\. E—• U 

where the infimum is taken over all sets X C T with Lebesgue measure 0. For 
any functions u E UT consider the set du C T of discontinuity points: 

du = {z E T: lim sup CJ^') ^ lim inf u(z')}. 
z'~+z z ~~¥Z 

Let £ T be the set of straight lines I C R2 which have nonempty intersection with 
T, and let £Ç. be the n-fold direct product of £r with itself. For (/i,. . . , Zn) E £y 
consider the subset flr(Zi,.,.,/n) c f l r consisting of all functions u such that 
there exist closed intervals [k] C k (i = l , . . . ,n) with positive length and 
satisfying the following conditions: 

(ul) [k] C T, where T is the topological closure of T. 
(w2) du = Ur=iM HT. 
(u3) If i ^ j but k = Iß, then [k] n [/,-] = 0. 
The set f2r(/i,..., ln) is obviously finite. For n = 0 it consists of constants: 

u(z) = const E J. We set 

4n )= (J fir(/i,...,*n), 
(«1 *n)€£î 

OO 

nr = |J n£°. 
n=0 

A typical realization a; G (ÏTihifaifaih) is represented in Figure 1. 

FIGURE l 

A topology in the set fir may be introduced in a natural way, for example 
defining a distance d(u,uf) between two elements u E fi^ an(^ w ' e ^ r by 
setting 

d(u,ul) — meas{z E T\ u'(z) ^ w(z)} 
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if n = m and 
d(u,u') = -foo 

iin^m, where meas (•) is the Lebesgue measure. Let © T be the Borei (T-algebra 
corresponding to this topology. 

REMARKS. 1. The condition (1) is needed for the uniqueness of definition of 
u on discontinuity lines. 

2. It is easy to see that the set Azj = {u: u(z) < j} is open and therefore 
measurable. 

2.2. The probability measure. Let p = p(dl) be a measure in the space of 
straight lines I C R2 finite on compacts. First, for the sake of simplicity we shall 
assume that p, has no atoms. For fixed T and p we introduce the class $ r ^ of 
all measurable functions F: fir —• R U {+00} such that 

zT=zT>F,„ = jr[/{dh)y^ J: e-'M<». (2) 
n=QJ^T n' «ef l rp i I») 

Further on the functions F E $T,H will be called potentials. 
DEFINITION l. The polygonal field corresponding to JJ, and F is the proba

bility measure PT = PT,F,/X on ( f i r ^ r ) with 

PT(A) = Zj1jri[n
fi{dll)^l

tl{dln) £ e-W (3) 

for any A E Q5T-

REMARKS. 3. If jw is allowed to have atoms, the denominator n\ in (2) and (3) 
must be replaced by the quantity K(1\,. ..,ln) defined as the number of different 
sequences which can be obtained from the sequence (h,..., ln) by permutation 
of its elements. For example, 

9! 
K(l,l,t,l,l ,1 ,1 ,1 ,1 ) = .j j 

if I, V, I" are different. 

3. Additive potentials and Markov property. For S C R2 and e > 0, 
we denote by (S)£ the ^-neighborhood of S, by dS the topological boundary of 
S, and by VBT(S) the a-algebra generated by the random variables {u(z)}zesnr-
A function F: fir —> R U {+00} is said to be additive if for any S C T and for 
any e > 0 there exist two functions Fi(u) and F2(u) measurable with respect to 
©r((S)e) and <&T((T \ S)e) correspondingly, with F = Fx+ F2. 

THEOREMS. A polygonal fieldrcorrespondirfg to an additive~potential~sat=-
isfies the Markov property 

PT^M\^T((T \ S)£)) = PTiFA^T((dS)£)) 

for anyScT,e>0,AE ® T (S) . 

REMARKS. 4. The assertion of Theorem 1 may be made more accurate, as 
follows. Consider the tr-algebra ^(dS) C çE>T((dS)e) generated by the random 
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variables {u(z)}Z£dSnT^)Oii,... ,au, where v is the number of intervals [k] 
forming the discontinuity set du and intersecting dS D T; a±,..., av are the 
angle between these intervals and the y-axis. Then under the conditions of 
Theorem 1 

PTìFAA\*T(T \ S)) = PT)iJ>(A|<8°(dS)) 

for any AE<&T(S). 

4. Consistent fields. Let 0 be a family of bounded convex regions T C R2 

including a subsequence Tn / R2. A family of probability measures ( P T ) T G ö 

defined on (fir,QSy) is said to be consistent if for any S,T E& such that S C T 
and for any A E 95g the equality Ps(A) = Pr(7r^1A) is valid, where ITS is the 
restriction operator from fij- onto fig. By Kolmogorov's theorem any consistent 
family defines a random field on the whole plane R2. 

In this section we give a simple example of a consistent family of Markov fields 
with two values, which in addition admits a simple formula for ZT-

We introduce the following parametrization of the straight lines I on the plane 
R2 = {(t,y):t,yER}: 

l = l(p,a), ( p , a ) e R x [ 0 , 7 r ) , 

where p is the alternating length of the perpendicular from the origin to I and 
a is the angle between this perpendicular and the abscissa-axis (i-axis). 

Let 

ßo(dl) = dp da, (4) 

J = {0,1}, and let (So be the family of bounded convex polygons. Consider the 
additive functional 

F0(u) = 2L(du), (5) 

where L(-) is the length. According to Theorem 1 the field PT.FO,/^ (if it exists) 
is Markovian. 

THEOREM 2. (a) The polygonal field PT,F0,/ìO corresponding to ßo and FQ 

defined by (4) and (5) exists for any T E ©o-
(b) ZTtFhìll0 = 2exp{L(dT) +7rmeas(T)}. 

(e) The family {PT}TE®0 is consistent. 
(d) The corresponding field on R2 is homogeneous and isotropic, its restriction 

to any straight line I is a Markov process, and the constancy intervals of this 
process have exponential distribution with parameter 2. 

The field PT,F0,IIO admits a simple description in terms of evolution of a 
system of one-dimensional particles in space-time region T C {(t,y): t,y EU}. 
In subsequent description the ^-coordinate will be interpreted as time and the 
^-coordinate as spatial. 

We shall call a particle a point moving on R with piecewise constant speed. We 
shall assume that the evolution of the speed is a Markov process with probability 
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of jumping from the state v during the time dt to the set du equal to 

\u — v\ 
q(v, du) dt = 

(l + w2)3/2 
dudt. 

Let 

& = ((<?,»J,^): J = ! , - • • , m ) , 
fi = ((*ii VjiVpv'j) : j = 1,...,i/i) 

be two independent Poisson point processes corespondingly on dT x R and T x R2 

with intensities \dy -vdt\i(dv) and \v' - v"| dtdy^(dv,)^(dvH), where 7(cfo) = 
(1 + v 2 ) - 3 / 2 d v . Suppose that at any moment t^ (j = 1,...,v$) at the point y^ 
a particle is born with initial speed v®, and at any moment t3 (j = 1 , . . . , v\) a 
couple of particles are born with initial speeds v'j and v'j. These VQ+2VX particles 
begin to evolve independently from each other according to the law described 
above and in compliance with the following rule: A particle vanishes after exit 
from the region T as well as after collision with another particle. (Particles born 
on dT with initial speed directed out of T vanish immediately.) 

Such an evolution obviously determines a random partition 3 of T into sets of 
polygonal form (see Figure 2(a)). Obviously, with probability 1 this partition is 
such that there exist two and only two functions from fir satisfying the condition 
du = S. Denote these functions by CJ+ and u~ (see Figure 2(b), (c)). Assigning 
to both of them equal probability, we obtain a random element of fir- Let Q T 
denote the probability induced by this random element. 

r- • ^ \ ^ \ ^ ^ \ ^ ^ v^ ^ 

v \ 

= ^ 

^ ^ 
^ ^ 

r " • -^~ \ ^ \ ^^ 

^ ^ / ^ / ^ 
7 ^ 
\ ^ \ ^ \ ^ v 

(b) (c) 

FIGURE 2. (a) Trajectories of six particles in a rectangle T. The birth points 
are marked by numbers 1-6. (b), (c) The functions w+ and u~. 
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THEOREM 3. Q T = P r . 

In Figure 3 a realization of the field PT on a rectangle is represented. 

FIGURE 3 

A similar construction will be given in [3] for the case of more than two values. 
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Nonlinear Filtering and Stochastic Flows 

M. H. A. DAVIS 

1. Introduction. The aim of this article is to describe some recent issues 
in filtering theory, mainly related to robustness and continuity properties. In 
general terms, nonlinear filtering refers to the problem of calculating the condi
tional distribution of a "signal" xt given "observations" {Y3,0 < s <t}, where 
{xa}, {Y3}, s E [0,T], are stochastic processes defined on the same probability 
space, denoted throughout (fi, T,P). In this generality, very little can be said, 
and the vast majority of work in this area has concerned the case where {xt} is 
a Markov process and {Yt} is given by 

Yt = h(xt)+nt, (1.1) 

where {nt} is some form of "wide band noise." The most familiar model is the 
"additive white noise" model where we define 

Vt = / Y3 ds, Wt=l n3 ds 
Jo Jo 

and take {w®} to be Brownian motion (BM), giving an observation model usually 
written in differential form as 

dyt = h(xt)dt + dw°. (1.2) 

The best known result in this area is of course the Kaiman filter, where {xt, yt} 
satisfy linear stochastic equations 

dxt = Axt dt + Cdwt, dyt = Hxtdt + Gdwt (1.3) 

where {wt} is a vector BM and it is assumed that GGT > 0 and that the 
initial state XQ is independent of {wt} with normal distribution N(mo, Po). Then 

=the=conditional-distribution=of-^irgiven=-(y^0-^s=^^is==iV=(^t7J2(i)=)=where— 
{xt} and P(t) satisfy a linear stochastic differential equation and a deterministic 
Riccati equation respectively; see [6]. The immense success of the Kaiman filter 
in applications is largely due to its modest computational complexity: P(t) is 
nonrandom, so the conditional distribution N(xt,P(t)) is parametrized by the 
low-dimensional sufficient statistic xt. 
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The extended generator of a homogeneous Markov process on a state space E 
is an operator (A, D(A)) such that for each / E D(A), the process 

G( := f(xt) - /(so) - f Af(x3) ds (1.4) 
Jo 

is a martingale. The standard results in nonlinear filtering concern a situation 
where the signal is a Markov process with given extended generator and initial 
distribution 7T°, and the linear observation equation (1.3) of the Kaiman filter 
is replaced by the nonlinear equation (1.2). We assume that E is a Polish 
space and that the sample paths of {xt} are in DE[0,T] (the space of right-
continuous E-valued functions on [0,T] with left-hand limits). yt and w$ take 
values in Rm and {w$} is m-dimensional BM; yo = w§ = 0. Let us denote by 
yt = a{y3,0 < s < t} the natural filtration of the observation process, and by 7T* 
the conditional distribution of xt given 2/t; we also write irt(f) = fE f(x)irt (dx) 
for / E B(E). In this case it is generally too much to expect that there will 
be any low-dimensional sufficient statistic for Trt, which should be thought of 
as a î/t-adapted process taking values in P(E), the set of probability measures 
on E. Its evolution is described in two equivalent ways. The first of these 
involves the innovations process dvt = dyt — iït(h)dt which, as in the Kaiman 
filter, is a standard BM. The direct nonlinear equivalent of the Kaiman filter 
is the Kushner-Stratonovich or Fujisaki-Kallianpur-Kunita equation, a nonlinear 
stochastic differential equation (SDE) satisfied by 7Tj. For / E D(A), 

dhrt(f) = n(Af) dt + (*t(hf) - n(h)n(f) + E[a{ | yt\) dvt, 
Mf) = Mf). (FKK) 

Here a{ = d(C^,w°)t/dt where (M,N)t denotes the "joint variation" process 
for square integrable martingales. In many cases of interest, the state space E 
is a manifold and a{ is given by 

a{ = Zf(xt) (1.5) 

where Z is a vector field on E. Then E[a{ \ yt] = nt(Zf). Of course, a? = 0 
if {xt} and {w?} are independent, as is commonly the case. Derivations of this 
equation can be found in full detail in the textbooks [17, 23]. A quick account, 
also covering the Zakai equation below, is given in [10]. 

It turns out that the awkwardly nonlinear coefficient of dyt in (FKK) is oc
casioned by the requirement that 7rt E P(E), i.e., 7Tt(l) = 1 (here 1 denotes the 
function l(x) = 1). For / E D(A) define 

0*(/) = n(f) exp f / TT3(h)dVs+2 [ns(h)]2 dsj . 

Since 7Tt(l) = 1, the exponential term is equal to ot(l) and ̂ t(f) = 0"t(/)/o"t(l). 
ot is an unnormalized conditioned distribution-, it is a l/t-adapted M_j_(̂ )-valued 
process, where M+(E) denotes the set of positive measures on E. It satisfies the 
Zakai equation [10, 28] 

dat(f) = at(Af) dt + at(Df) dyt, cr0(f) = TT°(/) (Z) 
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where Df = Zf-r-hf, assuming ot{ is given by (1.5). When a{ = 0 this reduces 
to 

dvt(f) = °t(Af) dt + at(hf) dyt. (Z') 

This is substantially simpler than (FKK) since each coefficient is linear in at, 
and furthermore, the equation is driven by the observation process {yt} directly 
rather than by the indirectly-defined innovations process {^}. For these reasons 
recent work has concentrated almost entirely on analysis of (Z) rather than 
(FKK). 

An integral expression for at can be obtained using the so-called reference 
probability method. Let us suppose that {xt} and {w®} are independent and 
that h E B(E), i.e., h is bounded. Then according to Girsanov's theorem, the 
formula 

-^p- = exp f - / h(x3) dw^-- h2(x3) ds J 

defines a probability measure on (fi, 7) under which {yt} is a BM and {xt}, {yt} 
are independent. The inverse Radon-Nikodym derivative is given by 

d P A 

dïv = Â T = e x p I / h(x3) dys-,} h2(x3) ds J 

Let EQ denote expectation with respect to Po- By a standard formula of condi
tional expectations, 

Mf)=mxt)\yt] = E o [ ^ t ^ t ] p-™. (1.6) 

It is not hard to show that the numerator of this expression is equal to crt(f) 
(and hence the denominator is o*(l)). Since {xt} is independent of yt under P0, 
the conditional expectation can be evaluated by integrating with respect to the 
sample space measure ßt of { â?0 < s < t} on DE[0,ì\: 

EQ[f(xt)Kt \yt]= / f(xt)exp ( / h(x3) dy3-- h2(x3) ds) ßt (dx). 
JDE[o,t] wo * Jo / 

(1.7) 
(1.6), (1.7) are known as the KallianpurStriebel (KS) formula. When a{ ^ 0 
the KS formula is substantially more complicated; this will be referred to in §2. 

2. Uniqueness. In applications, one is going to compute a solution 7rt or at 

to (FKK) or (Z) and then claim that this solution is the conditional distribution 
„(normalized or not). To substantiate this claim it is of co:urs_e_jie_cemary t_o_showL 
that the solutions to these equations are unique. 

One route to such results is through the theory of stochastic partial differential 
equations (PDEs) [25]. Suppose that E = Rn and that {xt} is a diffusion process 
with generator1 

1The Einstein summation convention is used here and throughout the rest of this paper. 
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If the coefficients a%3, bl are smooth and crt has a smooth density, i.e., there is 
a random function p(t,x) such that crt(f) = fE f(x)p(t,x)dx, then (Z) can be 
written in "strong" form as 

dp(t, x) = A*p(t, x) dt + D*p(t, x) dyu p(0, x) = p°(x), (1.8) 

where A*, D* are the formal adjoints of A, D and p° is the density of the 
initial measure 7r°. Under the assumption that h and 6 are bounded measurable, 
a13 is continuous with first derivatives in L°°, and [a13] > 61 for some 8 > 0, 
p° E L2(R

n), it is shown in [25] that (1.8) has a unique solution 

PEL2(nx[o,Ty,H1)nL2(n]c([o,nL2(R
n))), 

and that p is the density of vt> Another approach, which treats the problem in 
much greater generality, is the so-called "filtered martingale problem" idea of 
Kurtz and Ocone [22]. Recall that in the martingale problem (MP) approach 
to Markov process theory, initiated by Stroock and Varadhan, the martingale 
property of C^ in (1.4) is regarded as encapsulating the connection between 
operator A and process {a:*}. The MP (A,D) is said to be well posed if for 
each initial measure 7r° there is a unique probability measure Pno on DE(R+) 

such that xo has distribution n° and C* is a Pno-martingale for each f E D. 
If uniqueness holds it is generally not hard to show that xt is a homogeneous 
Markov process with transition measure Px = Psx (Sx = Dirac measure at x). 

Kurtz' and Ocone's approach [21] is to show that if an MP is well posed, then 
so is an associated family of "filtered" MPs. Note from (FKK) that 

Mf)~ f Ks(Af)ds 
Jo 

is a stochastic integral with respect to the innovations process, and hence, it is 
a local martingale; under suitable conditions it is a martingale. More generally, 

nfi'iVt)- / ir3Af(',ya)ds 
Jo 

is a martingale for functions / : E X Rm —• R, where 

nf(;y) = / f(x,y)7Tt(dx). 
JE 

Think of {xt,yt} as a joint Markov process with extended generator (A, D(A)) 
where D(A) C B(ExRm). A process (fi, U) with sample paths in Dp(E)xRm (Ä+) 
is a solution of the filtered MP for (-4, D) if ß is ^ - a d a p t e d and 

Ptf(;Ut)~ f fi8Af(;U3)ds 
Jo 

is an .^-martingale for each / E D(Ä). Here 7^ denotes the natural filtration 
of {Ut}. Uniqueness holds if any two solutions have the same finite-dimensional 
distributions. If uniqueness holds and 

E[ti0f(;U0)]=E[f(xo,y0)] = f f(x,0)w°(dx), 
JE 
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then (7T, Y) has the same distribution as (JJL, U). Since ß is ^-adapted, there is 
a function H: R+ x GRm(R+) —• P(E) such that p,t = H(t,U) a.s. and hence 
uniqueness implies 7rt = H(t,y) a.s. Thus any algorithm that solves (FKK) does 
indeed generate the required conditional distribution. The following result gives 
uniqueness for the Zakai equation (Z') (the case a{ ^ 0 is also covered but we 
do not give details here). 

THEOREM 2.1 [21]. Suppose 
(i)Ef*\h(x3)\*ds<oo; 
(ii) A maps Cb(E) into Cb(E), D(A) is a dense subalgebra ofCi>(E), and the 

MP for A is well posed] 
(iii) f(x)hi(x) E Cb(E) for all f E D(A), i = l,...,m. 

If {pt} is a Yt-adapted cadlag M+ -valued process satisfying 

Pt(/) = 7T°(/)+ / pa(Af)ds+ f pa(hf)dya, 
Jo Jo 

pt(l) = l+ [ ! 
Jo 

p3(h)dy3, 

for all f E D(A), t E T, then pt = at for all t E T, a.s. 

Uniqueness holds for (FKK) under the same conditions. 

3. Pathwise filtering. For the remainder of the paper we shall consider only 
signal processes {xt} with continuous sample paths, i.e., sample paths in the 
space CE[0,T], although many results can be generalized to paths in DE[0,T], 

possibly at the expense of some complication. We then have the following simple 
result. 

PROPOSITION 3.1 [16]. Suppose D(A) is an algebra; i.e., f,g E D(A) im
plies fg E P(A) where fg(x) := f(x)g(x). Then (C*,G% = f*&f9Mds 
where 

Af9(x)=A(fg)-fAg-gAf. (3.1) 

The idea behind "pathwise filtering" is to recast the equations of nonlinear 
filtering in a form in which no stochastic integration is involved. Apart from 
its intrinsic interest, this is important from the point of view of mathematical 
modelling; see Clark [5] or Davis [7] for discussions of this point. 

Let us consider first the independent signal and noise case: {xt} and {w®} are 
independent. Then irt(f) = at(f)/ct(l), where vt(f) is given by the KS formula 
(1.8), and we have the following result. For notational simplicity we assume for 
the moment that m = 1, i.e., yt and w$ are scalar. 

THEOREM 3.2 [5]. Suppose that the process t —• h(xt) is a semimartingale 
and define a function <j> : [0, T] x CR™ [0, T\ x B (E) by 

<j>(t,d,f):=EW f(xt)exp(t(t)Hxt)) 

x e x p f - / Ç(s)dh(x3) - - / h2(x3)ds) 
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where E^ denotes integration with respect to the distribution of {xt}. Then 
(i) For each t, f the function f —* (f>(t, £, / ) is locally Lipschitz continuous with 

respect to the uniform norm on Cum [0, T]. 
(ii) (ß(t,yj) = E0[f(xt) | yt] a.s., i.e., </)(t,y,f) is a version ofat(f). 

REMARKS. 1. The functional (j)(t, £, / ) is obtained simply by integrating by 
parts the stochastic integral in the KS formula (1.8). 

2. Property (i) is a "robustness" property of the filter; see [5, 7]. 
From now on, y(-) will denote an arbitrary but fixed continuous function, and 

any integration is always over the distribution of {xt}. We will write vt(f) for 
a(t,y,f)\ i.e., we always choose the robust version. 

Theorem 3.2 provides a pathwise formula in integral form, but we would like 
to get it in a differential equation form similar to the Zakai equation. The key 
to this is to notice that the functional 

a3(y) := exp ( I y(s) dh(xt) - - / h2(x3) ds) 

is a multiplicative functional (m.f.) of {xt} and hence defines a two-parameter 
semigroup of operators T*t on B (E) by 

T*ttf(x)=E3,x[f(xt)ats(v)]. 

Thus &t(f) can be expressed in the form 

*(/) = KtievWf),*0). (3.2) 

The following is the main result of pathwise filtering for the independent signal 
and noise case. 

THEOREM 3.3 [8]. Suppose D C D(A) is a set such that h E D and hf E 
D (A) for all f E D. Then the extended generator A% of the semigroup T^t is 
given by 

A\f(u) = ertOfcto^g-vM*/) _ \h2(x)f(x) (3.3) 

= Af(x) - y(t)Ahf(x) + [±y*(t)Ahf(x) - y(t)Ah(x) - \h?(x)} f(x) 

where Ahf is given by (3.1). 

This is proved by factoring a* (y) into the product of "Girsanov" m.f. and a 
"potential" m.f. 

The significance of the result is that &t(f) can be calculated, in principle (by 
considering the adjoint semigroup (TJf)* in (3.2)), by the following procedure: 
let pt be the solution of the "Fokker-Planck" equation 

±-tpt = {A\yPu pt = p. (3.4) 

Then 

°t(f)= f mey{t)h{x)Pt(dx). 
JE 
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The exact interpretation of (3.4) depends on the context, but generally it will 
have the same interpretation as the Fokker-Planck equation for the {xt} process 
itself since, from (3.3), A% is a "first order" perturbation of A. 

EXAMPLE 3.4. Suppose that E is a C°° manifold, that X 0 ,Xi , . . . ,Xn are 
vector fields, w\,... ,w™ are independent BMs, and {xt} is the solution of the 
SDE 

df(xt) = X0f(xt)dt + Xif(xt) o dw\, f E G°°(E), (3.5) 

where "o" denotes the Stratonovich stochastic integral. Then {xt} is a diffusion 
process with generator A = X0 + \ Y%=1 *ï and Ah*(x) = Y%=1 XihXif. Thus 

Aytf(x) = lf^Xff(x)+Xo--y(t)^2xihXif + iP(y(t),x)f(x) 
1 l 

where 

*(V,*) = \y'ìJZ{Xih?-y(xQh + \Y,XÌh) - \h\x). 

Thus A% has the same second-order part as A but differs from A in the first 
and zero-order terms. In particular, pt of (3.4) has a smooth density if A is 
nondegenerate, i.e., X i , . . . , Xn span TX(E) at each x € E. 

All of the above results extend immediately to the case of multidimensional 
observation n > 1. 

4. Pathwise filtering with noise correlation [11]. This cannot be han
dled at the same level of generality as above, and we restrict our attention to 
the situation considered in Example 3.4 where {xt} is a diffusion on a manifold 
specified by equation (3.5). It will not be necessary, however, to suppose that 
{xt} is nondegenerate. We take {yt} to be scalar; in contrast to the situation 
in §3, this assumption is needed for validity of most results described below. 
Noise correlation arises when the BMs w% in (3.5) are not independent of w°. 
Specifically, we assume that w% and w3 are independent for i ^ j ^ 0 but that 

(w\w°)t = / a^x^ds. 
Jo 

Referring back to §1, (1.5) then holds with Z = a%(x)X{. What makes the 
present case more complicated is that when we introduce the measure Po via 
the Radon-Nikodym derivative (1.7), {yt} becomes a BM but the distributions 
of {xt} are not preserved. More precisely we have the following results. 

THEOREM 4.1 [1Ï]. There are vector fields Yo,Y\,... ,Yn and independent 
BMs {b\,..., b™} on (fi, J, PQ), independent of {yt} such that {xt} satisfies the 
following SDE 

df(xt) = Y0f(xt) dt + Zf(xt) o dyt + YJ(xt) o db\. (4.1) 

In [11] the vector fields Y{ and processes bl are expressed explicitly in terms 
of the original coefficients and processes. We now decompose (4.1) in a manner 
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pioneered by Kunita [19]. Let f (t,x) be the flow of the vector field Z, i.e., 

jtf(<(t,x)) = Zf(ç(t,x)), f&C°°(E), 

c(0,x) = x. 

We suppose that Z is complete; i.e., f(t, a;) is defined for all t G R. Now define 

Çt(x) = i(yt,x). (4.2) 

Then £t is a diffeomorphism for all £ > 0 and satisfies 

df(Çt(x)) = Zf(tt(x))odyt. (4.3) 

Now consider the equation 

df(vt) = S^Yofivt) dt + frMfiVt) ° db\ (4.4) 

where f̂ 1 is the differential map: 

&Y0f{x) = Yü{fo^){it{x)). 

This SDE uniquely defines a process r)t, and applying the Kunita-Bismut ex
tended Ito formula [1, 19] we find that 

xt(x) = 6 o mi^) = ç{ywnt{x))- (4.5) 

Now in (4.2), (4.4), {yt} appears simply as a parameter and the bl are indepen
dent of {yt}- Thus conditioned on yt, rjt is a diffusion process with generator 
At = Ct*1^ + 2 ZXEt*1^)2 a nd xt is diffeomorphically related to r)t via (4.5). 
With this information in hand we can derive a pathwise filtering formula by-
decomposition of multiplicative functionals, much as before. The result is 

THEOREM 4.2 [11]. at(f) = (T^t(ByWf)^°) where T*%t is a two-parame
ter semigroup with extended generator 

A\ = eMHvW)A*t exp(-Hyit)) - \%{Zh + A2). 

Here Ht(x) := fQ f *h(s) ds and Bt is the group of operators 

Btf(x) = it*f(x)exj>([ $h(x)du) 
Jo 

(notation: $f(x) = / o ç(t,x)). 

As before, the significance of this result is that at can be computed by solving 
the Fokker-Planck equation (3.4) and then performing an integration: 

*t( / )= / By(t)f(x)nt(dx). 
JE 

All of this is done pathwise, i.e., separately for each sample path y(-, w). 



1008 M. H. A. DAVIS 

5. Observations on a manifold. Several authors [12, 13, 26] have con
sidered filtering problems where the observations take values in a manifold N 
(example: measurement of an angle). The observation equation (1.2) is then 
replaced by an equation of the form 

df(yt) = L0f(xt, yt) dt + LJ(yt) o dwf (5.1) 

where Li are vector fields on AT, or by the requirement that yt be a nondegenerate 
diffusion whose generator G has an ^-dependent first-order term. It is shown in 
[12] that pathwise filtering is possible if Lo in (5.1) takes the form 

Lof(x,y) = ^2Lig(x,y)Lif(y) 
i 

for some scalar function g, or, equivalently, if LQ = grad^ g(x,y) (the gradient 
with respect to the Riemannian metric on N determined by G). 

6. Continuity. We have shown in previous sections that when there is no 
noise correlation it is possible to choose a version of the conditional expectation 
&t(f) such that the map y —> &t(f)(y) is continuous with respect to the uniform 
norm on CR™ [0, T] and that this is still possible with noise correlation if the 
observations are scalar, m = 1. When m > 1, (4.3) is replaced by an equation 
of the form 

d)'(6(a)) = ZiJ•(&(*)) °dyi (6.1) 

and the mapping y —> & is no longer continuous unless the vector fields Zi 
commute [20]. 

Nonetheless, with smooth coefficients the map x —• &(:r) is almost surely a 
diffeomorphism, so the decomposition (4.4) and other formulas of §4 are still 
valid, but only almost surely. 

Weaker notions of continuity have been studied by Chaleyat-Maurel and 
Michel [3, 4]. In [3] it is shown that vt(f)(y) is infinitely differentiate in the 
sense of Malliavin calculus whereas in [4] a notion of continuity related to the 
Stroock-Varadhan support theorem [27, 15, §6.8] is introduced. Let at(f) be 
the solution of the Zakai equation when the signal is a diffusion as in Example 
3.4, and let &%($) be the (deterministic) solution when y(t) is replaced by an 
arbitrary H1 function u(t). Then under smoothness and growth conditions, for 
each rj > 0, 

lim P 0 
6->0 

s u p | a t ( / ) - < ( / ) | > r / 
t 

sup |y t -« t | <S 
t 

= 0. 

7. Existence of conditional densities. Space limitations unfortunately 
preclude any discussion of this important topic, which is concerned with deter
mining conditions under which the measure at has a (smooth) density when the 
signal process {xt} is a diffusion. Most of the cases discussed in this paper are 
best handled by using decompositions similar to (4.5), which reduce the question 
to one of unconditional diffusions; see [18, 20]. Then "classical" results obtained 
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using Hörmander's theorem or Malliavin calculus can be applied. More general 
cases have been studied by a number of authors using extensions of Malliavin 
calculus [2, 22, 24]. 
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Conditionally Positive Definite Functions 
in Quantum Probability 

A. S. HOLEVO 

Introduction. There is a well-known result, going back to Schoenberg [1], 
that if 1(g) is a complex-valued function on a group G, then (pt(g) = exptl(g), 
g G G, is positive definite for allt > 0 if and only if /(^_1) = 1(g) and 1(g) is 
conditionally positive definite [2, 3]. In probability theory (where G is abelian) 
the family {<Pt(g)>t > 0} arises as the Fourier transform of a convolution semi
group, closely related to the limit theorems for triangular arrays of random 
variables with values in the dual group G [4, 5]. The function (p(g) = exp 1(g) 
is the characteristic function of an infinitely divisible distribution on G, and 
p[<7(-)] = exp/l(g(t)) dt is the characteristic functional of a generalized stochas
tic process with independent values [2]. A complete description of conditionally 
positive definite functions and related probabilistic objects is given by the Levy-
Khinchin formula [6, 4]. 

On the other hand, recent study of irreversible Markov evolutions in the theory 
of open quantum systems [7-10] has led to the concept of dynamical semigroup, 
which is defined as a semigroup 

<j)t = exptL, t > 0, 

of completely positive maps of a corresponding C*-algebra of observables. A 
necessary and sufficient condition for the generator t of a dynamical semigroup, 
found by Lindblad [9], is that £, should be completely dissipative. The general 
form of such maps L is given by the formula found in [8, 9]. 

The purpose of this work is to develop a theory which embraces both cases 
and makes explicit the strong connection between the underlying mathemati
cal structures. In §1 we give the main definitions and state the corresponding 
Schoenberg's type theorem. In §2 the principal theorem is formulated, which 
gives a representation for an arbitrary conditionally positive definite function 
with values in the space of bounded linear maps of a C*-algebra. The Levy-
Khinchin type formulas can be obtained from this representation by using the 
established results of cohomology of groups. 

© 1987 International Congress of Mathematicians 1986 
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In §3 we consider applications to the problem of continuous measurement 
in quantum mechanics [11-13]. It turns out that this problem is surprisingly 
closely related to such classical topics of probability theory as infinite divisibility 
and limit theorems for stochastic processes. 

1. Positive definite and conditionally positive definite functions. 
1.1. Let G be a group with the neutral element e, # a Hilbert space, 2$(#) the 

algebra of all bounded operators in M, A a C*-subalgebra of ©(#) containing 
the identity operator J, 7 the Banach algebra of bounded linear maps of A into 
itself [14]. For </> G 7 we put </>*[X\ = (<£[X*])*, X e A. Let (j)(g), g G G, be 
a function with values in 7. We call it hermitean if (ß(g~1) = ^(g)*, g G G, 
positive definite if 

X > ; I tto^gkKXjXkWk) > 0 (1) 
i,fc 

for all finite sets {ijjj} C M, {gj} C G, {Xj} C A, and conditionally positive 
definite if (1) holds for sets satisfying J2j Xjifij = 0. 

PROPOSITION. Let 11(g), g G G, be a function with values in 7. The follow
ing conditions are equivalent: 

(1) the functions expt£(g), g EG, are positive definite (p.d.) for all t>0; 
(2) the function 11(g), g G G, is hermitean conditionally positive definite 

(h.c.p.d.); 
(3) the function £(g), g EG, is hermitean and satisfies 

Y,^3 I DZ(gj,gk',Xj,Xk)^k) > 0 (2) 
3,k 

for all finite sets {ipj} C M, {g3} C G, {Xj} C A, where 

D£(g,h;X,Y) = ^g^K^TY] - Ug'^X^Y 

-X*£(h)[Y}+X*£(e)[I]Y. 

1.2. In the case M = A = 7 = C, the proposition reduces to the classical 
Schoenberg's type result for scalar functions. The other extreme case is G = {e}, 
where one deals with a single map 0 G 7. The condition (1) then means that 0 
is completely positive (see, e.g., [10]): 

Yfiïj I iVQXkWk) > o 
i,* 

for all {ij)j} C M, {Xj} C A, and Proposition 1.1 reduces to the result obtained 
by Lindblâd[9]:The maps <pt = exp ft are completely positive for slit > Ö if 
and only if £ — £* and 

3,k 

for all {fy} c it, {Xj} C A, where D£(X, Y) = £[X*Y] - £[X*]Y - X*£[Y] + 
X*£[I]Y. Such maps £ are called completely dissipative. 
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If A is finite-dimensional, then Proposition 1.1 can be deduced from [15], 
where the general algebraic background of the notion of positive definiteness is 
investigated. The proof in the general case, given in [17], uses the results of [9]. 

1.3. The family (f>t(g) = expt£(g), t > 0, is a semigroup of p.d. functions, 
satisfying (f>o(g) = Id, where Id is the identity map of A. Each function <j>t(g) is 
infinitely divisible in the sense that (j>t(g) = [<l>t/n{9)]ni where (fit/n(9) is again a 
p.d. function. 

An example of an h.c.p.d. function is £(g) = (j)(g) — eld, where <j>(g) is a p.d. 
function, c G R. The pointwise limit (in the norm of 7) of such functions is again 
an h.c.p.d. function. Proposition 1.1 implies the converse: any h.c.p.d. function 
can be obtained in this way, since £(g) = l i m n - ^ n((j)i/n(g) — Id). These facts 
underlie the probabilistic applications of h.c.p.d. functions to be given in §3. 

2. The representation theorems. 
2.1. For p.d. functions with values in 7 we have the canonical representations, 

which includes both the Gelfand-Raikov representation for the scalar positive-
definite functions and the Stinespring representation for completely positive 
maps. We denote by 95(,)/, K) the space of all bounded linear operators from a 
Hilbert space )i to a Hilbert space K. 

PROPOSITION. Let (f>(g), g G G, be a p.d. function with values in 7. There 
exist a Hilbert space K, a unitary representation g —> Vg of the group G in K, a 
*-representation X —• p[X] of the algebra A in K, such that 

VgP[X] = p[X]Vg, geG,XeA, 

and an operator F E 93(#, K), such that 

*(g)[X] = F*Vgp[X]F, geG, XGA. (3) 

The representation (3) implies some useful inequalities for p.d. functions and, 
in particular, the Kadison type inequality 

<j>(g)[X}*cl>(g)[X} < \\<t>(e)[I}\\ • ^e)[JTX]. (4) 

It follows that if </)(g) satisfies the normalization condition <j>(e)[I] = I, then 
| | ^ ) | | < 1 , » e G . 

2.2. As usual, A' denotes the commutant of A, and A" the bicommutant, or 
the von Neumann algebra, generated by A. 

THEOREM. Let £(g)} g G G, be an h.c.p.d. function with values in 7. There 
exist 

(a) a Hilbert space K, a unitary representation g —> Wg of G, and a *-
representation X —> ir[X] of A in K, satisfying Wgir[X] = ir[X]Wg, g G G, 
XeA\ 

(b) an operator A G S(.V,JC) and a function B(g), g G G, with values in 
93(#, K), such that B(g)X = ir[X]B(g), g G G, X G A, and satisfying the 



(6) 

1014 A. S. HOLEVO 

cocycle equation 

B(hg) = WhB(g) + B(h), g,heG; (4) 

(c) a function Z(g), g G G, with values in the center Z = A1 H A" of the 
algebra An, satisfying Z(g)* = Z(g), g EG, and 

Z(gh) - Z(g) - Z(h) = 1mB(g-1)*B(h), g, h G G; (5) 

and an operator C G A", such that 

£(g)[X] = A*W9TT[X]A + A*B(g)X + XB(g-1)*A 

+ X[- \B(g)*B(g) + Z(g)\ + C*X + XC. 

2.3. For a scalar h.c.p.d. function the representation reduces to the term in 
squared brackets; the corresponding result can be found in Guichardet [19] (see 
also Parthasarathy and Schmidt [4]). In the case G = {e}, Theorem 2.2 and 
Proposition 2.1 give the general form of a completely dissipative map [9, 16]: 
£[X] = </)[X] + C*X + XC, where 0 is an arbitrary completely positive map. 
The main ingredients of the proof of Theorem 2.2 and Proposition 2.1 are given 
in [18]. 

2.4. Let A be a von Neumann algebra, A* its predual, 7G the closed subalgebra 
of 7, consisting of ultraweakly continuous maps [14]. For any <j> G 7a there is 
a uniquely defined 0*, which is a bounded linear map of A* into A*, such that 
(</>*[T],X) = (T,(t>[X]), Te A*, X e A. We say that a net {<£«} C 7a converges 
^-strongly if the net {(</>«)*} converges strongly on A*. 

Let G be a topological group and <f)(g) in Proposition 2.1 be *-strongly con
tinuous. Then the representations V and p may be chosen continuous. The cor
responding remark applies also to Theorem 2.2. By using the cocycle properties 
(4), (5) we can prove that a continuous h.c.p.d. function grows "not faster than 
a quadratic function." We shall give a precise statement for the case G = R a . 

LEMMA. Let £(g), g G R S , be a ^-strongly continuous h.c.p.d. function, then 

U{g)\\<o{i + \g\% (7) 

where | • | is a norm on R s , and the constant c depends only on the value 

mp|, |<i | |£(0) | | . 

2.5. By using the known structure of representations and cocycles for con
crete classes of groups [4, 19], we can derive Levy-Khinchin type formulas from 

-Theorem -2r2~Let-us st^ate-the=result-for-the=case-#==- 55 ( #)rwhere=)Hs- a=sepa--
rable Hilbert space, G-abelian separable locally compact group. In this case, an 
arbitrary *-strongly continuous h.c.p.d. function has the form 

£(g)[X] = £i(g)[X] + £2(g)[X] + C*X+ XC+ i\(g)X, 

where C G 2$(#), A(^) is a continuous morphism of G into R; the last term 
represents a general solution for the equation D£(g, h; X, Y) = 0. The first term 



CONDITIONALLY POSITIVE DEFINITE FUNCTIONS 1015 

IS 

Li{9)[X\ = Y,^R*3XR* + D * ? * ' ^ ) - rÄ9)XRj) 
3>k 3 

3\k 

(8) 

where Rj G 23(W) and rj(g) are continuous morphisms of G into C; [7^] is the 
Gram matrix of an unconditional basis in a Hilbert space; [^k] is the Gram 
matrix of the conjugate basis. Moreover, the series J2ljkRjRk converges ul-
traweakly, and the series KYil3krj(9)rk(9) absolutely for all g G G. The second 
term is 

^{g)[x\ = J2Vxvk f g(*)"ik{**) 
•-,k Jx 

Ç{v? X J [g(x) - %• (dx) + J \g{x) - l}U^dx)XV^ 

{J\g(x)-l-a(g,xMdx)}x, 

3\k 

+ ' 

+ 
where Vj G 33 (J/); X — G is the dual group, g(x) is the value of the character 
g G G of the group X on the element x; 3(g, x) is the standard function described 
in [4]; Vjiç(dx), Vj(dx), v(dx) are complex-valued measures on X having no mass 
at the neutral element of X and such that the matrix 

Vjk(dx) fk(dx) 

Vj(dx) v(dx) 

is positive definite. Moreover, the series Y^V?VkVjk(X) converges ultraweakly 
and the integral / \g(x) — l|2^(cte) converges for all g and tends to zero as g —> e. 

The derivation of these formulas from Theorem 2.2 is given in [18]. The 
"Gaussian" functions of the form (8) were introduced in the case G = R5 in the 
works of Barchielli, Lanz, Prosperi [11, 12] in connection to the problem of con
tinuous quantum measurement. More general expressions including "Poisson" 
terms were considered in [13, 20]; in view of the present work the result of these 
papers may be interpreted as a construction of a special representation (3) (of 
the type of Araki-Woods imbedding [4, 19]) for factorizable p.d. functions given 
by the time-ordered exponentials T exp f £(g(t)) dt. 

3. Limit theorems for repeated measurements in quantum proba
bility. 

3.1. Let A be a von Neumann algebra, (X, B) a standard Borei space. Instru
ment with values in (X, B) is a set function U = {U(B), B G S} such that: (1) 
for any B G B, U(B) is a completely positive element of 7G\ (2) £/(X)[2] = / ; 
(3) U is cr-additive in the *-strong topology. The notion of instrument, being 
a far-reaching extension of the von Neumann's "projection postulate," is intro
duced for the description of repeated measurements in quantum mechanics [7]. 
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If S is a state (a positive element of A*, satisfying {S,I) = 1), then the proba
bility distribution of a sequence of measurements described by the instruments 
U.i,--iU.ni is determined by the relation 

Us(dx1 • • • dxn) = (S, UtidxJl • • Un(dxn)[I] • • •]). (9) 

3.2. Let X be an abelian separable locally compact group (we shall use the 
additive notation from now on). Then the convolution of the instruments can be 
defined as 

(Ui*---*Un)(B){X]= J- -J Mi(da;i)[---M^n)W---]. (10) 

We shall investigate the problem of describing measurements, which durate con
tinuously for some interval of time and correspond to a continual analog of 
expression (9). The question is closely related to the limit behavior of the con
volution (10), and its solution relies upon the results of previous sections. 

3.3 Let G = X be the dual group. The characteristic function of the instru
ment U is defined as 

4>{g)[X\ = J g(x)U(dx)[X], g E G. 

A function (ß(g), g E G, with values in 7a is a characteristic function of an 
instrument if and only if: (1) <j)(e)[I] = I] (2) <p(g) is *-strongly continuous; (3) 
<j)(g) is positive definite in the sense of 1.1 (see [17]). Operation of convolution 
corresponds to the pointwise composition of the characteristic functions. 

In what follows we restrict to the case G = X = R s with \x\ = maxi<i<a \xl\, 
where x = [x1,..., x3]. The following inequality is useful: for any A > 0, 

/

A - 1 / - A " 1 

• • • / [m-<t>{9)]dgi'"dgs (11) 
-A-1 . / -A" 1 

in the sense that the difference of the right- and left-hand sides is completely 
positive. 

3.4. By a quasi-characteristic function we mean a *-strongly continuous h.c.p.d. 
function with values in 7G, such that £(e)[/] = 0. If £(g) is such a func
tion, then expü(^) is the characteristic function of an instrument U which is 
infinitely divisible in the sense that for any n = 1,2,... there is a representation 
U. = U^n — ILn* • • • *Hn (where Un is the instrument with the characteristic 
function exp ^£(0), cf. 1.3). Now let there be given, for any n, an instrument 
Un with the characteristic function 0n(g)> a nd consider the instrument U *n with 
the characteristic function 0n(ô

f)n- Assume that the functions n((ßn(g) —Id) con
verge pointwise ^-strongly to a *-strongly continuous function £(g) (which is 
thus a quasicharacteristic function). Then we can show that (j)n(g)n —• exp £(g), 
which implies that for any state S the probability distribution of the instrument 
U™ converges weakly to the probability distribution of the instrument with the 
characteristic function exp £(g). 
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3.5. Let U_t be the instrument with the characteristic function 

<l>t(g) = expt£(g), (t>0). 

The family {U_t, t > 0} forms a convolution semigroup of the instruments, satis
fying the continuity condition 

\\Ut(x: N > A ) | | < < 1 + A-2), (12) 

which is derived from (7), (11), and the fact that ||^t(^)|| < 1 (see 2.1). Con
versely, if {Ht,t > 0} is a convolution semigroup of instruments such that 
limt-fO ||Z/t(^' M > A)|| = 0 for any A > 0, then Ut has the characteristic 
function expt£(g), where £(g) is a quasicharacteristic function. 

3.6. The following definition is motivated by the description of continuous 
process of quantum measurement in [12], but uses a much smaller trajectory 
space; in fact, we show that the trajectories of continuous quantum measurement 
lie in the space of generalized derivatives of the functions without discontinuities 
of the second kind. Let R be the time axis, y the space of all functions on R with 
values in R s , Ba,b the ^-algebra of subsets of y, generated by the increments 
y(s) — y(t), a <t < s <b. By instrumental process with independent increments 
(i-process) we call the family {Ua b\a <b;a,b G R } , where U^ b is an instrument 
with values in (y, Ba,ò)> satisfying 

Uaib(E)-Ub>c(F) = UaiC(EnF), (13) 

if a < b < c and E G Ba,bì E G SbjC. The i-process {U_atb} is homogeneous 
if Ua+Tìb+T(E) = Uaìb(T-\E)), where (TTy)(t) = y(t + r),'for ali r,a,b G R. 
If {ILa.b} is a homogeneous i-process, then the instruments with values in R s , 
defined by the relation 

Ut(B) = Ua,a+t{v(') ' Vi* +1) - y(a) G B), t> 0, 

form a convolution semigroup, which determines uniquely the "finite-dimensional 
distributions" of the process. Namely, if E = {y(-): y(n) — y(ro) G Bi,..., 
y{rp) ~ y(Tp-i) £ Bp}, where a = TQ < T\ < • • • < rp = b, is a cylindric set from 
Saj6, then 

Uaib(E) = UT1-T0(B1) - - • Urt-rr-r (Bp). (14) 

Conversely, if a convolution semigroup of instruments {Ut, t > 0} is given, then 
(12) determines finite-dimensional distributions which, by a generalization of the 
Kolmogorov theorem, extend to a homogeneous i-process with values in y. 

3.7. Let D C y be the space of functions on R with values in R s , which are 
right continuous and have limits from the left. I-process with values in D is 
defined as in §3.6 with the cr-algebras Ba,b replaced by Sa>& D D. Let £(g) be 
a quasicharacteristic function, {U_t} the corresponding convolution semigroup. 
The characteristic function of a finite-dimensional distribution defined by (14) 
is equal to 

^ro,...,rp(0i5 • • • ,9p) = exp(n - ro)£(0i) • • • exp(rp - Tp-^^gp). (15) 



1018 A. S. HOLEVO 

Using the estimate (12), the "independence of the increments" property (13), 
and the known criterion for a probability measure to be concentrated on D (see 
Billingsley [21, §15]), we can prove that there exists a homogeneous i-process 
with values in D, the finite-dimensional distributions of which are defined by the 
relation (15). We call £(g) the generator of this i-process. 

3.8. Consider now the question of convergence of a sequence of repeated mea
surements to the process of continuous measurements. For n = 1,2,..., let there 
be given a division of the time axis R into intervals [t\n , ^ " j ) of length 1/n, 
and to each moment t\n* let a measurement correspond described by an instru
ment Un with the characteristic function (j>n(9)- Fix n and the interval [a,b) 

and let ia be the first and ib the last of the numbers i such that a < if"' < b. 

Let X{ = y(t\n') — y(ti — 0) and consider the (Sa,ò H P)-measurable map
ping y(-) —> [xi\i = ia,... ,ib\. Denote by U}^ the image of the set function 

Un(dxia) •• -Un(dxib) under the inverse mapping. The family {U.ab} is an i-
process with values in D. The finite-dimensional distributions of this i-process 
have the characteristic functions 

4y...,rp(gu...,gp) = Mgiri---M9Pr'', ("0 
where mr is the number of points t\n' in the interval ( r r _i , r r ] . 

3.9. THEOREM. Let the functions n(<j>n (g) — Id) ^-strongly converge, asn—> 
oo, to a ^-strongly continuous function £(g), and moreover 

sup sup n\\</)n(g) - Id|| < oo. 
« |*|<i 

/ W i Then for any state S the probability distributions of the i-process {U}a 6 } weakly 
converge in the sense of the Skorohod topology in D to the probability distributions 
of the homogeneous i-process {Uaib} with the generator £(g)-

The convergence of the finite-dimensional distributions reduces to the point-
wise convergence of the characteristic functions (16) to (15). The latter is estab
lished as in 3.4, taking into account that \mrfn - (rr — r r _ i ) | < 1/n. The proof 
of tightness is based on the inequality 

l l " S ? M 0 : Mb) - V{a)\ > A)|| < c(m/n)(l + A"2) 

where m is the number of the points Vf^ in the interval (a, b], which can be 
deduced from (11) and Lemma 2.4. The proof is accomplished by using property 
(13) and the criterion of tightness of probability measures in D [21]. 

^™3:107Eet^TTTTy^ from A,^(a;1,...,xs) 
a probability density with zero mean in R s . The instrument 

/ 1 1 \ 1 / 2 

U^dx1 • • • dx3)[X] = p y/nx1 - - ^ Ä 1 , . . . , y/nx3 - -=R3 ) X (17) 
\ vn vn ) 

/ l i \ 1 / 2 

• p I y/nx1 - -pzf i 1 , . . . ,y/nx 3 - -fzR3 ) *n3'2dx1 • • -dx3, 
\ y/n y/n ) 



where 

(18) 
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describes "joint approximate measurement of observables R1,..., Rs" (cf. [11]). 
If ^(a;1,..., xn) is smooth and decreases fast enough at infinity, then 

n((/>n(g)-Id) = £(g) + en(g), 

£(»)[*] = \ £ J i* RJXRk - \{RJRkX + XWRk) 
j,k L J 

+ i 2gi{R*X + XRi) - 5 ( E W * X 

3 V 3>k J 
is a "Gaussian" generator with 

f dlnp dlnp . , , „ 

yfc = / x3xkpdx1 • • • drc8, 

and limn-^oosupipi^ ||£n(<7)|| = 0 for any /c. Theorem 3.9 then implies that the 
series of measurements described by (17) converge in the specified sense to the 
homogeneous i-process on D with the generator (18). By using the Kolmogorov 
criterion of continuity of the trajectories and the estimates of momenta of the 
instrument (17) one can establish that the limit process is defined in fact on the 
space of continuous functions, under suitable conditions on p(x1,..., x3) (which 
hold, e.g., for the normal probability density). 
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Stochastic Flows and 
Stochastic Partial Differential Equations 

HIROSHI KUNITA 

Introduction. In recent years the relationship between stochastic differential 
equations and stochastic flows of diffeomorphisms has been studied thoroughly. 
See Elworthy [3], Bismut [2], Malliavin [12], Ikeda-Watanabe [5], Baxendale [1], 
Le Jan [10], Le Jan-Watanabe [11], Kunita [9], etc. Some of the basic facts will 
be surveyed in §1. 

We shall apply the theory to stochastic parabolic partial differential equations. 
In §2 we briefly discuss a first order equation following partly from Kunita [8]. 
The solution will be represented by a stochastic characteristic curve or a certain 
stochastic flow. 

It is a known fact that solutions to a certain second order parabolic par
tial differential equation are represented by means of a diffusion process or a 
stochastic flow. The equations are so-called Kolmogorov's backward equations; 
these are solved backward with given terminal conditions, while the associated 
diffusion processes proceed forward. In order to dissolve this forward-backward 
dichotomy, we want to make use of the inverse flow. This will provide a better 
probabilistic interpolation of parabolic partial differential equations. 

In §3 we shall realize the above idea in a certain second order stochastic 
partial differential equation. It includes the parabolic partial differential equa
tion mentioned above. One should note that the stochastic partial differential 
equation originated from nonlinear filtering problems. See, e.g., Par doux [13], 
Krylov-Rozovsky [6], and Kunita [7]. 

1. Stochastic differential equations and s tochast ic flows. We shall 
survey the relationship between stochastic differential equations and stochas
tic flows of diffeomorphisms following [9, 11]. We begin by introducing func
tion spaces. Let fc and I be nonnegative integers. We denote by Ck>1 = 
Ck*(Rd X [0,T];Rd) the space of maps f:Rd x [0,T] -+ Rd which are fc-times 
differentiate in x, I-times differentiate in t, and such that the derivatives are 
continuous in (x, t). Gb ' is the subset of / in Ck>1 such that / and its derivatives 
are bounded functions. 

© 1987 International Congress of Mathematicians 1986 

1021 



1022 HIROSHI KUNITA 

Let X(x,t,Lj), x G Rd, t G [0,T] be a continuous random field with values 
in Rd such that for almost all w, it is of Ck'°. Then X(t) = X(-,t) may 
be considered a continuous Cfc-valued process, where Ck = Ck(Rd;Rd). In 
particular, if X(t{+i) — X(U), i = 0,.. . , n — 1, are independent for any 0 < to < 
• • • <tn <T,itis called a Ck-valued Brownian motion. In the sequel we assume 
that the following limits exist uniformly in t. 

m(x, t) = lim TE[X(x, t + h)- X(x, t)\, (1.1) 
h—>0 tl 

Vij(x,y,t) = lim JE[(Xì{X,t + h)- Xi(x,t))(X,-(y,t + h)- Xó{y,t))}. (1.2) 
tl—tiJ ft 

Obviously v = (v{j) is symmetric, i.e., Vi3(x,y,t) = Vji(y,x,i) and nonnegative 
definite. The pair (m,v) is called the local characteristic of X(x,t). A typical 
example of a Cfc-valued Brownian motion is given by 

X(x,t) = J2 f fm(x,r)dB™(r)+f f(x,r)dr, (1.3) 
m=lJ" ^0 

where fm(x,r) are of C*+1,° and (B*(t),... ,Bn(t)) is a standard Brownian 
motion. In this case, the local characteristic is given by m(x,t) = f°(x,t), 
Vij(x,y,t) = X)m=i frfaityfj^iyit)- We introduce an assumption for the local 
characteristic. 

A\z. The local characteristic (v,m) is of Cfe'°. 
Let X(x, t) be a Ck-valued Brownian motion satisfying Ak+i, k > 1. We 

consider a stochastic differential equation 

d(ßt=X((l>t,odt), (1.4) 

where the right-hand side is the Stratonovich differential. If X(t) is of the form 
(1.3), the equation coincides with the classical stochastic differential equation 

n 

d<t>t = E fm(<Pt,t)odBm(t) + f0(<l,ut)dt. (1.5) 
m = l 

REMARK. Denote the Ito differential by X(<j)t,dt). Then the two integrals 
are related by 

J X(<t>r, odr) = J X(<pr,dr) + ± £ (f ^X{<l)r,dr)i 0<) ' (L6) 

In particular if_</>t is a_solutionJo.equatioiL(1.4),.theii_-„ - — — _ 

/ X(</>r, odr) = f X(«£r, dr) + I k{<j>r, r) dr, (1.7) 
.70 JQ ./O 

where 
d 1 _ _ /) 

* ( M ) = 7zY,-^rv'3(x^y^)\y=^ (L8) dx 
3=1 
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Now for any given (x, s) G Rdx [0,T] the equation (1.4) has a unique solution 
starting at x at time s. We denote it by (j)Sit(x). Then it has a modification 
satisfying (a)-(e). 

(a) For almost all OJ, ^s,t(x^) is (k — l)-times differentiable in x and the 
derivatives D^(j)a,t(x,u}) are continuous in (s,t,x) for any \ot\ < k — 1. 

(b) For almost all u, ^.«(^.«(Zj^))^) = (/)8iU(x,u)) is satisfied for all s < 
t <u and x. 

(c) For almost all u, the map 0S)t( • ,CJ); Rd —> Rd is a Ck~1-diffeomorphism 
for any s <t. 

(d) For any 0 < t0 < h < ••• < tn < T, ^ t . + i , i = 0 , . . . , n - 1, are 
independent of each other. 

(e) There is a positive function e(h) with e(h) [ 0 as h [ 0 such that 

\\E[<t>t^h(x) -x\- m(x,t) - k(x,t)\ < e(h)(l + \x\), 

\\E[(<l>tit+h(x) - x)(<t>wh(y) - y)} - v(x,y,t)\ < e(h)(l + \x\)(l + \y\). 

A random field <j)s,t(x, w), 0 < s <t <T, x G Rd, with the properties (a)-(c), 
is called a stochastic flow of Gk~l-diffeomorphisms. Further, if (d) is satisfied, 
it is called a Brownian flow (of Ck~1 -diffeomorphisms). 

(f) Let (f)Stt be a Brownian flow of Gk_1 -diffeomorphisms satisfying (e) where 
V{j(x, y, t) and m(x, t) are ofCb

 + 1 , ° . Then there is a unique Ck-valued Brownian 
motion X(x,t) with the local characteristic (v,m) such that (j>8it(x) is the solution 
to the stochastic differential equation (1.4). 

DEFINITION. The Cfc-valued Brownian motion X(x,t) is said to be the in
finitesimal generator of the flow c/)ait, and 0Sjt is said to be generated by X(x, t). 

Let <ßS}t be a Brownian flow of Ck~1 -diffeomorphisms generated by a Gk-
Brownian motion X(x,t). Then for each s < t, the map 0s,t( •,CJ) has the 
inverse map ijjSit = (^ s , t)

_ 1 . It has the following properties. 
(g) For almost alltJ, ip3)t(x) are (k—l)-times differentiable and the derivatives 

are continuous in (s,t,x). 
(h) For almost all CJ, i/Js,t('iptiu(xì(^)ì(^) = ipSìu(x,w) is satisfied for any s < 

t <u and x. 
The properties (g), (h) together with (c) show that -0Sit is a stochastic flow of 

Ck~x-diffeomorphisms to the backward direction. Indeed we have the following. 
(i) For each fixed t andx, ij)a^(x), s G [0,t], satisfies the backward stochastic 

differential equation ^a,t(x) = x — J3 X(î/jrit(x),odr), where the last member is a 
backward Stratonovich integral 

Here the backward Stratonovich integral is defined by 

jgX(fr,odr) = ±KmoJ2{X(fu+1,ti+i)-X(fti+1,ti) 
t = l 

+ X(fti,ti+1)-X(fti,U)} 
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where A = {s = to < ti < • • • < tn — t) and |A| = max |^+i —U\. The backward 
Ito integral is defined by 

et n—l 

X(fr,dr) = Km J ] A-(/t4+ll«i+i) - A-(/t|+1>*0. 
1 l_V i=0 

Finally we study a growth property of the stochastic flow. 

LEMMA l . Let X(x,t) be a Gk-valued Brownian motion satisfying Ak+i 
where fc > 1 and let <j)3it be the stochastic flow generated by X(x,t). Then for 
any a with \a\ < k — 2, we have 

lim l ^ r W I = 0 | lim U*HM«)I=0 

for any e > 0. 

PROOF. For any p > 2 there is a positive constant K = K(p) such that 
E[\Da(ßait(x)\p] < K holds for any x G Rd and \a\ < k - 2. See [9]. Set 
x = y/\y\2. Then for any e > 0 and p with pe > d, 

) pe-

. 

Then Kolmogorov's criterion for the continuity of the random field shows that 
Da(j>3,t(y/\y\2)I'(1 + -éy)e converges to 0 as y —• 0 a.s. for any s < t. This is 
equivalent to the first assertion. The second can be shown similarly. 

E *M*)r/(1+Br) < K\y\ pe 

2. Inverse flows and first order stochastic partial differential equa
tions. Let (X1(x,t),...,Xd(x,t),Y(x,t),Z(x,t)) be a C*(Äd;Äd+2)-valued 
Brownian motion satisfying Ak+i, k>b. Given a function / of C3 , we consider 
a first order stochastic partial differential equation of the form 

d pt ß rt 
v{z,t) = f{x) + Y" Xi(x,odr) — (x,r)+ Y(x,odr)v(x,r)+Z(x,t). (2.1) 

JTj •/0 öxi Jo 

Here Xi(x,odr) is the Stratonovich differential. The equation can be solved 
similarly as a first order (deterministic) partial differential equation, making use 
of stochastic characteristic curves. Indeed, let (^>aìt(x),r)3ìt(x,y)) (x G Rd,y G 
R1) be the stochastic flows in Ä d + 1 generated by 

(-Xi(x , t),..., -Xd(x, t), yY(x, t) + Z(x, t)). 

When the initial point (s,x,y) is fixed, the trajectories (</>a,t(x),r}8it(x,y)), t G 
\s, T], are called the characteristic curves of the equation (2.1). The first compo-
nent is the stochastic flow generated by — (X\,..., Xd) and the second component 
is represented by 

VsAx^y)= ( e x P / y((t>sir(x),odr)j 

\y+ f e x p - / Y(<ßaiU(x),odu)) Z((ß3ir(x),odr) > 

(2.2) 
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THEOREM 1 (CF. [8]). The equation (2.1) has a unique solution. It is 
represented by 

v(x,t) = ?7o,t(^o,i(z) J(^o,t(z))) 

= /(iM*0)exp / Y(^t(x),odr) (2.3) 
Jo 

+ / ( exp / Y(tprit(x),odr)jZ(ipatt(x),ods), 

where i/j3it is the inverse flow of (j)3}t. 

REMARK. If Y = Z = 0, equation (2.1) can be considered as a formula for 
the change of the variables or "Itô's formula" for the inverse flow ^o,t- In fact 
(2.1) is written as 

/(**(*)) = f(x) + J2^Xi(x,odr)-^-(foip0ir)(x). (2.4) 

The following will be used in the next section. 

COROLLARY. Suppose that f is of Cjj. Then the solution v(x,t) and its 
derivatives D%v(x,t), \a\ < 2, have bounded moments of any order, i.e., 

supE[\Dav(x,t)\p] < oo Vp > 1. (2.5) 
x,t 

Furthermore v(x,t) has a following growth property: 

lim v(x,t)/(l + \x\)e = 0 (2.6) 
x—•oo 

holds a.s. for any e > 0. 
PROOF. The second property (2.6) follows from (2.5) immediately, making 

use of a device similar to that in Lemma 1. For the proof of the first property 
(2.5), it is sufficient to show the same property for each term of the right-hand 
side of (2.3). We shall check it for 

tBtt(x) = exp / Y((ßrit(x),odr) (2.7) 
Ja 

in case |a| = 0 only. Others can be shown similarly. 
Rewrite the exponent of (2.7) using the Ito integral. Then £3it(x) is written 

as 

ÙAX) = exP | M3it(x) + / h(ipr)t(x), r)dr\, 

where M3it(x) is a backward martingale satisfying 

(Affl|t(aO) = / <*d+ij+i(i>rtt{x),rprAx)>r)dr-

Let c = c(p) be a positive constant bounding ^ a d + i ^ + i +p|h|. Then we have 

E[\Lt(x)\p] = E [exp {pMa,t{x)+f>l fc(^(i),r)dr} 

< E[exppMBtt{x) - ip2(MS)t(a;))]e
ct. 
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The expectation at the last member is equal to 1 since the exponential of pM3it — 
\p2(M3it) is a backward martingale. Therefore -B[||a,t(x)|p] is bounded by ect. 
The proof is complete. 

3. Second order stochastic partial differential equation. Next we 
shall study a second order parabolic partial differential equation with random 
coefficients: 

«(',*) = / + / L3fds + J2f F^^ods)§^ (3-1) 

+ / Fd+i(.,od5)w + Fd + 2(- ,0-
Jo 

Here Lt is an elliptic operator of the form 

Ltu=2^aij{x>t)dx.dx
u + Ylbi^ (3-2) 

ij % 3 i % 

where aij(x,t) is symmetric and nonnegative definite. In the sequel we as
sume that coefficients are of C*'° for fc > 6 and there is a nonnegative func
tion Vij(x,y,t) of C*'0 such that Vij(x,x,t) = ai3(x,t). The random field 
(Fi(x,t),.. .,Fd+2(x,t)) is a C*(i2d;.Rd+2)-vahied Brownian motion satisfying 
Ak+i, k>6. 

We shall construct a solution of (3.1) by a purely probabilistic method, attach
ing a certain first order stochastic partial differential equation. Let (W, B, Q) be 
another probability space where a Cfc-valued Brownian motion X(x, t) with the 
local characteristic Vij(x,y,t) and m(x,t) = b(x,t) — k(x,t) is given. (k(x,y) is 
defined by (1.8).) On the product probability space (fi x W,F x B,P x Q) we 
consider a first order stochastic partial differential equation 

v(-,t) = f + J2j\xi(-,ods) + Fi(-,ods)}^- (3.3) 

+ / {c(-,s)ds + Fd+i{-,ods))v+ [ d{',s)ds + Fd+2{-,t). 
Jo Jo 

If / is of Cj it has a unique solution by Theorem 1. It is represented by 

v(x, t) = f(ih,t(x))êo,t{x) + â>,t(aO, (3.4) 

where ij)a,t is the inverse of the stochastic flow generated by —(Xi + Fi,..., 
Xd + Fd) and 

Ìs,t{x) = exp I / c{ipr,t(x), r)dr + Fd+1 (Vv.tfa), odr) \ , (3.5) 

&,«(*) = J Cr,t(x){d(iprA^ r) dr + Fd+2{i>r,t{x), odr)>- (3-6) 
fs 

THEOREM 2. The conditional expectation 

u(x,t,u) = EQ[f(iß0tt(
x))eo,t(x) + &,t(a;)](w) 
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is well defined and is a solution to equation (3.1). Furthermore it has the follow
ing property. For any e > 0, 

lim É^A. = 0 *•*• (3.7) 
x-+oo 1 + \x\E V J 

PROOF. Rewrite the term /0 Xi(x,ods)(dv / dxì) in (3.3) using the Ito inte
gral. Then 

jf *<-.•*>£=jf*<«.*)|5+f <*(*.<>, £(*,<». 
Since v satisfies (3.3), its derivative satisfies 

where R(x,t) is the remainder involving stochastic integrals by Fi(x,ods) etc. 
Then we have 

5£(*«(M).|£(*,*)>= £ / M « . » ) £ * 

Therefore, setting Mi(z,/;) = Fi(z,£) _ /0 Wi(a;,r)dr, we have 
pt d pt n. 

v(x,t) = f(x)+ L3v(x,s)ds + y2 Mi(x,ds) — 
Jo Ĵ i Jo öxi 

d pt n pt 
+ JZ Fi(x,ods)—+ Fd+1(x,ods)v^-Fd+2(x,t). 

JTJJO axi Jo 

Each term of the above has a finite expectation with respect to Q by the 
Corollary to Theorem 1. Further we can change the order of the integration 
by Q and the stochastic integrals. Note that J0 Mi(x,ds)-7^L is of mean 0 with 
respect to Q a.s. UJ. Then we obtain 

EQ[v(x,t)] = f(x)+ [ EQ[L3v(x,s)]ds 
Jo 

d pt 

+ J2 Fi(x,ods)EQ 
i=iJo 

dv ( . 
(3.8) 

-I- / Fd+1(x,ods)EQ[v(x,s)] + Fd+2(x,t). 
Jo 

Set u(x,t) = Eç[v(x,t)] and change the order of integral EQ and derivation 
L3. Then we find that u(x,t) is a solution to equation (3.1). 

Now the solution u(x, t) has a bounded moment of any order by the Corollary 
to Theorem 1. Then u has the growth property (3.7) as before. The proof is 
complete. 
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REMARK. If Fi,..., Fd+2 are identically 0 in (3.1), equation (3.1) is a second 
order (deterministic) partial differential equation 

öu 
-^ = Ltu, u\t=o = /• (3.9) 

The solution is then represented by 

u(x,t) = EQ \f(^o,t(x)) (J c(il;3it(x),s)dsy\ (3.10) 

+ / ( e x p / c(ißrjt(x),r)dr) d(ip3ìt(x),s)ds 

where tp3ìt is the inverse of the stochastic flow generated by — (X±(x,t),..., 
Xd(x,t)).' 

The use of the inverse flow will provide a better probabilistic interpretation for 
diffusion equation or heat equation. To see this we consider the case c = d = 0. 
Then u(x,t) = E[f(ißo,t(x))] is a solution to a heat equation with the initial 
condition u(x, 0) = f(x). Now a particle starting from ißo,t(x) and moving 
along the trajectory ^0,3(^0,*(x)), 0 < s < t, will arrive at x at time t since 
0o,t(^o,t(aO) = x- Hence f(ißo,t(x)) can be interpreted as the temperature at 
the state x at time t, which is carried through the above trajectory from the point 
^o,t(x). Then by the law of large numbers, its expectation u(x,t) indicates the 
temperature at the state x at time t. 

We next study the uniqueness of the solution to equation (3.1). 

THEOREM 3. Any solution to equation (3.1) satisfying the growth property 
(3.7) is at most unique. 

PROOF. We have shown the uniqueness in some special case in [7]. However, 
the method cannot be applied to the present cases. So we shall take another 
approach. 

It is enough to consider the case Fd+2 = 0. Let wt(f) be the solution to 
the first order equation (3.1) in case Lt = 0 and Fd+2 = 0. Then by The
orem 1 it is represented by wt(f) = /(V,o,t(^))^o,t(i0o,t(^)) where -0o,t is the 
inverse of the stochastic flow 0o,t generated by — (Fi,... ,Fd) and £o,t(z) = 
exp/0*Fd+i((ßo,r(x), odr). We may consider that for almost all OJ, wt is a linear 
map on G(Rd",R1). It is one-to-one and onto. The inverse map is given by 

wri(f)(x) = f(Mxmo,t(x)-1-
Now suppose that u(x,t) is a solution to (3.1) with Fd+2 = 0. Set u(x,t) = 

^JW^1{M(X^I))^^M(^OA^î^)^o7f (^)^--Then,_using_generalized_Itô}s fonnula [9], 
we have 

dtu(x,t) = I dtu(<t>oit(x),t) + Y^ ^(ÖoA^^WoM) \ f o . t M - 1 

- u(x,t)Fd+1(^oit(x),odt) 

= £tu(<£o,t(z),*)£o,t(z)_1 dt = w^^tu) dt. 
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Therefore setting Lf = w^LtWt, u(x,t) satifies 

! « = £?«. «|«=o = /. (3.11) 

A direct computation yields 

LT = \EW*>*)ä^ + E6P(*.«>^ + ̂ (M), (3.12) 

where a£j-, bf, cw are smooth functions with random parameters u defined by 

k,l 

bf(x,t) 

= ^Ea«(^(a)'*)ö*öj(^)(^(*)) 
k,l 

+ ]CiMMa!)'')+So«(i''*)y ^(^H-I0^.*)^'0*)!^^^) 

cw(x,t) 

= { V)akl{y,t) / dk(Fd+1oiprj) {y,odr) / di{Fd+1oi/jrtt)(y,odr) 
I M Jo Jo 

1 pt 

« y ] a « ( y i O / dkdi(Fd+i0i>r,t)(y,°dr) 

5^6fc(»,0y 9fc(Fd+io^rjt)(2/îodV) + c(y,0>|3 / =^ ( œ ) . 

+ 

Here we set 0t = <̂ o,t and ?/>t = Vto,*- These are not bounded but satisfy the 
following growth condition by Lemma 1: 

\aij(x,t)\<G(i+\x\r\ 
\bi(x,t)\<G(l + \x\y*, (3.13) 

\c(x,t)\<G(l + \x\)i°, 

where 71, 725 73 are positive constants such that 71, 72 < 1 and 71 +73 < 2. 
Then the solution to equation (3.11) with the growth condition (3.7) is at most 
unique by the following lemma. This proves the uniqueness of the solution to 
equation (3.1). 

LEMMA 2. Let Lt be the elliptic operator of (3.2) such that coefficients 
a, b, c, d are of C3,0 and satisfy the growth condition (3.13). Let f(x,t) be 
ofC2*1 with the polynomial growth. If it satisfies 

-j^ + L3f<0, 5 > 0 , (3.14) 
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l im/ ( . , s )>0 , (3.15) 
slO 

then f is nonnegative. 

PROOF. In the case where c(x,t) of Lt is nonpositive and / is bounded from 
below, the assertion can be proven similar to Stroock-Varadhan [14], Theorem 
3.1, keeping in mind the growth condition (3.13). 

In the general case we shall follow Friedman [4]. Introduce the function 

H(x,t) = eXp[ i - ^ -

where 7 satisfies 73 < 27 and 71 + 27 < 2. Define 

Ltu = H(x, t) (~ + Lt) H(x, t)'1!*. 

Then we have 

where 

g _ c 1 2 / c 2 . ; 2 [ ( i+ feN 2 ) 2 ^ 7 - i ( i + f c N 2 r - 2 ] r a 

+ ̂ y . ^ (̂i+y-1
 £ ^ 

_ii(i+w 
(i-M*)2 • 

We can choose positive constants fc, ja and to such that c(x, t) < 0 for t < to. 
Now if / is of C2,1 with the polynomial growth, and if it satisfies (3.14) and 

(3.15), then g = Hf satisfies Ltg < 0 and lim3^0 g( •, s) > 0. Since g is a 
bounded function, g(x,t) > 0 holds for t < to, which proves f(x,t) > 0 for 
t < to- Repeating this argument, we see that / is nonnegative in Rd x [0,T]. 
The proof is complete. 
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Spatial Stochastic Growth Models— 
Survival and Critical Behavior 

THOMAS M. LIGGETT 

1. Introduction. The classical analogue of the class of models we will dis
cuss is the branching process. The simplest example is a continuous time Markov 
chain Xt on the set of nonnegative integers in which the transitions n —• n + 1 
and n —• n — 1 occur at rates nX and n respectively. Here Xt represents the 
size of a population in which individuals die at rate one and give birth to a 
single offspring at rate A > 0. The first natural question involves the survival or 
extinction of the population. The simple answer is that extinction occurs with 
probability one if and only if A < 1, and the survival probability 

p(X) = P(Xt £ 0 for all t\X0 = 1) 

is given by p(A) = 1 — A -1 for A > 1. This process and its generalizations have 
been studied extensively for more than three decades. Progress in each of these 
decades has been reported in [8], [2], and [1]. 

Motivated in part by problems in Physics and Biology, the past decade has 
seen the development of a new field in which a spatial element is introduced 
into these growth models. Individuals are no longer simply counted—they have 
spatial locations as well. These locations play a role in determining the birth 
rates at unoccupied sites. The spatial dependence has several implications for the 
study of these models. From a technical point of view, the principal one is that 
the size of the population does not have the Markov property. Therefore one is 
forced to consider Markov chains on larger and richer state spaces. The behavior 
of the process is significantly affected as well. For example, while supercritical 
branching processes generally grow at an exponential rate, the spatial constraints 
in the new setup mean that systems can grow at most at rate td, where d is the 
dimension of the set of sites. ^ ^ — ^ ^ „ ^ „ „ ^ ^ ^ 

While there are many ways in which a spatial dependence can be introduced, 
we will discuss a particular class of models At which fit into the framework of 
interacting particle systems [12]. Specifically, At is a continuous time Markov 
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chain on the collection of finite subsets of the d-dimensional integer lattice Zd. 
To describe it, let ß(x, A) be a nonnegative function defined for nonempty finite 
subsets A of Zd and for x E Zd\A. Assume that ß(x, A) = ß(0,A - x) and that 
Y^xéA ß(x)A) < ex). Then At has the following transition rates: (a) The empty 
set 0 is an absorbing state, (b) A —• A\{x} occurs at rate 1 for each x E A, and 
(c) A —• A U {x} occurs at rate ß(x, A) if A ^ 0 and x ^ A. 

The chain At is said to survive if the survival probability 

p = pi°}(At ? 0 for all t > 0) (1.1) 

is positive, and it is said to die out if p = 0. The chain may only be defined until 
a finite explosion time. In this case, the event that explosion occurs is taken to 
be contained in the survival event in (1.1). We will be concerned primarily with 
the following two questions: (a) For what choices of the birth rates ß(x, A) does 
At survive, and for what choices does it die out? (b) When At survives, how 
large is p? 

Often we will consider one-parameter families of models, and then p(\) is the 
survival probability for the model with parameter A > 0. In most cases, p(X) is 
increasing in A, and we define the critical value by Ac = inf {A: p(\) > 0}. Then 
question (a) asks for bounds on Ac, while question (b) involves the behavior of 
p(X) as A | Ac. If, for example, p(X) ~ L(X — Xc)

a, then a. would be called the 
critical exponent for p(X). 

EXAMPLE 1.2. THE CONTACT PROCESS. Let 

ß(x,A) = X\{yeA:\y-x\ = l}\, 

where | • | denotes the cardinality. This example was introduced by Harris [9] 
and can be viewed as a model for the spread of infection. It has also come up in 
high energy physics. A general treatment of the contact process can be found in 
Chapter VI of [12]. 

EXAMPLE 1.3. FINITE NEAREST PARTICLE SYSTEMS. Here d = l and 
ß(x,A) = ß(lx(Ä),rx(A)), where lx(A) — x — max{y E Z: y < x and y E A}, 
rx(A) = mm{y E Z : y > x and y EA}-x, ß(l, r) = ß(r, I) > 0 for 1 < I, r < oo, 
X)n/?(n> oo) < °°) a nd /?(oo,oo) = 0. This is the finite version of an infinite 
system which was introduced by Spitzer [16]. A treatment of nearest particle 
systems can be found in Chapter VII of [12]. 

Our understanding of these growth models is much more complete when At is 
reversible than when it is not. The contact process is not reversible. The finite 
nearest particle system is reversible if and only if ß(l, r) has the form 

ß(l, r) = Xß(l)ß(r)/ß(l + r) if 1 < I, r < oo, and 
(1.4) 

/?(oo, n) — ß(n, oo) = Xß(n) if 1 < n < oo, 

where A > 0 and ß(n) is a strictly positive probability density on the positive 
integers. Results for general systems are surveyed in the next section. The more 
precise results which are available for reversible systems are discussed in §3. 
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2. General systems. In this section, we will give some easily verifiable suf
ficient conditions for extinction and for survival of general growth models. For 
many parametric families of models, these results give upper and lower bounds 
on the critical value of the system. First we consider the case of extinction. 

THEOREM 2.1. Suppose that T,x<£Aß(x,A) < ß(\A\) for all A, where /?(•) 
is a positive function satisfying 

oo . 
n! £EWW=°°- (2-2) 

Then At dies out. 

PROOF. The hypothesis guarantees that At can be coupled with a Markov 
chain Xt on the nonnegative integers with transitions n —» n — 1 and n —• n +1 
at rates n and ß(n) respectively, in such a way that \At\ < Xt a.s. for all t. 
Assumption (2.2) implies that P(Xt ^ 0 for all t) = 0. Therefore 

P(At ? 0 for all t) = 0. 

Clearly, the same proof would show that if Y^X&A ß(x> A) > ß(\A\) for all 
A ^ 0, where the series in (2.2) converges, then At survives. This result is not 
very useful, however. In most cases of interest, including Examples 1.2 and 1.3, 

lim - inf Y* ß(x,A) = 0. 

This is a consequence of the crowding which occurs in Zd. To obtain a useful 
sufficient condition for survival, one must work harder. Define T: Zd —• Z by 
Tx =sum of the coordinates of x. The following result and its proof are based 
on techniques developed in [10]. 

THEOREM 2.3. Suppose that for each A, the birth rates satisfy 

Tx-Xi-1 
12 ftx>AK .St.-* - 2 for0<i<n-l, 

Xi<Tx<Xi+i Zi+1 - Xi 

and 

£ AM)**1 T* }>2 forl<i<n, 
' Za 4-1 X{ it 

Xi<Tx<xi+i Z^L 

where {xi, 0 < i < n-hl} are defined by xo = —oo, xn+i = +oo, xi < x^ < • • • < 
xn} and {Tx: x E A} = {x±,..., xn\. (IfjCj+i_=_ Xij^^Jherejsno assumption^ 
the ratios § and °̂  are interpreted as 1.) Then p>\, so At survives. 

PROOF. Let v be the probability measure on {0,1}Z which is the distribution 
of the stationary renewal process on Z whose inter-arrival times r have the 
distribution given by P(r >n) = (2n - 2)!4~n+1/(n — l)\n\. Define a function 
h on the finite subsets of Z by h(A) = v{r\\ r\(x) = 1 for some x E ^4}, and a 
function g on the finite subsets of Zd by g(A) = h({Tx: x E A}). We will show 
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that EAg(At) is nondecreasing in t for each A. The desired conclusion follows 
from this, since then 

p = lim pM(At £ 0) > lim E^g(At) > g({0}) = §. 
t—»oo t—»oo 

To prove the monotonicity of EAg(At), we need the following two facts: 
^)ExeAÌHA)-h(A\{x})] < 2^A[lA(x+l)+lA(x-l)][h(AU{x})-h(A)]. 
(b) h(A U {x}) is a concave function of x in each connected component of the 

complement of A. 
These appear in [12] as Lemma 1.25 of Chapter VI and Lemma 2.8 of Chapter 
VII. The proof of (b) is quite easy; that of (a) is substantially more difficult. 

Now fix a finite subset A of Zd, and let B = {Tx: XEA}. Then 

5 > ( X ) - g(A\{x})] < J > ( * ) - h(B\{y})}, (2.4) 
xGA yEB 

since all the summands are nonnegative, and each positive summand on the left 
agrees with one of the summands on the right. Let {xi, 0 < i < n + 1} be as in 
the statement of the theorem, and put f(y) = h(B U {y}) — h(B) for y E Z\B. 
Then 

y£ß(xiA)[g(AU{x})-g(A)] 
x$A 

i=0 Xi<Tx<Xi+\ 

> "E 0 ( M ) / ( * 1 - 1 ) + E ß(*,A)f(Xn + l) 
Tx<x\ Tx>xn 

+ £ 53 ß(x,A) 
i = l Xì<TX<Xì+I 

{xi+1 -Tx- l)f(xj + 1) + (Tx -Xj- l)/(g<+i - 1) 
Xi+i -X{-2 

by property (b). Note that this property implies that / is a decreasing function 
to the left of B and an increasing function to the right of B. Using the hypothesis 
of the theorem, it follows that 

2 ß(x,AMA U {x}) - g{A)] > 2 £ [ l f l ( „ + 1) + lB(y - l)]f(y). 
x£A y&B 

Combining this with (a) and (2.4) yields 

J2ß(x,A)[g(AU{x})-g{A)] > J>(,4) - g{A\{x})], 
x£A xEA 

or equivalently, that d(EAg(At))/dt > 0 as claimed. 
Applying Theorems 2.1 and 2.3 to the contact process gives the bounds 

l/2d < Ac < 2/d. More is known in this case: Ac > 3/2 if d = 1, and Ac is 
asymptotic to (2d)"1 as d —• oo. (See pp. 289 and 308 of [12].) When applied to 
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finite nearest particle systems, Theorems 2.1 and 2.3 guarantee survival when
ever Y^i+r=n ß('> r) > 4 for 2 < rc < oo, and X)£li ß(oo,r) > 2, and extinction 
whenever £ i + r = n ß(l, r) < 1 for 2 < n < oo, and £ ~ x /?(oo, r) < 1. 

In this section we have concentrated on the problem of survival and extinction 
of general systems, saying nothing about the behavior of the process when it 
does survive. If the birth rates ß(x, A) have additional properties, much more 
can be proved. For example, if the rates have certain additivity properties, then 
percolation techniques can be applied to prove limit theorems in the supercritical 
case. For examples of this, see [5] and [6]. Instead of discussing additive systems 
further, we will turn in the next section to the case in which At is reversible. 

3. Reversible systems. This section is devoted to a discussion of the more 
complete results which can be proved for growth models which are reversible. In 
the reversible case, the birth rates are given by 

ß(x, A) = TT(A U {X})/TT(A) (3.1) 

for x £ A, A ^ 0 ,n(A) > 0, and ß(x, A) = 0 otherwise. Here TT is a nonnegative 
function on the nonempty finite subsets of Zd which is assumed to satisfy 

(a) TT(A) = ir(B) whenever A and B are translates of each other, 
(b) BDA and ir(A) = 0 imply TT(B) = 0, 

(c) T,x ̂ (A u ix)) < °° for each A Ï 0> 
(d) TT(A) = 1 if \A\ = 1, and 
(e) there are sets of arbitrarily large cardinality with n(A) > 0. 

The state space of the chain is {0} U {A: TT(A) > 0}. 
The most important new tool which is available in the reversible case is the 

Dirichlet principle, which provides a variational characterization of the survival 
probability. In order to state it, let H be the collection of all functions h on the 
finite subsets of Zd which satisfy 

(a) 0 < h(A) < 1 for all A, h(0) = 0, 
(b) h(A) = h(B) if A and B are translates of each other, and 
(c) l im^oo inf\A i = n h(A) = 1. 

For h E H, define 

*W = E T # E ^ ) - h(A\{x})]>. 
A30 ' ' x€A 

The proofs of the following theorem and its corollaries can be found in [13]. See 
-also=[=7=]r— - — —-——=———" — — ~ 

THEOREM 3.2. With the above definitions, p = ìnìheH®(h)-

This result has the following consequences. The first is almost immediate; 
the second is obtained by using a particular h E H which depends on A only 
through its cardinality; the proof of the third involves two applications of the 
Schwarz inequality. 
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COROLLARY 3 .3 . Let p and pf be the survival probabilities for the systems 
corresponding to the weights 7r(-) and 7r'(-) respectively. If n(A) < nf(A) for all 
A, then p < pf. 

COROLLARY 3.4. Forn > 1, let 7rn = ì2\A\=nìABQw(A). Then 

_ r a = l 

where the bound is interpreted as zero if the series diverges. 

COROLLARY 3.5 . Suppose that 

ir(A) = cn J2 *(A\{x))lA\{x} (x) if |A\ = n > 2, 
xGA 

where cn > 0, ^A(x) >0, *yA(x) = 0 ifxeA, Y^xlA
x) = 1> and~(A+y(x + y) = 

1A(%) for all y E Zd. Then 7rn = ncncn-i • • • c2 and p > E ^ L i n7rn 1 ] ~ 1 -

For one-parameter systems in which the weights 7r(-) are obtained via the spe
cial construction in Corollary 3.5, Corollaries 3.4 and 3.5 can often be used to 
determine the critical value exactly. Unfortunately, many interesting systems do 
not arise in this way, as was shown in §3 of [14]. Even so, these special systems 
can often be used as comparison models to obtain bounds on the survival prob
ability for a more interesting system via Corollary 3.3. This type of application 
can be found in §6 of [13] and §§3 and 5 of [14]. 

Next we consider reversible nearest particle systems in one dimension, since 
very explicit results can be obtained for them using Theorem 3.2 and its corol
laries. These are the growth models described in Example 1.3 with birth rates 
chosen as in (1.4). Proofs of the following results can be found in [15]. They 
improve results in [7]. 

The birth rates for reversible nearest particle systems have the form (3.1) with 
7T(-) given by 

rc-l 

7r({zi,. . . , xn}) = A""1 f i ß(xk+1 - xk) (3.6) 
fc=i 

for xi < X2 < • - • < xn. These weights result from the construction in Corollary 
3.5, using 1A(%) = ß(lx(Ä)) for x to the right of A, and cn = A. Furthermore, 
7Tn = nXn~1. Therefore, Corollaries 3.4 and 3.5 provide the following bounds on 
the survival probability: 

A - l * 
< PW < 

. . A - l 
A log for A > 1. (3.7) 

A 

Corollary 3.3 implies that p(X) is an increasing function of A, so the critical value 
is well defined. It then follows from (3.7) that Ac = 1. 

The next question involves the behavior of p(X) for A just to the right of the 
critical value. The dependence of p(X) on the probability density /?(•) becomes 
more evident in the answers to this question. A more careful analysis of the 
expression for the survival probability given in Theorem 3.2 than was used in its 
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corollaries gives 

THEOREM 3.8. For reversible nearest particle systems, 

liminf^H->2, (3.9) 
A l l A - l " 

with the inequality being strict if supn Y^k=i ß{k)ß(n ~ k)/ß{n) < °°- U 
52ne~enP(n) = 1 - cô + 7Ôa -j- o(6a) as O | 0 for some c > 0, 7 > 0, and 
1 < a < 2, then 

" ï ï T î Â ^ r * *>*"•• 

If ß(-) has a finite variance, the second part of Theorem 3.8 with a = 2 implies 
that 

. v OO r ~» 1 _ 2 

l m s u p ! ^ - < 2 £ y / ? ( n ) f>/?(n) 
.71=1 

(3.10) 
*ü " * „=1 

From (3.9) and (3.10), we can conclude that the critical exponent for p(X) is 1 
in this case. 

The above results suggest that (a) L = lim^i p(A)(A - 1 ) " 1 exists always, (b) 
L is finite if and only if ^2n n2ß(n) < 00, and (c) lini\j,i p(X)(X - 1)1_Q! exists 
and is positive and finite whenever /?(•) is in the domain of normal attraction of 
a one-sided stable law of index a E (1,2). These remain open problems. Note 
that (3.10), and the strict inequality which is asserted in (3.9) under the extra 
hypothesis, imply that L, if it exists, cannot be the same for all densities /?(•).. 

We conclude with a discussion of a new class of models in higher dimensions 
which generalize reversible nearest particle systems. One particularly interesting 
feature of these models is that there is a close connection between them and an
other important area of probability theory: self-avoiding random walks. Among 
the many recent papers in this area are [3] and [4]. 

Let ß(x) be a probability density on Zd for which ß(0) = 0. Suppose that 
n (A) is given by 

7 1 - 1 

TT(A) = A""1 ]T H ß(*k+i - xk), (3.11) 
fc=i 

where the sum is taken over all orderings x\,...,xn of the n elements of A. To 
see that these models generalize reversible nearest particle systems, take d = 1 
and /?(•) concentrating on the positive integers. Then the right side of (3.11) 
agrees with (3.6). In general, one can think of the birth rates of these systems 
as being certain averages of nearest particle birth rates. 

__Now-let^£fr^e=the-rando 
One of the quantities of interest in the theory of self-avoiding random walks is 
on — P(Bn), where Bn is the event that So, S i , . . . , Sn are all distinct. It is well 
known and easy to check that log on is subadditive, so that 

7 = lim o\ln (3.12) 
71—»OO 

exists and is positive. 
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THEOREM 3.13. Suppose that the growth model At has the birth rates given 
in (3.1) where ir(-) is given by (3.11). Then 

A 7 - i r ~ n _ 1 

A7 

so that Ac = 7"1 . 

< PW < ^ ( n + l jA-^J 
(3.14) 

PROOF. TO prove the right inequality in (3.14), we will compute nn and then 
will apply Corollary 3.4: 

7Tn = £ ^ ) = An~1 E E Uß{xh+1-Xk) 
\A\=n,ABO |A|=n,A30 orderings of A fc=l 

n - 1 

= nXn~1 J2 H /?(«*) = «A»-1^-!, 
F k=l 

where F = {(ui,... ,un_i) : 0,ui,ui + U2,. . . ,^i + • • • + un-\ are distinct}. 
Unfortunately, Corollary 3.5 does not apply to these examples to give a lower 
bound for p(X). Therefore, we need to use Theorem 3.2 directly: 

00 * n _ i n - l 

*(*) = £ V E E n «**+!-**) 
n = l |A|=n,A90 ordering8of A fc=l 

• x : [ ^ ) - f t ( ^ \ { ^ } ) ] 2 

00 " - 1 (3.15) 
^ S A n _ 1 2 u / ? ( « * ) [ ä ( { 0 , « l , t i i + « a , • • • , « i + • • • + w n _ i } ) 

71=1 F / c = l 

- h({0,«1, wi + t i 2 , . . . , «1 + • • • + U n - 2 } ) ] 2 

0 0 

= J ] AV„£{[ft({5o,... ,Sn}) - h({S0,...iSn-1})]
a\Bn). 

71=0 

For n < N and distinct 0, x\,..., xn, P(BN\SI = x±,... ,Sn = xn) < GN-m so 
that 

P ( S i = z i , . . . , S n = s n | S * ) < ^ ^ ^ 

Using this in (3.15), and then applying the Schwarz inequality gives 

N 

*(A) > E A"-^£{[Ä({So,..., Sn}) - h({S0,..., Sn_!»]2 |5N} 
r^O " " - » 

71=0 
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where hn = E[h({So,..., SU})\BN]. Another application of the Schwarz inequal
ity yields 

2 

Therefore 

JV 

.71=0 

22[hn - hn-i] i^N-n <EA"-^^[A„-An_1]
2f;A-"ï 

r jv 

*(A) > h% J>-
.71=0 

_ n 0"JV-n 

ö-JV 
(3.16) 

for each iV. Now let 

ÖN = max [«Tjv-n/o'jv] ^ °"iv anc^ ^ = lim inf 6^. 
Kn<NL 7V-+00 

By (3.12), S > 7" 1 . On the other hand, a recursive argument using the definition 
of the tfjv's implies that for each N there are positive integers n±,... ,rik so that 
n\ + ••• + n\z = N and G^1 = n»=i ^nU+.-.+n.-j fr°m which it follows that 
S < 7 " 1 . Therefore 6 = 7 - 1 , so that we can pass to the limit in (3.16) along 
a subsequence of TV's, using the fact that limjv->oo ft AT = 1, to conclude that 
* W > [En=o(Xl)r Ì ' 1 f o r e v e r y h G H- N o w u s e Theorem 3.2 to obtain the 
lower bound in (3.14). 

REMARKS, (a) In the nearest particle case, on — \ and 7 = 1, so (3.14) and 
(3.7) agree in this case. 

(b) In order to identify the critical value in Theorem 3.13, it is enough to 
know that the sequence an satisfies (3.12). More information about this sequence 
would be required in order to reach other conclusions. For example, it would 
be nice to know whether p(Xc) = 0, as is the case for reversible nearest particle 
systems. In [11], Kesten proved for the simple random walk that OVH-2/°VI 

converges to 72 . He tells me that he has recently proved similar results for more 
general random walks. 

There are a number of other classes of reversible growth models in higher 
dimensions which can be partially analyzed with the help of the Dirichlet prin
ciple. Some of these are discussed in [13] and [14]. Much remains to be done, 
however. 
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Wave Propagation and Heat Conduction 
in Random Media 

GEORGE C. PAPANICOLAOU 

1. Introduction. The mathematical analysis of propagation phenomena in 
random media has advanced substantially in the last ten or fifteen years. One 
reason for this is that techniques in the modern theory of stochastic processes 
such as asymptotics for stochastic equations, the theory of interacting particle 
systems, etc., have improved to where really difficult problems can be solved. 
Problems in random media are difficult because randomness has a spatial char
acter: a process such as diffusion takes place in a medium whose properties vary 
randomly from point to point in space. Does this diffusion process behave after a 
long time like a diffusion process in a deterministic medium? Can it get trapped 
so that its long time behavior is different from that of a usual diffusion process? 
What about wave processes in a random medium? When do we have effective 
propagation and when do the waves get trapped so that we have localization? 
Even in one space dimension these questions are not easy to answer. 

We shall consider here only one aspect of propagation in random media that 
makes use of asymptotic methods. It is one-dimensional wave propagation: re
flection and transmission of monochromatic, single frequency, waves and pulses. 
The asymptotic methods that we use have been developed in the last several 
years primarily for the study of such problems. 

2. Monochromatic waves. Let u(x) be the complex-valued wave field at x 
in R1, let k be the free space wave number, and let n(x) be the index of refraction 
of the medium. The wave field satisfies the reduced wave equation 

uxx + k2n2u = 0 (2.1) 

in an interval 0 < x < L. We assume that a wave of unit amplitude is incident 
from the left so that 

u = eikx + Re~ikx f o r z < 0 (2.2) 

and 

u = Teikx for x > L. (2.3) 

© 1987 International Congress of Mathematicians 1986 
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Here R and T are the complex-valued reflection and transmission coefficients, 
respectively. At x = 0 and x — L the wave functions u and ux are continuous. 
Since fc and n are real it is easily seen that the total power scattered by the slab 
in 0 < x < L is equal to one 

|Ä|2 + |T|2 = 1. (2.4) 

It is also easily seen that the continuity condition and (2.2), (2.3) imply that the 
solution of equation (2.1) satisfies the two-point boundary conditions 

u + TTUX = 2 at x = 0, u — TTJ-UX = 0 at x = L. (2.5) 

Reflection and transmission by a random slab is modelled by an index of 
refraction n(x) which is a random process defined on some probability space. If 
n(x) is positive, bounded, and piecewise continuous (measurable) the solution of 
(2.1) is a well-defined process. The reflection and transmission coefficients are 
then random variables depending on the wave number k and the slab width L. 
The problem is now to find qualitative or quantitative properties of R and T 
given some properties of the random medium through the index of refraction— 
in particular, to find properties that require randomness and do not hold for 
periodic or almost periodic media, for example. 

A basic qualitative property that has been known for some time [1] is the 
exponential decay of the transmission coefficient as the slab width L goes to in
finity. Furstenberg treated discrete versions of the problem in which the analog of 
n(x) is independent identically distributed random variables. Kotani [2] recently 
gave a proof of this result for the present problem with minimal hypotheses. If 
n(x) is a stationary, ergodic process that is bounded with probability one and is 
nondeterministic (that is, it has trivial tail sigma field) then 

L—>oo L 

with probability one, and ^(fc) is a positive constant. The content of the theorem 
is the positivity which gives the exponential decay of the transmission coefficient 
with the size of the slab. The decay constant ^(k) depends on the wave number 
and is the (maximal) Lyapounov exponent of (2.1). Its reciprocal is called the 
localization length because it characterizes the depth of penetration (skin depth) 
of the wave into a random medium occupying a half-space. A random half-space 
is a perfectly reflecting medium by (2.4) and (2.6). 

The positivity of the Lyapounov exponent ^(k) is at the root of nearly every 
theorem dealing with qualitative properties (2.1). An example is the discreteness 
of the spectrum in an infinite random medium with bounded, stationary ergodic 
index of refraction (with trivial tail field) first proved by Goldsheid, Molcanov, 
and Pastur [3] (with many more hypotheses) and in great generality by Kotani 

If we want to get quantitative information about scattering by a random 
medium, we must look into interesting asymptotic limits: large or small wave 

lim T l o g | T | a = -2*y(fc) (2.6) 
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number, large or small variance of n(x) about its mean, etc. Let us assume that 

n2(x) = l + ii(x) (2.7) 

where p,(x) is a zero mean stationary random process with rapidly decaying 
correlation functions. Let 

/»OO 

a= / E{p,(x)p(Q)}dx. 
Jo 

Here E denotes expectation for the stationary process \x. The parameter a 
has dimensions of length and can be thought of as a correlation length of the 
refractive index. We can now investigate the behavior of the Lyapounov exponent 
7(fc) for small ka, or large kot [5]. Small ka will be discussed here since we are 
aiming at the pulse problem of the next section where this case is important. 
Small ka means of course that the wave length of the incident wave is large 
compared to the typical "size" of inhomogeneities in the medium. We expect 
the random medium to have an effective behavior independent of the detailed 
characterization of n(x). In fact 

l(k) « 7ofc2 (2.8) 

as k —> 0 where 70 = a/4. Whereas 7(fc) is a complicated functional of the 
process p,, 70 depends only on a. We have a limit theorem. 

The simple result (2.8) gives us a way to assess quantitatively the transmission 
coefficient T = T(k, L) which is a complicated functional of p,. We see in fact 
from (2.6) and (2.8) that if as L —» 00, fc —• 0 like I/VX, then roughly 

| r | « e ' * W L « e ' 1 f 0 . (2.9) 

This rough estimate is meant to indicate only that T should have a nontrivial 
distribution in this limit. When the slab of random medium is large (compared 
to the correlation length a) then only long wavelengths of order \pL will be 
transmitted. Short ones are blocked. And T has a limit distribution that can be 
computed explicitly. 

To describe this result we must introduce some notation. First it is convenient 
to consider the reflection coefficient R instead of the transmission coefficient. 
They are related by (2.4). Let us denote R by R(L, fc, a) to indicate dependence 
on the slab width, the wave number, and the correlation length. Let e > 0 be a 
small dimensionless parameter. Define 

- — - ~ — — R £ fp)-—R (b/e2 fskray— — ( 2 : 1 0 ) -

and consider R£(L),L > 0 for each e > 0, as a process on the hyperbolic disc 
H = {R in C\ \R\ = 1}. The scaling (2.10) is a convenient way to express the 
limit described before (2.9). We have 

THEOREM 1. Assume that p,(x) is a stationary process that has finite mo
ments of all orders and is rapidly mixing (see [6] for definitions and sharp 
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conditions). Then the process Re converges weakly as e —• 0 to Brownian motion 
on the hyperbolic disc H with infinitesimal variance ak2. 

If we parametrize H by polar coordinates 

Ä = c-^tanh(fl/2), (2.11) 

then the theorem says that the limit process R(L),L > 0, is a Markov process 
with generator ^ak2A where À is the Laplace-Beltrami operator on H, 

A = & + cothele+csch2eW- (2.12) 

This result was first obtained by Gertenstein and Vasiliev [7] who realized 
that in a discrete medium the reflection coefficient (defined in a slightly different 
way) transforms by linear fractional transformations as L changes in discrete 
units. Thus R(L) does some kind of random walk in H as L varies. The simplest 
diffusion approximation to a random walk is, naturally, Brownian motion. Hence 
the result. A more complete derivation was given in [8] (for a slightly different 
but very similar problem). It was noticed then, and subsequently in much greater 
detail in [9, 10] and also [11-13], that although this theorem is indeed a diffusion 
approximation to a complicated random motion in H, there is a reason why the 
limit is Brownian motion and not a more complicated process. For example, 
another reasonable scaling limit for the reflection coefficient is the white noise 
limit where L and fc are fixed as the process ji(x) tends to white noise. That 
could be done by replacing p,(x) by p>£(x) = (l/e)p(x/e2). We again have a 
diffusion approximation, but the limit is not Brownian motion now. The scaling 
(2.10) is special for it leads to a rapid deterministic rotation in H that isotropizes 
the limiting process. 

This observation is simple and is contained in the general limit theorems for 
stochastic equations, as we describe in the following paragraphs. It enhanced 
profoundly our ability to calculate statistics of interesting scattering quantities 
(as in part II of [9], for example, and in [14]) but it seemed to be just good luck 
(if one likes computing). It was when we looked recently into pulse propagation, 
the subject of the next section, that we realized that this simplification due 
to rapid rotation leads to striking results in the time domain that are almost 
entirely due to this phenomenon. 

Let us now describe how Theorem 1 is obtained. Let A and B be defined by 

u(x) = eikxA(x) + e~ikxB(x), 

= ik[eikxA(x) - e 

(2.13) 

du\X) _ «inlJkx A(n.\ _ *-ikxB{x^ 
dx 

Then from (2.1) and (2.7) we see that A and B solve the system 

d_ 
dx 

A(x) 

B(x) 
ikp(x) 0—2ikx 

— e 
2ikx 

A(x) 

B(x) 
(2.14) 
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in 0 < x < L with the two-point boundary condition 

A(0) = 1, B(L) = 0, 

The reflection and transmission coefficients are given by 

R{L,k) = B(0), T{L,k) = A(L). 

(2.15) 

(2.16) 

Let Y(x, y) be the complex two-by-two fundamental matrix of system (2.14) with 
0 < y < x < L and Y (x, x) = I. It is easily seen that this matrix has the form 

y = 
a b 
b a 

\a? - \b\2 = 1, (2.17) 

which means that Y belongs to SU(1,1), the Lie group of such matrices. The 
fundamental matrix is thus a random process with values on the group manifold. 
The reflection and transmission coefficients are obtained from the equation 

o(L,0) 
b(L,0) 

b(L,0) 
a(L,0) 

V 
R 

= V 
0 

(2.18) 

which gives 
R = -b/ä, T = 1/â. (2.19) 

It is clear from the discussion above that all relevant information about 
monochromatic (single frequency) scattering is contained in the fundamental 
matrix process Y. The scaling introduced in (2.9), along with the parameter e 
in (2.10), can be implemented simply by letting Ye(x) = Y(x/e2,Q\ek)\ that is, 
replace x by x/e2 and fc by sk. The matrix Ye(x) solves the system 

dx 
re __ ikp,(x/e2) 

2~e 

j e—2ikx/e 

_ e2ikx/e i (2.20) 

We can now apply to the system (2.20) one of several theorems that charac
terize the limit process Y (x) as e —> 0. The theorems differ mostly in their 
generality and technical level of proof, and they tell us that Y(x) is a diffusion 
process on SU(1,1). In our case here we find that if, for example, the process 
p(x) is bounded and sufficiently mixing (has rapidly decaying correlations), then 
Y£(x), x>0, converges weakly to a diffusion process on SU(1,1) as e -> 0. 

If we introduce polar coordinates in SU(1,1), 

a = e^+^/ 2 cosh(0/2) , b = e^ -^ / 2 s inh (0 /2 ) , (2.21) 

then the generator of the limit diffusion process Y(x) has the form 

k2a 
~2~ 

A + (2 + c o t h 2 ö ) ^ cothôcschô 
d2 

d(j)dil) 
(2.22) 

where A is defined by (2.12). Note that this is not the Laplace-Beltrami oper
ator on SU(1,1), which is not of course elliptic and cannot arise from the limit 
theorem. Note also that Theorem 1 follows immediately now from (2.22), (2.21), 
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and (2.19). The remarks we made regarding the rapid rotation are associated 
with the trigonometric terms on the right-hand side of (2.20). 

Perturbation expansions to analyze limits of stochastic equations like (2.20) 
were developed formally by Stratonovich [15], and the first theorem was proved 
by Khasminskii [16]. By the time [6] appeared, results of this kind had been ob
tained by several methods and with considerable generality. These and related 
developments are sketched in the survey [17] and in a recent book by Kush-
ner [18]. Wave propagation in a one-dimensional random medium is an area 
to which these methods can be used very effectively. But they are limited to 
one-dimensional problems where the approach via a fundamental matrix (or a 
transfer matrix) is possible. Even for one-dimensional vector waves, elastic waves 
for example, the dimensionality of the spaces goes up and the effectiveness of 
the limit theorems for computations is diminished. A lot more can no doubt be 
obtained from the multidimensional diffusions that result and that could be very 
interesting for the scattering problem. Multidimensional reflection-transmission 
problems are essentially untouched without some kind of forward scattering ap
proximation that makes the problem tractable (but not easy). Reflection is, of 
course, gone in this approximation. Some remarks on this, as well as references 
to other literature, are given in [19]. 

3. Propagation of pulses. In the previous section we described some prob
lems and results that cover many aspects of one-dimensional wave propagation, 
which are well understood, and have been around for some time. Recently we 
came across an interesting paper by Richards and Menke [20] where extensive 
numerical simulations of pulse reflection from a one-dimensional random half-
space are carried out. The questions they asked are motivated by geophysical 
exploration problems. They wanted to understand, for example, how to distin
guish multiple scattering effects by small-scale inhomogeneities from dissipation 
in the medium, when one has access to reflected signals, seismograms in their 
case. Of course the more general basic question here is: what can one say about 
the medium from the reflected signal if there are small-scale inhomogeneities 
present that one would like to ignore in an intelligent way? 

We have not answered this question yet, but in the course of analyzing related 
ones we have found several results that will be described in the following para
graphs. It seems, at present, that we are not so far from a reasonable answer to 
this basic question. What follows is joint work with Burridge, Sheng, and White 
[21-24]. 

Let u(x,t) and p(x,t) be the velocity and pressure of an acoustic wave prop
agating in a medium with density p(x) and bulk modulus K(x). The equations 
of acoustics are 

put + px = 0, — pt + ux = 0 (3.1) 

for t > 0, x > 0. Let us suppose that the medium in x < 0 is homogeneous with 
p(x) = po and K(x) = KQ. Let f(s) be a smooth function of compact support 
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in 0 < s < oo. We then let 

u = \f(t - x/co), p = \f(t - x/co) (3.2) 

for t < 0 large and for all x, and we assume that u and p are continuous. 
Here Co = y/Ko/po is the sound speed in the homogeneous half-space. This 
completes the formulation of the pulse problem if the density p, bulk modulus 
K, and pulse form / are known. Note that the pulse strikes the interface x — 0 
between the homogeneous and inhomogeneous half-spaces at time t — 0. The 
observed quantities are the pressure and velocity at the interface x = 0 at t > 0. 

When p(x) and K(x) are random functions, the reflected signals are stochastic 
processes, and we want to know what their properties are. In this complete 
generality, without any reference scales to distinguish phenomena, nothing very 
interesting can be obtained. We would like to model a situation where the pulse 
width is large compared to small-scale inhomogeneities in the medium, but small 
compared to the large scale variations, so as to resolve them while averaging out 
the noise. Thus, we expect that the reflected signal will contain all large scale 
information and a minimal amount of the small scale stuff. Such a framework 
can be formulated with a small parameter e as follows. 

We pass to dimensionless variables and assume that 

> - * * • > ( » + • > ( ? ) ) . î - 5 ç ç ( » + ' ( ? ) ) < 3 - 3 > 

where r) and v are bounded, stationary stochastic processes with mean zero. 
The functions po(x) and Ko(x) are the mean density and bulk modulus of the 
half-space. The acoustic equations are now 

Po(x) (l+r}(^))ut+px = 0 , 

i V ( * w „ (3-4) 

for x > 0 and t > 0 and 

for t < 0, large. 
Note that there are three length scales in (3.4), (3.5). The order one scale 

measures macroscopic variations, the order e scale is the pulse width (mean 
speed is equal to one in the dimensionless formulation) and the order e2 scale 
measures the size of the random inhomogeneities. We have also scaled up the 
amplitude of the incident pulse by l/\/ë. This makes the total energy incident 

j)jyut£^rajidor^ „ _ _ _ _ - _ _ _ _ „ _ - « _ - _ - - _ _ . 
We shall now describe our results for problem (3.4), (3.5) when po = 1 

and Ko = 1. The results in the general case, including discontinuities of the 
mean density and bulk modulus, are similar but more complicated. In the 
homogeneous-in-the-mean case we let 

A(x, t) = u(x, t) + p(x, t), B(x, t) = u(x, t) - p(x, t), 

m(x) = (r)(x) + v(x))/2, n(x) = (r\(x) - v(x))/2. 
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Then A and B solve the problem 

At + Ax + m(x/e2)At + n(x/e2)Bt = 0, 

Bt - Bx + n(x/e2)At + m(x/e2)Bt = 0 

for x > 0 and t > 0 and 

B=°- ^=M^) (3-8> 

for t < 0, large. By analogy with the homogeneous case we call A and 5 the 
right and left travelling wave amplitudes, respectively. The reflected signal is 
B(0,t), t > 0. We introduce the notation 

Bf}t(or)=B(0,t + ea) (3.9) 

to emphasize dependence of the reflected signal on the pulse form / and to 
introduce what we call the windowed process. That is, we look at the reflected 
signal in a time window centered at time t with width of order e. The variable 
a is the window time variable. 

THEOREM 2. Assume thatm(x) and n(x) are bounded, zero mean, station
ary, rapidly strongly mixing (see [6]) processes. Then for each smooth, compactly 
supported f and t > 0 the process Bjt(-) converges weakly as e —> 0 to a station
ary, zero mean, Gaussian process with power spectral density 

Su(u>) = | / > ) | a j/i(>/5tw) (3-10) 

where 
/•OO 

a= / E{n(s)n(0)}ds, (3.11) 
Jo 

/ is the Fourier transform of f, and p(uS) is a universal function that is equal to 
w 2 ( l + o ; 2 ) - 2 . 

Let us make a few remarks about this theorem. It provides a complete charac
terization for reflected signal processes from a half-space that is homogeneously 
random; there are no macroscopic variations in the medium properties. The 
statistical properties of the medium affect the reflected signal only through the 
parameter a given by (3.11). This is, of course, just like the results we discussed 
in §2. It is surprising though that the limit process has this windowed structure 
and, in particular, that it is Gaussian. 

Theorem 2 is proved by taking Fourier transforms in time and working with 
the resulting stochastic ordinary differential equations. The new twist here is 
that we must analyze the transformed amplitudes for all frequencies simultane
ously. Otherwise we cannot reconstruct the signal and show that it is Gaussian. 
This requires infinite-dimensional versions of the limit theorems that we dis
cussed in §2. The remarkable thing is that in this infinite-dimensional setting, 
in the time domain actually, the results seem to be simpler than the ones for the 
monochromatic situation. 
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The reflected process has the following Fourier representation 

BSf'ti<T) = ^£x
e~Ma+t/£)f(")R£(L>")d«}- (3-12) 

Here R£ is the reflection coefficient as defined in §2 by (2.10). Since (3.7) is a 
hyperbolic system with finite propagation speeds, we may convert the half-space 
to a slab of width L large enough. In the notation for the reflection coefficient we 
also indicate dependence ön the frequency w (it is fc in §2). From (3.12) we see 
that moments of the reflected process can be analyzed by the limit theorems of §2 
applied to finite sets of reflection coefficients at different frequencies. This works 
formally for the second moment, the covariance, but fails completely for higher 
moments and can never give the Gaussian law. The reason for this is that the 
trigonometric factor on the right-hand side of (2.20) introduces nonuniformities 
as e —• 0. Reflection coefficients are asymptotically independent at different 
frequencies, but when the frequencies are order e apart, dependence persists. 
This point is essential for the analysis of the integral in (3.12) and so is the 
oscillatory factor in that integral. The usual methods for limit theorems for sums 
of weakly dependent random variables, coupled with the older limit theorems for 
stochastic equations, do not work. The process (3.12) must be studied directly 
as it is. It is here that the rapidly rotating trigonometric terms play an essential 
role. 

4. Concluding remarks. The study so far of pulse propagation in a one-
dimensional random medium has shown that there is an enormous amount of 
detailed structure that can be found and analyzed very well. Our understanding 
of problems in the frequency domain, although extensive, is not sufficient for 
pulses and can at times be even confusing. It is best to study pulses in the time 
domain as much as possible. There are also statistical and inverse aspects to 
the pulse problem that are quite interesting and will keep us happily going for a 
while. 
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A Nonparametric Framework for Statistical Modelling 

CHARLES J. STONE 

1. Introduction. Much of mathematical statistics deals with inference con
cerning the unknowns in a stochastic model for a random phenomenon. In 
the parametric approach the unknowns are a specific finite number of real pa
rameters. In the nonparametric approach they are functions, perhaps subject 
to smoothness or other regularity conditions. These functions can be approxi
mated by means of a flexible finite-dimensional function space. To some extent, 
this reduces the nonparametric approach to the parametric approach. But the 
asymptotic theory is different when the error of approximation is taken into ac
count and the dimension of the approximating function space is allowed to tend 
to infinity with the sample size. We will illustrate this theory by means of three 
examples: density estimation, logistic regression, and additive logistic regression. 

2. Density estimation. Let y be a d-dimensional random variable taking 
on values from a known compact subset C of Rd . It is assumed that the distri
bution of Y has a density function / which is continuous and positive on C. By 
definition / / = 1. Set g = log/ . Let Sn denote a pn-dimensional vector space 
of functions on G having basis Bnj, 1 < j <pn. It is assumed that £\- Bnj = 1 
on C and that no nontrivial linear combination of Bnj, 1 < j < pn, is almost 
everywhere equal to zero on C. Given 9 G 0 n , the space of pn-dimensional 
vectors, set 

and 

Cn(9) = \og\ expl^OjBnj 

fn(-;9) = exp Y!0*3»' - C " W ' 

Then / fn( • ; 0) = 1 for 9 G 6 n . Observe that fn( • ; 9), 0 G 9 n , is an exponen
tial family in canonical form. Let 6 n o denote the (pn — l)-dimensional space 
consisting of those 9 G O n , the sum of whose elements is zero. Let 9n denote 
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the unique value of 9 G 6no that maximizes the expected log-likelihood function 
An( '), defined by 

K(9)=E J20jBnj(Y)-Cn(9) = T,93 J*Bnjf-Cn(9), 9een0. 

Consider the loglinear density approximation fn = fn( • \9n) to / . 
Let Fi , . . . ,Yn be independent random variables each having density / . The 

log-likelihood function for the parametric model is given by ' 

The maximum likelihood estimator (MLE) 9n is the value of 9 G Gno that 
maximizes ln( • ) . Since ln( • ) is a strictly concave function on On0, the MLE is 
unique if it exists. The corresponding estimate fn = fn( • ; 9n) of / is called a 
loglinear density estimate, since log/n G Sn. 

Let || ||2 and || ||oo denote the usual L^ and L^ norms of functions on C. Let 
|| \\oo,A denote the L^ norm of functions on A. It is assumed that pn —> oo as 
n —* oo, that pn = o(n,5~£) for some e > 0, and that limn_,oo infsGsn ||s —ft||oo = 
0 if h is continuous on G. Let Hnh denote the orthogonal projection of h onto 
Sn with respect to Lt2(C). It is assumed that there is a positive constant M such 
that ||IInJi||oo < M||A||oo for n > 1 and h G Loo (G); \Bnj\ < M on C for n > 1 

Bnj = 0 outside a set Cnj having diameter at and 1 < j < pn\ for 1 < j < pn, 
most Mpn ' and Cnj fi Cnk is nonempty for at most M values of k\ and 

M'1^]2 < ^0hB, >nk 

oo, Cn 
-MpnLi^ 

JCnj \ k 

9 kB; nk 

for n > 1, 9 G 6 n , and 1 < j < pn. 
These properties can be satisfied with Cnj, 1 < j < pn, a partition of C 

and Bnj the indicator function for Cnj. Here fn is the corresponding histogram 
density estimate. They can also be satisfied with d = 1, Sn a space of splines 
and Bnj, 1 < j < pn, a basis consisting of jB-splines; see de Boor [1, 2] or Stone 
[7, 8, 9] for details. Presumably, they can also be satisfied with tensor product 
spaces of splines and with spaces of the type that arise in the use of the finite 
element method (see arguments in Descloux [3] and de Boor [1]). 

Some asymptotic properties of loglinear density estimation will now be sum
marized. The proofs follow from arguments in Stone [9]. Set 

6n = inf 
SCS» 

•ffllc 

THEOREM 1. (i) | | / „ - / | | oo=0(« n ) ; 
(ii) fn exists except on an event whose probability tends to zero with n; 
R ||/n - /»Ila = Opr((n-Vn)1/2); and 
H ||/n - /nlloo = OprKn-Vnlogten))1/2). 



1054 C. J. STONE 

Write fn - f = fn - f + fn - fn- The quantity / n - / is a "bias" term, 
while fn — fn is a "noise" term whose magnitude is indicated by its asymptotic 
variance. Under typical smoothness assumptions on g, 8n = 0(pnQ ) for some 
positive number q (this holds with q = m if g has a bounded rath derivative). 
Set 7 = l/(2<7 + d) and r = 57. Suppose that ^d < 1/2 or, equivalently, that 
q > d/2. To get the optimal rate of convergence of ||/n — /H2 to zero, choose 
Pn ~ nld. Then 62 ~ n"1pn ~ n~2r and hence 

\\fn-fh = Opr(n-r)-

To get the optimal rate of convergence of ||/n - /Hoo to zero choose pn ~ 
(n/log(n))7d. Then 62 ~ n~1pnlog(pn) ~ (n - 1 log(n))2r and hence 

| | /n- / | |oc = Opr((n-1log(n)r). 

(See Stone [5] for a precise definition of optimal rate of convergence.) 
Let In(') denote the information function based on the random sample of size 

n. Then In(9) is the Hessian matrix of nGn( • ) at 9; that is, the pn x pn matrix 
whose (j, fc)th element is n(d2Cn(9)/d9jd9k). Let In~

1(9) denote the inverse 
to In(9) viewed as a linear transformation of 9no- Set I~1 = In"

1(9n) and 
In1 — In1^)- Let Gn(2/), Gn(y) G 0no, denote the pn-dimensional vectors 
having elements 

GnM = Bnj(y)-^(<>n) and Ônj(y) = Bnj(y) - ^ (§n) , 

respectively. Set 

SE(Uy)) = fnmGniyyi^Gniv))1'2 

and 

SE(fn(y)) = Uy){Gn{y)'î-xGn{y))xl\ 

THEOREM 2. Uniformly in y El, 

SE{Uv)) ~ (n_1Pn)1/2, SE(fn{y))/SE(fn(y)) = 1 + Opr(l). 

and 
( f (.A — t („\ \ 

•V(0,1). 
(Uy)-fn{y)\ 
\ SE(fn(y)) J 

—It=follows=from-TheoremH2-ths,t—ff[(y)=±=z r=T5WiS (̂=/rr(2/)=)==iŝ an-asymptotic— 
(1 — a)-level confidence interval for fn(y)\ if an = o((n~1pn)

1^2), it is also an 
asymptotic (1 — a)-level confidence interval for f(y). Here $(zq) = q, $ being 
the standard normal distribution function. 

Let P denote the distribution corresponding to / , defined by P(A) = 
fA f, and let Pn and Pn be defined similarly in terms of fn and / n . Let 
A denote a class of subsets of C. Given distributions Q\ and Q2 on G set 
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||Qi — Q2II00 = sup^g^ IQi(-A) —Q2(A)\. Under reasonable conditions on A, Sn, 

and / , \\Pn - PU«, = 0(pn1/d6n) and 

It was shown in Stone [9] for the special case of d = 1, bases consisting of 
J3-splines, and A the collection of subintervals of a compact interval G, that 
11Ai "~ jFnlloo = O p r (n - 1 / 2 ) . What is a corresponding result in the more general 
context of the present paper? 

3. Logistic regression. Let X, Y be a pair of random variables such that X 
ranges over a known compact subset G of R d and Y takes on only two values, 0 
and 1. It is assumed that the distribution of X is absolutely continuous and that 
its density is bounded away from zero and infinity on G. Let / be the regression 
function, defined on G by 

f(x)=Pr(Y = l\X = x). 

It is assumed that / is continuous and that 0 < / < 1. Let g denote the 
corresponding logistic regression function, defined by 

0 = logit(/) = l o g ( / / ( l - / ) ) ; 

so that / = exp(flf)/(l + exp(g)). 
We can approximate g by a member of a pn-dimensional vector space Sn of 

functions on G. Let Bnj, 1 < j < pn> denote a basis of Sn. Then the expected 
log-likelihood function An( • ) is defined by 

kn(0) = E J2e3Bnj(X)Y - log I 1 + exp j Ç 9 3 B n j ( X ) , 8 G 6 n . 

Let 9n be the unique 9 G 8 n that maximizes An(0) and set 

0n = E enjBnj and fn = exp(gn)/(l + exp(^n)). 
3 

Let (X\, Yi ) , . . . , (Xn, Yn) be independent random pairs, each having the same 
distribution as (X, Y). The log-likelihood function for the parametric model is 
given by 

ln(0) = J2 °3 E YiBm(Xi) - E l0S I * + exP ( E eJBn3iXi) 
3 i i V V J J 

which corresponds to an exponential family in canonical form. Let 9n denote 
the MLE of 9 and set gn = Y^j KjBnj and fn = exp(gn)/(l + exp(£n)). Under 
appropriate regularity conditions, analogs of Theorems 1 and 2 of §2 should hold. 
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4. Additive logistic regression. Let G be a rectangle, say, G — [0, l]d. 
It is then useful in practice to assume that g is additive or, more generally, to 
replace g by its best additive approximation g* ; this is defined to be the unique 
additive function h on G that maximizes the expected log-likelihood 

E[h(X)Y- log(l + e h ( x ) ) ] . 

Set /* = exp(<7*)/(l + exp(g*)). If g itself is additive, then g* = g and /* = / . 
To obtain a pn-dimensional space of additive approximations to g*, we con

sider pnfc-dimensional vector spaces Snk of functions on [0,1] for 1 < k < d, each 
containing the constant functions, and let Sn be the collection of all functions 
of the form s(xi,. ..,Xd) = Ylk sk(%k), where Sk G Snk for 1 < k < d. Then 
Pn = 1 + J2k(Pnk — !)• Analogs of Theorem 1 of §2 and its consequences for 
optimal rates of convergence should hold with / replaced by /*, g replaced by g*, 
and d replaced by 1; see Stone [7, 8] for what has been rigorously verified to date. 
An analog to Theorem 2 should also hold if g itself is additive. Otherwise, a more 
complicated standard error formula would be required since Pr(Y = 1\X = x) 
would not be exactly equal to f*(x). 
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Compactness of Solutions to Nonlinear PDE 

RONALD J. DIPERNA 

We shall describe some recent work dealing with oscillations and concentra
tions in solutions to nonlinear partial differential equations arising in mechanics. 

1. Compensated compactness. In the context of hyperbolic and elliptic 
systems of conservation laws, 

m 

Y, flifo"(u) = 0, dj = d/dyj, (1) 
3 = 1 

a general problem is to assess the compactness properties of sequences of solu
tions ue. For the prototypical models of mechanics, maximum principles and/or 
energy arguments frequently ensure a uniform pointwise or integral bound on 
the amplitude of the field ue, i.e., 

\ue(y)\<c or J\u£(y)\pdy<c (2) 

where the constant c depends only on the data. Uniform bounds of the form 
(2) guarantee weak compactness, specifically the existence of a subsequence con
verging weakly to a field u: w-lim ue = u in the sense that the local average of 
ue converges to the local average of u, 

lim / uedy = / udy, (3) 
Jo. Jn 

for all bounded domains Q. One problem is to determine whether or not ue 

converges strongly to u by virtue of the geometric and algebraic structure of (1). 
Do we have s-lim ue = u in the sense that 

lim f \ue-u\dy = 0 (4) 
./n 

for all bounded fi? 
Strong convergence (4) implies nearly uniform convergence while weak con

vergence (3) allows persistent fluctuations. Do the geometric and algebraic con
straints encoded in (1) admit or exclude oscillations in solution sequences? If 
the convergence is strong, then the limiting field u is a solution of (1): nonlinear 

© 1987 International Congress of Mathematicians 1986 

1057 



1058 R. J. DIPERNA 

maps are continuous in the strong topology s-lim^(wÊ) = g(s-limu£) under mild 
restrictions on g. On the other hand, if the convergence is weak the limiting 
field u may not be a solution: in the weak topology there appears a nontrivial 
commutator w-lim0(ue) — ^(w-lim«e) ^ 0. In the latter situation the goal is to 
describe the static structure and dynamic behavior of oscillations. 

One of the recently developed approaches involves the theory of compensated 
compactness initiated by L. Tartar and F. Murat [24-14, 20, 21]. In this 
framework the structure of oscillations is recorded in the structure of composite 
weak limits as follows. For simplicity let us assume that v£ is an arbitrary 
sequence of vector fields from Rm to Rn which is uniformly bounded in L°°. 
Let g denote a state variable, a continuous real-valued map on the state space 
Rn. As a consequence of the L°° bound, there exists a subsequence of v£ and a 
family v of probability measures vy over the state space Rn such that 

w-l]mg{v£(y)}= g(X)dvy(\), (5) 
JRn 

for all g. Roughly speaking, (5) asserts that the physical space average given 
by the left side coincides with the state space average given by the right side, 
namely, the expected value of g = g(X) with respect to the representing measure 
uy = Vy(\). The Young measure v was first introduced into partial differential 
equations by L. Tartar for the purpose of representing oscillations [20]. 

It is not difficult to show that v£ converges strongly if and only if the Young 
measure reduces to a Dirac mass at almost all y: vy = 8v(yy Weak convergence 
manifests itself in state space Rn through the non-Dirac structure of the Young 
measure, reflecting the presence of oscillations in the physical space Rm. In 
the context of both steady and time dependent solutions of compressible and 
incompressible media, one of the problems is to analyze the structure of the 
Young measure associated with general sequences. 

For the purpose of determining whether or not the Young measure v of a 
solution sequence ue reduces to a Dirac mass, one is lead to classify mappings g 
which are insensitive to oscillations in the sense that w-limg(u£) = g(vt-limu£). 
For which state variables g does the macroscopic value of u determine the macro
scopic value of g(u)7 Knowledge of such robust state variables may be used to 
restrict the permissible oscillations and in certain circumstances to eliminate 
them entirely. We shall briefly describe some recent work dealing with the struc
ture of the Young measure for systems of conservation laws of hyperbolic, elliptic, 
and mixed type. The results make use of the div-curl lemma of Tartar and Murat 

=[ l^^O]^ whicrridescribesnsry^^ 
In the context of 2 x 2 systems of hyperbolic conservation laws in one space 

dimension, 

dtu + dxf(u) = 0, ueR2, (6) 

the Young measure associated with uniformly bounded sequences of entropy 
solutions reduces to a Dirac mass if the eigenvalues are nondegenerate [3, 4, 6]. 
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From each sequence one may extract a subsequence that converges strongly. The 
physical source of the compactification lies in the absorption of acoustic waves 
by shock waves. As a corollary it can be shown that the viscosity method for 
the associated parabolic system dtu£ + dxf(u£) = ed2u£ converges strongly as 
the diffusion coefficient e tends to zero [3, 4]. 

In the setting of general 2 x 2 hyperbolic systems (6), a definitive characteri
zation of the Young measure has recently been give by M. Rascle [15] verifying 
a conjecture of D. Serre [16, 19]. If the eigenvalues are degenerate, the system 
may support oscillations and a non-Dirac Young measure. 

In the setting of the transonic equations of gas dynamics, a system of two con
servation laws of mixed (hyperbolic-elliptic) type, C. Morawetz [11] has recently 
established reduction of the Young measure and strong convergence for regular
ized sequences. Transonic flows which avoid the vacuum and stagnation states 
cannot sustain persistent oscillations in the presence of the entropy condition. 

For mixed systems of hyperbolic-parabolic type arising in the continuum me
chanical description of phase transitions, M. Slemrod and V. Rotyburd have 
described the structure of the Young measure under certain mild hypotheses 
[17, 18]. If the eigenvalues of a 2 x 2 system coalesce on a strip in state space, 
then the Young measure is supported on the strip. 

The analysis in each of the situations above makes use of an infinite sequence 
of weakly continuous state variables formed from Lax entropy pairs [8]. Thus, a 
problem arises of determining whether or not a finite number of physical entropy 
pairs suffices to exclude all oscillations. The problem is of particular interest in 
connection with multidimensional systems which typically admit just one entropy 
pair. A positive result for the equations of gas dynamics in one space dimension 
has been established in [6]: a sequence of compressible fluids with uniformly 
small amplitude does not admit persistent oscillations if just the two Noether 
entropy pairs are considered. 

We refer the reader to [3, 4] for applications of the compensated compactness 
method to large data existence problems for hyperbolic conservation laws and to 
convergence problems for conservative finite difference schemes. A discussion of 
the underlying geometry can be found in [6] together with reduction theorems 
for the Young measure associated with general elliptic systems. The seminal 
article of L. Tartar [20] discusses the Young measure in the context of a scalar 
conservation law. 

2. Measure-valued solutions. The Young measure has motivated a notion 
of measure-valued solution to conservative equations of general type [5]. The goal 
is to represent and analyze weak limits of classical (vector-valued) solutions. We 
shall briefly recall the definition of measure-valued solution in the setting of 
systems of conservation laws in one space dimension (6). A measure-valued 
solution of (6) is a mapping u from the physical domain R2 to the space of 
probability measures over the state space Rn, u\y —• vy G Prob(Än), such that 
the divergence of the expected value of the field (u, f) vanishes in the sense of 
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distributions: 
dt(vy, A) + dx(vy, /(A)) =0 , y = (x, t). (7) 

The expected value of a mapping g is denoted by a bracket: (vy,g(X)) = 
$Rn9(X)dvy(\). In this framework, classical distribution solutions of (6) are 
represented as Dirac masses: v: y —> 6U^ is a measure-valued solution of (7) if 
and only if the point of concentration u(y) is a classical solution. More gener
ally, each sequence of classical solution ue of (6) generates a mv-solution of (7). 
Taking a weak limit in the equation dtu£ + dxf(u£) = 0 and using the defining 
property (5) of the Young measure v reveals that v is a measure-valued solution 
of (6). Furthermore, any stable approximation 

dtu£ + dxf(u£)= eLu£ (8) 

based on a conservative (higher order) differential operator L generates a mea
sure-valued solution v of the unperturbed system (6). 

THEOREM. // {u£} is a uniformly bounded sequence of classical solutions 
of (8), then there exists a measure-valued solution of (6) which represents the 
limiting oscillations in the sense of (5): all composite weak limits are expressed 
as expected values as e tends to zero. 

Two examples of special interest are given by the zero diffusion limit L = d2u 
and the zero dispersion limit L = d*u. In the former case, one anticipates that 
the associated measure-valued solution reduces to a Dirac mass. In the latter 
case, strong convergence is maintained for a short period of time after which 
the measure-valued solution expands. Using the spectral representation the zero 
dispersion limit of the KdV equation has been analyzed in substantial detail by P. 
Lax and D. Levermore [7] and by S. Venakides [24, 25]. In the context of general 
modulation theory we refer the reader to the work of Flaschka, Forest, and 
McLaughlin [26, 27] and to the references cited therein for an analysis of slowly 
modulated wavetrains and for related examples of measure-valued solutions. 

A general problem is to classify measure-valued solutions according to the 
structure of the regularizing operator L. Which measure-valued solutions of (6) 
arise as a Young measure of a diffusion limit? Which arise from a dispersion 
limit? It may turn out that some measure-valued solutions are not associated 
with any L. 

In the case of a scalar conservation law, measure-valued solutions associated 
with the zero diffusion limit have been characterized through an averaged Lax 
entropy inequality [8]. 

THEOREM. // v is a measure-valued solution of a scalar conservation law 
which is a Dirac mass at time t = 0 and if dt(vy,r}(\)) + dx(vy,q(\)) < 0 for all 
convex entropy pairs (rj,q), then v reduces to a Dirac mass in t>0. 

In short, no oscillations can develop in a sequence of scalar entropy solutions 
if none are present in the initial data. As a corollary, one obtains convergence 
of the viscosity method for a scalar conservation law in one and several space 
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dimensions using only the natural L°° bound supplied by the maximum principle 
[5]. 

We refer the reader to the work of M. Slemrod and V. Rotyburd [17] for a 
treatment of measure-valued solutions in the context of dynamic phase transi
tions. 

3. Concentration compactness. In the setting of the incompressible Euler 
equations 

dtu + div w®w-|-Vp = 0, div v = 0, (9) 

solution sequences u£ with uniformly bounded kinetic energy may exhibit a va
riety of defects in the space L2. An ongoing program of the author and Andy 
Majda deals with the geometry of L2 defects associated with incompressible flow 
in two space dimensions. Sequences of solutions with uniformly bounded kinetic 
energy need not be precompact in L2. Explicit examples exhibiting L2 defects 
have been constructed from Rankine and Kirchoff vortices. 

The physical motivation comes from the study of vortex structures, in par
ticular vortex sheets. In this situation, the initial configuration for the Cauchy 
problem has vorticity represented by a Borei measure with finite total mass. One 
of the problems is to determine whether or not there exists a globally defined 
two-dimensional Euler solution with initial vorticity given by a bounded measure. 
A second problem is to determine whether or not the associated Navier-Stokes 
solutions u£ satisfying 

dtu£ + div u£ (8> u£ + Vpe = eAu£, div u£ = 0 

converge strongly in L2 as the diffusion coefficient e tends to zero. 
It can be shown that the Navier-Stokes limit generates a measure-valued so

lution of the Euler equations (9) in the form of a measure-valued distribution. 
Concentration effects associated with vortex collapse are recorded in the singular 
part of v while oscillation effects are recorded in the absolutely continuous part. 

Some of the functional analytic motivation comes from concentration com
pactness work of P. L. Lions which provides a systematic study of losses of 
compactness in minimizing sequences of elliptic variational problems due to 
the action of noncompact groups [9, 10]. This work includes several results 
that quantify the loss of compactness in certain classical function inequalities, 
such as the Sobolev inequality and the Hardy-Littlewood-Sobolev inequality, at 
the critical exponent. Critical structure also arises in the context of the Euler 
equations. 

4. Background. One of the central problems in the theory of homogeniza-
tion concerns the study of oscillations in sequences of solutions to linear elliptic 
equations associated with highly heterogeneous media. How do oscillations in 
the coefficients of a linear elliptic equation induce oscillations in the solution? 
Major progress in this area has been made by Tartar and Murat using aspects 
of compensated compactness [14, 22, 23] to estimate effective parameters. 
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In the context of nonlinear elasticity we refer the reader to the basic work of 
J. Ball [1, 2] dealing with energy minimizing sequences and the weak topology. 
The results involve nonlinear elliptic systems of Euler-Lagrange type. 
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Quasiconvexity and Partial Regularity 
in the Calculus of Variations 

LAWRENCE C. EVANS 

1. Introduction. I will describe here some recent research [13-15], much 
of it conducted jointly with R. F. Gariepy, concerning the stability and smooth
ness of minimizers for certain problems in the calculus of variations. The main 
point I want to emphasize is that "quasiconvexity," the necessary and sufficient 
hypothesis on the nonlinearity identified by Morrey in his investigation of the 
existence theory for such problems, is also, slightly strengthened, the basic hy
pothesis for a perturbation and regularity theory. Thus, very loosely speaking, 
"the existence of minimizers generally implies their stability and smoothness." 

We will address problems in the calculus of variations of the following form. 
Let n, N denote positive integers, and suppose fi C Rn is open, bounded, and 
smooth. Then for sufficiently regular functions v : fi —• TLN consider the func
tional 

I[v]= f F(Dv)dx, (1.1) 
Jn 

where 

'-{{dx*)) 
Dv = ( h r - ) (1 < a < n, 1 < t < JV) 

is the gradient matrix of v and F: MnxN —> R is given, MnxN denoting the 
space of real, nx N matrices. We are interested in ascertaining the existence, 
and then other properties, of minimizers of /[•] among all appropriate functions 
satisfying certain given, but here unspecified, boundary conditions. 

2. Existence. The real breakthrough for the existence theory in the case 
n, N > 1 was Morrey's 1952 paper [27] which isolated a property of F both 
necessary and sufficient in many circumstances for the weak sequential lower 
semicontinuity of /[•] on appropriate Sobolov spaces. The condition is that F be 
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quasiconvex* which means 

F(A)<±jj(A + D<j>)dx (2.1) 

for all open sets O C R n , all matrices A E MnxN, and all <f> E ^(O; RN) which 
vanish on dO. 

Using Jensen's inequality we readily see that any convex function F is qua
siconvex; but what's interesting is that there are nonconvex examples, the most 
important of which are polyconvex functions F, for which F(A) has the form 
of a convex function of various determinants of square submatrices of A. For 
instance, when n = AT = 3 

F(A) = G(A,coìA,detA) (A E M 3 x 3 ) (2.2) 

is polyconvex, provided G is convex. (Here cof A = cofactor matrix of A, det A = 
determinant of A.) 

The importance of quasiconvexity in the existence theory for the calculus of 
variations is documented in the following theorem, which is a special case of 
results of Acerbi-Fusco [1], who refined some of Morrey's original techniques. 
We henceforth assume 

F: MnxN - • R is continuous, and 0 < F(P) < C(l + \P\q) (P E MnxN) 
(2.3) 

for given constants C > 0, 1 <q < oo. 

THEOREM 1. The function /[•] is weakly sequentially lower semicontinuous 
on the Sobolev space WliQ(tl\TlN) if and only if F is quasiconvex. 

The proof of the necessity of quasiconvexity is relatively simple. Indeed, 
given A and <p as in inequality (2.1), we suppose, for simplicity, O is the unit 
cube in R n . For each m = 1 , . . . we subdivide O into 2 m n equal subcubes 
and define um to equal on each subcube the plane Ay plus a rescaled copy of 
</> to that cube. This done properly, we see that um —L Ay weakly in W1,Q, 
and J0 F(Dum) dx = f0 F(A + D<f>) dx (m = 1,...). Thus, if /[•] is weakly 
sequentially lower semicontinuous, inequality (2.1) must hold. 

The converse statement is harder. Assuming now um —^ u weakly in W1,q 

and F is quasiconvex, we follow Morrey [27] and subdivide O into many small 
cubes on each of which Du is approximately constant. We then modify the um 

to agree on the boundary of each cube with the average value of Du on that 
cube, apply inequality (2.1), and control all the error terms. This last task is a 
bit subtle since the-gradients of the um are bounded only in LQ and not L°°: see 
[12, 24], or [15] for technical tricks to handle this problem. 

When 1 < q < oo, Theorem 1 and an additional coercivity assumption of the 
form F(A) > b\A\Q (b > 0, A E MnxN) imply for appropriate Dirichlet boundary 

* Morrey changed this terminology somewhat when writing §4.4 of his book [28]. I know of 
at least two completely different meanings of the word "quasiconvexity," and am disappointed 
that the important property (2.1) does not have a better name. I propose a one hundred years' 
moratorium on the use of prefix "quasi-" in mathematical nomenclature. 



1066 L- C. EVANS 

conditions the existence of at least one minimizer of /[•] (cf. [28, Theorem 4.4.7]). 
This result and its various extensions provide a very satisfactory existence theory, 
forming, for example, the basis for J. Ball's [4-7] work on nonlinear elasticity 
with incompressibility constraints. Other relevant papers are Marcellini [24, 25], 
Acerbi-Fusco [1], etc. 

3. Weak and strong convergence, stability. As we have just seen, qua
siconvexity is the natural, indeed the necessary and sufficient, condition on the 
nonlinearity required for lower semicontinuity theorems. The goal of this section 
and the next is to show further that quasiconvexity, or, more precisely, a slightly 
strengthened variant thereof, is a basic hypothesis for some rather different as
sertions in the calculus of variations. 

First we note and make precise a heuristic principle that quasiconvexity "im
proves weak to strong convergence" by "damping out oscillations in the gradi
ents" of certain sequences of functions. More precisely, let us fix some 1 < q < oo, 
and suppose F satisfies the structure hypotheses (2.1), (2.3). We then ask: if 
{um}m=i ls a sequence of functions such that 

um — u weakly in W^q(Q',RN) and I[um] -> I[u], (3.1) 

can we conclude that 

um -• u strongly in W^q(ü; RN)? (3.2) 

We will see later why this is an interesting question. 
Our answer will require a stronger hypothesis than (2.1), to eliminate possible 

degeneracies in F. We say F: MnxN —* R is uniformly strictly quasiconvex if 
for some 7 > 0, 

/ F(A) + i\D</>\q dx < f F(A + D<j>) dx (3.3) 
Jo Jo 

for all 0,A, etc., as in (2.1). The idea is that uniform strict quasiconvexity is to 
quasiconvexity as uniform strict convexity is to convexity. 

THEOREM 2 [15]. Assume (3.1). Suppose in addition to the aforementioned 
hypothesis, F is uniformly strongly quasiconvex. Then um —• u strongly in 

The proof is based essentially upon Morrey's methods described in §2, but 
the basic idea is easily seen in the following special case. Suppose F has the 
form F(A) = X\A\q + G(A) (A e MnxN) where G is quasiconvex, 0 < G(A) < 

^C(i^|^|l),JL:^^^ 

lim sup A / \Dum\qdx= lim I[um] - lim inf / G(Dum)dx 
m-too JQ m->oo m-»-oo JQ 

< I[u] - f G(Du) dx = X f \Du\q dx, 
Ja Jci 

where we used Theorem 1 applied to G. The above estimate and the weak 
convergence imply strong convergence in W1,q. 
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As a first application of these ideas we show the stability of minimizers under 
weak convergence. 

THEOREM 3. Suppose F is uniformly strongly quasiconvex and that the 
{um}m=i are Tninimizers of/[•] (not necessarily with respect to the same bound
ary conditions). Then if 

um-^u weakly in W ^ f i ; R*), (3.4) 

we have 
um-+u strongly in W^q(Q; RN), (3.5) 

and 
u is a minimizer of I[-]. (3.6) 

To establish (3.5) we need only show I'[wm]—»/'[il] where I'[v] = fQ, F(Dv) dx 
for fi' € fi. Now I'[u] < lim infm-too/'[wm] according to Theorem 1. On the 
other hand, since um is a minimizer, 

/ ' [%] < I'[u\ + o(l) as m -^ oo, (3.7) 

at least assuming fi' is properly situated. To see this note that if by some chance 
um = u on 9fi', then (3.8) is immediate (with no "o(l)" term); the general case 
follows by cutting off u near <9fi' to agree with um and controlling the resultant 
error: see [15]. But then (3.7) gives \\n\snom^QOV\am\ < J'[u], and the proof 
of (3.5) follows from Theorem 2. Assertion (3.6) is an easy consequence. 

4. Partial regularity. We now address the question of possible smoothness 
of minimizers of the functional /[•]. Assume 2 < q < oo. We slightly strengthen 
(3.3) by assuming 

/ F(A) + 7(1 + |D<^-2)|I></>|2 dx < f F(A + D(j>) dx (4.1) 
Jo Jo 

for all (j), A, etc. as above. 

THEOREM 4 [13, 14]. Suppose F is G2, satisfies (4.1), and 

\D2F(P)\ < (7(1 + |P|*~2) (P E MnxN) 

for some constant C. Let u E WliQ(ü\RN) be a minimizer of /[•]. 
Then there exists an open set at fio C fi with |fi — fio| = 0 and Du E 

CT(n0;M
nxN) for each 0 < 7 < 1. //, furthermore, F is C°°, then u E 

C^fio iR") . 
The fall details of the proof are too lengthy to reproduce here, and instead 

I will informally explain why quasiconvexity, which as we have seen above is 
a natural hypothesis for lower semicontinuity theorems, in fact forces partial 
regularity for minimizers. 



1068 L- G. EVANS 

FIRST PROOF OF THEOREM 4. For simplicity, set q = 2. We first introduce 
the notation 

(Du)Xir = / Du(y) dy, 
\B(X,r)\ Jß(x,r) 

U^r) - ÏPTTTÏÏ / \Du^ - (Du)*>r\* dy, 
\B(x,r)\ iflfäcr) 

so that U(x, r) measures the average mean-squared deviation of Du from its 
average over the ball B(x,r) C fi. 

LEMMA 1. For each L > 0, there exist 0 < €o, r < 1 such that 

U(x,r)<e0, \(Du)Xir\<L (4.2) 

imply 
U(x,rr)< \U(x,r) (4.3) 

for allxEfì,0<r < dist(z, du). 

Lemma 1 asserts, roughly, that "Du cannot have singularities of size less than 
eo in fi." Indeed if (4.1) is satisfied for such x and r as above, we inductively 
conclude 

U(y,rkr) < ±U(y,r) (k = l,2,...) 

for all y sufficiently near x\ whence some standard real analysis lemmas (see, for 
example, [18, p. 70]) imply Du is C1 for some 7 > 0 near x. On the other hand, 
by Lebesgue's Differentiation Theorem (4.2) holds for a.e. z £ fi. A refinement 
of Lemma 1 leads to the assertion that Du is C1 near x for all 0 < 7 < 1. 

Thus the proof of Theorem 4 devolves upon the proof of Lemma 1. And this 
we carry out using the "blow-up" method of DeGiorgi, Almgren, etc. The plan 
is this: assuming Lemma 1 false, there would exist (for some 0 < r < 1 fixed) 
balls B(xm,rm) C fi such that 

U(xm,rm) ~> 0, |CDtl)a:mirm| < L 

but 
U(xm,rrm) > ^U(xm,rm) (m = 1,...). (4.4) 

We appropriately rescale the function u on B(xm,rm) to functions vm on the 
unit ball B = B(Q, 1) (m = 1,...). The scaling is such that the {vm}%=1 are 
bounded in Wli2(B]'RN), and so there exists a weakly convergent subsequence 
in that space. If needs be, we reindex and assume the full sequence satisfies 

_ _ _ _ _ ym —Vjnd&Ym Wh2(B;RN_) (4.5.)_ 

Now it turns out that since u and thus the vm satisfy appropriate nonlinear 
Euler-Lagrange equations, v satisfies a linear uniformly elliptic system. Thus v 
is smooth and satisfies therefore various "good" estimates. On the other hand, 
the vm satisfy rescaled versions of the "bad" estimates (4.4). We shall thereby 
obtain the desired contradiction, except that the convergence in (4.5) is too weak. 
We must improve the weak to strong convergence in JVj^ (.BjR^). 
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But this is precisely the issue addressed in §3, where we saw in Theorem 
3 that under the principal assumption of uniform strict quasiconvexity on the 
nonlinearity, weakly convergent sequence of minimizers in fact converges strongly. 
The current setting is more complicated in that we are continually rescaling as 
m —• oo, but the conclusions (see [14]) are correct: we have vm —> v strongly in 
^loc (B',RN). This compactness assertion allows us to prove Lemma 1 as above 
and thereby complete the proof of Theorem 4. 

SECOND PROOF OF THEOREM 4. Again we assume that, for simplicity, 
q = 2. We first ask why uniform strict quasiconvexity of the nonlinear term 
F in /[•] should imply partial regularity of minimizers, and now look at the 
definition (3.3) for a clue. We then see from (3.3) that if u is a minimizer and 
if u happens to agree with a plane Tt(y) = Ay -\-a on the boundry of some ball 
B(x, r) C fi, then in fact u equals that plane in all of B(x, r) (Proof: let <j) — u—ir 
in (3.3)). This suggests that the deviation of u from any plane in B(x,r) may 
somehow be controlled by the deviation of u from the same plane on dB(x,r) 
or perhaps on the annulus B(x,r) — B(x,r/2). This, if true, is interesting since 
several techniques in elliptic equations, most notably the "hole-filling" device of 
Widman, derive analytic estimates in just such a situation. 

The above is all rather vague, but it does suggest that it may be useful to 
compare u on each ball with the plane ir as above. We accomplish this by setting 
v = cn + (1 — ç)u where £ is a cutoff function vanishing near dB(x, r). Since u 
is a minimizer, I[u] < I[v]\ and this inequality, suitably exploited, leads to 

LEMMA 2 [13]. There exists a constant G such that 

f \Du-A\2dy<^ f \u-Ay-a\2dy (4.6) 
JB{xtr/2) r JB{xtr) 

for all B(x,r) CÜ,AE MnxN, a E RN. 

Estimate (4.6) is a "Caccioppoli inequality" in the terminology of [18]. It is 
useful since it allows for just enough control to provide another proof of Lemma 
1 as above. 

5. Concluding comments. A. In recent work Giaquinta-Modica [19] and 
Fusco-Hutchinson [17] have extended the partial regularity assertion to more 
general problems of the form I[v] = fQ F(Dv, v, x) dx. 

B. There has been much recent interest in computing the "quasiconvex relax
ation" of various nonconvex and nonquasiconvex functionals arising, for example, 
in problems of optimal design [22], phase transitions [11], and inverse problems 
[23]. The forthcoming paper [23] includes an informal discussion concerning the 
advantages for numerical analysis of quasiconvex relaxation. 

C. Knops and Stewart [21] have shown uniqueness of smooth critical points 
(not just minimizers) for strictly quasiconvex functionals subject to linear bound
ary conditions. 

D. Very recently, Acerbi and Fusco have shown that the growth condition on 
D2F in Theorem 4 is unnecessary. 
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E. Much of theory described above is analogous to known results in geometric 
measure theory concerning the existence and partial smoothness of minimizers 
of elliptic integrals in the sense of Almgren, Fédérer, etc. See [2, 3, 8, 16], etc. 
and also [13] for a brief discussion concerning the similarity of these ideas. 
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The Problem of the Regularity of Minimizers 

MARIANO GIAQUINTA 

1. Introduction. Since the origin of Calculus of Variations, and for a long 
time, all the information concerning the minima of variational functionals 

f[u; fi] = / F(x, u, Du) dx (1.1) 
Jn 

were obtained by means of its Euler-Lagrange equation 

dx dp du 
It was in this century, after the pioneering works of Riemann, Arzelà, Hilbert, 

Lebesgue, and the strong contributions of Leonida Tonelli and Charles B. Morrey, 
that the so-called direct methods of Calculus of Variations established themselves 
as the main tool to deal with the problem of the existence of minima. 

As a result of the use of direct methods, a sufficiently general theorem that 
we may now state because of the contributions of many authors is 

THEOREM 1.1. Let fi be a bounded domain in Rn; let F(x, u,p):Qx RN x 
RnN —> R be measurable in x, continuous in (u,p), and quasiconvex; i.e., for 
almost every XQ E fi and for all UQ E RN and p0 E RnN and all <ß(x) E 
Cg°(ü,RN) we have 

/ F(x0,uo,po)dx < / F(xn,UQ,pQ + D<j))dx. (1.2) 
Jn Jn 

Moreover suppose that \p\m < F(x,u,p) < A(l + |p|2)m /2 where m > 1 and 
A > 0. Then the functional 7 attains its minimum in the class of functions 
u E Wlim(Q,RN) with prescribed value at the boundary dii. 

The notion of quasiconvexity, which seems to be a global condition, was in
troduced by C. B. Morrey in 1952 [45], and Theorem 1.1, under some stronger 

^assumptions—goesœback^to4iim"(fo^ 
recall that in the scalar case N = 1, the condition of quasiconvexity is equivalent 
to convexity with respect to p, that is, if F is smooth, to 

n 

E ^ w ^ M « " ^ V£eR", (1.3) 
a,ß=l 
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while in the vector-valued case TV > 1 it is weaker than convexity and implies, 
again if F is smooth, the so-called Legendre-Hadamard condition 

N n 

E E ^ ( ï , « , P ) f ^ > 0 VC G R- , V77 E RN. (1.4) 
itj=la,ß=l 

We notice that quasiconvexity appears naturally as "the necessary and suffi
cient condition" for the sequentially lower semicontinuity of 7 in W1,m-weak. 

Moreover we notice that the use of Sobolev spaces W1,m, m > 1, is by now 
natural for the application of direct methods and is related to the need of working 
on a class of functions with a sufficiently weak topology, so that minimizing 
sequences do converge. 

So the regularity problem arises in a natural way; it is the problem of showing, 
if possible, continuity or differentiability of the minimum points (Hubert's nine
teenth problem). Since we would like to avoid, as far as possible, any complica
tions due to boundary conditions, we shall consider most of the time minimizers 
of 7. A minimizer is a function u E Wlìm(tì,RN) such that 

7[u; spt <t>] < 7[u + (j>\ spt <f>] Vty E Whm(Ü, RN) spt cßmü. 

In dealing with the regularity problem again, the Euler-Lagrange equation in 
its weak formulation 

f [Fpi (x,ti,Du)Da^ + Fui(x,u,Du)<P\dx = 0 V ^ C 0 ° ° ( f i , R N ) (1.5) 
Jn 

has always been the starting point even in recent times—for instance, in the 
classical and celebrated works of E. De Giorgi, J. Nash, J. Moser, O. A. La-
dyzhenskaya and N. N. Ural'tseva (see, e.g., [39, 46, 29, 17]). 

Actually this is natural and in a sense necessary if we want to study the 
continuity of the second order (or higher order) derivatives of a minimizer; a 
classical result, obtained after a research span of fifty years, is the following one: 
if the integrand F is C°°, or analytic, and 

F,'apf,(x>*>P)(atß*W > C(M)I£I2M2 v£ e Rn, Vrç e RN 

for \u\ + \p\ < M, with c(M) > 0, then the points of minimum are C°°, or 
analytic, as soon as it is known that they are of class C1. But this approach has 
some disadvantages and it appears somehow unnatural when studying the first 
two steps in the regularity theory: the Holder-continuity and the differentiability 
of the minimizers. 

In fact, first of all, even if F is smooth, (1.5) does not hold without assuming 
additional conditions on the behavior of Fu at infinity, in such a way that for 
u E W1,m, Fu(x,u,Du) lies in L\oc. But, even assuming the so-called "natural 
growth conditions," which ensure the local integrability of Fu(x, u, Du), the weak 
Euler-Lagrange equation (1.5) would still be of no use in order to prove regularity, 
without extra conditions on the minimizers themselves such as boundedness or 
even smallness in modulus (see for a discussion [17, 33, 39]). Roughly the point 
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is that (1.5), and therefore this approach, does not distinguish between minimizers 
and stationary points. But, in general, minimizers have better properties than 
just stationary points. 

An interesting geometric example is given by the integral 

£[u;D] = f \Du\2/(l + \u\2)2dx, u = (u1,. ..,un), 
JD 

which, apart from a constant, represents in local coordinates (choosing stereo-
graphic coordinates on the sphere Sn minus a point) the energy of a map from 
the disk Dn = #i(0) = {x E Rn:\x\ < 1} into Sn-{point}. S. Hildebrandt, 
H. Kaul, K. O. Widman [34] have shown, as a consequence of a more general 
result, that the minimizers of £, whose image lies strictly in a hemisphere (in 
our system of coordinates this corresponds to \u\ < k < 1) are regular, while 
the "equator map u*:x —> x/\x\" which is obviously not strictly contained in 
a hemisphere, is a stationary point for £. W. Jager, H. Kaul [35] then showed 
that u* is actually a minimizer if n > 7 and it is not even stable, so in particular 
it is not a minimizer, for n < 6. In general we have that any energy minimizing 
map from the disk Dn into a sphere Sn whose image lies (not necessarily strictly) 
into a hemisphere is regular provided n < 7 (see [54, 28]). 

Another interesting example is due to J. Prehse [12] who pointed out that the 
functional 

/ (l + e^llogHI12)-1!^!2^, 
./BtO.e-1) 

which obviously has 0 as minimum point in WQi2(B(0,e~1)), has among its 
stationary points the unbounded function of WQ,2(B(0,C~1)) given by u(x) = 
12 log log lai -1 . 

In the last five years there has been a strong attempt to develop a kind of 
direct approach to the regularity, working directly with the functional 7 instead 
of working with its Euler-Lagrange equation. We mention especially the works 
of M. Giaquinta, E. Giusti, in the general situation, and the works of R. Schoen, 
K. Uhlenbeck, concerning the regularity theory of harmonic mapping between 
Riemannian manifolds. Moreover we mention the earlier works of L. Tonelli [56] 
and C. B. Morrey [44] where the idea of a direct approach to the regularity is 
present and regularity results for minimizers of nondifferentiable functionals in 
dimensions 1 and 2 are proved under extremely weak assumptions. 

It is the aim of this lecture to illustrate some of the results obtained in this 
direction. 

—-In=the^following^it-is^convenientto^distinguishrtwo ievels^of^regolarrtjrr^lT" 
regularity of the minimizer u; 2. regularity of the derivatives of the minimizer u. 
Of course our results will take a different form in the scalar and in the vector-
valued case, respectively N = 1 and N > 1. In fact, while in the scalar case 
it is natural to expect, under suitable hypotheses, regularity everywhere, in the 
vector-valued case this is quite rare; minimizers are in general noncontinuous 
or have noncontinuous derivatives, as shown by well-known counterexamples of 
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E. De Giorgi, E. Giusti and M. Miranda, V. G. Mazya, J. Neöas, S. Hildebrandt 
and K. O. Widman, M. Giaquinta (see, e.g., [17]), and we may only expect 
partial regularity, that is, regularity except possibly on a singular closed set. 

2. Basic regularity: quasimini ma. In studying the first level of regu
larity the notion of quasiminima, introduced by M. Giaquinta and E. Giusti 
[18, 22], plays an important role for its unifying and clarifying feature (besides, 
of course, the fact that we can prove interesting results for quasiminima). 

Consider the functional 7 in (1.1) and suppose, for simplicity, that 

|p|w < F{xtutp) < A(l + IPP), rn > 1. (2.1) 

We say that a function u E W^(Ü,RN) is a Q-minimum, Q > 1, for the 
functional 7 if for every open set A m fi and for every v E ^ ^ ( f i j R ^ ) with 
v = u outside A we have 

7[u;A)<Q7[v,A) (2.2) 

or, equivalently, for any <j> E Wlim(ü,RN) with spt^ e fi we have 

7[u; {x E fi: (ß(x) £ 0}] < Q7[u + <j)\ {x E fi: tß(x) + 0}]. (2.3) 

We notice that the comparison in (2.2) is made for all open sets A\ we may 
think of choosing special classes of A^s, for example, balls BR. Then we say that 
u E W1,m(Q,RN) is a spherical Q-minimum if for any ball BR C fi and for any 
</)EWoim(BR,RN) we have 

7\u]BR)<Q7[u + (t>',BR]. (2.4) 

Obviously any Q-minimum is a spherical Q-minimum, but the opposite is not 
true; moreover, in the scalar case N = 1, spherical Q-minima may be unbounded 
in dimension n > 3 (see [22]). 

Of course any minimizer of 7 is a Q-minimum for 7 with Q = 1; but it is 
also a Q-minimum for the simpler functional / n (H- |^w|m) dx. This shows once 
more the special relevance of the "Dirichlet integral." But the class of Q-minima 
is much wider [22]: 

(a) Weak solutions of elliptic systems with L°° (and not even symmetric) 
coefficients 

/ A^f(x)DQuiDß^ dx = 0, il>E W0
M(fi,RN), 

J Q 

\Ag(x)\<L, Afftf$>\t\a VURnN 

are Q-minima for the Dirichlet integral: In order to see that, it is sufficient to 
choose as test function ip = u - (u + (/>), (j) E Wl'2(ü, RN). 

(b) In general "solutions" (here the word "solution" has to be understood in 
the right sense; depending on the situations, they have to be bounded or even 
small (see [22, 17])) of nonlinear elliptic systems DaAf(x, u, Du) = B(x,u,Du) 
under "natural hypotheses" are Q-minima for suitable functionals. 

(c) Minimizers of functionals in constrained classes are Q-minima of free func
tionals. 



1076 MARIANO GIAQUINTA 

(d) Quasiconformal maps and, more generally, quasiregular maps, i.e., u:ü C 
Rn -> Rn, u E W^n(ü,Rn) such that \Du(x)\n < cdetDu a.e. in fi, are Q-
minima for fn \Du\n dx. 

We have [18, 22] 

THEOREM 2.2. (i) In the scalar case N = 1: let u E V^'c
m(fi,R) be a 

Q-minimum for 7; then u is locally Holder-continuous in fi. 
(ii) In the vector-valued case N > 1: let u E W^(Q,RN) be a spherical Q-

minimum for 7\ then there exists an exponent r > m such thatu E W^(Ü,RN)', 
moreover the gradient of u satisfies the following reverse Holder inequality with 
increasing supports, 

(l + \Du\r)dx) <c(jf (l + \Du\«)dx\ \ 

for all BR e fi and all q, 0 < q < m. In particular if m — n, then u is locally 
Holder-continuous. 

a 
The proof of (i) uses De Giorgi's results and their extensions due to Ladyzhen-

skaya and Ural'tseva on what we now call De Giorgi's classes [7, 39], while the 
proof of (ii) uses a result of M. Giaquinta and G. Modica [24] on reverse Holder 
inequalities related to a previous result of W. Gehring [15]. Both results rely on 
a Caccioppoli type inequality (see, e.g., [17]). 

If we read Theorem 2.2 for minimizers, it states the basic and optimal regular
ity properties of minimum points. We notice that no hypothesis of ellipticity has 
been made, so the basic regularity follows from the minimality and the growth 
condition 2.1. It is worth noticing that the results of Theorem 2.2 are not true 
for stationary points of 7, even under ellipticity conditions. 

On the other hand, Theorem 2.2 permits to recover essentially all the results of 
Holder-continuity and higher integrability of the gradient known for "solutions" 
(under inverted commas!) of "nonlinear elliptic systems" as consequences of the 
minimality condition 2.2. 

As mentioned, well-known counterexamples show that in the vector-valued 
case minimizers (and therefore Q-minima) are in general noncontinuous. J. 
SouCek [55] has shown that solutions of linear elliptic systems with L°° coeffi
cients may be discontinuous on a dense set. Therefore, because of (b), Q-minima 
of the Dirichlet integral, for N > 1, may be discontinuous in a dense set; so it is 
quite surprising that the gradient which lies in Lm is in fact p-summable with 
some p larger than m. 

^Finally^wcrwoukHike tor remark^thatrthe higher idegreenjMnfcegrabilitjr 
(ii) clearly appears as a consequence of a comparison on BR with "harmonic 
functions" with the same boundary value as the Q-minimum u, so it can be 
considered as a result of a linear perturbation. On the contrary, the result (i) of 
Theorem 2.2 does not hold for spherical Q-minima [22], so it is to be considered, 
in a sense, as a purely nonlinear result: this, in particular, is true for De Giorgi-
Nash theorem. 
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Most of the known properties of solutions of elliptic equations have been shown 
to hold for scalar Q-minima, as the weak maximum principle, Liouville's type 
theorems, and so on. In particular we mention the very interesting paper by 
E. Di Benedetto and N. S. Trudinger [8] where they prove, using some ideas of 
De Giorgi and N. V. Krylov-M, V. Safanov, that the classical result of J. Moser 
[48] on Harnack's inequality holds for nonnegative quasi(-super-)minima and the 
paper of W. P. Ziemer [58] where Wiener type conditions for the regularity of 
Q-minima at boundary points are given. We also mention that the notion of 
Q-minimum has proved to be very useful in various contexts (see, e.g., [17, 42, 
49]) and finally that Theorem 2.2 is an essential step in proving "regularity" of 
the derivatives of a minimizer. 

3. Regularity of the first derivatives of a minimizer. When studying 
the regularity of the first derivatives of a minimizer, "ellipticity" will clearly play 
an important role; but "growth conditions," as explained later, are important 
too, at least for the methods of proof. In any case it is not necessary to assume 
that our functional be Gateaux differentiable, and this is not the case under our 
assumptions on the integrand F(x, u,p):Qx RN x RnN —• R in (1.1) which will 
be the following: 

HYPOTHESIS 1. Growth conditions on F: for m>2 and a positive constant 
A we have 

i p r < i ' , ( ! B , t i ) p ) < A ( i + i p n (3.1) 

where ra > 2. Actually it is sufficient that (3.1) holds in the integrated form on 
small balls. 

HYPOTHESIS 2. F is twice continuously differentiable with respect to p and 

\FPP(x,u>P)\ < ci(M2 + |p | a ) { m _ a ) / 2 i (3-2) 

in particular, 

where p>0. 

\Fp(x,u,p)\<co(p2 ^\p\2)^-1)'2 (3.3) 

HYPOTHESIS 3. The function (1 + \p\2)~m/2F(x,u,p) is Holder-continuous 
in (x, u) uniformly with respect to p. 

HYPOTHESIS 4. Strict uniform quasiconvexity: for all XQ E fi, uo E RN, 
Po E RnN and for any (j) E CQ(Q,RN) we have 

f [F(x0,u0,po + D(l>)-F(xoiuo,po)}dx> f \V(p0 + D<ß) - V(p0)\
2dx (3.4) 

Jn Jn 

where V(p) is the vector-valued function defined by V(p) = (p? + \p\2)^m~2^4p. 
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We notice that in the scalar case N = 1, Hypothesis 4 is equivalent to 

HYPOTHESIS 4'. Strict uniform ellipticity: for some positive v 

*W*o,«o,Po)&fc > * V + |Po|2)(m-2)/2 |£|2 V£ e R", (3.5) 

soifp = 0we have degeneration at the points where the gradient of our minimizer 
is zero. 

We now have the following partial regularity result, 

THEOREM 3.1. Suppose Hypotheses 1-4 hold with p > 0, N > 1. Let 
u E Wfo™(ft,RN) be a minimizer of (1.1). Then there exists an open set fio C 
fi where the first derivatives of u are locally Holder-continuous. Moreover the 
Lebesgue measure of the singular set fi — fio is zero. 

Theorem 3.1 was first proved by C. B. Morrey, E. Giusti and M. Miranda, and 
E. Guisti essentially in the case F = F(p) and under the stronger assumption of 
uniform ellipticity 

FPi4lx>u>d&$ * & + N2)(m"2)/2I£I2 VZ e RnN (3.6) 

by means of an indirect argument. Still under condition (3.6) it was then proved, 
by a direct argument, in the general case F = F(x,u,p) by M. Giaquinta and 
E. Guisti for m = 2 and M. Giaquinta and P. A. Ivert for m > 2 in 1983-1984 
(see, e.g., [17, 19, 23]). Under the strict quasiconvexity assumption, Theorem 
3.1 was proved by L. C. Evans [10] (see also [11]) in the case F = F(p), again 
by an indirect argument (see also [51]); in the form given above it was proved 
in 1986 independently by M. Giaquinta and G. Modica [25], and N. Fusco and 
J. Hutchinson [13]. 

I shall not insist on Theorem 3.1 and I refer to the talk of L. C. Evans at 
the 1986 International Congress of Mathematicians. I would only like to remark 
that no result seems to be available, in this generality, when 1 < m < 2 and in 
the degenerate case p = 0, and that the result of Theorem 3.1 uses in a strong 
way the minimality property (see also [27, 51]). It is worth recalling that our 
functional 7 need not be differentiable. 

As already stated, in the vector-valued case N > 1 the singular set is in 
general nonempty; on the contrary, we expect that it will be empty and the 
minimizers regular everywhere in the scalar case. This is actually true, even in 
the degenerate case p = 0, and we have 

THEOREM 3.2. In the scalar case N = 1, suppose that Hypotheses 1-3 and 
Hypothesis 4' hold with p > 0. ThenjanyLminimizer_tLJEJVfo^(Q 
Holder-continuous first derivatives in fi. 

Theorem 3.2, in case F = F(p) and m = 2, is a consequence of the celebrated 
De Giorgi-Nash Theorem [7] and, for m > 2, p > 0, F = F(p), it was proved in 
a very interesting paper by K. Uhlenbeck [57]. For F = F(x,u,p) it was proved 
for m = 2 by M. Giaquinta and E. Giusti [19] and, in the general case m > 2, 
ß > 0, by M. Giaquinta and G. Modica 
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It is worth noticing again that under the assumptions of Theorems 3.1 and 
3.2, the functional 7 in (1.1) is not differentiable, and that the result of Theorem 
3.2 is not true for "stationary points." Finally we notice that in the degenerate 
case p — 0, minimizers have not, in general, continuous second derivatives even 
in the simple situation F = |p|m, m > 2 (see, e.g., [26, 40]); and in the general 
situation F = F(x,u,p), it seems that there is an upper bound for the Holder 
exponent which is strictly less than the Holder exponent of the function F(-, -,p) 
(see, e.g., [20, 50]). 

4. Further contributions. Ever since the first results of partial regularity 
of minimizers were proved, many questions have been raised; and most of them 
still have no answer. In this final section I shall state a few of these questions 
and discuss some contributions. 

1. Under which conditions are vector-valued minimizers regular everywhere? 
In this direction surely the most interesting result is due to K. Uhlenbeck [57] 
who showed that under the assumptions of Theorem 3.1, if moreover we assume 
that F(x,u,p) = G(|p|2) with G smooth, then minimizers are regular everywhere. 

Everywhere regularity can also be proved if the functional 7 "is not far" from 
a quadratic functional or more generally from a functional whose minimizers are 
regular (see, e.g., [38]). 

2. Nothing is known on the structure of the singular set nor even on its 
stability or instability with respect to perturbations of the data. More simply, 
we may ask whether we can improve the estimate of the dimension of the singular 
set. "Optimal" results have been proved for quadratic functionals. 

Consider the variational integral 

A[u;Q]= f < 
Jn 

A?f(x, uiDavfDßU? dx (4.1) 

where A®? are bounded and smooth functions satisfying the ellipticity condition 

^ f f t f > |f|a VURnN- (4.2) 

We notice that A is not differentiable. M. Giaquinta and E. Giusti [18] showed 
that ifuE Ŵ ioc (fijR^) is a minimizer of (4.1), and (4.2) holds, then the first 
derivatives of u are Holder-continuous except possibly on a closed singular set 
whose Hausdorff dimension is strictly less than n — 2. 

Furthermore we have (see [26] and also [14]): under the assumptions of The
orem 3.1, suppose moreover that 

F(x,u,p) = G(x,u,a^(x)gij(u)piJß). (4.3) 

Then any minimizer has Holder-continuous first derivatives in an open set fio 
and the singular set fi — fio has Hausdorff dimension strictly less than n-m. 

A "special" case of both (4.1) and (4.3) is given by the variational integral 

£>;fi] = / aaß(x)gij(u)Dau
iDßu

3\/a~(x)dx (4.4) 
./fi 
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where (aa@) and (gy) are smooth symmetric positive definite matrices and 
a(x) = det(aaß)i (aaß) = ( a a / 3 ) - 1 , £ in (4.4) represents in local coordinates 
the energy of a map between two Riemannian manifolds Mn —• MN with met
ric tensors respectively aaß and gij. In this situation we have (see [21, 52]): 
bounded minimizers of (4.4) can have at most isolated interior singularities in 
dimension n = 3 and, in general, the singular set has Hausdorff dimension not 
larger than n — 3; while (see [36, 53]) no singularity can occur at the boundary, 
provided, of course, the boundary datum is smooth. We notice that it seems 
instead reasonable to expect singularities at the boundary for stationary points 
and even minimizers of (4.1) (see [16]). 

The previous results apply to energy minimizing maps between two Rieman
nian manifolds U: Mn —> MN only if we know a priori that the image of U lies 
on a coordinate chart of MN. This is of course a strong restriction. A general 
regularity theory for energy minimizing harmonic maps between Riemannian 
manifolds, which gives analogous results, has been developed by R. Schoen and 
K. Uhlenbeck [52, 53]. These results have been extended to the case of tar
get manifolds MN with boundary in [9]. In this context we also mention the 
recent work of H. Brezis, J. M. Coron, G. H. Lieb [5] where singular energy 
minimizing maps from a domain of Rn into S n _ 1 are studied, and the work of 
R. Hardt, D. Kinderlehrer, F. H. Lin [32] in connection with the theory of liquid 
crystals (we refer to the talk of R. Hardt at the 1986 International Congress of 
Mathematicians). 

3. Are growth conditions really necessary? A theorem of L. Tonelli [56], in 
dimension n = 1, states: if u is a minimizer of the functional (1.1) on an interval 
I where the integrand F is a C°° function satisfying FVP(x,u,p) > 0, then there 
exists a closed set E with measE = 0 such that u E C°°(I — E). A more recent 
result of F. H. Clarke and R. B. Vinter [6], still in dimension n = 1, says that in 
the autonomous case, i.e. F = F(u,u), if F is convex in u and F(u,u) > (ß(\u\) 
where <f>(r)/r —> -f-oo as r —> +oo, then any minimizer is Lipschitz-continuous 
everywhere (we refer to [4, 6] for more information). How far can we go in 
this direction in more than one variable? Not much is known even in terms of 
examples and counterexamples. 

We shall therefore confine ourselves to a few remarks on Theorem 3.1. Hy
potheses 1-3 are surely quite reasonable if we assume the uniform ellipticity in 
(3.6). But they are strong under the uniform strict quasiconvexity (3.4). Al
ready L. C. Evans [10] pointed out that the estimate from below in (3.1) is not 
necessary if F does not depend explicitly on x and u. Recently Hong Min-Chin 
[43] has shown that, in the general situation, (371) can be substituted by 

F°(p)<F(x,u,p)<M\p\m + l 

where F°(p) is a strictly quasiconvex function with |Fpp(p)| < 1 -j- |p | m ~ 2 , so 
that functionals of the type 

{A(x, u) DuDu + L det Du} dx, n = N = 2, 
/ < 
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are included. But still the control in (3.2) on the second derivatives of F is too 
strong as shown, for instance, by the functional 

!{\Du\2 + y/l + (detDu)2} dx. 

E. Acerbi and N. Fusco [2] have proved that (3.2) is not necessary for the 
partial regularity of the minimizers and that in fact it is sufficient to assume 
that (3.3) holds. So that we may state that the conclusion of Theorem 3.1 
holds under the weaker assumptions that (i) F is of class C2 with respect to p, 
(1 + \p\2)m~2F(x,u,p) be Holder-continuous in (x,u) uniformly with respect to 
p, (ii) \F(x,u,p)\ < c(\ + \p\m), (iii) F(x,u,p) be strictly quasiconvex, and fi
nally that there exists a strictly quasiconvex function F°(p) such thatF(x,u,p) > 
F°(p) (see [2]). 
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Estimates for a Number of Negative Eigenvalues 
of the Schrödinger Operator with Singular Potentials 

VICTOR IVRII 

There are presented estimates from above and from below for a maximal 
dimension N < oo of a linear subspace L C CQ° (X) on which a quadratic form 

Q(u) = fwk(Dj - Vj)u • (Dk - Vk)u + V\u\2] dx 

is negative definite. Here X is a domain in R d , d > 3, components of the metric 
tensor gjk = gk^ and potentials V3-, V are real-valued, and such that Q is correctly 
defined (we use Einstein's summation rule). If Q generates a selfadjoint operator 
A = (Dj-Vj)g

jk(Dk-Vk)+V in L2(X) (with the Dirichlet boundary condition), 
then TV is a dimension of its invariant negative subspace. The emphasis of this 
work is that these estimates are highly uniform and, in the case when Q depends 
on parameters, these estimates imply asymptotics of N. In §§1 and 2 we use 
Weyl's rule for calculation of the principal parts of the estimates and asymptotics, 
and these parts do not depend on the magnetic potentials Vj, the presence of 
which can only deteriorate the remainder estimates. But the situation changes in 
§§3 and 4 when we consider the case of the intensive magnetic field and find that 
Weyl's rule is no longer applicable and must be replaced by Tamura's formula. 

1. Let us assume that 

c1 < IA"V*&& < c VxeX,Çe Rd\0, (Hx) 
Vj, gjkVjVk + V G L1

1
oc(X), and there are given functions ç, 7 on X such that 

Ç>0, 7 > 0 , \l(x)-i(y)\<\x-y\, (H2) 

and for every y G X1 = {X, £7 > 1} in X H B(y, 7(2/)) the following conditions 
are fulfilled: 

| £ V * l < c 7 H a | , (H4)i 

\D<*(DjVk - DkVj)\ < c fT 1 " 1 * 1 , (H4)2 

\DaV\ < c<r27" |a| Va: |a | < K, (H4)3 

dX n B(y, 7(2/)) = {xk = z(xk)} n B(y, 7(2/)) (H5) 

© 1987 International Congress of Mathematicians 1986 
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with 
\DQz\ < C71">l Va: H < K 

where B(y,7) is an open ball with center y and radius 7, x^ = (x\,..., xk-\, 
Z f c + i , . . . , £ d ) , fc = 1 , . . . , d ,and K = K(d) < 00. 

Moreover, let us assume that 

Q(u) > c-1 f(\Vu\2 - W\u\2) dx Mu G C5°(X") (H6) 

where W G L\0C(X"), W > 0, and X" = {X,tf < 2} U {X,V > c"1?8}. 
Our first principal assertion is 

THEOREM 1. If conditions (Hi)-(He) are fulfilled, then the following esti
mates hold: 

M-CRt <N <M^G(R1+R2) (1) 

where 
M = (2<ir)-dud f VÎ/2y/gdz, (2) 

JX' 

g = det^-7*1)-1, y/gdx is the Riemannian density on X, Ud is the volume of the 
unit ball in Rd, V± = max(±V,0), C = C(d,c), and 

R!= f ^ " S " 1 ^ R2= I Wd/2dx. = I ^ " S " 1 dx, R2= [ 
J{Xf

tV<2c-^2} JX" 

Moreover, if condition (Hß) is valid only for XN = {X,ç^ < 2}, then 

M-CRi <N< M+C(i?i+fi2+Ä3) (1)' 

where 
Rs= f Çd-3l~3dx, 

Jx> 
s is arbitrary and K = K(d, s), C = C(d, c, s) here. 

In order to derive more refined estimates, one has need of hypotheses of a 
global nature. Let us introduce on T*X the Hamiltonian 

H(X, 0 = r1! [gjk(tj - VMk - vk) + v], 

the set E = {T*X ,H = 0}, and the natural density dxd£:dH on E. One can 
observe that the (2d — l)-dimensional measure of the set {H = dH = 0} equals 
zero. 

A Hamiltonian curve is a curve (x(t), £(£)) C E fi T*Xf along which dx/dt = 
dH/d£, d£/dt = -dH/dx. A Hamiltonian billiard is a curve (x(t),Ç(t)) C E 
composed of Hamiltonian segments (i.e., segments whose interiors are Hamilto
nian curves) such that if (x, f) and (xf, f') are an endpoint and an origin of two 
successive segments then x = x1 G dX and £ — £' = kn(x) where n(x) is a unit 
normal to dX and fc ̂  0, and such that each finite interval contains only a finite 
number of segments. 

Let Ao be a subset of E, T > 0, and 6 > 0 such that 

(x,0^^o^B(x,61(x))cX', (H7) 
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and through every point (x, £) G Ao there passes a Hamiltonian billiard 
(x(t),Ç(t)) with either t G [0,T] or t G [-T,Q] and with x(Q) = x, f(0) = £, 
along which the following estimates hold: 

7~-1|dx/*| + r1 |d£Mi>5, 
dist(z,<9X) < 6-)(x) => \ddist(x,dX)/dt\ > S^(x), 

7"1|o:-x|-r-r1|e-ël>5min(H,l). 
That is, all these billiards are uniformly nonstationary, transversal to dX, and 
nonclosed. 

Our second principal assertion is 

THEOREM 2. If conditions (Hi)-(H7) are fulfilled, then 

M + M'-CR4- C'Rs <N<M + M' + C(R2 + R4) + C'R* (3) 

where 
M' = -i(27T)1-do;d_1 / __ v[d~1)/2dS, (4) 

4 Jdxnx' 
dS is a Riemannian density on dXC\X induced by the Riemannian metrics g3k 

on X, 

R4= I dx d£: dH + ^Äi, Ä5 = f ?d~27~2 dx, 

C1 = C'(d, c, T, 6). Moreover, if condition (RQ) is valid only for X" = {X, £7 < 
2}, then one can recover these estimates by adding CR3 to the right-hand expres
sion. 

2. Let us apply Theorems 1 and 2 to derive the eigenvalue asymptotics. In 
this section we replace (H4)2 by the stronger condition 

\DaVj\ < cÇ7"|a| Va: |a| < K (H4)£ 

and here (H4) = (H4)i + (H4)2 + (H4)3. Let us replace Vj by h~xVj and V by 
h~2(V — A), where h G (0,1] is a quasiclassical parameter and A is a spectral 
parameter. Taking £\,/i = h~1(y/\M + f) we obtain 

THEOREM 3. If conditions (Hi)-(H5) are fulfilled for every y G X = 
{X,7 > 0}, if for almost every y 7(2/) = 0 =• V(y) > 0, \Vj(y)\ < cy/7(y), 
and ifçd, ^ " S " 1 e L1^), then 

N(X, h) = M(X)h~d + 0(h}~d) as A < 0, h -• +0 (5) 

uniformly with respect to A where 

M{\) = (2*)-dLJd y (A - V)dJ.2y/gdx. (6) 

Moreover, if there exists a set of measure zero A C E = {T*X , H = 0} such that 
through every point o/E\A there passes a Hamiltonian infinitely long nonperiodic 
billiard, then 

N(X, h) = M(X)h~d + (M' + o(l))h}-d as A - -0, h -+ +0. (7) 
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Asymptotics (5), (7) with A = 0 combined with the Birman-Schwinger prin
ciple imply the eigenvalue asymptotics for certain spectral problems [1, 5] 

In what follows, either spectral parameter A increases to -f-oo or to the lower 
bound of the essential spectrum, or A decreases to inf V > —oo. We obtain the 
following assertions: 

THEOREM 4. If conditions ( H I ) - ( H ö ) are fulfilled for every y E X and if 
?d, f^V 1 . T1, leL\X),then 
N(X, h) = M(X)h-d + 0(X(d-1V2h1-d) asX>l, he (0,1], X/h -> +oo, (8) 

where M(X) = yAd/2 + 0(A(d~1)/2) as X -+ +oo and y = (27r)-da;dVolX. 
Moreover, if the set of all the points of S*X+ = {T*X+,H = gjkÇj£k - 1 = 0 } 
periodic with respect to the broken geodesic flow has measure zero, then 

N(X, h) = M(X)h~d + (r/ + o(l))A(d-1)/2/i1-d as X - • +oo, he (0,1] (9) 

where v* = - i(27r)1-da;d_i vol'^XflX"1"). 

For example, (8) (and (9) under condition to geodesic flow) holds if X = 
5(0,1), gik = gjk(6), Vj = Vj(0)rm, V = v(0)r2m, where (r,0) are spherical 
coordinates, g3k, Vj, ve CK, and g?k satisfy (Hi) and m > - 1 . Moreover, 
Theorems 1 and 2 show that m = — 1 is also admissible provided h = 1 and 
minv(9) > -ß, ß = ß(d,gik) > 0. We refer to [6, 9] for certain examples of a 
geometric nature such as polyhedral domains, domains with conical singularities 
of the boundaries, domains with the cusps, etc. 

Let us consider strongly singular coercive potentials. 

THEOREM 5. / / conditions (Hi)-(H5) and condition 

v > c-y (H8) 

are fulfilled for every y e X and if rj~1,1 G LX(X), then asymptotics (8) holds 
and M(X) = yAd/2(l + o(l)) as X —• +oo. Moreover, if the set of all the points 
of S*X periodic with respect to the broken geodesic flow has measure zero, then 
asymptotics (9) holds. 

For example, (8) holds if X = £(0,1), gjk = gjk(9), and either Vj = 
Vj(6)rm, V = v(0)r2m or Vj = Vj(0)exp(r~P), V = v(6)exv(2r~p), where 
gjk, Vj, v e CK, gjk satisfy (Hi), p < d - 1, and minv > 0. We refer to [2, 5] 
for more refined examples. 

Let us consider the essentially nonbounded domains when the spectrum is 
discrete only because of the presence of coercive potential V. 

THEOREM 6. If X is a nonbounded connected domain and if conditions 
(Hi)-(H5),(H8) are fulfilled with 7 = c-1(|a;| + 1), P = (\x\ + l ) m , m > 0, 
then 

N(X, h) = M(X)h~d + 0(A i (d~1)ft1-d) as X > 1, h G (0,1], 

and X/h —» 4-00 (10) 
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where M(X) ~ A'd as X - • +00, / = (1 + l /m)/2 . Moreover, ifXn {\x\ > e} = 
X° n {\x\ > e} where X° is a conical domain with dX°\0 G GK, if 

D«(g3K _ gW) = o(\x\-W), Da(Vj - Vf) = o(\xr~W), 

Da(V - V°) = o(\x\2m-W) Ma: \a\ < 1 (11) 

as \x\ —• 00 where g3k0, Vf, V° are CK functions positively homogeneous of 
degrees 0, m, 2m respectively, and if the set of all the points of E° = {(X°\0) x 
Rd, H° = 0} periodic with respect to the broken Hamiltonian flow generated by 
the Hamiltonian 

H° = g*0«;, - V,P)(& - VS) +V°-1 (12) 

has measure zero, then 

N(X, h) = M(X)h~d + (^ + o(l))A i (d-1)ft1-d as X - • +00, h e (0,1] (13) 

and M(X) = $Xld(l + o(l)) with positive y. 

We refer to [2, 5] for more refined examples of positively homogeneous po
tentials degenerating along certain directions, probably perturbed by indefinite 
potentials of a more moderate growth at infinity, and by examples of potentials 
of an exponential and logarithmic growth at infinity. 

Let us now consider the quasiclassical asymptotics of the sets of the lowest 
eigenvalues. 

THEOREM 7. IfOeX and if conditions (Hi)-(H5), (H8) are fulfilled with 
7 = c_1 |x|, ç = \x\m, m > 0, then asymptotics (10) holds as X —> +0 and 
h = o(Xl). Moreover, ifXC\{\x\ < c - 1 } = Jf°n{|a;| < c - 1 } where X° is a conical 
domain with dX°\0 G GK, if stabilization condition (11) holds as \x\ —> 0, and 
if the set of all the points of E° periodic with respect to the broken Hamiltonian 
flow generated by the Hamiltonian (12) has measure zero, then asymptotics (13) 
holds as X -> +0, h = o(Xl), and M(X) = p\'d(l + o(l)), y > 0. 

Let us consider now asymptotics of the negative spectrum. 

THEOREM 8. (i) / / X is a nonbounded connected domain and if conditions 
(Hi)-(H5) are fulfilled with 7 = c_ 1( |x | + 1), f = (\x\ + l ) m , 0 > m > - 1 , then 
asymptotics (10) holds asXe (-1,0), h G (0,1), Xh -> - 0 with M(X) = 0(\X\ld) 
as X —• —0; moreover, M(X) ~ |A|*d provided V < —c_1f2 along a certain ray in 
X. 

(ii) Moreover, ifXn{\x\ >c}= X 0 n { | z | > c} where X° is a conical domain 
-with-dX^O^&t^if^stabilization-conditioi^ 
set of all the points of E° periodic with respect to the broken Hamiltonian flow 
generated by the Hamiltonian 

H° = | z | 1 - ' V * 0 ( e i - V?)(& - Vfe°) + V° + 1] (14) 

has measure zero, then asymptotics (13) holds as X —* —0, h G (0,1], and M (A) = 
y|A|'d(l + o(l)). 
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(iii) / / conditions ( H I ) - ( H ö ) are fulfilled with 7 = c - 1 ^ ! + *)» ? = 

(\x\ + I ) " 1 lnp(|a;| + 2), p > 0, then 

N(X,h) = M(X)h-d + 0(\\n\X\\p(d-1)+1h1-d) 
(15) 

os A G (-1,0) , ft G (0,1], Xh-^-0 

where M(X) = 0( | ln |A| | p d + 1 ) ; moreover, M(X) ~ | ln |A| |p d + 1 provided V < 
—c~1^2 along a certain ray in X. 

(iv) Moreover, if X D {\x\ > c} = X° n {\x\ > c} where X° is a conical 
domain with dX°\0 e GK, if g3k, Vj\n~p\x\, V'In - 2 p |a:| satisfy stabilization 
condition (11) with g3k0, Vf, V° G CK positively homogeneous functions of 
degrees 0, —1, —2 respectively, and if the set of all the points o/E° periodic with 
respect to the broken Hamiltonian flow generated by the Hamiltonian 

H° = MV*°(& - V?)(& - yfc°) + V°] (16) 

has measure zero, then 

N(X, h) = M(X)h~d + (r/ + o(l))\ In ^W**'1)*1 h1'* (17) 

as X —• —0, h e (0,1], and either p > 0 or h —> 0, and 

M(A)=y|ln|A|r+1(l + 0(l)). 

We refer to [3, 5] for more refined examples of positively homogeneous poten
tials singular along certain directions and of potentials which decay as I n - 1 |z| 
at infinity. Let us consider again the quasiclassical asymptotics of the sets of the 
lowest eigenvalues. 

THEOREM 9. IfOeX and if conditions (Hi)- (H5) are fulfilled with 7 = 
c_1|a;|, f = \x\m, 0 > m > - 1 , then asymptotics (10) holds as X —• —00, h = 
o(\X\l), and M(X) = 0(\X\ld); moreover, M(X) - |A|*d provided V < -c'1^ 
along a certain ray in X. Moreover, if X D {\x\ < c - 1 } = X° n {\x\ < c - 1 } 
where X° is a conical domain with dX°\0 G CK, if stabilization condition (11) 
holds as \x\ —• 0, and if the set of all the points o/E° periodic with respect to the 
broken Hamiltonian flow generated by the Hamiltonian (14) has measure zero, 
then asymptotics (13) holds as X —+ —00, h = o(|A|*). 

We refer to [3, 5] for applications of Theorem 1 to calculation of the density 
of states and its asymptotics. 

3. Let us consider now the case of the intensive magnetic field. We do not 
assume in this and in the following sections that condition (H4)2 is fulfilled and 
now (H4) = (B.4)1 + (H4)3. To characterize the magnetic field, let us introduce 
its vector intensity B3 = i£3kl(DkVi — DiVk)/2 and its scalar intensity B = 
(gjkB

3Bk)x/2 where d = 3, £3kl is the skew-symmetric pseudotensor with £123 = 
1/y/g, and (gjk) = (g3k)~x', these intensities are invariant with respect to the 
gradient transform Vj f-> Vj — iDjf with a real-valued function / . Our third 
principal assertion is the following theorem. 
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THEOREM 10. Let d = 3, let conditions (Hi)-(H6) be fulfilled with X" = 
{X, ç 7 < 2}, and for every y G X1 in I f ! B(y, 7(2/)), let 

| D a £ ' | < c/?7-H Va: |a| < ÜT (H4)'2 

where functions ß, 7 satisfy (H2), (H3) and /? > f/7. Moreover, let us assume 
that for every y G X' fi {/? > cf/7} 

5(2/, 7(2/)) C X (H5)' 

and in B(y,i(y)) 

B>c~xß, V<-c-\2. (H8)' 

(i) Finally, let us assume that for every yeX'n {/Î72 > c(^7)4/3~a} n {V + 
B < c_1f2} a£ every point of B(y,^(y)) 

\V(B/V)\ > c~xßr V 1 or I K H e s s ^ / F ) ) - 1 ! ! ^ ^ - 1 ^ 2 - (H9) 

Then the following estimates hold: 

M*-CRG<N<M*+ C(R2 +RG + R7) (18) 

where 

M* = - ^ f ] / (V + (2n + VB^By/gdx, 

Re= f fl^dx, 
J{X'y+B<2c-xç2} 

R7= f ß3'2-3^23 dx. (19) 

/fere and in what follows K = K(s,a), G = C(s,o,c), and s, o are arbitrary 
positive numbers. 

(ii) On the other hand, let us assume instead of (Hg) that for every y G 
X'n{/?72 > c(f7)4/3- f f}n{y+5 < c"1?2} inB(y,^(y)) the following conditions 
are fulfilled : 

V + 3 5 > c - V , (H8)" 

\Da(V + B)\ < c/J'V1"1 Va: \a\ < K, (H4)S 

either \V + B\> c^ß'2 or \V{B/V)\ > c" 1 /? ' 2?"^ - 1 

orWQie^B/V^W^cß'-^W, 

where ß', 7 satisfy (H2), (H3) and fy > /î'7 > 1 m X'. Tften 

-Hi *- „ai-2Jiji (H9)' 

M * - C Ä 8 < J V < M * + C ( Ä 2 + ß 7 + ß8+-ß9) (20) 

wAere 

Rs= f f V 1 d*. 

Ä9 = f ffi-l^-dx. 
J{X',V+B>c-lß12} 
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COROLLARY. If the conditions of Theorem 10 are fulfilled and ifXP\{ß^2 > 
c(f7)2_cr} = 0 , then one can replace M* by M in (18); i.e., in this case Weyl's 
rule is applicable. 

4. Let us apply Theorem 10 to derive the eigenvalue asymptotics in the case 
where there are no electric fields. We replace V by —ft"2 A and Vj by h_1Vj and 
then Theorem 10(i) implies the following assertions. 

THEOREM 11. (i) Let X = R3 and let conditions (Ri), (H4)i, (H4)'2, (H8)', 
(H9) be fulfilled with 7 = c~1(|a:| + 1), ß = (|a;| + l ) m , m > 0, v = -ft"2A, ç = 
h~ly/X. Then 

N(X, h) = M*(X/h)h~3/2 + 0 ( A 1 + 2 / m / r 2 - 2 / m ) (21) 

as X/h > c"1, h e (0,1], and either X —• +00 or h—> +0, where 

1 °° C M » = 2̂ 2 E / fa - (2n + l)ß)+ / 2ß^z (22) 

and M*(p) ~ //3/2+3/m as ß _ » + 0 0 < 

(ii) Moreover, if(H.g) is fulfilled only at {\x\ > c} then asymptotics (21) holds 
provided X2~G > ft1-2*7, and e/ (Hs)', (H9) are fulfilled only at {\x\ > c} then 
this asymptotics holds provided X —» +00. 

THEOREM 12. Let 0 G X and let conditions (Hi), (H4)i, (H5), (H4)!j, 
(H8)', (H9) be fulfilled with 7 = c'^x], ß = \x\m, m > 0, V = -ft"2 A, 
ç = h~1\/X. Then asymptotics (21) fto/ds as ft —• +0, A/A —* +0, and ft = 
0(A(m+2)/(2m+2)) ^ M * ^ j „ ^3/2+3/m a 5 ^ _> + Q . 

One can easily prove similar assertions in the case of positively homogeneous 
g3k and Vj with S degenerating along certain directions and in the case of an 
exponential growth of B at infinity. 

On the other hand, Theorem 10(ii) implies 

THEOREM 13. Let X = R3 and let conditions (Hi), (H4)i, (H4)'2 be ful
filled with ß = 1, 7 = c_1(|a:| + 1). Moreover, let us assume that conditions 
(H4)'2'5 (H9)' are fulfilled with ßf = (\x\ + l)m, 0 > m > - 1 , and V = - 1 , ? = 1 
at {\x\ > c}. Then 

N(l - r\, 1) = E(r}) + Ofa1/™) as rj - • +0 (23) 

tuftere 

^ = é^I{1~V~ B)TBV~Qdx (24) 
anrf ^(77) = 0(/?1/2+3/2m) Moreover, E(rj) ~ n1/^3/2™ provided B < 1 -
c -1/?'2 a/oMj? o certain ray. On the other hand, if conditions (H4)'2', (Hg)' are 
fulfilled with ß' = {{xl + l)-1 lnp{\x\ +2), p > 0, andV =-1, f = 1 ai{|a;| > c}, 
then 

N(l-ri,l) = E{r}) +Obliarti2*) asn-t+O (25) 
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and E(rf) = 0(r}~x|lnrç|3p); moreover, E(rj) ~ ?7_1|lnr/|3p provided B < 1 — 
e-1/?'2 a/on</ a certain ray. 

5. The demonstrations of our principal theorems, 1, 2 [4] and 10, are based 
on the dilatation method applied to precise quasiclassical asymptotics of the 
spectral function for the Schrödinger operator with a small parameter ft and 
with regular nondegenerated potentials; I replace ft by (?7) -1 and satisfy non-
degeneracy conditions by means of the appropriate choice of f, 7. Moreover, the 
demonstration of Theorem 2 uses the fact that generic oscillations front sets of 
the solutions to nonstationary Schrödinger equation propagate along Hamilto
nian billiards, and demonstration of Theorem 10 uses the microlocal canonical 
form of nonnegative symbols with noninvolutive double characteristic variety of 
codimension 3. Moreover, if X" ^ 0 then the proofs of the estimates from above 
use Rosenblyum's variational estimate [10]. Our arguments are applicable when 
deriving the eigenvalue asymptotics for higher-order operators [7] and even for 
nonsemibounded operators such as Dirac operator [8]. 

It should be noted that Theorems 1 and 2 remain true in the case d = 2 after a 
slight modification connected with Rosenblyum's estimate, but the case d = 1 is 
essentially specific. I cannot generalize Theorem 10 to other dimensions without 
certain additional assumptions; in the case d > 3, the expression for M* is more 
sophisticated. 

Our results remain true in the case of the quadratic form Q considered on 
Co°(Rd)|x (this leads to natural boundary condition g3knj(Dk — Vk)u = 0 on 
dX for operator A) provided £7 > 1 on dX. In this case one should replace M1 

by — M1. It should also be noted that Q is semibounded from below on L2 and 
hence generates a selfadjoint operator provided one of the right-hand expressions 
in the estimates (1), (1)', (18), (20) is finite. 
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Two-Dimensional Geometric Variational Problems 

JÜRGEN JOST 

It is the purpose of this paper to describe some recent results of the author and 
his colleagues on conformally invariant variational problems in two dimensions 
and to put these results in a systematic context that developed from our work. 

Such conformally invariant variational problems arise in geometry, and solu
tions to such problems include (in increasing generality): 

• conformai maps between surfaces, 
• minimal surfaces in Euclidean space, or, more generally, in Riemannian 

manifolds, 
• harmonic maps from a surface into a Riemannian manifold, 
• surfaces of prescribed mean curvature, or, more generally, solutions of the 

mean curvature system in Riemannian manifolds. 
Let us briefly describe the corresponding variational integrals and Euler-

Lagrange equations. 
N will be a Riemannian manifold of dimension n with metric tensor given in 

local coordinates by (<fcj)»,i=i,...,n and corresponding Christoffel symbols rj-fc. 
E is a surface (always equipped with a conformai structure) with local isother

mal coordinates z = x + iy and u : E —> N a map of class J/1,2. The energy of 
u then is defined as 

*w-sj[ 9ij («(*)) ( w i u ì + u%yu3y) dx dV* (*) 
IT, 

where, in local coordinates, u = (u1,... ,un), ul
x := ^ , etc., and the standard 

summation convention is employed. This expression is independent of the choice 
of local coordinates involved, and, also, we need not specify a metric on E as 
E(u) depends only on the conformai structure of E. 

The corresponding Euler-Lagrange equations are 

Ati< + Y)k(u(z))(uÌuk + «J«*) = 0 (t = l «). (2) 

A solution u of (2) is called harmonic, and if, in addition, u is conformai, i.e., 

ffjfc(«>* - « > y - atti»«*) = 0, (3) 
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© 1987 International Congress of Mathematicians 1986 

1094 



TWO-DIMENSIONAL GEOMETRIC VARIATIONAL PROBLEMS 1095 

then u is a (parametric) minimal surface in N (possibly with branch points). 
In general, for a solution u of (2), (3) need not be satisfied, but it turns out 

that the expression 

9jk{u3
xu

k - u3
yu

k - 2ivPxu
k)(dx2 - dy2 + 2t dx dy) (4) 

is a holomorphic quadratic differential. This already holds for a critical point 
u of E(u), provided u is also stationary w.r.t. variations of the independent 
variables; i.e., if re: E —• E is a family of diffeomorphisms depending smoothly 
on the parameter e with To = id, then we require that 

^E(uoTe)]E==0 = 0. (5) 

The fact that (5) implies that (4) is holomorphic depends on the invariance of 
(1) under changes of the independent coordinates, and hence the holomorphicity 
of (4) expresses the fact that our variational problem is conformally invariant. 

For surfaces of prescribed mean curvature in a three-dimensional manifold, 
one looks at the Jï-surface functional 

I(u) := \ j(gij(u)Vui • W + Q(u)(ux A uy)) (6) 

with divQ(w) = 4H(u), Vu1 = (ul
x,u

%
y), with Euler-Lagrange equations 

AM* + T)k(u)Vu3 • Vuk = 2H(u)y/ggi3(ux A uy)
3 (7) 

with (gi3) = (gij)'1, g = det(fty). 
If u is conformai, i.e., if (3) holds, and u solves (7), then H(u) is the mean 

curvature of the surface in N described by u. Again, for a general solution of 
(7), (4) is holomorphic. 

Conversely, Grüter [G2] observed that the most general (positive definite) 
conformally invariant two-dimensional variational integral is already of the form 

I(u) = ((gij^Vu1 • W + bij(u) det(Vu\Vu3)) (8) 

where Vwl = (ux,uy), (g^) is symmetric, and (bij) is skew-symmetric. If the 
dimension of N is three, this reduces to (6). 

E will always be a compact surface. If 9E = 0 , one looks for closed solutions 
of our problems, whereas in case 9E ^ 0 , one can impose various boundary 
conditions, namely Dirichlet conditions, Plateau conditions (where <9E has to 
be mapped monotonically onto a given Jordan curve in TV), or free boundary 
conditions where <9E has to be mapped into a (sufficiently regular) submanifold 
L of N, typically a hypersurface, and E has to meet L orthogonally along 9E. 

Regularity. Grüter [Gl] showed that (under appropriate regularity assump
tions for the coefficients of (8)) a weak critical point u of a conformally invariant 
integral is continuous if it is weakly conformai, i.e., if (3) holds almost every
where. Here, u is called a weak critical point if it is a weak solution of the 
corresponding Euler-Lagrange equations. For example, for the Jï-system this 
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o 

means that u E H1"2 and that if 0 EH1>2 n L°°(E, R3) and w(supp <f>\ null set) 
is contained in a coordinate neighborhood, then 

L (VtifV0f - T)kVu%Vv*4>% + 2H(u)y/gg*3(ux A uy)
3</>'). (9) 

The crucial observation in the proof of this regularity result is that the confor-
mality relation (3) allows us to pull back the standard monotonicity formula of 
geometric measure theory under u. 

Schoen [Sch] then reduced the case of a not necessarily conformai stationary 
point u of such an integral to the preceding case by using the holomorphic 
differential (4) to construct a weakly conformai map from u, to which Griiter's 
result applies. "Stationary" here means that the analogue of (5) has to hold 
because this is needed to show that (4) is holomorphic. 

Likewise, by improving earlier results of Grüter-Hildebrandt-Nitsche [GHN1] 
and Dziuk [D], the author proved continuity of minimal surfaces at a free bound
ary, if the free boundary is a submanifold of N of class C2 with bounded second 
fundamental form and a uniform neighborhood where the nearest point is smooth 
(cf. [J 5]). The same result actually already holds if the free boundary is only 
piecewise C2, provided the various pieces (of, possibly, various dimensions) sat
isfy the above assumptions and the angle between different pieces is uniformly 
bounded away from zero (cf. [J6]). 

Boundary regularity for surfaces of prescribed mean curvature at a free bound
ary was obtained by Grüter-Hildebrandt-Nitsche [GHN2]. 

For interior regularity of solutions of the üT-surface equation in Euclidean 
space (Au = 2H(u)uxAuy) one does not need (5), as shown by Heinz [H] under 
the condition 

supfltf(u)| + (1 + |«|)|VJT(fi)|) < oo. 

Standard results from elliptic PDE then imply higher regularity of continuous 
solutions. The question of the dependence of these regularity results on the 
geometric quantities involved was then solved by Jost and Karcher [JK]. Their 
results yield C 2 ' a bounds for a solution of (9) depending only on a Ca-bound for 
H and a bound for the absolute value of the sectional curvature of the image N, 
a lower bound for the injectivity radius of N, and the dimension of N. Likewise, 
for a higher dimensional domain M, where the geometry of M also enters into 
the harmonic map equation, C 2 , a bounds for a harmonic map then also depend 

=on-the~corresp~onrungTjeomiet^ 
radius, and dimension). An essential point in the proof is the construction of 
harmonic coordinates on balls of controlled size, i.e., with a lower bound for the 
radius depending on the mentioned geometric quantities. Manifolds where these 
quantities are controlled play a prominent role in geometry—in particular, in 
Gromov's work—and the constructions of [JK] are useful for the investigation 
of such manifolds. 
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Existence of minimal surfaces. After Douglas and Rado had produced 
an area minimizing disk as a solution to Plateau's problem, minimal surfaces 
spanning a given Jordan curve in R3 that are of higher genus or unstable, were 
then studied by Douglas, Courant, Shiffman, and Morse-Tompkins. Today, how
ever, one often finds that their arguments are not completely satisfactory, and 
therefore this "classical" theory was reworked by Struwe, who developed a Morse 
theory for disk and annulus type minimal surfaces [S3, S4], and by the author, 
who gave a solution to the so-called Plateau-Douglas problem in a Riemannian 
manifold [J3], Here, one shows that a Jordan curve 7CÌV spans a minimal 
surface of genus g if 

inf {Area of surfaces E of genus g with ÖE = 7} (10) 

< inf {Area of surfaces E' of genus g — 1 with dT! = 7}. 

Combining these results and going beyond the classical theory, a Morse theory 
for minimal surfaces of arbitrary genus spanning a given Jordan curve in R3 is 
being developed jointly by Struwe and the author. It also distinguishes between 
embedded and nonembedded surfaces. 

A condition different from (10), formulated in terms of the existence of a 
suitable barrier of nonnegative mean curvature, that guarantees the existence of 
a minimal surface of given genus g, was found by Tomi-Tromba [TT]. The author 
[J4] showed that this condition actually implies the existence of an embedded 
minimal surface of genus g. 

If S C R3 is diffeomorphic to S2, then Struwe [SI] showed the existence of an 
(unstable) minimal disk with a free boundary on S. Here, however, stronger and 
physically and geometrically more satisfactory results could be obtained by using 
methods of geometric measure theory. Using the fundamental constructions of 
Pitts [P] and Simon-Smith [SS] and building upon joint work with Grüter on 
the regularity of varifolds with free boundaries, the author was able to show [J4] 
that if A is a subset of a three-dimensional Riemannian manifold, diffeomorphic 
to the closed ball, then there exists an unstable embedded minimal surface E in 
A of genus zero (but possibly higher connectivity) with a free boundary 9E on 
dA in case 9E ^ 0. If dA has nonnegative mean curvature w.r.t. the interior 
normal, then a simply connected such E can be obtained. 

Also, if A C R3, dA strictly convex, and if the ratio between the outer and 
inner diameter of A does not exceed V% then A contains at least three embedded 
minimal disks meeting dA orthogonally along their boundary. It is conjectured 
that the above restriction on the shape of dA is not necessary, however. If dA 
is a tetrahedron, this problem had been solved by Smyth [Sm]. 

Combining techniques from geometric measure theory, conformai representa
tion of surfaces of higher genus with boundary, and the parametric methods used 
for solving the Plateau-Douglas problem, one can also obtain embedded mini
mal surfaces with a free boundary and of prescribed genus under appropriate 
assumptions [J7]. 
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Existence of surfaces of constant mean curvature. It had been shown 
by Hildebrandt that if 7 is a Jordan curve in R 3 contained in a ball of radius R, 
and ff is a constant with \H\R < 1, then there exists a surface E of constant mean 
curvature H with 9E = 7. (E minimizes the ff-surface functional.) Building 
upon fundamental work of Wente [W], Brézis-Coron [BC] then showed that 
if \H\R < 1, then there actually exist two such surfaces, thus solving the so-
called Rellich conjecture, with an independent (but slightly weaker) solution by 
Struwe [S2] and Steffen [Sf ]. (If 7 is a plane circle, then Hildebrandt's solution 
corresponds to the small spherical cap, whereas the second one corresponds to 
the large spherical cap with mean curvature H and boundary 7.) Struwe [S5] 
then improved this result and showed that if one has a strict local minimum for 
the if-surface functional for given 7 and constant H, then there also exists a 
second solution. 

Existence of harmonic maps. Let E be a compact surface (for simplicity 
without boundary, although corresponding results hold for the Dirichlet problem, 
too), N a compact Riemannian manifold (dN = 0), A compact, typically A = 
[0, l]d. Let ho : E x A —• N be continuous, and let H be the class of all maps h 
homotopic to ho, and 

M:= inf sup£(A(-,0). 
h€H teA 

and we fix h\ ̂ xdA (in case dA / 0 ) so that the supremum in the above expres
sion cannot be obtained on dA. Then there exists a harmonic map UQ : E —> N 
and also, possibly, some (nontrivial) conformai harmonic maps U{m. S2 —» N, 
i = l,...,m, with 

m 

E(u0) + YlE(ui) = M] (11) 
i=l 

and (UQ, « 1 , . . . , um) represents a saddle point corresponding to H in the follow

ing sense: There exist sequences (hn) C H and (tn) C A, and possibly points 

xi,..., xk E E, fc < m, with 

E(hn(-,tn))^M, 

hn(--> tn) —• uo weakly in H1'2, 

ftn(-,tn)=$wo uniformly on each compact subset of 

E\{zi,. . . ,a;fc}, 

and 
hn(x/Xnitn) ~^Ui 

"wEerOn ^» OlmfTx/Xn"is interpreted äs rescälingTnpolä?coordinates centered 
at some appropriate Xj (j E { 1 , . . . , fc}). 

This result (cf. [J8]) improves the theorem of Sacks-Uhlenbeck [SU] by ob
taining equality in (11) (in [SU], one only has "<"). The method of proof refines 
the idea employed in [JI]. (11) should be interpreted as a version of strong con
vergence that allows for changes of the topological type, or accounts for energy 
jumps. This result will serve as the basis for a Morse theory for harmonic maps. 
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Properties and applications of harmonic maps. In [JS], Schoen and the 
author showed that given a diffeomorphism (j) between compact surfaces Ei and 
E2 (without boundary), there exists a harmonic diffeomorphism u homotopic 
to (f>. Here, on E2, a Riemannian metric has to be given, but the result holds 
for any (smooth) metric. The proof depends on deep a priori estimates from 
below for the Jacobian of harmonic diffeomorphisms, due to Heinz. The result 
improves the earlier theorems of Schoen-Yau and Sampson which hold for image 
metrics of nonpositive curvature. 

In a similar vein, the author also developed variational techniques for the 
conformai representation of surfaces (cf. [JI, J3]). 

Now let S be a compact oriented topological surface without boundary of 
genus g > 1, E, E' surfaces equipped with conformai structures homeomorphic 
to S. On E' we also introduce the hyperbolic metric determined by the conformai 
structure. We then look at the harmonic map u(T, E') : E —• E' homotopic to the 
identity of S. As noted in the beginning, u induces a holomorphic quadratic dif
ferential />(E,E') on E. Wolf, in his thesis [Wf], managed to compute the effect 
of variations of the conformai structure of the image E' on u and p, whereas the 
author [J8] then studied the effect of variations of the domain E. With the help 
of these computations, one can recover all the basic structures of Teichmüller 
space (the space of conformai structures on a surface S with fixed topological 
marking, which in our situation corresponds to looking only at maps homotopic 
to the identity of S), namely, the topological ("Teichmüller's theorem"), differen
tiable, complex, Riemannian (Weil-Petersson metric), and Kählerian structure, 
and also to obtain a simple proof of Tromba's curvature result and Wolpert's 
curvature formula for the Weil-Petersson metric. Thus, the results of [Wf ] and 
[J8] furnish a new approach to Teichmüller theory, replacing quasiconformal by 
harmonic maps. 
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1. Introduction. Nonlinear elliptic and parabolic equations arise in the 
theory of partial differential equations as well as in numerous applications. Up 
to now the wide class of such equations known as quasilinear equations has 
been studied almost in the same detail as the class of linear equations. Many 
mathematicians contributed to the theory of quasilinear equations and their 
results are described in books [1-4]. 

The second-order quasilinear equations are linear with respect to second deriv
atives. As to the equations which are nonlinear with respect to second derivatives 
and which are the main object of the recent report, only fragmentary results were 
available during a long period. There did not exist a more or less general theory 
with the small exception of the case with two spatial variables for which the 
general theory of solvability was developed in W*'2, W2 for all p close to 2 (cf. 
[5]). 

In the absence of a general theory some classes of nonlinear equations were 
studied by specialists in those fields of mathematics where these equations arose. 
The first nonlinear elliptic equation subjected to intensive investigations was the 
Monge-Ampère equation. This equation arises in the theory of convex surfaces, 
and it was studied with the help of this theory. Up to 1971 the smoothness of 
its generalized solutions introduced by Aleksandrov [6] was proved only for two 
variables [7]. Then Pogorelov [8] in 1971 proved the interior regularity in the 
multidimensional case (cf. also [9]). The smoothness up to the boundary for 
the multidimensional Monge-Ampère equation was proved only in 1982 after the 
general theory of nonlinear equations was developed [10-14]. 

One more source of nonlinear elliptic and parabolic equations gives the the
ory of controlled diffusion processes. The equations arising in this theory are the 
so-called Bellman equations. The corresponding theory started to develop much 
later than the theory of the Monge-Ampère equations. In the case of noncon-
trolled diffusion, this theory can be based on the theory of quasilinear equations; 
see [15] and the references there. 
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The author [16, 17] using probability methods in 1972 showed the solvability 
of general degenerating Bellman equations in the whole space in the class of 
functions with bounded derivatives. This result seems to be very important 
not only because the wide class of nonlinear equations is treated there but also 
because of the fact proved there that the Monge-Ampère equations are a partial 
case of the Bellman equations. Thus appeared the possibility of constructing a 
general theory of nonlinear equations including the Monge-Ampère equations. 
The approach to control theory suggested by the author was developed further 
by other mathematicians (cf., e.g., [18-24]). In particular, Pragarauskas [23, 
24] developed a general theory of nonlinear integro-differential equations. The 
main results of the probabilistic treatment of the Bellman equations in the whole 
space were gathered in the author's book [25] in 1977 and in the author's report 
to the International Congress of Mathematicians in Helsinki in 1978. 

Further evolution of probabilistic methods leads to consideration of the Bell
man equations in bounded domains. Here I want to indicate not only the above-
mentioned articles of Safonov and Lions but also my two papers [26, 27] of 1981, 
where a general method of how to reduce the Dirichlet problem to a problem 
on a compact smooth manifold without boundary is suggested. In particular in 
[27] the solvability is proved in the class of continuous functions with bounded 
derivatives ux, uxx, vt,vx, vxx of the problems 

det(usa;) = (f+(x))d, (uxx) > 0 (a.e. D), u\ \x\=1 = 0, 

vtdet(vxx) = (1 - |z|2)(0+(*,a;))d+1, vt > 0, (vxx) > 0 (a.e. [0,T] x D), 

v(T,x) = 0 if |x| < 1, v(t,x) = 0 if t E [0,T], \x\ = 1, where D = {xEEd: \x\ < 
1}, f(x) is twice continuously differentiable in D, g(t,x) is twice continuously 
differentiable in [0,T] x D, g(T,x) = 0 for \x\ < 1. 

Approximately up to 1979 the probabilistic methods played the main role in 
the theory of the Bellman equations. In 1979 Brezis and Evans [28] considered 
the case of the Bellman equation with two elliptic operators and proved its 
solvability in C 2 + a . Probabilistic methods give results only in W2,. Near that 
time the articles [29-31] appeared where PDE methods were also used, though 
the solutions were of class W^ and these results were not stronger than earlier-
obtained probabilistic results. 

In the general case the solvability of the Bellman equations only in W^ was 
known till 1982. Later I will discuss that very great progress in the theory of non
linear equations which is recorded starting with the time of the last International 
Congress of Mathematicians in Warsaw in 1982 and which is mainly presented 

IhlhèlmthOT'ïY Evans [33^proved interior C 2 + a regularity 
for elliptic Bellman equations with constant coefficients. Independently in the 
same year the author [34, 10] received the same result for elliptic and parabolic 
Bellman equations with variable coefficients and proved C2+a regularity up to 
the boundary for the elliptic case. The basis of the works [33, 34, 10] are the 
results of Krylov and Safonov [35, 36] on the estimate of the Holder constant 
for solutions of linear equations with measurable coefficients. 
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I want to stress that the investigations in [33, 34, 10], in the author's book 
[32], and in the articles of Safonov [37-39] are entirely based on the methods of 
the linear theory. One can say that a good linear theory breeds a good nonlinear 
theory in contradiction with the known claim that "linearity breeds contempt." 

2. Uniformly nondegenerate equations. Fix some constants K > e > 0, 
T > 0, a domain D C Ed, and define Q = (0,T) X D, Q(K) = (0, T - K) x D(K) 
with D(K) = {XED: dist(z, dD) > K}. 

DEFINITION 2.1 . For all (t,x) EQ and real uy, Ui (i,j = 1,...,d), u, let a 
real function F(UìJ, U{,u, t, x) be defined. We write F E 7 (e, K, Q) if for every t 
the function F is twice continuously differentiable with respect to (uij,m,u,x)\ 
F is continuously differentiable with respect to all its arguments, and for all 
(t,x) EQ, X,x E Ed, r = l,...,d, and real U{j — Uji, U{j = üji, Ui, ü{, u, ü, the 
following inequalities hold: 

|F-FW|,^|<Mf(n)(i + X;KI2)5 

I^I^+EI^O+I^I+I^KH-EKI)"1 

< M[(u) (i + E KI2 + J2 K-l)> (2.1) 

[Mf(u,̂ )]-%)(Tî) <£|fiy| [ E N + ^ + E K O ^ I + I2!)] 

+ E N a ( 1 + E w ) 

|Ft|<M/(U,ufc)(l + E k f ) 5 

where Mf are some continuous functions increasing in \u\, ukuk\ F^^ is a 
quadratic form with respect to rj which is equal to the second directional deriva
tive of F along rj, rj = (üij,üi,ü,x). 

This definition introduces the class of operators T(e,K,Q). Naturally the 
functions Mf can differ for various elements of this class. The general property 
of the functions from T(e,K,Q) is their concavity in (UìJ) on the set of all 
symmetric matrices (UìJ). This fact easily follows from (2.1) where on the right 
there are no terms of the second order with respect to UìJ. 

DEFINITION 2.2. Let a function F(uij,Ui,u,t,x) be defined for (t,x) E Q 
and real uy = Uji, U{ (i,j = l,...,d), u. We write F E 7 (e, K, Q) if there exists 
a sequence Fn E 7(e,K,Q(l/n)) converging to F for all (t,x) E Q, UìJ = Uji, 
Ui, u and such that 

(a) Mf1 = M/"2 = • • • =: Mf, i = 1,2,3, 
(b) there exists constants 60 =: 6<f > 0, Mo =: MQ > 0 such that for all 



1104 N. V. KRYLOV 

n > 1, (t, x) E Q(l/n), and symmetric (UìJ) > 0, 

Fn(uij,0,-Mo,t,x) > S0i Fn(-Uij,0,Mo,t,x) < -60. (2.2) 

Note that we use (2.2) in a priori estimation of \u\. Let us consider the typical 
element of 7(e, K, Q). Let Q be a set and for every u E Q for z = (t, x) E Q and 
real ui,...,Ud, u let the functions ai3(u,uk,u,z), i,j = l,...,d, a(u),uk,u,z) 
be defined. Suppose that for each w G ( l the functions a%3, a are continuously 
differentiable in (uk,u,z) and for every t twice continuously differentiable with 
respect to (uk,u,x). Suppose that above-mentioned derivatives are bounded on 
{(u,uk,u,z)\ u) E Q, Y^\uk\ + \u\ < M, z E Q} for every M < oo. Finally 
suppose that for all LJ E fi, z E Q, s, r, p = 1,..., d, X E Ed, Ui, i = 1,..., d, u 
the following inequalities hold 

e\X\2 < aijX{Xj < K\X\2, \a\ < Mi(w)(l+ ^ K | 2 ) , 

l««rl (H-Hl^l) +1^1 + 1̂ ,1 (l + XTl^l)1 ^^l(^) (i + Z^I^I2) ' 
a(u,0, -M0,z) > So, a(u,0,Mo,z) < -S0, 

where Mi (u) is a continuous function, the constants So > 0, Mo > 0. 
Then it appears that 

F := inf [al3((jj,uk,u,z)uij + a(cj,uk,u,z)] E 7(e,K,Q). 
wen 

Next we go to the main results about parabolic equations with F E 7. 

THEOREM 2.1 . Let a E (0,1), -0 E C2+a(Ed), D = {x: I/J(X) > 0} be a 
bounded nonempty domain, \ißx\ > 1 on D, F E ~7(e, K, Q), <p E C1 + a /2 , 2 + a !(Q), 
M < M(f on Q. Then the problem 

ut + F(uxixj,uxi,u,z)=0 in Q, (2.3) 

u = <p on d'(Q) (2.4) 

(dfQ is the parabolic boundary ofQ) admits the unique solution of the class G(Q) 
with continuous bounded derivatives ux, uxx, Ut in Q. 

Moreover, \u\ < MQ in Q and for every n > 1 we have 

u G C1+/9/2 '2+/3([0,T] x ^ ( r r 1 ) U [0,T - n"1] x D), 

where ß = min(a, ao)> #o = &o(d, K,e) E (0,1), and the norm ofu in this space 
Hs^bounded^by (rconstantdependiriff^onl^mrwpdj^K^ 
the norms ofi/j, ip inC2+a(Ed), C1+a/2'2+a!(<9) respectively. Furthermore, if<p 
satisfies the first matching condition then u E C1+^/2'2+^(Q) and the norm of 
u in this space can be estimated only in terms of the same objects mentioned in 
the preceding sentence with the exception ofn. 

THEOREM 2.2. Let F E 7(e,K,Q) and D satisfy an exterior sphere condi
tion at each boundary point. Suppose that <p E C(Q), \<p\ < MQ on Q. Then 
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the problem (2,3), (2.4) has the unique solution u E G(Q) such that \u\ < MQ 
on Q, u E C1"l"a°/2'2+a°(Q(/c)) for any K > 0, and the norm of u in this space 
is bounded by a constant depending only on d, K, e, MQ , K, M[. 

Analogous results are true for elliptic equations. 

THEOREM 2 .3 . Let the conditions of Theorem 2.1 be satisfied and let F, <p 
be independent oft. Then the problem 

F(uxixj, uxi ,u,x)=0 in D, (2.5) 

u = cp ondD (2.6) 

has a solution u E C2+@(D) for which \u\ < MQ on D, and the norm of u in 
C2+@(D) is bounded as is indicated in the last assertion of Theorem 2.1. 

THEOREM 2.4. Let the conditions of Theorem 2.2 be satisfied, and let F, (p 
be independent oft. Then the problem (2.5), (2.6) has a solution u E G(D) for 
which \u\ < MQ on D, and the norm of u in C2+a°(D(K,)) for every K > 0 is 
estimated by the constant from Theorem 2.2. 

These results are taken from the book [32]. Various versions of Theorems 
2.3 and 2.4 may be found also in [4, 33, 40]. Note that Theorems 2.1-2.4 
do not contain the corresponding results from the linear theory because of the 
superfluous smoothness assumptions on F. In the theory of quasilinear equations 
[1-4] the smoothness assumptions on F are usually stronger than in the linear 
theory. Nevertheless they are weaker than ours. 

It appears that there exists a C2+af-theory of nonlinear equations which con
tains the corresponding results of the linear theory, and moreover in the case 
of linear equations it is simpler than ordinarily used. Below in this section I 
present the remarkable results due to Safonov (see [37-39]). As is mentioned 
above, they are obtained by the methods universally applicable both for linear 
and nonlinear equations and which differ, for instance, from the potential theory 
methods. Let us consider only the oblique derivative problem. Analogous results 
are proved by Safonov for the Dirichlet problem. 

THEOREM 2 .5 . Let a E (0,1), let D be a bounded domain in Ed, dD E 
C2+Qt, and let a function F(uij,Ui,u, z) be defined for all z = (t,x) EQ and real 
UìJ, U{, u. Let 

(a) F be convex in (UìJ), 

(b) for all £EEd 

e\^\2<F(uij^èi3,Ui,u,z)-F(uij,Ui,z)<K\i\2, 

(c) F satisfy the Lipschitz condition with respect to (ui,u) with the constant 
K, and 

(d) the norm of F(UìJ,Uì,U,-) in Ca/2,a(Q) be finite and less than 

# ( £ K I + £ N + M + I). 
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Define S = (0,T) x dD and suppose that (p E C2+a(D), | 6 V | > e on S, 
bl,b,$ E C^1 + a^2 , 1 + Q !(S), where n = (n1) is the unit normal vector to dD. 
Finally suppose that 

blipxi +b(p = $ on {T} x dD. 

Then equation (2.3) with the boundary condition 

u — (p if t = T, b%uxx +bu = $ on S 

has the unique solution u E C1+f3/2,2+@(Q). 

3. Degenerate elliptic equations in a domain. Fix the constants 6 E 
(0,1), K > 0, a function rp E C4(Ed), the integers dx,d2 > 1. Let D := {x E 
Ed'. I/J(X) > 0} be a nonempty bounded domain and |t/>_| > 0 on dD. Let fi 
be a compact metric space and for all u E fi, p E Ed2, x E Ed, i = l,...,d, 
k = 1 , . . . ,d\, let real alk(u,p,x), bl(u),p,x), c(u,p,x), and f(cj,p,x) be defined. 
Suppose that c < 0, the functions a, b, c, f are continuous in (tü,p,x), twice 
continuously (in (p, x)) differentiable with respect to (p, x) for every u, and their 
second-order derivatives are bounded on fi x Ed2 x D. Define 

aij = kcrikor3ki a = ^ i ) ? ak = ^ik^ b = ( 6 ^ 

d2 d 
L = L(u,p,x) = a%3(u,p,x)d^d^ + bl(w,p,x)—: + c(u,p,x), 

F(uij,Ui,u,x) = inf [a%3(u,p,x)uij + b%(u,p,x)ui + c(w,p,x) + f(u,p,x)] 
w£f2 

and suppose that the last infimum is independent of p. 
We also need a matrix function B(x) = (B13(x)) of the dimension d x d such 

that B = B*, a real function u(x), and a function TT(U,X, £) on fi x dD x Ed 
with values in Ed2. Define 

d2 d 

*w) = J2vPi'irl+J2vxi¥> «co =vx*c> 
i=l i=l 

G = {(U,P,X,C):LüEÜ, p = 0, XED, £EEd}, 

T = {((jJ,p,x,Tr,Ç): cj G fi, p = 0, x E dD, f ±ifix(x), 

(a(u,0,x)il)x(x),ij)x(x)) = 0, TT = TT(UJ,x, _)}• 

In the following theorem we also suppose that B E C2(D), ü E G2(D), 

ü>6, LÜ<-8, ( £ £ , £ ) > <5|_|2 on G, 

__ „ L(UJ^XH(X)<-6 onQxdD, _ _ _ 

û[2U,6(o) + El4)l2]+ 2V)(^4)) 
<-(l-6)\Ç\2Lu + K(aÇ,Ç) on G, 

El^'^)(^)l2+4(^(^)(7r,o) 
< - ( l - « ) ( * * , flJty onT, 

M < l f | _ | onT. 
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Note that the two last inequalities are satisfied if V = 0. 

THEOREM 3 . 1 . Under above assumptions there exists a unique continuous 
in D function u with the following properties: 

(a) u = 0 on dD] 
(b) for every direction in Ed the right-hand side first-order directional deriva

tive of u exists at every point in D, is bounded in D, and is almost everywhere 
differentiable; 

(c) F(uxixj,uxi,u, x) = 0 (a.e.) inD, where uxi is the right-hand side deriva
tive ofu with respect to xl, anduxix3dx3 is its differential-, 

(d) for a constant N the function u — N\x\2 is concave in every convex sub-
domain of D\ 

(e) L(u,0,x)u(x) + f(u,0,x) > 0 in D in the sense of distributions for every 
o; G fi. 

Moreover, if a domain Df c D, l E Ed, \l\ = 1, and 

inf sup aij (u), 0, x) ? _J" > 6 in D1, 
£\ ( J ,0=1 w 

then the Sobolev derivative uy)(i) is bounded in D1 (a.e.). If 

inf supa*'(w,0,x)Ctf > S in D1, 
l£l=i u 

then all Sobolev derivatives uxixj are bounded in D' (a.e.) and u satisfies (2.5) 
in D' (a.e.). 

This result is a generalization of the corresponding results of [32, 21, and 41]. 
Let us consider the simplest case of Theorem 3.1. 

THEOREM 3.2. Let D be strictly convex, a independent of p, x, b = c = 0, 
t ra = 1 identically. Then all the assertions of Theorem 3.1 hold true. 
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A Self-Focusing Solution 
to the Navier-Stokes Equations 

with a Speed-Reducing External Force 

VLADIMIR SCHEFFER 

Reference [2] contains a proof of the following theorem: Let v: R3 —> R3 be 
an L2 function with div(v) = 0. Then there exists a function u: R3 x [0, oo) -> 
R3 that satisfies (weakly) the Navier-Stokes equations of incompressible fluid 
flow with viscosity = 1 and initial condition v, and has the following regularity 
property: There exists a closed set S C R3 x (0,oo) such that u is continuous 
outside of S and the Hausdorff dimension S (called dim(S)) does not exceed 2. 

The proof in [2] actually yields more information. It implies that S must 
satisfy dim(5 n (R3 x {t})) < 1 for all t > 0. This result was improved by L. 
Caffarelli, R. Kohn, and L. Nirenberg in [1]. They showed, among other things, 
that the dimension of S cannot exceed 1. 

One may ask whether this is the best possible estimate for the dimension 
of S. The question is answered in the affirmative if, instead of the Navier-
Stokes equations, we consider the Navier-Stokes inequality. Roughly speaking, 
the Navier-Stokes inequality consists of these four relations: 

dui ^ du{ dp 

3 = 1 J 

rS}=o, £fê=°. z**** 
1 = 1 1 = 1 2 = 1 

The above is formally equivalent to the relations 

Jo JR3 JO JR3 JO JR3 \ o t / 

if the test function (j) satisfies <j) >^0, 

E oui n . x-^ v ^ vu« oui 

1=1 t=l3=1 J 
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This justifies the term "inequality." Of course, the Navier-Stokes equations are 
the case / = 0. One can think of / as a divergence-free force that pushes against 
the flow at every point of space-time. 

The method of proof of [1] and [2] works just as well for the Navier-Stokes 
inequality. The only important change that has to be made is this: Regularity 
of u outside of S means that u is locally essentially bounded on the complement 
o fS . 

There is an example that shows that dim(S') < 1 is the best possible estimate 
for the singular set S for the Navier-Stokes inequality. It is written up in [3, 4]. 
The theorem below is the precise statement of the example. 

THEOREM. Ifç<l then there exist 
(1) S C R3 X {1}, u: R3 X [0,oo) -> R3, p: R3 x [0,oo) -> R satisfying the 

following properties: 
(2) there is a compact set K C R3 such that u(x, t) = 0 for all x # K, 
(3) for fixed t, the function ut: R3 —• R3 defined by ut(x) = u(x,t) is a C°° 

function, 
(4) E i = 1 dui/dxi = 0, 

(5) 

p{x,t) = 
ò «J r\ r\ 

EEÌr(2/^)^i(2/^)(47r|a;-2/|)-
1d2/, 

* 3 i = i ; = i 

(6) \Wt\\2 is a bounded function oft (with ut defined in (3)), 
(7) |Vu|2, \u\3, and \u\ \p\ are integrable. 
(8) if (ß: R3 X (0,oo) —y R is C°° with compact support and <f)>0, then 

rf \vu\*4><r[ (2-iH2+p)«-v^+r/ 2-^(^+AA, 
Jo JR3 JO JR3 JO JR3 \ a t / 

(9) u is not essentially bounded on any neighborhood of any point of S, 
(10) the Hausdorff dimension of S is greater than f. 
We know that the inequality dim(S) < 1 is a consequence of the conditions 

(l)-(9) (and of the weaker conditions which are detailed in [1, 2] and which do 
not assume (2)). 

References [3, 4] contain an explicit construction of the example. In order to 
give an overview of this construction, it is convenient to look at the large-scale 
appearance first and then to work down to smaller details. Since [3, 4] reverse 
this order of exposition, the notation used below is different from the notation 
of those articles. The remainder of this presentation describes the appearance 
of u under increasing magnification. 

With low magnification, we see certain compact sets Km C R3, where m 
belongs to an index set that can be described as follows: There is a fixed positive 
integer Y, we set M(Z) = {m = (mi ,m2, . . -,ra*): mi ^ {0 ,1 , . . .,Y}}, and we 
take m G Uz=i M(Z). If m G M(Z), n G M(Z + 1), and mi = m for i < Z 
then we have Kn C Km. If Z is fixed then {Km: m G M(Z)} is a collection 
of disjoint sets. There is an infinite sequence Tì < T<i < T$ < • • • of times with 
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limz_oo Tz = 1. The restriction of u to Km x [Tz,Tz+i], where m G M(Z), is 
called um. The functions um resemble each other qualitatively, but they differ 
in fine detail. We have ||wm||oo ^ Cr~z (with m G M(Z)), where r is a constant 
satisfying 0 < r < 1. As time t approaches 1 from the left, a singularity develops 
on the set f fêU ümeM(z) Km x {1}. 

Now we increase the magnification and examine an individual um, where 
m G M(Z). Inside, we see vortices Vk, V2, Wy, WJ, W" for y G { 0 , 1 , . . . , Y} that 
share the same axis of symmetry. The vortices V\ and V% are the largest of these, 
and they are widely separated. For each j , the vortices Wj,Wj,W" are close 
together, they lie inside V2, and they form a decreasing progression that points 
at a certain region Dj of V2. As time passes from Tz to Tz+\, all of these vortices 
oscillate very rapidly. While V\,Wj,Wj,Wj oscillate in unison, the vortex V2 

oscillates differently. Farther away, the analogous vortices belonging to other 
um (with the same Z) are also oscillating. However, the beat of the oscillation 
varies with m. There is a wide range of frequencies for these oscillations. The 
vortices affect each other through pressure forces. The geometry of the vortices 
and the nature of the oscillation have the following net effect: Vortex Vi takes 
energy from a portion of V2 and concentrates it into another portion, called A, 
of V2. For every j G { 0 , 1 , . . . , Y}, Wj takes advantage of the increase on A 
and concentrates it further into a smaller portion Bj of A. At the same time, 
Wïj pumps energy from Bj into a smaller Cj. Finally, W" takes energy from 
Cj and puts it into Dj, which was mentioned earlier. This transfer of energy is 
completed by time T#+i. Our fixed Km contains KQ,K\,...,Ky, where Kj is 
the Kn with n = (mi, rr&2,..., mz, j) G M(Z +1). Each Kj consists of a portion 
of A and a portion of Dj. The portion of A gives rise to the Vi vortex of Kj in 
the next iteration (with Z replaced by Z + 1). The portion of Dj is the seed of 
the future vortices V2iWk, W'k,W

1^ of Kj. 

We look more closely at the edge of um. Starting from the boundary of Km 

and working our way in, we first encounter a region that does not oscillate. Here, 
um starts out being zero and increases as we go deeper into Km. Then we meet a 
zone with gentle time decay of \um\ and still no oscillation. Later, we encounter 
a mild oscillation that increases steadily and becomes very intense as we travel 
farther from the boundary of Km. This oscillation is superimposed on slow time 
decay. 
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Free Boundary Problems 
and Problems in Noncompact Domains 

for the Navier-Stokes Equations 

V. A. SOLONNIKOV 

1. In this communication we are concerned mainly with free boundary prob
lems for an incompressible viscous fluid. In these problems the domain fit C Rn, 
n = 2,3, occupied by the fluid at the moment t > 0 is to be determined together 
with the velocity vector field v(a:, t) = (vi,..., vn) and with the pressure p(x, t) 
satisfying the Navier-Stokes equations 

v t + (v • V)v - *A72v + Vp = f (x, t), V • v = 0; xeflt, t>0, (1) 

and the initial and boundary conditions 

v|*=o = vo(a:), x G ü0 = Q, 
V|ZGE = 0, Tn - aHn\xeTt = 0. 

Here v and G > 0 are constant coefficients of viscosity and of the surface 
tension, f (x, t) (x G W1, t > 0) is a vector field of external forces, E and Yt are 
two disjoint components of the boundary dQt (^ is fixed and Tt is free), n(a;) 
is the unit outward normal vector to I \ at the point x, T = —pi + i/S(v) is the 
stress tensor, S(v) is the strain tensor with the elements Sij — dvi/dxj+dvj/dxi, 
H/n — 1 is the mean curvature of Tt. The sign of H is chosen in such a way that 
Hn = A(£)x, where A(£) is the Laplacian on Tt. 

According to a kinematic boundary condition at the free surface, I \ = {x = 
x(£)t)i £ £ r } , where x(£,t) is a solution of the Cauchy problem 

d-K/dt = \(x,t), x(0) = £, (3) 

and it follows that Qt = {x = x(£,t), £ G Q}. In particular, if Tt is given by 
F(x, t) = 0, then (3) is equivalent to dF/dt + v • VF\F=o = 0. 

Sometimes additional conditions are necessary, for instance, conditions at 
infinity in the case of a noncompact Qt-

As a typical example, consider the free boundary problem governing the mo
tion of a finite mass of a liquid bounded by a free surface [1-3]. In this problem 
Qt is compact, dClt = Tt, E = 0 . To avoid the difficulties connected with the 
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presence of a variable unknown surface Tt C dilti it is convenient to choose 
£ G Cl as new independent variables. These so-called Lagrangian coordinates 
are connected with the Eulerian coordinates x G fit by relationship (3) or by an 
equivalent formula x = £ + fQ u(£,r) dr = XU(Ç, t) where u(£, t) = v(Xu, t). In 
the Lagrangian coordinates, the problem (l)-(3) takes the form 

u t - i/Vju + Vuq = f(Xu, t), Vw • u = 0 

(£en,t> 0), (4) 

u|t=o = v 0 ( 0 . Twn - <rA{t)Xu\t& = 0. 

Here 

q(Ç,t)=p(Xu(Ç,t),t), Vu = AV=lj^Aim^L\ 

Ju = -qi + i/S„(u), (SJH = J2 Uimg^- + A. 
rn. ^ **Tn 

i=lì...ìn 

and A is the matrix with the elements Aim = d£m/dxi\x=xu(tyt)i that may be 
computed as algebraic adjuncts of aij = dxi/d^j = Sij + fQ dui/d^j dr. Finally, 
n = n(Xu) = An0/\Ano\, where n0(f) is the unit outward normal to dCl = T. 

Let r > 0 and let W%(Cl) = Hr(Cl), W^(T), W%(Q,T) be S. L. Sobolev-
L. N. Slobodetskiï spaces of functions defined in CI, on T, and in (0,T), respec
tively. By W^r/2(QT)i QT = CIX (0, T), we mean the space £a((0, T); W%(Cl)) H 
L2(fl', W^ (0,T)) equipped with the norm 

ll<,*"-«W = [ "u|l̂ (0) d* + fa ll<;/.(0>r)dx-

We also define the space W^' r / 2(G r) on the manifold GT = T x (0,T) as 
L2((0,T);WZ(r))nL2(n;WÏ/2(0,T)). 

The spaces of vector fields with the components in W^r' (QT) or W^r (GT) 

are denoted by WY/2(QT) or by Wr
2'

r/2(GT)-
In the study of the free boundary problem (l)-(3) a considerable role is played 

by a corresponding linearized problem. We observe that the boundary conditions 
in (4) can be written as 

IIoIIS^u)]! = U0Sun - n 0 n(n • Sun) = 0 , n 0 • Tun - tm0 • A(t)Xu = 0, 

where n 0 g = g - n0(no • g), Ilg = g — n(n • g), and consider a linear problem 

w|t=o = w0(0. n0nsu(w)n|^r = n0d, , . 
pt pt ^ 

no • Tu(w, s)n — crn0 • A(t) I v/dr\^er — b + a / Bdr. 
Jo Jo 

THEOREM 1. Let l e (±,1), T eW%/2+\ u GWl+l'1+l/2(QT), and 

T 1 / 2 | | u | | w 2 + , i i + , / a ( g T ) < * 
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with a smallò > 0, f,Vp G Wlf/2(QT), v 0 G Wl+l{fl), d G W 2 / 2 " H , 1 / 4 + ( / 2 ( G T ) , 

6 G WÌ/W/4+l/2(GT), B G I ^ - 1 / 2 , ( / 2 - 1 / 4 ( G T ) . Assume that p = V • R, 

Rt G L2(Q\W%2(0,T)), and that the compatibility conditions V • wo = p(x,0), 

IIo5(wo)no|r = IIod(£,0) hold. Then the problem (5) has the unique solution 

w G W J j + ' ' 1 + , / a ( Q T ) , V s G WlJ/2{QT), and 

I M | W 2 + ( , I + , / 2 ( Q T ) + | |Vfl | |wM/a ( 0 l l ) + ||a||Wji/«+i.V«+i/a(Gr) 

< O(T) I | |f| |WM/»WT) + I |V^||WM/. ( Q T ) + ||wo||wj+i(n) 
V (6) 

+ lldllWJ/*+'.V4+i/a(Gr) + IHI,yV2+i.i/4+'/2(GT) 

+ I I^I I^- '^- '^- '^CGT) + (/„H«.C»,.,r,^)1/2) 
We now turn to existence theorems for our free boundary problem in the 

three-dimensional case. 

THEOREM 2. Letn = Z,l€ ( § , 1), T G W ^ 1 , v 0 G Wl+l(Cl), V • v 0 = 0, 

IloS^VoJnoIr = 0, anrf let f,fXK satisfy the Lipschitz condition with respect to x 

and the Holder condition with the exponent ^ with respect to t. Then the problem 

(4) has the unique solutionne Wl+ltl+l/2[QTl), Vg G Wljl/2(QTl) andq\ÖTi G 

W2 (Cri)« rfte magnitude ojT\ < oo depends on | | v o | | w n - w n ^ 

n*.» m/ M m i If (re, ^) — î(x,r)\ 
f Ti = sup |f(z,£) H-maxsuplfcJ-hmaxsup-1 r- - r^—- , 

aj,t<ri * * x,t,T \t-T\L'z 

and on a\\H(&0)\\wi/2+ipy 

THEOREM 3 . Assume that l G ( | , 1) and £Aa£ H is diffeomorphic to a ball: 
T = {|a:| = R((JJ), \u)\ = 1}. Then the solution (u,q) of the problem (4) satisfies 
the inequality 

| | u | | w 2 + M + / / 2 ( g r i ) + | | V g | | w M / 2 ( Q r i ) + \\q ~ go||wVa+M/4+i/a (G?r i ) 

\ (7) 

where qo = 2O/RQ and Ro = (3|n|/47r)1/3 is the radius of a ball with the volume 

ini-
The number Ti grows without limits as the norms in the right-hand side of 

(7) approach zero. If f = 0 and | |vo| |w i+i(n) + ||Ä(w) - Ro\\w*/*+hSl) ^ e 

for sufficiently small e > 0, then the solution of the problem ( l ) - (3 ) is defined 

for all t > 0 and the norms | |vt | |w j(n t)> llv l lw*+ ,(n4) ' Wp ~ 0ollwa
1+ '(n t)' and 

\\R ~~ -^OIIVï/5/2+'CS ì ( ^ = ^lwl = ^ are bounded uniformly with respect to 
t>t0>o.2 

The local existence theorem follows from the coercive estimate (6) for the lin
ear problem (5). To prove the global existence theorem, we invoke conservation 

<C ||f||r1 + ||v0 | |wi+< (n) + 
i t o 
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laws for the problem (l)-(3) 

/ v(x,t) -rf(x)dx = / vo-ridx, tj = a + b x x , (8) 
Jnt i n 

where | I \ | is the area of Tt and a, b are arbitrary constant vectors. If Clt is 
homeomorphic to a ball and Tt is given by r = R(w, t) in the spherical coordinates 
(r,o;) with the origin in the center of gravity of Clt, then (9) implies 

f \v\2dx + Ca f ( l A ^ O - i î b p + IVwAHdw^ f | v 0 | 2 ^ + | r | - 47T i^ , 
in« Jsi Jn 

provided that \R — i2o|2 + |Vwi2|2 is small. The estimates of higher-order deriva
tives of the solution may be found from the local bounds for the problem (4). 
This makes it possible to extend the solution of the problem (l)-(3) defined for 
t G (0, Ti) into the intervals t G (jTu(j + l)Ti), j = 1,2,.. . , applying Theo
rem 2 to the problem (l)-(3) written for t > jTi in the Lagrangian coordinates 

Theorem 2 and the formulae (8), (9) hold in the case a = 0 under the as
sumption T G W2 • In this case / n |v|2 dx = fn |u|2 d£ decays exponentially 
for large t > 0. This is a consequence of (9) and of Korn's inequality 

which holds for arbitrary v orthogonal to r\ = a + b x x. Therefore the solution 
of (1), (2) with a = 0, f = 0 can also be extended to all t > 0, provided 
/ n vo • rf dx = 0. The free boundary Tt tends to a limiting surface Too = {x = 

Similar results can be obtained in the two-dimensional case. 
V. Bytev [4] and O. Lavrent'eva [5] considered the problem (l)-(3) in the 

case when Ctt is a ring with both boundaries free and vo is axially symmetric. It 
was found [4] that in the case a = 0 Clt expands to the infinity, if the condition 
fn v • tf dx = 0 is violated. For a > 0 it may also happen that Clt takes the shape 
of a circle at a certain moment t = to < 00 and it keeps this shape for t > to [5]. 

The papers of T. Beale [6, 7] and G. Allain [8] are devoted to the flow of 
a heavy viscous fluid over an infinite bottom E = {23 = —6(^1,0:2) < 0} with 
a free boundary Tt = {x$ = <p(xi,X2,ijyT=Th.e flow is described by the free 
boundary problem (l)-(3) with f = -0(0,0,1) and 

*-£ <Pxa 

g = const > 0. It is proved that this problem has a unique solution in a finite 
interval of time (0, Ti) for er = 0 [6] and in the infinite interval t > 0 for a > 0, 
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if the data vo and <p(xi,X2,0) are small [7]. The local existence theorem for 
a > 0, n = 2 is established in [8]. 

2. In the stationary case the flow does not depend on time and is described 
by the system 

-*A72v + (v • V)v + Vp = f (x), V • v = 0, (10) 

V|E = 0, v n | r = 0, Tn-<jHn\r = 0 (11) 

that often should be completed by additional relationships such as conditions at 
infinity or at M = E fi T (if M ^ 0 ) where the so-called "wetting angle," i.e., 
the angle between E and T, is usually prescribed. Sometimes |fi| is fixed, etc. 

V. V. Puknachov [9] has studied a two-dimensional flow of a heavy viscous 
fluid over the bottom E : X2 = 0 with sources and drains distributed on E peri
odically, so that the boundary condition at E is 

v|Œ2=o = a(zi) , a(&i +T) = SL(X1), / 0 2 ^ 1 = 0 . 
Jo 

The free boundary T is supposed to be given by x2 = ip(%i) and 

rT 
<p(xi)dxi = h > 0. 

/o 
It is proved in [9] that in the case of small a the stationary free boundary problem 
with these conditions has a solution (ip, v,p) in some Holder classes of functions 
periodic with respect to x\. The proof is based on coercive Schauder estimates 
for the linear problem 

-*A72v + Vp = f, V • v = p (xeCl, <p(x! +T) = <p(xt)), 

v | s = a, v • n | r = b, nS(v)n | r = lid, 

v(zi + T, x2) = v(x), p(x! + T, x2) = p(x) 

and consists in the application of the contraction mapping principle to the equa
tion 

A number of other stationary free boundary problems were investigated in a 
similar way. They described such phenomena as the motion of a thin film of a 
heavy liquid on the surface of rotating cylinder [10], the motion of a drop in a 
symmetric force field [11, 12], the motion of a liquid on the surface of a sphere 
[13], the viscous flow past a liquid drop, and a steady fall of a drop [14, 15]. Two-
and three-dimensional free boundary problems with nonempty M = E D T are 
studied in [16-23]. They are slightly more complicated since M is a wedge or the 
union of angular points on dCl. For the investigation of problems of this type a 
special technique was developed in weighted Holder and Sobolev spaces, but this 
technique is not necessary in the case of small wetting angles 0 or 8 = ir/2 [16, 
17]. A different approach to free boundary problems in the two-dimensional 
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FIGURE l 

case based on the theory of functions of a complex variable was proposed by 
L. K. Antanovskiï [24], who proved in particular the analyticity of the free 
boundary. In the three-dimensional case this result is due to J. Bemelmans and 
A. Friedman [25]. Some problems with a noncompact free boundary are studied 
by R. Piletskas [26]. 

Consider the two-dimensional flow of a heavy viscous fluid down a wall E into 
an infinite pool. Here E is an infinite line consisting of two straight lines a^ = 
xi tan/?, xi < —R, and X2 = x\ t ana , X2 < —R, 0 > ß > a, connected with a 
smooth curve. The free boundary T: X2 = <p(%i) is noncompact. The domain 
CI (see Figure 1) has two "exits at infinity," fii and fi2, i.e., fi = fio U fii U fi2, 
fio = {x G fi: |z| < ifo}, fii Hfi2 = 0 . The flow is described by (10), (11) with 
f = —0(0,1) plus conditions at infinity 

v — V (+) 

V^(^i) — (xi tan/? + H) —• 0, xi —> -oo, 

<p(x±) -(H + 6)-*0i xi-+ +00, 

v _ v ( - ) _ _ > Q p _ p ( - ) _ > Q ^ I ^ I _ • o ^ x e Ö i , 

= 0 ( | ^ ) ' P ~ p ( + ) = 0 ( ï ï p ï " ) ' b>l,\x\^œ, xen2, 

where if is a given positive constant, 6 is a certain unknown constant, v^ \p( ) 
correspond to the Poiseuille flow in the strip xi tan/? < X2 < xi tan/? + H, and 
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v(+),p(+) represent the Jeffrey-Hamel flow in the angle a < 8 < 0, r > 0: 

v(-) = (-cosß,smß)^^y(2H-y), p<-> = -g cos ß(y - H cos /?), 

y — X2 cos ß — x\ sin /?, 

y(+) = Ëîffilin „(+> = $£(2Ü(0) - C) + g(H + 6 - «,)• 
r r* 

The term g(H + 6 — X2) corresponds to a hydrostatic pressure, U(8) is a smooth 
function, U(a) = 0, and U'(0) = 0. The fluxes of v(+) and v(~~) coincide: 

/"O px1tanß+H 
61/ / f/(0) d8 = / 4 dz2 = ™ # 3 cos3 /? sin ß. 

Ja Jxtt&nß äV 

This problem has a solution, if /? is small enough and a > —o>o/2 where 
#o £ (7T,37T/2) is a root of the function tan£ — t, and (p(xi) — H — xi tan/?, 
v - v(~), p — p(~) decay exponentially as xi —• —00. 

We present here the theorem on the solvability of a linear problem 

-z/V2v + Vp = f, V - v = />, xeCl, 

V|E = 0, n S ( v ) n | r = 0, v • n | r = 0. 

Let i = [/] + A, A G (0,1), a,b > 0, and let Gl(Cl,a, b) be the space of functions 
with the norm 

Mc<(n,a,6) = | t * - f l ' l / c M / , |o«(no + Mc«(no) 

l«|<i " 2 H=[i] 

where |w|o'(n0) ^s ^ e usua-l Holder norm and 

[v]$ = sup |a: — 2/|-A|^(a:) — ^(z/)| 
xiyEÜ2 

is a Holder constant in fÌ2- By Cl(Cl,a,b) we mean the space of vector fields 
with components in Gl(Cl,a,b). 

THEOREM 4. Let 0 > a > -a0/2, E G Cl+2, T G Cl+3, a G (0,Rez) ; 

6 G (l ,Ref) , w/iere 2 andf are roots ofsh(2zHcos/?) = 2zHcosß and sin 2^a = 
f sinûf, f ^ 1, wrtA minimal real parts. For arbitrary f G Cz(fi,a,b + 2), p G 
C*+1(fi,a, 6 + 1), fnpdx = 0 tfie problem (12) ftas Me unique solution v G 
C i + 2(fi,a,ò), Vp G C*(fi,a,6 + 2) anrf p -^> 0 as \x\ —> 00, x E fi2; p —» Po as 
\x\ —• 00, a: G fii. TTie solution satisfies the inequality 

|v|c<+2(n,a,ò) + |Vp|c'(n,a,6+2) + M 

< C'(|f|c'(n,a)b+2) + Hc+Mn.o.b+i))-

3. The problem (12) provides an example of a boundary value problem for the 
Stokes equations in a domain with a noncompact boundary. In a more general 
case it is supposed that fi C Un, n = 2,3, has m > 1 "exits to infinity," i.e., 
fi = fio U fii U • • • U fim where fio = {x G fi : \x\ < Ro} and fii,..., fim are 
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disjoint unbounded subdomains of fi. Consider a boundary or initial-boundary 
value problem for the Navier-Stokes equations in fi with adherence boundary 
conditions 

y\xedQ = 0. (13) 

As shown in [27], the classical formulation of these problems is not quite 
complete, and it should be supplemented by some auxiliary conditions. In our 
case they can be taken in the form 

L v -ndS = oti, i = l,...,m- 1, (14) 
S i 

where J*E v • n dS is a total flux of v in fi^; o^ may depend on time in a nonsta-
tionary case. Other variants of auxiliary conditions are discussed in [27-29]. 

It may happen [30], if fi^ does not blow up too much at infinity, that all 
divergence-free vector fields with a finite Dirichlet integral Jn \Dv\2 dx vanishing 
on dCli n dCl have zero flux in fi». It is natural therefore to consider boundary 
value problems with arbitrary c^ in the class of vector fields with an infinite 
Dirichlet integral fQ \Dv\2 dx. A weak solution of the problem (10), (13), (14) 
can be defined as a divergence-free vector field v with a finite Dirichlet integral 
in every finite subdomain fi' C fi vanishing on dCl and satisfying (13), (14), and 
the integral identity 

/ \y J2 Yxi: " *l*i ~ (V ' V ) ^ ' V dx= / f ' ^ dx 

Jn [ i J Jn 
for any smooth divergence-free r\ with a compact support in fi. The problem 
(10), (13), (14) is considered in [31-36] in different classes of vector fields and 
under various assumptions on the domain fi. It is proved in particular [34] 
that it has at least one weak solution in the class of vector fields satisfying the 
conditions fn,x\ \Dv\2 dx < g(A), where fi(A) is a family of bounded domains 
exhausting fi as À —> +oo and q(X) is a function depending on f and on the 
geometry of fi. This is a natural generalization of the well-known results of J. 
Leray and O. A. Ladyzhenskaya for bounded and exterior domains. 

The initial boundary value problem for the Navier-Stokes equations in fi is 
studied in [37-39]. It is proved both for n = 3 and for n = 2 that this problem 
has a unique solution in an interval (0,Ti), Ti < oo, that belongs at least to 
^21/2(Q'Tl)

 i n a n y Q'Tì = H' x (0,Ti), and T\ = oo if the data y0(x), f, on are 
small. The problem of the existence of a global solution in the two-dimensional 
case is still open. 

—FoF-more-det-ailsH3ee-[3-7]T 
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I. Variational equations. There are partial differential equations which 
arise in geometry and physics and which are variational equations; this means 
that they arise as the Euler-Lagrange equations of some "energy" or "action" 
functional on the space of possible field configurations, for example, the Laplace 
equation, 

A<p = -(d2\dx\ + d2\dx\ + d2\dxl)<p = p. (1.1) 

Here p is some given, unknown function. This equation arises in the study of 
electrostatic phenomena; p represents the volume density of the electric charge, 
and <p is the electrostatic potential. The electric field is the vector E = Vip. 

The preceding equation is, formally, the variational equation of the following 
"function" (called a functional) on the space of all smooth functions on Euclidean 
space, 

e(<p) = J(\V<p\(x)2 + 2 • P(x) • <p(x)) • ofx. (1.2) 

R3 

Formally, <p obeys Laplace's equation if and only if the functional e(-) has the 
property that for any smooth, compactly supported function, rj, 

(d/dt)(e(<p + tri))\t=o = 0. (1.3) 

A second example comes from magnetostatics; a divergence-free vector field 
J(x) on R3 (which represents the volume density of electric current) induces a 
magnetic field which is computed from the vector potential, A (x), by solving the 
vector equation on R3 

VxVxA = J. (1.4) 

The magnetic field is B = V X A. The equation for A is, formally, the variational 
equation of the following functional on the space of all vector fields on R3: 

e(A) = f (|V x A\2(x) + 2 • A(x) o J(x)) • d3x. (1.5) 

R 3 
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Formally, A obeys (1.4) if and only if the functional in (1.5) has the property 
that 

(d/dt)(e(A + ta))\t=o = 0 (1.6) 

for all compactly supported vectors o on R3. 
The equations above can be solved using the Green's function. This is because 

the equations are linear equations. Indeed, a typical linear equation requires 
solving for a matrix of functions, iß, which obey 

L4> = a, (1.7) 

where o is a given matrix of functions, and where 

L = L(xi, X2,... ; d/dxi, d/dx2,... ) 

is a matrix of functions of the derivatives and the coordinates, (xi, X2,... ). To 
solve such a linear equation, the first strategy that one might attempt would be 
to find the appropriate Green's function for L. 

Given that the function p in (1.1) is well behaved, a solution of (1.1) can be 
written using the Green's function for the Laplacian, 

p(x) = (47T)-1 j \x - y\~2 - p(y) • dsy. (1.8) 
R3 

Equation (1.4) can also be solved using a Green's function if the current density 
J is well behaved, 

A(x) = - V x j \x - y\2 • J(y) • d3y. (1.9) 
R3 

Unfortunately, a Green's function alone rarely resolves life's problems. The 
real world is nonlinear; particles interact with each other. Nonlinear equations 
are everywhere, and need to be understood. 

When a nonlinear equation arises as the Euler-Lagrange variational equations 
of a functional on an appropriate configuration space, it is especially tempting to 
prove that solutions exist by using the methods from the calculus of variations. 

Certain partial differential equations have been recently "understood" using 
the calculus of variations. The remainder of this article comprises one description 
of some of the basic ideas and strategies that lie behind this new understanding. 
The ideas and strategies that are related below were developed in parts by many 
workers in the field; the author only presumes to summarize. References to a 
sample of interesting research papers are provided at the end. 

II. The calculus of variations. Considerar fimte-dimen^Iömr^l^lus^öf 
variations problem: Let / be a smooth function on the circle, S1. The circle is 
the analog of the configuration space of functions or vector fields or whatever; 
the set of objects in which one hopes to find a solution to the given partial dif
ferential equation. The function / is the analog of the energy functional; the 
functional whose variational equations on the configuration space yield the dif
ferential equation in question. The critical points of the function / are the points 
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in S1 where the gradient of / vanishes; these correspond to the configurations 
which actually solve the differential equation. Thus, the requirement of a point 
p G S1 that V/p = 0 is the finite-dimensional analog of the requirement of a 
configuration that it solve the differential equation. 

In this finite-dimensional example, the analog of proving that there are solu
tions to the partial differential equation is the problem of proving that there are 
points on S1 where the gradient of the function vanishes. Now, observe that S1 

is compact and every function on a compact manifold must have at least one 
maximum and one minimum, so there must be at least two points where the 
gradient of the function / vanishes. It is the global topology of the configuration 
manifold that forces the gradient of / to vanish somewhere on S1. 

This case is simple, but typical of a general principle, Morse theory [Bo]. 
(For an exercise which illustrates the power of Morse theory, try to establish the 
fact that every smooth function on the torus (S1 X S1) has at least 3 critical 
points. One can do this by minimizing the maximum of a given function over 
noncontractible loops in the torus.) 

The observation that the global topology of the configuration space can force 
the existence of critical points is the crucial motivating idea behind the theory of 
the calculus of variations. For finite-dimensional problems, this is Morse theory 
and the starting point for a huge branch of mathematics, differential topology 
(cf. [Ml, M2]). 

The generalization of these finite-dimensional arguments to an energy func
tional for a differential equation is more complicated because the configuration 
space is going to be infinite-dimensional; typically, it is some space of functions, 
or vector fields or such. The relationships between the topology of the con
figuration space and the critical points of the given energy functional may be 
tenuous. 

The crucial problem with infinite-dimensional spaces is that they tend to be 
noncompact in any sort of reasonable topology. In some sense, the pathologies 
which can arise in these infinite-dimensional variational problems are due to 
the noncompactness more than any other single quality of infinite-dimensional 
spaces. 

Indeed, even on the simplest noncomapct spaces, the calculus of variations 
may not work as desired. For example, the simplest such space is the real line, 
R1 . Consider the function f(t) = e _ t / ( l + e - t ) . Here is a smooth, bounded 
function, but there are no points on the line where its gradient vanishes. Indeed 
even though min(/) = 0, one has f(t) > 0 for all t. A sequence of points {ti} 
such that f(U) > /(£t+i) -* 0 will not converge. This sequence of points moves 
off towards oo. 

Of course, there are "good" functions even on noncompact spaces. In the 
preceding example, one could perturb the function / slightly to obtain a function 
with the required critical point. Consider, for instance, the function fs(t) = 
(e~l - <5e~*/2)(l + e~l). Note that for any positive 8, there is a point in R 1 

where the gradient of fs(t) vanishes. 
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The functions / and fg differ in their behavior near oo on R1, and this is an 
important lesson. It is a well-known fact among topologists that the topology of 
a noncompact manifold cannot be determined solely by restricting attention to 
a compact set. 

III. Infinite dimensions. Here, one must suppose that one is given a linear, 
or nonlinear, partial differential equation which arises as the (formal) variational 
equations of a functional on some appropriate space of functions or vector fields 
or whatever. Let S denote the space in question, and let e : B —• R denote the 
functional. Let || • || denote a norm on the tangent space to B. (Typically, || • || 
will come from some Hilbert space inner product.) 

The "ends" of the space, the analog of oo on the real line, are determined by 
the functional. Quite formally, one can define for numbers 8 > 0 and E, the set 

End(E,8) = {c eB:e(c) e(E-8,E + 8) and ||Vec|| < 8}. (3.1) 

To have a calculus of variations for the functional e on the space B, one is forced 
to understand the topology of End(E, 8) relative to the set 

End(£, 8)~ ={ce End(E, 8) : e(c) < E}. (3.2) 

In fact, only an appropriate limit as 8 —> 0 of this relative topology is relevant. 
(Because End(E, 8/2) C End(E, 8) such a limit can be considered.) 

End(E,8) contributes to the Morse theory of the functional e on B when, for 
all 81 < 8, the inclusion map, 

i: (EiLd(E,8'),End(E,8')-) -• (End(E,8),End(E,8)-), (3.3) 

has nontrivial image in the relative homology of the pair (End(E, 8), End(E, 8)~). 
For example, suppose that / is a smooth function on a compact manifold. In 

this case, classical Morse theory applies (see, for example, [Ml]). If E is a regular 
value of / , then the relative homology of (End(E,8),End(E,8)~) vanishes for 
all 8 sufficiently small. Suppose that / has a single nondegenerate critical point 
with critical value E. Then (}6 End(E, 8) is the critical point in question. Let 
m > 0 denote the number of negative eigenvalues of the matrix of 2nd derivatives 
of the function / at this critical point. Then, for all 8 sufficiently small, the 
relative homology over Z of (End(E,8),End(E,8)~) is trivial in all dimensions 
but dimension m, where it is isomorphic to Z. And, for all 6 sufficiently small, 
the inclusion map i, above, induces an isomorphism in relative homology. 

IV. Choosing a topology. Reconstruction of a topology on B from the 
topology of the spaces in (3.3) must be made. Here, a word of warning. The 
functional in question may not "see" the topology on the underlying point set 
which is implicit in the Banach manifold structure. Since the functional is as
sumed to be smooth, it will see the same local topology. But, unless some 
uniformity assumptions are made on the derivatives of the functional, there is 
no guarantee about the global topology. For the set where the gradient of the 
functional is small to have any meaning, it is necessary that the gradient of the 
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functional (the first-order Taylor's expansion) approximate the variation in the 
functional in some uniform way through the Banach space. 

The following example illustrates this sort of pathology. Consider the half 
line, {t G (—oo,0)}, topologized by the metric 

ds2 = dt2. 

This is a smooth Banach manifold, though it is not complete as a metric space. 
Consider the function 

m = -t. 
The infimum of / on (—00,0) is 0, but this infimum is not achieved. Since the 
norm of V / is identically 1, End(E, 8) is empty for all values of E and for all 
values of 8 < 1. 

The pathology which is illustrated above has as root, the basic relationship 
between the topology of manifolds and the set of functions on them: Why should 
the derivative of a function tell anything at all about the manifold on which it 
sits? 

There is a uniformity condition on the first derivatives of the functional which 
insures that the underlying Banach manifold topology is "seen" by the functional. 
Given this uniformity condition on the first derivatives, the topology of B can 
be reconstructed by excision from knowledge of the effects of the inclusion map 
in (3.3) on the relative homotopy or homology groups. This subject is discussed 
in the appendix of [Tal]. 

V. Ellipticity. In a given variational problem, understanding the topology 
of End(E,8) relative to End(E, 8)~ amounts to understanding the limiting be
havior of sequences of configurations, 

{ c i C E n d ^ - * ) } . (5.1) 

What does the sequence of configurations look like as the index i —+ oo? Does 
it converge in some nice sense? If not, what are the singularities that can arise? 
What sort of space parametrizes the set of limits? And what does the functional 
e look like as the limits are approached? The preceding questions require for 
answering a detailed knowledge of the functional e. 

There are two approaches towards studying the convergence of sequences in 
infinite-dimensional spaces. The first is the Arzela-Ascoli theorem which asserts 
that a bounded, equicontinuous sequence of functions has a convergent subse
quence with a continuous function as a limit. The second is the Banach-Alaoglu 
theorem which asserts that the unit sphere in a reflexive Banach space is com
pact in the weak topology. (See, for example, [R].) In applying the first tool, 
one would consider convergence in various CÄ-topologies on the configuration 
space, B. In applying the second tool, one would consider the convergence in a 
reflexive Banach-space topology on S. This of course means Sobolev spaces (see 
[Ad]). Indeed, one would invent, in hindsight, the Sobolev spaces precisely in 
order to have a reflexive Banach space topology for the space of smooth functions 
on a finite-dimensional manifold. For the uninitiated, the Sobolev L^-norm of a 
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function / on a Riemannian manifold M is the number 

\ i /p 

^2 /ivw/r-dvoi] 

To apply either the Arzela-Ascoli approach or the Banach-Alaoglu approach, 
information must be squeezed from the functional e. For a configuration c G 
End(E,8), the value of the energy, e, is bounded; and the gradient of e at 
c, Vec, is small in an appropriate sense. From these facts, the analysis proceeds. 

The condition that Vec is small means that c almost obeys the differential 
equation of interest. Write this fact in the schematic form 

Dwc = (nonlinearities) + 0(8), (5.2) 

where D^ is the schematic for the term in the equation with the highest order 
(some integer, k > 0) derivatives. The term above which is denoted "nonlinear
ities" contains only terms with lower orders of differentiation. 

Read (5.2) as saying that certain linear combinations of the fcth derivatives of c 
are equal to functions of the derivatives of c of order less than fc, modulo an error 
which is small. If it is assumed that c starts out to be k — 1 times differentiable, 
then (5.2) asserts that certain linear combinations of the fcth derivatives of c are 
continuous, modulo an error. 

The equations are said to be elliptic when the fact that such a linear combi
nation of fcth derivatives are continuous means that all of the fcth derivatives are 
continuous. (Whether or not a set of equations is elliptic can be reduced to a 
purely algebraic question about the term with the highest number of derivatives; 
see [H].) 

When the variational equations are elliptic, the fact that c is in End(E,8), 
together with additional a priori bounds on certain norms of c will allow one to 
bound c, a priori, in some strictly stronger norm. A priori bounds on the norms 
of the rath derivatives of configurations in End(i£, 8) will imply via Arzela-Ascoli 
that the sequences in (5.1) have Cauchy subsequences in the <7m - 1 topology on 
B. Alternately, a priori bounds on a reflexive Banach space norm for configu
rations in End(E,8) will imply via Banach-Alaoglu that the sequences in (5.1) 
have Cauchy sequences in the appropriate weak Banach space topology on B. 

Unfortunately, the additional a priori bounds that were alluded to in the 
preceding: paragraph._ajrg_not available unless they canjbe obtained solely from 
information about e. Indeed, for c in End(E,8), only bounds on e(c) and Vec 

are provided. Typically, the functional e is a functional of c and its derivatives 
up to some order. Thus, knowledge that e(c) is bounded can be interpreted 
as giving information about the size of certain combinations of the derivatives 
of c. The goal at this point is to parlay the information that was alluded to 
in the preceding paragraph into a bound on some Banach space norm of the 
configuration c. It may or may not be possible to achieve a suitable bound. 
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VI. The physicist's view. The control on the derivatives of c which is 
obtained by the bound on e(c) will imply that certain linear combinations of 
derivatives of c remain bounded almost everywhere. But these linear combina
tions may be large over sets of small measure. 

A physicist might view a configuration, c, in End(E, 8) as having "small field" 
regions, where the derivatives of c are small, and where the nonlinear equation 
is approximately linear; and then there are the large field regions, where the 
derivatives are large, and where the nonlinearities cannot be ignored. 

To a physicist, configurations in End(E, 6) would look like a gas of particles, or 
extended objects (one- or higher-dimensional structures) which interact accord
ing to a force law which is determined by the linearized equations. This view of 
End(E, 8) is obtained by decomposing the energy, e(c), as a sum of terms; first, 
there is the contribution from the large field regions, each component contributes 
a part. To a physicist, this contribution can be interpreted as the "self" energy 
of the extended particles which are described by the large field regions. Then 
there is the contribution from the small field region. This last is interpreted as 
an interaction energy between the large field regions. 

The rigorous justification for such an interpretation might be obtained from 
the following heuristic argument: A configuration in End(E, 8) almost solves 
the differential equation. In the small field regions, the nonlinearities are, by 
definition, small. The constraint that the equations be solved, or almost solved, 
is approximately a linear constraint on the configuration over this region. When 
the equations are elliptic, the temptation is to view these linear fields as the 
force fields which are generated by "charge" distributions on the components of 
the large field regions. In this way, the energy contribution from the small field 
regions can be interpreted as an interaction energy due to charge densities on 
the extended particles which are described by the large field regions. 

The region End(E,8)~ of (3.2) may be thought of as containing configurations 
whose large field regions have negative interaction energy. 

After expanding the energy, e, into large and small field contributions, the 
topology of the spaces in (3.3) might, in principle, be analyzed. 

VII. Justification. One can see this interaction energy strategy in some 
recent research papers in differential geometry. Actually, this puts the cart before 
the horse, because it is in the articles below (among others) where the interaction 
energy strategy can be said to have evolved. To name the phenomenon is not to 
discover it. 

The results below all involve functionals and Banach spaces for which the 
strong field regions, which were alluded to above, can be shown to be configura
tions of points. 

Aubin's [Au] and Schoen's [Sc] solution to the Yamabe conjecture can be 
interpreted as interaction energy analysis. The classification of compact Kahler 
manifolds with positive bisectional curvature by Siu and Yau [Si-Y] employs a 
step which might be called energy analysis. The work of Siu and Yau depends 
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to a large extent on Sacks and Uhlenbeck's [Sa-U] work on harmonie maps from 
2-spheres. This work by Sacks and Uhlenbeck gives the first detailed description 
of the sets End(i£, 8) for a geometric variational problem. In particular, one 
sees here the indication that the sorts of singularities which are appearing in 
configurations in End(2£, 8) have important geometric content. 

In Yang-Mills theory, K. Uhlenbeck [UI, U2] did the seminal work which 
led to a description of the singularities which are approached by configurations 
in End(jB, 8). (See also the work of Sedlacek [Se].) The author's analysis of 
the self-dual moduli spaces in Yang-Mills theory [Ta2, Ta3] makes crucial use 
of Uhlenbeck's work, and it uses the sort of interaction energy analysis which 
was described above. The use of this interaction energy analysis by the author 
resulted in a complete solution of the variational problem for the Yang-Mills-
Higgs theory on R 3 in [Ta4, Ta5]. 

Simon Donaldson's applications of gauge theories to study the differential 
topology of 4-dimensional manifolds exploits the topology of the End(E, <5)'s in 
a spectacular fashion [D1-D4, F-U], 

Work by Brezis and Nirenberg [Br-N] can be said, in hindsight, to use this 
analysis. 

Recently, Bahri and Coron [Ba-C] have analyzed the Yamabe problem on 
topologically nontrivial domains in R 3 using their own, roughly similar, strategy. 
Bahri is applying his approach to other variational problems [Ba]. 

VII I . Example . The strong forces are the forces in nature which are respon
sible for atomic energy. These are the forces which hold atoms together. The 
weak force is also a force which is felt by subatomic particles. It is responsible 
to a certain extent for the glow of a radium-dialed wrist watch. 

In a simplified model of these forces, the static fields are described by the 
data (A,$); where A = (Ai,Ä2, As) is a vector on R 3 whose components are 
2 x 2 , trace zero, anti-hermitian matrices of functions. The field $ is a 2 x 2, 
trace zero, anti-hermitian matrix of functions also. (A trace zero, anti-hermitian 
matrix has complex number GìJ in the ith row and jth column, and the set {0^} 
obeys Eì<7U = 0, and <r̂  = a^.) The equations generalize Maxwell's equations 
from the introduction: The equation for A is 

Vx(VxA + AxA)+Ax(VxA + AxA) + (VxA + AxA)xA (7.1a) 

+ $ ( V $ + A$ - $A) - (V$ + A$ - $A)$ = 0. 

The equation for $ is 

V o ( V $ H - A $ - $ y l ) - h A o ( V * + A $ - $ A ) - ( V $ + A $ - $ A ) o A = 0. (7.1b) 

These are the variational equations of the Yang-Mills-Higgs energy functional 
on the space of configurations (A, $ ) : 

£ ( A , * ) = f \VxA + AxA\2(x)-dsx+ f \V$ + A$-$A\2(x)-d3x. (7.2) 

R 3 R3 
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Solutions of these equations with finite energy are expected to describe parti
cles which can be found in nature. Indeed, if there are solutions and no particles, 
then these equations are not an accurate description of reality. 

The configuration space for £ is the set of smooth (A, $) such that £ (A, $) < 
oo and such that the function (1 — |$|)6 is integrable on R3. This configura
tion space is so topologically convoluted [Ta4] that a "good" Morse function 
should have infinitely many critical points on each path component. (There are 
countably many path components [G].) 

In this variational problem, a configuration in End(2£, 8) "looks like" up to 
some n(E) lumps of finite size but with large separation on R3. Each lump looks 
like a smooth solution to (7.1) (see [Ta5]). The noncompactness of the infinite-
dimensional configuration space has been reduced to the finite-dimensional non-
compactness of Xn(jE) R3. 

Where <p = 1 — |$ | and A are small, the fields obey the linearized equations, 
which are precisely (1.2) and (1.3), the equations of electrostatics and magneto-
statics. Thus, the large field regions will interact with each other as would bona 
fide particles with electric charges and magnetic charges. From the linearized 
equations (Maxwell's equations) and the corresponding Green's functions (in 
(1.8) and (1.9)), the interaction energy of a configuration in End(E,8) is com
puted as an expansion (the usual multipole expansion) in the separation of the 
lumps: 

i i<3 F « - ^ l ^ J 

Here, the sum is over the set of lumps, and mi is a "mass" for the ith lump, 
while qi is a charge for the ith lump. 

The charges {rrii,qi} obey mi > 0 and \qi\ < irti. This fact implies that the 
interaction energy is always attractive or it vanishes identically. In the latter 
case, the configuration c is within 8 of an absolute minimum of £. In the former 
case, this fact implies that for large lump separation, the relative homotopy 
group 7rk(End(E,8),End(E,8)") is trivial for all fc > 0. 

The facts of the preceding paragraph plus knowledge of the topology of the 
configuration space imply that there are solutions to (7.1) which are both mini
mal and nonminimal critical points of the energy functional in (7.2). Details are 
provided in [Ta5]. 
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Introduction. In 1931 Jesse Douglas and, simultaneously, Tibor Rado solved 
the famous problem of Plateau, namely, that every Jordan wire in Rn bounds at 
least one disc-type surface of least area. For this work Douglas was one of the 
two first Fields medalists in 1936 (the other was Lars Ahlfors). By this time he 
had shown that his methods would allow one to prove that there exist minimal 
surfaces of genus zero and connectivity k spanning k Jordan curves Ti,... ,Tk 
in Rn provided that one such surface exists having strictly less area than the 
infimum of the areas of all disconnected genus zero surfaces spanning Ti , . . . ,Tfc 
(see Figure 1). Somewhat later he announced and published proofs of theorems 
giving similar sufficient but essentially unverifiable conditions that guarantee the 
existence of a minimal surface of nonzero genus spanning one or more wires in 
Euclidean space. The ideas of Douglas, being of great historical significance, 
deserve some description and we shall begin with an analytic formulation of the 
problem. 

FIGURE l 
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Let T be a Jordan curve in Rn and D C Rn the closed unit disc. The classical 
problem of Plateau asks that we minimize the area integral 

A(u) = / y/EG-F^dxdy 

among all differentiable mappings u : D —> Rn such that 

u: 3D —> T is a homeomorphism. (1) 

duk duk 

dx dy ' 

Here we have used the traditional abbreviations 

. - £ ( £ ) • • o - ± f f i \ , - ± 

The Euler equations of this variational problem form a system of nonlinear 
partial differential equations expressing the condition that the surface u have 
mean curvature zero, i.e., it is a minimal surface. One may, however, try to take 
advantage of the fact that the area integral is invariant under the diffeomorphism 
group of the disc and to transform these equations into a particularly simple form 
by using special coordinate representations. Following Riemann, Weierstrass, H. 
A. Schwarz, and Darboux one introduces isothermal coordinates 

E = G, F = 0, (2) 

which in fact linearize the Euler equations of least area; namely, they reduce to 
Laplace's equation 

Aw = 0. (3) 

One is thus led to the definition of a classical disc-type minimal surface as a map 
u: D - • Rn that fulfills conditions (2) and (3). 

For unknotted curves Gamier was able to prove the existence of solutions of 
(2) and (3) subject to the boundary condition (1) by function-theoretic methods. 
The general case evaded researchers until the work of Douglas and Rado. They 
both used the direct method of the calculus of variations and thus obtained 
and area-minimizing solution, while Garnier's solution might be unstable. In 
applying the direct method one now replaces the complicated area functional by 
the simpler Dirichlet functional D where 

D(u) = ±f(E + G)dxdy. 

It is important to note that 

A(u) < H/ÊGdxdy < ^ f(E + G)dxdy = D(u) 

with equality holding if and only if E = G, F = 0. This and the analogy with 
the length and energy functionals of geodesies make it plausible that minima of 
D should be minima of A. This is, in fact, the case. In his prize-winning paper 
however, Douglas did not explicitly attempt to find a minimum for Dirichlet's 
integral but another functional H, which is now called the Douglas functional. 
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Using Poisson's integral formula for harmonic functions, Douglas obtained the 
expression 

1 f2* f 2lr f2n (n(cos a, sin a) - U{COB ß, Bin ß))2 da dß 
4sin2±(a- /0) 2V 

which equals D(u) if u is harmonic. The replacement of D(u) by H(u) transforms 
a variational problem involving derivatives to one that does not, an important 
feature of Douglas's existence proof. In the case of two contours Ti and Y2 in Rn , 
where the domain of our mappings is an annulus, the functional H(u) is similar. 
However, in the general case of surfaces of connectivity fc and genus p > 0, one 
is forced to take as parameter domain a Riemann surface of genus p bounded by 
fc circles, and the construction of H(u) becomes not only less elementary, but 
from our point of view incredibly complicated. Douglas was able to accomplish 
this generalization by making essential use of the theory of Abelian functions on 
Riemann surfaces, the theory of theta functions defined on their J acobi varieties, 
and their dependence on the moduli of the underlying Riemann surfaces. Namely, 
in order to obtain minimal surfaces through the minimization of D or H, it is 
necessary to minimize over all conformai classes of Riemann surfaces. This was 
carried out by Douglas at a point in mathematical history1 when the structure 
of such conformai classes was not understood. That Douglas's work was a tour 
de force of classical function theory is an understatement. 

According to Constance Reid's book Courant, Douglas gave a lecture at New 
York University in 1936 which stimulated Courant's interest in Plateau's problem 
and its generalizations to higher topological structure. 

Roughly at about the same time that Courant became interested in Plateau's 
problem, Marston Morse also took up the problem. He had already successfully 
developed what we now call a Morse theory for geodesies and was attempting 
to extend these ideas to variational problems in more than one variable. This 
program was never truly successful. Plateau's problem for disc minimal surfaces 
provided an ideal and pleasing test case for such a theory. Unfortunately only 
very partial results were obtained and only in the disc case. Morse did not have 
the notion of differentiable critical point for Plateau's problem and consequently 
could never speak of the first nor the second variation of energy. Moreover he 
had no idea of how to extend his generic nondegeneracy results for geodesies to 
any multivariable situation and had no idea whether or not he could ever have a 
finite number of solutions in any situation other than where the solutions were 
known not to be unique. 

Nevertheless, as he had done on other occasions he built in a definition in 
order to get some result out. He defined the notion of homotopy critical point in 
such a way that if you pass a critical level the topology would change as if you 
had a true critical point of some finite index. Assuming only finitely many such 
homotopy critical points, one could prove the existence of Morse inequalities. 

*It is interesting to note that Teichmüller's pioneering work was appearing at about the 
same time. 
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We do not mean to imply that he had no success at all. To the contrary, he and 
Tompkins and independently Shiftman showed that the existence of two disc 
minimal surfaces u\ and U2 spanning a given contour, both of which provide 
a strict relative minimum for Dirichlet's functional D, imply the existence of a 
third disc minimal surface. This was also the first time that the "mountain pass 
lemma" so popular in nonlinear analysis appeared. 

In §3 we shall see that the Morse theory for disc minimal surfaces has now been 
successfully completed. In addition, questions of finiteness, the existence of first 
and second variations, and the nondegeneracy of solutions, all left unresolved by 
early workers, have now been successfully answered. We consider these in §2. 

These results are a consequence of a line of attack taken in the recent devel
opment of the classical variational approach to minimal surfaces by the author, 
Reinhold Böhme, and Friedrich Tomi. The honor of giving this talk belongs 
equally to them. 

Finally we wish to make some remarks on the relation of the classical the
ory of Plateau's problem to geometric measure theory. This theory was mainly 
designed to attack the higher-dimensional form of Plateau's problem, a realm 
inaccessible to the classical theory. But, admittedly, also in the classical case of 
two-dimensional surfaces in R3, the geometric measure theory approach yields 
beautiful results which could not easily—if at all—be obtained within the clas
sical theory, like the following one (due to Bob Hardt and Leon Simon): any 
sufficiently smooth Jordan curve in R3 spans an embedded (up to the bound
ary) minimal surface of some (unknown) topological type. Geometric measure 
theory in our opinion is, however, not well suited to questions where one is in
terested in surfaces of a prescribed topological type. We are therefore convinced 
that the classical theory continues to hold its place within the general theories 
of minimal surfaces. 

1. Formulation of the problem. For the purposes of exposition we shall 
only consider the case of one boundary contour T C Rn, bounding only oriented 
surfaces. Let a: S1 —• Rn be a smooth embedding with smoothness in the 
Sobolev class Hr,r>7. Let T = »(S1) and let M be a Riemann surface of 
genus p with dM diffeomorphic to 5 1 via some map ß: S1 —» dM. Let Ma(p) be 
the <7r~s_1 manifold of üfa+1 maps u of M into Rn taking dM to V and such 
that u o ß is homotopic to a. Let M be the space of C°° metrics on M having 
dM as a geodesic. We define Dirichlet's functional Da : M x Ma(p) —• R by 

I f 
^^Dot{g^=^^rj^g(x) Clgui^uiydfig 

2i=iJM 

41). 

where u = (u1,... ,un), Vgu
% is the gradient of u% w.r.t. the metric g, and 

d/j,g is the volume measure associated to g. Dirichlet's functional is conformally 
invariant, which means the following. 

Let À be any positive function on M. Then it is easy to see that 

DQ(Xg,u) = Da(g,u). (2) 
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Moreover, we can take the Riemann surface M and form its double 2M by 
gluing an exact copy M along dM. Each point z of M has an associated conju
gate point z G M. The double 2M has a complex structure with the property 
that the map S: z —» z is antiholomorphic. The metric g G M then extends to 
a metric ga on 2M which is symmetric in the sense that S is an isometry for g3. 
Let / : 2M ^ b e a symmetric G°° diffeomorphism (S*f = foS = f). Then we 
also have the invariance 

Pa(f*g>u°f)=Da{g,u). (3) 

Let P be the space of C°° positive symmetric real-valued functions on 2M, 
and let Vo be those C°° symmetric diffeomorphisms that are homotopic to the 
identity. Then (2) and (3) imply that Dirichlet's functional can be thought of as 
a map 

D*-- T(p)xMa(p)-+R, 

where T(p) = M/P/Do is the quotient space of metrics on M factored out by the 
action of P and Po- This is precisely Teichmüller's moduli space, which carries 
naturally the structure of a C°° smooth finite-dimensional manifold. 

Since Teichmüller's space for a disc Z) is a single point, it follows that if M = D 
expression (1) reduces to the classically known expression for Da, namely, 

The basic result (originally established in a totally different context by 
Douglas) is that the critical points of Da\ T(p) x Na(p) —• R consist of pairs 
(TO) UO), where TQ represents a conformai equivalence class of metrics (or equiv
alente a complex structure on M) and a conformai map UQ: M —• R n ; i.e., 
uo9n = Aö'OJ where gn is the R Euclidean metric and go is any metric represen
tative in the conformai class represented by To. 

For each a, at least for each a which is real analytic, we would like to be able 
to say that the number of critical points for P a is finite. This problem is, as yet, 
unsolved. However, in the case M — D, the answer is known in the generic case. 
This is the subject of our next section. 

2. The index theorem for disc surfaces. If M = D then, as remarked 
earlier, Dirichlet's functional takes the form Da : Ma —• .#, where 

0«(«) = £ Ê / " Vu*-Vu* -ti 
and for p = 0 we denote Ma(p) simply by Ma. 

Let us begin by asking the question of determining the structure of the set 
of all minimal surfaces (area-minimizing or not). In this direction let A be the 
open set (in Hr) of all embeddings a, and M = \Ja Ma. Then M is a smooth 
fibre bundle over A with projection map 7r: M —* A given by w(u) = a if u G Na. 
Let E c i / denote the set of all minimal surfaces. 
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One might, at first glance, conjecture that E is a submanifold as would be 
the case for the geodesic problem with fixed endpoints. Surprisingly E is not a 
manifold but an "infinite-dimensional algebraic variety" composed of manifold 
strata determined by the singularity structure of the minimal surface. To be 
more precise let u : D —> R n be a minimal surface. Then F = du/dx — idu/dy 
is a holomorphic map of D into C n . A point ZQ where u fails to be an immersion 
is a zero for F. We say that zo G D is a branch point of u of order A if F(z) = 
(z — zo)xG(z), where G(zo) ^ 0. Clearly every interior branch point has some 
finite order. If a is sufficiently smooth, it can be shown that all boundary branch 
points have a finite order. 

DEFINITION. Let A G Zp and v G Zq, X = (Ài , . . . , Ap), v = ( i / x , . . . , vq), be 
tuples of integers. We say that a minimal surface u has branching type (A, v) 
if u has p (arbitrarily located) interior branch points z±,..., zp G D° of orders 
A i , . . . , Ap and q boundary branch points £ 1 , . . . , £q of orders v\,..., vq. 

Let E* denote all the minimal surfaces in the bundle M of branching type 
(A,^). Let 7r£ = 7T|E£ be the restriction of the bundle projection map to E*. 
The following is then known as the Index Theorem for Minimal Surfaces [1]. 

THEOREM. Each S£ is a manifold with Eg a submanifold of M. The map 
7T* : E* —y A is Fredholm of index 

I(X, i/) = 2|A|(2 - n) + |i/|(2 - n) + 2p + q + 3 , 2 

where |A| = E* ; \v\ = E ^ . 

This index result is the basis of proving the generic (open-dense) finiteness 
and stability of minimal surfaces of disc type. The open dense set will be the 
set of regular values for the map 7TE = 7r|E. In addition, this theorem leads us 
to a new definition of nondegeneracy in critical point theory. A minimal surface 
u G E* is nondegenerate if I(X, v) — 3 (and hence v — 0) and the map 7TQ 
restricted to a neighborhood of u in EQ is a local diffeomorphism. 

If n > 3 the nondegenerate minimal surfaces are immersed up to the bound
ary and if n = 3 they are either immersed or simply branched (A = ( 1 , . . . , 1)). 
We should re-emphasize, at this point, that we are considering not only area-
minimizing minimal surfaces bounded by a G A but all critical points. There 
are some additional, surprising consequences of this index formula. First (by 
Gulliver-Ossermann and Alt), area-minimizing minimal surfaces in R 3 are free 
of interior branch points, whereas most minimal surfaces which are either im
mersed or have simple interior branch points are stable w.r.t. perturbations of 

^the^oundaryr^Second^for^r^^>=4-minimal^surfaces^in^Rû=may^have=branGh== 
points even if they are area-minimizing but for such n no minimal surface in R n 

is stable under perturbations of the boundary. 
This index theorem has been generalized to fc-connected regions by Karl 

Schüffier and Ursula Thiel [4, 6]. Recently Gulliver and Hildebrandt [2] have 
2 The number 3 arises from the conformai invariance of the problem under the action of the 

3-dimensional conformai group of the disc. The number 3 would disappear if, for example, we 
imposed a three-point condition on our maps u. 
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given a beautiful example of three coaxial circles that bound a continuum of 
2-connected minimal surfaces of genus zero. 

3. Morse theory. As a consequence of the index theorem we know that the 
generic curve a in R4 bounds only a finite number ui,..., um of disc minimal 
surfaces. For each Ui one can show that there is a finite Morse index 0{ for the 
Hessian of Pa at U{. The integer 9i is the dimension of the largest subspace on 
which D2Da(ui) is negative definite. If a complete Morse theory held for this 
problem (a handle body decomposition of Ma in terms of the critical points of 
Da) one would have, in particular, the Morse equality 

£(-l)"' = L (!) 
i 

This equality was established by the author [8, 9]. 
The difficulty with directly applying the Morse-theoretic ideas of Palais and 

Smale is that P a does not satisfy their connection C. 
Nevertheless in a beautiful recent paper Michael Struwe [5] has shown that by 

restricting Da to the "convex" set M^ c Ma of these maps u which are monotonie 
on the boundary, one does have a full Morse theory for disc minimal surfaces 
spanning contours in R4 . 

In R 3 the generic wire still bounds only finitely many minimal surfaces of disc 
type. Moreover, as it turns out, these minimal surfaces are zeros of a Fredholm 
vector field 

**-Oi '• Met —* •* M Of 

This permits one to define a rotation number of X a about each zero and hence 
the total Euler characteristic xfàa) °f X a (which is the sum of the rotation 
numbers). The corresponding theorem in R 3 is that 

X(X„) = 1. (2) 

Finally, there is another interpretation of (1) in R4 . One can show that the 
main stratum E§ of E is an (infinite-dimensional) oriented manifold. This allows 
one to define the degree of the map 7TE = 7r|E. Then 

deg7TE = l. (3) 

4. Existence of higher genus surfaces. Let us consider the pictures of 
physical soap films, as shown in Figure 2. 

Although Douglas showed that any Jordan contour always bounds a disc 
minimal surface, no criterion was known, until recently, on a contour T which 
guaranteed the existence of a genus p > 0 minimal surface spanning T. All of 
the above physical examples of soap films can now be partially3 explained by 
the following existence theorem [7] due to F. Tomi and the author. 

3 We use the word partially because we do not yet know whether our solutions are embedded 
as in the soap film examples. 
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FIGURE 2 

THEOREM. Let M be a surface of genus p > 1 with one boundary component, 
and let V be a rectifiable Jordan curve in R3 . We assume that 

(i) there exists a solid q-torus T of class C 3 in R 3 with positive inward mean 
curvature such that T C T, where q = 2p if M is orientable and q = p if not, 
and 

(ii) with respect to suitably chosen base points and generators the class of Y in 
7Ti(T) is represented by the same word as the class of dM in TTI(M), respectively. 
Then there exists a minimal surface f: M —• R 3 mapping dM topologically onto 
T and f(M) contained in T. 

The hypothesis on T is fulfilled in the following specific cases: 
(i) M is oriented of genus p, and T is homotopic in T to the commutator 

product n j = i [ a i » / y f° r s o m e set ai,...,ßp of free generators of TTI(T); 

(ii) M is nonorientable of genus p and V is homotopic in T to n j = i &ji where 
a i , . . . , a p are free generators of 7Ti(T); 

(iii) M is nonorientable of genus p — 2k + 1 and T is homotopic in T to 

(rij=i [aj>ßj])l2i where a±,..., a^, 7 are free generators of 7Ti(T); 

(iv) M is nonorientable of genus p = 2k, k > 1, and T is homotopic in T to 

(JljZi[a3>ßA)akßk<Xklßk> f o r generators a i , . . . , / ? * of TTI(T). 

5. Teichmüller theory and Plateau's problem. The difficulty in obtain
ing the existence of minimal surfaces of genus p > 0 spanning a given contour T in 

-^Euclidian-space=by^the direct_method-of the^calculus of^var=iations4s=that one-can— 
not, in general, show that a minimizing sequence (rn,un), Pof(rn,iAn) —> inf Da, 
has a convergent subsequence in some reasonable topology. The problem is that a 
minimizing sequence might be "degenerating" in some sense to a surface of lower 
genus. For the existence theorem of the last section a way, given the hypotheses, 
is found to prevent degeneration. 

However if we would like to develop a general index theory or a Morse theory 
covering all genera, or at least be able to prove generic finiteness, one must allow, 
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and in fact be able to completely understand, such degeneration. This amounts 
to passing through some hypothetical boundary of Teichmüller space T(p) to 
another Teichmüller space T(p'), p' < p. From this point of view it would be 
nice if we had a universal Teichmüller space on which to define our problem. 
Such spaces have been investigated by Bers. 

Since much of Plateau's problem is differential-geometric in flavor, one would 
like to approach this question along the lines of differential geometry. One could 
ask if there was a "natural" Riemannian structure on Teichmüller space whose 
curvature could be computed. If the sectional curvature were negative and the 
associated metric complete, one could then compactify along the lines developed 
by Eberline and O'Niell in their theory of visibility manifolds. 

A Riemannian structure on Teichmüller space originally arising in number 
theory was introduced by Weil and then studied by Ahlfors, the so-called Weil-
Petersson metric. This metric was shown by Ahlfors to have negative Ricci and 
holomorphic sectional curvature. Wolpert and Thu showed that the metric was 
incomplete and therefore Eberline-O'Niell compactness would not follow should 
the metric be negatively curved. However, from the point of view of minimal 
surface this incompleteness rather than being a defect makes the metric even 
more interesting. 

Another motivation for studying the Weil-Petersson metric comes from Gen
eral Relativity, where this metric has appeared in a totally different context. 

We have proved the following result [10]. 

THEOREM. The sectional curvature of the Weil-Petersson metric is nega
tive. 

Since this result, Wolpert [11] and then later Jost [3] have computed the 
Riemann curvature tensor of this metric. It appears that the geodesies of T(p) 
with respect to this metric may provide a mechanism to attain a compactification 
of Teichmüller space via differential geometry. 

How this will impact, if at all, the development of Morse theory, index theory, 
and generic finiteness for higher genus awaits future developments. 
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Estimates of Derivatives of Solutions 
of Elliptic and Parabolic Inequalities 

N. N. URAL'TSEVA 

The first part of this paper contains results by O. A. Ladyzhenskaya and 
the author obtained recently [1-3] for uniformly elliptic and parabolic equa
tions of the second order of general (nondivergent) form. These results concern 
the solvability of boundary value problems in Sobolev spaces for equations with 
singularities with respect to independent variables. We have also substantially 
improved our previous results on the classical solvability of the first boundary 
value problem for parabolic equations. The results are based on our new ex
act a priori estimates of Holder norms for the first derivatives of solutions on 
the boundary. In addition, we have weakened the conditions for interior esti
mates. All these estimates hold for an arbitrary function which satisfies elliptic 
or parabolic inequality. Let us consider some of these estimates. 

LEMMA. Let fi be a convex domain in Rn and let fi(/?) be the p-neighborhood 
of the boundary in fi, p > 0. If u G W^loc(ü(p)), u\dn = 0, then 

sup 
u(x) 

xen(P) dist{z; 9fi} 

Here 6 = 1 — n/q > 0; 

<ci p^supu + ptlKCuUll^ 
n(p) 

(1) 

is an elliptic operator with measurable coefficients a,ij satisfying in fi(p) the in
equalities 

v? < Oijtitj < ME2, V> V = const > 0, V£ e Rn, (2) 

bi e Lqììoc(n(p))\ a = ci lu 1,fi,6 1,pt 

^ i=i 
QMP)J 

is a continuous increasing function of its arguments; || • ||* n , s is defined as 
\\vW*qMp) = suPa°ed*n \Mq,ünn(x°iP), where || • ||ffip i0 the norm in Lq(D); 3*fi 
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is the set of all points of <9fi for which the normal to dii exists. ir(x°,p) is 
cylinder in Rw of the height p where the axis is parallel to the inner normal to 
dfi at x°. The base of the cylinder is the (n — 1)-dimensional ball with the radius 
c0p, c0 = (n / i i / - 1 ) - 1 . 

It is not assumed in the lemma that fi is strictly convex or bounded; dil may 
be nonsmooth. The lemma is important for estimating the derivatives uXi on 
the boundary of an arbitrary domain. The proof of the lemma is based on a new 
"iterative-barrier" method [2]. One of the implications of the lemma combined 
with A. D. Aleksandrov's theorem [4] is the estimate 

- ^ n } < c2 • (diamn)««^)-^, V, 6 n, (3) 

for any function u G W^(fi), U\QçI = 0, in a convex domain fi. Here 

C2 = C2\v 1,A*,<5 1 , (d iamf i ) 5 

N 1 = 2 q,QJ 

All the following statements deal with local estimates. 

THEOREM 1. Assume that T is a manifold of class Wq, T is an open 
subset of dn. Let u G W2(Q), u\r = 0; u satisfies the inequalities (2) in fi with 
aij = a>ij(x,u(x),ux(x)) and the inequality 

-aij(x,u,ux)uXiXj < ßi\ux\
2 + <f>(x)[l + \ux\] (4) 

with ß\ = const > 0, <j> G Lq(Q). Then for any x° G T, x G fi, the estimate 

^ _ < c3[l + ( d i s t ^ c K A r } ) - 1 + U\\q,a] (5) 

holds with a constant c$ completely specified by v~l, p,, ßi, <5_1, supn u and T. In 
particular, ifT = dfi, then 

du 
ess s u p — < c 3 [ l + ||0||g,n] (6) 

where d/d^ is the inner normal derivative. 

In the estimates of Holder constants of uXi on dfi, unilateral condition (4) 
should be replaced by 

\aij(x,u,ux)uXiXj\ < ßi\ux\
2 + (j)(x)[l + \ux\\, a: G fi. (7) 

JTaking^into^accQuntihe^fact^that =the-conditions=(2) ̂ (.4) ,=and^(-7)=areJnvariant= 
with respect to the mappings of W^-class, the following theorem is formulated 
for the special case fi = Bf, where J3+ = {x G R n : \x\ < p; xn > 0}. 

THEOREM 2. Let the function u, u G W2(Q), fi = Bf, u\Sl = 0, satisfy 
inequalities (2), (7) with 0 G Lq(ü), q > n; Si = {x G dBf : xn = 0}. Then 

{f;Bi}<^, v,4 ose \-y-,B+ \<c4P
a, V p < - , (8) 
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where the constant a G (0,1) depends only on v 1,p,6 1 and 

c4 = c4(^~1,/i,(5"1,^i,sup|w|,| |0| |gsn). 
n 

Theorem 2 leads to an estimate of the Holder norm of uXi on dû for the 
solutions u G W^(fi) of inequalities (2), (7) in fi if u\an = 0, dfi G W2, q > n. 
For the particular case when inequality (7) takes the form \aijUXiXj\ < const, 
Theorem 2 has been proved earlier by N. V. Krylov and M. V. Safonov [5, 6]. 

Estimates similar to those of Theorems 1 and 2 respectively are also estab
lished in [1, 2] for solutions of parabolic inequalities 

ut - aij(x,t,u,ux)uXiX. < pi\ux\
2 + (f>(x,t)[l + \ux\] 

and 

(9) 

(10) \ut -aij(x,t,u,ux)uXiX.\ < ßi\ux\
2 -\-(j)(x,t)[l + \ux\] 

in the cylinder Q = fi x (0,T). 
Let us now present one of the results for solutions u(x, t) of (10). It is assumed 

that u,ux.,ux.Xj,ut G L n + i (Q) , i.e., u G W^+i(Q), and u vanishes on the 
parabolic boundary d'Q of the cylinder Q. To formulate the theorem we need 
some notations. We say (j) G Lq^(Q), q = (qi,... ,(7TV), s = (si? • • • 5 SJV)> if 
0(z, t) = J2k=i Mx>t) with 

l/sfc 

ll<M<7 fc>afc,Q = j dtlj \<j>k(x,t)\«* dx\ 
Sk/Qk 

< oo; 

write Iks.Q - X)fc=i H f̂cLfc.flfc.Q-

THEOREM 3. LetncRn,uG W^(Q), u\d>Q = 0, dû G W*+1 , and Jet 
the function u(x,t) satisfy the inequalities (2), (10) in Q with (j) G Lqìs(Q) and 
where q= (qi,...,qN), s = (si,...,sN), 

n 2 
qk>n + l, sk>n + l, 1 < 1 - < 5 < 1 , k = l,...,N. (11) 

Then the derivatives uXi are Holder continuous on dnQ = dii X [0,T] and for 
any points (x,t), (y,r) G d"Q, 

\uXi(x,t)-uyi (y,r)\ <ch[\x-y\2 + \t-T\r'2. (12) 

Here a G (0,1) depends only on v~x,p,, <5_1 and c$ is specified by u~1, fi, S-1, 
fii, esssupQ |u| , ||0||g,a,Q, diì. 

Until now we have discussed the boundary estimates. To obtain the interior 
estimates of ux. we shall assume the differentiability of functions a,ij(x,u,p), 
(aij(x, t, u,p)) with respect to x, u,p. In addition to (2) we impose the conditions 

dajj dan 
dpi dpj 

dajj 2 dakj dajj 

^ ( I + I P I ) - 1 ; 

du -p- du -PkPi + dxk 
Pk~ 

dakj 
dxk 

Pi 

(13) 
<A*2p

2 + 0[l + |p|]. 
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THEOREM 4. LetuE W2(n) be a solution of (7) for x G fi, u = u(x), and 
p = ux(x), and let the conditions (2) and (13) hold with § G Lq($X), q> n. Then 
for any fi' C fi, esssupn/ \ux\ < c&, 

ce = c6(i/-1,)LA,/ii, fl2,S'1, I H h n , s u p \u\, (dist{fi ' ;dn})'1). 
n 

Moreover, if dn G VF2 and w|an = 0 then esssup^l^l < c? where c? = 
^ ( ^ " S ^ ^ i ^ ^ ^ ' M l ^ l l g . n ^ u p n l w I ^ f i ) . 

A similar result is also valid for solutions of (10). 
The above estimates make it possible to prove the solvability of the Dirichlet 

problem for quasilinear elliptic and parabolic equations of nondivergent form 
under substantially weaker conditions than those used so far. First, it is not 
required that the functions a(x,u,p) in an elliptic equation aij(x,u,ux)uXiXj + 
a(x,u,ux) = 0 and a(x,t,u,p) in a parabolic equation — ut+aij(x,t, u,ux)uXiXj + 
a(x,t,u,ux) = 0 are differentiable. Second, the functions forming the equations 
may be singular with respect to independent variables. Finally, the nonsmooth 
dn are permitted. 

THEOREM 5. Suppose that the following conditions are satisfied: 
(a) fi is a bounded domain in Rn , dfi G Wq, q> n. 
(b) There exists a constant Mo independent on uE W2(n) and onr G [0,1], 

such that every r G [0,1] solution of the Dirichlet problem 

[raij(x,u,ux) + (1 - r)8l]uXiXj +ra(x,u,ux) = 0 , 

x G fi, u = 0, x E dn, 

satisfies esssupa;6n |w(a;,r)| < Mo-
(c) For x En, \u\ < Mo and for arbitrary p G Rn the functions a{j(x, u,p) are 

differentiable and satisfy the inequalities (2), (13), and the measurable function 
a(x,u,p) satisfies the inequality \a(x,u,p)\ < flip2 + </>(x)[l + \p\], (j) E Lq(n). 
This condition guarantees the estimate esssupn \ux\ < Mi. 

(d) On the set Mi = {(x,u,p) : x E fi, \u\ < M0, |p| < Mi} the conditions 

\dai daij 

dpk 
<M3Î 

daij 

du 
*i3 <<t>i(x), <t>iELq(n), (15) 

dxk 

hold. 
(e) The function a(-,u,p) defined on the set X 2 = {(u,p): \u\ < Mo, \p\ < 

Mi} belongs to C(M^Lq(n)). 
Then for every r G [0,1], the Dirichlet problem (14) is solvable in W2(n). If, 

additionally, dn E C2+Q!, a E Ca(Mi), then a solution U(-,T) of (14) belongs to 

^ ^ ( f i J T T ^ ^ ^ 
THEOREM 6. Let us suppose that the following conditions are satisfied: 
(a) fi is a bounded domain in Rn , dfi G Wq+2j q > n, Q = n x (0,T). 

(b) For all possible solutions u(-,r) in Wq+2(Q) of the problem 

-ut + [raij(x,t,u,ux) + (1 - r)S{]ux.Xj -\-ra(x,t,u,ux) = 0 in Q, 

u = 0 on d'Q, 
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the estimate esssupg \u(-,r) < Mo, VT G [0,1], is valid. 
(c) For (x,t) E Q, \u\ < Mo, p E Rn the functions aij(x,t,u,p) are dif

ferentiable with respect to x,u,p and satisfy (2), (13) and a measurable func
tion a(x,t,u,p) satisfies the inequality \a(x,t,u,p)\ < flip2 + (f)(x,t)[l + \p\] with 
(j) G Lq+2(Q)- This guarantees the estimate esssupg |ua;(-,r)| < Mi, Vr G [0,1]. 

(d) On the set M3 = {(x,t,u,p): x G fi, t E [0,T], \u\ < M0, \p\ < Mi} the 
inequalities (15) hold with fa(x,t) instead of <j>i(x), fa E Lg+2(Q). 

(e) a{j E C(Mz), a E C(M2;Lq+2(Q)). 
Then for every r E [0,1] there exists at least one solution u(-,r) E Wq+2(Q) 

of the problem (16). 
//, additionally, dn E C2+a, aié E Ca>a/2>a>a(M3), a E Ca>a/2>a>a(M3), then 

u(',r)EC2+a^a/2(Q). 

Let us turn now to the second part of this paper. Here we want to describe 
the results on the smoothness of solutions of variational inequalities (VI) found 
by the author and by her students. We consider the VI 

uEK, I [aijUx.(v - u)Xi + (biux. + b0u - f)(v - u)] dx > 0, Vv G K, (17) 
Jn 

and the corresponding evolution inequalities connected with elliptic and para
bolic equations (and systems) under various convex constraints on solutions on 
the boundary. In the scalar case u: fi —• R1 (one equation) we assume that 
condition (2) holds. 

In a problem with one obstacle on the boundary, i.e., if 

K = Ki = {v E W}(n): v(x) >0îorxE dn}, 

the best possible smoothness up to the boundary of solutions of (17), i.e., the 
Holder continuity of ux. in fi, was proved by different methods by L. A. Caffarelli 
[7] and D. Kinderlehrer [8] under the assumptions ay E C2(fi); 6̂ , òo, f EC1 (fi), 
dn E C3. In the author's papers [9, 10] these conditions were replaced by the 
minimal restrictions 

a y e ^ f n ) ; bi,b0,f &Lq(Q); dÜGW^, q>n. (18) 

Such conditions are necessary for the Holder continuity of ux. even in the case of 
the Dirichlet problem, that is, for K = iy2(^)- In [10] the result was generalized 
to a quasilinear case, more precisely to inequalities (17) with o»j = a{j(x, u), f = 
f(x,u,ux). In [10] it was assumed that \daij/dxk\, \da{j/du\ < fl2', aij satisfies 
(2) and \f(x,u,p)\,\df/dpk\,\df/dxk\,\df/du\ < flip2 + <i>(x), (ß E Lq(n). 

Evidently all these results are also valid for the problem with two obstacles 
on 9fi when 

K = K2 = {v E W}(n) : <p(x) < v(x) < ij)(x), x E öfi} 

if one supposes <p,ip E Wq (fi), iß(x) > (p(x) on 9fi. In [11] the two-obstacle 
problem is investigated for the case when <p(x) < ip(x) on dfi and a set {re G 
9fi: <p(x) = ip(x)} ^ 0, that is, the two obstacles are partially stuck together. 
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It is shown that in such a case uXi E Ca(fi) if <p,iß E Wq(n) and conditions (18) 
are also fulfilled. 

The above results hold also for the case of obstacles in the whole domain 
fi, more precisely if K = K% = {v E W2(n): (p(x) < v(x) < ip(x), x E fi}. 
Unlike the classical problem with an .obstacle in the domain, K is here a subset 
of W2(n) but not of W2(fi); i.e., the boundary values of u are not prescribed. 

The best possible smoothness of solutions was proved also for other problems 
with constraints on surfaces: obstacle on the interface of two media, semipene-
trable membrane [12], etc. The fact that in all of these cases the restrictions on 
smoothness of the data are minimal enables one to prove the Holder continuity 
of uXi for the parabolic case as well [9, 11]. 

The possible convex constraints on u: fi —> R^ , M > 1, i.e., on the solutions 
of elliptic systems, are more various. In this case K may be of the form 

K = KA = {v E [W2(fi)]" : v(x) E K(x) on dfi} 

with K(x) being a convex closed set in R ^ . For the so-called diagonal systems 
when aij(x) E R1 , f(x) E RM, bi,bo are (M x .A/)-matrices for a; G fi, and K 
does not depend on x, the regularity results also established. They are of the 
same degree of generality as for the scalar case. 

For the VI connected with general strongly elliptic systems of the second 
order, only the question of the existence of the second derivatives of solutions 
is discussed in the literature. Such problems are of special interest in unilateral 
problems of elasticity and fluid mechanics. For example, the equilibrium of the 
elastic plate under the pressure of a stamp is governed by inequalities (17) for 
strongly elliptic system and the set 

K = Kò = {v E [ ^ ( f i ) ] ^ : v(x) • ^(x) + h(x) > 0, x E fi} 

where 7(2;) G R ^ , h(x) E R 1 are defined for a; G fi. It is proved in [13] that the 
solution of such a problem belongs to [W2 (fi)]^. We mention also the paper [14] 
where the existence of the second derivatives for the solutions of a wide class of 
VI, including contact problem^ of elasticity, is proved. 
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Families of One-Dimensional Maps 
and Nearby Diffeomorphisms 

M. V. JAKOBSON 

1. Introduction. In the last decade, one-dimensional dynamical systems 
have been studied intensely from different points of view. One of the reasons 
for this interest is that the results about one-dimensional systems prove to be 
useful when studying multidimensional systems which act contractively in all 
but one direction. We shall call such systems near to one-dimensional. In this 
paper we present some results concerning one-dimensional maps and nearby 
diffeomorphisms. Consider some one-dimensional map f E Ck (R, R), 1 < k < 
oo, and let a singular map / E Cfc(Rm, Rm), 

/ : (2/0,2/1, • • •, 2/m-i) •-> (Vufivi), 0, . . . , 0), 

correspond to / . We shall also consider families of one-dimensional maps ft : R 
—• R continuously dependent on t E [0,1] in the Cfc-topology and the correspond
ing families of singular maps ft E Ck(Rm,Rm). We say that F E Difffc(Rm) 
is near to a singular one-dimensional map / if F is close to / in C fc(Rm,Rm). 
Here is an example: 

F: (2/o,2/i,---,2/m-i) ^ {vuf{vi) + £i2/o,e22/2, • • • ,£m-i2/m-i). 

Similarly, a family of diffeomorphisms Ft is near to a singular family ft if Ft and 
ft are close in the topology C([0, l],Cfc(Rm,Rm)). 

/ = « ) " ( / & / ( y ) J *:(5)"(„+W 

FIGURE l FIGURE 2 

c) 1987 International Congress of Mathematicians 1986 
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2. Structurally stable maps, (a) Let I be an interval of the real axis. We 
denote by 51*. C Ck(I, I) a set of mappings / with the following properties: 

7 = A ( / ) U E ( / ) , 

where A( / ) is an open / - and f"1 -invariant set which is the union of domains of 
attraction to a finite number of attracting cycles; E(/) is a hyperbolic repelling 
set 

\dfn/dx\x(f) >acn, a > 0 , O l ; 

and / | E ( / ) is topologically conjugate to a subshift of finite type. For / E 21*?, 
the nonwandering set Q(/) is the union of a finite number of attracting cycles 
and a repelling set Hi( / ) C E(/) . The mappings / E 2l/c are H-stable. If fc > 2 
and the critical points Ci, i E [l,m], are nondegenerate and fk(ci) ^ fl(cj) for 
any k ^ I, i^ j , then / is structurally stable. For fc > 2 the Lebesgue measure 
of E(/) equals zero and therefore the asymptotic behavior is periodic for almost 
all points x E I. 

For fc = 1 the set 21& is dense in Ck(I, I) [6]. For fc > 1 the question remains 
unsolved. The last results in this direction are due to Mane [9]. In particular 
he proved that for any fc E N, %k is dense in the space of Cfc-immersions of the 
circle. 

For a family ft: I -+ J, t E [0,1], let us consider the set S = {t: ft E Qlk}. 
It is not known if S is dense in [0,1] for "natural" one parameter families—in 
particular for quadratic family qt : x i-> 4tx(l - x). For this family, the density 
of S in some neighborhood 6e = (1 — e, 1) was announced in [1]. We point out 
here that the proof of such a statement is really equivalent to the proof of the 
density of S in [0,1]. Indeed for any e > 0 there exists an interval 8£n C 6e 

such that for t E 6£n there exist n intervals / £ ( t ) , ^ (t),... ,Z^!_\(£) which 
are cyclically permuted by h, and when t varies in 6en the kneading-invariant 
of fp | Ifr }(t) varies from the maximal to the minimal one. When n —• oo, the 
family / " | /£n) (t) after the corresponding renormalization tends to the quadratic 
family. This universal low was discovered by Milnor and investigated by several 
authors. Thus the interval t E Sen plays the same role for / t

n | l^' (t) as t E [0,1] 
plays for the whole quadratic family. 

/ S l = f i 2 , 0 l ì 

fS2 D S± U S2 
(Si) 

IZ\6 

1 8 32 

FIGURE 3 
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FIGURE 4. Singular map / has an 
invariant Cantor set inside Q. 

FIGURE 5. Nearby diffeomorphism 
F has a horseshoe. 

(b) If / : J —• J is hyperbolic, and if / is the corresponding singular mul
tidimensional map and F is a diffeomorphism near to / , then according to a 
theorem of S. Van Strien [13] F possesses an invariant locally maximal hyper
bolic set ni(F) in a small neighborhood of fii(/), and a continuous surjection 
p: fii(F) —• fii(/) is defined which is an injection on the set of periodic points. 
If ft is a family of singular maps and if Ft is a nearby family of diffeomorphisms, 
then a similar correspondence pt: ni(Ft) —> fii(/t) exists for t belonging to a 
finite number of intervals of fi-stability. Moreover, if the domain of parameter 
variation contains a finite number of U corresponding to the doubling bifurca
tions, then similar bifurcations occur for Ft (see [13]). 

(c) Let / E 2lfc> and let fii(/) be the repelling part of fi(/). It follows from the 
theorem of McCluskey and Manning [10] that dim/f fii (/) = to coincides with 
the unique root of the equation P(t<p) = 0 where cp(x) = - l og \df/dx\ | f i i ( / ) . 
P is the topological pressure, P(x) = sup(/^(x) +fyi(/)) where the sup is taken 
over all Borei /-invariant measures with the support inside fii (/). The Hausdorff 
io-measure coincides with the unique measure flo satisfying flo(to<p) + hfi0(f) = 
P(<p • t0) = 0. Thus to = hßJ J log \df/dx\ dflo. 

For the singular map / we have dim// fii(/) = dimjj fii(/). One can deduce 
from the results of [10] that any diffeomorphism F e-close to / in C f c(R2 ,R2) 
satisfies 

dimHni(F)<t0 + 6(e) 

where lime_>o 6(e) = 0. 

3. The consequences of universal behavior. If an infinite sequence of 
period doubling bifurcations occurs for a singular family ft, then we can use 
Feigenbaum's theory to prove that the same holds for a nearby family of diffeo
morphisms Ft. 

Let <))Q be the fixed point of doubling transformation T and let <\>t, t E [— 1,1], 
be the one-dimensional unstable manifold of </>o (see [4]). We choose t so that the 
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<j)t) with t > 0, have zero topological entropy. The mappings (j>t are of the form 
(j)t(x) = gt(x2) where gt is analytic on a neighborhood of [0,1]. Now consider 
the singular family (see [4]) which is given by gt : (x, y) !-• (gt(x2 -y),0). As far 
as I know, the following statement is not explicitly formulated in the literature, 
though it may be proved following [4, 14]. 

The doubling transformation T ' in the space of one parameter families of 
analytic maps Ft : R2 —• R2 may be defined so that T'gt = gt and there exists 
an open neighborhood U of gt such that gt is an attractive fixed point of T ' in 
Ü. 

A 
WU((J)Q) = {singular maps} 

Ft 

Wa(ct>o) 

FIGURE 6 

Thus if Ft C U is a family of diffeomorphisms, then TfnFt converges with an 
exponential rate toward the singular family gt. This implies that a full sequence 
of period doubling bifurcations occur for Ft, The following concerns the behavior 
of complex eigenvalues of DF2" at the points of 2n-cycles (compare [16]). 

Consider the family Gt = TfnFt. For n sufficiently large, Gt has a cycle 
{Ai(t),A2(t)} of period 2 — the image of 2n+1-cycle of Ft, which is close to the 
cycle {ai(t),a2(t)} of the singular map gt. We use X(t) to denote the univer
sal function equal to the derivative of Dg2 at a(t). X(t) is analytic and strictly 
monotone. Let Xi(t) be that eigenvalue of DG2 at A(t), which is close to X(t), 
and let À2(0 be the second eigenvalue and Tfy the trace of DG2 at A(t). Tak
ing into account the fact that the family Gt is exponentially close to gt, we 
find that parameter values tn\ th\ given by Xi(tn ) = 1, Xi(th ) = —1, are 
exponentially close to the parameter values t^\ t^ of the first and second bi
furcations for gt. On the other hand, Gt are diffeomorphisms, and eigenvalues 
of DGt cannot be zero. Thus they become complex numbers Xi(t) = X2(t). If 
Ft is sufficiently close to the singular family gt we have |JacF!| < £o < 1. Thus 
|JacFt

2?1 | < £Q and the modulus of eigenvalues of DF2" at the points of 
2n+1-cycle (these eigenvalues are just Xit2(t)) is less than £§". 
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£\ AÌn)(t) 

FIGURE 7. Computer experiments show that for large n, Re Â  (t) 
behaves, after rescaling, like universal function X(t). 

Now A 1,2(0 a r e complex for t satisfying Tr2 < 4 JacF2" . For all t, Trt is 
exponentially close to X(t) with all derivatives. Thus in a neighborhood of a 
value £0 defined by X(to) = 0, Trt is almost linear. This implies 

PROPOSITION 1. Let Ft be a family of diffeomorphisms near to the singular 
family gt* Then between two successive period doubling bifurcations, the eigen
values of DF2*1 at 2n-cycle become complex for t belonging to an interval An 

such that 
\An\/\tW-tP\<ce*n-\ 

In the complex plane, Xi(t) are moving along a curve which is close up to 
0(r2 • 2n) to some circle of radius r < const£2" . Besides, d(ReXi(t))/dt 
is exponentially close to the universal velocity \dX(t)/dt. 

4. Mappings with absolutely continuous invariant measure, (a) We 
consider f E Ck(I,I), k > 2, which admit an invariant measure absolutely 
continuous with respect to the Lebesgue measure (a.c.i.m.). The theorem of 
Ledrappier [8] states that a map / with an ergodic a.c.i.m. fl with positive 
entropy hß(f) has strong stochastic properties: fl is Bernoullian with respect to 
some power fko. 

The properties of smooth mappings with a.c.i.m. are similar to those of ex
panding maps, though the presence of critical points implies that the expansion 
is nonuniform. This nonuniformity may be compensated for by constructing 
some expanding piecewise monotone map T which has a countable number of 
laps, and on any lap coincides some interate of / . We specify it by the following 
construction. Suppose there are a finite number of intervals Li,L2,..., Lm such 
that LknLi — 0 and any Lk may be represented as a disjoint union 

Lk = (ÜA**)u0* 
^h^7)fc"has^Lebêsguemeasure zero,~&hi arelnt^alsTandforä^^fciThere ex^ 
ist n = n(k, i) G N and I = l(k, i) E (1, m) such that fn maps Aki diffeomorphi-
cally onto Lx. Let us define the map T on X = \Jm

=1 Lk\0k by T\Aki = /"(**). 
The map T generates a subshift of finite type on the alphabet 1,2,..., m with 

the matrix A = (akX), aki G {0,1}, given by ak\ = 1 o 3Aki : TAki = L\. With
out loss of generality one can suggest that An° > 0 for some no E N. Otherwise 
there exists an An°-invariant subset of 1,2,...,m such that the restriction of 
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An° on this subset is positive. We call the union of Lk corresponding to this 
subset a component of primitivity. 

Suppose that the following inequalities hold: 

\dTn/dx\ > acn, a > 0, c> 1, (1) 

sup sup 
k,i xeAki 

d2T I dT 
dx2 / dx 

| A w | < G i . (2) 

Then using a theorem of Walters [15] we obtain that on any component of 
primitivity, Tn° has a unique a.c.i.m. v(dx) = h(x) dx where h(x) > ho > 0 is 
continuous and the natural extension of (Tn°, v) is isomorphic to a Bernoulli 
shift. 

If Tiki{n(k,i)\Aki\ < oo then an /-invariant ergodic a.c.i.m. fl(dx) corresponds 
to u(dx). 

DEFINITION. If / generates a map T with properties (1) and (2), then we 
call / expansion-inducing. 

(b) For several one parameter families of one-dimensional maps, the set of 
parameter values corresponding to the maps with a.c.i.m. has positive measure 
[3, 7, 5, 1]. One possible approach to this problem is to prove that the maps 
under consideration are expansion-inducing. 

Let ft : / —• / be a family of maps continuously dependent on t in C2-topology. 
We consider t within an interval [to — £5 to] and formulate some conditions which 
imply that for t belonging to a set of positive measure, with to being a density 
point of this set, ft is expansion-inducing. The main conjecture is that some iter
ate of any critical point of fto falls into an invariant hyperbolic repelling Cantor 
set. We shall specify it by formulating some conditions which are structurally 
stable under C2-perturbations. 

We assume that all critical points of ft are nondegenerate for any t and denote 
them by ck, k E [l,ra]. 

The definition of an expansion-inducing map involves a piecewise expanding 
map T continuous on some Ak{ C Lk. Our first condition defines these Lk. 

I. For any t E[to — £, to] there are m open intervals 

Li(t) = (xi(t),yi(t)), t e [ l , m ] . 

such that Li(t) fl L3(t) = 0 , C((t) C L{(t), X{(t), yi(t) are eventually periodic, 
and ftC{(t) & \JjLi Lj(t). We assume that for any i, j E [1, m] the set f^Li(t) fl 
Lj(t), unless empty, is a union of diffeomorphic preimages of L((t), and Li(t) 
and these preimages vary continuously with t. We shall denote by L(t) the union 
oîLi(t). 

file:///JjLi
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li 
FIGURE 8. Map fto, where h -
Ur^ru{0},F = {0},and/iiC 
(JiULi)"1. 

FIGURE 9. Induced map Tto \ L(t0). 

The following conditions define a hyperbolic Cantor set. 
IL For any t E[to~e, io] there are p closed intervals lj = lj(t) = [uj(t), Vj(t)], 

j E [l,p], such that Li C\ lj — 0 , lj Hlk = 0, Uj, Vj are eventually periodic, and 
for any j E [l,p] there exists afcjGN such that fk* maps lj diffeomorphically 
on its image 

fkHj = (l3l U l32 U • • • U l3l/) U (Lri ULr2 U • • • U l r j 

where v > 1, fl > 1, and the items vary continuously with t. 
Let us denote the union of lj by / = l(t). Then we define Ft(x) on Z by 

Ft(x) | lj = ftj(x) and F~1(y) = frkj(y) fl /,-. We require the following hyper-
bolicity condition: there exist a > 0, ft > 1 such that for all t E [to — e, to] and 
for any ji,y2)...,yn 

d^
Ftl^^o---oFtfn) <ab~ 

The above conditions imply that for t E [to — e, to] 

m oo 

i=ln=l 

(3) 

(4) 

where we use L~n(t) to denote the preimages F^oF~^ o • • -oF^Li(t) and Yt 

ST an Ft-invariant locally maximal hyperbolic repelling Cantor set, meas Ft = 0. 
In (4), L~n{t) n Yt = 0 and the endpoints x~n,yrn of Lrn(t) belong to Yt if 
and only if they are nonwandering for Ft | I. The points of Yt which are given 
by 

are differentiable functions of t. 

•nz, - ( n - l ) (t)n-
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FIGURE l l . fL ck\JL1uL2ul2. FIGURE 10. h = Uf^i u{°}> 
i2 = Ur>^_nu{l},y = {0}u{l}. 

The next condition relates L(t) and /(^) and defines the structure of the in
duced map on L(t). 

III. There exists a n i V G N such that for any t E [to — e, to], 
m N p N 

fMt)c\J\jL;k(t)u[j\Jijk(t) 
i=lfc=0 j=lk=0 

where L{ C f~kL{, ljk C f~klj are diffeomorphic preimages of L^ and lj, and 
the items depend continuously on t. 

Let us denote by C the map induced on L by / . It follows from I—III that the 
domain of C consists of a finite or a countable union of intervals A—preimages 
of Li and that the restriction of C on any interval À belongs to one of the two 
possible types. If A contains a critical point ck (the number of such A does not 
exceed m), then C: A —y CA is a two-fold covering. Otherwise A = L^k is a 
diffeomorphic preimage of Li. In all cases C extends to a C2-map on A. Since 
measK = 0, C is defined on a subset of full measure in L. 

FIGURE 12. h 

Y = {0}. 
= ur^rnu{o}, FIGURE 13. /L c (h uLiUL2 UL3) 

U ^ i U l i U ^ u I a ) - " 1 . 
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FIGURE 14. hul2 = \JTLi u y > 
y is a Cantor set, 
fL C ( / 1 U L U / 2 ) " 2 . 

A A Ai A 

FIGURE 15. T | A I = / 3 , 

T\ A2 = / 3 , T | A = / 2 n+ 3 . 

The next conditions concern t = to. 
IV. For any critical point Ci(to) E Li(to) there exists some ki < N such that 

fto fatto)) = Vitto) e Yto and y{(to) is a limit point for y E Yto H f%Li(t0). 
For t = to the map T defined above coincides with CtQ. Condition IV implies 

that the domain of Ct0 on L(to) is an infinite union of intervals A such that 
Ct0 maps A diffeomorphically on some Li. One can deduce from II that Ct0 is 
expanding on all but a finite number of A. Thus the following condition concerns 
the properties of CtQ on a finite number of intervals. 

V. There exist A > 0, q > 1 such that Vn E N \dC?Q/dx\ > Aqn. 
In various examples, condition V may follow from some special property of 

/ such as analyticity or negative Schwarzian derivative, or may be checked 
numerically.1 

The last condition says that for t = to the critical values move with respect 
to Y with nonzero velocity. 

VI. 

Jt{fticitt)-yitt))\ ^ 0 , iE[l,m]. 
\t=to 

THEOREM 1. If a family ft satisfies conditions I-VI then there exists a set 
of positive measure 21C [Jo — £, to] such that for t E 21 the map ft is expansion-
inducing and has an a.c.i.m. flt with positive entropy; to is a density point of%, 

-tke-Lyayunov^expomnfrx^l^^ 
f log \dft/dx\d flt. 

(c) If ft is a family of unimodal maps satisfying I-VI and gt is C2-close to 
ft, then gt also satisfies I-VI for t E [fQ — ef,tb] and there exists a similar set 
21' C [to — e1, tf

0] with JÓ being a density point of 21'. Besides, the following holds. 
:Any example may be realized on a periodic interval. 
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PROPOSITION 2. For any e > 0 there exist 6i,82 > 0 such that for any 
family gt lying in a 61 -neighborhood of ft and for any 6 < 82, 

«T1 • meas{2l' n [*{, - 6, t'0]} > 1 - e. 

We use Proposition 2 in the following situation. Let Wu((/>o) be the unstable 
one-dimensional manifold of Feigenbaum's fixed point (j>o, Ws((/)o) the stable 
manifold of codimension 1. We consider some family ft transversely intersecting 
W8(<t>o) and suggest that the iterations of ft under the action of the doubling 
transformation (acting on families) converges to Wu((j)o)> Let /o = ft r\W3((/)o) 
and suppose that ft with t > 0 have zero topological entropy. 

PROPOSITION 3. For any to < 0, meas{£ E [to,0]: ft has an a.c.i.m. of 
Theorem l}/to > c where c > 0 is independent of to. 

(d) Here we show that one parameter families of maps with m extrema are 
useful when studying m-parameter families. Consider 

fqw : x H+ x + u) + (q/2ir) sin 2%x, x E R/Z. 

For q < 1 these mappings were studied in connection with the problem of dis
appearance of invariant tori in KAM theory. For q > 1, fqu} is noninvertible. 
There is a conjecture that fqu} with an a.c.i.m. exist for q infinitely close to 1. 
In [2] some points (qn,u)n) were constructed such that in any neighborhood of 
(gn,tJn) there exists a subset Xn = {(q,u): fqu has an a.c.i.m.} with positive 
Lebesgue measure. Although (qn^n) constructed in [2] satisfy qn > Q* & 1.17, 
it is possible that a similar method allows us to come nearer to 1. The points 
(qn)Wn) are characterized by the following property: there exists a periodic in
terval [zi(qn,wn),Z2(qn,wn)] = rn such that fqn(JJn \ rn is a three-fold map of rn 

onto rn, with two critical points ci(qn,un), c2(qn,un) where 

f%nUnClttin,Un) = ZtfamWn), fq^^Qn^n) = Zi(qn,U)n). 

Besides (qn,wn) is the point of transversal intersection of two curves 

7i = {(g,w): fZu,ci(q,u) = Z2(q,u)}, 72 = {(?,w): fqUc2(q,u)) = Zi(q,u)} 

which divide the neighborhood of (qn,wn) into four parts. In one of these parts, 
characterized by fqljCi(q,u)) E [zi(q,u)),z2(q^)] 3 /^c2(g,a;), any smooth 
curve passing though (qn, ujn) generates a one parameter family /g(t)w(t) satisfy
ing the conditions of Theorem 1. Thus, using Fubini theorem we conclude that 
the set of (q, CJ) corresponding to the stochastic behavior has positive Lebesgue 
measure on the plane of parameters. 

(e) For a dissipative diffeomorphism, an analogue of a.c.i.m. is an invariant 
measure on some attractor À which generates on unstable manifolds W%, x E A, 
conditional measures absolutely continuous with respect to the length, i.e., Sinai-
Ruelle-Bowen (S-R-B) measure. 

There are no results about S-R-B measures analogous to the above results 
about a.c.i.m. for one-dimensional mapping. On the contrary, a theorem of 
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Newhouse [11] which has no one-dimensional analogue asserts the persistent 
tangency of stable and unstable manifolds and appearance of attractive cycles. 
However the set of parameter values complementary to the set of Newhouse may 
have positive measure (see [12]). 

We formulate a hypothesis in this direction. 

HYPOTHESIS. Let ft be a family of one-dimensional maps satisfying the con
ditions of Theorem 1, and let Ft be a family of diffeomorphisms near to ft in 
C2 -topology. Then for a set oft of positive measure, Ft has an attractor carrying 
S-R-B measure. 

A possible approach to the proof of this hypothesis is related to the no
tion of diffeomorphisms inducing hyperbolicity—a modification of the notion 
of expansion-inducing one-dimensional maps. 

ACKNOWLEDGMENT. I wish to thank J. Guckenheimer for his kind consent 
to deliver this address. 
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Phenomena of Nonintegrability in Hamiltonian Systems 

V. V. KOZLOV 

In the last ten or fifteen years mathematicians have again become interested in 
problems related to the integrability of equations in classical dynamics, which, as 
a rule, are Hamiltonian equations. New, completely integrable systems have been 
found (multidimensional analogs of classical problems among them), and various 
algebro-geometric constructions have been suggested which elucidate the causes 
for the existence of "hidden" conservation laws. It is also useful to consider the 
peculiarities of the behavior of phase trajectories of nonintegrable Hamiltonian 
systems and present strict proofs of their nonintegrability. This paper is dedi
cated to the analysis of various phenomena of qualitative nature which hinder 
the integration of Hamiltonian equations. 

1. Let us first recall the definition of a Hamiltonian dynamic system. As
sume that M2n is an even-dimensional manifold (phase space), w is a closed 
nondegenerate 2-form on M (symplectic structure), H is a real function on M 
(Hamiltonian). Since u) is nondegenerate, the function H can be associated with 
a unique vector field vjj which is defined by the equation UJ(VH, •) = dH. 

This field generates a Hamiltonian system on M, i.e., 

x(t) = vH(x(t)), x:Rt^M. (1) 

In suitable local coordinates xi,..., xn, yi,..., yn (known as canonical coordi
nates) the form UJ reduces to the form Yl^Vs A dx3 (Darboux's theorem). In 
the canonical coordinates x, y the form of Hamiltonian equations (1) is more 
customary: 

xs = -dH/dy3, ys = dH/dx3, 1 < s < n. (2) 

We have often to consider nonautonomous Hamiltonian systems in which the 
Hamiltonian H explicitly depends on time. 

If differential equations are not of the form (2), this does not yet mean that 
they are not Hamiltonian. By virtue of this remark an interesting problem arises 
concerning the identification of Hamiltonian dynamic systems with an invariant 
measure and first integrals (in the autonomous case). Here is a simple example. 
Let 

x = Ax, xE Rn, (3) 
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be a linear system with constant coefficients, which possesses a quadratic integral 
/ = (Bx, x), B T = B. If the operators A and B are nondegenerate, then system 
(3) is Hamiltonian with a Hamilton's function / . In particular, n is even. In Rn 

the symplectic structure is defined by the formula 

u(x',x") = (BA-1x',x"). 

2. Dynamic systems (Hamiltonian systems in particular) are customarily clas
sified into integrable and nonintegrable, various definitions of integrability being 
possible, each with a certain intrinsic theoretic interest. A system which is inte
grable in the sense of one definition may prove to be nonintegrable in the sense of 
another definition. I will give examples later on. It is customary to associate the 
concept of an integrable system with a sufficiently large number of independent 
integrals ("conservation laws"). Thus, for a complete integrability of Hamil
tonian equations with n degrees of freedom (on M2n), it is sufficient to know 
n independent integrals Fi,...,Fn, which are pairwise in involution: Poisson's 
brackets {Fi,Fj} = (^{VF^VF^ are zero. It is well known that compact energy 
surfaces H = h of a completely integrable Hamiltonian system are stratified into 
multidimensional tori with a quasiperiodic motion. 

If we have a nonautonomous Hamiltonian system with a Hamiltonian H : M2n 

x R t —• R, then, for it to be completely integrable, it is sufficient to have n 
independent integrals F3 : M

2n x R t —> R (s = 1,. . . , n), which are in involution 
for all values of t. The case when the Hamiltonian H and the integrals Fi,..., Fn 

are periodic with respect to t with the same period p is the most important for 
applications. Then it is natural to take M2n x T1 {modp} rather than M2n x R 
as an extended phase space. If the integral surfaces {(z, t) E M2n x T1 : F3 (z, t) = 
Ca, 1 < s < n} are compact, then they are (n + l)-dimensional tori with a 
quasiperiodic motion. 

With due regard for the theorem on the straightening out of trajectories, 
it is reasonable to discuss the integrability of a dynamic system either in the 
neighborhood of the equilibrium position or in a sufficiently large region of a 
phase space where trajectories are recurrent. 

Before investigating the integrability of specific systems, we must elaborate 
the concept of a set of independent integrals. We shall deal exclusively with an
alytic Hamiltonian systems. In that case it is natural to consider sets of analytic 
integrals which are independent at least at one point (then they are independent 
almost everywhere). We must bear in mind, however, that an analytic Hamil-
tonian system may possess integrals of the class Cr but at the same time not 
possess integrals of the class Cr+1. (We do not exclude the value r = 0: we 
consider a continuous function to be an integral when it is locally nonconstant 
and assumes constant values on each trajectory.) We shall consider the canonical 
Hamiltonian equations (2) with a Hamiltonian H = ay + f(x, t) as an example, 
where a is a real parameter, / is a 27r-periodic analytic function with respect to 
x and t [1]. Since the function H is periodic with respect to the variables x and 
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t, it is natural to take a direct product R x T2 = {y; x, t mod 27r} as an extended 
phase space. We write equation (2) in the explicit form 

x = a, y = -df/dx = -F(x,t). (4) 

We seek the integral of this system in the form y + g(x, t), where g: T2 —> R is 
a smooth or analytic function which must satisfy the equation 

dg/dt + adg/dx = F(x, t). (5) 

Equation (5) is well known in the theory of small denominators ([2], see also 
[3]). Assume that 

F = Yl fmne i (mi+nt), g = £ ' gmne*™^. 

Then 

gmn — i(ma + n) ' 
For almost all a the numbers gmn are Fourier coefficients of a certain analytic 
function. Now if the irrational numbers a can be sufficiently rapidly approxi
mated by rational numbers, then equation (5) can have a solution of only finite 
smoothness or have no solutions. Generalizing these observations, we can show 
that for a certain / E CW(T2) there are sets Mw, M ^ , . . . ,Mfc,... ,Mo,M0, 
dense everywhere in R, such that for a E Mw equations (4) have an analytic 
integral, for a E MQQ there is a smooth integral but there is no analytic integral, 
. . . , for a E Mk there is an integral of the class Gk but there are no integrals of 
the class Cfc+1,..., for a E Mo equations (4) possess only a continuous invariant 
function, for a E M& there are even no continuous integrals. We can derive the 
density of the set M0 in R from the result obtained by A. B. Krygin concerning 
the ergodicity of cylindrical cascades [3]. Note that if we consider equations 
(4) in R3 = {x,y, t} rather than in R x T2, then this system turns out to be 
completely integrable. It should be emphasized that system (4) can be explicitly 
integrated by simple quadratures for all values of a, but its behavior as a whole 
depends considerably on the Diophantine properties of the number a. 

3. When mathematicians realized the impossibility of solving equations of 
classical dynamics in a closed form, strict results appeared concerning their non
integrability. The first of those results was, evidently, Liouville's theorem (1841) 
stating that the equation x + tx = 0 cannot be solved by quadratures (see [4]). 
In 1887 Bruns stated that there are no algebraic integrals in the problem of three 
bodies independent of the classical ones (see [5]). This theorem was generalized 
by Painlevé to the case when integrals are algebraic with respect to the velocities 
of three gravitating bodies [6]. These classical results are of no importance for 
dynamics, however, since they do not take into account the peculiarities of the 
behavior of phase trajectories. Equations of motion may happen to be completely 
integrable but do not have, say, integrals which are polynomial with respect to 
velocities. Here is a simple example [7]. The motion of a point charge along a 
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"plane" torus T2 = {z,2/mod27r} in a constant magnetic field is described by 
the equations 

x + uy = 0, y - Qx = 0; 0 = const. (6) 

They have an energy integral x2 + y2 = h. It can be shown [7] that equations (6) 
do not have an additional integral, polynomial with respect to velocities, with 
smooth and single-valued coefficients on T2. System (6) is completely integrable, 
however: the function sin(i + fly) is an additional integral, for instance. The 
integral x+Siy is linear with respect to velocities, but it is a multivalued function 
in the phase space R2 x T2. 

Poincaré was the first to pose a problem on the nonintegrability of the Hamil
tonian equations as a whole and to get some results in this respect [8]. He 
investigated Hamiltonian differential equations of the following kind: 

x3 = -dH/dy3, y3 = dH/dx3, 1 < s <n, 
H = Ho(xi, •.•ixn) + eHi(xi---xn,y1'--yn) + ---. 

The Hamiltonian H is a power series with respect to e, and its coefficients are 
analytic functions in Rn x T" = {x\ymod2it}. For e = 0 we have a completely 
integrable system. Differential equations (7) are often encountered in applica
tions, and therefore Poincaré considered the problem of their investigation to 
be the "basic problem of dynamics." Poincaré tried to find out whether equa
tions (7) have first integrals F(x,y,e), which are analytic i n D x T n x (—£0,€o), 
where D is a domain in Rn = {x}. It is shown in [1] that it is more expedient 
to consider a problem on the existence of formal integrals in the form of power 
series YlFs(xiy)£3 w ^h coefficients analytic in the domain D x Tn . This prob
lem is closely connected with the possibility of realizing the classical scheme of 
perturbation theory. 

The problem of the existence of analytic integrals of system (7) for fixed values 
of the parameter e ^ 0 is more complicated. One of the most popular problems 
of this kind is the investigation of the complete integrability of the Hamiltonian 
system near a stable equilibrium. The formal analysis of this problem dates back 
to Birkhoff [9] and Siegel, who presented strict proofs [10] (for the discussion of 
these problems, see [11]). 

In the majority of the integrated problems of classical mechanics the known 
first integrals are extended to a complex domain of variation of the phase vari
ables as single-valued holomorphic (or meromorphic) functions. In connection 
with this remark an interesting problem arises concerning the complete "com
plex" integrability of a holomorphic Hamiltonian system. In this case we must 
bear in mind that the absence of holomorphic integrals in a complex domain 
does not yet mean that the Hamiltonian system is not integrable in a real sense. 
Here is a simple example. The linear Hamiltonian system z + (a2 +ßfp(t))z = 0 
possesses an analytic integral f(z,z,t), which is periodic with respect to t, in a 
real domain (Floquet-Lyapunov theorem). For almost all a and ß, however, this 
system does not have a holomorphic integral in a complexified phase space (see 
[12]). 
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In "complex" completely integrable Hamiltonian systems the level surfaces of 
involute integrals often prove to be not simply real tori T n , but, being extended 
to a complex domain, to be Abelian manifolds T 2 n . In this case the general 
solution is expressed by the ^-functions of complex time. Systems possessing 
these properties are often said to be "algebraically integrable." When we seek 
the necessary conditions for algebraic integrability, we usually follow the method 
of Kovalevskaya, which she applied in 1888 to the dynamics of a rigid body. For 
the present-day state of these problems see [13, 14, 15] (see also the report made 
by P. Van Moerbeke at the International Congress of Mathematicians in Warsaw 
in 1982). 

4. In recent years Poincaré's ideas have been further elaborated, and new 
phenomena in the behavior of Hamiltonian systems hindering their integrability 
have been discovered. This made it possible to present strict proofs of the non
integrability of a number of significant problems of Hamiltonian mechanics (a 
heavy asymmetric top, a rigid body in ideal fluid, the problem of four-point ver
tices, etc.). What lies behind nonintegrability consists in the following. There 
are an infinite number of resonant tori filled with periodic trajectories in the 
phase space of an unperturbed completely integrable system. These tori become 
disintegrated when perturbation is added. The families of periodic solutions lo
cated on them yield pairs of nondegenerate periodic solutions. The first integrals 
are dependent on the trajectories of the nondegenerate periodic solutions. The 
disintegrated resonant tori accumulate, as a rule, by a pair of doubled sépara
trices (asymptotic surfaces) of the unperturbed problem. When a perturbation 
is added, the séparatrices themselves split and, as a rule, intersect, forming a 
rather tangled network. The nondegenerate periodic solutions of the perturbed 
problem, being extended to the plane of complex time, are not single-valued 
functions, and their branching impedes the presence of holomorphic first inte
grals in the complexified phase space. For the necessary details see [1], which 
also contains the review of the achievements in this field covering the period up 
to 1983. In what follows we discuss new problems pertaining to the analysis of 
the phenomena of nonintegrability. 

5. One of the problems of this kind consists in the investigation of perturbed 
integrable Hamiltonian systems, where at each stage of perturbation theory only 
a finite number of resonant invariant tori disintegrate. We consider as a model 
example Hamiltonian equations 

x = -Hf
y, y = H'x, H = Ho(x)+eHi(y), xERn,yETn, (8) 

where Ho = \(Ax,x) is a nondegenerate quadratic form with respect to the 
variables x, and Hi is a trigonometric polynomial: 

Hi= ] T hme*m>y\ hm= const. (9) 
mGZ" 
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Just as Poincaré did [8], we shall discuss the fact that system (8) has an addi
tional integral as a formal series 

X>s(*,2/K 
3>0 

with single-valued analytic coefficients in R n x T n . Since the Fourier series of the 
perturbation function (9) contains only a finite number of harmonics, Poincaré's 
results and their known generalizations cannot be applied to systems with a 
Hamiltonian (8). 

We can treat Hamiltonian equations (8) as equations of motion of a mechanical 
system with a configurational space T n , kinetic energy Ho, and a small potential 
eH\. It should be emphasized that a positive definiteness of the quadratic form 
Ho is not presupposed. 

Let us agree on some designations. Let Ç,rf E Rw. We set (£,17) = (AÇ,rj). 
We designate by 9Jt a finite set of integer-valued vectors m = (mi,...,mn) 
for which hm ^ 0. Since Hi ^ const, it follows that 3Jt contains at least two 
elements. Assume that i i , t 'a,..., in is any permutation of the indices 1,2,..., n. 
We set 

Oiii = maxra^, oti2 = max rrii2 ,...,otin = max min. (10) 
an m an 

mi1=ail mi1=ati1 

We term the vector a = (o?i,... ,otn) the vertex 9Jt. Formulas (10) yield n! 
vertices of the set 9Jt, but they are not all different. If we replace SDt in formulas 
(10) by Wl\{a}, then we get an integer-valued vector ß which is a vertex of the 
set M\{a}. 

THEOREM 1. We assume that the set SDÌ has a vertex a such that: 
(i) the vertices a and ß are linearly independent, 
(ii) m(a, a) + 2(a, ß) ^ 0 for all integers m > 0. 

Then the Hamiltonian system (8) does not have a complete set of independent 
integrals representable as a power series YlFs{xiy)£8 w^ coefficients analytic 
in R n x T n . 

This theorem was established by V. Kozlov and D. Treshchev. Note that when 
all the coefficients hm ^ 0 in the Fourier expansion (9), the nonintegrability of 
equations (8) follows from the classical result of Poincaré [8]. For n = 2 we can 
assert_sjilLmore:_in^ 
m E Z n , which are pairwise independent, then equations (8) are nonintegrable 
either (see [1]). The proof of Theorem 1 is based on the analysis of the classical 
scheme of perturbation theory applied to the Hamiltonian equations (8). 

There is the following corollary of Theorem 1. 

COROLLARY. If n = 2 and the functions HQ and Hi satisfy the hypothesis 
of Theorem 1, then the equations with the Hamiltonian HQ + Hi do not possess 
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an additional integral in the form of a polynomial with respect to the momenta 
x with analytic and single-valued coefficients on T2. 

This statement is an addition to the classical results concerning the conditions 
of the existence of polynomial integrals with respect to momenta (see [6]). It 
should be emphasized that the potential Hi need not be necessarily small here. 

6. One more problem, which we shall discuss here, is connected with topologi
cal and geometric conditions for a complete integrability of Hamiltonian systems, 
which we come across in classical mechanics. Assume that Mn is a complete ana
lytic Riemannian manifold and E 2 n _ 1 is a foliated space of unit tangent vectors. 
The Riemannian metric defines on E2*1"1 a dynamic system which is a geodesic 
flow. From the viewpoint of mechanics a geodesic flow describes the motion 
of a particle along Mn by inertia with unit velocity. The famous principle of 
Mopertuis reduces the motion under the action of potential forces to a geodesic 
flow. 

THEOREM 2 [16]. If M is a compact two-dimensional surface of genus larger 
than one, then the geodesic flow on E does not possess a nonconstant analytic 
integral. 

The proof of this theorem is based on the analysis of the set of unstable 
periodic trajectories. Since the genus of M is greater than one, the Gaussian 
curvature is negative in the mean. If the curvature is negative everywhere, then 
the flow on E is Anosov's system [17]. In that case all periodic trajectories are 
unstable, they densely fill E everywhere, and the geodesic flow does not even 
possess a continuous integral. The hyperbolic behavior of phase trajectories lies 
at the basis of the proof of the nonintegrability of the restricted problem of three 
bodies advanced by Alekseev [18]. Note that a curvature negative in the mean 
is not always negative everywhere. 

Theorem 2 has been generalized in different directions. Taimanov has proved 
the absence of a complete involute set of analytic integrals of a geodesic flow in a 
multidimensional case when one of the following additional conditions is satisfied 
[19]: 

(1) dimM < rank#i(M,Z), 
(2) the fundamental group ITI (M) does not contain a commutative subgroup 

of a finite index. 
The first condition was proved in [16] for n = 2, and was formulated as a 

hypothesis by the author in [20]. The second condition is a new one. It would 
be interesting to find other topological obstacles hindering complete integrability. 

Another possible way of achieving generalization is to consider domains with 
a geodesically convex boundary. Assume that M is a compact submanifold with 
the boundary on the analytic surface M2. Let E denote the set of all points of 
E which are taken by the projection ir: TM2 —> M2 into points of M. We say 
that M is geodesically convex if for any two close points of the boundary dM, 
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the shortest geodesic of the Maupertuis metric joining the points lies entirely in 
M. 

THEOREM 3. / / rank Hi (M, Z) > 2 and M is geodesically convex, then 
the dynamic system on E does not possess a nonconstant analytic first inte
gral. Moreover, there is no analytic integral even in the neighborhood of the set 
E C E . 

S. Bolotin has found that the condition rank Hi(M, Z) > 2 can be replaced 
by a weaker condition x(M) < 0> where x is an Eulerian characteristic [21]. He 
has also found an interesting application of the generalized Theorem 3 to the 
problem of the motion of a point in the gravitational field of n fixed centers. Let 
Zi,..., zn be different points of a complex plane C. The Hamiltonian of a plane 
problem of n centers has the form 

H=\\p\'l+V{z), (z,p)eUxC, 

where U = C\{zi,...,zn} is a configurational space, V is a gravitational po
tential of attraction of a moving particle z by the stationary points zi,...,zn, 
i.e., 

n 
v(z) = - £ wi* - ^r1» w > °-

i=l 

THEOREM 4 [21]. Assume n > 2. Then the equations of the problem dealing 
with n centers do not have an analytic integral on the surface {(z,p) E U x 
C:H(z,p) = h>0}. 

Note that the conditions n = 1,2 correspond to Keplerian and Eulerian 
integrable problems. When we prove Theorem 4, we make use of the Levi-
Civita regularization. Assume that M is the Riemannian surface of the function 
yj(z — zi) • • • (z — zn) and TT: M —> C is a projection. It turns out that the Levi-
Civita regularization reduces a phase flow on the surface H = h to a geodesic 
flow on M with some complete metric. If D is a disc in a complex plane C of 
a sufficiently large radius, then the set M = TT~1(D) is compact, geodesically 
convex, and homotopically equivalent to M. By the Riemann-Hurwitz formula 
X(M) = 2 - n < 0 for n > 2. 

We can generalize Theorems 2 and 3 to an irreversible case when additional 
hyroscopic forces act on a system [7, 22]. The origin of these forces differs; 
i.e., they appear, for instance, upon a transition to a rotating reference system 
and in the description of the motion of charged particles in a magnetic field. 

^ e l ì i o n s ì d e r l ^ 
gravitating bodies which are in relative rest, rotating, as a rigid body, about 
their barycenter with a constant angular velocity, where an additional body of 
an infinitesimal mass moves under the action of gravitational forces in the plane 
of the circular orbits of huge bodies. One can show [22] that for n > 2 the 
equations of motion of this problem do not possess an analytic integral on the 
energy surface H = h > 0. This statement has not been proved for a restricted 
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problem of three bodies (when n = 2). Weaker theorems can be found in [8, 23, 
24]. Note that, in accordance with Chazy's hypothesis (see [25]), the problem of 
three bodies is completely integrable on the level surface of the energy integral 
for H > 0. This hypothesis is related to a more general idea: in the problem 
of scattering with a noncompact configurational space the data at infinity are 
candidates for integrals. However, the realization of this idea is hindered by some 
difficulties of principle connected with the domain of definition and smoothness of 
the "integral of scattering." One of these difficulties is the possibility of capture 
in the problems of many interacting particles. 
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Optimization of the Ensured Result 
for the Dynamical Systems 

A. V. KRYAZHIMSKII 

This report deals with a special class of optimal control problems with un
certainty. Uncertainty appears, if the control system dynamics depends, besides 
controls, on some uncontrolled parameters (disturbances). Disturbances may in 
particular be controls of the controller's opponent whose.aim is contrary to that 
of the controller. This situation is studied in the theory of differential games. We 
shall concentrate here upon the positional approach to differential games sug
gested by N. N. Krasovskii [1] and worked out in [2-6] and other publications; 
the ultimate results are summed up in [4]. The positional formalization does not 
restrict the laws of forming disturbances to some definite class of strategies of 
the controller's opponent. That leads to considering, instead of game problems 
with an opponent, more general problems of optimization of the ensured result, 
i.e., the worst result for a given control law. 

A brief outline of the positional approach, with formulations of the main results 
concerning existence and construction of solutions, is given below. Central points 
of a solution method discussed here are extremal shift and stochastic program 
maximin. The former shows general structure of optimal closed-loop (positional) 
controls; the latter establishes a connection between closed-loop game problems 
and special open-loop (program) maximin problems of stochastic control. 

Prom the point of view of applications the question of stability of the ensured 
result with respect to the errors of current state measurements is of special interest. 
In [2] a principle of stable control was suggested. It is based on including an 
auxiliary control system—a "guide" or a "model"—into the control process. This 
principle combined with a modification of the extremal shift method was applied 
in [7] to constructing stable solutions for some ill-posed inverse problems for 
control systems. Here we consider such problems as those of optimization of the 
ensured result. 

1. The problem of optimization of the ensured result. Let at each 
time t a state of a control dynamical system be given by a vector x[t] E Rn. The 
evolution of x[t] depends on a control parameter u[t] as well as on an uncontrolled 
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parameter v[t]—we shall call it a disturbance. Namely, if an initial time £* and 
an initial state z* are fixed, then x[t] (t > t*) is a solution of the Cauchy problem 

x = f(t, x, u[t], v[t]), x(t*) = x*. (1.1) 

We assume u[t] and v[t] to be elements of compacta P C RP and Q C Rq, 
respectively. Measurable functions u[ • ] : [ti,t2] »-• P and v[ • ] : [ti,t2] •-> <2 will 
be called a control realization at [ti,t2] and a disturbance realization at [ti,t2], 
respectively. Denote the sets of all such u[ • ]'sandt>[ • ]'sby U[ti,t2] a,ndV[ti,t2], 
respectively. Let a final time instant ti be fixed. The aim of the controller is to 
form in real time a control realization at [t*, ti] so as to optimize a control process, 
without knowing the disturbance realization. The natural way to solve such an 
uncertain problem is to optimize.the ensured result, i.e., the result corresponding 
to the "worst" disturbance realization. That is the approach considered below. 

Fromnow on we assume that (i) / ( • ) is continuous, (ii) \f(t, x, u,v)\ < Cf(l+x) 
for a certain c/ > 0, and (iii) for each bounded set G C R x Rn there exists 
C/,G > 0 such that 

\f(t,xuu,v) - f(t,x2,u,v)\ <cfiG\xi -x2\ for (t,x±), (t,x2) EG; 

here and below | • | denotes the Euclidean norm. The assumptions (i)-(iii) 
guarantee existence and uniqueness of the solution x[ • ] of the Cauchy problem 
(1.1) at [t*,ti] for every t* < ti, z* E Rn, U[-]E U[U,ti], and v[ • ] E V[U,ti]; a 
triplet (x[ • ], u[ - ],v[ • ]) will be called a process (at [t*,ti])-, x[ • ] will be called 
a trajectory (at [t*,ti]); if we want to emphasize that x[t*\ = x*, we will write 
x[ • | x+] instead of x[ • ] and say that the process corresponds to the initial state 
z*. We fix a £0 < $ and a bounded set G* C [£o> ti] x Rn and assume further that 
{U,x*) EG*. 

Let 7 be a functional on the set of all processes; it provides the optimality 
criterion to be minimized. Taking into account that v[ • ] is not known to the 
controller we admit the latter to form u[t] on the basis of the past of a trajectory 
up to time t. Such a way of controlling may be defined formally as a mapping 
U : x[ • ] \-^ u[ • ] = Ux[ • ] satisfying the following physical realizability condition 
(PR-condition): if XI[T] = x2[r] for all r E [t*,t], then UI[T] = u2[r] for all 
T E[t*,t], where U{[ • ] = Uxi[ • ], i = 1,2. We will also require U to be compatible 
with any disturbance realization. Introduce the following compatibility condition 
(C-condition): for each x* and each v[ • ] E V[t*,ti] there exists x[ • ] such that 
(x[ • ],Ux[ • ], v[ - ]) is a process at [t*,ti] corresponding to x*. A mapping 
U : C([t*,ti],Rn) \-* U[t*,ti] that satisfies PR- and C-conditions will be called a 
^onWöriavT^r^^ti] ) '. Cöntröriäv^i^hecrätf oller 's tool to minimize^/. 

Suppose that t* and a* are fixed and a control law U is chosen. So far as each 
disturbance realization v[ • ] may be expected a priori, each process of the form 
(x[ • I a;*], Ux[ • I sc*], v[ • ]) is admissible; further £*(£/;£*,£*) denotes the set 
of all such processes. Thus the value 

p{U]U,x.)= sup 7 ( r [ - ] ) (1.2) 
r[-]€S.(U;t„,s.) 
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describes the worst result expected a priori. We will call (1.2) the ensured result 
for U at (t*,x+). Now we formulate the optimization problem mentioned above 
as that of minimizing the ensured result by choosing a control law. The value 
inf^er p(U\ £*,£*), where T is a nonempty class of control laws at [t*,ti] will be 
called the optimal ensured result at (t*,x#) in T. 

2. Closed-loop control laws. Differential game. We will consider the 
problem for 7 given by 

7(z[ . ] , u [ . ],v[. ]) = <r(x[ti])+ / x(tAAAAAA)dt, 
Ju 

where a(-) is Lipschitz and x(') is continuous and satisfies the condition similar 
to (iii) with constant CXIQ-

A function u*(•) = u*(t,x,e): RxRn x [0,00) i-> P will be called a (positional 
or closed-loop) strategy; A will stand for an arbitrary partition (ri)£i0, t* = To < 
. . . < rm = ti, of the interval [£*, ti]\ the notations 

d(A) =sup{ri+i -n: i = 0,...,m-1}, h = [Tì,Tì+I) 

will also be used. We will identify a triplet (u*( • ),A,£) where e > 0 with 
the control law U: x[ • ] »-• u[ • ] such that u[t] = U*(Tì,X[Tì],£) for t E bi 
(U is defined uniquely). We will call U a closed-loop control law. The class 
rc[£*,tf] of closed-loop control laws at [t*,ti] is rather restricted. However, a 
considerable expansion of this class does not decrease the optimal ensured result. 
Namely, say that a control law U at [tt,ti] is admissible if for any x*, any function 
v+( • ) = v*(t,x,u): R X Rn X P H+ Q Borei in u and any A there exists a 
process (x[ • | x*],u[ • ],v[ • ]) at [U,ti] such that u[ • ] = Ux[ • | a;*] and 
v[t] = V*(Tì,X[Tì I z*],ii[£]) for t E b{. The class ra[£*,tf] of admissible control 
laws is considerably wider than rc[£*, ti]. Hence 

p°c(t*,x*)>p°a(U,x*), (2.1) 

where p®(t*, £*) and p®(t*,x*) denote optimal ensured results at (t*, x*) in classes 
Tc[£*,$] and Ta [£*,#], respectively. In fact the equality is true: 

PROPOSITION 2 . 1 . p%(Uìx*) = p°(Uìx*). 

Now we introduce the optimization problem for strategies. If u*( • ) is a 
strategy, then the value 

ps(u*( • );**,&*) = lim lim sup p((u*( • ), A,e);**,&*) 

will be called the ensured result for it*( • ) at (£*,£*); the value p®(t*,x*) = 
mf{p8(u*( • );t*,x*): w*( • ) is a strategy} will be called the optimal ensured 
result at (£*,£*); a strategy u*( • ) such that p8(u°( • )\t*,x*) = p^(t*,x*) for 
all (t*, x*) E G* will be called optimal (it is worthwhile to emphasize that u°( • ) 
does not depend on (t*,x*)). Obviously, 

p°8(t*,x*)>p°c(U,x*). (2.2) 
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In fact the following proposition is true: 

PROPOSITION 2.2. (1) p°3(t*,x*) = p%(t*,x*); 
(2) there exists an optimal strategy. 

Propositions 2.1 and 2.2 result from the positional game-theoretic approach 
[4]. According to this approach the minimization problem in the class of strategies 
is supplied by an analogous counter-problem of maximization. Namely, define a 
counter-strategy as afunction v*( • ) = v*(t,x,u,e): RxRnxPx[0,oo) i-> Q Borei 
in u and a closed-loop disturbance law at \U,ti] as a triplet V = (v*( • ),A,e)m, 
identify the latter with a mapping V: (x[ • ],u[ • ]) i-> v[ • ] = V(x[ • ] ,«[• 
]): C([t*,ti],Rn) x U[U,ti] »-• V[t*,ti], where v[t] = v*(Ti,x[Ti],u[t],e) for t E fc; 
introduce the ensured counter-result for V at (t*,x*): 

TT(V;U,X*)= inf 7(r[ • ]), 
r[-]eS*{V;U,xm) 

where S*(V;t*,x+) is the set of all processes at [t*,ti] of the form (x[ • | a*], 
ul ' ]iV{x[ ' I a;*]j'w[ ' ])); introduce the ensured counter-result for i>*( • ) at 
(**,z*): 

*a(v*{ ' );<*,2!*) = Hm lini i n f ' M M • ), A,e);^,a;*); 
e_>0ö-+0d(A)<5 

define the optimal ensured counter-result at (£*,£*): 

^(t*,x*) = sup{7rs(v*( • );t*,x*): v*( • ) is a counter-strategy}; 

call a counter-strategy v°( • ) optimal, if /ir3(v°( • )m,t*,x*) = 7^(£*,£*) for all 
(t*,x*) E G*. 

The initial problem (find u°( • )) and the counter-problem (find v°( • )) form 
a differential game. It should be noted that if v[ • ]'s are control realizations for 
a real controller's opponent, then the counter-problem has an actual sense. If 

p°3(U,x*) =7T°(£*,£*) = v(t*,x*) for all (U,x*) E G*, (2.3) 

then the function v( • ) (on G*) will be called the value of the game. If the value 
exists, then a pair (u°( • ),v°( • )), where u°( • ) and v°( • ) are respectively an 
optimal strategy and an optimal counter-strategy, will be called a saddle point. 
The main result is 

THEOREM 2.1. (1) There exists the value v( • ) of the game-, 
(2) there exists a saddle point. 

Note that Theorem 2.1 implies obviously statement (2) of Proposition 2.2. 
Further, it is easy to show that each admissible control law U and each closed-
loop disturbance law V are compatible; i.e., for any x+ there exists a process 
(x[ • | x*],u[ • ],v[ • ]) such that w[ •] = Ux[ • | z*] and v[ • ] = V(x[ • | x*],u[ • ]). 
That gives immediately that pa(U;t*,x*) > 7rs(^;£*,£*). This inequality and 
(2.1)-(2.3) lead obviously to Proposition 2.1 and statement (1) of Proposition 
2.2. 
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Now we describe the extremal shift method specifying the form of a saddle 
point. Taking into account condition (iii), suppose without loss of generality that 
G+ = {(t,x): t E [to,ti],\x\ < ß(*)}> where K( • ) is continuous and for every 
(t*,x+) E G*, u[ • ] E U[t+,ti], and v[ • ] E V[t*,ti] the solution x[>] of (1.1) at 
[t+,ti] is such that \x[t]\ < K(t) for all t E [£*,#]. Let c* = m a x l c / ^ * , ^ ^ , } , 
r}(t,e) = (e + e(t — to))1/2expc*(£ — to), and Vg denotes the scalar product of 
vectors / and g. Define u°(t,x,e) and v°(t,x,u,e) to be, respectively, solutions 
of the extremal problems 

max(lif(t,x,u,v) + six(t,x,u,v)) —• min, uE P, (2.4) 

l2f(t,x,u,v) + s2x(t,x,u,v) —• min, v EQ, (2.5) 

where (Zi,«i) and (l2,s2) are, respectively, solutions of the extremal problems 

v(t,x — I) — s —* min, (t,x — l) E G*, \(l, s)\ < r)(t,e), 

v(t,x - I) - s —> max, (t,x — I) EG*, \(l, s)\ < rj(t,e). 

Note that such strategy u°( • ) and counter-strategy i>*( • ) actually exist. 

PROPOSITION 2 .3 . (u°( • ),v°( • )) is a saddle point. 

REMARK. Suppose that for each l E Rn and s E Rn 

min max(Z'/(£) x, u, v) + sx(t, x, u, v)) 
»BPveQ ( 2 6 ) 

= maxmin(/ ' /(^ xi u>v) + SX(^î XI UI V))-
VEQ UEP 

Then Theorem 2.1 remains true provided counter-strategies do not depend on u. 
The problem (2.5) turns in this case into a problem similar to (2.4). Proposition 
2.1 remains true if the i>*( • )'s in the definition of an admissible control law do 
not depend on u. 

3. Stochastic program maximin. Specify now the form of v( • ). As it 
was shown in [2] v( • ) is in some particular, regular, cases given by 

!/(*•,a«,) = max min >y(x[ • | &*],«[ • ],v[ • ]). (3.1) 

The right-hand side of (3.1) is called program maximin. In the general case v(t*, x*) 
is determined by an analogous expression with v[ • ]'s and u[ • ]'s depending 
(besides time) on some probability element. Namely, fix temporarily a partition 
A. Consider the probability space (Q,Bn,p), where fi is the product of m 
exemplars of the interval [0,1) (recall that m + 1 is the number of r^'s in A) and 
p, is the standard Borei measure on Bn; here and below Bz denotes the Borei 
(7-algebra on a metric space Z. Functions w[ • ] = ïï[£,a;]: [t*,ti] x Ü i-> P and 
ïï[ • ] = v[t,u,u]: [U,ti] x P X ( ì H Q, B[Ui6]xn- a n d 5[t*,i9]xPxn-measurable, 
respectively, will be called programs (for control and disturbance, respectively) if 
u[t, u)] and v[t, u, uJ\ considered as functions of u) = (wi,..., um) depend for t E b{ 
only on the first i + 1 coordinates of the vector w. Denote the sets of all such 
ïï[ • ]'s and v[ • ]'s by £/[£*,#] and V^*,??], respectively. Each z*,u[ • ], and v[ • ] 
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determine the unique S[tiii^]XQ-measurable function x[ • | £*; w[ • ], v[ • ]] = af[ • | 
£*] = x[t,oj | x*]: [t*,ti] x fi i-> i2w such that (äf[ • ,CJ | a;*], u[ • ,CJ], ü[ • ,LJ]) is 
(a.e. on fi) a process at [£*,#] corresponding to z*. We set 

PA («•»»•I/') (3-2) 
= sup inf fl({u) E fi: 7(äf[ • ,o; | x*],w[ • , w],U[ • ,CJ]) > /?}), 

« [ • ] 6 V | * t ^ ] s I , ] ^ [ ' * ' * l 

pA(t*,x*) = sup{/?: pA(**,x* | /?) > 0}. (3.3) 

Further (A&) is an arbitrary sequence of partitions of [£*,#] with d(Ak) —> 0. 

THEOREM 3 . 1 . v(U,x+) =limfc_0oPAfc(**1a;*). 

If 

/(£, x, w, v) = A(t)x + #(£, u, v), (3.4) 

where ;4(£) is an n X n-matrix-function continuous in t, 

a(-) is convex and X ^ J ^ J ^ ? 1 ' ) = x(^w> v)> (3-5) 

then approximations of */(£*,£*) may be expressed in terms of mathematical 
expectations. Namely, let 

PA(t*,x*) = sup _ inf l(x*;u[ • ],v[ • ]), (3.6) 

v[-]ev[ut4]u[ -]€^[*. ,#] 

where 

7(z*;H[ •],?;[• ]) 

= £ a(x[0,w | a*;ïï[ • ],v[ • ]])+ / x(*iw[*,a;],t;[*,w])dt 

and Ü7 is mathematical expectation on the probability space (fi, Bn,fl) corre
sponding to A. Note that (3.6) is analogous to (3.1). 

THEOREM 3.2. 7/(3.3) and (3.4) are fulfilled, then 

v(t*,x*)= lim pAk(t*,x*). 
k—KX) 

REMARK. If (2.6) takes place, then the results remain true for v[ • ]'s not 
depending on u. For programs li[ • ] and v[ • ] other definitions may be given; in 
particular u[ • ] and v[ • ] may be defined as nonanticipatory functions with respect 

^to^a^Brownian^proiress^ 
not depend on A, and the limits in Theorems 3.1 and 3.2 are not necessary. 

In some particular cases Theorem 3.2 allows us to reduce the problem of 
computing v(t*, z*) to finite-dimensional problems of convex programming. The 
following statement is true: 

THEOREM 3.3 . Let (a) f(t,x,u,v) = A(t)x + B(t)u + C(t)v where A(t), 
B(t), and C(t) are, respectively, n x n-, p x n-, and q x n-matrix-functions 
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continuous in t, 
(b) a(x) = \x\, x(tixiu)v) = uf(j)(t)u — vfij)(t)v, where cß(t) and ip(t) are, 

respectively, p x p- and q x q-matrix-functions continuous in t and positively 
defined, and 

(c) P = {u: \u\ < c}, Q = {v: \v\ < c}, where c is sufficiently large. 
Then 

v(U,x*) = mnK(l'X(ti,U)x* + l'F(U)l - A*|Z|2 + A*); (3.7) 
l'|5*l 

here X(t,T) is the fundamental matrix for the system 

x = A(t)x, 

A* = max j max/'F(r)Z: r e [ t* , f l ] l , 

F(r) = J N(t)dt, 

N(t) = \X(ti,t)(C(t)^(t)C'(t) - B^'^B'^X^t). 

REMARK. The lower bound for c can be written down explicitly. Formula 
(3.7) allows us to simplify essentially the form of the optimal strategy u°( • ) (see 
Proposition 2.3). 

4. Ill-posed inverse problems for dynamical systems. Let the dynamical 
system be uncontrolled, i.e., f(t, x, u, v) = f(t, x, v). Here we keep all assumptions 
imposed in §1 and fix the initial time £*. Suppose that at each time t E [t*,ti] 
the state x[t] is measured. The result £[t] of the measurement satisfies the 
inequality \£[t] — x[t]\ < h. The aim of the observer is to form in real time an 
approximation of v[ • ] close to v[ • ] for h sufficiently small. Here the L2-distance 
(L2 = L2([t*,ti],RQ)) between the approximation (denoted further u[ • ]) and 
v[ • ] will be considered. Since a trajectory x[ • ] may correspond to various 
v[ • ]'s, we suppose that it is admissible to approximate any one of these v[ • ]'s. 
Therefore the problem consists in constructing a stable (regularizing) algorithm 
for an ill-posed [8] inverse problem of dynamics [9]. Since u[ • ] is to be formed 
in real time, u[t] may depend only on the past measurements (on £[r] for r < t). 
We define a law of forming u[ • ] to be a mapping U : £[ • ] f—• u[ • ] satisfying the 
PR-condition (see §1): if £i[r] = £2H for all r E [t*,t], then UI[T] = U2[T] for all 
T E [U,t], where Ui[ • ] = U£i[ •],«' = 1,2. Such a mapping ll : E H+ V [£*,$], where 
S is the set of all functions £[ • ]: [t*,ti] »-* Rn will be called an approximation 
law. 

Introduce some notations. If we want to emphasize that a trajectory x[ • ] 
corresponds to a disturbance realization v[ • ], we will write x[ • \ v[ • ]] instead 
of x[ • ]. Further X is the set of all trajectories at \t*,ti], V = V[U,ti], V(x[ • ]) 
is the set of all v[ • ] E V such that x[ • ] = x[ • | v[ • ]], dist(u[ • ] ;» [ • ]) is the 
L2-distance between u[ • ] and V(x[ • ]), and Eh(x[ • ]) is the set of all £[ • ] E E 
such that \£[t] - x[t]\ < h for all t E [t*,ti]. 
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If (Uh), h > 0, is a family of approximation laws, then the value 

P({Uh)) = sup lim sup dist(w[ • ];x[ • ]) 
x[.]exh-+°t[.]€Bh(xl.]) 

will be called the ensured result for (Uh)- We shall say that a family (Uh) is stable, 
if p((Uh)) = 0. Note that if each trajectory x[ • ] corresponds to a single v[ • ] 
(considered as an element of L2) and (Uh) is stable, then for Uh[ • ] = Uhdh[ • ]> 
& [ • ] e Eh(x[ • ]), | «Ä[ • ] - v[ • ]|L2 -> 0 holds as A -» 0. 

We shall choose a stable family within a special class of approximation laws 
identified with closed-loop control procedures with a model [2]. Fix a dynamical 
system (a model) 

w = g(t,m^[t],z[t]), w(U) = t[U], (4.1) 

with u[t] E Q and z[t] E Rn standing for controls (g( • ) : R x Rn x Q x Rk H+ Rn is 
continuous). Let us modify the definition of a strategy and apply it to the model. 
A collection (w[ •],£[• ], u[ -],z[- ]), where £[ • ] G E, u[ • ] E V, z[ • ] : [t*,ti] i-> Rk, 
and w[ • ] is the solution of the Cauchy problem (4.1) at [£o,$], will be called 
a modelling process. Define a strategy as a pair (u*( • ),z*( • )), u*( • ) = 
u(t,£,w): RxRnxRn\-+Q,z*( • ) = z*(t,£,w): RxRn xRn \-> Rk. Atriplet 
(w*( • ), z*( • ), A) will be identified with the approximation law U : £[ • ] H-> u[ • ] 
such that for the modelling process (w[ • ], £A[ • ]5 ̂ [ • ]5 z[ • ]), where £A [t] = f [̂ i] 
for ^ G &i, w[̂ ] = w*(ri,£[ri],«;[ri]) and z[£] = Z*(Tì,£[Tì],W[Tì\) for t E bi (U is 
determined uniquely); we will call 1/ a modelling law. If #(£, £,u,z) does not 
depend on z, then we identify modelling processes with triplets (w[ •]»£[•],«[•]) 
and modelling laws with pairs (tt*( • ), A). 

Suppose that 

Q is convex and f(t,x,v) = fi(t,x) + f2(t,x)v, (4.2) 

where a function / i ( • ) and a matrix-function /2 ( • ) are continuous and satisfy the 
condition similar to (iii) (see §1). The construction of a stable family suggested 
below is based on a combination of the Tikhonov regularization method [8] and 
a modification of the extremal shift method. 

PROPOSITION 4 .1 . Let (4.2) be fulfilled, g(t, £, u, z) = f(t, f, u), and a fam
ily (('Uh( ' ),A/i)) of modelling laws be given by the conditions: 

(a) d(Ah) < c°h for a certain c° > 0, 
(b) Uh(t, i,w) is a solution of the extremal problem 

4w^^^Lf2(trQu^a(k) \u\2=^mmy==^ 

where 
a(h) > 0, a(h) -> 0, h/a(h) - • 0 as h -> 0. (4.3) 

Then the family ((uh( • ), A^)) is stable. 

REMARK. If each trajectory x[ • ] corresponds to a single v[ • ], the Proposition 
4.1 remains true without assuming convexity of Q. 
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REMARK. For each x[ • ] there exists the single i>* [ • ] = v* [ • | x[ • ]] minimizing 
the norm | • \L2 onV(x[ • ]). If we put dist(u[ • ];x[ • ]) = \u[ • ] - v*[ • | x[ • ]]|L2 
(keeping all other notations), then Proposition 4.1 also remains true. 

Let (4.2) be not true. Fix K > 0 such that \f(t,x,v)\<K for all (*,x) E G* 
and v E Q and consider the auxiliary system 

x = v[t], x(t*) = &* (4.4) 

with disturbance realizations v[ • ] taking values within the ball Q = {v E 
Rn: \v\ < K}. Since (4.4) satisfies condition (4.2) (with Q and f(t,x,v) replaced 
by Q and f(t, x, v) = v, respectively), Proposition 4.1 gives an algorithm to form 
an L2-approximation z[ • ] of v[ • ]. If v[t] = f(t, x[i\, v[t]) and t E bi, it is natural 
to take a minimum point of f (u) = \Z[Tì] - f(n, Ç[n], u)\ as an approximation u[t] 
of v[t]. This method indeed provides a solution. 

PROPOSITION 4.2. Let g(t,£,u,z) = z and a family ((uh( -),Zh( • ),Ah) of 
modelling laws be given by the conditions: 

(a) d(Ah) < c°h for a certain c° > 0, 
(b) Zh(t, £,w) anduh(t,£,w) are, respectively, solutions of the extremal prob

lems 
(w - Ç)'z + Oi(h)\z\2 -+ min, ZEQ, 

where a(h) satisfies (4.3), and 

\*h(t,£,w) - f(t,£,u)\ -^min, uEQ. 

Then the family (uh( • ),2/i( • ), Ah) is stable. 
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I. Introduction to geometric optimal control. 
Introduction. Optimal control problems are generalizations of classical prob

lems in the calculus of variations. A typical one can be stated as follows: given 
a smooth (C°° or real analytic Cw) manifold M, a compact smooth manifold U 
(possibly with a boundary), a smooth vector-field E: M xU —• TM (tangent 
space of M) on M, parametrized by U, a smooth function c: M x U —• R, and 
two points A, B in M, let Tr(A, B) be the set of all pairs (x, u) : [a, b] —> M x U, 
such that: (1) x is absolutely continuous and u measurable; (2) dx(t)/dt = 
E(x(t),u(t)) a.e.; (3) x(a) = A, x(b) = B. 

The problem is to find a pair (x,u): [a,b] —• M x U such that 
rb rb 

/ c(x(t),û(t))dt = 'mî / c(x(t),u(t))dt\(x,u): 
J"ä Ja 

[a, b]^MxU, belonging to Tr(A, B) 

A pair in Tr(^4, B) is called a trajectory of the system; the pair (x, u) is called 
an optimal trajectory. 

It is well known that such a pair (x,u) is the projection on M x U of an 
"extremal." An extremal is the generalization of its namesake of classical calculus 
of variations. In the present situation, there are two families £\, X = 0 or 1, 
of extremals: a couple (z, u) : [a, 6] —• T*M x U belongs to £\ if it satisfies the 
following conditions: 

(1) dz/dt = Hx(z(t),u(t)) for almost all t in [a,b], Hx(z,u) = (z,E(x,u)) -
\c(x,u), x being the projection of z onto M; ( , ) denotes the canonical pairing 

TMXMT*M —> R, and Hx is the hamiltonian field associated to Hx considered 
as a function on T*M parametrized by u. 

(2) For almost all t E [a,b], Hx(z(t),u(t)) = Kx(z(t)), where Kx(z) = 
suv{Hx(z,v)\vEU}. 
The family <fi is called ordinary, the family <?o exceptional. 

© 1987 International Congress of Mathematicians 1986 
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As in the classical calculus of variations, one tries to solve the optimal control 
problems using the extremals. Two methods have been exploited up to now. 
The first one, which could be called the direct method, is being developed by 
H. Sussmann and his collaborators. It has yielded some important results in the 
case of dim M being two or three. 

The second method, the singularity method, was introduced by I. Ekeland [E] 
in the special case when 

M = U = R and E(x, u) = u. 

More recently F. Klok pushed this analysis further in the same case [Kl]. Our 
approach belongs to this last line of thought. 

1. Preliminary considerations on extremals. The main difference between 
the classical calculus of variations and our case is that in condition (2) of the 
definition of extremals the maximum Kx can be attained for several distinct w's. 
This allows for the phenomenon of "switching," that is, the extremal changing 
its policy u(t) abruptly at some time T. Mathematically this translates into the 
fact that z is not differentiable at t. Let us formalize this. 

DEFINITION 0. A point z(s) (resp. s) on an extremal z: [a,b] —> T*M is 
called a switching point (resp. a switching time) if s belongs to the closure of 
the set of all Vs where z is not differentiable. 

NOTATION. The set of all possible switching points is a subset of T*M, called 
the switching surface. 

The notion of switching points is crucial in the study of extremals. They 
determine the structure of these curves. What can we say about this structure? 
H. Sussmann has noticed that: (a) in the C°° case, any absolutely continuous 
curve in M is optimal for some appropriate system (E,c); (b) in the Cw case, 
given a system (E,c), if there exists an optimal trajectory joining two given 
points A, B in M, then there exists another optimal trajectory joining A to B, 
which is analytic on an open dense subset of times. Since any optimal trajectory 
is the projection on M of an extremal, this shows that in order to get any 
reasonable theory, we have to put some restrictions on the system (E, c). 

Now, even for a generic system (E, c), the extremals are not smooth in general. 
A consequence of our results is the fact that for an extremal to have an infinite 
number of switching points is a very stable property. Let us note here, that the 
structure of the general extremal in the generic case is not known. 

Finally, the extremals would be the trajectories of the hamiltonian field as
sociated to Kx, if Kx were smooth, which it is not, in general. Let us mention 
that generalizations of the concept of hamiltonian field to include this case have 
been put forward. 

2. Regular points of finite multiplicity. From now on we drop the superscript 
A in Hx. Let us denote by S the subset in T*M x U of all couples (z,u) such 
that ü is a local maximum point of the function H: v EU —• H(z, v). It is clear 
that if (z,u) : [a, b] —y T*M X U is an extremal, then for almost every t E [a, b], 
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(z(t),u(t)) belongs to S. Let p: S —y T*M denote the restriction to S of the 
canonical projection: T*M x U —• T*M. 

Without making a formal statement, it is clear that, for a generic pair, there 
exist stratifications of T*M and S such that: (1) p is stratified; (2) for any 
stratum A, p: p~x(A) —* A is a finite covering; (3) for any open stratum A of 
T*M, for any z in A, all points in p~x(z) are either nondegenerate quadratic 
singular points of Hz, or are regular points of Hz belonging to the boundary of 
U, which are nondegenerate quadratic singular points for the restriction of Hz 

to the boundary of U. 
On the lower-dimensional strata, a branching of singularities takes place. 

Since we are mainly interested in the switching phenomena, we shall not go 
into branching but concentrate on the open strata. This motivates the following 
definition. In it, we do not assume that S and p satisfy the conditions (l)-(3) 
above. 

DEFINITION 1. A point q in T*M is called a regular point of multiplicity m 
if there exists a neighborhood V of q in T*M, such that: 

(1) The restriction p: p~x{V) —y V is a trivial finite covering. 
(2) Let J be the set of all sections <p: V —y S of this covering such that q 

belongs to the closure T(<p) of the set 

{zeViz?q,H(<p(z))=K(z)}. 

Then for any two sections (p,ij) E J the germs at q of the restrictions of Ho (p 
and Ho^ to T(<p) and T(i/;) respectively, are not equal, m is the cardinal of J. 

The case m = 1 corresponds to the classical theory of the calculus of varia
tions. Near q, the extremals are the trajectories of a hamiltonian vector-field. 
We have studied the cases when m is 2 or 3. The structure of the extremals 
near q depends essentially on the structure of the contacts of the hamiltonian 
vector-fields Hop, <p E J, with the switching surface and certain subsets of it 
defined by these contacts. This vague statement can be given a precise formu
lation using the Lie algebra, generated by the set of functions [Hop/p E J], 
under the Poisson bracket. The complexity of the contact structure at a point q 
is measured by the minimum of the length of the brackets not zero at q. 

In the remainder of this paper, we shall discuss two of our results. Both deal 
with the case m = 2. 

II. Statement of the results. 
1. Notations and auxiliary concepts. Let q be a regular point of multiplicity 2. 

J contains two sections p+, <p-. The associated functions Ho <p+ and Ho (p- will 
bë denoted by Ì/+ and H- respectively. In a neighborhood of q, the switching 
surface E is defined by H+ — H- = 0. We shall make the following assumption 
for the remainder of this paper: 

0 = dH+(q)AdH-(q)Ad{H+,H-}(q), where {#+,#_} denotes 
the Poisson bracket of H+ and H-, that is, the Lie derivate of (*) 

ÌJ+ in the direction of H- (see [A-M]). 
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H+ =H-

#+ <H-

FIGURE l 

i / + > H-

H+ = H-

H+ <H-

FIGURE 2 

(*) implies that the switching surface is a smooth manifold in a neighborhood 

of q and that the same is true for the set E1 = E fl [{•#+, # - } = 0], where H+ 

and H- are tangent to E (see Figure 1). 

If q does not belong to E1 then, in a neighborhood of it, the extremals are the 
trajectories of a piecewise smooth flow, having a tangential discontinuity along 
E (see Figure 2). Hence the only interesting cases are when q belongs to E1 . 

NOTATION. (1) For simplicity, let us denote by / , g the brackets 

{H.{H+,H-}} and {H+{H.,H+}} 

respectively. 

(2) Given an open subset W in T*M, a subset N of W will be called invariant 
in W if any extremal contained in W and meeting N is contained in TV. 

2. First theorem—Fold points. 
DEFINITION 3. A regular point of multiplicity 2, q, satisfying the assump

tion (*), is called a fold point if f(q) and g(q) are both nonzero. If they are 
both positive (resp. negative) q is called hyperbolic (resp. elliptic). If they have 
opposite signs, q is parabolic. 

NOTATION. (3) In the elliptic case, the following vector-field R, defined on 
E1, plays an important role: 

R 
fH+ + gH_ 

f + 9 
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It is clear that R is the unique convex combination of H+ and H- tangent to 
E1 at the points of E1 . 

THEOREM 1. Let q be a fold point. There exists a neighborhood W of q 
such that: 

(e) If q is elliptic, we have a generalized "flow-boa? result; there exist a ball 
B of codimension 1 in T*M, an interval I = [—a, a], and a continuous mapping 
z: I x B -+W, with the properties: 

(i) z(0,b) = bifbEB, and z is a homeomorphism onto W, piecewise smooth 
on any I x K, K compact subset of B — E1 . 

(ii) For b G E1 fl B, the curve z^: I —> W is the trajectory of R, passing at 
time 0 through b. 

(iii) For b E B — E1 , z is an extremal. 
(iv) For any subinterval d of I, any b E B — E1 , let N(d,b) be the number 

of switching times of Zb in d. When b tends to E 1 , N(d,b) tends to oo and 
N(d,b). h(z(t,b)) tends to the length of d, for any t E d. h is the function 
2-{H+,H.}-[l/f + l/g}. 

(h) / / q is hyperbolic, it behaves somewhat like a hyperbolic singular point of 
a vector-field. W contains two smooth hypersurfaces 5(+) and S(-), having a 
contact of first order with E along E1 , with the following properties: 

(i) W — S(+) U S(—) has four connected components W+,W-,Wr,Wi. W+ 
and S(+) (resp. W- and S(—)) are located in [H+ > H-] (resp. [ÜT+ < H-]). 
Wk (resp. Wi) is located in {H+,H-} > 0 (resp. {H+,H-} < 0). 

(ii) The sets 5(+) U S(-), W+,W-,Wr,Wt are invariant in W. 

(iii) In W+ (resp. W-) the extremals are trajectories of H+ (resp. H-). They 
do not switch. 

(iv) In Wr (resp. Wi), the extremals switch exactly once and they are the 
trajectories of a piecewise smooth flow. 

(v) In S(+) U S(-), the extremals either do not switch and then they are the 

trajectories of H+ in S(+) or of H- in S(-), or they switch once and cross 
from S(-l-) to S(-) or vice versa. 

(p) If q is parabolic, let us assume that f(q) > 0 and g(q) < 0. W contains a 
smooth hypersurface Sp with the following properties: 

(i) W — Sp has two connected components, W+ and W-. 
(ii) W+ is contained in [H+ > / / _ ] , SpUW- in [H+ < H-]. 
(iii) Sp,W+,W-, are invariant in W. 
(iv) In SpUW-, the extremals do not switch and they are the trajectories of 

H-. In PF+ they switch twice and are the trajectories of a piecewise smooth flow. 
The case f(q) < 0, g(q) > 0 is similar. 

(For these results see Figure 3.) 
This theorem calls for some remarks: 
(1) The field R is called the residual field. It also shows up in some work of 

Arnold (see [Ar]). 



GENERALIZED HAMILTONIANS AND OPTIMAL CONTROL 1185 

S(+) H+ >H-

H+<H-

W+ 

H+ >H-

H+ =H-

H+ = H-

Elliptic 

Figure 3 
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(2) The only really interesting and nontrivial part of the preceding theorem 
is the elliptic case. Near an elliptic point the number of switching points on an 
extremal is not bounded, and this occurrence is stable. The extremals "spiral" 
around E1, and as they tend to E1, they pick up more and more switching points, 
so that, in the limit, they become smooth. 

(3) The residual field R is also defined in the hyperbolic domain and it is 
important in the study of relaxed trajectories. The trajectories of R are relaxed 
trajectories of the system (E,c). In the elliptic case, these curves are more ex
pensive than the nearby extremals. But in the hyperbolic case, they are cheaper 
and together with the extremals in S(+) U S(—), they can be used to construct 
local optimal control synthesis of the "turnpike" type. 

(4) The proof of the above result and some other ones will appear in the 
Transactions of the American Mathematical Society. 

In agreement with our remarks at the end of paragraph 2 of §1 the preceding 
result dealt with the case where the bracket of length 2 of the Lie algebra L 
generated by (H+,H-) is zero at q, but those of length 3 are not. The situation 
when these latter are zero but those of length 4 are not, we shall not examine 
here and instead pass to the next stage where new phenomena appear. In our 
preceding considerations, a single extremal switched a finite number of times 
only. The question is: is it possible to have a general system (E, c) such that 
above each point from an open subset of M, there passes an extremal that 
switches an infinite number of times in a finite time-interval? We shall answer 
this question next. 

3. The Fuller curves. Let g be a point in T*M as in Definition 3. 
DEFINITION 4. A pair of smooth arcs of curves, C(+) and C(-), contained 

in E — E1, having both q as extremity and no other point in common, is called 
a Fuller pair if it has the following properties: (1) there is a continuous function 

r : C ( + ) U C ( - ) ^ R , 

such that any extremal z starting at a point s in C(+) U C(—), is defined on the 
interval [0,T(s)] and z(t) tends to q when t tends to T(s). 

(2) Let s E G(u), u = + or —. The switching times of z form an increasing 
sequence [0, ti,..., tn,...] such that z(tn) belongs to C(u) (resp. C(—u)) if n is 
even (resp. odd). 

(3) There exist a constant k > 1, depending only on the pair (C(+),C(—)) 
and a continuous function D: C(+) UC(—) —> R, such that fcn(£n+i — tn) tends 

°to-J3(^)=as°n-tends-tc^infinit3r(see~Figure^4). ~ — 
To state our second theorem we need one more notation. 
NOTATION 4. Let T denote the vector space of all smooth functions on an 

unspecified open subset of T*M. a:TxT^yTxTx-'XT(6 times) is the 
mapping defined as follows: a(f,g) = (<*i(f,g),...,ae(f,g)) where a i , . . . , a 6 

is the ordered set of all elements of length 5 from a Hall basis built on the set 
(/, g) ordered by / < g, ad f(g) = {/, g}. 
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C{+) 

FIGURE 4 

EXAMPLE. 

ai(f,g) = ad4 f(g), a2(f,g) = ad gad3 f(g), as(f,g) = ad2 pad2 f(g), 

a*(f,9) = -ad 4 0( / ) , a5(/,0) = {ad/(p),ad2/(p)}, 
a6(f,g) = {zdf(g),-ad2g(f)}. 

THEOREM 2. TAere eató a semialgebraic set 7 (explicit) in R6, with non-
empty interior having the property: let q be a regular point of multiplicity 2, 
satisfying the assumption (*). If the couple (H+,H-) has the properties (a)-(b) 
below, then there is a Fuller pair passing through q. 

(a) All the Poisson brackets of length 2, 3, and 4, built on H+,H-, are zero 
at q. 

(b) a(H+,H-) belongs to 7. 

COMMENT. This result shows that the presence of a Fuller pair is a remark
ably stable phenomenon. Using it, one can show that on any smooth manifold 
M, there is an open (C°°-topology) set of systems (E, c), such that, for any one 
of these systems, there exists an open subset O of M with the property that 
above any point x in O, there is a point q with a Fuller pair passing through it. 

III. Short review of the techniques used. Essentially, three types of 
techniques are used: (i) discrete dynamical systems, (ii) partial normal forms, 
and (iii) blowing up procedures. 

1. Discrete dynamical systems. To each point q regular of multiplicity 2, 
satisfying the assumption (*), we associate a discrete dynamical system (DDS 
for short), a, as follows: the domain of a, dom(<r), is the set of all z in E, such 
that: 

(1) {H+,H-}(z) ^ 0. Let u be the sign of this number. 

(2) The trajectory of Hu, starting at z, meets E again, at zu for the first time. 
(3)u{H+,H-}(zu)<0. 

(2) implies that: u{H+,H-}(z) < 0). lî z belongs to dom(cr), we set a(z) = zu. 
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The DDS a is useful in keeping track of the switching points, and it deter
mines the behavior of the extremals: if z: [a,b] —• W - E 1 is such a curve, 
its set of switching points is discrete. Let y be the first (timewise) of these 
points. Then the set of them, ordered by increasing time, is a partial orbit of 
V' [y,<r(y)i<r2(y)i-.-,°N(y)]. 

As an example, the main ingredient in the proof of the elliptic case of Theo
rem 1 is a very convenient normal form for the associated DDS a. 

2. Partial normal forms. Using symplectic coordinate transformations, we 
determine partial normal forms for the pair (H+,H-). Such a form is the sum 
of a normal form for some set of (H+, H-) and a remainder term. More precisely: 
let 

F = ± ( t f + + i /_) , G = $(H+-H-). 

We determine a symplectic system of coordinates, centered at q, (xi,...,Xd, 
Pi) • • • iPd), such that G = pi, F = Fo -j- Fi, where Fo is the normal form and 
Fi the remainder. There is a gradation on the coordinates such that Fo is a 
homogeneous polynomial and the order of Fi at q (degree of the lowest degree 
terms in the Taylor series of Fi at q) is greater than the degree of Fo- This 
gradation is intimately linked with the structure at q of the Lie algebra generated 
by H+ and H_. It defines a local group action of the multiplicative group of all 
positive reals on a neighborhood of q, for which Fo and G are semi-invariants. In 
the next proposition, w(P) will denote the degree of the homogeneous polynomial 
P, and ord(ft), the order of h at q. 

PROPOSITION 1. (i) / / {H+,H-}(q) = 0, but not all brackets of length 3 
are zero at q, then 

FQ=P2 + xi(\axi + bx2), 

w(xn) = 1 and w(pn) — 2 if n = 1 or 2, 

w(xn) = w(pn) = 3 ifn>3, 

w(F0) = 2, ord(Fi) > 3, 

a = {G{G,F}}(q), b = {F{G,F}}(q). This is the fold case. 

(ii) If all the Poisson brackets of length 2 and S of H+,H- are 0 at q but not 
all brackets of length 4: 

^——~-^~~-~Fo=^ — 

w(%n) = 1 and w(pn) = 2 if n — 1 or 2, 

w(xn) = w(pn) = 3 ifn > 3, 

W(F0) = 3, ord(Fi) > 4. 

a = - ad3 G(F)(q), c = ad3 F(G)(q), b = - ad F ad2 G(F)(q). This is the cusp 
case. 
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(iii) / / all the brackets of length 2, 3, and 4 of H+,H- at q are 0 but not all 
of length 5: 

F = P2 + ffi(p3 + \bx\x$ + ax2x3 - \c±xl + \c$xixl + ^c2xjx2 + \cix\), 

w(xn) = 1 and w(pn) = 4 if n = 1 or 2, 

w(xs) = 2, iu(p3) = 3, iu(an) = w(pn) = 3 ifn>4, 

w(F0) = 4, ord(Fx) > 5, cn = at(G,F)(q) if % < n < 4, 

6 = a6(G,F)fo), a = «6(G,F)(^). 

3. Blowing up technique. Using the action of the multiplicative group of the 
positive reals, RÜj_, we can blow up the point q on the manifold T*M. This 
is not the classical blowing up procedure but a "weighted" version of it, q is 
replaced by the quotient, Q, of V — q under the action of RÜj_, V being a suitable 
neighborhood of q. 

4. Sketch of the proof of Theorem 2. Let a and O~Q denote the associated DDS 
to the couples (H+, H- ) and (Fo + G, FQ — G). Using the blowing up technique, 
the stability theorem of hyperbolic manifolds we reduce the problem of finding a 
Fuller pair for the couple (H+,H-) to that same problem for the second couple. 
A suitable neighborhood of Q in the blown up space is fibered by the orbits of 
the Rîj.-action. Since the couple (Fo + G,Fo — G) is semi-invariant, the lifting 
VQ of ao to the blown-up space preserves Q and this fibration. Assume we can 
find a fixed point h of the restriction of CTQ to Q. The fiber 0(h) above h is then 
invariant under CTQ. If we can choose h in such a way that 0(h) is a contracting 
curve for 5Q, then the projection on T*M of the pair (0(h), &o(0(h))) is a Fuller 
pair for the couple (F0 + G,F0-G). This ends the "proof" of Theorem 2. 
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Dynamics of Area Preserving Maps 

JOHN N. MATHER 

Poincaré initiated the study of the dynamics of area preserving mappings, in 
his studies of celestial mechanics [20]. He showed that the study of the dynamics 
of the restricted three body problem (two positive masses, one zero mass) could 
be reduced to the study of the dynamics of an area preserving mapping. He 
showed, moreover, that even in this case, which is nearly the simplest nontrivial 
case of Hamiltonian mechanics, the dynamics is so complicated that there is 
no hope of "solving" the n-body problem (or even the restricted three body 
problem), in the sense of finding exact expressions of the trajectories as a function 
of time. 

As a consequence of Poincaré's pioneering work, the focus of mathematical 
studies related to celestial mechanics has shifted to the more topological and 
analytical approach which Poincaré dubbed "dynamical systems." The books of 
Arnold and Avez [1] and Moser [15] and the articles of Kolmogorov [10] and 
Smale [21] present overviews of modern developments in the theory of dynamical 
systems. 

One of the main questions of dynamical systems is the extent to which they 
display randomness or stability. Many studies in the past century have dealt 
with these questions. The KAM (Kolmogorov, Arnold, Moser) theory shows 
that small Hamiltonian perturbations of integrable Hamiltonian systems display 
a great deal of stability. Invariant tori on which the flow is conjugate to a linear 
flow exist and fill up most of phase space in the sense of Lebesgue measure. 
(See, e.g., Moser [15].) In contrast, hyperbolic systems exhibit a great deal of 
randomness, as is discussed, for example, in Hadamard [8], Anosov [2], Smale 
[21], Bowen [6], and Pesin [19]. But, even small Hamiltonian perturbations of 
integrable Hamiltonian systems have regions of instability or randomness along-
side the regions of stability. This instability was discovered by Poincaré, further 
explored by Birkhoff, and given a very transparent form by Smale [21] in terms 
of "horseshoes." 

All this work shows that, typically, one finds a pattern of stability and in
stability mixed together in a complicated way. But there are many unresolved 
questions. In the Newtonian n-body problem are the unbounded trajectories 
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dense in phase space (where the center of mass is fixed at the origin)? Newton 
integrated the 2-body problem and thereby showed that for n = 2, the answer 
to this question is no. The restricted 3-body problem is a Hamiltonian system 
in 2 degrees of freedom and it is possible to deduce from KAM theory that the 
answer is no in that case, too (Moser [16]). But all other cases are unsolved, 

Is it generically the case that Hamiltonian systems on a smooth compact 
symplectic manifold are topologically transitive? Here, one must specify what 
one means by "generically." A popular notion of genericity is that a property 
of Hamiltonian systems is Cr generic if the set of Cr Hamiltonian systems on 
the given manifold having that property is a residual set in the Cr topology, in 
the sense of Baire category. We recall that a dynamical system is said to be 
topologically transitive if it has a dense orbit. Here again, KAM theory shows 
that the answer is no for systems in 2 degrees of freedom (i.e., on a 4-manifold) 
and r sufficiently large, but other cases are unsolved. The KAM theory resolved 
the analogous problem for "topologically transitive" replaced by "ergodic" and 
r sufficiently large, the answer being no, contrary to what was expected. 

These problems are very difficult and no solution is in sight. In this article, 
I will report on some recent progress on Hamiltonian systems in two degrees of 
freedom and the closely related subject of area preserving mappings. Even for 
such an apparently simple case, there are many difficult unresolved questions, 
and these questions have attracted engineers, who have recently done a great deal 
of numerical work on them (surveyed in [11]), as well as inspired mathematicians 
to obtain deep results (e.g., [9]). 

In this article, I will report on one aspect of recent work on dynamics of area 
preserving mappings, based on variational methods. Although these methods do 
not apply to all area preserving homeomorphisms, they apply to a large class 
of such homeomorphisms, the monotone tilt homeomorphisms. This work is an 
extension of earlier work of Aubry [3] and myself [12]. Bangert [5], Chenciner 
[7], and Moser [17, 18] have given very complete expositions of this earlier work 
and related matters, so I will use this opportunity to announce extensions of this 
earlier work, which are not yet published. 

For simplicity, I will confine the discussion to C1 monotone twist (area preserv
ing) diffeomorphisms, of an annulus. There is no loss of generality in considering 
only positive twist diffeomorphisms, since the inverse of such a diffeomorphism 
is a negative twist diffeomorphism. This is the class of mappings considered, for 
example, in [12]. 

A mapping in this class is a C1 diffeomorphism / of the annulus 

Ä = S1 x [0,1] 

onto itself which maps each boundary component to itself, preserves area and 
orientation, and has the "positive twist" property, i.e., for each 9 E S1, the 
mapping y i-+ p r^ f l , y) has positive derivative at each point, where prj denotes 
the projection of S1 X [0,1] on its first factor. We let / be a lift of / to the 
universal cover A = R X [0,1] of Ä. Then the rotation interval (p(fo)iP(fi)) of 
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/ is defined, where fi = / | R x i, i = 0,1, and p(fi) is the Poincaré rotation 
number of / , i.e., p(fa) = limn_>±oo fjl(x)/n for any xER. 

We let ft:5 - > R b e a "generating function" of / , i.e., B = {(x,xf) E R2: 
there exists y E [0,1] with p ^ f(x,y) = a;'}, and h is the function defined (up to 
addition of a constant) by f(x,y) = (x1 ,y') if and only if y = —d\h(x,x') and 
y1 = d2 h (x, x'). 

We let C denote the subset of R z consisting of bi-infinite sequences x = 
(xi)iez € R z with (xi,Xi+i) E B. We let M denote the set of x E C such that 
for all m, n E Z with m < n, we have that re' EC, x!m = xm, and a;̂  = xn imply 

n 

y ^ h(xi,xi+i) < y ^ f t ( ^ , ^ + 1 ) . 

Elements of C are called configurations and elements of M are ailed minimal 
energy configurations. Aubry and Le Daeron [3] have developed a more or less 
complete theory of minimal energy configurations. See Bangert [5] for a complete 
exposition of this theory. If a; is a minimal energy configuration, the rotation 
number p(x) = \vaii^±QOXi/i exists and lies in [p(/o))/o(/i)]. We define the 
rotation symbol p(x) of x to be p(x) if p(x) is irrational or if p(x) = p/q and 
Xi+q = Xi + p for all i E Z. If p(x) = p/q and Xi+q > Xi + p for all i E Z, 
we set p(x) = p/q+. If p(x) = p/g and Xi+q < Xi + p for all i E Z, we set 
p(x) = p/q—. According to the theory of Aubry and Le Daeron, one of these 
three possibilities always holds for x E M. If u; is a rotation symbol, we let Mw 

denote the set of minimal energy configurations of rotation symbol CJ. We let 
$w = Po(Mu), where po(x) = ^o- If CJ E R, then $ w is a closed subset of R. Also 
cl$p/g+ = $p/g+ U $p/g , cl$p/g_ = $p/q- U $p/g, where cl means "closure." 
These results are due to Aubry and Le Daeron [3]. Bangert [5] has explained 
them clearly. 

This machinery permits us to define "Peierls's energy barrier" Pcj(C) for a real 
number £ and a rotation symbol CJ, whose underlying number is in the rotation 
interval of / . If £ E c l$ w , we set P w ( 0 = 0- Otherwise, we let (a,b) be the 
complementary interval of cl <È>W which contains f. By the theory of Aubry and 
Le Daeron, there exist x, y E Mw such that XQ = a and 2/0 = 6- Moreover, yi > Xi 
for all i E Z, and Y^ieA yi~xi ^ 1? where A = Z if CJ is an irrational number or 
of the form p/q+ or p/q— and A = {0 , . . . , q — 1} if CJ = p/q. We set 

P w ( 0 = m i n I ^Th(zi,Zi+i) - h(x{,xi+i) \ , 
ueA J 

Ivhere z ranges over all^önfi^fatidns~such that Xi < Zi < yi and ZQ = f"Tfii¥ 
was defined and called Peierls's energy barrier in Aubry, Le Daeron, and André 
[4]. See also Mather [13], where the basic properties of Pw(£) are developed. 
I defined a closely related quantity AWU in [14], where I showed that as a 
function of the number CJ, this quantity is continuous at irrationals, although 
it is discontinuous at rational CJ, for generic / . The definition of AW& may 
be extended to rotation symbols CJ, and then the functions CJ H-> AW^ and 
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CJ \-y Pu)(€) are continuous on the space of rotation symbols. We provide the 
set of rotation symbols with the topology associated to the obvious order. In 
this topology, rational numbers are isolated points. The intervals [p/q+^p/q + s) 
in the set of rotation symbols form a basis of neighborhoods of p/q+, where e 
ranges over all positive numbers. The continuity of these functions follows from 
[14] or slight extensions of the results of [14]. Its importance derives from the 
fact I proved in [14] that there is an invariant circle for / of rotation number 
CJ (where CJ is irrational) if and only if AWU = 0, or equivalently, Pw vanishes 
identically. 

Recently, I have improved these results, to give moduli of continuity for AW^ 
or Po,(f), as functions of CJ. It is easy to see that there exists G > 0 such that 
| iw(0 - Pu>{£')\ < C|£ - £'|, for all f, f E R. The dependence on CJ, however, 
is more complicated. For Pw(£)> we have 

\Pp/q(0-PM)\<C(q-1 + \quj-p\), 

where C depends only on / . Moreover, 

\Pp/M0 - PM)\ < C\qu-p\, if CJ > p/q, 

\Pp/q-(0 - PM)\ < C\qu-p\, if w <p/q. 

There are similar estimates for AW^. 
Using these estimates, I have been able to prove that if CJ is a Liouville number, 

then there is a dense set D in the space of C°° monotone twist diffeomorphisms 
such that a homotopically nontrivial invariant circle of a diffeomorphism in D 
has rotation number CJ. This is a converse of well-known results in KAM theory. 
The proof of this result is based on the theorem of Mather [14] that / has an 
invariant circle of rotation number CJ if and only if AWW = 0, and this holds if 
and only if Pu vanishes identically. 

In another direction, I have shown that in a certain sense it is possible to 
"shadow" minimal energy orbits in a fixed Birkhoff region of instability by local 
minimal energy orbits. Recall that a minimal energy configuration x is station
ary, in the sense that dih(xi-i,xi) + d2h(xi,Xi+i) = 0, and therefore if we set 
yi = -dih(xi,Xi+i), we have f(xi,yi) = (xi+i,yi+i). Thus, to every mini
mal energy configuration, we may associate an orbit, and we call the resulting 
orbit a minimal energy orbit. Consider two homotopically nontrivial invariant 
circles which do not intersect, so they bound an annulus. If the annulus which 
they bound contains no invariant circle, then the region between the circles is 
called a Birkhoff region of instability. A local minimal energy configuration x 
minimizes in the same sense that a minimal energy configuration minimizes, but 
only for small perturbations of x. Local minimal energy orbits are the orbits 
corresponding to local minimal energy configurations. Then we have the follow
ing result: given a sequence (0i)iez of minimal energy orbits, all in the same 
Birkhoff region of instability, and numbers Si > 0, there is a local minimal en
ergy orbit 0 = (Pj)3-ez and an increasing sequence ( n ^ ^ z of integers, such that 
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dist.(Pn(i), Oi) < 6i, i.e., 0 comes as close as we please to each orbit Oi in turn. 
Proofs will appear elsewhere. 
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Ergodic Properties and Dimensionlike 
Characteristics of Strange Attractors 

That Are Close to Hyperbolic 

YA. PESIN 

1. Introduction. At present there is a rather widespread opinion that 
instability is one of the main reasons for stochasticity in completely deterministic 
dynamical systems. It is based on rigorous results in studies of stochasticity of 
hyperbolic and some quasihyperbolic attractors (such as the Lorenz attractor, 
the Lozi attractor, etc.), and also on an analysis of many of the physical origins 
where the stochasticity was found numerically. In this connection, for solving 
the problem whether an attractor A of a dynamical system / is stochastic, one 
can propose the following scheme: 

(1) At first the Lyapunov exponents are calculated for a generic initial point 
(with respect to phase volume) in the neighborhood of A. It is worthwhile to 
mention that numerical procedures for the calculation of Lyapunov exponents 
which have been elaborated are often unreliable because Lyapunov exponents are 
only measurable and not continuous functions when we pass from one trajectory 
to another. It is well known that one can produce by a digital computer only 
e-trajectories (for some e) of the dynamical system and it is not clear in gen
eral whether there exists a "real" trajectory near the numerical one and which 
exponents it will have. 

(2) Suppose that for a generic initial point the Lyapunov exponents are 
nonzero. In order to derive from this the instability of the trajectories on A 
it is necessary to prove a result of the following type: Let / i b e a limit measure 
for a sequence of measures 

1 n—1 

n k=0 

where v is a smooth initial distribution in the neighborhood of A (/à is obviously 
concentrated on A). Then Lyapunov exponents for /i-almost every point x E A 
are not equal to zero. However one can hope in general that the convergence takes 
place only for the restrictions of measures p,n to subsets A in the neighborhood 
of A having positive i/-measure (compare with our Theorem 4). 
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(3) If a variant of the assertion formulated above holds then one can hope 
to show that the limit measure p, is Bowen-Ruelle-Sinai measure. This fact just 
implies the stochasticity of A. 

(4) In systems of ordinary differential equations, describing the models of real 
physical systems, it is convenient to pass from the phase flow to a Poincaré map 
of a certain cross-section surface. However, this map is as a rule discontinuous, 
which creates additional complications for the investigations. 

It turns out that the instability producing the stochasticity is in fact in many 
cases rather strong. This allows us to give some modifications of the scheme 
described above. 

In the present work we introduce and study a new class of maps having the 
so-called generalized hyperbolic attractors. They are rather strongly unstable. 
In the linear approximation their instability is as strong as it is in classical hy
perbolic attractors. However the maps considered here are discontinuous on 
some closed set (this set is usually the union of a finite number of submanifolds). 
There are trajectories which come very often "anomalously near" the disconti
nuity set. Although the set of such trajectories is small, their existence implies 
a weakening of hyperbolicity. In fact the hyperbolicity of our maps is as weak 
as one encounters in systems with nonzero Lyapunov exponents. 

Our class of maps is described by some axioms. It is important to point out 
that in principle most of our conditions can be checked by a digital computer. For 
example, the hyperbolicity conditions are given by means of an invariant system 
of cones (i.e., by requirements on differentials of maps). Such an approach is due 
to V. M. Alekseev [1], Ya. G. Sinai [16], and D. V. Anosov [2] and was developed 
for the attractors by V. S. Afraimovich, V. V. Bikov, and L. P. Shilnikov in [3]. 
There are some conditions estimating the rate of growth of the differential of 
the system in the neighborhood of the discontinuity set. They have the same 
meaning as the analogous requirements in the definition of general systems with 
singularities (cf. [8]). 

The aim of our work is to describe the ergodic properties of the dynamical sys
tems having the generalized hyperbolic attractors. In particular we will prove the 
existence of the so-called Gibbs «-measures—the invariant measures for which 
induced conditional measures on unstable layers are absolutely continuous with 
respect to natural Lebesgue measure on these layers. Thus we will show that 
our systems are really stochastic. 

We also consider a very interesting problem of the calculation of the dimen
sion of the attractors. At present there are many dimensionlike characteristics 

'which were i n t r ^ u c ^ structure of" 
the attractors. In [13] we gave a general construction, a generalization of the 
famous Carathéodory construction, which allows us to get a functional family of 
the dimensionlike characteristics. Among them are both well-known characteris
tics (for example, Hausdorff dimension, capacity) and new ones (for example, the 
so-called dimension with respect to the dynamical system). If p, is an invariant 
probability measure on the attractor then one can introduce the dimensionlike 



GENERALIZED HYPERBOLIC ATTRACTORS 1197 

characteristics with respect to p, (measure Hausdorff dimension, measure capac
ity, cf. §5). We will formulate some results connecting them with Lyapunov 
exponents and measure theoretical entropy. These results are in agreement with 
a popular hypothesis which was suggested by H. Mori (cf. [11]) and discussed in 
[7]. It can be formulated as 

dimH p = L(p,), (1) 

where dim# p, is measure Hausdorff dimension and L(p) is the so-called Lya
punov dimension which is uniquely defined by the spectrum of Lyapunov expo
nents of p, (we assume that p is ergodic). The formula (1) was proven for the 
two-dimensional case by L.-S. Young in [17]. I do not know whether formula 
(1) is true for the multidimensional case but at any rate it is not true in general 
for the discontinuous maps, even for three-dimensional attractors. This can be 
explained by the following arguments. The topological structure of the hyper
bolic attractor is that it is made of whole unstable layers of its points and its 
intersection with every stable layer is a Cantor set type. 

However, because of the difference in the rates of the contractions in differ
ent directions of stable layers, the corresponding sets of n-rank are the "strong 
stretched ellipsoids." When we calculate the Huasdorff dimension we replace 
such ellipsoids by choosing balls in the appropriate way and making "best" pack
ings of them. If ellipsoids are distributed in the stable layers "uniformly" enough, 
then this procedure of the calculation of the dimension allows us to get formula 
(1). For discontinuous maps this is not true in general. But we can use another 
method and introduce a new notion of the dimension taking as the "best" pack
ings just ones made of the ellipsoids. Such an approach leads us to the dimension 
with respect to a dynamical system mentioned above. We will obtain a formula 
for it similar to (1). One should remark that this dimension is not pure geometric 
characteristic because it depends on the dynamical system. 

2. Definition of generalized hyperbolic attractors; local properties. 
Let M be a smooth compact Riemannian manifold, K be an open subset in M, 
and 7V+ be a closed subset in K. Let also / : K\N+ —• K be a map satisfying 
the following hypotheses: 

(HI) / is a C2-diffeomorphism from K\N+ onto its image f(K\N+)-, 
(H2) There exist d > 0, a{> 0, i = 1,2,3,4, such that for any x E K\N+ 

\\dfx\\ < Cip(x,N+)-<*\ \\d2fx\\ < C2p(x,N+)"**, 

and for any x E f(K\N+) 

Wdf-'W < C3p(x,N-)-«*, lid2/,"1!! < C4p(x,N-)-"\ 
where p is a distance in M and N~ = {y E K: there exist z E 7V+ and 
zn E K\N+ such that zn —• z, and f(zn) —• y}. 

We set N = N+ U N~ U dK and define by induction the sets K0 = K, 
Kn = f(Kn-1\N+)i n = 1,2,.... Set 

D=Ç]Kn, k = D. 
n>0 
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It is easy to see that D fl N = 0, the maps /, / - 1 are defined on D, and 
f(D) = D, f~i{D) = D. 

Consider the continuous function <p(z) = p(z,N), z € D, and define 

X%{z)= lim sup-In p(/n(*)). 
^ n—>±oo ri 

It is obvious that functions x^(z) are both / and /"^invariant and Xp(z) < 0. 
We define the sets 

D± = {zE D: x±(*) = 0} , D0 = £>+ n # " , 

which are obviously both / and f"1 -invariant. 
For A C A denote / - 1 (A) = {z E A\N+ : f(z) G A}. A measure /i on A is 

called /-invariant if p,(A) = p(f"1(A)) for any A C A. Denote by M/ the set 
of all /-invariant Borei probability measures concentrated on A. We say that 
p, E Mf is regular if 

(1) »(N) = 0, (2) \f\n+<p(z)dp(z) < oo. 

If x E D is a periodic point with a period p then the measure having the value 
1/p at every point fl(x), i = 1,... ,p, is obviously regular. 

PROPOSITION 1. If p. E Mf is a regular measure then P>(DQ) > 0. 

We say that A is a regular attractor if there is a regular measure p, E Mf. 
Define the sets 

D^ = 1 z E D^ : there exists the limit x%(z) 

= lim (l/r»)lnp(r(*))}, 
n—*±oo J 

D0 = D+nD-, 

which are both / and /_1-invariant. Moreover for any e > 0 and z E JÖ+ 

(respectively z E D~~ or z E Do) there exists C(e, z) > 0 such that for every 
n > 0 (respectively n < 0 or n e Z) 

p(fn(z),N) = <p(fn(z)) > C(e,*)exp(-e|n|). 

PROPOSITION 2. For any neMf 

(1) n(D+) = fi(D-) = MAO = /*(Z>+) = M-D-) = MA)); 
(2) //A w a regular attractor then DQ ^ 0 . 

_ — By ä cone 1^757?)"(2 € T ä 7 «">"Öi~P~isli subspace in TZM) we mean the 
set {v E TZM: £(v,P) = min^p Z(v,w) < a}. 

We call an attractor A generalized kyperbolic if there exist C > 0, 0 < A < 
1, a continuous function a(z) > 0 and two continuous families of subspaces 
pM(s), P(«)(*) c T*M, * G X, such that 

(1) dimPM(*) = ç , dimP(u)(2) =p , g + p = dimM; 
(2) ÜC(*f aW.pWWinlf^aW.PÏ-JW) = {0}; 
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(3) for any z E K\N+ 

df(K(z,a(z),pW(z))) C K(f(z),a(M),P{u)(f(*))), 
and for any z E f{K\N+) 

^(KizM^P^H*))) c /rtr^wr1^)),^/-1^))); 
(4) for any n > 0, z E K\N+, v E K(z,a(z),PM(z)), 

and for any n > 0, z E Kn, v E K(z, a(z),P^(z)), 

\\df-nv\\<CXn\\v\\. 

Now one can obtain in the usual way the uniformly hyperbolic structure on D 
given by two families of /-invariant and continuous stable and unstable subspaces 
£(»)(z), £(«)(*) c TZM, ZED, where 

E{s)(z) = fl #"" (K(r(z)Mfn(z)),P{sHfn(z)))) , 
n>0 

£<«>(*) = f l 4T (K(f-n(z),a(f-n(z)),pW(f-n(z)))) . 
n>0 

Then using hypotheses (HI) and (H2) one can construct in the familiar way 
(cf. [10, 4]) for any z E D+ the local stable layer V^(z) and for any z E D~ 
the local unstable layer V^(^) (of course, for z E Do both of these layers are 
defined). The stable layer V^(z) is characterized by the following condition: 
for any yEV^(z), n > 0, 

p{fn(zlfn(y))<C(z)^p(y,z), 

where p E (A,l) and G(z) > 0 are constants. The unstable layer V^(z) is 
characterized in the same way (taking —n instead of n). We remark that the 
"sizes" of local layers are in general measurable and not continuous functions on 
D because / has the discontinuity set. Therefore, just as the hyperbolic structure 
on D for the linear approximation of / is uniform, the situation for the map / 
itself is similar to one in the systems with nonzero Lyapunov exponents and can 
be studied by the methods developed in the theory of such systems (cf. [14]). 
In this theory an important role belongs to the "sets with uniform estimations" ; 
these are the sets ï)f C D^ such that for every point x E î)f the "size" of 
local layers are bigger than some 6i > 0 (and Si —* 0 when I —• oo with a small 
exponential rate). One can show the following assertion. 

PROPOSITION 3. V^ (z) c D for every ZED~. 

Thus an attractor A consists of local unstable layers (in this we suppose that 
VM(z) = {z} for z £!)-). 

Let A c A. Define f(A) = f(A\N+), f'^A) = / - ^ A ^ " ) . The sets 
fn(A), f~~n(A) for n > 0 are defined in the same way. For z E D+ we set 

wM(z)=\Jrn(yM(fn(z))), 
n>0 
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and for z E D~ we set 

wW(z) = (j r (vM(rn(z))). 
n>0 

These sets are respectively called global stable and unstable layers at point z. 
They may be not connected in general. 

3. Gibbs /^-measures: existence and ergodic properties. Let z E D~. 
Denote by u^(z) the measure in W^u\z) induced by the restriction of the 
Riemannian metric to W^u\z) (which is a smooth submanifold in M). We use 
the notation J^u\z) for the Jacobian of the map df \ E^u\z). Fix z E D~, y E 
WM(z), n>0, and let 

n—1 _ _ j 

*»(*.»)= I I [J{u)(rk(z))] [J{u)(f-k(y))] 
fc=0 

ihat the limit 

K,(z,y) = lim Kn(z,y) > 0 

fc=0 

It is not difficult to show that the limit 

exists. 
Let p, be a Borei probability measure on A. Following [15] we say that p 

is Gibbs u-measure if the conditional measures induced by p on W^u\z) are 
absolutely continuous with respect to z/u) (z) and the corresponding density at 
the point y E W M (z) is equal to &(z,y) (up to a normalized factor). 

We shall be dealing with generalized hyperbolic attractors A that satisfy the 
following hypothesis: 

(H3) There exist G > 0, eo > 0, and z E D~ such that for any e E (0, 6Q] and 
n > 0 

i / ( t t ) (7MW nf-n(U(e,N+))) < Ce, 

where U(e,N~*~) is an e-neighborhood of iV+ in M. 
In the following we will assume that the map / satisfies (HI) and (H2) and A 

is the regular generalized hyperbolic attractor for / , satisfying (H3). 

THEOREM 1. There exists Gibbs u-measure p, E Mf for which p(D~) = 1. 

In order to construct Gibbs u-measure we consider the point z for which 
hypothesis (H3) holds and measure v on A given by 

v(A) = *>) (A H Wu) (*)) for A C A. 

Further ,_let_ _____ 

»n(A) = ^Y,v(f-k(A)). 
n k=0 

Then there is a sequence ni —> oo such that the subsequence of measures pUi 

converges (in the weak star topology) to /-invariant Gibbs u-measure. 
Denote by M the class of all Gibbs u-measures p, E Mf for which p>(D~) = 

1. Ergodic properties of such measures follow from [9] (cf. also [14] where we 
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considered the case when p, is a smooth measure; but using the easy modifications 
of arguments given there it is not difficult to get the corresponding results for 
Gibbs u-measures). 

THEOREM 2. Let p E MJK Then the set A is decomposed on noninter-
secting sets Ai, i = 0,1,2,..., such that for i > 0 

(1) Ai C D, p(Ai) > 0, /(Ai) = Ai, and f\Ai is ergodic; 
(2) the set Ai is decomposed on nonintersecting sets A\, j = 1, . . . ,rii, such 

that f(A{) = AÌ+1 for j = 1,. -. 5 n r 1, f(A^) = A\, and /n< | Aj is isomorphic 
to a Bernoulli automorphism. 

THEOREM 3. Let p E MJ\ Then for measure theoretical entropy h^f) 
the "formula for entropie (cf. [9, 14]) 

n <x) 

M / ) = - / yZ<li{x)Xi(x)dp(x) 

holds, where xi (%) > ' • * > Xs(x) (x) are positive values of Lyapunov exponents 
at x and qi(x) is the multiplier of the value Xi(x)-

Following [12] we call the set 

W^(A)= (J W^(z) 

the realm of attraction of the set A C A. 

THEOREM 4. Let p E Mf be an ergodic measure. Then 
(1) meas(W(s)(A)) > 0 (meas denotes Riemannian volume in M); 
(2) there exists Ad A such that p(A) = 1 and for any z E W^(A) and any 

continuous function <p on K 
n - l 

k=0 JA 

This assertion means that p is Bowen-Ruelle-Sinai measure. 

THEOREM 5. The set A is decomposed on nonintersecting sets An, n = 
0,1,2,..., such that 

(1) meas(W(a)(An) fWW(Am)) = 0 for n ^ m, n,m > 0; 
(2) forn>0 we have An C D, f(An) = An, and there exist pn E Mf' for 

which ßn(An) = 1 and f \ An is ergodic; 
(3) ifpEM$u) then 

p=^2anpn, ]To!n = l, an>0; 
n > l n > l 

(4) if v is a smooth initial distribution in a neighborhood of A and vn = 
u\W^(An),n>0, then 

k-l 

i = i 

in the weak star topology. 
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4. Topological properties of generalized hyperbolic attractors. Our 
approach to the study of topological properties is unlike the usual one because it 
is based on the description of the metric properties given above and information 
on the structure of stable lamination. 

THEOREM 6. Suppose that lamination W^ composed of layers W^(z), 
z E D+, is continuous. Then 

(1) the set An (constructed in Theorem 3) for n > 0 is (p,n-modQ) open (with 
respect to the topology in A induced by the topology in M); 

(2) the set W^s)(An), n > 0, is (meas-modO) open; 
(3) the map f\An, n > 0, is topologically transitive; 

(4) periodic points of f are everywhere dense in An for n > 0. 

The sets An, n > 0, are similar to basic sets for Axiom A diffeomorphisms. 
Theorem 6 is also true with the weaker assumption that W^ is a (6(x),k)-
continuous lamination (definition, cf. [14]). 

It is worthwhile to point out that we describe topological behavior of / only 
on the "essential" part of A: we do not know the topological behavior of / on 
A0. 

It directly follows from Theorem 6 that if / is topologically transitive (on D) 
then there exists unique Gibbs ^-measure on A. Nevertheless even in this case 
W^(A) being the open set (meas-modO) does not form in general a neighbor
hood of A. Therefore, if v is a smooth initial distribution in the neighborhood of 
A then we can describe only the evolution of the restriction v \ W^(A) (which 
converges to unique Gibss w-measure on A). However we know nothing about 
the evolution of u elsewhere in the neighborhood. 

5. Dimensionlike characteristics for generalized hyperbolic attrac
tors. For Z C A denote by dim/j Z Hausdorff dimension on Z and define upper 
and lower capacities of Z as follows: 

, , _ . InN(Z,e) . AnN^e) 
C(Z) = hm sup . / , C(Z) = lim inf . ' , v ' £_>o ln(l/e) - v J e-o ln(l/e) 

where N(Z, e) is the smallest number of balls covering Z with radii < e. It is 
easy to see that dim/f Z < C(Z) < C(Z). 

&Lët^/rb^^a^Borel^proMbilï^^eM^"oh^AT^Foll^ing^flTJ^l^Heffhel^pëc^ 
tively measure Hausdorff dimension, measure upper and lower capacities by the 
formulae 

dim/f p, = inf {dimtf Z: Z CX, p(Z) = 1} , 

G(p) = liminf {C(Z) : Z C X, p(Z) > 1 - 6} , ^ 

G(p) = lim inf {C(Z) : Z C X, p(Z) >l-6}. 
6—*0 
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Let £ be a finite partition of A. We set 

^(0 = -£M^)ln/^) , 
Hp{e) = inf {Hpit): diam e < e} 

where diam f = max diam Cç. We call 

'Riß) = limsup ^ | , Ä(/x) = lim inf r ^ r , v ' e-fo ln(l/e) Krj e-+o ln ( l /e ) ' 

and call them respectively measure upper and lower information dimensions 
(Rényi dimensions). 

For re G A we set 
lnp(B(x,6)) 

dp (x) = lim sup-

4(s) = l im inf l n^y», 
" ^ y «-+0 Infi 

and call them respectively measure upper and lower pointwise dimensions. The 
following assertion is proved as in [17]. 

THEOREM 7. Suppose that dim M = 2. Then 
(1) if p E Mf is an ergodic regular measure then for almost every x E A 

d » = dß(x) = M/)/(l/xJ. - Vx£) = d, 
where Xp> 0 > xfi are ^ e average values of Lyapunov exponents with respect to 

p; moreover 
dim// p = C(p) = C(p) = R(p) = R(p) = dfj,; 

(2) if p E Mf is an ergodic measure then 

d„ = l + xi/lxjl = £(/*)• 
We consider the case when t = dim M > 2. Now the above results are not 

true in general. Therefore we use dimensionlike characteristics, introduced in 
[13] (cf. also [4]). 

Fix 6 > 0 and denote by 

Bn(x,6) = {yED-:p(rk(x),rk(y))<6, fc = 0,...,n} 

the Bowen (n, 5)-ball at a; e D~. For I > 0 we set 

FSj = {Bn(x,6):xeDï,ne2i+}, 6<6U 

and define for given a > 0, N > 0, Z C DJ 

M(a,N,Z)=tä \ T ) meas(2? n M)) Q : 
G c n ' ' U(M)eG 

n>iV, (J _?„(«,«) CZJ 
Bn(a,«)eG 
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where G is a finite or countable subset in Fgj. It is obvious that the function 
M(a, -, Z) does not decrease when N —• oo. Therefore the limit 

m(a,Z)= lim M(a,N,Z) 
N—>oo 

exists. One can show (cf. [4]) that there is OLQ such that M(a,Z) = oo when 
a < OLQ and M(a, Z) = 0 when a > OLQ. We set 

dim^j Z = a0 

and call 
dim/ Z = sup lim sup dim^j Z 

l>0 6-+0 

the dimension of Z with respect to / . 
We define for given a > 0, N > 0, Z C D^ 

R(a,N,Z)= inf | V ] meas(Bjv(a:,«))a : 

(J _BJVM)DZ] 
B N ( I , 5 ) € G 

where G is a finite or countable subset in Fsj. Let 

f(a,Z) =\imsup R(a,N,Z), r(a,Z) = liminf R(a,N,Z). 
_V->oo iV—oo 

Functions f (•, Z), and r(-, Z) have the following property: there are ä and a such 
that 

f oo if a < ä, v f oo if a < a, 
f a ' Z = { n -f - . - £ « > * = { n .. " 

10 if a > a; LO if a > a. 

We set 

£«.i(£) = a. CStl(Z) = a 
and call 

Gf(Z) = sup lim sup ( ^ ( Z ) , 
l>0 <5->0 

Ç7/ (Z) = sup lim sup Cs i (Z) 
l>0 6-+0 

upper and respectively lower capacities of Z with respect to / . It is easy to see 
that 

~" dimJTTC}J^T<^fT^ ~ ~ ~ " " " (3) 
Let p be a Borei probability measure on A. We define now like (2) 

dim/ p, — inf {dim/ Z : Z C A, p(Z) = 1} , 

Cf(p) = liminf {Cf(Z) : Z C A, p(Z) > 1 - 6} , 
<5—>0 

G/(M) = liminf {Cf{Z) : Z c A, /_(__) > 1 - . } , 
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which are called respectively measure dimension with respect to / , measure 
upper and lower capacities with respect to / . It follows from (3) that 

dimfp<Cf(p) <Cf(p). 

THEOREM 8. Suppose that the Jacobian of f is uniformly bounded in K. 
Then 

(1) if p E Mf is an ergodic regular measure then 

dim/p = Gf(p) = Cf(p) = -hß(f) / £ XU 
I i=s+l 

(2) if p E My* is an ergodic measure then 

3 I t 

dim/p = Gf(p) = Cf(p) = ~Y,Û ^Z 4 ' 
i=l / i=s+l 

where x i > • • • > x j > 0 > x^1 ^ ' ' * ^ xj. are the average values of Lyapunov 
exponents with respect to p. 

6. Examples of generalized hyperbolic attractors. 
1. Lorenz type attractors. Let I = [—1,1], B be a unit ball in R p , and 

K — B x I. Let also 0 = o0 < ai < • • • < aq < aq+i = 1. We set 

Pi = Bx (ai, ai+i), i = 0 , . . . , q, 

I = {ao,ai,...,aq,aq+i} x I. 

Consider an injective map T: K\l —» K given in the form 

T(x, y) = (f(x, y), g(x, y)), xEB,yEl, 

where / , g satisfy the following conditions: 
Ll. / , g are continuous in Pi and 

lim f(x, y) = f~, lim g(x, y) = gT, 
2/îût l/îa. 

lim f(x, y) = ft, lim g(x, y) = gf 
yiai yia{ 

where ff and gf do not depend on z, i = 1 , . . . , q. 
L2. / , g EC2 in Pi and for (x,y) E K\l 

C2mm\y - ai\-a > \fx(x,y)\, \fy(x,y)\, 

\9x(x,y)\, \gy(x,y)\ > Cimm\y - ai\a 

where a,Gi,G2 are some constants independent of x. 
L3. The following inequalities are satisfied: 

n/.n<i, i|g^ii<i, 

1 - llffv'Il »/-ll > V l l^ l lWI I^Ar l l , 
l l f f i - 1 / y | | | | f c | | < ( l - | | / - | | ) ( l - | | ^ 1 | | ) , 

where || • || = max i=0l...1gSup{- ij /)eF. | • |. 
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L4. \\fxx\\, \\fxy\\, ||gxyIUIgxx\\ < const. 
We give one example of a map satisfying these conditions. 

THEOREM 9 (CF. [4]). Suppose that I = {0} x I and functions g(x, y) and 

/ ( » i V ) = ( / i ( * i 2 / ) > • • • i / P ( Z , 2 / ) ) , z = ( x i , . . . , x p ) , 

are given by the equalities 

f h = ( - * i i » r+Bj*M" s +^ ». 
\ g = ((l + A)\y\»<>+A)sgiiy. 

Assume that 

0<Bj<±, Vj>\, j = l,...,p, 

(1 + A)-1 <VQ<1, 0 < i 4 < l . 

Then T satisfies conditions L1-L4. 

The following result is a consequence of [3, 4]. 

THEOREM 10. T satisfies (HI) and (H2) and the attractor A for T is the 
regular generalized hyperbolic attractor satisfying (H3). Moreover the lamination 
WW is extended to a C1-continuous foliation in K. 

The existence of Gibbs it-measure in the case when the discontinuity set I 
consists of only one interval (and dimK = 2) was essentially proved in [6]. The 
arguments given there are based on the construction of a Markov partition for 
the Lorenz attractor (in the general case this construction is given in [4]). If 
the lamination W^ is extended to a smooth foliation in K (in particular this 
happens when g is independent of x) then the existence of Gibbs w-measures 
follows from the results of the theory of one-dimensional piecewise monotonie 
maps (one can show that A is isomorphic to the inverse limit of some one-
dimensional map which is monotone on the intervals (ai,a{+i), i = 0,...,q 
(cf. [4]). For the arbitrary Lorenz type attractors one can show that any Gibbs 
w-measure has only a finite number of ergodic components of positive measure; 
there exists only a finite number of ergodic Gibbs w-measures and respectively a 
finite number of components of topological transitivity (cf. [3, 4]). 

One can prove the following assertion using the results obtained in [4]. 

THEOREM 11. For any smooth compact Riemannian manifold M, dim M > 
3, there exists a vector field X having the followinq property: There is a smooth 
submanifold S such that the first return map (Poincaré map) T on S induced by 
the flow given by X satisfies the conditions L1-L4 and consquently has Lorenz 
type attractor. 

2. Generalized Lozi attractors. Let c > 0 and I =[0,c], K = I x I, 0 = ao < 
ai < • • • < aq < aq+i = 1. We set 

/ = {a0,ai,...,aq,aq+i} x I. 
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Let T: K\l —• K be an injective continuous map given in the form 

T(x, y) = (f(x, y), g(x, y)), x, y E I, 

and satisfying the following conditions: 

Lozl. T | (K\l) is a C2-diffeomorphism onto its image and both T \ (K\l) and 
T"11 (K\l) have bounded second derivative. 

Loz2. Jac(T) < 1. 
Loz3. 

infilici- l^-h- ^ | + |^|U>0. 
\ \ | o a | j dy\) \\dx\ \dy\J j 

Loz4. 

Loz5. 

• *l\°f\ \df\\ 
{\dx\ \dy\) 

> 1 . 

SUP { 77WT> 77ïhï } < L 
. v ' ö a j l \dy\J 

Loz6. There exists N > 0 such that Tk(l) Hi = 0 for 1 < k < N and uN > 2. 
This class of maps was introduced in [18] and includes the map 

T(_B>y) = (l+6»-a|a; | , f l ;) (4) 

which is obtained from the well-known Lozi map by a change of coordinates. It is 
easy to verify that there exist open intervals of a and 6 such that (4) takes some 
square [0, c] X [0, c] into itself and satisfies Lozl-Loz6. The ergodic properties 
of map (4) are described in [10]. The ergodic properties of maps satisfying 
Lozl-Loz6 follow from our Theorems 1-5 and the following result. 

THEOREM 12. The map T for which conditions Lozl-Loz6 hold satisfies 
(HI) and (H2) and the attractor A for T is the regular generalized hyperbolic 
attractor satisfying (H3). 

The proof of this theorem follows from [18] (where the existence of Sinai 
measure for T was also proved). 

3. Belykh attractor. Let I = [—1,1], K = I x I and I = {(x,y): y = kx}. 
Consider the map T: K\l —• K given in the following form: 

T(x x f (Ai(fl!-l) + l , A a ( y - l ) + l) Hy>kx, 
[X,y) I (AIOB + 1) - lfAa(» + 1) - 1) if y < kx. 

This map was introduced in [5]. 

THEOREM 13. Suppose that 

0 < A i < § , 1 < A 2 < 2 , 1 - 2/Aa < |*| < 1, fc ^ 0. 

Then T satisfies (HI) and (H2) and the attractor A for T is the regular generalized 
hyperbolic attractor satisfying (H3). Moreover the lamination W^ is extended 
to a continuous (6(x, y), 1)-foliation in K with some function 8(x, y), (x, y) E K. 

file:///dy/J
file:///dy/J
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To prove this theorem it is sufficient to see that T is a piecewise linear map 
with the differential 

Moreover it is easy to verify that 

{(u, y): - 1 < u < y/k} if y < kx, 

y/k < u < 1} if y > kx; 

WM{xty) = l{iX,V): -1*v<kx} * » < * * , 
I {(x,v): kx < v < 1} ii y > kx. 

V. Afraimovich has informed me that attractor A for T contains a countable 
number of periodic points and consequently A is the regular attractor. We also 
note that A is a Lorenz type attractor if k = 0. Using Theorems 1-7 and 13 
we can obtain a description of the ergodic and topological properties and also 
dimensionlike characteristics for the Belykh attractor. 
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CAROLINE SERIES 

The subject of symbolic dynamics is of central importance in the modern the
ory of dynamical systems. The use of symbolic sequences to study dynamical 
properties of geodesies originates in the work of Koebe [21, 22] and Morse [24, 
25] and is already foreshadowed in Hadamard [15] and Jordan [19]. The method 
of Koebe and of Morse is to code a geodesic on a surface M of negative curva
ture by recording the order in which it traverses a given set of labelled curves on 
M. The treatment of Morse allows variable curvature but assumes at least two 
boundary components, whereas Koebe assumes constant curvature but allows 
infinite connectivity and nonorientability and treats the more difficult case of a 
closed surface. This last case is handled by recording crossings of a fixed pants 
decomposition, anticipating the Thurston parameterization of simple curves as 
described in [11]. Both Koebe and Morse used their codings to demonstrate the 
existence of countably many closed geodesies and of everywhere dense (transi
tive) geodesies. Morse further constructed the first nonsynthetic example of a 
recurrent nonperiodic discontinuous motion (in modern terminology, a minimal 
nowhere dense set). Later [26] Morse treated the special closed surfaces of genus 
g associated to tesselations of the disc D by regular 4</-gons. Each edge of a 
region in such a tesselation may be labelled by the isometry which glues it to 
another side of the same region in forming the quotient sin-face M. The set of 
isometries appearing as labels generate TTI(M). Thus any geodesic is coded as 
a doubly infinite sequence of generators of iri(M). The same method applies 
quite generally to tesselations associated to any Fuchsian group. We call the 
sequences thus obtained cutting sequences and refer to generating sets of this 
kind as geometric. The difficulty of course is to determine precisely the class of 
sequences which occur. For a surface with boundary, one obtains exactly reduced 

-sequences^in^the=generators^In^generaLthe=problem4s=GompliGated1=henGe=the^ 
difficulties encountered in [26] (see also Theorem 3 below). 

There is another method of coding geodesies, using certain boundary expan
sions for points at infinity in the universal cover of M. For the modular surface 
H/SL(2,2) the appropriate expansions are continued fractions and for the sym
metrical genus g surfaces above they are the Nielsen boundary expansions of [27]. 
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Geodesies are coded by juxtaposing two semi-infinite expansions corresponding 
to the endpoints of suitable lifts to H or D. Such boundary expansions are con
nected to the geometry of the corresponding tesselations of hyperbolic space; for 
the regular 4^-gons this is immediate from the construction, while the associa
tion of continued fractions to the geometry of the modular tesselation of H was 
already known and used in connection with the reduction theory of quadratic 
forms in the latter part of the nineteenth century by various authors including 
H. J. Smith [34] and Hurwitz [18]. 

Artin [2] used the continued fraction method to construct a topologically 
transitive geodesic on the modular surface and Hedlund [16, 17] established the 
more difficult result of ergodicity in this case and in the symmetrical genus g 
case using the same expansions. Martin [23] used Nielsen expansions to compute 
a bound for the Birkoff ergodic function for the geodesic flow. (The ergodic 
function is the minimum time taken for an orbit to cover the space within e.) 

Bowen was aware of these results and in 1977 proposed to me to construct 
analogous codings for general finitely generated Fuchsian groups. It was this 
work on which he was engaged at the time of his death. We proved [6]: 

THEOREM 1. Let G be a finitely generated Fuchsian group with no parabolic 
elements acting in D and let GR be a geometric set of generators associated to 
a fundamental region R. Then there are disjoint open intervals J(g) C <9D, g E 
GR, and a map f\ \JgeGR

 J(o) ~> ÖD> f\j{g) = 0_1> such that 

(i) \JgeGR J(s) D LG, the limit set ofG. 
(ii) fn is uniformly expanding for some n. 
(iii) Each J(g) is partitioned into a finite number of half open intervals Ji(g) 

and f(Ji(g)) n Jj(h) * <p =• f(Mg)) D J,-(Ä). 
(iv) * G U„ez fn(y) <* * G G(y), Vx,y€\J J(g). 
Slight modifications to (i), (ii) are needed in the case of parabolics in G. 
The boundary expansion of x E A is the sequence (en)£L0, where en = g if 

fn(x) E J(g)' By (iii), these sequences can be recoded to sequences of finite type. 
(v) Boundary expansions are shortest sequences in the word metric of GR and 

the distinct finite blocks which occur run through the elements of G each exactly 
once. 

The question arises of the relationship between the two types of coding. Under 
a certain geometrical hypothesis on R, they are in fact almost identical. A region 
R has even corners if the net G(dR) is a union of complete geodesies in D. 
The map / of Theorem 1 was first constructed under this hypothesis, and was 
essential for the Markov property (iii). The condition was introduced by Koebe 
[21]. 

THEOREM 2 [3]. Let G,GR,R be as above and assume R has even corners 
(with some extra restrictions ifR has three or four sides). Then cutting sequences 
of geodesies are shortest in the word metric of GR. TWO shortest sequences 
representing the same element of G differ only by blocks which run along opposite 
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sides of a line in G(dR) passing through a number of consecutive vertex cycles 
in opposite directions. 

Theorem 2 is closely related to Dehn's solution of the word problem for Fuch
sian groups. It is proved entirely from the geometry of the tesselation G(dR). It 
gives algorithms for reducing words to their shortest form and for determining 
equality of two words. Further refinements characterize cyclically shortest words 
as shortest in their conjugacy class, subject to an extra condition on the side 
pairings of R. 

THEOREM 3 [31]. The boundary expansion of x E dD coincides with the 
cutting sequence of any ray with initial point in R and endpoint at x, up to blocks 
of the type described in Theorem 2. There is an explicit geometrical conjugacy 
between the shift spaces of cutting sequences and of two-sided boundary expan
sions. The geodesic flow may be represented as a special flow over the shift on 
two-sided boundary expansions with height function corresponding to the time of 
crossing R. 

Theorem 3 solves the problem of characterizing the space of cutting sequences 
referred to above. In the special case where R has all vertices on 9D the con
jugacy is the identity map; in particular, by considering the subgroup T(l) of 
SL(2,1) one obtains a representation of the geodesic flow on the modular surface 
as a special flow over a two point extension of the continued fraction transfor
mation [30]. Adler and Flatto [1] have described similar conjugacies in various 
special cases. 

Applicat ions. 
1. Structure of the group G. According to Theorem l(v) the elements of G 

are essentially the possible finite blocks occurring in a subshift of finite type. 
Application of the standard dynamical theory of zeta functions for subshifts 
shows that the growth function P(z) = ] [^L 0 Nnz

n, where Nn is the number of 
elements of G of word length n, is rational, and can be explicitly computed in 
specific instances. Likewise conjugacy classes can be counted as the number of 
purely periodic sequences. This finite type structure appears in a related form 
in the work of Cannon [8] where the group graph (here the context is hyperbolic 
convex cocompact groups in any dimension) is shown to be built up recursively 
by a finite possible number of moves, giving another and more general proof of 
rationality of P(z). 

__JL -ffin*gfe^gJ?/-l/G^T^ of the limit set Lg as a 
subshift of finite type. This specializes the result of Floyd [12] in which LQ is ex
pressed as the completion of the space of finite words in GR relative to a suitable 
metric. One can study the class of Gibbs measures on LQ\ in particular, for (p = 
-6 log | / ' | , 8 the exponent of convergence of G, one obtains the Patterson-Sull
ivan measure [28]. This construction extends to quasi-Fuchsian groups and one 
obtains the Hausdorff measure on LQ in this way. Bowen used this representation 
to prove results on quasiconformal deformations using dynamical methods [7]. 



SYMBOLIC DYNAMICS FOR GEODESIC FLOWS 1213 

3. Random walks on G. The Martin boundary of the random walk on the 
free group F on two generators with one step transition probabilities was shown 
in [10] to be the space of reduced sequences in the generators. This is exactly 
the shift space corresponding to the boundary expansions of Theorem 1 when F 
is realized as the fundamental group of a one-holed torus. Theorem 2 may be 
viewed as the statement that the graph of a Fuchsian group G is "almost" a tree; 
based on this idea we showed in [29] that the Martin boundary of any finite-step 
random walk is LQ (with a double point corresponding to each parabolic cusp) 
and that the hitting distribution is Gibbs. 

4. Number theory, (a) As mentioned above, the coding by continued fractions 
is related to the reduction theory of quadratic forms. S. Katok [20] has worked 
out an analogous reduction theory for general Fuchsian groups. 

(b) In the diophantine approximation \x — p/q\ < c/q2 of x E R by rationals 
p/q, the constant c can be interpreted as the distance of approach of a geodesic 
on the modular surface to the cusp. The best rational approximants are given by 
continued fractions, which code the path of the corresponding geodesies. This is 
exploited in [13, 14] to compute values of c when the rationals p/q are replaced 
by images of infinity under other zonal Fuchsian groups. In [33] the symbolic 
method is used to find an analogue of the Markoff spectrum in a certain Hecke 
group. 

5. Simple curves. The cutting sequences of simple geodesies take a very special 
form and are related to the minimal nonperiodic motions of Morse mentioned 
above. An algorithm for detecting simple cutting sequences is given by Birman 
and the author in [4], which Cohen-Lustig have elaborated to count intersection 
numbers [9], The rules characterizing simple sequences have a recursive nature 
and the number of admissible blocks of length n has only polynomial growth. A 
complete characterization has only been given in the case of a one-holed torus 
[32] and is already very interesting; the sequences which occur are then the 
Sturmian sequences of Hedlund and Morse and have risen in many contexts. 

In general, simple curves can be parameterized by recording the number of 
occurrences of adjacent pairs of generators in the cutting sequence. This is analo
gous to the Thurston parameterization in [11]. The advantage of our version is its 
algebraic content, in that it can be read off immediately from any cyclically short
est representative of the curve in TTI(M). There is a rather strange "algebraic 
linearity" theorem for the action of diffeomorphisms on these parameters [5]. 
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This paper has four parts. Each part involves quasiconformal homeomor
phisms. These can be defined between arbitrary metric spaces: <p: X —* Y is 
Ä'-quasiconformal (or K qc) if 

zjf \ _ r SUP 1̂ 0*0 ~ Piv) w n e r e \x - y\ = r and x is fixed 
r_>o inf \<p(x) — <p(y)\ where \x — y\ = r and x is fixed 

is at most K where | | means distance. Between open sets in Euclidean space, 
H(x) < K implies <p has many interesting analytic properties. (See Gehring's 
lecture at this congress.) 

In the first part we discuss Feigenbaum's numerical discoveries in one-dimen
sional iteration problems. Quasiconformal conjugacies can be used to define a 
useful coordinate independent distance between real analytic dynamical systems 
which is decreased by Feigenbaum's renormalization operator. 

In the second part we discuss de Rham, Atiyah-Singer, and Yang-Mills the
ory in its foundational aspect on quasiconformal manifolds. The discussion 
(which is joint work with Simon Donaldson) connects with Donaldson's work 
and Freedman's work to complete a nice picture in the structure of manifolds— 
each topological manifold has an essentially unique quasiconformal structure in 
all dimensions—except four (Sullivan [21]). In dimension 4 both parts of the 
statement are false (Donaldson and Sullivan [3]). 

In the third part we discuss the C-analytic classification of expanding analytic 
transformations near fractal invariant sets. The infinite dimensional Teichmüller 

^spare-ofnsuch=systemrìs^embedded=in^ 
for the transformation on the fractal. These possible Hausdorff measure theories 
of fractals are nicely encoded in the theory of Gibbsian measure classes or Gibbs 
states. 

In the fourth part we give a characterization of constant curvature among 
variable negative curvature in terms of a measure theoretical dynamical property 
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equivalent to uniform quasiconformality for the geodesic flow. A dynamical 
equivalent o f—^<fc<—1 pinching is utilized. 

I. Feigenbaum's renormalization operator and the quasiconformal 
Teichmüller metric. Mitchell Feigenbaum [7] made some remarkable numeri
cal discoveries concerning the iteration of families fa of real quadratic-like func
tions, namely those which fold the line smoothly with a nondegenerate quadratic 
critical point, for example fa(%) = ~x2 + a. These discoveries may be summa
rized as follows: 

(i) If a parameter variation fa creates basic 2,4,8,16,.. . period doubling, 
the periods actually double at parameter values an which converge at a definite 
geometric rate to a limit OQQ, 

l̂ oo - uni ~ constant(4.6692 . . . ) ~ n . 

(ii) The mapping for the limiting parameter value a^ has a Cantor set X to 
which almost all bounded orbits tend, and X has universal geometric properties 
like (a) Hausdorff dimension X — . 5 3 . . . , and (b) X can be defined by an 
intersection of families of intervals In = {/f , /£ , . . . ,I%n} where ratios of sizes 
l'TI/l{J l+1| converge exponentially fast to universal ratios Ia, labeled by a which 
is any one-sided string of O's and l's. 

Khanin, Sinai, and Vul [14] formulated the statement of Feigenbaum's con
vergence in this way—index the intervals of the nth level containing the critical 
point and critical value by 0 and 1, respectively. Index the remaining 2 n — 2 
intervals by time evolution (f(I%) = Ik+i> fc + 1 < 2n), and think of the index 
in its 2-adic expansion, fc = £o + £i2 H \- £ n _ i 2 n _ 1 . 

Then the ratios | J£ |/|{£+11 converge where j n = in or j n = in+2n to universal 
ratios Ia where a is any 2-adic integer if the final coefficients of the expansions 
of in = £o + £i2 + h en2

n agree on larger and larger final segments, and a 
is defined by a = limn_oo(Ê:n + s n_i2 H h e02

n). 
After making these first two numerical discoveries (and one more described 

below) Feigenbaum formulated a renormalization picture to describe these phe
nomena. The renormalization operator is obtained by iterating the transfor
mation twice, restricting this iterate to an interval about the original critical 
point, and then renormalizing to obtain a real quadratic-like mapping on a fixed 
size interval. Studying this operator R numerically Feigenbaum found a third 
phenomenon: 

(iii) Rnfoo converges to a universal function g, where foo denotes the mapping 
of the given family corresponding to the parameter value aoo mentioned above. 
The function g is a fixed point of the operator R, 

g(x) = Xg • g(x/X), X = -2.50290.. . 

(the Cvitanovic-Feigenbaum equation). 
Since Feigenbaum's work, there has been more numerical work revealing sim

ilar phenomena in other dynamical situations, e.g., Cvitanovic-period tripling, 
etc, Shenker—circle mappings with critical point, Widom—boundaries of Siegel 
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disks, Milnor—infinitely many points of the Mandelbrot set, and others. There 
has also been work trying to prove theoretical theorems modelling Feigenbaum's 
discovery (Campanino, Collett, Eckmann, Epstein, Khanin, Lanford, Ruelle, 
Sinai, Tresser, Vul, Wittwer, and many others). For example, see Epstein [5] 
for a function theory proof of the existence of the universal function g satisfying 
the Cvitanovic-Feigenbaum equation. Khanin, Sinai, and Vul [14] proved that 
for the universal function g the ratio of interval lengths converge exponentially 
fast to ratios Ia as indicated above. Lanford [15] proved (using rigorous numer
ical analysis) that the spectrum of the operator R linearized at g has one point 
outside the open unit circle {—4.6692...}. Lanford's work yields Feigenbaum's 
picture of the renormalizaton operator R on some neighborhood t of the fixed 
function g. Also, it proves the point (i), |aoo — o,n\ ~ constant(4.6692... ) ~ n , for 
the x —• —x2 + a, family 

Several questions remain. 
PROBLEM 1. Prove the second Feigenbaum discovery (ii) that the Feigen

baum attractor X has universal geometric structure for a general class of map
pings. (This universal structure can be described by Gibbsian measure class as 
in Part III using E : X —• X where E is an expanding map which is the union 
of x —• Xx and x —> Xg(x) on left and right pieces respectively of X.) 

PROBLEM 2. Justify Feigenbaum's third numerical discovery (iii) by ex
tending the local stable manifold (due to Lanford's work) of the Feigenbaum 
renormalization operator to a global stable manifold. 

PROBLEM 3. Find a conceptual, more geometrical treatment of Feigenbaum's 
three points (i), (ii), (iii) yielding a new proof of Lanford's theorem on the 
spectrum and, hopefully, proofs for various generalized Feigenbaum phenomena 
heretofore only treated numerically. 

We will study these problems using quasiconformal homeomorphisms to define 
a coordinate free distance between complexifications of real quadratic maps, a 
definition due to Douady and Hubbard [4]. A complex quadratic-like mapping is 
a pair (TT, i) where 7r : V —• V is a two-sheeted covering with one branch point 
onto a simply-connected Reimannian surface V, and i: V —• V is a conformai 
embedding of V into V with compact closure. Given (ir,i) we consider the 
quadratic-like mapping / : V\ —"T/ ™"<™ K" fl™ ™™™au;™ «.. *-i 
iV. 

V given by the composition TT • i x where Vi = 

FIGURE 1 
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Note that f'1]/" = Vi and if Vn = fnV, then K(f) = f\n Vn is a maximal 
and compact invariant set for the iteration of / on Vi. 

We say two complex quadratic-like mappings fo, fo are (i) analytically equiva
lent if they are complex analytically conjugate on neighborhoods of the compact 
invariant sets, and (ii) at distance at most logK if there is a if quasiconformal 
homeomorphism conjugating fo and fo between neighborhoods of the invariant 
sets. Define distance(/i, fo) as the infimum of such logÄ". 

THEOREM. J/distance(/i,/2) = 0, then fi and fo are analytically equiva
lent on neighborhoods of their invariant sets. 

SKETCH OF PROOF. If the invariant set of / is connected one can associate 
(Douady and Hubbard [4]) a real analytic expanding map h of the circle (of exte
rior prime ends of the connected invariant set). The real analytic conjugacy class 
of h essentially determines the equivalence class of / and is in turn determined 
by the sizes of eigenvalues at its periodic points (see Part III of this paper or 
Shub and Sullivan [19]). However, the K qc conjugacy between fo and fo yields 
a Holder continuous conjugacy (p between hi and h%, \<p(x) — <p(y)\ < G\x — y\a, 
where C depends on the size of the neighborhood and a only depends on K. 
If distance(/i,/2) = 0 this relationship implies the eigenvalues of hi equal to 
those of hi- So hi and hi are real analytically conjugate and this (plus one more 
consideration which is automatic) implies fo and fo are C analytically conjugate 
on some neighborhood. 

If the invariant set is not connected it is expanded by / and we may use Part 
III directly. Q.E.D. 

Let 7 be the metric space of equivalence classes of complex quadratic-like 
mappings at a finite distance from the Feigenbaum universal function (defined 
by Xgog(x/X) = g(x).) (One knows the complexification of g is quadratic-like; see 
Epstein [6], for example.) The space 7 has rectifiable paths between any pair 
of points whose length is the distance (this uses the measurable Reimannian 
mapping as in the qc deformations section of Sullivan [20]). 

Feigenbaum's renormalization operator may be defined on 7. Since g is 
quadratic-like, the equation Xg o g(x/X) = g shows g o g is quadratic-like near 
the original critical point. Thus if / is qc conjugate to g, f o / is qc conjugate 
to g o g and so it is quadratic-like also on some disk around the critical point. It 
is easy to see that regarding / o / as a quadratic-like mapping only depends (up 
to equivalence) on the critical point chosen and not on the disk. More gener
ally, there are canonically defined renormalization operators defined on full path 
components of the space of quadratic-like mappings with the Teichmüller metric 
whenever one mapping of the component can be renormalized. Here is our result 
on Problem 2. 

THEOREM. In the qc path component 7 of the universal Feigenbaum map, 
there is a canonical renormalization operator R: 7 —• 7 defined on represen
tatives by f —• / o / (restricted to a neighborhood around the original critical 
point). The operator R is strictly distance decreasing for the above Teichmüller 
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metric, R[g] = [g], and for any [f] G 7 the orbit of [f] under iterates of R tends 
to [g]. 

NOTE. A real analytic mapping whose complexification is quadratic-like, and 
whose critical orbit has the kneading sequence of the Feigenbaum map, lies in 
the space 7. 

COROLLARY. The unique complex quadratic-like solution of the Cvitanovic-
Feigenbaum functional equation is [g]. 

PROOF OF THEOREM. The nonincreasing distance property of R follows 
from the definitions. It follows from Lanford's results [15] that R is contracting 
on some neighborhood U of [g]. From the existence of distance paths connecting 
[g] to any other point [/] it follows 7 = \Jn R~nU. Then the strictly decreasing 
property follows from Royden's interpretation of the Teichmüller metric as the 
Kobayaski metric. 

DISCUSSION OF PROBLEM 1. Curt McMullen has observed (private com
munication) that the convergence of the theorem can be lifted to the level of 
representatives. To see this one looks at the size of [/], the supremum of moduli 
of the annuii V — Vi over representatives. 

Feigenbaum and others have calculated the spectrum of R numerically. The 
part inside the unit circle satisfies |A| < (2.50290... ) - 1 . This inequality applies 
to R acting on representative functions up to linear rescaling. 

The author and Feigenbaum [8] have proved that if on the level of represen
tatives Rnf —• g at an exponential rate < (2.50290... ) ~ n in the C3 topology, 
then the Cantor set for / is C1+^ diffeomorphic to that of g by a map which is 
a conjugacy on the Cantor sets. 

SPECULATION. This summarizes our results about the third problem. Re
garding the first two problems and others in iteration theory we conjecture that 
there is an infinite-dimensional Teichmüller mapping theorem in these dynam
ical contexts which may be used to show directly that all the renormalization 
operators strictly decrease distance and have fixed points (compare Milnor's 
conjectures [16]). 

II. Analysis on quasiconformal manifolds and Yang-Mills fields. A 
quasiconformal manifold is a topological manifold provided with a maximal atlas 
of charts Ua where the overlap transformations <paß are quasiconformal home
omorphisms between open sets of Euclidean n-space. One knows that if n ^ 4 

~alHorxölo~gicah n^mm 
is unique up to homeomorphism arbitrarily close to the identity. (See Sullivan 
[21] for these and the same theorems for bi-Lipschitz homeomorphisms.) 

In joint work with Simon Donaldson [3] we have tried to show enough global 
analysis exists on qc manifolds to replace the word smooth by the word quasi
conformal in many of the latter's theorems. Then adding in Freedman's work 
one finds [3] many topological 4-manifolds do not have qc structures and many 
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pairs of homeomorphic qc (even smooth or C-algebraic) 4-manifolds are not qc 
homeomorphic. We discuss that global analysis now. 

If M is a smooth compact Riemannian n-manifold one has a *-operator from 
fc-forms to (n - fc)-forms, pointwise norms defined by 

\w\ = (w A *w/Riemannian volume)1/2 

and local and global Lp norms defined by (/ \w\p dm)1/?. The topological vector 
spaces so defined only depend on the underlying differentiable structure (even the 
Lipschitz structure). A set of these norms, one for each k, \\w\\ = (J \u)\nlk)k/n 

where u is a fc-form, is unchanged if the metric is changed conformally. Also, 
||w A rj\\ < \\u)\\ - \\rj\\ by Holder (k/n + l/n = (k + 0/ n ) s o w e n a v e a natural 
graded Banach algebra fi(|| • ||) of forms associated to the underlying conformai 
structure of the Riemannian manifold. It follows that the graded Banachable 
algebra fi of forms is locally well defined under qc changes of coordinate using 
the fact that a ZT-quasiconformal homeomorphism <p (oriented) satisfies 

(i) <p is differentiable a.e.; 
(ii) Jacobian (p > 0 a.e.; and 
(iii) \d<p\n < K Jacobian <p a.e. 
The deeper fact (Gehring [9]) that Jacobian <p is locally p-summable for some 

p = p(K) > 1 implies the dense subalgebra fi' C fi consisting of all fc-forms with 
coefficients locally p-summable for some p > n/k is also qc invariant. 

Now we turn to the exterior differential. 

PROPOSITION. The unbounded operator defined in the distributional sense 
fi —» fi in a local chart commutes with the action of qc homeomorphisms <p, 

d(<p*w) = (p* du. 

SKETCH OF PROOF. Using Chapter 3 of Morrey [17], Ziemer [28] shows 
the class of continuous functions / with ||d/|| < oo (i.e., df is n-summable) 
is qc invariant, and d((p*f) = (p* df where df means the distributional total 
differential. Form the subalgebra of forms generated by such /, df. It has a d 
and may be used as a testing algebra to define a qc invariant distributional d. A 
smoothing argument (Vaisala [27, p. 80]) shows this qc differential d is the same 
as the smooth distributional d. Q.E.D. 

Now define the p-regular forms on a qc manifold to be the set of forms in 
fi' C fi whose exterior d is also in fi', namely 

p-regular forms on qc manifold — fi' fi d~1iif. 

Note that a p-regular function / is one such that df has coefficients in LP for 
some p > n. Thus / is Holder of exponent (p/n — 1) (Morrey [17]). A similar 
result holds for h-regular functions defined below. 

In a coordinate system consider a smoothing operator on forms a; —• ft*u) dp 
= Ru) where p is a smooth measure on the translation group. Using [Lie deriva
tive] = [d(contraction) + (contraction)d] one finds by integration a chain homo
topy between R and the identity: R — I = dS + Sd, where S is (i) a derivation of 
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degree —1, and (ii) a singular integral operator sending fc-forms with p-summable 
coefficients into (fc - l)-forms with coefficients having first partials p-summable, 
p > 1. Thus by the Sobolev embedding L\ C Lq where 1/q = 1/p — 1/n we see 
that S carries fi' into fi', and fi into fi (except for fin). This yields a Poincaré 
lemma and the following 

THEOREM. The de Rham cohomology o/(fi' —> fi') for a qc manifold agrees 
with the usual cohomology. 

Now consider a trivialized fifc-bundle over a chart U, gauge transformations 
g\ U —> 0(k) which are regular (in the above sense and the sense below), 
fc x fc skew symmetric connection matrices of regular 1-forms 0, and the cor
responding curvature forms fi = dO + 0 A 0. Changing the trivialization by a 
gauge transformation g induces the familiar changes 0 —> g~xdg + g~x0g = 0g, 
fi —» g~xiìg = fiff. If g = exp £t, the infinitesimal change in 0 is d£ — [£, 0] where 
[ , ] means commutator. 

NONABELIAN POINCARÉ LEMMA. Take f = S0; then the infinitesimal 
change in 0 is dS0-[S0,0] = dSO+Sd0-Sd0-S(0-0) (since S is a derivation)= 
-O-T-R0- sn. 

Using this we can show a regular connection form can be regauged to reduce 
||0|| so that it is dominated by a constant -||fi||. 

The second notion of regularity is fe-regularity of a; which means the amount of 
|| || norm (for u and du) in a ball of radius r is at most Cr01 for some constants 
C, a. This notion of A-regularity is gc-invariant and the S operator preserves 
this A-regularity because Calderón Zygmund kernels do (Peetre [17.5]). Now 
consider locally ft-regular connections on 4-manifolds whose curvatures satisfy, 
in addition, the quasi-self duality condition: 

K-quasi Yang-Mills condition |fi|2 < iftrfi A fi/ volume element 

relative to a measurable locally qc Euclidean metric. 
If 0 and d0 (equivalently 0, fi) are ft-regular in B4-point, then in concentric 

annuii {2~n <r < 2~n+x} one regauges the connection so that ||fi|| controls ||0||. 
If CS is the Chern Simons form tr(fi A 0 - \0 • 0 • 0), one has dCS = trfi A fi, 
and a Stokes theorem argument in the concentric annuii shows fi, and thus the 
new regauged 0 is ft-regular over the point with C, a controlled by the norm || || 
(assumed sufficiently small) of fi on _B4-point. 

These remarks allow one to have Karen Uhlenbeck's (compactness/noncom-
pactness) picture [26] for any sequence of A-regular üf-quasi Yang-Mills connec-
tions on a compact qc four manifold. _ ^ _ = = „ 

One may also develop an Atiyah-Singer Index theory for the signature opera
tor with coefficients in a bundle over a qc Mu. One uses the de Rham complex 
up to the middle 

( . . . ^ n ^ _ n ^ + i _ . . . ^ n 2 Z - 1 - > f i 2 i A) 

where the last arrow uses the measurable locally quasiconformally Euclidean 
metric to project (rffi21-1) onto ^ the space fi21 (where *u = u). One may 
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each little disk maps onto the larger disc / is a degree d covering 

FIGURE 2 

tensor with the bundle E and use S to restore the fact that one loses the d2 = 0 
property in the tensoring process. 

In this way one obtains a Fredholm index provably independent of * on M4k 

and the connection in E (compare Teleman [24]). 
With Uhlenbech's picture and the basic Atiyah-Singer theory in place one 

may develop at least one Donaldson type result (say a là Fintushel-Stern [8.5]) 
to show the qc theory of 4-manifolds is different from the theory of topological 
4-manifolds. 

ACKNOWLEDGEMENT. I am indebted to the participants in the quasicon
formal gauge theory conference at the University of Texas, in particular Bill 
Beckner, John Gilbert, Bob Gompf, Gary Hamrick, and Bruce Palka. 

REMARK. A relation between this section and dynamics is suggested by Alain 
Connes's theory of noncommunitative differential geometry where operators of 
Shatten class n/k are utilized. 

III. A rigidity theorem for qc deformations of expanding systems and 
Gibbs states. A C-analytic expanding system is determined by a C-analytic 
map f:Ui—*U where Ui is a domain properly embedded in the Riemann 
surface U and / is a (d > l)-sheeted onto covering. Such systems are classified 
by analytic conjugacy near the compact invariant set Kf = C\nf~

nU. For 
example, see Figure 2. 

To motivate the connections with quasiconformality we state the following 

THEOREM. (1) Any sufficiently small G-analytic perturbation of f near Kf 
defines another expanding system which is quasiconformally conjugate to f near 
the invariant set. 

(2) Any topological conjugacy between the compact invariant sets of expanding 
systems agrees with a qc conjugacy between neighborhoods. 

(3) All expanding systems qc conjugate near the invariant sets to a given one 
can be constructed by deforming the complex structures on the Riemann surface 
U - Ui for some presentation (U,Ui) using the measurable Riemann mapping 
theorem. ( See Sullivan [20] and [22].) 

The analytic classification of expanding systems of a given topological dynam
ics type on the invariant set is a kind of Teichmüller theory. The dimension is 
infinite because there are infinitely many complex moduli given by the complex 
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eigenvalues of /-periodic points of Kf (which are dense in Kf and thus infinite; 
to avoid trivial cases and exceptions we suppose f/Kf is leo (locally eventually 
onto): for each neighborhood V in Kf, fnV D Kf for some n). 

PROPOSITION, (i) The 6-Hausdorff measure ps ofKf is finite and positive; 
(ii) there is a unique real analytic conformai metric defined on Kf for which ps 
is invariant by f, f*p,s = ps. 

SKETCH OF PROOF. One first shows the tf-Hausdorff measure is finite and 
positive where S = dimension Kf, measured, say, in some real analytic metric 
(see Sullivan [22] or Ruelle [18]). If v denotes this measure, one studies the 
density function pn of vn = f^v relative to v. By calculation one sees that the 
pn form a compact family of continuous functions and the limits are real analytic. 
(The value of pn at z is a sum of dn terms Y^yef~nx ^iVi /#»••• Y w n e r e w 1S 

the product of reciprocal linear element derivatives of / along the orbit of y 
up to x. The Hausdorff dimension 6 is the power that makes these sums finite 
and because / is expanding, the functions CJ are absolute values of C-analytic 
functions with fixed domain and exponentially decreasing range.) Q.E.D. 

We say an expanding system (/, Kf) is linear if 
(i) the curvature of the natural metric (defined in the proposition) is identi

cally zero near Kf, 
(ii) the absolute value of the derivative of / in the metric is locally constant 

on Kf, otherwise we say the system is nonlinear. 
EXAMPLE, z —> zn near \z\ = 1 is linear. 
REMARK. For linear systems there are flat C-analytic charts defined near Kf 

so that the complex derivative f(z) is locally constant near Kf. 
Our rigidity theorems concern the nonlinear expanding systems. 

THEOREM. Let (f, Kf) and (g, Kg) be two C-analytic expanding systems not 
both linear. Then there is a C-analytic conjugacy between (f,Kf) and (g,Kg) 
which restricts to a given Borei map h: Kf —* Kf satisfying fh = hg if 

(i) h is a homeomorphism and moduli of eigenvalues at a periodic points as
sociated by h are equal, or if 

(ii) h is a nonsingular transformation between Hausdorff measure classes on 
Kf and Kg, respectively (dim Kf = dimÄ^ is a consequence here not an assump
tion) . 

REMARK. Both of these statements are false if both systems are linear. 

_„ilOROLLARY.._23ie~w7ïro£^ 
alytic expanding systems is embedded in the Hausdorff measure theory of the 
fractal invariant sets. 

SKETCH OF PROOF. In the canonical metric consider the Jacobian of / , 
Jf relative to the invariant measure in the Hausdorff measure class. Consider 

the Jacobian invariant: domain of dynamics • Hilbert cube defined by x —• 
(Jf(x), Jf(fx),...). We show that J is locally injective somewhere unless we 
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are in the linear case. We successively deduce (1) ft is measure preserving by 
ergodicity so Jf = Jgoh\ (2) h is somewhere locally Lipschitz; (3) h is continuous 
everywhere (and measure preserving); (4) h is real analytic; (5) h is complex 
analytic. 

The idea of all these is to use the expanding dynamics (as in Part IV) to see 
the improved quality of h. 

We reduce part (i) to part (ii) by showing h must preserve the Hausdorff 
measure class. Q.E.D. 

The Hausdorff measure theory of such dynamical fractals can be understood 
in terms of Gibbsian measure classes and Gibbs states. For simplicity consider 
one topological model, the shift on the Cantor set X of one-sided strings on 

rp 

two symbols, {.£o£i. • • } —• {.£i£2 • • • }• A (Holder) Gibbsian measure class for 
T : X —• X is a measure class determined by a probability measure v on X so 
that (i) v(A) > 0 if and only if v(TA) > 0; and (ii) (p the log Jacobian of T rei v 
(definable by (i)) satisfies sup|̂ >(a;) — <p(y)\ < ca~n whenever x and y agree 
for the first n-symbols. Let Ck>a denote {/: _Dfc_1 log Df is a-Hölder} where 
k = 1,2,3,... a G (0,1]. 

THEOREM. Letv determine a (a-Hölder) Gibbsian measure class for T: X —• 
X. Then for each 8 G (0,1) there is a Holder continuous embedding of X in the 
real line X C R and a C1,ûf expanding map f:R—>R defined on a neighborhood 
of X so that 

(i) X is the maximal invariant set of f in the neighborhood and f/X is the 
shift T; 

(ii) v is the 6-Hausdorff measure of X, and therefore 8 is the Hausdorff di
mension of X; 

(iii) any such C1'0 geometric realization ofT,f: X —• X is determined up to 
bi-Lipschitz conjugacy by 8 and the Gibbsian measure class determined by v\ 

(iv) if f: X —• X is Ck,a (k>2,k = oo, or k = w) and /" ^ 0 (in the metric 
where Hausdorff measure is invariant) at some point of X, then f:X—*X is 
determined up to Ck,a conjugacy near X by the Gibbsian measure class v. (8 is 
determined also.) 

REMARKS. (1) One knows (Bowen [1]) that a (Holder) Gibbsian measure class 
is determined by the Jacobians at the periodic points. Also there is a canonical 
representative using the unique invariant measure. An important consequence 
of the first is that the set of Gibbsian measure classes is isomorphic to a locally 
closed subset in a Banach space. (2) All topological models based on one-sided 
subshifts of finite type can be similarly treated. 

NOTE ADDED IN PROOF. The author has recently found that such C1>a 

expanded Cantor sets G have a Holder continuous scale function a: C* —> R 
where C* = {... £3£2£i-} if C = {sieves ...}, e% = 0 or 1. The scale function 
is independent of the smooth C1 coordinate system being defined as asymptotic 
limits of ratios of lengths of intervals at stage n to lengths of containing inter
vals at stage n — 1. Two expanding systems which are Ck,a (k = 1,2,3,... a 
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in (0,1]) are Ck,oc conjugate iff they have the same scale functions. Also any 
Holder continuous function occurs as the scale function in some C1,a expanding 
model. This caveat to the expanding theory is very useful for understanding the 
Feigenbaum discovery. (See Part I.) 

IV. Quasiconformality in the geodesic flow of negatively curved 
manifolds. If M is a compact negatively curved rc+1 manifold, then there is de
fined a topological rc-sphere at infinity in the universal cover on which r = TTIM 

acts with every orbit dense. One knows that the sphere carries a qc manifold 
structure in which T acts uniformly quasiconformally if and only if there is a 
constant negatively curved compact manifold of the same homotopy type as M. 
Compare Gromov [11], Sullivan [23], and Tukia [25]. (More precisely, one shows 
the uniformly qc action is qc conjugate to a conformai action.) One hopes and 
conjectures that one may always find this quasiconformality when n + 1 = 3, 
and one knows for n + 1 = 4,5,6,... that it is generally impossible even for 
manifolds with sectional curvatures almost equal to - 1 (Gromov and Thurston 
[12]). 

Here we describe a necessary and sufficient condition for this quasiconformal
ity in a more precise sense when the curvature is pinched —\<k<—l. In this 
case one knows the sphere at infinity has a natural C1-structure; see Green [10] 
and Hirsch-Pugh [13] and the following text. (Gromov has asked if the sphere 
at infinity has a C2 structure only in the locally symmetric case.) 

The pinching condition implies that the horospheres in the universal cover 
have extrinsic curvatures satisfying \ < k < 1. This implies that the geodesic 
flow has eigenvalues in its expanding manifolds satisfying | < log A < 1. ,An 
elementary calculation shows that composing expansions with these eigenvalue 
inequalities yields a composition F whose derivative only varies in Lipschitz 
manner (in Gl(n)) along an arc so that the length of its F image is < 1. The point 
is that the Lipschitz constant is independent of the length of the composition. 

We call this property of composed expansions the quasilinearity principle. 

PROPOSITION. In a ^\ < k < — 1 pinched Riemannian manifold the 
geodesic flow on its expanding horospherical foliation satisfies the quasilinear
ity principle. 

This proposition leads to the C1 -structure on the sphere at infinity. It also 
allows one to characterize uniform quasiconformality of the action of T on the 
C1-sphere at infinity. 

THEOREM. The following are equivalent in the — \ < k < — 1 pinched 
compact Riemannian manifold. 

(i) The 7TiM = T action on the C1-sphere at infinity is uniformly quasicon
formal. 

(ii) The geodesic flow is uniformly quasiconformal on its expanding horo
spheres. 
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(iii) The r action on the tangent spaces of the sphere at oo is measurably 
irreducible. 

(iv) The geodesic flow acting on the tangent spaces of the expanding horo-
spheres is measurably irreducible. 

Measure irreducibility means there is no measurable field of proper subspaces 
of the tangent spaces which is a.e. invariant by the relevant action. 

SKETCH OF PROOF. (1) The orbits of T on the sphere at infinity are in one-
to-one correspondence with the leaves A+ of forward asymptotic geodesies in 
the unit tangent bundle. Each leaf of the foliation A+ is a family of horospheres 
swept out by the geodesic flow. Then the A+ foliation is an Jî-extension of a 
foliation with polynomial growth leaves, the horospheres. For such foliations 
(yielding amenable equivalence relations) Zimmer [29] has shown any associated 
Gl(n) cocyle has a measurable reduction or it is measurably equivalent to an 
associated cocycle of similarities. 

(2) In the latter case one can show the measurable invariant similarity struc
ture is continuous by expanding a small neighborhood of an almost continuity 
point (on the sphere at infinity). One uses (a) the quasilinear principle and (b) 
the existence of a natural metric on the similarity structures on one tangent 
space to enlarge a neighborhood with high percentage very small oscillation. 
(Because (b) is lacking for subspaces one cannot use this argument to show 
that the measurable reduction of (1) is continuous. In fact, this conclusion is 
certainly false for all the odd dimensional examples of Gromov-Thurston [12] 
because an even sphere has no continuous tangent subbundle.) If Y preserves a 
continuous similarity structure the action is uniformly quasiconforml relative to 
the C1-structure. This shows (iii)=^(i). 

(3) The rest of the implications do not use the —\ < k < — 1 pinching: (i)=*>(ii) 
and (iv)=^(iii) are formal, (ii)=^(i) is a picture, and for hyperbolic manifolds (iv) 
is known, so (i)=^(iv). 

PROBLEM. DO the conclusions of the theorem imply the curvature is actually 
constant? (Part III suggests something of this sort.) 

REFERENCES 

1. R. Bowen, Gibbs states..., Lecture Notes in Math., Springer-Verlag. 
2. D. Cooper, Characterizing convex cocompact Kleinian groups, Preprint. 
3. S. Donaldson and D. Sullivan, manuscript in preparation. 
4. A. Douady and J. Hubbard, On the dynamics of polynomial like mappings, Ann. 

Sci. École Norm. Sup. (4) 18 (1985), 287-343. 
5. H. Epstein, New proofs of the existence of the Feigenbaum function, Comm. Math. 

Phys. (to appear); IHES/P/85/55. 
6. , Polynomial-like behavior of the Feigenbaum function, IHES, 1986. 
7. M. Feigenbaum, The universal metric properties of nonlinear transformations, J. 

Statist. Phys. 21 (1979), 669-706. 
8. M. Feigenbaum and D. Sullivan, Geometry of the period doubling attractor, manu

script in preparation. 
8.5. R. Fintushel and R. Stern, Pseudofree orbifolds, Ann. of Math. 122 (1985), 335-364. 



1228 DENNIS SULLIVAN 

9. F . W . Gehring, The Lp integrability of the partial derivatives of a quasiconformal 
mapping, Acta Math. 30 (1973), 265. 

10. L. Green, The generalized geodesic flow, Duke Math. J. 41 (1974), 115-126. 
11. M. Gromov, Hyperbolic manifolds, groups and actions, Riemann Surfaces and Re

lated Topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony 
Brook, N.Y., 1978), Ann. of Math. Studies, No. 97, Princeton Univ. Press, Princeton, N.J., 
1981. 

12. M. Gromov and W. Thurston, Variable negative curvature and constant negative 
curvature, Invent. Math. (1987) (to appear). 

13. M. Hirsch and C. Pugh, Smoothness of horocycle foliations, J. Differential Geom. 
10 (1975), 225-238. 

14. K. M. Khanin, Ya. G. Sinai, and E. B. Vul, Feigenbaum universality and the ther
modynamic formalisms, Russian Math. Surveys 39 (1984), 1-40. 

15. O. Lanford, A computer assisted proof of Feigenbaum conjectures, Bull. Amer. 
Math. Soc. 6 (1982), 427. 

16. J. Milnor, Self similarities of the Mandelbrot set, IAS Preprint, 1986. 
17. C. B. Morrey, Multiple integrals in the calculus of variations, Grundlehren Series, 

vol. 30, Springer-Verlag. 
17.5. J. Peetre, On convolution operators leaving Lp'x spaces invariant, Ann. Math. Pura 

Appi. (4) 72 (1966), 295-304; J. Funct. Anal. 4 (1969), 71-87. 
18. D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dynamical Systems 2 

(1982), 99-107. 
19. M. Shub and D. Sullivan, Expanding endomorphisms of the circle revisited, Ergodic 

Theory Dynamical Systems (1985). 
20. D. Sullivan, Quasiconformal homeomorphisms and dynamics. I, Solution of the 

Fatou-Julia problem on wandering domains, Ann. of Math. 122 (1985), 401-418. 
21. , Hyperbolic geometry and homemorphisms, Geometric Topology (Proc. Geor

gia Topology Conf., Athens, Georgia, 1977), Academic Press, New York, 1979, pp. 543-555. 
22. , Conformai dynamical systems, Geometric Dynamics (Proc. Internat. Conf. 

Dynamical Systems, Rio de Janeiro, 1981), Lecture Notes in Math., vol. 1007, Springer-Verlag, 
1983, p. 725. 

23. , On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic 
motions (Stony Brook Conference on Riemann Surfaces, Stony Brook, N.Y., 1978), Princeton 
Univ. Press, Princeton, N.J., 1981. 

24. N. Teleman, Atiyah Singer theory for Lipschitz manifolds, Inst. Hautes Études Sci. 
Pubi. Math., 1984. 

25. P. Tiikia, Groups of quasiconformal homeomorphisms..., Acta Math. 
26. K. Uhlenbeck, Connections with Lp bounds on curvatures, Comm. Math. Phys. 83 

(1982), 11-29, 31-42. 
27. J. Vaisala, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in 

Math., vol. 229, Springer-Verlag. 
28. W. P. Ziemer, Absolute continuity and change of variables, Trans. Amer. Math. 

Soc , 1968. 
29. R. Zimmer, Semisimple groups and ergodic theory, Birkhauser, Basel, 1986. 
30. C. Tresser and P. Coullet, Iterations ...et groupe de renormalization, J. Physique, 

Colloque C5, Supplement au no° 8, tome 39, 1978, pp. C5-25.. 
31. J. Guckenheimer, Limit sets of s-unimodal maps with zero entropy, Commun. Math. 

Phys. 110 (1987). 

CITY UNIVERSITY OF NEW YORK, NEW YORK, NEW YORK 10036, USA 

INSTITUT DES HAUTES ETUDES SCIENTIFIQUE, BURES-SUR-YVETTE, FRANCE 



Proceedings of the International Congress of Mathematicians 
Berkeley, California, USA, 1986 

Homoclinic Bifurcations 

FLORIS TAKENS 

1. Introduction. We say that a one-parameter family of diffeomorphisms 
ip^: M —• M, p G R, has a homoclinic bifurcation, or a homoclinic tangency, 
for p = 0 if ipo has an orbit of nontransverse intersection of a stable and an 
unstable manifold, both of the same hyperbolic fixed point (or periodic point), 
which splits, for p > 0, into two orbits of transverse intersection of these stable 
and unstable manifolds. Definitions will be recalled in §§2 and 3. 

These orbits of intersection of stable and unstable manifolds of the same hy
perbolic fixed points, or homoclinic orbits, often imply or are implied by complex 
dynamic behavior. So one may expect that at or near homoclinic bifurcations 
one will have transitions from simple to complex dynamic behavior and also 
(discontinuous) transitions between different kinds of complex dynamics. These 
transitions form the subject of this paper. This is a survey of recent work which 
was carried out mainly in collaboration with J. Palis and which is a continuation 
of the earlier work of S. Newhouse and J. Palis. 

2. Homoclinic orbits, simple and complex dynamics, and hyperbol
icity. We recall some definitions and basic results; see [21, 14, 19] for more 
details. Let ip: M —• M be a diffeomorphism. A fixed point p of <p is called 
hyperbolic if d<p(p) has no eigenvalue of norm 1. In that case, the stable and the 
unstable manifolds of p are injectively immersed submanifolds; these manifolds 
are defined by 

and 

W8(p) = \xeM\ lim (pn(x)=p\ 
y n—»-+00 J 

Wu(p) = {xeM\ lim ipn(x) = p), 
I n-—oo J 

respectively. A homoclinic orbit of such a hyperbolic fixed point p of (p is an 
orbit in W8(p)nWu(p)\{p}. 

The existence of a homoclinic orbit, especially when it is an orbit of transverse 
intersection of stable and unstable manifolds, implies complex dynamic behav
ior. We shall define what we understand here as complex dynamics in terms of 
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the positive limit set. (This notion could also be defined in terms of the nonwan-
dering set, the recurrent set, or other such sets, but the positive limit set seems 
to be more natural at least if the diffeomorphism decribes a time evolution: this 
positive limit set, together with its induced dynamics, determines the asymp
totic dynamics of all orbits {v^n(^)}n^-oo f° r n ~* +°°0 For a diffeomorphism 
ip: M —• M and a point x G M, one defines the u-limit as w(x) = {z'|3roi —• +00 
such that <pni(x) —• a;'}; the a-limit is defined similarly with m —> —00 instead 
of ni —• +00. Usually one assumes M to be compact in order to have u(x) and 
a(x) nonempty. The positive limit set of tp is defined as L+ = \JxeM

LJ(x)- If 
we want to express the dependence of these sets on <p, we write w(x, <p), a(x, <p), 
and L+(<p). We say that the dynamics of <p is simple if the positive limit set of 
<p is finite, and is complex if the set is infinite. From now on we restrict ourselves 
to diffeomorphisms on compact manifolds. 

The existence of a transverse homoclinic orbit implies complex dynamics. One 
even conjectures that it is a generic property of diffeomorphisms (on a compact 
manifold) to have either simple dynamics or homoclinic orbits. 

Independent of having simple or complex dynamics, a diffeomorphism may 
be hyperbolic. Let if C M be a compact invariant set for a diffeomorphism 
<p: M —• M, and let || || denote the norm of tangent vectors to M with respect 
to some Riemannian metric. We say that K is hyperbolic if there is a continuous 
splitting T(M)\K = EU ®E3 of the tangent bundle of M restricted to K and 
if there are constants C > 1 and A > 1 such that for all v G Eu and n > 0, 
||rfpn(«)|| > C"1 ' *w> and for all v G E3 and n > 0, | |dpn(v)| | < G • A"n . 

We say that K has a cycle if there is a finite sequence of points x0, xi,..., Xk = 
xo in M, not all contained in K, such that for all i = 0 , 1 , . . . , k — 1, a(xi) C K, 
u(xi) C K, and u(x{) C\ a(xi+i) ^ 0 . Note that if K consists only of one hyper
bolic fixed point, then a cycle is essentially the same as a homoclinic orbit. We 
say that a diffeomorphism (p: M —• M is hyperbolic if L+((p), as an invariant 
subset for <p is hyperbolic and has no cycles. Otherwise (p is called nonhyper-
bolic. Although the formulation of this definition differs from the corresponding 
definition in [16], it follows from [7, 22, 12] that the corresponding notions are 
equal. 

A main reason for introducing the class of hyperbolic diffeomorphisms is that 
the topology of their dynamics, as far as the asymptotic behavior of orbits 
{<pn(x)}n=-oo f° r n ~* + 0 0 *s concerned, is persistent in the following sense. 
If <p: M —• M, M a compact manifold, is hyperbolic, then <p has a neighbor-
hood it in the space of C1-diffeomorphisms „such that_for_any \E G i l there is a 
homeomorphism h: L+((p) —> L+(Sb) such that 

ho(<p\L+((p)) = (V\L+(V))oh. 

This last statement is equivalent to the Q-stability theorem [22]. If, for a 
diffeomorphism (p, there is a neighborhood IX as above, then we call <p positive 
limit stable. 
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» > 0 

FIGURE 1. Stable and unstable manifolds of a one-parameter 
family of 2-dimensional diffeomorphisms with a homoclinic tan-
gency. 

A homeomorphism h as above is called a positive limit conjugacy. In fact it 
may follow from recent work of Mafie [4, 5] that hyperbolicity is even equivalent 
with positive limit stability. 

The topological structure and the ergodic properties of positive limit sets of 
hyperbolic diffeomorphisms have been studied extensively; e.g., see [2, 19]. On 
the other hand, many examples of so-called strange attractors probably only 
occur in nonhyperbolic diffeomorphisms with complex dynamics. 

We observe that any diffeomorphism which has a homoclinic orbit of tangency 
is nonhyperbolic. This and Figure 1 indicate that near a homoclinic tangency 
there are very many nonhyperbolic diffeomorphisms with complex dynamics. 

3. Homoclinic tangencies. As stated in the Introduction, we consider one-
parameter families of diffeomorphisms ip^: M —• M which have a homoclinic 
tangency for p = 0. We have to impose, however, some further conditions for 
our considerations to be valid. In this section we discuss these extra conditions 
and formulate the main question which we want to investigate. 

We assume the manifold M to be compact. Also, we assume that the diffeo
morphisms <Pn are C2 for each p and that their dependence on p is at least C1 . 
For p near zero, we assume that pM is a hyperbolic fixed point of (p^ depending 
continuously on p (for hyperbolic periodic points there is a similar theory), and 
that Wu(pp) and W3(pß) have, for p, = 0, one orbit of nontransverse intersec
tion. We assume that this tangency is parabolic and unfolds generically; i.e., we 
assume that there are (//-dependent) coordinates xi,..., xn so that locally on a 
neighborhood of a point of the orbit of tangency, 

Wu(pß) = {(xi,... ,xn)\xu+i = --- = xn = 0}, 

^ S ( P M ) = {(zi , . . . ,zn) | :c i = ••• = xu-i = 0 , z u + i =xl-p}, 

where u = dim(Wu(p / i)) = n - dim(Ws(ptJL))] see Figure 2. 
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FIGURE 2 

Other generic assumptions which we impose are: 
• Except for the one orbit of tangency of po, all periodic orbits of <p0 are 

hyperbolic and all (other) intersections of stable and unstable manifolds are 
transverse (compare this with the Kupka-Smale theorem [14]). 

• The eigenvalues of d<po(po) have multiplicity one. 
• If A and p, are the norms of the weakest contracting and weakest expanding 

eigenvalues, respectively, of d<po(po), then A • p ^ 1. 
Next we have some nongeneric assumptions. First we assume that p = 0 is a 

"first bifurcation" in the sense that for some e > 0, all (pß, with —e < p < 0, 
are hyperbolic. This is as strong a restriction as can be seen from the analysis 
in [10, 11, 16]. The point is that in important classes of examples, homoclinic 
tangencies are preceded by infinite cascades of bifurcations; see [3] and [11]. 
These cascades may be related to strange attractors; see question 6 in [13]. 

Our second (nongeneric) assumption is that \imßy^o L+((pp) exists and is a 
hyperbolic set for <po; we denote this limit set by Z+ . This second assumption is 
probably not completely independent of the first; at least, I do not know how to 
make a (generic) example which satisfies the first assumption but not the second. 

Finally there is a last, somewhat technical assumption, but I do not know 
whether it is generic or not. Some further definitions are needed to state it, so 
we postpone it to §4. When dim(M) = 2, this last condition can be omitted. 
The rest of this section does not depend on this last assumption. 

Due to these assumptions, especially the second nongeneric assumption, the 
orbit of tangency will not be contained in Z+ . This means that for small positive 
values of p, L+(^M) consists of one part near L+ (which is in fact topologically 
conjugated with Z+) and a part near the orbit of tangency. So the positive limit 
set L+((pß) explodes (i.e., becomes suddenly bigger) when p, passes through zero; 
we call a one-parameter family of diffeomorphisms (p^ satisfying all the above 
conditions a homoclinic limit explosion (this is the same as what was called a 
homoclinic fl explosion in [16]). 

As observed before, for p > 0, (p^ has complex dynamics. The main question 
we are interested in is whether or not <pß is hyperbolic for most small but positive 
values of p,. To make this more precise, let 

Bfan) = (A — 0|^£ ^s n°t hyperbolic}. 
From §2 it follows that if ~ß £ Bfa^) and p1 is near p, then (pjj- and (p^i are limit 
conjugated. Also, B(<pß) contains all the "fl-bifurcations." 
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We are mainly interested in 

l i m m(B(<pp) n [0,8]) 
8\0 6 

if it exists (m denotes the Lebesgue measure) and in the corresponding lim sup 
and liminf, otherwise. 

The value of this limit depends on certain geometric properties of 

These properties are geometric in the sense that they are not preserved under 
topological conjugacies. 

4. Limit capacity and thickness of hyperbolic invariant sets. Let 
(p: M —> M be a C2 diffeomorphism on a compact manifold M, let L C M be 
a hyperbolic invariant set, and let p E L be a fixed point. We shall introduce 
a number of invariants associated to (<p,L,p). The main situation we have in 
mind here is the following: (p = (po, where (pß is a one-parameter family of 
diffeomorphisms with homoclinic limit explosion, p = po, where pM is the saddle 
point involved in the homoclinic tangency and L = L+ = limM/*o £+(<P/J as 
defined in §3. We assume that p is not isolated in L, in the sense that both 
Wa(p) fl L and Wu(p) fl L have p as an accumulation point. Furthermore, we 
assume that the weakest contracting—and the weakest expanding—eigenvalues 
of (d(p)(p) are real and positive, and have multiplicity one. This may seem like 
a strange condition, but with (p — (po, etc., as above, it can be shown that the 
weakest eigenvalues of (d<po)(po) are real and positive whenever po is not isolated 
in L+ [11]. (This follows from the condition that p = 0 is a first bifurcation.) 
For the multiplicity one condition, see §3. 

In this situation there is an invariant foliation, the strong stable foliation $ss, 
in Ws(p): its leaves have codimension one in W8(p), it is C f c_1 if (p is Ck (so 
here it is at least C1) , and with the above properties it is unique. The leaf of $aa 

through p is denoted by WS8(p). With the present definitions we can formulate 
the final condition for homoclinic limit explosions in §3. This final condition 
is that L+ H WS8(po) = £ + H Wuu(po) = {po}. Note that if p0 is isolated in 
Z + or if dim(M) = 2, this condition is automatically satisfied. Also, from [11] 
and the other conditions imposed on homoclinic limit explosions it follows that 
L+nWs(po) must be contained in a closed half-space, bounded by W8S(po) (and 
the same for Wu(p0), Wuu(p0)). 

We return to the strong stable foliation $83 in W8(p). It defines a smooth 
projection ir9 of W8(p) on a 1-dimensional manifold l8i namely, on the space 
of leaves of $88. Ls C ls denotes the closure of 7rs(L D W8(p)). This subset 
La C l8 admits a scaling: the map induced in l8 by £>|W5(p) is a hyperbolic 
contraction. Hence [23] there is a diffeomorphism KS: ls —> R which linearizes 
this contraction. This linearized contraction is just multiplication with A, the 
weakest contracting eigenvalue of (d(p)(p). Since L is (p invariant, Ks(La) = 
A • K3(L\). (This implies that the global structure of L8 is determined by the 
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intersection of La with a small neighborhood of 7ra(p).) Since the linearization 
K3 is unique (up to a scalar multiplication) it defines a canonical metric in l3 (up 
to scalar multiplication). 

If (p is hyperbolic, L = L+(<p), and dim(W3(p)) = 1 (so that l3 = W8(p) and 
7TS = id), then L3 is a Cantor set. For dim(W5(p)) > 1, L3 may contain intervals; 
we do not know whether it may contain isolated points. 

We define the limit capacity of L3. For this we first define the limit capacity 
of a compact metric space (K,p). Let n(K,e) be the minimal number of e-
neighborhood necessary to cover K. The limit capacity of K is defined as 

d(X)=limSupln(nf'£)). 
e-o - I n s 

The limit capacity of L3 is now defined as the limit capacity, in the above 
sense, of a compact neighborhood of ir3(p) in L3 with respect to the metric in 
l3 defined by the linearization. Due to the scaled structure of L3 and the fact 
that the limit capacity does not change when multiplying the metric p with a 
constant, the limit capacity d(L3) is independent of the choices of neighborhood 
and linearization. 

We call d(L3) the stable limit capacity of L at p. The unstable limit capacity 
of L atp is similarly defined using the strong unstable foliation y*w in Wu(p). 

We define the notion of thickness for compact subsets K C R. 
A connected component of R — K is called a gap. A point k G K which is a 

boundary point of a finite gap of K is called a boundary point of K; the set of 
boundary points of K is denoted by dK. Let k G K be a boundary point of K. 
Let U be the gap such that k G dU. Then there is a unique gap V such that: 

(i) k is between U and V; 
(ii) l(V) > l(U) (V may be infinite); 
(iii) if W is any gap between U and V, then l(W) < l(U). 
Let C be the closed interval between U and V. Then the thickness of K at fc 

is 

T(K,k) = l(C)/l(U). 

The thickness of K is T(K) = infr(üC, fc), where the infimum is taken over 
all boundary points K G dK. Note that this definition is equivalent to the 
definition in [9]. The stable thickness of L at p is defined as the thickness of a 
neighborhood of ir3(p) in L3. Since the definition of thickness depends only on 
ratios of distances, the definition is independent of the linearization; since L3 

J ias â  scaling, this definition is independent of the size of the neighborhood of_ 
7ra(p). The unstable thickness of L at p is similarly defined. 

The main reason for these notions—limit capacity and thickness—are of im
portance to our present problem in the relation they have with the difference of 
two (Cantor) sets in R, as expressed in the following propositions; the difference 
of two subsets A, B C R is defined as 

A- B = {t\An(B + t) Ï 0}. 
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PROPOSITION [15]. If A, B CR are closed sets and if the sum d(A) + d(B) 
of their limit capacities is smaller than one, then the Lebesgue measure of(A-B) 
is zero. 

PROPOSITION [6]. If A,B CR are Cantor sets and if the product of their 
thicknesses r(A)-r(B) is bigger than one, then A—B is a finite union of intervals. 

5. Results . Homoclinic orbits were studied by Poincaré in relation to ce
lestial mechanics in [17] and [18]. He observed that they imply great dynamic 
complexity. This situation was further analyzed by Birkhoff [1]. A full descrip
tion of the dynamic complexity due to a homoclinic orbit in a simple example 
(the horseshoe) was given by Smale [20], who also showed that near any trans
verse homoclinic orbit there is an invariant subset on which the dynamics is 
conjugated with that of the horseshoe. 

Homoclinic tangencies were then investigated by Newhouse [6, 8, 9] in order 
to show that there are open sets of nonhyperbolic diffeomorphisms in the space 
of all C2-diffeomorphisms of the 2-sphere. For our problem, this analysis leads 
to the following results. 

THEOREM (NEWHOUSE). Let (p^: M - • M, dim(M) = 2, be a one-param
eter family of diffeomorphisms with a homoclinic limit explosion (see §3) involv
ing the saddle point p^. Then there are arbitrarily-near-zero intervals I C R 
such that for p G J, <pß is nonhyperbolic. If we also assume that the product 
of the stable and the unstable thicknesses of L+ at po are bigger than one, then 
there is some p,o > 0 such that for any 0 < p < po, <pß is nonhyperbolic. 

In higher dimensions there are corresponding but weaker results; it is not yet 
clear what the final result should be for general dimensions. 

On the other hand we have 

THEOREM (NEWHOUSE, PALIS, TAKENS). Let (pß\ M - • M be a one-
parameter family of diffeomorphisms with a homoclinic limit explosion (see §3), 
involving the saddle point pß. If the sum of the stable and unstable limit capacity 
of Z+ at po is smaller than one, then 

l i m m(B(<pß)n{0,6]) = 0> 

6\0 8 ' 

see also §3. 

The case that the dynamics of tp^, p < 0, is simple, was proved (in a somewhat 
weaker form) by Newhouse and Palis [10, 11]. The 2-dimensional case, without 
restricting the dynamics to be simple, was proved by Palis and Takens [16]. The 
proof for the higher dimensional case has not yet appeared. For corresponding 
results for cycles made by hetroclinic bifurcations, see [10, 11, 15]. 

Finally we mention that there are also generic examples of homoclinic limit 
explosions ip^. M —• M, dim(M) > 3, for which the expression 

m(B(<pp)n[0,6]) 
8 
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has both its lim sup and its liminf for 8 —• 0 strictly contained in the open 
interval (0,1). 

After this paper was completed I found a gap in the main proof of reference 
[9]; i.e., the thickness of A22(^) (PaSe 138) is not proved in a convincing way.1 

This may affect the first statement in the theorem of Newhouse quoted in §5. 
The other statements are not affected by this. At this moment, C. Robinson 
claims to have solved this difficulty (added in proof, February 1987). 
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The Arnold Conjecture for Fixed Points 
of Symplectic Mappings and 

Periodic Solutions of Hamiltonian Systems 

E. ZEHNDER 

It is the aim of this paper to describe some qualitative existence results for pe
riodic solutions of Hamiltonian equations, which are related to the V. I. Arnold 
conjecture about fixed points of symplectic mappings. The conjecture origi
nates in the circle of old questions of celestial mechanics related to the Poincaré-
Birkhoff fixed point theorem. 

1. V. I. Arnold conjecture; a history. We consider a compact symplectic 
manifold (M,OJ), where CJ is a distinguished closed and nondegenerate 2-form. 
To every smooth function # : R x M —• R, one can associate a time-dependent 
vector field Vt on M defined by 

u(-,Vt)=dHt{-), 

where Ht(x) = H(t,x). This vector field is called the exact Hamiltonian vector 
field associated with the function H. The differential equation on M, 

±<t,* = Vto4>*, ^° = id, 

defines a family of diffeomorphisms on M which preserve the symplectic struc
ture; i.e., for every t G R, (0*)*w = w, so that cj)1 is a symplectic diffeomorphism. 

DEFINITION. In the following we shall call a map <j> on M Hamiltonian if 
it belongs to the flow 0* of any time-dependent exact Hamiltonian vector field 
on M. We remark that one can show that the set of Hamiltonian maps is the 
subgroup [G,G], where G is the one component of the group of all symplectic 
diffeomorphisms of M [4]. 

A Hamiltonian map is, in particular, homotopic to the identity and possesses, 
therefore, by Lefschetz theory, at least one fixed point if the Euler characteristic 
of M does not vanish, i.e., if x{M) ^ 0. The Lefschetz theory which applies to 
the class of all topological mappings is of no use for the Arnold conjecture. It is 
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2 2 
T = IR /Z 

X(T) = 0 

FIGURE l 

the challenge of this conjecture to extend this theory to a Ljusternik-Schnirelman 
theory resp. to a Morse theory for fixed points for the more restricted class of 
Hamiltonian maps on symplectic manifolds. 

ARNOLD CONJECTURE.. A Hamiltonian map <j) on a compact symplectic 
manifold (M, u) possesses at least as many fixed points as a function on M has 
critical points. 

For example, in view of the Ljusternik-Schnirelman theory resp. the Morse 
theory for critical points of a function on M, we shall for the following restate 
the conjecture as 

# {fixed points} > CL(Af) 

( > SB(M) if all the fixed points are nondegenerate). 

Here we abbreviate, by CL(M), the cuplength of a compact spiace X which is 
defined as the integer 1 + sup{fc|3 classes a i , . . . , a* G üf*(-X")\{l} with a± U 
«2 U • • • U Oik 7̂  0}- SB(_X") stands for the sum of the Betti numbers of X. We 
also denote in the following the Poincaré polynomial of the space X by 

p(t,x)=J2ßkth
i ßk=dhnHk(X), 

so that SB(X) = p(l,X), while the alternating sum p(-l,X) = xPO is t n e 

Euler characteristic of X. 
Arnold was lead to the conjecture in his discussion [2] of the celebrated 

Poincaré-Birkhoff fixed point theorem for an area-preserving map on an annulus 
A in the plane [28, 5]. He showed that this theorem, which is not of topological 
nature, could be derived from a fixed point theorem for symplectic mappings 
<j) ~ id on the 2-dimensional torus T = R2/Z2 , at least in the differentiable case. 
(See Figure 1.) 

The 2-torus is distinguished among the compact surfaces by the fact that the 
Lefschetz theory is not applicable, since x(T) = 0- As the translations show, 
the class of symplectic maps on T has to be restricted if it should possess fixed 
points. For è belonging to the restricted class of Hamiltonian_maps_on-TT_AniolcL 
formulated the following global fixed point theorem [1, 2], a special case of his 
conjecture, proved in 1983 [12]. 

# {fixed points} > 3 

( > 4 if the fixed points are nondegenerate). 

The lower bounds are sharp. Clearly, this result is not an Euler-characteristic 
result; indeed 3 = CL(T) and 4 = SB(T). Under the additional condition that </) 
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is close to the identity map, i.e., \<j> — id |ci small, there is a direct and one-to-one 
relation between the fixed points of <\> and the critical points of a function on 
T, a so-called generating function, as one verifies easily. In contrast, the above 
theorem is global and its proof is quite different. 

In 2 dimensions a symplectic map simply preserves a volume form, and we 
illustrate the global consequences of this additional structure with two other ex
amples. A homeomorphism of an open 2-disc in the plane does not necessarily 
have a fixed point; however, it always has at least one fixed point if it preserves a 
regular measure. This follows, e.g., by Brouwer's translation theorem. Similarly, 
a homeomorphism (ß ~ id on S2 possesses > 1 fixed points by Lefschetz theory 
since x{S2) = 2 ^ 0 , but it may have only one. Under the additional assumption 
however that (f> preserves a regular measure, it has > 2 fixed points. In partic
ular, 0 satisfying <f)*(jj = w on S 2 has > 2 fixed points. This was observed in 
1974 by C. Simon [33] and N. Nikishin [26] using another strictly 2-dimensional 
argument. 

It turns out that these global fixed point theorems are not a 2-dimensional 
phenomenon, as we shall illustrate next in the special case of the torus. The 
crucial observation is a dynamical interpretation of the Arnold conjecture. If 
the Hamiltonian function H depends periodically on time t, i.e., H: S1 x M —> 
R, with period 1, then the 1-periodic solutions of the Hamiltonian vector field 
on M are obviously in one-to-one correspondence with the fixed points of the 
interpolated map <j> which is the time 1 map of the flow. Instead of looking for 
fixed points of a map, we rather look for periodic solutions of a Hamiltonian 
equation. From this point of view the Arnold conjecture claims a lower bound 
for the number of periodic solutions of every periodic exact Hamiltonian vector 
field on (M,u)). 

2. The torus; a variational principle. 
(a) Statement. On the 2n-dimensional torus T — Tt2n/Z2n, with its standard 

symplectic structure J , we consider any 1-periodic exact Hamiltonian vector field 

x = JVH(t, x) on T, 

where H: S1 XT —• R, and we look for 1-periodic solutions. The following result 
has been proved by C. Conley and the author in 1983 [12]: 

# {periodic solutions} > 2n + 1 = CL(T) 

/ 2n _ QT>(T\ ^ a " ^ e Pe r i°dic Solutions \ 
\ ~ are nondegenerate / 

The lower bounds are sharp. The statement is of qualitative nature. It requires 
no assumption on the Hamiltonian vector field. On the other hand, it gives no 
information about the position of the periodic solutions and about their linear 
and nonlinear Birkhoff invariants. This would be important in the investigation 
of the flow nearby using KAM theory. It turns out that all the periodic solutions 
claimed are contractible loops on T, and indeed other periodic solutions need 
not exist. This is in sharp contrast to the geometric problem of closed geodesies 
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on T as a Riemannian manifold, where one easily finds a closed geodesic in every 
homotopy class of loops. 

(b) Idea of the proof. The proof is based on a classical variational principle 
for which the critical points are precisely the periodic solutions we are looking 
for. Define on the loop space fi = fi(T) of contractible loops of period 1, the 
function / : fi —• R by 

/w-jf{s< -(x,Jx)+H(t,x)\ dt 
Jo lV 

which has the /^-gradient 

V/ (z ) := J ^-x + VJT(t, x), z e fi, 
at 

so that the critical points Vf(x) = 0 are those loops in fi which satisfy the 
Hamiltonian equation, since J 2 = — 1. Searching for critical points of / one is 
confronted with the difficulty that this variational principle is degenerate; it is 
bounded neither from below nor from above so that standard variational tech
niques do not apply directly. For example, the Morse index of every possible 
critical point is infinite, hence topologically invisible at first sight. Only in the 
late seventies did P. Rabinowitz [29] demonstrate that such degenerate princi
ples can be used effectively for existence proofs by means of subtle mini-max 
arguments. Our approach is different; the guiding principle is to study the set 
S of bounded solutions of the gradient equation 

^-x = -Vf(x) on fi. 
as 

Due to the gradient structure one expects the invariant set S to consist of 
the critical points of / as well as the orbits connecting them, and one hopes 
that S represents the topology of T. The Cauchy problem of this O.D.E. on fi 
is not well-posed, since J(d/dt) is a selfadjoint operator bounded neither from 
below nor from above. One could interpret a connecting orbit as a solution 
w.RxS1 -> T of the P.D.E. 

du Tdu — T T / . v 

ä-S
+J!H=-VH{t>u) 

satisfying appropriate asymptotic conditions. In the case at hand, however, one 
can use the analytical device known as Liapunov-Schmidt reduction which allows 
us to reduce the problem of finding critical points for / on fi to the equivalent 
problem of finding the critical points of a related function g, which is defined 
Tffir ä^finite^dimensiönär su:r5manìfol(l^fi~C~fi, äs ^ r fn^^T^R 2 N ~-^R7~whëre 
g(z) = f(u(z)) with an embedding u: fi —• fi. This reduction has a smoothing 
effect and makes the topology of S visible. The flow of the reduced equation 
dz/ds = —Vg(z) on fi looks schematically as in Figure 2. 

One verifies easily that the set S of bounded solutions, which consists of the 
critical points and the connecting orbits, has a Conley homotopy index [10] 
whose cohomology is equal to H*(T)®H*(SN), i.e., is equal to the cohomology 
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FIGURE 2. B = T X D+ x D- has the exit set B = 
TxdD+ xD-. 

of T shifted up in dimension by TV. The Morse equation for S is, therefore, in 
the case of nondegenerate critical points, 

Y, tmW=p(t,T).tN + (l + t)Q(t) 
Vg{z)=Q 

with Q having nonnegative integer coefficients, m(z) being the Morse index. 
Setting t = 1 one finds, in particular, # {critical points} > SB(T) as claimed. 
The Morse indices of the critical points depend on the reduction dimension; their 
differences, however, have an invariant interpretation in terms of the Maslov 
indices of the corresponding periodic solutions of the equation [11]; in fact, they 
depend only on the interpolated Hamiltonian map (j> and the corresponding fixed 
points [34, 37]. 

The Conley index of S is not sufficient to determine a lower bound for the 
critical points in the degenerate case. But one can see that the topology of the 
invariant set S itself inherits the ring structure of T. There is a map a : fi —• T 
which induces an injective map (a\S)* : H*(T) -> H*(S) in cohomology [18] so 
that, in particular, GL(S) > CL(T). Since the flow on S is gradient-like, one 
therefore concludes that ^{critical points} > CL(S') as claimed in the theorem. 
It is important in the proof that the Conley index is cohomologically not just 
a ring but a H* (T) module defined by the map a. This added structure is an 
additional and useful invariant in Conley's deformation theory [16]. 

The torus example illustrates the difference between the above degenerate 
variational principle and the variational problem for the geometric problem of 
closed geodesies on a Riemannian manifold. In the latter case the functional is 
bounded from below and every cohomology class of the loop space is represented 
in the index of some critical point. In the general Hamiltonian case this is 
clearly not true; only the cohomology of the underlying manifold itself has to be 
represented in the critical points. 
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3. Fixed point results. The Arnold conjecture is not yet proved in full gen
erality. The variational approach described above has, however, been extended 
and lead to proofs of various special cases which we shall briefly summarize. We 
begin with a perturbation result. A. Weinstein [36] observed that the conjecture 
is true for every compact symplectic manifold (M, w) provided the Hamiltonian 
map <j) belongs to the flow of a sufficiently small Hamiltonian vector field (in the 
sup-norm). 

The global cases for S2, T2, and (T2n,u)*) with the standard symplectic 
structure have already been mentioned. It should be said that for 2-dimensional 
surfaces it is sufficient to prove the conjecture for a convenient symplectic struc
ture, since any two volume forms are equivalent by a diffeomorphism if they have 
the same total volume [25]. On a compact oriented surface of genus > 1 there 
is a symplectic structure with an associated Riemann metric having nonpositive 
curvature, i.e., 

w{X,Y) = g{JX,Y) 

with a Hermitian structure J2 = — id. This additional structure helps in proving 
the conjecture for all compact surfaces F = Fg of genus g > 1: a Hamiltonian 
map 0 on F has > 3 = CL(F) fixed points (> 2 + 2g = SB(F) if all the fixed 
points are nondegenerate). Proofs are due to A. Floer [17], J. C. Sikorav [32, 
31], and also Ya. Eliashberg [13]. The first two authors proved the conjecture, 
in fact, for symplectic manifolds in arbitrary dimensions for which there is an 
associated Riemann metric with sectional curvature < 0 and which satisfy ad
ditional technical conditions. The manifolds include, e.g., compact quotients of 
complex hyperbolic spaces H Q . The conjecture for the complex projective space 
C P n with its standard symplectic structure has been verified by B. Fortune [19]; 
it extends S2 = C P to higher dimensions. 

By entirely different methods M. Gromov [20] established a fixed point for a 
Hamiltonian map 0 on manifolds (M,u) satisfying LJ\TT2(M) = 0. Most recently 
A. Floer [14] announced an extension of this existence result to a Morse-theory 
for fixed points of 0 and proved [37-40] the Arnold conjecture for manifolds M 
with 7T2(M) = 0 and the cohomology with respect to Z2-coefficients: 

If the symplectic manifold (M, u) satisfies 7T2 (M) = 0, then a Hamiltonian 
map (p has > CLz2(M) fixed points (> SBz2(M), if all the fixed points are 
nondegenerate). 

Extending thejanderlying ideas of _the _torus_case,_ Floer constructs,an, alge-_, 
braic Conley index for the set S of critical points and connecting orbits of the 
corresponding gradient flow in the infinite-dimensional loop space. This index is 
shown to be isomorphic to H*(M, Z2) by a subtle continuation argument as <j> is 
deformed to the identity map by means of the flow 0* of the exact Hamiltonian 
vector field. It is very likely that the restriction ^(M) = 0 can be dropped. The 
theorem follows from a general intersection theorem for Lagrangian manifolds 
described in the next section. 
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FIGURE 3 

FIGURE 4 

4. Intersections of Lagrangian manifolds. As was first noticed by M. 
Chaperon [9], the variational approach is applicable also to other related global 
problems in symplectic geometry, in particular, to the special intersection prob
lem of Lagrangian manifolds suggested by V. I. Arnold in [3] and originally 
prompted by the local Birkhoff-Lewis fixed point theorem for which we refer 
to [24]. On 2-dimensional manifolds the Lagrange-manifolds are simply curves. 
Recall that a closed and homotopically nontrivial curve C in the annulus A in
tersects its image curve <j>(C) for a Hamiltonian map (ß, which follows by Stoke's 
theorem. (See Figure 3.) 

Similarly the zero-section of the cotangent bundle T*^ 1 cannot be discon
nected from itself by a Hamiltonian map $. In higher dimensions we consider 
the cotangent bundle T*N of a compact manifold N, with the symplectic struc
ture w = dX, where À = "pdq" is the canonical 1-form. It turns out that the 
zero-section jo(N) of T*N, which we identify with JV, cannot be disconnected 
from itself by a Hamiltonian map <j> on T*N. (See Figure 4.) 

More precisely, the following global intersection theorem holds: 

# {(ß(N) HN}> CL(JV) 

( > SB(7V) if cj)(N) H N is transversal). 
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Proofs are due to M. Chaperon [9] for the torus and to H. Hofer [21] for a 
general compact manifold N. The intersection points are the critical points of 
the classical action-functional 

/(*)= I {x*(X)-H(t,x)}dt, 
Jo 

with boundary conditions x(0) and x(l) G jo(N), where the function H defines 
an interpolating exact Hamiltonian vector field for <j). In their proofs F. Lauden
bach and J. C. Sikorav [22] and J. C. Sikorav [31] use a more geometric approach 
similar to the generating function technique which is based on a different varia
tional principle on finite-dimensional vector bundles over T*N, prompted by [7, 
8]. 

The submanifolds N and (ß(N) of (T*N, dX) are examples of exact Lagrangian 
manifolds. Recall that a submanifold L c M o f any symplectic manifold (M, u) 
is called Lagrangian if u\L = 0 and if dimL = | d i m M . In case w = dX, a 
Lagrangian submanifold is called exact if X\L is an exact one-form. We point out 
that every exact Lagrangian embedding j : N —• (T*N, dX) necessarily intersects 
the zero section jo(N); see Gromov [20]. 

Assume now (M,LJ) to be a general, but compact symplectic manifold and 
consider a Lagrangian submanifold L C M. Then one could ask for intersections 
(j)(L) fl L. Without further assumptions on (M, L), intersection points need not 
exist of course. For example, on the 2-dimensional torus a small loop bounding 
a 2-disc can easily be disconnected from itself by a Hamiltonian map, while for 
the homotopically nontrivial circle this is not possible. A general theorem has 
not been formulated up to now. There is, however, a partial result which has 
been most recently proved by A. Floer [37-40]: 

Assume (M,LJ) is a compact symplectic manifold and L C M is a compact 
Lagrangian submanifold satisfying ^(M,L) = 0. / / 0 is a Hamiltonian map 
on M, then the number of elements in (ß(L) fl L is > CLz2(L). //, moreover, 
<j)(L) fl L is transversal, then the number of intersection points is > SBz2(£)-

REMARK. Repeated application of the Poincaré-Birkhoff fixed point theorem 
to higher iterates of the map gives, in one stroke, infinitely many periodic points. 
An analogous theorem for periodic points for a Hamiltonian map on a compact 
symplectic manifold has not yet been found. There is merely a partial result for 
the special case of the torus [41]. 
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1. Introduction. Let V = {primes in Z} U {00}. As usual, Qp will denote 
the p-adic numbers for p a finite prime, and we set Qoo = R- Let S C V be 
a finite subset. For p G S, let Gp be a connected semisimple algebraic group 
defined over Qp, GP(QP) the group of Qp-points, and G = YiPes ^p(Qp)- Then 
G is a locally compact group. If S = {00}, we say that G is real, and in this 
case G is a semisimple Lie group. We say that G has higher rank if for all 
p E S, the Qp-rank of every Qp-simple factor of Gp is at least 2. If G is real 
and simple, this is of course equivalent to the condition that the rank of the 
associated symmetric space be at least 2. Let T C G be a lattice subgroup, i.e., 
T is discrete and G/T has a finite G-invariant measure. The basic examples of 
such groups are the S-arithmetic ones, and by results of Margulis [Ml] (see also 
[Zl]), under the assumption of higher rank, every lattice is S-arithmetic. The 
finite-dimensional (continuous) representation theory (say over C) of G is the 
same as that of Goo(R), and hence is classical and well-understood. In higher 
rank, the finite-dimensional representation theory of V is now quite well under
stood as well, due to the work of Margulis [Ml] on semisimple representations 
(Margulis's superrigidity theorem) (see also [Z5] and the work of Mostow [Mo] 
and Prasad [P]), Raghunathan [R2, R3] on general representations for the case 
in which T is not cocompact, and to the work of numerous authors (e.g., Weil 
[W], Matsushima-Murakami [MM], Raghunathan [RI], Borei [BI, B2], Borel-
Wallach [BW], Garland [G], Kazhdan [K]) on cohomology vanishing theorems 
for semisimple representations, which (when combined with Margulis's results) 
yields essentially complete results in the cocompact case. (Much of this work is 
also valid under considerably weaker hypotheses than higher rank.) The funda
mental conclusion of this theory is that all representations are essentially either 
orthogonal, or extend to G, or are built up from these two cases. The infinite-
dimensional (say unitary) representation theory of G is of course now a highly 
developed and enormously rich subject. The corresponding theory for T is largely 
undeveloped, except for developments related to the discovery of Kazhdan [K] 
that in higher rank the trivial representation of V is isolated in the unitary dual. 

Research partially supported by National Science Foundation Grant DMS-8301882. 
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This property is inherited from G, and is an extraordinarily powerful and flexible 
property of T. 

In this report, we will discuss the much more recent program of understand
ing the realizations of G and T in another natural class of groups, namely as 
smooth transformation groups on compact manifolds. This has both finite-
dimensional and infinite-dimensional features. We can view this as the nonlinear 
finite-dimensional theory, or as the study of homomorphisms into the infinite-
dimensional group of diffeomorphisms of a compact manifold. The prevailing 
theme of the work to date on this program is that one sees very strong manifes
tations of the rigidity phenomena of the finite-dimensional linear theory in the 
present context. It does not appear out of the question that one could classify 
all volume preserving ergodic actions of G and T on compact manifolds. 

(In many cases below, when considering actions of T or G, we will assume for 
simplicity of exposition that G has higher rank, even though in certain cases less 
restrictive hypotheses are sufficient.) 

We now describe some basic examples: 
(a) Let H be a connected Lie group and A C H a cocompact subgroup such 

that H/h. has a finite H invariant measure. Let p: G —• H be a continuous 
homomorphism. Then G (and Y) will act naturally on H/k. If H is semisimple, 
then under very mild assumptions, the fundamental theorem of Moore [Mrl] 
(see also [Zl]) implies that these actions are ergodic. 

(b) Let K be a compact Lie group, KQ C K a closed subgroup, and suppose 
p: Y —• K is a homomorphism. Then Y acts on K/KQ, preserving a Riemannian 
metric. The examples with p(T) dense in K are exactly the isometric ergodic 
actions of V. 

(c) Let N be a simply connected nilpotent Lie group on which H acts by 
automorphisms. Assume that D C N is a lattice which is invariant under the 
action of T. Then T acts by automorphisms of the compact nilmanifold N/D. 
A basic example arises from arithmetic realizations of Y. Namely, if p: Y —• 
GL(n, Z) is a homomorphism, then Y acts on the torus R n / Z n . 

A basic question is to what extend these examples (and easy modifications of 
them) represent all the volume preserving examples in the case of higher rank, at 
least if we assume ergodicity. At present there are no known examples of volume 
preserving actions not derived from these fundamentally linear situations. While 
a complete classification does not appear within reach at present, the remainder 
of this report will describe the present understanding of the actions of these 
groups under various natural hypotheses: dimension restrictions on M, actions 
preserving geometric structures, deformations, growth conditions, etc. 

2. Invariant geometric structures for semisimple groups. Let M be 
a compact, connected, rc-manifold and H C GL(rc, R) an algebraic subgroup. 
We recall that an ff-structure on M is a reduction of the frame bundle of M to 
H, and hence is a principal ff-bundle P —• M contained in the frame bundle. 
We let Aut(P) C Diff(M) be the subgroup of diffeomorphisms of M leaving P 
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invariant. Let G be as above, and assume G is real. In this section we describe 
results concerning actions of G preserving an üT-structure, i.e., homomorphisms 
G —• Aut(P). All these results carry over to the case of higher order structures, 
i.e., to the case in which H C GL(n,R)(fc) is an algebraic subgroup, where 
GL(n,R)M is the group of fc-jets at 0 of diffeomorphisms of Rn fixing the 
origin. 

THEOREM 2.1 [Z4, Z7], Suppose that G has no compact factors. If G 
acts effectively on a compact connected M preserving an H-structure where 
H C SL'(rc,R) (the latter being the matrices with |det| = 1), then there is an 
embedding of Lie algebras & —• f). In fact, this embedding is such that the repre
sentation 0 —• \) —• si (n, R) contains adß as a direct summand. 

This result provides very strong obstructions for G to preserve such an H-
structure. For example, if H = 0(1, n — 1), so that we are considering actions 
preserving Lorentz metrics, we deduce 

COROLLARY 2.2 [Z4]. / /a semisimple group G acts on a compact manifold 
(of any dimension) preserving a Lorentz metric, then G is locally isomorphic to 
SL(2,R) X K where K is a compact group. 

We remark that somewhat similar techniques can be used to analyze the 
solvable component of the automorphism group of a Lorentz manifold, although 
we shall not pursue this here. See [Z4]. 

The hypothesis of compactness and finite invariant measure on M are both 
necessary in Theorem 2.1. In case G is transitive on M, Theorem 2.1 can be 
deduced from the Borei density theorem (asserting that the stabilizer for a ho
mogeneous space of G with finite invariant measure is Zariski dense in G). The 
proof in general actually makes use of Borel's theorem and the ideas surround
ing it. Without the assumption of invariant measure (i.e., for H an arbitrary 
algebraic subgroup of GL(n, R)), we have 

THEOREM 2.3 [Z7]. Suppose G is a semisimple group acting effectively on 
a compact manifold M preserving an H-structure where H is an algebraic group. 
Then R-rank(G) < R-rank(iJ). 

(We recall that R-rank is the dimension of a maximal R-split torus.) 

3. Invariant geometric structures for discrete subgroups. Suppose 
now that G has higher rank. We can then state the following general conjecture 
for actions of lattices that preserve an iî-structure. 

CONJECTURE L Suppose G has higher rank and that Y C G is a lattice. 
Suppose that M is a compact n-manifold and that H C SL'(n, R) is an algebraic 
subgroup. (For higher order structures, we assume H C SL'(n, R)nGL(n, R)W.) 
If T acts on M so as to preserve an iï-structure, then either: 

(i) there is a T-invariant Riemannian metric on M; or 
(ii) there is a nontrivial Lie algebra homomorphism floo(R) —* ()• 
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This conjecture can be viewed as a geometric, or nonlinear, version of Mar-
gulis's superrigidity theorem. Margulis's theorem implies (under the above hy
potheses on G, T, and H) that for a homomorphism r —• H, either the image 
of T is precompact in H or there is a nontrivial Lie algebra homomorphism 
0oo(RO —>• fy- We also remark with regard to conclusion (i) in the conjecture 
that the action is then given by a composition Y —> K —• Diff(M), where if is a 
compact Lie group, and that Margulis has also described the compact Lie groups 
admitting a dense image homomorphism from Y. In particular, for any such K 
we have that dim(if) > n(G), where n(G) = minldimcG'lG' is a simple factor 
of Goo}. (See [Z5].) If we further assume that the Y action is ergodic, then in 
(i) we have that the action is on a homogeneous space of K. Before indicating 
what is known in the direction of the conjecture, we remark that the following 
conjecture would be an immediate consequence of Conjecture I, and the fact that 
the dimension of the isometry group of a compact Riemannian n-manifold is at 
most n(n +1)/2. 

CONJECTURE II. Let G, T, M be as in Conjecture I. Let d(G) be the smallest 
integer d for which there is a nontrivial Lie algebra representation goo(R) —• 
si (d,R). Suppose Y acts on M so as to preserve a volume density. Then (with 
dim(M) = n): 

(a) If n < d(G), then Y preserves a Riemannian metric. 
(b) If n < d(G) and {n(n + l)/2} < n(G), then the Y action is finite, i.e., 

factors through a finite quotient of Y. 
For certain iJ-structures, Conjecture I is known to be true. We recall that 

E. Cartan has defined the notion of a if-structure of finite type. (See [Ko].) A 
connection is a (second order) structure of finite type, and any if-structure natu
rally defining a connection is of finite type. For example, any pseudo-Riemannian 
structure (i.e., 0(p, g)-structure) is of finite type. The automorphism group of 
an il-structure of finite type is a Lie group; however the group of connected 
components may well be infinite. 

THEOREM 3.1 [Z5]. Conjecture I is true for H-structures of finite type (in 
the sense of E. Cartari). In particular, if n < d(G), and {n(n + l)/2} < n(G), 
then any action of Y on Mn preserving a volume density and a H-structure of 
finite type is a finite action. 

As a concrete example we have 

^^CORm7LÄRY^3T2^[Z5]TTJeTG^lSI7(n,R)7rf>T^arid~M alompäcfmänf~ 
fold with dim(M) < n. Then any action of Y on M preserving a volume density 
and a connection is a finite action. 

This shows that the action of SL(n, Z) by automorphisms of the flat torus is 
a volume and connection preserving action of minimal dimension for lattices in 
SL(n,R). For dim(M) = n, we have the following special result. 
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THEOREM 3.3 [Z6]. If Y is a lattice in SL(n,R), n > 3 ; M is a compact 
Riemannian n-manifold, and Y acts on M preserving volume and the connection, 
then M is flat and Y is commensurable with SL(n, Z). 

We now indicate two other situations in which Conjecture I is known, at least 
with some further hypotheses. We recall that a linear Lie algebra is called elliptic 
if it contains no matrices of rank 1. For any üT-structure of finite type, () will be 
elliptic. 

THEOREM 3.4 [Z5]. Conjecture I is true iff) is elliptic, provided we also 
assume that Aut(P) is transitive on M. 

A linear real algebraic group H is called distal if the reductive Levi component 
is compact. 

THEOREM 3.5 [Z3]. Conjecture I is true for H distal, provided we assume 
the Y action on M is ergodic. Hence, any ergodic action of Y preserving a distal 
structure is isometric. 

Theorem 3.5 is closely related to classical notions in dynamical systems. 
Namely, we recall that an action of a group Y on a metric space M is called 
distal if x,y G M, x ^ y, implies mî{d(gx,gy)\g G Y} > 0. Furstenberg [F] 
has shown that the structure of every such minimal action can be explicitly de
scribed in terms of a tower of bundles, and in case M is a topological manifold, 
M. Rees [Re] showed that the tower consists of topological manifolds. If M is 
smooth, and the tower is smooth, then Y will preserve a distal üT-structure on 
M. (However an action may well preserve a smooth distal structure but not be 
distal in the above sense.) This then raises the purely topological question as to 
whether every distal action of Y (where Y is as in Conjecture I) will preserve a 
topological distance function. There are natural classes of groups for which this 
is known to be the case [MZ, A]. 

Finally, we remark that Conjecture I is true if assertion (i) is replaced by the 
weaker assertion that there is a measurable invariant Riemannian metric [Z5]. 

4. Perturbations, deformations, and cohomology. In this section we 
discuss the rigidity properties of some of the actions described in §2 under pertur
bations or deformations. Each group Y under consideration is finitely generated. 
For each r, 1 < r < oo, the Gr-topology on Y actions on M will be the topology 
of Gr-convergence in Diff (M) on a fixed finite generating set of Y. 

THEOREM 4.1 [Z5]. Suppose that Y acts isometrically on a compact Rie
mannian n-manifold M. For any nonnegaitve integer k, there is positive integer 
r = r(n, k) (for fc = oo, let r = oô , so that any action of Y on M which 

(i) is sufficiently close to the original action in the Cr -topology, 
(ii) leaves a volume density invariant, and 
(iii) which is ergodic, 

must also leave a Ck-Riemannian metric invariant. 
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Fork = 0, r = ra2+n + l. For fc > 1, r = n + fc + 4 + dim(GL(n,R)(*+3)), 
wftere GL(n,R)(fc) is the group of k-jets at 0 of diffeomorphisms ofW1 fixing 
the origin. 

In other words, roughly speaking, a small perturbation of an isometric action 
will be isometric. This is of course in very sharp contrast to actions of R or free 
groups. It seems possible that the size of r stated above can be improved. 

If M is a manifold, we let Vect(M) be the space of smooth vector fields on 
M. If T acts on M, then Vect(M) is naturally a T-module. The Y action on M 
is called infinitesimally rigid if ff1(r, Vect(M)) = 0, locally (r, fc)-rigid if every 
action sufficiently close in the Gr-topology is conjugate to the original action by 
a Gfc-homeomorphism, and r-structurally stable if it is locally (r, 0)-rigid. 

Question. For G of higher rank, is every ergodic volume preserving T-action 
infinitesimally rigid and locally rigid? In particular, for n > 3, is the action of 
SL(n, Z) on R n /Z n locally rigid? 

For infinitesimal rigidity, we have the following result. 

THEOREM 4.2 [Z8]. Assume G is real, has higher rank, and that Y is a 
cocompact lattice in G. Let H be a semisimple Lie group, A C H a cocompact 
lattice, and suppose Y —> H is a homomorphism. Let M = H/A, so that Y then 
acts on M. Then the Y action on M is infinitesimally rigid in the following 
cases: 

(i) the image of Y is dense in H; or 
(ii) H = Hi x i?2, A projects densely into both factors, and Y maps densely 

into H± and trivially into Hi. 

We expect the techniques of proof to extend to eliminate the hypotheses that 
G is real, and to apply in at least some situations in which Y is not cocompact. 
For T cocompact, most of the proof of Theorem 4.2 remains valid for all the 
ergodic examples of Y actions considered in §1, and it is possible that the proof 
may extend to cover these cases as well. The arguments of the proof of Theorem 
4.2 can be applied to compute the cohomology of Y with coefficients in the space 
of smooth sections of other natural bundles. For example, under the hypotheses 
of Theorem 4.2 we can deduce that H*(Y, G°°(M)) = 0. 

Problem. If G has higher rank, and Y acts (perhaps ergodically) preserving a 
probability measure in the smooth measure class on a compact manifold M, is 

-H^fò-G** (AQf=-0?- _ ^ _ _ _ _ _ _ _ _ _ _ 
A positive answer to this question, combined with the techniques of proof of 

Theorems 3.5 and 4.1, would yield significant progress on a resolution of Conjec
tures I and II. From Kazhdan's property it follows that the map HX{Y, C°°(M)) 
-^H1(Y,L2(M)) is 0. 

For nonvolume preserving examples, we have the following theorems of Sulli
van and Ghys. 
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THEOREM 4.3 [S]. Let G = 0(1,n + 1), P C G a minimal parabolic sub
group, so that G/P can be identified with Sn with the conformai action of G. If 
Y C G is a cocompact lattice, then the action of Y on Sn is 1-structurally stable. 

THEOREM 4.4 [Gh]. Let G = PSL(2,R), acting by conformai transforma
tions of S1. Let Y C G be a cocompact lattice. Then any smooth action of Y on 
S1 sufficiently C2-close to the given conformai action on S1 is conjugate (via a 
smooth diffeomorphism) to the action defined by a linear representation Y —• G. 

It would of course be interesting to extend these results to a more general 
algebraic setting. 

5. Actions with fixed points. For actions with a fixed point, or more 
generally with a finite orbit, we can prove a version of Conjecture II. 

THEOREM 5.1 [Z5]. Assume G has higher rank, and that M is a connected 
n-manifold (not necessarily compact) and that Y acts on M. Assume n < d(G) 
and {n(n + l)/2} < n(G). If there is at least one finite Y-orbit in M, then the 
Y action is finite. 

We remark, that in contrast to the conclusion of Theorem 5.1, the standard 
action of SL(n, Z) on the rc-torus has a dense set of points with finite orbits. 

D. Stowe [St] has shown for any group for which one has vanishing of the first 
cohomology group with coefficients in all finite-dimensional real representations 
that there is a persistence of fixed points under perturbations. Combined with 
the cohomological information alluded to in the introduction, we obtain the 
following instance of Stowe's theorem. 

THEOREM 5.2. Assume G has higher rank. Let Y act on a manifold and 
assume that p is a fixed point for the action. Then any action sufficiently close 
in the C1-topology to the original action has a fixed point near p. Without the 
assumption of higher rank, the same conclusion is true for actions of G. 

For compact group actions, a basic tool in the study of fixed points is the 
fact that one can linearize the action near the fixed point. The following result 
generalizes this to semisimple groups. 

THEOREM 5.3 (GUILLEMIN-STERNBERG [GS]). Suppose G acts on M 
with a fixed point p. If the action is real analytic, then in a neighborhood of p, 
the action is analytically equivalent to the representation of G on TMP. 

6. Orbit structure. In the classical theory of flows, a significant role is 
played by the study of the phase portrait of the flow, or equivalently, studying 
the flow up to equivalence after time change. Similar ideas have played an 
important role in certain recent developments in ergodic theory [Dy, CFW, 
Ru]. If for i = 1,2, Gi is a locally compact group acting on a Borei subset 
Mi of a complete separable metrizable space, preserving the null sets of a finite 
measure fii, we say that the actions are measurably orbit equivalent if there is a 
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measure class preserving bijection (modulo null sets) Mi —• M<i taking Gi orbits 
onto G2 orbits. If Gi are discrete amenable groups acting ergodically (and with 
no orbit of full measure) and fii are invariant probability measures, then a result 
of Ornstein and Weiss (see also [CFW]), generalizing earlier work of Dye [Dy], 
asserts that the actions are measurably orbit equivalent. In contrast, we have 
the following result in the semisimple case. 

THEOREM 6.1 [ZI, Z2]. Assume Gi are as in the introduction and that 
Gi has higher rank. 

(i) If Gi acts ergodically and essentially freely on Mi, does not have a conull 
orbit, preserves a probability measure, and the Gi action is measurably orbit 
equivalent to the G% action, then Gi and G2 are locally isomorphic. Further, 
the actions of the adjoint groups Gi/Z(Gi) on M/Z(G{) are actually conjugate, 
after the identification of these adjoint groups via an isomorphism. 

(ii) IfYi C Gi are lattices andYi and Y2 have measurably orbit equivalent er
godic essentially free actions with finite invariant measure (and no conull orbit), 
then Gi and G2 are locally isomorphic. 

For certain isometric actions, Witte [Wi] has shown that the conclusion in 
(ii) can be strengthened to assert isomorphism of the lattices and conjugacy of 
the actions. 

Roughly speaking, Theorem 6.1 asserts that the measurable orbit structure 
of the action determines both the semisimple group and (in case (i)) the action 
itself. This is diametrically opposed to the situation for amenable groups. It is 
not known whether or not this result is true for groups of split rank 1, although 
some information is available for groups with Kazhdan's property [Zl]. One can 
of course ask about orbit equivalence in the context of smooth actions, and ask 
that the orbit equivalence be smooth, or at least continuous. If G is real and 
acts on M, and K C G is a maximal compact subgroup, then under suitable 
hypotheses the orbits of G will project to the leaves of a foliation of M/K, and 
these leaves will naturally carry the structure of an (infinite volume) locally 
symmetric space. The next result, which is joint work of P. Pansu and the 
author, is a result in the same spirit as that of Theorem 6.1 but formulated in 
the context of foliations. 

THEOREM 6.2 [PZ]. Let M be a compact manifold and 7 a foliation of M 
with a holonomy invariant transverse measure (which we assume to be positive 
on open sets of transversals, and finite on compact sets). Fori = 1,2, letwi be a 
Riemannian metric on the tangent bundle to 7, such that for i = 1T 2. each leaf is 
a locally symmetric space of negative curvature. Then there is a homeomorphism 
f of M j taking each leaf to itself diffeomorphically, such that /*(wi) = ̂ 2-

When the foliation has just one leaf, this reduces to a version of the Mostow 
rigidity theorem. It is natural to conjecture that the same result is true for 
symmetric spaces of higher rank, but this is not yet known. From Theorem 
6.1, one can deduce the existence of a measurable bijection / : M —> M, taking 
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each leaf to itself diffeomorphically, with f*(u)i) = u)2- It is also natural to ask 
whether or not we can ensure that / in Theorem 6.2 can be taken to be smooth. 

In the case of nonvolume preserving actions, we have the following result for 
some standard examples. 

THEOREM 6.3 [Z2]. For i = 1,2, suppose Gi is semisimple and real, Hi C 
Gi is an almost connected closed subgroup, and Li is the maximal semisimple 
adjoint quotient group of Hf with no compact factors. Assume Li has higher 
rank. IfYi is a lattice in Gi, and the action ofYi on Gi/Hi is measurably orbit 
equivalent to the action 0/T2 on GijHi, then Li and L% are locally isomorphic. 

A basic property that a measure class preserving action of a locally compact 
group might have is amenability. This is discussed at length in [Zl]. For es
sentially free actions (i.e., actions for which almost every stabilizer is trivial) 
amenability is an invariant of measurable orbit equivalence. One method of con
structing amenable actions is to induce from an action of an amenable subgroup. 
I.e., if A C G is a closed amenable subgroup, and X is a measurable A-space, 
then M = (X xG)/A will be an amenable G-space. For arbitrary G, this does 
not yield all amenable actions. However, we have 

THEOREM 6.4 [Zl]. If G is real and semisimple, any amenable ergodic ac
tion of G is measurably conjugate to an action induced from a maximal amenable 
algebraic subgroup. 

We remark that such subgroups have been classified by C. C. Moore [Mr2]. 
We also observe that for essentially free actions, while amenability depends only 
upon the action up to measurable orbit equivalence the property of being induced 
from an action of a subgroup from a given class of subgroups does not. Theorem 
6.4 has immediate applications to the measurable cohomology theory of amenable 
actions of arbitrary groups and to amenable foliations. In this latter form this 
result has recently been applied by Hurder and Katok [HK] to prove a vanishing 
theorem for secondary characteristic classes of amenable foliations. 

7. Restrictions to unipotent subgroups. In studying the linear repre
sentations of G, a basic role is played by the restriction of the representations 
to unipotent subgroups. Here we discuss some features of these restrictions in 
the case of actions. The following result was first proved by M. Ratner [Rai] 
for G = PSL(2,R), and extended to more general semisimple groups by Witte 
[Wi]. 

THEOREM 7.1 [Rai, Wi]. For i = 1,2, suppose Gi is a noncompact 
semisimple adjoint Lie group and that Yi is an irreducible lattice in Gi. Let 
Ui C Gi be a one parameter unipotent subgroup. If the R-actions defined by the 
Ui actions on Gi/Yi are measurably conjugate, then there is an isomorphism of 
Gì withG2 taking Yi ontoY%. 

Witte also shows how the arguments of the proof lead to the following infor
mation about some of the examples considered in §2. 



1256 R. J. ZIMMER 

THEOREM 7.2 [Wi]. Suppose that G is real and adjoint. 
(a) For i = 1,2, let Gi be a connected semisimple adjoint Lie group, and 

<Pim. G —> Gì be an injective homomorphism. LetYi C Gi be an irreducible lattice, 
and suppose the G actions on Gi/Yi and G2/Y2 are measurably conjugate. Then 
there is an isomorphism Gi = G2 taking <pi to <p2-

(b) Suppose further that G is of higher rank. Fix a nontrivial unipotent ele
ment g G G. Then any measure preserving action of G on Gi/Yi for which g 
acts by an element of Gi is actually defined by a homomorphism G —• Gì. 

Ratner's theorem for PSL(2) was extended in another direction (concerning 
horocycle foliations in higher dimensional manifolds of negative curvature) by 
Flaminio [Fl]. For PSL(2,R), an analogous theorem to Theorem 7.1, assuming 
continuous orbit equivalence, rather than measurable conjugacy, was proved by 
Marcus [Ms]. This has been extended to a much broader context by Benardette 
[Be], Further work on the restriction of transitive volume preserving actions to 
unipotent subgroups can be found in the work of Veech [V] and the extensive 
work of Dani [Dl]. 

A basic result in the finite-dimensional linear theory is that for any linear 
representation of G, the image of a unipotent element is a unipotent matrix. 
The following problem asks for a generalization of this in the geometric context. 

Problem. Assume G is real and of higher rank. Let M be a compact manifold, 
E —• M a vector bundle of rank n on which G acts by vector bundle automor
phisms. Suppose there is a probability measure on M, in the smooth measure 
class, which is invariant under G. Let U be a unipotent subgroup of G. Is there a 
distal algebraic subgroup H C GL(n,R) and a smooth {/-invariant üf-structure 
on E? 

In all known examples, this question has an affirmative answer. In case G acts 
ergodically on M, it is known [Z5] that for some distal H there is a measurable 
{/-invariant ff-structure. A positive answer to the above question for some G, 
combined with the techniques of proof of Theorem 3.5, and results of Howe 
and Harish-Chandra on asymptotic behavior of matrix coefficients for unitary 
representations would yield a proof of Conjecture II in the ergodic case, although 
with weaker control on the dimension of M than that proposed in Conjecture 
II. See [Z5] for a complete discussion of this point and some partial results. We 
remark that in general one cannot find a {/-invariant jff-structure where H is a 
unipotent subgroup of GL(n, R) . 

. _ 8 _ J^UAtient_acJb_ÌQn_s... If a groupjLacts_on,a_jbopologicaL (resp., measure), 
space X, by a quotient action we mean a topological (resp. measure) space Y 
and a continuous (resp. measure class preserving) surjective A-map X —• Y. For 
some standard actions the quotient actions can all be identified. The following 
result of M. Ratner accomplishes this for horocycle flows of surfaces. 

THEOREM 8.1 [Ra2]. Let G = PSL(2,R) and let R act on G/A by the 
upper triangular unipotent subgroup, where A is a lattice in H. Then every 
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measure theoretic quotient of this K-action is of the form G/A', where A'DA is 
a larger lattice, and R acts via the same subgroup. 

For the case of actions on varieties, we have the following theorem, first proved 
in the measure theoretic case by Margulis [M2] (see also [Zl]), later in the 
topological case by Dani [D2]. 

THEOREM 8.2 [M2, D2], Assume G is adjoint and of higher rank and 
that P C G is a parabolic subgroup. Then any quotient of the Y action on G/P 
is of the form G/P1', where P' is a parabolic subgroup containing P. 

9. Concluding remarks. We have said little about the proofs of the results 
stated above. In general they involve combinations of arguments of ergodic 
theory, algebraic groups, representation theory, differential geometry, and global 
analysis. A basic role is played by various ergodic theoretic generalizations of 
Margulis's superrigidity theorem [Zl], and Kazhdan's property. A number of the 
results above can be established assuming only Kazhdan's property (see [Z9], 
e.g.), and hence are applicable to certain split rank one groups. For some further 
topics we have not discussed, see [ZI, Z5], and the references therein. 
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Ultraviolet Stability Problems 
in Quantum Field Theories 

TADEUSZ BALABAN 

We consider here only the case of pure gauge field theories. Later we will 
mention some other cases to which the method presented in this paper has been 
applied. The quantum gauge field theory, like any other quantum field theory 
in the so-called Euclidean formulation, is defined by expectation values given 
by functional integrals, i.e., by measures defined on spaces of functions. In 
the considered case, the space is the space of 0-valued vector functions Afl(x), 
x G Rd, where g is the Lie algebra of a compact semisimple Lie group G. It is 
identified with the space of g-valued 1-forms. The expectation values are given 
heuristically by the integrals 

(F) = Z'1 J[dA}F(A) exp[-S( l̂)] (1) 

where [dA] denotes a fictitious Lebesgue measure on the space of 1-forms A, 
F (A) is a function on the space, and S (A) is the so-called gauge field action, 
which is the function 

S{A) = f dxtrF2{x), F{x) = dA{x) + gA{x) AA{x), (2) 

or in components 

Fßl/{x) = dpA^x) - dyA^x) + g[Afi(x),AJ/(x)] 

([X, Y] denotes the Lie algebra bracket). 
There are several problems connected with the expressions of the type (1). 

An obvious one is that there is no measure [dA], and this problem is common 
for all field theories. The other is that the action S (A) is invariant with respect 
to the infinite-dimensional group of gauge transformations 

A -> Au, {Au)ß(x) = u{x)Ail(x)u-1{x)-{-i{dßu(x))u-1(x) (3) 

where u(x) is a function on Rd with values in the group G. The integrand in 
(1) is constant on orbits of this group of transformations, therefore there is a 
problem with the definition of the integral. Such problems are studied by taking 
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approximate expressions and integrals, which are mathematically well-defined, 
and then taking appropriate limits. 

One such approximation was introduced by K. Wilson [1]. The continuous 
space Rd is replaced by the discrete lattice eZd with the lattice spacing e > 0, 
or even by a finite subset A of this lattice. The continuous space variables A^x) 
are replaced by the bond variables U({x,x + se^)) — Uß(x) with values in the 
group G (x is now a point of the lattice). The action S (A) is replaced by S£(U): 

SHU) = E(£d_4/ff2)[l - RetvU(dp)} (4) 
pCA 

where the sum is over elementary squares (plaquettes) p of the lattice. If p is a 
plaquette with the boundary 

dp = (x, y) U (y, z) U {z, w) U {w, x), 

then 
tvU(dp) = trU((x,y))U({y,z))U({z,w))U({w,x)). (5) 

The action (4) is a good approximation of the action (2) in the sense that if 
we take a continuous space regular field All[x)i and we define the ^-lattice field 
Uß(x) by the formula 

Uß {x) = exp iegAp (x), (6) 

where exp is the exponential mapping of the Lie algebra Q into the Lie group G, 
then the lattice action (4) is convergent to the continuous space action (2) as e 
goes to 0. The action (4) is also gauge invariant; i.e., it is invariant with respect 
to the group of the lattice gauge transformations 

U _+ Uui Uu{{x,x')) = ^z)E/((z ,z ' ) )u-V) (7) 

where {x, x1) is a bond of the lattice. The limit of such a transformation as 
e —> 0, with the parametrization (6), yields the corresponding transformation 
(3). 

Now we can define the expectation value for the lattice theory 

TO = (Zi)-1 j dUF(U) expl-SUU)), (8) 

where dU is the product of copies of the Haar measures on the group G, cor
responding to bonds of the lattice contained in A. We integrate continuous 
functions on compact domains, hence the integrals (8) are well defined. We 
would like to define (1) as the limit of (8) as e —• 0. 
"Th¥Mt¥jpals^^ gfoupTäppröächin the 
so-called "block spin" form [2]. We will now describe very briefly some features 
of this approach. The original lattice is divided into blocks containing Ld points, 
where L is a fixed positive integer (e.g., L = 3 or L = 15). This determines a 
new lattice with the lattice spacing Le, e.g., the lattice of centers of the blocks. 

An averaging operation is defined, which transforms the gauge fields U on 
the bonds of the s-lattice into gauge fields U defined on the bonds of the new 
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Ls-lattice. The definition is rather technical and we do not give it here. Having 
such an averaging operation we define the renormalization transformation, which 
transforms a density defined on gauge fields on the e-lattice, into a density defined 
on gauge fields on the new Le-lattice: 

(Tp)(V) = pt (V) = j dU6{yÇj)-l)p{JJ). (9) 

This transformation satisfies the basic normalization property 

jdVPl(V) = J'dV(Tp)(V) = j'dUp(U). (10) 

It has also other important properties; for example, it transforms a gauge invari
ant density into a gauge invariant one. This transformation is iterated, and the 
sequence of densities is defined inductively by the formula 

p n +i=T> n , n = 0, l , . . . , po = p. (11) 

By the definition, the nth density is defined on gauge field configurations on 
the Lne-lattice obtained by applying n times the block construction. For the 
problems we want to investigate, it is enough to terminate the applications of 
the renormalization transformations in (11) when we reach the unit lattice, i.e., 
for the index N such that LNe = 1 (or, more generally, such that LNs is closest 
to 1). We start with the density 

rfU) = eXp[-Si(U)-E%\; (12) 

here E\ is an appropriately defined constant, and we want to investigate this 
particular sequence of densities generated by applying (11). We would like to 
give as precise and effective description of the densities pn as possible. Especially 
it should imply uniform bounds for these densities on the corresponding lattices. 
Such a description is a fundamental tool in investigation of the expectation 
values (8), and in proving the existence of the limit as e —• 0. It was given in [3] 
for three-dimensional models, and in [4] a special case was considered for four-
dimensional models. Unfortunately these descriptions, or inductive assumptions 
on the form of the densities, are very long and complicated and cannot be given 
here. Let us mention only that they involve decompositions of the space of gauge 
fields into subdomains according to some conditions (inequalities) satisfied by 
the fields in regions of the lattice. The lattice is divided into "small fields" 
and "large fields" regions, and such a division determines the subdomain in the 
gauge fields space. This is a common feature shared with other renormalization 
group methods [5, 6], and introduced by G. Gallavotti et al. [5]. Instead of the 
description of the densities, which is the real result of the presented approach, 
we formulate one of its simplest consequences in the form of the inequality. 

THEOREM (ULTRAVIOLET STABILITY) . For d = 3 there exist constants E-, 
E+ independent of s, A, such that 

Xn(U)exp[- E ^ [ l - R e t r ^ ^ J - ^ - L - ^ I A I ] (13) 

< Pn(U) < exp[E+L-3n\A\], n = 0,l,...,N, 
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where Xn(U) is the characteristic function of the domain in the gauge fields space 
defined by the inequalities \U(dp) - 1| < g^LPe)1!2 for p C A ^ , A M denotes 
the domain obtained from the initial domain A in the e-lattice by the n successive 
block constructions, and |A| is the number of points in A. 

The inequality (13) applied to n = N (where LNe = 1) yields the bound 
uniform in the lattice spacing e. This is the content of the ultraviolet stability 
concept. For d = 4 the obtained partial results imply the lower bound in (13). 
Let us stress once more that fundamental results of the described approach 
are contained in the precise inductive description of the densities. This can be 
applied to many problems. The above theorem is one of the possible applications, 
which has the simple enough formulation. 

Similar results have been obtained for the three-dimensional Higgs model, i.e., 
the model of interacting Abelian gauge field with scalar fields, and for the class of 
two-dimensional nonlinear <r-models with G-valued fields. There is also another 
approach to gauge field theories in progress by P. Federbush [7]. 
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The story starts with the discovery by Feigenbaum [F] (see also Coullet, 
Tresser [CT] and Grossmann, Thomae [GT]) of the following striking phe
nomenon. 

Consider the one-parameter family p, —* f^(x) = 1 — fix2 of functions. For 
each p G [0,2], fß maps [—1,1] into itself, and therefore we can consider x —• 
fj!(x) = ft*0 ' " ° fv>(x)> n times. In this way, fß describes a dynamical system. 
There is a smallest value of jin for which the point 0 is periodic with period 
exactly 2n . One says then that /Mn is superstable with period 2n . 

The discovery is that 
(1) The sequence pn tends to a limit, p,^ w 1.40 
(2) The numbers p,n — p,^ satisfy limn_>00(/in - Poo)8pn = A, with 8p » 

4.66920..., A £0. 
(3) The points yn — f2^ (0) (the point on the orbit of 0 under f^n closest 

to, but different from, zero) satisfy 

lim ynXpn = B, 
n—*oo 

with XF « -0.3995353..., B ^ 0. 
Upon examining other one-parameter families of maps, such as gp(x) = 

cos(/ia;), Feigenbaum discovered that (1), (2), (3) hold in many cases, with the 
same "universal" values of 6p and A^ (but, of course, not /ìQO)- He conjectured 
that this holds "for all" one-parameter families, and he outlined an explanation 
of this conjecture. 

Proofs of this conjecture have been worked out in part, or in full, in sev
eral references to be given later in this paper. I will outline here the idea of 
these proofs. It is most economical to describe the proof of this conjecture in 
geometrical terms in a function space. The theory [CEL] in fact centers on a 
renormalization, or doubling operator N, acting on unimodal functions (/> on 
[—1,1], satisfying 0 ( E ) = (/>(-x), (f)(0) = 1, and denned by 

(N0)(o;) = A-VWAa:)), (*) 

where A = A(</>) = 0(1). (The operator N preserves the normalization.) 
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We want to specify, in more detail, the function space E in which $ is supposed 
to lie. An adequate choice is the set of functions <j> of the form </>(x) = h(xr), 
r = 2, and h analytic and bounded on a disk, e.g., ,01,2.5 = {z eC\ \z—l\ < 2.5}. 
The Feigenbaum conjectures rest on the following properties of N as an operator 
on E. 

P I . N has a fixed point g in E. 
P2. The operator N is differentiable and its derivative DN possesses at g an 

unstable invariant subspace of dimension 1, where DN reduces to multiplication 
by 6 (with \6\ > 1), and a stable invariant subspace of codimension one. (It 
follows that N has corresponding invariant manifolds, Wu and W8.) 

P3. The local unstable manifold at g can be extended to cut the surface 
E = {/ G E I / ( l ) = 0,/(0) = 1} transversally. (This surface is the set of 
functions in E having a superstable period of length 2.) 

We shall call PI and P2 hyperbolicity and PI , P2, and P3 universality for 
superstable periods 2n. 

The Feigenbaum conjectures follow easily from P1-P3, when 6 = OF, and 
X(g) = Air. The argument is about as follows. Take a one-parameter family 
M —> Qp. € E of maps in E cutting the stable manifold Ws of N transversally at 
p, = jL/oo. The inverse images N~W(E) of E under N, viewed as sets, accumulate 
uniformly with the ratio l/6n at W3. They intersect transversally with the curve 
gß at values pn, for large n. It is also easy to see from the definition of N that 
N~fc(E) is a set of functions having superstable period 2k. Thus the intersection 
values p,n, for which gßn G N(E), satisfy (1) and (2). The assertion (3) follows 
by an explicit calculation, observing that XF = g(l). 

Other surfaces can be made to play a similar role as E; e.g., the surface 
E* = {/ G E | /3(1) = —/(l)} contains maps with absolutely continuous, 
invariant measures [Mi], and there is a sequence of pn accumulating at //QO 
(with rate 8, again) such that the critical point of gß falls on an (unstable) 
periodic point of period 2n . 

Thus, as we see, the Feigenbaum phenomenon is the consequence of the hyper
bolicity of the composition operator N. A proof of the Feigenbaum conjectures 
thus reduces to a proof of (l)-(3). 

We can now generalize this idea to many other composition operators. In fact, 
there is a multitude of other situations where similar results hold. 

(i) Case of the interval. Consider r > 1. The set E r is defined by E r = {<j>, <j> is 
continuous on [0,1] and <f>(x) = h(xr) for an analytic function h which is strictly 
decreasing with no critical points on [0,1]}. For r = 2, there are numerous proofs 

^oftHrexistrace^^^ 
contains proofs of PI and P2 and only [EW1] proves P1-P3. For general r > 1, 
the map corresponding to (*) has a fixed point [E, CEL, EW]. 

CONJECTURE 1. It depends analytically on r. 

One can also ask for a fixed point of other, but related, operators N p : 

(Npf)(x) = \-1nW, A = /*(0). 
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The case discussed by Feigenbaum is p = 2. It satisfies hyperbolicity again, for 
all large p [EEW], with 

6pxiA16p, XPKB4~P. 

(ii) Dissipative maps on R n . By blowing up the situation of the original 
Feigenbaum operator, one can try to find a new operator N(n) on maps on 
R n -> Rn. It is 

( J V W / ) = A 7 1 o / o / o A / , 

where A/ is a diagonal, invertible coordinate transformation. One can show that 
this operator satisfies hyperbolicity again, with a 6n = 8F- Also, the scaling in 
one of the directions is by a factor An = XF> Thus, the universal constant is 
independent of the dimension n of the ambient space in which we consider the 
dynamical system. It was pointed out [CEK], and later found to be true, that 
the constant 6F should therefore be observed in many physical and numerical 
experiments, even if n is unknown. 

(iii) Area-preserving maps on R 2 . For area-preserving maps of R2 , a hyper
bolic fixed point for a composition operator has been found [EKW] (but with 
8 w 8.721...), as well as two scalings in R 2 (both different from A). 

(iv) Circle maps. The theory of circle maps with golden rotation number. 
This can be formulated in a related spirit [ORSS, FKS]. 

Hyperbolicity. The hyperbolicity picture P1-P3 has an extension, which is 
still conjectural, but which puts the dynamical aspects of Feigenbaum theory in 
a larger perspective. One possible form of the conjecture would be as follows. 
Consider the operators N p , as defined above, e.g., with r — 2. 

Each of the operators N p has (among others) as domain D p those functions 
which "exchange" p disjoint intervals JQ,JI,..., J P - I - That is, we have 

Note that the domains D p are disjoint for different p. We can now consider an 
operator M on "all" functions in E by setting 

M | D _ = N P . 

CONJECTURE 2. N has a strange attractor that has a hyperbolic structure. 
So, e.g., if two functions f, q are in DP o and have the property that M Ä / and 
Mkg are in the same DPfc for all k > 1, then | |Nfc/ —N*^|| —• 0 as k —> oo. This 
conjecture has been forwarded by several authors^ also in the context of circle 
maps [Rand, Bak, Lanford,...]. 

I have presented all of these examples to point out that there should be an 
underlying general theory, which is not well understood at present. 

Some facts are known, however, about the fixed point function g, and they 
may be a starting point for further developments: see [EL, E, EE] and also 
[DH, S], The idea is to consider the inverse function of g when expressed in the 
variable xr. This function can be shown to be analytic in a cut plane and has 
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the Herglotz property; i.e., it maps the upper halfplane to itself. Using these 
properties makes the existence proofs astonishingly straightforward and suggests 
that the class of fixed point functions encountered in the problems described in 
this talk may play a role similar to special function theory. 

The list of references also contains some related work not mentioned in this 
paper. 

REFERENCES 

[CE] P. Collet and J.-P. Eckmann, Iterated maps of the interval as dynamical systems, 
Birkhauser, Boston, 1980. 

[CEL] P. Collet, J.-P. Eckmann, and O. E. Lanford, III, Universal properties of maps on 
the interval, Comm. Math. Phys. 76 (1980), 211-254. 

[CEK] P. Collet, J.-P. Eckmann, and H. Koch, Period doubling bifurcations for families 
of maps on Rn , J. Statist. Phys. 25 (1981), 1-14. 

[CER] M. Campanino, H. Epstein, and D. Ruelle, On Feigenbaum's functional equation, 
Topology 21 (1982), 125-129; On the existence of Feigenbaum's fixed point, Comm. Math. 
Phys. 79 (1981), 261-302. 

[CT] P. Coullet and C. Tresser, Itération d'endomorphismes et groupe de renormalisa
tion, J. Phys. Colloq. C 539 (1978), C5-25; C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 
7, A577-A580. 

[DH] A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings, 
Ann. Sci. École Norm. Sup. (4) 18 (1985), 287-343. 

[E] H. Epstein, New proofs of the existence of the Feigenbaum functions, Comm. Math. 
Phys. (to appear). 

[EE] J-P. Eckmann and H. Epstein, On the existence of fixed points of the composition 
operator for circle maps (to appear). 

[EEW] J.-P. Eckmann, H. Epstein, and P. Wittwer, Fixed points of Feigenbaum's type 
for the equation fp{Xx) = Xf{x), Comm. Math. Phys. 93 (1984), 495-516. 

[EKW] J.-P. Eckmann, H. Koch, and P. Wittwer, A computer-assisted proof of univer
sality for area-preserving maps, Mem. Amer. Math. Soc. No. 47 (1984), 289. 

[EL] H. Epstein and J. Lascoux, Analyticity properties of the Feigenbaum function, 
Comm. Math. Phys. 81 (1981), 437-453. 

[EMO] J.-P. Eckmann, A. Malaspinas, and S. Oliffson-Kamphorst A software tool for 
analysis in function spaces, Preprint. 

[EW] J.-P. Eckmann and P. Wittwer, Computer methods and Borei summability applied 
to Feigenbaum's equation, Lecture Notes in Phys., vol. 227, Springer-Verlag, Berlin, 1985. 

[EW1] , A complete proof of the Feigenbaum conjectures, J. Stat. Phys. (in print). 
[F] M. J. Feigenbaum, Quantitative universality for a class of non-linear transforma

tions, J. Statist. Phys. 19 (1978), 25-52; Universal metric properties of non-linear trans
formations, J. Statist. Phys. 21 (1979), 669-706. 

[FKS] M. J. Feigenbaum, L. P. Kadanoff, and S. J. Shenker, Quasi-periodicity in dissi-
pative systems: a renormalization group analysis, Phys. D 5 (1982), 370-386. 

[GT] S. Grossmann and S. Thomae, Z. Naturforsch. A 32 (1977), 1353. 
[JR] L. Jonker and D. Rand, Universal properties of maps of the circle with e-singulari-

^'ear-Comm^Math^Phys^90-(1983)TH2^^^ 
[Ll] O. E. Lanford III, Remarks on the accumulation of period-doubling bifurcations, 

Mathematical Problems in Theoretical Physics, Lecture Notes in Phys., vol. 116, Springer-
Verlag, Berlin, 1980, pp. 340-342; A computer-assisted proof of the Feigenbaum conjectures, 
Bull. Amer. Math. Soc. (N. S.) 6 (1984), 127. 

[L2] , Smooth transformations of intervals, Séminaire N. Bourbaki 1980-1981, Lec
ture Notes in Math., vol. 563, Springer-Verlag, Berlin, 1981. 

[L3] , A shorter proof of the existence of the Feigenbaum fixed point, Comm. Math. 
Phys. 96 (1984), 521-538. 



THE MECHANISM OF FEIGENBAUM UNIVERSALITY 1267 

[L4] , Functional equations for circle homeomorphisms with golden ratio rotation 
number, J. Statist. Phys. 34 (1984), 57-73. 

[L5] , Renormalization group methods for circle mappings, Proceedings of the Con
ference on Statistical Mechanics and Field Theory: Mathematical Aspects (Groningen, 1985), 
Lecture Notes in Phys., Springer, Berlin-New York (to appear). 

[LL] O. E. Lanford III and R. de la Llave (in preparation). 
[M] B. Mestel, Ph.D. Dissertation, Department of Mathematics, Warwick University, 1985. 
[MN] N. S. Manton and M. Nauenberg, Universal scaling behavior for iterated maps in 

the complex plane, Comm. Math. Phys. 89 (1983), 555. 
[Mi] M. Misiurewicz, Absolutely continuous measures for certain maps of the interval, 

Inst. Hautes Études Sci. Pubi. Math. 50 (1980). 
[ORSS] S. Ostlund, D. Rand, J. Sethna, and E. Siggia, Universal properties of the tran

sition from quasi-periodicity to chaos in dissipative systems, Phys. D 8 (1983), 303-342. 
[S] D. Sullivan, Quasi-conformai conjugacy classes and the stable manifold of the Feig

enbaum operator, Preprint, 1986. 
[VSK] E. B. Vul, Ia. G. Sinai, and K. M. Khanin, Feigenbaum universality and the 

thermodynamical formalism, Uspekhi Mat. Nauk 39 (1984), 3-37. 
[W] M. Widom, Renormalization group analysis of quasi-periodicity in analytic maps, 

Comm. Math. Phys. 92 (1983), 121-136. 

UNIVERSITY OF GENEVA, GENEVA, SWITZERLAND 



Proceedings of the International Congress of Mathematicians 
Berkeley, California, USA, 1986 

Renormalization Theory and Group 
in Mathematical Physics 
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1. In t roduct ion . Starting in 1978 new techniques have been introduced in 
field theory in the attempt to transform the successful scale invariance ideas, 
developed in theoretical physics, into an algorithm useful in the mathematical 
problems of field theory ([1, 2]; for a more complete list of references see [26]). 

In this way several problems received new solutions and new perspectives 
were opened. I mention here first a new derivation of the ultraviolet stability for 
superrenormalizable theories which led to the attack and solution of some new 
problems, including the first case of a three-dimensional gauge theory [3-6]. 

To be fair it should be stressed that the new approach was not born inde
pendently of the classical work on constructive field theory, where the ideas of 
scaling played a basic, although not very explicit and systematic, role [7-10]. 

Also the theory of renormalization received new impetus from new derivations 
of the basic results [11], of the recent n!-bounds, and of the convergence of the 
planar ^?4-theory [12-14]. 

In particular the theory of the convergence of the planar models led us to 
the understanding that the beta function could be defined in a mathematically 
rigorous way and thus used to construct a field theory which is not superrenor
malizable (but renormalizable and asymptotically free). 

The notion of beta function in [15, 16]* can in principle be extended to the 
planar nonrenormalizable theories to study their nontrivial realizations, or to 
the Gross-Neveu model in slightly more than 2 dimensions: two cases in which 
the above extensions of the beta function have a well-defined meaning, being 
expressed by convergent series, in the domain of interest [18-20]. 

The novelty of the approach even with respect to the classical problems of 
T^t^MtlMTih^ory^ïFThlfrit madiTit possibKTto produce a rigorOuy^ööroT^ 
renormalizability for quantum electrodynamics (in 4 dimensions) together with 
natural bounds on the perturbation series coefficients: at least the possibility of 

*See also §20 in the review paper [26]. Another model for which the beta function has 
the same properties of convergence as in the planar theory is the 2-dimensional Gross-Neveu 
model (discussed in [17]). 
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a renormalizability proof was well known, but a true proof was missing because 
the technical problems were hard to handle with classical tools [21]. 

Finally, the implications of the above techniques for the theory of the criti
cal point and more generally for statistical mechanics seem to be under active 
investigation and far from being exhausted in their potentialities, even though 
statistical mechanics was the first field of mathematical physics where scaling 
ideas were applied [22-25]. 

2. The beta function. I cannot enter into too many details here but I 
wish to provide at least some of the ideas behind the above cited works recently 
dedicated to the theory of the beta function in the case of ^-theories in 4 
dimensions (nonplanar or planar). 

In Euclidean field theory the basic object is the free field: i.e., a gaussian 
random field on Rd with covariance operator 

C = ( l - A ) _ 1 , A = Laplacian, (2.1) 

which has a rather singular kernel (so that the sample fields of the correspond
ing process are distributions on Rd in Hl°%,2,1_£, i.e., "far from ordinary func
tions"). 

Such singular fields (p admit a "scaling decomposition" into regular fields: 

p . = lim f_ pW = lim <p£N\ x e Rd, (2.2) 
fc=0 

where (pi has the same distribution as ^(d-2)k/2^,t) ^ut -1S v e ry smooth and 
essentially independently distributed on the scale 7~fc: here 7 is an arbitrary pre
fixed parameter (usually one takes 7 = 2), and furthermore the fields ^)W,^ fc ' 
are independently distributed if h ^ k. 

Intuitively one should think of <p(k) as a random field of large size 0(7(d_2)fc/2) 
but constant over cubes with side length ^~k, i.e. "on scale" 7_fc, and further
more with values independently distributed over different cubes. 

The problem of field theory (for scalar fields) is to give a meaning to proba
bility measures on the space of fields on Rd (i.e., on the space of distributions 
on Rd) such as 

(exp f V{<px)dx\ P(d<p) = Km^ (exp f V^{tp^)dx\ P{d<p^Nî), 

(2.3) 
with A being a fixed volume, say a cube, and V^ some suitable sequence of 
functions; P is the free field distribution. 

We restrict our attention here to V4-theories," i.e., to special V's which are 
fourth-order polynomials: 

VW(<p£N)) = *N<p£N)4 + VNPI*10* + »x + ä J v O ^ * 0 ) 2
 (2 4 ) 

= ^N{\NHA{XX) + ßNH2(Xx) + vN + aNH2(dXx)) 
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where A_y,..., â_v are arbitrary constants, Xx = (px /\Ay2N is a "normalized" 
field, and Hn are the Hermite polynomials (Ho = 1, Hi = x, H^ = a;2—1/2,... ). 
The second way of writing the fourth-order polynomial, in terms of Hermite 
polynomials, is natural as is well known ("Wick ordering"). The factor 74iV is 
inserted for convenience and is canceled when the integration over x is done if 
Xx is regarded as constant on the volume element, i.e., on the cubes of scale 

r". 
The first basic idea is to find bounds on (2.3) by introducing the "effective 

potentials" 

exp4*V* f c >) = /exp ( f vW(<p£N))dx\ P(<M*+1)) • • • P(d<pW) 

(2.5) 
with the purpose of proving the existence of the limit limjv->oô 4fc (^~fc^)i 
«5 = 0 ,1 , . . . . 

The second idea is that although A\ Ms a considerably complicated functional 
of (p = <p(-k\ it consists in fact of a "simple" "relevant" part of the form (L 
stands for "local"): 

A[N)L = f (Xk<p4
x + TLkvl + Vk + äk(d<px)

2) dx, (2.6) 
./A 

which we always think of as written in Wick ordered form, i.e. in terms of 
the Hermite polynomials of Xx = (px /V72/c as in (2.4), plus a remainder 

The remainder is "irrelevant" in various senses; here we simply mean that it 
is expressible in terms of the "form factors" ck = (Xk, Oik, A*/c, Vk) which, in turn, 
are "self-sufficient" because they satisfy a recursion relation: 

ch = Lck+i + fl(cfc+i) = r(cfc+1) (2.7) 

where 22(c) is a formal power series in c and L is a diagonal matrix with diagonal 
diag(L) = (l,l ,72 ,74)-

The main result of the renormalization group approach to renormalization 
theory is that the coefficients of B can be bounded; if B is 

5(C) = E E ß(^N)cm, (2.8) 

|m|=p 

there is a constant ß > 0 such that 

| / ? ( m ; J V ) | < ( p - l ) ! / ^ |m |=p , ViV, 

lim ß(m; N) = ß(m) exists Vm € Z\. ^"^ 
N—*oo "r 

The above bounds embody all the results of perturbation theory; once proved 
they imply the finiteness, as well as explicit bounds (the natural n!-bounds of 
[12]), of the coefficients of the formal power series expressing the "irrelevant" 
remainders in terms of the form factors Co [15, 16, 26]. 
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It seems reasonable (no proof, however, exists) that if one could overcome the 
problems of convergence of the series (2.8) for B, then "by the same argument," 
the corresponding problems for the series for Rk should disappear. 

This indicates that the key questions seem to be: 
(1) Give a summation rule for (2.7) which is meaningful for c G D C R4 where 

D is some (a priori unknown) suitable domain. 
(2) Show that D is invariant for the flow of the "renormalization map" : 

Without an answer to questions (1) and (2) the theory remains a purely 
formal perturbation theory, finite to every order but with open convergence 
problems (nevertheless even this order by order statement is rather nontrivial; it 
is completely solved by the above approach, which also yields explicit and best 
(to date) bounds). 

(3) Check the compatibility of the resulting stochastic process, with the ax
ioms that it should fulfill in order to be interpreted as a quantum field theory. 

The last question is essential for the interest of the theory: it is in fact quite 
clear that the results in [27, 28] can be interpreted as solutions to (1) and (2) 
above which do not satisfy (3). 

There are very few cases in which the above program can be carried through: 
basically they coincide with the cases where the series (2.8), or the corresponding 
one for models other than <p4, admit bounds so much better than (2.9) that one 
is allowed to define unambiguously the beta function B because the series (2.8) 
converges. 

In the planar ^ - theory and in the 2-dimensional Gross-Neveu model the 
(p— 1)! can be replaced by 1; hence the series is convergent (see [15, 16, 26] for 
planar ip4 and [17] for Gross-Neveu) for |c| small, thus answering unambiguously 
(1) with D = {c| |c| < 6}. 

One can, in the latter cases, pass to the analysis of question (2) above (the 
third does not make sense for planar (p4, while it is not hard in the case of the 
Gross-Neveu model because of the lack of ambiguity in answering (1)). 

We then look for a set a C V such that T~ka C D, VA: > 0. For instance a 
surface a such that T~kCo —• 0 if Co G o. 

k—*oo 

The great advantage of having a convergent beta function is that such a 
question can be easily answered by standard perturbation and bifurcation theory 
by truncating the series (2.8) to its second-order terms. 

For instance, for planar cp4-theory, d = 4, the series (2.8) truncated to second 
order becomes: 

Xk = A/c+i + ßXk+! + £Afc+i/ifc+i, 
(*k = û?A+i + ß'Xk+t + <5%+i/ifc+i, 

Pk = 72Mfc+i + ß"X2
k+i + f"/4+i - 0"<*k+il*k+u 

uk = 74^ f c + 1 + ßmXl+i + f'Vfc+i + 0"'afc+iMfc+i + ^"oß+i, 
where ß,8t,...,em are positive, easily computable (see [26, (20.20), (20.21)]) 
constants. 
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Then an elementary analysis shows that for Ao > 0, ao = 0(A§) suitably 
chosen, and Ao small, one can choose IIO,VQ SO that A& = 0(Ao/(l + ßkXo)), 
/i/c = 0(X\), vk = 0(X\), ak = 0(X\), solving (2) with D becoming now, for 
instance, restricted to the sequence Cfc. 

In this case the check of the convergence of the remainders Rk is indeed, as 
expected, a very simple technical matter and one obtains in this way a complete 
construction of the planar £>4-theory [15, 16]; unfortunately this is a little unsat
isfactory because, a priori, the planar ^?4-theory is known to be unphysical and 
it is meaningless to ask question (3). The same ideas, however, can be applied to 
the physically meaningful Gross-Neveu model in 2 dimensions [17], and in this 
case question (3) is easily answered using the lack of ambiguity in problem (1). 

The above technique can be extended to nonrenormalizable theories. However, 
it turns out that it is no longer possible to introduce even a formal recursion rela
tion linking only c& and c&+i: for instance, the simplest renormalizable theory is 
obtained by replacing the free field operator (2.1) by G = (1 — A)~ 1 + £ / 2 , which 
also admits a scaling decomposition like (2.2) with ip(kj of order 0(^d~2Jt£)k/2). 
Considering the <p4-theory in 4 dimensions with this free field one finds that (2.7) 
is replaced by 

c* = Lcfc+i + B(cfc+i, Cfc+2,...,c_v), (2.11) 

where B is a formal power series and L is a diagonal matrix, 

diag(L) = ( 7
2 e , 7

e , 7
2 + £ , 7

4 ) . 

The relation (2.11) does not, of course, uniquely fix B: nevertheless B can be 
defined in a natural way and the coefficients of its formal power series can be 
bounded uniformly in N. 

The main use of such series is again in the case of theories for which B is 
convergent when supfc |cfc| is small: the above <p4-theory in the planar version is 
an interesting example. Felder [19] finds a nontrivial planar theory by simply 
proving that the equation 

c = Lc + JB(c,c,c, . . .) (2.12) 

has a solution Co within the domain of convergence of the series for B (uniformly 
in N, of course). A similar situation is met in the Gross-Neveu model in 2 + e 
dimensions [20]. 

3. The beta function and the tree expansion. The mathematical defi
nition of the beta function is easily formulated in terms of the "tree expansion" 
[15, 18]. 
^-The^recursive^evaluatiorr ofHhe^integrals "definingthenefi%ctive=potential=(2T5)^ 
can be represented graphically by suitably interpreting the formal expansion 
(Taylor expansion) 

[e<N)P(d<pW) = e x p f ; ^ ( 4 f ) ; n ) EE e x p A ^ , 
3 n=l "• (3.1) 

(A^;n) = ^ l o g | ( e x p M W ) P ( ^ ( J V ) ) l * = o . 
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One represents A^N ' graphically as N L and n\£^(A^N
 J;n) as 

N-l N 

i.e., by a vertex with subscript TV, "scale index," representing £jy, and n lines, 
recalling the order n, emerging from it; the extra line ending with the scale 
index N — 1 reminds us that the object represented graphically is a functional 
of ^ ( - J V ~ 1 ) . The L reminds us that Apj ' is "purely local", i.e., an integral of a 
function of <px : see (2.6). 

By means of a projection operator £N-I we "extract" from each of the terms 
in the sum in (3.1) the "local part," i.e., a part which has the same form as 
(2.6), and collect all the results in a term which, of course, will have again the 
same form (2.6) with coefficients (A_v-i, a_v-i> M_v-i, VN-I) and which we shall 
denote graphically N^ L. 

In this way we can write the sum in (3.1) in a graphical form: 

N-l L N-l N \ r N-l + „ - _<_ + „ - ^ < * +••• (3-2) 

where the term N—^ ^ L is missing because N^ ^ L is al

ready "local" by definition, and $ symbolizes the operation (1 — LN-IJ^N-

There is some ambiguity in the choice of the projection operator £N-I' o n e 

can select it in such a way as to simplify the formalism. Basically it turns out 
that there is only one natural choice, and precisely one should select a projection 
LN-I which "commutes" with the integrations over different scales; i.e., such 
that: 

£h£h+1 • • • £q = 4 + 1 • • • £qCq, £q(-) = j -P(dip^), (3.3) 

as can be done (see [15, 16], and [26]). 

Then, iterating the expansion (3.1), one reaches a representation of A^ * in 
terms of objects like the following: 

where each vertex bears a scale label representing an operation £j[. The trivial 
vertices § are obviously redundant and can be eliminated. 
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Thus one obtains a representation of A^ ' in terms of "trees" r with root 
scale fc: 

A™ = +T. ^ L +T 5 ^ +?*—rC, +g > *<r, 
h L h 

R^ h 

k 
h,hi 

+ - + £ „ ^ L +- (3-4) 

^ E ^WM 
trees T 

root at A; 

and the local part A^ ' is simply k L and can be defined graphically by: 

— = * + E E ^ (3-5) 
root Tj- at k 

where ^ j represents the operation Ck£k+i a^d the terms with p > 2 are dis
tinguished from those with p = 1 because the latter contribute the linear part 
in the recursion relation (2.6). 

If one writes (3.5) explicitly, one finds a relation between the four coefficients 
Cfc = (Xk, Oik, ßk) »k) in Al. ' and the coefficients Cfc+i, c*;+2.... in the form of 
a formal power series: 

c*; = Lck+i + B(ck+i, Cfc+2î • • • i CJV), 
L is linear diagonal and diag(L) = (7e,72e,'72+e,74), 

m i B(ck+i,...) = J2 YI J2 ß(h1,...,h3,m1,...,m3)c
1^i 

5 = 1 h1,...,h3 m i m.e^i 
hi>k+l + 

(3.6) 
with the /3's independent on TV and such that: 

E E E \ß{hi,...,m,,^ K^ip-1)1 (3.7) 
s hlì...ìhs m i , . . . , m s 

Then the theory is renormalizable when the relation (3.6) can be solved re
cursively allowing us to express Cfc+i,Cfc+2,... as a formal power series in Ck 
with coefficients uniformly bounded in JV; nonrenormalizable otherwise. This 
happens respectively when the free field covariance is (1 — A)""1, i.e. e — 0, or 

^(X^Aj^lifZi^with^^Q.- - _ — _ _ _ _ — _ ^ ^ 

4. Applications to statistical mechanics. The tree expansion is useful in 
statistical mechanics too. In fact a beginning of the tree expansion can be found 
already in the proof of the Debye screening in the 3-dimensional Coulomb gas 
[29]. It has been applied to the identification of the phase transitions heralding 
the Kosterlitz-Thouless regime in the 2-dimensional Coulomb gas, in studying 
the smoothness properties of the pressure p(ß, A) as a function of the inverse 
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temperature ß and of the activity A, and in various problems on the "massive 
Yukawa gas." 

If 

x—»oo Z7T \ 0̂ / 

- 1 

is the Coulomb potential and the interaction between the charges (assumed to 
be ±1) is regularized at short distances, then one can show, by a tree expansion 
technique [30-32], that p(ß,X) is 2n times continuously differentiable, at A = 0, 
in A if: 

ß>ßn = 8TT(1 - l /2n), n = 1,2,. . . . (4.1) 

Hence for ß > Sir it is G°° at the origin in A; and in all cases the "Mayer 
expansion" (of p(ß, X) in series of A at A = 0) is asymptotic up to the order for 
which it makes sense (2n if ß > /?2n)-

The physical interpretation of the thresholds (4.1) is probably in terms of a 
sequence of phase transitions: for ß > ßn the gas contains a macroscopic fraction 
of charges bound into "stable" molecules with 2 ,4 , . . . , 2n atoms. A long way, 
however, still remains towards a rigorous proof of the above picture; basically 
what is still missing is a macroscopic description of the equilibrium states above 
the thresholds (4.1). 

Another open problem is whether the series for p(ß, A) in powers of A is in 
fact convergent (and not just asymptotic) for ß > 8TT. This has been sometimes 
suggested as possible. It is in fact true in a related model which is a hierarchical 
version of the Coulomb gas [33]. 

Some progress in the techniques that may be helpful in such a question, par
ticularly if it turns out to have a positive answer, has been achieved in the 
recent work of Benfatto [35], where it is shown how to use the tree expansion to 
prove the analyticity of the Mayer expansion for p(ß, A) in the Yukawa gas in 2 
dimensions. 

The latter gas is like the Coulomb gas except that now 

V(x)^^-log(^] fora;-+0, 
27T \ TQ J 

while V(x) decays exponentially at oo. 
For this gas one can show [34] that p(ß,X) is analytic at A = 0 if ß < 

47T, by using classical cluster expansion techniques. In [35] the same result 
is derived by using the tree expansion; however, as remarked by T. Kennedy 
(private communication), more is proved in the paper [35], namely 

p_0?,A) =pOM) - 5 j 0 ( f l A)U=oA2 (4.2) 

is in fact analytic in ß through the threshold ßi = 4n up to (but excluding) 
the next threshold at /?2 = 67r. This extension is obviously implicit in [35], but 
further extensions seem to involve problems of the same nature that one meets 
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in trying to understand whether the Coulomb gas pressure is analytic at A = 0 
for ß > Sir. The related question for the Yukawa gas seems to be: consider 

!*.(/?, A) = P(ß, A) - E (^T^2^'A)U=oA^; (4.3) 

is it analytically continuable in ß up to ß < ßn for A small? 
It seems plausible that one could prove the analyticity in A of P4 at ß = ßi = 

67T included by using techniques similar to those in [35], combined perhaps with 
ideas based on the beta function; but the question for ß > 6TT seems considerably 
harder. 

The whole situation is quite open and slightly frustrating: for instance it is 
not clear whether the tree expansion technique is really suited for the above 
problems. There are cases where it does not seem to be capable of reproducing 
results known by other methods. I refer here to the case of the 2-dimensional 
dipole gas where [6] it is shown that p(ß, A) is analytic in A at small A. The latter 
result does not seem to follow from the tree expansion in a straightforward way, 
as might be expected, which means that in some sense the tree expansion may 
be an "over-expansion" hiding some cancellations, even in models where things 
seem to be quite simple, like the hierarchical models. 

It would be desirable to understand such cancellation mechanisms to incor
porate them in the tree expansion techniques. 
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Renormalization: 
From Magic to Mathematics 

K. GAWÇDZKI 

Quantum Field Theory (QFT) is a physical scheme into which fit most of the 
theoretical attempts to understand the world of elementary particles and their 
interactions. From the mathematical point of view it may be perceived as a 
study of integrals over spaces of maps <j>: Rd —• RM , formally given as 

f n F'izAe-SM l[d<t>a(x)/ / V S W u WV)> (!) 
j=l x,a I x,a 

where x, Xj G Rd, j = 1,. . . , J, a, otj are integers between 1 and M and S((j>) 
is a local functional, e.g., in the simplest case of the so-called 04 theory, M = 1 
and 

S{4>) = 5m,A(0) = J [ i X> M <« 2 + \m24>2 + M* 

This formulation stresses the probabilistic aspect of QFT where the evaluation 
<j> h-> (f>a(x) is treated as a random (distributional) field over a space of (general
ized) functions. 

The anticommuting version of (1) plays also an important role (for description 
of fermionic elementary particles). Then, for each x G Rd and each a, 1 < a < 
M, (ßa(x) is a Grassmann algebra generator and the anticommuting integration 
rule is defined, following [1], by setting / (f>a (x) d(/)a(x) = 1, / d(j)a(x) = 0. One 
of the simplest cases here is the Gross-Neveu (G-N) model [2], where (ß(x) = 
(ij) (x),i/)3(x)), 1 <r, s < N > 1, ip and ij)s are Dirac spinors for each r, s, and 

SmM = JRd\TWiWr+mYrfV-*{^ì?v\ I (3) 

(2) 

(ft denotes the Dirac operator). Expressions (1), called euclidean Green func
tions, encode physical properties of particles described by the field theory model. 

If S(<t>) is quadratic in (j), i.e., À = 0 in the examples, then (1) reduces to a 
Gaussian integration over an infinite-dimensional space of functions (or a Grass-
mann algebra) whose mathematical structure is well understood [3, 1]. Such 
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Gaussian measures, as in the finite-dimensional case, are fully determined by 
the covariance Gm(x\,x2), i.e., the second moment ((1) with J = 2). Gm = 
(A + ra2)""1 or Gm = (i^ + ra)"1 for (2) and (3) respectively. Gaussian random 
fields describe however only noninteracting particles. 

There are three sorts of difficulties when one attempts to include the interac
tion terms multiplied by the coupling constant X into the integration: 

(i) Local regularity. Since the Gaussian measure is supported by distributional 
0's, even JK (/>4 with K compact is not a well-defined random variable. 

(ii) Global regularity. The interaction term involves the integration over whole 
Rd which probes the decay properties of typical 0's. 

(iii) Stability. Large </> behavior of the interaction should clearly be crucial for 
the existence of integrals like (1) (in the commutative case). Compare the (j)4 

theories with different signs of A. 
The traditional physicist's approach to the À ̂  0 case consists of expanding 

(1) into powers of A. Each power of this perturbation expansion (PE) involves 
only Gaussian integrals which are easily evaluated in terms of covariance Gm . 
For example, for the second moment (J = 2) of the (j)4 theory, we obtain 

(1) | j=2 =Gm(xi,x2)-12X dxGm(xi,x)Gm(x,x)Gm(x,x2) 

+ 96A2 / dxdyGm(xi,x)Gm(x,yfGm(y,x2) 

+ 144A2 / dxdyGm(x1,x)Gm(x2,x)Gm(x,y)2Gm(y,y) 
Jn™ 

+ 144A2 / dxdyGm(x1,x)Gm(x,x)Gm(x,y)Grn(y,y)Gm(y,x2) 
JK™ 

+ 0(A3). (4) 

(4) however diverges in 2 or more dimensions as 

(0(\n\x-y\), d = 2 , 
G^,y)^\0(_l_\ d>2. (5) 

These short distance divergences which plague the PE in QFT are just a reflection 
of the lack of local regularity. The global regularity problem appears in PE only 
if m = 0, since Go(x,y) has a slow decay for \x — y\ —• oo leading to long 
distance divergences in (4). The stability question is discarded altogether in 
the perturbative approach. In what follows, we shall not discuss the global 
regularity problem which in many cases can be treated by conventional methods 
of statistical mechanics. 

There exists a celebrated procedure, called renormalization, which removes 
the short distance divergences from the field theoretic PE. Born as partly magic, 
partly suspicious manipulations on formal series with infinite coefficients, it led, 
when applied to Quantum Electrodynamics (a field theory describing interactions 
of electrons and photons), to finite results which were in spectacular agreement 
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with experiment, see e.g. [4]. Subsequently the perturbative renormalization has 
obtained a precise formulation [5], whose main idea we shall sketch now. 

Let us start by making the Gaussian integral underlying our theory more 
regular by replacing (2) by its cutoff version 

(6) 

(A stands for Laplacian) and similarly for (3) with iß »-• ißeA/9 . This results 
in the change 

Gm Gm-\(iße^+m)-\ ( 7 ) 

respectively with Ge
m(x,x) finite. (Consequently the Gaussian measure becomes 

concentrated on functions.) Introduction of the cutoff allows replacing of the 
static point of view on the PE divergences by a dynamic one where the diver
gences may be observed in statu nascendi when 0 —• oo. 

Next step is to reparametrize the cutoff theory by means of another substitu
tion. 

sl,M~sioM{z^<i>), (8) 
where mo, Ao, and Z are given by formal power series 

OO CO oo 

mo = m + $ > „ A f c , Ao = A + £/?„A f c , Z = l + ^ ^ A f c . (9) 
k=l fc=2 fc=2 

This leads to a new, renormalized PE in powers of A for the Green functions. 
The success of the perturbative renormalization may be summarized in 

THEOREM 1. For d<4 in the (j)4 theory or for d < 2 in the. G-N model there 
exist choices of ak, ßk, 7^ such that a (nontrivial) limit of the renormalized PE 
exists order by order. 

What happens is that the short distance divergences of the PE may be en
tirely absorbed into divergences of the coefficients ak, ßk, 7JJ! at 0 —» 00. This 
result, although intuitive, is not easy to prove. It has a heavy analytic and 
combinatorial content. For a modern approach to the question of perturbative 
renormalizability, see [6] and the lecture of G. Gallavotti at this congress. 

In general, one distinguishes three possibilities: 
(i) The perturbative renormalization works with a finite number of diverging 

coefficients ae
k, ßk, 7^—superrenormalizable models (like 04 in d = 2,3). 

^"^ (ii)""AriïïnïifeTSmBer15f^î^rgîng coefficients-iFre^iredI=fënormalizâblë== 

models (like <$>4 in d = 4 and G-N in d = 2). 
(iii) The perturbative renormalization does not work—nonrenormalizable 

models (like (j)4 in d > 4 and G-N in d > 2). 
The important lesson to learn from the success of the perturbative renormal

ization is that one should consider 0- (and A-) dependent mo, Ao and Z in (8) 
if one wants to get finite results for the 0 —» 00 limit of the Green functions. 
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Constructive QFT attempts a nonperturbative analysis of the choices of Ao, mo, 
Z which lead to finite nontrivial (i.e., describing interacting particles) results 
when 6 —• oo and of the properties of these limits. By a simple rescaling of the 
fields (j>(x) H+ (/>'(x) oc (/)(0x), the problem may be translated to the one where 
we probe the long distance asymptotics of the Green functions of the fixed cutoff 
theory and becomes, from the mathematical point of view, a search for limit 
theorems for certain strongly correlated random fields. 

In the past twenty years, as a result of concentrated efforts [7], a good rigorous 
control of the superrenormalizable QFT models has been achieved. Here, we shall 
discuss the recent development in the field: the first mathematical constructions 
of renormalizable models. 

THEOREM 2 [8, 9]. For the G-N model in 2 dimensions, choose 

mo = m(ln0)-(2N-1V2(N-1\ 

Ao = 

Z = 

A-1+azi)ln,_ilnf1+&ii)Aln,) 
7T 7T \ 7T / 

(10) 

with A > 0 small and m > 0 large. Then the limit 0 —>, oo of the Green functions 
exists and is nontrivial. 

Theorem 2 was proven independently by two groups. Both proofs are similar 
in spirit, although [8] exploits more heavily the conventional perturbative tech
niques. Our description of the proof will fit [9] better. The main idea here is 
a translation of the problem into the dynamical system language following the 
renormalization group philosophy of K. G. Wilson [10]. The Gaussian (Grass-
mann) cutoff field <j)(x) corresponding to mo = 0, Ao = 0, i.e., with covariance 
Goe~A/6 , is decomposed into Y*n=o 0n(&) (^n = (V'n^n))' where (ßn are inde
pendent fields with covariances 

Go{e-L>»A/<,> _ e - L » < » + » A / * » } for n < n Q 

and 
G(je-L»"°A/«» îorn = no_ 

(For independent fields the covariances sum up.) L > 1 is fixed and no is chosen 
so that Ln°/0 = 0(1). The functional integral with the interaction term 

Sf(<t>) = jR2 moYrfV - Ao fe^V J (11) 

turned on may be analyzed inductively by integrating out fa first, <j>i next, 
and so on. In the commutative case this would correspond to subsequent con
ditioning with respect to the ^--algebra generated by (j)-1 = Y^n>i ̂ «> ^ e n 

0-2 = £n>2^n, etc. 
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The effect of this operation may be summarized by the replacement of Sj (</)) 
by the effective interaction S}^-1), then S2(<p-2),.... This generates a (dis
crete) flow of the effective interactions 

5? H+ Sj H+ S] h+ - • - h+ S?° (12) 

known in the physical literature under the name of renormalization group. The 
control of the flow in the infinite-dimensional space of effective interactions looks 
like a formidable problem. However, in the G-N model case, if the interactions 
are small (in the appropriate sense), then each 5 j + 1 may be computed by a 
convergent PE in powers of Sf. This reflects the absence of the stability problem 
for anticommuting fields and allows an easy control of (12) in a neighborhood of 
zero. It can be shown inductively that each Sf has the form 

(13) 

oo » m 

+ YI I dx1-'-dx2mTn
m(xi,...,x2m)]J^(xi)'ip(xm+i), 

where / dx2T^(x±,x2) = 0 = / dx2 dxs dx±T4(xi,x2,x$,£4) (the local quadra
tic and quartic terms have been separated out in (13)), and the series converges 
in appropriate sense. 

The perturbative computation leads to the recursion 

/ 2 Ì V - L , \ , x , 
mn+i = mn I H AnlnL 1 + o(mnAn), (14) 

1 1 2(N-l)t r 2(iV-ll _ r T = T - M n £ + v ;AwlnL + o(Aw). (15) 
*n+l *n 7T 7T* 

Notice that under (15), A flows away from the Gaussian fixed point A = 0. The 
flow of IVs is driven by that of mn and Xn : r n ' s correspond essentially to the 
stable directions of the flow. The ansätze (10) are just solutions for the initial 
values Ao, mo which under no iterations of (14), (15) produce O(l) Ano and mno 

uniformly in 0. Upon this choice of the initial condition, (12) ends up when 
0 —> 00 on the unstable manifold of the Gaussian fixed point in the space of 
effective interactions. The fact that the coupling constant flows away from zero 
under the renormalization group transformations (called asymptotic freedom) is 
very important for the success of our rigorous analysis, because it guarantees 
smallness of effective interactions, in which we expand, for all inductive steps. 

Although at each step the PE in powers of Sf converges, the renormalized PE 
(which may be identified as the expansion in powers of the "renormalized cou
pling constant" Ano for the total functional integral) is still expected to diverge 
when 0 —• 00. This can be illustrated best on an example of a function 

f(\)=fn eai<8-ln^u(X(s))ds, (16) 
Jo 
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where A (s) is a solution of the differential equation 

f=m^>x>+xMx)i (17) 
US 7T 

A(ln0) = A, (18) 

with u(-) and w(-) analytic around zero. (17) gives a flow which underlies fe(X) 
similarly as (12) does the Green functions which may be decomposed into a sum 
of contributions produced by subsequent effective interactions. For a > 0, fe 

clearly has a 0 -+ oo limit for small positive A > 0. Generically, this limit is not 
analytic around zero: its Taylor expansion diverges but is Borei summable, a 
typical singularity connected to the degeneracy of the fixed points of dynamical 
systems like A = 0 for (17). The study of such and related singularities is the 
subject of the theory of resurgent functions [11]. 

Although a drastic truncation of the QFT problem, example (16) is still quite 
illustrative for the dependence of Green functions in a renormalizable model on 
the renormalized coupling constant. Specifically, we have 

THEOREM 3 [8]. The renormalized PE in the 2 dimensional G-N model is 
Borei summable. 

Actually, the Borei transform of the latter is expected to have similar analytic 
structure as that corresponding to (16) with branch-point singularities on the 
negative axis [12]. This appeals for a generalization of [11] to the case of infinite-
dimensional flows. 

The applicability of the inductive approach to QFT described above is limited 
neither to the anticommutative case nor to the renormalizable models, as the 
following results show: 

THEOREM 4. l.[13] Consider the 4-dimensional cut-off (j)4 theory for small 
negative X defined by analytic continuation of the positive X case through the 
upper (lower) half-plane. 

2.[14] Consider the 2-dimensional G-N model with the Gaussian covariance 
(iß)-1 replaced by (iß)~1Ae for e > 0 small. 

In both cases, for a suitable choice of mo and Ao, (nontrivial) 0 —• oo limits 
of the Green functions exist. 

The point of case 1 is that the negative A (j)4 theory in d = 4 is not only 
perturbatively renormalizable but also asymptotically free, in contrast to the 
positive A case which most probably does not have a nontrivial 0 —* oo limit [15]. 
Unlike for the G-N models, the control of case 1 required solving an involved 
stability problem. In case 2, the modification of the covariance renders the 
interacting model perturbatively nonrenormalizable. Nonperturbatively, the cut
off 0 can be still removed, but it is a nonzero fixed point of the coupling constant 
recursion rather than the zero one which drives the asymptotic behavior of A for 
large 0; see also [16] where a similar construction was done for another model. 
Unfortunately, the result of Theorem 4.1 is only of limited interest for QFT as the 
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constructed Green functions are not expected to have the positivity properties 
required for the field-theoretic interpretation. 

Although until now only the simplest case of a genuine renormalizable QFT 
has been mathematically controlled, it seems reasonable to expect that more re
alistic renormalizable models, containing 4-dimensional nonabelian gauge fields 
which share with the 2-dimensional G-N model the property of asymptotic free
dom will be rigorously constructed before long; see T. Balaban's lecture at this 
congress. 
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1. Quantum strings. Quantum theory of elementary constituents of matter 
—quarks and leptons—starts from a classical image of point-particle. The first 
quantization leads to the quantum mechanical picture of a complex wave function 
(or amplitude) propagating in space. The second quantization takes into account 
the nonconservation of the number of particles and, in the operator approach 
to the quantum field theory, transforms wave functions into operator-valued 
distributions. 

Currently a different quantum field theory is being actively discussed, that of 
one-dimensional elementary objects, called strings. 

The theory was first suggested in the sixties as a device for describing strong 
interactions—quantum strings modelling an image of a flux tube connecting 
quarks in a hadron. 

In the eighties the renewed interest in strings arose for several reasons. ,One 
compelling idea was a radical change of physical interpretation of the theory. 
Many people believe now that at the Planck energy scale the fundamental con
stituents of matter are quantum strings of a very particular type, whereas the 
observable physics of low energy is a result of a hierarchy of symmetry break
ings, including spontaneous compactification of six spatial dimensions of the 
initial ten. The observed particles thus are described by phenomenological ef
fective lagrangians taking into account only the lower excitation modes of the 
quantum strings. 

Since the ancient high energy physics has already led us to the verge of self-
destruction, one can only wonder where these new flights of fancy will lead our 
descendants (if any). 

Be that as it may, modern strings as mathematical objects can be endowed 
with internal degrees of freedom and be spinning. In the latter case they are 

=also=ealled=superstringsr=Quantum=field^theory^of^(super)stringrexists=in=two=ver^ 
sions, mathematically very different. The canonical, or operator, quantization, 
pursued in many articles, looks like a very interesting new chapter of repre
sentation theory, in particular that of the Lie algebras of the Kac-Moody and 
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Virasoro type and their super analogs. One flaw of this approach is the difficulty 
of encompassing interactions. 

This difficulty does not arise in the Polyakov path integral approach [1], the 
interactions being accounted for by various topologies of string world sheets in 
the integration space. 

After taking into account gauge invariances of the theory, the Polyakov inte
grals for amplitudes reduce to finite-dimensional integrals over moduli spaces of 
Riemann surfaces and their superextensions. 

My talk is devoted to mathematical questions of this new theory, arising in the 
problem of the computation of the Polyakov partition function and its fermionic 
analogue. The results, presented here, were obtained partly in collaboration 
with A. A. Beilinson and A. S. Ovare. I am deeply grateful to them, and also to 
A. A. Belavin for very useful discussions. 

2. Partition function of Polyakov's string. The partition function of the 
closed bosonic string is given by the perturbation theory series Z — Ylg>o %g'> 

Zg = ePl2-2') [e-J^DxD<i, 

J&l) = l I d2z^/H1
abdax

mdh, 
L JN 

(i) 

Here N is a fixed compact oriented surface of genus g (the number of vacuum 
loops), za local coordinates on it, x = (xm) a map of N into a Euclidean space 
Rdj 7a6 dza dzb a metric on N. The path integral (1) is taken over a space of 
random Riemannian surfaces in Rd. The classical action J(x,^) is invariant 
with respect to the semidirect product of the diffeomorphism group of TV and 
the group of conformai changes of a metric. The heuristic definition of the path 
integral (1) proceeds as follows (cf. Alvarez [2]). The Gaussian integral over x 
is defined by the standard formula 

(det'A07)-d/2, 

where Ao^ is the Laplacian with respect to 7, acting on functions, which is 
regularized, say, by the formula exp(—?^(0)). This regularization breaks the 
conformai invariance of the effective quantum action. The resulting conformai 
anomaly vanishes in the critical dimension 26, in which case the Faddeev-Popov 
trick allows us to reduce the integration over 7 to a finite-dimensional integral 
over the moduli space Mg of Riemannian surfaces of genus g: 

Zg = const / rfz/det/A2/y(det/A0^)"13, g > 2, (2) 
JMg 

where du is the Petersson-Weil measure on Mg, A2^ the Laplacian on the 
quadratic differentials, 7 is the metrics of the constant curvature —1 in a given 
conformai class (for g = 1 the formula is slightly different). We shall denote by 
ditg the Polyakov integration measure in (2). 
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3. Two methods for calculating Polyakov's measure. Using the Sel-
berg trace formula, one can express the determinants in (2) as a product over 
the lengths of closed geodesies on a Riemannian surface (cf. [3, 4, 5] and other 
papers). 

An essentially different approach is based upon a recent work of Belavin and 
Knizhnik [6], where it was established that dirg is the modulus squared of the 
Mumford holomorphic form. In the notation of [7] the Mumford form is a section 
of the sheaf A2 A J"13 = OM0I corresponding to 1 under this isomorphism. We shall 
denote it dßg. 

The Belavin-Knizhnik theorem follows from a more general result of Bismut 
and Freed on the determinants of the Dirac operators. 

In my announcement [9], based upon these considerations, the Polyakov mea
sure was expressed through the Riemann theta. To derive this formula, I have 
used in an essential way a technique of arithmetical geometry due to Arakelov 
[10, 11] and further developed by Faltings [11]. Specifically, Faltings's calcula
tions of admissible metrics on Xi, made for the proof of the arithmetic Noether 
theorem, were crucial for me. Below I shall state an improved version of this 
formula, this time for dpg rather than dirg only, which will be proved in the joint 
work of A. A. Beilinson and the author. 

Note that the Bismut-Freed formula furnishes in the context of Hermitean 
complex geometry a precise formula of the Riemann-Roch-Grothendieck type 
for the Chern class c± of a direct image sheaf, on the level of forms and not 
only of cohomology classes. An extension of this result to higher Ci would be of 
great importance both for number theory and quantum anomalies in the spirit, 
advocated in Manin [13] and Atiyah [14]. 

4. Calculus and algebra on Riemannian surfaces. Let X be a smooth 
compact surface, or, which is the same thing, a projective algebraic curve over C. 
Our immediate concern is to define certain almost canonical bases in the spaces 
of holomorphic differentials of weight j , which we denote Q®3(X). Actually, it 
will be convenient to do this also for half-integral j . In order to do that we choose 
a typical odd theta characteristic fi1/2, which is an invertible sheaf on X with 
(fìi/2)®2 = Q I and ft0(ni/2) = fei(fii/2) = 1. We then put fi®' = (fi1/2)®2'" 
fovje^Z. 

(a) Distinguished basis in Q1^2(X). We choose a symplectic basis (ai,bj) in 
Hi(X,Z). The Riemann basis u)\,...,ug in QX(X) is defined by the conditions 
h u3 = àij* Put Tg = fb, u)j. Let a be a half-period, corresponding to the theta 
characteristics fi1/2. (See, e.g., Fay [15].) Denote by 0(Z,T) the Riemann theta 
function and set 

v2 = (pQ = £(^M)(M". -
i=i x J ' 

The half differential v is the distinguished basis of fi1/2(X). 
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(b) Distinguished basis in Q1(X). Assume that div<po = ^Yfj=\Pj w ^ h 
pairwise different points Pj. Choose a local coordinate tj at Pj in such a way 
that (po = t2 dtj. The Lagrange type conditions 

<Pj = isjk + ajktk)dtk + 0(t\ dtk) near Pk, j , k = 1 , . . . , g - 1, 

define the distinguished basis (<po,<pi,...,<pg-1) in fi1 (X). 
(c) Distinguished basis in fi®2(X). For g = 2 or for a nonhyperelliptic curve 

of genus > 3 we set 

(wi,. - -, W30-3) = (Po, <Po<Pu- • -, <Po<Pg-ï, Vu • • • > V^-iî 

^ - l . l ^ l ^ f f - l » • • • J % - l , f f - 2 ^ - 2 ^ - l ) . 

It is essential that Wj are explicit bilinear combinations of <pj and that the last 
group of 2-differentials fulfill the Lagrange conditions 

v>2g-i+j = Sjktk dt2
k + 0(t2

k dt2
k) near Pk, j , k - 1 = 1 , . . . , g - 2. 

(d) Distinguished bases in fi®'(AT), j > 2. To define it, take the distinguished 
basis in the previous space (i.e., of weight j — \, multiply it by v and add g — 1 
differentials, satisfying the Lagrange conditions at P i , . . . , P g - i . 

Now we can describe the Polyakov measure. 

5. THEOREM, (a) The Mumford form equals 

,4 Wi A • • - A wsg-3 
dfig = const(det B) 

where B = (B3
{), (pi = Bfaj. 

(b) The Polyakov measure equals 

dng = const| detS |" 1 8 (det I m r ) - 1 3 ^ A Wi A • • • A W3g-z A W3g-3 

where Wi — k(wì), k the Kodaira-Spencer map, in this setting defined by k(ojkui) 
= (l/2m)dTkl. 

6. Sketch of proof. Let ir:X —* S be a flat family of projective smooth 
algebraic curves. In order to calculate the Mumford form we utilize functorial 
properties of two algebro-geometric constructions. 

(a) For each sheaf L on X, flat over S, one can construct a multiplicative 
Euler characteristic 

d(L) = detÄ7T*L = 0 d e t ( i ü V * L ) ( - 1 ) \ 
i 

where the last equality can be used, if all sheaves Rln*L are locally free (see 
Knudsen-Mumford [16]). 

(b) For each pair of invertible sheaves L, M on X, one can construct an 
invertible sheaf (L,M) on S, geometrizing the classical cross-ratio and Weil's 
pairing (see Deligne [17]). 

The Mumford isomorphism 

Ai+i := d(fi®'+1X/S) ^ xf+Gi+1 = {di&X/S))"****1 
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becomes identical, if one trivializes the sheaves Â  by means of exterior products 
of the distinguished bases. This is proved by the detailed analysis of two auxiliary 
isomorphisms 

(tfX/S, tfX/S)®* = A<+i ® Ar1, (tfX/S, tfX/S) = A? ® A",* 

as in [12]. 

7. More uses of distinguished bases. The distinguished bases, introduced 
by A. A. Beilinson and the author, have other applications as well. 

(a) They furnish a precise normalization of multicanonical embeddings of 
algebraic curves and may be helpful in the understanding of Petri's construction 
(see [18, pp. 123-135]). 

(b) The determinants of Laplacians on the tensors of arbitrary weight on Rie
mann surfaces can be calculated by means of the Selberg trace formula. Com
bining this with the Belavin-Knizhnik method, one can express the values of the 
Selberg zeta through the determinants of the Petersson-Weil metrics of the re
spective weight, calculated in distinguished bases. These formulae can be useful, 
e.g., for p-adic interpolation. 

8. Quantum superstrings in critical dimension 10. In order to define 
the partition function of the fermionic Polyakov string, one considers a path 
integral over the space of 212-dimensional random supersurfaces, endowed with 
a super-Riemannian structure. Due to lack of space, I shall omit the description 
of differential geometric structures involved (see, e.g., [19]) and shall explain the 
superanalytic picture which emerges after the reduction of path integral to the 
sum of finite-dimensional ones. The rest of this talk is devoted therefore to some 
background facts of the theory of l|l-dimensional superalgebraic curves with an 
additional structure, or simply SUSY-curves (from supersymmetry). 

Of particular importance for us are those constructions, which may be helpful 
in defining and calculating the superanalogs of Mumford's and Polyakov's forms 
on the appropriate moduli superspace, although many more results of the theory 
of algebraic curves can be developed in this new context. Still, the theory is not 
mature enough to allow a calculation of the partition function along the lines of 
Theorem 5. 

9. SUSY-families. Below we shall use some elementary notions of super-
geometry as they are described in [13] and [19]. Let TT:X —• S be a submersion 

^fWmplex=lmSlytì 
relative tangent sheaf TX/S. A SUSY-structure on the family TT is a locally free 
locally direct subsheaf T1 C TX/S := T of rank 0|1; the rank of T itself being 
assumed to be 1|1. The sheaf T1 must be maximally nonintegrable, i.e., the 
Frobenius form 

<p: (T1)®2 - 7° := T/T1, <p(X,Y) = [X,Y] mod T1 
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must be an isomorphism. A family TT together with a SUSY-structure on it will 
be called a SUSY-family of curves (not necessarily compact ones). A SUSY-
structure is conveniently described by a family of odd vertical vector fields D 
on charts of an atlas of X, such that {D,D2 = 1/2[D,D]} form a local basis of 
TX/S. 

10. Examples, (a) Let Z = (z, ç) be a local relative coordinate system on 
X. Put Dz = d/dç + id/dz. Since D% = d/dz, the subsheaf OxDz = T 1 

defines a local SUSY-structure, associated with Z. If Z, Z' are associated with 
the same SUSY-structure, we set Dz = F%'Dz>-

(b) Let S = point, X = P1!1 with homogeneous coordinates (z\, z%, ft). This 
projective superfine is covered by two coordinate patches U:Z= (z\z^x, f i ^ 1 ) 
= (2, f), U':Z' = {-Z2ZÏ1

iÇiZÏ1) = (z1 ,<;'). Coordinates Z, Z* define one and 
the same SUSY-structure on U fi U', since Dz> = z_1Dz. We call it standard. 

(c) Consider a l|0-dimensional complex curve, not necessarily compact, XTed, 
and an invertible sheaf / on it. We denote by X the l|l-dimensional supercurve 
with the structure sheaf Ox = Oxred © Ü7, where 11/ is an ideal with zero 
multiplication which is obtained from / by the parity change functor. 

Assume now, that / is a theta characteristic; i.e., an isomorphism a: I®2 —> 
fibred is given. Then X is endowed with a natural SUSY-structure. It is as
sociated with a family of local coordinates of the form (z, f), where ç is a local 
section of 11/ such that a(ç ® ç) — dz. Moreover, in this way we get a (1,1)-
correspondence between SUSY-extensions of Xred and its theta characteristics. 
This fact generalizes to SUSY-families over pure even bases. In particular, for 
any SUSY-family its reduced family Xre^ —> «Sred is endowed with a theta charac
teristic which we shall call structural. Therefore, the notion of a SUSY-family is a 
natural extension of the classical notion of theta characteristics, which is richer 
than the latter since odd coordinates can emerge in the base spaces. Finally, 
we recall, that on Kahler manifolds square roots of canonical sheaf correspond 
to spinor structures. Hence the geometry of SUSY-curves actually describes 
fermionic degrees of freedom. In fact, it is an axiomatization of two-dimensional 
simple supergravity, modelled on the axiomatization of D = 4, N = 1 super-
gravity, as it was presented in [13] and in the last section of my book [20]. 

11. Geometry of SUSY-P1 '1 and superuniformization. The SUSY-
curve P1!1 plays the role of Riemannian supersphere, and its automorphism 
supergroup takes part of PSL(2, C) of the classical theory. To describe it, it 
is convenient to start with the group C(2|l) of conformai automorphisms of 
symplectic 2|l-form (Z,W) = Z\W*i — z^w\ — Ç\U\. It consists of matrices 

( o 6 d\ (e2 = ad-bc + 3aß, 

c d 7 , < e7 = dß - COL, 

ß a e J { eö = bß - aa. 
Such a matrix multiplies (Z, W) by (BerT)2 = (e-aße-1)2. Hence SpO(2|l) = 
SC(2|1) X {±1}. On the other hand, a direct computation shows, that SC(2|1) 
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is the automorphism supergroup of P1 '1 with its standard SUSY-structure. We 
have 

dimSC(2|l) = 3|2, SC(2|l)red = SL(2). 

Consider two points Z = (z,ç), W = (w,v), given by their associated affine 
coordinates. Set (Z,W) = z - w - çv. Then (TZ,TW) = F%ZF$W (Z,W). It 
follows, that the expression 

((Z,W,Z',W)) = (Z,W)(Z',W')/(Z,Zf)(W,Wf) 

is SC(2|l)-invariant. It is a superextension of the classical cross ratio. We can 
now describe an analytical construction of SUSY-families, which generalize two 
classical uniformization methods: that of fuchsian groups and that of Schottky 
groups. 

12. Superfuchsian uniformization. As is well known, the fundamental 
group Tg of a compact oriented surface of genus g can be given a presentation 
(A±,..., Ag,B±,...,Bg), [Ai,Bi] • • • \Ag,Bg] = 1. Consider a real analytic su-
permanifold S with the ring of real functions A. Assume that a representation 
p:Tg —y SC(2|1, A) is given. It defines an action of Tg upon P1!1 xS, compatible 
with the SUSY-structure and the evident real structure. Thus Tg acts on the 
relative upper half superplane Zf1!1 x S. Assume that in the reduced picture, 
Tg acts discretely by hyperbolic fractional linear transformations. Then we can 
construct a factor family Tff\(i/

1l1 x S) over a real analytic base. 
We can extend the classical universal family of fuchsian groups, constructed 

by Fricke and Klein, to the similar family of superfuchsian groups. In this way 
we shall obtain a SUSY-family with local versality properties, at least at points, 
corresponding to typical structural theta characteristics. 

Imitating the classical Selberg construction, we can define for such families 
the Selberg transform (with superparameters), Selberg's zeta function, and can 
compute with their help the determinants of certain operators, arising in the 
path integral for the partition function of the Polyakov superstring (see [21]). 

However, in order to reproduce, in the fermionic case, the results of the first 
part of this talk, we need supermoduli spaces with complex, rather than real, 
analytic structure. To construct them explicitly, it is convenient to turn to the 
Schottky uniformization. Its usefulness for the calculation of the classical dual 
amplitudes was demonstrated already in the first period of the development of 
the string theory (cf. Alessandrini and coauthors [22, 23]). In the fermionic case 
it was recently investigated by Martinec. 

Our point of view in this talk is based upon an experience of work with the 
p-adic Schottky uniformization, introduced by Mumford [25] and explored in 
Manin, Drinfeld [24]. 

13. Schottky's superuniformization. Consider now a Stein complex su-
perspace S with the ring of analytic superfunctions A on it and denote by T a 
free group with g generators. Let p:T —> SC(2|1, A) be such a representation, 
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that at each point of S the image of T is a Schottky group, i.e., a discrete group, 
consisting of hyperbolic elements. Denote by fig a superspace, which is an open 
supersubspace of P1!1 x S, whose support is a fibrewise union of complements 
of sets of limit points of I\ Then the factor space T\fig is a SUSY-family of 
compact curves of genus g. 

By a universal construction.of this kind, one can obtain a SUSY-family over 
a supermanifold M? (f for fermionic) of dimension 3g — 3\2g — 2 (g > 2), with 
even structural theta characteristics. It will be locally versai at least at points, 
where this theta characteristic is typical. At this point we must note that the 
general theory of local moduli deformations in complex analytic supergeometry 
was recently developed in the thesis by A. Yu. Vaintrob. For an announcement 
of a part of his results see [26]. 

The realization of the moduli superspace M^ by means of this construction 
has the same shortcomings as its classical counterpart, namely a complicated and 
badly understood structure of the boundary and a weird equivalence relation, 
induced by isomorphism of uniformized curves on the base space (cf. Hejhal 
[27]). 

On the other hand, Schottky groups admit a beautiful theory of automor-
phic forms on the Riemannian sphere, which gives nice explicit expressions for 
holomorphic differentials, period matrix, and other important objects (see, e.g., 
Baker [28, Chapter XII]). String theory puts forward the problem of construction 
of the theory of modular forms on the Riemann moduli spaces and superspaces, 
which is quite underdeveloped as compared with the Siegel modular forms theory. 
One may hope that the Schottky uniformization will be of some help here. 

I shall describe below several simple constructions on a SUSY-family, which 
is Schottky uniformized, taking [24] as a model. 

14. Classical automorphic functions. Let Y be a Schottky group, acting 
discretely on fi C P 1 , Wd(z) a rational function with divisor d in fi. We choose 
a normalization point ZQ € fi\supp(d) and consider an infinite product 

Wdi^z) = l l ^ \ . 

It converges at least on an open subset of the Schottky domain, in a neighborhood 
of maximally degenerate curves. Using Wd,z0, one can define the multiplier fid (7) 
by the formula 

WdiZo(iz) = fid(i)Wd,zQ (z). 
It does not depend on ZQ and is multiplicative in 7. It has especially interesting 
properties in the case d = (7' — l)z\, i.e., Wd(z) = (z — 7'£_.)(# — zi)"1. From 
the symmetry properties of a cross ratio it follows that the expression 

(ÖS7') :=M(Y-i)^i(7)5 7 = 7 mod [r,T], 
does not depend on z\ and defines a symmetric scalar product on Tab — T/[r, T]. 
Using it, one can construct the Jacobian of T as a factor of a torus by a mul
tiplicative period lattice, generated by the columns of (7/.,7.) = exp(27nÌTfcj) for 
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a basis of Tab. The corresponding normalized abelian differentials are u^ = 
dlogW{l-1)zii2o. 

15. Superautomorphic functions. Now let a Schottky group act on a 
superspace fis, where S is a parameter superspace. The principal construction 
of the previous section can be generalized if one takes instead of a cross ratio 
its superextension, defined in §11. Namely, put w(Z) = (Z,VZ\)(Z,Z\)~X and 
consider an infinite product 

WiTl.1)Zl(Z) - H r {T„ZìZi) {T„ZoiT,Ziy 

From SpO(2|l)-invariance of the standard SUSY-structure it follows that in the 
convergence domain we have 

^(r' - i )Zi( î 1 ) = fi{T-^-i)zQ(T,~1)' 

Therefore a scalar product is well defined 

exp(2™ki) = (Tk,Tl), TkeTab, 

with values in invertible even superfunctions on the parameter space S. 
By the same token, one gets the lattice of even differentials of the first kind 

u)T = d/s log WT and its multiplicative period lattice. 

16. Final remarks. To develop the algebro-geometric side of the fermionic 
string theory to the same level, as in the bosonic case, one needs several con
structions in supergeometry. The formalism of det Rir* and {L, M) will hopefully 
be available in the near future. I am working on a proof of the analog of the 
Mumford isomorphism A}3 = A2 which in the fairly evident notation should take 
the form k\ = A3. 

I would like also to mention the following natural problems. 
(a) One should study an analog of superJacobians for SUSY-curves and su-

perabelian varieties in general. 
(b) An algebraic theory of moduli superspaces should be developed and the 

compactification by stably degenerate SUSY-curves should be constructed. 
(c) A theory of vector superbundles over SUSY-curves, corresponding to Yang-

Mills coupled with supergravity, should be formulated. In this way the heterotic 
string may be included in this context. 

(d) What is a natural SUSY-structure on higher-dimensional supermanifolds, 
e.g., on various moduli superspaces? 

(e) The same questions about the SUSYAr-curves corresponding to extended 
two-dimensional super gravities. 
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Spectral Properties of Metrically Transitive 
Operators and Related Problems 
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I. Introduction. In the past decade the spectral properties of the Schrödin
ger equation and other differential and difference operators with random and 
almost periodic coefficients have attracted considerable and ever increasing in
terest. This interest arises not only from intrinsic logic of development of the 
spectral theory of operators, probability theory, and mathematical physics, but 
also from theoretical physics, primarily the theory of disordered condensed sys
tems. And it was out of requirements of this theory that the study of such oper
ators with random coefficients was commenced in the 50s and 60s by physicists 
Anderson, Lifshitz, and Mott, who formulated a variety of fundamental ideas and 
concepts. Theoretical physics even now remains a source of many problems and 
methods of the spectral theory of the present class of operators, and significantly 
influences the course of development of this branch of mathematics. 

The problems, methods, and results of this branch generate mathematical 
interest, as I see it, for one more reason as well. Namely, they provide a quite 
natural and efficient formalization of intuitive concepts of the "typical operator," 
in particular the "typical differential or finite-difference operator with bounded 
coefficients." It is well known that, e.g., the spectral theory of the Schrödinger 
operator with a bounded potential, i.e., which neither increases nor decreases 
in any systematic way, amounts essentially to the case of the periodic potential. 
This is partly because of the difficulty of an adequately detailed and efficient de
scription of an individual, more or less arbitrary bounded function from the point 
of view of spectral theory. It is natural therefore to use an approach dealing with 
a certain more or less broad ensemble of operators (equations) and finding facts 
and properties that are characteristic of all "typical" representations of such an 

jen§emMe,^Mathematics_knows_atie 
of "typical": categorical and probabilistic. The more productive and efficient ap
proach in the area under discussion proved to be the probabilistic approach, in 
which the term "typical" is equivalent to "almost every with respect to a certain 
probability measure member of the ensemble" (though now there are results in 
the spectral theory which are formulated in terms of the categorical approach, 
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where the "typical set" is equivalent to the "dense G s set," etc.). Within the 
probabilistic approach, differential and finite-difference operators, whose coef
ficients are homogeneous and ergodic, i.e., metrically transitive random fields 
in Rd or Zd , represent a natural ensemble for studying "typical" properties of 
the said operators with bounded coefficients. Such an approach has now been 
demonstrated to be rather productive and constructive as applied to a variety of 
problems, where traditional methods of spectral theory are not quite efficient. 

This report will present some results obtained by this approach in recent 
years. 

II. Abstract metrically transitive operators. A general abstract opera
tor scheme convenient for the analysis of the spectral properties of the class of 
operators under discussion is as follows [41]. 

Let (Q, 7, P) be a probability space, 7 = {T} a group of measure-preserving 
and metrically transitive (m.tr.) automorphisms of this space, Uj = {UT,T G 
7 } a unitary irreducible representation of this group in the Hilbert space M. 
The function A(UJ) on Q with values in the set of closed operators in # will be 
called a metrically transitive operator (MTO), if there exists in ){ a dense linear 
manifold D, entering into the domain of almost all A(u) and such that 

(a) UTD C D\ 
(b) the quantities (u,Av) are measurable for all u G M, v G D; 
(e) with probability 1 (p.l) 

UTA(u)v = A(Tu))UTv, VT e 7 , Vu e D. 

If, moreover, with p.l (u, Av) = (Au,v),\/u,v G D, then A will be said to be a 
symmetric MTO. 

An interesting example, typical in many ways, of a symmetric MTO, is the 
Schrödinger operator 

H = - A + q(x, u)), xeRd, 

acting in £ 2 (R d ) , with real-valued potential of the form q(x, UJ) = Q(Txu>), where 
Q(CJ) is a measurable function on Q, {Tx,x G R d} is a m.tr. group, i.e., q(x,oj) 
is a m.tr. field. A class of such potentials proves to be quite rich, as is clear even 
from the following examples: 

(a) 

( f i , 7 , P ) = ([0,27T), Sx, ^ ) 

where b\ is a Borei cr-algebra on a unit circle, 7 = {Tx,x G R} is the group of 
rotations of the circle: Txw = u) + x (mod 2n). In this case q(x,uj) — Q(x + UJ), 
where Q(w) is a 27r-periodic function, i.e., q(x,u) is a periodic potential with a 
random origin uniformly distributed over a period.1 

Recall that the origin shift used in the consideration of properties of the Schrödinger 
operator with a periodic potential proved to be a very useful procedure in the modern theory 
of nonlinear evolution equations with periodic initial data. 
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(b) 

(n, 7,p) = ( T » , fl", dui
{2^)t

}n). C7»* = "* + «** (mod 27r)> 

where a i , . . . , ad are rationally independent real numbers. The corresponding 
potential is a quasiperiodic function with the frequency module generated by the 
numbers a±,.. .,ctd. 

(c) q(x,u) is an ergodic Markov process. 
The above examples of m.tr. potentials correspond to three main classes of 

MTO: the periodic operators, whose spectral properties are sufficiently well un
derstood, especially for the one-dimensional case; the almost-periodic operators; 
and the random operators, which are now being actively investigated. 

Similar examples may be given also in the discrete case, i.e., in the space 
l2(Zd), where the analogue of the Schrödinger operator is the operator 

(Ai/;)(x) = - Y^ ^(y)+Q(x^Mx), xeZd. 
\x-y\ = l 

This operator, in the case where q(x,u) is a family of independent identically 
distributed random variables, is known as the Anderson model. 

Proceeding from the above abstract definition of MTO the following spectral 
properties may be proved: 

(1) If A((JJ) is a symmetric MTO, then its deficiency indices are both, with 
p.l , equal to zero or infinity [43].2 

(2) The spectrum of the self-adjoint MTO (SMTO) A(u), as all of its com
ponents (point, continuous, absolutely continuous ones, etc.), with p.l , are non-
random sets [41, 31, 25]: 

(3) The spectrum of a SMTO is, with p.l, essential [41]. 
(4) The probability that a fixed point À G R is an eigenvalue of finite multi

plicity of a SMTO is zero [41]. 
(5) The spectral multiplicity of any fixed interval is, with p.l, nonrandom 

[44]. 

III. Integrated density of states (IDS). For the important class of dif
ferential and matrix MTO defined by differential and finite-difference operations 
with the m.tr. coefficients in the spaces £ 2 (R d ) and l2(Zd) respectively, an in
teresting spectral characteristic is the integrated density of states (IDS) N(X), 
which also plays an important part in physical applications. It is a nonnegative 
and nondecreasing function of the spectral parameter defined as follows. Let {A} 

=be^aTfamilyItfnäömainF^^ , hömothetP^ 
cally) expand to the whole R d (Zd),3 and A\ an operator defined inside A by the 
differential or finite-difference operation, that defines A, and certain selfadjoint 
conditions on the boundary dA. Denote by ìVA(A) the number of eigenvalues 

2Hence, in particular, the one-dimensional Schrödinger operator with a m.tr. potential is 
always essentially selfadjoint. 

3 In the ergodic theory, these families of domains are called Föllner domains. 
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of A\, not exceeding A, divided by the measure (the number of points) of A. 
Then, under very mild conditions on the m.tr. coefficients of the operator A, 
there exists a nonrandom nondecreasing function N(X) such that N(—oo) = 0 
and 

(a) with p.l, at every point of continuity, 

lim NA(X)=N(X)\ 

(b) 
N(X) = E{£A(0,0,X)} 

where <f_4(_c,2/, A), x,y G Rd (Zd), is the kernel (matrix) of the resolution of the 
identity £A(X) of the SMTO A. 

The latter equality, which is sometimes taken as a definition of the iV(A), 
relates this function to the spectrum of almost all realizations of SMTO. Here 
are some simple examples of this relationship: 

(1) the spectrum of the SMTO A, with p.l, coincides with the set of growth 
points of N(X); 

(2) N(X) is continuous at the point A, if and only if the probability of A being 
an eigenvalue is zero. 

These facts were first formulated by Benderskiï and Pastur [5], Pastur [41], 
and Pastur and Figotin [43]. 

Property (1), combined with some arguments essentially equivalent to the 
Weyl criterion known in spectral theory, provides in many cases an answer to the 
important question of spectral analysis concerning the location of the spectrum 
[31, 27]. 

In particular, for the Anderson model, 

v = 0"o + supp F, 

where a and oo are the spectra of this SMTO and the operator - A (cr0 = 
[—2d, 2d]), and F(dq) is the potential distribution. A similar relation is valid 
also for the Schrödinger operator. 

A large number of results are associated with properties of the IDS N(X), its 
smoothness, asymptotic behavior near the spectrum boundaries, etc. Some of 
these are as follows: 

(1) N(X) is a continuous function in the general one-dimensional [41] and the 
multidimensional discrete cases [9], while in the case of the discrete analogue of 
the multidimensional Schrödinger operator, 

|iV(Ai) - AT(A2)| < const|ln|Ai - AsH"1 

[8]. 
(2) In the Anderson model, when the distribution function F(q) of the random 

variables q(x), x G Zd, is absolutely continuous: F(dq) = p(q)dq with p(q) < G, 
N(X) is also absolutely continuous and the corresponding density is bounded by 
the same constant: N(dX) = p(X)dX, p(X) < G [48]. 
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(3) If the spectrum of a SMTO contains the point +00 and 
n 

N(X) = ^cfcA
afc + o(Xan), X -> +00, ai > a2 > • • • > an 

1 

(such asymptotic expansions may be obtained for elliptic MTO with smooth 
coefficients), then the length 6(X) of spectral gaps located to the right of A has 
the estimate 6(X) = o(Xan~ai+1) [46]. 

(4) For the Schrödinger operator, H = - A + q, in the cases of: 
(a) the Gaussian random potential with zero average and the correlation func

tion b(x) [40] 

lniV(A) = ~2^) ( 1 + o(1))î A ^ - ° ° ; 
(b) q(x) = Ylj u(x — xj) where u(x) is a smooth summable function and the 

points Xj are distributed in accordance with the Poisson law in Rd with the 
density n [42] 

U <0, —7-r In —y-r, X —> —00, 

- 'u(O) w(0)' 

ln N(X) = (1 + o(l)) { « > 0, « = o(\x\-d~2), \x\ - 00, C(d)nA"d/2, A j 0, 

u>0,u=j^(l + o(l)),\x\^oo, 
d < a < d + 2, G(d, a)X-d/a-d, A | 0; 

(c) q(x) = fRd u(x - y)g2(y) dg, where u(x) > 0, u(x) = o(\x\~d~2), \x\ -> 00 
and g(x) is the Gaussian field in Rd with a zero average and the correlation 
function b(x) = 60 exp{- 5^1 \xi\}: 

ln N(X) = -C(6o,d)A-d/2"1(ln A " 1 ) 2 ^ 1 ^ ! + o(l)), AIO 

([11], where rather a general case is also considered). 
An important point of the rigorous proof of the series of these asymptotic 

formulae are powerful results of Donsker and Varadhan on the asymptotic prop
erties of the Wiener process for large times. 

The above asymptotic formulae for iV(A) are typical for the so-called fluctu
ation spectrum boundaries of random operators, where the spectrum is formed 
mainly by large deviations (fluctuations) of the random potential from its math
ematical expectation. These fluctuations have the shape of wide potential wells 
(if the spectrum bottom is the point A = 0, the size of the wells is of the order 

=of^^2=)=separated4)y'veiy^ 

of the random nature of the potential, all these wells differ in shape and thus, 
in terms of quantum mechanics, resonance tunneling between them is practi
cally impossible. As a result, the asymptotic of IDS coincides, with logarithmic 
accuracy, with the probability of appearance in the potential realization of an 
"optimal" well, in which the given A j 0 is the minimum eigenvalue. This "fluc
tuation" ideology was proposed by Lifshitz [33] and is the basis of the so-called 
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optimal fluctuation method, widely used in disordered system physics and giv
ing the asymptotic behavior of IDS and other physical and spectral quantities 
in the fluctuation region on the physical level of rigour (see, e.g., Gredeskul et 
al. [21]). It also provides quite convincing, though heuristic, reasons to believe 
the spectrum in this region to be pure point for any dimension d > 1 and the re
spective eigenfunctions to be concentrated essentially within the "optimal" well 
and exponentially decreasing outside of it. This heuristic picture of the spectral 
properties of the Schrödinger operator and its difference analogues in the fluctu
ation region of the spectrum has recently evolved into a rigorous mathematical 
theory in the remarkable works of Fröhlich, Spencer and their coworkers ([15, 
16], and the references therein). 

The fluctuation boundaries of a spectrum are a characteristic feature of ran
dom operators. Boundaries of another type, the so-called stable boundaries, may 
be found in any differential and finite-difference MTO. In the vicinity of such a 
boundary the spectrum is formed by the whole realization of m.tr. coefficients 
(not only its large deviation part) of the operator, and the IDS behaves asymp
totically in the same way as the analogous function of a certain operator with 
constant coefficients, i.e., here occurs a kind of "homogenization." 

Here are some examples of stable boundaries. 
(1) The point A = +oo for the Schrödinger operator with a m.tr. potential, 

where N(X) = N0(X)(1 + o(l)), X -• +oo, and N0(X) = CdX
dl2 is the IDS of the 

Laplace operator -A. 
(2) The point A = 0 for the Sturm-Liouville operator 

• l ( p { x ) t ) = x m ^ 

where p(x) and m(x) are positive and bounded m.tr. random processes. 
Here 

N(\) = No(\£)(l + o{l))i AjO, 

p = E{m(x)}, /c_1 = E{p~1(x)} 

(Lifshitz et al. [21]). 
(3) The point A = 0 for the multidimensional MTO 

-^{aÌj{x)Ì)=X^ xeRd 

where the m.tr. matrix a(j(x) satisfies the strong ellipticity conditions. The 
asymptotic of the IDS analogous to those above was found for these operators and 
their finite-difference analogues by Kozlov (see [30] and the references therein). 

Note that there are reasons to expect the spectrum in the vicinity of a stable 
boundary in the multidimensional case d > 3 to be continuous. 

Finally, we may regard the spectrum of the SMTO AA as a sequence of ran
dom point processes in R. Then it is natural to consider, besides N(X) whose 
derivative is a limit'density (as À / Rd) of this sequence, its more detailed char
acteristics, such as, e.g., the statistics of distances between nearest neighbors. 
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This interesting question, related to a range of problems of solid state physics, 
has been studied for the one-dimensional Schrödinger operator with the Markov 
potential by Molchanov [37] and Molchanov et al. [22]. 

IV. Nature of the spectrum of random MTO. The IDS iV(A) charac
terized the geometry of a spectrum and its "thickness" in the case of differential 
and matrix MTOs of a very general form. However the nature of a spectrum 
(i.e., presence of a point, continuous component, etc.) cannot be found with
out additional information on the form of the operator and the properties of its 
coefficients (i.e., their smoothness, mixing, etc.). Most results here have been 
obtained for one-dimensional operators of the second order (discrete and contin
uous), where an important role belongs to the Lyapunov exponent 

7(A,w,e) = lim |a:|_1 ln||$(a;,ü;)e||. 
\x\—>oo 

Here $(z, CJ) is a fundamental matrix (transfer matrix) of the respective equation 
of the second order and e G R2 is the unit vector of initial data. 

In the general case of a m.tr. potential, the following facts are true: 
(1) The limit in the definition of 7(A,cj,e) exists, with p. l , for every A and 

all e G R2 , if Ü7{|g(_c)|} < oo in the continuous case and E{ln(l + |<7(z)|)} < oo 
in the discrete case [38] (in stability theory, the equations for which this limit 
exists are called Lyapunov regular). 

(2) The senior Lyapunov exponent 7(A) = sup||e||=17(A,cj,e) is nonnegative, 
nonrandom, and related to the IDS by the Thoules^Herbert-Jones formula: 

7(A) = 70(A) + f ln|A - p\[N(dp) - N0(dfi)], 

where 70(A) = max(0, —A)1/2, iV0(A) = 7r -1max(0, A)1/2 in the continuous 
Schrödinger case, and 70 = No = 0 in the discrete case (Jacobi matrix) [2, 
12, 8]. 

(3) The set X C R of the positive Lebesgue measure contains the absolutely 
continuous component of the spectrum of the respective MTO, if and only if for 
Lebesque almost all A G X, 7(A) = 0 [24, 41] (the only if part); [25] (the if 
part). 

But for random operators, much more is known. Namely, in the very gen
eral situation of independent or Markov coefficients, the Lyapunov exponent is 
positive on the spectrum [17, 24, 41, 36], and thus, such operators have no ab
solutely continuous spectrum (recall that in the case of a periodic potential the 

-spectmm=is=pure=absolutely^contmuousand-xoincides_with,thaset4A:^-(A)=^_0J}=)^ 
If the potential in the one-dimensional Schrödinger operator is q(x) = Q(£x), 

where £x is Brownian motion on a smooth compact Riemann manifold and Q(Ç) 
is the smooth nonflat function on it, then the spectrum of such an operator, 
with p.l , is pure point, dense [19] and all the eigenfunctions are exponentially 
localized [36]. Similar facts in the discrete case have been established by Kunz 
and Souillard [31]. The hypothesis of the pure point nature of the spectrum was 
suggested in the early 60s by Mott and Twose. 
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It should be noted that the very possibility of existence of a dense point 
spectrum for the one-dimensional Schrödinger operator is provided by unique 
solvability of the inverse problem of spectral analysis for this operator. However, 
the traditional spectral theory, which dealt mainly with increasing or decreasing 
potentials, used to treat this type of spectrum rather as an exotic thing, an 
exception, than as a rule. Besides, the inverse problem technique is not powerful 
enough to give fairly constructive sufficient conditions on the class of potentials 
providing a dense point spectrum. In this context, it is noteworthy that the 
theory of spectral analysis inverse problems, which is of interest in quite a variety 
of respects, and in relation to integration of nonlinear evolution equations in 
particular, is rather poorly developed as regards MTOs. Besides the periodic 
case, thoroughly studied by Marfcenko and Ostrovskii (see, e.g., the book by 
Maröenko [34]), more or less complete results are available only for the special 
class of limit periodic potentials [43]. For the general case of the m.tr. potential, 
there are only few, though very interesting, results [29], and little is known of 
random potentials. 

The theorem of the pure point spectrum of the one-dimensional Schrödinger 
operator with a random potential proved by Goldsheïd, Molchanov, and Pastur 
[19] has been generalized and proved more than once. The most complete and 
conceptually transparent form of this theorem is due to Kotani [28]. However, 
in all proofs the assumption of smoothness of probabilistic characteristics of the 
potential (existence of smooth densities, transition probabilities, etc.) was as 
essential as that of sufficient independence of its values for distant x. Let us 
illustrate this point by a fact following from the results of Kotani [28]: namely, 
if in the one-dimensional discrete Schrödinger operator the potential q(x), x G Z, 
is a stationary Gaussian sequence, which is therefore very smooth in the present 
sense, with the spectral density f(k), k G [0, 2TT) (the Fourier transform of the 
correlation function b(x) = E{q(x)q(0)}), satisfying the condition 

r2n 
/~1(fc)dfc< oo, 

/ 
Jo then the spectrum of this MTO is pure point and the eigenfunctions decrease 

exponentially. But this condition admits of very slow decrease of the correlation 
function (e.g., one can find b(x) = const • | z | _ 1 ( l + o(l)), \x\ —• oo) and thus 
also very strong correlation between the potential values at distant points. 

This is why, for example, the structure was unknown of the spectrum of 
the simple-looking operator of the one-dimensional Anderson model with the 
Bernoulli potential q(x): q(x) = 0, go with probabilities pi and p2 , pi +P2 = 1 
independently for different x. Recently, Carmona et al. [7], proceeding from the 
ideas of Fröhlich et al. [16] and the supersymmetric technique of combinatorie 
estimations, proved that the spectrum of this operator is pure point and N(X) 
has a singularly continuous component, at least at sufficiently large go-

These results, as well as many others obtained in recent years, lead to the 
conclusion that the spectral theory of one-dimensional random MTOs of the 
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second order is at present a fairly well developed theory, which on one hand 
is in many cases comparable in completeness with the spectral theory of one-
dimensional periodic operators and, on the other hand, provides many interesting 
and challenging unresolved problems. 

As regards the spectral theory of multidimensional random MTOs, though 
it has made only its first steps, they represent substantial progress. These are 
the above-mentioned works by Fröhlich and Spencer proving the pure point 
character of the spectrum and the exponential decrease in eigenfunctions in the 
multidimensional Anderson model, whose potential has a distribution function 
with smooth density in the case of a sufficiently high potential amplitude or the 
spectral parameter sufficiently close to the spectrum edge (fluctuation region of 
the spectrum). These authors developed a new, very powerful technique, com
bining ideas of KAM theory and of the renormalization group method borrowed 
from quantum field theory and statistical physics. 

There are, however, very many unresolved problems in spectral analysis of 
multidimensional random MTOs, since the structure of the spectrum of these 
operators is substantially richer and more diversified than in the one-dimensional 
case. In particular, it is generally accepted in physical literature, according to 
the Anderson hypothesis, that for the Schrödinger operator with d > 3 and 
the potential amplitude not too high, the spectrum, well away from fluctuation 
boundaries, is absolutely continuous. The problem of substantiating this hypoth
esis, the proof of absolute continuity of the spectrum of the Schrödinger operator 
for d > 3 and sufficiently large spectral parameter in particular, now seems to 
be one of the most important in the spectral analysis of random operators. Ex
tremely interesting and poorly studied is the vicinity of the point separating a 
point spectrum from an absolutely continuous spectrum, which must be similar 
in many ways to the point of a phase transition (presumably of the second or
der). This point has not even been rigorously proved to exist at all, that is, it has 
not yet been proved that a point and absolutely continuous components cannot 
coexist in the same region of the spectrum of the random Schrödinger operator 
in £ 2 (R d ) or l2(Zd) (one can construct examples of almost-periodic operators, 
quite similar to the Schrödinger operator, for which such coexistence is the case 
(see below)). There is practically nothing known of the structure of generalized 
eigenfunctions in the vicinity of the point, which must have little in common 
with Bloch functions of a periodic operator and may have possibly some kind 
of "fractal" form. It has not been proved either that the spectrum of random 
operators, with p. l , has no singular component. 

- " O f mïïc^interestaTêpf oBIems^f ihê'spëctràl aîmlysis^oftwo-dimênsional ran
dom and almost-periodic operators having various physical applications (weak 
localization effects, quantum coherent effects, in particular the integer Hall ef
fect). Here, as in the one-dimensional case, the spectrum seems to be pure point, 
though more complicated in structure. A new and highly interesting set of prob
lems is encountered in studying the two-dimensional Schrödinger operator with 
a magnetic field (uniform and random), where subtle effects may arise associated 
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with infinitely multiple eigenvalues (Landau levels), including appearance of an 
absolutely continuous component in the vicinity of these levels, etc. 

V. Almost-periodic operators. Random and periodic MTOs are, in some 
sense, extreme cases of the class of possible spectral types of MTOs (recall that 
in the one-dimensional case, periodic operators have always the absolutely con
tinuous type, while random ones have, as a rule, the pure point type).4 Various 
intermediate types of spectral behavior are demonstrated by almost-periodic 
MTOs. Such operators model the so-called incommensurable structures and a 
variety of other physical systems. In addition, the study of this class of MTO 
proved rather useful for the spectral theory of MTOs as a whole. 

The main effect revealed here is, in my opinion, the essentially nonalgebraic 
nature of the spectral theory, in contrast to the periodic case, where commuta-
tivity of the operator with translation operators is enough to provide the basic 
facts of the spectral picture. This effect, and also some others, was discovered 
in the case of the equation 

—iß(x + 1) — ij)(x — 1) + 20cos(27Tcm + u))ip(x) = Xtp(x), x G Z, 

known as almost-Mathieu. 
An important observation was made by Aubry and André [1] who proposed 

elegant, though not quite rigorous, arguments showing that for the Lyapunov 
exponent of the almost-Mathieu equation, with an irrational a, the inequality 

7(A)>ln|<7| 

is true. The arguments of Aubry and André were made rigorous in papers by 
Avron and Simon [2], and Pastur and Figotin [12, 13]. Hermann [23] gave an 
alternative proof of this and a variety of related inequalities. Thus, in virtue 
of what was stated in the preceding section, the spectrum of the corresponding 
operator HAM for |p| > 1 has no absolutely continuous component a&c (a being 
rational, the spectrum of this operator is absolutely continuous for any g). Then, 
Bellissard et al. [3], generalizing the technique of Dinaburg and Sinai [10] and 
Belokolos [4], showed that a&c ^ 0 for small \g\, while for large \g\, HAM has a 
fairly massive point spectrum.5 These results were obtained under the conditions 

|a - P/Q\ > const • q~2~e, e > 0, p, q G Z. 

If, on the contrary, this condition is not true, in particular if for a certain sequence 
of rational numbers pn/qn 

\<* - Pn/Qn\ < const • n~Qn 

4Though, at present, examples are known of one-dimensional random second-order oper
ators, which in one region of parameters entering into a corresponding equation have a pure 
point dense spectrum and exponentially decreasing eigenfunctions and in another domain their 
spectrum is pure absolutely continuous (see, e.g., Bratus' et al. [6]). 

5Sinai has recently shown that for large \g\ this operator (and even more general ones, when 
q(x) = Q(2irax + UJ) where Q(t) is the 27r-periodic C2-function which has one nondegenerate 
maximum and one nondegenerate minimum) has a pure point spectrum and exponentially 
decreasing eigenfunctions. 
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then, as was shown by Avron and Simon [2], on the basis of results of Pastur 
[41] and Gordon [20], the spectrum of HAM for \g\ > 1 is singularly continuous. 

Thus, we see that the rather simple-looking almost-Mathieu equation demon
strates practically all possible types of spectral behavior, depending not only on 
the arithmetic properties of the frequency a, but also on the amplitude g of the 
potential. 

Note that by Hermann's method [23] the analogue of the Aubry-André in
equality 7(A) > ln \g\ may be proved for a broad class of quasiperiodic potentials. 
Namely, let 

q(x,uj) = V^ &^exp(27ri(aa;-|-cj) • £), x G Z,u G Tl, 

where Q is a finite set on the lattice Zl, I > 1, and a = (ai,...,OLI) are ra
tionally independent numbers. Then 7(A) > ln|ft^*| where £* = max£€Q |£j|, 
j = 1 , . . . , /. A simple example of a potential of this form is 

1 

q(x,u) = 0PJ2COS 2ir(oijX + u)j),6 

1 

where 7(A) > ln|gf| again. A similar lower bound may be obtained for the 
potential 

q(x,ui) = 2gcos 2ir[ax2 + (2wi — a)x + u<2], x G Z,u G T 2 , 

which for irrational a is not a quasiperiodic function on Z (the corresponding 
shift is the so-called complex skew shift on a torus, not its irrational winding). 

In the remaining part of the report we shall discuss results of the spectral 
analysis of two classes of almost-periodic operators for which a fairly detailed 
picture of the spectrum can be given. 

Let us consider an increasing sequence of numbers A = {an,n > 1} such that 
an+i/an G N\{1} and let 

I a " i n i l 

and the sequence {_r, r € R} be such that 

lim e00"*1 Y k r | 2 = 0 , V C > 0 . 
n—»oo ^—' 

rGÄ\Än+i 
Then the generalized Fourier series 

q(x) = ^2qre
2i™, x'eR, 

rek 

defines the limit periodic function which is superexponentially rapidly approxi

mated by periodic functions in the Stepanov metric 

lim eCa"+1|l<Z-<7n||s*=0, V O 0, 

6But not 2g J2[ cos2ir(o>jX + u)3) 
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where 
qn(x) = Y, e2irXQr, 

reün 

Hffll!« = sup / \q{t)\2dt. 
xez Jx 

Denote the family of such functions by Qoo(A). Also, denote by Koo(A) the 
family of complex-valued sequences {«v,r £ £} 3 i-e., functions on R such that 

Imi eCa^ J2 r2 |w r |
2 = 0, VC > 0. 

rGÄ\Ä„ 

Then the following facts hold [45]: 
(i) Every potential q G Qoo(A) defines the unique element K G Koo(A) and 

vice versa, so that Koo(A) is the family of complete sets of independent spectral 
data for potentials from Qœ(A). 

(ii) The closed set cr C R is the spectrum of an operator —d2/dx2-\-q, Qoo(A) 
if and only if a = {A: A > Ao,Im 0(\/X — Ao) = 0}, where the function 0(z) 
conformally maps the upper half-plane C + onto n + (A) = C \ U r e# [r?r + ^ M |] 
under the conditions 

0(0) = 0, lim (iy)6(iy) = TT, A0 = M 
2/îoo 

(iii) 
TT"1 Re 0(y/X - Ao) = N(X), Im 0(y/\^) = 7(A), 

where N(X) and 7(A) are the IDS and the Lyapunov exponent of the present 
MTO. 

(iv) The spectrum of the Schrödinger operator with a potential from QOQ (A) is 
absolutely continuous, has multiplicity two and is nowhere dense, if the support 
of Kr is dense in R. 

We see that this class of MTOs is maximally close to periodic operators. 
The only difference is a nowhere dense (Cantor) spectrum though of an always 
positive Lebesgue measure. 

The other class of almost-periodic operators we shall consider has spectral 
properties quite similar to random operators. These are the finite-difference 
operators in l2(Zd), d > 1, of the form 

(Adip)(x) = YÌ, wx-y^(y) + 0tan otx • i/)(x), x G Zd, 
yez* 

where 

w*x=w-x, \wx\<Ce-f>W, C,p>0, 

ax — ira • x + u, a G Rrf, o;G[0,7r), 

U) ^ 7r /2 — 7TO! • x. 

For this family of operators, discovered by Fishman et al. [14], the following 
statements are valid (see [13]; similar results may be found in [47]). 



1308 L. A. PASTUR 

(i) The IDS of the operators Ad is absolutely continuous and its density p(X) 
is 

dk PW = f 
Td(rô(fc)-A)2 + </2 

where w(k) is the Fourier transform of the sequence wx, and Td is a d-dimensional 
torus. 

(ii) If the vector of the frequencies a — (a±,..., ad) is badly approximated by 
rationals, so that 

\ot • x — m\ > const|z|_/3, ß > 0, \x\ ^ 0, m G Z, 

then the spectrum Ad is pure point, consists of solutions A ,̂ x G Zd, of the 
equation 

N(X) = - + -+a-x, 

and by virtue of the monotonicity of N(X) is dense in R. There is a unique eigen-
function, exponentially decreasing as |z| —> oo, corresponding to every eigenvalue 
As, x G Z. 

(iii) For d = 1 and any irrational a, the spectrum of A\ has no absolutely 
continuous component. 

(iv) For d = 1 and irrational a such that 

\<x - Pn/Qn\ < const • exp(-g~ 1 _ e ) , e > 0, 

where Pr_/<7n is a certain sequence of rational numbers, the spectrum A\ is sin
gularly continuous. 

(v) Statement (ii) remains valid for the operator 

Ad = Ad + eB, 

where 
(Biß)(x) = B(exp(2iria • x + 2iu)), 

e <C 1, and B(z), z G C, is a function analytic in the vicinity of the unit circle 
and mapping it onto the real axis. 

Let us consider now in C2 (Rd) the operator of the form 

—A + 2^ ^an(7rQ! ' x + w)^rn 
nEZd 

where Pn is an operator of orthogonal projection on the function u(x+n), x G Rd , 
and assume that the support of the Fourier transform u(k) of this function is the 

"bair|k\2^<rRr< T/2Tlt may beTHownThaTthe spectrumljnHis operator consists^ 
of a point ap and an absolutely continuous o-ac components, where av = R and 
<rac = [iZ,oo). Thus, we have an example of an MTO for which a point and 
an absolutely continuous component coexist in the same region of the spectrum. 
Note also that the inclusion (T&C D [R, oo) is valid in the general case too, where 
tan(7TOf • n + LJ) is replaced by an arbitrary m.tr. field on Zd. 

In conclusion, I would like to note the following. 
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1. The variety of applications of the spectral theory of MTOs suggests the im
portance and desirability of studies not only of traditional problems of spectral 
theory, but of many other ones. I have in mind first of all a sufficiently construc
tive analysis of various quantities, constructed of eigenfunctions and eigenvalues 
of MTOs, N(X) being a very simple, yet very representative, example. Such 
quantities, not always with a direct spectral meaning, arise from consideration 
of problems in solid-state physics, optics, radiophysics, and mechanics of disor
dered media. These have as a rule quite a complicated structure, and thus this 
is a case primarily for an asymptotic or approximate study. A very important 
example of such a quantity is seen in the tensor of conductivity of the ideal Fermi 
gas in a random field, at zero temperature: 

o-aß(X, V) = E\1 ^ -Q-^e{^ ï/i A + v)—e(y, x, X) dy\ , 

where e(x,y, X) is the kernel of the operator d£/dX and <?(A) the resolution of 
the identity of the Schrödinger operator with a random potential, u the a.e. 
electric field frequency, and A the Fermi energy. It is very important to know 
the asymptotic behavior of craß(X,u) for v j 0 (the low frequency asymptotic) 
in various regions of A and for various types of random potentials. Physicists 
have developed a variety of approximate methods to find such asymptotics (see, 
e.g., Gredeskul et al. [21]); still, rigorous asymptotic results and even rigorous 
estimations are here very few (see, e.g., [13], where it is shown that for the 
quasiperiodic operator Ad, craa(X,v) < Ci(X)exp{-C2(X)i/~1/P}). 

2. There is also a different trend in the study of spectral properties of ran
dom symmetric matrices, initiated by Wigner {49], in connection with certain 
problems of nuclear physics (and also partly some problems of mathematical 
statistics). Here, as in many other problems of the spectral theoiy of random 
operators, we start with random symmetric matrices of other n, but such that 
all their entries are of the same order of magnitude (e.g., are identically dis
tributed) and are independent. Therefore, the limiting operator for n —> oo does 
not exist here; but, there exists a limit IDS, i.e. a limit of the normalized distri
bution functions of eigenvalues. Such random matrices may be referred to as the 
matrix analogue of the scheme of series known in probability theory, whereas a 
MTO is the matrix analogue of an infinite sequence of independent, identically 
distributed random variables. An important feature of these studies is that they 
give, under very mild conditions, closed functional equations for the IDS, which 
provide an adequate description of the limit eigenvalue distribution, and even 
yield it explicitly in some cases [35]. In particular, for random matrices whose 
elements satisfy the Lindeberg condition, the corresponding IDS represents the 
so-called semicircle law [39]. A very general and detailed study of this subject 
has been carried out by Girko [18], and an interesting problem which has not 
yet received adequate attention is the statistics of spacings between eigenvalues. 
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1. Introduction. We shall discuss some recent results and open problems 
for a class of Schrödinger operators with random or quasiperiodic potentials v. 
For technical reasons, the Schrödinger operator H = —e2 A + v will frequently 
be considered on the lattice Zd as well as on the continuum Rrf. H is defined 
as a selfadjoint operator on the Hilbert spaces l2(Zd) and L2(Rd), respectively. 
The lattice Laplacian, defined by 

(A/)(j)= E [/«-/WI, ijezd, 
i\\i-j\ = l 

is a bounded operator whose spectrum is the interval [0,4d], and e is a constant 
that will be specified later. At low energy, the spectral properties of H on the 
lattice and in the continuum are expected to be similar. 

As we shall see below, our motivation for studying random and quasiperiodic 
potentials comes from both physics and dynamical systems. We shall primarily 
focus on the behavior of solutions to the equation Hiß = Eip. The analysis 
of this equation for the class of potentials considered below generally involves 
overcoming small divisor problems. Roughly speaking, this is achieved by a 
multiscale analysis related to KAM (Kolmogorov, Arnold, Moser) methods and 
to renormalization group techniques. 

Four classes of potentials that correspond to different physical situations will 
be considered. 

(1) Periodic potentials. Here the hamiltonian describes, for example, the 
motion of electrons in a perfect crystal. 

(2) Random potentials on Zd. We assume that v(j) are independent random 
variables^ with a=common=bounded=distribution=density=0 (v) du^For-example^if-gu 
is uniformly distributed over the interval [—w, w], then H is called the Anderson 
tight binding hamiltonian. Anderson introduced and analyzed this operator to 
study electrons in a random medium such as a crystal with impurities [1]. 

(3) Quasiperiodic potentials on Z1 or R1 . We restrict ourselves to the case 
where there is just one incommensurate frequency a present and the potential 
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has the form: 

(a) v(x) = cos(z) + cos(ax + 6), x, 9 G R, 

(b) v(j) = cos2ir(aj + 6), j E Z. 

The number a is assumed to be poorly approximated by rationals. More pre
cisely, we assume 

|sinrara:| > Co/n2 . (1) 

The set of irrationals satisfying (1), for some C, has measure one. Although 
we shall state our results for the cosine, this function can be replaced by any 
smooth, even, periodic function with precisely two nondegenerate critical points. 

Quasiperiodic potentials naturally arise if one linearizes about a quasiperi
odic orbit. See (4) below. They also arise in the study of a quantum electron 
moving in a perfect crystal subjected to a periodic potential whose period is 
incommensurate with that of the lattice. 

(4) Nonlinear systems. Let us consider, for example, the discrete time pendu
lum or standard map defined by the recursion relation 

e2(Ax)j = e2(xj+\ + Xj-i — 2XJ) = sinxj. (2) 

This naturally defines an area-preserving transformation of the torus to itself. 
Note that Xj depends on the initial data (zo,£i), hence so does the potential 
defined by v(j) = COS(:EJ), j G Z . If we wish to determine the sensitivity of the 
orbit Xj on XQ, we differentiate (2) with respect to xo and obtain the equation 

Hip = 0 where ij)(j) = dxj/dxo. 

In this case, we see that the Schrödinger equation arises from linearizing about 
a nonlinear orbit. Most of our comments on (2) will be conjectural. 

We shall also present some recent results on an infinite chain of nonlinearly 
coupled oscillators whose hamiltonian has the form 

Çp? + wi<*i + £f& - tt+i)' (3) 
i 

where the Wi are assumed to be independent random variables and / is an 
analytic function which satisfies f(q) = 0(q4) for small q. 

2. Results and conjectures. (1) When v is periodic and e > 0, it is well 
known that the spectrum of H is purely absolutely continuous. Moreover, all 
generalized eigenfunctions (i.e., polynomially bounded solutions to Hip = Eip) 
are Bloch waves 

ip(x) = p(x) exp(ikx) 

where p is a periodic function having the same period as v. 
(2) If v(j) are independent random variables, it is known that, with proba

bility one, the spectrum of H = [0, Ade2] -f supp g where supp g is the support 
of g. Note that if e = 0, the spectrum of H is pure point with eigenvalues v(j) 
and eigenfunctions which are Kronecker 6 functions. Goldsheid, Molehanov, 
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and Pastur [2] were the first to prove that a similar picture holds for all e in 
one dimension. (Actually their results were for the continuum.) More precisely, 
they proved that, with probability one, the spectrum of H is pure point with 
eigenfunctions which decay exponentially fast. Physicists call this localization 
since the eigenfunctions are exponentially localized in space. Physically, local
ization implies that under time evolution the electron's wave function does not 
spread. Thus there is no conductivity or diffusion in the system. These results 
on localization in one dimension have been extended to potentials with singular 
distributions such as Vj = ±1 [3] and potentials which are "nondeterministic," 
i.e., the independence assumption has been weakened [4]. 

When d > 2 it is known that there is always an interval near the edge of the 
spectrum consisting only of point spectrum. Furthermore, if e is small we have 
only point spectrum. These results were obtained independently by a number 
of authors: Simon and Wolff [5]; Delyon, Levy, and Souillard [6]; Fröhlich, 
Martinelli, Scippola, and Spencer [7]. When d = 2, all states are believed to be 
localized for all e, but there are no rigorous results of this kind. When d > 3 there 
should be a band of absolutely continuous spectrum [J5m,l£jJ corresponding to 
"extended" states provided e is large. However, the only results of this kind are 
known when the lattice Zd is replaced by the Bethe lattice [8]. Em and E'm are 
called mobility edges, since electrons should be mobile in this energy range and 
conduction should occur. 

The basic estimate needed to establish the above results on localization is 
the exponential decay of the Green's function or, equivalently, when d = 1, the 
positivity of the Liapunov exponent. Let E be fixed. In one dimension we say 
that the Liapunov exponent i(E) is positive if, with probability one, 

{H-E)1>V) = 0 

only has solutions which grow at an exponential rate i(E) as j goes to + or — 
infinity. Equivalently, the Green's function satisfies 

\G(E,0J)\ = | (£ - f f ) _ 1 (0 , j ) | < a e x p - 7 ( £ ) | j | (4) 

where Cv is a v dependent constant which is finite with probability one. In 
one dimension, the positivity of 7 is due to Furstenberg [9]. Recently Kotani 
showed that q(E) > 0 for almost all E for a wide class of potentials which are 
"nondeterministic" [10]. 

For d > 2, the decay of G when either e is small or E is near the edge of the 
spectrum is due to Fröhlich and Spencer [11]. 

—J3ie=point of=(4-)4s=that4tJiolds even- when-£Lbelongs=to=the-speGtrum-otÄ. 
With probability one, E is not an eigenvalue but there are eigenvalues Ei which 
get arbitrarily near E making the operator norm of G(E) infinite. We refer to 
[12, 13] for mathematical reviews. 

(3) Quasiperiodic case. Some time ago, Dinaburg and Sinai [14] proved that 
in the continuum there are always high energy Bloch type eigenfunctions 

ip(x) = q(x) exp(—ik(E)x) 
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via KAM methods. Here q is a quasiperiodic function of x. On the lattice, in the 
special case v(j) = cos(aj + 0), Aubry [15] and Herman [16] have very elegant 
proofs of the positivity of l(E) for all E when e2 < ^, and Bellissard et al. 
[17] showed that for small e there are exponentially localized eigenstates. The 
following results are due to Fröhlich, Wittwer, and Spencer [18], and they hold 
for a set of 6 of measure 1. 

For case (3a) there are an infinite set of low energy eigenstates which decay 
exponentially fast provided e is small. 

For case (3b), if e is small there are only localized states. In other words, 
exponentially decaying eigenstates form a basis. Furthermore, these eigenstates 
have 2n peaks where n = 0,1,2,..., which are self-similar under reflection. For 
example, if -0 is a wave function with two peaks at 0 and I, then there is a 
constant C such that |y| < 1/3, 

Cm = W-J) + 0(exp-l). (5) 

If the wave function ip has four peaks at 0 < fa < 1% — V < fa, then /' = I and 
fa > exp eli. Moreover, 

|i>(0) - v(fa)\ < exp -const, fa, 

which by (1) and the evenness of cosine implies 

\v(j)-v(fa-j)\<exp-cfa. (6) 

This relation implies (5) with / replaced by fa. 
REMARKS. Sinai has also established similar results for case (b). 
We believe that the methods for the lattice can be extended to prove that for 

the continuum (case (a)): 
(i) If e is large, there are only Bloch type eigenstates. 
(ii) If e is small, there are only localized states at low energy. These states 

exhibit a self-similar structure as described for case (b). 
(4) An outstanding problem for the standard map is to prove that the Lia

punov exponent 7 = ^(E = 0) > 0; i.e., ip(j) = dxj/dxo grows exponentially 
fast in j , for a set of (xo,xi) of positive measure. Equivalently, the Green's 
function H~x(0,j) decays exponentially fast. This means that there is sensi
tive dependence on initial data, and the theory of Pesin assures us that there is 
an ergodic component of positive measure on which the orbit moves "stochasti
cally." Unfortunately, the only results of this kind are known for certain piece-
wise smooth nonlinearities, as in the case where the sine in (2) is replaced by 
a sawtooth function. We also expect that the spectrum of H consists of dense 
point spectrum—(localized states) for almost all (EO,£I) provided e belongs to 
a Cantor set of positive measure and \e\ « 1. Hence for e in the Cantor set, 
we expect vij) = cos (ay) to behave as in the random case. We remark that the 
Green's function G also has small divisors E^1, since E = 0 is presumably in 
the spectrum of H. This reflects the nonuniform hyperbolicity of the dynamical 
system (2). However, these small divisors are of an entirely different kind from 
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those encountered in conventional KAM situations where one is searching for 
integrable or quasiperiodic motions. 

Next we briefly describe some results for the infinite chain of oscillators (3) 
done in collaboration with Fröhlich, Wayne [19]. We show that if e is small, 
there are infinite-dimensional, invariant tori of spacially localized, time almost 
periodic solutions to the equations of motion with high probability. In particular, 
for some fixed i, \p2(t) + q2(t)\ > Const. > 0 and the local energy does not go to 
zero. If the Uj are all equal, then typically there are theorems which show that 
the local energy goes to zero since the wave packet can spread. The existence of 
these localized waves follows by using a variant of KAM methods. Much work 
remains to be done in understanding how general solutions to the equations of 
motion behave. Also, our methods cannot yet handle nonlinearities of the form 
f(q) = 0(q2) for small q unless f(q) = q2, in which case the problem is linear 
and equivalent to a random Schrödinger equation. See [20] for related results. 

3. Remarks on the proofs. The estimates for the Green's function (4) 
and the eigenfunctions are obtained by a multiscale perturbation scheme. In the 
case where vij) is random, our approach might be described as a probabilistic 
Newton scheme. The Oth step of this scheme is obtained by expanding G in a 
formal series in e. 

oo 

G{E) = ^2 e2n[(£ - v^A^iE - v)'1. (7) 
ra=0 

The small divisors occur at sites j where \v(j) — E\ is small. Since this difference 
can become arbitrarily small, one cannot expect (7) to converge even for small 
e. The position of the small divisors at the Oth scale is defined by 

S0(E,v) = {j:\v(j)-E\<60}. 

Now let G\ denote the Green's function for H(h), i.e., H restricted to a box 
A C Zd with Dirichlet boundary conditions on dk. If A fl Sb = 0, then (7) 
converges if 8Q is not too small, and in fact 

\GA(E;i,j)\<CrtJl 

where ro = O(e2/6o). When vij) are independent random variables it is easy to 
see that A fl So = 0 with probability at least 1 — O(50)|A|. 

In [11], sets Sm were introduced to describe small divisors at the rath scale. 
The Sm are defined by induction and satisfy So D Si D S2 • • •• These sets are 
defined in terms of a sequence of length scales k which grow very rapidly, and 
in terms of energy widths 6i = <$oexp— \/k. A crude approximate definition of 
Sm+1 is given as follows. Let p G Sm(E) and let km(p) be a cube centered at 
p of side Zm+i. Then p G Sm+i(E) if, for some eigenvalue, Em of H(Am(p)) 
satisfies \Em — E\ < 6m+i. The difference Em — E is the small divisor at scale 
m. As m increases, the Sm typically describe increasingly rare events. 

Now the estimate (4) on the Green's function can be shown to follow from 
the following two theorems. 
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THEOREM 3.1. If An Sm(E) = 0, then 

\Gk(E'\i,j)\ < r^-iï where r = 0(e), 

provided that \i - j \ > lU* and \Ef - E\ < Sm/2. 

This theorem is more precisely stated and proved in [11, 12] by induction on 
m. The main idea is that the exponential decay r^~3^, obtained in the previous 
induction step when Sm_i D A = 0 , dominates the divergence arising from the 
small divisor 6~x = exp \fï^ provided \i - j \ > I J, . 

For the case where v(j) are independent random variables, we have the fol
lowing result for fixed E. 

THEOREM 3.2. For e sufficiently small or E near the edge of the spectrum, 

Sm(E) n Am = 0 for all m > m(v) 

where m(v) is finite with probability one and Am is a cube centered at 0 of width 

If we allow E to vary for fixed v, Sm(E) will not be empty, and, in fact, points 
in Sm represent possible peaks of the eigenfunctions whose eigenvalues are 6m 

near E. In the quasiperiodic case, we prove that Sm(E,6) has a very special 
structure: if a, 6 G Sm and \a — b\ < lm, then 

\v(a) - v(b')\ < exp-y/\a-b\ (8) 

for some V G Sm where \b' - b\ < \a — b\/3. Thus the small divisors can be 
identified just by looking at the potential. Notice that (1) and (8) imply that 
the potential near a and b' are nearly mirror images of each other. See (6). This 
is responsible for the self-similarity of the eigenfunctions (5) mentioned earlier. 
In the quasiperiodic case, our probability space is the circle and is parametrized 
by a single variable 0. Note that the 0 which satisfy (8) is of very small measure 
when a and b are far apart. Hence, separated peaks of an eigenfunction are very 
unlikely. See [18] for details. 
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1. Introduction. Most massive computational tasks facing us today have 
one feature in common: They are mainly governed by local relations in some 
low (e.g., 2 or 3) dimensional space or grid. Such are all differential problems, 
including flows, electromagnetism, magnetohydrodynamics, quantum mechan
ics, structural mechanics, tectonics, tribology, general relativity, etc., as well 
as statistical or partly differential, partly statistical problems (e.g., in statis
tical mechanics, field theory, turbulence), and many nondifferential problems 
like those in geodesy, multivariate interpolation, image reconstruction, pattern 
recognition, many design, optimization, and mathematical programming prob
lems (e.g., traveling salesman, VLSI design, linear programming transportation), 
network problems, and so on. This common feature can be exploited very ef
fectively by multilevel (multigrid) solvers, which combine local processing on 
different scales with various interscale interactions. Even when the governing 
relations are not strictly local (e.g., integral and integro-differential equations, 
E-ray crystallography, tomography, econometrics), any problem with a multitude 
of unknowns is likely to have some internal structure which can be used by mul
tilevel solvers. In many cases, the computational cost of such solvers has been 
shown to be essentially as low as the cost can ever be; that is, the amount of 
processing is not much larger than the amount of real physical information. 

This article is a brief survey of this field of study, emphasizing important 
recent developments and their implications. No attempt is made to scan the 
fast-growing multigrid literature. (A list of more than 600 papers will appear in 
[24]; see also the multigrid books [21, 25, 7, 28, 20, 26, 22].) A more detailed 
account will be given in [8]. 

Multigrid methods were first developed (see historical note, §16) as fast solvers 
for discretized linear elliptic PDEs (see §§3, 4, 5), then extended to nonelliptic 
(§6), nonlinear (§7) and time-dependent (§10) problems, and to more general 
algebraic systems (§§2, 11). The multigrid apparatus has also been used to 
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obtain improved discretization schemes (§8), and is especially effective in treat
ing compound problems and sequences of many similar problems (§9). Recently, 
mainly in response to current computational bottlenecks in theoretical physics, 
new types of multilevel methods have been developed for solving large lattice 
equations (e.g., Dirac equations in gauge fields (§11)); for calculating determi
nants (§12) and accelerating Monte-Carlo iterations (§14); and for discrete-state 
and highly nonquadratic minimization (§13), the latter being applicable to spin 
systems and also to image reconstruction, crystallography, and combinatorial 
minimization. Multilevel linear programming is reported in §15. 

2. Slow components in matrix iterations. Consider the real linear sys
tem of equations 

Ax = b, (2.1) 

where A is a general n x m real matrix. For any approximate solution vector 
x, denote the error vector by e = x — x, and the vector of residuals by r = 
Ae = b — Ax. Given x, it is usually easy to calculate r—especially when A is a 
sparse matrix, e.g., when A is based on local relations. One can then easily use 
these residuals to correct x, for instance, by taking one residual r« at a time, and 
replacing x by x + (rifaiaf)af, where a4- is the ith row of A (thus projecting x 
onto the hyperplane of solutions to the ith equation). Doing this for i = 1,.. . , n 
is called a Kaczmarz relaxation sweep. It can be shown (Theorem 3.4 in [9]) that 
the convergence to a solution x (if one exists), of a sequence of such (or other) 
relaxation sweeps, should slow down only when 

\f\ < |e|, (2.2) 

where F is the normalized residual vector (fi = aie/\ai\) and | • | is the Euclidean 
(fa) norm. Prom the normalization of f it is clear that, for most error vectors, 
\f\ is comparable to \e\; (2.2) can clearly hold only for special error vectors, 
dominated by special components (eigenvectors with small eigenvalues), whose 
number is small. Thus, when relaxation slows down, the error can be approxi
mated by vectors in some much-lower dimensional space, called the space of slow 
components. 

The concrete characterization of slowness depends on the nature of the prob
lem, and is sometimes far from trivial (see, e.g., the "multiple representations" 
in §8). In many cases of interest, however, we will now see that slowness simply 
means smoothness (see §11 for a generalization). 

3. Discretized differential equations. In case the system (2.1) represents 
a discretization of a stationary partial differential equation Lu = F on some grid 
with meshsize h, we customarily rewrite it in the form 

Lhuh=Fh, (3.1) 

where uh is a grid function. Barring cases of alignment (see §6), such a system 
is numerically stable if and only if Lh has a good measure of ellipticity on scale 
h, inherited either from a similar ft-ellipticity measure of L, or (e.g., in case L 
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is nonelliptic) from artificial ellipticity introduced either by "upstream" differ
encing or through explicit "artificial viscosity" terms. (Ellipticity measures on 
uniform grids, and their scale dependence, are discussed in [7, §2.1].) 

For any /i-elliptic operator Lh, relation (2.2) holds if and only if the error 
is smooth on the scale of the grid; i.e., iff its differences over neighboring grid 
points are small compared with itself. (This in fact is exactly the meaning of 
ft-ellipticity.) The space of slow components can therefore be defined as the space 
of grid-ft functions of the form IffVH, where vH are functions on a coarser grid, 
with meshsize H > h, and Ife is an interpolation operator from grid H to grid 
h. 

The coarse grid should not be too coarse; H = 2h or so is about optimal: 
On one hand, it keeps H close enough to h, so that all errors which cannot be 
approximated on grid H are so highly oscillatory that their convergence by relax
ation on grid h must be very fast (convergence factor .25 per sweep, typically). 
On the other hand, H — 2ft already yields a small enough number of coarse 
grid points, so that the work associated with the coarse grid (in the algorithms 
described below) is already just a fraction of the relaxation work on the fine grid. 

Let uh be an approximation to the solution uh, obtained for example after 
several relaxation sweeps. To define a coarse-grid approximation vH to the 
smooth error vh = uh — uh, one approximates the "residual equation" 

±
r.haih _ „h _ jph _ T.h^h 

by the coarse-grid equation 

Lhvh = rh=Fh_Lhüh ( 3 > 2 ) 
def 

LHvH = I?rh, (3.3) 

where iff is a fine-to-coarse interpolation (local averaging in fact, sometimes 
called "weighting" or "restriction") and LH is a coarse grid approximation to Lh. 
One can either use the Galerkin-type approximation LH = I^LhI^, or derive 
LH directly from L by differencing (replacing derivatives by finite differences) 
on grid H, which is less automatic but often also far less expensive in computer 
time and storage. A generally sensible approach is to use compatible coarsening, 
i.e., the Galerkin approach when Lh itself has been constructed by Galerkin (or 
variational) discretization, and direct differencing in case Lh itself is so derived, 
using the same discretization order and "double discretization" (see §10) as used 
by Lh, etc. (see discussion in [7, §11]). 

A coarse grid correction is the replacement of uh by uh + I^vH. Using al
ternately a couple of relaxation sweeps and a coarse grid correction is called a 
two-grid cycle. 

4. Multigrid algorithms. There is no need of course to solve (3.3) exactly. 
Its approximate solution is most efficiently obtained by again alternately using 
relaxation sweeps (now on grid H) and corrections from a still coarser grid (2H). 
We thus construct a sequence of grids, each typically being twice as coarse as 
the former, with the coarsest grid containing so few equations that they can be 
solved (e.g., by Gaussian elimination) in negligible time. 
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A multigrid cycle for improving an approximate solution to (3.1) is recursively 
defined as follows: If h is the coarsest grid, solve (3.1) by whatever method. If 
not, denoting by H the next coarser grid, perform the following three steps: (A) 
vi relaxation sweeps on grid ft; (B) a coarse grid correction, in which (3.3) is 
approximately solved by starting with vH = 0 and improving it by 7 multigrid 
cycles; (C) 1/2 additional relaxation sweeps on grid ft. 

The full multigrid algorithm iV-FMG for solving (3.1), when ft is not the 
coarsest grid and H is the next coarser, is recursively defined as follows: (A) 
Solve LHuH = FH by a similar iV-FMG algorithm, where FH = Ij?Fh. (FH 

may also be derived directly from F.) (B) Start with the first approximation 
uh = IHUHI s^d improve it by N multigrid cycles. The solution interpolation 
IH has usually a higher order than the correction interpolation Ijj mentioned 
above. 

For almost any discretized stationary PDE problem, a 1-FMG algorithm, 
employing cycles with vi + v<i = 2 or 3 and 7 = 1 or 2, is enough for solving 
(3.1) to the level of truncation errors (i.e., to the point where the approximate 
solution uh satisfies \\uh — uh\\ < \\uh — u\\, in any desired norm)—provided 
proper relaxation and interpolation procedures are used (see §5). Only when 
Lh has a high approximation order p, larger N-FMG may be required, with N 
growing linearly in p. 

This means that the solution is obtained in just few L*1-work-units, where 
an L*1-work-unit is the number of computer operations involved in just express
ing Lh at all grid-points. The only solvers with an almost comparable (but on 
large grids still inferior) speed are the direct solvers based on the Fast Fourier 
Transform (FFT), but they are essentially limited to equations with constant co
efficients on rectangular domains and constant boundary operators. The FMG 
solver, by contrast, attains the same efficiency for general nonlinear, not nec
essarily elliptic, problems (see §§6, 7), for any boundary shape and boundary 
conditions, for compound problems (§9), for eigenproblems, and for problems 
including free surfaces, shocks, reentrant corners, discontinuous coefficients, and 
other singularities. 

Moreover, the multigrid solvers can fully exploit very high degrees of parallel 
and/or vector processing. In case Lh is the standard 5-point approximation to 
the Laplacian, for example, (3.1) has been solved on the CDC CYBER 205 at the 
rate of 5 million equations per second [3]. Also, for little extra computer work 
these solvers can incorporate local grid adaptation (§7) or provide a sequence of 
extrasolutionsJfco^a^saquence^oLsimilar^problems^gQ)^———-^-———-.———--. 

5. Performance prediction, optimization, and rigorous analysis. The 
multigrid algorithms have many parameters, including their relaxation schemes, 
orders of interpolations, their treatment of boundaries and of the interior equa
tions near boundaries, etc. To obtain their best performance, and to debug the 
programs, an analytical tool is needed which can predict, for example, the precise 
convergence factor per cycle. Such a tool is the following local mode analysis. 
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For equations with constant coefficients on infinite uniform grids, only a few 
(/, say) Fourier components of the error function uh — uh are coupled at a time by 
the processes of the two-grid cycle, and it is thus easy to calculate (usually by a 
small computer program) the two-grid convergence factor (the largest among the 
spectral radii of the corresponding I x / transfer matrices). For general equations 
in a general domain, the local two-grid convergence factor is defined as the worst 
(largest) two-grid convergence factor for any "freezing" of the equation at any 
given point (extending that equation to the infinite domain). 

For a general elliptic system of equations Lu — F with continuous coefficients, 
discretized on a uniform (or continuously changing) grid in a general domain, 
it has been proved [10, 8] that for small meshsizes (ft —• 0) the local two-
grid convergence factor is actually obtained globally, provided the algorithm is 
allowed to be modified near boundaries, by adding there local relaxation sweeps 
that cost negligible extra work. Numerical tests clearly show that this local 
relaxation is indeed sometimes necessary, e.g., near re-entrant corners and other 
singularities [2, §4]. The performance of multigrid cycles can also be precisely 
predicted, either by perturbations to the two-grid analysis or by more complex 
(e.g., three-level) Fourier analyses (coupling more components at a time). 

Moreover, it can also be proved that the two-grid convergence factor, A, can 
itself be anticipated by the "smoothing factor" of the relaxation process, fi, 
which can be calculated by a much simpler local mode analysis. Namely, X=fia 

can always be obtained, provided s, the number of fine-grid relaxation sweeps 
per cycle, is not large, and provided suitable intergrid transfers (high enough 
interpolation orders) are used. Furthermore, in case of a complicated system of 
q differential equations, i.e., when L is a q x q matrix of differential operators, a 
relaxation scheme can always be constructed for which 

jû = max(/ ïL l , . . . , / ïL f c) , 

where Li • • • L^ is a factorization, into first- and second-order scalar operators, 
of the ft-principal part (the principal part on scale ft) of the determinant of L, 
and fiL. is the smoothing factor obtainable for a relaxation of L^ (see [7, §3.7]). 
Thus, the entire multigrid efficiency can be anticipated from the smoothing fac
tors obtainable for simple scalar operators, and the practical task then is to 
construct the intergrid transfers so that A indeed approaches fia, and then to 
adjust the boundary processes until the convergence factor per multigrid cycle 
indeed approaches A. 

In case of uniformly elliptic problems, for example, the factors of det L are 
usually Laplacians, for which the smoothing factor fi — .25 is obtainable, using 
the (fully parallelizable and extremely cheap) Gauss-Seidel relaxation in red-
black ordering. Hence a multigrid cycle can be constructed with convergence 
factors .25 per fine-grid relaxation, or about .4 per work unit (taking coarse-grid 
overhead into account). 
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For highly discontinuous equations or discretizations, the theoretical treat
ment is far less precise, but practical approaches were developed [1], successful 
enough to yield fairly general black-box solvers [15]. 

Many situations are analyzed by nonlocal theories, developed over a vast lit
erature; see, e.g., [20] and references therein. The trouble with the nonlocal 
approach is that its estimates are not realistically quantitative: the convergence 
factor per cycle is indeed shown to be bounded away from 1 independently of ft, 
but its actual size is either not specified or is so close to 1 that it is useless for 
practical purposes (such as prediction and selecting, optimizing, and debugging 
the various processes), and no one believing it would use the algorithm. In fact, 
it led to several practical misconceptions [7, §14]. 

The theory in [9] gives rigorous realistic two-grid convergence estimates for 
very irregular cases, in fact for general symmetric algebraic systems without any 
grids or any other geometrical basis. This theory is nearly optimal for the crude 
(geometry-less) interpolations it considers. To extend it to the prediction of the 
multigrid rates obtainable with better (geometrically based) interpolations, it 
should be combined with some local analysis, not yet developed. 

6. Nonellipticity and slight ellipticity. For nonelliptic differential equa
tions (or equations with small ellipticity measures on scale ft, which for numerical 
purposes is the same), it is a mistake to try to obtain uniformly fast convergence 
per cycle. Much simpler and more efficient algorithms are obtained by allowing 
components with larger truncation errors (such as the "characteristic compo
nents") to converge slower, insisting only that the 1-FMG algorithm still solves 
the problem well below truncation errors. That this can be obtained is shown by 
modified types of local mode analysis (infinite-space FMG analysis supplemented 
by half-space FMG analysis; see [6]). 

Indeed, the usual FMG algorithm need only be modified in case of consistent 
alignment, i.e., in case the grid is consistently aligned with the characteristic 
directions. Such alignment is necessary when accuracy is desired in the "char
acteristic components," i.e., components which are smoother along than across 
characteristic lines. For obtaining that accuracy, Lh should be non-ft-elliptic, and 
the usual point-by-point relaxation will then smooth the error only in the char
acteristic directions (in which semi-ft-ellipticity is necessarily still maintained). 
One should therefore either modify relaxation, by simultaneously relaxing points 
along characteristic lines ("line relaxation"), or use "semicoarsening," i.e., a 
coarser grid whose meshsize is larger only in the characteristic directions. Semi-

~coariëmngpiometime 
in higher-dimensional situations where the alignment is not in lines but in planes. 

Expensive procedures of alternating-direction line or plane relaxation are not 
needed in natural coordinates, since only consistent alignment matters in solving 
to the level of truncation errors. Such expensive procedures mil however very 
often be needed if anisotropic coordinate transformations, and nonuniform grid-
line spacings in particular, are employed, thereby artificially creating excessively 
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strong, grid-aligned discrete couplings. It is therefore generally not recommended 
to use global grid (or coordinate) transformations, but instead to create local 
refinements and local grid curvings in the multigrid manner (see §7). 

For nonelliptic or slightly elliptic problems it is also recommended to use 
double discretization schemes (see §8), since some natural (e.g., only central) 
discretizations are good for smooth components but bad for non-smooth ones. 

7. FAS: Nonlinear equations, local grid adaptation, r extrapola
tion, small storage. In the Full Approximation Scheme (FAS) the coarse-grid 
unknown vH is replaced by the unknown 

uH = îf*uh + vH, 
def n 

where Iff is another fine-to-coarse interpolation (or averaging). In terms of uH, 
the coarse grid equation (3.3) becomes 

LHuH=FH + THt ( 7 > 1 ) 

where FH = lf?Fh and rj* = LHîfîuh - I^Lhüh. This equation evidently has 
the form of a "defect correction" (correcting LH by Lh, their difference being 
measured by uh)\ hence it makes full sense even in the case that L is nonlinear. 

Indeed, using FAS, nonlinear equations are solved as easily and fast as lin
ear ones. No linearization is required (except for some local linearization, in 
relaxation, into ft-principal terms, which in almost all cases means no lineariza
tion at all). The 1-FMG algorithm has solved, well below truncation errors, 
various flow problems, including compressible and incompressible Navier-Stokes 
and Euler equations, problems with shocks, constrained minimization problems 
(complementarity problems, with free surfaces), and many others. "Continua
tion" techniques, sometimes needed for reaching the solution "attraction basin," 
can be incorporated for little extra calculations (see §9). 

In FAS, averages of the full solution are represented on all coarser grids (hence 
the name of the scheme). This allows for various advanced techniques which use 
finer grids very sparingly. For example, the fine grid may cover only part of the 
domain: outside that part (7.1) will simply be used without the rff term. One 
can use progressively finer grids at increasingly more specialized subdomains, ef
fectively achieving a nonuniform discretization (needed near singularities) which 
still uses simple uniform grids, still has the very fast multigrid solver, and yet 
is very flexible. Grid adaptation can in fact in this way be incorporated into 
the FMG algorithm: On proceeding to finer levels the algorithm also defines 
their extent (see [5, 2]). Moreover, each of the local refinement grids may use 
its own local coordinate system, thus curving itself to fit boundaries, fronts, 
characteristic directions, or discontinuities (all whose locations are already ap
proximately known from the coarser levels), with the additional possibility of 
using anisotropic meshsizes (e.g., much finer across than along the front). Since 
this curving is only local, it can be accomplished by a trivial transformation, 
which does not add substantial complexity to the basic equations (in contrast to 
global transformations). 
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The fine-to-coarse correction rf* gives a rough estimate of the local discretiza
tion error. This can be used in grid adaptation criteria. It can also be used to 
h-extrapolate the equations, in order to obtain a higher-order discretization for 
little extra work. This extrapolation is more useful than the Richardson type, 
since it is local (extrapolating the equation, not the solution): it can, for example, 
be used together with any procedure of local refinements. 

In view of (7.1), the role of grid ft is really only to supply the defect correction 
Tfr to grid H. For that, only a local piece of the fine grid is needed at a time. 
Similarly, only a piece of grid H = 2ft is needed at a time, to supply r ^ , etc. 
This gives rise to algorithms that can do with very small computer storage (even 
without using external storage). 

8. Multigrid discretization techniques. The above local refinements, lo
cal coordinates, refinement criteria, local h extrapolations, and small-storage 
techniques were examples of using the multilevel apparatus to obtain better dis
cretizations, not just fast solvers. Other examples are: 

Double discretization schemes. The discrete operator Lh used in calculating 
the residuals (3.2), for the global process of coarse grid corrections, does not need 
to coincide with the one used in the local process of relaxation. The latter should 
have good local properties, such as stability (possibly obtained by adding artificial 
viscosity) and admittance of sharp discontinuities (through suitable "limiters"), 
while the first should excel in global attributes, such as high accuracy (obtained 
by omitting artificial viscosities and possibly using higher-order differencing) and 
conservation (through conservative differencing). Such schemes do not converge 
to zero residuals, of course, but can approximate the differential equations much 
better than either of their constituent discretizations alone, especially in cases 
of conflicting requirements (cf. §6). 

Multiple representation schemes. The coarse-grid solution representation does 
not need to coincide with that on the fine grid. For example, some nearly singu
lar smooth components (typical in slightly indefinite problems) should on some 
coarser grids be singled out and represented by one parameter each (see [14]). 
Or, more importantly, highly oscillatory components showing small normalized 
residuals (typical in standing wave problems, as in acoustics, electromagnetism, 
Schrödinger equations, etc.) should be represented on coarser grids by their 
slowly varying amplitudes. The coarser the grid the more such "rays" should 
be separately represented. Grids fine enough to resolve the natural wavelength 

~canrbe=used only^lacaflynieairlKraM 
break down. This hybrid of wave equations and geometric optics can treat prob
lems which neither of them can alone, in addition to supplying a fast solver for 
highly indefinite equations. 

Global conditions and nonlocal boundary conditions (radiation conditions, flow 
exit boundaries, etc.) are easily incorporated, by transferring their residuals from 
fine grids and imposing them only at suitably coarser levels. 
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Treating large domains by placing increasingly coarser grids to cover increas
ingly wider regions. 

Fast integrals. In case of integral equations discretized on n gridpoint, most of 
the 0(n2) operations involved in just performing the integrations can be spared 
by performing them mainly on coarser grids, using suitable FAS versions [7, 
§8.6]. When their kernels are sufficiently smooth, the integral equations can this 
way be solved, to the level of truncation errors, in 0(n) operations. With the 
usual singular kernels, 0(n log n) operations are required. 

Finally, multigrid convergence factors always detect bad discretizations, espe
cially when "compatible coarsening" is used (see §3). Several previously unno
ticed flaws in widely accepted discretization schemes were so discovered. Fur
thermore, brief 1-FMG algorithms tend to correct bad discretizations, by being 
very slow in admitting ill-posed components (components showing small residu
als compared with other components of comparable smoothness). For example, 
quasielliptic discretizations (resulting, e.g., from central differencing on nonstag-
gered grids of elliptic systems with first-order principal derivatives) are so solved 
with their highly oscillating bad components left out [13]. More generally, the 
FMG algorithm and the multilevel structure provide effective tools to deal with 
ill-posed problems, whether the ill-posedness is in the differential problem or only 
in its discretization: finer grids can be introduced (in the manner of §7) only 
where their scale does not admit ill-posed components; nonlinear controlling con
straints, either global, local, or at any intermediate scale, are easily incorporated; 
etc. 

9. Compound problems and problem sequences. A compound problem 
is one whose solution would normally involve solving several, or even many, 
systems of equations similar to each other. With multilevel techniques, the work 
of solving a compound problem can often be reduced to that of solving just one 
single system, or just a fraction more. 

Take for example continuation (embedding) processes, in which a problem 
parameter is gradually changed in order to drive the approximate solutions into 
the attraction basin of the desired solution to some target nonlinear problem. 
Flow problems, for instance, are easily solved for the case of large viscosity, 
which can then gradually be lowered to the desired level, with the equations 
being solved at each step taking the previous-step solution to serve as a first 
approximation. This process is almost automatically performed by the FMG 
algorithm (§4) itself, since it starts on coarse levels, where a large artificial 
viscosity is introduced by the discretization, and then gradually works its way to 
finer grids with proportionately smaller viscosity. The process, by the way, can 
then be continued to still lower viscosity by using still finer levels only locally (see 
§7), at regions where the size of viscosity matters (i.e., where the flow is driven by 
viscosity), and eliminating viscosity elsewhere (e.g., by double discretization— 
see §8). 
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One 1-FMG algorithm, with no extra iterations, can even be directed to locate 
limit points (turning and bifurcation points) on solution diagrams; or to optimize 
some problem parameters, including optimization of boundary shapes, diffusion 
coefficients, control parameters, etc.; or to trace free boundaries, strong shocks, 
and other discontinuities; or to solve related inverse problems (e.g., system iden
tification); and so on—all with accuracy below truncation errors. 

In many cases, however, repeated applications of the FMG solver are still 
needed: cases of complicated bifurcation diagrams, interactive design situations, 
etc. Even then, the multigrid machinery generally provides for extremely cheap 
re-solving: one should only be careful to apply FMG to the incremental problem 
(calculating only the change from the old solution; using FAS this is easily done 
even in nonlinear problems) and to skip finer grids (or parts thereof) wherever 
they describe negligible high-frequency changes. 

In designing a structure, for example, one often wants to re-solve the elasticity 
equations after modifying some part of the structure. The changes in the solution 
are then very smooth, except near the modified part. In incremental re-solving 
one therefore needs the fine grid ft only near that part, while at other regions the 
coarser grid H can suffice—provided the rff correction (see (7.1)) is kept in those 
regions frozen at its previous (premodification) values (otherwise one ignores the 
high frequency components themselves, not just their changes). Similarly, at 
some larger distance from the modified part, grid H = 2ft itself can also be 
omitted, then grid 4ft, etc. In this way re-solving can be so inexpensive in 
computer time and storage as to allow on-line interactive design of complicated 
structures. Similar frozen-r techniques can be used in continuation processes and 
in evolution problems. 

10. Evolution problems. Some time-dependent problems may need no mul-
tileveling. These are hyperbolic schemes where all the characteristic velocities are 
comparable to each other, and their explicit discretization on one grid is there
fore fully effective: the amount of processing is essentially equal to the amount 
of physical information. However, as soon as any stiffness enters, implicit dis
cretization and multigrid techniques similar to those in §9 become desired. 

Solving the sequence of implicit systems, the 1-FMG algorithm is all one 
needs per time step—provided it is consistently applied to the time incremental 
problem, since one needs to solve to the level of the incremental (not the cumula
tive) truncation errors. Moreover, in most cases, notably in parabolic problems, 
this work can vastly be reduced, because most of the time at most places the 

nncremenHs-very^smaothrhence^sel^^^ 
For example, it has been demonstrated for the heat equation 

du/dt = Au + F 

with steady boundary conditions and steady sources F that, given any initial 
conditions at t = 0, the solution at any target time T can be calculated, to the 
level of spatial truncation errors, in less than 10 work units, where the work unit 
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here is the work invested in one explicit time step. To obtain the solution with 
that accuracy throughout the interval 0 < t < T, the number of required work 
units is 0(log(T/ft2)). 

By combining methods developed for such purely parabolic problems with 
the method of characteristics, it may be possible to obtain similar results for 
problems with convection, because the time increment can be described as a 
smooth change superposed on pure convection. 

All multigrid discretization techniques (see §8) can be useful for time-depen
dent problems, too. One example: the popular Crank-Nicholson discretization, 
which offers superior accuracy for smooth components, has the disadvantage of 
badly treating high-frequency components at large time steps. This conflict is 
easily resolved by a double discretization scheme, which at some initial time 
steps, and only at the fine grids' relaxation process, replaces Crank-Nicholson 
by the Fully Implicit scheme. Other examples that were already used include 
local refinements, the r refinement criteria, r extrapolations, and a treatment of 
an ill-posed (the inverse heat) problem. 

Time-periodic solutions, or more generally, solutions with the same solution 
growth w per time period, can inexpensively be computed, for any spatial grid 
ft, by integrating basically on grid 2ft: once a steady growth cj2h has been es
tablished on grid 2ft, a defect correction to w2h can be found by integrating 
one period on grid ft; then the calculations on grid 2ft resume, with that defect 
added at each period, until a new steady growth is established. The calculations 
on grid 2ft can similarly be done by integrating basically on grid 4ft, and so on. 
Each grid integration may of course also use the above frozen r techniques. 

11. Geometrically based problems. Integral equations. AMG. Most 
large systems, even those not derived from discretized continuous problems, still 
have a geometric basis; that is, each unknown has a location in some low- (usu
ally at most 4-) dimensional underlying space—indeed, the unknowns are often 
still arranged in lattices—and the equations reflect this geometry, e.g., by more 
strongly coupling closer unknowns. Examples abound (see §1). Excluding for 
the moment probabilistic aspects (see §14), these systems can usually be cast 
as minimization problems: the solution vector u should minimize some func
tional E(u), called "energy." This naturally leads to various Gauss-Seidel-type 
relaxation schemes, in which E is decreased as far as possible by changing one 
unknown (or one block of unknowns) at a time. (Kaczmarz relaxation in §2 can 
be viewed as Gauss-Seidel for ti, where u — ATû and E(u) = ^uTu — üTb.) 

Excluding now the case of discrete or partly discrete unknowns (see §13), in 
all such geometrically based systems the slow components (see §2) are either 
"smoothly representable" or ill-posed. A general smooth representation of com
ponents is for example by short sums of terms such as a(x)(p(x), where a(x) 
is smooth (at least in some directions) while <p(x) may be highly nonsmooth 
but is fixed and known (or easily computable). A multilevel solver can then be 
constructed in which a(x) is interpolated from coarser levels. The coarser level 
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equations may be derived either variationally (i.e., from the requirement that 
E(u) is lowered as far as possible by the interpolated a(x)), or by simulating 
direct differencing approximations. 

A multigrid solver of the latter kind has been constructed for a simple case 
of lattice Dirac equations in a gauge field. In QED and QCD (quantum electro
dynamics and chromodynamics) simulations, these types of equations should be 
solved at each Monte-Carlo iteration, consuming enormous computer resources 
(see, e.g., [18]). This solver, which employs itself also for updating <p(x), exhibits 
the usual multigrid speed, and requires only a short cycle, costing far less than 
the rest of the calculations, per Monte-Carlo iteration. (See also §12.) 

In many problems, including first-kind integral equations in fields like image 
reconstruction, tomography, and crystallography, there exist slow components 
which are not smoothly representable. Since they give large errors for small 
residuals without being smooth in any sense, they are by definition ill posed. 
Such error components are introduced only very slowly by the multigrid solvers. 
Hence they are harmful only in as far as their absence causes the solution to 
"look bad." Specifying what "looking bad" is can be done by augmenting E(x) 
and/or by imposing nonlinear constraints. Such constraints, on any scale, can 
be incorporated in the multilevel solver (see [11]), even when they are discrete 
(see §13). 

Integral equations of the second kind are easily solved by the usual multigrid 
algorithm, possibly using its structure also for fast integrations (see §8). 

Multilevel solvers can be constructed even when the geometric basis is not 
explicit. In such "algebraic multigrid" (AMG) solvers the coarse-level variables 
are typically selected by the requirement that each fine-level variable is "strongly 
connected," by the fine-level equations, to at least some coarse-level variables. 
The coarse-to-fine and fine-to-coarse transfers may also be purely based on the 
algebraic equations, although geometrical information may be used too (see [9, 
29]). AMG solvers are good as black boxes, even for discretized PDEs, since 
they require no special attention to boundaries, anisotropics and strong dis
continuities, and no well-organized grids (allowing, e.g., general-partition finite 
elements). 

12. Calculating determinants. At each Monte-Carlo iteration in QED and 
QCD simulations, what is really required is not to solve the lattice Dirac equa
tions (see §11), but actually (if possible) to calculate SlogdetQ, where Q is the 

nmatrrx^nHa^Tsystem and T^deniotés change per itefafìón.^Sincelihe steps are 
small, <51ogdetQ « trace of Q~l8Q, for which calculations one needs to know 
(Q~x)ij for all pairs of neighboring (on the lattice) i and j . Now, it can be 
shown that by storing and updating similar information for coarse-grid approxi
mations to Q (for which purpose one also needs to store and update the function 
<p(x) mentioned in §11), all updates can immediately be done. The implied 
coarse-level work, including the coarsening of Q, is just a small overhead. 
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This approach leads to a general fast method for calculating determinants of 
lattice equations. 

13. Discrete-state minimization: Multilevel annealing. In statistical 
physics, combinatorial optimization (e.g., traveling salesman, or integrated cir
cuits design), pattern recognition, econometrics, and many other fields, the un
knowns Ui, or part of them, may only assume discrete states. A typical example 
is Ising spins, where Ui = ±1 . To minimize E(u) in such problems is far more 
intricate than in continuous-state problems, since the relaxation process is not 
only slow, but is very likely to get trapped in a "local minimum"; i.e., in a con
figuration u which is not the true minimum but for which no allowable change 
of any one Ui, or even a small block of them, can lower E. 

"Simulated annealing" is a general technique for trying to escape such local 
minima by assigning at each step a certain probability for the energy to grow. 
This is done by simulating thermal systems: to each configuration u the "Boltz-
mann probability" 

P(u)=e~ßEW/Z(ß) (13.1) 

is assigned (physically 1/ß is proportional to the absolute temperature and Z(ß) 
is a normalization factor), and the above strict-minimization relaxation sweeps 
are replaced by "Monte-Carlo iterations," in which each Ui change is governed 
by (13.1). Gradually and carefully ß is increased (the system is "cooled") so 
that the Monte-Carlo process tends back to strict minimization. (See [23].) 

In many cases, unfortunately, the global minimum is likely to be reached only 
if ß is increased impractically slowly, requiring exponentially growing computer 
times, or else the process will be trapped in some local minimum with a large 
"attraction basin" (usually containing smaller-scale subbasins from which the 
process does escape). This difficulty is removed by multilevel annealing, based 
on the following principles: 

(i) A hierarchy of changes is selected. In two-dimensional Ising spin lattices, 
for example, a change on level / is defined as the simultaneous flipping (sign 
reversal) of all the spins in a 2l x 2l block, (ii) Each coarse-level change is 
decided only after recursively calculating its effects (i.e., minimizing around it) 
at all finer levels, starting from the finest, (iii) At each level a specific ß, just 
large enough to escape local minima on that scale, is first employed; then, still 
at that level, strict minimization follows, (iv) A procedure (LCC) for keeping 
track of the so-far minimal configuration is added at each level. (See [12].) 

These principles were applied to difficult two-dimensional lattice problems 
with N Ising spins. The global minimum has always been reached in 0(N3/2) 
to 0(N2) computer operations. Similar algorithms are being developed for the 
traveling salesman problem. (The "statistical" TSP with N cities is solved in 
O(N) operations.) 

The above principles should also apply in many problems where the discrete-
state nature is less obvious. Take, for example, XY spins or Heisenberg spins, 
where each Ui is a 2- or 3-dimensional vector of length 1. Although each Ui can 
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change continuously, some large-scale topological features of the field of spins 
(such as the existence of closed curves along which the spins gradually rotate a 
full circle) can only change discretely. Similar situations arise in crystallogra
phy. Another example: in image reconstruction, each unknown Ui, representing 
the grey level in the ith. pixel, can be considered continuous, but nonlinear con
straints that should be added to the problem (cf. §11) may well include discrete 
elements, such as the appearance of an "edge." In each of these cases a certain 
combination of the multilevel annealing with classical multigrid should be used. 
More generally, coarse-level annealing should apply in any minimization prob
lem with large-scale local minima, and multilevel annealing is required whenever 
a hierarchy of attraction basins is involved. 

14. Statistical problems. Multilevel Monte-Carlo. The aim in statisti
cal physics is to calculate various average properties of configurations governed 
by the probability distribution (13.1). This is usually done by measuring those 
averages over a sequence of "Monte-Carlo iterations," in which each Ui in its 
turn is randomly changed in a way that obeys (13.1) (using, e.g., Metropolis 
rule [27]). Unfortunately, in such processes statistical equilibrium is usually 
reached very slowly, and, more severely, even when it has been reached, some 
averages are still very slow to converge, especially those long-range correlations 
the physicist needs most. 

These two troubles may be cured by multilevel Monte-Carlo techniques, in 
which coarse-level changes (changing the solution in preassigned blocks in preas-
signed patterns) are added and averaged over. In problems and at levels where 
the physical states may be considered continuous, this can be done quite straight
forwardly and very efficiently: once per several coarse-level sweeps, the proba
bilities associated with coarse changes are defect-corrected by fine-level Monte-
Carlo iterations (see [12]). In case of discrete states, principles similar to those 
in §13 should apply. Namely, the exact pattern of each coarse-level change, as 
well as the probabilities associated with it, are recursively decided by finer-level 
Monte-Carlo passes around it. 

15. Linear programming (LP). A multilevel approach, called iterative 
aggregation, has been developed for LP problems (see [16, 31]), especially for 
situations in which the planned system is naturally divided into a hierarchy of 
sectors and subsectors. This considerably speeds up the calculations, and also 
provides the manager with a very useful hierarchical view of the system. 
—F0f=vef5rlä^ 
refined aggregations are needed. This can easily be done, for example, in prob
lems with a geometrical basis (cf. §11), such as the LP transportation problem 
(see, e.g., [19]). Recent tests were made with a method that lumps together 
two (or so) neighboring destinations into a "block destination," two neighbor
ing blocks into a super-block, etc. Shipping costs to a block are determined 
from the current intra-block marginal costs. It turns out that a 1-FMG-like 
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algorithm gets very close (practically obtains) the solution. The required work 
is even smaller since many of the blocks that are supplied by one origin need no 
fine-level processing. Several orders of magnitude savings, compared to simplex 
solutions, were indicated. 

16. Historical note . Various multilevel solution processes have indepen
dently occurred to many investigators (see partial list in [5]). The earliest we 
know is Southwell's acceleration of relaxation by "group relaxation" [30], a two-
level algorithm. The first to describe a recursive procedure with more than two 
levels is Fedorenko [17]. Similar approaches were early introduced to economic 
planning (see §15). All these early works lacked full understanding of the real 
efficiency that can be obtained by multileveling, and how to obtain it, since they 
did not regard the fine-grid processes as strictly local, hence thought in terms 
of too-crude aggregations. Fedorenko's estimates of the work involved in solving 
simple Poisson equations are off by a factor 104, for example. Fully efficient 
multigrid algorithms, based on local analysis, were first developed at the Weiz-
mann Institute in 1970-1972 (see [4]), leading then to most of the developments 
reported in the present article. 
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1. Introduction. The aim of this paper is to present an introductory survey 
on mixed finite element methods. We shall deal first with the so-called mixed 
formulation of some problems arising in the applications. Then we shall analyze 
the difficulties connected with the choice of appropriate finite element discretiza
tions for a mixed formulation. Finally we shall discuss some special techniques 
that are often helpful for solving the discretized problem. 

By default, the notation will follow Ciarlet [19]. 

2. Mixed formulations. A precise and satisfactory definition of "mixed 
method" (or of "mixed formulation") does not exist. The term started in the 
engineering literature (Herrmann [34, 35]; Hellan [33]) in connection with the 
elasticity theory, to denote methods, based on the Hellinger Reissner principle, in 
which both displacements and stresses were approximated simultaneously. Even 
among mathematicians, in the papers that can now be considered as pioneering, 
such as Glowinski [30], Babuâka [6], Crouzeix-Raviart [20], Johnson [37], the 
term "mixed" was used only by Johnson, who dealt with plate bending problems. 
The term is now used in a much wider sense, mostly rather vague. Here we are 
going to live with such vagueness, and we shall not try a new unsatisfactory 
definition. Instead, we are going to present a few examples: the case of linear 
elliptic problems, the case of the Stokes equations for incompressible fluids, and 
the case of linear elasticity problems. We will deal with the first case in more 
detail because it is formally much simpler, while only a few essential points will 
be stressed for the other two cases. 

Example 1. Linear elliptic operators. The use of mixed formulations for linear 
elliptic operators is rather recent and, as we shall see, is recommended only in 
some special case. However, its presentation is very simple and this makes it an 
ideal first example. Consider the model problem 

div(A(x)gradu) = / in D C Rd , (2.1) 

(A(x )g radu) -n = 0i on r N e u , (2.2) 

u = g0 on r D i r , (2.3) 
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where (i) TDü- U I^eu = T = dD is a splitting of dD] (ii) A(x) is a smooth 
function on D, with A(x) > a > 0 for every x in D; (iii) n is the unit outward 
normal to 3D; and (iv) / , g\, go are given smooth functions in D and on T^eu, 
Tüir? respectively. Introducing the manifold 

&g{D) = {v\ve H^D^v = g on r D i r } 

for g = go or g = 0, we can write the variational formulation of (2.1)-(2.3) as 
follows: Find u G H\ such that 

/ A(x)gradu gradì;dx = - / / v d x + / tfi^dT Vv G H$(D). 
3D JD «/rNeu 

In order to reach the mixed formulation of (2.1)-(2.3), we introduce the vari
able 

p = A(x) grad u in D, (2.4) 

so that (2.1) and (2.2) become, respectively, 

divp = / mD, (2.5) 

p - n = 0i on r N e u . (2.6) 

The formulation (2.3)-(2.6) is often called the mixed formulation of (2.1)-(2.3). 
There are now two possible reasonable variational formulations for (2.3)-(2.6). 
Let us look at both of them. The first one is: Find u G H*go (D) and p G (L2(D))d 

such that 

f (A(x))_1p • qdx - f q • gradudx = 0 Vq G (L2(D))d, (2.7) 
JD JD 

- [ p • grad vdx= j fvdx- [ g^dT Vv G H*0{D). (2.8) 
JD JD «/rNeu 

In order to introduce the second variational formulation of (2.3)-(2.6), we 
define, for g = gi or g = 0, the manifold 

Hì9(dìv; D) = {q | q G (L2(D))d; div q G L2(D); q • n = g on r N e u } . 

The second variational formulation of (2.3)-(2.6) is now: Find u G L2(D) and 
p G Hì9l (div; D) such that 

/ ( A ( x ) ) - 1 p . q d x + / u d i v q d x = / tfoqndT Vq G JT|0(div;J0), (2.9) 

The difference between (2.7)-(2.8) and (2.9)-(2.10) is clearly a simple integration 
by parts (or, if you prefer, a Green's formula). However, it must be pointed out 
that the regularity a priori required for u and p is somehow interchanged. This 
implies that in discretizing (2.7)-(2.8) one has to use a continuous V and 
can use a discontinuous "p," while in discretizing (2.9)-(2.10) one can use a 
discontinuous "ti" but has to use a "p" with divergence in L2(D) (and hence 
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p • n continuous at the interfaces). Note also the inversion in the way of dealing 
with the boundary conditions. 

It is questionable whether (2.7)-(2.8) should be called a mixed formulation 
for problem (2.1)-(2.3). On the other hand, everybody seems to agree in calling 
the formulation (2.9)-(2.10) "mixed." In general, the original formulation (2.1)-
(2.3) is preferred. It is more simple, it uses just one variable, and many extremely 
efficient methods are known for its approximation. However, in some applications 
the "auxiliary" unknown p defined in (2.4) is actually the more relevant physical 
variable and/or is the only information that has to be transferred into other 
equations that are coupled with (2.1)-(2.3). In such cases, the use of a mixed 
formulation might be preferred, as long as it provides (as it often does) a better 
accuracy for p. In general, the formulation (2.9)-(2.10) is then used, since it 
deals with a smoother vector field p. It is often said that the crucial feature 
in the mixed approach is that it averages (A(x)) - 1 instead of A(x). This is 
surely a better thing to do, at least in one dimension, being connected with 
the homogenization theory. See, for instance, Babuëka-Osborn [7]. However, 
dramatic improvements have been obtained by using (2.9)-(2.10) with a constant 
A(x). See, for instance, Marini-Savini [41]. The true reason (if any) for the 
better behavior of the mixed formulations over the classical ones is still to be 
understood. Practical experiences suggest the use of a mixed formulation for 
"bad behaved" problems in which the variable p(x) is expected to be "smoother" 
than the variable u(x). But clearly this is not the whole story. 

Example 2. Incompressible fluids. The Stokes equations for incompressible 
fluids are of the type 

- A u + g radp = f in D C Rd, (2.11) 

divu = 0 inD. (2.12) 

Various kinds of boundary conditions can be used in connection with (2.11), 
(2.12). For the sake of simplicity we shall only consider the (physically uninter
esting) Dirichlet boundary conditions 

u = 0 on T = dD. (2.13) 

The natural variational formulation of (2.11)-(2.13) is: Find u G (H^(D))d 

and p G L2 (D) such that 

/ g r a d u : g r a d v d x - / p d i v v d x = / f-vrfx Vv G (H^(D))d, (2.14) 
JD JD JD 

çdivudx = 0 VqeL2(D). (2.15) 
/ . ID 

The formulation (2.14)—(2.15) has been used for years long before the term 
"mixed method" came into use. However, it is recognized now that (2.14)-
(2.15) behaves like a mixed formulation as far as the difficulties in finding good 
approximations are concerned. We shall also see that (2.14)-(2.15) easily falls 
into the same abstract framework that is commonly used for mixed methods. 
Hence we are somehow allowed to consider (2.14)-(2.15) as a mixed formulation. 
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Example 3. Linear .elasticity problems. For a vector-valued function v(x) we 
define e(\) by 

««-K£+&) (,j=i--d)- <2l6) 

The linear elasticity equations are now 

a = E: e(u) I i.e., G^ = Y1Y1 ^ > ^ r a ( u ) j , (2.17) 
\ r=ls=l ) 

div a = f inJD. (2.18) 

Substituting (2.16), (2.17) into (2.18) gives a second order linear elliptic system 
in the unknowns u. Clearly E is the elasticity tensor and is assumed here 
to have constant coefficients (and nice "ellipticity" properties . . . ) . Its inverse 
(compliance tensor) will be denoted by G. Hence 

T = E: e(v) & e(y) = C: r. (2.19) 

We are again going to assume the simplified boundary conditions 

u = 0 on dD. (2.20) 

This, of course, is strongly unrealistic: usually one has u = ü given on Tüir 
and a • n = t given on T^u- However, the proper way of dealing with realistic 
boundary conditions coincides with the one used in Example 1; we chose then 
to give more details there (with simpler notations) and to simplify here. 

One can notice that the splitting of the problem in more than one unknown 
is extremely natural here and has solid physical reasons. This is probably why 
the first mixed formulations were used in elasticity theory. We shall present here 
only one mixed formulation, which is similar to the formulation (2.9)-(2.10) for 
a single elliptic equation. We set 

H(dW,D) = {r\re (L2(D)f; Tij = T* \/i,j; d i v r G (L2(D))d) 

and we consider this problem: Find u G (L2(D))d and a G H (div; D) such that 

/ (C:cr ) : rdx+ / u - d i v r d x = 0 Vr G H(div,D), (2.21) 
JD JD 

f v • divtrdx = f f • vdx Vv G (L2(D))d. (2.22) 
JD JD 

One can see that (2.21)-(2.22) practically coincide with the variational for
mulation of the Hellinger-Reissner principle. The use of this principle in the 

^ffâmëworlToffinite^ëlementscanrbe traced^BaWl^thypioSëëfïng work of Herr
mann [34, 35] and Hellan [33]. The interest in using the stress field a as an 
independent variable is questionable in as simple a case as the present one, but it 
is clear in more general and more complicated problems involving nonlinearities, 
plasticity, and so on. 

We are now going to state an abstract existence theorem that is a simplified 
version of a more general result, proved in [12]. 



NEW APPLICATIONS OF MIXED FINITE ELEMENT METHODS 1339 

THEOREM 1. Let E and $ be real Hilbert spaces, 0(^1,^2) a bilinear form 
onExE, and o(£,?/0 a bilinear form an E x ty. Set 

Ä- = { fUeB,6( f > ^) = 0 V ^ e * } > 

and assume that 

3a > 0 s.t. a ( £ , 0 > a||£||i ^eK, (2.23) 

3/9 > 0 s.t. sup ^ß->ß\\^ V ^ e * . (2.24) 

Tften /or e^erj/ Zi G S' and £2 G &' there exists a unique solution (£, ip) of the 
problem 

a(? ,0+*(£,?) = <Ji,0 V^GH, (2.25) 

6(?,^) = (/2,^> W>G#. D (2.26) 

REMARK. Actually a stronger result is proved in [12]; namely, if problem 
(2.25), (2.26) has a unique solution for every h G S' and l2 G #', then (2.24) 
holds and the bilinear form a(£i,£2)> restricted to K, is nonsingular (in the 
sense that it induces an isomorphism from K onto Kf). Clearly if one assumes 
that a(£i,£2) is symmetric and positive semidefinite, then (2.23) and (2.24) 
are necessary and sufficient for the existence and uniqueness of the solution of 
(2.25)-(2.26). 

REMARK. It is clear that if a(fi,£2) is symmetric, the solution (£,ip) of 
(2.25)-(2.26) minimizes the functional 

J(0 = h<t>0-(h,0 (2.27) 
on the subspace of S, 

* ( ' 2 ) = {£ I &(£, I « = (fe, </>} W> G * } , (2.28) 

and the formulation (2.25)-(2.26) corresponds to the introduction in (2.27)-
(2.28) of the Lagrange multiplier iß. 

3. Discretizing a mixed formulation. Let us deal first with the abstract 
framework (2.25)-(2.26). Assume that we are given two sequences {S/l}/l>0 and 
{®h}h>o of subspaces of H and *, respectively. We set 

Kh = {& I Çh G Eh, b(Ch, ifo) = 0 V̂ fc G *h}. (3.1) 

We have the following approximation theorem [12]. 

THEOREM 2. Assume that 

3ah>0 s.t. a ( f , e )> a l le i l i ^ G Khì (3.2) 

3/?Ä>0 s.t. sup *&fi > ßh\\il,\\v V ^ f A . (3.3) 
£G3h-{0} Hells 

Then for every l\ £ E1 and 1% G #', and /or evert/ ft > 0, the discrete problem 

a(Îh,Ç) + K£iïh) = (h,0 V£€Eh, (3.4) 
b(M) = (h,i/>) W>€*h (3.5) 
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has a unique solution. Moreover, there exists a constant ihfahißh) > 0 such 
that 

H - ffclla + II? - ftJI» < lh ( inf II? - ails + mf ||tf - Ml») • • (3.6) 

The dependence of 7^ on ah and /?^ can be easily traced (see [12]). Clearly if 
(3.2) and (3.3) hold with constants ä, ß independent of h, then (3.6) holds with 
a constant 7 independent of h. More general versions of Theorem 2 (and also 
of Theorem 1) can be found, for instance, in Falk-Osborn [23] or in Bernardi-
Canuto-Maday [9]. 

We are now going to see the implications of Theorem 2 in the examples of the 
previous section. 

Example lh. Discretizations of the mixed formulations for linear elliptic op
erators. Many examples of successful discretizations of (2.9)-(2.10) are known. 
The first ones were introduced by Raviart and Thomas in [45] and then re-
elaborated and extended to more general cases by Nedelec [42]. Other families 
of possible discretizations were introduced years later by Brezzi, Douglas, and 
Marini [16] and then re-elaborated and extended in several more recent papers 
(see, e.g., [14, 43, 15]). All of them share a very helpful property, the so-called 
"commuting diagram property," whose importance was first fully recognized in 
Douglas-Roberts [21]. Let us look at it in a particular case: the BDM element of 
degree 1 for two-dimensional problems (D C R 2 ) . Let 7/j be a regular sequence 
of decompositions of D into triangles. We assume for the sake of simplicity that 
Î Neu = 0 in (2.2) and ^4(x) = 1. As a discretization of H(dvr,D) and L2(D) 
respectively, we take 

Eh = {q I q G H(div;D); q,T G (PJ2 WT G Th}t (3.7) 

9h = {v I v G L2(D); v]T eP0VTe Th}. (3.8) 

Here and in the following, Pk(S) (or simply Pk) will denote the set of polynomials 
of degree < k on the set S. We consider now the discretized problem: find 
Ph G Eh and Uh G ̂ h such that 

/ p / l q d x + / uhdivqdx = g0q-ndT VqGS^, (3.9) 
JD JD JôD 

/ vdivphdx= / fvdx VveVh- (3.10) 
JD JD 

==We-now=define-an=oper-ator-=Mtrirom^H^D)j2Anto=Ejrby~ 

/ < 
(q - Affcq) • npi ds = 0 Ve edge in Th, Vpi G Pi (e), (3.11) 

and an operator Ph from L2(D) into *&h by 

(v - Phv) dx = 0 VT triangle in Th- (3.12) L 
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Let us check now that divM^q = Ph divq for all q G (H1^))2; actually, for 
all ü/j G $/i we have 

/ vhdivMhqdx= / vh(Mhq • n)ds = / vhq-nds (3.13) 
JT JdT JdT 

= / Vhdivqdx= / w/j/^divqrfx. 
JT JT 

It is also easy to check that the divergence operator is linear continuous and 
surjective from (fl"1(Z)))2 onto L2(D). This can be summarized in the following 
diagram: 

(H\D))2 ^ L2(D) - 0 

Mh[ iPh (3.14) 
r-. d i v lTf n 

*h - • ®h ->o 
It is easy to check that (3.14) implies, in particular, (3.2) and (3.3). But it is 
much more powerful than that. For instance, it implies 

| |p-P/i | | (L2(D))2 < 7 i | | p - M i P | | ( L 2 ( D ) ) 2 , (3.15) 

II« - uh\\L*{D) < 7a(||P - A^p|| (L2(D))2 -|- ||fx - Phu\\L2{D)), (3.16) 

with 7i, 72 independent of h (whenever p G (JH'1(JD))2). In particular, with the 
choice (3.7)-(3.8) this yields 

| |P - P/l||(L2(£>))2 < 7i^2 | |p||(H2(j5))2, (3.17) 

||« - uh\W{D) < l2h(\\u\\H2(D) + | |p | |(^i(D))2). (3.18) 

Note that (3.17) does not follow from the abstract error estimate (3.6). 
The commuting diagram property has other nice properties. For instance, it 

allows a simple proof of error estimates in dual norms, as in Douglas-Roberts 
[22] or inBrezzi-Douglas-Marini [16]. Error estimates in L°° norms are also 
available; see, for instance, Scholz [46, 47] and Gastaldi-Nochetto [27, 28]. 

The most popular scheme for (2.9)-(2.10), that is, the "lowest order Raviart-
Thomas," can be obtained by using, instead of (3.7), 

Eft = {q | q S tf (div; D); q,T G (P^T))2 VT; q • n,e G P0(e) Ve}. (3.19) 

Accordingly, one then uses Po(e) instead of Pi(e) in (3.11). It is immediate that 
(3.13) still holds, and then (3.14) also holds. Clearly, only an 0(h) rate can now 
be achieved in (3.17). 

Example 2h. Discretizations of the Stokes equations. Life is much harder 
when we go from (2.9)-(2.10) to (2.14)-(2.15). The only positive aspect is that 
now the bilinear form o(u,v) is such that (2.23) actually holds in the whole 
(HQ(D))2 (our present S) so that (3.2) also holds true regardless of the choice 
of the discretization. This might partially excuse all the Stokes-thinking people 
that consider (3.3) as the condition for mixed methods. If you try to discretize 
even the easy (2.9)-(2.10) with a scheme that does not satisfy (3.14) you will see 
that (3.2) can bite badly. 
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However, coming back to Stokes, it is true that the only condition to be 
satisfied by the discretization is (3.3), which now reads 

3ßh>0: sup fq^Yd*>ßh\\q\\L>(D)/K Vq G * Ä (3.20) 
v63h-{0} ||v||l 

with, if possible, ßh independent of h. A sufficient condition for it is the following 
so-called Fortin's trick [24]: we have to find a linear operator Mh from (H1 (D))2 

into Eh such that 

IIMfcvlli^cilMl! Vve(H^(D))2, (3.21) 

qh div(v - Mhv) dx = 0 Vv G (H^(D))2, VQH e *h- (3.22) 
ID 

Let us see one example. Let Th be a decomposition of D into rectangles R with 
sides parallel to the axes (the use of isoparametric elements is obviously also 
allowed, but more complicated to describe), and choose 

Eh = {v | v G (H^(D))2; v,« G (Q2(iü))2 VA G Th}, (3.23) 

9h = {q\qe L2(D)] f qdx = 0; q]R G P1{R) VR G Th}. (3.24) 
JD 

In (3.23), Q2 (R) means the set of polynomials of degree < 2 in each variable. Let 
us see how to construct the operator Mh at least for a smooth v. To deal with a 
general v in (HQ(D))2 is just technically more complicated but the philosophy 
is the same. In each R we set 

/ . 

/ 

MhV = v at the vertices (8 conditions), (3.25) 

(MhV — \)ds = 0 on each edge (8 conditions), (3.26) 

/ . 
div(M/lv - v)xi dx = 0 t = l ,2 (2 conditions). (3.27) 

R 

We have a total of 18 conditions (note that the dimension of Q2 is 9). It is easy 
to check that they are independent. Let us check (3.22); that is, let us check 
that 

f div(Mhv - v)pi dx = 0 Vpi G Pi(R). (3.28) 
JR 

Clearly (3.27) implies that (3.28) holds for p\ = xi and p\ = x^. We need only 
to check p\ = 1: 

/ div(MfcV - v) dx = f (Mhv -v)-nds = 0, (3.29) 
JR JôR 

jttare"to~(3:26)rWêTaE"ïï5^ 

||u - Uh\\i + \\p - PH\\L*(D)/II < ch2(\\u\\3 + ||p||a). (3.30) 

There are many other known choices available for getting a discretization of 
(2.14)-(2.15) that satisfies (3.20). An almost complete list of them can be found 
in Brezzi-Fortin [17] together with the references. In particular, Scott and Vo-
gelius [48] proved that, under minor restrictions on the decomposition of D 
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into triangles, one can always use a continuous velocity field of local degree k 
and a discontinuous pressure field of local degree ft — 1, provided k > 4. For 
the low degrees, a special headache is provided by the use of bilinear velocities 
and constant pressures; its convergence has been proved in a variety of cases 
(see Johnson-Pitkäranta [39], Stenberg [49], Pitkäranta-Stenberg [44]), but not 
yet in the general case. Anyway, a filtering of the pressure field is always re
quired to eliminate the checkerboard modes. General strategies for constructing 
discretizations that fulfill (3.20) are given in Boland-Nicolaides [10] and Brezzi-
Pitkäranta [18]. Modifications of the discrete equations that allow us to violate 
(3.3) were introduced in Brezzi-Pitkäranta [18], Hughes-Balestra-Franca [36], 
and Brezzi-Douglas [13]. 

For the use of more general boundary conditions, the basic reference is Ver-
fürth [50]; see also the references contained therein. 

Additional references for the Stokes and Navier-Stokes equations can be found 
in Glowinski-Pironneau [31], Glowinski [32], Girault-Raviart [29], and Brezzi-
Fortin [17]. 

Example 3h. Discretizations of linear elasticity problems. It is difficult, in gen
eral, to find convenient finite element discretizations for equations (2.21)-(2.22). 
We shall briefly indicate here three possible ways for tackling the difficulty. The 
first possibility is to try to construct spaces that verify the commuting diagram 
property (as in (3.14)). This has been possible, up to now, only by means of 
composite elements; that is, each element is split into subelements and one uses 
trial functions that are polynomials in each subelement (plus suitable continuity 
requirements from one subelement to the other). Examples of this approach 
can be found in Johnson-Mercier [38] or Arnold-Douglas-Gupta [4]. A second 
possibility is to give up the symmetry condition that appears in the definition of 
H (div, D) and to enforce it a posteriori by means of a Lagrange multiplier. After 
discretization we deal then with stress fields having only a weak symmetry. This 
idea was first used by Fraeijs de Veubeke [25] and then modified and analyzed 
by Amara-Thomas [1] and Arnold-Brezzi-Douglas [3]. A third possibility is to 
change the "auxiliary function" and use a different, nonsymmetric, tensor field 
instead of a. This will, in general, produce some trouble at T^eu (if T^eu ^ 0 ) 
that can be treated with the introduction of an additional Lagrange multiplier 
of TNeu- We refer to Arnold-Falk [5] for more details on this approach. 

It has to be pointed out that additional difficulties arise when dealing with 
nearly incompressible materials. In these cases (2.23) stops to hold (in the limit) 
in the whole space but still holds for free-divergence tensor fields. This implies 
that (3.2) must also be checked if the discretization is such that 

Kh£K. 

Additional references for the applications above (and many others) can be found 
in Brezzi-Fortin [17]. 
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4. Numerical methods for solving the discretized problem. The major 
difficulty that arises in solving a linear problem such as (3.4), (3.5) is that the 
associated matrix 

U T o) (4.1) 

is indefinite. There are many ways of getting around this difficulty, mostly using 
some particular feature of the problem under consideration in order to rewrite it 
in a different form. Here we shall briefly sketch two of them, one which is mostly 
used in Examples 1 and 3, and one which is used in Example 2. 

The first technique, which is very old (see Fraeijs de Veubeke [26]), starts 
from the following simple observation. If the space Eh is made of functions that 
are completely discontinuous from one element to the other, then the most nat
ural choice of basis functions for S^ will produce a matrix A in (4.1) which is 
block-diagonal. Then the inverse matrix A - 1 can be easily computed explicitly. 
Solving (3.4) element by element for £h and substituting into (3.5) (static con
densation) leaves us with the final matrix BTA~1B and the only unknown ^ . 
Note that (3.2) and (3.3) will imply that BTA~1B is symmetric and positive def
inite (if a(£i, £2) is symmetric). Now if, instead, the functions in Eh have some 
continuity properties from one element to the other (for instance, in Example lh 
we had p& • n continuous at the interfaces) this cannot be done. However, one 
can choose to work in a larger space, say Eh, made of discontinuous functions, 
and then require the continuity by means of a Lagrange multiplier. Let us see 
the procedure in the particular case of Example lh. We set 

Eh = {q\qe(L2(D))2] q , r G (P,)2 VT G TÄ}, (4.2) 

Afc = {fi I jU|c G Pi (e) Ve, internal edge in Th), (4.3) 

c(q,/*) = ^2 / (<TnW*. (4.4) 

Clearly, if q G Eh then 

qeEh^> c(q, p)=0 Vpe Ah. (4.5) 

It is not difficult to check that the new problem, find p/j G 5/i, % E ^ft, A/j G A^ 
such that 

/ pfc-qdx + y ] / uhdivqdx= / g0q • ndT + c(q, Xh) VqGS/*, (4.6) 
JD ? JT J öD 

Y] vdivphdx= / fvdx \/veVhi (4.7) 
T JT JD 

c(ï>h,p)=0 VpeAh, (4.8) 

has a unique solution, and that p^ = p^, üh = Uh- Now both the unknowns 
Ph and üh are a priori discontinuous and they can be eliminated, at the ele
ment level, by static condensation. The final matrix, in the unknown A/j, will 
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be symmetric and positive definite. It is clear that Xh itself should be an ap
proximation of u at the interfaces, and as such it was used by the engineers. 
However, it was only rather recently that it was proved mathematically that Xh 
converges to u and, in general, with a better order of convergence than Uh itself 
(see Arnold-Brezzi [2]). For instance, in the present case, once A& is known one 
can construct, element by element, au jG Pi(T) such that 

/ < (u*h-Xh)ds = 0 Ve edge of T (4.9) 

and show that 
\\u-ul\\L*{D)<0{h2) (4.10) 

instead of (3.18) (for the proof of (4.10) see [2]). A similar result can also be 
achieved with the lowest order Raviart-Thomas element described at the end 
of Example lh. However, the best way to compute the solution for this last 
element is to solve with the so-called Pi-nonconforming method and then use 
the postprocessing of Marini [40]. For additional results on the convergence of 
Xh to u see Brezzi-Douglas-Marini [16], Brezzi-Douglas-Fortin-Marini [15], and 
Gastaldi-Nochetto [28]. 

This same idea (disconnect 3^ and use a Lagrange multiplier to force back 
the continuity) can be used also for elasticity problems and in many other cases. 
However it has not been possible, so far, to use it, for instance, for the Stokes 
equations (and more generally when continuity at the vertices is required in 3^). 
Then one can use the following other trick that was first analyzed by Bercovier 
[8]. If the space * h is made of discontinuous functions (as was the case in our 
Example 2h), then one can perturb equation (3.5) into 

b(lh,4>)=e(Mh + {h,1>) VVG*ft. (4.11) 

The corresponding matrix (for (3.4), (4.11)) becomes, roughly, 

(4.12) 

Now the discontinuity in ^h allows us to eliminate if)h at the element level. We 
obtain, in that way, a matrix A + e~1BBT. If (3.2) and (3.3) are satisfied, 
this new matrix will be symmetric and positive definite (always if a (£1,62) is 
symmetric). Moreover, calling (£ | ,^ | ) the solution of (3.4) and (4.11), one has 

ll?ft - ah + \\A- rhh = 0(e). (4.13) 

The method can also be applied when Sbh is made of continuous functions, pro
vided that some lumping procedure is used in computing the inner product in 
(4.11). However, in such cases, one gets for e~1BBT a bandwidth that is gener
ally larger than the one of A, and this is often a considerable drawback. 

A different attempt to reduce (3.4), (3.5) to a single equation in the case of 
the Stokes equations can be found in Bramble [11]. 
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Vortex methods have been developed over the last fifteen years, and have 
found numerous applications to incompressible and slightly compressible flow, 
combustion theory, reaction/diffusion equations, and boundary layer theory. 
Vorticity dominates the mechanics of most real flows and often concentrates 
in small subsets of the flow field, and thus vortex methods focus effort on the 
variables of most interest and the regions of most interest. 

Vortex methods have no equal in several areas of application, for example 
in combustion theory, where small scale fluctuations have a major influence on 
the evolution of the chemical kinetics and have not been successfully resolved 
in any other way. The major interest in vortex methods comes however from 
their applications to turbulence theory, where they have revealed and explained 
important phenomena. Historically the study of turbulence has motivated a 
number of important mathematical developments, from the theory of stochastic 
processes to dynamical systems theory. Despite this long and otherwise very 
fruitful effort, turbulence in fluids has remained something of a mystery, and has 
only recently begun to yield some of its secrets. Vortex methods and related 
vortex models are among the leading causes of the advance. 

Vortex methods. Vortex methods are most readily explained in the case 
of two-dimensional flow [8, 19, 24]. The Navier-Stokes equations that describe 
two-dimensional viscous incompressible flow can be written in the form 

dtÇ + (wV)t = R-1At, (la) 

divu = 0, (lb) 

£ = curlu, (lc) 

.jtfheteji==4wi=,=U2=)=i^the^ 
(i.e., the reciprocal of the viscosity measured in appropriate units), V is the 
differentiation vector, A = V • V, and t is the time. There exists a stream 
function ijj such that u\ = —d^ty, u<i — diiß, di = d/dxi, Aip = — £. If — G 
is Green's function for A, then ij) = G * £, where * denotes a convolution. If 
K = (Ô2G, -d\G), then u = K*f. In the special case of inviscid flow (R~x = 0), 
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a particle of fluid located at x = x(t) moves according to the law 

^ = u = K*e- (2) 

The vorticity moves with the fluid, and thus equations (2) form a closed system, 
The vortex method in this special case consists simply of approximating equation 
(2) for a collection of test particles whose support approximates the support of 
£. The convolution is approximated by a finite sum over the particles. Vorticity 
distributed over a finite number of point particles gives rise to a singular flow 
field, and thus K must be smoothed; the simplest smoothing results from the 
replacement of K by Kß = K$(x) = K * / , where fs(x) = 6~2f(\x\/6), and / is 
a fixed function with integral 1. The accuracy of the vortex method depends on 
the choice of / and 6 (see [5, 13, 19]). If the domain occupied by the fluid has 
a boundary, the evaluation of u requires in addition the solution of a Laplace 
equation, which can be found without introducing a grid. The vortex method is 
thus grid-free. 

If Ä"1 ^ 0, equation (2) for the motion of a particle must be replaced by a 
stochastic differential equation 

dx = udt + Ä~1/2dw (3) 

where dw is normalized two-component Brownian motion. One obtains an equa
tion of this type for each sample particle. Suitable approximations for (3) can 
readily be found. In addition, if i2_1 ^ 0, an additional boundary condition 
must be satisfied at solid walls, and this is done through vorticity creation 
[8, 9], a process that has intriguing analogues in quantum and statistical me
chanics [25]. 

In three-dimensional space the vorticity is a vector quantity; in addition, the 
vorticity associated with a given computational element is not a constant of the 
motion (because of vortex stretching, see below) and an updating strategy must 
be found. These facts complicate the method somewhat but do not change its 
basic structure. The method can also handle variations in density [2], com
bustion and energy release [15, 27], singular vorticity distributions [13, 20], 
and other phenomena [16]. In special problems, interesting variants exist, for 
example, for piecewise constant inviscid flow [26] and near boundaries [9]. An 
interesting recent development is the discovery that the amount of labor involved 
can be radically reduced through a divide/conquer strategy for counting vortex 
interactions [1, 18], and through an effective use of multiprocessors [4]. 

The convergence of vortex methods. The convergence of vortex methods 
has been the object of an elegant theory. In the inviscid case the early results are 
due to Hald [19] and a general theory that includes three-dimensional flows was 
given by Beale and Majda [5]. The theory of Beale and Majda provides guidance 
for the choice of the core function / . For a recent review of the inviscid theory, 
see [3]. 
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The convergence of random vortex methods (i.e., R~x ^ 0) has been proved 
by Goodman [17] and Long [22] among others. The basic vorticity creation 
algorithm has been analyzed by Benfatto and Pulvirenti [6]. 

A convergence proof is not always the best guide to the actual performance 
of an algorithm; a well chosen example is often at least as useful. The vortex 
method has been subjected to numerous and extensive computational tests on a 
variety of specific problems; for a recent and elaborate example, see [27]. This 
work demonstrates the ability of vortex methods to separate real and numerical 
diffusion and to approximate flows of great complexity. 

Vortex stretching. Among the many problems examined with the help of 
vortex methods, we choose to describe briefly the analysis of vortex stretching 
in three dimensional inviscid flow. The problem is important because vortex 
stretching is one of the fundamental driving mechanisms of fluid turbulence (some 
say, the fundamental driving mechanism), and it is very poorly understood. 

The basic phenomenon can be described as follows: the distance between 
points in a turbulent flow can increase. If two points belong to the same integral 
line of the vorticity field, that line will increase in length. The requirements 
of incompressibility and conservation of angular momentum will then cause an 
increase in the "enstrophy" / |£ |2 dx. Numerical experiment shows that increase 
to be dramatic for "most" initial data. The increase is accompanied by a complex 
pattern of bifurcation and randomization which is poorly understood. 

A number of elaborate vortex calculations have been carried out to investigate 
this phenomenon (see, e.g., [10]). The calculations exhibit an interesting folding 
and binding phenomenon: vortex lines fold as they stretch and the ^-support of 
the vorticity (i.e., the support of all but an e-fraction of the vorticity) shrinks, 
a phenomenon known as "intermittency." Furthermore, stretched vortex lines 
approach each other. The support of the vorticity must shrink as a result of 
conservation of angular momentum, but it must remain large enough so that the 
energy of the fluid remain bounded. In the analogous but not identical problem 
in electrostatics, the support of the charge must have positive capacity (and 
Hausdorff dimension > 1) if the corresponding field is to have a finite energy, 
and it is conjectured that a similar constraint must hold here. The process of 
folding is the process by which a support of finite capacity is produced. The 
calculations also suggest that the solution of the inviscid equations breaks down 
in finite time. 

The calculations in [10] and in later work are imperfect; in particular they 
remain valid only for a finite time. This fact does not contradict the conver
gence theory in [5]: the smoothness assumptions made in [5] break down. The 
situation is somewhat analogous to what happens with difference approxima
tions, where it was shown in [7] that in the presence of turbulence, the error 
remains tolerable until a certain threshold is reached, beyond which the error 
grows catastrophically. 
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In [12] a lattice vortex model was developed, with the double goal of exam
ining the behavior of vortex methods and also of understanding the dynamics of 
vortex stretching beyond the limit of validity of "honest" vortex calculations. In 
this model, vorticity is assumed to be supported by cylindrical segments whose 
axes coincide with the bonds on a cubic lattice. These bonds are allowed to 
stretch and bend at random, subject to the constraints of conservation of volume, 
angular momentum, energy, connectivity, and an integral form of the kinematic 
relation that defines vorticity. Scaling transformations introduce successively 
smaller scales into the calculation. This model is a direct descendant of vor
tex calculations ([10] and the references therein), and it provides a substantial 
insight into vortex stretching and its effect in turbulence. 

In particular, within the framework of the model it can be shown that energy 
conservation implies intermittency in a turbulent flow. The old Kolmogorov 
scaling law is verified, but the assumptions that led to it are not. The e-support 
of the vorticity is seen to be a fractal set whose dimension is estimated, and the 
general structure of the energy cascade is exhibited. In particular, vortex folding 
is seen to shield the infinite vortex self-induction that results from vortex stretch
ing in such a way that the effective self-induction remains finite. Turbulence in 
fluids is seen to be mathematically analyzable in terms of geometric measure 
theory and potential theory, as could really have been forecast from the general 
form of the equations of motion. The conservation of mass leads to an elliptic 
equation, and the conservation of circulation (= angular momentum), of which 
equation (la) is the two-dimensional version, leads to a singular or nearly singu
lar distribution of sources. There is an obvious analogy here to the mechanism 
of generation of unstable fronts in porous media [11]. 

Future prospects. The range of application of vortex methods is rapidly 
expanding, and they are likely to become one of the backbones of computational 
fluid dynamics and of the theory of fluid turbulence. The mathematical aspects 
of vortex stretching are only beginning to be explored; in particular, the question 
of blow-up for Euler's equation is still open (see, e.g., [22]) and the mathematical 
description of intermittency is in its infancy (but see [13]). As far as the practical 
modeling of turbulence is concerned, I would guess that the future belongs to a 
combination of vortex methods and small-scale modeling, possibly patterned on 
the lattice model just described. 
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ÏIpoÔJieMa rapaHTHpoBaHHoä TOHHOCTH 

B HHCJieHHbix MeTOAax jiiraeftHOft ajireSpw 

c. K. ro^yHOB 

Pent HAeT o 3aAanax, B KOTOPBIX MaTpHijbi H BeKTopu, BXOAfliAHe B 

yCJIOBHH, H3BeCTHLI C HCKOTOpOft OTHOCHTCJIbHOtt TOHHOCTbK) B eBKJIHAOBOtt 
MeTpHKC BMeCTO AQ, /O CHHTaiOTOH AOCTynHblMH JIHUIb HeKOTopbie HX 
npHÔJiHMceHHH A, f TaKwe, HTO 

||A-4,0 < elicli, ||/-/o||<*||/o||, 
rjiß e — xapaKTepH3yeT cTeneHb TOHHOCTH. TnnHHHbie 3HaneHHH e = 

IO"5, IO"1 0 , H T 3 0 , . . . . 
CAeJiaHHoe npeAnojioaceHHe orpaHHHHBaeT Kpyr 3aAan, RJIR KOTopwx 

M05KHO pa3pa6oTaTb s^eKTHBHbie MeTOAw c rapaHTHpoBaHHott oijeHKOft 
norpeuiHOCTH. ECJIH norpeiiiHocra nop^AKa e B ycjioBHJix npHBOAHT K 
norpeuiHOCTHM nopaAKa 1 B pe3yjibTaTe, TO Hejib3H HaAeaTbCH nocTpoHTb 
9(})4)eKTHBHbiÄ ajiropHTM. TaKoro poAa CHTyaijHH xapaKTepH3yiOTCH KaK 
«naTOJiorHHecKHe». MHorAa HX MO^CHO H3Öe:>KaTb BHAOH3MCHHB nocTaHOBKy 
3aAanH. 

PacneT cneKTpa A nacTO ncnojib3yeTCH A-na aHajiH3a ycToftHHBOCTH pe-
uieHHtt cncTeMbi x = Ax. TnnHHHbift npHMep naTOJiorHHecKott cHTyau,HH 
B03HHKaeT npn paccMOTpeHHH AByxAHaroHajibHoft M x M MaTpnijbi Ao, y 
KOTopott Ha rjiaBHOtt AnaroHajiH BCiOAy CTOHT —1, a Ha BepxHeft noÖOHHOfl 
— BCiOAy 10. Bce ee X(Ao) paBHbi —1 H ycTOßHHBOCTb HMeeT MecTo. ripn 
M = 25 y MaTpHijbi A^, OTJiHnaio mette« OT AQ 3aMeHOtt Hyjia B JICBOM 
HHHCHeM yrjiy Beerò Jinuib Ha UJ = —10 • 8 - 2 5 « - 2 . 6 • 1 0 - 2 2 , cymecTByeT 
X(AÙJ) = -f^. Ha 3BM c e = IO""20 AQ H J4W Hepa3JiHHHMbi. KOHCHHO, 
MOSKHO noABeprHyTb AQ noAOÔHOMy npeo6pa30BaHHK) W~1AQW = AQ C AH-
aroHajibHO« W = d i a g ( l , 1 0 - 2 , 1 0 ~ 4 , . . . , 10~~48) w BbiHHCJiHTb X(AQ), coBna-
AaioiAHe c A(J4O). ripn TaKOM npeo6pa30BaHHH, KOTopoe nacTO npHMeHHeTCH, 

npHXOAHM K ÀQ C Hpe3BbIHaftHO XOpOIUO OÖyCJIOBJieHHbIMH COÖCTBeHHbIMH 
3HaHeHHHMH, HO 3aKOHHOCTb npeo6pa30BaHHH COMHHTeJIbHa, TaK KaK W 

npaKTHHecKH Bbipo^cACHa H W~1AJW OTTinnaeTca OT W M O W COBCCM He 
MajibiM sjieMeHTOM 102 4CJ = - 2 6 0 B jieBOM HHSKHCM yrjiy. 
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Mbi npeAJiaraeM APyrott nyTb aHajiH3a ycTOftHHBOCTH x = Ax. BMCCTO 

Xi(A) peKOMeHAyeTCH [1] onpeAeJiflTb «KanecTBO ycTOftHHBOCTH» 

K(A) = sup j £ ° \\x(t)f dt/ [^°° exp(-2f ||A||) • ̂ (O)!!2 dt] } 

(K(A) = oo, ecjin x = Ax He acHMirroTHHecKH npn t —• +00 ycTottHHBa). Y 

MaTpnî bi AQ K(AO) > IO23, TO ecTb x = AQX npaKTHHeCKH HeyCTOttHHBa, 

HecMOTpH Ha TO, HTO Bce Xì(AQ) = - 1 . B caMOM AeJie, ecjin zi(0) = 

x 2 ( Q ) = • • • = z 2 4 ( 0 ) = 0 , z 2 5 ( 0 ) = f = \ / 4 8 Ï F • 1 0 " 2 3 « 1 . 2 2 • 1 0 ~ 2 2 , T O 

peiiieHHe Xj(t) = f (ÎO25-^/,/!)*25"^""* npn t = 24 HMeeT KOMnoHeHTy zi(24) = 

(10 • 24/e)24 • (y/Éiï • 10"23/24!) « 10. 

ÜHTepecHo ajireôpaHHecKoe onpeAejieHHe K(A) = ||iï|| [2], rAe H nojioDKH-

TejibHo onpeAejieHHoe peuieHHe ypaBHeHHH HA + A*H = — 2\\A\\ • I. (ECJIH 

OHO Hepa3peuiHMO, HJIH ecjin H ue nojioDKHTejibHO onpeAejieHO, K(A) = 00.) 

M0HCH0 noKa3aTb, HTO npn t > 0: 

l l e ^ H v ^ i y e x p H P H / z c ^ ) ] (1) 

H MTO npn ||S||/||A|| < l/[10/c2(A)]: 

\K{A + B)-K(A)\<13K3{A)\\B\\/\\A\\. (2) 

^ J I ä BbiHHCJieHHfl H yAOÔHo nojib30BaTbca (J)opMyjiott JLmyHOBa H = 

2| |^| | f£° etA*etAdt. OTMCTHM, HTO ecjiH II opToroHajibHbitt npoeKTop 

(II* = II, II2 = II, IIAII = ATI) Ha HeKOTopoe HHBapnaHTHoe AJIA A 

noAnpocTpaHCTBO, B KOTOPOM Bce coöcTBeHHbie 3HaneHHH A OTpnijaTejibHbi, 

TO onpeAeJieHbi MaTpHHHbie HHTerpajiw (C = C*): 

yk= f TIletUA*CetAUIldt (3) 

H HX npeAeJi y = lim.k-^00 yk, KOTopbitt AJI* rypBHijeBott A npn II = 7, 
C = 2||>t|| • I, r = 1/(2||A||) coBnaAaeT c H. IfeBecTHaa npou,eAypa ,fl(eBHCOHa 
H MeHa [6] BbiHHCJieHHH HHTerpajioB THna yk HaHHHaeTC« c onpeAejieHHe no 
(JïopMyjie Teftjiopa 2/1, S i = eT A nII H COCTOHT B Hcnojib30BaHHH peKyppeHT-
Hbix 4)opMyji 

Bk = Bl_±, yk = 2/fc-i + ^_i2/fc-i^fc-i. (4) 

Ilpn HccjieAOBaHHH ycTOttHHBOCTH (U = I, C = 2\\A\\ • I), nojib3yacb (1) 

H 3aAaBUIHCb /C* TaKHM, HTO npH K(A) > /C* CHCTCMy X = Ax HaAO CHHTaTb 

npaKTHHeCKH HeycTOflHHBOtt, MOXCHO ou;eHHTb nepe3 CKOJibKo uiaroB j npo-

j^eçca,(A) _(x==-l/21| A\\ )_npH=HeKOTopoM=l̂ >=/?=>=0^OKaMceTCfl̂ BbinojiHeHHbiM= 

HepaBeHCTBO 

\\A*yj + yjA + 2\\A\\-I\\<2p\\A\\ (5) 

ecjiH TOJibKo K(A) < K*. OHO 3aBeaoMO cnpaBeAJiHBO npH j > 1 + 

{log2[«;*lii(2K*//>)]}. BoJiee Toro, npw TSKHX j pjia jiioÔoft X3, pjia KO-

T O P O O | | X , - î / , | | < P / 2 , 

||A*X3 + X,A + 2||A||.J||<2p||A||. (6) 
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B KanecTBe Xj MOMCHO Hcnojib30BaTb npnSjiHMceHHoe 3HaneHHe, noJiyneHHoe 
B pe3yjibTaTe pacneTa. ECJIH (6) cnpaBeAJiHBo, TO (CM. [3]): 

\\H-Xj\\l\\Xj\\<pl{l-p)i 

[(1 - 2p)/(l - pJlĤ H < K(A) < ||Jf,-||/(l - p). 

B [3] Hcnojib30BaHbi oî eHKH [4] norpenmocTH BbiHHCjieHHH MaTpHHHOft 
SKcnoHeHTbi, nojiyneHHbie B npeAnojionceHHH K(Ä) < K*, ocHOBaHHbie Ha 
(1). CAeJiaB j maroB (4), ecjin (6) He BbinojmeHO, ycTaHaBJiHBaeTca, HTO 
K(A) > K*, JIHöO BbiHHCJineTCH npnÖJiHHceHHoe 3HaneHHe K(A). MTepa-
u,HOHHoe yTOHHeHHe no3BOJifleT HattTH K(A) C TOHHOCTbio, AonycKaeMott 
9BM. üonyTHO npn K(A) < K* paccHHTbiBaeTCJi (J)yHKu,Hfl JlanyHOBa (Hx,x). 

üpHBeAeM K(AO) una onncaHHbix Bbiuie Ao npn 3 < XI < 8: 

M = 3, K = 4.05 • IO4; XI = 6, K = 2.7 • IO 1 0; 

X/ = 4, /c = 3 . 4 - 1 0 6 ; XI = 7, AC = 2 . 5 - 1 0 1 2 ; 

XI = Ç>, K = 3 . 0 - 1 0 8 ; XI = S, /c = 2.3 • 1 0 1 4 . 

3aMeTHM em,e, HTO HHCJIO oÔycjioBjieHHOcTH // jiHHettHbix ypaBHeHHtt, 
cocTaBjiHioiAHX HA + A*H = - C , ou,eHHBaeTCH nepe3 K(A): 

fi<X/K2(A). 

06o6m,eHHeM npoÔJieMbi TypBHi^a HBJIHCTCH 3aAana o AHXOTOMHH Ma-
TpHHHoro cneKTpa. Ilpn 3aAaHHOM p TpeÔyeTca HattTH HHCJIO KopHett 
ypaBHeHH« det(A — XI) = 0 TaKHX, HTO Re A < p H TaKHX, HTO Re A > p. 

B HaCTHOCTH, eCJIH p = 0, HaAO BbIHCHHTb CKOJIbKO KOpHett Jiê CHT B 
jieBott, a CKOJIbKO B npaBOtt nojiynjiocKOCTH H ecTb JIH HHCTO MHHMbie 
A = iuj. C 3aAanett o AHXOTOMHH Mbi BCTpenaeMCH, HanpHMep, B 3aAane 
o nocTpoeHHH MaTpHAbi TpHHa G(t), orpaHHHeHHOtt npn —oo < t < +oo H 
yAOBJieTBopflioiAett ypaBHeHHK) 

|C(0=AG(*)+ *(*)•/; (8) 

pa3peuiHMOMy jiHiub eanH Ha MHHMOH OCH HCT A3(A). u p « STOM 

n+ = G(-0)[G*(+0)G(+0) + G*(-0)G(-0)]-1G*(-0), 
n_ = G(+0)[G*(+0)G(+0) + G*(-0)G(-0)]-1G*(+0) (9) 

— opToroHajibHbie npoeKTopbi HHBapnaHTHbix AJIA A noAnpocTpaHCTB c 
Xj(A) > 0 H c Xj(A) < 0, cooTBeTCTBeHHo, pa3MepHOCTeft Xl± = t r l l ± . 
OTMCTHM en;e paBeHCTBa 

etAG(-0) = etAU+G(-Q) = e M n +II + G(-0) (t < 0), 

etAG(+0) = etAU~G(+0) = e t A n-II_G(+0) (t > 0). ( 1 0 ) 
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Mbi npeAJioacHJiH [5] B KanecTBe KpHTepna AHXOTOMHH BejiHHHHy K(A) = 
2\\A\\-\\H\\(H = H++H-),rpß 

/"OO 

H+ = / G*{t)G{t) dt = G * ( + 0 ) î / + > G ( + 0 ) , 
Jo 
f° 

H-= G*{t)G{t) dt = G*(-0)y(-)G(-0), 
J — OO 

»<+> = f L e t n " r 6 U n - n J f , 
Jo 

/»OO 

y{~)= U+e-m+A'e-tAU+U+dt. 
Jo 

(H) 

(12) 

ECJIH npeABapHTejibHO BbiHHCJiHTb G(±0), U±, TO AJIH pacneTa HHTerpajiOB 
(11), (12) MoxcHO Hcnojib30BaTb npoAecc (5). 

IIoKa3aHo, HTO ||G(£)|| < K(A) exp[—\t\ ||^4||//c(i4)]. BMCCTO G(t) yAOÔHo 
paccHHTbiBaTb MaTpnubi TpHHa Gn(t) KpaeBbix 3aAan Ha KOHCHHOM HHTep-
Bajie |*| < n/(2||A||) TaKHe, HTO G'n(t) = AGn(t) + 6(t) • / , Gn[n/(2P| |)] = 
Gn[-n/(2| |4| |)] . npH 3TOM 

fc=+oo 

Gn(t)= J2 G(t + kn/\\A\\), 

fc=-oo ( 1 3 ) 

IICW - G(t)|| < 2«(A) exp [ - ^ ] • {l - exp [- -£-] } " 

H ecjin K(A) < 00, MaTpHUbI 
n£n) = Gn(T0)[G;(+0)Gn(+0) + G^-OWni-OT'GZiTO) (14) 

CTpeMHTCH npn n —• +co K npoeKTopaM II±. 
rioJiOMCHB P0 = QQ = ( l / \ / 2 ) / , onpeAeJiHM nocjieAOBaTejibHo P%+it Qi+i H 

BepxHHe TpeyrojibHbie Ri+i H3 cjieAyiomnx paBeHCTB (r = 1/(2 | |J4| | ) ): 

0TA 

Ri+u fij+ifii+i + 3+i*+i = 7> (15) s"rA Pi 

peajiH3yioiAHx H3BecTHbitt opToroHajibHO CTeneHHOtt MCTOA AJi« cocTaBHOtt 
KJieTOHHo AHaroHajibHott MaTpnu,bi yABoeHHoro nopHAKa c AnaroHajibHbiMH 
KJieTKaMH e±rA. JlioSoe pemeHHe MaTpHHHoro ypaBHeHHH Z1 — AZ, onpeAe-
jieHHoro Ha OTpe3Ke [—nr,nr\ c BbiKOJiOTOtt TOHKOH t = 0: [—nr,0) U (0,+nr], 
yAOBjieTBopaioiAee ycjioBHK) Z(—nr) = Z(+nr) AonycKaeT npeACTaBJieHHe 

7M-!e*AQnTn (-HT < t < 0), 
(0<t< nr), 

c HeKOTopott Tn. B nacTHocTH Z(-0) = QnTni Z(+0) = PnTn. ECJIH 

nojiOMCHTb Tn = (Pn — fin)"1» TO ^(+0) - Z(-0) = J, H, cjieAOBaTejibHO, 
Z(0 = Gn(t). nosTOMy 

Gw(+0) = />„(/>„ - Qn)-1 = PnTn, 

G„(-0) = fin(^n - fin)"1 = QnTn. 
(16) 
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Oî eHKH: 

l|î ,-1 | |<2, 

| | T n | | < 2 K ( A ) | n - 2 e x p 1 — exp 
K(A) 2K(A)\ 

rapaHTHpyiOT B03MO:>KHOCTb BbIHHCJieHHH Gn(+0),Gn(—0), eCJIH TOJIbKO K(A) 

He npe3MepHo BCJIHKO. 

BbiHHCJiHTejibHbitt npon,ecc, ocHOBHbie STanbi KOToporo 3Aecb 6bijiH 
HaMeneHbi, MoaceT 6biTb opraHH30BaH TaK^ce, KaK H onncaHHbitt Bbiuie 
npon,ecc HCCJieAOBaHHH ycTOttHHBOCTH. OH JIH6O npHBeAßT K yTBep:»CAeHHio 
K(A) > /c*, JIH6O onpeAeJiHT K(A),H, U±. RJIR pacneTa npoeKTopoB HC-

nojib3yK)TCfl (})opMyjibi: 

4 n ) = QnQ*n, n!"» = pnp*. 

IIpHBeAeM B KanecTBe HJiJiK)CTpan,HH pe3yjibTaTbi pacneTa K,(A — pi) RJIR 

BepxHett AByxAwaroHajibHott A nop^AKa 21, Ha rjiaBHOtt AHaroHajiH KOTopott 
CTOHT coöcTBeHHbie 3HaneHHH - 2 8 , —27 , . . . , —16, —15, +21 , + 2 0 , . . . , +16, +15 , 
a Ha noöoHHott 1 4 , . . . , 14 (ßcero 13 pa3), 3aTeM 0 H R&nee 7 , . . . , 7 (ßcero 
6 pa3). üpoeKTopbi II_|-, II_ 3Aecb opToroHajibHbi (II+II_ = ü>_II_f- = 0, 
JY+ = 7, XI- = 1 4 ) . 

OKa3ajiocb, HTO K(A) = 8.08 H HTO Ha HHTepBajiax —31.7 < p < 

—10.5, 14.8 < p < 21.3, noKpbiBaiomHX, cooTBeTCTBeHHO, OTpHU,aTejibHyK) 
H nojiOMKHTejibHyio nacTH cneKTpa, K(A — pi) npaKTHHeCKH 6ecKOHeHHO 
(K[A — pi] > K* = 108). Run p JieacaiAHX BHe STHX HHTepßajioB 3HaneHHÄ 
K(A — pi) cjieAyiomne: 

p 
K 

P 
K 

P 
K 

- 6 0 
3.99 

- 4 . 5 
28.2 

12.5 
88 • 102 

- 4 0 
27.9 

- 0 . 5 
8.8 

13.5 
1.3 • 104 

2.05 

1.88 

-32 
•105 

4.5 
7.1 

14.5 
•105 

- 9 . 5 
5.13 • 103 

8.5 
20.4 

21.5 
2.4 • 107 

- 8 . 5 
9.91 • 102 

10.5 
62.9 

22.5 
1.78 • 104 

- 6 . 5 
99.99 

11.5 
1.7 • 102 

23.5 
1.56 • 102 

I4TaK, AHXOTOMHH cneKTpa A Ha nacTH Re A > 0, Re A < 0 ocymecTBHMa, a 
nacTH cneKTpa Re A < 17.5, Re A > 17.5 npaKTHHeCKH Hepa3AejiHMbi, XOTä 
npn A = 17.5 ToneK cneKTpa HeT. 

Bonpoc o TOM, KaK AOJIMCHH CTaBHTbca cneKTpajibHbie 3aAann BO3HHK 
H3 paccMOTpeHHH npHMepoB cneKTpoB nocjieAOBaTenbHOCTett pa3H0CTHbix 
onepaTopoB [7]-[10]. OTMCTHM TaKMce nocTpoeHHbitt HeAaBHO (CM. [11]) 
npHMep MaTpHAbl, CneKTpOM KOTOpOtt C ÖOJIbUIOH TOHHOCTbK) MOryT CHH-
TaTbCH Bce TOHKH AByx njiocKHX o6jiacTett BbinypHott 4>opMbi. 9 T H oÖJiacTH 
He yAaeTCH OTAejiHTb APyr OT Apyra npHMOtt HJIH oKpy^CHOCTbio H, nosTOMy, 
Hejib3H nocTpoHTb OTBenaioiAHe HM npoeKAHOHHbie onepaTopw e noMoniibK) 
QÄ-ajiropHTMa HJIH opToroHajibHO cTeneHHoro MCTOAä. 
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Pa3o6paHHbitt noAXOA K ycTpaHeHHK) naTOJiornnecKHx cHTyan,Htt B 3aAane 
o pacneTe cneKTpa npoH3BOJibHbix MaTpnu, COCTOHT B H3MeHeHHH <}>op-
MyjinpoBKH 3aAanH Ha Apyryio, ôojiee onpeAeJieHHyio H, K TOMy »:e, cne-
AHajibHO opneHTHpoBaHHyio Ha Bnojrae onpeAeJieHHbie npHjioaceHHH. 

B p«Ae APyrnx 3aAan jiHHettHott ajireÔpw naTOJiornnecKHe CHTyaijHH 
B03HHKaioT He noTOMy, HTO pemaeMaa 3aAana njioxo nocTaBJieHa, a noTOMy, 
HTO Ha nepBbitt B3IVIäA ecTecTBeHHbitt ajiropHTM ee pemeHHH oÔJiaAaeT 
CKpbiTbiM, He öpocaioiAHMCH B rjia3a Ae(J)eKTOM. Ero TpyAHO OÔHapŷ KHTb H 
nosTOMy TpyAHO ycTaHOBHTb. 

3Ta CHTyaAHÄ 6yA©T npoHjijnocTpnpoBaHa Ha npnMepe ajiropHTMa HC-
HepnwBaHHa — npHBeAeHHH cHMMeTpHHHott TpexAHaroHajibHott A K AH-
aroHajibHOMy BHAy nyTeM nocjieAOBaTejibHoro aHHyjinpoBaHHH ajieMeHTOB 
no6oHHott AHaroHajiH. IIpeABapHTejibHo Hy ĉHO paccMOTpeTb 3aAany o BH-
HHCjieHHH coÔCTBeHHoro BeKTopa A npn y^ce npnOJiH^ceHHO BbiHHCJieHHOM 
X(A)} KOTopoe, HanpHMep, HattAeHo MCTOAOM ônceKuntt. 3Ta nocjieAHaa 
3aAana COCTOHT B pemeHHH OAHOPOAHBIX ypaBHeHHtt 

(d\ — X)u\ — bzU2 = 0, 

- bjUj-i + (dj — X)uj - bj+iUj+i = 0 , 2 < j < m - 1, 

- bm^m-l + (dm ~ A)wm = 0. 

y Hac BcerAa Bce bi > 0. MOECHO, HanpHMep, nojioacHB u\ = 1, HattTH, HTO 
U2 = (cfe —A)/Ò2» a Bce nocjieAyiomHe uk(3 < k <m) HattTH H3 peKyppeHTHbix 
cooTHomeHHtt uk = [-bk-iuk-2+(dk-X)uk-i]/bk. B STOM pacneTe nocjieAHaa 
CTpoKa (—bm ,dm) MaTpnubi A He ynacTByeT H npoBepKa Toro, paBHa JIH 
HyjiK) nocjieAHHa KOMnoHeHTa vm BeKTopa HeBH3KH V = (A — XI)u Mo^ceT 

HCnOJIb30BaTbCH AJIJI KOHTpOJIH BbIHHCJieHHtt. 
0Ka3biBaeTCH, HTO HHHTOECHO Majibie norpeniHOCTH onpeAeJieHHJi co6-

CTBeHHoro HHCJia MoryT noBjienb 3a co6ott KaTacTpo<})HHecKoe HeBbinojmeHHe 
peinaeMbix ypaBHeHHtt. PaccMOTpHM CHMMeTpHHecKyio HKoÔneByio MaTpnuy 
nÄToro nopHAKa, Ha rjiaBHott AHaroHajiH KOTopofl CTOäT 2, 1+6, 26, 1 + 6, 2, 
a Ha noÔOHHofl —1, — 6, —6, - 1 . y Hee cymecTByeT H30JinpoBaHHoe 
coÔCTBeHHoe 3HaneHHe B HHTepBajie (0,36). ECJIH 6 oneHb Majio, MOECHO 

CHHTaTb A « 0. IIOJIOXCHB U\ = 1 H BbIHHCJIHB, KaK onHcaHo Bbiine, 
ocTajibHbie KOMnoHeHTbi u = (1, 2, 2 + 1/6, 2 + 2/6, 3 + 2/6)T', noJiyHHM 
BeKTop HeBH3KH v = (0, 0, 0, 0, 4 + 2/6)T. Ilpn STOM, ecjin £ —• 0, 
TO ||f/||/||u|| = (4(5 + 2)/y/2262 + 245 + 9 - • §. OnncaHHoro napaAOKca 
MODKHO H36e»caTb, ecjin OTHoineHwa Pi = Uì-I/Uì, o6pa3yioin,He nocjie-
AoBl^ëJïbHacTirinTypMar cv^HaJTër^^Mïï^h^^i^TO^iMl/i npeÄocTopo^c-
HOCTHMH cjieBa HanpaBO no (})opMyjiaM, B KOTopwx & = d{ — A, P{ = òi = 0, 
P( = bi/(gi-i — 6 i_iP/_ 1 ) , a 3aTeM em,e pa3 cnpaßa HajieBo: &m+i = 0, 
^m+i = °°> PI1 = (Oi - bi+i/Pi+i)/bi H> Bbi6paB no npaBHjiy, KOTopoe 
Mbi npHBeAeM Aajibine, i = io, nojioacHTb /* = P[ ecjin i < io, Pi = P" 

ecjin % > io- IIpeacAe, neM onncbiBaTb npeAOCTopoacHOCTH, KOTopbie 
HaAO co6jiK)AaTb npn pacneTe nocjieAOBaTejibHocTett IIlTypMa, H cnocoS 
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BbiÖopa io, HaAO BBCCTH B3aHMHoo6paTHbie cnenjiajibHbie HenpepbiBHbie 
MOHOTOHHbie 4>yHKU,HH u = w(a, 0,6,7) , 7 = 7(0,0,6,0;), onpeAejieHHbie npn 
- 0 0 < 7 < +00, - 0 0 < (jj < +00. C noMOin,bK) 9THX 4>yHKu,Htt (a,b > 0) 
ocym;ecTBJiÄeTCH yHH(J)opMH3ai;HH COOTHOUICHHH tgu) = b/(g — atg^). ECJIH 

nOJIOECHTb Pf = tg <Pi, P(! = tglßi, TO <Pi, ißi OKaMCyTCH CBÄ3aHHbIMH paßeH-

CTBaMH tpx = 0 , (pi = u(bi,di - A , & î _ I , ^ î - I ) (i > 1), ißm = (n - |)7T, 
ißi = 7(6 i+i,dî+i - A,&i,-0i+i) (i < m). 

ECJIH A — coÖCTBeHHoe 3HaneHHe A = An, TO ipi = ißi. TeopeMa 
IIlTypMa, nepe(J)opMyjiHpoBaHHaH B TepMHHax <pi, ißi, yTBep:»CAaeT, HTO 
npn yßejiHHeHHH A Ka^cAoe H3 (fi B03pacTaeT, a Ka:scAoe H3 ißi y6w-
BaeT. MOSKHO 3Ty TeopeMy o6o6m;HTb; yKa3aB HanpaßjieHHH H3MeHeHHH 
<Pi, ißi npn HanpaBJieHHOM H3MeHeHHH jiioÖoro napaMeTpa bj,dk) ai. 

I"Iojib3yHCb 3THM o6o6ni;eHHeM, HeTpyAHO TaK opraHH30BaTb npou,ece BW-

HHCJieHHH Pff Pjf, npHMeHHH HanpaBJieHHbie OKpyrJieHHH C H3ÖbITKOM HJIH 
HeAOCTaTKOM, HTo6w <Pi, iß", cooTBeTCTByiomne BbiHHCJieHHbiM nocjieAOBa-
TejibHOCTHM IÜTypMa, MaMcopnpoBajiH ipi = ißi cooTBeTCTByionj.He TOHHWM 
Pi, OTBenaioiAHM TOHHOMy 3HaHeHHK) A. JlerKO yÖeAHTbca, HTO npn STOM 

HattAeTCH XOTfl 6bl OAHH HOMep io TaKOtt, HTO V^'0-l
 > Pio-H ^'L < Pio' 

KOTopbitt H AOJiMceH 6biTb Hcnojib30BaH B KanecTBe rpaHHijbi, HaHHHaa c 
KOTopott Pf B cocTaBHOtt nocjieAOBaTejibHOCTH IÜTypMa HaAO 3aMeHHTb Ha 
P". npn peajibHOM pacneTe BbiHHCjiflTb <pf

i} iß" neT HCO6XOAHMOCTH, TaK KaK 
KpHTepntt BbiÖopa io MO ĉeT 6biTb nepe(})opMyjiHpoBaH B TepMHHax P[, P", HO 
npn 3T0M OH MeHee HarjiHAeH. üOAPOöHO onncaHHaH HAea pa3BHTa B [12, 13] 
rAe noKa3aHO, HTO B ou.eHKe TOHHOCTH \\AU — Xu\\ < e\\u\\ Mepa norpeniHOCTH 
e 3aBHCHT JiHUib OT pa3pHAHOtt ceTKH 9BM H He 3aBHCHT OT nop^AKa m HKO-
6neBott MaTpHTCbi A. flaMce ecjin coÖcTBeHHoe 3HaneHHe oKa3ajiocb noHTH 
KpaTHbiM, BejiHHHHa e T&KSLR ace, KSLK H RJIR H30JiHpoßaHHoro A. OHa npo-

nopi^HOHajibHa c HeÖojibniHM K09(j)<})Hn,HeHTOM pa3HOCTH Mê CAy eAHHHu,ett H 
ÔJIHMCattUIHM K Hett H OT Hee OTJIHHHbIM MaUIHHHblM HHCJIOM. 

ECJIH Hcnojib30BaTb Pi = Uì-I/Uì, paccHHTaHHbie c noMonjbio onncaHHoro 
BapnaHTa MeTOAa IÜTypMa, npn onpeAeJieHHH napaMeTpoB u,enoHKH AßyMep-
Hbix Bpam;eHHtt ocymecTBjiHiomett mar HcnepnbiBaHHH, nojio^CHB c\ = 1, 
Ci = (ci-i sgn Pi)/\Je\ + P?, Sì = \Pi\/y/tf + P2

} TO nocjie opToroHajibHoro 
npeo6pa30BaHHH, onncbißaeMoro 3T0tt u,enoHKott, HKOÖHCB onepaTop A onaTb 
npHMeT TpexAHaroHajibHbitt BHA, B KOTOPOM HOBbie sjieMeHTbi rjiaBHott 
AHaroHajiH di H noÖOHHOtt bi 6yAyT: (1 < i < ra - 1) 

di = di+i - (c i+ iCi&i+ i / s i+ i ) + (ci+2Ci+ibi+2/si+2), 

dm = Xn, 6m = 0, bi = 8ibi+1/si+1 (2<i<m-l). 

C Hcnojib30BaHHeM STHX 4)opMyji MOMCHO nocTpoHTb ajiropHTM, o6ec-
neHHBaion;Htt TOHHOCTb BbiHHCJieHHH npeo6pa30BaHHott MaTpHi;bi 

pBMH-^H ttmy/me\\A\\. 
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IIpH 3T0M He ocTaeTCfl MecTa AJIä napaAOKCOB, COCTOJIII];HX B TOM, HTO 

npw oÔbiHHOM nocjieAOBaTejibHOM onpeAejieHHH napaMeTpoB AsyMepHbix 
BpameHHtt [14] H3 ycjiOBHtt, ooecneHHBaioiUHx coxpaHeHne HKo6neBoro 
BHAa y npeo6pa30BaHHOtt MaTpHTCbi, HHorAa B03HHKaK)T naTOJiornnecKHe 
CHTyauHH, npn KOTopwx bm 0Ka3biBaeTcn OTJIHHHWM OT Hyjia. Ha 

3KCnepHMeHTaX BblHCHHJIOCb, HTO 3TH napaAOKCbl B03HHKaK)T KaK pa3 

B Tex cjiynaax, KorAa nocjieAOBaTejibHoe onpeAejieHHe KOMnoHeHT co6-
CTBeHHoro BeKTopa He no3BOJiaeT yAOBJieTBopHTb nocjieAHeMy ypaBHeHHK) 
- 6 m « m _ i + (dm - X)um = 0. 

AHajiorHHHO TOMy, KaK onncaHHbitt npneM npHBOAHT K 6e30TKa3HOMy 
BapnaHTy HcnepnbiBaHHJi TpexAHaroHajibHbix MaTpnu, [15, 16, 18], OH MoxceT 
6biTb Hcnojib30BaH H B CHHryjiÄpHOM HcnepnbiBaHHH AByxAHaroHajibHbix 
MaTpHA. 3Aecb 3T0T npneM COCTOHT B npeABapHTejibHOM onpeAejieHHH 

OTHOmeHHtt KOMnOHeHT CHHryjIHpHblX BeKTOpOB H B BbIHHCJieHHH Hepe3 3TH 
OTHomeHHH napaMeTpoB ijenoneK AByMepHbix BpameHHtt. B pe3yjibTaTe 
nojiynaeTCH HOBbitt BapnaHT SVP-ajiropHTMa, noxoxcntt Ha ajiropnTM 
Tojiyôa-KaxaHa [19], HO AonycKaiomntt CTporoe o6ocHOBaHHe. OTMCTHM, 

HTO KaK npaBHJio, npn peajiH3aiu«ix SVP-ajiropHTMa npHMeHaeTCH HTepa-
UHOHHoe yTOHHeHHe, c noMoiAbK) KOToporo B ÖojibuiHHCTBe cjiynaeB yAaeTca 
H3Ôe3KaTb naTOJiornnecKHx CHTyaijHtt. B ajiropHTMe H3 [15, 18] TpeÔyeTca 
3aTpaTHTb npeABapHTejibHyio paôoTy Ha BO3MO?KHO TOHHWA pacneT CHH-

ryjiapHoro nncjia, HO 3aTO caM npou,ecc HcnepnbiBaHHH ocyiAecTBJiaeTCfl 
6e3HTepau,H0HH0. 
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The aim of this paper is to report on an experiment which sheds new light 
on the possible application of supercomputers (such as the CRAY 1 and 2) in 
analytic number theory.* The work described here is partly a collaboration with 
Enrico Bombieri. 

I. Introduction. History shows that the exploration of virgin territory often 
calls for improvisation and risk-taking. Mathematics is no exception. In the 
absence of theory, intelligent experimentation is often the surest road to progress. 

"If you cannot solve the proposed problem, try to solve first 
some related problem... Do not forget that human superiority 
consists in going around an obstacle that cannot be overcome 
directly, in devising some suitable auxiliary problem when the 
original one appears insoluble." [37, p. 114] 

The search for truth can take many forms. Under the right conditions, theory 
and experiment can be symbiotic. 

Number-theorists have occasionally used "Rechenmaschinen" in attempts to 
gain insight into various types of phenomena. This paper continues on in that 
tradition. 

The advantage to using a supercomputer is that it will typically enable a 
researcher to "see" several orders of magnitude beyond the range of a smaller 
machine. In number theory, this capability can be very important. Essential 
features are sometimes masked by working in too small a regime. 

Let there be no misunderstanding, however. Tools are tools. And risks are 
risks. Any tool has limitations. It often pays to have a healthy skepticism 
regarding the "miracles" of modern technology. The safest approach is to make 
certain that "pure thought" is able to pick up where the computer leaves off. 

Cf. [51]. 

*This paper corresponds rather closely to the author's ICM-86 address. As such, the style 
is a bit informal. 
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II. The Riemann zeta-function. A few words about ç (s) and the Riemann 
Nachlass will help set the stage. 

Everyone is familiar with the Riemann Hypothesis [41, p. 148], In stating his 
conjecture, Riemann forms E(t) (effectively f ( | +it)) and notes that the number 
of zeros having 0 < Re(t) < T is asymptotic to (T/2n) log(T/27re). Cf. [54]. He 
goes on to say: 

"Man findet nun in der Tat etwa so viel reelle Wurzeln innerhalb 
dieser Grenzen, und es ist sehr wahrscheinlich, dass alle Wurzeln 
reelle sind." 

i.e., "One finds in fact approximately this number of real roots 
within these bounds, and it is very probable that all roots are 
real." 

The basis for the "in fact" clause is not clear, even today. Cf. [49, p. 276, line 
9] and [7, pp. 164-166]. The essential point for us, however, is that Riemann 
appears to have based the RH on some sort of explicit computation. This is 
strikingly confirmed by studying the relevant folder in the Riemann Nachlass. 
Cf. [49, pp. 275-276] and Figures 1-3. 

The man noted for his general ideas is also seen to be a master at computation: 
[49, p. 276, paragraph 3]. 

[49] is based on Siegel's careful examination of the "zeta" folder. By reworking 
several of Riemann's (fragmented) formulae, Siegel came up with what is now 
known as the Riemann-Siegel formula for f (s). He later extended this work to 
the case of Dirichlet L-series [50]. 

The Riemann-Siegel formula is ideally suited for modern computers. Recently 
it was used to verify that the first 1^ billion zeros of ç(s) lie along the critical 
line. Cf. [29]. This feat required over 1000 cpu hours on a CYBER 205. 

As far as the Nachlass itself goes, the largest numerical value of t actually 
considered by Riemann seems to be about 100. 

In 1942, Selberg [43] showed that a positive proportion of the zeros of E(t) 
were real. Selberg's constant was later improved to 33% by N. Levinson [26]. 

III. The Epstein zeta function. By definition, 

ZQ(s) = J2Q(m,n)-a (3.1) 
mn 

where (m, ri) E Z2 - {0} and Q = au2 + buv + cv2 is a positive definite quadratic 
form. In order to have absolute convergence, one takes Re(s) > 1. The function 
ZQ(S) can then be continued analytically to C —{1}. The point s = 1 is a simple 
pole. One finds that 

( 4 r ) r ( s ) z « ( s ) - ( - ^ r ) r(1 " S)ZQ{1 ~s)' where A = b2~4ac-
(3.2) 
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The Riemann-Siegel formula is visible on the lower 2/3 of this page. 
(Figures 1-3 reproduced with the permission of the Niedersächsische Staats

und Universitätsbibliothek, Handschriftenabteilung, Göttingen.) 
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The Riemann Nachlass contains many pages like this. 
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Riemann's computation of the first zero of the Riemann zeta function. 
( ^ = 2.250466 corresponds to * s 14.140 .) 
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Various classical zeta functions are "included" as special cases of ZQ(S); e.g., 

u2 + v2 =• ZQ(s) = 4f(a)L(«,x-4), 

u2 + 4v* =» ZQ(S) = 2s(a)L{8tX-4)(l ~ 2~s + 21"28), 

u2 + uv + 3v2 =• ZQ(S) = 2f (s)L(s, x-11), 

u2 + 7t,2 =• ZQ{a) = 2f(S)L(s,x-7)(l - 21-« + 21"28). 

Xfc denotes the Kronecker symbol (A;/*). 
Investigating how the zeros of ZQ(S) move as the parameters a, b, c vary seems 

like a very natural problem. This is especially true if one hopes to understand 
the zeros of, say, f (s) from a wider (more dynamic) perspective. 

One is reminded here of identities like 7r2/6 = Y^i n~2 which become com
pletely transparent only when viewed in the correct "ambient" space. 

In the case at hand, let R(T) = {10 < Im(s) < T} and 

N(T) = the number of zeros of ZQ(s) in R(T), 

N6(T) = the number of zeros of ZQ(s) in Z(T) D {\Res - ±\ > 6}, 

NCrit(T) = the number of zeros of ZQ(s) in R(T) n {Re(s) = \). 

Quite generally, one knows that 

N(T) = - \og(AT) + 0(log T) (3.4) 

where A = |A|1/2(27reA)-1, A = è2 - 4ac, X = min{Q(m,n):m2 +n 2 ^ 0}. In 
addition: 

lim iVcrlt(T) = oo; (3.5) 
r—•oo 

cf. [22]. 
When Q has rational (equivalently: integral) coefficients, we can assert that 
(i) NCTit(T) > (constant)T; 
(ii) N6(T) = o[N(T)] for every 6 > 0; indeed N6(T) = 0(T); 
(iiii) unless ZQ(S) admits a natural Euler product, iVi/2(T') > (constant)T. 
Cf. [6, 25, 33, 39, 56]. Assertion (iii) shows that the "typical" ZQ(s) has 

many zeros o^the critical line. Assertion (ii), on the other hand, shows that the 
overwhelming majority of the zeros lie either on or else very close to Re(s) = ^. 

In cases where ZQ(S) admits an Euler product (cf. (3.3)) we certainly expect 
that NCTit(T) ~ N(T). The generalized Riemann Hypothesis would (effectively) 
say that Ncrit(T) = N(T). 

Prior to studying trajectories of off-line zeros, it makes sense to ask what can 
be said about 

J ä o ^ r p forgeneralQ- (3-6) 

The importance of improving estimate (i) was already noted by A. Selberg [45, 
p. 196 (bottom)] in 1946. 
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Modification of a recent work by S. Voronin [57] would seem to say that 
something like Ncr-lt(T) > ciTexp^loglogloglogT)1/2] holds for a wide class 
of rational Q. Voronin's techniques are an extension of [42]. 1 

This is where matters stood in December of 1983. In short, no one had any 
clear notion of what might ultimately happen even for the simplest non-Euler 
cases. 2 

Influenced by [16, pp. 105-106], Bombieri had suggested somewhat earlier 
that we might wish to try some computer experiments in this area. See also [23, 
35]. 

IV. The Fourier series approach. For arbitrary values of a,b,c, ZQ(S) 
can be computed by relating ZQ(S) to an appropriate Eisenstein series Eo(z; s) 
onPSL(2,Z); i.e., 

1 ' 3 

* 8 ) = 2 E C T {z = x + iv,y>0}. (4.1) 
m,n ' ' 

The choice of z is determined by Q. The function EQ(Z;S) is an eigenfunction 
of the non-Euclidean Laplacian with respect to z. From the Selberg theory [15, 
47] one knows how to expand EQ(Z; S) as a Fourier series. Specifically, 

^-aT(s)E0(z;s) = (iy~1/2T(s)ç(2s) + (^)1/2~aT(l-s)ç(2-2s) 

OO 

+ 4y/7T ^2 n-A-lRa2A+2iR(n)KA+iR(2irny) cos(2?rna;). 
n = l 

(4.2) 
Here s = \+ A + iR and 

K„{t) = \ f e-*cosh V * dt = the familiar Bessel function. (4.3) 

There is no loss of generality in assuming that R > 0. We denote the LHS of 
(4.2) by <f (*;*). 3 

Bombieri and I began our collaboration by implementing (4.2) on a fast scalar 
machine, a CYBER 845, at the University of Minnesota. The terms T(s) and 
$(2s) were easily handled by means of Stirling's formula and Euler-Maclaurin 
summation. Cf. [8, pp. 3(2), 47(1)] and [7, 19]. 

The real difficulty is KA+iR(2irny). Straightforward numerical integration of 
(4.3) does not work. This stems from the fact that KA+iR(2irny) is ridiculously 

^smaHTIndeeap^^^ ——-— ^^^=^~~—== - __— — 

(e"**/2 , 1<X<R\ 
KA+iR(X) = roughly j e _ Ä a r c s i n ( Ä / x ) _ 0 ^ X > R j • (4.4) 

1 Selberg was aware of a result analogous to [57] when he wrote [42]. 
2For instance, u2 + bv2. 
3Note that £(z\s) is real for Re(s) = | . 
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Here A = 0(1) and R » 1. Note that the brace is dominated by e~nR/2. 
The source of the difficulty is now apparent. Loosely put, think of A and X 

as fixed. The integrand in (4.3) effectively varies from 0 to 1 in absolute value. 
Because of (4.4), massive cancellation must somehow occur. Simpson's rule is 
additive, however. Each term consists of a certain number of bits plus garbage. 
When these terms are all added together, the true answer "cancels out" leaving 
only garbage behind (i.e., no significant digits). This effect can already be seen 
at R = 40. 

To solve this problem, we deform the path of integration in a manner similar 
to stationary phase. This approach enables us to compute exp(|i2)ÄA+iRpO 
quite accurately (10 ~ 12 places) for R out to around 100,000. Compare [24].4 

Let fi = exp(|fi)<f. We now take A = 0 in (4.2). After 4 to 5 weeks of addi
tional code optimization, the program for £\(z\ ^ +iR) was finally implemented5 

on the CRAY-1 at the University of Minnesota. 
The basic idea was to "graph" <fi (z\ \ + iR) on randomly selected i?-intervals 

for a variety of z. We proposed to study NCT[t(T)/N(T) by evaluating: 

Nctìt[Ri,R2Ì w i t h r M _ t LS)=t-\og(
tA. (4.5) 

7T \7re / LZ(R2) — Lz(Ri) 

Cf. (3.4). 6 '7 

The sample intervals [Ri,R2[ should obviously be taken sufficiently long, 
though how long is not immediately clear. Certain indications can be obtained 
by reviewing the "error term" in (3.4). Note that O(logr) is more properly 
written as 0[log(Ty)]. Cf. [5, pp. 82, 102]. 

We tentatively decided to use "chunks" of 100. 
The computation of <fi (z; i^+iR) requires essentially R/2fKy numerical integra

tions. Because of vectorization, the CRAY-1 is able to perform such integrations 
approximately 13 ~ 25 times faster than the 845. The 845 proceeds at roughly 
2 ~ 3 million operations per second. 

This program (for the CRAY-1) worked quite well out to around R — 80000. 
Its accuracy could be checked by taking z = 2% (for instance) and then noting 
that the zeros of 1 — 2~a + 21"2* are precisely 

S=2±i( b g t y ' a = a r c t a n ( ^ ) - (4-6) 
Cf. (3.3). At R = 80000 we were still achieving 6 ~ 7 place accuracy. 

The primary reason for stopping at 80000 was a combination of memory 
size + expense. The computation of <?i (z; \+iR) takes approximately 4.9 seconds 

4Further work may be useful on iterative methods. Cf. [53] and [28]. The latter algorithm 
suffers from numerical instability when R » 100. 

5In Fortran 77. 
6To keep A = 1 for \mz + n\2, we take z in the standard polygon for PSL(2, Z)\H. 
7The on-line zeros are counted by making a Lagrange interpolation of high degree and then 

having the computer look for changes-of-sign. The basic Ä-increment was typically chosen to 
be a small fraction of the average zero-spacing. 
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when R = 80000 and y = 2. In 1984, CRAY-1 time was running around $0.25 
per second. Expenses were cut by doing several x in parallel. Cf. (4.2). 

Here then is a sample of our results. (In cases where several numbers are 
listed, this means that several contiguous intervals were done.) 

R 

14000 

25000 

50000 

75000 

av.% 

2/1 

.649 

.615 

.608 

.595 

.610 

62 

x = 0 
2/2 

.619 

.632 

.595 

.598 

.625 

.580 

.645 

61 

2/3 

.661 

.600 

.594 

.625 

.623 

.612 

.621 

62 

2/1 

.611 

.611 

.595 

.616 

61 

2/2 

.622 

.621 

.553 

.586 

.616 

60 

2/3 

.600 

.632 

.570 

.617 

.595 

60 

2/4 

.664 

.617 

.641 

.617 

.653 

.641 

.641 

64 

2/5 

.584 

.641 

.624 

.601 

.635 

62 

R 

14000 

25000 

5000 

75000 

av.% 

2/1 

.704 

.708 

.653 

.688 

69 

2/2 

.693 

.675 

.691 

.646 

.711 

68 

X = Xl 

2/3 

.687 

.720 

.689 

.659 

.689 

69 

2/4 

.713 

.666 

.694 

.722 

.690 

.728 

.687 

70 

Vb 

.795 

.679 

.664 

.682 

.702 

70 

2/1 

.642 

.685 

.672 

.667 

67 

2/2 

.727 

.697 

.691 

.684 

.662 

69 

X = X2 

2/3 

.681 

.660 

.644 

.659 

.712 

67 

V4 

.713 

.705 

.737 

.725 

.714 

.699 

.687 

71 

2/5 

.700 

.685 

.702 

.685 

.708 

70 

2/1 

.670 

.698 

.643 

.727 

68 

2/2 

.683 

.694 

.667 

.672 

.668 

68 

2/3 

.674 

.663 

.683 

.671 

.674 

67 

2/4 

.788 

.781 

.740 

.685 

.728 

.722 

.702 

74 

2/5 

.713 

.710 

.743 

.717 

.705 

72 

TABLE 1. yi = #23, j / 2 = 2.3, y3 = 2.6, y4 = VÏÏ, y5 = VÎO, 
xt = .12831481774213, x2 = .21891437812894 

R 

3000 

14000 

25000 

50000 

75000 

av.% 

x= 0 

y = VE 

.719 

.733 

.654 

.735 

.719 

.761 

.686 

72 

i 
2 

.737 

.759 

.760 

.767 

.758 

76 

0 

v^ 

.759 

.715 

.722 

.755 

74 

0 

.733 

.725 

.760 

74 

0 

v̂ ïô 

.716 

.734 

.734 

.705 

.719 

72 

0 

.744 

.708 

.738 

73 

0 

\ / Ï3 

.765 

.718 

.736 

.736 

.727 

74 

i 

èVT3 

.670 

.688 

.682 

68 

0 

.797 

.778 

.790 

.842 

.790 

.844 

.797 

.814 

81 

0 

y/ÏÂ 

.746 

.738 

.729 

.740 

74 

TABLE 2 
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It should be borne in mind here that these figures represent the first steps 
into virgin territory. In the absence of any apriori model, it is dangerous to draw 
any more than tentative conclusions. Having said this, we restrict ourselves to 
5 remarks. 

(i) NCT\t(T) seems to grow more like TlogT than T. 
(ii) Taking intervals of length 100 was not sufficient to remove local fluctua

tions from (4.5). Formation of averages is therefore necessary. 
(iii) There seems to be evidence of a probabilistic structure (or "trend" ) oper

ating in Table 1. E.g., compare the averages for x = x\, x%, | . Then for x = 0, \. 
Out of all possible integers from 1 to 100, why these?? Bear in mind that the 
averages themselves have fuzz on the order of ±1 . 

(iv) The first 4 chunks of Table 2 correspond to fundamental discriminants 
- 2 0 , - 2 4 , - 4 0 , - 5 2 . Cf. [18, p. 456]. In each case, the class number is 2 and 
the associated ZQ(S) splits into cAa(L\L2 ± L3L4) where the Lj are suitable 
L(s,Xk)- Examples of this type are the simplest kind of Epstein zeta function 
where GRH does not apply. As such, they are of obvious interest. There is again 
evidence of a probabilistic structure (cf. (iii)) though 

1 1 1 1 
77 + 7:iy/5 and - + - i \ / Ï 3 
2 2 2 2 

are a bit disturbing. 
(v) iy/li corresponds to fundamental discriminant —56 and h = 4. i\/îï 

corresponds to discriminant —44 and h = 3. By comparing these columns with 
the others, it becomes apparent that h in itself is not the controlling feature. 

Though these results are promising, further investigation would certainly seem 
necessary. A skeptic (in the back row) simply has to mutter T log T/ log log T. 

V. The Riemann-Siegel approach. There is now an obvious need to pro
ceed along two fronts; specifically, 

(a) to extend Tables 1 and 2 to larger iZ-values; 
(b) to develop some sort of heuristic explanation for what is being observed. 
Direction (a) causes serious problems. In short, one needs to find a much 

faster way of computing £i(z\ \ + iR). 
The obvious thought is to apply some type of "Riemann-Siegel" formula. To 

obtain any significant savings, however, it is essential that the basic sum have 
length cy/R not cR. In general, this will only be possible in simple examples like 
§IV(iv) (where products of Dirichlet L-series appear). Cusp forms create havoc. 
Cf. [2, 11] and §IX (first paragraph). 

After weighing the various possibilities, Bombieri and the author decided to 
restrict their attention to examples like IV(iv), at least temporarily. The sim
plicity of such examples would certainly seem advantageous for item (b) as well. 

In September of 1985, the author proceeded to implement the Riemann-Siegel 
formula for L(s,Xk) on the CRAY-1 in Sweden. It was decided to focus on 5 
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pairs of forms [18, p. 456]: 

u2 + 5i>2 

2«2 + 2uv + 3v2 

A = -20 

u2 + 6v2 

2u2 + 3v2 

A = -24 

u2 + 10v2 

2w2 + 5v2 

A = -40 

u2 + 13v2 

2M2 + 2uv + 7v2 

A = -52 

w2 + 22u2 

2u2 + llu2 

A = -88. 
(5.1) 

The CRAY-1 has an effective memory size of just over 900,000 words. This 
restriction came into play (on our LiL2 ± £3^4 program) beginning around 
R = 5 x 108. The results from Sweden are listed in the first half of Table 3. 

Testing 5 x 108 (with length 1000) takes between 4000 and 7000 seconds 
depending on the size of A. 8»9'10 

This experiment was continued several months later on the recently installed 
CRAY-2 at the University of Minnesota. 

On a good Fortran program, the CRAY-2 can run 2 ~ 3 times as fast as the 
CRAY-1. (We obtained 2.) More importantly, however, the effective memory 
size is something like 256,000,000 words!! 

The results from the CRAY-2 are listed in the second half of Table 3. Numbers 
in parentheses refer to interval lengths. 

Testing 1011 with length 500 takes between 6 and 15 hours depending on the 
size of A. We decided to skip A = -88. 

interval length= (1000) unless otherwise specified 

R 

5 • 105 

2 • 106 

107 

108 

b- io 8 

109 

101 0 

101 1 

x = 0 

y = y/5 

.724 

.745 

.739 

.751 

.755 

.748 

.752 

.752 

1 
2 

*V5 

.759 

.768 

.759 

.764 

.763 

.761 

.760 

.772 

0 

.742 

.745 

.739 

.737 

.745 

.742 

.744 

.751 

0 

.746 

.745 

.749 

.747 

.738 

.753 

.755 

.743 

0 

VÏÏ 
.747 

.750 

.735 

.744 

.740 

.743 

.749 

.744 
(500) 

0 

.723 

.711 

.724 

.730 

.730 

.740 

.728 

.738 

! 0 

>/Ï3 

.737 

.745 

.737 

.751 

.734 

.746 

.750 

.757 
(500) 

1 
2 

.708 

.710 

.726 

.722 

.734 

.732 

.736 

.738 

0 

y/22 

.754 

.769 

.754 

.752 

.754 

.751 

.761 

0 

è^2 
.696 

.693 

.702 

.696 

.714 

.708 

.713 

TABLE 3 

8Our R-S program uses only the Go,Gi,G2 terms in [50, pp. 153, 158]. Gi and G2 are 
computed by means of numerical differentiation. This necessitates (temporarily) passing to 
double precision. Other approaches are possible [10], at least for fc = 1. 

Substitution of judiciously chosen values of R « 50000, 75000 yielded 6 ~ 7 place agree
ment between R-S and §IV. 

10Caution is necessary because the correction term in [50, pp. 157, 158] can vary in size 
by close to 7 orders of magnitude as 17 moves from — ̂  to |fc| — ^. Here 3 < |fc| < 88. The 
intervals in Table 3 were therefore chosen so that \r}/k\ would always remain small. 
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There is now even stronger evidence of a probabilistic structure. Indeed, it is 
beginning to appear that 

lim J, = c (*) 
T-+00 N(T) K J 

may hold with the same c in all 10 examples. Specifically, .75 < c < .77. (But 
note the "slow-poke" on the outside track.) 

VI. Heuristic lower bound. The experiments in §V were actually not done 
in the dark. Influenced by §IV, the author had already made some progress on 
§V(b). 

Although limitations of space prevent us from giving complete details, we can 
provide a sketch. The following argument is heuristic. 

Consider any Epstein zeta function of type cAa(LiL2 ± L3L4). Cf. (5.1). In 
accordance with (9.1), we have Lj = L(s,Xk •) and 

—N = k\k2 = fcßfc^ 

Form el<p*Lj as in [50, p. 158]. It is easily verified that <pi -f (p2 = <ps + tp±. Let 

Zx = e ^ + ^ ) L i L 2 , Z2 = &*>*+**) L*LA, (6.1) 

The functions Zj are real along Re(s) = ~. By abusing the notation, we can 
write Zj(x) in place of Zj(\ + it) for t » 0. 

We want to study the zeros of Z1(x) - Z2(x), say. To do so, assume GRH. 
Treat the zeros of Z\ and Z2 as points along the z-axis. Their average spacing 
(as x —• 00) is \. Similarly for Li though here the spacing is 1. 

In both cases: it is useful to think of the associated sequence of rc-values as 
defining a kind of point process [3]. 

Let a and b be successive zeros of Zi(x). For the sake of definiteness, assume 
that Zx(x) > 0 for x G (a,b). Let £ 1 , . . . , & be the consecutive zeros of Z2(x) in 
(0,6). We need not concern ourselves with zeros at the endpoints. 

If I = 1, a typical configuration is: 

l i t * " ? " " ! sgn(̂ ) 

, ++ f - * -M-+ + f t f , s g n ^ ) . 

a b 

Apply the intermediate value theorem to Z2(x)/Z\(x) on (a, f i ) . We immedi
ately obtain at least one zero of Z\ — Z2. 

A similar analysis can be carried through for each / and each configuration of 
signs. In so doing, it is important to make a distinction between "accidental" 
and "forced" zeros. The zeros for / = 1 are "forced." They are inescapable. To 
illustrate the concept of "accidental" zero, look at / = 0 and the configuration 
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I - H - f t ^ t t f t f + f f sgn(Z2) 

, + »»»»*»***+++, sgn(Zi). 
a 6 

The equation Z2(x)/Zx(x) = 1 has a solution iff r&n\a<x<b(Z2/Zx) < 1. This may 

or may not be the case. Zeros arising from such cases are called "accidental."11 

One can now do a careful bookkeeping of all the possibilities. The key point 
is how often each type of configuration takes place in the long run. In other 
words, what percentage of the [a, b] have such-and-such property. 

Let Pi be the percentage (i.e., fraction) of [a,b] containing exactly I zeros of 
Z2. The bookkeeping shows that, for 0 < x < X, the number of "forced" zeros 
will asymptotically exceed 2 ß X i Pk)X = 2(1 - P0)X. For 1 < * < T, this 
corresponds to 

A strengthened form of Montgomery's pair correlation conjecture [32] now 
enters the picture. This conjecture essentially states that (statistically) the zeros 
of Li will imitate eigenvalues of random Hermitian matrices of large dimension 
as x —• oo. The latter statistical ensemble is known to mathematical physicists 
as GUE; it has been studied quite extensively [1, 30, 31, 38]. 

Let {xn} temporarily denote the consecutive zeros of Li. Let Wm(x) Az be the 

fraction of n for which xn+m-xn e (x, x+Ax). Let Wm(x)Ax be the correspond-
o 

ing fraction for GUE. By the strengthened PCC, we must have Wm(x) = Wm(x)-
The original PCC merely asserted that: 

oo / . \ 2 oo 

E ^ ) 3 1 - ^ =£ (̂*)- (6-4) 
m = l ^ ' m = l 

A. Odlyzko [34] has used supercomputers to tabulate large numbers of zeros 
of ç(s) and has found excellent agreement with the conjectured identities. See 
also §X(F). 

In the present case we require Z\ not Li. This change presents little difficulty 
from the point-of-view of statistics. The essential point is that, heuristically, 
the functions L\ and L2 should be statistically independent; compare [12] and 
§VII. The same goes for their zeros. Hence the process associated with L\L2 is 

—simply-thesuperpositionoftwo=independenirprocessesr£l^and=]&2^Thelunctrön^ 
analogous to Wm(x) for L±L2, call it Wm(x), can now be computed in terms of 
the distribution functions for the individual Li. In particular: 

Wi(x) = Wx(x) f°°(t - x)Wx(t)dt + U°° Wi(t)dt) . (6.5) 

1 1 Accidental zeros (controlled by the size of some min or max) can occur for any 1^1. 
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Cf. [30, p. 217] or [38, p. 316]. 
But Z\ and Z2 are themselves independent as processes. We therefore have 

/»OO 

Pi= Wi(x)Vt(x)dx (6.6) 
./o 

where Vi (x) is the probability that a random interval of length x contains exactly 
/ zeros of Z2. The functions Vi(x) are known in statistics as Palm-Khinchin 
functions. Cf. [3, §2.4; 21, pp. 39-40; 31, p. 330]. There are simple identities 
relating Vt(x) to Wm(x). E.g., 

i r f°° I2 

The physicists have very precise (but somewhat involved) ways of computing 
o 

Wm (%)> A reasonable approximation can be obtained by taking: 

W1(x) = ^x2ex?(~x2y 
(6.8) 

Wn (x) = the normal density with mean n, 

and standard deviation 
1 

Var(Wi) + -^logn 
1/2 

Cf. [1, 38]. It is now elementary to get approximate values for the first few Pi. 
One obtains 

/>0 = .366, Pi = .345, ;>2 = .225, 
P3 = .054, P4 = .010, Ph = .001 . [ ' ) 

We conclude that at least 63.4% of the zeros of L\L2 — L^L^ lie along the 
critical line. The same argument works for any L\L2 + CL^LA, c ^ 0. Note too 
that only forced zeros have been counted. 

Needless to say, there is good agreement here with Tables 2 and 3. 

VII. Some results of A. Selberg. Let U be a primitive character. Let 
F(t) = L(\ + it, U). By building on his earlier work [44, 46], Selberg was able 
to show (unpublished, 1949) that 

l^^m\5<t<T:^meA,^m&B 
r -ooT L \Arlnln* \Arlnln* 

lAJB 
r2T 

JAJB 

(7.1) 

1 fZ1 

i / \\ogF(t + h)--\ogF(t)\2kdt = 0[\ogk(2 + hhiT)], 0 < h < 1. (7.2) 

These results are discussed (in part, at least) in [9, 55]. 
In connection with §VI, the author noted that similar results could be obtained 

for (L( | + it, Ui),... ,L(\ + it, Un)). Here Uj are primitive and distinct. The 
corresponding extension of (7.1) justifies our earlier remark about statistical 
independence. 

file:///Arlnln*
file:///Arlnln*
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The main identity in all of this is [44, p. 26(4.8), (4.9)]. Compare [54, p. 310 
(top)]. 

V i l i . A dilemma. The key question concerning §V(*) is whether JR has 
been taken large enough to eliminate any possibility of "masking." Cf. §1. 
The observed percentages might simply be a reflection of a common statistical 
"basis" which changes ever so slowly as R —• oo. This is where having some sort 
of heuristic model is crucial. Right now all we have is a lower bound. 

The problem therefore shifts to the accidental zeros. We need to estimate their 
contribution. This can be done, but imposition of certain working hypotheses 
soon becomes necessary. The simplest possibility is to represent Z\ (x) on [a, b] 
as a kind of "quasi-polynomial" A(x)(x — ojv) • • • (x — a\)(x — bi)---(x — few). 
Here a = a±, b = b\. The natural hypothesis is that A(x) is effectively constant 
and independent of b — a (on average).12 

Odlyzko performed some tests with his extensive data for ç(s) and found that 
the correlation between A and b — a indeed disappeared as N | . 

To the extent that N can be fixed (independently of x), something remarkable 
happens. Use of §VII allows one to prove, at least heuristically, that c = 1 ! 

Skeptical, the author tried a 2nd approach based on Hadamard products13 

and the conjectured relation with GUE. Writing A(x) = exp[fijv(z)]j it was 
found that ÜN(X) "should" have a Lipschitz constant like y/\og N/N. A slight 
modification of the earlier bookkeeping showed that if c existed at all, it had to 
be 1. 

These results tended to support a view expressed some years earlier by H. 
Montgomery—namely, that c should be l.14 The gist of Montgomery's argument 
was this: By Selberg's results, \Z\\ dominates \Z2\ approximately 50% of the 
time. Cf. §VIL / / this dominance could be shown to occur over long intervals, 
a kind of real Rouché theorem15 could then be used (at least, in principle) to 
force c = 1. 16 

With these developments, the possibility of masking had become very real. 
We decided to "turn off" the CRAY. The machine had taken us as far as it 

could. 

IX. The main theorem. Let — N be a fundamental discriminant. Let K = 
Q(\/—N). The ZQ associated with quadratic forms of discriminant — N are 
essentially zeta functions ç (s, R) associated with ideal classes £ (in K). Cf. [52, 

1 2 We continue to assume GRH. 
^~=~=13 ìTeTf "polynomilIOrinlffmi^dë^-ée. " 

1 4The author first learned of this conjecture from A. Odlyzko. 
15Applied to the dominant Zj. 
1 6The word "dominate" causes problems here since both Z\ and Z2 are frequently 0. The 

idea is to work with envelopes instead. It is not immediately clear, however, that such envelopes 
exist (with probability 1). This fact requires proof. Montgomery used Hadamard products and 
PCC to convince himself that Qjy(x)/y/lnlnx would tend to change more and more gradually 
on \x - a\ | < L as N ]. Here L = large constant and Z - K » . 
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p. 70] and [14, p. 214]. One knows that 

if 

Here ij) ranges over all ideal class characters of K. Real-valued ij) correspond to 
genus characters. For such iß, 

LK(s,iß)=L(s,Xd1)L(s,Xd2) (9.2) 

with appropriate d\d2 = — N. The remaining LK(S, ij)) correspond to cusp forms 
of dihedral type on T0(N). Cf. [48, pp. 208, 241] and [13, pp. 690, 831, 839 
(Satz 24)]. 

Let t/>i,...,^a be distinct, nonconjugate, ideal class characters for K. Let 
c\,..., ca be nonzero reals. Assume GRH. Let 

a 

Z(s) =Y^CjLk(s^j). (9.3) 
i = i 

We say that hypothesis (Ha) holds for a given ipj if 

for every c G (0,1). Successive zeros of LK(S,IPJ) are denoted here by | + 27, 
\ + i y . For notational simplicity we assume that all zeros have multiplicity one. 
a is understood to be positive. 

Two possible ways of ensuring (#1) are: 
(a) to assume that the zeros of LK(S,I^J) define a stationary point process 

with continuous densities; or 
(b) to impose the (appropriate) pair correlation conjecture for LK(S^J). 

THEOREM. Assume GRH and hypothesis (#a) for ij)\,.. .,ipa- Then: 

li™ N7rr!^ = 1 holds for Z. (9.5) 
T-00 N(T) J v ; 

In other words, almost all zeros of Z(s) lie along the critical line. 

The proof is an intricate application of §VII (making no direct use of com
puters). The idea for the proof arose out of a conversation in which Bombieri 
insisted that one should try to eliminate GUE [from method 2 in §VIII] by work
ing directly with the primes ala [44]. Working together we were soon able to 
develop a heuristic proof. The key observation is that 

in\F(t)\ = Re^2^-p-it+ £ hx\x(t) - x ^ + UA(t) (9.6) 
P<" V \i-t\<A/loST 

with £T \UA{t)\2k dt = OkA(T).17 Cf. (6.2) regarding *(*). 
17Here A =any positive constant and z = T f / f c . There is no difficulty extending (9.6) to 

LK(\+it>il>). 
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It took another month or so for the author to make things rigorous. This is 
where the "technicalities" occur. The trick is to define: 

e^LK(\ + in,ißj) = exv[ntj(u)] • U^-t^ioM/iogT^) ~ *(l)] (9-7) 

for \u -1\ < 9M/logT. Here t G [T,2T\. Using (9.6), one can show that 

2fc 

for \Uì\ < 5, say. But —Qtj(u) is essentially convex by GRH. This implies that, 
apart from a £-set of small relative measure, the total variation of Otj(u) on 
\u —1\ < M/logT is OfcfAf (1). This is enough to show the existence of a "proba
bilistic envelope." By the extension of (7.1), the differences ReUtj(t) -ReQtk(t) 
are (in effect) normally distributed with standard deviation cy/inlnT. On most 
portions of [T, 2T], one Qtj(^) will therefore dominate the rest. Hypothesis (Ma) 
and equation (7.2) are used to show that the corresponding e%tpiLK(\ + it,ißj) 
has the right number of sufficiently high peaks. After paying careful attention to 
the exceptional sets, the "pieces" can be "sewn" together yielding ç ^ 1 — M~& 
for suitable ß > 0. Here c = liminfr_oo(^crit(r)/iV(T)). To finish the proof, 
one lets M —y oo. 

Incidentally, k can be fixed at [(1 -j- a)/2a\ + 1. 

X. Concluding remarks. 
(A) For us, Tables 1-3 were an important stimulus. There can be no question 

that the CRAY provided important insight. 
(B) How long does it take to reach (say) 80% in Table 3??? Some indication 

can be obtained by replacing (4.5) by a better statistic. Specifically: using 
2[x(R2) - x(Ri)] in the denominator and then pair-averaging. This procedure 
seems less biased from the point-of-view of §VI. One obtains Table 4. 

ÌH^J 
5 IO5 

2 IO6 

IO7 

HLOL 

5 IO8 

IO9 

IO10 

IO11 

Revised Averages 

- 2 0 - 2 4 - 4 0 - 5 2 

.721 

.738 

.732 

=T743 

.746 

.742 

.745 

.751 

.724 

.727 

.728 

-r728^ 

.729 

.735 

.738 

.737 

.716 

.714 

.714 

-.724-

.723 

.729 

.728 

.731 

.704 

.711 

.716 

-r723-

.722 

.727 

.732 

.738 

- 8 8 

.707 

.715 

.714 

=^711 

.722 

.718 

.727 

TABLE 4 
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Since y/lnìnt goes up so slowly (and e~u I2 down so rapidly!) one informal 
estimate yielded something like R œ 10113. 18 

(C) It is reasonable to expect that ^l%j(u) becomes less and less correlated 
with the individual zero spacings near t as M j . As mentioned in §VIII, this 
would give another proof for 100% (by bookkeeping). 

(D) The 81% in Table 2 is a reflection of the fact that the corresponding ZQ (S) 
involves the L-series of a cusp form. Cf. (9.1) and [36, p. 69]. The associated 
Wm(x) must therefore be modified. Cf. §VI. iy/li is similar except that now 
there are 3 terms, only one of which is cuspidal. [§VI extends to sums of 3 or 
more CjZj but the resulting percentage gets smaller quite rapidly.] 

(E) Work is continuing on many aspects of these questions. There is lit
tle doubt that §IX can be extended to nonfundamental discriminants and to 
more general Euler products. It should also be possible to formulate a kind of 
"min(Ci,.. .,Cfl)" result when GRH is not assumed. Much more interesting, 
however, is what happens when "h = oo."19 Table 1 suggests that Euler prod
uct decompositions may not be the right approach to phenomena of this sort. 
At present: we are unable to establish even a positive lower bound (ala §VI). 
Ideas akin to rational approximation suggest that 100% may persist at least for 
certain kinds of "irrational" Q. 

We are also: 
(i) continuing our investigation of off-line zeros; 
(ii) trying to get a better grip on the statistical model for Z(s) in the "realm" 

of moderate log log t. 
Cf. [4, 20, 27, 40] for several ideas related to (ii). 
(F) In connection with §§V and VI, we tabulated around 150000 zeros of 

various L(s, Xk)- The following plots (Figures 4 and 5) were made by A. Odlyzko 
o 

using 100000 of these zeros. The continuous curve is Wm (z)j m = 1,2. 

Cf. (6.8) regarding Wi and W2. 

18The CRAY-2 takes .42 seconds to compute one value of Z Q ( | + i i ) with t œ 109 and A = 
- 2 0 . At this rate, 101 1 3 would require something like 1044 years. Incidentally, lnln(109) œ 
3.03, lnln(101 1 3) œ 5.56. 

19i.e., for generic z. 
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nearest neighbor spacings 
IO9 < t < IO11 k = 1, -4 ,5 , -8,13, -20, -40, -52 

v> 
c 
<D 

"" 

q 

00 

ci 

(O 

d 

ö 
CM 

O 

O 

/ 

» 

t 1 1 1 ^ * * » * * J > . n 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

F I G U R E 4 

next-nearest neighbor spacings 

FIGURE 5 

Odlyzko also made plots illustrating the spacing distribution of Z\ and Z\Z2. 
Cf. (6.1) and Figures 6 and 7. The continuous curves represent (6.5) [with 

Wi <—>Wx] and its "2-fold" extension. 
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nearest neighbor spacing i 
zeros of pairs of L-functions 

FIGURE 6 

nearest neighbor spacing : 
biquadratic zeta function zeros 

FIGURE 7 
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Finally, in a related direction, we computed Pi empirically (using « 53000 
zeros of Z\) and obtained 

Po S .366, Px S .346, P2 ̂  .222, 

/>3 a .055, />4 = .010, P5 S .001. 

The agreement with (6.9) is striking. 
(G) A more detailed account of all this material will appear elsewhere. Cf. 

[17] for further information about §DC. 
(H) The author is grateful to the National Science Foundation, the Minnesota 

Supercomputer Institute, and Chalmers University of Technology (+ the Swedish 
NFR) for their generous support of this work. 
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Computer-Assisted Proofs in Analysis 

OSCAR E. LANFORD III 

Computers are useful in many ways in mathematical research. They make it 
possible, for example, to perform experiments on a wide variety of mathematical 
objects and to carry out or check complicated algebraic manipulations. In this 
talk I will describe another service they can provide: The proof of strict bounds 
on the results of (possibly very complicated) computations on real numbers. I 
will try to illustrate, in a concrete example, how the availability of this kind 
of help in proving numerical bounds opens up a new way of approaching some 
qualitative questions which have proved hard to treat by more standard methods. 

Interval arithmetic. The techniques to be described here rest on a standard 
and elementary method of numerical analysis known as interval arithmetic. To 
explain this method, we begin by reviewing the rudiments of how computers 
perform arithmetic. 

Standard computing environments provide two ways of working with numbers; 
they may be treated either as integers or as floating point numbers. Since the 
computations we will discuss deal with general real numbers and not just with 
integers, integer arithmetic is not directly applicable to them, and we will ac
cordingly concentrate on floating point arithmetic.1 Floating point numbers are 
manipulated and stored in a sign-exponent-fraction representation with a fixed 
number of digits available for exponent and fraction. The details of the represen
tation vary, but any given format is capable of representing only finitely many 
numbers; we shall refer to these as the representable numbers in that format. 
Elementary arithmetic operations with representable operands often produce re
sults with too many digits to be representable.2 When this happens, what is 
normally done is to "round off" the result, i.e., to return a representable number 
approximating the exact result. In clean computing environments, the returned 

*A possible alternative approach, which we will not pursue here, is to work with rational 
numbers, represented as quotients of integers of "arbitrary" precision, on which arithmetic 
operations can be done exactly. 

2It is also possible, of course, for a result to be too big or too small to be representable with 
the limited range of exponents available, but we will ignore these occurrences for the purposes 
of this schematic review. 
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result may indeed always be the exact result "correctly rounded," i.e., that rep
resentable number which is nearest to the exact result, but this is unfortunately 
far from being universally the case. 

Each individual arithmetic operation, then, can—and usually will—introduce 
some amount of round-off error. The user is normally assured of some bound on 
the amount of round-off error produced in each operation relative to the size of 
the returned result. It is thus possible, at least in principle, to apply elementary 
methods of error propagation to derive strict bounds on the error in the result 
of any given sequence of arithmetic operations. In practice, except for simple 
computations or ones with particularly transparent structure, these theoretical 
error estimates are usually too complicated to be feasible. 

Interval arithmetic, by contrast, is a method by which the computer is pro
grammed to generate error bounds automatically and mechanically. The idea is 
to carry through the computation strict upper and lower bounds for all quantities 
encountered, i.e., intervals guaranteed to contain the corresponding exact quan
tities. The end points of these intervals are representable numbers. To propagate 
these error bounds a step at a time it is only necessary to have available proce
dures for "doing elementary operations (+, - , x,+) on intervals." To see what 
this means, consider the case of multiplication. A procedure for multiplying 
intervals means one which, given two intervals [ai,6i] and [02,62] with repre
sentable endpoints, produces a third interval [03,63], again with representable 
endpoints, such that 

zE[ai,6i] and y e [o2,62] => x x y e [03,63]. 

Once a set of procedures for doing the elementary operations on intervals is 
available, a program for computing strict upper and lower bounds on the result of 
any given sequence of arithmetic operations can be constructed in a completely 
straightforward way by stringing together calls to these procedures. 

Here is one way in which a procedure for multiplying intervals can be con
structed. First form the four exact products a\ x 02,01 x 62,61 x 02,61 x 62. If 
representable numbers have at most n digits, each of these products has at most 
2rc digits. To construct (the best possible) 03, find the smallest of these exact 
products and round down to the next smaller representable number. Similarly, 
to construct 63, find the largest and round up. 

We have presented the above algorithm for multiplying intervals simply to 
show that there is nothing difficult or abstruse, in principle at least, about con
structing such procedures. In practice, the method described would probably be 

Tëplacé'cTTtyranothëf whïchT is lëssTransparent but more efficient. For example, 
unless both oi < 0 < 61 and 02 < 0 < 62, it is only necessary to compute 
two of the four above products. Furthermore, instead of computing the full 2ra-
digit products, it may be advantageous to compute n-digit approximations with 
controlled error—using, for example, floating point hardware—and to enlarge 
the interval found to compensate for the error. This latter approach is easy to 
program and produces fast-running code; although it need not give the smallest 
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possible intervals, the slight loss in sharpness in the estimates obtained is not 
likely to be important. These practical considerations, very important a few 
years ago, are now fortunately becoming less so. The Institute of Electrical and 
Electronics Engineers (IEEE) has recently promulgated a standard for floating 
point arithmetic which provides, among many other things, facilities making it 
easy to construct interval arithmetic procedures which always produce the best 
possible results within the limitations imposed by the set of representable num
bers. Floating point environments conforming to this standard are becoming 
more widely available (at least on small computers). This development promises 
to make good-quality and efficient interval arithmetic much more accessible than 
in the past. 

There are a few warnings which need to be issued about interval arith
metic. The first is that, although it does give correct bounds, it sometimes gives 
excessively pessimistic ones. It is well known to numerical analysts, for example, 
that the error estimates given by interval arithmetic applied in a straightforward 
way to solving simultaneous linear equations can be unrealistically large and that 
a theoretical error analysis gives much more realistic bounds. We will not pursue 
this example, since it involves a long and sophisticated analysis, but will discuss 
briefly a simpler example (which I learned from S. de Gregorio) giving some 
idea of what can happen. The example is the computation of the sequence (xn) 
defined by 

a;n+i = xn — h X xn where xo ^ 0 and 0 < h < 1, 

i.e., the numerical solution of the differential equation dx/dt = —x by Euler's 
method. It is easy to see that, if interval arithmetic is applied to this com
putation, the length of the interval obtained for z n +i is at least 1 + h times 
the length of the interval for xn, and that, even if XQ and h are intervals of 
length zero, some xn will have nonzero length. Thus, the interval obtained for 
xn will have length which grows exponentially with n. On the other hand, a 
simple analysis shows that, under very weak assumptions about round-off error, 
the sequence obtained by computing the a;n's in the straightforward way using 
floating point arithmetic gets and stays very small (as does, of course, the exact 
sequence). Thus: A theoretical error analysis shows that the computed sequence 
is a reasonable approximation to the exact sequence, while interval arithmetic 
gives almost no useful information. 

There is another lesson to be learned from this example. The defining formula 
can be rewritten as 

z n + i = (1 - f t ) xxn. 

It is not difficult to see that applying interval arithmetic to this version of the 
formula does give good estimates. This illustrates a general phenomenon: A 
minor rearrangement in a formula can make a major difference in the sharpness 
of the estimates obtained by applying interval arithmetic to that formula. I 
don't know any nontrivial rules for distinguishing between good and bad ways 
of writing a formula, but the general principle is that it is advantageous to 
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write them with as many cancellations as possible done algebraically rather than 
numerically. 

Another caution: Not all programs doing floating point computation can be 
translated in a straightforward way into useful interval arithmetic programs pro
ducing strict bounds on the results. The translation is easy to do for any program 
which contains no branches conditional on the result of comparing two floating 
point numbers. Difficulty arises in transcribing a conditional branch because the 
two intervals being compared may overlap. In principle, this difficulty could 
be circumvented by following both branches, but repeated conditional branches 
might then make it necessary to trace very many different routes and thus result 
in an impractically slow and complex program. Since efficient and robust meth
ods for such tasks as inverting matrices or finding roots of equations are full of 
conditional branches, this difficulty is a serious one. In the two cases mentioned, 
however, and in many others like them, there is an effective alternative approach: 
First do a computation with ordinary floating point arithmetic to find an ap
proximate solution: then use interval arithmetic (together with some kind of 
perturbation theory) to find an interval around the computed solution which is 
guaranteed to contain an exact solution. In fact, even when the straightforward 
direct application of interval arithmetic is feasible, this latter approach often 
gives much better results. 

The Feigenbaum fixed point. We turn now to a discussion, by example, of 
what is involved in using interval arithmetic to prove a qualitative mathematical 
result. The example to be discussed, which was the first application of the set 
of ideas being described here (see Lanford [6]), is the proof of the following 

THEOREM. The Feigenbaum-Cvitanovic functional equation 

g(x) = --gog(-\x) 

admits an even analytic solution 

g(x) = 1 - 1.5276 • • • x2 + 0.1048 • • • x4 + 0.026 • • • xG + • • • . 

We are not going to discuss here the application of this theorem to dynam
ical systems theory—see the contributions of Eckmann and Sullivan to these 
proceedings—but we will begin with a few orienting remarks about the func
tional equation. 

First of all, it has a scale invariance: If g(x) is a solution, so is ig(x/i) for any 
-nonzero-constant-7T-Heneerif^we=are^nterested-only-in=solutions=with=ö'(0)'̂ =07^ 
there is no loss of generality in assuming that g(0) = 1. Once this normalization 
condition is imposed, putting x = 0 in the equation gives A = —g(l). Hence, we 
can rewrite the functional equation as 

i.e., g is a fixed point for the operator T. 
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It is a fact of experience that any reasonable approach to solving this equation 
numerically works. For example, take n distinct points in (0,1] and look for a 
polynomial of degree n in x2 which is 1 at 0 and satisfies the equation at these 
n points. This is a system of n nonlinear equations in n unknowns to which 
Newton's method can be applied. In practice, Newton's method converges for 
any reasonable initial guess; what it converges to doesn't depend much on the 
choice of points; and the approximate solution obtained in this way shows every 
sign of converging as n goes to oo. 

This certainly suggests that the equation does have a solution. Nevertheless, it 
has turned out to be surprisingly difficult to prove the existence of this solution 
by standard qualitative methods. The first proof of existence used estimates 
proved by computer; it is this proof which will be described here. Subsequently, 
several successively less computational proofs have been given, and the most 
recent of these, due to H. Epstein [3], makes no use at all of a computer or even 
of a calculator. Thus, for the existence of a solution, computer assistance is no 
longer necessary. For applications to dynamical systems theory, however, it is 
not enough to know that the operator T has a fixed point g; one also needs to 
know that the derivative DT(g) of T at g is hyperbolic with one-dimensional 
expanding subspace. The original computer-assisted proof established this along 
with existence. Although a certain amount of progress has been made on this 
question by qualitative methods, no complete conceptual proof has so far been 
given. 

The first step in proving the existence of g is to convert the functional equa
tion to a fixed point problem for a contraction. (The operator T itself is not 
contractive near g\ it has one expanding direction.) We use a simplified version 
of Newton's method. Newton's method for solving Tg = g amounts to searching 
for a fixed point of 

f^f-[DT{f)-\]-l\T{f)-f] 

by iteration. We simplify this iteration by replacing DT(f) by a fixed, explicit 
linear operator T, and/we observe that a fixed point of T is the same thing as a 
fixed point of 

Hf) = f-[T-l)-1[T(f)-f}. 

A simple calculation shows, moreover, that 

D$(f) = [r-l}-1[r-DT(f)}, 

and from this it is easy so see that 
To show that $ maps the ball of radius p about go contractively into itself, it 

suffices to show that 
El. ||[r - l]-i[T - DT(f)}\\ <K<lfor \\f - g0\\ < p. 

E2. | |*(öö)-flö| |<P(l-*)-

Hence, to prove the existence of a fixed point g, all we have to do is to find go, 
T, p, and K so that these two inequalities hold. Here, roughly, is how we choose 
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them: We take for go an accurate approximate fixed point; we then take T to 
be a good enough approximation to DT(go) to make the estimate (El) hold at 
least for f = go and p small enough so that it continues to hold on the ball of 
radius p about 0o • Estimate (E2) can then be expected to hold provided that go 
was a good enough approximate fixed point. Both inequalities are proved with 
the aid of computer estimates; for purposes of exposition, we will concentrate on 
the first of them. 

The above analysis is abstract and general; it applies in any Banach space. 
The next step will be to choose the space in which we work. There is first of all 
a trivial reduction. The candidates / for the fixed point satisfy some conditions: 
They are even functions taking the value 1 at 0. We want to make a space with 
these conditions built in. Thus, we write 

f(x) = l + x2h(x2). 

Replacing / by h as the "independent variable" is simply a linear change of 
variable, and we can reasonably allow h to vary over an open set in some Banach 
space. The operator T acting on functions / induces an operator acting on the 
corresponding ft's, which we will also denote by T. 

We are looking for an analytic fixed point, and so we will work in a space 
of analytic functions. In fact, we choose to work in a space of functions h(t) 
analytic on a disk of radius 2.5 about 1. This choice cannot be justified on general 
grounds; it is made on the basis of a careful (but "nonrigorous") numerical study 
of the fixed point (together with considerations of convenience). Evidently, we 
would not have chosen this domain if we had not had good reason to believe 
that the fixed point whose existence we were trying to prove is analytic on 
fi = {x: \x2 — 1\ < 2.5}. This domain has another, less obvious, property which 
plays an essential role in making our argument work: The mapping x \-> g(—Xx) 
sends a neighborhood of fi into fi. One consequence is that the right-hand side 
of the functional equation 

g(x) = --gog(-\x) 

gives an analytic continuation of g from fi to a strictly larger domain, and 
control over g on fi automatically gives control on this larger domain. A second 
consequence is that T is differentiable on a neighborhood of g and the derivative 
DT(f) is a compact operator if / is close enought to g on fi. 

Finally, we choose a norm; we put 

IHI = X>nf where Mt) = £ £ f ^ r r 
n=0 n=0 V Z'b ' 

The principal reason for using this I1 norm, rather than the supremum norm, is 
that it makes it easy to estimate norms of operators: If T is a linear operator, 
then 

||T|| = sup ||Ten|| where en(t) = (^j-j • 
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We now choose an approximation T to DT(g) which, in the basis (en), is 
represented by a matrix with only finitely many nonzero entries. The choice of 
T, again, is guided by numerical computation. What we need to do, then, is to 
estimate 

supp-ir^TOO-rKH 
n 

for all / in some given (small) ball about an approximate fixed point 00 • We do 
this in two steps: We make a relatively crude estimate on 

\\[T-l)-l[DT(f)-T)en\\ 

valid for all sufficiently large n; we then estimate this quantity by detailed com
putation for the finitely many n's not covered by the large-n estimate. Both 
estimates require the use of the computer. We will concentrate on the second 
step; the first is simpler, but depends on the specific form of DT(f). 

For any given n, and an explicit T, it is not difficult to write an explicit formula 
for [r — l]~1[DT(f) — r]en. This formula is complicated but is build up in a 
straightforward way from a sequence of elementary operations on functions— 
such operations as pointwise sums and products, composition, etc. A convenient 
way to organize the programming of bounds on ||[r — l]~1[DT(f) — T]en\\ is to 
devise a data structure, generalizing intervals for real numbers, giving a finite 
representation for a class of regions in function space, and to construct procedures 
for estimating the results of elementary operations on these regions. The formula 
for [r — l]~~1[DT(f) — T]en can then simply be transcribed into a sequence of 
calls to these procedures to get a program for estimating this quantity. 

Roughly, we specify these regions in function space by giving upper and lower 
bounds on Taylor series coefficients up to some fixed order together with an 
upper bound on the sum of the absolute values of all coefficients of higher order. 
That is: We first pick an N, the degree up to which the coefficients will be 
bounded individually. Once N has been fixed, regions are specified by giving N 
pairs of representable numbers: 

lo < WOj fi < u i , . . . , IN-I < U J V _ I , 

together with a nonnegative representable number e. The corresponding region, 
which we denote by Z/(Zo>̂ o5- • • JN-I^UN-I^) is the set of functions h with 
Taylor series 

such that 
0 0 

k < h{ <U( for i = 0, . . . ,N - 1, and ^ \hn\ < e. 
n=N 

(In fact, although this representation would work, a more complicated one giving 
better estimates is usually used in practice.) 

The sorts of procedures needed to estimate the results of elementary opera
tions on these regions can be illustrated by the pointwise product. We need a 
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procedure which, given two of these representable regions U\ and U2, produces 
a third U3 such that 

u\ G Ui and u2 G U2 => ui x u2 G U3. 

Constructing such a procedure, starting from ordinary interval arithmetic, is 
straightforward in principle and not very difficult in practice. Once these proce
dures are available for a set of about ten elementary operations on functions, it 
is easy to write a program estimating ||[r — l]~1[DT(f) — T]en\\ for any given 
n, and this, as we have already noted, is just what is needed to complete the 
particular branch of the proof which we have been describing. 

Other applications. Strict bounds proved by computer with the aid of in
terval arithmetic have been applied to a variety of problems besides the one 
described in the preceding section. Among these are: 

1. Existence and properties of solutions of other functional equations arising 
from renormalization group analyses in dynamical systems theory: Eckmann, 
Koch, and Wittwer [1], Eckmann and Wittwer [2], Mestel [10], Lanford and de 
la Llave [7]. 

2. Existence of a non-Gaussian fixed point for a hierarchical lattice field 
theory: Koch and Wittwer [5]. 

3. Stability of a semirelativistic quantum mechanical model for matter (via 
estimates on the behavior of solutions of some explicit ordinary differential equa
tions): Fefferman and de la Llave [4]. 

4. Nonexistence of invariant circles for area preserving maps: MacKay and 
Percival [9]. 

5. Realistic estimates on the sizes of Siegel linearization domains: de la Llave 
and Rana [8]. 

Concluding remarks. I would like to close with some general remarks about 
these techniques. Should an argument like the one described above be regarded 
as a valid proof? There are a number of reasons for reluctance to accept proofs 
using these methods. One of them arises from the widespread misconception 
that a "computer proof" is nothing more than a numerical experiment, i.e., that 
errors are controlled by empirical or heuristic methods rather than by strict 
mathematics. I hope that the preceding discussion has made it clear that this is 
not the case. It seems to me that the argument outlined above would certainly 
be accepted as a valid proof if all the verifications were carried out by hand 
(provided, of course, that all details in the analysis can be filled in and that no 

ImistaœiOirëm^ 
a number of genuine issues. 

First: Using a computer to perform verifications raises practical problems of 
reliability. Computers are complicated devices, and many things can go wrong. 
It is certainly not possible to give absolute assurances that errors cannot happen. 
Nevertheless, with reasonable care, it is possible to reduce the probability of error 
to a very low level. 
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Second: There is a problem about how such a proof can be communicated 
and to what extent the result is reproducible, notably on computers different 
from the one on which it was first given. The communication problem can be 
solved by communicating the program, typically written in a high-level language. 
The reproducibility question has two answers, a formal one and an informal 
one. The strict formal answer is to specify completely the details of the floating 
point environment and the interval arithmetic operations. If this is done, it is 
possible in principle-albeit perhaps outrageously difficult in practice—to repeat 
the verification on a different computer.3 The informal answer is that many 
results, such as the existence of the Feigenbaum fixed point, can be made to 
follow from estimates which are not very critical. In such a case, the high-
level language program can be expected to verify these estimates successfully 
independent of the details of the floating point environment in which it is run. 
The program is thus a sketch of the proof; verifications on different computers 
are different ways of filling in the details. The expectation that any reasonable 
approach will succeed in proving the estimates is of course only heuristic; if it is 
not realized, it is always possible to fall back on the complete specification. It 
is, after all, only necesary to prove the desired estimates with one correct set of 
interval arithmetic operations. 

Finally: It is possible to take the position that the only acceptable proofs 
are those in which all steps are carried out by humans, and thus to reject all 
computer-assisted proofs. This position seems to me to be perfectly defensible. 
Like other restrictive views of what techniques should be accepted in mathemat
ics, however, it has to be weighted against the benefits derived from the use of 
these techniques. For example: Proving the existence and basic properties of the 
Feigenbaum fixed point was not an end in itself; it served as a starting point for 
other analyses, carried out by standard qualitative methods. In this case, the 
computer-assisted proof served to eliminate a bottleneck which would otherwise 
have prevented further progress in this area for many years. 

Deciding to accept a computer-assisted proof as valid does not mean that 
one has to be satisfied with it. Proofs vary in the extent to which they are 
conceptual or computational. Computer-assisted proofs are certainly on the 
extreme computational end of this scale. It seems to me that it is always desirable 
to replace a computational proof by a more conceptual one, and especially so 
when the computational proof requires the assistance of a computer. 

It is worth noting, nevertheless, a difference between a computer-assisted proof 
and a computational proof carred out by hand. In a computer-assisted proof, 
there is a clean separation between the conceptual part of the analysis and the 
part which is simply a mechanical verification. Furthermore, the steps to be 
performed in the mechanical part of the proof must be specified completely 
and unambiguously. It is thus possible to read and understand the theoretical 
analysis establishing that a certain computation suffices to prove some desired 

3 This kind of strict reproducibility becomes in fact quite practical if both computers provide 
a set of floating point operations conforming to the abovementioned IEEE standard. 
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result without actually going through that computation. While this can also 
be true of computational proofs done by hand, it need not be and in practice 
there is a strong tendancy to mix the analysis and the computation. Thus, a 
carefully constructed computer-assisted proof may be more transparent than a 
computational proof done by hand even if the amount of computation done in 
the former is much larger. 
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The direct interaction approximation (DIA), due to Kraichnan [1], was the 
first field-theoretical approach to the theory of turbulence. Formulated in terms 
of the Dyson equation, the DIA is characterized as the lowest-order approxima
tion that includes nonlinear corrections to the propagator for the mode v(k,a>). 
It was shown [1] that, in the inertial range, the DIA gives the energy spectrum 
is E(k) oc &~3/2. This result contradicts both experimental data and the Kol
mogorov theory of turbulence which gives E(k) oc fc-5/3, perhaps with small 
corrections due to intermittency. 

The source of this discrepancy between the DIA and the Kolmogorov theory 
has long been understood [2]. The DIA does not distinguish between dynamic 
and kinematic interactions between eddies of widely separated length-scales. 
Small eddies are convected by large eddies in a purely kinematic way, which 
should not lead to energy redistribution between scales. The spurious effect of 
large-scale convection on small scales has been removed from the DIA by use of 
a Lagrangian description of the flow. This Lagrangian History Direct Interac
tion Approximation (LHDIA) [3] leads to the Kolmogorov |-energy spectrum 
with the Kolmogorov constant CK = 1.77 [see (11) below], which is in reason
able agreement with experiment [4]. However, application of the LHDIA to the 
problem of turbulent diffusion of a passive scalar does not lead to quantitive 
agreement with experimental data: The turbulent Prandtl number P t calcu
lated from the LHDIA [4] is roughly 0.14, much smaller than the experimentally 
observed P t « 0.7-0.9. 

In 1977 Forster, Nelson, and Stephen [5] used dynamic renormalization group 
(RNG) methods, originally developed for the description of the dynamics of 
critical phenomena [6] to derive velocity correlations generated by the Navier-
Stokes equation with a random force term. The ideas expressed in [5] have 
been used by others in the context of hydrodynamic turbulence [7-10]. The 
problem is formulated as follows: Consider the d-dimensional space-time Fourier-
transformed Navier-Stokes equation for incompressible flow 

vi(k) = G°/,(fc) - l^G°Plmn(k) jvm(q)vn(k - q)j^+T, (1) 
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where the zero mean Gaussian random force f(fc,cj) is determined by its corre
lation function 

</<(*, " ) / i ( * V ) > = (2ir)d^-12Dok-ypij(k)6(k + fc'). (2) 

Here 
G° = (-iu + vok2)-1, Pi3(k) = ôij - kikj/k2, 

Pijk(k) = kkPij(k) + kjPik(k), 

fc = (k,cj), UQ is the kinematic viscosity, Ao = 1, and the constant y > —2. 
The problem (l)-(3) is formulated on the interval 0 < k < Ao and —oo < u < 
oo, where Ao is a wavenumber beyond the dissipation wavenumber at which 
substantial modal excitations cease. The parameter D0, which determines the 
intensity of the random force, is discussed below. 

The RNG procedure consists of the elimination of modes v-* (fc) with wavevec-
tors satisfying Aoe~r < fc < Ao from the equations of motion for the modes 
v<(fc) with wavevectors from the interval 0 < fc < Aoe~r. At this stage, kine
matic interactions are excluded by construction, and one can expect physically 
meaningful results in the limit fc —• 0. Details of this RNG procedure are given 
elsewhere [5, 11]. 

The RNG scale-elimination procedure gives a correction to the bare viscosity 
uo hi terms of an effective viscosity which takes into account the effect of the 
eliminated modes. The result is 

/ -2e
£r — 1\ 

vr = vo ( l + Ad\Q—-—J , (4) 

where e = 4 + y — d, Ad = AdSd/(2ir)d, and 

Ad~2 d(d+2) ' A d _ T(pr ' ( j 

The dimensionless expansion parameter Ao (which is a Reynolds number) is 
q 

defined as A0 = Do/^o^o- AS we shall see below, the choice of y = d recovers 
the Kolmogorov scaling in the inertial range. 

Varying the cut-off A(r) = Aoe~r we derive differential recursion relations for 
\(r) = (Do/^rfk^Y)1'2 and i/(r) [11]: 

dv/dr = Adv(r)\2(r), df/dr = \2(e - SAdJ
2). (6) 

The solutions to (6) are 
-1/2 

X(r) = \oeer'2 (l + 3Adxl^j^\ 

v(r) = v0(l + ZAd\l?-^\ 

In the limit r —> oo the coupling parameter A (which is an effective Reynolds 
number) goes to the fixed point Ä* = (e/ZAd)1/2 and i/(A) = ( |A d D 0 ) 1 / 3 A- £ / 3 . 
Eliminating all modes with q > fc, we set A = fc and obtain 

v(k) = (§A*A))1 /3fc-£ /3 = 0.4217(2JD0Sd/(27r)d)1/3fc-4/3 (7) 
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when y = d = 3. The coefficient Ad is computed from (5) in the lowest order of 
e-expansion (e —• 0); thus Ad = 0.2 in the three-dimensional case d = 3. 

The energy spectrum can be calculated to lowest order in e from the equation: 
v(fc) = G(k)f(fc), where the propagator G(k) is evaluated with the fc-dependent 
viscosity (7), The result is 

E(k) = 1.186(2JD0Äd/(27r)d)2/3fc-5/3. (8) 

Thus the renormalization group procedure applied to randomly stirred fluid gives 
the Kolmogorov spectrum in the case y = d. 

In order to complete the analysis, it is necessary to relate the parameter Do 
to observables. Consider a fluid described by the Navier-Stokes equation 

dv/dt + (v • V)« = (l/p)Vp + ^oV2w (9) 

subject to initial and boundary conditions. We assume that strongly turbu
lent fluid is characterized in the inertial range of scales by statistically universal 
scaling laws (Kolmogorov spectrum, etc.) which are independent of initial and 
boundary conditions. Thus, the system in the universal regime can be described 
by equations of motion which does not involve any particular initial and bound
ary conditions, (l)-(2) for example, provided the random force in (l)-(2) is 
chosen in such a way that it generates velocity fluctuations which are statisti
cally equivalent to the solutions of (9) subject to initial and boundary conditions. 
In other words, to describe the fluid in the inertial range we may replace (9) with 
the corresponding system (l)-(2) with a properly chosen force. In this case, it 
has been shown [12] that if we assume that solutions of equation (9) in the 
inertial range scale as 

*/(fc) = W£1 /3fc~4 /3 (io) 

and 
E(k) = CK(f 2 / 3fc~5 / 3 , (11) 

then energy balance in analytical turbulence theory requires that the Kolmogorov 
constant CK in (11) and the parameter N in (10) be related as N/C^ — 0.1904. 
Here £ is the rate of energy dissipation in the fluid. Demanding the equivalence 
of (7)-(8) with (10)—(11) in the inertial range gives 

2D0Sd/(2ir)d = 1.094£, (12) 

so that CK = 1.617. 
A similar RNG procedure [11] applied to the equation of a passive scalar gives 

the result that the turbulent Prandtl number P t in the case y = d = 3 is 

= 1.3929, 

so P t = 0.7179. The Batchelor constant Ba is defined by the inertial range 
scalar fluctuation spectrum. Using energy balance in terms of the fc-dependent 
viscosity at the fixed point, we find [11] Ba = CkPt> so Ba = 1.161. Another 
calculation [13] of Ba, based on an RNG modified version of the direct-interaction 
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approximation, gives the same result. The results for the turbulent Prandtl 
number and the Batchelor constant are in close agreement with experimental 
data [14]. 

The renormalization group procedure can also be used for deriving averages of 
different nonlinear operators over the fluctuating velocity field [11]. For example, 
the skewness factor, which is a dimensionless measure of nonlinear transfer, is 
defined as 

where 

dqdp 
A= f ^ J =-iJQiPi{k-q-p)iV1(q)v1{p)v1{k-q-p)-

' (27T)2d+2 

in the limit fc —> 0. Decomposing the velocity field into the components v> and 
vK and eliminating small scales using the forced Navier-Stokes equation (l)-(2) 
we find, in the lowest order in the ^-expansion, that [11] 

A< = -i j qlPl(k -q- Pi)vf(q)vf(p)v?(k -q- p) (2J2(f+2 

1 2D0Sd £ 
420 (2ir)d v*h? 

in the limit fc —> 0 (r —> oo). The same procedure applied to evaluation of B in 
(13) gives: 

< = 1 2D0Sd/(2K)d 

20 v 
in the limit fc —• 0 (r —• oo). Thus 

when calculated at the fixed point of the RNG calculation. Since S<(r) does 
not depend on r in the limit r —• oo, we assume that (14) holds everywhere in 
the inertial range, so S = 0.4878. It should also be noted that the same RNG 
procedure gives the exact result S = 0 in the two-dimensional case d = 2. 

Another important relation can be derived from the Kolmogorov energy spec
trum and formula (7) for the turbulent viscosity. It can be checked readily that 
the total kinetic energy K in the system is K = 1.195£/i/A2, where A is the 
wave-vector corresponding to the integral scale of turbulence. Combining this 
relation with (7) and (12) we derive a relation between v, kinetic energy K, and 
the mean dissipation rate, namely, v = 0.0837üf2/<f. 

The RNG procedure can be used to evaluate each term of the equations of 
motion for kinetic energy and dissipation rate. This leads to a so-called K-
£ model of turbulence. It can be shown [11] that this RNG model implies that 
isotropic turbulence decays as K oc (t — t o ) - 1 , 3 8 0 7 , which is close to the exper
imental data [14] and recent results of direct numerical simulations [15]. The 
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same model, which does not involve any experimentally adjustable parameters, 
gives the von Karman constant [11] K = 0.372 for the logarithmic velocity profile. 

The good agreement of the RNG-predicted constants (CK,Ba,Pt, S, K) with 
experimental data is to some extent surprising since the RNG procedure does 
not take into account local interactions between eddies of similar size. However, 
it has been pointed out [8] that the ratio of time-constants corresponding to 
nonlocal and local interactions is 0(e1/2). Thus, local interactions are weak if e 
is assumed small. It remains to be explained why the lowest-order truncation of 
the RNG expansion in powers of e = 4 works so well. 
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Introduction. The purpose of this report is to draw attention to some non-
trivial connections between the ("continuous") theory of irregularities of distri
bution and discrete mathematics. The object of the theory of irregularities of 
distribution is to measure the uniformity (or nonuniformity) of sequences and 
point sets. For instance: how uniformly can an arbitrary set of N points in the 
unit cube be distributed relative to a given family of "nice" sets (e.g., boxes with 
sides parallel to the coordinate axes, rotated boxes, balls, all convex sets). This 
theory lies on the border of many branches of mathematics (number theory, dis
crete geometry, combinatorics, etc.) and has very important applications, e.g., 
in numerical integration. Here we focus, of course, on the combinatorial aspects 
of the theory. 

As an illustration, we shall discuss first two problems of a discrete nature 
which have fascinating connections with this "continuous" theory. The first 
question is concerned with balanced two-colorings of finite sets in a square (the 
problem is due to G. Tusnâdy). Let P = { p i , . . . ,PJV} be a distribution of N 
points in the unit square [0, l ) 2 . Let / : P —• {—1, +1} be a "two-coloring" of P. 
Let B denote any rectangle in [0, l ) 2 with sides parallel to the coordinate axes 
(an aligned rectangle, in short). Consider the function 

T(N) = sup inf sup 
p f B PiEPnB 

where the supremum is taken over all subsets P C [0, l ) 2 , #P = N, and all 
aligned rectangles B in [0, l ) 2 , and the infimum is taken over all "two-colorings" 
/ of P. Tusnâdy conjectured that N£ > T(N) —» oo. A positive answer was 
obtained in [l]i „ . 

C l ( logiV) 4>T(iV)>c 2 logiV. 

The proof of the lower bound was nonconstructive. Recently Roth [19] investi
gated the following explicit construction: let 

Pa = {({na}, n • TV"1) G R 2 :0 < n < N - 1} C [0, l ) 2 , 
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where {/?} stands for the fractional part of the real number ß and a is an irra
tional number whose continued fraction has bounded partial quotients. Roth's 
theorem states that given any two-coloring f: Pa —• {—l,-f-l}of the set Pa, one 
can find an aligned rectangle B with deviation 

E /(p) 
pePanB 

> c(a)logN. 

The set Pa is well studied in irregularities of distribution and belongs to the class 
of "most uniformly" distributed TV-element sets relative to aligned rectangles. 
What is more, Roth's proof is based on the so-called "Roth-Halâsz orthogonal 
function method" in irregularities of distribution. 

The second problem is as follows: For what set of N points on the unit sphere 
is the sum of all (^) euclidean distances between points maximal, and what is 
the maximum? 

Let Sk denote the surface of the unit sphere in R fc+1. Let P = { p i , . . . , pw} 
be a distribution of TV points on Sk. Let |pi — p3-\ denote the usual euclidean 
distance of p^ and pj. We define 

L(N,k,P)= YI IPt-Pil a n d L(N,k) = maxL(N,k,P), 
l<i<j<N 

where the maximum is taken over all P C Sk, #P = N. 
The determination of L(N, fc) is a long-standing open problem in discrete ge

ometry. For fc = 1, the solution is given by the regular iV-gon (see Fejes Tóth 
[13]). It is also known that for TV = fc + 2, the regular simplex is optimal. For 
N > k + 2 and fc > 2, the exact value of L(N, fc) is unknown. The reason for this 
is that if N is sufficiently large compared to fc, then there are no "regular" con
figurations on the sphere, so the extremal point system(s) is (are), as expected, 
quite complicated and "ad hoc." 

Since the determination of L(N, fc) seems to be hopeless, it is natural to 
compare the discrete sum L(N, fc, P) with the integral (the solution of the "con
tinuous relaxation" of the distance problem) 

TV2 1 f 

~2~ * ïrfS*) J J X ° " X| dt7(x) = Co(fc)iV2' (1) 

where a denotes the surface area, da(-x) represents an element of the surface 
area on Sk, xo = (1,0, . . . ,0 ) E Rfc+1. Note that the constants co(fc) can be 
calculated explicitly (e.g., co(l) = 2/TT, C 0(2) = 2/3), and on the left-hand side 
of (1) the correct coefficient is TV2/2 rather than (^), since in the definition 
of L(N, fc, P) we can write 1 < i < j < N in place oî 1 < i < j < N without 
changing the value. In this way Stolarsky [25] has discovered a beautiful identity. 
It states, roughly speaking, that the discrete sum L(N, fc, P) plus a measure of 
how far the set P deviates from uniform distribution is constant. Thus the 
sum of distances is maximized by a well-distributed set of points. Combining 
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Stolarsky's identity with a result in irregularities of distribution, one can obtain 
further information on the order of magnitude of L(N, fc) (see [5]). 

1. Measure-theoretic discrepancy. It is time to give a brief survey of 
irregularities of distribution. It was initiated by a conjecture of van der Corput 
and the work of van Aardenne-Ehrenfest, and owes its current prominence to 
the contribution of K. F. Roth and W. M. Schmidt. We refer the reader to 
Schmidt's book [22]; see also the forthcoming book by Chen and Beck [9]. 

Let P = {pi ,p2,P3, . . .} be a completely arbitrary infinite discrete set of 
points in euclidean fc-space Rfc. (We can assume that P has density 1, otherwise 
the results below are trivial.) Let B(c, r) C Rfc be the ball with center c and 
radius r. In 1969 Schmidt [20] proved the following pioneering result: Let x > 1. 
Then there exists a ball B(c, r) C Rk with r < x and 

£ l-vol(fl(c,r)) 
p6PnB(c,r) 

>x (fc-l)/2-e 

Here the exponent ((fc — l) /2 — e) of x cannot be replaced by ((fc — l) /2 + 
e). Essentially improving on the earlier result of Schmidt, the following good 
localization of the ball was proved [6]: Let x > 1. Then there exists a ball 
B(c,r) C [0, x)k such that 

£ l-vol(B(c,r)) 
p€Pn5(c,r) 

> x(k-l)/2-*u 

We mention next a far-reaching generalization of the case of balls. Given 
a compact and convex body A C Rfc, denote by a(dA) the surface area of 
the boundary dA of A. The following result shows that for convex bodies the 
"rotation discrepancy" is always large and behaves like the square-root of the 
surface area of the boundary (see [6]; see also Montgomery [16]): Let A C Rfc be 
a compact and convex body. Then there exists A1 = A(r', v ' , A') obtained from A 
by a similarity transformation of rotation r' G SO(fc), translation v ' G Rfc, and 
contraction A' G (0,1] such that 

E l-vol(A') 
p€PnA' 

> c{k){a{dA)Y'2. (2) 

- Note that-(2)~iBnßssentially^^ — — — 
The next result answers an old question of Roth (see [3]): Let P be an arbitrary 

finite set in the disc B(0,r) C R2 of radius r. There exists a disc-segment A 
(i.e., an intersection of B(0,r) with a half-plane) such that 

22 1 ~ area(A) 
pePnA 

> c-r 1/2. (logr) - 7 / 2 (3) 
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Inequality (3) is also nearly sharp. If rotation is forbidden, the situation 
undergoes a complete change. To avoid the considerable technical difficulties 
caused by higher dimensions, we restrict ourselves to the two-dimensional case, 

Again, let P = {pi ,p2,P3, . . .} be an infinite discrete set in R2 . Given a 
compact and convex region A cR2, write 

D[P\A]= J2 l - a rea ( i4 ) . 
pePnA 

For any real number A G [-1,1] and any vector v G R2 , set A(v, A) = {Ax + v: 
x G A}. Clearly A(v, A) is a homothetic image of A. (Note that reflection across 
the origin is allowed, as — 1 < A < 1.) Let 

A[P;A]= sup \D[P;A(v,\)}\ 
|A|<l,v 

and define the (usual) discrepancy of A by 

A[A] = infA[P;Al 

where the infimum is taken over all infinite discrete sets P C R 2 . In contrast 
to the "rotation discrepancy," the (usual) discrepancy A [.A] of a convex region 
A depends mainly on the "smoothness" of its boundary arc (see [7]). If A is 
sufficiently smooth, then A [A] has essentially the same order of magnitude as 
for circular discs. If we have no assumption on the smoothness of A, we can 
guarantee only a much smaller discrepancy: 

A[A] >c( logarea(^)) 1 / 2 . (4) 

Inequality (4) probably remains true if we replace the exponent 1/2 by the 
exponent 1. If true, this is best possible. The important particular case of 
squares was proved by Halâsz [14]. Note that Halâsz's theorem implies Schmidt's 
solution [21] of the classical van der Corput's conjecture. If A is a polygon of 
"few" sides, then (4) is not very far from the truth in the sense that we cannot 
expect larger discrepancy than a power of (log area(A)). 

To get further information of the intermediate cases, one can introduce the 
concept of an approximability number £(A) (which describes how well a convex 
region A can be approximated by an inscribed polygon of few sides. The related 
results in [7] can be summarized as follows: 

(£(A) + log(area(A)))Cl > A[A] > {£(A) + log(area(yl)))C2. 

Note that if we know the equation of the boundary arc of A, then the determi
nation, or at least the estimation, of £(A) is an easy elementary problem. 

We now consider very briefly the case when both rotation and contraction 
are forbidden, i.e., we study the supremum of the discrepancy over the family 
{A+v: v G R 2 } . In contrast to the previous cases, the discrepancy function does 
not necessarily tend to infinity as area(^4) tends to infinity. (Let, e.g., P = Z2 

and A = [0,n)2, n > 1 integer.) However, in the case of circular discs, we can 
guarantee "large" discrepancy for any single value of the radius (see [8]—the 
problem is due to P. Erdös). 

Finally, we mention the "Great Open Problem" of this field. 
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CONJECTURE. Let P be an arbitrary finite set in the cube [0,2;)*, x > 2, fc > 
3. Does there exist an aligned box B C [0, a)* such that 

E l-vol(B) 
pePnB 

> c(k)(logx)k-lf? 

Since 1954 the best lower bound is (logz)^ x^2 (see Roth [17]). 
The proofs of all these lower bounds are based on tools in harmonic analy

sis (e.g., modified Rademacher functions, Riesz products, summability kernels). 
The common idea of all different approaches—to "blow up the trivial error." 
Note that the use of Fourier analysis in the opposite direction (i.e., to show the 
uniformity of sequences) is a classical idea and goes back to H. Weyl ("Weyl's 
criterion" and its quantitative versions, e.g., "Erdôs-Turân inequality"). 

The proofs of the upper bounds are based on ideas from number theory, 
probability theory, and "combinatorial discrepancy theory." 

2. Combinatorial discrepancy. The basic problem of the so-called "com
binatorial discrepancy theory" is how to color with two colors a set as uniformly 
as possible with respect to a given family of subsets. What we want to achieve 
is that the coloring be nearly balanced in each of the subsets considered. As a 
beautiful example, we mention Roth's theorem on long arithmetic progressions 
[18]. Roth proved that coloring the integers from 1 to N red and blue in any 
fashion, there exists an arithmetic progression such that the difference of the 
numbers of red and blue terms in this progression has absolute value > c • TV1/4. 
In this section we discuss some general upper bounds concerning hypergraphs. 
They are interesting on their own, but also they have applications to different 
structures. 

Let X be an arbitrary finite set and X = {Y\,Y2, I 3 , . . . } an arbitrary family 
of subsets of X. We would like to find a two-coloring f:X —• {—1,+1} of the 
underlying set X such that maxyeH I Y^xçy f(x)\ls a s s m a U a s possible. In other 
words, let 

dis(#) = minmax 
/ Yen 

xeY 

where the^ minimum is taken over all f}JX__=ì_{=zl,d-JL}^JKe^ealLdis(X)^the^ 
combinatorial discrepancy of the family #. 

Let d()l) be the maximum degree of #, i.e., 

d(X) = max#{Y e X:x eY}. 
xÇ.X 

The following result gives an upper bound on dis(#) which depends only on 
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d(#), i.e., the "local size" of }f (see Fiala and Beck [10]): For any finite family 

dis(>/) < 2d(X). (5) 

Note that the proof of (5) gives a good (polynomial time) algorithm which con
structs the two-coloring. There is an important point to emphasize here: In 
many applications d()i) is much less than # X and # # . As an illustration, we 
derive the upper bound T(N) < c(logTV)4 (see Introduction), which is clearly 
equivalent to the following result: Let A = (CLìJ), where aij = 0 or 1, be a matrix 
of size N X N. Then there exist "signs" EìJ — ±1 such that 

zLd 2-/ £i3ai3 
t = l 3 = 1 

<c(logiV)4 for alls,te{l,2,...,N}. (6) 

We can assume that N = 2l, where / is an integer. For 0 < p, q < I, we partition 
the matrix A into 2P+Q submatrices, splitting the horizontal side of the matrix 
into 2P equal pieces and the vertical side of the matrix into 2q equal pieces. There 
are (I + l)2 ~ (logiV)2 such partitions. Let us call a submatrix of A special if it 
occurs in one of these partitions, and let # be the collection of all these special 
submatrices. Then by (5), there exists an assignment of ± l ' s so that the absolute 
value of the sum of signed entries in each of the special submatrices is less than 
2d()i) < 2(1 +1)2. Note, however, that any submatrix of A containing the lower 
left corner of A is the union of at most I2 disjoint special submatrices, and (6) 
follows. 

In higher dimensions, the same argument gives the following generalization 
of (6): Let A = (an), where an = 0 or 1, be a k-dimensional matrix of size 
N X • • X N. Then there exist "signs" en = ±1 such that 

n:n<m 

<C(fc)(logiV)2* (7) 

for all m = (mi , . . . ,ra/c) satisfying 1 < mi < N (1 < i < fc). Here n < m if 
and only if U{ < mi for all iE [1, fc]. 

We conjecture that inequality (5) can be improved to dis(#) < (d(W))1/2_,_e, 
where d = d(M) > do(e). The following result justifies this conjecture when both 
#X and #.)/ are "subexponential" functions of d = d()i) ([7]—see inequality (9) 
below). 

Let X be a finite set and M a family of subsets of X. Suppose that there is a 
second family Q of subsets of X such that 

(i) d(g) < d, and 

(ii) every Y E M can be represented as the union of at most t disjoint elements 

ofß. 
Then 

dis(#) < c(t • d • logd • log#^/)1 /2 • ( log#X). (8) 
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In the particular case § = M, we obtain 

dis(K) < c ( d W ) 1 / 2 • l o g # X • log#* . (9) 

We next apply (8) to improve on (7). Let X = {n:an = 1}, let # be the 
family of all submatrices (an) (n < m), Q be the family of all fc-dimensional 
special submatrices, N = 2l, d= (l + l)k, and t = lk. By (8) we have that 

y ^ snan 
n:n<m 

< c(fc, e)(log jV) f c+3/2+e for aU m. 

The proof of (8) is "nonconstructive." The new idea is a combination of 
probabilistic arguments with the pigeon-hole principle. As far as we know, the 
first application of this idea is in [2]. (It was shown that Roth's theorem on long 
arithmetic progressions is essentially the best possible.) Later the same method 
was utilized by Spencer and Beck (see [11, 12, 24]). 

For further results in combinatorial discrepancy theory, see Vera Sós [23] and 
Lovâsz, Spencer, Vesztergombi [15]. 

Finally, we have to remark that there are no general lower bounds on the com
binatorial discrepancy of hypergraphs. To illustrate the difficulties, we mention 
a more than fifty-year-old question of Erdös. 

CONJECTURE (ERDÖS). Let f(n) = ±1 be a function on the set of posi
tive integers. Given arbitrary large constant c there is a d and an m so that 
\Z?=1f(i-d)\>c. 
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Face Numbers of Complexes and Polytopes 

ANDERS BJÖRNER 

Introduction. Let C be a finite polyhedral complex, i.e., a finite nonempty 
collection of convex polytopes in Rd such that (i) when P,Q E C then P flQ is 
a face of both and (ii) if P E C and Q is a face of P then Q EC. Let fi = fa(C) 
be the number of i-dimensional members of C, i > 0, called the iih face number. 

The discovery that the numbers fi are governed by interesting relations is 
due to Euler, whose formula fo - / i 4- f2 = 2 for the boundary complex of 
a 3-dimensional convex polytope, published in 1752, had great impact on the 
subsequent development of combinatorics and topology. By the second half of 
the nineteenth century it was "known" (without fully satisfactory proof, cf. [20]) 
that the boundary complex of a d-dimensional convex polytope satisfies the 
generalized Euler relation 

f0 - fl + h - • • • + ( - I ) " " 1 / , ! - ! = 1 + ( - I ) " " 1 . (1) 

An incompleteness in the 1852 proof of Schläfli was recently rectified by Brugges-
ser and Mani [15]. The first complete proof of (1) is due to Poincaré [36, 37], 
as a special case of the following vast generalization, which is now usually called 
the Euler-Poincaré formula 

fo - fi + h - • • • + ( - l ) d _ 1 / d - i = 1 + A ) - Ä + & - • • • + (-lf-'ßd-i- (2) 

This relation holds for any finite polyhedral complex C with Betti numbers in 
reduced homology ßi — rank//i(C,Z). As is well known, (2) is true also for 
more general cell complexes, but in this paper attention will be limited to finite 
polyhedral complexes, and in particular to the subclass of simplicial complexes, 
which are the two classes of greatest interest in combinatorics. 

The sequence f(C) = (fo, / i , • •., / d - i ) , now usually called the f-vector, has 
been intensively studied for boundary complexes of_convex_d-poLytopes,^an(L 
much information in addition to (1) is available (e.g., see [20, 21, 35, 45]). 
Part of the motivation for interest in polytopal /-vectors has come from linear 
programming in connection with efforts to better understand the combinatorial 
structure of solution sets to systems of linear inequalities (see [29, 51]). The 
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/-vectors f(C) of more general classes of complexes have also received increasing 
attention in recent years (see [13, 41, 44]). 

This paper will present a brief and selective account of some developments 
in the study of /-vectors over the last few years. Particular attention will be 
given to the fact that the linear relations (1) and (2) of Euler, Schiarii and 
Poincaré have been complemented by other linear and nonlinear relations to 
achieve a complete characterization of the /-vectors for simplicial convex poly-
topes (Billera, Lee, McMullen and Stanley; Theorem 4.1) and, similarly, a com
plete characterization of the compatible pairs of /-vectors and Betti sequences 
for finite simplicial complexes (Björner and Kalai; Theorem 2.1). In contrast, no 
such characterizations are presently known for nonsimplicial polytopes and for 
general polyhedral complexes. 

1. M-sequences. In this section we establish some definitions and review 
two important combinatorial theorems. Without further mention, all complexes 
considered are assumed to be finite. 

For any two integers fc, n > 1, there is a unique way of writing 

so that ak > ak-i > • • • > ai > i > 0. Then define 

dk-i(n) = 

and 

afc-i 
(») = 

Also, let d/c_i(0) = 3fc-1(0) = 0. The number-theoretic functions dk and 
dk, fc > 0, play the role of numerical minimal boundary operators for sets 
and multisets, respectively. N(°°) will denote the set of ultimately vanishing 
(sequences of nonnegative integers. 

The following result was found for simplicial complex by Kruskal [30] and 
Katona [25]. The extension to polyhedral complexes is due to Wegner [50]. 

THEOREM 1.1. For f = (/o,/i ,---) E N^00) the following conditions are 
equivalent: 

(i) / is the f-vector of a simplicial complex] 
(ii) / is the f-vector of a polyhedral complex; 
(iii) dk(fk) < / f c_i, for allk>l. 

By a multicomplex M we shall understand a nonempty collection of monomials 
in finitely many variables, such that if m G M then every divisor of m is also 
in X. Let fi(M) denote the number of members in M of degree i, i > 0, and 
call f(M) = ( /o, / i , • • •) the f-vector of M. The next result is essentially due to 
Macaulay [31], cf. [42]. 
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THEOREM 1.2. For f = (/o,/i ,---) E N°° the following conditions are 
equivalent: 

(i) / is the f-vector of a multicomplex; 
(ii) / is the Hilbert function of a finitely generated graded k-algebra 

R = @i>0 Ri, such that Ro = k and R± generates R, k a field; 

(iii) /o = 1, and dk(fk+i) < fk, for all fc > 1. 

A sequence / = (/o,/ i j-- .) will be called an M-sequence if it satisfies the 
conditions of Theorem 1.2. The formal similarity between parts of Theorems 
1.1 and 1.2 is explained by a common generalisation found by Clements and 
Lindström [17]. 

2. /-vectors and Betti numbers. It has been known at least since Mayer 
[32] that every linear relation between the face numbers and the Betti numbers 
of a simplicial complex is a multiple of the Euler-Poincaré formula (2). Also, it 
follows from a result of D. Sullivan (see [1, pp. 212, 223]) that if a function of 
simplicial complexes is topologically invariant and depends only on the /-vector, 
then it in fact depends only on the Euler characteristic. These results seem to 
cast doubt on the possible existence of general relations between face numbers 
and Betti numbers other than (2). However, it turns out that a complete set 
of relations can be formulated, as shown by the following result of Björner and 
Kalai [13, 14]. 

THEOREM 2 . 1 . For f = ( /o , / i , . . . ) G N M and ß = (ßo,ß!,...) E N<°°) 
the following conditions are equivalent: 

(i) / is the f-vector and ß the sequence of Betti numbers (over an arbitrary 
coefficient field) of some simplicial complex; 

(ii) / is the f-vector of some simplicial complex having the homotopy type of 
a wedge consisting for each i>0 of ßi spheres of dimension i; 

(m) let xk-i = Ej>k(-i)
j-k(f3 - ft),k ^ °;then 

X-i = 1, (3) 

and 

dk(Xk + ßk) < Xfc-i, for all fc > 1. (4) 

Notice that condition (3) is the Euler-Poincaré formula. The characterization 
is obviously independent of field characteristic. For a d-dimensional simplicial 
complex C condition (4) gives d additional nonlinear relations satisfied by f(C) 
äffil^S^T^ThiTh^ 
fc-cycles and the space of (fc — l)-boundaries must satisfy dk(dimZk) < Bk-\, 
for all fc > 1. 

Theorem 2.1 provides means for the study of /-vectors which are realized 
by simplicial complexes having some specified sequence of Betti numbers. For 
instance, it can be shown that there exists a unique componentwise minimal 
such /-vector. Furthermore, this minimal /-vector is characterized by equality 
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in relations (4) for all fc > 1. Dually, if the /-vector is fixed, there exists a unique 
componentwise maximal compatible Betti sequence. 

A collection A of nonempty subsets of a finite set E, \E\ = n, having no proper 
inclusions among its members (i.e., S,T E A, S CT implies S = T) is called a 
Sperner family of rank n. Letting fi be the number of members of cardinality 
i + 1, we define the f-vector f(A) = (/o, / i , . . . , /n-i)-

THEOREM 2.2. For ß = (/3b, ßi,..., ßn-i) G N n and a field k, the following 
conditions are equivalent: 

(i) ß is the Betti sequence over k of some simplicial complex on at most n +1 
vertices; 

(ii) ß is the Betti sequence over k of some polyhedral complex on at most n + 1 
vertices; 

(iii) ß is the f-vector of some Sperner family of rank n; 
(iv) 

ß = 0 or dj+1(- • • 0„_a(an-i(Ä,-i) + ßn-2) + &-3 • • •) + ft < ( . " ! ) » 

(5) 
where j is minimal such that ßj =̂  0. 

The equivalence of the first three conditions was shown by Björner and Kalai 
[13, 14]. The last two conditions were proved equivalent by Clements [16] and 
Daykin, Godfrey and Hilton [18]. A combinatorial theorem of Sperner [39] 
states that the maximum size of a Sperner family of rank n is ( r % ). Hence, we 
conclude that the same number gives the tight upper bound for the sum of Betti 
numbers of complexes on at most n+1 vertices. (Recall that we are dealing with 
reduced Betti numbers, so ßo + 1 rather than ß0 gives the number of connected 
components.) 

As a small numerical example, consider the integer vectors / = (15,20,19,9), 
ß = (5,2,3,2), and ß' = (8,4,2,2). The pair (/,/?) fails to satisfy relation (4) 
for fc = 2. Hence, it is not realizable as the /-vector and Betti sequence of 
any simplicial complex. On the other hand, (/,/?') satisfies (3) and (4) with 
equality throughout, so / is the minimal /-vector achieved by complexes having 
Betti sequence /?'. Finally, ß satisfies relation (5) for all n > 11, so the minimal 
number of vertices needed to build a complex which realizes ß as a Betti sequence 
is 12. 

3. A-vectors. For some classes of complexes the /-vectors lie in the positive 
integer span of a certain canonical basis, and more insight is obtained by studying 
the coefficients with respect to that basis than by working directly with the 
/-vectors themselves. Important examples will be given in this and the next 
section. 



1412 ANDERS BJORNER 

Fix d > 0, and let (fo, / i , . . . , fd-i) be the /-vector of a (d — l)-dimensional 
simplicial complex C. Also, let / _ i = 1. Define integers hi by 

d d 

£>z d -* = £/<_!(*-l)d"\ (6) 
i=0 2=0 

Then h = (ho, h±,..., hd) is called the h-vector of C. 
A simplicial complex C is said to be Cohen-Macaulay (over the field fc) if 

Hi(lkcr,k) = 0 for all i < dim(lka) and all a E C (including a = <j>). Here, 
Ika = {r E C\a U r G C, o fl r = <j>}. Equivalently, by a theorem of Reisner 
[38], this condition holds if a certain commutative ring associated with C is a 
Cohen-Macaulay ring. See Stanley [41, 44] for details regarding this connection 
with commutative algebra, and for the following characterization result. 

THEOREM 3 . 1 . For h = (ho, hi,..., hd) E Z d + 1 the following conditions are 
equivalent: 

(i) h is the h-vector of a (d— 1)-dimensional Cohen-Macaulay complex (over 
an arbitrary field); 

(ii) h is an M-sequence. 

Equation (6) is equivalent to 

z=0 \ J 
fi-i = Y,hAd_j)' o<j<d, (7) 

so upper bounds and lower bounds on the /i-vector translate directly into cor
responding bounds on the /-vector. By Theorems 1.2 and 3.1, the h- vec tor 
of a (d — l)-dimensional Cohen-Macaulay complex counts certain monomials in 
h\ = /o — d variables, so 

( l , / o - d , 0 , 0 , . . . , 0 ) < f t < (l,fo-d,(fo 

Part of this upper bound was used by Stanley [40] to prove the upper bound 
conjecture for spheres. The lower bound was used in a somewhat more general 
form by Björner [9, 10] to derive several inequalities for matroid complexes. 

It is of interest to characterize the A-vectors for special subclasses of Cohen-
Macaulay complexes, but beyond what is mentioned in the next section little in 
this direction is known. Some special properties of A-vectors of matroid com
plexes are given in [41] and [9]. Some results concerning A-vectors of polyhedral 

Jballs--xanJbe=found=in= [8] - -TheJowerJ20und=fti=^(Ì)=Io£ /i^vectors=o£=(d-^=l=)^ 
dimensional Cohen-Macaulay complexes admitting a free Zg-action is proven in 
[47]. 

4. 0-vectors. We will consider in this section three classes of (d — 1)-
dimensional simplicial complexes: 

(i) polytopal spheres (i.e., boundary complexes of d-dimensional simplicial con
vex polytopes), (ii) spheres (i.e., triangulations of the standard topological sphere 
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of points of unit norm in R d ) , and (iii) homology spheres (i.e., complexes such 
that Hi(lka,k) = 0 for i < dim(lko~), and = fc for i — dim(Zfcer), for all faces 
a, including a = <j>; the field fc, once chosen, is irrelevant for the following dis
cussion). Each class is known to be a proper subclass of its successor; e.g., the 
smallest sphere which is not polytopal is 3-dimensional and has 8 vertices (see 
[20]). 

The h- vector (ho, hi,..., hd) of a homology sphere satisfies the Dehn-Sommer-
ville equations 

hi = hd-i, 0<i<d. (8) 

For polytopal spheres these relations were discovered by Dehn in 1905, for d < 5, 
and in general by Sommerville in 1927. They were shown to extend to all Eulerian 
manifolds (a class of complexes somewhat larger than the homology spheres) by 
Klee [28]. 

Define the g-vector (00,0i, . . . , 9[d/2\) and the g-polynomial g(x) = go + gi% + 

h 9'[d/2]^'d//2' of a homology sphere C by 

g0 = ho and ft = hi - Äi-i, for 1 < i < [d/2]. (9) 

Clearly, by (8) the #-vector determines the h-vector and hence also the /-vector 
of C. In fact, multiplication of formula (6) by (x — 1) yields, in view of (8), 

lgß)-g(x) = ^2fi.1(x-l)d+1-i, *d+19 ( z ) - 9(x) = X>- i (* - ir+1-', (10) 
i=0 

or, equivalently, 

Hence, the /-vectors of homology spheres are governed by their ^-vectors much 
like the /-vectors of Cohen-Macaulay complexes are governed by their h-vectors. 

The importance of 0-vectors for polytopal spheres was first perceived by Mc-
Mullen [34], who conjectured the following characterization result. Sufficiency 
was subsequently shown by Billera and Lee [6, 7] and necessity by Stanley [43]. 

THEOREM 4 . 1 . For g = (go,9i, • • • ,0[d/2]) £ Zld /2)+ 1 the following condi
tions are equivalent: 

(i) g is the g-vector of a (d- 1)-dimensional polytopal sphere; 
(ii) g is an M-sequence. 

We remark here that the generalized Euler formula (1) is equivalent to the 
Dehn-Sommerville relation ho = hd, and so was coded into the preceding char
acterization at an early stage. 

A reformulation of Theorem 4.1 incorporating (11) reveals the structure of 
/-vectors of polytopal spheres particularly well. Define a ([d/2] + 1) xd matrix 
Md = (mij) by rmj = (d+±7*) - ( d ^ . ) , 0 < i < [d/2], 0 < j < d - 1. Then 
Md has nonnegative entries, and the lower left corner [d/2] x [d/2] submatrix 
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is upper triangular with ones on the diagonal. The reformulation is then: The 
mapping 

p,:gy->g-Md (12) 

gives a one-to-one correspondence from the set of f-vectors of multicomplexes of 
rank < [d/2] on exactly t variables to the set of f -vectors of (d— 1)-dimensional 
polytopal spheres on d + 1 + 1 vertices, t>0. 

It was pointed out by McMullen [34] that Theorem 4.1 would imply many 
of the major results concerning /-vectors of simplicial polytopes which were at 
that time proven by separate means. The "McMullen correspondence" (12) gives 
quick access to some such results more or less by inspection. For instance: (i) 
the componentwise maximal /-vector of a polytopal (d — l)-sphere on d + 1 + 1 
vertices is 

*t + [d/2]-l 
[d/2] >(H'V) f 

which is the "upper bound theorem" of McMullen [33]; (ii) the compo
nentwise minimal /-vector of a polytopal (d — l)-sphere on d -j- 1 + t vertices 
is fi((l, t, 0 , . . . , 0)), which is the "lower bound theorem" of Barnette [3, 4]. The 
validity of the upper bound theorem was subsequently extended to all homology 
spheres by Stanley [40], whereas Barnette's original method actually proves the 
lower bound theorem for all homology spheres (cf. [23]). 

One of the outstanding open problems concerning /-vectors is to find a char
acterization of the /-vectors of spheres. It has been conjectured that the char
acterization in Theorem 4.1 extends to all spheres, and if so, most likely also to 
all homology spheres. 

For certain subclasses of polytopal spheres there are geometric constraints 
which influence their /-vectors, so one is led to seek the underlying constraints 
on their g-vectors. The following such result was proven by Stanley [47] in 
response to a conjecture by the author. 

THEOREM 4.2 . The g-vector of a centrally symmetric polytopal (d—1) -sphere 
satisfies g{ > (*) - ( . ' J , for 0<i< [d/2]. 

The implied lower bounds for /-vectors (i.e., fd-i > 2d + 2(n — d)(d — l), and 
fi > 2 J + 1 ( i + 1 ) + 2(n - d)(fj for 0 < j < d - 2) were conjectured by Bârâny 
and Lovâsz [2]. It is an interesting open problem to find the sharp upper bounds 
to (or, even better, a characterization of) the 0-vectors of centrally symmetric 
simpljcial_p_olytop_e_s. 

The rows of the M^-matrix can be shown to increase along the first half and 
then to decrease along the last quarter of their length. A similar analysis can 
be carried out for general homology spheres leading to the following result of 
Björner [11]. 

THEOREM 4.3 . The f-vector of a (d—1)-dimensional homology sphere, d > 
3, satisfies the following conditions. 
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(a) /o < / i < • • • < /[d/2]-i < /[d/2] and /[3(d-i)/4] > > /d-2 > fd-i, 
and the limits [d/2] and [3(d - l)/4] are best possible for such inequalities even 
among polytopal spheres. 

(b) fi < fd-i-i and fi < fd-i-u for 0 < i < [(d - 3)/2]. 

5. Remarks. 
(5.1) Methods. Within the limited space available there is unfortunately no 

room to discuss the variety of methods which were used to obtain the results 
that have been discussed. These include methods from combinatorics (extremal 
set theory, polyhedral techniques), from algebra (exterior algebra, commutative 
rings), from topology (simplicial homology), and from algebraic geometry (co
homology of toric varieties). The reader is referred to the references for more 
detailed information. 

One noteworthy feature is that all the nonlinear relations which occur in the 
characterization results (as well as in several other results on /-vectors) are 
inequalities involving the two families of functions dk and dk. Their ubiquitous 
appearance in so many results of this kind gives a certain sense of unity to the 
theorems in the area, even though, at present, the methods of proof are quite 
diverse. A fundamental problem that seems to lie at the heart of the difficulty 
with a more unified approach is to understand how local homological information 
(i.e., Betti numbers of links) influences the global properties of the /-vector. For 
a more complete discussion, see [13]. 

(5.2) Nonsimplicial complexes. In principle, Theorem 2.1 characterizing com
patible pairs (f,ß) must imply Theorem 1.1 (projection on the first coordinate) 
and Theorem 2.2 (projection on the second coordinate) for simplicial complexes, 
but no direct proof of these implications is known. Based on the evidence that 
both these latter results hold for polyhedral complexes as well, Björner and Kalai 
[13] conjecture that also Theorem 2.1 extends to polyhedral complexes. 

(5.3) Nonsimplicial polytopes. Very little is known about the /-vectors of 
boundary complexes of general d-dimensional convex polytopes. For d = 3 a 
complete characterization was found by E. Steinitz in 1906, and for general d 
it is known that the only linear relation satisfied by all such /-vectors is the 
generalized Euler formula (1) (see [20]). 

Recently the Dehn-Sommerville equations, and hence the concept of g-vector, 
have been extended to general polytopes by Stanley [46, 48]. Unfortunately, the 
generalized ^-vector does not alone uniquely determine the /-vector for nonsim
plicial polytopes, but it raises some interesting theoretical questions which may 
in the end turn out to have substantial bearing on /-vectors. We end with a few 
comments about this. 

Briefly, the generalized ^-polynomials gp(x) are defined as follows via a re
cursive procedure over the face-lattices L(P) of polytopes P, starting with the 
one-point lattice L((j>): 

(i) 94>{x) = 1; 
(ii)deggP(x)<[dimP/2]; 
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(iü) 

„dimP+1 
X gpß)-gP(z)= £ 9Q(x)-(x-l)dimP-dimQ- (13) 

^XJ Q€L{P) 

Stanley [46, 48] shows that the polynomial gp(x) is well defined by this recursion. 
If Q is a simplex, then 9Q(X) = 1, so for simplicial polytopes this reduces to 
the usual gr-polynomial (cf. equation (10)), and hence also reproves the Dehn-
Sommerville equations. 

What can be said about the coefficients gi of gp(x) in general? Do they 
form an M-sequence? Stanley has asked whether at least gi > 0. For rational 
polytopes (i.e., polytopes whose vertices have rational coordinates) this can be 
deduced from results of R. MacPherson and others on the intersection cohomol
ogy of toric varieties (see the references in [46]). However, as first shown by 
M. Perles (cf. [20]) there exist polytopes whose combinatorial type cannot be 
realized with rational coordinates. (Perles's example is 8-dimensional with 12 
vertices; recently Sturmfels [49] constructed a 6-dimensional example with 13 
vertices.) For nonrational, nonsimplicial polytopes very little is known about 
the generalized p-vector. It is easy to see that gi = fo — d — 1 > 0. The in
equality g2 > 0 was recently proved for general polytopes by Kalai [23]. Some 
additional results on generalized g-vectors and their relationship to /-vectors 
appear in Kalai [24]. 

There are some striking similarities between ^-polynomials of polytopes and 
the Kazhdan-Lusztig polynomials of Coxeter groups, which should not be ig
nored. These latter polynomials are defined by a recursion similar to (13) over 
intervals in Bruhat order, and Kazhdan and Lusztig [26] conjecture that their 
coefficients are always nonnegative. For some results in this direction based on 
intersection cohomology, see [27]. Now, every interval in Bruhat order is known 
to be isomorphic to the poset of faces of a regular cell decomposition of a sphere 
(cf. [12]), and hence is structurally very similar to the face lattice of a poly-
tope. It would be desirable to find a common approach to polynomials generated 
over spherical posets in this manner, leading to a common explanation for the 
nature of their coefficients (at best: a combinatorial interpretation). In terms 
of intrinsic interest and because of the far-reaching implications, ranging from 
the /-vectors of general polytopes to the representation theory of the symmetric 
groups, this is, in the author's opinion, one of the outstanding current problems 
in combinatorics. 
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1. Introduction. Let X be an n-element set and F C 2X a family of distinct 
subsets of X. Suppose that the members of F satisfy some conditions. What is 
the maximum (or minimum) value of |F|—this is the generic problem in extremal 
set theory. There have been far too many papers and results in this area to be 
overviewed in such a short paper. 

Therefore, we will only deal with some intersection theorems. The simplest is 

THEOREM 0. Suppose that F C 2X satisfies 

Ff]F,^0 for allF,F'e¥. (1.1) 

Then |F| < 2""1 holds. 

PROOF. If F E F then (X - F) £ F implying |F| < \2n. • 
A family F satisfying (1.1) is called intersecting. More generally, for a positive 

integer t, F is called t-intersecting if any two of its members intersect in at least 
t elements. 

The two central theorems concerning ^-intersecting families are the Erdös-Ko-
Rado theorem and the Katona theorem (cf. §§2 and 3). 

The following general problem—by now rich in results and applications—was 
proposed by Vera T. Sós [S]: 

Given a set L = {Zi,...,l3} of nonnegative integers, a family F is called an 
L-system if \F n F'\ e L holds for all distinct F, Ff G L. 

Determine or estimate m(n,L) = max{|F|: F C 2X is an L-system}. 
After surveying some general results on L-systems in §4, in §5 we consider 

the case of one excluded intersection size. The interest in this special case was 
generated by two exciting conjectures of Erdös. The first of them said that if 
F C ("£) avoids the intersection size I and |F| is maximal, then (for n > no(k, I)) 
F has all intersection sizes less than I (an /-packing) or all greater than I ((Z +1)-
intersecting). 
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The second said that there exists a positive e such that every F c 2 x with 
|F | > (2—e)n contains two sets with intersection of size [n/4\. That is, excluding 
[n/4j brings down the maximum size of F exponentially. 

Both conjectures were settled recently. Extensions of the second conjecture 
led to the following geometrical result. Let A be the vertex set of a nondegenerate 
simplex in Rd. There exists e = e (A) > 0 such that for every partition of Rn, 
n>d, into less than (l+e)n classes, one of the classes contains a set A1 congruent 
(isometric) to A. This and similar results are discussed in §6. 

2. The Erdös-Ko-Rado theorem. Let us introduce the notation (*) = 
{A C X: \A\ = k}. 

For Ao G (*) the family A 0 = {A G (*): A0 C A} is ^-intersecting and 
satisfies |Ao| = (^Zj)-

THEOREM 2.1 (ERDÖS-KO-RADO [EKR]) . Letn > k > t > 1 be integers 
and suppose that F C (*) is t-intersecting. Then for n > no(k,t) one has 

* ( : : : ) 

REMARK 2.2. Erdös told me that they proved this theorem already before 
World War II, however, at that time there was very little interest in such results, 
that is why it was not published until 1961. 

By now, the best possible bound for no(k,t) is known: 

no(fc,t) = ( f c - i + l)(t + l) . 

This was proved by Erdös, Ko, and Rado for t = 1, by the author [Fl] for t > 15, 
and recently by Wilson [WI] for all t. 

To see that (2.1) is no longer true for n < (k — t + l)(t + 1), define families 
Ai for 0 < i < k - t: 

Let Ai G ( t £ j and A* = J4 C (£): \Afl A{\ > t + 1 | . 
Now A^ is J-intersecting and simple computation shows that |Ao| = |Ai | 

according as n = (k — t + 1)(£ + 1) holds. 
The following conjecture, if true, would determine the maximum size of t-

intersecting families in general. 

CONJECTURE 2.3 [Fl]. Suppose thatF C (£) is t-intersecting. Then |F| < 
maxo<i<fc-t |A«| holds. 

~̂AtT presentTthis conjecture appears hopelessly difficult in general. However, 
there are some partial results (cf. [Hu, F l , and FF4]). 

It is natural to ask what families are achieving equality in (2.1). For n > 
(k — t H-1) (t +1) , Ao is the unique family with this property (cf. [HM] for t = 1, 
[WI] for t > 1). In [Fl] it is proved that for t > 15 even for n = (k-t + l)(t + l) 
the only optimal families are Ao and Ai- This is probably true for 2 < t < 14 
as well. 
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However, the case t = 1, n = 2k is different. Then the statement of the 
Erdös-Ko-Rado theorem is very easy: 

| p |< 

Indeed, for every A G ("£), at most one of the two sets A, X — A can be present 
in an intersecting family. Since n = 2k, to every A G ("£) there is a unique set 
B G (£) with AnB = 0, namely B = X - A. 

This observation makes possible the construction of very many intersecting 
families F C (*) with |F| = \^). 

Let T and S be disjoint subsets of X, \T\ = t, \S\ = k - t + 1. Define 

B1 = \Bel : (TcBandSfi5/0)or(5cruS) 

Note that Bi is i-intersecting with 

|Bi| = 

THEOREM 2.4. Suppose that F C (*) is t-intersecting with | f| F| < t. Then 
for n > n\(k,t) 

|F| < max{|Ai|, |Bi|} holds. (2.2) 

REMARK 2.5. For t = 1, (2.2) was proved by Hilton and Milner [HM] along 
with n\ (k, 1) = 2k. A simple proof was given recently by Füredi and the author 
[FF3]. For other proofs cf. [A] and [M]. For t > 2, (2.2) was proved in [F2]. 
However, the value of n\(k, t) is still unknown. 

An interesting class of problems was proposed by Erdös, Rothschild, and 
Szemerédi (cf. [El]): 

Let 0 < c < 1 be a real number. Let F C (*) be an intersecting family. 
Let f(n,k,c) denote the maximum possible size of F if F satisfies the addi

tional degree condition, namely that every element of X is contained in at most 
c|F| members of F. 

Füredi [Fui] has many results on this problem. Let me cite one, which is 
particularly beautiful. Suppose that I > 2, Y C X, \Y\ = I2 + I + 1, and 
L C b+i) is the collection of all lines of a projective plane of order / on Y. 
Define the intersecting family F(L) by: 

F(L) = | F G (*\ FnYehV 

Clearly, |F(L)| = (I2 + I + l)^1!^1) and F satisfies the above condition 
withc = (Z + l)/(Z2 + Z + l). 

THEOREM 2.6 (FÜREDI [Fui]). Suppose that c = (I + l)/(l2 + I + 1) 
where I > 2 is an integer, I < k. Then for n > h(k,l) one of the following two 
possibilities occurs. 



1422 PETER FRANKL 

(i) There is no projective plane of order I and f(n, k,c) = 0(nk~l~2). 
(ii) There exists a projective plane L of order I and f(n,k,c) = |F(L)|. 

The determination of n(k, I) appears difficult. In [FF5] n(k, I) < cik is proved, 
where c\ is a constant depending only on I. In [FF5] many related problems are 
considered, e.g., for ^-intersecting families. 

3. The Katona theorem. What is the maximum size of a ^-intersecting 
family? This problem was asked by Erdös, Ko, and Rado and it was completely 
solved by Katona [Kl]. 

Let us define K0 = {K C X: \K\ > (n + t)/2}. It is clear that for K, 
K1 G Ko one has \K flK'\ > \K\ + \K'\ - n > t, i.e., K0 is ̂ -intersecting. If n +1 
is odd, then one can add further sets to Ko without destroying the ̂ -intersecting 
property. For Y an (n — l)-subset of X, define 

K-KH„-f+i,/2y 
One can describe Ki also by Ki = {K C X: \K n Y\ > (\Y\ +1)/2}. 

THEOREM 3.1 (KATONA [Kl]). Suppose that F C 2X is t-intersecting, 
n>t>l. Then one of the following two possibilities occurs. 

(i) n + t is even and |F| < |K0|. 
(ii) n +1 is odd and |F| < |Ki|. 

REMARK 3.2. Note that the case t = 1 is simply Theorem 0 from the intro
duction. Katona proved also that Ko and Ki are the unique optimal families 
for t > 2. 

For the proof of Theorem 3.1 Katona proved another important theorem, 
concerning the shadows of ^-intersecting families. For a family F and an integer 
h let Afc(F) be the ft-shadow of F, i.e., 

AÄ(F) = l H G ( T ) : H C F, for some F G F j . 

Let A be a (2k — £)-element set and A = (^). Then A is ^-intersecting and 
clearly |Afc(A)| = (2fc"*) holds for all h < k. 

THEOREM 3.3 (KATONA [Kl]). Suppose that F C (£) is t-intersecting. 
Then for k — t < h <k one has 

Note that the RHS^oT(3.1) is 1 for h = k — t or k but it is strictly greater 
otherwise. To illustrate the strength of this theorem, let us use it to prove the 
t = 1 case of the Erdös-Ko-Rado theorem. This proof is due to Katona [Kl]. 

Suppose that G C (^), G is intersecting, n > 2ft. We want to show that 
|G| < (lZ{) holds. Consider F = {X - G: G G G}. Since G is intersecting, 
Afc(F) fi G = 0 holds. Also, for G,G' G G we have \(X -G)n(X- G')| = 
\X\ - \G U G'| > n - 2ft + 1, i.e., F is (n - 2ft + l)-intersecting. 
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Applying Theorem 3.3 with fc = n — ft and t = n - 2ft -j-1 gives 

Using |Afc(P)| + |G| < (»), we infer |G| < (h/n){n
h) = (£}) , as desired. 

For a famiy F C (*) and 0 < ft < fc the ftth containment matrix M^(F) is a 
|A/!(F)| by |F| matrix whose rows are indexed by the members G of A/j(F), the 
columns by F G F and the (G, F)-entry is 1 or 0 according to whether G C F 
or G £ F hold. 

THEOREM 3.4 (FRANKL AND FÜREDI [FF1]). Suppose that F C (*), 
0 < g < k, and rank(Afff (F)) = |F| holds. Then 

|Ah(P)|/ |P|> ( * £ * ) / ( * £ * ) holds for all g <h<k. (3.2) 

REMARK 3.5. It can be shown that if F is t-intersecting then always 

rank(M*_t(F)) = |F| 

holds and therefore Theorem 3.4 is a generalization of Theorem 3.3. 
In this context we should mention the Kruskal-Katona theorem, one of the 

most important theorems in extremal set theory. Given m, fc, and ft, this theorem 
describes the minimum size of Afc(F) over all families F, consisting of fc-element 
sets and satisfying |F| = m. 

Let N be the set of positive integers. We define a total order (called the 
reverse lexicographic order) on (^) by setting A < B if and only if max{a: a G 
(A - B)} < max{&: be(B-A)}. E.g., {10,11} < {1,12}. 

THEOREM 3.5 (KRUSKAL [Kr] AND KATONA [K2]). The size of the 
h-shadow is minimized over all F C (^) with \F\ = m, by taking the smallest m 
sets in the reverse lexicographic order. 

REMARK 3.6. The optimal families are not always unique in the Kruskal-
Katona theorem. Füredi and Griggs [FG] characterized the values of (m, fc, ft) 
for which there is a unique optimal family. See Mors [M] for some refinement of 
Theorem 3.5 and [F3] for a simple proof. 

4. Families with prescribed intersections. An i-system F C ("£) is 
called an (n, fc, L)-system. 

DEFINITION 4.1. m(n,k,L) =max{|F|: F is an (n,fc,L)-system}. 
Note that with this definition the Erdös-Ko-Rado theorem can be rephrased 

as 

m(n, fc, {*, t + 1,. . . , fc - 1}) = y, " J for n > n0(fc, t). (4.1) 
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THEOREM 4.2 (RAY-CHAUDHURI AND WILSON [RW]). 

m(n,k,L)<^. (4.2) 

For n > no(,L) the inequality (4.2) was improved in the following way. Let 
L = {l1,...,l9} with 0 < h < • • • < ls < fc. 

THEOREM 4.3 (DEZA, ERDÖS, AND FRANKL [DEF]) . Suppose that 
n > no(k,L). Then 

m ( n , f c , I ) < I | ^ , (4.3) 
leL 

moreover, m(n,k,L) = 0(ns~x) unless (1% — h)\(h ~h)\ • • • \(h — ls-i)\(k — ls)-

Note that (4.3) implies (4.1). Deza [D] proves that equality is possible in (4.3) 
for given n, fc, ls, l3-i,..., h if and only if there exists a matroid on n vertices, 
of rank s + 1, in which all hyperflats have size fc and all i-flats have size Z +̂i for 
i = 0 , 1 , . . . , s — 1. Such a matroid is called a perfect matroid design. Examples 
include affine, vector, and projective spaces, their truncations, Steiner-systems, 
etc. 

It is a tantalizing open question to decide for which (fc, L) does m(n, fc, L) > 
cn8 hold with some positive constant c = c(k,L). 

The first open questions are 

fc = 13, L = {0,1,3} and fc = 11, L = {0,1,2,3,5}. 

One cannot expect to determine m(n, fc, L) in general because, e.g., 

m ( / 2 + / + l , / + l,{0,l}) = /2 + i + l 

if and only if a projective plane of order I exists. 
In general, for L = { 0 , 1 , . . . , t — 1} an easy consideration gives 

m (n,k,{0,l,...,t-l})< ( n ) / ( j f o r r c > f c > * > l 

Moreover, equality holds if and only if there exists S C (£) with the property 
that every i-subset of X is contained in exactly one member of S (i.e., S is 
a (t, fc, n)-Steiner-system). For t = 1 Steiner-systems exist iff k\n. For t = 2 
a celebrated result of Wilson [W2] shows that the trivial necessary conditions 
((fc — l) |(n - 1) and (2)1(2)) a r e sufficient for n > rio(k). However, very little is 
known for t > 3. In particular, no Steiner-system is known with t > 6. 

. ^Jxe ixesMower^ an ingenious^ 
application of the probabilistic method—is due to Rodi. 

T H E O R E M 4.4 ( R ö D L [R]). 

^lim^m^fc, {0,1,... ,t - l } ) / ( n ) = V U ) f°r allk^t^1' (44) 

The following result is an improvement on (4.2). 
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THEOREM 4.5 (FRANKL AND WILSON [FW]). Suppose thatp is a prime 
and q(x) is an integer-valued polynomial of degree d with p\q(k) but p\q(l) for 
all l G L. Then 

\F\ < |Ad(P)| < (n] holds. (4.5) 

To deduce (4.2) from (4.5) take q(x) = Y\ieL(x-I). To prove (4.5) one shows 
that if F satisfies the assumptions of the theorem, then Md(F) has rank equal 
to F. Since Md(F) has |A<j(F)| rows, this implies (4.5). 

Let us recall that f(n) = Q(na) means that there exist positive constants 
ci and C2 such that limn_,oo inf f(n)n~a > c1 and limn_>oo sup f(n)n~a < c2 

holds. 
It is trivial to see that m(n, fc, {/}) = &(n). It follows from Theorem 4.3 

that m(n, fc, {h,fa}) = 0(n2) or 6(n) according to whether (fa — h)\(k — fa) or 
(fa-h)\(k-fa) holds. 

For \L\ = 3 the situation is already much more complicated. In [F4] examples 
with m(n,k,L) — 8(n3/2) and in [FÜ3] with m(n,k,L) — 6(n4/3) are exhibited 
(in both cases |L| = 3). On the other hand, in [F4] it is shown that for \L\ = 3 
either m(n, k,L) = 0(n3/2) or m(n,k,L) > c(k,L)n2 holds. 

THEOREM 4.6 [F5]. For every rational number r > 1 there exists an infinity 
of choices of fc = k(r), L = L(r) such that m(n, k,L) = Q(nr) holds. 

This theorem raises two problems. 
Problem 4.7. Are there irrational numbers a such that m(n,k,L) = &(na) 

holds for some fc and Ll 
Problem 4.8. Given fc, L does there always exist a real number a > 1 such 

that m(n,k,L) = G(na) holds? 

5. Families with one forbidden intersection size. For fc > / > 0 let us 
introduce the notation 

m(n, fc,/) = m(n, fc, {0,1, . . . , fc - 1} — {/}). 

That is, m(n, fc, J) is the maximum number of fc-subsets of an n-set without two 
which intersect in exactly / elements. 

There are two natural ways to avoid intersection size /. One is to take an 
(Z-hl)-intersecting family, e.g., the (]JZ{zJ) fc-element sets through a fixed (l + l)-
element set. The other is to take an /-packing, i.e., a collection of sets any two 
of which intersect in less than / elements. This could not produce more than 
(?)/(?) ^-subsets. One can do better. 

Let S C (2k-i-i) be an (n, 2fc —/ —1,{0,1,...,/ —l})-system of maximal size. 
Define F = A*(S). 

By (4.4) we have 

u-a-<<-i
,-i)(?)/r.,~i> M 

and one can check that F contains no two sets with intersection of size /. 
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The next result, which was conjectured by Erdös [E2], shows that for fc > 2Z+1 
the first construction is best possible. 

THEOREM 5.1 (FRANKL AND FÜREDI [FF2]) . Suppose that I > 0, fc > 
21 + 2, and F C (*) satisfies \F n F'\ ± I for all F, F1 G F. Then 

| F | < U ~ ! ~ | ) holds forn >n2(k, I). (5.2) 

Moreover, equality holds in (5.2) if and only if 

F = {Fe(Xk}TCF} foroomeTe^). 

Clearly, Theorem 5.1 is a strengthening of the Erdös-Ko-Rado theorem, except 
that the bounds we have for r&2(fc, /) are rather poor. For fc < 2/ + 1 we have the 
following partial complement to (5.1). 

THEOREM 5.2 [F6]. Suppose that F C (*) contains no two sets whose 
intersection has size I, ft < 21 + 1. Then 

.„. ^ /2fc-/-l\ (n\ /(2k-l-l\ , f J . , , , c o X 

|F| < I ) ( / ) / ( ) holds for k — l a prime power. (5.3) 

Moreover, if k — I is a prime, then equality holds in (5.3) if and only if there 
exists an (1,2k —I — 1,nj-Steiner-system, S with F = Afc(S). 

CONJECTURE 5.3. The statement of Theorem 5.2 is true for all fc and I 
satisfying fc < 21 + 1. 

Let us mention that for fc = 21 + 1 the value of the RHS of (5.3) is (™) which 

is only slightly larger (for n —• oo) than (£Z{ZÌ)-
Let us also mention, that one can weaken the assumption on fc - / in Theorem 

5.2 to: fc — / has a prime power divisor greater than l (cf. [FS]). 
Let us consider now the nonuniform case, i.e., there is no restriction on |F | 

for FeF. 
Let us define 

m(n,ì) = max{|P|: F C 2X, \F PiF'\£l for all distinct F,F' G F} . 

It is clear that Ao = {A C X: \A\ < I or \A\ > (n + 0/2} has no two members 
intersecting in / elements. As in the case of the Katona theorem, for n+l even we 
can extend A 0 to Ai = Ao U (( n^) / 2 ) j Y ^ (n-i)» without losing this property. 

Using Theorem 3.4, Füredi and the author proved that for n > no(l) these 
constructions are best possible. _ _ 

THEOREM 5.4 [FF1]. Suppose that I > 1 and n > n0(l). Then one of (i) 
and (ii) holds. 

(i) n + l is odd, m(n,ì) = |Ao| and A0 is the only optimal family. 
(ii) n + l is even, m(n,t) = |Ai | and Ai is the only optimal family. 

Let us note that our proof only gives no(l) ;S 3*. However, Conjecture 5.3 
would imply no(l) ^ 6 / . 
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For the case I ^ o(n) we have no exact results. However, Rodi and the author 
proved, e.g., m(n, L?T/4j) < 1.99n, i.e., it is exponentially smaller than 2n. 

THEOREM 5.5 (FRANKL AND RÖDL [FRI ] ) . Suppose that a is a real 
number, 0 < a < \. Then there exists a positive real number e — e(a) such that 

m(n,ì) < (2 — e)n holds for all integers I satisfying an <l < (\ — a)n. (5.4) 

REMARK 5.6. This result was conjectured by Erdös [E2], and it appears in 
the list of his favorite problems, cf. [E3]. Let us note also, that Conjecture 5.3 
would imply (5.4) with a better e = e(a). 

For two families A and B let ij(A,B) denote the number of pairs (A,B) 
satisfying A G A, B G B, and \A fl B\ = /. 

THEOREM 5.7 (FRANKL AND RÖDL [FRI ] ) . For every positive S there 
exists a positive e = e(6) such that for all integers a,b,l and families A C (*), 
B C (£) satisfying |A| |B| > (£) (£)(1 - e)n one has 

i K A , B ) > ( l - ô ) % ( ^ , ^ ) ) . (5.5) 

Clearly Theorem 5.7 is much stronger than Theorem 5.5. E.g., for / = [n/4j 
it implies the following. 

COROLLARY 5.8. For every 6 > 0 there exists e = e(6) > 0 such that 
&Ln/4j(F,F) > (4 - 6)n holds for every family F C 2X and satisfying \F\ > 
(2-e)n. 

6. Euclidean Ramsey theory. A finite subset A of Rd is called Ramsey (cf. 
[EG]) if for every r there exists n = no(A,r) with the property that for every 
partition Rn = X\ U • • • U Xr there is some i and A1 C Xi with A' congruent to 
A. Trivially, if \A\ — 2 then A is Ramsey with no(A,r) < r. 

Solving an old problem of Hadwiger, with the help of Theorem 4.5, the fol
lowing was proved. 

THEOREM 6.1 [FW]. Suppose that r < 1.2n and Rn = Xi U• • • UXr. Then 
there exists an i such that for every positive real 6 there are two points in Xi 
whose distance is exactly 6. 

Let us note that Larman and Rogers [LR] showed that one cannot replace 1.2 
by 3. 

Erdös, Graham, Montgomery, Rothschild, Spencer, and Straus [EG] showed 
that the vertex set of all d-dimensional rectangular parallelepipeds is Ramsey. 
On the other hand they proved that if A is Ramsey, then A is spherical; i.e., it 
has a circumcenter, a point at equal distance to all of them. This leaves open, 
e.g., the case of nondegenerate, obtuse triangles. Using Ramsey's theorem Rodi 
and the author [FR2] proved that all nondegenerate triangles were Ramsey. 

Let Sp = {(xo, •••,Xd) G Rd+1: x% H (- x\ = p2} be the d-dimensional 
sphere of radius p. 
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Let us call a set A C Rd exponentially sphere-Ramsey if there exist positive 
reals p = p(A) and e = e(A) such that for every partition S™ = X\ U • • • U Xr 

with n > d, r < (1 + e)n, there exist an i and A' C Xi with A1 congruent to A. 

THEOREM 6.2 [FRI]. Suppose that A is the vertex set of a nondegenerate 
simplex or of a parallelepiped in Rd. Then A is exponentially sphere-Ramsey. 

REMARK 6.3. If A is a parallelepiped with circumradius 7 then one can take 
p(A) = 7 + 6 for an arbitrary 6 > 0. This proves, in a stronger form, a conjecture 
of Graham [G]. 

The main tool in proving Theorem 6.2 is a rather complicated extension of 
Theorem 5.7 to families of partitions. 

One can use Corollary 5.8 to prove the following strengthened version of a 
conjecture of Larman and Rogers [LR]. 

THEOREM 6.4 [FRI ] . To every r > 2 there exists e - e(r) > 0 such that 
in every family of more than (2 — e)4n (±l)-vectors of length 4rc one can find r 
which are pairwise orthogonal. 

7. Multiple intersections. Let us call F C 2X r-wise t-intersecting if 
|Fi n ••• fl Fr\ > t holds for all F i , . . . , F r G F. Thus 2-wise t-intersecting 
means simply t-intersecting. Let g(n, r, t) denote the maximum size of an r-wise 
t-intersecting family F C 2X, n > t. By trivial considerations g(n + l , r , t ) > 
2g(n, r, t) holds. Therefore the limit p(r, t) = limn_>oo g(n, r, t)2~n exists. 

Obviously, p(r, t) > 2 - t . The lower bound part of the Katona theorem shows 
that p(2, t) = \ for all t > 1. For r > 3 let ßr be the unique root of the 
polynomial xr — 2x + 1 in the interval (0,1). It is easy to see that ßr is monotone 
decreasing in r and it is tending to | exponentially fast. 

THEOREM 7.1 [F7]. There exists a constant c = c(r) such that 

cfit/y/t<p{rtt)<ft. (7.1) 

The lower bound is obtained via the following construction. Let Bi G (t+ri) 
and define B* = {F C X: \F n B{\ > t + (r - l)i}. Clearly, B* is r-wise 
t-intersecting. 

CONJECTURE 7.2 [F8]. 

i 

Let us note that in [F8] (7.2) is proved for t < 2 rr/150. In [F7] it is proved 
for r = 3, t = 2, giving g(n, 3,2) = 2n~2. 

For the proof of these results a shifting technique, introduced by Erdös, Ko, 
and Rado, plays a crucial role. Let us mention that Kalai [Ka] defined a more 
powerful, algebraic shifting, which proved very useful in various situations. 
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Polyhedral Combinatorics— 
Some Recent Developments and Results 

ALEXANDER SCHRIJVER 

Polyhedral combinatorics deals with characterizing convex hulls of vectors 
obtained from combinatorial structures, and with deriving min-max relations 
and algorithms for corresponding combinatorial optimization problems. In this 
paper, after an introduction discussing the matching polytope (§1) and some 
algorithmic consequences (§2), we give some illustrations of recent developments 
(viz., applications of lattice and decomposition techniques (§§3 and 4)), we go 
into the relation to cutting planes (§5), and we describe some other recent results 
(§6). 

1. A basic example: The matching polytope. We first describe a ba
sic result in polyhedral combinatorics, due to Edmonds [7]. Let G = (V,E) 
be an undirected graph (i.e., V is a finite set (of vertices) and E is a col
lection of pairs (edges) of vertices). A subset M of E is called a matching if 
e1 fl e" = 0 whenever e', e" G M, e' ^ e". The matching polytope of G is the set 
conv.hull{xM|M matching} in KE, where xM is the incidence vector of M (i.e., 
XM G RE with xM(e) = 1 if e G M, and = 0 otherwise). Edmonds now showed: 

THEOREM 1 (EDMONDS'S MATCHING POLYTOPE T H E O R E M ) . The match
ing polytope of G — (V, E) is equal to the set of vectors x G KE satisfying: 

(1) 

For proofs we refer to [24, 30, 33]. 
Edmonds's theorem has the following application. If we are given some 

"weight" function c G KE, we can describe the problem of finding a matching 
M of maximum "weight" ]CeeM ce equivalently as the problem of maximizing 
cTx over the matching polytope, that is, by Edmonds's theorem, over x G KE 

satisfying (1). This last is a linear programming problem, and we can apply 
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(i) 
(ii) 

[ill) 

xe > 0 
X>e<l 
eBv 

eÇU 
JM 

(e G E), 
(v G V), 

{U ç V, \U\ odd) 
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LP-techniques to solve this problem, and hence to solve the combinatorial op
timization problem. Among others, with the help of the ellipsoid method, it 
can be shown that the maximum matching problem is solvable in polynomial 
time—see §2. 

Another, theoretical, application of Edmonds's theorem is obtained with the 
duality theorem of linear programming. Let Ax < b denote the system (1). Then 
for any c G RE 

max < Y^ ce\M matching > = max{cTx\Ax < 6} 
leEM J 

= mm{yTb\y >0;yTA = cT}. (2) 

So we have a min-max relation for the maximum matching problem. It was shown 
by Cunningham and Marsh [6] that if c is integer-valued, then the minimum 
in (2) has an integer optimum solution y. The special case c = 1 (the all-
one function) is equivalent to the following Tutte-Berge formula [35, 1]: the 
maximum cardinality of a matching in a graph G = (V, E) is equal to 

. \v\ + \u\-Q(v\u) ,Q. 
mm J—!—!—l—— , (3) 
ucv 2 K J 

where 0(V\U) denotes the number of components of (V\U) with an odd number 
of vertices ((V\U) denotes the graph (V\U, {e G E\e Ç V\U})). 

Note that the constraint matrix A in (1) generally is not totally unimodular 
(a matrix is totally unimodular if all subdeterminants belong to {0, ±1}). If G is 
bipartite (i.e., V can be split into classes V1 and V" (the color classes) so that 
E Ç {{v',v"}\v* G V',v" G V"}), then the inequalities (l)(iii) can be deleted as 
they are implied by the constraints (i) and (ii), as one easily checks. In that case, 
the theorem is due to Egervâry [9] and follows more simply from the fact that 
if M is totally unimodular and d is integer, then each vertex of the polyhedron 
determined by Mx < d is integer. 

Similarly, for bipartite G, the Tutte-Berge formula above reduces to the well-
known König-Egervary theorem [21, 9]. 

2. Polyhedral combinatorics and polynomial solvability. Above we 
mentioned obtaining polynomial-time algorithms from polyhedral results with 
the ellipsoid method. In this section we describe this more precisely. 

Suppose that for each graph G = (V, E) we have a collection TG of subsets of 
E. For example: 

(ii) JQ = {M Ç E\M is a spanning tree}; (4) 
(iii) TQ = {M Ç E\M is a Hamiltonian circuit}. 

With any family (TG\G graph) we can associate the following problem: 

Optimization problem. Given a graph G = (V,E) and c G Q^, (5) 
find M G TG maximizing £ ) e € M ce. 
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So if (TG\G graph) is as in (i), (ii), and (iii), respectively, problem (5) amounts 
to finding a maximum weighted matching, a maximum weighted spanning tree, 
and a maximum weighted Hamiltonian circuit, respectively. The last problem is 
the well-known traveling salesman problem (note that by replacing c by — c (5) 
becomes a minimization problem). 

Given a family (TG\G graph), we are interested in finding, for any graph 
G = (V, E), a system Ax < b of linear inequalities in z G J&E so that 

conv.hull{xM|M G TG} = {x\Ax < b}. (6) 

If (6) holds, then for any ceRE: 

max < 2 J ce\M G TG \ = max{cTa:|yla; < 6} 
LEM J 

= mm{yTb\y>0;yTA = cT}, (7) 

thus formulating the combinatorial optimization problem as a linear program
ming problem. 

The optimization problem (5) is said to be solvable in polynomial time or 
polynomially solvable if it is solvable by an algorithm whose running time is 
bounded above by a polynomial in the input size \V\ + \E\ + size(c). Here 
size(c) := 2ees s^ z e ( ce) î where the size of a rational number p/q is equal to 
l°g2(|p| +1) +1°&2 kl- So size(c) is about the space needed to specify c in binary 
notation. 

It has been shown by Karp and Papadimitriou [20] and Grötschel, Lovâsz, 
and Schrijver [16] that (5) is polynomially solvable if and only if the following 
problem is solvable in polynomial time: 

Separation problem. Given a graph G = (V,E) and x G QE, (8) 
determine if x belongs to conv.hull{xM|Af G #?}, and if not, 
find a separating hyperplane. 

Again, "polynomial time" means: time bounded by a polynomial in |V| + 
I#l + Eee2*size(a;e). 

THEOREM 2. For any fixed family (TG\G graph), the optimization problem 
(5) is polynomially solvable if and only if the separation problem (8) is polyno
mially solvable. 

The theorem implies that with respect to the question of polynomial-time 
solvability, the approach described above (studying the convex hull) is more or 
less essential: a combinatorial optimization problem is polynomially solvable if 
and only if the corresponding convex hulls can be decently described—decently, 
in the sense of the separation problem. 

As an application of Theorem 2, it can be shown that the system (1) of linear 
inequalities can be tested in polynomial time, although there exist exponen
tially many constraints (Padberg and Rao [28]). Hence, the maximum matching 
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problem is polynomially solvable (in fact, this was shown directly by Edmonds 

[7]). 
Theorem 2 can also be used in the negative: if a combinatorial optimization 

problem is not polynomially solvable (maybe the traveling salesman problem), 
then the corresponding polytopes have no decent description. 

Theorem 2 is shown with the ellipsoid method, for which we refer to the books 
of Grötschel, Lovâsz, and Schrijver [17] and Schrijver [32]. The ellipsoid method 
does not give practical algorithms, but it may give insight in the complexity of 
a problem. 

There are several variations of Theorem 2. For instance, a similar result holds 
if we consider collections TG of subsets of the vertex set V, instead of subsets of 
the edge set E. Moreover, we may consider families (TG\G G Q), where § is a 
subclass of the class of all graphs. Similarly, we can consider directed graphs. 

3. Lattices and strongly polynomial algorithms. A first recent develop
ment in polyhedral combinatorics is the influence of lattice techniques, to a large 
extent due to the recently developed basis reduction method given by Lenstra, 
Lenstra, and Lovâsz [23]. In this section we give one illustration of this influence, 
due to Frank and Tardos [10]. 

The basis reduction method solves the following problem: 

Given a nonsingular rational nxn-matrix A, find a basis bi,...,bn (9) 
for the lattice generated by the columns of A satisfying 

| |6i | | --- | |bn| |<2"("-1)/4 |detyl | ) 

in time bounded by a polynomial in size(.A) := ^2ijsize(aij). Here the lattice 
generated bya\,... ,an is the set of vectors A i a H — + A n a n with Ai , . . . , An G Z. 
Any linearly independent set of vectors generating the lattice is called a basis for 
the lattice. 

One of the many consequences is a polynomial-time algorithm for the following 
simultaneous diophantine approximation problem: 

Given n G N, a G Q n , and e with 0 < e < 1, find an integer (10) 
vector p and an integer q satisfying \\a — (l/q)p\\ < e/q and 
1 < q < 2 n ( n + 1 ) / 4 £- n . 

This can be seen by applying the basis reduction method to the (n+1) x (n+1)-
matrix 

J a 

) • 
^Li-d=Q^_2=n(n^^^^ 

where J is the n x n identity matrix. 
Frank and Tardos showed that this approximation algorithm yields so-called 

strongly polynomial algorithms. The algorithm for the optimization problem (5) 
derived from the ellipsoid method performs a number of arithmetic operations, 
which number is bounded by a polynomial in |V| + \E\ + size(c). (Arithmetic 
operations here are: addition, subtraction, multiplication, division, comparison.) 
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It would be preferable if the size of the weight function c only influences the sizes 
of the numbers occurring when executing the algorithm, but not the number of 
arithmetic operations. Therefore, one has defined an algorithm for (5) to be 
strongly polynomial if it consists of a number of arithmetic operations, bounded 
by a polynomial in |F | + \E\, on numbers of size bounded by a polynomial in 
| 7 | + | £ | + size(c). 

Frank and Tardos however showed the equivalence of the two concepts when 
applied to (5): 

THEOREM 3. For any family (TG\G graph), there exists a polynomial-time 
algorithm for the optimization problem (5) if and only if there exists a strongly 
polynomial algorithm for (5). 

Their result was obtained by constructing a strongly polynomial algorithm 
for the following problem: 

Given n G N and c G Qn, find c G Zn such that ||c||oo < 2 9 n 3 (12) 
and such that: cTx > cTy -O* c^x > (Fy, for all x,y G {0, l } n . 

With this method the size of c in the optimization problem can be reduced to 
0(\E\3), without changing the optimum solution. Hence any polynomial-time 
algorithm for the optimization problem yields a strongly polynomial algorithm. 

As another interesting recent lattice result we mention Lovâsz's [25] character
ization of the perfect matching lattice (i.e., the lattice generated by the incidence 
vectors of perfect matchings in a graph), in the same vein as Edmonds's matching 
polytope theorem. 

4. The coclique polytope and decomposition techniques. As another 
recent development in polyhedral combinatorics we mention the propagation of 
decomposition techniques. Fundamental decomposition methods are described in 
Seymour's paper Decomposition of regular matroids [34]. Also Burlet, Fonlupt, 
and Uhry [2, 3] obtained deep decomposition results. 

We illustrate the decomposition methods of Seymour by applying them to 
characterizing the "coclique polytope" of certain graphs. For any undirected 
graph G = (V, E), a set C Ç V is called a coclique if it does not contain any edge 
of G as a subset. The coclique polytope of G is the convex hull of the incidence 
vectors of cocliques in G, i.e., conv-hullfx^lC coclique} Ç R y . 

The problem 

Given G = (V, E) and c G R / , find a coclique C in G maximiz- (13) 
inS E u e » Cn\ vec1 

is NP-complete, and hence probably not polynomially solvable. Therefore, by 
Theorem 2 (now in the variant with subsets of V instead of E), there is probably 
no polynomial-time algorithm for the separation problem for coclique polytopes. 
So we should not expect a decent description for coclique polytopes similar to 
Edmonds's matching polytope theorem. 
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For some classes of graphs, however, the coclique polytope has a decent de
scription, e.g., for perfect graphs (including bipartite graphs, line graphs of bipar
tite graphs, comparability graphs, triangulated graphs, and their complements). 
Another class of graphs is described in the following theorem of Gerards and 
Schrijver [14]. An undirected graph G = (V, E) is called odd-K^-free if G has no 
subgraph homeomorphic to 

where wriggled lines stand for paths, so that each face in this graph is enclosed 
by a circuit of odd length. 

THEOREM 4. For any odd-K^-free graph G = (V,E), the coclique polytope 
is equal to the set of vectors x in Rv satisfying: 

(i) 0 < z „ < l (veV), 

(ii) xv + xw < 1 ({v, w}eE), 

Vi (iii) ]Ta;v < 
vec V 

(14) 
(C circuit with \C\ odd). 

(Here C is a circuit if C = {v\,..., Vk} with {vi-i, V{} G E (i = 1,2,..., k) and 
{v^v^eE.) 

Note that if G is bipartite, then G has no odd circuit, and hence there are no 
constraints (iii). In that case the theorem reduces to a theorem of Egervâry [9]. 

The theorem implies, with the help of Theorem 2, that problem (13) is polyno
mially solvable for odd-Ä^-free graphs. Indeed, the constraints (14) can be tested 
for any given x G RX in time bounded by a polynomial in |V| + \E\ + size(a;), 
although there are exponentially many constraints. (The condition (iii) can be 
tested using a shortest path algorithm.) 

We sketch how Theorem 4 can be shown using decomposition techniques 
(which also yield a direct combinatorial polynomial-time algorithm for the max
imum coclique problem for odd-ÄVfree graphs). It was shown by Seymour [34] 
that "each regular matroid is obtained by taking l-,2-, and 3-sums of graphic 
matroids, cographic matroids, and Rio" Regular matroids are matroids repre-

-sentable^overeach-field—By^this^^ 
those binary matroids not containing the Fano-matroid or its dual as a minor. 

Seymour's theorem can be equivalently stated as: "Each totally unimodular 
matrix can be decomposed into network matrices and their transposes and into 
certain 5 x 5-matrices." It implies a polynomial-time test for the total unimod-
ularity of matrices, and a polynomial-time algorithm for linear programs over 
totally unimodular matrices. It also has implications in geometry and graph 
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theory. One of them described by Gerards, Lovâsz, Schrijver, Seymour, and 
Truemper [13] is as follows. 

Consider the following four compositions of graphs G1 — (V',Ef) and G" = 
(V",E") into a new graph H. Composition 1. If \Vf r\V"\ < 1, then H := 
(V U K",Ef U E"). Composition 2. If V H V" = {vuv2} G E1 n E" and G" is 
bipartite, then H := (V,UV",(EtUE")\{{v1,v2}}). Compositions. I fV 'nV" = 
{vo,vi,v2}, E'nE" = {{voivi},{vo,V2},{vi,v2}}) and v0 has degree 2 both in 
G' and in G", then H := ((V U V")\{v0}, (E* U E")\(E' n F ' ) ) - Composition 
4. If y ' n V " - {v0,vi, ^2^3} , E'nE" = {{vo,v1},{v0,v2},{vo,v3}}, v0 has 
degree 3 both in G' and in G", and G" is bipartite, then 

H := ((V U V")\{v0}, (Ef U E")\(E' n £"))• 

Moreover, consider the following operations on a graph G = (V, i£). Operation 
1. If {i>o,t>i}, {^1,^2}? {^2^3} € -̂ 5 where both v\ and Ü2 have degree 2, then 

ff : = ( F \ { W I , W 2 } , ( ^ \ { { T ; O ^ I } } { W I ^ 2 } , { ^ 2 , ^ 3 } } ) U { ? ; O , W 3 } ) . 

Operation 2. If t>o £ V, where {vo,vi},..., {VQ, Vk} are the edges of G containing 
vo, then let w i , . . . , wk be "new" vertices and 

H := (V U {wi , . . . , w*}, (^\{{«o, v i } , . . . , {v0, vk}}) 

U {{v0) Wl}, - • • , {^0, Wfc}, {wi, v i } , . . •, {wk, vk}}). 

THEOREM 5. An undirected graph is odd-K^-free if and only if it can be 
constructed by a series of compositions and operations above starting with the 
following graphs: 

(i) graphs G = (V, E) having a vertex vo so that the graph 

(V\{VQ},E\{e\e 3 Vo}) is bipartite; 

(ii) planar graphs having exactly two odd facets (an odd facet (15) 

is a facet enclosed by an odd number of edges); 

(iii) the following graph : 

Sufficiency in this theorem is easy to see: each of the graphs in (i), (ii), and 
(iii) is odd-Ä4-free. Moreover, each of the compositions and operations maintains 
the property of being odd-Ä^-free. The content of the theorem is that in this 
way all odd-^-free graphs can be constructed. 

In order to derive now Theorem 4, it suffices to prove that each of the graphs 
(15) has the property described in Theorem 4, and moreover that this property 
is maintained under each of the compositions and operations above. Showing 
this is not as hard as the original direct proof of Theorem 4. 
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If we let Ax < b denote the system (14), then by Theorem 4 for odd-iQ-free 
graphs G = (V, E) and ceRv: 

max < V^ cv\C coclique > = max{cTx\Ax < 6} 
{vec J 

= mm{yTb\y > 0; yTA = cT}. (16) 

Using the above decomposition techniques, Gerards [12] showed that if c is 
integer-valued, the minimum has an integer optimum solution y. In particular, 
if c = 1 (the all-one function) then the maximum size of a coclique is equal to 

/ t 

i*i+E mm 
\ 2=1 u 

| I < * I (17) 

where the minimum ranges over all subsets F of E and circuits Gi, . . . , Ct such 
that V = (J F U U!=i C*- This forms an extension of a theorem of König [22] 
for bipartite graphs. 

5. Cutting planes. Quite often the problem of characterizing the convex 
hull of certain {0, l}-vectors amounts to characterizing, for some polyhedron P, 
the polyhedron 

Pi := conv.hulljz G P\x integral}. (18) 

Pi is called the integer hull of P. E.g., if G = (V, E) is a graph, and 

P := ix G RE\xe >0(eeE);J2*e<l(veV)\, 
I e3v J 

(19) 

the integral vectors in P are exactly the incidence vectors of matchings, and 
hence Pi is equal to the matching polytope of G. Similarly, for 

P:= lx eRv\xv > 0 (v eV);J2xv < 1 (e G JE) L 
I vee J 

(20) 

Pi is the coclique polytope of G. 
For any rational polyhedron P, there is a procedure of deriving the inequalities 

determining Pi from those determining P—the cutting plane method, due to 
Gomory [15]. The following description is due to Chvâtal [4] and Schrijver [29]. 

Clearly, if H is a rational half-space, i.e., H is of form 

H = {xeRn\aTx<ß}, (21) 

where a G Qn, a ^ 0, ß G Q, we may assume without loss of generality that a 
is integral, and that the components of a are relatively prime integers. In that 
case: 

H1 = {xeRn\aTx< [ß\}. (22) 

Hi arises from H by shifting its bounding hyperplane until it contains integral 
vectors. 
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Now define for any set P in R n : 

P' := U Hh (23) 
HDP 

where H ranges over all rational half-spaces containing P . Since H D P implies 
# i 2 Pi) it follows that P' D Pj. It can be shown that if P is a rational 
polyhedron (i.e., a polyhedron determined by linear inequalities with rational 
coefficients), then P' is a rational polyhedron again. 

To P' we can apply this operation again, yielding P". It is not difficult to 
find rational polyhedra with P" ^ Pf. Each rational polyhedron P thus gives a 
sequence of polyhedra containing P\: 

PDP'DP" D P'" D • •. D PY. (24) 

Denoting the (t + l)th set in this sequence by P^\ the following can be shown. 

THEOREM 6. For each rational polyhedron P there exists a number t such 
thatPM=Pi. 

The theorem is the theoretical essence of the termination of the cutting plane 
method of Gomory. The equation aTx = [ß\ defining Hi, or more strictly the 
hyperplane {x\aTx = L/?J}, is called a cutting plane. 

The smallest t for which pM = Pi can be considered as a measure for the 
complexity of Pi relative to that of P . In a sense, P' is near to P , P" to P', and 
so on. 

Let us study some specific polyhedra related to graphs. Let G = (V, E) be 
an undirected graph, and let P be the polytope (19), implying that Pi is the 
matching polytope of G. It is not hard to see that for each graph G, the polytope 
P' is the set of all vectors x in P satisfying 

x>e< 
eCU 

\\u\ (UÇV,\U\ odd). (25) 

(Of course, there are infinitely many half-spaces H containing P , but the cor
responding inequalities aTx < [ß\ all are implied by the inequalities defining 
P and by (25).) So Edmonds's matching polytope theorem in fact tells us that 
P' = Pi for each graph G. (P = Pi for bipartite G, since in that case (25) is 
implied by the inequalities determining P.) 

Next let, for any undirected graph G = (V,E), P be the polytope (20), 
implying that Pi is the coclique polytope of G. It is not difficult to check that 
the polytope P' is the set of vectors x in P satisfying 

vec 
\\c\ (C odd circuit). (26) 

So Theorem 4 states that P' = Pi if G is odd-ÄVfree. By Egervâry's theorem 
P = Pi if and only if G is bipartite. Chvâtal [5] has shown that there exists no 
fixed t so that pW = Pi for each graph G. 
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An important computational application of cutting planes is to the traveling 
salesman problem, which we mention in the following section. 

6. The traveling salesman problem and cuts. The well-known traveling 
salesman problem (in its directed, asymmetric form) can be formulated as an 
integer linear programming problem as follows, for given n G N and c = (c^) G 
Rnxn: 

n 
minimize ^ J xiji 

i\i=i 

such that 

(*ij>0 (i,j = l,...,n); (27) 

(*){ E ^ € t / ^ > 1 (0 + U § {1,...,n}); 
l £y=i*ü = l (i = l,...,n); 

Xij integer (i,j = l,...,n). 

Let P be the polytope in R n X n determined by (*). It is clear that Pi is the convex 
hull of the incidence vectors of traveling salesman routes. Since the traveling 
salesman problem is NP-complete, we may not expect a "decent" description of 
Pi in the sense of Theorem 2. In fact, if NP ^ co-NP there is no fixed t such 
that PW = Pi for each n. 

On the other hand, cutting planes can be helpful in solving instances of the 
traveling salesman problem. The traveling salesman problem is equivalent to 
solving min{cTa;|a; G Pi}, while solving min{cTa:|a; G P } is not so difficult (it 
is polynomially solvable), and it yields a good lower bound for the traveling 
salesman optimum value (since P D Pi). Good bounds are essential in branch-
and-bound procedures for the traveling salesman problem. 

Adding all cutting planes to (*) to obtain Pi seems infeasible, but instead we 
could add some cutting planes in order to obtain a better lower bound. This is 
a basic ingredient in the recent successes of Crowder, Grötschel, and Padberg in 
solving large-scale traveling salesman problems (see [18, 27]). Recently, Padberg 
was able to solve a symmetric 2392-"city" problem using cutting planes. 

We shall not go into the details of solving the traveling salesman problem. 
We describe some theoretical results related to the above, which exhibit some of 
the connections of polyhedral results with combinatorial min-max relations. 

Let C be a collection of subsets of V := { 1 , . . . , n} satisfying: 

(i) 0<jÉC,V£ C; 

a n d T U E / G C . 

Such a collection is called a crossing family. Consider the polytope P consisting 
of all x = (xij) G R n x n satisfying: 

Xij>0 (i,j = l,...,n), ^2 xi:i>l (UeC). (29) 
itujeu 
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Note that (*) in (27) defines a facet of P, for C = P(V)\{0,V}. 
The following theorem was shown in [31], 

THEOREM 7. P has integral vertices if and only if 

there are no sets Vi,V2jV3,V4,Vö in C such that Vi Q V2 fi V3, (30) 
v2uv3 = v, V3UV4Qvb, Vsnv4 = 0. 

Note that if x is an integral vertex of P, then a: is a {0, l}-vector. 
Theorem 7 can be put in a more combinatorial setting. Let C Ç P(V) be a 

crossing family and let D = (V, A) be a directed graph (i.e., V is a finite set and 
A C V X V). Call a subset A' of A a covering (for C) if each U G C is entered 
by at least one arc in A' (a = (v, w) enters U if v £U, w G Î/). Call a subset A' 
of A a cut (induced by C) if A' = 6^(U) := {a G A\a enters [/} for some U G C. 
So each covering intersects each cut. 

Consider the polyhedron in RA determined by: 

xa>0 (a e A), J2 X ">1 {UeC). (31) 
aG5-(l7) 

Then Theorem 7 is equivalent to: 

THEOREM 8. Each vertex of the polyhedron determined by (31) is the inci
dence vector of a covering, for each directed graph D = (V, A), if and only if (30) 
holds. 

Now we have the following: (30) holds & the polyhedron determined by (31) 
has vertices coming from coverings and facets coming from cuts «o- (by polarity) 
the polyhedron determined by 

xa > 0 (a G _4)5 ] T xa > 1 (G covering) (32) 
aec 

has vertices coming from cuts and facets coming from coverings. So Theorem 8 
is equivalent to: 

THEOREM 9. Each vertex of the polyhedron determined by (32) is the inci
dence vector of a cut, for each directed graph D = (V, A), if and only if (30) 
holds. 

It follows that if (30) holds, and c G Z^, then the linear programs of minimiz
ing cTx over (31) and over (32), respectively, have integral optimum solutions, 
corresponding to a minimum-weighted covering and a minimum-weighted cut, 
respectively. In fact, it is shown in [31] that if (30) holds, then also the linear 
programs dual to these programs have integer optimum solutions. By LP-duality 
this means: 

THEOREM IO. Let C be a crossing family satisfying (30), let c G ZA, and 
let D = (V, A) be a directed graph. Then (1) the minimum weight of a covering 
is equal to the maximum number t of cuts G\,...,Ct (repetition allowed) so that 
each arc a of D is in at most ca of the cuts Cn (ii) the minimum weight of a cut 
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is equal to the maximum number t of coverings Gi, . . . ,G t (repetition allowed) 
so that each arc a of D is in at most ca of the coverings Ci. 

We mention the following applications. 
1. Let V be partitioned into classes V' and V", let C := {{u}|v G V'} U 

{V\W|v G V"}, A Ç V" x V, c = 1. Then (i) in Theorem 10 is equivalent to 
a theorem of König [22]: the minimum number of edges covering all vertices in 
a bipartite graph is equal to the maximum size of a coclique. Similarly, (ii) is 
equivalent to a theorem of Gupta [19]: the minimum degree in a bipartite graph 
is equal to the maximum number of pairwise disjoint edge sets E\,...,Et each 
covering all vertices. 

2. Let r, s G V be fixed, let C := {U Ç V\r <£ U, s G U}, D = (V, A) arbitrary, 
and c = 1. Then (i) in Theorem 10 is equivalent to the (easy) result that the 
minimum number of edges in a path from r to s in D is equal to the maximum 
number of pairwise disjoint cuts separating r from s. Assertion (ii) is Menger's 
theorem [26]: the minimum number of edges in a cut separating r from s is equal 
to the maximum number of pairwise edge-disjoint paths from r to s. 

3. Let r G V be fixed, let C := {U CV\r <£U ^ 0 } , and let D = (V,A) and 
c be arbitrary. Then (i) in Theorem 10 is equivalent to a theorem of Fulkerson 
[11]: the minimum weight of an r-branching (= a subset of A forming a rooted 
directed tree with root r) is equal to the maximum number t of r-cuts (= sets 
of form t>Ä(U) with U G C) (repetition allowed) such that any arc a of D is in 
at most ca of these r-cuts. If c = 1, assertion (ii) is equivalent to a theorem of 
Edmonds [8]: the minimum size of any r-cut is equal to the maximum number 
of pairwise disjoint r-branchings. 
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Goldwasser, Micali, and Rackoff [GMR] define for us what it means for a 
theorem to have a "zero-knowledge proof." In brief, a zero-knowledge proof 
is an interactive probabilistic protocol that gives highly convincing (but not 
absolutely certain) evidence that a theorem is true and that the prover knows a 
proof (a "standard" proof in a given logical system), while providing not a single 
additional bit of information about the proof. GMR formalize this idea. We do 
not. Nevertheless, we hope that the reader who has not read their paper will 
still understand our proofs. 

Goldreich, Micali, and Wigderson [GMW] take another leap forward. They 
show that if one makes a reasonable assumption (that one-way functions1 exist), 
then it is possible to convert any standard constructive proof of any of the the
orems in a large natural class of theorems2 into a zero-knowledge proof that the 
theorem is true. GMW start by considering a particular NP-complete problem: 

Graph 3-Colorability. 
Instance. A graph G. 
Question. Can G be "properly" 3-colored (each node colored by one of 3 given 

colors so that no two adjacent nodes receive the same color). 
GMW show that a "prover" who knows how to 3-color a particular graph 

G can convince a verifier that (1) G is 3-colorable, and (2) the prover knows a 
3-coloring, without giving away any additional information. In particular, the 
prover does not give away the slightest clue how to 3-color G. 

Supported, in part, by National Science Foundation Grant DCR 85-13926. 
^ne-wayïunctions are 1-1 functionsTrom n-Rt integers to n-bitTintegers tEaT^inlBrmäUyp 

are easy to compute in the forward direction, but hard to invert on all but a small fraction of 
ra-bit integers. 

2These theorems, which arise frequently in mathematics and computer science, are the 
yes -instances of decision problems IT in NP. A good reference to NP and the theory of NP-
completeness is: Michael Garey and David Johnson, Computers and intractability: a guide 
to the theory of NP-completeness, Freeman and Company, 1979. 
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The essence of the GMW proof is to show the prover how to break up his 
proof into several pieces in such a way that 

(1) the verifier can tell, by looking at any one piece of the proof, whether or 
not that piece has been properly constructed. Moreover, it should be clear to 
the verifier that if all the pieces are properly constructed, then the proof is valid, 
and 

(2) the prover will not reveal any information about how the proof was con
structed when he reveals any single piece of the proof. 

To start, the prover hides each piece of the proof in its own locked safe, in 
reality a one-way function applied to the piece of proof. The verifier is permitted 
to point to any safe and ask the prover to open it. The fact that the piece of 
proof inside the safe is properly constructed is evidence to the verifier that all 
pieces are properly constructed, so the proof is valid. It will be evident to the 
verifier that the pieces can all be properly constructed by any prover who knows 
how to properly 3-color G, but at least one piece must be improperly constructed 
by a prover who does not. 

Now, proofs can be broken up into pieces in many ways. The prover must 
select a sequence of breakups such that a piece from the first breakup plus 
another from the second, and so on, does not accumulate evidence to provide the 
slightest hint to the verifier about how to prove the theorem. It is even possible 
to continue the process indefinitely without ever providing a single additional 
bit of information about how to prove the theorem. 

By repeatedly breaking up the proof and opening just one safe each time— 
whichever the verifier requests—the prover convinces the verifier that he is not 
cheating unless he is very very lucky. 

GMW point out that because Graph 3-Colorability is an NP-complete prob
lem, any problem in NP can be given a zero-knowledge proof, i.e., anyone who 
knows a polynomial length proof of a 2/es-instance of an NP problem can give a 
zero-knowledge proof of this fact. (For the reader familiar with the concepts of 
NP-completeness, this result is a consequence of Cook's theorem that satisfiabil
ity is NP-complete, the NP-completeness of Z-colorability, and the fact that the 
transformations used in these proofs are (many-one) Karp-reductions.) 

Outline of the talk. In this talk we show the following: 
(1) How a prover can give a zero-knowledge proof that he knows a Hamilton 

cycle in a graph. Since the proof is zero-knowledge, the prover does not give the 
verifier the slightest idea how to construct that cycle. The zero-knowledge proof 
is interactive (the prover breaks his proof up into pieces and the verifier requests 
to see a particular piece) along the lines of GMW's proof. It is, however, more 
efficient than GMW in terms of the number of requests the verifier must make 
to achieve any fixed level of confidence. To ensure that a cheater will pass the 
test with probability of cheating < l/2fc, we require just fc requests rather than 
the k - E requests required by GMW for graphs with E edges. 

(2) How a prover can give a zero-knowledge proof that a graph G is 3-colorable. 
This serves to show that the Hamilton cycle problem is not special so far as zero-
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knowledge is concerned. Again, the standard proof of 3-colorability is broken into 
just 2 pieces in every round, though at the price of polynomial growth in each 
piece. The reader who knows the GMW proof may find it instructive to compare 
their proof with ours. 

(3) How the proof of any theorem whatsoever (e.g., Fermât 's Last Theorem) 
whose proof has been formalized in a standard logical system (such as Whitehead 
and Russell's Principia Mathematicae), together with any integer upper bound 
on the length of the proof, can be translated into a zero-knowledge proof. The 
zero-knowledge proof shows that the theorem is very probably true and that the 
prover almost certainly knows a proof in the given logical system. It gives away 
no other information whatsoever. 

Some zero-knowledge proofs. Let G be a graph. A Hamilton cycle in G 
is a cycle that passes through all the nodes of G exactly once. We show how a 
prover can convince a verifier that he knows a Hamilton cycle in graph G without 
giving the slightest additional clue about how to construct that cycle. 

The theorem to be given a zero-knowledge proof is one of a class of theorems 
asserting the existence of a Hamilton cycle in a graph. Although we do not 
formalize it, the logical proof system in which the theorem is proved is one in 
which each proof is just a sequence of edges in the graph. If the edges form a 
cycle through all the nodes of G, then the proof (that G has a Hamilton cycle) 
is valid; otherwise, it is not. 

In the following protocols, we assume that lockable boxes are available to the 
prover, and that only the prover has the key. Instead of locking information 
in a box, however, one can encrypt it. One-way functions serve this purpose, 
providing us the equivalent of digital lockable boxes. The one-way functions 
make it possible to pursue the following interactive protocol entirely on paper 
rather than by using the hardware of lockable boxes and keys. 

A zero-knowledge protocol for proving that a graph G has a Hamil
ton cycle. The protocol is interactive and probabilistic. It is probabilistic be
cause (1) both prover and verifier must have the capability of generating se
quences of independent unbiased random bits, and (2) the successful outcome 
of the protocol ensures to the verifier that the prover is probably not cheating. 
On the other hand, the protocol absolutely—not just probably—guarantees the 
prover that no hint of the proof is divulged to the verifier. 

Begin. 

_„The 7Lnodes_of _G-_arÊ_kbeledJVi_, ___^JV^_______^^ „=___^_ _____ 

Prover: Fix one Hamiltonian cycle. 

The protocol has fc rounds. Each round proceeds as follows: 

Begin. 
Prover: In secret (i.e., without letting the verifier know what you are doing), 
encrypt G with the boxes. Do this by randomly mapping n labeled nodes 
Ni,..., Nn 1-1 into n labeled boxes B\,...,Bn, in such a way that every 



HOW TO PROVE A THEOREM SO NO ONE ELSE CAN CLAIM IT 1447 

one of the n! permutations of the nodes into the boxes is equally probable. 
For every pair of boxes (B{,Bj) prepare a box labeled _3#. This box is 
to contain a 1 if the node placed in Bi is adjacent (linked by an edge) to 
the node in BJ; 0 otherwise. AU n + (£) boxes are then to be locked and 
presented to the verifier. 

The verifier receives n + (!J) labeled boxes. He is now given a choice: 

(1) If he wishes, the prover will unlock all the boxes. In this case, the 
verifier may check that the boxes contain a description of G. (For 
example, if _Vi is adjacent to both N2 and NQ but to no other nodes 
of G, and if iVi is in Bi, N2 in Bj, and N& in B^ then there should 
be a 1 in both Bij and JE?̂ , and a 0 in B{x for every other value of 

(2) On the other hand, if the verifier so chooses, the prover will open 
exactly n boxes Bij,Bjk,Bku ••• iBi'i (note the cyclic subscripts), 
those containing the Hamilton cycle that the prover selected in G, 
and show that these boxes all contain a 1. This proves the existence 
of a Hamilton cycle (in whatever graph, if any, is represented by the 
boxes). Since the Bi are not opened, the sequence of node numbers 
defining the Hamilton cycle in G is not revealed. 

Verifier: Select one of the 2 options (graph or Hamilton cycle) at random 
in such a way that both choices are equally likely. 

Prover: Open the appropriate boxes. 

End. 
Verifier: Accept the proof if the prover complies and, in every case, correctly 
exhibits either the requested G or the requested Hamilton cycle. Otherwise, 
reject the proof. 

End. 

THEOREM l (PROVER PROBABLY CANNOT CHEAT VERIFIER). If the 

prover does not know a proof of the theorem, his chances of convincing the verifier 
that he does know a proof are < \j2k when there are k rounds. 

PROOF. If the prover does not know a proof, then to pass the test, he must 
quess in advance what the provee will request. He fails the test if he quesses 
wrong even once. Q.E.D. 

THEOREM 2 (VERIFIER CANNOT CHEAT PROVER). The verifier gets not 
the slightest hint of the proof (other than that "the theorem is true and the prover 
knows a proof in the given logical proof system"). In particular, the verifier 
cannot turn around and prove the theorem to anyone else without proving it 
from scratch himself. 

PROOF. (1) When the prover reveals G, what does the verifier get? Just one 
of the n! random mappings of the n nodes of G into n labeled boxes, each instance 
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of G having exactly the same probability as any other. The verifier could have 
constructed such instances for himself with the same probability distribution. 
So the prover is not giving the verifier any additional information. 

(2) When the prover reveals the Hamilton cycle, what does the verifier get? 
Just a random n-cycle, every n-cycle being exactly as likely as any other. This 
is because (a) the prover is required to select a particular Hamilton cycle in 
G and to always reveal this particular cycle when so requested, and (b) every 
permutation of the n nodes into the n boxes is equally likely. Thus the verifier 
is being shown a random cycle. He could have created random cycles with this 
uniform distribution himself. Q.E.D. 

The above theorem does not prove that the protocol is zero-knowledge. The 
formal definition of zero-knowledge requires one to show that a verifier can simu
late the prover, that is, take the prover's part in the dialogue with the verifier. If 
so, then any efficient3 probabilistic algorithm that enables the verifier to extract 
useful information from his conversation with the prover could just as well be 
used without the prover to obtain that information efficiently. Here is how a 
proof of zero-knowledge would go: 

THEOREM 3. The protocol above for proving that a graph G has a Hamilton 
cycle is zero-knowledge. 

PROOF. Suppose the verifier has an efficient probabilistic algorithm A to 
extract useful information from his conversation with the prover. Then the 
verifier can use his algorithm to extract the information even without the aid of 
the prover. In each round he does the following: 

Begin. 

Verifier simulates the prover: The verifier flips a fair coin and, according to 
the outcome of the coin, encrypts either the graph G or an arbitrary n-cycle. 
G is (randomly) encrypted the same way the prover would have done so. A 
cycle is (randomly) encrypted just the way the prover would have encrypted an 
n-cycle (in G). Then, acting as prover, he presents the encrypted information 
to the verifier. Now he takes the other side. 

Verifier simulates the verifier: The verifier uses his algorithm A to compute 
(perhaps probabilistically) whether to request a graph or a cycle. Because the 
algorithm has no way to guess with any advantage whether the boxes contain 
a graph or a cycle, there is a 50% chance that A requests an option (graph or 
cycle) that the verifier, in the guise of prover, can supply. If not, the verifier 

—backs -up algorithm=A=tO"the^state-it=was=inr-at=the=start"of=this-=roimd=and-
restarts the entire round (verifier simulating the prover). 

End. 
In an expected 2 passes through each round, the verifier will obtain the ben

efit of algorithm A without the help of the prover. Thus the algorithm does 
3An efficient (probabilistic) algorithm is one that computes its output in (expected) time 

polynomial in the length of the input. 
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not help the verifier do something with the prover in expected polynomial time 
that he could not as well have done without the prover in expected polynomial 
time. Q.E.D. 

What is the difference between Theorems 2 and 3? Theorem 2 asserts that the 
verifier gets no hint of the proof of a theorem from the protocol (though he may 
get other information). Theorem 3 asserts that the verifier not only gets no hint 
of the proof but actually gets no information (that he couldn't equally well have 
generated efficiently for himself) whatsoever. It may be helpful to observe that a 
proof of zero-knowledge will be difficult if not impossible to obtain (i.e., I do not 
know how to obtain it) if the protocol for proving that G has a Hamilton cycle 
is modified so that its rounds are executed in parallel. In parallel means that 
the prover first presents all fc graphs to the verifier, then the verifier makes his fc 
requests all at once, and finally the prover opens the requested boxes. To prove 
that this parallel protocol is zero-knowledge is difficult because it is unclear how 
the verifier can simulate the prover's role in this interaction efficiently. 

The Hamilton cycle problem is not the only one with zero-knowledge proofs. 
In fact, any logical proof of length n can be split into two pieces of length 
polynomial(n) along the lines shown above, so that fc rounds will catch all but 
1 in 2fc attempts to cheat. Moreover, as GMW have shown, and as we indicate 
in our own way in Theorem 4, the process of transforming logical proofs into 
zero-knowledge proofs can be entirely mechanized so that a computer program 
could do it efficiently. We now give another simple example of how to transform a 
standard proof, in this case a proof of 3-colorability, into a zero-knowledge proof. 
The reader who knows GMW's method for breaking up a proof of 3-colorability 
into E pieces, E being the number of edges in G, may find it interesting to 
compare that protocol to ours, which breaks a proof into just 2 pieces. 

A zero-knowledge protocol for proving that a graph G is 3-colorable. 
The n nodes of G are labeled iVi,..., Nn. The colors of the nodes will be red, 
white, and blue. To start, the prover knows a proper 3-coloring of G, which we 
call the "standard" 3-coloring. If node Ni is colored red, we call it _V/*; if white, 
_Vĵ ; if blue, N?. A triangle might therefore have the proper coloring scheme 

Begin. 
The protocol has fc rounds. Each round proceeds as follows: 

Begin. 
Prover: Prepare 3n pairs of boxes (Bl,B\), (B2,B2),..., (B^n, B^n). With
out revealing to the verifier what you are doing, randomly map 3n nodes 
JVf,..., iV£, N^,..., _V*\ JVf,..., N% 1-1 onto the 3n pairs of boxes. Do 
this in such a way that every one of the (3n)! permutations mapping the 
{iVf} onto the {(B^Bj)} is equally probable. Next, insert N™%r_number 

into the associated (Bc,,Bj) by putting color into B? and node-number 
into Bj. 
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For every pair of number-containing boxes (Bi,Bj), prepare a box labeled 
Bij. This box is to contain a 1 if the prover's proper 3-coloring of G has 
colored the node of G in Bi with the color in B\, the node of G in Bj with 
the color in B°, and if the node in Bi is adjacent in G to the node in BJ; 0 
otherwise. 

All boxes are then to be locked and presented to the verifier. 

The verifier is now given a choice: 

(1) If the verifier so wishes, the prover will unlock all the boxes Bij and 
all the number-containing boxes Bi, but none of the color-containing 
B\. In this way, the prover reveals the graph G without revealing 
its coloring. The verifier checks that the boxes contain a correct 
description of G. 

(2) On the other hand, if the verifier so chooses, the prover will open the 
3n boxes {B?} to reveal the colors they contain, and then open just 
those boxes Bij (joining Bi to Bj) such that B\ contains the same 
color as Bj. The opened boxes B^ will all contain a 0 if and only if 
any 2 nodes that are colored the same are not adjacent in the graph 
represented by the boxes. This allows the verifier to check correct 
3-coloring. 

Verifier: The correct thing to do is select one of the 2 options at random in 
such a way that both choices are equally likely. 

Prover: Open the requested boxes. 

End. 
Verifier: Accept if the prover correctly complies with all requests; reject other
wise. 

End. 
This protocol is zero-knowledge, and the probability that a fake prover can 

cheat a verifier is l/2fc. 

A zero-knowledge protocol for proving any theorem. Impagliazzo [I] 
has given direct zero-knowledge protocols along the lines shown above for several 
problems including the subset sum problem, satisfiability, and the very general 
problem of proving that a given polynomial-time nondeterministic Turing ma
chine accepts a given input. 

THEOREM 4. Given any logical proof system (such as Russell and White
head's very general system within which it is generally acknowledged that all 
mathematical theorems can be formulated and proved), given any theorem prov
able in that system, and given an upper bound, L, on the length of some proof of 
the theorem in the system, it is possible to efficiently transform that proof into a 
zero-knowledge proof of the theorem. This is an interactive probabilistic protocol 
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whereby the prover persuades the verifier that with high probability, 
(1) the theorem has a proof in the given proof system of length < L, and 
(2) the prover knows such a proof. 

The probability that a cheater, i.e., a prover who does not know a proof, will pass 
this test < l/2fc for a protocol with fc rounds. 

IDEA OF PROOF. The proof system is defined by a nondeterministic TM 
(Turing machine) which, on input (statement of theorem, ln) , guesses a proof of 
the theorem of length < n, checks if it is a valid proof within the system, and 
accepts if it is, rejects if not. 

The prover gives the verifier a zero-knowledge proof that he, the prover, knows 
an accepting path for this TM for some n. The protocol for this is along the 
same lines as for Hamilton cycle in a graph [I]: one splits the computations into 
two pieces. The integer n must be chosen by the prover to be an upper bound 
on the length of his proof in the system. Q.E.D. 
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Computational Complexity in Polynomial Algebra 

D. YU. GRIGOR'EV 

In recent years a number of algorithms have been designed for the "inverse" 
computational problems of polynomial algebra—factoring polynomials, solving 
systems of polynomial equations, or systems of polynomial inequalities, and re
lated problems—with running time considerably less than that of the algorithms 
which were previously known. (For the computational complexity of the "di
rect" problems such as polynomial multiplication or determination of g.c.d.'s see 
[1, 16] and also [9].) It should be remarked that as a result a hierarchical re
lationship between the computational problems of polynomial algebra, from the 
point of view of computational complexity, has been elucidated. The successful 
design of these algorithms depended to a large degree on developing them in the 
correct order: first the algorithms for the problems which are easier in the sense 
of this hierarchy were designed, which were then applied as subroutines in the 
solutions of more difficult problems. So far problems of the type discussed here 
have been considered easier only when they are special cases of the more difficult 
ones; e.g., the solution of a system of polynomial equations is considered as a 
particular case of quantifier elimination. 

A powerful impetus for this development came initially from the development 
of polynomial-time algorithms for factoring polynomials. On the other hand, a 
major role has been played by a new insight from the computational point of 
view: treating the solution of systems of polynomial equations in the framework 
of the determination of the irreducible components of an algebraic variety. This 
has made it possible to apply the polynomial factorization algorithm to this 
problem. In addition a successful reduction of the problem of solving systems of 
polynomial inequalities to the "nonspecial" case of this problem was achieved by 
means of an explicit use of infinitesimals in the calculations, and the "nonspe
cial" case was in turn reduced to the solution of a suitable system of polynomial 
equations. Finally, for the design of decision procedures for the first order the
ories of algebraically closed or real closed fields, appropriate solvability criteria 
for the corresponding systems with variable coefficients were produced which are 
"uniform" in the set of auxiliary parameters. 
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Since all the bounds on time complexity given in the present paper are only 
specified up to a polynomial, while on the other hand all reasonable models of 
computation (such as Taring machines or RAM's) are equivalent in the sense 
of polynomial time complexity, the choice of a particular model of computation 
is irrelevant to this paper. One may take the complexity measure below to be 
the number of bit operations executed. As usual, complexity is considered as a 
function of the size of the input data in the worst case. The terms "polynomial 
time" and "exponential time" will be used in this sense (see, e.g., [1]). 

1. Factoring polynomials. Attempts to design procedures for factoring 
polynomials go back to Newton (for a historical survey see [16]). The Kronecker-
Schubert algorithm for factoring polynomials from the ring Q[Xi,. . . , Xn] is well 
known (see, e.g., [25]). This and similar algorithms have exponential running 
time, however. Thus the question arose as to whether a polynomial time algo
rithm for factoring polynomials exists. 

In the case of polynomials / G FP[X) in one variable over a finite field of 
characteristic p, a positive answer to this question was given by Berlekamp's 
algorithm (see, e.g., [16]), whose running time is polynomial in p, s and the de
gree degx(/). For a long time there was no significant progress in attempts to 
design fast algorithms for factoring polynomials, until finally in [18] an inge
nious polynomial-time algorithm for factoring polynomials from the ring Q[X] 
was produced. In [18] the problem of factoring polynomials was reduced to one 
of finding a sufficiently short vector in a lattice, and in addition for the latter 
problem a polynomial-time algorithm was designed. The result of [18] was then 
generalized in [3] (see also [4, 5, 8]), where a polynomial-time algorithm for fac
toring polynomials / G F[X\,... ,Xn] in many variables over a fairly large class 
of fields F was produced. We mention also that in [12, 13] an algorithm for fac
toring polynomials from the ring Q[Xi,... ,Xn] was designed, whose complexity 
is polynomial for a fixed number n of variables. 

Before proceeding to an exact formulation of the result from [3], we need to 
describe how a ground field F and a polynomial / G F[Xx,..., Xn) are presented. 
Thus, we consider a field of the form F = H(T\,... ,Te)[rj\, where H = Q 
or H = Fp (in other words if is a prime field), the elements T\,...,Te are 
algebraically independent over H, the element r\ is separably algebraic over the 
field H(TU.. ..T.). Let <p(Z) = Z ^ < d e g , ( „ , f o ( 1 ) / P ( 3 ) ) ^ € H{TU .. .,Te)[Z] 
be the minimal polynomial of r\ over the field H(T\,... ,Te) with the leading 
coefficient lcz(<p) = 1, where the polynomials <pj\ <pW G -ff" [Ti,... ,Te] and the 
degree deg(^2)) is the least possible. Any polynomial / G F[Xi,... ,Xn] can 
be uniquely represented in the form 

/= E te* UbW^-'-xi? 
0<i<degz(<p);ii ,...,.„ 

where the polynomials a^,...,^, b G H[Ti,..., Te] and the degree deg(ft) is the 
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least possible. Define the degree 

de&r,(/) = . Pax. {deSTiKii,..,Ü>degT••(&)}• 
3 IM,...,!*, 3 3 

Another measure of the size of a representation of a polynomial is the (bit) 
length of its coefficients (from the field H). Namely, if H = Q and a/ß G Q, 
where a,ß are relatively prime integers, then the length l(a/ß) is defined by 
log2(|a/?| + 2); if fl" = Fp then the length 1(a) for any element a G Fp is defined 
as log2p. The length /(/) of the coefficients of a polynomial / is defined as 
the maximal length of the coefficients from H of the monomials in the variables 
Ti,... ,Te occurring in the polynomials «..ii....,.„»&• Finally, as the size £_(/) of 
a polynomial / we take here the value 

(max^ degX|(/) + l ) ( m m degT.(/) + l ) (degzfo>) + !)*(/), 

analogously 

Lifa) = ( / ^ deftr,Gp) + l ) (<kgz(^) + l)Jfop)-

The size of a polynomial provides an estimate for the sum of the bit lengths of 
all its coefficients. 

We use the notation g± < g2P(gs, • • •, 0_) for functions g\,..., g3 to mean that 
for a suitable polynomial P the following inequality holds: 

| f f l |<MP(N,. . . , | f fa | ) . 

THEOREM 1. One can factor a polynomial f over the field F within time 
polynomial in L\(f), L\(ip), p. Moreover for any normalized divisor f\ G 
F[X\,... ,Xn] of the polynomial f the following bounds are valid: 

degT,(/i) < ^gT.(f)P (max^ degx.(/), max degrj.(^),degz(p) J , 

1(h) < (1(f) + 1(<P) + e max degT (/) + n) 
i<j__ß 

•Plmax deg x ( / ) ,max degT (^),degz(^) ) . 

First Theorem 1 was proved in [3] for finite fields F, where in order to reduce 
the multivariable case to the case of two variables an effective version of Hilbert's 
Irreducibility Theorem was given. 

Theorem 1 has various applications (see, e.g., [4]) to absolute polynomial 
factorization, to constructing a primitive element in a field extension, and to 
finding the Galois group of a polynomial. 
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2. Solving a system of polynomial equations. Let the polynomials 

/i? •••)/« ^ F[Xi,...,Xn] 

be given for a field of the same form as in §1. Assume for the present section 
that the following bounds are fulfilled: 

d eSx! xn{fi) < d, degTl Teiz{<P) < du degriI...,TBC/i) < d2, 

l(<p)<Mu l(h)<M2, l<i<K. 

A way to decide the solvability of a system of the form / i = ••• = /« = 0 over 
the algebraic closure F of a field F was given in the nineteenth century relying 
on elimination theory (see, e.g., [25]). The time complexity of this procedure, 
however, is nonelementary (in particular, it grows faster than any tower of a 
fixed number of exponential functions). In [22] (see also [11]) a method was 
devised with the help of which one can solve systems within time (M2K,d)2 

when either JF = Q or F is finite. In [17] an algorithm was produced for solving 
a system of homogeneous equations in the case when the projective variety of all 
its roots (defined over the field F) consists of a finite number of points, and the 
running time of this algorithm is polynomial in M2, K,dn,p'\î the ground field F 
is finite of characteristic p. In [4] (see also [5, 8]) an algorithm for solving systems 
of polynomial equations was designed, whose running time can be bounded by a 
polynomial in M2,K,dn ,p in the case when either the field F = Q or F is finite. 

Actually, the algorithm from [4] finds the irreducible components Vi of the 
variety V = \J{Vi C F of all the roots of the system /_ = • • • = fK = 0. 
Furthermore, the algorithm represents each component in two ways: by a generic 
point, and secondly by a certain system of polynomials, whose associated variety 
coincides with the component. 

In this connection, a generic point of a variety W C F of dimension dim(W^) 
= n - m which is both defined and irreducible over the perfect closure Fp °° 
of the field F [27] is an effective version of the usual notion of generic point 
in algebraic geometry (an embedding of the field of rational functions on the 
variety). Thus we now define a generic point to be a field isomorphism of the 
following form: 

F(t1,...,tn.m)[e]cF(Xjl,...,Xjn_m,Xp
1'',...,X^)cF^(W) (1) 

where _ i , . . . , tn-m are algebraically independent over the field F, and in addition 
Fp °°(W) is a field of rational functions on the variety W over the field Fp °°, 
and the exponent v > 0 (we adopt the convention that pv = 1 when char(jP) = 
0); furthermore the element 6 is the image under the isomorphism (1) of a 
linear function Y2i<j<n

 cjXj for certain natural numbers c i , . . . , cn. Under the 
isomorphism (1) the coordinate function Xj. is mapped into U, for 1 < i < n-m. 
The algorithm represents a generic point by specifying the coefficients c i , . . . , cn, 
the exponent pu, the minimal polynomial $(Z) G F(t±,..., tn-m)[Z] of the 
element 6, and the images under the isomorphism (1) of the functions _YJ in 
the field F(t\,... ,tn-m)\6\. In the formulations of the theorems below we use 
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the notations introduced in (1), and we define the degrees and the lengths of the 
coefficients of tb 
of their images. 
coefficients of the functions X j as the degrees and the lengths of the coefficients 

THEOREM 2. For given polynomials / i , . . . , / « one can find all irreudcible 
components Vi of the variety V C F of all the roots of the system f\ = • • • = 
fK = 0 within time polynomial in M±,M2, (dndid2)

n+e,K,p. 
Moreover, for each component Vi the algorithm yields a generic point for it 

(see (1)) and a family of polynomials &[,..., $ } / G F[X\,.. .,Xn) such that 
Vi coincides with the variety of all roots of the system ^y = • • • = #$ = 0. 
Denote m = codim Vi, 0i = 0, $i = <&. Then the following bounds hold: 

pv < d2m, CJ < degz($*) < degVi <(d- l ) m , N < m2d*m; 

z(<^y(xf ) ,^ 
degx, xB(»i°) < rf2m; <***_ TM]) < d*P{drM 

Theorem 2 allows us to answer the principal questions about the variety of 
roots of a system of polynomial equations, namely, whether the variety is empty, 
and what its dimension is. Provided that the variety consists of a finite number 
of points, the algorithm enumerates all of them; otherwise if the variety is not 
zero-dimensional then the algorithm allows us to pick out any desired number 
of roots of the system. 

Evidently, the time-bound in Theorem 2 cannot be considerably improved in 
general, if one desires to find all the irreducible components of a variety, since 
the size of a presentation of a component with dimension near n/2 is of the order 

2 

M2d
n in the case when either F = Q or F is finite. 

The algorithm from Theorem 1 is involved essentially in the proof of Theorem 
2. On the other hand, polynomial factorization is a particular case (when «: = 1) 
of the problem of finding all the irreducible components of a variety. 

As a corollary of Theorem 2 one can find all the absolutely irreducible com
ponents of a variety within the same time-bound as in Theorem 2 [4]. 

Note that the methods discussed do not allow us to recognize within the 
same time-bound, whether a polynomial / belongs to an ideal (/_,...,//_) C 
F[Xi,... ,Xn] (by means of Theorem 2 one can test, however, whether a poly
nomial / belongs to the radical r a d ( / i , . . . , fK)). 

3. Quantifier elimination in the first-order theory of algebraically 
closed fields. Quantifier elimination in the first-order theory of algebraically 
closed fields is a generalization of the problem of solving systems of polynomial 
equations. Thus, consider a formula of this theory of the form 

3X1A • • • 3Xli9l V_Y2|1 • • - V_Y2j,2 • - - 3XaA • • • 3Xa>a_ (II) (2) 
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where II is a quantifier-free formula of the theory containing /_ atomic subfor
mulas of the sort (fi =0), 1 <i < K, here the polynomials 

fi G F\X\,... ,XaQ,Xi^,...,XaìSa] 

(we assume the field F and the polynomials fi satisfy the same bounds as in the 
beginning of the previous section). Denote by n = so + s_ + • • • + sa the total 
number of variables (including free ones X\,... ,X8Q), and by a the number of 
quantifier alternations in the formula (in the presentation of the formula (2) a 
is odd, but this is not essential). 

In [23] (see also [21]) a quantifier elimination procedure was described, which 
for a given formula of the form (2) yields an equivalent quantifier-free formula. 
The time-bounds of these procedures, however, were nonelementary. In [11] a 
quantifier elimination method is described, having time-bound (M2K,d)2 " in 
the case when either the field F = Q or F is finite (when F = Q the same 
time-bound follows from the methods of [6, 26]). In [5] a quantifier elimination 
algorithm is produced with time-bound polynomial in M2, (K,d)(°W> ° in the 
case when either F = Q or F is finite, more exactly the following is valid. 

THEOREM 3. For a given formula of the form (2) one can construct an 
equivalent quantifier-free formula of the first-order theory of algebraically closed 
fields 

within time polynomial in M\,M2,(Kd)^°^n^ ae,(d\d2)
nJte,p. Moreover the 

polynomials gij G F[X\,... ,XSQ] satisfy the following bounds: 

àegXl Xao(9ij) < (ÄCr)(8a(»+3)(n+a-)/a)- = M. 

degTu...tTe{
aij) < d 2 ^ ( M , ^ ï ) ; 

l(Qij) < (Mi + M2 + ed2)P(M,dì); M,K < M. 

The main auxiliary subroutine for proving the theorem is the projection (with 
respect to many variables) of a quasiprojective variety, based on Theorem 2. 
Furthermore, a bound on the degree of a projection of a constructible set is 
obtained. For a constructible set W C F we say that its degree degÇW) < D, 
provided that there is a representation W = UtC^A^*)» w ^ e r e "̂ 5 Ui a r e closed 
sets (in the Zariski topology [26]) such that E i ( d e g ( ^ ) +deg(£Z_)) < D. The 
method from [5] entails the following bound. If TT: F —• F is a linear 

projection, then deg(<?r(W)) < (deg(^))°( n m + 1 ) . 
The time-bound in Theorem 3 is significantly lower than time-bounds from 

[6, 26, 20, 11] for small a. We remark, on the other hand, that an exponential 
lower bound for the complexity of a decision procedure for the first-order theory 
of algebraically closed fields was obtained in [7] (see also [2]) for a succession of 
formulas in which the number a of quantifier alternations grows linearly with the 
number n of variables. From this remark and from Theorem 3 one can conclude 
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that the parameter a gives the most significant contribution to the complexity 
of quantifier elimination in a formula of the theory. 

4. Solving system of polynomial inequalities. Let a system of polyno
mial inequalities 

/ i > 0 , . . . , / m > 0 , / m + i > 0 , . . . , / K > 0 (3) 

be given, where the polynomials fi G Q[Xi , . . . , Xn] satisfy the bounds 

d eg X l xnUi)<d, l(fi)<M, 1 < * < / _ . 

Decidability (over the field R) of systems of the form (3) was proved in [23] 
(see also [21]). The time-bounds of the procedures from [23, 21], however, 
were nonelementary. In [6, 26] the algorithms for solving systems of inequalities 
were designed with time-bound (M/_d)2 n (also, an algorithm with a worse 
elementary time-bound was described in [20]). In [24] an algorithm for this 

2 

problem was produced with time-bound polynomial in M(/_d)n . 
We mention that in the case when deg(fi) = 1 for 1 < i < « (linear program

ming) a polynomial time algorithm was described for the first time in [15] (a 
more practical polynomial time method was described in [14]). 

For the exact formulation of the result [24] we introduce the notion of a 
representative set for a semialgebraic set. The set consisting of all real points 
satisfying a system of inequalities of the form (3), is a semialgebraic set S C R n , 
which can be represented as a union S = \JiSi of its connected components (in 
the euclidean topology), each Si being in its turn a semialgebraic set [23]. We 
say that a finite family of points T C S C R n is a representative set for the 
system of inequalities (3) (or for the semialgebraic set S) if T CìSi ^ 0 for every 
i. 

Observe that unlike §2, where an algebraic point from F was given by the 
algorithm actually as an element of a class of points conjugate over the field 
F, to represent a real algebraic point a = (a\,... ,an) G R n one needs to 
specify an interval containing a unique root of the minimal polynomial of a 
primitive element of the field Q ( a i , . . . ,an). Namely, ai = Y^jai $ where 
a\3' G Q and 6 G R is a root of a polynomial ®(Z) G Q[Z] which is irreducible 
over Q, furthermore 0 = Y^i<i<n

 ciai f° r s o m e natural numbers c±,..., cn; the 
algorithm gives <&,oi£\ci and in addition an interval (ßi,ß2) C R with rational 
endpoints ß\ < ß2, containing only one root 0 of the polynomial $ . Below in 

4}he-foimulation=of^heorem=4-we-utilte^ 

THEOREM 4. For a given system of inequalities of the kind (3) one can con
struct a representative set T containing (/_d)°(n ) points within time polynomial 
in M (ad)71 . Moreover, for any point a = (_*i,..., an) G T the following bounds 
are valid: 

d < deg(_) < (Kd)°W; / (_0,f(af ),*(/?!),/(A) < A_(/e_)°<»>. 
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We remark that the number of connected components Si of a semialgebraic 
set S does not exceed (KO1)0^ (see, e.g., [19]). 

The proof of Theorem 4 involves essentially Theorem 2. 

5. Deciding Tarski algebra. Similarly to the case of algebraically closed 
fields (§3) we now consider the first-order theory of real closed fields (or in other 
words, Tarski algebra). Namely, consider a formula of the form 

3*1,1 • • • 3_Yi,aiVX2,i • • - VX2iS2 • • • 3 X M - -. 3XûjSa(Q) (4) 

where Q is a quantifier-free formula of Tarski algebra, containing /_ atomic 
subformulas of the kind (/_ > 0), 1 < . < /c; here the polynomials fi G 
Q[Xiìi,... ,Xat3a]. As in §3 a is the number of quantifier alternations. Un
like §3 we consider only closed formulas (without free variables) in the present 
section; denote by n = si + \-sa the number of all variables. As in §4 assume 
that deg(/i) < d, .(/<) < M, 1 < i < /_. 

In [23] (see also [21]) a quantifier elimination procedure for Tarski algebra was 
described, which implies its decidability. The time-bounds for these procedures, 
however, were nonelementary. In [6, 26] quantifier elimination methods for 
Tarski algebra were described with running time (M/_d)2 n . (Also in [20] a 
certain method was described having an elementary, but worse time-bound.) In 
[10] the following theorem is claimed. 

THEOREM 5. There is a decision algorithm for Tarski algebra with running 
time for formulas of the form (4) polynomial in M(Kd)(°(n^ ° . 

In the proof of Theorem 5, Theorems 3,4 are involved essentially. Observe 
that as in §3 one can draw the conclusion that the parameter a makes the most 
significant contribution to the complexity of the decision procedure. 

As a corollary of Theorem 5 one can calculate the dimension of a semialgebraic 
set S C R n consisting of the solutions of a system of the kind (3) within time 
polynomial in M(Kd)(°(n^ . 

Note in conclusion that it would be possible to design a quantifier elimina
tion procedure for Tarski algebra with the same time-bound as in Theorem 5, 
provided that one could solve within time e.g. P(M(Kd)n ) at least one of two 
following computational problems. First: elimination of a single quantifier in a 
formula of Tarski algebra. Second: for a given semialgebraic set S C R n to find 
its connected components Si, i.e., to find quantifier-free formulas f_i of Tarski 
algebra such that Si coincides with the set of points in R n satisfying Vii. 

REFERENCES 

1. A. Aho, J. Hopcroft, and J. Ullman, The design and analysis of computer algo
rithms, Addison-Wesley, Reading, Mass., 1976. 

2. L. Berman, The complexity of logical theories, Theoret. Comput. Sci. 11 (1980), 
71-77. 

3. A. L. Chistov and D. Yu. Grigor'ev, Polynomial-time factoring of polynomials over 
a global field, Preprint LOMI E-5-82, Leningrad, 1982. 



1460 D. YU. GRIGOR'EV 

4. , Subexponential-time solving systems of algebraic equations. I, II, Preprints 
LOMI E-9-83, E-10-83, Leningrad, 1983. 

5. , Complexity of quantifier elimination in the theory of algebraically closed 
fields, Lecture Notes in Comput. Sci. 176 (1984), 17-31. 

6. G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic 
decomposition, Lecture Notes in Comput. Sci. 33 (1975), 134-183. 

7. M. J. Fischer and M. O. Rabin, Super-exponential complexity of Presburger arith
metic, Complexity of Computations (Proc. SIAM-AMS Sympos., New York, 1973), SIAM-
AMS P r o c , Vol. 7, Amer. Math. Soc , Providence, R.L, 1974, pp. 27-41. 

8. D. Yu. Grigor'ev and A. L. Chistov, Fast decomposition of polynomials into irre
ducible ones and the solution of systems of algebraic equations, Soviet Math. Dokl. 29 
(1984), 380-383. 

9. D. Yu. Grigor'ev, Multiplicative complexity of a pair of bilinear forms and of the 
polynomial multiplication, Lecture Notes in Comput. Sci. 64 (1978), 250-256. 

10. , Complexity of deciding the first-order theory of real closed fields, Proc All-
Union Conf. Applied Logic, Novosibirsk, 1985, pp. 64-66. (Russian) 

11. J. Heintz, Definability and fast quantifier elimination in algebraically closed fields, 
Theoret. Comput. Sci. 24 (1983), 239-278. 

12. E. Kaltofen, A polynomial reduction from multivariate to bivariate integral poly
nomial factorization, Proc. 14 ACM Sympos. Th. Comput. (May, 1982), pp. 261-266. 

13. , A polynomial-time reduction from bivariate to univariate integral polyno
mial factorization, 23rd Annual Sympos. on Foundations of Comput. Sci. (Chicago, 111., 1982), 
IEEE, 1982, pp. 57-64. 

14. N. Karmarkar, A new polynomial-time algorithm for linear programming, Proc 16 
ACM Sympos. Th. Comput. (May, 1984), pp. 302-311. 

15. L. G. Khachian, A polynomial algorithm in linear programming, Soviet Math. Dokl. 
20 (1979), 191-194. 

16. D. Knuth, The art of computer programming, vol. 2, Addison-Wesley, Reading, 
Mass., 1969. 

17. D. Lazard, Resolution des systèmes d'équation algébriques, Theoret. Comput. Sci. 
15 (1981), 77-110. 

18. A. K. Lenstra, H. W. Lenstra, and L. Lovâsz, Factoring polynomials with rational 
coefficients, Math. Ann. 261 (1982), 515-534. 

19. J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964), 
275-280. 

20. L. Monk, An elementary-recursive decision procedure for Th(i_, +, •), Ph.D. Thesis, 
Univ. of California, Berkeley, 1974. 

21. A. Seidenberg, A new decision method for elementary algebra, Ann. of Math. 60 
(1954), 365-374. 

22. , Constructions in algebra, Trans. Amer. Math. Soc 197 (1974), 273-314. 
23. A. Tarski, A decision method for elementary algebra and geometry, Univ. of Cali

fornia Press, Berkeley, Calif., 1951. 
24. N. N. Vorob'ev, Jr. and D. Yu. Grigor'ev, Finding real solutions of systems of 

polynomial inequalities in subexponential time, Soviet Math. Dokl. 32 (1985), 316-320. 
25. B. L. van der Waerden, Moderne Algebra, B. I, II, Springer-Verlag, 1930, 1931. 
26. H. Wüthrich, Ein Entscheidungsverfahren für die Theorie der reell-abgeschlossen

en Körper, Lecture Notes in Comput. Sei. 43 (1976), 138-162. 
27. O. Zariski and P. Samuel, Commutative algebra, vols. 1, 2, Van Nostrand, Princeton, 

- N T j T r l 9 5 8 r l 9 6 0 7 — - — ^ - — — — ^__-----_--——_, 

L E N I N G R A D B R A N C H , S T E K L O V M A T H E M A T I C A L I N S T I T U T E , A C A D E M Y O F S C I 

E N C E S O F T H E USSR, L E N I N G R A D 191011, USSR 



Proceedings of the International Congress of Mathematicians 
Berkeley, California, USA, 1986 

Retrieval and Data Compression Complexity 

R. E. KRICHEVSKY 

Some recent results of the retrieval theory are discussed. Among them: the 
ABC word-order is not always the best for a dictionary; there is a threshold for 
redundancy. On one side of it, the retrieval complexity is a linear; on the other, 
an exponential function of word-length. 

1. Introduction. It is rather hard for a participant of an International 
Congress of Mathematicians to remember his (or her) room number. So, there 
ought to be a computer supplied with a program. A name being entered, the 
computer produces the corresponding number. The problem is to accommodate 
the participants so as to make the shortest program. 

There are variants of the problem. E.g., the computer either must or must 
not tell a participant from an outsider. A participant either must or must not 
be given a separate room. In the latter case beds make a line in a room, and the 
quality of accommodation is judged by the average time to reach one's bed. 

A result: the name-room number transformation is rather easy if the number 
of rooms exceeds the number of participants squared. In the other case it is 
quite difficult for almost any set of participants. 

More formally, let D be a subset of the set En of all n-length binary words, n > 
0. Such a set can be called a dictionary or combinatorial source (in information 
theory). Its per letter entropy equals 

H(D) = ! H E M (1) 
n 

(log x stands for log2 x). 
A map / : D —• El, I > 0, is called either a hash-function (in computer 

science) or a compression (in information theory). It is characterized, on the one 
hand, by its redundancy p(f, D) 

MB). tf-gp (2) 
and by its related load factor a(f,D) 

a(f,D) = p l / 2 ' , a(f,D) = \D\-M>D\ (3) 
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On the other hand, it is characterized by its collision index / ( / , D) 

7(/'D) = ïïïï E i rW- i , (4) 
1 ' fceim/ 

where Im / is the range of / , | /_1(fc)| is the number of words mapped to fc, 
fc G Im / . If D is the set of names, then Im / is the set of room numbers; the 
average time to find one's bed is t(f,D), 

1 I kelmf 

Actually, just t(f,D) is used in computer programming [10] to measure the 
performance of hashing with separate chaining. We use for this end the index 
/ ( / , D) which is linearly related to t(f, D): 

I(f,D) = 2(t(f,D)-l). 

If the index / ( / , D) of a map / equals zero, then the map / is called a perfect 
hash function, or enumeration, or injection. 

An enumeration / is called strong for D if f(x) = 0 , x £ D. Such an 
enumeration can distinguish between members and nonmembers of D. 

A word x is colliding by / if there is a word x\,x\ G D, such that /(a:i) = f(x). 
If e stands for the number of colliding words, then 

I(f,D) >e/\D\. (5) 

Hence, the inequality I(f,D) < 1/\D\ implies the injectivity of / on D. 
A binary word P is said to be a computing program of a map / if, being fed 

with P and a word x, an initially empty computer produces f(x). The shortest 
bitlength of computing programs of a map / is called the program or Kolmogorov 
complexity of / and denoted by L(f). Program complexity is asymptotically 
computer independent unlike running time which does depend on the choice of 
a computer. 

Given numbers p and a, L(D, p, a) stands for the minimal program complexity 
of maps / whose index / ( / , D) and redundancy p(f, D) on D do not exceed a 
and p, correspondingly. (If a > 0, we restrict ourselves for simplicity's sake to 
uniform maps which assume each value the same number of times.) Given p, a, 
n, and r, 0 < r < 1, L(T, p, a) stands for the maximal value of L(D, p, a) over all 
dictionaries D Ç En, H(D) = r. The similar quantity for strong enumerations 
(p = 0, a = 0) is denoted by L9 (r). 

Both injective and hash retrieval methods are widely used, see [10]. However, 
their complexity have not yet been compared with the theoretically optimal 
value L(T, p, a) and that value has not even been known. We are going to make 
the comparison in §4, Table 1. Some new optimal or nearly optimal retrieval 
programs will be exhibited. Although their performance is good, they are rather 
hard to tailor for a given dictionary. On the contrary, conventional programs are 
easy to construct but lengthy. Programs combining good features of both are 
looked for. 
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Optimal programs make use of universal hash-sets which for any dictionary 
of a given size contain a good hash-function. Such sets are discussed in §§2, 3. 
Correcting codes are employed in §3. In its turn, the retrieval theory yields a 
statement for the theory of error-correcting codes. 

There is a saying that theorems of interest are proved at least twice. It is just 
the case with the retrieval theory. 

2. Universal hash-sets. Given a word length n, a load factor a, an entropy 
value r, and an index level a, a set M of uniform maps En —• [0, m — 1], m = 
(l/a)2nT, is called a universal a-hash-set, if for any D, D Ç En, H(D) = r, there 
is a map / , / G M, I(f,D) < a. Let N(r,a,a) be the cardinality of a minimal 
a-hash-set. Then there is a threshold value of the load factor a, equal to the 
index level a. If a < a, then log JV(r, a, a) is 0(T), T = 2 n r , but if a > a, then 
log N(r, a, a) is O(logT), see [16]. It is of interest to develop nearly minimal 
a-hash-sets. For a dictionary D one can choose elements of such a set at random 
until a map / with / ( / , D) < a is found. 

A 0-hash set is called a universal set of enumerators. In other words, a set 
U(X,T,a) = {/: X —• [0,T/a — 1]} of maps from a set X to the segment 
[0, Tjoi — 1] of natural numbers is called a universal set of enumerators if for 
any D, D Ç X, \D\ = T, there is an injection / G U(X,T,a). Obviously, 
\U(X,T,a)\ = N(logT/n,a,0). That definition was introduced in [13] and 
detailed in [14]. It is proved there that 

riT 
G | X | 

^ ( ä ) ' " ^ * 1 " « ™ * ! ^ ) ' (6) 

(T/a supposed to be an integer). If T/a\X\ —• 0, then 

log \U(X,T,a)\ - T log2 e(l + (l/<* - 1) ln(l - a)). (7) 

If, moreover, a —• 0, then 

l o g i c / ^ r , « ) ! - ^ 1 - ^ 0 ^ , (8) 
where p is found by (3), \D\ = T, p(f,D) = p. Upper and lower bounds (6)-(8) 
were proved in [13, 14] by random coding and volume methods, correspond
ingly. Just the same bounds are proved the same way in [4]. The set U(X,T,a) 
is called the (T, T/a)-separating system there. There are also some improve
ments of bounds (6)-(7) there. A relation between universal sets of enumerators 
(separating systems) and the entropy of graphs is found in [11]. 

Let X = {xi,..., x\x\} be a set of boolean variables, 

U(X,T,l) = {f1,...,fMXiTil)l}, 

fi-. X - • [0,T - 1]. The formula 

C/(X,T,I) r - i 

V A V *«* w 
<=1 3=0 a,xa€frl(J) 
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is a basis (V, A) realization of the monotone symmetric threshold T boolean 
function of \X\ variables. Its size is \X\ • \U(X,T, 1)|. Connection (9) between 
universal sets of enumerators and those functions was wittily exploited in [9] to 
yield nearly minimal formulae. More constructive (without exhaustive search) 
methods to make good formulae for those functions were later developed in [6, 
12]. Relation (9) may yet be of value for the retrieval theory. 

3. Code-based universal hash-sets. A source of retrieval programs is the 
following statement from [16]: 

THEOREM 1. Let® = {<Pi,...,£>|$|} be a set of maps from En to [ 0 , m - l ] , 
n > 0, m > 0, (g) $ be a map which takes a word x G En to the concatenation 
<Pi(x)- --(p\^\(x), r = minXfyeE

n p (® $z,(8)^2/)> and let p be the Hamming 
distance. Then for any D Ç En there is a map (po with a not very big colliding 
index: 

I(tpo,D)<(\D\-m-r/\*\). 

Any map <pi G $ for which the sum of distances Y^x,y,eD PiPii^^iiv)) 25 

not less than the average distance (1/|$|) Y^XiyeD /°(® ®xi ® *î/) may oe chosen 
as (po. 

So the set $ is an a-hash-set for T-size dictionaries, a < (T - 1)(1 — r / |$ | ) . 
A polynomial map <pb is specified by a vector 6, |6| = p. Subdivide a vector x, 
\x\ = n, into /i-length subvectors: x = x\,..., ^fn//i] (the last subvector is sup
plemented by zeros to the length p, if necessary). The vectors 6, x\,..., £|"n///| 
may be considered members of GF(2tÂ). Let 

<pb{x) = J2 a*6*"1- (10) 
i=l 

It is supposed to take our computer a unit of time to find <fb(x). A computing 
program for (pb(x) consists of the vector 6 and several computing instructions. 
Hence, (pb(x) = p(l + o(l)), p —• oo. 

COROLLARY 1. For any D Ç En there is a vector b, \b\ = p, such that 

I(<Pb,D)< ^ J ( l + o(l)). 

COROLLARY 2. Let 

V=\2log\D\] + log; '21og|Z?| 

Corollary 2 follows from Corollary 1 and (5). 
A linear map ipb is specified by an n-length vector b and a number p, which 

is a divisor of n (for simplicity). 
We let 

n/fi 

ißb(x) = ^2xibi, (11) 
2 = 1 
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where X{ and bi are /i-length subvectors of x and b, and calculations are made 
in GF(2»). 

COROLLARY 3. For any D C En there is a linear map ißb: En - • 2^, 
L(^h) = n(l + o(l)), T(il)b, D) < |JD|/2" = a. 

At last, let the map <pi take a word x to its ith letter, i = 1 , . . . , n = \x\, D(l,a) 
be the subset of words of a dictionary D, whose /th letter is cr, I = 1 , . . . , n, 
a = 0,1. 

COROLLARY 4. For any dictionary D there isl, 0 < I < n, such that D(l, 0) 
and D(l,l) are of equal size to within 0(n) factors: 

max min |£)(i,o-)| > ——-. 
l<i<n <r=o,i ' v n - An 

4. Retrieval methods. Characteristics of retrieval methods are displayed 
in Table 1 (running time depends on the type of a computer). We will comment 
on it. 

First, the bounds of L(r,p,a) and L8(r) from [13-17]. The redundancy 
threshold equals minus the logarithm of the index. For perfect hashing, it equals 
1, see (5). More precisely, L(r,p,a) = 0(T) if a > a, L(r,p,a) = O(logT), if 
a < a. Here n —• oo, T = 2 n r , a = T~p, 0 < r < § (conditions and details are 
in [16]). For perfect hashing: 

( T(log2(l + (I I a - 1) ln(l - a))), a = const, 
T 1 " ^ 1 ) , 0<p<l, 

0(n), p>\. 
Hence, the size of the best name-room number transforming program equals 

T log2 e ~ T • 1.4 bits if both numbers of participants and rooms available equal 
T. 

There is an entropy doubling effect: the complexity of injective maps D —» E^, 
D C En, is exponential if p < n(2H(D) — e), and it is linear if p > n(2H(D)+e), 
for the majority of dictionaries. 

For the strong retrieval L8(r) ~ T(n - logT), 0 < r < 1, n —• oo. 
The lower bounds of L(r, p, a) follow the lower bounds of universal hash sets. 

Proceed to Table 1. 
An unordered search program consists of a dictionary and some computer 

instructions. The search time 0(T) can be decreased to O(logT) if the words 
are ordered lexicographically. 

When making a digital search one moves from one node of a retrieval tree 
to another according to letters of a word. There are logT-bit pointers (links). 
Those pointers make the bulk of the program size [10]. 

Linear and polynomial hashings are defined by (10) and (11). One sees com
paring their program size with the lower bounds that they are nearly optimal. 
However, it may be difficult to find a suitable vector b, \b\ = logm. Weak enu
meration methods depend on the redundancy desired. If p > 1, such a method 
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is yielded by Corollary 2 (results of [8, 19] may also be used). If 0 < p < 1, 
a polynomial map / i , I(f\,D) < T~P+0^\ is chosen according to Corollary 1. 
Colliding words are resolved lexicographically. Their number is not very great, 
thanks to (5). The case of a constant load factor is the most complicated. It 
was settled in [13, 14]. A simplified version of the algorithm is to appear in 
Information and Computation. A sketch: numbers r and R, 0 < r < R < log T, 
are fixed and r steps of lexicographical search are made. For any subdictionary 
of still nonresolved words an injective map En -+ E^ (Corollary 2) is selected 
and R — r additional steps of lexicographical search of /i-length words are made. 
At last, a map from U(E, T/2R, a) is used. 

The method from [5] may be called double FKS-hashing, by the initials of 
its authors. First, a hashing is performed. Second, the still colliding words are 
resolved. It is possible to use, first, polynomial hashing and, second, Corollary 2, 
although the authors employ division by primes. There is a report on a successful 
application of FKS-hashing in [1]. 

The program of the quasidichotomous digital weak search is not optimal, 
but is very easy to obtain. Select a letter, dividing a dictionary D into two 
subdictionaries of nearly equal size (Corollary 4). Go on with each subdictionary, 
etc., until subdictionaries of 0(n2) size are reached. 

Keep making digital search in those dictionaries, but use shorter pointers 
within them. Details are in [15]. A small modification yields an optimal strong 
retrieval program. Neither of the optimal algorithms use the ABC word-order. 

The papers [20, 21] are closely related to the subject. 

5. Channels with arbitrary additive noise. Such a channel is specified 
by a set D of binary n-length words, n > 0. When transmitting an n-length 
word x, any word x + y, y G D, may be received. A set K Ç En is called a 
D-correcting code if for any x\, x^ G K and any 2/1,2/2 £ F), x\ + 2/1 7̂  ^2 + 2/2-
For any group .D-correcting code generalized Hamming inequality 

H(K) < 1 - H(D) 

holds [3]. 
For any e > 0 and any D, H(D) < ^, there is the Varshamov-Gilbert code 

(n —• 00): 

H(K) > 1 - 2H(D) - e, 

see [3, 7]. 
It is deduced in [17] from the bounds for the cardinality of universal sets of 

enumerators that for nearly any set D, the Varshamov-Gilbert codes are the best 
group ones. In other words, not the Hamming inequality, but the Varshamov-
Gilbert one is tight, as a rule. 
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1. Introduction. This talk concerns computation by systems whose com
ponents exhibit noise (that is, errors committed at random according to certain 
probabilistic laws). If we aspire to construct a theory of computation in the pres
ence of noise, we must possess at the outset a satisfactory theory of computation 
in the absence of noise. A theory that has received considerable attention in 
this context is that of the computation of Boolean functions by networks (with 
perhaps the strongest competition coming from the theory of cellular automata; 
see [G] and [GR]). 

The theory of computation by networks associates with any two sets Q and 
R of Boolean functions a number LQ(R) (the "size" of R with respect to Q), 
defined as the minimum number of "gates," each computing a function from the 
basis Q, that can be interconnected to form a "network" that computes all of 
the functions in R. This theory has many pleasant properties, among which is 
the fact that if Q and Ql are finite and "complete," then 

LQ(R)<CQ^LQI(R), (1.1) 

for some constant CQ^QI independent of R (see [M]). Thus, if one is uncon
cerned with constant factors, one may drop the subscript Q and consider L(R) 
as a measure of the complexity of computing the functions in R. Another pleas
ant property, however, is the existence of an exquisitely precise theory of the 
complexity of "generic" functions. Thus for "almost all" functions / of degree n 
(that is, depending on n arguments), one has 

LQ(f)~CQ2n/n (1.2) 

as n —• oo, where CQ is a constant independent of n (see [L]). 
The theory of computation by networks in the presence of noise was founded 

by von Neumann [N]. Firstly, von Neumann showed that reliable computation in 
the presence of noise is possible. If a network TV contains L gates, each of which 
fails with probability at most e, then TV fails with probability at most Le. This 
crude bound becomes uninformative, however, if L grows while e > 0 remains 
fixed. It was proved by von Neumann that TV can be replaced by a network TV', 
with a larger number V of gates, so that TV' fails with probability at most S, 
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where 6 < 1/2 is fixed (independent of L and L1) when e is sufficiently small and 
the gates of TV' fail independently with probability e. 

Let LQ£6(R) denote the counterpart to LQ(R) when the network must fail 
with probability at most 6, given that each gate fails independently with prob
ability e. A heuristic argument to the effect that 

L'Q,e>S(
R) = 0(LQ(R)logLQ(R)) (1.3) 

was given by von Neumann; this was proved rigorously by Dobrushin and Ortyu-
kov [DOl]. They also gave, in [D02], a sequence fn of functions such that 

LQ(fn)=0(n), 

but 
LQi£Afn) = iï(nlogn), 

so that the estimate (1.3) is, in general, the best possible. On the other hand, I 
nave snown m [r] mat tne estimate 

L'Q,eAf) = 0(LQ(f)) (1-4) 

holds not only for many specific functions, but also for "almost all" functions 
in the sense of (1.2). Results such as (1.3) and (1.4), and others not mentioned 
here, form the core of a theory with many of the properties typified by (1.1) and 
characterized by a lack of concern for constant factors. A theory with results 
like (1.2), however, seems far beyond our grasp at this time. 

My goal in this talk is to sketch a theory in which results like (1.2) may be 
within reach, though they have not yet been obtained. My proposal is to consider 
formulae, which behave rather more simply than networks, and to consider depth, 
which behaves rather more simply than size. 

Let B denote the Boolean algebra with 2 elements. These elements will be 
denoted 0 ("false") and 1 ("true"); the operations will be denoted (x,y) \-* xAy 
("and," or conjunction), (x, y) \-> x V y ("or," or disjunction) and x »-• x ("not," 
or negation). 

By a Boolean function we shall mean a map / : B n —• B, for some n which is 
called the degree of / . Let x\,...,xn be indeterminates, and let B ( z i , . . . , xn) 
denote the extension of B by x\,..., xn. The Boolean functions of degree n are in 
an obvious one-to-one correspondence with the elements of B ( x i , . . . , xn), which 
will therefore also be called Boolean functions. Boolean functions of various 
degrees are thereby identified in accordance with the filtration B Ç B(xi) Ç 

By a formula on x\,..., xn over Q we shall mean an expression of one of 
three kinds. The first kind, a source, is an expression c, where c G B; it has 
depth 0 and computes the constant function c G B ( x i , . . . ,xn). The second 
kind, an input, is an expression xm, where 1 < ra < n; it has depth 0 and 
computes the projection function xm G B ( z i , . . . , xn). The third kind, a gate, 
is an expression ^(TVi,..., TVjt), where g G Q and N\,...,Nk are formulae on 
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xi,..., xn over Q; if TVi,..., TV& have depths d\,..., dk, respectively, and com
pute the functions / i (a : i , . . . , xn),..., /fc(rci,..., xn), respectively, then it has 
depth 1 + max{di , . . . , d/J and computes the function 

g(fi(x1,...,xn),...,fk(x1,...,xn)) eB(x1,...,xn). 

A set Q is complete if every Boolean function is computed by some formula 
over Q. If Q is complete, define Dq(f) to be the minimum possible depth of a 
formula over Q that computes / . If R is finite, define DQ (R) to be the maximum 
o f D Q ( / ) o v e r / G J ? . 

It is easy to see that 

DQ(RS)<DQ(R) + DQ(S), (1.5) 

where RS denotes the set of functions obtained by substituting functions from 
S for the arguments of functions from R. We also have 

DQ(S) < DQ(R)DR(S), (1.6) 

which is the counterpart to (1.1) for depth. 
To discuss computation by formulae in the presence of noise, we must adopt 

probabilistic assumptions about the errors, then reconsider what it means for a 
formula to "compute" a function. For technical reasons it is convenient to work 
not with probabilities of incorrect behavior, e and 6, but with probabilities of 
correct behavior, p = 1 — e and a = 1 — 6. The assumptions we shall make are 
not the simplest ones, but they have the merit that they yield counterparts to 
(1.5) and (1.6). 

Consider the evaluation of a function f(x±,..., xn) at a point c\,..., cn G B n 

by a formula TV. We shall say that f(c\,..., cn) is the correct value for TV. Let M 
be a subformula of TV. If M is a source c, it produces the correct value, c. If M is 
an input xm, it produces the correct value, cm, if M is proper, otherwise it pro
duces c^. If M = g(Mi,..., M*) is a gate, and if the subformulae Mi,..., M& 
produce the values mi , . . . ,ruk (correct or not), then it produces g(mi,...,rrik) 
(correct or not) if M is proper; otherwise it produces g(mi,... ,ra/c). We shall 
assume that each input is proper with probability at least a and each gate is 
proper with probability at least p, even when these probabilities are conditioned 
on other inputs or gates being proper or improper; these probabilities may also 
depend on ci,...,cn. If in this situation TV produces the correct value with 
probability at least ß for all c i , . . . , cn , we shall say that TV (p, a, ß)-computes f. 

Let DQpaß(f) denote the minimum possible depth of a formula over Q that 
(p,a,/3)-computes / , and let DQpOLß(R) denote the maximum of DQ ß(f) 
over f ER. 

It is clear that DQ aß(R) is decreasing in Q,p, and a, and increasing in R 
and ß, and that D^J^J(R) > DQ(R). We have 

D*Q,p,an(RS) < D*Q%p^ß(R) + D*QìP^(S), (1.7) 
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which is the counterpart to (1.5). This inequality suggests that DQ j(r(R) 
behaves particularly simply. Indeed, 

0Q,,,r,r(S) < ^ ,p , , f f (Ä)^ , f f , r , r (S) , 

which is the counterpart to (1.6). 
Let DQ (d) denote the maximum of DQ (f) over all functions / such 

that - D Q ( / ) < d. A subadditivity argument based on (1.7) shows that 

lim D*QtPi(T(d)/d 

exists; the limit represents the factor by which computations take longer in the 
presence of noise than in its absence. 

2. An upper bound. We shall start with an exemplary theorem, due 
in essence to von Neumann [N]. All formulae will be over the complete basis 
{minor} (where 

minor{z, y, z) — (x A y) V (x A z) V (y A z) 

denotes the minority of its three arguments), so we shall drop subscripts indi
cating the basis. 

LEMMA 2 . 1 . Let TV be a formula that (p, a, £) -computes f. Then the formula 
minor{TV,TV,TV} (p,a,F(£))-computes f, where F(Ç) = p(3£2 - 2f3). 

PROOF. The formula minor {TV, TV, TV} produces the correct value if at least 
two of its immediate subformulae produce the correct value and if the gate is 
proper. D 

LEMMA 2.2 . Le£TVi,TV2, and N3 be formulae that (p, a, £)-compute fi,f2, 
and fa, respectively. Then minor{TVi,TV2,TV3} is a formula that (p,a,G(Ç))-
computes mino^ /1 , /2 , /3} , where G(£) = p£2. 

PROOF. When / 1 , / 2 , and fa all assume the same value, we are in the situation 
of Lemma 2.1, and F(£) > G(£). Otherwise, two of these functions assume a 
common value and the third assumes the complementary value. The formula 
minor{TVi,TV2,TV3} produces the correct value provided that the corresponding 
two immediate subformulae produce the correct value and the gate is proper. D 

If p = (10/9)(5/6)2/3 = 0.9839... , a = (9/10)(6/5)1/3 = 0.9563... , and 
r = 9/10, then a = F(r) and r = G(a). (This value of p is the smallest for 
which such values of a and r can be found; it is a root of the discriminant of 
F(G(O) = €0 

THEOREM 2 . 3 . Let p = (10/9)(5/6)2/3 and a = (9/10)(6/5)1/3. For any 
Boolean function f, 

JW/,/)<2I>(/) + l. 
PROOF. We proceed by induction on D(f). If D(f) = 0, then / is a constant 

or a projection, and the claim follows from Lemma 2.1. Otherwise, / and / are 
each of the form minor{/i, /2, fs} where D(fi,f2,fs) < D(f) - 1. The claim 
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follows by applying the inductive hypothesis to / i , /2 , and /3, then applying 
Lemma 2.2, and finally applying Lemma 2.1. D 

The foregoing theorem shows that reliable computation in the presence of 
noise is possible, at least if p > pi = (10/9) (5/6)2/3 and if we are willing to 
spend about twice the time. This is done by alternating "correcting steps" 
(Lemma 2.1) with "computing steps" (Lemma 2.2). If p > p<i, we might hope to 
perform more than one computing step per correcting step, and thus to obtain 

D;>(TiM)<CPD(f) + o(D(f)), (*) 

with Cp —> 1 as p —y 1. If p < pi, we still might hope to compute reliably by 
performing more than one correcting step per computing step, and thus to obtain 
(*) for some Cp > 2, at least if p is not too small. When p < 1/2, the value 
produced by a gate can be statistically independent of the values computed by its 
immediate subformulae, and reliable computation will certainly not be possible. 
Thus we must expect Cp —• oo as p —y pi for some pi < 1/2. In the remainder 
of this section we shall indicate how these hopes may be fulfilled. 

Let us consider the action of the maps F and G on the interval (0,1]. If p < 1, 
G is deflationary: G(£) < £. Thus if the damage done by a computation step is 
to be ameliorated by a correction step, there must be values £ G (0,1] for which 
F is inflationary: F(£) > £. This happens precisely when p > pQ = 8/9 (this 
value is a root of the discriminant of F(£) = £). When p > po, the equation 
F(£) = £ has two roots: 

± = 3±^/9=8Tp 
C 4 

Under iteration of F, £~ is a repulsive fixed point and £+ is an attractive one. 
Thus if the damage done by a computation step is to be undone by a finite 
number of correction steps, we must in fact have G(£+) > £~. This happens 
precisely when p > pi = (10 + 4\/Ï3)/27 = 0.904.... This is the lower limit to 
the reliability for which the scheme we are describing works. 

Suppose then that pi < p < 1. Suppose further that f~ < o < £+. 
Let {F, G}* be the free monoid generated by the symbols F and G, and let 

(F(£), G(0) be the monoid of polynomials under composition generated by F(£) 
and G(0- For every W G {F,G}*, let PW(Ç) G (F(0,G(Ç)) b e t h e i m a S e of 

W under the homomorphism that sends F !-• F(£) and G »-• G(£). Given 
d, let M(d) denote the minimum possible number of symbols in a word W G 
{F, G}* that contains d occurrences of the symbol G and satisfies P\y(&) ^ °-
A subadditivity argument shows that lim -̂̂ oo M(d)/d exists. This is the ratio 
Cp by which computations are slowed down by the scheme we are describing. 

To determine the behavior of M(d), it is helpful to transform the problem. 
Given c, d, and £, let T(c,d,£) denote the maximum of P\y(0 over all words 
W G {F, G}* that contain c occurrences of the symbol F and d occurrences of 
the symbol G. Then M(d) = min{m > d: T(m — d,d,o) > a}. It is clear 
that T(0,0,0 = ^ F(c,0,0 = T(c - 1,0, F(t)) for c > 1, and T(0,d,£) = 
T(0, d—1,G(f)) for d > 1. The only problem arises when c,d > 1 and one must 
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decide whether to apply F(£) or G(f ) first. This problem can be resolved by 
considering the Poisson bracket: [F,G](f) = F(G(f) ) -G(F(f ) ) . If [F,G](f) > 0, 
it is more advantageous to apply G(f) before F(£). This happens precisely when 
f > f0, where 

Ç° 1 + ^(1^)73 
(this value is a root of F(G(£)) = G(F(f))). A monotonicity argument shows 
that if c,d > 1, then T(c,d,£) = T(c - l,d, F(f)) if f < fo and T(c,d,f) = 
T(c,d — l ,G(f)) if f > fo- This recurrence, together with the boundary condi
tions given above, determines T(c, d, f) and therefore M(d). 

For f < f < f+, define i ï ( f ) to be F(f) if f < f0 and to be G(f) if 
f > fo- The iteration of the map H generates the sequence of values of f 
that governs the recurrence for T(c,d, f). Let H* be the restriction of H to 
the interval [C?(&),^(&)] with the identification F(fo) = G(f0). Then iJ* is 
an orientation-preserving homeomorphism of the circle. Let 0 be the rotation 
number of H*;0 is the average number of cycles per step in the iteration of 
H*. Since H* has no fixed point, 0 > 0. Since a cycle must contain at least 
one application of F(f) and one of G(f), 0 < 1/2. If p < p*i, there is exactly 
one computation step per cycle; thus Gp = 1/0. If p > p2, there is exactly one 
correction step per cycle; thus Gp = 1/(1 - 0). 

The foregoing analysis describes the factor Gp in terms of the rotation number 
0 of a certain homeomorphism of the circle. Some further analysis yields the 
following asymptotic formulae: 

2 log 2 
G p - 1 

l0STïV 
as p —• 1, and 

as p—y pi. 

Cp ~ 
( l o g ^ ) ( l o g ^ ) 

( l o g i ^ S ) (log *fc^H) ' 

3. A lower bound. I conjecture that the method described above is essen
tially optimal, in the sense that reliable computation is impossible if p < pi and 
takes Cp times as long if p > p\. I have only succeeded in proving, however, that 
it is impossible if p < 2/3 and takes 1/(1 + log3(2/o-1)) times as long if p > 2/3. 
We shall continue to confine our attention to formulae over the basis {minor}. 
An advantage of the argument we shall present is that it applies to formulae 

-over^anyHbasisrwitt 2/3~repte 
logfc (2/0 — 1), where k is the largest of the degrees of the functions in the basis. 
The corresponding disadvantage is that it is unable to predict the threshold pi 
and the factor Cp, which undoubtedly depend on the particular functions present 
in the basis, and not merely on their degrees. 

Let us say that / is a subfunction of g if / can be obtained from g by evaluation 
(substituting constants for indeterminates). Let d > 2 be even, let n = 3d , and 
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let fd denote a function of degree n such that D(fd) = d and all n projections 
are subfunctions of fd. 

THEOREM 3 . 1 . Suppose that a > 1/2 and TV is a formula on xi,..., xn that 
(p,G,o)-computes fd. Thenp>2/3 and D(N) > d/(l + log3(2/>- 1)). 

PROOF. For each input M of TV, let A(M) denote the number of gates on 
the unique path from M to the root of TV. Let $(f) denote the sum of f A(M) 
over all inputs M of TV. 

We shall prove below that 

$(1/3) < 1/3 (3.1) 

and 
$(2p - 1) > n. (3.2) 

For now, let us see how these inequalities imply the theorem. Suppose first that 
p > 2/3. Let r = 1 + log3(2p - 1), so that 0 < r < 1, and recall Holder's 
inequality: 

M \ M ) \ M J 
By (3.2), Holder's inequality (with aM = 1/3A(M) and bM = 1) and (3.1) we 
have 

n < $(2p-l) < * ( l / 3 ) 1 " r * ( l ) r < $ ( l ) r . 
Since $(1) is the number of inputs of TV, and is thus at most 3D(N\ and since 
n = 3d , taking logarithms yields D(N) > d/r, as claimed. Since this lower bound 
diverges as p —y 2/3, we conclude that p > 2/3 is necessary as well. D 

It remains to prove (3.1) and (3.2). To do this we shall write $N(0 rather 
than $(f ), to indicate the dependence on the formula TV. If M is a source, then 
$j^(f) = 0 . If M is an input, then $ M ( 0 = 1- If M = minor{Mi,TVf2,M3}, 
then *Af ( 0 = É(*Mi(f) + *jwra(f) + $M3(f))- Inequality (3.1) now follows 
immediately by induction on the structure of TV. 

To prove (3.2), let $<m)(f) denote the sum of fA(M) over all inputs M in TV 
that compute the projection xm. Since $(f) = J2i<m<n^mH0i ^ w ^ suffice 
to prove that 

&™)(2P-1)>1 

for all 1 < m < n. Since fd contains all n projections as subfunctions, we 
can substitute sources for inputs in TV to obtain a formula TV(m) that (p, a, cr)-
computes the projection xm and such that $(m)(f) = $jv(™)(0- Thus it will 
suffice to show that if TV is a formula on x that (p, a, cr)-computes the projection 
x, then 

$N(2p-l)>l. (3.3) 

Let K = 1 + <rlog2(j+ (1 - a)log2(l - a). Since a < 1/2, K > 0. With 
each subformula M of TV we shall associate a number ^M with the following 
properties. If M is a source, then 

* M = 0. (3.4) 
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If M is an input computing the projection x, then 

VM = K. (3.5) 

If M = minor {Mi, M2, M3}, then 

* M < (2p - l)ipMi + * M 2 + * M 3 ) . (3.6) 

These properties imply 

*N<K$N(2p-l), 

by induction on the structure of TV. We shall also prove that if TV is a formula 
on x that (p, a, ̂ -computes the projection x, then 

*N > K. (3.7) 

This will complete the proof of (3.3). 
To define * M with the desired properties, we shall use Shannon's information 

theory. If X is a random variable assuming t distinct values with probabilities 
p i , . . . ,p t , define the entropy H(X) by 

H(x) = - YI Ps\og2ps. 
l<s<t 

If X and Y are jointly distributed random variables, we shall write H(X, Y) for 
H((X,Y)). The entropy satisfies the following properties: (A) H(X) > 0, and 
H(X) = 0 if and only if X is constant with probability one; (B) H(X, Y) > 
H(X); and (C) H(X, Y, Z)+H(X) < H(X, Y) + H(X, Z). These properties are 
immediate consequences of the fact that the logarithm is increasing, concave, 
and vanishes at unity. Define the mutual information I(X; Y) by I(X\ Y) = 
H(X)+H(Y)-H(X,Y). 

Let X be a random variable assuming values 0 and 1 with equal probability. 
Let TV be a formula on x that (p, a, <j)-computes the projection x, and let the 
random variable YM assume the value produced by the subformula M of TV when 
x is assigned the value X, inputs have reliability a (independently of X and of 
each other), and gates have reliability p (independently of X, of the inputs and 
of each other). Set tf M = I(X; YM). 

With this definition, it is straightforward to verify properties (3.4)—(3.7); the 
proof of (3.6) is best broken into three parts: if M = minor{Mi,M2,M3}, then 

I(X; (YMl,YM2,YMS)) < I{X; YMl) + I(X; YM2) + I(X;yM3); ^ 

I(X;minor{yMl, * M 2 , *M3}) < I{X\ (YMl, YM2, Yw3))î 

and 

I(X; YM) < (2p - 1)I(X; minor{FMl, YM2, YMs })• 

These inequalities, and the other properties of \&M> are easy consequences of 
(A), (B), and (C). 
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HHHCHHe OIjeHKH MOHOTOHHOÖ CJIOXCHOCTH 

6y j i eBb ix 4>yHKii;Hä 

A. A. PA3B0P0B 

DiaBHaa i^ejib HacToamero cooömeHHfl — OCBCTHTB HOBbie pe3yjibTaTbi 
no CBepxnojiHHOMHajibHbiM HHSKHHM ou,eHKaM MOHOTOHHOä CJIOSKHOCTH ec-

TecTBeHHbix 6yjieBbix (j)yHKij,Htt, nojiyneHHbie 3a nocjieAHne Asa roAa. 
KpoMe Toro, Mbi BKpaTije ynoMAHeM HeKOTopbie CTapbie pe3yjibTaTbi B 
9T0M HanpaBjieHHH. B 3aKJiiOHeHHe Mbi KOCHCMCH Apyroro orpaHHHeHHa 
Ha 4>yHKijHOHajibHbie cxeMbi — orpaHHHeHHH Ha rjiyÖHHy, TaK KaK RJIR 

B03HMKaioiii;HX 3Aecb 3aAAH 3a nocjieAHHe HecKOJibKo jieT TaK^ce AOCTHrayT 
onpeAeJieHHbifl nporpecc. 

Mbi HaHHHaeM c ocHOBHoro onpeAejieHHH. &yHKu,HOHajibHoft cxeMoU 

(circuit, network) c n BxonaMH Ha3biBaeTca nocjieAOBaTejibHocTb 6yjieBwx 
fyyuKixnft OT n nepeMeHHbix 

{/<(*!,..., *n)}U. (1) 
B KOTopoft AJiH JiK)6oro 1 < i < t peajiH3HpyeTC& oAHa H3 Tpex cjieAyiomnx 
B03M02KHOCTeft: 

a) 3j (l<j <n) fi = Xj, 

6) 3iui2 < i 3* e {&, V}(fi = fh * fi2), (2) 

B) 3ii <i(fi = -i/iJ. 
CxeMa (1) BMHHCJixeT <J>yHKi*HK) / , ecjiH 3i (1 < i < t) fi = / . Pa3\iepoM 

cxeMbi (1) Ha3biBaeTCH HHCJIO t. CxeMHax CJIOSKHOCTL (combinational complex
ity) L(f) (J)yHKll,HH / MHHHMaJIbHblß B03M03KHbltt pa3Mep BbIHHCJlÄIOmett 

eë 4>yHKu,H0HajibH0ft cxeMbi. 
MHTepec K 3aAane nojiyneHHÄ HHHCHHX oijeHOK cxeMHOfl CJIOECHOCTH 

L(f) eCTeCTBeHHblX <})yHKI{Hft / BO-MHOrOM CTHMyJIHpyeTCÄ TeM, HTO 
TaKHe OÎ eHKH nOBJieKJIH 6bl HHXCHHe OII,eHKH TbIOpHHrOBOft CJI03KH0CTH 
COOTBeTCTByiOIAHX Ä3WKOB. BoJiee TOHHO, nycTb {fn(XiìX2ì-.-ìXn)}%)

=1 — 
nocjieAOBaTejibHocTb 6yjieBbix <J)yHKijHtt H £ — &3biK B aji<))aBHTe {0 ,1} , 
onpeAeJieHHbift $opMyjioft 

Sl62'"en E U « * /n(^l i£2 i - - - |£n) = 1-
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TorAa HMeeT MecTo cjieAyiomntt npocTOfl 4>aKT, TOHHoe aBTopcTBo KOToporo, 
nO-BHAHMOMy, yCTaHOBHTb AOCTaTOHHO TpyAHo: 

TEOPEMA 1. fljin JIJOÜOPL uamuHhi Tbiopmira M, pacno3Hajome# x3biK 

£, cnpaßenmiBO 

TM(n)SM(n)^L(fn), 

rßß TM K SM — CMrHajiH3npyiomHe BpeMeHH M naMXTH cooTBeTCTBeHHO. 

OAHaKO, HeCMOTpH Ha 3HaHHTejIbHbie yCHJIHfl, HaHJiyHIUHe HHHCHHe OIl,eHKH 

BeJIHHHHbl L(fn) RJIR ecTecTBeHHbix (fryHKijHtt / „ , H3BecTHbie Ha ceroA-
HÄiiiHHtt ACHb, Beerò jiHHib jiHHeftHbi no n. OTMCTHM, HTO npocTbie 
MOiAHOCTHbie paccy^CAGHHH noKa3biBaK)T, HTO L(fn) w 2n noHTH AJ"* Bcex 

IlbiTaacb HamynaTb noAXOAbi K nojiyneHHio HHMCHHX ou,eHOK cxeMHOft 
cjioMCHOCTH ecTecTBeHHbix SyjieBbix <}>yHKijHtt, HCCJieAOBaTejiH paccMa-
TpHBaiOT eë ynpom,eHHbie BapnaHTbi. OAHH H3 B03MoxcHbix BapnaHTOB 
— oi;eHKH coBMecTHoit cjioxcHOCTH L(fi,...,fm) Ha6opa / = / i , . . . , / m 

ÖyjieBbix 4>yHKii;H», T.e. MHHHMajibHoro B03MO»CHoro pa3Mepa t cxeMbi 
(1), BbiHHCJiAioiAett Bce 4)yHKu,HH H3 paccMaTpHBaeMoro Ha6opa. OHCBHAHO, 
HTO L(fi,...,fm) > m, ecjin Bee fi pa3JiHHHbi, noaTOMy, KaK npaBHJio, 
orpaHHHHBaiOTCÄ cjiynaeM m^n (n — HHCJIO nepeMeHHbix). K coacajieHHio, 
Ha ceroAHHiUHHft AeHb HeT HejiHHettHbix no n HH^CHHX ou,eHOK Aa^ce RJIR 

COBMeCTHOfl CJIOMCHOCTH eCTeCTBCHHblX ÖyjieBWX (fryHKU.Hfl. 

Äpyroe ecTecTBeHHoe ynpomeHHe COCTOHT B paccMOTpeHHH jiHuib MOHO-
TOHHbix cxeM, T.e. cxeM, B nocTpoeHHH KOTopwx He Hcnojib3yeTCÄ nyHKT B) 
onpeAejieHHH (2). Pa3yMeeTCH, ecjin cxeMa (1) MOHOTOHHa, TO MOHOTOHHW H 
Bee cocTaBJiHioiAHe eë 4>yHKijHH. ßjia MOHOTOHHOä (fryHKijHH f eë MOHOTOH-

H&X cjio>KHOCTb L+(f) onpeAeJiaeTCH aHajiorHHHo cxeMHoft— eAHHCTBeHHoe 

OTJIHHHe COCTOHT B TOM, HTO MM paCCMaTpHBaeM He BCe CXeMbl, a TOJIbKO 
MOHOTOHHbie. 

HejiHHeftHbie HHECHHC OACHKH coBMecTHOft MOHOTOHHOR CJIO^CHOCTH ec

TecTBeHHbix 4>yHKAHH H3BeCTHbI AOBOJIbHO A&BHO. BnepBbie OHH 6bIJIH 
nojiyneHbi HennnopyKOM [3]. B STOft paÔOTe paccMOTpeHbi Ha6opbi MOHO-
TOHHblX 4)yHKÎ Htt BHAa 

/.-V ( l < z < m ; i^C{l ,2 , . . . ,n}) , (3) 
jeFi 

H A0Ka3aH0, HTO 

e c i i H t i ^ i a ^ l ^ n ^ l ^ l , T o L + ( / ) > g | ^ | ~ m , (4) 
t = i 

H Ha ocHOBaHHH SToro npeA'bHBjieH HBHWA npnMep cncTeMbi / = / i , / 2 , . . . , fn 

BHAa (3) c L+(f) £= n 3 / 2 . BnocjieACTBHH HaÖopw BHAa (3) nojiynnjin Ha3BaHHe 
6yjieBbix cyMM. Pa3BHBaa MCTOAW paSoTbi [3], Mehlhorn [18] H Pippenger 
[21] nocTpoHJiH ÄBHbie npHMepbi SyjieBbix cyMM c oueHKOtt L+(f) £= n 5 / 3 . 
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OueHKa HeHHfiopyKa (4) 6bijia o6o6iu;eHa B paöoTe [25], rAe Wegener 
yCTaHOBHJI, HTO eCJIH i i / %2 => \Fit C\Fi2\ < fc, TO 

m 

£+(/)>fc-1-£li?<l-m-
2 = 1 

TpHropbeB [2] paccMOTpeji ôyjieBbi cyMMbi B cjiynae, KorAan = 2P; { 1 , 2 , . . . , n } 
— MHOxcecTBO Bcex BeKTopoB p-MepHoro npocTpaHCTBa HaA nojieM F2, 
a {Fi,F2,...,Fn-i} — MHOMcecTBo Bcex rnnepnjiocKOCTefl SToro npoc
TpaHCTBa, H AOKa3aji oi;eHKy L+(f) £= ralogra. OTMCTHM, HTO 3Aecb Henpn-
MeHHMbl MeTOAbl TOJIbKO HTO yHOMHHyTblX paôoT. 

MoHOTOHHbie cHMMerpsmecKHe (fryHKUjm, HJIH ftymaiHH 6ojibiuHHCTBa 
(threshold) onpeAejiaiOTCÄ cjieAywmHM o6pa30M: 

n 

T£(xi,...,xn) = l*Y,x^k' (5) 
i=l 

Rn* HHX B paÔOTe [17] AOKa3aHa HH^CHHH oijeHKa L + ( T f , T 2 , . . . , T % ) £= 
nlogra, acHMnTOTHHecKH coBnaAaiomaH c BepxHeft [8]. 

06paTHMCH Tenepb K paccMOTpeHHK) MOHOTOHHMX ÖHjiHHe&Hbix (popM, 
T.e. HaöopoB BHAa 

fi = V ^&%) (1 < t < m; Ti Ç [m] x [na]). (6) 
P,qeTi 

EcTecTBeHHbift npnMep TaKoro HaÖopa — öyjießo yMHoaceHHe MaTpnAmxm 
ifij — V^i&ik&ykj)) 1 < h3 < wi), AJIä KOToporo B paÔOTax [22, 20, 19] 
öbijia AOKa3aHa oijeHKa L+(f) £= m 3 = n 3 / 2 . 

B [16] Haöop (6) Ha3BaH nojiypa3AeJieHHWM (semidisjoint), ecjin BbinojmeHbi 
cjieAyioiAHe ycjiOBH«: 

a)ii^i2=>TiinTi2=0, 
6) VI < i < m VI < j < m (0 \* i ) , Ö".*a> e Ti => fti = fc2), 
B) VI < i < m VI < fc < n2 ((juk), (» ,*) eT* =»ii =jb) . 
B 3Tofl[ paßoTe AJIä nojiypa3fiejieHHbix HaôopoB (6) AOKa3aHa HHECHää 

oueHKa 
m 

L+(f) ^^\Ti\iog\Ti\/wm{nun2). 
i = l 

B—nacTHOCTHy--aTa—oueHKa^wia^TaK-Ha3biBaeM0ß^CBepTiwr-(convolutiön)^ 
/fc = V{(xP&yq)\ 1 ^ P>9 < n H p + g = fc} (2 < fc < 2n) paBHa fi(nlogn). 
Weiss B [27] AOKa3aji, HTO H3 nojiypa3AeJieHHOCTH Haöopa (6) BbiTeKaeT 
6ojiee CHjibHaa B pHAe cjiynaeß oueHKa L + ( / ) > Y^jLi y/^jj rAe rj — HHCJIO 

BXOECAeHHfl Xj B HaÖop / . B HaCTHOCTH, AJIH CBepTKH OH nOJiyHHJI HHDKHIOK) 
oueHKy fi(n3/2). Blum [11] AOKa3an APyrHMH MeTOAaMH öojiee cjiaÖyio 
oueHKy n ( n 4 / 3 ) . 



HI4HCHME OLJEHKM MOHOTOHHOÏÏ CJIO^CHOCTM ByjIEBblX 4>yHKI4MK 1481 

B paÔOTe [24] Wegener paccMOTpeji HaSopbi (J)yHKî Hft f{eit...,eiOE2n) = 

Vl<7<n/(21og2n) &l<*<log2n Xeiij9 HHAeKCHpOBaHHbie nOCJieAOBaTeJIbHOCTH-
MH (ei, e2,..., £i0g2 n) H3 0 H 1 OT MHOMcecTBa nepeMeHHbix 

{xeij I 0 < e < 1, 1 < i < log2 n, l<j< n/(21og2 n)} 

H AOKa3aji A-Hfl HHX OAeHKy L + ( / ) ^ n2 / ( log2n), ycnjieHHyio HM »ce B [26] 
A o i + ( / ) > n 2 / l o g n . 

IlepeftAeM Tenepb K MOHOTOHHOä CJIOMCHOCTH OTAejibHbix 4)yHKu,Hft. CpeAH 
(fryHKijHft 6ojibniHHCTBa (5) BbiAejiHeTCH <J)yHKu;HH rojiocoBamia (majority) 
MAJ(w) = T™,T fljifl Heë 6bijia nojiyneHa ou,eHKa £+(MAJ(n)) > 3rc [10], 
ycHJieHHan B [13] AO 3,5n. B [12] AOKa3aHO, HTO L+(Tg) > 2,5n —5,5. 
Tiekenheinrich [23] onpeAejiHJi <J)yHKii,Hio F = T^_1 V (xn+i &z,T%) H AOKa3aji, 
HTOZ,+ ( F ) > 4 n - 8 . 

CßepxnojiHHOMHajibHbie HHHCHHC OACHKH MOHOTOHHOA CJIOECHOCTH OWJIH 

BnepBbie nojiyneHbi AOKJiaAHHKOM B pa6oTax [4, 5]. OyHKijHÄ CLIQUE(m, s) 
(KJiHKa) OT nepeMeHHbix {xij \ 1 < i < j < m} onpeAejiaeTCH cjieAyiomHM 
o6pa30M: 

CLIQUE(m,s) = \f & Xij, v idei 
IC[m] 
\I\=s 

a <})yHKUH5i PERM(m) (nepMaHeHT) OT nepeMeHHbix {xij \ 1 < i,j < m} — 
m 

PERM(m) = V & Xiru). 
V 1=1 ' 

<reSm 

06e 3TH (fryHKijHH HMeiOT npo3paHHyio HHTepnpeTau,Hio B TepMHHax Teopnn 
rpa<J>OB, Ha KOTopott Mbi 3Aecb He ocTaHaBjiHBaeMca. B [4, 5] AOKa3aHbi 
cjieAyioiAHe OU^HKH: 

TEOPEMA 2 [4]. 
a) L+ (CLIQUE(ra, s)) = exp(fi(log2 m)), ecjin s x logm; 
6) L+(CLIQUE(m,s)) = n ( m 7 l o g 2 s m ) , ecjin s x 1. 

TEOPEMA 3 [4, 5]. Z+(PERM(m)) = exp(n(log2 m)). 

AHApeeB B [1] BBën cneijHajibHyio MOHOTOHHyio (fryHKii.Hio POLY (q,s) OT 
nepeMeHHbix {a^l 1 < i, j <q}(q — CTeneHb npocToro HHCJia): 

POLYPS) = \J^Lxim\ f(z) e GF(q)[z] H deg(/) < s - l j 

H noKa3aji, HTO fljia Heë MCTOAM paÖOT [4, 5] flaioT aKcnoHemjiiajibHyio 
oijemcy: 

TEOPEMA 4 [1]. 

L+(POLY (q,s)) = exp(n(n1 / 8 /^/ ïögn)) , 

ecjin s x q1/4/\/logq (n = q2 — HHCJIO nepeMeHHbix). 
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BcKOpe BblfiCHHJIOCb, HTO RJIX yCHJieHH5I OAeHOK AO 9KCn0HeHAHaJIbHbIX 

HeT HeoßxoAHMOCTH BBOAHTb 9K30THHecKHe fyyuKujm: Alon H Boppana [9] 
ycHjiHjiH ou,eHKy TeopeMbi 2 cjieAyioiAHM o6pa30M: 

TEOPEMA 5 [9]. a) UycTb 3 < s1 < s2; y/sls2 < m /81og 2 m H óyjieBa 
4)yHKu,Hsi f TSKOBa, HTO CLIQUE(m, si) < f < CLIQUE(m, s2). Torna L+(f) 

= ft(y/sï)> B nacTHocTH, npn si = s2 x (m/81ogm) 2 / 3 MMeeM 

L+(CLIQUE(m, *)) = exp(ß(w 1 / 6 / l o g 1 / 3 n)) . 

6) L+(CLIQUE(m, s)) = Q(m3/\og3m), ecjiu s x 1. 

KpoMe Toro, B STOH paôoTe ycHjieHa TeopeMa 4: 

TEOPEMA 6 [9]. 

Z,+ (POLY(ç, s)) = exp(n(n 1 / 4 v / logn) ) , ecjin s x y/q/\ogq. 

CKaxceM HecKOJibKo CJIOB o MeTOAe, KOTopbiM nojiyneHbi TeopeMbi 2 -
6. Bo-nepBbix, onepaijHH &, V B onpeAejieHHH cxeMbi (2) 3aMeHÄiOTCfl 
Ha cneAHajibHO CKOHCTpynpoBaHHbie onepaijHH n, U oôjiaAaionjHe TeM 
CBOttCTBOM, HTO H3 nepeMeHHbix Xi,x2,...,xn npHMeHeHHeM onepaAHft n, U 
MODKHO nojiyHHTb He Bce MOHOTOHHbie 6yjieBbi ^ H K A H H , a jinnib 4>yHKAHH 
H3 HeKOToporo cneuHajibHoro KJiacca 9tt. ITpn STOM f Ug > / V g, f f\ g < 

fkg(f,gem). 
Bo-BTOpblX, CJieAyiOIAHM 06pa30M BBOAHTCfl HHCJieHHbie Mepbi OTJIHHHH 

onepau;HH n, U, OT &, V: 

6+ = max\{eeE+\(fkg)(e) = 1 H (fn9)(e) = 0 } | , 

*_ = max P[(fUg)(e*) = 1 H ( / V g)(e*) = 0], 

rAe 

E+ = {e e {0, l}n\F(e) = 1 H V « < e(F(6) = 0)} 

(F — Ta MOHOTOHHaH <J>yHKIUIH, CJIOECHOCTb KOTOpOtt Mbi XOTHM OAeHHTb), a 

e* — HeKOTopaa c/iynaftHaa BejiHHHHa, pacnpeAejieHHaa Ha {0, l } n . 

JlerKO A0Ka3biBaeTCH cjieAyioiAee yTBepacAeHHe: AJIH jno6oft MOHOTOHHOH 
4>yHKUiHH / cymecTByeT / G SDt TaKaa, HTO 

\{e e E+\f(e) = 0 H /(s) = 1} | < 6+ • L+(f), 

P[/V) = l H / ( O = 0] <*-•£+(/). 

HTOÔW nOJiyHHTb / , AOCTaTOHHO B3HTb MOHOTOHHyK) CXeMy MHHH-
MajibHoro pa3Mepa, BbiHHCJiaioiAyK) / , H 3aMeHHTb B Heß onepaunn &, 
V Ha n, U. 

3a cneT BbiÖopa 9Jt, U, (1, e* MOXCHO nojiyHHTb Bce TeopeMbi 2-6. OAHaKO 

3TH nOCTpoeHHH 06jiaAaK)T pHAOM OÔEAHX HepT, KOTOpbie Mbi CettHaC OT-

MeTHM. 
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riocTpoeHHe 9DÎ ocHOBbmaeTCH npe^CAe Beerò Ha MHO^cecTBe St, CöCTOHIACM 
H3 HeKOTopwx KOHTbiOHKî Hft nepeMeHHbix. 4>HKCHpyeTCH HHCJIO r H Ha 
MHO^cecTBe 21 cjieAyioiAHM o6pa30M onpeAejiaeTca npaBHjio BbiBOAa: 

# i , £ 2 , . . . ,&r I" # ^ Vi ,y( l < % < j < r => Ri n A3• Q A). 

(3Aecb noA KombiOHKAHeft noHHMaeTca npocTo MHOMCCCTBO BXOAAIU,HX B Heë 
nepeMeHHbix). FIoAMHOJKecTBO 2lo Q 21 Ha3biBaeTca 3aMKHyTbiM, ecjin OHO 
3aMKHyTO OTHOCHTejibHO npaBHJia K SDÌ COCTOHT H3 Bcex 4>yHKn,Htt BHAa 
r%çP = {\J A | A G 2(o}, rAe 2lo npoÔeraeT Bce 3aMKHyTbie noAMHo^cecTBa 
MHO^cecTBa 2t. HTOÖBI HattTH / U g AJI« / = r2li""; 0 = '"Sta1, HaAO B3HTB 

/ V ^ = r2liU2t2^, (8) 

H AOÔaBHTb B KaHeCTBe AH3T>K)HKTHBHbIX HJieHOB BCe HOBbie KOHl>K)HKAHH 
A G 21, KOTOpbie, B03M0>KH0, BblBOAHMbl H3 2li U2ta. HT06bI BblHHCJIHTb / f~l g, 

HaAO 3anncaTb 

fbg= y v (Ä&£)> (9) 
ÄG2li £GSt2 

H yAaJIHTb Te KOHT>K)HKTHBHbie HJieHbl AkZ, KOTOpbie He JieäECaT B 21 

(3aMKHyTOCTb MHOJKecTBa ocTaBuiHxca KOHTbiOHKAHtt jierKO npoBepaeTCH). 
CTpoeHHe cjiynattHOtt BCJIHHHHW e* 3aBHCHT OT KOHKpeTHoro cjiynaji. 

ITpn HcnoJib30BaHHH (7) rjiaBHyio pojib nrpaiOT cjieAyiomne Aßa KOMÖHHa-
TopHbix yTBepMCAeHHH: 

ecjin s — max^esi \A\, TO Jiioöoe 3aMKnyToe 2lo Q 2t coRepxcMT . . 
He ôojiee (r — l)s MHHHMajibHbix KOH^IOHKI^Hü; * ' 

ecjin Ai, A2,..., Ar G 21 — HenepecejcaioiAJiecÄ KOHT^IOHKU^MIî, ( . 
TO P[Vi(l < i < r)Ai(e*) = 0] Mana. ^ ' 

B [9] AOKa3aHO, HTO oijeHKa (r — l)s B (10) TOHHa. 
ITPMMEP. ripn AOKa3aTejibCTBe TeopeMbi 3 cjieAyeT nojioacHTb 21 = 

{xix j1 k Xi2j2 k - k xitjt | I < 8\ ii, t 'a, . . . , i\ nonapHO pa3JiHHHbi; ji,j2,..., ji 

nonapHO pa3jiHHHbi}, rAe s = | log2 m; 

E+ = {e(a)\a G Sm}, rAe 6ij(a) = l&j = v(i)\ 

e*j = 1 &h*(vi) = h*(wj), 

rpfi h* — paBHOMepHO pacnpeAeJieHHan Ha {0,l}^Vl,"yVmiWl,"iWm^ <J)yHKu,HH; 

<5+ < (sir8)2 • (m - s - 1)! (jieMMa 3 B [5]), 

tf_ < (1 - 2"a)^/a - 2 ( i ! ( 7 ) 2 ) t™1™* 6 B t5D' 

rAe r = [m1 /4(log2 m) 8 ] . 

B paÔOTe AHApeeBa [1] Hcnojib3yK)TCH Apyrne o6o3HaneHHH, no3TOMy 
Mbi RJ1SL yAOÔCTBa HHTaTejIfl npHBOAHM HX B03MO^CHbltt nepeBOA Ha H3bIK 
pa6oT [4, 5, 9] (CM. TaKMce A0Ka3aTejibCTB0 TeopeMbi 6 B [9]). OyHKAHH, 
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KOTopaa onepau,HHMH n, U CTaBHTCÄ B COOTBCTCTBHC jiioôott nape <j)yHKAHtt 
hi,h2 — 3To ĉ yHKUHH A5 B AOKa3aTejibCTBe jieMMbi 2 [1]. Kjiacc Tl 

B HauiHx o6o3HaneHHHx — STO KJiacc 9 ^ (onpeAejieHHe Ha CTp. 1033 
[1]). PacnpeAeJieHHe s* 3aAaeTca (J)opMyjioft [1, CTp. 1034] P[e* = a] = 

pn-\\<*\\(l — p)\\a\\. OueHKa <5+ < (u\ru)2 y AHApeeBa npoH3BOAHTca (fropMyjiott 
(6) H3 [1] a OAeHKa 8- < (up)r(ruu\)2 — (J>opMyjiott (15) H3 [1]. <E>yHKii;HH / 

— STO (J)yHKAHH g s B AOKa3aTejibCTBe TeopeMbi 1 H3 [1], a npoMeacyTOHHbie 
4>yHKi;HH giìg2ì'"i9s B TOM »ce AOKa3aTejibCTBe — B TOHHOCTH ^ H K A H H 
H3 cxeMbi (1), B KOTopott npoH3BeAeHa 3aMeHa onepaijHfl k, V —• n,U. 
MHODKecTBO 21 y AnApeeBa COCTOHT H3 Bcex KOHHbiOHKAHtt AJIHHW < u, 

a npHMeHeHHe npaBHJia BbiBOAa cooTBeTCTByeT 3aMeHe (s, r)-peryjiapHott 
4>yHKAHH g Ha xi • x2 •... • x3 B AOKa3aTejibCTBe JieMMbi 1 H3 [1], TaM »ce 
AOKa3aHo CBoflCTBo (10). OopMyjibi (8) H (9) npnoôpeTaiOT B AOKa3aTejibCTBe 
JieMMbi 2 [1] BHA hi * h2 = A3 V A4, TOe A3 — ceMettCTBO Bcex KOHTJIOHKAHH, 
He jie^caiAHx B 21; A4 — jieiacaiAHx B 21 (A3 = 0 , ecjin * = V). 

B3HTwe 3aMbiKaHHH B cjiynae (8) npoH3BOAHTCH nepexoAOM OT A4 K A5 B 
(J)opMyjie (4) H3 [1]. HaKOHeA, CBOttCTBy (11) cooTBeTCTByeT B AOKa3aTejibCTBe 
jieMMbi 1 [1] 4>opMyjia pp(l,gi) < (up)r. 

B KaKOM HanpaBJieHHH MoryT pa3BHBaTbca AaJibine nojiyneHHbie B [4, 5, 1, 
9] pe3yjibTaTbi? Hanôojiee HHTepecHbitt Bonpoc, pa3yMeeTca, COCTOHT B TOM, 
HacKOJibKO nojie3HbiMH OHH MoryT 6biTb AJi« nojiyneHHÄ HHJKHHX OACHOK B 
nojiHOM 6a3Hce. EiAë B 1973 roAy Schnorr OTMCTHJI, HTO P ^ NP cjieAOBajio 
6w H3 cjieAyioiAHx AByx yTBepacAeHHfl: 

a) AJifl JiioSott MOHOTOHHOtt cfryHKAHH / HMeeM L+(f) ^ p(L(f)), rAe p(t) 

— 4)HKCHpOBaHHbltt nOJIHHOM; 

6) L+(CLIQUE(ra,ra/2)) pacTëT CBepxnojiHHOMHajibHo OT m. 
Ho npeAnojioaceHHe a) onpoBepraeTca TeopeMott 3; XOTH 6) — noATBep»:-

AaeTCÄ TeopeMaMH 2 H 5. BßeAeM cjieAyioiAyio <}>yHKAHK): 

I(t)=max{L+(f)\L(f)<t}, 

rAe MaKCHMyM SepeTCH no BceM MOHOTOHHUM 6yjieBbiM 4>yHKAH5iM. TorAa 
H3 TeopeMbi 3 cjieAyeT I(t) = exp(fi(log21)). OTMCTHM, HTO ecjin 6 M yAajiocb 
AOKa3aTb HepaBeHCTBO 

Ve > 0 I(t) = 0(exp(t6)), (12) 

TO jnoßaa H3 TeopeM 4-6 noBjieKJia 6w P ^ NP. BnponeM, HepaBeHCTBO (12) 
BbirjiHAHT KpaflHe MajiOBepoHTHbiM, H Mbi CTaBHM cjieAyiomyio npoÔJieMy. 
—3aAana-l—OnpoBeprHyTbr(42)^ - - ~— —-

EcTecTBeHHbitt noAXOA K STOä 3aAane — ycHjiHTb TeopeMy 3 HJIH AOKa3aTb 
SKcnoHeHAHajibHyio HHHCHKHO oueHKy MOHOTOHHOH CJIOSKHOCTH AJIA KaKott-

JIH6O Apyrott nocjieAOBaTejibHOCTH MOHOTOHHMX 6yjieBbix (JjyHKAHfl H3 
KJiacca P. 

1I7pHMevaHire &BTopa: HepaBeHCTBO (12) HeAaBHo 6biJio onpoBeproyTO É. Tardos 
(Combinatorica, 1987, v. 7). 
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HTO »ce KacaeTca paccMOTpeHHbix MCTOAOB, TO aBTop BbipaacaeT HaAeiacAy, 

HTO HAen 3aMeHbi OCHOBHWX onepaAHtt Ha «Majio OTJiHHaioiAHecfl» OT HHX 

BcnoMoraTejibHbie Mo^ceT 0Ka3aTbcn nojie3Hott npn paccMOTpeHHH cxeM 

B nojiHOM 6a3Hce; KocBeHHoe noATBepMCAeHHe 9T0My — <J)opMyjiHpyeMbitt 

HH5Ke CBê KHtt pe3yjibTaT H3 [6]. Pa3BHTaa ace KOMÖHHaTopHaa TexHHKa, 

no-BHAHMOMy, He nepeHOCHTca Ha HeMOHOTOHHbitt cjiynatt. 

OTMCTHM Tenepb, HTO TeopeMbi 26) H 56) AaiOT npHMepw nocjieAOBa-

TeJIbHOCTett MOHOTOHHblX <})yHKAHft, MOHOTOHHafl CJKOKHOCTb KOTOpblX 

HejiHHettHa, HO orpaHHneHa CBepxy nojiHHOMOM. Bbijio 6bi HHTepecHO 

nocTpoHTb 6ojiee ecTecTBeHHbie npHMepw TaKHX 4>yHKu,Htt. B nacTHocTH, 

Mbi CTaBHM cjieAyioiAHe ABe 3aAann: 

3aAana 2. BepHO JIH, HTO 

L+(MAJ ( n ) ) x n log n? 

3aAana 3. IlocTpoHTb HBHbie npHMepw MOHOTOHHMX 6HJiHHeflHwx 4>opM 

COCTOHIAHX H3 OAHOtt <J)yHKU,HH C HejIHHeftHOtt HHMCHett OU,eHKOtt MOHOTOHHOft 

CJIOIHCHOCTH. 

3aBepuiaion];HM aKKopAOM B HCCJieAOBaHHH MOHOTOHHOH CJIOMCHOCTH Mor 

6bi CTaTb yAOBJieTBopHTejibHbitt OTBCT Ha cjieAyioiAHtt Bonpoc: 

3 a A a n a 4. EfocTpoHTb o6o3pHMwfl KpHTepntt npHMeHHMocTH onncaHHoro 

Bbime MeTOAa, noA KOTopbitt AOJIXCHM noAnaAaTb (^yHKAHH H3 TeopeM 2 - 6 . 

B AejioM »ce, no-BHAHMOMy, HMeeT CMWCJI nepeKJiiOHHTb BHHMaHHe Ha 

Apyrne B03MOHCHwe orpaHHHeHHH Ha c^yHKAHOHajibHbie cxeMbi. 

B 3aKJiK)HeHHe HacTOflmero COOöIACHHä Mbi oneHb KpaTKO KocHëMca 

pe3yjibTaTOB n o orpaHHHeHHOtt rjiyÖHHe. OnpeAeJieHHe cxeMbi rjiyÖHHbi 

fc AaeTCÄ HHAyKijHett n o fc. CxeMa FJiyÔHHbi 0 ecTb sjieMeHT MHoacecTBa 

{xi,-*xi,x2,-*x2,... ,xn,^xn}. CxeMa rjiy6nHbi k ecTb HenycToe MHOMCCCTBO 

cxeM rjiy6HHbi (k — 1). Pa3Mep cxeMbi G ecTb MOIAHOCTB TpaH3HTHBHoro 

pe<j)JieKCHBHOrO 3aMWKaHHH MHOMCeCTBa C , T.e. KOJIHHCCTBO HCnOJIb30BaHHbIX 

npn nocTpoeHHH G cxeM. J\na cxeMbi G rjiyÖHHbi fc 6yjieBa <J)yHKu,HH fc 

onpeAejiHeTCH HHAyKAHett n o fc. ECJIH fc = 0, TO fc = G. <E>yHKii;Hji, KOTopaa 

peajiH3yeTCH cxeMott C rjiyÖHHbi fc > 0 ecTb 

fc = B*cfB, (13) 

rAe # = V> ecjiH fc HCTHO, H * = & , ecjin fc HeneTHO. MnHHMajibHbitt 

B03M05KHbitt pa3Mep cxeMbi rjiyÖHHbi fc > 2, peajiH3yioiAett 4>yHKijHio / , 

o6o3HaHHM nepe3 i f c ( / ) . O T M C T H M , HTO n o jno6ott cxeMe rjiyÖHHbi fc pa3Mepa 

t oneBHAHbiM o6pa30M CTPOHTCH (})yHKAHOHajibHaÄ cxeMa (1) pa3Mepa 0(kt2), 

BblHHCJÌfllOIAaA Ty arce (J)yHKU,HK), TaK HTO L(f) ^ kLl(f). 

B p a ö o T a x [14, 7, 28, 15] 6bijia paccMOTpeHa tyyuKiijAsi CJIO^CCHHH n o m o d 2 

(parity) xi © x2 © • • • © xn H RJIR jnoÖoro <{)HKCHpoBaHHoro fc Öbijia AOKa3aHa 

BHanajie CBepxnojiHHOMHajibHaH HHECHHH oAeHKa RJIR Lk(xi © x2 © • • • © xn) 
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[14, 7], a 3aTeM — SKcnoHeHAHajibHan: 

TEOPEMA 7 [28]. 

Lk(xi © • • • © xn) = exp(fi(nA*)), fc = const. 

B paSoTe [6] paccMaTpHBaeMbift KJiacc cxeM orpaHHHeHHOtt rjiyÖHHbi 

6biji pacninpeH cjieAyioiAHM o6pa30M: npn onpeAejieHHH cxeMbi B (13) 

AonycKaeTCH emë OAHa HOBan onepau,HH * = ©; npn STOM nop^AOK, B KOTOPOM 

npHMeHfliOTca onepaijHH { & , V , © } , MOSKCT 6biTb JIIOOMM. 06o3HaHHM nepe3 

Lf MOAH^M^POBaHHyio TaKHM o6pa30M cjioMCHOCTb. BepHa cjieAyioiAa« 

TEOPEMA 8 [6]. Lf(MAJ(n)) = exp(Q(nXk)),4c = const. 

OTMCTHM, HTO nepBbifl mar B AOKa3aTejibCTBe TeopeMbi 8, KaK H AJIA 

MOHOTOHHott CJIOECHOCTH, COCTOHT B 3aMeHe ocHOBHbix onepaAHtt Ha «MaJIO 

OTjiKHaiomnecA» OT HHX BcnoMoraTejibHbie onepaijHH aHajiornHHO TOMy, 

KaK B [4, 5, 1, 9] onepaAHH & H V 3aMeH*ijiHCb Ha n H U. 

JIMTEPATyPA 

1. A. E. AHApeeB, 06 ORHOM Meropß nojiyneHHx HHSKHHX oufiHOK CJIOXCHOCTH HHRHBH-
nyajibHbix MOHOTOHHMX ^ymemffl, AAH CCCP, 1985, T. 282, JNfe 5, c. 1033-1037 (Engl. 
transi, in: Sov. Math. Dokl. 31 (1985), 530-534). 

2. R. K). rpuropbeB, 3an. HayHH. ceMtraapoB JIOMM AH, 1977, T. 68, c. 19-25. 
3. 9 . M. HeHHnopyK, IIpo6jieMbi KHÖepHeTHKH, 1970, Bbin. 23, c. 291-294 (Engl, transi. 

in Systems Res. Theory 21 (1971), 236-239). 
4. A. A. Pa3ÖOpOB, HuXKHHe OUfiHKH MOHOTOHHOH CJIOSKHOCTH HßKOTOpblX ÓyjieBblX 

(pyHKUMit, M H CCCP, 1985, T. 281, JNfe 4, c. 798-801 (Engl, transi, in: Sov. Math. Dokl. 31 
(1985), 354-357). 

5 , MaTeM. 3aM., 1985, T. 37, Jfc 6, c. 887-900 (Engl, transi, in: Math. Notes Acad. 
Sci. USSR 37 (1985), 485-493). 

6 , HwKHne oufiHKH pa3Mepa cxeM orpaHHHeHHOH rnyÖHHbi B 6a3Hce {Sc, ©}, 1986, 
npenpuHT MMAH (CM. Taicxce MaTeM. 3aM., 1987, T. 41, No 4). 

7. M. Ajtai, H\-Jormulae on finite structures, Ann. Pure Appi. Logic 24 (1983), 1-48. 
8. M. Ajtai, J. Komlós and E. Szemerédi, Proc. 15th STOC (1983), 1-9. 
9. N. Alon and R. B. Boppana, The monotone circuit complexity of Boolean functions, 

Preprint, 1985 (see also Combinatorica 7 (1), 1987). 
10. P. Bloniarz, Techn. Rep. No. 238, Lab. Comput. Sci. MIT, 1979. 
11. N. Blum, Theoret. Comput. Sci. 36 (1985), 59-69. 
12. P. E. Dunne, Acta Inform. 22 (1985), 229-240. 
13. , Proc. 22nd Ann. Allerton Conf. on Communication Control and Computing 

(1984), 911-920. 
14. M. Fürst, J. Saxe and M. Sipser, Parity, circuits, and the polynomial-time hierarchy, 

Math. Systems Theory 17 (1984), 13-27. 
15. J. Hastad, Proc. 18th STOC (1986). 

J.6.-E.-A.^Lamagna,^TÄe^comp/ea;tty=o/-mono$o^ 
routing problems, sorting, and merging, IEEE Trans. Comput. 28 (1979), 773-782. 

17. E. A. Lamagna and J. E. Savage, Combinational complexity of some monotone func
tions, Proc. 15th Ann. IEEE Symp. on Switching and Automata Theory (1974), 140-144. 

18. K. Mehlhorn, Some remarks on Boolean sums, Acta Inform. 12 (1979), 371-375. 
19. K. Mehlhorn and Z. Galil, Monotone switching circuits and Boolean matrix product, 

Computing 16 (1976), 99-111. 
20. M. S. Paterson, Complexity of monotone networks for Boolean matrix product, The-

oret. Comput. Sci. 1 (1975), 13-20. (pyc. nep. B KH6. c6., HOB. cep., Bwn. 15). 
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1. Introduction. An identification scheme is a protocol which enables party 
A to prove his identity to party B in the presence of imposters G. This is one of 
the fundamental problems in cryptography, and it has numerous practical appli
cations. In fact, whenever we present a driver's license, use a passport, pay with 
a credit card, enter a computer password, or punch a secret code into an auto
matic teller machine, we execute an identification protocol. The basic problem 
with these practical protocols is that A proves his identity by revealing to B a 
constant (in the form of a printed card or a memorized value). A sophisticated 
adversary C who cooperates with a dishonest B can use a xerox copy of the 
card or a recording of the secret value to misrepresent himself successfully as A 
at a later stage. Our goal in this paper is to survey some of the mathematical 
techniques developed to solve this problem, and to propose a new identification 
scheme which is provably secure if factoring is difficult, and orders of magnitude 
faster than previous schemes of this type. 

The mathematical version of the identification problem assumes that A is 
distinguished by knowing some secret information s which no one else knows. 
A's goal is to prove to B that he knows s, and 5 's goal is to verify the correctness 
of A's proof. B is assisted by the public information v revealed in advance by A. 
Since v is also available to G, there should be no efficient algorithm for computing 
s from v, even though the two values are obviously related. The authenticity of 
v is guaranteed by publishing it in a public key directory or by attaching to it 
the digital signature of a trusted center, and thus we do not consider attacks in 
which G replaces J4'S real v by a modified vf. 

An identification protocol specifies the sequence of steps executed by A and 
_JSLduring_their_interaction._The_opp_onent_C_is_allowed_t_o_ misrepresent himself 

either as a prover or as a verifier, and then he can deviate from the speci
fied protocol in an arbitrary manner. The original protocol is assumed to be 
public knowledge, but the modified protocol is usually known only to G. Typ
ical examples of modified protocols include nonrandom choices of presumably 
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random values, giving incorrect answers to the other party's questions, or reusing 
recorded portions from previous executions of the same protocol. 

In this paper we denote the prover's real protocol by A, the verifier's real 
protocol by 5,C"s version of the prover's protocol by A, and C's version of 
the verifier's protocol by B (the use of straight and crooked lines is mnemonic). 
We denote the execution of the two party protocol in which the prover's part 
is Z1 G ÇÂ,A} and the verifier's part is Z" G {B,B} by (Z(,Z"). All these 
protocols are assumed to be polynomial time probabilistic algorithms with access 
to the public information v, but only A has access to the secret information s. 

An identification protocol (A, B) is called secure if there are no A and B with 
the property that after polynomially many executions of (A, B), G can execute 
(A,B) with a nonnegligible (i.e., 1/polynomial) probability of success. In other 
words, G should not be able to impersonate A even after he witnesses, verifies, 
and influences (as B) polynomially many proofs of identity generated by the real 
A. 

Identification protocols are closely related to the notion of digital signatures 
(as introduced by Dime and Hellman [2]), with the exception that there is no 
judge and no need to settle disputes at a later stage. The proof of identity should 
be either accepted or rejected in real time, and as a result the requested access 
or service should be granted or withheld. The absence of the judge is one of the 
main reasons the new identification scheme is faster than conventional signature 
schemes. 

2. Previous identification schemes. Almost all the identification and sig
nature schemes proposed so far are based on the difficulty of solving polynomial 
equations when the factorization of the modulus is unknown. The public infor
mation is usually a modulus n which is the product of two large primes p and 
q, and the secret information is the factorization of n. A proves that he knows 
this factorization by solving a polynomial equation mod n which includes a ran
dom test value m chosen by B as one of its coefficients. B verifies the solution 
by substituting it into the equation, and this can be done without knowing the 
secret information. 

The first scheme based on this principle was the RSA scheme (Rivest, Shamir, 
and Adleman [9]), which used the polynomial equation 

xe = m (mod n) 

with an exponent e which is relatively prime to <p(n) = (p — l)(q — 1). For any 
m this equation has a unique solution x which can be computed as x = md 

(modn) where d is the multiplicative inverse of emod^(n) . The difficulty of 
computing x from m when <p(n) is not known is conjectured (but not proven) 
to be equivalent to the difficulty of factoring n. The main practical drawback of 
the RSA scheme is its relative inefficiency: When n is a 200 digit number, both 
the prover and the verifier have to perform almost 1000 modular multiplications 
of 200 digit numbers. Hardware implementations of the RSA scheme are too 
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expensive and software implementations of this scheme are too slow for many 
commercial applications, and in particular the scheme cannot be used in the new 
generation of ID cards which are based on the emerging technology of smart 
cards. 

These security and efficiency issues were addressed by Rabin [8], who pub
lished a scheme which looks superficially as a special case of an RSA scheme 
with the polynomial equation x2 = m (modn). Since e = 2 is not relatively 
prime to <p(n), this equation is solvable only for one quarter of the possible m's, 
and for any such m it has four distinct solutions (with some exceptional cases). 
Knowledge of any pair of solutions xi,x2 such that xi ^ ±x2 (modn) can be 
used to factor n in polynomial time. Rabin used this fact to show that square 
root extraction cannot be easier than factoring. In addition, the low exponent 
implies that B has to perform only one modular multiplication to verify the 
solution, but A has to perform essentially the same number of operations as in 
the RSA scheme. 

Unfortunately, Rabin's proof of security does not apply to identification 
schemes in which G can actively play J3's role. Since the equivalence proof 
between square root extraction and factoring is constructive, G can exploit A's 
willingness to extract such roots in order to factor n! 

To solve this problem, Rabin suggested a modified protocol in which A per
turbs the m sent by B before he extracts its square root. As far as we know, 
this solves the practical security problem but the modified scheme is no longer 
provably equivalent to factoring. 

By using long sequences of square root extractions, Goldwasser, Micali, and 
Rivest [5] were able to obtain a more complicated scheme with a formal proof 
of security even when G was allowed to be active. However, the large num
ber of arithmetic operations required to implement this scheme made it totally 
impractical. 

A very efficient scheme was suggested by Ong, Schnorr, and Shamir [6]. It 
was based on the two variable equation 

x2 — vy2 = m (modn). 

When the square root s of v mod n is known, it is possible to generate all the x, y 
solutions of this equation with just 3 modular multiplication/division operations. 
Without knowing s (or the factorization of n) it is not easy to see how to solve this 
equation, since all the obvious methods require square root extraction. It was 
thus a major surprise when Pollard [7] announced a polynomial time heuristic 

^foLSolving_modular^binaî _quadrati<^equations-even^when=the=factorization=of-n= 
is unknown. 

Another approach was taken by Okamoto and Shiraishi [10], who based their 
scheme on the quadratic approximation x2 « m (modn). When n is chosen as 
p2q, its factorization is known, and the allowable difference between x2 (modn) 
and m is bounded by n2/3, x can be computed from m in just 4 modular 
multiplication/division operations. However, several months later Brickell and 
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DeLaurentis [1] showed how to solve quadratic approximation problems effi
ciently without using the factorization of n. The security of higher degree ap
proximation problems remains unknown, and identification schemes based on 
them have neither been broken nor proven equivalent to factoring. 

In the next section we describe a new solution to this problem which is prov
ably secure against any passive or active attack if factoring is difficult. In addi
tion, typical implementations of the scheme require less than 8 modular multi
plications to generate or verify probabilistic proofs of security. As a result, the 
scheme is an ideal solution to a wide variety of applications ranging from smart 
ID cards and remote control devices to secure operating systems and telecom
munication networks. 

3. The Fiat-Shamir identification scheme. The new scheme (developed 
jointly with Amos Fiat from the Weizmann Institute of Science) is motivated 
by the notion of zero-knowledge interactive proofs introduced by Goldwasser, 
Micali, and Rackoff [5]. Its simplest incarnation uses a single modulus n — p-q 
chosen by a trusted center and made available to everyone. Unlike the RSA 
scheme, there is no need to know the factorization of n in order to generate a 
proof of identity, and thus the center can destroy the factorization of n as soon 
as it is chosen. 

Each user chooses a sequence of k secret numbers s i , . . . , s^, and publishes 
the k values v3- = 1/s2 (modn). When B challenges A to prove his identity, they 
execute the following protocol: 

1. A picks t random numbers ri E [0, n) and sends their squares X{ = r2 

(modn) to B. 
2. B sends to A a random boolean txk matrix [e^]. 
3. A sends to B the t numbers 

yi = r< n s3 (m o d n)-
e* j= l 

4. B accepts the proof if for all 1 < i < t 

xi = VÏ u vj (modn). 
e,j = l 

LEMMA 1. When the real two party protocol (A, B) is executed, B always 
accepts the proof as valid. 

PROOF. By the definitions of yi and Vj, 

yi n v3:=[ri n sA n ^ 
e t J = l y etJ = l J \eij = l 

=ri n ( s i ^ ) = r i = Xi (modn)- D 

e», = l 
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LEMMA 2. Consider the probability distribution of Xi and yi values for any 
fixed choice of[eij] matrix and random choice ofri values. This distribution does 
not depend on the choice of square root Sj of Vj (modn). 

PROOF. Let xi,..., xt, yi,..., yt be some sequence of numbers sent by A for 
a fixed choice of Sj and e^ values. Each yi defines a unique r« which generates 
it. When s3- is replaced by another square root sf- of the same Vj, the corre
sponding ri is multiplied by some square root of 1 (modn), which leaves Xi = r2 

(modn) unchanged. Since the same tuples of Xi,yi numbers are generated with 
the same probabilities, even an adversary B (who can choose the [e»y] matrices 
nonrandomly) cannnot distinguish between A's behavior before and after the 
change. D 

LEMMA 3. There exists a polynomial time protocol A for which the execution 
of (A,B) succeeds with probability 2~kt. 

PROOF. If A can guess the correct [e^] matrix, he can send to B the following 
values: 

Xi = r? • JI Vj (modn), y{ = r{. 
ei3=l 

These computations do not require knowledge of the s3- values, and it is easy 
to verify that B will accept them. However, the Xi values should be sent to B 
before A receives the [e»j ] matrix, and thus the success rate of this technique is 
only 2~kt. D 

Our main result shows that this attack is essentially optimal, and the proba
bility of cheating cannot be increased to (l+e)2~kt for any e > 0 unless factoring 
is easy. To prove this result, we need the following technical lemma. 

LEMMA 4. Let D be a boolean hxw matrix with at least (l+e)h Vs arranged 
in an arbitrary pattern. Then it is possible to find two Vs on the same row with 
probability larger than e(l — e _ 1 ) / ( l + e) by performing ((2 + e)/(l + e))w local 
probes of D entries. 

PROOF. The obvious strategy of choosing random rows and probing all their 
entries is too expensive for certain patterns of ones. A better strategy for finding 
two l 's on the same row is 

1. Probe w/(l + e) random entries in D. 
2. Pick the first 1 found in step 1, and probe all the entries in its rows. 
The complexity of this strategy is exactly ((2 + e)/(l 4- e))w probes. It can 

—^fail4f=step=l=produces=no=lJs-or=step=2-finds=no other^l=along-the=TOwchosen4n^ 
step 1. The probability of failure of the first type is bounded by e _ 1 since we 
probe w/ ( l + e) random locations with a (1 + e)h/wh probability of success in 
each probe. The probability of failure of the second type is bounded by 1/(1-\-e) 
since at most h out of the (1 + e)h l 's can be unique in their rows. Since the two 
probabilities are independent, the probability of success of this probing strategy 
is at least e(l - e _ 1 ) / ( l + e). D 
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We can now prove 

THEOREM 1. Assume that G can execute (A, B) g times, and then execute 
(A,B) once more and succeed with probability larger than (1 + e)2~~kt. Then n 
can be factored in 

H ( Ä ß ) | + ((2 + £)/(l + e))2fc'|(i,S)| 
operations with probability larger than e(l — e~1)/2(l + e), where \Z\ denotes the 
complexity of protocol Z. 

PROOF (SKETCH). Assume that such A and B exist. We show how the real 
user A (who knows the s3- values) can use them to factor the n chosen by the 
center. Since this factorization was never revealed by the center (either explicitly 
by publication or implicitly by its interaction with users), this contradicts the 
assumption that factoring is difficult. 

To factor n, A simulates the (A, B) protocol g times, and gives the complete 
transcript of the communication (but not the secret s3- values!) to A. The 
possible executions of (A, B) at this stage can be summarized by a large boolean 
matrix whose rows correspond to all the possible random tapes of A and whose 
columns correspond to all the possible random tapes of B. The outcome of the 
execution of (A, B) is uniquely determined once we fix their randomizations, and 
thus we can fill each entry with a 1 if B accepts A's proof of identity and with 
a 0 if B rejects A's proof. 

Let h and w be the height and width of this matrix. Since B needs exactly 
kt random bits to choose the [etj] matrix, we can assume that w — 2kt. By 
assumption, the probability of success of (A, B) is at least (1 + e)2~kt, and thus 
the h X 2kt matrix contains at least (1 + e)h l's in it. By Lemma 4, A can 
probe this matrix ((2 + e)/(l + e))2kt times (by repeatedly executing the (A, B) 
protocol) and find two l's along the same row with probability e(l — e~1)/(l + e). 

Let x\,y\ and x^y" be the values sent by A to B in these two executions. 
They occur along the same row, and thus A uses the same random tape in both 
cases. Since the Xi are chosen before 5 's modified choice of [e^] matrix can 
influence Â's behavior, x\ — x". Since 

y?/vf = i[vc/ (modn) 
3 = 1 

where Cj G {—1,0,1}, y1 J y" is one of the four possible roots of Ily=i v°j3 (modn). 

However, A already knows one of these roots: 1^=1 s<j3 (modn). By Lemma 2, 

A cannot know which square roots A was using, and thus A can factor n with 

probability | by combining the square root that A knows with the square root 

that A computes. D 
Theorem 1 clearly demonstrates that when the ratio between the complexity 

of factoring and 2kt grows nonpolynomially, the adversary cannot increase his 
probability of success (compared to the trivial attack outlined in Lemma 3) 
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by using a polynomial time strategy. However, the nonasymptotic nature of 
Theorem 1 enables us to get concrete lower bounds on the complexities of A and 
B for a 200 digit n if we assume a reasonable lower bound on the complexity of 
factoring such moduli. 

4. Practical considerations. The 2~kt probability of cheating is an abso
lute constant, and thus there is no need to keep wide margins of safety against 
unforseen technological and algorithmic improvements. In most applications, a 
security level of 2~20 suffices to deter cheaters: No one will pay with a forged 
credit card at a department store or try to enter a restricted area with a forged 
ID badge if he knows that his probability of success is less than one in a million. 
Even if the only penalty for a failed attempt is the confiscation of the card by 
the verification device and smart cards cost only one dollar to manufacture, each 
success is expected to cost more than a million dollars. 

To achieve a 2~20 level of security, use fc = 5 and t = 4. The five s3 values can 
be stored in about 400 bytes, and each proof requires about 670 communicated 
bytes. The average number of multiplications each party has to perform is 14, 
which requires less than a second on today's smart cards. Even better perfor
mance with the same level of security can be obtained if A generates the s3- values 
pseudorandomly from a secret seed, sends to B hashed versions of the Xi, and 
receives from B sparse 2 x 18 [e^] matrices with at most three l's per row: the 
seed can be stored in less than 20 bytes, the number of communicated bytes is 
reduced to 200, and the average complexity drops to 7.6 modular multiplications. 

An interesting modification can eliminate the public key directory and lead 
to a keyless identification scheme. It assumes the existence of a trusted center 
(a government, a credit card company, or a computer center) which issues the 
smart cards to users after properly checking their physical identity. No further 
interaction with the center is required either to generate or to verify proofs of 
identity. In this version of the scheme the center creates a string / which contains 
the user's name, address, ID number, physical description, digitized fingerprint, 
and any other information provers or verifiers may want to establish. The Vj 
numbers are defined pseudorandomly from the seed /, and the center (which 
knows the secret factorization of n but does not reveal it to anyone else) computes 
their corresponding s3 values and stores them in the card. When A wants to 
prove his identity, he sends I to B who can derive the Vj directly from J rather 
than from a public key directory. The actual proof of identity remains the same, 
and it convinces B and A knows the corresponding Sj. These values could only 

=be computed-by^the^trustedcenterwhen=the^real=i4=requested= a r c r a r d r - - " - ~ 
In the modified scheme, the verification devices are simple standalone micro

computers which do not contain any secret information, are not connected to any 
database, and yet can verify the identity of anyone in the world. An unlimited 
number of users can join such a system without degrading its performance, and 
it offers excellent security for everyone involved: provers cannot cheat verifiers, 
verifiers cannot later misrepresent themselves as provers, and even coalitions of 
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provers and verifiers cannot create new identities, modifying existing identities, 
or find out the secret factorization of n. 

More information about the theoretical and practical aspects of this scheme 
as well as a (slightly slower) signature scheme based on similar principles can be 
found in Fiat and Shamir [3]. 
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1. Introduction. Computer vision refers to a variety of applications in
volving a sensing device, a computer, and software for restoring and possibly 
interpreting the sensed data. Most commonly, visible light is sensed by a video 
camera and converted to an array of measured light intensities, each element 
corresponding to a small patch in the scene (a picture element, or "pixel"). The 
image is thereby "digitized," and this format is suitable for computer analysis. 
In some applications, the sensing mechanism responds to other forms of light, 
such as in infrared imaging where the camera is tuned to the invisible part of the 
spectrum neighboring the color red. Infrared light is emitted in proportion to 
temperature, and thus infrared imaging is suitable for detecting and analyzing 
the temperature profile of a scene. Applications include automated inspection 
in industrial settings, medical diagnosis, and targeting and tracking of military 
objects. In single photon emission tomography, as a diagnostic tool, individual 
photons, emitted from a "radiopharmaceutical" (isotope combined with a suit
able pharmaceutical) are detected. The object is to reconstruct the distribution 
of isotope density inside the body from the externally-collected counts. Depend
ing on the pharmaceutical, the isotope density may correspond to local blood flow 
("perfusion") or local metabolic activity. Other applications of computer vision 
include satellite imaging for weather and crop yield prediction, radar imaging in 
military applications, ultrasonic imaging for industrial inspection and a host of 
medical applications, and there is a growing role for video imaging in robotics. 

The variety of applications has yielded an equal variety of algorithms 
for restoration and interpretation. Unfortunately, few general principals have 
emerged and no common foundation has been layed. Algorithms are by and 

-large-ad=hoet=they=are=typic^^ 

ically tuned to the particulars of the environment (lighting, weather conditions, 
magnification, and so on) in which they are implemented. It is likely that a 
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coherent theoretical framework would support more robust and more powerful 
algorithms. We have been exploring an approach based upon probabilistic image 
models, well-defined principals of inference, and a Monte Carlo computation the
ory. Exploiting this framework, we have recently obtained encouraging results in 
several areas of application, including tomography, texture analysis, and scene 
segmentation. 

As an illustration of our approach, we shall discuss here the application to 
texture analysis. Other applications, and more complete discussions of the foun
dations, can be found in [1, 3, 4, 10, 12, 13, 14, 17, 18, 23, 25, and 27]. In the 
section that follows, §2, we lay out, briefly, our paradigm in its general formula
tion. Then, in §3, the application to texture analysis is developed and illustrated 
by computer experiments. This application requires that we treat a somewhat 
unusual problem in parameter estimation, namely the estimation of parameters 
of a Markov random field from a single, large, sample. §4 details the estimation 
method used, and provides a proof of its consistency in the "large picture" limit, 
which is more appropriate than the usual "large sample size" limit. 

2. Bayesian paradigm. In real scenes, neighboring pixels typically have 
similar intensities, boundaries are usually smooth and often straight, textures, 
although sometimes random locally, define spatially homogeneous regions, and 
objects, such as grass, tree trunks, branches and leaves, have preferred relations 
and orientations. Our approach to picture processing is to articulate such reg
ularities mathematically, and then to exploit them in a statistical framework to 
make inferences. The regularities are rarely deterministic; instead, they describe 
correlations and likelihoods. This leads us to the Bayesian formulation, in which 
prior expectations are formally represented by a probability distribution. Thus 
we design a distribution (a "prior") on relevant scene attributes to capture the 
tendencies and constraints that characterize the scenes of interest. Picture pro
cessing is then guided by this prior distribution, which, if properly conceived, 
enormously limits the plausible restorations and interpretations. 

The approach involves five steps, which we shall briefly review here (see [13 
and 18] for more details). This will define the general framework, and then, 
in the following sections, we will concentrate on the analysis of texture, as an 
illustrative application. 

Image models. These are probability distributions on relevant image at
tributes. Both for reasons of mathematical and computational convenience, we 
use Markov random fields (MRF) as prior probability distributions. Let us sup
pose that we index all of the relevant attributes by the index set S. S is applica
tion specific. It typically includes indices for each of the pixels (about 512 X 512 
in the usual video digitization) and may have other indices for such attributes 
as boundary elements, texture labels, object labels on so on. Associated with 
each "site" s G S is a real-valued random variable X3, representing the state of 
the corresponding attribute. Thus X3 may be the measured intensity at pixel s 
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(typically, X3 G {0,..., 255}) or simply 1 or 0 as a boundary element at location 
s is present or absent. 

The kind of knowledge we represent by the prior distribution is usually "local," 
which is to say that we articulate regularities in terms of small local collections 
of variables. In the end, this leads to a distribution on X — {X3}aes with 
a more or less "local neighborhood structure" (again, we refer to [13 and 18] 
for details). Specifically, our priors are Markov random fields: there exists a 
(symmetric) neighborhood relation G = {G3}3eSì wherein Gs Ç S is the set of 
neighbors of 8, such that 

U(X3 = x3\Xr = xr,reS,r^s) = U(X3 = x3\Xr = xr,re G3). 

n(a|6) is conditional probability, and, by convention, s £ G3. G symmetric 
means s £Gr <& r EG3. (Here, we assume that the range of the random vector 
X is discrete; there are obvious modifications for the continuous or mixed case.) 

It is well known, and very convenient, that a distribution II defines a MRF 
on S with neighborhood relation G if and only if it is Gibbs with respect to the 
same graph, (S,G). The latter means that II has the representation 

U(x) = \e~uW (2.1) 

where 
U(x) = y£vc(x). (2.2) 

cec 
G is the collection of all cliques in (S, G) (collections of sites such that every two 
sites are neighbors), and Vc(x) is a function depending only on {x3}sec. U is 
known as the "energy," and has the intuitive property that the low energy states 
are the more likely states under II. The normalizing constant, z, is known as 
the "partition function." The Gibbs distribution arises in statistical mechanics 
as the equilibrium distribution of a system with energy function U. 

As a simple example (too simple to be of much use for real pictures) suppose 
the pixel intensities are known, a priori, to be one of two levels, minus one 
("black") or plus one ("white"). Let S be the N x N square lattice, and let G 
be the neighborhood system that corresponds to nearest horizontal and vertical 
neighbors: 

I I 
o — o 

I I 
o — o 

For picture processing, think of N as typically 512. Suppose that the only 
relevant regularity is that neighboring pixels tend to have the same intensities. 
An "energy" consistent with this regularity is the "Ising" potential: 

U(x) = -ß^2x3xt, ß>0, 
(s,t) 
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where ]T\ ^ means summation over all neighboring pairs s,t G S. The minimum 
of U is achieved when x3 = xt, Vs, t G S. Under (2.1), the likely pictures are 
therefore the ones that respect our prior expectations; they segment into regions 
of constant intensities. The larger /?, the larger the typical region. Later we will 
discuss the issue of estimating model parameters such as ß. (With energy (2.2), 
II in (2.1) is called the Ising model. It models the equilibrium distribution of the 
spin states of the atoms in a ferromagnet. These spins tend to "line up," and 
hence the favored configurations contain connected regions of constant spins.) 

One very good reason for using MRF priors is their Gibbs representations. 
Gibbs distributions are characterized by their energy functions, and these are 
more convenient and intuitive for modelling than working directly with proba
bilities. See, for example, [12, 13, 14, 18, and 23] for many more examples, and 
§3 below for a more complex and useful MRF model. 

Degradation model. The image model is a distribution U(-) on the vector 
of image attributes X = {X3}aes- By design, the components of this vector 
contain all of the relevant information for the image processing task at hand. 
Hence, the goal is to estimate X. This estimation will be based upon partial 
or corrupted observations, and based upon the prior information. In emission 
tomography, X represents the spacial distribution of isotope in a target region 
of the body. What is actually observed is a collection of photon counts whose 
probability law is Poisson, with a mean function that is an attenuated radon 
transform of X. In the texture labelling problem, X is the pixel intensity array 
and a corresponding array of texture labels. Each label gives the texture type 
of the associated pixel. The observation is only partial: we observe the pixels, 
which are just the digitized picture, but not the labels. The purpose is then to 
estimate the labels from the picture. 

The observations are related to the image process (X) by a degradation 
model. This models the relation between X and the observation process, say 
Y = {Y3}seT. For texture analysis, we will define X = (Xp,XL), where Xp 

is the usual grey-level pixel intensity process, and XL is an associated array of 
texture labels. The observed picture is just Xp, and hence Y = Xp: the degra
dation is a projection. More typically, the degradation involves a random compo
nent, as in the tomography setting where the observations are Poisson variables 
whose means are related to the image process X. A more simple, and widely 
studied (if unrealistic) example is additive "white" noise. Let X = {X3}ses 
be just the basic pixel process. In this case, T = S, and for each s E S we 
observe Y3 = X3-\-r}3 where, for example, {rf3}3£s is Gaussian with independent 
components, having means 0 and variances a2. 

Formally, the degradation model is a conditional probability distribution, or 
density, for Y given X: U(y\x). If the degradation is just added "white noise," 
as in the above example, then 

n(^) = (^)H / 2 e xp{-2^E^-^2}-
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For labelling textures, the degradation is deterministic: n(y|a;) is concentrated 
on y = xp, where x = (xp, xL) has both pixel and label components. 

Posterior distribution. This is the conditional distribution on the image pro
cess X given the observation process Y. This "posterior" or "a posteriori" distri
bution contains the information relevant to the image restoration or image anal
ysis task. Given an observation Y = y, and assuming the image model (H(x)) 
and degradation model (n(2/|z)), the posterior distribution reveals the likely 
and unlikely states of the "true" (unobserved) image X. Having constructed X 
to contain all relevant image attributes, such as locations of boundaries, labels 
of objects or textures, and so on, the posterior distribution comes to play the 
fundamental role in our approach to image processing. 

The posterior distribution is easily derived from "Bayes's rule": 

„<„,,_ üöggfe). 
The denominator, U(y), is difficult to evaluate. It derives from the prior and 
degradation models by integration: U(y) = fxU(y\x)U(dx), but the formula is 
computationally intractable. Happily, our analysis of the posterior distribution 
will require only ratios, not absolute probabilities. Since y is fixed by observation, 
1/n(y) is a constant that can be ignored (see paragraph below on "computing"). 

As an example we consider the simple "Ising model" prior, with observations 
corrupted by additive white noise. Then 

U(x) = - exp < -ß ] T x3xt > 
Z { <-,*> J 

The posterior distribution is then 

U{x\y) = — exp l -ß J2 xsXt ~ 5Z3 E f o « ~ Xa^ f • 

We denote by zp the normalizing constant for the posterior distribution. Of 
course, it depends upon y, but the latter is fixed. Notice that the posterior 
distribution is again a MRF. In the case of additive white noise, the neighborhood 
system of the posterior distribution is that of the prior, and hence local. For a 

and 

wide class of useful degradation models, including combinations of blur, added 
or multiplicative "colored noise," and a variety of nonlinear transformations, the 
posterior distribution is a MRF with a more or less local graph structure. This 
is convenient for our computational schemes, as we shall see shortly. We should 
note, however, that exceptions occur. In tomography, for example, the posterior 
distribution is associated with a highly nonlocal graph. This situation incurs a 
high computational cost (see [14] for more details). 
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MAP estimate. In our framework, image processing amounts to choosing a 
particular image x, given an observation Y = y. A sensible, and suitably-defined 
optimal, choice is the "maximum a posteriori," or "MAP" estimate: choose x 
to maximize n(z|2/). The MAP estimate chooses the most likely x, given the 
observation. In most applications, our goal is to identify the MAP estimate, or a 
suitable approximation. However, in some settings other estimators are more ap
propriate. We have found, for example, that the posterior mean (J xU(dx\y)) is 
more effective for tomography, at least in our experiments. Here, we concentrate 
on MAP estimation. 

In most applications we cannot hope to identify the true maximum a posteriori 
image vector x. To appreciate the computational difficulty, consider again the 
Ising model with added white noise: 

U(x\y) = — exp \ -ß V x3xt - - ^ V( j / a - x3)
2 \ . (2.3) 

Zp [ <-.t> l° ses J 

This is to be maximized over all possible vectors x = {x3}3es £ {—1>1}'S'-
with \S\ ~ 105, brute force approaches are intractable; instead, we will employ 
a Monte Carlo algorithm which gives adequate approximations. 

Maximizing (2.3) amounts to minimizing 

Up(x) = -ßYl XaXt ~ 2Ö2 ]C^ f l " x*)2 

(s,t> s£S 

which might be thought of as the "posterior energy." (As with zv, the fixed 
observation y is suppressed in the notation Up(x).) More generally, we write the 
posterior distribution as 

±eM-Up(x)} (2.4) 
zp 

and characterize the MAP estimator as the solution to the problem "choose x 
to minimize Uv(x)." The utility of this point of view is that it suggests a further 
analogy to statistical mechanics, and a computation scheme for approximating 
the MAP estimate, which we shall now describe. 

Computing. Pretend that (2.4) is the equilibrium Gibbs distribution of a 
real system. Recall that MAP estimation amounts to finding a minimal energy 
state. For many physical systems the low energy states are the most ordered, 
and these often have desirable properties. The state of silicon suitable for wafer 
manufacturing, for example, is a low energy state. Physical chemists achieve low 
energy states by heating and then slowly cooling a substance. This procedure 
is called annealing. Cerny [5] and Kirkpatrick [21] suggest searching for good 
minimizers of U(-) by simulating the dynamics of annealing, with U playing 
the role of energy for an (imagined) physical system. In our image processing 
experiments, we often use "simulated annealing" to find an approximation to 
the MAP estimator. 
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Dynamics are simulated by producing a Markov chain, X(1),X(2),... with 
transition probabilities chosen so that the equilibrium distribution is the pos
terior (Gibbs) distribution (2.4). One way to do this is with the "Metropolis 
algorithm" [24]. More convenient for image processing is a variation we call 
stochastic relaxation. The full story can be found in [13 and 18]. Briefly, in 
stochastic relaxation we choose a sequence of sites s(l) , s (2) , . . . G S such that 
each site in S is "visited" infinitely often. If X(t) = x, say, then Xr(t + 1) = xr, 
Vr ^ s(t), r G S, and X3^ (t + 1) is a sample from 

U(X3{t) = -\Xr = xr,r^s(t)), 

the conditional distribution on X3^ given Xr — xr Vr ^ s(t). By the Markov 
property, 

U(Xs{t) = -\Xr = xr,r^ s(t)) = U(X3{t) = -\Xr =xr,re Gp
s{t)) 

where {G^}3^s is the posterior neighborhood system, determined by the poste
rior energy Up(-). The prior distributions that we have experimented with have 
mostly had local neighborhood systems, and usually the posterior neighborhood 
system is also more or less local as well. This means that |G^(tJ is small, and 
this makes it relatively easy to generate, Monte Carlo, X(t + 1) from X(t). In 
fact, if fi is the range of X3(t), then 

=wc>-i*-*.'* « W - E M U <2-5) 
where 

r = s(t), 
r Ï s(t). 

Notice that (fortunately!) there is no need to compute the posterior partition 
function zp. Also, the expression on the right-hand side of (2.5) involves only 
those potential terms associated with cliques containing s(t), since all other terms 
are the same in the numerator and the denominator. 

To simulate annealing, we introduce an artificial "temperature" into the pos
terior distribution: 

_ exp{-Up(x)/T} 
UT{X) ztf) • 

As T —• 0,nr(-) concentrates on low energy states of Up. To actually find 
these states, we run the stochastic relaxation algorithm while slowly lowering 
the temperature. Thus T = T(t), and T(t) | 0. n T ( t ) ( - ) replaces n(-) in 

- computing— the traoisition-X(^)^=^-=X(M=-l) In-4l3]=-we=showed=thaty=under-
suitable hypotheses on the sequence of site visits, s(l), s(2),... : 

If T(t) > c/(l + log(l + *)), T(t) | 0, then for all c sufficiently 
large X(t) converges weakly to the distribution concentrating 
uniformly on {x: U(x) = min^ U(y)}. 

More recently, our theorem has been improved upon by many authors. In 
particular, the smallest constant c which guarantees convergence of the annealing 

(a,a(t)Xjr = S 
I xr, 
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algorithm to a global minimum can be specified in terms of the energy function 
Up (see [15 and 19]). Also, see Gidas [16] for some ideas about faster annealing 
via "renormalization group" methods. 

In the experiments with texture to be described here, MAP estimates are 
approximated by using the annealing algorithm. This involves Monte Carlo 
computer-generation of the sequence X(l), X(2),..,, terminating when the state 
ceases to change substantially. 

3. Texture segmentation. Texture synthesis refers to computer generation 
of homogeneous patterns, usually intended to match a natural texture such as 
wood, grass, or sand. In many instances, Markov random fields provide good 
models, and Metropolis-like Monte Carlo methods yield respectable facsimiles 
of the real textures [8, 9]. Here we combine MRF texture models, for the pixel 
process, with an Ising-like "texture label process," in order to segment and label 
a scene consisting of patches of natural textures. The image model thereby 
involves both a pixel process, of grey level intensities, and a label process, whose 
components identify the texture type of each picture element in the scene. Our 
approach is similar to those of Derin and Elliott [9] and Cohen and Cooper [7], 
especially in our use of the two-tiered image model. 

Image model. The image process comprises a pixel process and a label pro
cess, X = {XP,XL}. As usual, the pixes sites form an TV x N square lattice, 
say Sp. For each pixel site there is a corresponding label site, and thus the 
graph associated with the image model has sites S = Sp U SL, where SL is 
just a copy of Sp. The elements of Sp and SL index the components of Xp 

and XL, respectively, so that Xp = {XP}3ESP and XL = {Xg}3eSL. In the 
experiments reported here, the pixels were allowed sixteen possible grey levels 
Xp G { 0 , 1 , . . . , 15}, Vs G Sp, whereas the range of the labels depended upon 
the actual number of textures in the scene, thus assuming this number to be 
known a priori. Let M be the number of textures that are to be modelled. Then 
Xï G { 1 , 2 , . . , M } , V s 6 S L . 

We shall develop the image model by first assuming that the texture type 
is fixed, say "/" and constant over the scene. Conditioned on Xg = l G 
{1 ,2 , . . . , M}, Vs G SL, the process Xp is a Markov random field: 

I l O r ' W = l, 5 e SL) = 4 T exp{-E/«) (xp)} 
Z (0 

where z^ is the usual normalizing constant z^ = YjX
p exp{-E/W(zp)}. Only 

pair-cliques appear in the energy 17 W. There are six types of pair-cliques, as 
shown in Figure 1. These we index by i G {1,2,3,4, 5,6}. We denote by (s, t)i a 
pair of sites s,t which form a type i clique, and by £)/ s tv. the summation over 
all such pairs. With these conventions, the (conditional) energy is 

tf(,)(*P) = - £ E ' i ' ^ f - s f ) , *(A) = (l + (|A|/,5)2)-1 (3.1) 
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for some fixed 8 > 0. Notice that ®(xf — xf) is larger when xf = xf, and 
is monotonie in \xf — xf\. Because of this, the texture-dependent parameters 
$i , . . . , 0Q determine the degree to which neighboring pixels, of a particular 
type of pair-clique, will tend to have similar grey-levels. In face, if 0\ ' > 0, then 
for texture "/" we expect pixel pairs x3 and xt, of clique type i, to typically 
have similar intensities. If 0[' < 0 then the tendency is to be different. Of 
course, these simple rules are complicated by the actions of the other five types 
of pair-cliques. 

O JO O O 

o o x> o 

FIGURE 1. Pair-cliques for texture model. 

The parameters 0\\i = 1,2,..., 6, / = 1,2,..., M, are estimated from pic
tures of the M textures, as explained in the following section (§4). On the other 
hand, <È>, and indeed the neighborhood structure, is ad hoc. We have used $ ex
tensively in other applications in which our main concern is with the difference 
of intensities between neighboring pixels. Of course the quadratic, $(A) = A2, 
is simpler, but it unduly penalizes large differences. Having modeled the M 
textures, we now construct a composite Markov random field which accounts for 
both texture labels, XL = {Xf, s G SL}, and grey-levels, Xp = {Xf, s G Sp}. 
The joint distribution is 

n ( x " = xpfXL = xL) = «Pi-UiiW-u^)} ( 3 > 2 ) 

in which U2 promotes label bonding (we expect the textures to appear in patches 
rather than interspersed) and U\ specifies the interaction between labels and 
intensities. Specifically, we employ a simple Ising-type potential for the labels: 

u2(x
L) = -ßY,^=x-+E wtâ)> P > 0 - (3-3) 

[stt] ses 

Here ß determines the degree of clustering, [s, t] indicates a pair of nearest hor
izontal or vertical neighbors, and w(-) is adjusted to eliminate bias in the label 
probabilities (more on the choice of w(-) later). 

To describe the interaction between labels and pixels we introduce the symbols 
i~i,T2,... ,TQ to represent the lattice vectors associated with the 6 pair-cliques 
(Figure, 1 ). Thus s and s-r-n are neighbors, constituting a pair with clique type 
i. The interaction is then given in terms of pixel-based contributions, 

H(xp, I, s) = - X X ^ O z f - <+Ti) + * (*f - z f - r j } (3-4) 
i=l 

and local sums of these called block-based contributions, 

Z(xp, I, s) = - Y^ H(xp, I, t). (3.5) 
a teN3 



MARKOV RANDOM FIELD IMAGE MODELS 1505 

Here, N3 is a block of sites centered at s (5 by 5 in all of our experiments), 
and the constant a is adjusted so that the sum of all block-based contributions 
reduces to U® (see (3.1)): 

UW(xp) = J2z(xp,l,s). (3.6) 
ses 

This amounts to ensuring that each pair-clique appears exactly once (a = 50, 
for example, when N3 is 5 by 5). In terms of (3.4) and (3.5), the "interaction 
energy," U\(xp,xL), is written 

U1(x
p,xL) = '£z(xp,xï,s). (3.7) 

ses 
Because of (3.6), the model is consistent with (3.1) for homogeneous textures, 
Xf = /, Vs G S. The idea is that each local texture label, Xf, is influenced by 
the pixel grey levels in a neighborhood of s. 

Finally, to clarify the bias correction term w(-), we briefly examine the local 
characteristics of the field, specifically the conditional distributions for the labels 
given all the intensity data and the values of the neighboring labels. (The actual 
neighborhoods of the Markov random field corresponding to (3.2) can be easily 
inferred from (3.3) and (3.7).) The log odds of texture type k to type j is 

jU(Xr
L = k\Xt =xL

a,s£ r; Xf = xp,seS)] 
g \ u(xr^ = j\X} = xi, s ? r; Xt = xf,seS)j 

= Z(xpJ,r)-Z(xp,k>r) + ß J2 (l«f=fc-l*f=i)+ «'(?•)-«'(*) 
t: [t,r] 

t= i seNr 

+ ß Y, (lxL=k-lxM)-{-w(j)-w(k). 
ti [t,r] 

The first term imposes fidelity to the "data" xp, and the second bonds the 
labels. The efficacy of the model depends on the extent to which the first term 
separates the two types k and j , which can be assessed by plotting histograms for 
the values of this quantity both for pure k and pure j data. A clean separation of 
the histograms signifies a good discriminator. However, since we are looking at 
log odds, we insist that the histograms straddle the origin, with positive (resp. 
negative) values associated with texture type fc (resp. j). The function w(-) 
makes this adjustment. 

Degradation model. The degradation is deterministic. The observation pro
cess is the pixel process Y = Xp, and hence the degradation is just the projection 
(XP,XL)-+XP. 

Posterior distribution. In this special case, the posterior energy is the same 
as the prior energy, but some of the components are fixed. In particular, 

Tl((xp,xL)\y) = -exp{-U1(x
p

ix
L)-U2{xL)}lxP=y. 
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FIGURE 2. Wood on plastic background. 

Equivalently, we simply use Tl(xL\xp) as the posterior distribution: 

U(xL\xp) = — exp{-^i(xp,a5L) - U2(x
L)}. 

Zp 

MAP estimate. Given an observation, Xp = xp, we shall seek xL to minimize 
U1(x

p,xL) + U2(x
L). 

Computing. We use stochastic relaxation, with simulated annealing, as de
scribed in §2. A convenient starting point is arrived at by "turning off" the Ising 
term in the label model (3.3): we set ß = 0. Since this is the only label/label in
teraction term in the model, the MAP estimate of xL, with ß = 0, is determined 
by (locally) optimizing x% at each s G SL. The computation time is negligible. 
Thereafter, we set ß to the model value (see §4) and begin stochastic relaxation. 
In the experiments, each site was visited about 150 times. 

Experimental results. Three experiments were done on texture discrimination, 
based on two images with two textures each and one with four. There are four 
textures involved: wood, plastic, carpet, and cloth. As mentioned above, the 
parameters were estimated from the pure types (see §4). There was no pre- or 
post-processing. In particular, no effort was made to "clean-up" the boundaries, 

^expecting smooth- transitionsT^Theresult^ are shown in^Figuf es 2r3;^antl™4r 
these correspond to (i) wood on plastic, (ii) carpet on plastic, and (iii) wood, 
carpet, and cloth on plastic background. In each figure, the left panel is the 
textured scene, and the right panel shows the segmentation, with texture labels 
coded by grey level. It is interesting to note that the grey-level histograms of 
the four textures are very similar (Figure 5); in particular, discrimination based 
on shading alone is virtually impossible. 
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FIGURE 3. Carpet on plastic background. 

FIGURE 4. Wood, carpet, and cloth on plastic background. 
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CLOTH CARPET 
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} \ : 
PLASTTC WOOD 

FIGURE 5. Grey-level histograms. 

The model is not really adequate for texture synthesis; samples generated from 
the model do not resemble the texture very well. Evidently, the utility of Markov 
random field models does not depend on their capacity for simulating real-world 
imagery. A more serious drawback of our model is that it is dedicated to a 
fixed repertoire of textures, viewed at a particular orientation and at a particular 
magnification, or range. The problem is easier if the goal is merely segmentation, 
without recognition. We are experimenting with segmentation algorithms that 
are scale and orientation independent. Indeed, there are no texture-specific 
parameters. These are built upon the same modelling/computing framework. 

4. Parameter estimation. 
Maximum pseudolikelihood. The performance of the model is not unduly 

sensitive to the choice of 6 (see (3.1)) or ß (see (3.3)), which were determined by 
trial and error. On the other hand, the pair-clique parameters 0+ , i = 1,2,..., 6, 
Z = 1,2,...,M, characterize the M textures, and critically determine the ability 
of the model to segment and label. Needless to say, these must be systematically 
estimated. Trial and errors not feasible. - - _-————=_ -- — -_=—==—„-„ « 

We have estimated the parameters from samples of the M textures. These 
"training samples" contain only one texture each, and we used just one sample 
for each texture. For a fixed texture, say wood, and from a single sample, say 
xp, the problem then is to estimate 0i, 02?•••, #6 in the model 

U(Xp = xp;0) = 
exp{-U(xp;0)} 

z(0) 
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where 

and 

t = l {a,t)i 

z(e) = ^2exp{-U(xp;6)}. 

(We include 0 = (0i,..., 0ß) in n, U, and Z to emphasize the dependencies on 
the unknown parameters.) The standard approach is to maximize the "likeli
hood" : choose 0 to maximize H(xp\ 0). Of course, maximizing n is equivalent to 
maximizing logn. It is easily demonstrated that the latter is concave in 0 with 
gradient 

V logn(^; 9) = { £ *(äf - xt) - E9 
. <<>,t)i 

Y;*(x?-x?) 
(s,t)i 

(4.1) 

2=1, . . . ,6 

where E$[] is expectation with respect to n(-;0). This suggests a gradient 
ascent procedure, but the expectation EQ[-] is intractable, involving summation 
over the entire range of Xp. In our experiments, we used a 16 grey-level scale 
for the pixels, and 204 x 204 lattices: the expectation in (4.1) has 16204 terms. 
An alternative to brute force evaluation is to use stochastic relaxation (see §2), 
which produces an (asymptotically) ergodic sequence XP(1),XP(2),... for any 
given 0, and from which expectations can be approximated by appropriate time-
averages. This, too, is computationally intensive, but feasible. In some settings 
we have found no alternative, and this Monte Carlo procedure has worked well, 
albeit slowly (see [22]). See also Hinton and Sejnowski [20] for a closely related 
algorithm, used to model learning in a theory of neuron dynamics. 

For homogeneous random fields, such as our image models, Besag [2, 3] has 
proposed an ingenious alternative to maximum likelihood, known as "maximum 
pseudolikelihood." The pseudolikelihood function is 

PL(xp; 0)= f ] n ( * f = ^\Xr = *f, r?s;0) 
aeSp\dSp 

where dSp is the boundary of Sp under the neighborhood system determined 
by the energy U, and Sp\dSp is the complement of dSp relative to Sp. The 
"pseudolikelihood estimator" is the 0 that maximizes PL(xp;0). In the next 
few pages we shall lend some analytic support, by establishing consistency of 
pseudolikelihood in the "large graph" limit. But first, we emphasize the over
whelming computational advantage. As with the log likelihood function, the log 
pseudolikelihood function, log PL(xp\0), is concave, but this time the gradient 
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is directly computable: 

Vlog PL(xp;6) 

= V E Œ * W # - # + J + *(af-Cr,)} 
sesp\ds 

E {È« 
c\asp u=i 

-l0g2«p{é^*(O-^)+*(«-af-r4)}}] 
(where £ ) a is summation over pixel grey levels, zero through fifteen in our ex
periments) 

^esp\dsp 

- EeMXf - Xf+Ti) + * ( X f - Xf__Ti)|Xr
F = xf ,r ? s}} 

This time, the expectation is tractable. The conditional distribution on Xf, 
given Xf = xf, r ^ s, involves only those variables xf in the neighborhood of 
s. Furthermore, this time summation is over the range of Xf only, which has 
only sixteen values. In short, the gradient of the log pseudolikelihood is directly 
computable, and therefore gradient ascent is feasible without resorting to time-
consuming Monte Carlo methods. For the experiments discussed in the previous 
section, the pair-clique parameters were estimated, for each texture type, by 
gradient ascent of the pseudolikelihood function. 

Some modifications of maximum and pseudolikelihood have been recently in
troduced by Chalmond [6]. A third alternative was suggested by Derin and 
Elliott [9, 11], and has been studied and analyzed extensively by Possolo [26]. 
This involves a regression fit of the log of the local conditional probabilities, and 
works best when there are a small number of values in the range of the random 
variables. For example, the method is very effective for Ising-like models. 

Consistency of pseudolikelihood. We will study parameter estimation from a 
single realization of a finite-graph Markov random field. The typical framework 
for establishing consistency is in the limit as the number of samples increases. 
But we have in mind estimation from a single sample of the random field, with 
the number of sites large (e.g., 512 x 512). To study estimation in this "large 
graph" setting, we will imagine a sequence of samples, X{ï)lX(2)_i_L._L_}Jfrom^a 
sequence of Markov random fields, H i , n 2 , . . . , in which the latter are associated 
with an expanding sequence of regular graphs. We will assume that the sequence 
of distributions of these random fields has a common unknown parameter vector 
0o G Rm. We will define the pseudolikelihood estimate, 9n = 0n(X(n)), for each 
sample, X(n), and show that 0n —• 9Q with probability one. 

The samples X(1),X(2),... need not be independent. For example, we may 
wish to model the observations as subsamples from a single infinite volume 
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Gibbs state. Then, there is one infinite-volume process X, e.g., X = {X3}ses, 
S == {(hj)' ~~ °° < hi < °°}, a nd the observations are associated with in
creasing subsets: X(k) = {X3}aesk with, e.g. Si Ç Si Ç ••• jUfc l i^ = S. 
The sequence of distributions, n i , n2 , . . . , is the sequence of conditional distri
butions, on {X3}3Esk, conditioned on {X3}3eS\sk>k = 1,2, Under a suit
able "homogeneity" (translation invariance) assumption for the Gibbs potential, 
the theorem applies, guaranteeing consistency of the pseudolikelihood estimate. 
This is regardless of critical phenomena, or lack of spatial stationarity, both of 
which can occur with infinite volume Gibbs states having translation-invariant 
potentials [28]. 

Henceforth, we specialize to regular square lattices: S will represent the ri
dimensionai infinite square lattice. (Generalizations are straightforward.) For 
each n, Sn C S is a d-dimensional cube with sides length n. On S is a translation-
invariant neighborhood system G = {G3}aes (s fi G3;s G Gr <=> r G G3;s G 
Gr <& s + r G Gr+T Vs,r,r G S). We will assume "finite" interactions: 3R 3 
s G Gr => \s - r\ < R. We will denote the subgraph of (S,G) with sites Sn by 
(Sn, G). Associated with each n is a Markov random field, n n , on (Sn,G). The 
site variables, {X3}aesn, are assumed to have common range Q, with \Q\ < 00. 

The distributions Hi,n2,. . . are related by their dependencies on a common 
unknown parameter 0Q G Rm. Pseudolikelihood exploits the dependencies of 
local conditional probabilities on this parameter. In particular, fix n and let 
x G QSn, the range of the random field with distribution n n . For each s, let 
3x = {xr : r G G3 fl Sn}. Actually, 3x will be treated as a vector, in which the 
components are placed in some arbitrary order. "Local characteristics" of Un 

refers to the conditional probabilities Un(X3 = x3\aX = 3x; 0o) for each s G Sn, 
x G QSn. The distributions Hi, n2, . . . are tied together by the assumption that 
these local characteristics, which depend upon So, are independent of s and n, 
for all s in the interior of Sn. More precisely, letting S® = Sn\dSn under G, we 
assume that there exists *(•) = (*i(-)) • • • » *m(")) s u c n t n a t 

I I A = XslsX = . , ; 0O) = e x p { g 0 J ( w ) } 
E a G n e x P{ ö o '* (a , ^ )} 

for all n, s G S®, x3, and 3x. Any homogeneous field with finite interactions is 
suitable, regardless of boundary conditions. Examples include the Ising model, 
and the texture model (for a single, homogeneous texture) developed in §3. 

Whenever 8 G S^,Iin(X3 = x3\3X = 3x\0) does not depend on n. Since 
we will only be interested in local characteristics at interior sites, we henceforth 
drop the subscript n when writing conditional probabilities. Given X = x, a 
sample from n n , the pseudolikelihood function of 0 G Rm is 

PLn(x;0)= f ] u(xs\sX]0) 

= yi exp{0-V(x3,3x)} 

ses° 
£ a en e x P{0"^(a , a z)} ' 
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The pseudolikelihood est imate is the set Mn(x), of 0 t h a t maximize PLn(x;9): 

Mn(x) = <0eRm: PLn(x,0) = sup PLn(x,<t>) \ . 
[ (j>eRm J 

In establishing consistency for pseudolikelihood estimation we will assume iden-
tifiability, in the following sense: 

DEFINITION. We will say t ha t 0O G R m , is identifiable if 0 ^ 0O => 3x3i3x, 
such that Tl(x3\3x;0) ^ H(x3\3x

m,0o). 

THEOREM (CONSISTENCY OF PSEUDOLIKELIHOOD). For each n = 1,2, 
. . . , let X(n) be a sample from the Markov random field Un, with local charac
teristics (4.2). If 0o is identifiable, then 

(a) P(\ogPLn(X(n);0) is strictly concave for all n sufficiently large ) = 1; 
(b) P(Mn(X(n)) is a singleton for alln sufficiently large ) = 1; 
(cj ^ ( s u p ö e M n ( x ( n ) ) \0 - 0o\ -> 0) = 1. 

REMARKS. (1) Extensions to more general graph s t ructures and interaction 
potentials are possible, and mostly routine. 

(2) More relevant to the problem of estimating 0O from a sample X(n), wi th 
n large, is the following immediate corollary: 

n—•oo 
[ sup \0 - 0o 
\eeMn(x(n)) 

lim P sup \0-0o\>e] =0 Ve > 0. 

PROOF OF THEOREM. Let Nn = \S%\, 

Nn(ß) = #{seSn
):3X(n)=ß}, 

and 
Nn(a,ß) = #{* G S£: X3(n) = a, 3X(n) = /?}, 

using a and ß as generic elements of Q and filGa', respectively. The proof can 
be divided into five steps, which we now sta te as lemmas. 

LEMMA 1. liminfn_>oo Nn(ß)/Nn > 0 a.s., Vß. 

LEMMA 2. limn-.oo Nn(a, ß)/Nn(ß) = U(a\ß; 0O) a.s., Va, ß. 

LEMMA 3. Let 

K(6) = ^-{log PLn(X(n);0) - log PLn(X(n);0o)} 

2 ^ JVL Z^f N(R\ 1 0 g 
Nn ^ Nn(ß) 6n(a|/3;Ö0)' 

P{Fn{-) is strictly concave for all n sufficiently large ) = 1. 

L E M M A 4 . Let 

ß 
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(a) With probability one, Ve > 0 36 > 0 3 

limsup sup sup (j>tH(Gn(0))(j) < — 6 
n-*oo |0 -0o |<£0ef l m , |0|=1 

where H(Gn(0)) is the matrix of second derivatives (Hessian) of Gn(0) with 
respect to 0. 

(b)Gn(0)<OV0,n. 
(c)Gn(0o) = OVn. 

LEMMA 5. Ve > 0, 

lim sup \Fn(0) -Gn(0)\=O a.s. 
n-+00\0-6o\<e 

With these pieces in place, we complete the proof as follows. 
Fix e > 0. From Lemma 4, conclude that 

liminf inf (Gn(0o) - Gn(0)) > 0 a.s. 
n - o o \e-0o\=eK V ' V " 

(4.3) 

Since Fn is uniformly approximated by Gn (in the sense of Lemma 5), (4.3) also 
holds for Fn: 

liminf inf (Fn(0o) - Fn(0)) > 0 a.s. 

Since Fn is eventually strictly concave (Lemma 3), it eventually achieves its 
maximum, uniquely, in {0: \0 - 0O| < £}• Finally, since logPLn(X(n);0) = 
NnFn(0)+logPLn(X(n)] 0o), these same statements apply to logPLn(X(n); 0). 

We now proceed to prove Lemmas 1-5. 
PROOF OF LEMMA 1. The first two lemmas are based on the following 

version of the "strong law of large numbers" : 

PROPOSITION. For eachn= 1 ,2 , . . . , let Z1(n),Z2(n),.. .,Zmn(n) be ran
dom variables andY(n) be a random vector. Assume 

(1) liminfn^oo mn/n > 0. 
(2) Z\(n),..., Zmn(n) are conditionally independent, given Y(n). 
(3) | ^ ( n ) | < B < o o Vi,n. 

Then 

mn i = i 

0 a.s. 

PROOF. The methods here are standard. We will provide an outline only. 
Fix e > 0 and let An be the event 

mn 

ln= j ^-^2(Z^n)-E[Zi(n)\Y(n)]) 
i = l 

>e 

Then the usual exponential bounds (but derived by first conditioning on Y(n)) 
give P(An) = o(l/Cmn) for some G > 1. The rest follows from the Borei-Cantelli 
lemma: P(An infinitely often ) = 0. 

Now back to the proof of Lemma 1: For any s G S, let 

B3 = d{(8UG3)
c} = {r: 3t e (sUG3)r EGt, rfi(sUG3)}, 
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i.e., the neighborhood of s U G3. For each n, choose si, 52,..., smn G Sn such 
that 

(1) liminîn^oo mn/Nn > 0, 
(2) B3. QSn,i = l,...,mn, 
(3)i^j-+(siUG3i)nB3j=0, 

(e.g., regularly partition Sn into large cubes, with sizes independent of n, and 
big enough to accommodate s U Ga U B3, for some s). 

Fix ß and let Y(n) = {Xa(n) : s G U^Ti ft,}, and Z,(n) = la.x(n)=ß. By the 
Markov property, Zi(n),..., Zmn(n) are conditionally independent, given y(n). 
Hence, by the proposition, 

1 5^" 

i-£(^(n)-2W»)ly(»)]) m « i = i 
0 a.s. 

Using again the Markov property, 

E[Zi(n)\Y(n)] = U(3iX(n) = ß\X3(n),se B3i;0o) * 

which can have only a finite number of possible values (corresponding to the 
|n|lBa*l configurations of {Xs(n)}s€ßa), all of which are positive. Hence, for 
some e > 0, 

1 - _ 
— Y,E\Zi(n)\Y(n)]>e, Vn, 
m " i = 1 

and 
1 I*1" 

lim inf — y ^ ZAn) > e a.s. 
mn x 

Since JVn(/?) > £™" ^(n)> i t ; a l s o follows that liminf Nn(ß)/mn > € a.s. Finally, 
since liminf rnn/Nn > 0, liminf Nn(ß)/Nn > liminf Nn(ß)/mn • liminf mn/Nn 

>0. 
PROOF OF LEMMA 2. Let G = {c* : i = 1,. . . , nc} be a coloring of (5, G). In 

other words, ci,C2,...,cUc partition S, and r,s G Ci —> r £ Gs. Because (S, G) 
is regular, we can assume that G is chosen so that liminf |S° fl Ci\/Nn > 0, 
i = l , . . . ,n c . 

For each i G {1 , . . . , nc} define 

Nn(ß\ Ci) = #{* eSZncn aX(n) = ß}, 

Nn(a, /?; a) = #{5 G S% fl c< : Xa(n) = a, 3X(n) = ß}. 

Fix i G {1 , . . . , nc}, a and /?, and let 

Za(n) = lx8(n)=a;ax(n)=/3 for each seS%n Ci. 

Let Bn = 9{(S°nci)c} (the neighborhood of S^PiCi) and let F(n) = {X3(n) : s G 
Bn}. Given F(n), the random variables Z3(n),s G S° H Ci, are independent 

*It is well known that the local characteristics (4.2) determine these conditional probabilities 
as well. Hence, this conditional distribution is independent of n. 
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(Markov property). By the proposition 

1 

1515 

IsSncil 
£ (Z.{n)-E[Za(n)\Y(n))) 

ses°nci 
0 a.s. 

Using again the Markov property: ü7[.£a(n)|Y(n)] = U(a\ß;6o)l,x{n)=ß- Since 

J2 Za(n) = Nn{a,ß;ci) and ^ l.x(n)=/? = Nnißw), 
aes°r\ci s€S°nc( 

ANn{a,ß;ci)-U(a\ß;eo)-Nn(ß;Ci)\^0 a.s. 
\SZnci\ 

Finally, recalling that liminf Nn(ß)/Nn > 0, a.s.: 

Nn(a,ß) 
Nn(ß) -U(a\ß;9o) 

^Nnißm) E"" Nn(a,ß;ci) jrf.o.f, \K^"n\ 
Tnifl) 

^E tZNM 
\Nn(a,ß;ci)-n(a\ß;90)Nn{ß;ci)\ 

« 5 3 • 
Nn \s°ng\ 

ANn(a,ß;ci)-U(a\ß;e0)Nn(ß;ci)\ 

^Nn(ß 

JT[Nn{ß) Nn |Sgnc<|* 

—• 0 a.s. 

PROOF OF LEMMA 3. Let H(Fn(0)) be the Hessian (matrix) of Fn(0), and 
let <f> G Rm. By routine calculation, we derive 

4>*H(Fn($))4> 

Nn(ß) EâenOft • W&.fl - W(" , /?) l f l ) ) 2 e*p{0 • V>(â, 0)} 

p -•» E* en«P{*-tf («>/?)} 

where ^ö[- |^] is expectation on fi with respect to U(-\ß;0). Obviously, 

and hence Fn(0) is concave. By Lemma 1, with probability one, infy Nn(ß)/Nn > 
0 for all n sufficiently large. Suppose mfßNn(ß)/Nn > 0 and ^lH(Fn(0))^ = 0 
for some 0 and <j> ^ 0. Then, for all a and ß,<j) • ^(ä,/9) = Bff[^(a,/9)|/?]. 
In particular, for every ß, (j> • ip(o>,ß) is independent of a. This implies that 
ü(a\ß\0 + <£) = n(a|/?;0o) for all a and /?, which contradicts the identifiability 
assumption. Hence Fn(0) is strictly concave whenever mfßNn(ß)/Nn > 0. 

PROOF OF LEMMA 4. By the same argument used for Lemma 3, Gn(0) is 
strictly concave, whenever mißNn(ß)/Nn > 0. By Lemma 1, with probability 
one, there is a f > 0 such that inf/j Nn(ß)/Nn > ç for all n sufficiently large. Since 
(j)tH(Gn(0))^> is jointly continuous in <j>,0, and the finite collection of variables 
Nn(ß)/Nn, it must achieve its maximum on the compact set \(ß\ = 1, \0 — 0Q\ < e, 
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and Nn(ß)/Nn G [ç, 1] for all ß. Part (a) of Lemma 4 now follows from the strict 
concavity of Gn(0). 

For part (b), apply Jensen's inequality: 

= l o g £ l I ( a | / ? ; 0 ) = logl = O. 

Part (c) follows immediately from the expression for Gn(0). 

P R O O F OF LEMMA 5. 

lim sup sup \Fn(0) - Gn(0)\ 
n->oo |0 -0 o |<e 

= lim sup sup 
n->oo \0-9Q\<e 

< | 0 | sup 
a,/5,|0-0o |<£ 

Nn(a,ß) 

By Lemma 2, 

l o S T T / ^ I / ? / J •> l i m S U P S U P n(a|/?;0o) | „-oo a,ß 

Nn(<*,ß) 

Nn(ß) 
-H(a\ß;ß0) 

lim sup sup 
n-»oo a,/? W„(/3) 

-U(a\ß;0o) = 0 a.s. 

Since n(a|/3; 9) ^ 0 for any a,ß,ö G Rm, and is continuous in 0 for each of the 
finite numbers of a 6 fi, ß G filG"l, 

n(a|)M) 
sup 

a,/3,|0-0o|<£ 
log: 

'n(a|/3;0o) 

is finite. 
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Equilibrium Analysis of Large Economies 

WERNER HILDENBRAND 

1- Introduction. One of the most fundamental problems in economics is 
to explain why in a competitive economy with private ownership where a large 
number of economic agents make decisions that are taken independently from 
each other and are motivated by self-interest, why in such a situation we do not 
observe chaos, but a state which definitely looks more like an equilibrium than 
total disorder. 

This fundamental observation was formulated as early as 1776 by Adam 
Smith: 

The natural price, therefore, is as it were, the central price, to 
which the prices of all commodities are continually gravitating. 
Different accidents may sometimes keep them suspended a good 
deal above it, and sometimes force them down even somewhat 
below it. But whatever may be the obstacles which hinder them 
from settling in this centre of repose and continuance, they are 
constantly tending towards it. (The Wealth of Nations, Book I, 
Chapter VII) 

This vision of Adam Smith was made more precise by nineteenth-century econo
mists. I would like to quote Léon Walras (1874), the founder of general equilib
rium theory, and Alfred Marshall (1890): 

Such an equilibrium is exactly similar to that of a suspended 
body of which_the_centre-oLgravity^lies^directly^beneath^tha-. -
point of suspension, so that if this centre of gravity were dis
placed from the vertical line beneath the point of suspension, 
it would automatically return to its original position through 
the force of gravitation. This equilibrium is, therefore, stable. 
(Elements of Pure Economics, Lesson 7, §66) 
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When demand and supply are in stable equilibrium, if any ac
cident should move the scale of production from its equilibrium 
position, there will be instantly brought into play forces tend
ing to push it back to that position; just as, if a stone hanging 
by a string is displaced from its equilibrium position, the force 
of gravity will at once tend to bring it back to its equilibrium 
position. (Principles of Economics, Book V, Chapter III) 

The classical economists of the nineteenth century viewed the determination 
of prices in a market economy in analogy to classical mechanics as a kind of 
"mechanics of market prices";1 the price system—like a body—"moves" in a 
force-field that is determined by excess demand, that is to say, the difference 
between demand and supply. The force-field was thought to be such that there 
is always a tendency towards equilibrium. Therefore economists concentrate 
their attention on situations where demand equals supply, that is to say, on 
equilibria. 

Does economic theory today offer a sound explanation of this "stable equi
librium paradigm?" And more specifically, is mathematics useful in such an 
explanation? These questions I would like to discuss in this lecture. 

Clearly, the first and crucial step is to define the basic concepts of demand 
and supply. "... it is actually the first step, on which everything else depends, 
which is the most dubious." (Hicks, Value and Capital, 1946, p. 11) 

Prom a purely formal point of view our problem would be quite simple if 
one could express demand and supply, and hence excess demand, as a function 
of prices. Indeed, if there were given an excess demand function E: D —> R/, 
D C Ri|_, then either one defines equilibrium as a solution of the system of 
equations E(p) = 0 or one studies the asymptotic behavior of a price-adjustment 
process, for example Ap ~ E(p) or in differential form, p = E(p). For both cases 
there are well-developed mathematical theories. 

Of course, demand and supply depend on other determinants than prices 
alone, yet in traditional microeconomics these other determinants are either 
assumed to be fixed or they are considered, in turn, as functions of prices. For 
example, individual preferences (tastes) are typically assumed to be fixed while 
individual wealth or income is defined as a function of prices. 

If economic equilibrium theory were built on an ad hoc chosen excess de
mand function Ê : D - ^ R ! , then the often-raised question, why such an analysis 
qualifies as economics, would, indeed, be well taken. 

2. Excess demand of an economy with private ownership. From 
the introduction it should be clear that a careful definition of excess demand 
is required. However, here is not the place to give the necessary details. First 
one should clarify the type of commodities which are demanded or supplied; are 
these perishable commodities like food or labor, or durables like cars or houses? 

1The last publication of Walras in 1909 had the title "Economie et Mécanique." 
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Also one has to specify whether one speaks of current (temporary) demand and 
supply or of plans which extend into the future. For details see [2, 7, 1]. 

In general equilibrium analysis one considers a finite number / of different com
modities (which might be dated or conditional on certain events). All commodi
ties are considered as infinitely divisible. A consumption—or production—plan 
can then be defined as a vector in R*. 

The economy consists of a finite set A of consumers and of n production units. 
Every consumer a G A is described by a consumption set Xa C R (, a preference 
relation -<a, and a wealth-function ba(-): the wealth ba depends on the price 
system p and the status of private ownership. 

The decision of a consumer, called demand, and the decision of a production 
unit, called supply, are defined as a result of a maximization problem. Given the 
price system pER1 one defines the individual demand (pa(p) of consumer a G A 
by: 

x E <pa(p) if and only if x belongs to the budget set, i.e., 

x E {x G Xa\p • x < ba(p)} and x maximizes preferences, i.e., 

if x ya x then p • x > ba(p). 

A production unit is described by its technology ^ C R1; the technology 
describes the set of possible input-output combinations. Given a price system 
p G R 1 one defines the supply rf (p) of the production unit j by: 

y £ vj(p) îf a n d o n iy if vy>p-y, yEYj. 

An economy £ with private ownership is defined by the commodity space 
Rl, the characteristics of the consumers, Xa,^a,ba(-), the characteristics of the 
production units, Yj, and the vector of total initial endowments ë; 

£ = {Rl,Xa,ïa,ba(.),Yj,ë}. 

The excess demand E s of the economy £ is defined by 

aeA j=l 

In general the excess demand Ee(-) is not a function but a correspondence (set-
valued). With strict convexity (resp. smoothness) assumptions on preferences 
;3 a and technology Yj, the excess demand can be shown to be a continuous 
(resp. differentiable) function on a suitably defined domain of price-systems. For 

-details^see-p—lSji———- ̂ —=——^^ —~ 
The problem of existence of a competitive equilibrium for an economy £, i.e., 

a solution of 0 G Ec(p), is well settled. The standard reference is [2]; see also 
[5] and the literature given there. 

3. Uniqueness and stability. Let Es : R++ —> R* denote the excess de
mand function of an economy £ with private ownership. It follows that the 
function Eç is homogeneous, i.e., Es(Xp) = Es(p), X > 0, and satisfies the 
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FIGURE l 

Walras identity p • Es(p) = 0. Consequently an excess demand function Es (•) 
defines a vector field on 

S = {xGRl
++ |5>? = l}. 

Which type of vector field on S is generated by economies? For example, are 
they gradient fields? Scarf (1960) has shown that the phase portrait in Figure 1 
comes from a "nice" exchange economy. 

The following result shows that there is nothing special about vector fields on 
S which are defined by excess demand functions Es of exchange economies £. 

THEOREM. For every continuous vector field f on S and every compact 
subset K C S there exists an exchange economy 

£ = {^a,ea}aeA 

such that Es(p) = f(p) on K. Furthermore the economy £ has no pathological 
features. 

That is, the individual characteristics (-<a, ea) satisfy the assumptions that are 
traditionally made in microeconomics (one can even assume that all preferences 
^ are identical and that endowments ea are collinear). For details see, e.g., the 
survey paper by Schäfer and Sonnenschein [16] and the references given there, 
in particular, [17, 4]. 

If one believes (not all economists share this belief!) that a good mathemat
ical model of an economy should have at least one stable equilibrium or even 
stronger, should have a unique and stable equilibrium, then the above theorem 
shows that the model £ considered up to now is quite unsatisfactory or, at least, 
is incomplete. On the other hand, one knows very well the mathematical condi
tions on the excess demand function Es that lead to a unique or stable solution 
of E(p) = 0. But which economically meaningful and empirically supported 
hypothesis leads to these mathematical conditions? It is not the lack of math
ematical theory but the unsatisfactory or incomplete economic modelling that 
creates the problem. 

Here are two relevant mathematical results. 
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(I) An economy £ is called regular if the excess demand function £ is contin
uously differentiable and if the rank of the Jacobian matrix dEs (p) is equal to 
Z - 1 for every equilibrium price p E Us • 

INDEX THEOREM. For a regular economy £ the set Us of equilibrium prices 
is nonempty, and finite, furthermore 

^ J index(p) = 1. 
pelle 

The index of p is +1 (resp. - 1) if 

-dE(p) p 
-pT 0 

Det is positive (resp. negative). 

The concept of a regular exchange economy is due to Debreu [3], who proved 
the finiteness of II^. The index result is due to E. Dierker [6]. Extensions to 
economies with production have been given by Mas-Colell [14] and Kehoe [11]. 
For definitions and a detailed treatment of the index theorem see [15]. 

(II) WALRAS- STABILITY THEOREM. The equilibrium p* EUS of an econ
omy £ with a continuously differentiable excess demand function is Walras stable 
(i.e., nearby solutions of p — E(p) approach p* exponentially fast) if all eigen
values of dE(p*) : Hp* —• Hp*, where Hp* := {x E R* : p* • x — 0} have negative 
real parts. (See, e.g., [10, Chapter 9].) 

As a consequence of these two theorems one can easily show that a regular 
economy £ has a unique and stable equilibrium if for every p E Us the Jacobian 
matrix dE(p) is negative definite on a hyperplane, i.e., there is a vector z E R+ 
such that the quadratic form v • dE(p)v < 0 for every v ^ 0 and v • z = 0. 

For example, this condition is satisfied if the excess demand function E(p) 
satisfies the assumption of "gross-substitution" (i.e., all off-diagonal elements of 
dE(p) are positive). Yet we shall see later that in an economy with production 
"gross-substitution" is not a satisfactory assumption. 

There are of course alternative assumptions on the excess demand function 
that would allow one of the above theorems to be applied. For example, if the 
Jacobian matrix (after deleting the j th row and column) has a negative dominant 
diagonal then all eigenvalues have negative real parts. 

Thus we know the mathematical conditions for an excess demand function that 
imply that the economy has a unique and stable equilibrium, but we know also 
that these conditions_do_not_follow_from general,assumptions_on_the-indb^iduaL_ 
primitive concepts which define the economy. Even if we were willing to make 
strong ad hoc assumptions on individual preferences (e.g., Cobb-Douglas utili
ties) in an economy with production we still cannot derive the desired properties 
oîdE(p) [12]. 

In the remainder of this paper we want to discuss the circumstances under 
which one might expect that the Jacobian matrix dE(p) is negative definite on 
a hyperplane (or has this property at least "approximately"). 
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Excess demand is defined as the difference between demand and supply. If 
supply rj(p) is derived by profit maximization, then one can easily verify the 
following inequality: 

(p-q)- (ri(p) - r}(q)) > 0 for every p,qERl. 

Thus if we are in a situation where supply is given by a differentiable function, 
then it follows that the Jacobian matrix dr}(p) is positive semidefinite. One can 
easily show that there is, in general, no uniform sign pattern for the off-diagonal 
elements. Thus if, in general, the Jacobian matrix dE(p) is not negative definite 
on a hyperplane, then all difficulties must come from the demand sector of the 
economy. 

Let us define the demand sector of an economy by a mean demand function 

F(p) = j f(p,b)p(p,b)db, 

where f(p, b) denotes the mean demand at the price vector p of all households 
with income 6; f(p, •) is called an Engel function, and p(p, •) denotes the density 
of the income distribution (thus, we assume that we have a "large" consumption 
sector). Then we obtain 

where 

dE(p) = S(p)-A(p) + D(p), 

S-A=(Jp(p,.)dp.fi(p,.)y , 

D=(jfi(p,-)dp.p(P,-)y, 

A={^Jfj(p,b)dbn(p,b)p(p,b)dby . 

We shall now discuss the properties of the matrices A and D? The matrix 
S, the Slutzky substitution matrix of the Engel function, is known to be nega
tive semidefinite if (and only if) the Engel function satisfies the weak axiom of 
revealed preference [13]. 

The matrix D. If the Engel functions fh(Pr) a r e increasing, then one can 
show that the matrix D is positive (thus has a dominant positive eigenvalue). 
Otherwise it can have any structure; this depends on the distribution of private 
ownership in the economy. Thus the best we can hope is that the matrix D has 
a very low rank. Consequently, we have to make an assumption that specifies 
how prices influence the income distribution. This influence must be small. 
For example, let B(p) = Jbp(p,b)db denote the mean income at price p. If 
the influence of the prices comes only through the mean income, i.e., p(p, •) = 
p(B(p), •) for some density p, then we would obtain that the rank of D is equal 

2 For more details see [9]. 
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to 1. In general, the matrix D can be of full rank or, as in the above example, of 
rank 1. Whether prices influence the income distribution very strongly or not is 
an empirical question. Figures 2 and 3 show the evolution (from 1969 to 1981) 
of the normalized income distributions for the United Kingdom. Figure 2 shows 
a lognormal and Figure 3 a nonparametric (kernel) estimation. The densities 
are surprisingly stable over time. 

The matrix A. The following lemma shows that the form of the income dis
tribution p(p, •) plays an important role. 

LEMMA (HILDENBRAND [8]). If the density p(p,-) is decreasing on (0,ß) 
and if f(p,0) = 0, then the matrix A is positive (semi) definite. 

This mathematical result is empirically not very relevant. We have seen in 
Figures 2 and 3 that income densities are not decreasing; in this case the form 
of the Engel functions come into play. These can be estimated from house
hold income-expenditure data (see Figures 4 and 5). Thus the matrix A can 
be estimated and one can compute the eigenvalues of the symmetrized matrix. 
Calculations have shown that the matrix A has typically a few positive eigenval
ues and all other eigenvalues are very small (compared with the largest positive 
one), but some are negative. 

If one assumes that all Engel curves are of a certain functional form, then 
the question of positive definiteness of A reduces to a condition on the income 
density alone. For example, if all Engel functions are polynomial of degree n, 

fh(p>b) = a1b + --- + anb
n, 

then the matrix A is positive definite if the matrix ((% + j)mi+j-i)ij is posi
tive definite, where rrik = Jbkp(p, b) db denotes the fcth moment of p. Since the 
moments of the income distribution can easily be estimated, one can check the 
positive definiteness of the matrix A provided Engel curves can be well approx
imated by polynomials of relatively low degree. For example, for n < 5, the 
matrix of moments of the densities in Figures 2 and 3 turned out to be positive 
definite. If one assumes in addition that the income distribution is of a lognor-
mal type, then the matrix ((i + j)mi+j-i)ij is positive definite provided the 
variance of the normalized income distribution is large enough. For example if 
n = 4 then the variance of the normalized income distribution must be larger 
than 0.35; the estimated variance during the years 1969 to 1981 is always larger 

l h a n Ö74. 

Thus it turns out that the two matrices A and D, which, in principle, can be 
quite arbitrary, tend to be positive definite or of rank 1 provided one is willing to 
accept certain assumptions on the income distribution; after normalization the 
income distribution should not be too sensitive to price changes and it must have 
sufficient variance. Both requirements seem to be well supported by empirical 
evidence. 
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NETINCOME DENSITY IN SPACE VIEW 
LOGNORMAL FIT. YEAR - BD TO BI BY S 

FIGURE 2 

NETINCOME DENSITY IN SPACE VIEW 
BANDWIDTH - 0.2. YEAR - 1UBB TO 1BB1 BY 2 

FIGURE 3 
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FOOD ENGEL CURVE 
KERNEL ESTIMATOR + UNIFORM CONFIDENCE BAND 

NETINCOME 

FIGURE 4 

AL CO HOL+TORA CCO ENGEL CUR VE 
KERNEL ESTIMATOR+UNIFORM CONFIDENCE BAND 

FIGURE 5 
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Repeated Games 
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A. Origins and motivation of the problem 

Interest by economists in repeated games was originally motivated by the 
theme that repetition enables cooperation (e.g., [18]). This theme is of fun
damental importance in economics, far exceeding its obvious implications, e.g. 
to industrial organization and antitrust policy. For example, in the prisoner's 
dilemma 

2,2 0,3 
3,0 1,1 c 

players 1 and 2 simultaneously choose resp. a row and a column; the first (resp. 
second) number represents the resulting payoff to 1 (resp. 2). 

The only rational outcome in noncooperative play ("Nash equilibrium point": 
given the other players' recommended strategies, no player has an advantage 
to deviate from the strategy recommended to himself) of the one-shot game is 
(1,1). But in repeated play, they can achieve the cooperative outcome (2,2) 
in equilibrium—for instance, by playing any mutually agreed sequence of moves 
leading to that payoff in the long-run average, while threatening each other to 
revert forever to the second strategy as soon as a deviation of the opponent is 
observed. 

The above argument is perfectly general and constitutes the proof of the 
so-called "folk-theorem" : every feasible and individually rational payoff of the 
one-shot game is achievable as an equilibrium of the repeated game (and vice 
versa; "individually rational" means that each player gets at least his minmax 
value—minimizing over the strategies of his opponents the maximum payoff he 
can achieve against them; the feasible vectors are those in the convex hull of the 
payoff vectors appearing in the normal form). 

This interest had been preceded by the study by game theorists of a number 
of early examples—often with no explicit economic motivation, but sometimes 
a military paradigm. Those examples were all two-player zero-sum games (only 
two players, and for every pair of strategy choices the sum of their payoffs is 
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zero; typically, in such a case one writes only the payoff of player 1, which is 
then paid by player 2). Such contributions include, for instance, [28, 29, 44, 45, 
48, 85, 108, 110]. Besides the development of a number of beautiful and most 
interesting techniques two important discoveries were made in this period. The 
first was that, for most realistic applications, current actions influence not only 
the current payoff, but also state variables of the problem—hence the definition 
of stochastic games: current state and actions jointly determine both a current 
payoff vector and a probability distribution to select the next state; players are 
fully informed of current state and past actions. The other was that the slightest 
alteration in this information pattern—even just some information lag—causes 
tremendous difficulties for the analysis. 

Another area of concern was that some types of information may never be
come available to the players. The theory postulates that all players know the 
full description of the game—and this description includes the payoff function 
of all his opponents, i.e., in fact their utility function, their preferences. In a 
great many cases, this and other knowledge about the individual players' char
acteristics and strategic possibilities are not available to their opponents, who 
must therefore act according to some personal beliefs, prior distributions over 
those data. These beliefs themselves may be only imperfectly known to their 
opponents, and so on J. Harsanyi [46] showed how to cut through this knot 
of difficulties, which until then could not even be modeled, and how to describe 
such situations nevertheless as a proper game. In this model, each player can 
be of several possible types, known to him but unknown to his opponents. For 
each vector of types—one for each player—a payoff matrix (more generally, a 
game) is given. The game starts by a lottery selecting a state of nature (vec
tor of types), after which the players play the resulting game, each one being 
informed only of his own type. Here the full description of the game, including 
the probabilities of the lottery, is common knowledge to all players. This is the 
model for games with incomplete information. This model had a tremendous 
impact, and now pervades almost all areas of economic theory, from finance to 
industrial organization and to labor economics. For instance, in the insurance 
literature the fact that the insurer is typically less informed than his client about 
the degree of risk involved in a specific contract is known as the adverse selection 
phenomenon: it has for effect that the insurer has to charge a premium based 
on the average degree of risk in his pool. Hence the better risks in the pool will 
find it worthwhile to forego insurance, so the quality of the pool will decrease 
and the premium increase—until in the limit only the worst risks will remain: 
good prospects cannot be insured. Similarly in markets where the seller has 
more information than the buyer on the quality of the product—say the used-
car market—the above phenomenon will cause a collapse of the market, and that 
only the worst qualities are traded (Akerlof). Similar analysis can be made in 
the credit markets. 

Assume prospective employees can be of several different quality types, undis-
tinguishable by the employer. Assume even that university education was 
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perfectly useless, but was much more painful to get through for low-quality 
students than for high-quality students. Then in labor market equilibria, peo
ple with a university degree would get higher wages—the duration of college 
would be just sufficiently long for the wage differential to make it worthwhile 
for high-quality students to suffer the pain of getting through college and not 
for low-quality students: a huge investment in this perfectly useless education 
is made by all high-quality youngsters, just in order to signal their quality to 
prospective employers (Spence). Such signalling equilibria of games with incom
plete information have generated a vast literature on their own in many areas of 
economic theory. 

When the game which is selected is itself repeated (without the initial lottery 
being repeated), one speaks of repeated games with incomplete information. 
Such models arise quite naturally, not only from the desire to extend the theme 
that repetition enables cooperation to the more realistic incomplete information 
setup, but also from the situations themselves that incomplete information mod
els are meant to analyze. For example, insurance contracts are often long-time 
affairs, where the performance can be monitored year after year, and the contract 
adjusted accordingly (cf. also [107]); the same is often true for credit relation
ships and certainly for employer-employee (or more generally principal-agent: 
client-portfolio manager, client-lawyer, firm-subcontractor, etc.) relationships: 
in all those cases, the repetitive aspect is in fact essential. E.g., Milgrom and 
Roberts have shown that advertising by the subcontractor as a signal of his qual
ity could be explained by the larger number of stages a profitable relationship 
would last for a high-quality subcontractor, thus making the investment more 
worthwhile for him. 

Yet the original work on repeated games with incomplete information was in 
fact motivated by still another application field, and was done under contract 
with the U.S. Arms Control and Disarmament Agency [12, 13, 14, 15, 123]. 

More generally, repeated games with incomplete information may in some 
sense be considered as the proper approach to statistics for social science: when 
playing against an opponent instead of against nature, and trying to make infer
ences about his type from his actions, one cannot assume that, given the state of 
nature (his type), his actions are generated mechanically by some given stochas
tic process: the role of his preferences has to be recognized, and that he may 
be trying to mislead you—to bluff, or to signal something, or to outguess you, 
reasoning about your own rationality Clearly, an explicit game-theoretic 
treatment is required; and those are exactly the questions addressed in repeated 
Ipunes^witìTìnco^ 
problems like quality control. 

We did not specify, when defining repeated games with incomplete informa
tion, what additional information the players receive after each stage of the 
game—which is necessary for a full description of the game. This can be done 
formally by specifying, for each state of nature and all strategy choices, in ad
dition to the payoff vector a lottery (probability distribution) selecting a vector 
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of signals—one to each player. More generally, the same joint lottery would 
select for each player both a payoff and a signal. (The lottery represents the 
compound effect of all moves of nature in the extensive form [57] from which the 
normal form is derived, and the signals arise from a new datum, the information 
partition on the terminal nodes of this extensive form.) Care has to be taken 
that only the signal, and not the payoff, is told to each player. An argument is 
sometimes made that, on first principles, a player knows at least his own cur
rent utility: "everybody knows how happy he feels." The utility meant in this 
argument certainly has to be the random payoff generated by the above lottery, 
i.e., the actual payoff written at the terminal node of the tree, and not the nor
mal form payoff, which represents an average of such terminal payoffs over all 
possible moves of nature, given the strategy choice of all players: indeed, for 
all but the one move of nature that in fact materialized, the player won't have 
observed the actions of his opponents, and so will have no clue as to what their 
strategy implied in those cases. But even with this interpretation the argument 
does not hold water: the payoff that has to be written at a terminal node of a 
game tree is the Von Neumann-Morgenstern utility of that event occurring, and 
therefore does not represent at all "how happy the player feels" at that stage, 
but rather how happy he would feel if he was now further informed that exactly 
this terminal node has occurred. The way the player feels in fact depends also 
on his guesses about what other players have done, i.e., on his analysis of the 
game finally. To give a somewhat grim example, in the day-after-day bargaining 
by a father over the release and ransom of a kidnapped child, the father's utility 
for a given day (stage) most certainly depends on how his child is treated that 
day, even if he does not know it immediately—and in fact he may never know 
how badly the child was treated if it is later found murdered: it is not merely a 
matter of lag of information, but of lack of information. 

The same is true in purely economic situations. Consider, for example, a 
principal-agent relationship (employer-employee, or firm-subcontractor), where 
the agent's role is to clean the premises every day. Definitely the principal's 
objective function—his payoff—is a function of the actual degree of cleanness 
of the premises that day. Yet he will not inspect them completely every day— 
at best, he may occasionally decide to do some quality-control sampling, which 
would give him statistical information about his utility, but even this is part of his 
decision problem, of his strategic behavior in the principal-agent game. Claiming 
utilities (i.e., essentially the actual outcomes) to be known is essentially negating 
the whole quality-control problem, which is an essential part of most principal-
agent relationships—if not the single most important, judging from the size of 
the literature and of the budgets devoted to this, as compared with those related 
to the actual contracting part of the relationship. 

It is however probably true that, in several situations of economic interest, 
the assumption that players know their own random utility is well justified—and 
sometimes extremely useful as shown for instance in the recent work of E. Lehrer 
[59]. 
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This brings us to our last main theme: imperfect monitoring. In most early 
work, like in our above proof of the "folk-theorem," it is assumed that the pure 
strategy choices of all players—or at least their extensive form actions—become 
known to everybody after each stage. When this is not assumed, and instead 
the more general model we just described is used, one speaks of "imperfect 
monitoring." Typically, even the actions are unobservable: they are the effort-
level of an employee, the number of man-hours and other resources devoted by 
a portfolio manager to your portfolio, etc. A number of important applications 
can be found, e.g., in the work of R. Radner and of Rubinstein and Yaari. 

Let us finally observe that, in many of the above-described situations, there 
are in fact also state variables which are essential to the problem and may change 
during the course of the game according to the players' actions—i.e., there is a 
stochastic game aspect. For instance, in the client-portfolio manager relation
ship, the current value of the portfolio is the essential variable; it is clearly 
strongly affected by the players' past actions, and completely determines the 
future possibilities: it is best considered as a state variable. One might observe 
that, at least in this case, a minimal simplification is obtained in that regular 
statements make the state variable monitorable—but this leads us again to the 
problem of information lags, which are of crucial importance in this business. 
In the hostage story, life or death of the hostage is an obvious state variable. 
In tactical duels, like the bomber-battleship problem [28], the current position 
of the antagonists is one, while in the disarmament negotiations story, current 
military capabilities of the parties, what secret research programs they may have 
under way in their military labs, and what successes were booked by such pro
grams clearly also constitute state variables. In credit markets, current financial 
position of the debtor is one, etc. 

To integrate such effects into our previous model, it is sufficient to let the same 
state- and action-dependent lottery that selects signals and payoffs after every 
stage also select the next state of nature. If one wants in addition to incorporate 
the effect of information lags, the lottey should be allowed to depend also on 
past events (states, actions, signals, payoffs). This becomes apparently a pretty 
monstruous model; we will see later however (in §C.l) that it admits a very 
simple "normal form." 

Note however that, at this stage, we have a perfectly general model for "sta
tionary games" (i.e., with a description invariant under time shifts). Imagine, for 
example, that the games in the different states of nature were in fact extensive 
games, whose duration was a different number of physical periods according to 
thè^patl^aM I v h ^ completion a variable" 
number of periods before entering the next game. It would be sufficient, in or
der to model this, that the payoffs and new state selected by the lottery contain 
qualifications as to how many periods the payoff has to be delayed and how many 
periods afterwards the new game is delayed: then introduce payoff vectors and 
states with such qualifications as a new set of states of nature, where the coun
ters are decreased by one for every period until they reach zero. At periods with 
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no payoff a zero payoff is given. Alternatively, if the extensive game has perfect 
recall [57], all positions of the extensive form (including the waiting positions) 
could be introduced as new states of nature. Thus our only restriction on our 
games is that players have some concept of physical time, of day and night— 
formally, we consider "multistage games" [37] (and our overall game is a general 
model for stationary multistage games). This is not a harmful restriction, and 
is inherent in the very concept of stationarity, and the fact that we are going to 
average utilities over time, or discount them. 

To be completely explicit about the information structure of our games, we 
still have to specify that players remember all information they have received 
in the past, and to recall that it is immaterial whether one assumes or not that 
players remember in addition their own past actions or pure strategy choices 
[25]—so no assumption about this is necessary. 

Let us also state explicitly here that we will systematically stick to the basic 
finiteness assumption, that all sets considered (set of states, set of players, action 
sets, sets of signals) are finite. All aforementioned problems, which are problems 
of substance, arise already in this case; when occasionally a continuous variable 
may seem natural, a discretization is conceptually harmless, and may in fact add 
to realism. It is therefore useless to complicate them further by mere technical 
generalizations. When occasionally we consider a continuous model, it will be 
stated explicitly, and will always be as a tool for the study of the above finite 
models. 

As payoff function for the infinite game we will consider the Cesaro limit of 
the payoffs ut in each stage t. Obviously this payoff need not be defined for 
every possible history (thus the overall game is technically speaking not a well-
defined game), so care will have to be taken in the precise definitions of solutions, 
and one will have to show that they exist, are well defined, and depend on no 
further specification of the payoff function. Care will also have to be taken in 
those definitions to reflect the fact that we want this model also to serve for 
the study of long finite games (i.e., with payoff function UT = (1/T) Y2t=i ut 
for fixed, large T) and for the study of discounted games with small discount 
factor A [i.e., with payoff function u\ = A Y^oO- ~ ^Yut]- Note that the infinite 
game model is sufficiently flexible to include the finite games and the discounted 
games: for the discounted games, introduce for every payoff vector appearing 
in the description of the game a new, absorbing state where this payoff is paid 
forever, and replace every lottery by a new lottery that, in a first stage does the 
same as the old lottery, but in a second stage moves with probability A instead to 
the absorbing state that corresponds to the payoff selected. (Different discount 
rates for each player could be similarly accommodated). For the finite games, the 
same thing can be done after having first replaced the old state by its product 
with {1,2,..., T}, using a ^-dependent A = A* = 1/(T - t + 1). 

Besides this flexibility, the reason for sticking with the Cesaro limits is that 
this payoff function preserves the stationary (shift-invariant) character of the 
game—one could think of other stationary functions of history, but additively 
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separable utility is by far best understood, and seems the only interesting one in 
the applications. 

As for solution concepts, in the two-person zero-sum case, an unambiguous 
solution is provided by the Von Neumann minimax value, together with a corre
sponding pair of optimal or of e-optimal strategies. (A pure strategy of a player 
is a function telling him what action to take in every possible occurrence, as a 
function of all information available to him at that stage; the pure strategy set 
of a player in our games is a product of finite sets, and a (mixed) strategy is a 
probability distribution over this set—the player chooses secretly one of his pure 
strategies at random; it can equivalently be viewed [57] as a function specifying, 
for each possible occurrence, a probability distribution over the actions of that 
player at that occurrence, as a function of all information then available to him. 
In general, in the two-person zero-sum case, we will denote strategies of player 
1 and player 2 respectively by letters a and r.) 

One says then that v is the sup inf of the game (and that a£ is an e-optimal 
strategy of player 1) iff 

Ve > 0, 3a£, 3T0 : Vr, VT > T0 Ea9fT(uT) >v-e 

and 

Ve > 0, Va, 3r, 3T0 :VT>T0 EŒiT(uT) < v + e. 

(EatT denotes the expectation under the probability distribution induced by a 
and r.) One defines similarly the inf sup v and e-optimal strategies T£ of player 
2. Whenever possible, as for instance for stochastic games, one also requires the 
above inequalities for T = oo: 

Ea£iT (liminf U T ) >v — e and resp. EatT ( lim sup UT ) < v + e. 

A strategy is called optimal if it is e-optimal for all e. When v = v, this is called 
the value. Observe that such definitions are indeed independent of any further 
specification of the payoff function; on the other hand, with such definitions, 
even the existence of v and v has to be established. The definitions are set up so 
as to provide insight in the solution of long finite games and of the discounted 
games with small discount factor: an easy abelian argument shows that, for 
A < Ao with some Ao depending only on To and the maximum payoff appearing 
in the games, the u\ will satisfy the same two inequalities as the UT', hence a£ 

guarantees^ aT)ayöf f^^ r tn~^ 
with sufficiently small discount factor, and in each case v is the best that can 
be achieved in this way with strategies that do not depend on the exact value of 
the discount factor or of the duration of the game. 

Another reason for the specific interest in v and v, even when they are dif
ferent, is the following. We certainly study the two-person zero-sum case for 
its own sake, not only because many interesting applications already can be 
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modeled appropriately in this framework, but also because the minmax theorem 
provides us here with clear, uncontestable solution concepts, which are further 
much more tractable than in the nonzero-sum case: it is a laboratory case to 
study the pure phenomena of information usage, unencumbered by considera
tions of threats, cooperation, etc. But another major reason stems from interest 
in nonzero-sum games: not only is the zero-sum case a particular case to be well 
understood before being able to tackle the general case, it is also a basic tool 
in the analysis of the general case. This can already be seen from our above 
proof of the "folk-theorem," where the set of equilibrium points of the repeated 
game is described by means of the players' individually rational levels, i.e., the 
value of the zero-sum game where the player plays against his set of opponents 
considered as a single player that tries to minimize his payoff. Given the theme 
that repetition enables cooperation, one may be interested in other cooperative 
solution concepts too ([7], cf. also [69]). But they too are described in terms of 
the characteristic function, i.e., finally of the values of the zero-sum games where 
one set of players plays against the complementary set, with payoff the sum of 
the payoffs over the set minus the sum of the payoffs of the other players (as a 
function of appropriate weight factors assigned to each player's utility). 

Now, for such application, it is v which is important—even when not equal 
to v. This can already be seen in our above proof of the "folk-theorem," with at 
least 3 players—although there the zero-sum games considered are not standard, 
because one of the players is not allowed to mix his strategies. Examples with two 
persons, where the corresponding zero-sum games are standard and fall into our 
model, can be found in F. Forges's characterization [36] of a class of correlated 
equilibria (see below) for repeated games with incomplete information on one 
side. (It cannot be seen in S. Hart's characterization [47] of Nash equilibria for 
the same model, because there the corresponding zero-sum games had v = v.) 

Remark that this use of zero-sum games, where one player's payoff is in fact 
minus the payoff of his opponent in the true, nonzero-sum game, is an additional 
reason for not assuming that each player knows his own payoff—certainly in the 
zero-sum case. 

When the game has a value v (v = v),we have seen that the definitions imply 
that the values VT of the finite games and v\ of the discounted games—which 
always exist by the standard minmax theorem—converge to v when T —• oo 
and A —• 0; and that therefore e-optimal strategies are also e-optimal in any 
sufficiently long finite game and in any discounted game with sufficiently small 
discount factor. 

But when v < v, another object of interest is the limit VQO of VT when T —> oo 
and of vx when A —• 0 (those limits exist and are the same in all cases analyzed 
up to now). And one would like to know relatively simple sequences of strategies 
UT and <j\ which are asymptotically optimal (or asymptotically e-optimal). Until 
now, in no case of significant generality are such sequences known. 

In the nonzero-sum case, attention focuses basically on Nash equilibria— 
previously defined—and on correlated equilibria—introduced in [8]. Although 
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correlated equilibria are an even larger set than the Nash equilibria, they are in 
some sense conceptually more appealing [10] and are mathematically better be
haved and more tractable (defined by finitely many linear inequalities instead of 
via Brouwer's fixed point theorem). Further, they and their extensive form rela
tives [37] seem ideally suited to an incomplete information environment, because 
of the interplay made possible between the players' initial information from the 
game and the correlated information they obtain during preplay communication 
on each other from the correlated equilibrium. 

But those concepts are subject to some criticism, and several refinements have 
been proposed [e.g., for Nash equilibria, Selten [109], with a later variant by 
Kreps and Wilson [56], which were sharply criticized in [52], where still another 
"improvement" is proposed]. 

Many further complications and distinctions arise because we consider infinite 
games, even more than in the zero-sum case. For example, one could consider 
the Nash equilibrium payoffs, or the payoffs which are for any e > 0, e-close to e-
equilibrium payoffs. In the zero-sum case, both coincide with the value whenever 
they exist—although in many cases (stochastic games, e.g.) the former may be 
empty while the latter still define the value. In general both could be nonempty 
and still different, and it might not be clear which one—if any—is the proper 
generalization of the value. 

In the meantime, waiting for the conceptual dust to settle concerning finite 
nonzero-sum games, it seems best to limit efforts in the nonzero-sum case, as 
has been done until now, to those situations where, in the zero-sum case, there 
exists both a value and optimal strategies—i.e., essentially repeated games with 
incomplete information on one side, but including imperfect monitoring (and 
maybe information lags). Concentrating there on the infinite game extension of 
a couple of clear concepts for finite games, like correlated equilibria and their 
cousins and Nash equilibria, we may hope at the same time to clarify the above-
mentioned methodological difficulties. 

Finally, even in such cases, care has to be taken, in the definition of the 
concepts, since the payoff function is not everywhere defined. The approach 
used in the work of S. Hart [47] and of F. Forges [37] is the following: Fix a 
Branch limit £, and define the payoff vector for any pair of mixed strategies a 
and r as £,(EaiT{ÜT))m. this yields an everywhere well-defined game. Show that 
the set of Nash-equilibrium payoffs of this game does not depend on t, and that 
each of those payoffs can also be obtained by a fixed strategy pair (o,r), which 
is in equilibrium for every L. 

^This ^ ie ldOuTWämbi l f i^ 
infinite game. One proves in addition, like in the zero-sum case, some uniformity 
conditions on the convergence for this pair (o,r), to get e-equilibria in the finite 
and the discounted games (cf. [47]) for details) allowing thus an interpretation 
of the "folk theorem" as advocated, e.g., in [98]. 

The above explains why we will largely concentrate in the sequel, like also the 
literature up to how, on the zero-sum case. 
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This survey is strongly oriented towards a mathematical audience in its way 
of presenting things; for a complementary, differently colored survey, the reader 
is urged to consult [9]—despite its being some five years old. Also, the author's 
bias as an economist has completely influenced this exposition, and caused a 
total neglect of other domains of application, like biology and ecology, where 
players become genes or species, and where apparently those models find more 
and more use. For such questions, I am incompetent, and the reader should 
consult Maynard Smith or R. Selten. Finally, since I have been asked to give 
this lecture under the framework of "Applications of mathematics in nonphysical 
sciences," I have deliberately omitted even touching the fast-growing literature 
concerning the applications of repeated games to mathematics itself—to logic, to 
topology, etc.—despite indications (hinted at in §C3) of an increasing interplay 
between those methods and the problems here described. 

B. A quick (and incomplete) guide to the literature 

1. Single state of nature (and no initial information). Here the original 
name for the repeated game is "supergame," which we will retain because of 
its more specific meaning than "repeated game," which is currently used for 
almost any model falling under the general format of §C, and will accordingly 
be reserved for that general model. (I would have liked to use something like 
"Markov Games" if the name was not preempted.) 

(a) In the JV-person case, the theme that "repetition enables cooperation" 
prompted the question whether other solution concepts of the game, more co
operative than the full individually rational set, could be "justified" as the set 
of "equilibria" of some other type in the supergame. This was answered in the 
affirmative by Aumann [3,5], who showed that the /3-core of the game equals the 
set of strong equilibrium payoffs of the supergame. A nice survey and summary 
of this literature is contained in [7]. This core is the set of feasible payoff vectors 
such that every coalition can prevent the opposing coalition from improving the 
situation of all its members. A strong equilibrium point is a strategy vector, 
such that no coalition could improve the situation of all its members by devi
ating. The usual definition of the (/?-) characteristic function, as required by 
cooperative theory, involves however correlated strategies by coalitions. With 
such a definition, the above theorem would no longer be valid in general for the 
corresponding core. It remains valid however, when the single stage game is a 
cooperative game [Aumann, loc. cit.], and when it is a game with pefect infor
mation [4]—since in this case, the required correlated strategies become pure, 
being minmax strategies (Zermelo). 

This /^-characteristic function coincides in fact both with the a- and the ß-
characteristic function of the supergame [69]; this implies much more than the 
inclusion of strong equilibrium points in the /?-core—and has similar reinterpre-
tations in the case of cooperative games or of games with perfect information. 
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E.g., it implies also that with the usual definition, the /3-core equals the set of 
strong correlated equilibria of the supergame (if the payoff does not belong, the 
deviating coalition can ignore everything learned from the correlation device and 
play a pure strategy, using at every stage of the approachability strategy a best 
reply instead of an optimal strategy; the argument highlights an unpleasant fea
ture of strong equilibria (Bernheim, Peleg, and Whinston), i.e., that members of 
a deviating coalition in the limit may have to deviate just in those cases where, 
given current information, deviation causes them a loss): the relationship with 
the "right" cooperative concept is obtained with correlated equilibria (just as in 
the case of the "folk theorem")—in this respect too, correlated equilibria seem 
better than Nash equilibria. 

All the above is under assumptions of perfect monitoring, and essential use 
is made of Blackwell's minmax theorem for vector payoffs [23], like in several 
other applications below. 

(b) Still under perfect monitoring, improvements in the folk theorem were 
sought in the following directions: 

• The proof involves punishing a deviator forever—which may no longer be 
optimal for the punishers once the deviation has occurred. A concept of "per
fect equilibrium point" would not have this defect. Aumann and Shapley [16] 
and Rubinstein [102] have shown that the folk theorem still holds with perfect 
equilibrium points, and Rubinstein [104] similarly perfected Aumann's /?-core 
theorem (see above) (essentially the assumption of observability of mixed strate
gies can apparently be fixed). 

• To interpret the supergame as a model for long finite games or for discounted 
games with small discount factors, one would like the set of equilibrium payoffs of 
those games to converge (Hausdorff) to that of the supergame. Those results are 
however false. For discounted games, convergence can be proved for a generic 
class of games [119]; an exception was constructed by Forges, Mertens, and 
Neyman [40]. For the finite games, convergence appears not to hold typically, 
e.g., in the finitely repeated prisoners' dilemma (see above), (1,1) is still the only 
equilibrium payoff (some care is needed: backwards induction does not hold and 
dominance is not sufficient—but a proof follows from [119]). This last paper 
contains much additional information related to this topic. In particular, it 
shows that what is essential for the prisoners' dilemma analysis to hold is that 
the single stage game has a single equilibrium payoff which is also the minmax 
point. Benoît and Krishna [19] show that, on the contrary, if for each player 
there exists a (perfect) equilibrium in the 13-stage game giving him more than 
his individually rational payoff, then the Hausdorff convergence of the (perfect) 
equilibrium payoff set in finite games to that of the infinite game does hold (under 
generic conditions). The idea is essentially to alternate sufficiently many times 
at the end of the finite game between the assumed equilibria for each player: 
in this way, each player accumulates at the end of the game a sufficiently high 
payoff in excess of his minmax payoff such that the threat of losing it is sufficient 
to scare him away from deviating in earlier stages. 
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• Even in the prisoners' dilemma case, Kreps, Milgrom, Roberts, and Wilson 
[54] showed that if one player assigned some e-prior probability to his opponent 
being an automaton that plays the " 'tit-for-tat' " strategy (play cooperative at 
the first stage, next always the same as your opponent at the previous stage), 
then perfect equilibrium payoffs of the JV-times repeated game would converge 
to the cooperative payoff (2,2). This is a beautiful result, implying in some sense 
that not only does repetition enable cooperation, it even forces it in equilibrium. 
(In fact, this e-probability would seem largely justified in view of Axelrod's 
experiments [18].) 

The high expectations generated by this result were however soon quelled to 
some extent by a result of Fudenberg and Maskin [43], which showed that the 
above was due to the very specific nature of the automaton, rather than to the 
idea of "e-incomplete information" : they showed under generic conditions that if 
for each player some ^-probability is assigned to him by his opponents having a 
different payoff function, then perfect equilibrium payoffs of the finitely repeated 
games and of the discounted games would converge to a set, which, by varying 
those different payoff functions, would cover the whole feasible and individually 
rational set—thus restoring "the folk-theorem." 

• But the K-M-R-W result provided another important insight—the repu
tation effect. By acting only a couple of times like the automaton, instead of 
as prescribed by different hypothesized equilibrium strategies, the player very 
quickly would "build up a reputation for being the " 'tit-for-tat' player"—and 
increase the prior probability of e assigned by his opponent to this event to a very 
substantial posterior. This idea, of the importance of building a reputation even 
when the prior probability is very small (as related to the previously mentioned 
signalling idea of Spence) was shown to be very significant in a wide variety of 
situations (e.g., [55, 84]). 

• Finally, Aumann and Sorin [17] recently succeeded in getting some results 
indicating that the conclusion that repetition leads to cooperation might be 
saved from the Fudenberg-Maskin objection: in games with a Pareto-dominant 
outcome, if one puts a small positive probability on all possible automata, pure 
strategy equilibria of the repeated game will lead to the Pareto-dominant out
come. 

(c) Imperfect monitoring. R. Radner [95, 96, 97], Radner, Myerson, and 
Maskin [100], and Rubinstein and Yaari [107] studied a number of important 
problems of this nature. Abreu, Pearce, and Stachetti [2] study the discounted 
game where all players receive the same signals, and each player's payoff de
pends only on the signal and his own action—under additional assumptions. 
Major progress was achieved when a characterization of the set of equilibrium 
payoffs of the supergame was obtained by E. Lehrer [59] in the two-person case, 
assuming in addition that each player knows his own payoffs: it is the individu
ally rational part of the convex hull of the payoffs to those strategy pairs in the 
one-shot game, where no player has (statistically) undetectable profitable devia
tions which increase (weakly) his information. The set includes in particular all 
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efficient points in the individually rational set, thus extending significantly the 
folk theorem. Substantial progress has been made in [60] towards removing the 
assumption that players know their own payoffs. 

2. Stochastic games. Milnor and Shapley [85] and Everett [29] present 
most interesting particular models of stochastic games, whose analysis is not yet 
subsumed by later more general results. The initial definition of stochastic games 
was given in [110], which assumed a positive stopping probability at each stage 
(i.e., like discounting) and proved the existence of a value. Gilette [44] introduced 
the general model with zero-stop probabilities, as currently accepted, and posed 
the question of existence of the value. Blackwell and Ferguson [24] proved this 
existence for a particular example—the "Big Match"—which would be basic for 
further developments. Kohlberg [49] extended this result to a whole class of 
games, and Bewley and Kohlberg [20] proved the convergence of the values of 
the discounted games and of the finitely repeated games. The existence of a 
value—in a very strong sense in addition—was proved by Mertens and Neyman 
[72], allowing further for general state and action sets, under conditions which 
are, by Bewley and Kohlberg [20], always satisfied for finite state and action 
sets. We comment later, in §C, a bit more precisely on those last two results. 

The method of [20] extends directly to the n-person case, yielding the exis
tence of stationary equilibria as an algebraic function of the discount factor— 
hence in particular convergent [70]. One might have hoped to use those limits, 
as in the zero-sum case, as candidates for an existence proof of equilibria in the 
infinite game. Such a hope was however destroyed in [120], which showed that, 
in a nonzero-sum variant of Blackwell and Ferguson's "Big Match" [24], the dis
counted and the finite games had only one equilibrium point (the threat point), 
far away in payoff space from the (limits of) ^-equilibrium payoffs of the infinite 
game (the Pareto surface). (This of course does not facilitate a "folk theorem" 
interpretation for stochastic games.) Still, the infinite game solutions are also 
^-equilibria in all sufficiently long finite games and all games with sufficiently 
low discount factor, and it is not clear at all in the example which of the two 
solutions is more appropriate for such games. 

In the discounted case (hence also in the finitely repeated case), existence 
(and a characterization) of equilibria was shown by Mertens and Parthasarathy 
[74] with general state and action sets. 

"~ ~~37~Rëpeatëd"gamerwitlrincomplëtê^nformad 
games where the initially chosen state of nature remains fixed forever, and in 
addition there are no information lags. 

In this domain, the historical papers are in the Mathematica series [63]. 
(a) Incomplete information on one side (zero sum). In particular, Aumann 

and Maschler [14] considered the zero-sum case "with incomplete information 
on one side," where player 1 is fully informed of the initial state of nature and 
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player 2 not at all. They proved the existence of a value and of optimal strategies, 
roughly with the following approach. 

For each initial probability p on the states of nature, define NR(p)—the set 
of nonrevealing strategies of player 1—as those behavioral strategies in the one-
shot game which, if used, would cause the posterior probability of player 2 to 
remain at p, whatever action he takes. Then define u(p) as the value of the one 
shot game A(p), where player 1 is restricted to strategies in NR(p) (u(p) = —oo 
if NR(p) = 0). Denote by v the smallest concave function on the simplex which 
majorizes u—the "concavification" of u, Cavu. 

Player 1 can easily guarantee himself u(p) in the repeated game V(p), by just 
repeating at every stage his optimal strategy in NR(p). A particular case of 
Lemma 4 in §C would show that whatever he can guarantee himself is concave 
in p\ hence player 1 can get v(p). The following argument is however more 
constructive: let v(p) = Yliaìu{Pi) with oti > 0, Y2ai = 1» Y^aìPì = !• Then 
there exists a type-dependent lottery for player 1 on the set of indices i such 
that, if used, the total probability of outcome i would be ai and the posterior 
probability of player 2, if informed of the outcome i, would be pi. Let player 
1 use this lottery; then play, if i, such as to get u(pì) in Y (pi). Even if player 
2 was informed of the outcome, player 1 would still guarantee himself by this 
"splitting strategy" ]TV <Xiu(pi) = v(p)—so a fortiori in T(p). 

Next, convergence of the values VT(P) of the T-stage games TT(p) to v(p) is 
established, bascially by a martingale argument on the sequence of posteriors pt 
of player 2: the martingale property implies that E(%2(Pt+i ~Pt)2) < 1—or any 
vector-variant. Hence, with high probability, pt+i is very close to pt for all but 
a bounded number of t. 

Let player 2 compute the p^'s, and play roughly in the following way: whenever 
Pt is far from the region R where u(p) > -oo, let him choose an action uniformly. 
Otherwise let him play with probability (1 — e) an optimal strategy in A(p), for 
some p G R close to pt, and with probability e a uniform strategy. 

Since whenver pt is far from R, player 2 playing a uniform strategy will cause 
on the average much information to be revealed, i.e., pt+1 far from pt, this will 
happen only a few times. The rest of the time, p^+i will most frequently be 
very close on the average to pt—say £2-close—which means, since player 2 plays 
with probability e a uniform strategy, that player 1 is playing close to NR(p) for 
some p G R close to pt. Hence, since player 2 is using with probability (1 — e) an 
optimal strategy in A(p), the expected payoff will approximately be smaller than 
u(p), hence than v(p), hence approximately smaller than v(pt). Since E(pt) = p, 
concavity implies that E(v(pt)) < v(p): thus player l's expected payoff will be 
(approximately) smaller than v(p). Hence v(p) is approximately the maxmin 
of TT(P)—our strategy for player 2 depends on player l's through the pt's— 
but since finite games have a value this implies (together with the previous 
result) the convergence of vn(p) to v(p). Now let player 2 play during 1 stage 
his optimal strategy in Ti(p), then forget everything and play for 2 stages his 
optimal strategy in T2(p), then again for Ts(p), and so on: he guarantees himself 
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a payoff of vn(p) in the nth block; the convergence of vn(p) to v(p) implies that 
he guarantees himself v(p) in T(p): this is his optimal strategy, and v(p) is the 
value of r(p)—hence the previously described strategy of 1 is optimal too. 

(Obviously, all difficulties in establishing the bounds and approximations have 
been glossed over here.) 

Assuming that in addition player 2's signals are player l's actions, Aumann 
and Maschler also exhibited a much simpler and easier optimal strategy for player 
2, based on BlackwelPs approachability strategy [23]. This was then extended 
in [49] to the full generality of the present model. 

N. Megiddo [65] showed that if we assume that player 2 is informed of his 
payoffs, then he has a strategy (independent of p) that guarantees him the value 
of the true game. He used a direct proof, but the result can also be deduced from 
the above Aumann-Maschler result: indeed, under that assumption one checks 
immediately that Cav u is linear. Since the amount guaranteed by a strategy of 
player 2 is a linear function of p, everywhere above Cav u, this implies that an 
optimal strategy at some interior p is optimal at all p—and guarantees the value 
of the true game. To get finally a strategy which works against all games, and 
not just a given finite set, enumerate the games with rational payoffs and play 
successively a sufficiently long time against each initial segment. Being optimal 
against all rational games, this strategy is optimal against any game. 

In the discounted case, Mayberry [64] exhibited an example where the value, 
as a function of p—which is necessarily concave by the splitting argument—was 
nondifferentiable on a dense set. 

(b) Incomplete information on two sides (zero sum). Stearns [123] showed 
that, as soon as there was incomplete information on both sides, the value ceased 
to exist in general. This is true even under the assumptions that players have 
each two types, which are chosen independently with probabilities p and q for 
players 1 and 2 respectively, and that they are just informed after each stage of 
each other's actions. 

The basic idea is as follows. If a player knows his opponent's strategy, it is 
better for him to wait, before revealing any information himself, until the other 
has revealed as much as possible—the finite amount of time lost in waiting has 
no influence on long term averages, and doing so will enable him to adjust what 
he reveals to what he learned about his opponent's type. But this turns the 
game into a game like "picking the largest integer," which has no value. 

In fact, this "waiting" strategy uses a somewhat similar martingale argument 
as above, and goes roughly as follows: fix a strategy of player 2. Player 1 maxi-

^i^sÎheëxpectë^^qiiadratîc varStîon~of his martingale of posteriors on player 
2's types (the "quantity of information" he gets) over all his own nonrevealing 
(i.e., here: independent of his own type) strategies. He uses this strategy until 
all information is almost exhausted—he has then a posterior qt over player 2's 
types, and knows that, whatever he does later, qt will no longer move very much. 
Hence at that stage, he is essentially in a situation where player 2's type has been 
selected with qt, but player 2 will play nojirevealingly—i.e., independently of his 



REPEATED GAMES 1543 

own type; but then the selection of the type of player 2 could as well be done at 
the end of the game: we are in a situation with incomplete information on one 
side. Hence player 1 can get (Cavpw)(p, qt) from that stage on, where u(p, q) is 
the value of the one-shot game where both players play nonrevealingly (i.e., inde
pendently of their type). (Cavp u denotes the concavification of u in p, similarly 
for Vexg.) This quantity is more than (Vex9 Cavp u)(p, qt), and since E(qt) = q 
the convexity implies that the expected payoff is > (Vexq Cavp u)(p, q). 

Since player 2 can clearly guarantee himself (Vex9 Cavp u)(p, q) (as seen above, 
the result on incomplete information on one side implies that, ignoring his own 
type, he can get (Cavp u)\ hence by the previously described "splitting strategy" 
he can also guarantee himself VexgCavpw); this implies that the minmax is 
(\exqCwpu)(p,q). Similarly, the maxmin is (CavpYexqu)(p,q), and the two 
are distinct in general—even when one player knows the true payoff matrix, as 
long as he has some uncertainty about the other's prior [122]. 

Due to space and time limitations, I will have to be much more sketchy about 
later developments, limiting myself to a couple of current state-of-the-art results, 
and without being able to even sketch the ideas of the proofs. An introduction 
to the subject can however be found in [113]. The above-described ideas are 
basic for almost all later work; nevertheless, for much of it, it would probably 
not be possible to give a fair idea of the proofs in a reasonable amount of space 
as above. 

(b.l) When the signals received by the players after each stage are independent 
of the state of nature, vn(p) and v\(p) nevertheless converge, in those games of 
"picking the largest integer," say to v(p). 

p denotes the initial distribution on the states of nature. Convex subsets Hi (p) 
of the simplex are defined as those points in the simplex where the conditional 
distributions of player 1 on the state of nature given his type are the same as at 
p. For a function / on the simplex, Cavi / denotes the smallest function larger 
or equal to / which is concave on each set ni(p). Permuting players, one defines 
similarly nn(p) and Vexn / . 

Nonrevealing strategies of player 1 are those strategies where, for every action 
of 2, the distribution of player 2's signals is the same in every state of nature. 
Similarly for player 2, and u(p) is defined as the value of the one-shot game where 
both players are restricted to nonrevealing strategies. Then v is characterized as 
the smallest solution of 

v > CavVexmaxfiLu) 
i II v ' ' 

or as the largest solution of 

v < Vex Cav min (u,v). 
" II i 

It satisfies in fact v = Cavj min(w, v) = Vexn max(w, v). 
Those results were established in [67] (the last part was truncated in the 

printing process and appeared in [68]) after a particular case was solved in [75]. 
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The set of "w-functions" is dense in the space of continuous functions—hence 
the above implies the existence of a continuous solution v to those functional 
equations and inequalities for any continuous u. A direct, analytic proof of this 
was given in [116] (after the particular case of independent types (thus u(p,q), 
Cavp, and Vex )̂ in [79]). 

A careful reading of the above-mentioned proof yields an error term 

\vn(p)-v(p)\<Kn~1'\ 

and this is best possible by an example of Zamir [128] (when signals are the pair 
of actions, the error term was 0(n - 1 / 2)) . 

Even for fully rational games v(p) can be transcendental [81], so no algebraic 
approach like for stochastic games [20] is possible. 

Building on the techniques developed in this proof, the argument of Stearns 
[123] was also extended [80] to this model: maxmin exists and is equal to 
(Cavi Vexn u>)(p)—and dually for minmax. 

In the papers, the results are presented for deterministic signals, but this is 
not crucial to the idea of the proofs. (Formally, the same construction as in 
§C.l(e) could be used to reduce the case of random, correlated signals to the 
deterministic case.) 

(b.2) In the symmetric case, where both players always have the same in
formation (thus the same initial information about state of nature—this being 
common knowledge, one may assume no initial information—and the same sig
nals after every stage, including each other's actions), the existence of a value 
was proved in [33] by reduction to a stochastic game with continuous state space 
(the principles of such a solution are developed, for our general model, in §C3). 
The existence of a value for the stochastic game was proved by a direct, ad hoc 
discretization method. This work provided the basic insight that games could 
be analyzed ("recursively") by defining a corresponding stochastic game on the 
space of all initial distributions (cf. §C3). 

Here the case of random signals cannot be transformed trivially as in the 
preceding model to the case of deterministic signals; this was solved earlier in 
[53], where the method of reduction to stochastic games originates. In that case 
however, it led to finite stochastic games (this shows the basic difference) of a 
specific structure previously solved in [49] with this application in mind. This is 
because the above-mentioned transformation method of §C. 1(e) would destroy 
the hypothesis that players know each other's actions. 

(b.3) Whenever signals are deterministic and include the pair of actions, the 
"recursive structure"—as explained in §C3—involves no general entrance laws, 
but can be simply expressed by probabilities on the states of nature. Thus such 
models might be amenable to a similar, explicit analysis as were the previous 
cases, while at the same time they would contain most of the basic difficulties 
both of cases (b.l) and (b.2) simultaneously. This unifying case presents a great 
challenge—among others probably to construct one strategy doing at the same 
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time the job of the approachability strategy and that of the "Big Match" strat
egy. It was a major success when S. Sorin [118] managed to analyze a—I hope 
typical—class of examples of this type. To do this, he had to build on a pre
vious "tour de force" of his—which was motivated by the example—where he 
studied a class of "stochastic games with incomplete information" : he considered 
there "Big Match"-type games where either player 1 [117] or player 2 [115] is 
uncertain about the payoff matrix; and in both cases he obtained the minmax, 
the maxmin, and limn_KX) vn—in particular, the better informed player could 
guarantee himself limn_^oo i>n (cf. §C3). 

(b.4) In more general cases, no recursive structure seemed available—hence 
the titles of the papers: essentially, in §C3, I am going to show how wrong one 
of my own titles was. To avoid unmanageable pure strategy sets, attention was 
restricted in what is currently still exploratory work to games where, at each 
stage, players either got a "blank" signal, or were told the true game—the same, 
deterministic signal to both players. In addition, there was no initial informa
tion. Analysis of those models is done by normal form methods. The idea is 
to construct an auxiliary one-shot game T: introduce a class of strategies that 
correspond closely to some strategies of the repeated game, and define the pay
off in T as the corresponding asymptotic payoff in the repeated game, neglecting 
second-order terms. Different classes of strategies have to be introduced for min
max, for maxmin, and for limt>n. Show that T has a value, and use appropriate 
optimal strategies in T to reconstruct either optimal strategies or best replies 
in the original game: the class of strategies guessed was sufficient, and each of 
the three quantities is given by the value of an appropriate auxiliary one-shot 
game ("on the square"). The strategies in T involve certain exceptional moves; 
to assign a (random) date to those in the original game, a separate—and more 
artificial—application of the minmax theorem is done (with as strategy spaces 
compact subsets of LQO on the space of histories), even just for constructing 
appropriate best replies in the original game. 

After an example in [76], C. Waternaux [125, 126] succeeded in obtaining 
minmax and maxmin for the above-described games. (Her first paper, which con
sidered particular cases, is not entirely subsumed by the second: the algebraicity 
of the solution, for example, followed from the more precise results obtained 
for all particular cases, and no proof is yet available in the general case.) S. 
Sorin [121] recently proved that limp-too vn also exists in this model—but no 
"formula" is (yet) available like in the case of maxmin and minmax. 

(c) The "error term" en(p) = vn(p) — limn_+00^n(p) was analyzed mainly in 
the case of incomplete information on one side, when the signals are the pair 
of actions—and, say, with two states of nature (the upper bound provided by 
the convergence theorem (b.l) is K\Jp(l — p)/n). The order of magnitude was 
studied in [127, 128] for many examples and showed a wide variety of behavior. 
The exact expression of the second-order term limn_+00 \/nen(p) was obtained for 
one example in [77]: it was (/>(p), the standard normal density function evaluated 
at its own p-quantile. This was intimately related to the fact that <j)(p) is also 
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the limit of the maximum of (1/y/n) £ " E\Xi — -X"»-i| when (Xi) varies over all 
martingales with expectation p and with values in [0,1] [78]. More recent results 
of those authors show that this example is not accidental, and that, when each 
player has only two actions, the second-order term is always expressed by means 
of the same function 0. Still, the appearance of the normal distribution here 
remains a complete mystery to me. 

(d) Cases of specific, finite extensive forms (often with perfect information) 
with incomplete information about their payoffs do not really fall within our 
subject. Fascinating insights and interesting operational methods can however 
be found in the work of Ponssard and of Ponssard et al., and Sorin [112]. Not 
only does this work provide insights similar to some above-mentioned results 
more clearly and at a much lower technical cost, it also implies extremely effi
cient methods for analyzing finitely repeated games with incomplete information, 
when the game tree to be repeated has perfect information. 

(e) Nonzero-sum games. Those were only analyzed in the case of 2-person 
games with incomplete information on one side, assuming in addition that the 
signals were the last pair of actions. 

(e.l) Existence of Nash equilibria is one of the main open problems since [15]. 
It was finally proved in the case of 2 states of nature by S. Sorin [114]. 

A characterization of the set of Nash equilibrium payoffs (as defined in §A) 
was obtained by S. Hart [47]. Denote by (As,B9)3Gs the payoff matrices to 
players 1 and 2, and by A s the simplex of probabilities on S. p G A5 is the 
initial probability. Define as individually rational a payoff vector (a3)8es of 
player 1 if 

(q, a) = ^2 ^ f ls ^ v a l u e w2 Q3A3) for all q G A s , 
s 

and a payoff ß of player 2 if 

ß> [vex[Value2(^^J3 a)]](p) , 

where the value to 2 of a payoff matrix B of player 2, Vah^OB), equals 
—value(—5). 

Those conditions are obtained from the zero-sum theory (B.3(a)), and ex
press respectively that player 2 has a strategy preventing any type s of player 1 
from exceeding oa, and that player 1 has a strategy that prevents player 2 from 
exceeding /?. 

Now define the feasible set F as the convex hull in Rs x Rs of all payoff 
~vectors~[(a^,J^J^ëslij appearing in the matrices. G is then defined as those 
triplets (a, /?,p), where a is individually rational for 1 and ß is for 2 at p, p G A5, 
and such that, for some (c, d) G F, one has a>c, (p, a) = (p, c), and ß = (p, d). 

In other words, G consists of the individually rational payoffs which are fea
sible in nonrevealing strategies (those are clearly equilibria). 

Define G* as the set of initial values g\ of bounded martingales (gt) = 
(a,ß,p)t?=i with limit in G that satisfy for each t a.s. either a$+i = at or 
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Pt+i = Pt) and gt takes only finitely many values. Then G* is the set of equilib
rium payoffs. 

The interpretation of such equilibria is the following. Whenever pt+i ^ p t, 
player 1 uses the appropriate "splitting strategy" (see above). When at+i i1 ßt? 
players uses a "jointly controlled lottery" to select the value of tft+i: they have 
to choose one of finitely many values, say with probabilities ( a i , . . . , an). Let 

ßi = y*Tfaj (z = 0 , . . . , n ) . 

Let players in successive stages select one of their two first strategies at ran
dom (so the theorem assumes each player has at least two actions), to select 
the successive bits of a random number in [0,1]: the bits are set to one if the 
choices match, to zero otherwise. Players stop this process as soon as it is clear 
in which interval (ßi-\,ßi) the random number will fall, and then select the ith 
value of gt+\. Once gt+i is known, say in fc stages, players play for kt peri
ods a nonrevealing strategy leading to their current expectations of the limiting 
(c,d)oo € F (associated with goo € G). If a deviation is ever detected, the 
deviator is punished forever to his individually rational level. 

Neglecting the /^-coordinate, gt becomes a bounded vector-valued martingale 
(X, Y)t, such that at each stage only one of either Xt or Yt changes. Such 
processes were called "bimartingales" by Aumann and Hart [11], who studied 
their properties and their relationship with the concepts of biconvex sets and of 
biconvex functions. In particular, this study leads to a characterization of the 
set G* in terms of G by separation-like properties. 

Few other properties of the set of equilibria are known—it is known neither 
whether it is closed, nor whether G* = G**, nor whether it is also the set of 
^-equilibrium payoffs (e —• 0) (those questions may be related). Such answers 
are provided in [11] for arbitrary sets G ; it is when those sets arise from some 
game that answers are unknown. 

Similarly, no example is known where a bimartingale is needed which does 
not stay constant from some (random) time on. 

It is known however that infinite martingales are needed; they could not stay 
constant from some deterministic time on. In particular the set of equilibria 
is larger than the biconvex hull of G. A generic example to this effect was 
constructed in [35]; in the example, the payoffs are even independent of player 
l's actions, which serve thus a pure signalling purpose. The model can thus be 
interpreted as a pure "signalling game" : player 1 gets some private information, 
next players 1 and 2 can freely send messages to each other, as long as they 
wish, next player 2 takes an action. So even in this very restricted model, an 
unbounded number of signalling stages ("splittings") of player 1, separated by 
jointly controlled lotteries which require messages of 2, are required to achieve 
some equilibrium payoffs, which are in fact far superior to anything that could be 
achieved with only a bounded number of signalling stages—and a fortiori with 
no messages of the uninformed player. 



1548 JEAN-FRANÇOIS MERTENS 

(e.2) Correlated equilibria. A correlated equilibrium (R. J. Aumann, [8]) of 
a game is a Nash equilibrium of an extension of the game where players may 
observe, before the start of the game (e.g., during preplay communication) cor
related random variables, say generated by a correlation device. 

Similar concepts for multistage games were introduced by F. Forges [37]: 
A "communication equilibrium" of a multistage game is a Nash equilibrium of 

an extension of the game by a "communication device" that, before every stage 
of the game, receives inputs from the players and then transmits to the players a 
vector of outputs—random variables depending on all past inputs and outputs. 

An "r-device" is a device that receives only the first r inputs—hence an r-
communication equilibrium. For r = oo, one obtains the above definition; r = 0 
yields the "autonomous devices" and the "extensive form correlated equilibria." 

Denote by C and Dr the set of payoffs to correlated equilibria and to r-
communication equilibria. 

It was shown (loc. cit.) that there is no loss in restricting the outputs from 
stage 1 on to be a sequence of independent random variables, uniformly dis
tributed on a finite set and public to all players. It was shown also that in ad
dition, for finite multistage games, a single finite device of the above type (i.e., 
all inputs and outputs are in finite sets) was sufficient to generate the whole of 
G or of Dr—which were shown to be compact convex polyhedra—provided a 
single, continuous random variable, independent of all the rest, can be observed 
by the players before the start of the game. She also proved that even this could 
be dispensed with and replaced by a geometric random variable with sufficiently 
high expectation. This can be generated by a finite automaton containing a 
fixed lottery mechanism—outputting a "1" every time a success is scored until 
the first failure. Joining this to the device, one obtains a single finite automaton, 
containing a fixed, finite lottery mechanism, and that will generate the whole of 
C or of Dr as pure strategy equilibria. 

She characterized those equilibrium sets in [36] (with as payoff to player 1 his 
vector payoff, as in Hart), were characterized in [36], for the model of repeated 
games with incomplete information we consider here. Proofs are exceedingly 
subtle and complex, and there is no way to convey the slightest idea here about 
what is going on. Just note that only the addition of initial, private information 
to both players turns the game in effect into a game with incomplete information 
on both sides (with a continuum of types), and that after a couple of stages, 
player 2's posterior on the state of nature will be unknown to player 1. And 
alreadym the zero-sum case, the analysis of incomplete information on both sides 
was very difficult, with minmax ^ maxmin ^ limn-^oo^n- A most interesting 
interplay is occurring here between the initial information of the players in the 
game and the information supplied by (and to) the device. 

The results imply that points in Doo can be generated by a finite device to 
which player 1 initially tells his type (truly or not), after which the device has 
only an "alarm" input (and formally a "no alarm" input) for player 2. The 
device always gives the same output to both players: initially, a feasible payoff 
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vector (i.e., a point in F) and as soon as the alarm button is hit, a punishment 
strategy of player 2, in the form of an individually rational payoff vector x of 
player 1—at all other times the device remains silent. 

Finiteness of the device means that only finitely many payoff vectors and 
vectors x will ever be chosen. The players' strategies are to follow a fixed sequence 
of action pairs leading to the recommended payoff vector, to punish the opponent 
(with x for player 2, and to player 2's individually rational level for player 1) 
as soon as x is heard, for 2 to push on the alarm button iff a deviation by 1 
occurs, and, for 1 to report truthfully his type. The equilibrium conditions on 
those strategies translate into a nice analytic characterization of DQO, which is 
compact and convex. 

Similarly, the sets Dr (r = 1,2,3,...) are all equal to a compact, convex 
set N generated by a device to which player 1 first transmits his type, after 
which the device transmits to both players a feasible payoff vector (i.e., in F) 
to be achieved, and to each one separately a punishment against his opponent 
in case of deviation. Player 2's punishment is a vector x as before, while player 
l's is a convex function (in a bounded set in Lipschitz norm) that majorizes 
b(p) = Value2(^p sB s) on A s . (Corresponding punishments are constructed 
with Blackwell's approachability strategy [23].) An analytic characterization of 
TV is similarly obtained. It would be interesting to know a game with N =£ DQO. 
In the simpler case where payoffs do not depend on player l's actions, which she 
analyzed previously in [38], all sets from G to Doo were equal. 

Denote by Nf the subset of N corresponding to finite devices—as defined 
above. It is not known whether Nf = N. But it is shown (loc. cit. [36]) 
that any point in Nf where player l's payoff is strictly individually rational lies 
in Do—it is not known whether those conditions are necessary. Finally, if b 
is convex or if Vex 6 is linear, then it is shown that Nf = N = C—implying 
equality of all sets but Doo- (This includes the case where player l's actions do 
not influence payoffs.) 

A similar "boundary" difficulty as for DQ occurred in [39], where she consid
ered the case of "verifiable types," i.e., the Selten model rather than the Harsanyi 
model for games with incomplete information. 

4. Information lags; stochastic games with incomplete information. 
This concerns some examples. 

(a) In Gleason's game [45], three payoffs 1, 2, and (-3) are arranged in cyclic 
order, and alternately each player tells the referee whether he wants to move 
1 step clockwise or counterclockwise, after which the referee tells him his po
sition. It is clear that, for large n, vn(p) is almost independent of the initial 
probability p, since each player can garble this information almost completely 
by randomizing sufficiently during a couple of moves. [Formally, the least fa
vorable initial information for 1 is when only 2 knows the initial state and p is 
common knowledge. Let vn(p) denote the value of this game. Let 

<PA(q) =vn(0,q,l-q), tpB(q) = vn(l - q,0,q), <pc(q) = vn(q,l - q,0), 
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denote by (p(q) the median of those 3 numbers, and let 

wn = min <p(q), 
Q 

the minimum being achieved at go- Let S (= A, B, or G) denote player l's last 
position. For a given strategy of 2 in vn(p), player 1 can after each move compute 
the probability q that player 2 is going to use next; hence player 1 will in effect 
start the next move at <ps(o)- Let him thus, as soon as (ps(o) > ¥?(<?)> start 
playing optimally in that game, and at all other earlier times play (^, | ) : he will 
start playing optimally in bounded expected time, and thus guarantees himself 
wn — k/n. Similarly, in the most favorable position for 1, when only he knows the 
initial state, assume for instance <PA(qo) > (̂<Zo)- player 2 can play alternatively 
(\,\) and (<foj 1 — <7o) until informed that this last move (qo, 1 - go) was done at 
position B or G, and then start playing optimally in remaining game: in bounded 
expected time he will start playing optimally; hence this strategy guarantees him, 
for any initial information, a payoff < wn + k/n. Finally, the payoff guaranteed 
by an optimal strategy of 1 for vn(^, | , ^) is a linear function of p, everywhere 
< vn(p). Since wn — k/n < vn(p) <wn + k/n, we obtain that this payoff must 
be for every p > wn — 5k/n. Hence, whatever be the initial information, both 
players can guarantee themselves wn up to k/n by strategies independent of this 
initial information. Those are used in the next argument.] 

Let 

v = limsupvn(p), 
n—»oo 

and let n* be a corresponding subsequence. By playing first n% times optimally 
in r w i , then n% times in Tn2, then n± in r n 3 and so on, player 1 guarantees 
himself a payoff at least equal to v. Similarly for player 2: the game has a 
value v and optimal strategies. [This type of argument can be made in a wide 
variety of situations—e.g., some of the following examples too. For example, 
it yields immediately for games with incomplete information on one side (case 
(a) above) the convergence of vn, and that player 2 can guarantee the limit. 
This observation reduces the complete solution of this case to a proof that if vn 

converges, then player 1 can guarantee the limit. An important generalization of 
this is suggested below in §C3.] One wants to know v and a pair of stationary 
optimal strategies. [Stationary means, at each stage, the probability used by a 
player is always the same function of the infinite sequence of all past positions 
(except the current one)—those are known to him. This should be optimal 

Ivffatëvër i ^ I.e., something 
like lim*—o lim^oo o^.] 

This game seems to have resisted all attempts since ~ 1949. Recently, how
ever, Ferguson and Shapley [31] have developed an efficient approach to the 
discounted case, using the methods of Scarf and Shapley [108] (in fact, the re
cursive structure as developed in C.3), and might be close to a solution of this 
game. 
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(b) Dubins's [28] and Karlin's [48] "Bomber-Battleship duel" are also exam
ples of games with information lags. 

(c) The previously mentioned "Big Matches with incomplete information" of 
S. Sorin [115, 117] fall naturally under the heading of stochastic games with 
incomplete information, 

(d) Other examples under this heading include the work of Melolidakis [66] 
and a game analyzed by Ferguson, Shapley, and Weber [32]—which was already 
quite difficult, and the slightest variant of which seems to become utterly in
tractable. 

Clearly, in this area we are still only scratching the surface. 

C. Some remarks about the general model 

We just want to give here some easy results and proofs to enable the reader 
to get a better feel for the problem. 

1. A normal form for repeated games. 
(a) Getting rid of information lags. In accordance with our basic finiteness 

assumption, information lags are described by a finite-state machine. Its initial 
state is selected together with the initial state of nature by same joint lottery, 
about whose outcome the players receive some private information. After every 
stage, the machine selects a new internal state at random according to some 
probability distribution depending on the previous internal state, the last actions 
of the players, and the new state of nature, payoffs, etc. selected in the game. 
The lottery determining the signals received by the players (and, if desired, also 
their payoffs and the new state of nature) is now allowed to depend in addition 
also on the new internal state of the machine. 

One sees immediately that, by redefining a new set of states as the product 
of the old set of states and the set of internal states of the machine, we obtain a 
model as previously described, i.e., without information lags. 

(b) To get rid of the initial lottery and the initial information of the players, 
just add a new initial state, where the players have only one action to take 
and receive a zero payoff, and where a new state and signals to the players are 
selected as in the initial lottery. (At worst this pushes all payoffs one step later 
in time, but it has definitely no effect on long term averages.) 

(c) Now for each player add a constant to his payoff function so as to make 
it nonnegative, and divide all payoffs by a positive constant so as to make the 
sum of all players' payoffs everywhere smaller than or equal to one. This change 
has no strategic effect, and every payoff vector selected by the lotteries is now 
the barycenter of a probability distribution on the unit vectors ((1,0,0,...), 
(0,1,0,...), etc.) and the zero vector. Replacing those 2 lotteries by the com
pound lottery gives us a game where all nonzero payoff vectors are unit vectors. 
This change has no information or other effects on the game; the players' ex
pected payoffs at each stage will remain the same, and further, an appropriate 
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form of the strong law of large numbers can be invoked to show that also, for any 
strategies of the players, the difference between UT in the original formulation 
and in the reformulation will converge a.s. to zero: none of the quantities in 
which we are interested will be affected. 

(d) Define now as a new set of states the initial state (with its zero payoff) 
together with all vectors (consisting of a new state, a vector of signals to all 
players, and a payoff vector (zero or unit)), which are chosen with positive prob
ability by some lottery. We now have a model where the game starts in a given 
initial state, and after every stage a new state is selected at random as a function 
of the last state and the actions taken by the players in that state. Players then 
receive signals and a payoff which are a function of the new state. 

Shifting payoffs one period further in time will not change long-term averages, 
and yields us now a model where the payoff (zero or unit) of each stage is only 
a function of the current state. (We have kept a zero payoff at the initial state). 

Similarly, one player's signals can be viewed as a partition of the set of states 
minus the initial state. Add to this partition the singleton consisting of the initial 
state (this just amounts to adding before the start of the game the redundant 
information "you will now start in the initial state"); each player has now a 
partition of the set of states, such that before each stage, each player is told in 
which element of his partition the true state falls. 

Finally, for the game to be well defined, it is necessary that each player know 
his action set whenever he has to play. It could be however that this information 
was given earlier to him—for instance in the beginning of the game if the state 
does not change. In that case, repeat this redundant information together with 
the signal at every stage, before computing his partition. Now his action set 
is the same in all states that belong to the same element of his partition. If 
necessary, duplicate some actions for some of those partition elements such that 
all those action sets have the same cardinality. Use now arbitrary one-to-one 
correspondences between those sets to identify them: each player has now a 
single action set. 

To recapitulate, our game is now described by the following elements: 

• a set of states S, 

• an initial state so in S, 

• an action set An for each n in the player set N = {1 ,2 , . . . , N}, 

• a transition probability P from S x YineN Anto S, 

• Vn G N, a partition Pn of S, 

^^rarpeiïtitïoirW~^^{W^WT77^ 
zero-payoff vector, Wn that with the nth unit vector). 

Before each stage, every player n is told in which element of Pn the current 
state s is. He then chooses an action in An, receives a payoff of 1 if s G Wn 

and zero otherwise; then P selects a new state and the game proceeds to the 
next stage. (There is no loss of generality, but it is not necessary to assume that 
{s0} e Pn for all n.) 
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Informally, Wn is the set where player n wins the stage, and Wo corresponds 
to a draw. Every player wants to maximize his expected winning frequency. 

In the zero-sum case, to keep the zero-sum property, one scales only player 
l's utility to lie between zero and one, thinking of it as a probability on the 
two points zero and one. One obtains in this way a subset W of S, where the 
payoff is one: W is the winning set of player 1, and its complement the winning 
set of player 2—there is no draw. (In fact, as will be seen later, a better—and 
equivalent—model would be where the information about the new current state 
occurs after each stage rather than before. The information before the initial 
state is indeed redundant, and recursive computations become easier. This will 
be corrected below in §C.l(f). 

(e) Getting rid of probabilities. Here we assume that all elements of P are 
rational, and we want to show how to reduce the problem to P deterministic, 
i.e., a function. The assumption entails no real loss of generality and is in 
line with our basic finiteness assumption; it is further extremely likely that any 
proof under this assumption generalizes immediately to the original case. It is 
anyway a very small price to pay to get rid of any trace of randomness and of 
numbers in the model, and to obtain a completely combinatorial model. Any 
such simplification that enables us to focus better on the essential problem is 
worthwhile. 

We will have to treat separately the two-person zero-sum case and the general 
case. Let m denote the smallest common denominator of all rationals appearing 
in P. If we had at every stage a new independent random variable uniformly 
distributed on Zm, then P could be replaced by a function of actions and this 
random variable (and the current state). 

In the zero-sum case, just let each player choose at each stage, besides his 
action some element in Zm, and take as random variable the sum (in Zm) of 
those two choices (no player is ever informed of any of those past choices of his 
opponent): we have replaced the action sets by their product with Zm, and P is 
now a function from states and action-pairs to states. There remains to show that 
none of the quantities in which we are interested changes in this transformation. 

Let us show that the question of existence and the value of v are the same in 
both games, and that £>optimal strategies of player 1 (and the optimal strategies 
if existing) correspond in both games. The same results for v, for v\, and for VT 
will be a consequence, or follow from the same argument. 

For any u) in the compact group 
oo 

t=l 

and for any strategy a of player 1 in the new game, denote by &* the same strat
egy, where oJt is added to his choice in Zm at time t. Define similarly rw , and note 
that (a w , r _ w ) induces the same distribution on histories as (cr, r). o^ can be 
viewed as a transition probability from our compact group to pure strategies. De
note Haar measure on Z™ by /J, and let <r = / <rwß(duj) (a mixed strategy in the 
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new game), while â denotes the corresponding mixed strategy (marginal distri
bution) in the old game (i.e., use a and forget the choices in Zm). Finally, for 
any strategy ~5 in the old game, denote by ä the corresponding strategy ii®o in 
the new game. W and a obviously induce the same behavioral strategies, hence 
the same distribution on histories for every strategy r of player 2 [57]. Note 
finally that, for any u, the map a —• <rw corresponds to a permutation of the 
strategy set, and that the map a —> G is onto. 

Therefore, for any bounded random variable / defined on the space of histories 
—like üT or liminfr-^oo ^T—we have for any cr: 

wfE^rif) = MEaUtT-u{f) = MEa»tT(f) = U 
T T r 

say, and hence 

thus also 
Ea ( /)>/«,, i.e. /«>/« , . 

(T,T cr 

But / - = fä (i.e., computed with strategies f in the old game), because <rw = a 
(definition of Haar measure) implies that 

E« (/) = ^ , (/) = E„ u (/) = / A*(dw)^ a (/) 

= Eei={f) = EBiet(J) = Eä,r{f) 
a-,T a,r 

(and similarly E ~(f) = E^^(f)) (the last equality because, under (ä,f), 
cr,T 

the random variables daily generated in Zm are really uniform and independent 
among themselves and from anything else in the game). 

The relations /~ > fa and /~ = /^ imply immediately that the highest value 
of v for which the first condition in the definition of v is satisfied is the same in 
both games, and that e-optimal and optimal strategies correspond under a <-• ~ö. 

The equality E ~ = E^? implies now also that the lowest value (of v) for 
ar,T 

which the second condition in the definition is satisfied is in the new game lower 
than or equal to that in the old game; and the equality 

E~ = Eâ,T 

shows similarly the reverse inequality (the a form a subset of strategies of the 
new game). In particular v will exist in one game if and only if it exists in the 
other, and will have the same value. 

——l^tfte^iV^rsoircäs 
ber the periods of the original game by even integers instead of all integers and 
introduce some action at odd periods. At those times, the original players' ac
tions have no effect whatsoever (not even informational) and their payoffs are 
zero. Those are the times at which two additional players A and B will play a 
game of their own and receive their payoffs. They receive zero payoffs at even 
periods. A and B receive no information whatsoever about what happens in the 
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original game; conversely the original players receive no information whatsoever 
about what happens at odd periods. The only link is that the actions of players 
A and B will determine a sequence of points in Zm that will be used in the true 
game to make the random choices. The whole thing will be set up such that, in 
any Nash equilibrium of the full game, this sequence is a sequence of uniform 
random variables, independent among themselves and from anything else in the 
game. Because of the absence of linkage, any equilibrium of the full game in
duces an equilibrium of the game between A and B. We will set this game up as 
a constant sum game, so it will be a pair of optimal strategies. The action set 
of player B will be Zm, while the action set of player A will be Zm plus a fixed 
"waiting" strategy; and it is player B's actions which are going to be used to 
make the randomizations of the original game. Player A is informed of all past 
choices of player B, while player B is not informed of anything. Whenever player 
A uses his waiting strategy, the payoff is zero to him and one to player B. As 
soon as player A ever chooses a point in Zm, the game moves to an absorbing 
state (without player B being informed), where the payoff is forever one to A and 
zero to B if player A could match player B's choice at that stage, and otherwise 
zero to A and one to B. It is easy to see that this game between A and B has 
optimal strategies—e.g., A playing at the first stage a random point in Zm and 
B playing a sequence of independent random points in Zm, and that this is the 
only optimal strategy of B. 

Remark that our construction is less satisfactory in the general case than in the 
zero-sum case: we had to increase the number of players, which is annoying when 
one wants to focus on 2 person nonzero-sum games, since those often have specific 
features; also our argument shows only that Nash equilibria correspond, and not, 
as in the zero-sum case, any other quantity in which one might be interested. 
This might be improvable; however, as is it shows already that even in the general 
case, restricting one's attention to deterministic P's entails no substantial loss 
of generality, and should lead to results that extend rather directly to general 
P. Since anyway our main focus in the sequel is on zero-sum cases, we leave it 
here. 

(f) Final cleanup. Here we want to give a somewhat easier and more trans
parent combinatorial form to our description—more "extensive form"-like. 

First, rank players in cyclic order, player 1 following player N, and subdivide 
each stage into N substages, player n choosing his action at the nth substage. 
The new set of states is now partitioned into subsets SI,...,SN, where only 
player n moves in Sn, and a point in Sn consists of a state of the original 
game (the same as the first substage) together with the actions lastly taken by 
players 1 , . . . ,n — 1. Player n's partition becomes now a partition of Sn—the 
one determined by his original partition and the state coordinate in Sn. After 
substage N, the deterministic P is used to compute the new point in Si given 
the old point in Si and the N actions—i.e., given the point in SN and the action 
of player N. All players' payoffs are a function of the point in Si. Since this 
point is recorded in each Sn , it is convenient to delay player n's payoff until Sn 
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is reached—and to give zero payoff to other players in Sn . This determines the 
new winning set Wn of player n as a subset of Sn . 

Each player's action set An can now be identified with a set of functions from 
S n to Sn+i. There is some redundancy here, since before choosing the function 
he gets the information from his partition Pn. To remove this redundancy, replace 
An by A%n—allowing him to choose an action as a function of the current element 
of Pn, and give him the information about the current element of Pn only after 
he has chosen his action. 

For symmetry, we can now allow the initial position to be an arbitrary point 
in S—not only in Si. 

In the zero-sum case, we could insist that payoffs in S2 are zero and that both 
players receive their payoffs in Si, but for similar symmetry reasons it is more 
convenient to allow for payoffs in both substages: if the state falls in W (Ç S), 
player 1 receives 1 from player 2. 

This leads us to the following combinatorial form: 
• the player set is ZN] 
• the state space S is partitioned into N subsets (Sn)nezN] 
• for each n, a partition Pn of Sn is given, as well as a set Fn of functions 

from Sn to Sn+i; 
• an initial state so in S and a subset VK of S are fixed. 
The game proceeds as follows. It starts at SQ. When the current state s is 

in Sn , player n selects a function / in Fn and, if s G W, he receives 1 from the 
referee (player 1 from player 2 in the zero-sum case). He is then told to what 
element of Pn s belongs and the game moves to the new state f(s). (Recall that 
players are not informed of payoffs during the course of the game.) Players want 
to maximize their expected winning frequencies (in the zero-sum case, player 2 
wants to minimize player l's expected winning frequency). This description of 
the game is known to all players. 

An even more economical model is now finally obtained by letting F denote a 
set of functions from S to S, whose restriction to each set Sn with Fn coincides 
(up to duplications), and by denoting by P the partition (Jn Pn of S. The par
tition (Sn)nezn is no longer needed; players just play in cyclical order, choosing 
each time an element of F before being informed of an element of P. 

REMARK. The above combinatorial form has several natural extensions that 
preserve the property of having only finitely many combinatorial forms for a 
given cardinality of S. For instance, one could allow the payoff and the parti
tion of each player (i.e., his signal finally) to depend also on his action. Or one 
c o ï ï l ï r e i n t r o ^ ^ transition probabilities and real-valued 
payoffs. I believe however that the above model is useful to focus on essentials; 
also going back and forth with existing proofs through the above-described nor
malization steps and the natural extensions of those normalizations, trying at 
each stage to find the natural assumptions, may help in improving substantially 
existing results, and in understanding them in a common framework. Finally, 
the model may be quite helpful in the (systematic?) search for interesting, small 
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examples—note for instance that Gleason's game (see above) fits exactly in this 
framework (except for payoffs being small integers instead of just zeros and 
ones—one could consider as well the case of zero-one payoffs); S has 3 elements 
there and the partition is the maximal partition. 

2. Entrance laws. One may also think that a more natural formulation of 
the above model would be to allow the initial state to be selected by an arbitrary 
lottery, known to all players. This would however not yet provide the adequate 
family of entrance laws, as shown below, and therefore it seems more appropriate 
to stick with the above fully combinatorial model. 

In [82], it was shown that, for a given finite (or compact) set S and a given 
number of players JV, there exists a canonical compact metric space T, canoni-
cally homeomorphic to the space of probabilities (weak*-topology) on S x TN~X. 
Hence a point t in T induces a probability ti on S; T\ is the set of all those; 
then t induces a probability ti on S x T ^ - 1 ; T<i is the set of all those, and so 
on. T is in fact constructed as the projective limit of the Tk. Hence, whenever 
we have measurable spaces fii,..., fijv, and for each point u) in Qn a probability 
tn(u) on S x Ujc^n^kì we can compute tn(uS) for all n, then £%(w) etc.: in the 
projective limit we get a canonical image ^ ( C J ) G T: fin is canonically mapped 
to T (i.e., ^(uj), viewed as a probability, is the image probability of tn(uj) under 
the maps t* —> t for all fc ^ n), in such a way that, if we interpret points in Qn 

as types of player n and tn(u) as his corresponding beliefs on S and the types 
of the other players, then the relevant beliefs (those on S) are preserved under 
the mapping, hence also the beliefs on relevant beliefs of other players, etc. 

If in particular, there exists a probability distribution o n S x I I n n n , of which 
the tn(üj) are the conditional probabilities (which is true in all our models), 
then this probability is mapped canonically to a probability P on S x TN, of 
which the points in each factor T are the conditional probabilities—i.e., for every 
continuous function f(s; t1, t2,..., tN) and every n we have 

f fdP= fdPn(tn)ffdtn(s;t1,t2,...,tn-1,tn^1,...,tN). 

Such probabilities on S X TN were called "consistent probabilities." I had always 
vaguely hoped that that study would lead to appropriate "entrance laws" or state 
variables for the problem considered in this paper. But I was repelled by the high 
level of abstractness and the nontransparency of the resulting concepts. Now I 
think however it is worth giving it a try. 

Note first from the above formula that a consistent probability is fully deter
mined by its marginal on any factor T. Denote by P the set of consistent prob
abilities. Convexity of P is immediately apparent from the above formula, and 
its (weak*-) compactness too—recall that the map from tn to the corresponding 
probability is weak*-continuous. It should also be provable that any probability 
P in P is a weak*-limit of a sequence of probabilities with finite support in P, 
whose supports converge (Hausdorff) to the support of P—considering for exam
ple an increasing sequencet of borei partitions Bi of T, such that the maximum 
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diameter of the elements of Bi converges to zero, and such that on each element 
of Bi+i, t(A) varies by less than i_ 1 , for any subset A of S x (Bi)N~lm. the 
restriction Pi of P to S x (Bi)N is then a probability on a product S x Yln fin as 
we considered previously (conditionals are immediately computed), hence has a 
canonical image Pi on S x TN. Such a sequence should do (a similar property 
was proved loc. cit.). 

Let us now examine the relationship with our games. Consider for example a 
Nash equilibrium—the same analysis could be done for e-equilibria, or for corre
lated equilibria, or any other solution concept: in each one, the strategy vector 
is given. The given strategy vector determines (together with the description of 
the game, including initial conditions) a probability distribution over the space 
H of all possible histories, which the players can compute. Provided we have 
performed at least normalization step (a), at any given time t, the future be
havior of the game depends only on the current state st in S. st is a random 
variable defined on H, and players have in addition accumulated some private in
formation on H—their pure strategy choices and their observations in the game 
during the first t periods. Let Qn be the set of values of such information for 
player n: we also have random variables from H to each fin. From what we have 
seen previously, we get therefore a Pt G P as canonical image of our probability 
on H, which contains all "relevant" information about the past: the future in 
the game should be as if it started from scratch at time t, with initial state and 
initial information chosen by Pt. 

Strictly speaking, such an argument would be valid only in the zero-sum 
case. In general, one cannot forget the "irrelevant" information, because players 
might use it in order to coordinate, to correlate future behavior—say, to choose 
among different equilibria—and may have generated it for that purpose. It is 
then necessary to consider another random variable on H besides st to represent 
those—like the payoff expected by the players in the future in the work of S. 
Hart [47] and in that of F. Forges [38, 36] (or also Mertens and Parthasarathy 
[74]). 

For an easy example, consider the battle of sexes: 

An equilibrium (with payoff (2,2)) of the repeated game consists in both 
players choosing in the first stage by tossing a fair coin, then always playing 
their first oi^theirjsecond strategy according to whether their first day choices 
matched or not: while the information generated in the first day is irrelevant 
w.r.t. the unique state of nature, it is not so for analyzing the later stages. 

Anyway, such considerations may lead in the nonzero-sum case to expand 
somewhat the set of state variables [at worst to replace S by S x Ei x E2 x • • • x T>N 
(and look in a second stage for a more compact representation: typically, a 
strategy n-tuple for the future matters only to the extent of the feasible payoff 
vector it generates—i.e., expected payoff to each player, indexed by initial state 
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of nature), where En is the pure strategy space of player n (in the game starting 
from scratch at time t, i.e., his pure strategies for the future): this is still a fixed 
compact metric space, independent of t. Such an approach would be somewhat 
reminiscent of F. Forges's study of correlated equilibria (loc. cit)]. But it does 
not change the basic thrust—that the current state is described by an element 
of an appropriate P. Since in addition our chief focus is here the zero-sum case, 
we leave it there. 

It is true that typically the P*'s obtained will have special features, for in
stance, a finite support (except in the study of correlated equilibria)—because 
only finitely many observations could have happened in the past. It is easy how
ever to convince oneself that typically the size of this support grows to infinity 
with t, and that in general no such state variable can be obtained in a fixed 
finite-dimensional space. Since, for studying the long-run average payoff, we are 
chiefly interested in the asymptotic behavior of Pt, it may be appropriate to 
go immediately to the closure, and to consider the whole of P as our space of 
state variables. (Obviously, other special features may be usefully taken into 
account—e.g., that in the combinatorial model, with starting position in Si, Pt 
assigns probability 1 to Stmod(N)') 

Before looking in the next paragraph to see whether the above considerations 
really hold water and seem to lead somewhere, let us still remark 

(a) that Pt+i is "easily" computed knowing just Pt and the players' behavioral 
strategies (as a function of their type) at time t, and 

(b) that the expected payoff EaiT(un) at time t is easily computed from Pt if 
the normalization step (d) in the previous paragraph has been performed: it is 
then Pt(Wn)—and similarly even if the payoff function is an arbitrary function 
onS. 

3. A recursive formula. In this section, we concentrate exclusively on the 
zero-sum case, although such a recursive approach also can be used in the general 
case (in simple cases at least), recursing on the set of equilibria, as mentioned in 
§C2 (cf. the 3 papers mentioned there). 

For readers familiar with the literature, the basic change in approach pro
posed here, besides the general formulation which entails working on the canon
ical, infinite-dimensional space of state variables P, is akin to working with the 
distribution of posteriors rather than with the posteriors themselves. 

Our first aim is to establish a recursive formula for the values v\ of the dis
counted games—as a function of their entrance law P G P, thus rather v\(P). 
Recall that we assume the normalization sub (a) in §1 has been done. We write 
shortly R for S x T2. 

(3.a) Since P may have infinite support, we first establish for the sake of 
completeness that v\(P) and VT(P) are well defined, that the games have optimal 
strategies, and that v\ and VT are continuous linear functionals on P. 

In this framework, we use the term "strategy" in the sense of [6]; however, to 
ensure that the values are well defined, independently of any measure-theoretical 
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conventions, we show that players also have finite mixtures of pure strategies as 
e-optimal strategies [71]. 

For each s G S let A3 denote an J x J matrix. 
This defines a 2-person zero-sum game (A,P), where in a first stage a triplet 

(s,ti,tï) in R is chosen according to P, next tn is told to player n, and finally 
players simultaneously choose resp. a row i G / and a column j G J, with 
resulting payoff a3j. We first show the above-mentioned properties for the value 
VA(P) of the game (A,P). 

LEMMA 1. (A,P) has a value VA(P)\ more precisely, for every e > 0 both 
players have finite convex combinations of pure strategies that are e-optimal. 

Both players also have optimal strategies, as transition probabilities from T to 
I and to J. 

PROOF. Let Pn denote the marginal of P on the space of types T of player n. 
The mixed strategy space is identified with a (weak*-) compact, convex subset 
oî[Loo(T,pi)Y MLA[LOO(T,P2)\J. 

The payoff becomes then a random variable in the unit ball of LooCR, -P), and 
its expectation is a bilinear, separately continuous function on the mixed strategy 
spaces. By a standard minmax theorem [cf., e.g., [71] for references] it has a 
value VA(P) and optimal strategies. This establishes the second point. For the 
first point, note that the expected payoff is also a continuous function from player 
l's mixed strategy space endowed with convergence in probability to the space of 
functions on player 2's strategy space, endowed with uniform convergence. Hence 
any good approximation in probability to an optimal strategy will be e-optimal. 
Choose a step function: this can be rewritten as a finite convex combination of 
pure strategies. Point 1 is also established. 

LEMMA 2. VA(P) is a continuous affine functional on (the compact, convex 
set) P. 

PROOF. For the continuity, let Pk G P converge to P, and denote by a — 
(°t (*'))»€/, ter an e-optimal strategy of player 1 under P. By the approximation 
argument in Lemma 1, we can assume tr is a continuous function of t. If player 1 
uses a, and player 2 is of type t and uses his strategy j G J, he expects a payoff 
of 

L (?<**><) dt(s,t), 

which is a continuous function of tJjince the integrand is continuous and also the 
identification of t with the corresponding probability on S x T. 

A best reply of player 2 is therefore to choose, for each of his types t, that 
j G J which minimizes the above expression. 

It follows that a guarantees player 1 in (A, Pk) an expected payoff of 

/ tap? / ( £ ** (*K ) dt& *) dPl(t) 
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(Recall that P% denotes the marginal of P on the types of player 2—any consis
tent P is fully determined by its marginals.) 

The integrand is continuous, as a minimum of continuous functions; hence the 
integral is a continuous function of Pk. 

Since the integral is a lower bound for VA(Pk)> and since a is e-optimal at 
P, this establishes the lower semicontinuity of VA at P. Upper semicontinuity 
follows dually, by permuting the roles of the players. Thus continuity. 

As for the linearity, consider 2 points P and P' in P, and 0 < a < 1. Consider 
the game where (A, P) and (A, P') are first chosen with probabilities a and 1 — a, 
next both players are informed of the result, and then they play the chosen 
game. If (A, P) has been chosen, they will have the same posteriors on S x T 
as in (A,P), and similarly if (A,Pf). It follows that the canonical consistent 
probability representing this information scheme is precisely aP + (1 — a)Pf. 
But the value of the above-described game is clearly QIVA(P) + (1 — Qì)VA(P')-

Using the following Lemma 3, this establishes the linearity of VAI and hence the 
lemma. 

In Lemma 1, we did not use the fact that (R,P) was the canonical space—it 
could just as well have been an arbitrary probability space (H,P), equipped 
with random variables s,u>i, and u)2 with values in S, fii, and fÌ2 resp.—fin still 
denoting the space of observations of player n. 

We have therefore also values VA(H, P, s, CJI, cc^). 

LEMMA 3. If P denotes the canonical consistent probability corresponding 
to (H,P,s,u)i,U2), then VA(H,P,S,UJ\,U)2) = VA(P), and optimal or s-optimal 
strategies in (A, P) induce by the canonical projection mapping optimal or e-
optimal strategies in T = (A, (H,P, s, w i , ^ ) ) -

PROOF. Consider a strategy a (e-optimal to fix ideas) of player 1 in (A,P). 
Denote by â the induced (by the projection mapping) strategy in V. It will be 
sufficient to show that a guarantees as much in T to player 1 as tr in (A, P). 

We obtain the same expression as in Lemma 2 for player 2's expected payoff 
in T from strategy j against o, when of type W2—except that the measure dt(s, t) 
has to be replaced by his conditional probability given u)2- But the integrand 
depends only on s and t, since a strategy b is used; and the marginal distribution 
on (s, Î) of player 2's conditional is exactly dt^ (s, t), if £W2 denotes the canonical 
image in T of his type 0J2—as we have seen in §C2. Thus his best replies in T at 
0J2 against a are the same as his best replies in (A, P) at £W2 against a, and yield 
the same payoff. This payoff depends only on £W2 ; hence the integrals under P 
and under P are also the same. 

This proves Lemma 3. 
In classical cases, Lemma 2 just says that VA(P) is the integral for P of a 

continuous function of the prior on S. The next lemma generalizes the classical 
concavity and convexity properties of this function w.r.t. the sets H\(p) and 
Un(p) respectively (cf. §B.3(b)). 
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LEMMA 4 ( "COMPARISON OF E X P E R I M E N T S " ) . Given P and P in P, 

define "P is more informative to 1 than P " whenever P and P are the canonical 
measures of two information schemes 

(H, P, s, CJI, U2) and (H, P, s, (u±,u)i),U2) 

(i.e., player 1 receives more information in the second scheme). 
Then VA(P) > VA(P) whenever P is more informative to 1 (and less infor

mative to 2) than P. 

PROOF. By Lemma 3, it is sufficient to prove the property for the VA(H, P,...) 
—there it is obvious, since increasing or decreasing information of a player in
creases or decreases his strategy set without changing payoffs. 

It would be interesting to know the relevant orderings on P. 

LEMMA 5. Lemmas 1,2,3,4 apply word for word to the discounted games 
and to the finite games—just replace VA by v\ or VT, etc. The optimal strategies 
are now behavioral strategies. 

PROOF. The T stages of the finite game can be put into one big normal form, 
as a function of the starting state s. To this we can apply the previous lemmas. 

For the discounted games T\, define approximations T ^ r to T\ by setting all 
payoffs to zero after stage T. The payoff function of T\,T converges uniformly 
to the payoff function of T\ when T —• 00, and our results apply to TA,T since, 
after elimination of duplicate strategies, it becomes a finite game. If T is chosen 
such that the payoff function of T ^ r is £-close to the payoff function of T\, then 
e-optimal strategies in TA,T become 2^-optimal in F^. It follows that T\ has 
a value v\, and has ^-optimal strategies which are finite, convex combinations 
of pure strategies (the pure strategies themselves having finitely many values as 
functions on T). 

Let E n denote the pure strategy space of player n, ignoring the initial in
formation from the entrance law. E n is compact metric as a product of finite 
sets. Let E n denote the space of probabilities on E n , with the weak*-topology. 
Finally let Jn denote the space of measurable functions on (T,Pn) with values 
in E n , endowed with the "weak*-weak *" topology, i.e., the coarest topology for 
which, for any g G Lx(T,Pn) and h G C(E„), / T [ / E n h(a)dft(a)}g(t)dPn(t) is 
a continuous function of / G 7n. 7n is compact convex (certainly well known— 
easily proved anyway, e.g., using the weak*-compactness of the unit ball of Loo, 
the lifting theorem (dispensible) and the Riesz representation theorem). 

™~The~êxpëctëd payoff of T\tT is a continuous linear function on 7n for fixed 
strategy of the opponent: indeed the projection from Tn to strategies in the T-
stage game is obviously continuous, when the latter strategy space is endowed 
with the topology of Lemma 1—and our expected payoff depends only on this 
projection. So our proof of Lemma 1 also yields this. By uniform approximation, 
the expected payoff of Y\ is therefore also linear and continuous on Jn for fixed 
strategy of the opponent. The same use of the minmax theorem as in Lemma 1 
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yields therefore the existence of optimal strategies. Now rewrite those optimal 
strategies (both for TT and for Tx) as behavioral strategies (using, e.g., [6]). 

All other properties go through by uniform approximation. 
(3.b) For the recursive formula, it is convenient to adopt a normalization as in 

§C.l(d), where the payoff at any given stage depends only on the current state. It 
is also somewhat easier (for defining first-stage behavioral strategies) to assume 
that information in the game is given after each stage, and not before—like for 
instance in our final combinatorial form, and as suggested at the end of (d). 

Assume an entrance law P G P, and given behavioral strategies cr and r 
of players 1 and 2 for the first stage of the game—i.e., measurable functions 
from T to probabilities over the action set. Denote by P*7'7" the corresponding 
information scheme: first a triplet (s, *i,£2) is selected according to P , and player 
n is informed of tn\ they independently select an action an respectively according 
to &(ti) and r ( ^ ) ; next (random) signals ( w i , ^ ) are selected for them in the 
game as a function of s (and the pair of the actions) together with a new state 
s. 

Our information scheme Pa,T is the above-described probability space, say 
(H,PaiT), together with the random variables s, (ti,ai,wi) and (£25^2^2)- De
note finally by P(a, r) the corresponding canonical consistent probability. 

Ep(u) denotes as usual J23es P(s)u(s)> w ^ h u ^ e payoff function. 

PROPOSITION l (RECURSIVE FORMULA), (a) Letv(P) denote either vx(P) 
or VT(P). Then both maxCTminT v(P(a,r)) and muiT-max^ v(P(a,r)) exist and 
they are equal. Denote for short this saddle point value by Val[v(P(cr, r))]. 

(b) 
vx(P) = XEP{U) + (1 - A)Val[^(P(a,r))] 

and 

VT(P) = ^EP{u) + ^ V a l K - ! (P(a,r))}. 

(c) v\ and VT are uniquely determined (in the space of all bounded functions 
on P) by the above formulas. 

PROOF. Let a = (cr1, a2, a3,...) be an optimal behavioral strategy of player 1 
in Tx, and let r = (r*, r2 , r 3 , . . . ) be an arbitrary behavioral strategy of player 2 
in r^ . Let G and f denote the sequences (a2,a3,...) and (r2, r 3 , . . . ) : a and f are 
behavioral strategies in the game Tx (PCTl 'Tl ) which starts with the information 
scheme P0"*»7"!. Denote the corresponding expected payoff by U\(P(T1ìTI,O:,T). 
Then 

vx(P) < UX(P,O,T) = XEP(u) + (1 - \ ) u x ( P ^ r \ Ì J , T ) 
(by writing the payoff as the sum of the first-stage payoff and the payoff for the 
rest of the game). Hence, f being arbitrary, 

vx(P) < XEp(u) + (1 - A)inf UX(P°^,ïï,T), 
T 

and a fortiori 

vx (P) < XEp (u) + (1 - A) sup inf ux (P
CTl ' r i , a, f). 
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Now the sup^rinfr is, by Lemmas 1 and 5, equal to u,\(PCTl'Tl), and hence, by 
Lemmas 3 and 5, equal to vx(P(ai,Ti)). Thus 

vX(P) < XEP(U) + (1 - X)vx(P(a1,r1)); 

hence, T\ being arbitrary, 

vx(P) < XEp(u) + (1 - A)inf vx(P(a1,r1)). 

Consider now the A-discounted game where player 1 is constrained to use G\ 
in the first period. This is easily described as a game in our family; hence it has 
a value v and optimal strategies (Lemma 5). Even knowing the optimal strategy 
of player 1—or just its first stage component—player 2 would have no advantage 
to deviate; so v and the optimal strategies apply also to the variant when player 
1 would be informed of the 1° stage mixed strategy T\ of 2. The value of this 
variant is, by the above argument, equal to our right-hand member. Since player 
2 has an optimal strategy, it follows that the inf over T\ is achieved for any a\\ 

vx(P) < XEp(u) + (1 - X)mmvx(P(a1,T1)). 
Tl 

Let ä i and f i denote the first-stage components of optimal strategies of play
ers 1 and 2 in T A (P). 

We have shown that Vai, Mmnvx(P(ai,Ti)) exists and 

vx(P) < XEP(u) + (1 - A)min<;A(P(cfi,ri)). 
Tl 

Permuting the roles of the players, we obtain dually VTì, Mox(Tlvx(P(ai,Ti)) 
exists and 

vx(P) > XEp(u) + (1 - X)msxvx(P((j1,f1)). 
(Tl 

Hence max^ vx(P(a1,f1)) < minTl vA (P(äi , r i ) ) . 
This shows that vx(P(a,r)) has a saddle point (<fi,ri), and hence the two 

inequalities yield 

vx(P) = XEp(u) + (1 - A)ValK(P(tr,r))]. 

The results for VT are established in exactly the same way. This proves (a) 
and (b). 

As for (c), note first that VT is uniquely determined given VT-I, and no 
assumption on VQ is required for v\. For the vx, replace "value" by "supCTinfT" 
and use Picard's contraction principle in the space of all bounded functions: 
there exists a unique solution to the corresponding equation. This proves the 
p r o p o s i t i o n r ^ " - ~ ~ ~ — ~ ^ ——--———— —— 

In the major known cases, this recursive formula (or rather its particular 
incarnations) allows us to prove convergence of vx and of VT —to the same limit. 
In the case of repeated games with incomplete information, it even allows us to 
establish precise error bounds (cf. [77, 78, 127, 128], with more extensive and 
systematic results in a forthcoming paper of Mertens and Zamir). In the case of 
stochastic games, Bewley and Kohlberg [20, 21] used the real-algebraic nature 
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of the resulting incarnation, together with the existence of Puiseux expansions 
for real algebraic functions, to establish the convergence and the second order 
terms. 

Could one work directly with the above equations? This leads to the first 
problem suggested here—which we want to state independently of the above 
development on entrance laws: 

Problem 1. Do vx and VT converge and have the same limit for all games 
normalized in §1? 

This would immediately imply convergence for all entrance laws with finite 
support. To go to the closure—recall that this should be P—and for other, later, 
purposes, we suggest 

Problem 2. Are the VA(P) equicontinuous when A varies over all finite (Rs-
valued) matrices with entries in [-1,1]? 

Using the above uniform approximation of discounted games by finite games, 
this would immediately establish the equicontinuity of the vx (P) and the VT (P) 
—and hence, given Problem 1, their uniform convergence. 

This equicontinuity or Lipschitz character is crucial in many papers, among 
others in the only paper that establishes the value for a class of repeated games 
with incomplete information by reducing the problem to a stochastic game with 
continuous state space [33]—which we will shortly show is exactly what the 
above proposition generalizes (cf. Proposition 2). 

Before that, let us establish some plausibility for the above problem by con
sidering a particular case. Assume that player 1 always gets at least as much 
information as player 2—thus in particular is told player 2's actions. Then a 
current state of information is completely described by player 2's distribution 
on player l's current posterior on S—since this distribution is also known to 
1. Assume for notational simplicity that S has only two points: we thus get 
distributions on the unit interval as extreme points of the relevant subset of P, 
and for P all probability measures fi on those distributions. The continuity and 
linearity of VA(I^) imply that VA(P) = J rA(P)ß(dP), where rA is a continuous 
function of the distribution P. Thus, establishing the equicontinuity of the VA'B 
amounts to establishing the equicontinuity of the r^ 's , where rA(P) is the value 
of the game, where first some q G [0,1] is selected according to P and told to 
player 1, and next a state s is selected with probability q after which the players 
play A8 (s = 1,2). The equicontinuity is w.r.t. the weak*-topology on P's . By 
the minmax theorem, we have 

rA(P) = min / m a x ^ Vjiqalj + (1 - q)a2
i:}) dP(q). 

V J° l j 

Since |aj. | < 1, each qa\- + (1 — q)a2
3- has Lipschitz constant < 2, hence also 

the J2j yj(Qaij + (1 " Q)aij)i hence also the maximum over i of those functions. 
Endow the set of P's with the metric generated by the integrals of all functions 
with Lipschitz constant < 1—this metric generates the weak*-topology. The 
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integrals then become Lipschitz functions of P with constant 2, and hence also 
their minimum over y. Thus the equicontinuity. 

Let us now return to our recursive formula. Denote by E n the set of all borei 
functions from T to the probabilities over the action set An of player n. 

Denote by T the (stochastic) game with continuous state and action sets P 
and E1 , E2, where, if P denotes the current state, and a1, a2 the actions selected 
by the players at P, the current payoff is Ep(u) and the next state is P(a1,a2)— 
i.e., a "deterministic stochastic" game where the current payoff depends only on 
the current state. TX(P) and IV(P) will denote the corresponding discounted 
and finite games, with initial state P . 

PROPOSITION 2. TX(P) andfT(P) have values vx(P) andvT(P) and opti
mal pure strategies. vx = vx and VT — VT-

PROOF. We prove also that the optimal pure strategies are to use at state 
P a borei version of the first stage of TX(P) or TT(P) (with T the number of 
remaining stages). 

For the finite games, the proof goes immediately by induction on T. For the 
discounted games, assume player 1 uses the above-described optimal strategy, 
and player 2 also: the recursive formula implies now immediately that the payoff 
is vx(P). Assume now instead that player 2 is free to choose his strategy in the 
first T stages, but uses the optimal strategy after: at stage T, his optimal choice 
is clearly the optimal strategy, by the recursive formula. Hence by recursion his 
best choice is to use always the optimal strategy: he cannot get below vx(P) by 
such strategies. 

Since the payoff of the discounted game depends only up to e on what happens 
after T for T sufficiently large, it follows that, when player 1 uses his optimal 
strategy, the payoff is always at least v(P). The dual statement for player 2 now 
implies the result. 

Thus we have reduced Problem 1 to the same problem for a specific class of 
stochastic games. 

It was shown by Mertens and Neyman [73] that stochastic games (even with 
continuous state and action spaces) have a value (as defined in §A) as soon as 
(conditions are always satisfied for finite space and action spaces) 

(1) payoffs are uniformly bounded; 
(2) the vx exist; and 
(3) for some decreasing sequence Â  such that Â  converges to zero and A^+i/Aj 

to one we have £V \\vXi+1 — vXi\\ < oo (the norm is the supnorm over the state 
s p a e e ) r ^ — = _ _ _ _ _ _ _ — - ^ ^ 

A careful reading of the proof shows even more: the To in the definition of 
the value (§A) can be chosen independently of the initial state, hence uniform 
convergence of VT and vx to the value. 

The existence theorem for v implies the (uniform as just seen) convergence of 
VT and of vx to v. Conditions (1) and (2) are satisfied in our case (Proposition 
2). Condition (3) is "slightly" stronger than uniform convergence. 
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Problem 3. Can condition (3) above be replaced by uniform convergence? 
Uniform convergence is not just suggested out of the blue sky, or because 

it would make the theorem much more usable: it seems intimately tied to the 
existence of a value, and is clearly necessary, as the following example shows. 
The state space consists of the integers plus an origin. At the origin, player 1 
can choose the next state. From any integer the game proceeds to the next one. 
Player 2 just has to watch the game. Payoff is one on the negative integers, zero 
elsewhere. vx equals one at the origin, and converges to zero elsewhere—but not 
uniformly. Clearly the game starting at the origin has no value—at least with 
our definition, which is needed in every application. 

The nature of the problem may be better understood by looking at its impli
cations in some particular cases: 

• For 1 player, it is the general model of dynamic programming. 
• For 0 players, it is the general model of Markov chains. It becomes then 

a pointwise ergodic theorem that uses no recurrence assumption, but only as
sumptions on the potentials of the function of which one wants to take arithmetic 
averages. 

• If in addition there is no randomness, one obtains a (relatively weak) Taub-
erian theorem implying the Cesaro convergence of a bounded sequence under 
assumptions of Abel convergence. 

I found in old notes of mine: "One can see immediately that, in the last 
two cases, the proof does not use the third assumption, but only the uniform 
convergence of vx.

n I did not check this again. 
A positive solution to Problem 3 would have strong implications for our model 

too. For instance, by what we said before, given also a positive solution to 
Problem 2, Problem 1 would be reduced to the following basic problem: Does 
vx converge for our combinatorial model? 

Note that, if we had started with the final normalization of §1, players would 
still move alternately in the stochastic game: the stochastic game would in ad
dition be a game with perfect information, hence has a value v if we define the 
payoff, e.g., as lïmmÏT->oaO-/T)Yii Pt(W) (and similarly v)—using Martin's 
[62] result. [This is stated for borei winning sets, but extends immediately to 
borei payoff functions by considering the level sets: there exists a value, and 
if one player has no optimal strategy, the other has a "super-optimal" strategy 
guaranteeing an outcome better than the value. An observation of A. Ney-
man and the author shows that the result even implies its own extension to the 
nonzero-sum case: note first that, in the zero-sum case, when the payoff takes 
only finitely many values, optimal strategies exist, and they can be "improved" 
so as to be still optimal after any finite history. In the general case, keeping the 
assumption of finitely many values, select for each player, considering all oth
ers as one single opponent trying to minimize his payoff, one such pure optimal 
strategy, and also one for the opponent. Now instruct all players each to use 
his own optimal strategy, until one of them deviates: from that stage on, all 
his opponents use their selected optimal pure strategy for minimizing his payoff: 
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this is a (pure strategy) equilibrium. For a general, bounded payoff function, 
choose a borei approximation with finitely many values, uniformly s-close, and 
apply the above argument to this approximation: we get a (pure strategy) e-
equilibrium. (Subgame perfectness is a completely different issue )] In fact. 
in view of our definition of value, we would be more interested in liniT->oo^T> 
with VTQ arising from the payoff function i n f r ^ f l / T j ^ P t ^ ) : this even 
yields a Gale-Stewart game This perfect information aspect also "explains" 
the saddle point property. Thus, not only have all information aspects disap
peared from the problem, most strategic aspects have also: this points to the 
basic "summability" aspect of the problem, as already noted after Problem 3. 

Note in particular that this Gale-Stewart aspect immediately implies that, 
if the stochastic game has a value, it has pure s-optimal strategies, depending 
only on current state and date: consider the values vt(a,Pt) of the games with 
starting state and date Pt and t and with payoff function 

Ma, Pt)W, r) = TMvt ± fa + £ Pa(W)\ . 

Also let 
at= J2 P3(W), at = vTo-e £ 2"s, 

l<S<t l<8<t 

at(P) = min{a 10 < a < +00, vt(a, P) > at}, 

and let o-t(P) denote the first stage of a pure strategy of player 1 in (pt(at(P), P) 
guaranteeing him > a t +i in this game. [The set of action sequences for which 
<Pt(a, P) > x is closed in the product of the discrete topologies—hence the game 
with this winning set has a value vt(a,P,x) and pure optimal strategies (Gale-
Stewart). Then 

vt(a, P) = sup{z | vt(a, P, x) = 1} = inf {a; | vt(a, P, x) = 0} : 

both players can defend vt(a, P) with pure 5-optimal strategies for any 6. Since 
the payoff function is uniformly continuous in a, the value is also; hence 

vt(at(P),P) >at >at+i : 

player 1 has such a strategy at(P).] Let a denote the strategy of player 1 
consisting of playing <rt(Pt) at every stage t. 

If player 1 uses <Jt(Pt) at stage t, then whatever action the opponent takes 
after him, at the next stage player 1 will still be able to get a*+i: 

.. _ _ _ _ _ - _ _ „ v m (at (^)-4-Pt{W^Pt^->^wi_ _ _ 

hence a t(Pt)+Pt(W0 > £ t + 1 (Pt+i). Under cr, this holds for all t—hence summing 
over t < T, we get aT > üT(PT) for all T (since ax(Pi) = 0), and thus for t > T0, 

«t+iA ^ vt(at,Pt) > vt(at(Pt),Pt) >oit>vTo-e: 

G guarantees to player 1 that, VT > T0, {1/T)Y% Pt(W) > vTo - e\ it is e-
optimal. 
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(3.c) Let us finally give an example of another, stronger application of those 
problems. Consider our most general model of §1, including information lags 
etc., but assume that player 1 always has at least as much information as player 
2. There is no loss in adding redundant information to the signals; thus we can 
assume that each player's signals include his last action and his action set for 
the next stage, and that player l's signals include player 2's. Our assumption 
is preserved in normalization steps (a) to (d)—only take care when duplicating 
player 2's actions in step (d) to inform player 1 of which duplicate is used; this 
is harmless. Thus we get a two-person zero-sum game as described sub(d), with 
P1 finer than P2 (and each player's last action determined by his partition). 
Let us only take the variant, suggested at the end of (d), that it is after each 
stage that players are told in which partition element the next state falls—i.e., 
no information is given before the first stage. 

We have already shown in this subsection that Problem 2 is solved affirma
tively for those games. Thus if vx converges for those games, then vx (P) will 
converge uniformly over P. We have also seen how the particular structure im
plied a particular structure for the relevant P—the same goes through for the 
description of the stochastic game: 

Let A s denote the simplex of probabilities on S, and Ms the space of prob
abilities on As: P should be the space of probabilities /i on Ms, but we have 
seen that we could express the values as integrals of (Lipschitz) functions on 
Ms'. It will therefore also be more convenient to use Ms as the state space for 
our stochastic game—even if it is then no longer deterministic. 

Note that, given P in Ms, the current payoff is given by fAS q(W)dP(q), 
and that the distribution of the next P (recall this is the posterior of 2 on l's 
posterior q) can be computed from the mixed strategy of player 1—say xq(i)— 
and the pure stategy j of player 2, since this is common knowledge. Thus we 
can use player 2's action set of the original game as his pure strategy set in the 
stochastic game. 

Thus our stochastic game T has Ms as a state space, and as strategy sets the 
original action set for 2 and the behavioral strategies xq for 1. 

Now, if we know the convergence of vx, and Problem 3 is solved (at least 
for those stochastic games), we will know that the stochastic game has a value 
Voo(P) = limi^(P) = limVT(P) for arbitrary initial distributions P. Consider 
then an ^-optimal strategy a of player 1 in the stochastic game. It tells at each 
period which function xq to take, as a function of past and present states P and 
past actions xq and j . 

The dependence on the first xq can be eliminated, since it is known from o. 
Hence also the second xq, since it now depends only on earlier P's and j ' s , and 
so on: a can give each xq just as a function of earlier j ' s and P's and current 
P. (This is the proof that knowledge about own past actions can always be 
dispensed with [25].) But past and present P's and g's can be computed by 
player 1 in the original game: since he knows—by induction—previous P's and 
j 's , he knows from a the last xq he used, hence the next P since it depends only 
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on current P and xq and the signal of 2, which is known to him. Similarly the 
next q depends only on the current q and his own signal. Thus we can rewrite 
(j as a strategy a in the original game, giving at each stage a probability over 
player l's actions as a function only of his own past signals and of the initial q. 

Consider now, in Ty, a best reply r of player 2 against a. At every stage, 
as a function just of his own past signals—not of his past mixed strategy—he 
can compute the current P since he knows he plays against a. He can similarly 
compute the distribution of next P's for each one of his actions. Since his 
expected payoff at each stage depends only on the current P, a little dynamic 
programming (backwards induction from the endstage T on) shows that we can 
assume his best reply will at each stage be a function only of the current P: 
it arises from a strategy r in the stochastic game. The correspondence is such 
that the expected payoff from (cr, f ) in the original T-stage game is the same 
as the payoff from (a, r) in the stochastic game. Hence à guarantees in each 
TT (T > To) an expected payoff at least Voo(P) — e; this proves that the first 
condition for Voo(P) to be the maxmin of our game is satisfied. (Ideas for this 
type of argument can be traced back to conversations with A. Neyman and S. 
Sorin.) The s-optimal strategy of player 2 in the stochastic game can be used 
similarly: 

Consider first an arbitrary strategy a of player 1 in T: a determines at each 
stage a mixed action of 1 as a function of past signals of 1 and initial q = qo- Note 
that the successive g's are computed knowing just the initial q and the signals 
of 1. Since those contain the pair of actions, knowledge of the mixed strategies 
is not necessary. Conditionally to q± and the first signal of 2, qo and the first 
signal of 1 are independent of the future strategy of 2, of the current state of 
nature s±, and of future choices of nature; and this conditional distribution can 
be computed knowing just a and P—since the action of 2 is included in the given 
signal of 2. Thus, conditionally to qi and this first signal of 2, player 1 has a 
lottery over his own first signals, and hence over his future strategy inasmuch 
as it depends on those signals. The conditional independence properties stated 
imply that he can as well average his future strategy with this lottery—whatever 
player 2's strategy, this will not affect the expected payoff in any future period— 
and clearly also not in the first period. This averaged future strategy can now be 
recast as a behavioral strategy without affecting anything; we have obtained an 
equivalent strategy o\ of 1, which does not depend (after the first stage) on the 
initial q and the first signal of 1, but just on q\ and the first signal of 2 (which 
in turn are functions of those data). The same can now be done with a\ at the 

^nëxt^stagë7to obtain ä^tTätie^y^^Tlffid^ö^öni^finälly weobtain ün equivalent^ 
strategy of 1, say a, where at each stage the current mixed action x depends only 
on the current q and the past signals of 2—i.e., it gives at each date a function 
xq depending only on past signals of 2. Any such a is a genuine strategy of 1, 
since current g's are functions only of initial q and past signals of 1, independent 
of the players' mixed strategies. Thus, in any question where we are interested 
only in expected payoffs, we can assume player 1 uses only strategies a. 
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Now let r be an e-optimal strategy of player 2 in the stochastic game: at 
every date we have a mixed action as a function of past P 's and past xq*s (past 
actions of 2 can be dispensed with as usual). 

Consider an arbitrary strategy ö of player 1 in the original game, and define 
as follows a strategy r^ of 2 in the original game: substitute in r for the past xqs 
their expression by cr as a function of player 2's past signals; substitute also for 
the past posteriors P of 2 their expression (computable from cr) as a function of 
the past signals of 2: ra is a genuine strategy of 2, giving at every stage a mixed 
action only as a function of player 2's past signals. 

Let us now construct, from ra and cr, a mixed strategy a of 1, in the stochastic 
game, such that expected payoffs are the same in the stochastic game from r 
and â as in the original game from ra and a. Introduce (in the original game) a 
referee, who would perform truthfully the randomizations required by the game, 
and give the players their information (and secretly their payoffs) after having 
been told their chosen actions. But he can also, since g is a function only of the 
initial q and player l's signal, compute the current q—so, if given xq by player 1, 
he can perform the required randomization over player l's actions himself. But 
then player 1 no longer needs his own signals—he just needs to be told of player 
2's signals to select xq. Similarly, to facilitate things, the referee could just inform 
player 2 of player l's last xq and of the next P , instead of giving him his detailed 
signals—player 2 would then use r to obtain the same effect as TG (this is how To-
was constructed). He could just give the players instead of their actual payoffs 
at each stage their expected payoffs given the current P—i.e., P(W)—since they 
are only interested in the latter. Now most randomizations he makes are solely 
for player l's purpose—otherwise he could just, knowing the starting P , listen at 
each stage to player 2's action and to player l's xq, make a small randomization 
to select the next P , and inform both players of the new P , the last xq, and 
the last action of 2. Instead, he must now make additional randomizations, 
conditionally to the above-mentioned, to select signals of 2 for player 1, which 
he will never need himself in the future for his own randomizations. Thus player 
1 could as well take care of those himself, since he is being told at each stage of 
the new conditions of the conditional distribution (last action of 2, last xq, and 
the new P). But this is the description of the stochastic game, where player 2 
uses r and player 1 randomizes at each stage, as a function of current and past 
information and of the results of past randomizations, to select a new "signal 
of 2," and hence a new xq (by cr): player 1 uses some mixed strategy a in the 
stochastic game. 

Therefore, for To sufficiently large, any T > To, and any a, the expected 
payoff from r and â in the T-stage stochastic game is < VQQ + e (s-optimality of 
r), hence also the payoff in the original game resulting from a and rG—and thus 
from a and TG. 

This proves the second condition for Voo(P) to be the maxmin of our game— 
and in fact slightly more: the statement itself implies lim vn = maxmin, since To 
is independent of a. 
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Here too we could obtain a stochastic game with perfect information, by per
forming the analog of normalization step (f) after (d) [(e) cannot be performed]. 
Just take care to let player 1 move before player 2, to keep his advantage in 
information. 

To recapitulate: the solution of Problem 3 (at least for the relevant class of 
stochastic games) would imply the following: just convergence of vx for games 
(as described in §1), where player 1 is always better informed than player 2, 
would already imply that vX(P) and VT(P) converge uniformly (over all initial 
distributions P), say to VQO(P), and that VQO(P) is the maxmin of the game: 
in particular, the better informed player always has good strategies which are 
independent of the (sufficient) length of the game or of the (small) discount 
factor. 

This would be a very significant extension of many important result: the 
symmetric case (with random signals) in incomplete information; incomplete in
formation on one side; S. Sorin's "Big Matches" with incomplete information, 
stochastic games, etc. Further, the assumption of one player being better in
formed than the other is typically met in many applications. Finally, even this 
assumption is not really necessary—it would be sufficient that after a fixed lag 
L, player 1 is always informed of whatever player 2 knew. Indeed, we can then 
write an equivalent game, also in our framework, and where the lag disappears: 
Consider a player Ibis, who will receive at date T the information of both players 
1 and 2 at time T, and will have to choose on this basis, at time T, an action 
of player 1 for time T + L, as a function of the stream of signals (including own 
actions) of player 1 between T and T + L. Player Ibis also chooses at time 0 a 
normal form pure strategy of player 1 for the first L stages of the game. This 
equivalent game between Ibis and 2 can be normalized to fit our framework using 
the same methods as previously. 

(3.d) I hope to have been able to convey to some extent 
(1) in §A, the importance of the general model, many major applications 

requiring most of its features at the same time, and its conceptual interest; 
(2) in §B, a vague idea about what is available in this field; 
(3) in the first part of §C, that the general model has nevertheless a concep

tually very simple and purely combinatorial equivalent; and 
(4) in the last two parts, a few new tools and ideas that might be useful 

for further progress, illustrating at the same time some old ideas in a renewed 
framework as well as the high degree of interplay between various apparently 

_unrelated topics within this general model. 
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1. Introduction. Burst activity is characterized by slowly alternating phases 
of near steady state behavior and trains of rapid spike-like oscillations; examples 
of bursting patterns are shown in Figure 2. These two phases have been called 
the silent and active phases respectively [2]. In the case of electrical activity of 
biological membrane systems the slow time scale of bursting is on the order of 
tens of seconds while the spikes have millisecond time scales. In our study of 
several specific models for burst activity, we have identified a number of differ
ent mathematical mechanisms for burst generation (which are characteristic of 
classes of models). We will describe qualitatively some of these mechanisms by 
way of the schematic diagrams in Figure 1. 

The basic idea is that there are slow processes which modulate the faster 
spike generating dynamics. For the models we describe here, the slow subsystem, 
however, does not act independently as a forcing function to the fast subsystem. 
There are two-way interactions between the fast and slow subsystems; the fast 
variables play a crucial role in the slow dynamics. For membrane electrical 
activity, the membrane potential is an important shared variable between the 
fast and slow processes. 

Our understanding of these systems has come from extensive numerical cal
culations and investigation of broad parameter ranges in a number of explicit 
models [22-27]. For the most part, these models were formulated to mimic ex
perimental data in a semiquantitative way. For example, rates of slow processes 
were chosen to match the time scales of burst patterns. The fast variables ac
count for macroscopic features of spike shape and frequency while some aspects of 
spike shapes were disregarded to prevent introducing nonessential details which 

_frequently_do=not^alter=qualitative=properties,~Alsor=each=such=detail==places=a-
further burden on numerical calculations. 

This paper, with slight differences, also appears in Proceedings of International Sympo
sium on Mathematical Biology (E. Teramoto, editor), Springer-Verlag (in press). 
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In §2 we will present schematically our qualitative view of a number of differ
ent mechanisms for bursting. To understand these mechanisms we exploit the 
different time scales. We first identify the fast and slow subsystems. Then the 
fast dynamics are considered with the slow variables treated as parameters. A 
full description of the steady state and periodic solution sets to the fast sub
system yields the slow manifold; i.e., this step is essentially a global bifurcation 
analysis of the fast subsystem with the slow variables treated as parameters. We 
find several different bifurcation structures with which we identify and correlate 
features of different observed burst patterns. For example, the various types of 
transition behavior between steady state and oscillation branches: subcriticai 
Hopf bifurcation, large amplitude homoclinic orbits, and degenerate homoclinic 
orbits (which contact saddle-node singularities) lead to different spike frequency 
characteristics at the beginning or end of the active phase. To complete this 
lowest order approximation we then consider the flow determined by the slow 
dynamics on the branches of the slow manifold. By varying parameters of the 
slow dynamics one obtains a variety of burst patterns and other activity which 
correspond to various experimental findings. Our formal analysis is essentially 
the first step in a systematic singular perturbation treatment of these complex 
oscillators. Perhaps our presentation will motivate analysts to formulate and 
consider rigorously questions suggested by the phenomena described here. 

In §3, we will discuss some of the explicit models for excitable membrane 
behavior and offer biophysical interpretations of the theoretical results. 

2. A qualitative catalog of burst generating mechanisms. For this 
discussion we will consider a model of the form 

x = F(x,y), xeRn (FAST), 
y = eG(x,y), y e Rm (SLOW), 

in which there are n fast variables x and m slow variables y\ here, 0 < e « 1. We 
suppose that the components of G and F are O(l) except in small neighborhoods 
around zeros of these vector functions. Our qualitative catalog with graphical 
representations is based on the limit of e near zero. 

In this limit, we focus on the steady state, xB8(y), and periodic, xOBC(tm,y), 
solutions to FAST (with y as a vector of parameters) which satisfy: 

0 = F(xBB,y), 

and 
^08c = * v^osc> V)ì ^osc \t "» •* î V) = ^osc 1̂ 5 V)> 

respectively, where T = T(y) is the period of xOBC. 
Specific model equations, with identification of physiological slow and fast 

variables, are given in §3. For example, the Chay-Keizer equations (which exhibit 
a burst pattern like that of Figure 2B) are a model for the electrical activity of 
insulin-secreting /3-cells of the pancreas [6, 7]. 

In some types of bursters the fast dynamics exhibit bistability in which, for 
certain ranges of the slow variables, there are two different attracting branches of 
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the slow manifold, for example, a (pseudo) steady state and an oscillation which 
would correspond to the silent and active phases respectively. In such models, 
the slow dynamics cause y to sweep back and forth through this regime, and the 
fast variables sample alternately the steady state branches of the slow manifold. 
The burst trajectory essentially traces a hysteresis loop. 

The simplest example of such hysteresis behavior is illustrated in Figures IA 
and 2A. In this case there is one slow variable, y G R1, and the fast subsystem 
exhibits three steady states over a certain range of y: two, upper and lower, which 
are stable, and one unstable saddle. Without being explicit, let us suppose that 
the slow dynamics are such that when x is in the upper state then y > 0 (y 
is produced slowly) and when x is in the lower state then y < 0 (y is depleted 
slowly). The full system then generates a relaxation oscillation (Figure IA (right) 
and Figure 2A). We might identify this waveform as a burst without spikes or 
slow wave. It is important to realize that we have not hypothesized a mechanism 
which requires the slow system to oscillate independently through the hysteresis 
zone. The sign of y depends crucially on the values of x, and the dependence 
is autonomous. Without the hysteresis or bistability of FAST this slow wave 
would not exist; if instead of the Z-curve relation, xBa vs. y were monotonically 
decreasing, then we would not have bursting. In this sense the fast subsystem, 
and its hysteresis, drives the slow variable y so as to produce the slow oscillation. 

A minimal model for the slow wave of Figure IA might involve only a single 
fast variable, x G R1. In this case the full system would be a classical second-
order relaxation oscillator. Such a model could not account for an active phase 
with spiking. For this, the fast subsystem must have at least two variables. 
For example, suppose again that y E R1 and that FAST still had a steady 
state Z-shaped bifurcation diagram; for comparison purposes, let it be identical 
to that in Figure IA. But suppose the upper state, instead of being stable, is 
unstable and is "surrounded" by an oscillation over some y-range (Figure IB). 
An illustrative example of a phase portrait (in the case x G R2) is shown in 
Figure 3. In this model, the branch of oscillations emerges via Hopf bifurcation 
at HB and terminates at HC. At termination, the periodic orbit makes contact 
with the saddle point of the middle branch of the Z-curve; the period becomes 
infinite at HC, and the orbit is called homoclinic. Beyond HC, the lower steady 
state is globally attracting. Let us again hypothesize slow dynamics. Suppose, 
as above, that y is decreasing when x is in the lower steady state, and, analogous 
to the above, when x is in the upper attractor, i.e., the oscillatory mode, we 
suppose that y experiences a net increase for each cycle of the fast x-oscillation 

xOBC. This means that C(xOBC,y) is (7(IJlïnd^positive, where 

G(xOBC,y)=T-1 [ G(xOBC(t;y),y)dt, T = T(y). (2.1) 
Jo 

Under these hypotheses, one can intuitively predict that the full system generates 
a burst pattern (schematized in the right panel of Figure IB) with the time course 
of Figure 2B. The upper oscillation branch of FAST generates the repetitive spike 
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pattern of the burst's active phase. The fork (maximum and minimum of xOBC 

over a period) of the bifurcation diagram becomes the envelope for this train of 
spikes. In comparing Figures 2A and 2B (and recalling that the Z-curves are 
identical), we see that the spikes of the active phase (left panels) in Figure 2B 
oscillate around the plateau level in Figure 2A; also, the y excursion is larger in 
Figure 2A than in Figure 2B since the slow wave trajectory progresses to the right 
knee of the Z-curve (cf. Figure IA) but the burst trajectory (cf., Figure IB) does 
not. We may view the burst of Figures IB and 2B as a generalized relaxation 
oscillation, i.e., repetitive visitation to overlapping coexistent branches of the 
slow manifold. But, in contrast to the classical relaxation oscillator in which 
both branches are steady state branches, here one branch is oscillatory. From 
Figure IB, we reach a qualitative conclusion about the spike pattern during the 
burst: the instantaneous spike frequency drops dramatically at the end of the 
active phase (see Figure 2B) as the trajectory passes near the homoclinic orbit 
of FAST. 

Variations on this general hysteresis-based mechanism will lead to different 
burst patterns. For example, if the supercritical Hopf bifurcation point were 
rightward of the Z-curve's left knee, then the active phase would exhibit an initial 
portion of near (upper) steady state behavior followed by growing oscillations 
(around the upper steady state) whose frequency drops suddenly as the active 
phase ends. One could also predict qualitatively the burst pattern in case the 
Hopf bifurcation is subcritical. 

We mentioned, for the case of Figure IA, that if hysteresis in FAST is de
stroyed, say, by stretching the uZn out of the slow manifold, then the slow 
(relaxation) wave is lost. Similarly here, if hysteresis is precluded between the 
upper oscillatory and low steady state attractors of FAST, then bursting (in a ro
bust way) is lost. For example, by adjusting parameters of FAST the homoclinic 
termination of the oscillation branch can be moved leftward until it meets the 
knee of the Z-curve (Figure 1C); in §3, we describe how this can be accomplished 
in the Chay-Keizer model. In this situation, FAST has a unique global attractor 
for each value of y\ hysteresis is lost. The response will be either time indepen
dent, if G(xBB,y) = 0, and dG/dy < 0 for some y rightward of HC with xBB on 
the lower steady state branch, or continuous periodic spiking, if G(xOBC,y) = 0, 
and dG/dy < 0 for some y leftward of HC (with xOBC on the oscillatory branch). 
The time courses of two such different response patterns are shown in Figure 2C, 
dashed and solid, respectively. 

For the fast dynamics represented by Figure 2C, the full model would ex
hibit no robust parameter range for bursting as parameters of SLOW are tuned 
through a range which includes steady state behavior at one extreme to con
tinuous spiking at the other. On the other hand, if such tuning were done 
(dynamically) in a smooth repetitive manner, then a burst pattern would be 
generated nonautonomously. This burst trajectory would cross the HC bound
ary both at the beginning and at the end of the active phase, and consequently, 
a plot of instantaneous spike period versus spike number would appear as a 
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steady state solutions to fast subsystem (FAST) with slow variables as param
eters. Maximum and minimum values of some solution component, or its time 
average over a period (long dashes), is plotted. Unstable solutions indicated 
by short dashes. Right: Schematic representation (heavy curves) of slow wave, 
burst, or continuous spiking trajectory as projected on bifurcation diagram (and 
its projection, case D, far right) of corresponding left panel. 
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FIGURE 2. Time course of a fast (left) and slow (right) variable for corre
sponding schematics of Figure 1. These are for computed solutions of specific 
excitable membrane models. Cases A, B, C: V and Ca from (3.1)-(3.3) with pa
rameter changes: Xn = 2.0,/ = 0.08 (A);An = 0.1, and fcca = 0.006 (solid) 
or fcoa = 0.0005 (dashed) (C). Case D: V, Ca (right, solid), and slow calcium 
conductance, x (right, dashed) for Plant's model (as given in [25] but with 
rx = 1.88 x 104, Kc = 5.525 x 10~3, p = 0.9 X 10"4). Case E: v and y for 
(3.4)-(3.6) with e = 0.0008 (note, e not too small here, so only 2 pulses per 
burst and y-increments not small). 
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concave-upward parabola. In the neurobiology literature such a waveform has 
been called a parabolic burst pattern [1]. To generate this behavior in an au
tonomous manner requires at least two slow variables. In the case y G R2, the 
slow manifold may be represented schematically as the surface in Figure ID; it 
includes both steady state and oscillation branches. With the additional degree 
of freedom in y, one can formulate slow dynamics which lead to autonomous os
cillatory behavior of y even when x is restricted to the lower steady state branch 
of the slow manifold. In this case, we would find a slow wave (Figure ID, right 
panels, case (a)) but it would not be of relaxation type as in Figure IA; both x 
and y would vary smoothly on the slow time scale. 

To understand how a burst pattern may be generated, we note first that vari
ations in the parameters of SLOW do not alter the slow manifold (the surfaces in 
Figure ID) in any way. Thus, the parameters of G could be varied appropriately 
to move the slow wave toward the HC boundary. With sufficient parameter 
variation, a portion of the slow wave would just cross into the oscillatory regime 
of FAST and a parabolic burst trajectory would be obtained (Figure ID, right, 
case (b), and Figure 2D). This intuitive description supposes that the trajectory 
will return to the steady state branch and then recycle through the silent phase. 
This is reasonable to expect. Since, for y near the HC boundary, periodic solu
tions to fast spend most of their time near the HC steady state, the (fast time) 
"averaged" flow of G(xOBC,y) will be continuously extended off of the steady 
state branch and therefore will inherit the (slow) oscillatory properties which G 
exhibits on the lower steady state branch. In this type of burst mechanism one 
can identify the underlying slow wave; it appears to drive the spikes. We note, 
again, that this mechanism for bursting does not require the fast subsystem to 
exhibit multiple stable states for any y in the bursting region. 

A common feature of the above examples is that, over (at least part of) the 
2/-range for bursting, the fast subsystem exhibits multiple steady states. In the 
preceding example of Figure ID, at most one steady state is stable. A different 
burst generating mechanism, illustrated in Figure IE, does not require multiple 
steady states and still can be realized with only a single slow variable. It is 
based on subcriticai Hopf bifurcation in FAST, so it relies on hysteresis. To 
obtain bursting, we hypothesize for SLOW that y exhibits a net decrease over 
a cycle of the large amplitude fast oscillation, i.e., G(xoac,y) < 0 for xOBC(t;y) 
on the "outer" branch. Thus, during the active phase, y decreases toward the 
turning point or knee of the fast oscillation branch where the stable and unstable 
fast periodic solutions coalesce and disappear. When y reaches the knee, x falls 

^nto^thedomain^ofattractioiro^tlrrstablF^teädy "stäfö."™""" -~~" -—"" 
In a neighborhood of this steady state we suppose that y, on the average, 

increases. Thus we have slow rightward movement along the steady state branch 
during the silent phase. If y passes inside HB, this pseudo steady state becomes 
unstable and x cannot continue to track it. Therefore x returns to the oscillatory 
mode of FAST to initiate the active phase. We have found that the silent phase 
does not necessarily end immediately when y passes inside HB but that there 
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may be some delay as small oscillations in x grow slowly; we have estimated 
analytically this escape time [27]. This behavior is seen in the schematic phase 
space projection of Figure IE (right) and in the time courses in Figure 2E. In 
this type of burst pattern one does not see the underlying smooth slow wave as 
in Figures ID and 2D nor the relaxation pattern of Figures IB and 2B. Here, 
the fast oscillations of the active phase surround the steady state of the silent 
phase. Also, since the pseudo steady state may behave as a damped oscillation 
in the entire overlap range of the subcriticai Hopf bifurcation, one may expect 
to find small decaying and then growing oscillations in the silent phase. 

3. Bursting in excitable membrane systems. Models for excitable mem
brane electrical activity usually involve modifications to the classical Hodgkin-
Huxley description [15] of nerve impulse generation in the squid axon membrane. 
In models of bursting, the fast subsystem is based on such modified Hodgkin-
Huxley spike dynamics. The associated fast variables include the membrane po
tential V, and activâtion/inactivation variables for ionic channel currents. These 
variables describe membrane properties. The fast subsystem may involve two or 
more variables. The rate-limiting dynamics of the slow processes typically involve 
at least one nonmembrane quantity, e.g., intracellular free calcium concentration 
Ca. 

A biophysical description, e.g., in the case of insulin-secreting /?-cells [2], 
would be the following. The membrane has ion-selective channels which ac
tivate, and possibly inactivate, to V-dependent levels and with F-dependent 
rates. For example, calcium channels allow inward current flow which increases 
V while potassium currents are outward and their activation decreases V. When 
inward current kinetics are fast and outward currents are slower, then these two 
opposing currents can lead to oscillatory spike activity. In the /?-cell system, 
these dynamics are such that, depending on Ca, the membrane can remain with 
V at the lower silent phase potential (= — 55 mV) or oscillate with V in a range 
(—40 to —25 mV) well above the silent phase potential. During the active phase 
of a burst, each spike causes a small net increase in Ca; this is because only a 
small fraction / of the entering calcium is free—most of it is bound rapidly to 
high affinity binding sites inside the cell. Here, / determines the slow time scale 
of the burst pattern. To modulate the fast membrane variables, there must be a 
feedback site for calcium at the membrane. Such feedback to the fast dynamics 
gives the bifurcation structure of Figure IB (with V on the ordinate and Ca 
along the abscissa). In a number of models, this site is hypothesized to be a 
calcium-activated potassium channel, and it is usually considered distinct from 
the more classical Hodgkin-Huxley K+-channel. Thus, as Ca slowly accumulates, 
it activates the conductance #K-Ca (which is often treated as ^-independent). 
As 0K-Ca rises during the active phase, so does the threshold for spike activity. 
This threshold corresponds to the saddle point on the middle branch of the Z-
curve in Figure IB. This rising threshold meets the trajectory for repetitive spike 
activity, and the active phase terminates at this point; the trajectory falls below 
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threshold and V drops to the lower (pseudo steady state) silent phase potential. 
At this low V, the calcium channels are not active, and so there is no influx 
of calcium. The removal of calcium dominates during the silent phase; 0K-Ca 
slowly decreases, while the pseudo steady state V increases and the threshold 
falls. When V meets the threshold, then the active phase is reentered and the 
cycle repeats. 

Explicit equations for the /?-cell system were formulated originally by Chay 
and Keizer [6] (based upon the biophysical model of [2]) and subsequently modi
fied [7]. A FAST/SLOW analysis of the original model was presented in [23] and 
a simplified model was treated in [24]. The equations of the simplified model 
are given by: 

CmV= -ffCaW»2o(K)Äoo(V)(7-70a)-

-9L(V-VL)+hpp, 

0K™4 + 0K-Ca 
Ca 

1 + Ca 

n = \n[noo(V) - n]/rn(V), 

Ca = f[agc*rn3oo(V)hoo(V)(Vc* -V)- fcCaCa], 

(3.1) 

(3.2) 

(3.3) 

where, 
3oo(V) = a,-(V)/[oy(V) + ßj(V)\, j = m, ft, or n, 

rn(V) = l/[an(V) + ßn(V)}> 

am(V) = 0.1(-V - 25)/[exp{0.1(-F - 25)} - 1], 

ah(V) = 0.07exp{(-F - 50)/20}, 

an(V) = 0.01(-F - 20)/[exp{0.1(-V - 20)} - 1], 

/3mGO = 4exp{(-V-50)/18}, 

ßh{V) = l/[exp{0.1(-7 - 20)} + 1], 

ßn(V) = 0.125exp{(-y - 30)/80}. 

The functions m ^ V ) and noo(V) are monotone increasing with V and they 
saturate with 0 ! « ) , ^ —>• 1 as V —• oo, and moo,n<x> -* 0 as V —» —oo; they 
represent the (steady state) activation of the calcium and potassium currents, 
respectively. The function h^V) corresponds to calcium current inactivation; 
it is monotone decreasing, and ft«, —• 0 as V —• oo, and ft^ —• 1 as V —• —oo. 

The variables n and Ca are dimensionless; £, Vs, and p's have units of msec, 
mV, mmhos/cm2, respectively. Parameter values used here are: 

Cm = l[fiF/cm2}, Vba = 100, VK = -75, VL = -40, 

ffCa = 1.79934, gK = 1.69765, 0K_Ca = 0.0104998, 

gL = 0.00698514, An = 0.3, fcCa = 0.00513, 

/ = 0.0058, and « = 0.0259102 

(which involves Faraday's constant and the cell radius). 
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FIGURE 3. Phase plane portrait for fast subsystem, (3.1)-(3.2), of Chay-
Keizer model for a fixed value of Ca, 0.7 [M. V and n-nullclines are shown 
dashed. Three singular points. Double arrowheads denote stable manifolds 
of saddle point. Responses for three different initial conditions (open circles) 
show bistability with stable lower steady state and stable oscillation surrounding 
unstable upper steady state. 

In this simplification, the calcium current depends instantaneously upon V 
while the potassium current activation, n, has the time constant rn(v). Here, 
the V - n equations form the fast subsystem in which the slow variable Ca 
appears. The phase portrait of FAST with Ca fixed at a value in the bursting 
range is shown in Figure 3. With the parameters given above, this model has 
FAST/SLOW dynamics and burst behavior as described by Figures IB and 
2B. Several features of experimentally observed burst patterns are consistent 
with the model. The spike frequency is seen to drop sharply near the end of 
the active phase. Changes in glucose do not alter spike envelopes or the silent 
phase potentials [5]. This is found theoretically when the effect of increasing 
glucose is modeled by increasing fcca; such changes affect only SLOW but not 
FAST. On the other hand, glucose alters the relative duration of the active and 
silent phases [5]; very low glucose leads to a stable rest state at low V, and 
very high glucose yields continuous spiking. This behavior can be understood 
theoretically by superposing the Ca-nullcline onto Figure IB (see [23, 24]) and 
noting that changing fcoa repositions the nullcline relative to the oscillatory 
and steady state branches. Other biophysical insights from the model's burst 
behavior are described in [4, 6, 7, 23]. An idealized model (without identifiable 
biophysical variables) for neuronal burst activity of this general class has also 
been formulated and studied by Hindmarsh and Rose [14]. Also, Martiel and 
Goldbeter [19] have applied our formalism to understand complex oscillations 
in a model for cyclic AMP signaling in Dictyostelium amoebae. 
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If, in (3.1)-(3.3), n acts too rapidly (i.e., Xn large enough), then the upper 
steady state, for fixed Ca, is stable and the model behaves as in Figures IA 
and 2A. This parameter range has not been found experimentally; relaxation 
slow waves have not been observed. Finally, if n acts too slowly, then the FAST 
dynamics of the Chay-Keizer model correspond to Figures 1C and 2C. This 
would predict that, as glucose increases, the response would evolve from steady 
state (Ca to right of HC) to continuous spiking (average Ca to left of HC) 
without passing through a bursting regime. Such conditions have been induced 
experimentally with TEA (see Figure 4 of [3]). 

A well-studied neuronal pacemaker (see, e.g., [1]) exhibits parabolic bursting. 
Plant [21] formulated a model for such a system; our FAST/SLOW analysis [24, 
25] reveals that its structure is that of Figures ID and 2D. In this model, the 
inward current for fast spike generation is carried by sodium ions rather than 
calcium ions. There is also experimental evidence for an additional, and very 
slow, inward current with a substantial calcium component. In the model, this 
means there are two slow variables: the above-mentioned slow membrane con
ductance for calcium (an equation like h but with a much slower rate) and the 
intracellular free calcium concentration (with dynamics as in (3.3)). Parameter 
adjustments in the model (in particular, merely in the slow subsystem, as de
scribed qualitatively in §2) can lead to bursting, to smooth slow wave activity 
without spiking, or to continuous spiking. In Plant's formulation, as well as some 
others (see [1]), the biophysical mechanism for calcium feedback was modeled by 
a calcium-activated potassium (outward) channel. This view has been reconsid
ered, and an alternative hypothesis (see [1], and its references) involves calcium 
inactivation of the slow inward current. We have also shown how this second 
hypothesis can be formulated and explored, without altering the fast subsystem 
[25]. 

Plant's original model was also studied by Honerkamp et al. [16]. Kopell 
and Ermentrout [18] also consider a mechanism for parabolic bursting in which 
a degenerate homoclinic connection plays a key role. Their hypotheses however 
are not satisfied by Plant's model, and they did not require feedback from FAST 
to produce an oscillation in SLOW (in this sense, the slow subsystem would 
generate an oscillation independently, and thus it acts more like a driving force 
for FAST). 

Models of bursting of the type represented by Figures IE and 2E have been 
studied in the context of the Belousov-Zhabotinskii oscillating chemical reaction 
(see [24, 25] and references therein). Such bursting has not been exposed for 

-aquantitative biophysicalmodebor^widely-studied^experimentahprepaxatlmrför^ 
excitable membranes. On the other hand, the classical Hodgkin-Huxley model 
exhibits a bifurcation structure like Figure IE (left), with y representing the ap
plied external current [22]. Experiments show that the squid axon behaves this 
way in appropriate regimes [11]. This bifurcation structure can be seen also with 
variations in other parameters of the Hodgkin-Huxley model, and presumably 
if such parameters can be appropriately treated as slow autonomous, dynamic 
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variables then such bursting could be generated. The "skip runs" observed ex
perimentally by Guttman and Barnhill [12] are similar in appearance to Figure 
2E, and are suggestive of this type of mechanism. 

An idealized nerve membrane model which exhibits bursting as represented 
by Figures IE and 2E was formulated and studied numerically (FitzHugh and 
Rinzel, 1976, unpublished). The fast subsystem for this model is the classical 
FitzHugh-Nagumo equation [10, 20]. For appropriate parameter values, it has 
the subcriticai Hopf bifurcation structure of Figure IE (left) with applied current 
/ as the parameter [17, 30]. By formulating a suitable slow dynamics for J, one 
generates the desired burst behavior. The model takes the following form: 

v = v- v3/3 -w + y + I, (3.4) 

w = (j)(v + a — bw), (3.5) 

y = e(-v + c-dy), (3.6) 

in which J is fixed and y describes slow modulation of the current. Figures 4A 
and 4B illustrate the time course of a burst pattern for the parameter values: 
J = 0.3125, a = 0.7, 6 = 0.8, c = -0.775, d = 1.0, (j) = 0.08, and e = 0.0001. 
These plots illustrate the characteristic decay and growth of small oscillations 
during the silent phase. Observe also that, when the silent phase ends, y typ
ically has progressed considerably above the value corresponding to the Hopf 
bifurcation (represented by the horizontal dashed line in Figure 4B) in the fast 
subsystem. Projection of an active and silent phase of this solution onto the y-v 
plane (Figures 4C and 4D) yields a comparison with the FAST/SLOW predic
tion. Notice also, over the time interval for Figures 4A and 4B, that the response 
does not appear to be periodic; its period could be long or the solution may be 
chaotic. We did not explore this in detail, but we found that such behavior is not 
uncommon for this model. This contrasts with our experience [26, 27] with spe
cific models having this general structure for Belousov-Zhabotinskii oscillations 
where periodicity occurred more typically. We are uncertain about the primary 
factors which contribute to the solution behavior for (3.4)-(3.6). One possibility 
is that the attraction of the pseudo steady state, to the left of HB, is weak; 
its exponential rate is approximately 0.008, only 1/10 of </>, the rate of w. This 
weak attraction likely contributes to irregularity and to premature reentry of the 
active phase before y reaches HB. Since small oscillations of the silent phase are 
not damped rapidly, the v-w trajectory (as y moves rightward toward HB) may 
cross the unstable periodic solution (dashed in Figures 4C and 4D) of FAST and 
then proceed to the "outer" stable oscillatory attractor before y reaches HB\ 
this is premature reentry. (Note, corresponding phenomena were observed in 
the Chay-Keizer model, an example of the class represented by Figures IB and 
2B). The model, (3.4)-(3.6), can also exhibit bistability in the burst response, 
i.e., two different stable burst patterns for the same parameter values. One can 
hope that this model is simple enough so that further insight might be obtained 
analytically. Honerkamp et al. [16] have also studied a model of this sort. 
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FIGURE 4. Solution to the bursting model, (3.4)-(3.6); parameters given in 
text. (A), (B): time course of v (fast variable) and y (slow variable), respectively. 
Projection of silent phase (C) and active phase (D) of a burst (time interval 
indicated by bar in (A)) onto bifurcation diagram of fast subsystem (cf. Figure 
IE). 

4. Discussion. We have outlined our formal approach to understanding 
qualitatively the different mechanisms for bursting in a number of models. Our 
FAST/SLOW dissection is essentially the first step in a systematic singular per
turbation treatment of these complex oscillations. We have computed numeri
cally, for some explicit models, the bifurcation structures (slow manifolds) cor
responding to each of the cases schematized in Figure 1. In such efforts the 
automatic capabilities of AUTO [9] for branch-tracking, bifurcation, and stabil
ity analysis of stable and unstable, steady state, and/or periodic solutions havë^ 
been extremely useful. Solutions to the full models were usually obtained by 
Gear's method of numerical integration for stiff equations [13]. We hope that 
these explicit examples will motivate analysts to provide a more rigorous ba
sis and insight for our formal approach. The early results of Tikonov [29] and 
others (see [31] for an introduction and references) provide some groundwork 
for relaxation oscillators like that of Figure IA. Such work must be extended to 



BURSTING MECHANISMS IN EXCITABLE SYSTEMS 1591 

cases in which the slow manifold has more complex solution sets. (For recent 
analytic work in this direction, see [28].) In Figures IB, 1C, and ID, the branch 
of oscillatory solutions terminates in a homoclinic orbit. One could imagine even 
more complex attractors for FAST. The examples we have discussed are minimal 
in this regard. Also, we have not addressed the details of solution structure to 
the full model as parameters are varied, for example, of how the transition is 
made of a burst pattern of n-spikes to one of (n + l)-spikes, of how bursting goes 
into continuous spiking, or of how chaos arises (see, for example, [8]). 

Questions of mathematical rigor also arise in regard to applying the method 
of "averaging" to obtain further reduced descriptions of burst activity. As we 
have seen, for small e, each rapid oscillation during the active phase of a burst 
produces a small net increment in the slow variables. For given values of the 
slow variables, this increment is approximately equal to (e times) the expression 
given in (2.1). With this information, one may obtain an approximation to the 
time course of the slow variables. The "averaged" dynamics for the active phase 
are 

y = eG(xOBC,y), (5.1) 

and, for the silent phase, we have 

y = eG(xBB,y). (5.2) 

Note, the quantity G(xOBC, y) may be computed during the numerical determina
tion of the oscillatory solution branch of the global bifurcation structure (e.g., as 
in Figure IB, right). We [24] have applied successfully this averaged description, 
in certain parameter ranges, to the simplified Chay-Keizer model, (3.1)-(3.3). 
The method, however, did not predict accurately the behavior in the transition 
from bursting to continuous spiking. More rigorous analysis is needed here. 

We do not view our catalog of bursting mechanisms as complete. Also, we 
appreciate that the classifications are not rigorous but that they convey the 
qualitative essence. Furthermore, our experience shows, for a model with given 
nonlinearities, by varying the time scale of merely one of the fast variables that 
different response classes can be obtained. For example, different values of Xn 

in (3.1)-(3.3) can yield the behavior of Figures IA, IB, or 1C. 
The qualitative categorizations of Figures 1 and 2 allow us to realize better the 

limitations and richness of specific models. By identifying the fast and slow time 
scales, and the underlying structure, we can identify parameters which affect 
certain aspects, but not others, of solution behavior. The work does not stop 
here, however. For explicit models one can ask about absolute quantities and 
values. How small must e be to match the time scale of experimentally observed 
patterns and to guarantee that our FAST/SLOW analysis is valid? How robust 
is the bursting mechanism to parameter variations in the physiologic range? 
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1. Introduction. Research on theoretical problems in robotics looks ahead 
to a future generation of robots substantially more autonomous than present 
robotic systems, whose algorithmic and software capabilities remain rather prim
itive. The capabilities which this research aims to create can be grouped into 
three broad categories: sensing, planning, and control. Of these three, plan
ning involves the use of an environment model to carry out significant parts of a 
robot's activities automatically. The aim is to allow the robot's user to specify 
a desired activity in very high level, general terms, and then have the system 
fill in the missing low-level details. For example, the user might specify the end 
product of some assembly process and ask the system to construct a sequence of 
assembly substeps; or, at a less demanding level, to plan collision-free motions 
which pick up individual subparts of an object to be assembled, transport them 
to their assembly position, and insert them into their proper places. 

Studies in this area have shown it to have significant mathematical content; 
tools drawn from classical geometry, topology, algebraic geometry, algebra, and 
combinatorics have all proved relevant. This work relates closely to work in 
computational geometry, an area which has also progressed very rapidly during 
the last few years. 

2. Statement of the problem. In its simplest form, the motion planning 
problem can be defined as follows. Let B be a robot system consisting of a 
collection of rigid subparts (some of which may be attached to each other at 
certain joints, while others may move independently) having a total of fc degrees 
of freedom, and suppose that B is free to move in a two- or three-dimensional 

-spaee4^amidst-a=eolleetion=of=obstacle8=wh^ 
system. The motion planning problem for B is: Given an initial position Z\ and 
a desired final position Z<i of B, determine whether there exists a continuous 
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FIGURE l 

obstacle-avoiding motion of B from Z\ to Z<i, and if so plan such a motion. See 
Figure 1 for an illustration of this problem. 

This problem has been studied in many recent papers (cf. [LPW, Mol, 
Ud, Re, SSI, SS2, SS3, SA, SS4, Yal, OY, OSY1, OSY2, LSI, LS2, 
LS3, KS1, KS2, KLPS, SiS, HJW1, HJW2, HW, HSS2, JP, Ya3, Ya4]). 
Interesting heuristic and approximating approaches to the problem have also 
been developed by Lozano-Perez, Brooks, Mason, Taylor, and their collaborators; 
see [Bri, Br2, BLP, LP, LP2]. It is equivalent to the problem of calculating the 
path-connected components of the (fc-dimensional) space FP of all free positions 
of B (i.e., the set of positions of B in which B does not contact any obstacle) 
and is therefore a problem in "computational topology." In general FP is a 
high-dimensional space with irregular boundaries and is thus hard to calculate 
efficiently. 

Studies of the motion planning problem tend to make heavy use of many algo
rithmic techniques in computational geometry. Various motion-planning related 
problems in computational geometry will be reviewed in §5. 

3. Motion planning in static and known environments. As above, let 
B be a moving robot system, fc be its number of degrees of freedom, V denote 
the two- or three-dimensional space in which B is free to move, and FP denote 
the space of free positions of B, as defined above. The space FP is determined by 
the collection of algebraic inequalities which express the fact that at position Z 
the system B avoids collision with any of the obstacles present in its workplace. 
We will denote by n the number of inequalities needed to define FP and call 
it the "geometric (or combinatorial) complexity" of the given instance of the 
motion planning problem. As noted, we make the reasonable assumption that 
the parameters describing the degrees of freedom of B can be chosen in such a 
way that each of these inequalities is algebraic. Indeed, the group of motions 
(involving various combinations of translations and rotations) available to a given 
robot can ordinarily be given algebraic representation, and the system B and its 
environment V can typically be modeled as objects bounded by a collection of 
algebraic surfaces (e.g., polyhedral, quadratic, or spline-based). 
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(a) The general motion planning problem. Assuming then that FP is an alge
braic or semialgebraic set in Ek, it was shown in [SS2] that the motion planning 
problem can be solved in time polynomial in the number n of algebraic con
straints defining FP and in their maximal degree, but doubly exponential in fc. 
The general procedure described uses a decomposition technique due to Collins 
[Co] and originally applied to Tarski's theory of real closed fields. 

Collins's key definitions and theorems are as follows: 

DEFINITION 1. For any subset X of Euclidean space, a decomposition of X 
is a finite collection K of disjoint connected subsets Y of X whose union is X. 
Such a decomposition is a Tarski decomposition if each subset F is a Tarski set, 
i.e., a ("semialgebraic") set described by finitely many polynomial equalities and 
inequalities. 

DEFINITION 2. A cylindrical algebraic decomposition of Er is defined as 
follows. For r = 1 such a decomposition is just a partitioning of E1 into a 
finite set of algebraic numbers and into the finite and infinite open intervals 
delimited by these numbers. For r > 1, a cylindrical algebraic decomposition of 
Er is a decomposition K obtained recursively from some cylindrical algebraic 
decomposition K' of Er~1 as follows. Regard Er as the Cartesian product of 
Er~x and E1 and accordingly represent each point p of Er as a pair [a:, y] with 
x G Er~1 and y G E1. Then K must be defined in terms of K! and an auxiliary 
polynomial P = P(x, y) with rational coefficients, in the following way: 

(i) For each c G K1, let c x E1 designate the cylinder over c, i.e., the set of all 
[x, y] such that x E c. 

(ii) For each c G K' there must exist an integer n, such that for each x G c 
there are exactly n distinct real roots fi(x),..., fn(x) of P(x,y) (regarded as a 
polynomial in y), and these roots must vary continuously with x. We suppose in 
what follows that these roots have been enumerated in ascending order. Then 
each one of the cells of K which intersects cxE1 must have one of the following 
forms: 

(ii.a) {[x,y]:x G c, y < fi(x)} (lower semi-infinite "segment" oi ex E1). 

(ii.b) {[x, fi(x)]: xec} ("section" of c x E1). 

(ii.e) {[x,y}:x G c, fc(x) < y < fi+i(x)} ("segment" o f c x ^ 1 ) . 

(ii.d) {[x,y]:x G c, fn(x) < y} (upper semi-infinite "segment" oî ex E1). 

All these cells are said to have c as their base cell in K'\ K1 is said to be the 
base decomposition, and P the base polynomial, of K. 

It follows easily by induction that each of the sets constituting a cylindrical 
algebraic decomposition K of Er is topologically equivalent to an open cell of 
some dimension fc < r. We can therefore refer to the elements c G ü C a s the 
(open) Collins cells of the decomposition K. 

DEFINITION 3. Let S be a set of functions of r variables, and K a cylindrical 
algebraic decomposition of Er. Then K is said to be S-invariant if, for each c 
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in K and each / in S, one of the following conditions holds uniformly for x G c: 
either 

(a) f(x) = 0 for all x G c; or 
(b) f(x) < 0 for all x G c; or 
(c) f(x) > 0 for all xEc. 
DEFINITION 4. A point p E Er is algebraic if each of its coordinates is a 

real algebraic number. A defining polynomial for p is a polynomial with rational 
coefficients whose set of roots includes all the coordinates of p. 

THEOREM 1 (COLLINS). Given any finite set S of polynomials with rational 
coefficients in r variables, one can effectively construct an S-invariant cylindrical 
algebraic decomposition K of Er into Tarski sets such that each c G K contains 
an algebraic point. Moreover, defining polynomials for all these algebraic points, 
and quantifier-free defining formulae for each of the sets c G K} can also be 
constructed effectively. 

The theorem is proved by inductive consideration of polynomial resultants 
and is hence constructive (though by no means suggestive of an efficient algo
rithm). [SS2] supplements this result with the following technical definition and 
addendum: 

DEFINITION 5. A Collins decomposition K is said to be well-based if the 
following condition holds. Let Kf be the base decomposition and P(b, x) the 
base polynomial of K. Then we require that P(b, x) should not be identically 
zero for any b G i £ r - 1 . Moreover, we require that this same condition apply 
recursively to the base decomposition K'. 

THEOREM 2. The collection of compact cells of a (well-based ) Collins de
composition of Er forms a regular cell complex. 

COROLLARY 3. For each j , the (singular) homology group Hj(V) of the real 
algebraic variety V defined by any set Tl of polynomial equations P(x\,... ,xn) = 
0 with rational coefficients can be computed in a purely rational manner from the 
coefficients of the polynomials P. 

The techniques used to prove this theorem relate closely to the method used 
by Hironaka [Hi] to prove triangulability of real algebraic varieties. Constructive 
determination of the cell incidence relationships needed to prove Corollary 3 is 
achieved by considering the Laurent series for solutions of polynomial equations 
derived from the cell decomposition. 

Corollary 3 yields an effective procedure for calculating the Oth homology 
group, i.e., the connected components, of any semialgebraic configuration space 
F P The complexity of this procedure is shown in [SS2] to be of the same order 
of magnitude of Collins's original procedure, and as stated above, it is poly
nomial in the number of constraints defining FP and in their maximal degree, 
but is doubly exponential in fc. Though hopelessly inefficient in practical terms, 
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this result nevertheless serves to calibrate the computational complexity of the 
motion planning problem. 

(b) Lower bounds. The result just cited suggests that motion planning be
comes harder rapidly as the number fc of degrees of freedom increases; this con
jecture has in fact been proved for various model "robot" systems. Specifically, 
Reif [Re] proved that motion planning is PSPACE-hard for a certain 3-D system 
involving arbitrarily many links and moving through a complex system of narrow 
tunnels. Since then PSPACE-hardness has been established for simpler moving 
systems, including 2-D systems of mechanical linkages (Hopcroft, Joseph, and 
Whitesides [HJW2]), a system of 2-D independent rectangular blocks sliding 
inside a rectangular box (Hopcroft, Schwartz, and Sharir [HSS2]), and a single 
2-D arm with many links moving through a 2-D polygonal space (Joseph and 
Plantinga [JP]). Several weaker results establishing NP-hardness for still simpler 
systems have also been obtained. 

The Hopcroft-Joseph-Whitesides result is established by showing that, given 
an arbitrary Turing machine T with a fixed bounded tape memory, one can 
construct a planar linkage L whose motions simulate the actions of T, so that 
L can only move from a specified initial to a specified final configuration if the 
Turing machine T eventually halts. The size of the linkage L constructed is 
polynomially bounded by the size of T's state table and memory tape. One 
proceeds by noting that the actions of an arbitrary T can easily be characterized 
by a set of polynomial constraints, and then by using the (classical) Kempe, 
1876 result [Ke] which shows how bo construct a mechanical linkage capable of 
representing any specified multivariate polynomial P(x\,...,xn). 

In more detail, a planar linkage is a mechanism consisting of finitely many 
rigid rods, of prespecified lengths, joined together at some of their endpoints 
by hinge-pins about which they are free to rotate. Any number of rod-ends are 
allowed to share a common hinge-pin; and particular pins can be held at specified 
points by being "fastened to the plane." Aside from this, the hinge-pins and rods 
are free to move in the plane, and it is assumed that the motion of one rod does 
not impede the motion of any other (i.e., the rods are allowed to "pass over" 
each other). Such a linkage is said to represent the multivariate polynomial 
P(x\, ...,xn) if there exist n hinge-pins p\,... ,pn which the linkage constrains 
to move along the real axis, and an (n + l)st hinge-pin po which the linkage 
contrains to lie at the real point P(x±, ...,xn) whenever p i , . . . ,pn are placed at 
the real points x\,...,xn. (It is assumed that the linkage leaves p\,... ,pn free 
to move independently over some large interval of the real axis.) 

—^be^existence=of^a4ink^^ 
just explained is established by exhibiting linkages which realize the basic op
erations of addition, multiplication, etc. and then showing how to represent 
arbitrary combinations of these operations by fastening sublinkages together ap
propriately. 

The Hopcroft-Schwartz-Sharir result on PSPACE-hardness of the coordinated 
motion planning problem for an arbitrary set of rectangular blocks moving inside 
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a rectangular frame is proved similarly. It is relatively easy to show that the 
actions of an arbitrary tape-bounded Turing machine can be imitated by the 
motions of a collection of similarly sized nearly rectangular "keys" whose edges 
bear protrusions and identations which constrain the manner in which these 
"keys" can be juxtaposed, and hence the manner in which they can move within 
a confined space. A somewhat more technical discussion then shows that these 
keys can be cut appropriately into rectangles without introducing any significant 
possibilities for motion of their independent parts that do not correspond to 
motions of entire keys. 

(c) The "projection method." In spite of these negative worst-case results, sev
eral acceptably efficient algorithms for planning the motions of various simple 
robot systems have been developed. These involve various general approaches 
to the design of motion planning algorithms. The so-called projection method 
uses ideas similar to those appearing in the Collins decomposition procedure 
described above. One fixes some of the problem's degrees of freedom (for the 
sake of exposition, suppose just one parameter y is fixed, and let x be the re
maining parameters); then one solves the resulting restricted (fc — l)-dimensional 
motion planning problem. This subproblem solution must be such as to yield 
a discrete combinatorial representation of the restricted free configuration space 
(essentially, a cross-section of the entire space FP) that changes only at a finite 
collection of "critical" values of the final parameter y. These critical values of y 
are then calculated; they partition the entire space FP into connected cells, and 
by calculating relationships of adjacency between these cells one can describe 
the connectivity of FP by a discrete connectivity graph CG. This graph has 
the aforesaid cells as vertices and has edges which represent relationships of cell 
adjacency in FP. The connected components of FP correspond in a one-to-one 
manner to the connected components of CG, reducing the problem to a discrete 
path searching problem in CG. 

This relatively straightforward technique was applied in a series of papers by 
Schwartz and Sharir on the "piano movers" problem, to yield polynomial time 
motion planning algorithms for various specific systems. These initial solutions 
were coarse and not very efficient; subsequent refinements have improved their 
efficiency substantially. 

A typical example that has been studied extensively is the case of a line 
segment B (a "rod" ) moving in two-dimensional polygonal space whose boundary 
consists of n segments ("walls"). Here the configuration space FP is three-
dimensional, and it can be decomposed into cells efficiently using a modified 
projection technique developed by Leven and Sharir [LSI]. 

In this approach one starts by restricting the motion of B to a single degree 
of freedom of translation along its length. For this trivial subproblem the re
stricted FP simply consists of an interval which can be represented by a discrete 
label [wi,W2] consisting of the two walls against which B stops when moving 
backwards or forwards from its given placement. 
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FIGURE 2 

Next one admits a second degree of freedom by allowing arbitrary translational 
motion of B. The restricted FP can now be decomposed into "noncritical" 
trapezoidal regions, over each of which the label [^1,^2] for the restricted 1-D 
subspace remains constant. 

Finally one introduces the final rotational degree of freedom 0. Again one can 
show that topologically significant changes only occur when 0 crosses certain 
critical orientations, at which the combinatorial characterization of the left or 
right boundary of a noncritical 2-D region R changes discontinuously (some of 
these critical orientations are illustrated in Figure 2). 

Leven and Sharir show that the number of critical orientations is at most 
0(n2) and that, assuming B and the walls are in "general position," each critical 
orientation delimits only a small constant number of cells. Thus the total number 
of cells in FP is also 0(n2). [LSI] presents a fairly straightforward algorithm 
for constructing these cells and for establishing their adjacency in FP, which 
runs in time 0(n2 logn), a very substantial improvement of the 0(n5) algorithm 
originally presented in [SSI]. 

O'Rourke [OR] has recently shown that for certain configurations there exist 
two placements of B reachable from one another, but they are such that any 
motion between them must consist of Q(n2) different simple submotions, proving 
that the Leven-Sharir algorithm is nearly optimal in the worst case. 

(d) The "retraction method" and other approaches to the motion planning 
problem. Several other important algorithmic motion planning techniques were 
developed subsequent to the simple projection technique originally considered. 
The so-called retraction method proceeds by retracting the configuration space 
FP onto a lower-dimensional (usually a 1-dimensional) subspace N, so that two 
system positions in FP lie in the same connected component of FP if and only if 
their retractions to N lie in the same connected component of N. This reduces 
the dimension of the problem, and if N is 1-dimensional the problem becomes 
one of searching a graph. 

O'Diffiläing^älid^Yäp^öY 
case of a disc moving in 2-D polygonal space. Here the subspace JV can be taken 
to be the Voronoi diagram associated with the set of given polygonal obstacles. 
Their technique yields an O(nlogn) motion planning algorithm. After this first 
paper O'Dunlaing, Sharir, and Yap [OSY1, OSY2] generalized the retraction 
approach to the case of a rod moving in 2-D polygonal space by defining a variant 
Voronoi diagram in the 3-D configuration space FP of the rod and by retracting 
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onto this diagram. This diagram consists of all placements of the rod at which 
it is simultaneously nearest to at least two obstacles. The Voronoi diagram 
defined by a set of obstacles in general position can readily be divided into 2-D 
Voronoi sheets (placements in which the rod is simultaneously nearest to two 
obstacles), which are bounded by 1-D Voronoi edges (placements in which the 
rod is nearest to three obstacles), which in turn are delimited by Voronoi vertices 
(placements in which the rod is nearest to four obstacles; cf. Figure 3). The 
algorithm described in [OSY1, OSY2] actually constructs a 1-D subcomplex 
within the Voronoi diagram; this complex consists of the Voronoi edges and 
vertices plus some additional connecting arcs. It is shown in [OSY1] that this 
Voronoi "skeleton" characterizes the connectivity of FP, in the sense that each 
connected component of FP contains exactly one connected component of the 
skeleton. A fairly involved geometric analysis given in [OSY2] shows that the 
total number of Voronoi vertices is 0(n2 log*n) and that the entire "skeleton" can 
be calculated in time 0(n2 log n log*n) (a substantial improvement of the original 
projection technique, but nevertheless a result shortly afterward superceded by 
[LSI]). 

A similar retraction approach was used by Leven and Sharir [LS2] to obtain 
an 0(n log n) algorithm for planning the purely translational motion of a simple 
convex object B amidst polygonal barriers. This last result uses another gen
eralization of the Voronoi diagram, known as the B-Voronoi diagram, which is 
defined as follows. Let O be a reference point within B, which we assume to lie 
initially at the origin, and define a generalized distance function dß by 

dß(p>Q) = min{A: q E p + XB}. 

(The generalized distance function dß satisfies the triangle inequality but is 
not symmetric in general.) Define the B-Voronoi diagram of the given set S of 
obstacles to consist of all points p for which there exist at least two obstacles 
s\, 82 such that 

dß(p, st) = dB(p, s2) < dB(p, s) 

for all s E S\ see Figure 4 for an illustration of such a diagram. 
Though of a more complex structure than standard Voronoi diagrams, the 

B-diagram retains most of the useful properties of standard Voronoi diagrams. 
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FIGURE 4 

In particular, its size is linear in the number of obstacles in S, and, if B has 
sufficiently simple shape, can be calculated in time O(nlogn), using a variant of 
the technique described in [Ya2]. 

Next, let N be the portion of the JB-diagram consisting of points whose B-
distance from the nearest obstacle is greater than 1. Then any translate of B in 
which the reference point O on B is placed at a point in N is a free placement 
of B. It is proved in [LS2] that N characterizes the connectivity of the free 
configuration space of B, in the sense defined above, so that, for purpose of 
planning, motion of B can be restricted to have the reference point O move 
only along N. This yields an O(nlogn) motion planning algorithm for this 
case. (A somewhat simpler 0(n log2 n) algorithm, based on a general technique 
introduced by Lozano-Perez and Wesley [LPW], was described somewhat earlier 
by Kedem and Sharir [KSI] (cf. also [KLPS]); this last result makes use of an 
interesting topological property of intersecting planar Jordan curves.) 

Recently Sifrony and Sharir [SiS] have devised another retraction-based al
gorithm for the motion of a rod in 2-D polygonal space. Their approach is to 
construct the 1-D network of arcs within FP consisting of all the 1-D edges on 
the boundary of FP (each such edge consists of semifree placements in which the 
rod simultaneously makes two specific contacts with the obstacles), plus several 
additional arcs which connect different components of the boundary of FP that 
bound the same connected component of FP. Again, this network characterizes 
the connectivity of FP, so that a motion planning algorithm need only consider 
motions proceeding within this network. The Sifrony-Sharir approach generates 
motions in which the rod is in contact with the obstacles and is thus conceptu
ally somewhat inferior to the Voronoi-diagram based techniques, which aim to 
keep the moving system between obstacles, not letting it get too close to any 
single obstacle. However the network in [SiS] is much simpler to analyze and to 
construct. Specifically, it is shown in [SiS] that this network has 0(n2) vertices 
and edges and can be constructed in time 0(n2 log n). (Actually, the network 
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FIGURE 5 

size is bounded by the number K of pairs of obstacles lying at distance less than 
or equal to the length of the moving rod, and the complexity of the algorithm 
is bounded by 0(K log n). Thus if the obstacles are not too badly cluttered 
together, the Sifrony-Sharir algorithm will run quite efficiently; this makes the 
approach in [SiS] more attractive than the previous solutions in [OSY2, LSI].) 

4. Variants of the motion planning problem. 
(a) Optimal motion planning. The only optimal motion planning problem 

which has been studied extensively thus far is that in which the moving system 
is represented as a single point, in which case one aims to calculate the shortest 
Euclidean path connecting initial and final system positions, given that specified 
obstacles must be avoided. Most existing work on this problem assumes that the 
obstacles are either polygonal (in 2-space) or polyhedral (in 3-space). 

The 2-D case is considerably simpler than the 3-D case; see Figure 5. When 
the free space V in 2-D is bounded by n straight edges, it is easy to calculate 
the desired shortest path in time 0(n2 log n). This is done by constructing a 
visibility graph VG whose edges connect all pairs of boundary corners of V which 
are visible from each other through V, and then by searching for a shortest path 
through VG (see [ShS] for a sketch of this idea). This procedure was improved 
to 0(n2) by Asano et al. [AAGHI], by Welzl [We], and by Reif and Storer [RS], 
using a cleverer method for constructing VG. Their quadratic time bound has 
been improved in certain special cases. However, it is not known whether shortest 
paths for a general polygonal space V can be calculated in subquadratic time. 
Among the special cases allowing more efficient treatment, the most important is 
that of calculating shortest paths inside a simple polygon P. Lee and Preparata 
[LeP] gave a linear time algorithm for this case, assuming that a triangulation 
of P is given in advance. (As a matter of fact, a recent algorithm of Tarjan 
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and Van Wyk shows that triangulation in O(rcloglogn) time is always possible.) 
The Preparata-Lee result was recently extended by Guibas et al. [GHLST], 
who gave a linear time algorithm which calculates the shortest paths from a 
fixed source point to all vertices of P. 

The 3-D polyhedral shortest path problem is substantially more difficult. To 
calculate shortest paths in 3-space amidst polyhedral obstacles bounded by n 
edges, we can begin by noting that any such path must be piecewise linear with 
corners lying on the obstacle edges, and that it must subtend equal incoming and 
outgoing angles at each such corner; see Figure 6. These remarks allow shortest 
path calculation to be split into two subproblems: (i) Find the sequence of edges 
through which the desired path must pass; (ii) Find the contact points of the 
path with these edges. A recent result of Canny and Reif [CR] indicates that 
the 3-D problem is NP-hard. 

One of the reasons the problem is difficult in the general polyhedral case 
is that consecutive edges crossed by the shortest path can be skewed to one 
another. There are, however, some special cases in which this difficulty does not 
arise, and they admit efficient solutions. One such case is that in which we aim 
to calculate shortest paths lying along the surface of a single convex polyhedron 
having n edges. In this case subproblem (ii) can easily be solved by "unfolding" 
the polyhedron surface at the edges crossed by the path, thereby transforming 
the path to a straight segment connecting the unfolded source and destination 
points (cf. [ShS]). Extending this observation, Mount [Mo2] has devised an 
0(n2 log n) algorithm, which proceeds by sophisticating an algorithmic technique 
originally introduced by Dijkstra to find the shortest path in graphs, specifically 
by maintaining and updating a combinatorial structure characterizing shortest 
paths from a fixed initial point to each of the edges of the polyhedron (cf. also 
[ShS] for an initial version of this approach)_. _ 

This result has recently been extended in several ways. A similar 0(n2 logn) 
algorithm for shortest paths along a (not necessarily convex) polyhedral surface 
is given in [MMP]. [BS] considers the problem of finding the shortest path 
connecting two points lying on two disjoint convex polyhedral obstacles, and 
the authors report a nearly cubic algorithm, which makes use of the Davenport-
Schinzel sequences described below. The case of shortest paths which avoid a 
fixed number fc of disjoint convex polyhedral obstacles is analyzed in [Sh3], which 
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describes an algorithm that is polynomial in the total number of obstacle edges, 
but is exponential in fc. Finally, an approximating pseudopolynomial scheme 
for the general polyhedral case is reported in [Pa]; this involves splitting each 
obstacle edge by adding sufficiently many new vertices and by searching for the 
shortest piecewise linear path bending only at those vertices. 

5. Results in computational geometry relevant to motion planning. 
The various studies of motion planning described above make extensive use of 
efficient algorithms for the geometric subproblems which they involve, for which 
reason motion planning has encouraged research in computational geometry. 
Problems in computational geometry whose solutions apply to robotic motion 
planning include the following: 

(a) Intersection detection. The problem here is to detect intersections and 
to compute shortest distances, e.g., between moving subparts of a robot system 
and stationary or moving obstacles. Simplifications which have been studied 
include that in which all objects involved are circular discs (in the 2-D case) or 
spheres (in the 3-D case). In a study of the 2-D case of this problem, Sharir 
[Shi] developed a generalization of Voronoi diagrams for a set of (possibly in
tersecting) circles and used this diagram to detect intersections and to compute 
shortest distances between discs in time 0(nlog2 n). (An alternative approach 
to this appears in [IIM]). Hopcroft, Schwartz, and Sharir [HSS1] present an 
algorithm for detecting intersections among n 3-D spheres which also runs in 
time 0(n log2 n). However, this algorithm does not adapt in any obvious way to 
allow proximity calculation or other significant problem variants. 

Other intersection detection algorithms appearing in the computational ge
ometry literature involve rectilinear objects and use multidimensional searching 
techniques for achieving high efficiency (see [Me] for a survey of these tech
niques). 

(b) Generalized Voronoi diagrams. The notion of the Voronoi diagram has 
proven to be a useful tool in the solution of many motion planning problems. 
The discussion given previously has mentioned the use of various variants of 
Voronoi diagram in the retraction-based algorithms for planning the motion of a 
disc [OY], or of a rod [OSY1, OSY2], or the translational motion of a convex 
object [LS2], and in the intersection detection algorithm for discs mentioned 
above [Shi]. The papers just cited and some related works [Ya2, LS4] describe 
the analysis of these diagrams and the design of efficient algorithms for their 
calculation. 

(c) Davenport-Schinzel sequences. Davenport-Schinzel sequences are combi
natorial sequences of n symbols which do not contain certain forbidden sub
sequences of alternating symbols. Sequences of this sort appear in studies of 
efficient techniques for calculating the lower envelope of a set n continuous func
tions, if it is assumed that the graphs of any two functions in the set can in
tersect in some fixed number of points at most. These sequences, whose study 
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FIGURE 7 

was initiated in [DS, Da], have proved to be powerful tools for analysis (and 
design) of a variety of geometric algorithms, many of which are useful for motion 
planning. 

More specifically, an (n,s) Davenport-Schinzel sequence is defined to be a 
sequence U composed of n symbols, such that (i) no two adjacent elements of U 
are equal, and (ii) there do not exist s + 2 indices i\ < %2 < • • • < i3+2 such that 
u%\ — u%3 — uh = ••• = a, U{2 = U{4 = Uie = • - = b, with a ^ b. Let X3(n) 
denote the maximal length of an (n, s) Davenport-Schinzel sequence. An early 
study by Szemeredi [Sz] of the maximum possible length of such sequences shows 
that X3(n) < Csnlog*n, where C3 is a constant depending on s. Improving on 
this result, Hart and Sharir [HS] proved that Xs(n) = Q(na(n)), where a(n) 
is the very slowly growing inverse of the Ackermann function. In [Sh2, Sh5] 
Sharir established the bounds 

A s W=0(naW°W n ' 8 " 3 ») 

and 
As(n) = n(naL(s-1)/2J(n)) 

for s > 3. These results show that, in practical terms, X3(n) is an almost linear 
function of n (for any fixed s). 

Recently, numerous applications of these sequences to motion planning have 
been found. These include the following: 

(i) Let B be a convex fc-gon translating and rotating in a closed 2-D polygonal 
space V bounded by n edges. The polygon containment problem calls for deter
mining whether there exists any free placement of B, i.e., a placement in which 
B lies completely within V. Some variants of this problem have been studied 
by Chazelle [Cha], who showed that if such a free placement of B exists, then 
there also exists a stable free placement of B, namely, a placement in which B 
lies completely within V and makes three simultaneous contacts with the bound
ary of V (see Figure 7). Using Davenport-Schinzel sequences, Leven and Sharir 
have shown in [LS3] that the number of such free stable placements is at most 
0(knXQ(kn)), and that they can all be calculated in time 0(knX§(kn) logfcro). 
Thus, within the same time bound, one can determine whether P can be placed 
inside Q. 
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Based on this result, Kedem and Sharir [KS2] have produced an 
0(knXe(kn) logfcro) algorithm for planning the motion of a convex fc-gon B in a 
2-D polygonal space bounded by n edges. 

(ii) an 0(mna(mn) log m log n) algorithm for separating two interlocking sim
ple polygons by a sequence of translations [PSS], where it is assumed that the 
polygons have m and n sides respectively. 

(iii) an 0(n2Xio(n) logn) algorithm for finding the shortest Euclidean path 
between two points in 3-space avoiding the interior of two disjoint convex poly
hedra having n faces altogether [BS]. 

Other applications are found in [At, HS, CS, SL, OSY2]. 
(d) Topological results related to motion planning. Hopcroft and Wilfong 

[H W] have derived interesting qualitative results concerning the motion planning 
problem using ideas drawn from homology theory. Their basic idea is roughly as 
follows. Consider a connected rigid planar body B moving in the complement 
of a connected obstacle O. Both the body and the obstacle are assumed to be 
closed bounded regions. The space S of all positions of the body is defined by 
two translational and one rotational parameter and can be viewed as a topo
logical equivalent of 3-dimensional Euclidean space provided that we distinguish 
between otherwise identical body positions differing from each other by 360° 
rotations (i.e., pass to the simply connected covering space of the ordinary space 
of positions of B). Let X be the (closed) set of all positions in which B contacts 
O (possibly overlapping O, i.e., with contact between the interior of B and the 
interior of O), and let Y be the (also closed) set of positions in which B does 
not overlap O (but contact between the boundaries of B and of O is allowed). 
Then plainly S = X U Y, while X n Y is the space of all positions in which B 
contacts, but does not penetrate, O. 

The set X is easily seen to be connected. Indeed, take some point xo E B, 
and consider a body position p\ E X for which some other point x\ E B also 
belongs to O. Then since both B and O are connected, a translational motion 
of B connects the position p\ to a body position po in which XQ lies at some 
standard point within O, and then by rotating B about XQ we can bring B to a 
canonical position. 

The relative homology groups of Hi(S,X) and Hi(Y,Xn Y) are isomorphic; 
and since X is connected, the natural injection of Ho(X) into Ho(S) is an isomor
phism. Hence Hi(S,X) is zero, from which it follows that Hi(Y,XnY) is zero, 
as is H0(Y,XnY) = H0(S,X). Thus the natural injection H0(XCiY) - • H0(Y) 
is an isomorphism also; i.e., two body positions pi , P2 in which B contacts O 
(without overlap) can be connected by a path along which B never overlaps O 
if and only if there exists such a path along which the boundaries of B and O 
remain continuously in contact. 

Much the same argument applies in 3 dimensions, since the covering space of 
the space of all positions of a 3-dimensional body is topologically the product of 
Euclidean 3-space by a 3-sphere, whose only nontrivial homology is in dimension 
3. Hopcroft and Wilfong show that these very general topological arguments 
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extend also to robots capable of deforming as they move, explore the additional 
difficulties which arise if the obstacle O is not simply connected, etc. 
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^HO(J)aHTOBM ypaBHeHHü n aBOJiioii.HH ajireÔpbi 

H. T. BAIIIMAKOBA 

ITO TpaAHUHH AH04>aHTOBW ypaBHeHHH npHHHTO CBH3bIBaTb B HCTOpHH 
MaTeMaTHKH c pa3BHTHeM TeopHH HHceji, a SBOJHOUJKK) ajireôpw — no 
KpattHett Mepe AO cepeAHHw XIX BeKa — c HccjieAOBamieM onpeAeJieHHwx 
ajireôpaHHecKHx ypaBHeHHH, rjiaBHbiM o6pa30M, c npoöjieMott peiiieHHH HX 
B paAHKajiax. Ilpn TaKoft TOHKC 3peHHH ocTaeTCH, OAHaKO, HCHCHMM, neM 
y&e oôycjiaBjiHBajiocb pa3BHTHe ajireöpw c III B. AO H.3 . H AO XVI B. 

H.3. — BeAb K III BeKy AO H.3 EBKJIHA nOABeJI HTOrH HCCJieAOBaHHHM 
KBaApaTHbix ypaBHeHHH, a ypaBHeHHH CTeneHen 3 H 4 ôMJIH peuieHbi 
TOJibKo B XVI BeKe. MejKAy TeM, 3a STOT nepnoA HHCJioBan oöjiacTb ôbijia 
pacuiHpeHa AO nojin Q paijHOHajibHbix HHceji H 6bijia BBeAeHa ÔyKBeHHan 
CHMBOJiHKa, CHanajia A-HH o6o3HaneHHH HeH3BecTHoro H ero CTeneHen, a 
3aTeM H AJiH napaMeTpoB 3aAann. Ajireôpa 3a STO BpeMH ocBoôoAHJiacb OT 
reoMeTpHHecKoro oôJianeHHH H CTajia CTpoHTbcn Ha 6a3e apn(J)MeTHKH. HeM 

MCe M02KHO 3TO o6l>HCHHTb? KaKOBbl 6bIJIH nOÔyAHTejIbHbie npHHHHbl Bcex 
3THX H3MeHeHHH? 

Mbi nocTapaeMCH noKa3aTb, HTO SBOJIIOUHH ajireÖpw, HaHHHan c nep-
Bbix niaroB ee, oôycjiaBJiHBajiacb He TOJibKo HCCJieAOBaHueM onpeAeJieHHbix, 
HO H HeonpexejieHHbix HJIH /IHO4>&HTOBMX ypaBHeHHH, a HMCHHO AHO(J)aH-

TOBblX ypaBHeHHH C paUHOHaJIbHblMH KOS^HAHeHTaMH, pemeHHe KOTOpblX 
HCKajiH B nojie paijHOHajibHbix HHceji Q (HJIH TOJibKo nojiosKHTejibHbix 
pai^HOHajibHbix HHceji Q + ) . 3aAana Haxo:»CAeHHH Bcex pau,HOHajibHbix 
pemeHHH AHO$aHTOBa ypaBHeHHH, a, TeM oÔJiee, H3yneHHH CTpyKTypbi 
MHO^cecTBa penieHHfl eme He cTaBHJiacb. AOCTaTOHHO 6WJIO HafîTH OAHO 
pemeHHe HJIH, ecjiH BO3MOXCHO, ÔecKOHenHO MHoro pemeHHH. 

3jieMeHTbi ajireÔpbi Mbi HaxoAHM BnepBbie B APGBHCM BaBHJiOHe 3a 2 T H -
CHHH jieT AO H.3 . MHoroHHCjieHHbie rjiHHHHbie TaÔJiHiiibi, paGiiiHcfrpoBaH-
Hbie B 20-x roAax Hamero BeKa, CBHAeTejibCTByioT o BMCOKOH MaTe-
MaTHHecKOH KyjibType BaBHjioHHH. KpynHeHiiiHM AOCTHSKCHHCM 3Toro 
BpeMeHH ôbijio pemeHHe KBaApaTHbix ypaBHeHHH B paAHKajiax; HHane 
roBopH, 6buio HaflAeHO BbipaaceHHe AJIH KopHen KBaApaTHoro ypaBHeHHH 

© 1987 International Congress of Mathematicians 1986 

1612 



AM04>AHT0BbI YPABHEHMil M SBOJIIOÎ MH AJirEBPbl 1613 

nepe3 ero K03(})4)Hii,HeHTbi npn noMoiu,H neTbipex AGHCTBHH apn^MeTHKH H 
onepau,HH H3BjieneHHH KBaApaTHoro KOPHH. 

CAeJiaeM HecKOJibKO 3aMenaHHH. Bo-nepBbix, y BaBHjioHHH He ÖbiJio 
CHMBOJIHKH AJi« o6o3HaHeHHH HeH3BecTHbix H napaMeTpoB, nosTOMy «4>op-
Myjia pemeHHH» He 3anncbiBajiacb B o6iu,eM BHAe (KaK STO Reji&eTca y 
Hac), a AGMOHCTpHpOBajiaCb Ha MHOrOHHCJieHHblX OAHOTHnHblX HHCJIOBblX 

npHMepax. Bo-BTopwx, 6ojiee TOHHO roBopHTb He o «4>opMyjie pemeHHH», 
a 06 SKBHBajieHTHOM en ajiropjfTMe, cocTOHin,eM B nepeHHCjieHHH nocjie-
AOBaTejibHbix onepai^HH, KOTopbie HaAO npoH3Becra HaA Kos^^HuneHTaMH, 
MTo6bi nojiyHHTb 3HaneHHe KOPHH ypaBHeHHH. 

EcTecTBeHHo npeAnojiOMCHTb, HTO A-NA nojiyneHHH SToro ajiropHTMa Ba-
BHJiOHHHe AOJiMCHbi ÔbiJiH npeo6pa30BbiBaTb ypaBHeHHH HJIH nacTO BCTpenaio-
iAHecH B Ta6jiHu;ax CHCTCMW 

ax2 ±bx = c, x ± y = a, xy = b 

K BHAy U2 = B. /]|JIH 3T0r0 OHH AOJÎ CHbl ÔbIJIH 3HaTb HeKOTopbie 06-
iAHe CBOHCTBa onepau,HH CJIOMCCHHH H yMHO ĉeHHH, a TaKiace yMeTb A^JiaTb 
noACTaHOBKH. flpyrne npHMepbi, HMeiomnecn B Ta6jiHU,ax, noATBep:>KAaiOT 
3Ty rnnoTe3y. MOHCHO CHHTaTb ycTaHOBJieHHbiM, HTO BaBHJioHHHe 3HajiH 
CBOHCTBa H npaBHjia, KOTopbie Mbi BbipaacaeM cennac c noMomjbio (})opMyji: 

(a ± b)c = ac±bc (1) 

(a±b)2 = a2+b2 + 2ab (2) 

(a + b)(a-b)=a2-b2 (3) 

MTaK, 3a 2 TbICHHH JieT AO H.3 BaBHJIOHHHe 3HaJIH y»Ce CBOHCTBa HeKOTO-
pbix 3aKOHOB KOMno3Hi;HH (4>opMyjia (1) ecTb He HTO HHOe, KaK 3aKOH AHC-

TpHÔyTHBHOCTH yMH05KCHHH no OTHOmeHHK) K CJIOECeHHK)), OCymeCTBJIHJIH 
noACTaHOBKH H pemajiH c noMOiu,bio ajireopannecKHx MCTOAOB KBaApaTHbie 
ypaBHeHHH H sKBHBajieHTHbie HM cncTeMbi. Bce 3TO no3BOJineT roBopHTb 
o HajiHHHH y HHX sjieMeHTOB ajireÖpbi. 3TOT nepBbift 3Tan B pa3BHTHH 
ajireöpbi ÖyAeM ycjiOBHo Ha3biBaTb HHCJIOBOH ajireÖpoft. 

OAHaKO H B 3T0T HanÖoJiee APCBHHH nepnoA B03HHKHOBeHHe H pa3BHTHe 
ajireopannecKHx MCTOAOB 6buiH CBH3aHbi He TOJibKo c pemeHHeM KBaApaT-
Hbix ypaBHeHHH. B caMbix APCBHHX TeKCTax paccMaTpHBaeTCH pemeHHe 
HeonpeAeJieHHbix ypaBHeHHH. OAHHM H3 nepBbix 6buio: 

x2 + y2 = z2. (4) 

PemeHHe ero HCKajiH B pau,HOHajibHbix HHCJiax. BaBHJIOHHHe yMejiH 
HaxoAHTb ero pemeHHH (x,y,z), KOTopbie BnocjieACTBHH nojiynnjiH Ha3BaHHe 
«nn^aropoBbix TpoeK». IIpaBAa, He coßceM HCHO, 3HajiH JIH OHH oÔmne 
4>opMyjibi pemeHHH 3Toro ypaBHeHHH, HO AOCTOBepHo, HTO BaBHJIOHHHe 
CBH3biBajiH «nH(})aropoBbi TPOHKH» C pemeHHeM Apyroro HeonpeAeJieHHoro 
ypaBHeHHH: 

u2 + v2=2w2. (5) 
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A HMeHHO, 6buio ycTaHOBjieHo, HTO ecjin (x, y, z) — pemeHHe ypaBHeHHH (4), 
TO pemeHHe ypaBHeHHH (5) nojiynaeTCH TaK: 

u = x + y, v = x — y, w = z. 

Ho caMoe yAHBHTejibHoe, HTO, 3Han OAHO pemeHHe ypaBHeHHH (5) (UO,VQ,WO), 

OHH yMejiH HaxoAHTb 6ecKOHeHHO MHoro Apyrnx ero pemeHHH BHAa 
(w w ,v n ,wo) . Rn* 3Toro BaBHJIOHHHe nojib30BajiHCb 4)opMyjioiî (CM. [7]): 

(p2 + q2)(a2 + ß2) = (ap - ßq)2 + (aq + ßp)2 = (ap + ßq)2 + (aq - ßp)2, (6) 

KOTopyio Tenepb OÔMHHO Ha3biBaiOT (})opMyjioH KOMno3Hii;HH <})opM BHAa 
x2 + y2. 3Ta 4)opMyjia, KaK Mbi yBHAHM, cbirpajia BbmaiomyiocH pojib B 
MaTeMaTHKe HapoAOB cpeAHeBeKOBoro BocTOKa H Eßponbi. 

<E>opMyjia (6), KaK H APyrne, ycTaHaBjiHBajiacb BaBHJioHHHaMH AJIH 
KOHKpeTHblX HHCejI. OAHaKO, ApeBHHe BbIHHCJIHTejIH nOHHMajIH, HTO BMeCTO 

3THX HHceji MOXCHO noACTaBHTb JiK)6bie APyrne pan,HOHajibHbie 3HaneHHH. 
IlycTb Tenepb UO,VO,WQ — pemeHHe ypaBHeHHH (5); HTOôM noJiyHHTb 

HOBoe pemeHHe, BaBHJIOHHHe npHMeHHJin 4>opMyjibi (6), B3HB TaKHe a, ß, HTO 
a2 -h ß2 = 1 (HanpHMep, a = §, ß = | ) , p = u0, q = v0- TorAa 

2wl = 2zl(a2 + ß2) = (ul + vl)(a2 + ß2) = (au0 - ßv0)
2 + (av0 + ßu0)

2 

= (aito + ßvo)2 + (av0 - ßuo)2, 

T.e. nojiyHHM em;e ABa pemeHHH: 

ui = au0 - ßv0, vi = av0 + ßv>o, 

it2 = auo + /?v0, ^2 = av0 - / ^ o -

Bepn Tenepb STH HOBbie 3HaneHHH B KanecTBe p H q, nojiynHM HOBbie pemeHHH 
H T.A. MOECHO TaKHce 6paTb 3HaneHHH AJIH a H ß. Hx MOMCHO nojiyHHTb H3 

JIK>6OH nH(J)aropoBOH TPOHKH (äf,!/, z), pa3AejiHB Bce HJieHbi Ha z. 

MTaK, yiace Ha nepBOM sTane pa3BHTHH ajireöpw Ha Hee oKa3biBajin BJIHHHHC 
KaK npoÔJieMbi pemeHHH onpeAejieHHbix ypaBHeHHH, TaK H HccjieAOBaHHe H 
pemeHHe AHO<}>aHTOBbix ypaBHeHHH. 

BTopofl 3Tan pa3BHTHH ajireöpw coBnaAaeT e pacn,BeTOM rpenecKoft 

MaTeMaTHKH (V-II BB. AO H.3.). B 3T0 BpeMH MaTCMaTHHeCKHe 3HaHHH, 

HaKanjiHBaeMbie BeKaMH, ôBIJIH npeo6pa30BaHbi B aôcTpaKTHyio HayKy, oc-
HOBaHHyio Ha CHCTeMe AOKa3aTejibCTB — MaTeMaTHKy. ECJIH RJIX BaBHJioHHH 
(KOTOpbie, HeCOMHeHHO, TOHCe npHMeHHJIH OTAeJIbHbie BbIBOAbi) AeHTp TH-
McecTH jieacaji He B MeTOjie nojiyneHHx pe3yjibTaTa, a B C&MOM pe3ym>T&Te, 

TO Tenepb ijeHTp THHCCCTH nepeHOCHTCH Ha MBTOR M MoKaääTejibCTBO. Ilpn 
3TOM AOKa3aTejibCTBO cjiyacHT He TOJibKo AJIä ycTaHOBjieHHH HCTHHbi Toro 
HJIH HHoro npeAJio»ceHHH, HO H AJIH BbiHCHeHHH ero CymHOCTM, KOTOpaH 
pacKpbiBaeTCH nyTeM ycTaHOBjieHHH ero CBH3H C ApyrHMH npeAJioaceHHHMH, 
TeMH, Ha KOTopbie OHO onnpaeTCH, H TCMH, KOTopwe H3 Hero cjieAyiOT. 
3Ty CTopoHy AOKa3aTejibCTB noAnepKHBaji y»ce ApncTOTejib BO «BTOPOH 
aHajiHTHKe». 
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ab 

a2 

b2 

ab 

PncyHOK 1 

TaKoe rjiyöoKoe npeo6pa30BaHHe Harnett HayKH cKa3ajiocb Ha Bcex nacTnx 
ee, B TOM HHCJie Ha apH(|)MeTHKe H ajireÖpe. K KOHU,y V B. AO H.3 . SMJIH 
nOCTpoeHbl OCHOBbl SJieMeHTapHOH TeopHH HHCejI H TeopHH nOJIOMCHTejIbHblX 
paAHOHajibHbix HHceji, KOTopbie paccMaTpHBajincb KaK oTHomeHHH u,ejibix 
(MM 6bi Tenepb CKa3ajiH — KaK napbi u,ejibix), OAHaKO B KJiaccnnecKyio 
anoxy STH OTHomeHHH HHCJiaMH He CHHTajiHCb. nepBOHanajibHO OCHOBOH 
MaTeMaTHKH cjiy^CHJia apH(J)MeTHKa; c ee noMoiub CTpoHjiacb TeopHH My3biKH 
(rapMOHHn), acTpoHOMHH H HacTHHHO reoMeTpHH (yHeHHe O nOAOÖHH). 3 T O 
6bijia nepBan nonbiTKa apH^MeTHsaijHH MaTeMaTHKH H MaTeMaTHnecKoro ec-
TecTB03HaHHH, KOTopaH Hamjia CBoe Bbipa^ceHHe B KpbiJiaTOM a<J)opH3Me paH-
HHX nH^aropeni^eB «Bce ecTb HHCJIO». OrapbiTHe HecoH3MepHMbix OTpe3KOB 
(oTHomeHHe KOTopbix He BbipaiacaeTCH oTHomeHHeM u,ejibix nnceji) npHBejio 
K KpH3Hcy apH({)MeTHHecKOH KOHî enî HH. BcKope 6ojiee oômett HayKott cTajia 
CHHTaTbCH reoMeTpHH, KOTopan CAeJiajiacb OCHOBOH H H3BIKOM aHTHHHOft 
MaTeMaTHKH. He no3AHee KOHU,a V B. AO H.3 . B reoMeTpHnecKne AOcnexH 
oÔJieKJiacb H ajireÖpa. TpeKH nepeßejiH Bce apn^MeTHnecKHe onepaipiH Ha 
reoMeTpHHecKHH H3biK H HanajiH HenocpeACTBeHHo onepnpoBaTb c reoMeT-
pHHecKHMH o6T>eKTaMH: OTpe3KaMH, njiomaAHMH H oÖTbeMaMH, He npnöeran 
K HHCJiaM. 3 T O T 3Tan pa3BHTHH ajireÖpbi OÖWHHO Ha3biBaiOT, cjieAy« 
T. T. LJeftTeHy, reoMerpimecKott ajireÔpoft. OTpe3KH 6bijiH nepBon oöJiacTbio 
OÖT^KTOB STOH ajireöpbi, HX MOHCHO öbijio CKJiaAWBaTb («npncTaßjiHTb OAHH 

K ApyroMy») H BbiHHTaTb H3 Öojibmero OTpe3Ka MeHbuiHH. npoH3BeAeHHeM 
AByx OTpe3KOB Ha3biBajiCH npHMoyrojibHHK, nocTpoeHHbin Ha HHX: npoH3Be-
AeHHe Tpex OTpe3KOB npeACTaBJiHJiocb nocTpoeHHOft Ha HHX npnMoyrojibHOH 
npH3MOH. npoH3BeAeHHe ÖoJiee Tpex OTpe3KOB öbijio HenpeACTaBHMbiM, 
roBopHTb o HeM HMejio He 6ojibme CMbicjia, neM o npocTpaHCTBe neTbipex 

HJIH nHTH H3MepeHHH. 

B reoMeTpHHecKOH ajire6pe MODKHO 6bijio y^ce AOKa3biBaTb Te CBOHCTBa H 
TO^CAecTBa, KOTopbie ÔbiJiH H3BecTHbi em,e BaBHJiOHHHaM. M AencTBHTejibHO, 
B «Hanajiax» EßKJiHAa Mbi HaxoAHM reoMeTpnnecKoe AOKa3aTejibCTBO (J)op-
Myji (l)-(3). TaK, <J)opMyjia (a + b)2 + b2 + 2ab AOKa3biBajiacb reoMeTpHH-
ecKHM nyTeM paccMOTpeHHH KBaApaTa, CTopoHa KOToporo paBHa cyMMe 
BejiHHHH a H b (pncyHOK 1). 3aAaHH Ha KBaApaTHbie ypaBHeHHH TaK»ce 
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4>opMyjiHpoBajiHCb reoMeTpnnecKH, HanpHMep 3aAana, sKBHBajieHTHan ypaB
HeHHH) x2 = ab, 3Bynajia TaK: «npeo6pa30BaTb AaHHbitt npnMoyrojibHHK 
( T . C ab) B KBaApaT». EBKJIHA B «Hanajiax» pemaeT KBaApaTHbie ypaB
HeHHH caMoro o6m;ero BHAa ax(a — x) = S H ax(a + x) = S H AJIH nepBoro 
H3 HHX (J)opMyjiHpyeT orpaHHneHHe, KOTopoe HaAO HajioDKHTb Ha a, a, S, 

HTO6W KopeHb 6biji AencTBHTejibHbiM nojioHCHTejibHbiM. Bce AOKa3aTejibCTBa 

npOBOAHJIHCb o6lU.HM OÔpa30M H rOAHJIHCb KaK RJIR COH3MepHMbIX, TaK H 
AJIH HeCOH3MepHMbIX BeJIHHHH. 

B «Hanajiax» paccMaTpHBaiOTCH Tanice 3aAann, KOTopbie CBOAHTCH 
K nocjieAOBaTejibHOMy pemeHHH) HecKOJibKHx KBaApaTHbix ypaBHeHHH. 
TaK, AJiH HaxoMCAeHHH pe6pa npaBHjibHoro AOAeKasApa nepe3 AnaMeTp D 

onncaHHOH c(j)epbi HaAO pemaTb ÔHKBaApaTHoe ypaBHeHHe, KOTopoe MO^CHO 
ôbiJio CBecTH B AByM KBaApaTHbiM. H Boo6m;e, cpeACTBaMH reoMeTpHnecKott 
ajireôpbi (wHane roBopn, unpKyjieM H JIHHCHKOH) MODKHO peniHTb jno6oe 
ajireöpannecKoe ypaBHeHHe, KOPHH KOToporo BbipaacaioTCH nepe3 Bem;-
ecTBeHHbie KBaApaTHbie paAHKajibi (HJIH eme: KOTopoe MoaceT SbiTb CBeAeHo 
K nocjieAOBaTejibHOMy pemeHHH) u,enoHKH KBaApaTHbix ypaBHeHHtt TaKHX, 
HTO K03(|)(})Hi;HeHTbi KaxcAoro nocjieAyiomero HBJIHIOTCH pau,HOHajibHbiMH 
4)yHKi;HHMH OT KopHett npeAbiAyiAero). TaKHM o6pa30M, npoÔJieMa pemeHHH 
onpeAeJieHHbix ypaBHeHHtt B paAHKajiax BbicTynaeT Ha BTOPOM STane pa3BH-
THH ajireôpbi KaK npoÔJieMa pemeHHH ypaBHeHHtt B KBaApaTHbix paAHKajiax. 

HanpHMep, ypaBHeHHH x4 + x3 H h £ + 1 = 0 H x16 + x16 H \- x + 1 = 0 
6yAyT pa3peniHMbi cpeACTBaMH reoMeTpHnecKott ajireôpbi, a ypaBHeHHe 
x6 + xb -] h z + 1 = 0 — HepaspemHMo.1 

B V B. noHBHJiHCb nepBbie «Hepa3pemHMbie» 3aAann, T.e. Hepa3peuiHMbie 
u,HpKyjieM H jiHHettKott; STO 3HaMeHHTan 3aAana yABoeHHH Ky6a, KOTopan 
CBOAHTCH K ypaBHeHHH) x 3 = 2a3, a TaKace 3aAana TpnceKnjHH yrjia. OT-
AejibHbie KyÔHHecKHe ypaBHeHHH pemaji H HccjieAOBaji ApxHMeA. Hx KOPHH, 
KaK H KOPHH ypaBHeHHH yABoeHHH Ky6a, 6bijiH HattAeHbi c noMonjbio 
nepeceneHHH rnnepôoji H napaôoji. TaKHM o6pa30M, npo6jieMa pemeHHH 
ypaBHeHHtt B KyönnecKHX paAHKajiax B aHTHHHocTH He CTaBHJiacb, TeM 6ojiee 
B paAHKajiax 6ojiee BbicoKott CTeneHH. 

B TeopeTHHeCKHX COHHHeHHHX V-III BB. AO H.3. BCTpenaeTCH ABa BHAa 
HeonpeAejieHHbix ypaBHeHHtt. 3 T O nn(J)aropoBo ypaBHeHHe x2 + y2 = z2 H 
ypaBHeHHe 

y2 = ax2 + l, (7) 

rAe a — n,ejioe HeKBaAparaoe HHCJIO, nojiynHBmee BnocjieACTBHH Ha3BâHHe 
ypaBHeHHH nejuiH-<ï>epMa. B O6OHX cjiynanx penb mjia 06 oTbicKaHHH u,ejibix 
nojio^CHTejibHbix pemeHHtt. 

H3yneHHe nH<}>aropoBa ypaBHeHHH npoxoAHT KpacHott HHTbio nepe3 BCK) 
aHTHHHyio MaTeMaTHKy. OopMyjiw A-na ero pemeHHH npeAJiarajiH paHHHe 
nw^aropettijbi (VI-V BB. AO H.3.) , njiaTOH (IV B. AO H.3 . ) , HaKOHen,, caMoe 

1 9 T O 6WJIO AOKÄ3aHO K. 4>. TayccoM B ero Disquisitiones arithmeticae (1801). 
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o6inee ero pemeHHe coAepDKHTCH B «Hanajiax» EßKJiHAa, rAe AOKa3aHO, HTO 
Bce pemeHHH MOMCHO npeACTaßHTb B BHAC: 

x = p2-q2, y = 2pq, z = p2 + q2] p,qe 

YpaBHeHHe (7) RJISL a — 2 Tanice paccMOTpeHO B «Hanajiax», rAe AOKa3bi-
BaeTCH, HTO ecjin xn-i,yn-i — pemeHHe ypaBHeHHH (7) npn a = 2, TO HOBoe 
pemeHHe xn,yn MOIHCHO nojiyHHTb no (J)opMyjiaM 

(xn = zn+i +yn-u 
\yn = 2xn-1 + ! / n - i . 

IlocjieAyioiAaH HCTOPHH HeonpeAejieHHbix ypaBHeHHtt CBHAeTejibCTByeT o 
TOM, HTO B KJiaccHHecKHtt nepHOA pemajiHCb H MHoroHHCJieHHbie Apyrne 
BHAbi HeonpeAejieHHbix ypaBHeHHtt, HO HX HCCJieAOBaHHe ocTaBajiocb 3a 
paMKaMH TeopeTHnecKOtt HayKH H Ha pa3BHTHe reoMeTpHnecKott ajireöpbi 

BJIHHHHH He OKa3bIBaJIO. 
TpeTHtt, oneHb Ba^cHbitt 3Tan pa3BHTHH ajireöpbi HanHHaeTCH B nepBbie 

BeKa Harnett spbi H 3aKaHHHBaeTCH B KOHii,e XVI-Hanajie XVII B. 3 T O ÖMJIO 
BpeMH, KorAa ajireÖpa oÖpejia coöcTBeHHbitt, npncyiAH» ePi H3biK: 6yKBeHHoe 
HCHHCJieHHC 

TeoMeTpHHecKHtt H3biK cTecHHJi pa3BHTHe ajire6pbi, OH 6biJi RJISI nee 

HeecTecTBeH: BO-nepBbix, OH He Aasaji BO3MO:HCHOCTH paccMaTpHBaTb 
npoH3BeAeHHH 6ojiee Tpex BCJIHHHH, a 3HanHT, H ajireÖpannecKHe ypaB
HeHHH Bbime TpeTbett CTeneHH, Bo-BTopbix, reoMeTpHHecKoe oöjianeHHe 
Aejiajio ajireöpy rpoM03AKott H MajioonepaTHBHOfl. üosTOMy, KorAa B I B . 
AO H.3 . HacTynnji ynaAOK KJiaccnnecKott rpenecKott MaTeMaTHKH H — 
HTO oneHb Bâ CHo — TpaAHujun öbijia npepBaHa, yneHbie oTKa3ajincb OT 
reoMeTpHnecKott ajireöpbi. IIpaBAa, em;e AOJiroe BpeMH coxpaHHJiHCb re-
OMeTpHHecKHe AOKa3aTejibCTBa ajireôpaHHecKHx npaBHJi H (})opMyji (TaKHe 
A0Ka3aTejibCTBa MOMCHO HattTH em;e B XVI B.), HO caMa ajireöpa y^ce He Öbijia 
CKOBaHa reoMeTpHnecKHM naHU,HpeM. OHa npnoÖpejia HOByio (J)opMy. 

Bo3BpaT K HHCJiOBOtt ajireÖpe Mbi HaxoAHM y^ce y TepoHa AjieKcaH-
APHHCKOrO (I B.H.3.), B COHHHeHHHX KOTOpOrO pemaiOTCH HHCJieHHbie 
KBaApaTHbie ypaBHeHHH, a TaK^ce HOBbie HHTepecHbie 3aAann Ha Heonpe-
AejieHHbie ypaBHeHHH. 3aMeTHM, HTO B «4)opMyjie TepoHa» AJia BbiHHCJieHHH 
njiomaAH TpeyrojibHHKa no TpeM ero CTopoHaM noAKopeHHoe Bbipa^ceHHe 
coAep^KHT npoH3BeAeHHe neTbipex BCJIHHHH, HTO B KJiaccHHecKyio anoxy 

6bIJIO 6bl HCB03MOHCHO. Ho OCOÔeHHO HpKO HOBbie TeHAeHÎ HH HaillJIH CBOe 
Bbipa^ceHHe B TBopnecTBe ^HO(J)aHTa AjieKcaHApnttcKoro (III B.H.3. ) , KOTopwtt 
H nojiOMCHJi Hanajio 6yKBeHHOtt ajireÖpe. 

JIp Hac Aomjio ABa npoH3BeAeHHH ^HO(J)aHTa (o6a He nojiHocTbio) — 
«ApH(})MeTHKa» (meCTb KHHr H3 TpHHaAUaTH) H OTpbIBKH H3 TpaKTaTa « 0 
MHoroyrojibHbix HHCJiax». ^JIH Hac Hanoojibmntt HHTepec npeACTaBjineT 
nepBoe H3 HHX. 

«ApH(J)MeTHKa» HanHHaeTCH c BBCACHKH, KOTopoe HBjineTCH, no cymecTBy, 
nepBbiM H3jioMceHHeM OCHOB ajireöpbi. B HeM CTPOHTCH nojie pau,HOHajibHbix 



1618 M. r. BAUIMAKOBA 

HHceji H BBOAHTCH SyKBeHHan CHMBOJiHKa. 3ACCB ace 4>opMyjiHpyK)TCH 
npaBHJia AettCTBHtt c MHoronjieHaMH H ypaBHeHHHMH. 

y»ce y TepoHa nojioacHTejibHbie panjuoHajibHbie nncjia nojiynnjiH npaßa 
rpâ CAa-HCTBa (B KJiaccnnecKott aHTHHHOtt MaTeMaTHKe HHCJiaMH Ha3biBajiHCb 
MHO>KecTßa eAHHHi;, T.e. HaTypajibHbie HHCJia). /Ino^aHT AenaeT cjieAyioiUHtt 
pemHTejibHbitt mar — OH BBOAHT OTpHijaTejibHbie HHcna. TojibKO nocjie 
3Toro OH nojiynaeT oôJiacTb, 3aMKHyTyio OTHOCHTejibHO neTbipex AGHCTBHH 
apH(J)MeTHKH, T.e. nojie. Be3 3Toro pa3BHTHe ÖyKBeHHOtt ajireôpbi ôbijio 

6bl HCB03MOECHO. Ho KaK ace /lHO(J)aHT BBOAHT 3TH HOBbie OÔTjeKTbl? 
KaKHM nyTeM Boo6m,e STO MOMCHO CAeJiaTb? Rjia 3Toro ^HOĉ aHT BbiônpaeT 
MeTOA, KOTopbitt MM 6bi Tenepb Ha3BajiH aKCHOMaTHHecKHM: OH onpeAejineT 
HOBbitt oÔTbeKT, KOTopbitt OH Ha3biBaeT «HeAOCTaTKOM» (Xeîipiç), (J)opMyjiHpyH 
npaBHjia ACHCTBHH C HHM, a HMCHHO: ecjin oxapaKTepH30BaTb HOBbie 
oôijeKTbi CHMBOJiOM (—), a npoH3BOJibHoe paAHOHajibHoe nojioMCHTejibHoe 
HHCJIO 3HaKOM (+) , TO ^HoefraHT nocTyjiHpyeT: 

( - ) • ( - ) = (+), ( - ) • (+ ) = (-)• 

npaBHJi cjioaceHHH H BbiHHTaHHH RjiR HOBbix HHceji OH He 4>opMyjiHpyeT, 
HO B CBOHX KHHrax CB060AHO HX npHMeHHCT. Bo3MOXCHO, 3TH onepan,HH 
npHMeHHJiHCb H AO Hero. 

JX&jiee, /lHO(})aHT BBOAHT HeH3BecTHoe HHCJIO, KOTopoe OH o6o3HanaeT 
cnei^HâJibHbiM CHMBOJIOM ç, a TaK^ce mecTb ero nepBbix nojioacHTejibHbix 
H mecTb OTpHu,aTejibHbix CTeneHett. 3THM OH oKOHnaTejibHo nopbiBaeT c 
reoMeTpHnecKott ajireôpott, B KOTopott Bce CTeneHH Bbime TpeTbett HenpeA-
CTaBHMbi. 3aMenaTejibHO, HTO OH BBOAHT TaKiace o6o3HaHeHHe AJIA HyjieBott 
CTeneHH HeH3BecTHoro H cneu;HajibHO BbiAejineT ABa npaBHjia, KOTopbie 
OTBenaiOT AByM H3 aKCHOM, onpeAejiniomiHx rpynny: 

xm • 1 = xm, xm • x~m = 1. 

JXnn npoH3BeAeHHtt ocTajibHbix CTeneHett HeH3BecTHoro /JnocfraHT cocTaBjineT 
«Ta6jiHu,y yMHoaceHHH», KOTopyio MBI Tenepb MoaceM KOPOTKO 3anncaTb B 
BHAe 

xmxn = xm+n, - 6 < r a + n < 6 . 

HaKOHeii,, OH BBOAHT o6o3HaneHHH AJIH 3HaKa MHHyc H AJia 3HaKa paBeHCTBa. 
Bce STO AaeT BO3MO5KHOCTB /jHocfraHTy 3anncbiBaTb ycjiOBHH 3aAann B 

BHAe ypaBHeHHH HJIH CHCTCMBI ypaBHeHHtt. CO6CTBCHHO roBopn, HHKaKHx 
ypaBHeHHtt, HH onpeAejieHHbix, HM HeonpeAejieHHbix, AO SnocJjaHTa He öbijio. 
BbiJiH TOJibKo 3aAaHH, KOTopbie MOMCHO CBecTH K ypaBHeHHHM. He ßojiee 
Toro. 

Bo BBeAeHHH J\no$&nT 4>opMyjiHpyeT ABa OCHOBHBIX npaBHjia onepnpo-
BaHHH c ypaBHeHHHMH: 1) npaBHjio nepeHOca HjieHa ypaBHeHHH H3 OAHOM 
nacTH B Apyryio (c oôpaTHbiM 3HaKOM) H 2) npaBHjio npHBeAeHHH noAOÔHbix 
HJieHOB. 3 T O Te caMbie npaBHjia, KOTopwe BnocjieACTBHH nojiynnjiH mnpoKyio 
H3BecTHOCTb noA apaöcKHMH Ha3BaHHHMH «ajib A^ca6p» H «ajib-My-Ka6ajia». 
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KpoMe Toro /JnocfraHT BecbMa HCKycHO npHMeHneT npaBHJio noACTaHOBKH, He 

4)opMyjiHpyH e r o . 

HTaK, B KHHrax JlpofyaHTà MBI HaxoAHM yace HCTKO 3anncaHHbie ypaB

HeHHH H HHCTO ajireSpaHHecKHe npeo6pa30BaHHH. H o neMy »ce nocBHii^eHbi 

3TH KHHrn? fljiH HccjieAOBaHHH H pemeHHH KaKHx npoöjieM ^Ho4)aHT BBeJI 

cHMBOJiHKy H pacmnpHJi HHCJioByio o6jiacTb? HHane r o ß o p n , c KaKHMH 

npoÔJieMaMH Öbijio CBH3aHo poHCAeHHe ÖyKBeHHOtt CHMBOJIHKH? OcHOBHoe 

coAepacaHHe «ApH(})MeTHKH» — 3 T O pemeHHe HeonpeßejieHHbix ypaBHeHHH H 

CHCTeM B pau,HOHajibHbix HHCJiax, npnneM B Heft AettcTBHTejibHO BCTpenaiOTCH 

ypaBHeHHH niecToft CTeneHH. H T O KacaeTCH onpeAeJieHHbix ypaBHeHHtt, TO 

JXvLO^a,HT pemaeT JiHHettHbie H KBaApaTHbie ypaBHeHHH, H npHTOM TaKHe, 

KOpHH KOTOpblX paU,HOHaJIbHbI. /JjIH HX 3anHCH H pemeHHH BOBCe He Hy^CHbl 

6biJiH o6o3HaneHHH AJI« CTeneHett HeH3BecTHoro Bbime BTopott. OneBHAHO, 

BOBce He npoÖJieMa pemeHHH onpeAeJieHHbix ypaBHeHHtt noÖyAHJia /jHo^aHTa 

K HOBOBBeAeHHHM B ajireÖpe! 

PaccMOTpHM Bonpoc o rpaHHU,ax H BO3MOECHOCTHX CHMBOJIHKH /tHO(J)aHTa. 

,HHO(})aHTOBbI ypaBHeHHH OÔbIHHO COAep^CaT HeCKOJIbKO HeH3BeCTHbIX, BO 

BCHKOM cj iynae He MeHbiiie AByx, MeacAy TeM ^HOtJmHT BBCJI CHMBOJIBI TOJibKo 

AJiH OAHoro HeH3BecTHoro H e r o CTeneHett. KaK »ce OH OôXOAHJICH n p n 

pemeHHH 3aAan? 

3aAana BcerAa (fropMyjinpoBajiacb O6III;HM o6pa30M, HanpHMep: «3aAaHHbift 

KBaApaT pa3JioacHTb Ha cyMMy KBaApaTOB» (3aAana 8 KHHrn II). n o c j i e 3Toro 

BceM napaMeTpaM npHAaBajiHCb KOHKpeTHbie nncjiOBbie 3HaneHHH, B A ä H -

HOM npHMepe 6epeTCH KBaApaT, paBHbift 16. 3aTeM Bbi6npajiocb OCHOBHOC 

HeH3BecTHoe, KOTopoe o6o3Hanajiocb BBeAeHHbiM CHMBOJIOM, APyrHe ace 

HeH3BecTHbie J\KO$&HT Bbipaacaji B BHAe JiHHettHbix, KBaApaTHHHbix HJIH 

6ojiee cjio^CHbix pau,HOHajibHbix fyynKuyiVi nepe3 3 T O OCHOBHOC H napaMeTpbi. 

B npHBeAeHHOM Bbime npHMepe BTopoe HeH3BecTHoe BbipaacaeTcn nepe3 nep-

Boe (t) B BHAe kt — a. n p n STOM a npHHHMaeTCH paBHbiM 4 (KOPHIO H3 16), a B 

KanecTBe K03(j)(}>HU,HeHTa n p n t ÖepeTCH npoH3BOJibHoe pau,HOHajibHoe HHCJIO; 

J\HO$&HT BbiönpaeT e r o paBHbiM 2, HO oroBapHBaeT, HTO MO^CHO ÖWJIO 6bi 

B3HTb H Jiioöoe APyroe . OnncaHHan HaMH cxeMa HBJIHCTCH Hanöoj iee npocTott . 

HHorAa 0Ka3biBaeTCH, HTO Ha Bbi6op napaMeTpoB H C O ö X O A H M O HajioacHTb 

HeKOTopbie orpaHHHeHHH, HanpHMep HaAO BbiSpaTb TaKoe u,ejioe HHCJIO, 

KOTopoe npeACTaBHMO B BHAe cyMMbi AByx HJIH Tpex KBaApaTOB. TorAa 

JXnoib&HT npoBOAHT aHajiH3 3aAann H onpeAejineT, H3 KaKoro MHoacecTBa 

HHceji M MOMceT 6biTb BbiôpaH T O T HJIH HHOtt napaMeTp. 

HTaK, KOHKpeTHbie HHCjia HecyT B «ApH(J)MeTHKe» ABOttHyio Harpy3Ky: 

OHH BblCTynaiOT, BO-nepBblX, B pOJIH OÔbIHHblX HHCejI, a BO-BTOpbIX, B pOJIH 

3HaKOB jinn npoH3BOJibHbix napaMeTpoB. 3 T y BTopyio (fryHKii.HK) HHCJia 6yAyT 

BbinojiHHTb B ajireÖpe BnjiOTb AO KOHija X V I B. 

HaKOHeu,, /^HO(})aHT B npou,ecce pemeHHH 3aAann MO^ceT o6o3HanaTb 

OAHHM H TeM MCe CHMBOJIOM nOCJieAOBaTeJIbHO pa3JIHHHbie HeH3BeCTHbie 

(HHorAa TaKoe «nepeHMeHOBaHHe» OH npHMeHneT Tpn-neTbipe pa3a). TaKHM 
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o6pa30M, B paccMaTpHBaeMbitt nepnoA pa3BHTHH ajireöpbi caMO o6o3HaneHHe 
HeH3BecTHbix TpeôoBajio ôojibmoro HCKyccTBa. 

noABeAeM HTor. JXHO$&IIT nepBbitt CHCTeMaTHnecKH CBOAHJI HeonpeAe-
jieHHbie H onpeAeJieHHbie 3aAann K ypaBHeHHHM. MOECHO CKa3aTb, HTO AJI« 
oômnpHoro Kpyra 3aAan apn(J)MeTHKH H ajireöpw OH CAeJiaji TO ace, HTO 
BnocjieACTBHH CAejiaji ßeKapT AJia oômnpHoro KJiacca 3aAan reoMeTpHH, a 
HMeHHo cBeji HX K cocTaBjieHHK) H pemeHHH) ajireôpaHHecKHx ypaBHeHHtt. B 
caMOM Rene, H /lHO(J)aHT, H ,Z]|eKapT AJIH pemeHHH 3aAann — apn^MeTHnecKott 
HJIH reoMeTpHnecKott — cocTaBjiHJin ajireöpannecKoe ypaBHeHHe, KOTopoe 
3aTeM npeo6pa30BbiBajiH H HCCJieAOBajiH no npaBHjiaM ajireôpw. npn STOM 
npoH3BOAHMbie npeo6pa30BaHHH (ncKJiiOHeHHe HeH3BecTHbix, npHBeAeHHe 
noAOÔHbix HjieHOB, pa3JiHHHbie noACTaHOBKH) He HMejiH HenocpeACTBeHHoro 
apH(J)MeTHHecKoro HJIH reoMeTpHnecKoro CMbicjia. TojibKO OKOHnaTejibHbitt 
pe3yjibTaT STHX 4>opMajibHbix BbiKJiaAOK nojiynaji cooTBeTCTByioiAyio HH-
TepnpeTaAHK) H Aaßaji pemeHHe nocTaßjieHHOfl 3aAaHH. 3 T O T BaacHbift mar 
MM npHBbiKJiH OTHOCHTb K co3AaHHK) aHajiHTHHecKott reoMeTpHH ßeKapTOM, 
OAHaKO 3aAOJiro AO Toro OH 6biji CAejiaH RvLofy&HTOM B ero «Apn(J)MeTHKe». 
3aMenaTejibHO, HTO HHKOMy H3 eBponettcKHx yneHbix XIII-XVI BB. AO 
3HaKOMCTBa c «ApH(J)MeTHKOtt» He npHxoAHJio B rojiOBy npHMeHHTb ajireÔpy 
K pemeHHH) TeopeTHKo-HHCJioBbix 3aAan. 

Ho ocHOBHOtt npoßjieMOtt RJISL RnofyauTB. ÖBIJIO HccjieAOBaHHe H pemeHHe 
HeonpeAejieHHbix ypaBHeHHtt. HMCHHO C HHMH OKa3ajiocb cBH3aHHbiM 
poacAeHHe 6yKBeHHOtt ajireÖpw. 

3aMeTHM, HTO ^HocJmHT Hameji ocHOBHbie MCTOAM pemeHHH B pau,HOHajib-
Hbix HHCJiax ypaBHeHHH BTopott CTeneHH OT AByx HeH3BecTHbix 

F2(x,y)=0, 

ecjin AJiH Hero H3BCCTHO OAHO pai^HOHajibHoe pemeHHe. Em;e Ôojiee TOHKHC 
H HHTepecHbie MCTOAM OH npHMeHHji AJIA Haxo^CAeHHH pau,HOHajibHbix 
pemeHHtt HeonpeAejieHHbix ypaBHeHHtt 3-tt H 4-H CTeneHH OT AByx HeH3BecT-
Hbix. HcTopHK) STHX MeTOAOB MOXCHO npocjieAHTb AO pa6oT AHPH nyaHKape, 
OTHocHiAHXCH K Hanajiy HbmemHero BeKa, B KOTopwx Ha ocHOBe STHX 
MeTOAOB öbijia nocTpoeHa apn<})MeTHKa ajireopannecKHx KPHBMX. 

/tajibHettmne ycnexn ajireôpbi BnjioTb AO X-XI BB. öBIJIH TaKEce CBH3aHbi 
c HeonpeAejieHHbiMH ypaBHeHHHMH. K Hanajiy X B. OTHOCHTCH nepeBOA Ha 
apaôcKHtt H3MK neTbipex KHHr apn<}>MeTHKH, npnnHCbiBaeMbix RvLofyaHTy. 

3 T H KHHrn nocBHiAeHbi B OCHOBHOM pemeHHH) AHO(J)aHTOBbix ypaBHeHHtt 

H, riO-BHAHMOMy, SbIJIH COCTaBJieHbl B AjieKCaHAPHH B IV-V BB. B HHX 
coAepxcaTCH KaK opnrHHajibHbie 3aAann, KOTopbie MOXCHO npnnncaTb caMOMy 
JluO^aHTy, TaK H KOMMeHTapHH K HHM. B 3THX KHHraX y^Ce 6bIJIH BBeAeHbi 
8-H H 9-H CTeneHH HeH3BecTHott. 

HeonpeAeJieHHbie ypaBHeHHH 3aHHMajiH noneTHoe MecTo B ajireÖpan-
necKHx TpaKTaTax A6y KaMHJia (Hanajio X B.) H ajib-KapaA^cn (X-XI 
BB.). MeTOAbi HCCjieAOBaHHH H pemeHHH OHH npHMeHHJin Te :ace, HTO 
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H JJpofy&HT (3a HCKJHoneHHeM pemeHHH HeonpeAejieHHbix ypaBHeHHtt 3-tt 
CTeneHH, MCTOA pemeHHH KOTopwx ocTajicn HM HeH3BecTeH). B KHHre 
«Ajib-Oaxpn» aji-KapaA»CH npeo6pa3yeT HeÖojibinoe ajireÖpannecKoe BBe-
AeHHe ^HO(J)aHTa B oömnpHbitt TpaKTaT no ajireÖpe. B HeM OH BBOAHT 
ÖecKOHeHHO MHoro nojio»CHTejibHbix H ÖecKOHenHO MHoro OTpnijaTejibHbix 
CTeneHett HeH3BecTHoro H onpeAejineT npaBHJia A6HCTBHH c HHMH. /JJIH oTpn-
u,aTejibHbix HHceji 3Aecb (J)opMyjiHpyeTCH He TOJibKo npaBHJio yMHO»ceHHH, 
KaK STO ÖBIJIO y ^HO^aHTa, HO H npaBHJia HX cjioaceHHH H BbiHHTaHHH. B 
3TOM TpaKTaTe ajib-KapaA!>KH onpeAejineT no cymecTBy ajireôpy KaK HayKy 
o pemeHHH ypaBHeHHtt, He Renan pa3JiHHHü Mexcxy onpeRejieHHbiMH H neo-
npeflpjieHHbiMH ypaBHeHHXMH. npn pemeHHH 3aAan OH TaK»ce nepeAyeT 
HeonpeAeJieHHbie 3aAann c onpeAejieHHbiMH, npnneM nocjieAHHx y Hero 
Öojibme, HeM B «Apn(J)MeTHKe» ^HO(})aHTa. 

BnocjieACTBHH OMap XattHM (XI B.) HccjieAOBaji ypaBHeHHH 3-tt CTeneHH. 
OH HaxoAHJi KOPHH TaKHX ypaBHeHHtt KaK a6cu,Hccbi TOHCK nepeceneHHH 
KOHHHeCKHX CeHeHHtt. OTMeTHM TaK»Ce, HTO apaÖCKHe MaTeMaTHKH 

no TpaAHUHH HapHAy c «HHCJiOBbiM» pemeHHeM KBaApaTHoro ypaBHeHHH 
npHBOAHJiH H reoMeTpHHecKoe o6ocHOBaHHe 3Toro pemeHHH. OAHaKO y 
ajib-KapaA^CH HMeeTCH H HHCTO ajireSpannecKoe oÖocHOBaHHe, ocHOBaHHoe 
Ha BbiAejieHHH nojiHoro KBaApaTa, KOTopoe OH Ha3biBaeT «pemeHHeM no 
flHO(})aHTy». 

EAHHCTBeHHbiM, HO BecbMa cymecTBeHHbiM OTCTynjieHHeM apaöcKHX 
MaTeMaTHKOB OT npHHii,HnoB /̂ HO(J)aHTa ÖbiJi 0TKa3 OT ajireÖpannecKott 
CHMBOJIHKH. HeH3BecTHoe H ero CTeneHH OHH 3anncbiBajiH c noMom,bK) 
cneunajibHbix TCPMHHOB. 

YcnexH ajireÔpbi B Eßpone OTHOCHTCH K XIII-XVI BB. AjireÖpannecKaH 
TpaAHU,HH nepeAaBajiacb AByMH nyTHMH: H3 cTpaH apaÖCKoro BocTOKa H H3 
Bn3aHTHH. nepBbiM KpynHbiM MaTeMaTHKOM 6biji JleoHapAO nH3aHCKHfl, HJIH 
cJ>HÖOHaHHH (XIII B.), KOTopbitt ocTaBHJi 3HaMeHHTyio JIn6ep a6au>H (1202 r.), 
B KOTopott BBOAHJi AecHTHHHyK) no3Hi;HOHHyK) CHCTeMy CHHCJieHHH, peiiiaji 
jiHHettHbie cncTeMbi H KBaApaTHbie ypaBHeHHH. EMy »ce npHHaAJieacHT 
oneHb rjiy6oKoe HccjieAOBaHHe HeonpeAejieHHbix ypaBHeHHtt, KOTopoe OH 
H3JIOHCHJI B JÏHOep nyaRparopyM (1225 r.). H T O ö M AaTb npeACTaBJieHHe 06 
STHX HccjieAOBaHHHX, AOCTaTOHHO ynoMHHyTb, HTO OH nepBbitt H 3a neTbipe 
BeKa AO OepMa yTBepacAaJi, HTO njioinAAb npnMoyrojibHoro TpeyrojibHHKa c 
pau,HOHajibHbiMH CTopoHaMH He MO»ceT 6biTb KBaApaTOM. 3 T O npeAJio^ceHHe 
3KBHBajieHTH0 BejiHKOtt TeopeMe OepMa RRSL cjiynan n = 4. OAHaKO RJW 

TpaKTOBKH HeonpeAejieHHbix 3aAan JleoHapAO He npHMeHHJi ajireöpaHnecKHx 
MeTOAOB, OH pemaji HX HHCTO apn<})MeTHHecKH. To »ce caMoe MO»CHO CKa3aTb 
H o KHHre JlyKH nanojiH CyMMa Re apnrxMeTHRa, reoMerpna, nponopTHOHH 

er nponopTHOHajiHTa (onyÔJiHKOBaHa B 1494 r. B BeHeii,HH), KOTopan HBHjiacb 
SHî HKJioneAHett MaTeMaTHnecKHX 3HaHHtt cBoero BpeMeHH. B STOH KHHre 
Mbi BnepBbie BCTpenaeM nocTaHOBKy npo6jieMbi pemeHHH ajireopannecKHX 
ypaBHeHHtt 3-tt CTeneHH H BBICUIHX CTeneHett B paAHKajiax. IlpaBAa, JlyKa 
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roBopHT o HHX KaK o 3aAanax Hepa3peuiHMbix, TaKHX »ce, KaK KBaApaTypa 
Kpyra. 

K MOMeHTy BbixoAa CyMMa eBponettcKHe MaTeMaTHKH y»ce mnpoKo npn-
MeHHJIH CHMBOJIbl RJIR o603HaHeHHH HeH3BeCTHOrO H ero nOJIO»CHTeJIbHbIX 
CTeneHett, a TaK»ce RJISL onepanjHtt cjio»ceHHH, BbiHHTaHHH, yMHO»ceHHH 
H H3BJieHeHHH KOpHH. HpaBAa, OHH BOCnpHHHJIH BH3aHTHttCKHtt MeTOA 
o6o3HaneHHH CTeneHett, KOTopbitt ÖbiJi ropa3AO MeHee yAoßeH, neM cnoco6 
JXvLO^aHTa. B ocHOBe ero Jie»caji MyjibTHnjiHKaTHBHbitt npHHii,Hn: KBaApaTO-
Ky6 o6o3Hanaji He 5-K) CTeneHb, KaK y /InocfraHTa, a 6-10, 5-H CTeneHb 
o6o3Hanajiacb KaK p°r° — npuMO pejiaro (T .C «nepBan HeBbipa3HMan»), 
7-H — KaK 2°r° — ceRyHRO penaTO («BTopan HeBbipa3HMan»), 9-H CTeneHb 
Ha3biBajiacb Ky6o-Ky6oM H T.A- Ta6jiHu,y TaKoro o6o3HaneHHH CTeneHett 
HeH3BecTHoro Mbi HaxoAHM B «CyMMe». OAHaKO BnjiOTb AO KOHAa XVI B. He 
ÖbiJiH BBeAeHbi HH o6o3HaneHHH RJISL BToporo HeH3BecTHoro, HH TeM 6ojiee 
AJiH napaMeTpoB. 

Ocoôbie ycnexH BbinajiH Ha AOJIIO ajireôpbi B XVI B. Ba»CHeftmHMH H3 HHX 
6biJiH: 1) pemeHHe B paAHKajiax ypaBHeHHtt 3-tt H 4-tt CTeneHH, 2) BBeAeHHe 
KOMnjieKCHbix HHceji H 3) C03AaHHe nepBoro 6yKBeHHoro HCHHCJICHHH. 

HTaK, npoôjieMa pemeHHH ypaBHeHHtt B paAHKajiax noHBjineTCH B XVI B. 
nocjie nepepbiBa 6ojiee neM B 30 BCKOB! 3a Bce STO BpeMH noÔyAHTejibHbie 
HMnyjibCbi nijiH B OCHOBHOM OT HeonpeAejieHHbix ypaBHeHHtt. UOCMOTPHM, 
KaKoe BjiHHHHe OHH OKa3ajiH Ha ajireôpy XVI B. 

Mbi He 6yAeM 3Aecb KacaTbCH ApaMaranecKott HCTOPHH, CBH3aHHOtt c 
pemeHHeM KyônnecKoro ypaBHeHHH. 0 6 3TOM AOCTaTOHHO HanncaHO BO Bcex 
pyKOBOACTBax no HCTOPHH MaTeMaTHKH. npHBeAeM jinmb ou,eHKy 3Toro 
pemeHHH, AaHHyio T. T. LJettTeHOM: «Reno 3Aecb HACT, TaKHM o6pa30M, 
BOBce He o6 H3o6peTeHHH MeTOAa, HO O6 OTKPBITHH — HMCHHO OTKPWTHH — 

(})OpMbI HppaUHOHaJIbHOCTH, KOTOpyK) AOJI»CHbI HMeTb KOpHH ynoMHHyTbix 
ypaBHeHHtt» [3]. KaKoe »ce HenocpeACTBeHHoe BJIHHHHC Ha pa3BHTHe ajire-
6pbi HMejio STO OTKpwTHe? Ope»CAe ßcero cjieAyeT OTMCTHTB ero öojibinoe 
ncHxojiorHHecKoe 3HaneHHe. OHO noKa3ano, HTO «ApeBHne He Bce 3HajiH», 
yKpennjio Bepy eßponettcKHx yneHbix B CBOH CHJIBI, npHAajio HM CMejiocTb, 
HeoöxoAHMyio AJIä AaJibHettuiHx H3bicKaHHtt. BcKope HCCJieAOBaHHe ypaB
HeHHtt 

z 3 = px -\- q; p > 0, q > 0, (8) 

pemeHHe KOTopwx AaeTCH 4>opMyjiott 

AOCTaBHjio cjiynatt npHMeHHTb 3Ty CMejiocTb. /fcttCTBHTejibHo, ecjin ( | ) 2 < 
( | ) 3 , TO B 4>opMyjie (9) noA 3HaKOM KBaApaTHbix KopHett 6yAeT CTOHTb 
OTpnuaTejibHoe Bbipa»ceHHe ( | ) 2 — ( f ) 3 . C Apyrott CTopoHbi, Hejib3H 6MJIO 
Hajio»CHTb orpaHHHeHHe (§ ) 2 > ( | ) 3 , TaK KaK npn ( | ) 2 < ( | ) 3 ypaBHeHHe 
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(8) HMeeT AettCTBHTejibHbie KOPHH. MaTeMaTHKH XVI B. oÖHapy»CHJiH STOT 
(J)aKT Ha npHMepe ypaBHeHHH x3 = lòx + 4, KOTopoe HMeeT KopeHb x = 4, 
npnneM H ABa APyrnx ero KOPHH AettCTBHTejibHbi. 3TOT cjiynatt nojiynnji 
Ha3BaHHe «HenpHBOAHMoro». HH TapTajibH, HH KapAaHo, KOTopbiM Mbi 
0ÖH3aHbi pemeHHeM KyÖnnecKoro ypaBHeHHH, He cMorjiH pa3pemHTb 3araAKy 
«HenpHBOAHMoro» cjiynan. Pa3raAKy ero CMor AaTb Pa(J)a3Jib BoMÖejiJiH — 
OAHH H3 KpynHettmnx ajireöpancTOB HoBoro BpeMeHH. OAHaKO OH CMor 
STO CAeJiaTb jinmb nocjie Toro, KaK ocHOBaTejibHO H3yHHji «ApH<{)MeTHKy» 
ßHOtJmHTa. 

Mbi noAomjiH K BejinnattmeMy COÖBITHIO B HCTOPHH ajireôpbi HoBoro 
BpeMeHM, KOTopoe oÖbiHHO HeAoou,eHHBaeTCH — K 3HaKOMCTBy eBponettcKHx 
MaTeMaTHKOB C «ApH(})MeTHKOtt» ßpofy&HTSL. PeiIIHTeJIbHbltt noBopoT B 
pa3BHTHH ajireÔpbi npoH3omeji HMCHHO B pe3yjibTaTe H3yneHHH 3Toro 3a-
MenaTejibHoro npoH3BeAeHHH H ocBoeHHH MCTOAOB /̂ HotJmHTa. BnepBbie 143 
3aAann H3 «ApH(J)MeTHKH» (ßcero OHa coAep»cajia 189 3aAan) noHBHJincb 
B «AjireSpe» P. EoMÔejum (1572 r.). Ho AeJio ÖBIJIO He TOJibKo B STOM 
«BKJHOHeHHH» 3aAaH. HTaJIbHHCKHtt HCTOpHK HayKH 3 . BopTOJIOTTH, 
H3ynaBmHtt pyKonncHoe HacjieAHe BoMÖejiJiH, 3aMeTHJi, HTO nocjie 3HaKOM-
CTBa C «ApH(J)MeTHKOtt» BeCb CTHJIb KHHrH BoMÖeJIJIH H3MeHHJICH: 3aAanH c 
«ycjiOBHeM» B BHAe KpacoHHoro paccKa3a nceBAonpaKTHnecKoro xapaKTepa 
6biJiH 3aMeHeHbi Ha 3aAanH c cyxHMH MaTeMaTHHecKHMH <})opMyjiHpoBKaMH, 
H3MeHeHbi o6o3HaneHHH CTeneHett HeH3BecTHoro B Ryxe /jHO(j)aHTa; HaKOHeu,, 
HOBbie oÔTbeKTbi — OTpHAaTejibHbie H MHHMbie nncjia — 6biJiH BBCACHBI c no-
MOiAbK) MeTOAa JXKO$&HTQ,. A HMeHHo: Rnn BBCACHHH OTpHii,aTejibHbix HHceji 
BoMÖejiJiH onpeAejiHJi Rna HHX npaBHJia cjio»ceHHH, BbiHHTaHHH, yMHO»ceHHH 
H ACJieHHH. nocjie 3Toro OH CAejiaji cjieAyiomntt mar, 3aMenaTejibHbitt no 
CBoett CMejiocTH — OH BBeji c noMoiu,bK) TaKoro »ce npneMa H MHHMbie HHCJia! 
ECJIH Mbi, HTOöW He yTpy»CAaTb HHTaTejin HenpHBbiHHott CHMBOJiHKOtt, 0603-
HaHHM, KaK STO Tenepb npHHHTO, MHHMyio eAHHHi;y nepe3 i, TO npaBHJia 
yMHO»ceHHH, c(})opMyjiHpoBaHHbie BoMÔejuiH, MO»CHO 3anncaTb TaK: 

1 x i = i, i x i = —1, 

— 1 x i = -i, — i x i = 1. 

TaKHM o6pa30M: P. EoMÖejuiH noHHJi cymHocTb MeTOAa BBCACHHH HOBMX 
MaTeMaTHHecKHX OÖT^KTOB H ÖJiecTHiAe npHMeHHJi STOT MCTOA. 

BßeA« MHHMyio CAHHHUJ i, BoMÔejuiH Hanaji paccMaTpHBaTb CHMBOJIBI 
BHAa a + bi, KOTopbie MO»CHO cKJiaAbiBaTb H BbiHHTaTb «noKoopAHHaTHO», 
T.e. 

(a + bi) ±(c + di) = a±c + (b± d)i 

H yMHO»caTb no npaBHJiy nepeMHO»ceHHH MHoronjieHOB. n o cjioBaM H. Byp-

6aKH, «3T0 ÔbIJIO nepßblM nOHBJieHHeM nOHHTHH JiHHeftHOtt He3aBHCHMOCTH». 
C nOMOIAbK) MHHMblX HHCeJI BoMÖeJIJIH CyMeJI OOTïHCHHTb «HenpHBOAHMbltt 
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cjiynatt» KyönnecKoro ypaBHeHHH, KOTopbitt AO 3Toro cTaBHji Bcex MaTe-
MaTHKOB B TynHK. KHHra BoMÖeJIJIH, HeCOMHeHHO, HBJIHeTCH ÖJieCTHUliHM 
TpaKTaTOM no ajireôpe. 

TpeTbH nacTb «ajireôpbi» nocBHmeHa HeonpeAejieHHbiM ypaBHeHHHM. 
3Aecb BoMÖeJIJIH BOcnpoH3BOAHT 3aAanH ßjAofy&HTa, HHorAa MCHHH HHCJiOBbie 
napaMeTpbi: OH AOBCJI AO KOHAa MHorne 3aAann, pemeHHe KOTopbix 6MJIO 
TOJibKo HaMeneHo /tnocfraHTOM HJIH BOßce OTcyTCTBOBajio. H3 penieHHtt 
BHAHO, HTO BoMÖeJIJIH XOpomO nOHHJI MeTOAbI /lHOC[)aHTa, OTHOCHIAHeCH 
K HeonpeAejieHHbiM ypaBHeHHHM, OAHaKO OH HHrAe He A^JiaeT nonbiTKH 
OSOöIUHTB STH MCTOAW. TaK, OH nepBbitt pemnji 3aAany /(HO(J)aHTa: 

x3 + y3=a3-b3, 

npn a = 4,6 = 3, HO He HccjieAOBaji B03M0»CH0CTb ee pemeHHH npn Apyrnx 
3HaneHHHX a H b. 

Pe3K)MHpyH, MO»CHO CKa3aTb, HTO xoTH MeTOAbi H Aa»ce o6o3HaneHHH 
BOMÔeJIJIH CJIO»CHJIHCb nOA BJIHHHHeM «ApH(J)MeTHKH» /I|HO(J)aHTa, HO HH-
Tepecbi caMoro BoMÖeJIJIH ôBIJIH CBH3aHbi c npoôJieMott pemeHHH ypaBHeHHtt 
B paAHKajiax. 

PaccMaTpHBaeMbitt nepnoA B pa3BHTHH ajireßpbi Hameji 3aBepmeHHe B 
TBopnecTBe OpaHcya BneTa (1540-1603) — Bejinnattmero ajireôpancTa 
HoBoro BpeMeHH. Co BpeMeH Jlvio^aura MaTeMaTHKH coBepmeHCTBOBajin 
o6o3HaneHHH Rnsi HeH3BecTHoro H ero CTeneHett. BoMÖejiJiH BBeji CHMBOJIM 
AJIH JiK)6bix uejibix nojio»CHTejibHbix CTeneHett B BHAe OAHopoAHOtt nocjie-
AOBaTejibHocTH 1, 2, 3 , — 06o3HaneHHH CTeneHett CTaBHjincb BBepxy 
cnpaBa npn cooTBeTCTByioiAeM K03<J5<J)HAHeHTe, HanpHMep x3 + 5a; 3anncbi-
Bajiocb KaK l 3 p 51 . CHMOH CTCBHH BBCJI aHajiorHHHbie o6o3HaneHHH Rnsi 

CTeneHett BToporo, TpeTbero HeH3BecTHoro. OAHaKO HHKOMy He npnxoAHJio 
B roJiOBy BBecTH o6o3HaneHHH Rnsi npoH3BOJibHbix napaMeTpoB. 3aAy-
MaB nocTpoHTb «aHajiHTHHecKoe HCKyccTBo» (TaK BneT HMeHOBaji ajireôpy, 
HToôbi He BBOAHTb Hy»CAbix jiaTbiHH CJIOB), KOTopoe oÔJiaAajio 6bl cTpo-

rOCTbK) H TJiyÔHHOtt reOMeTpHH APCBHHX H OAHOBpeMeHHO 3(|)t})eKTHBH0CTbK) 
H onepaTHBHOCTbK) ajireöpbi, c TeM, HTOöW He ocTajiocb HepemeHHbix 
npoßjieM (nullum non problema solvere), BneT nocTpoHJi nepßoe 6yKBeHHoe 
HCHHCJieHHe. A HMeHHo: OH npeAJio»CHJi o6o3HanaTb rjiacHbiMH 6yK-
BaMH HeH3BeCTHbie, a COrJiaCHblMH — H3BeCTHbie npOH3BOJIbHbie BeJIHHHHbl 
(napaMeTpbi). npHHHB, KpoMe Toro, KjiaccnnecKHe 3HaKH + H — Rnsi 

onepaAHtt cjio»ceHHH H BbiHHTaHHH, a rjiaBHoe, npHHHB npaBHJio OTKpbi-
THH CKOÔOK H npaBHJIO nOACTaHOBKH BMeCTO JIK)6ott 6yKBbI Bbipa»ceHHH, 
nojiyneHHoro H3 6yKB npn noMomn npaBHji onepau,Htt, OH nojiynnji BO3MO»C-
HocTb 3anncbiBaTb H BbiBORHTb 4>opMyjibi. HaM cettnac TpyAHO npeACTaBHTb, 
HTO AO BneTa MareMaTHKa cym,ecTBOBajia 6e3 (popMyji, HTO Bce BbiKJiaAKH, 
KOTopbie MM cettnac npoAejibiBaeM HHCTO MexannnecKH, Hy»CHo öBIJIO Ren&Tb 

B yMe. Ho STO TaK. TojibKO ßjiaroAapn BneTy Mbi Mo»ceM Tenepb 3aMeHHTb 
HeKOTopbie paccy»CAeHHH BbiKjiaAKaMH. 
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S1) BG + DF 

V 

\BF - DG\ 

(2) zn 
a^-ß 

BF + DG 

PncyHOK 2 

\BG - DF\ 

HcHHCJieHHe BneTa ein,e oTJinnajiocb OT npHHHToro Tenepb B ajireöpe. 
^ejio B TOM, HTO BneT, cjieAyn npHHijHnaM reoMeTpHnecKott ajireÖpbi, 
yHHTblBaJI pa3MepHOCTb BeJIHHHH: CKJiaAbIBaTb H BbIHHTaTb MO»CHO ÖbIJIO 
TOJIbKO BeJIHHHHbl OAHOtt pa3MepHOCTH, npH yMHO»CeHHH pa3MepHOCTH CKJia-
AbiBajiHCb, a npn AeJieHHH — BbiHHTajiHCb. CoBpeMeHHbitt BHA ÖyKBeHHOMy 
HCHHCJieHHK) 6biJi npHAaH PeHe /JeKapTOM (1596-1650). 

ECJIH MM Tenepb oÖpaTHMCH K COHHHCHHHM BneTa, TO yBHAHM, HTO npe»CAe 
Beerò OH npHMeHHji CBoe HCHHCJieHHe K TpaKTOBKe AHO(})aHTOBbix ypaBHeHHtt. 
B 3eTerHRa (ocoöeHHO KHHrn IV H V) OH CHCTeMaTHHecKH ajire6paH3HpoBaji 
MeTOAw Ano(J)aHTa H o6o6m,HJi MHorne ero 3aAaHH. 3aMenaTejibHO, HTO 
BneT, TaK »ce KaK P. BoMÔejijiH, BBeji HCHHCJieHHe HeKOTopbix HOBMX 
06l>eKT0B, TOHHee, OH nOCTpOHJI HCHHCJieHHe TpeyrOJIbHHKOB, 3KBHBaJieHT-
Hoe yMHo»ceHHK) KOMnjieKCHbix HHceji. OHO ocHOBbiBajiocb Ha (J)opMyjie 
KOMno3Hi;HH (6) H HOCHJio Ha3BaHHe "genesis triangulorum". 

nycTb AaHbi ABa npnMoyrojibHbix TpeyrojibHHKa co CTopoHaMH B,D,Z 

H F,G,H, npHHeM nepBOfl ÖyKBott o6o3HaneHO ocHOBaHHe, a nocjieAHett 
— rnnoTeHy3a (pncyHOK 2). PesyjibTHpyiomntt TpeyrojibHHK AOJI»CCH 6biJi 
HMeTb rnnoTeHy3y, paBHyio npoH3BeAeHHK) ranoTeHV3 ZH, a KaTeTbi ero 
AOJi»CHbi 6biJiH pan,HOHajibHO Bbipa»caTbCH nepe3 KaTeTbi cocTaBjineMbix 
TpeyrojibHHKOB. Ho no <})opMyjie (6) 

Z2H2 = (B2 + D2)(F2 + G2) = (BF - DG)2 + (BG + DF)2 

= (BF -f DG)2 + (BG - DF)2 

T.e. B pe3yjibTaTe KOMno3Hii,HH MoryT nojiyHHTbCH ABa npnMoyrojibHbix 
TpeyrojibHHKa: nepBbitt — co CTopoHaMH \BF - DG\,BG + DF,ZH — 
H BTopott — co CTopoHaMH BF + DG,\BG — DF\, ZH. BneT 3aMenaeT, 
HTO ocTpbitt yroji npn ocHOBaHHH nepBoro TpeyrojibHHKa paBeH cyMMe 
ocTpwx yrjiOB npn ocHOBaHHHX y KOMnoHHpyeMbix TpeyrojibHHKOB, a y 



1626 M. T. EAIUMAKOBA 

BToporo — HX pa3H0CTH. ECJIH Mbi conocTaBHM Ka»CAOMy npHMoyrojibHOMy 
TpeyrojibHHKy KOMnjieKCHoe HHCJIO, nepBOMy — HHCJIO B + Di, a BTopoMy — 
HHCJIO F+Gi, TorAa nepBbitt TpeyrojibHHK, noJiyneHHbitt nyTeM KOMno3Hii;HH, 
6yAeT oTBenaTb npoH3BeAeHHK) HHceji (B-\-Di)(F+Gi), a BTopott — npoH3Be-
AeHHe nepBoro HHCJia Ha conpn»ceHHoe KO BTopoMy — (B + Di)(F — Gi). 

Ho 3TH »ce TpeyroJibHHKH MO»CHO xapaKTepH30BaTb 3aAaHHeM rnnoTeHy3bi 
H ocTporo yrjia npn ocHOBaHHH. nepBbitt TpeyrojibHHK MO»CHO ycjiOBHO 
3anncaTb KaK (Z,a), rRe a — ocTpwtt yroji npn ocHOBaHHH, a BTopott 
— cooTBeTCTBeHHO (H,ß). TorAa nepBbitt TpeyrojibHHK, nojiyneHHbitt npn 
KOMno3HAHH, 6yAeT (ZH,a + ß), a BTopott — (ZH,a — ß). TaKHM oôpa-
30M, nocTpoeHHoe BHCTOM HCHHCJieHHe cpa3y »ce no3BOJiHJio oÔHapy»CHTb 
Ba»CHettmee CBOHCTBO KOMnjieKCHbix HHceji: npn yMHo»ceHHH HX MOAyJiH 
nepeMHO»caK)TCH, a apryMeHTbi — CKjiaAWBaioTCH. J\anee, BneT KOM-
noHHpoBaji nepBbitt TpeyrojibHHK c co6ott, a 3aTeM nocjieAOBaTejibHO c 
TpeyrojibHHKaMH, nojiyneHHbiMH nyTeM KOMno3Hu,HH, H nojiynaji, TaKHM 
o6pa30M, pHA TpeyrojibHHKOB: (Z2,2a),(Z3,3a) H T.A. 3 T O Aano eMy 

B03MO»CHOCTb BbIBeCTH (J)OpMyjiy, KOTOpaH BnOCJieACTBHH nOJiyHHJia HMH 

(J)opMyjibi MyaBpa 

[z(co8<j) + ism<l))]'m = zm (cos meß + i smm<f)). 

C noMombK) 3T0tt (J)opMyjibi BneT nojiynaji Bbipa»ceHHH CHHycoB H KOCHHycoB 

KpaTHblX Ayr B BHAe MHOrOHJieHOB OT CHHyCOB H KOCHHyCOB. 
CpaBHHM KOMnJieKCHbie HHCJia-CHMBOJIbl BoMÖeJIJIH C HCHHCJieHHeM Tpe

yrojibHHKOB BneTa. 0 6 e STH CHCTCMM HMCJIH CBOH AOCTOHHCTBa H CBOH 

HeAOCTaTKH: HHCJia-CHMBOJiw BoMÖeJIJIH ôbijiH yAOÔHbi Rnsi npoH3BOACTBa 
neTbipex AeflCTBHtt apH<{)MeTHKH; no coBpeMeHHOtt TepMHHOJiorHH, OHH 
cocTaBjiHJiH nojie, T.e. onpeAejieHHbie Rnsi HHX ABa 3aK0Ha KOMno3HUHH 
OÔJiaAaJIH TeMH »Ce «XOpOUIHMH» CBOttCTBaMH, KaK H cjio»ceHHe H yMHO-
»ceHHe paAHOHajibHbix HHceji. OAHaKO OHH He HMCJIH «TpnroHOMeTpHHecKott 
HopMbi», T.e. c HHMH He CBH3biBajiHCb noHHTHH apryMeHTa H MOAyJiH. 
nosTOMy OHH 6biJiH HeyAOÔHbi Rnsi BbinojiHeHHH onepaAHH H3BjieHeHHH 
KOPHH, a TaK»ce Rnsi npnjio»ceHHtt K TpnroHOMeTpHH. HCHHCJieHHe 
TpeyrojibHHKOB BneTa AonycKajio H ajireöpannecKyio H TpnroHOMeTpHH-
ecKyio HHTepnpeTanHK), nosTOMy OHO cpa3y »ce öBIJIO npHMeHeHO Rnsi 

nojiyneHHH KJHOHCBBIX <})opMyji TpnroHOMeTpHH. BneT nojib30Bajicn HM H 
npn pemeHHH HeonpeAejieHHbix ypaBHeHHtt. OAHaKO STO HCHHCJieHHe Ôbijio 
MajioonepaTHBHbiM, HaA TpeyrojibHHKaMH 6biJi onpeAejieH TOJibKo OAHH 3a-
KOH K0Mn03HIIiHH (OTBeHaK) IAH tt yMHO»CeHHK)), KOpOHè, OHO 6bIJÎ0 nocTpoëHo 
enje B Ayxe aHTHHHott MaTeMaTHKH. nosTOMy npn AaJibHettmeM pa3BH-
THH MaTeMaTHKH HoBoro BpeMeHH npeAnoHTeHHe Ôbijio OTAaHo HHCJiaM-
CHMBOJiaM BoMÖeJIJIH. B XVIII B. OHH nojiynnjiH TpHroHOMeTpHHecKyio 
HHTepnpeTau,HK), a B npomjioM Bene, ocoöeHHO nocjie Toro KaK Taycc 
nocTpoHJi apH(|)MeTHKy KOMnjieKCHbix HHceji, OHH npnoôpejin nojiHbie npaBa 
rpa»CAaHCTBa. 
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HTaK, Ha npoTH»ceHHH Beerò TpeTbero 3Tana pa3BHTHH ajireöpw ocHOBHyio 
pojib nrpajiH 3aAanH AHO(J)aHTOBa aHajiH3a, H TOJIBKO B KOHije ero 3aMeTHoe 
BJiHHHHe npHoSpejiH HccjieAOBaHHH onpeAeJieHHbix ypaBHeHHtt. 

HeTBepTbitt 3Tan HCTOPHH ajireÖpbi HanHHaeTCH c 30-x TOAOB XVII B. H 
npoAOJi»caeTCH AO 7 0 - X TOAOB XVIII B. B STO BpeMH MaTeMaTHKH npnjia-
raiOT ycHJiHH Rnsi pemeHHH ypaBHeHHH 5-tt CTeneHH H BBICUIHX CTeneHett 
B paAHKajiax. TaKHe nonbiTKH MM HaxoAHM y Sttjiepa, Be3y, BapHHra H 
MHornx Apyrnx. OAHOBpeMeHHO BHHMaHHe npHBjieKaeT ocHOBHan TeopeMa 
ajireÖpbi, yTBepMCAaioman, HTO BCHKHH MHoroHJieH c AettCTBHTejibHbiMH 

KOS^HI^HeHTaMH MO»CeT 6bITb pa3JIO»CeH Ha MHO»CHTeJIH 1-tt H 2-tt CTeneHH. 
Pa3JiHHHbie ee AOKa3aTejibCTBa ÖbiJiH npeAJio»ceHbi /JajiaMÖepoM, 3ttJiepoM, 
JIarpaH»ceM, JIanjiacoM H, HaKOHen,, TayccoM. B CBH3H C STHM pa3BH-
BaeTCH yneHHe o rpynnax noACTaHOBOK, o cHMMeTpnnecKHx 4)yHKi;HHx H 
paAHOHaJIbHblX (})yHKII,HHX KOpHett ypaBHeHHH, OCTaiOIAHXCH HeH3MeHHbIMH 
npn Tex HJIH HHbix noACTaHOBKax KopHett. Bce STO noAroTaBJiHBajio noHBy 
AJiH 6yAymett TeopHH Tajiya. /JnotJmHTOBbi ypaBHeHHH XOTH H npoAOJi»caK)T 
no TpaAHU,HH paccMaTpHBaTbCH B ajire6pe (ßecb BTopott TOM «BBCACHHH B 
ajireÖpy» SttJiepa nocBHnjeH HeonpeAejieHHOMy aHajiH3y), HO, no cymecTBy, 
6jiaroAapn paÖOTaM OepMa H Sftjiepa OHH cjiHBaiOTCH c Teopnett HHceji. C 
3Toro BpeMeHH TpyAHO pa3JiHHHTb HMnyjibCbi, HAyiAHe OT HeonpeAejieHHbix 
ypaBHeHHtt KaK TaKOBbix, OT HMnyjibcoB, nopo»CAaeMbix Teopnett nnceji. 
HcKJHoneHHe cocTaBjineT, no»cajiytt, TOJIBKO BejiHKan TeopeMa OepMa. Y»ce 
AOKa3aTejibCTBO ee Rnsi cjiynan n = 3 noTpeÖOBajio pacmnpeHHH noHHTHH 
Aejioro HHCJia, a HMCHHO nepeHeceHHH noHHTHH ijejioro Ha Bbipa»ceHHH BHAa 

a + bV-S, 

TRe a,b — u,ejibie pau,HOHajibHbie. 
nHTbitt 3Tan B pa3BHTHH ajireôpbi — OT 7 0 - X TOAOB XVIII AO 7 0 - X TOAOB 

XIX B., Ka3ajiocb, Becb npomeji noA 3HaKOM npoöjieMbi pemeHHH ypaBHeHHtt 
B paAHKajiax. AOCTaTOHHO HanoMHHTb o (J)yHAaMeHTajibHbix HccjieAOBaHHHX 
>K. JI. JIarpaH»ca, K. O. Taycca, H. T. A6ejin H 3 . Tajiya, KOTopbie npHBejiH 
K BBeAeHHK) TaKHX Ba»CHettuiHx noHHTHtt, KaK nojie, rpynna, HopMajibHbift 
AejiHTejib, pa3pemHMan rpynna H T.n. Ho H 3Aecb HMeeTCH APyran JIHHHH 
pa3BHTHH, CBH3aHHan c BejiHKOtt TeopeMott OepMa, Teopnett KBaApaTHHHbix 
(J)opM H 3aKOHaMH B3aHMHOCTH. Rnsi HccjieAOBaHHH 3THX npo6jieM OKa3aJIOCb 
HeoSxoAHMbiM pacmnpHTb noHHTHe u,ejioro pan,HOHajibHoro HHCJia AO HHCJia 
u,ejioro ajireÖpaHHecKoro, nocTpoHTb apn(|)MeTHKy nojiett ajireOpannecKHx 

HHCejI, HTO npHBejIO B CBOH) OHepeAb K BBeAeHHK) nOHHTHft KOJIbU,a, MOAyJiH 
H HAeajia. Bce STH noHHTHH HBJIHIOTCH (J)yHAaMeHTajibHbiMH B coBpeMeHHott 
ajireSpe H npHMeHHiOTCH 3a ee npeAejiaMH. 

nocjie 70-x roAOB npomjioro BeKa npoÔJieMa pemeHHH ypaBHeHHtt B 
paAHKajiax noTepnJia CBoe ÖbiJioe 3HaneHHe. Anreôpa nocTeneHHo npeoôpa-
30Bajiacb B HayKy o 3aKOHax KOMno3Hii,HH, onpeAeJieHHbix Rnsi npoH3BOJib-
Hbix MHO»cecTB OSTJCKTOB npoH3BOJibHOtt npnpoAfei. H C COBpeMeHHOtt TOHKH 
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3peHHH caMa npoßjieMa pemeHHH ypaBHeHHtt B paAHKajiax HMeeT HecpaB-

HeHHO MeHbmee 3HaneHHe, neM noHHTHH rpynnbi H nojin, KOTopbiM OHa AaJia 

»CH3Hb. HHane OôCTOHT ACJIO C yneHHeM o AHO(})aHTOBbix ypaBHeHHHx. 3 T O 

yneHHe CJIHJIOCB B HbiHemHeM BeKe c ajireöpannecKott reoMeTpnett, c OAHOä 

CTopoHbi, H c Teopnett HHceji — c Apyrott. PoJib HX B HCTOPHH ajireôpw 

AajieKO eme He ncnepnaHa. 
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Example 1. An exponential curve. My topic is best introduced by an 
example. I take it from the correspondence between Leibniz and Huygens in 
1690-1691. Leibniz wrote about his new differential and integral calculus. Huy
gens was very skeptical and proposed problems for Leibniz to solve. In the 
course of this exchange Leibniz came to use an exponential equation to repre
sent a curve. This was entirely new; the only curve equations used until then 
were algebraic ones. Huygens was even more skeptical about this novelty: he 
thought that Leibniz boasted, using fancy but empty symbolism. So Leibniz 
explained further. He took as an example the curve representing the relation be
tween the time t and the velocity v of a body falling in a medium with resistance 
proportional to v2. That curve, he said, was given by the following exponential 
equation: 

Huygens was still puzzled. He wrote: 

I must confess that the nature of that sort of supertranscenden-
tal lines, in which the unknowns enter the exponent, seems to 
me so obscure that I would not think about introducing them 
into geometry unless you could indicate some notable usefulness 
of them [11, Vol. 9, p. 537]. 

And somewhat later he wrote: 

I beg you to tell me whether you can represent the form of that 
curve by marking points on it or by whatever method [11, Vol. 
9, p. 570]. 
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FIGURE I 

Leibniz's answer was affirmative. The equation, he wrote, implies the con
struction of points on the curve, and he gave the following 

Construction [11, Vol. 10, pp. 14-15]. Draw (see Figure 1) parallel lines 
AA! and CG1 with distance AC = 1. Take B on AA! with AB = 1. Take BD 
of arbitrary length b, perpendicular to AA!. Draw the Logarithmica through 
C and D with axis AA!. The Logarithmica is the curve with equation y = bx. 
It was known to Huygens; not, of course, by its equation, but as the curve 
with the property that for every sequence of equidistant points on the axis, the 
corresponding ordinates are in geometrical progression. Hence if G is the middle 
of AB, then GH = \JAC • BD, which is constructible by ruler and compass. 
Again if AB = BI, then IJ = (BD)2/AC, which is constructible as well. Thus 
this property implies a method to construct arbitrarily many points on the curve 
(by successive halving and doubling of segments on the axis and constructing 
the corresponding ordinates). It is to this pointwise construction of the curve 
that Leibniz refers in his explanation to Huygens. With the Logarithmica thus 
constructed, take P arbitrary on that curve, draw the ordinate PT, intersecting 
CC in K, prolong to Q with TQ = 1. Take QS = 1 horizontally to the left, and 
connect S and P. SP intersects CC in R. Take V on TP such that TV = KR. 
Then V is on the required curve. To find more points repeat this construction 
from other points P on the Logarithmica. D 

Clearly, this is a rather complicated procedure to represent a curve. More 
surprising is the fact that for Huygens this method of marking points on the 
curve was much more enlightening than Leibniz's exponential equation. Indeed 
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he wrote back: 

I have looked at your construction of the exponential curve 
which is very good. Still I do not see that this expression 
ft* = j ^ ; is a great help for that: I knew the curve already 
for a long time [11, Vol. 10, pp. 20-21]. 

Huygens's reaction shows that for him the exponential equation was not a 
sufficient representation of the curve; he only could understand, and indeed 
recognize, the curve when a construction of it was given. For him the canonical 
way of giving (and understanding) a curve was by a construction procedure for 
making points on it. The example, then, is about different views on the proper 
way of representing curves. 

The representation of curves. I use the term "representation of a curve" as 
a technical term to denote a description of a curve that is sufficiently informative 
to consider the curve known. 

In the seventeenth century, mathematicians were often confronted with the 
problem of how to represent curves, because they came upon many problems in 
which it was required to find hitherto unknown curves. Many of these problems 
were so-called "inverse tangent problems," equivalent to first-order differential 
equations and often arising from mechanical problems. Solving such problems 
required a convincing representation of the curve sought. As the analytical 
methods (analytic geometry, the calculus) were still very new, representation 
of a curve by its equation was often not considered sufficient (especially in the 
case of transcendental curves), and more geometrical ways of representation were 
required. 

The representation of curves was an informal practice, without fixed criteria 
of adequacy. There was, at that time, no universally accepted definition of the 
concept of curve on which a formally determined way of representing curves could 
be based (nor, apparently, was a need for such a definition felt). Because it was 
an informal practice, it was subject to much debate; opinions about the proper 
representation of curves differed among mathematicians; and they changed over 
the period. These differences of opinion and the ensuing debates are interesting 
because they reveal much about the changing conceptions and aims within the 
mathematics of that period. In particular they reveal the complex process of the 
replacement of geometrical ways of thinking by analytical ones. 

Geometrical construction. The example of the exponential curve illus
trates that in the seventeenth century the representation of curves often relied 
on procedures of geometrical construction. At the beginning of the century this 
concept of construction had been central in a debate occurring within what may 
be called the early modern tradition of geometrical problem solving. The century 
between 1550 and 1650 was the time in which the classical Greek mathemat
ics was taken up, understood, and elaborated. In particular, the early modern 
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FIGURE 2 

mathematicians took over the Greek* interest in geometrical problems and their 
solution by construction. 

In this practice they were confronted with two questions of method. The 
first was: What means of construction should be used if problems cannot be 
constructed by ruler and compass? Many problems (the classical ones as foremost 
cases) could not be constructed by ruler and compass. Obviously, they had to 
be solved, but by what means? More sophisticated instruments than ruler and 
compass? More complicated curves than straight lines and circles? Or should 
one adopt new postulates in addition to the Euclidean ones that are the basis 
of ruler and compass constructions? All these possibilities were considered and 
debated by early modern geometers. 

The second methodological issue was the search for analytic methods. From 
the classical Greek geometrical works as they were known, about 1600 mathe
maticians inferred that the ancients had had a special method, called analysis, 
for finding proofs of theorems and constructions of problems, but that they had 
kept that method secret, or at least that works about the method had been lost. 
So the early modern geometers set themselves the task of recreating or creating 
such analytic methods. 

Example 2. Trisection. Rather than discussing geometrical construction 
and the related methodological questions abstractly, I shall illustrate them by 
an example. It is taken from Descartes's Géométrie (1637) [9], and it concerns 
a classical problem, the trisection of the angle. 

Let /.NOP (see Figure 2) be given, so that the chord NP = q within the 
circle (radius 1) is known. It is required to construct INOQ = ^LNOP. 

Descartes proceeded in two steps. He called x the chord NQ of the required 
angle, and he derived an equation for x. He found, by applying elementary 
Euclidean geometry: 

x3 - 3x + q = 0. (2) 

The second step was to geometrically construct a root x of the equation. Des
cartes gave the following 

Construction [9, pp. 396-397]. With respect to perpendicular axes (see Figure 
3) through O, draw a parabola with vertical axis, vertex in O, and passing 
through the point U, with coordinates of length 1. Take D on the vertical axis 
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FIGURE 3 

below O such that OD = 2. Take DM = q/2 horizontal to the left. Draw a 
circle with center M and radius MO] the circle intersects the parabola in O 
and in three other points, of which G is the one nearest to the vertex. Draw 
GK horizontally with K on the vertical axis. Then GK is the required root x; 
taking NQ = GK in Figure 2 gives the required trisection. [The remaining roots 
occur as the ordinates of the other points of intersection of the circle and the 
parabola.] D 

According to Descartes, this kind of construction was the canonical solution 
of an equation if it arose in a geometrical context. An algebraical solution (by a 
Cardano-type formula) would not be sufficient; the problem was geometrical and 
hence the solution had to be geometrical too. The example illustrates Descartes's 
particular answer to the methodological questions outlined above: Construction 
beyond ruler and compass was to be effectuated by the intersection of higher 
curves (here the parabola and the circle); the analytical method was algebra. 

When is a problem solved? At this point the two examples enable me 
to state, somewhat slogan-like, the central theme of my research. It concerns 
the questions: When was a problem considered solved? When was an object 
considered known? In other words, what were the criteria for adequate solution 
and representation in seventeenth-century mathematics? 

Such criteria evidently played a role in the mathematical practice of the period 
(as in fact in any period). They were not formalized, and they were controversial. 
Studying these criteria, the debates about them, and the changes they underwent 
often brings to light ways of mathematical thinking that were common and self-
evident at the time but are very unfamiliar to us. 

The criteria of adequacy have been little studied before by historians of math
ematics. The reason for that neglect of an important part of seventeenth-century 
mathematics is that these criteria concern contemporary practice, whereas his-
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torical research has often concentrated on the origin of modern ideas. Also the 
criteria concern the mathematical material, the objects (like curves), and the 
problems (construction problems or inverse tangent problems), whereas histori
cal research has tended to concentrate on the theories and the methods (analytic 
geometry, calculus) that were developed to deal with those objects and problems. 

I have found a study of these criteria of adequacy very revealing and reward
ing. In the remainder of this lecture I would like to mention some results of the 
investigations around the theme outlined above, and give some examples. 

Descartes's Géométrie. Let me begin with Descartes's Géométrie of 1637 
(cf. [7]). This was without doubt the most influential book in seventeenth-
century mathematics; for one thing, it marked the beginning of analytic geome
try. Through it, Descartes's particular choices (mentioned above) with respect to 
the methodological issues in geometry, his criteria of adequacy, became paradig
matic for mathematicians after him. These choices largely determined the struc
ture of the book and the conception of geometry behind it, as for instance the 
restriction of geometry to algebraic relationships which Descartes advocated very 
strongly. His methodological choices explain in particular what may be called 
Descartes's program for geometry: 

Given a geometrical problem, one calls x one of the line segments that have 
to be constructed. One then derives an equation 

H(x) = 0 (3) 

for x, where H is a polynomial. Then, to determine x, the geometer's task is 
to find acceptable j simple curves 7 and Q, such that the roots of H(x) = 0 are 
equal to the ordinates of intersection points of 7 and Q. These curves are then 
the constructing curves by which the problem is solved. 

In Descartes's view of geometry, these curves should be algebraic. So, if 
we write F(x, y) = 0 and G(x, y) — 0 for the equations of these curves, the 
requirements are that H(x) is a factor of the resultant of F and G: 

Res(F,G)=A(x)-H(x), (4) 

and that 7 and Q are in some sense acceptable and simple. The procedure to 
find such F and G for given H was called the "construction of the equation." 

Descartes treated the construction of equations in general for equations H (x) 
= 0 of degree 2-6. He showed that equations of degree 1 and 2 can be constructed 
by circles and straight lines, equations of degree 3 and 4 by the intersection of 
a conic and a circle (in fact, he showed that one fixed parabola is enough), 
and equations of degree 5 and 6 by the intersection of a circle and a special 
third-degree curve, the later so-called "Cartesian Parabola." Descartes did not 
proceed to higher degrees; he simply stated at the end of his book that it would 
be easy to go on. So he left a program for his successors: to work out a theory 
of constructing equations. 
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A forgotten theory. Around 1650, the Construction of Equations (cf. [8]) 
was generally considered a sensible subject, a natural and legitimate interpreta
tion of the program of finding exact constructions for geometrical problems of any 
degree of complexity. The theory attracted considerable attention; many books 
and articles about it appeared and mathematicians of first rank contributed to 
it, such as Descartes, Fermât, Newton, l'Hôpital, Riccati, Cramer, Euler, La
grange. Descartes's opinion that the constructing curves should be algebraic 
was generally (though not universally) accepted, but there was much debate on 
the requirement that the curves be "simplest possible." Should the equation be 
simple? Or the shape of the curve? Or the movement by which it can be traced? 
Descartes had given little guidance here; he had only stated, without further 
argument, that a curve is simpler in as much as its degree is lower.1 

The debates about these questions show how mathematicians struggled to 
formulate and fix the motivation and the aims of the theory. They often felt 
strongly about it; witness the legislative, almost moralistic overtones in the de
bate. Some quotations may illustrate this. Here, for instance, is Fermât: 

Certainly it is an offense against the more pure geometry if one 
assumes too complicated curves of higher degrees for the solu
tion of some problem, not taking the simpler and more proper 
ones; for it has often been declared already, both by Pappus and 
by more recent mathematicians, that it is a considerable error 
in geometry to solve a problem by means that are not proper to 
it [10, Vol. 1, p. 121]. 

And Newton: 

Yet it is not its equation but its description which produces a 
geometrical curve.... It is not the simplicity of its equation but 
the ease of its description which primarily indicates that a line 
is to be admitted into the construction of problems.... Either, 
then, we are, with the ancients, to exclude from geometry all 
lines except the straight line and circle and may be the conies, 
or we are to admit them all according to the simplicity of their 
description [14, Vol. 5, pp. 425-427]. 

Many similar statements occur in the literature on the construction of equa
tions. They use remarkable metaphors: geometry is seen as a lawful territory 

1 Around 1700, mathematicians had come to the following consensus about the degrees of the 
"best possible" constructing curves for an equation: If the degree of H is n, then constructing 
curves F(x, y) = 0 and G(x, y) = 0 can be found with degrees that are integer approximations 
of y/n. The consensus was based on experience. Newton and l'Hôpital gave proofs, but these 
were incorrect. Euler and others accepted the result without questioning the proof. In modern 
terms the question is this: Given H[X], a polynomial of degree n = k • l\ are there polynomials 
F[X,Y] and G[X,Y] with degrees Ä; and I, such that H = Res(i^,G)? It seems that this 
question is still open. I would be very thankful to any colleague who can give me more definite 
information about it. 
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that has to be protected and from which certain practices have to be excluded, or 
it is seen as a person, who can be offended and whose purity, one would almost 
say whose chastity, has to be defended. The issue was: to shape the proper 
rules of the subject and thereby to secure its status as a meaningful and sensible 
subject. The metaphors indicate that mathematicians felt strongly about it. 
Still, despite the strong words, the debates remained inconclusive; the questions 
about the aims of the field, and its proper procedures, could not be answered. 
After some time the debate died and so did the theory itself; after 1750 it quickly 
fell into oblivion. 

The phenomenon of a theory that starts off as an evidently sensible enterprise 
and later dies amidst inconclusive discussions on its aims and motivations is a 
most interesting one. Why did the subject die? The answer turns out to be 
the following: The construction of equations originated as a sensible procedure 
within geometry. Purely algebraically, however, it does not make much sense. If 
a problem consists of a polynomial in one unknown, why should two polynomials 
in two unknowns constitute a solution? As the theory progressed, the techniques 
to find constructing curves became more and more algebraic. But the geometri
cal meaning of the subject—exact construction—and the geometrical criteria of 
adequacy—simplicity of the curves—refused translation into algebra in a natu
ral way. The subject had a tendency to become algebraic, but its aims, criteria, 
and meaning proved untranslatable into algebra—it succumbed to this internal 
contradiction. 

In the case of the construction of equations, we can follow in detail a pro
cess of development and decline of a mathematical field, a process whose causes 
were in the sphere of motivation, sense, and meaning. Such processes are little 
studied, although they are of evident interest for understanding the development 
of mathematics. The case also provides an informative example (or counterex
ample) with respect to theories about the historical development of scientific 
"research programs" as proposed by I. Lakatos and other recent philosophers of 
science. 

Example 3. The Elastica and the Paracentric Isochrone. I now return to 
the representation of curves, about which methodological questions were raised 
remarkably similar to the ones discussed in connection with the construction of 
equations. Again, I can best illustrate these questions by an example. The ex
ample concerns two curves, the Elastica and the Paracentric Isochrone. In 1694 
Jakob Bernoulli published in the Acta Eruditorum an article [2] about the form 
of elastic beams under tension. The beams (cf. Figure 4) are fixed vertically at 
the one end; a weight is attached such that the other end is bent horizontally. 
Bernoulli considered arbitrary relations between extension and force, but he de
voted special attention to the case in which Hooke's law—extension proportional 
to force—applies. The Elastica is the form of the beam in that case. 

Bernoulli derived the differential equation of the Elastica: 

= x2dx 
9 v/S^i*' V ' 
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FIGURE 4 

where a is the horizontal distance between the two ends of the beam. He repre
sented the solution curve by means of the following 

Construction. Take OA = a along a horizontal X-axis (see Figure 4, positive 
values are taken to the left). Construct above the axis the curve with ordinates 
z satisfying the equation 

aar 

v? 
(6) 

[Bernoulli assumes his readers to be familiar with the construction of algebraic 
curves.] For any abscissa OX = x, determine y such that ay is equal to the 
area OXZ (XZ = z(x)). Take XE = y vertically downwards. Then E is on the 
Elastica. More points on the curve are found by repeating the construction for 
other values of x. D 

The construction is the geometrical equivalent of the analytical formula 

ay -F 
JO 

ax2 dx 
\/a4 - x • 

(7) 

Bernoulli could have written the solution of (5) in such an analytical form; it 
is important to note that he did not do so, but chose to represent the curve by 
this geometrical construction. It is a so-called "construction by quadrature," 
assuming (without explanation) that it is possible to determine a rectangle (ay) 
equal to an area under a given curve. Construction by quadrature was a common 
way to represent transcendental curves in the seventeenth century, but it was 
not considered the most desirable kind of representation. 
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FIGURE 5 

Bernoulli further calculated the differential of the arclength s = OE of the 
Elastica: 

a2 dx . . 
ds = 7J^T*- (8) 

This formula provided the link between the Elastica and the Paracentric Iso
chrone. The Paracentric Isochrone (see Figure 5) is the curve through a point 
O with the property that, in a vertical plane, a body moving under influence of 
gravity along the curve, recedes uniformly from O. That is, if r(t) is the distance 
of the body to O and t the time, then r(t): : t. 

Leibniz had challenged mathematicians to determine this curve. In an article 
[3] published together with the one on elastic beams, Bernoulli gave his solution. 
He derived the differential equation: 

d(ar) _ a2 du . . 

(with a depending on the initial velocity, r and v as in Figure 5, and u2 = 
av). Bernoulli could now give a construction "by quadratures," the geometric 
equivalent of writing 

f— H a2 du 
V " = / n—4- (10) 

Jo ya 4 - u4 

Significantly, he did not do so. He recognized the right-hand differential in (9) 
as the arclength differential of the Elastica, and he concluded that this enabled 
him to give a construction "by rectification." It is as follows: 

Construction. Assume an Elastica RQO given (see Figure 6). Draw a circle 
around 0 with radius OB = a. Take E arbitrary on OB and draw EQ vertically 
with Q on the Elastica. Take U on the circle such that UV = OE2 ja. Take W 
on OU such that OW = (arc OQ)2/a. (Here it is assumed that the rectification 
of the Elastica can be performed.) Then W is on the Paracentric Isochrone. 
Repeat the construction for other points E to get arbitrarily many points on the 
required curve. D 

The 6c«* representations. The remarkable thing about Bernoulli's con
struction is that according to him this was the best way of representing the 
solution of Leibniz's problem, better than the construction by quadratures which 
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FIGURE 6 

is implied in formulas (9)-(10). And this was not merely a curious idiosyncrasy 
of one mathematician. Shortly afterwards three further articles appeared, by 
Leibniz [13], Johann Bernoulli [6] (Jakob's brother), and Jakob himself [4], each 
containing reductions of the integral in (10) to an arclength of a curve. Indeed, 
while searching for a comparatively simple algebraic curve to reduce the integral, 
Jakob and Johann independently found the same curve. It was the Lemniscate, 
whose origin, therefore, lies in a preference for rectifications over quadratures in 
the representation of transcendental curves. 

In the course of this exchange of solutions Jakob Bernoulli came to formulate 
explicitly [4, p. 608] his view on the proper representation of transcendental 
curves. He wrote that one should at least give a construction by quadrature of 
an algebraic curve. It was better to give a construction by rectification of an 
algebraic curve, or a "pointwise construction" (such as Leibniz's construction of 
the Logarithmica, see above). The best way to represent a curve, however, was a 
construction by curves "given in nature" (as the Elastica or, e.g., the Catenary). 
Bernoulli preferred rectifications over quadratures because, as he said, measuring 
length is easier than measuring area. He gave top preference to curves "given 
in nature" because if these can be found, all laborious construction of algebraic 
curves and their quadratures or rectifications could be avoided. These views 
of Jakob solicited several reactions, which I shall not further discuss; I use his 
statements here primarily to show that there was a debate and to illustrate its 
nature. 

The debate shows striking similarities with the discussions about the construc
tion of equations. In both cases analytical representation was seen as insufficient: 
a problem was considered solved only when a geometrical construction was given. 
The crucial point was the interpretation of "simplicity" ; the constructing curves 
were considered better inasmuch as they are "simpler" ; rectifications were pre
ferred over quadratures because they were considered "simpler" to effectuate; 
construction by curves "given in nature" was advocated by Bernoulli because 
it provided "simpler," easier constructions. There were legislative overtones 
in both debates; Johann Bernoulli, for instance, uses terminology like "to sin 
against the laws of geometry" [6, p. 121]. And finally in both cases the debate 
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remained inconclusive. With hindsight we can understand this; the relevant the
ories (equations, differential equations) became more and more analytical, but 
the concepts of geometrical simplicity could not be convincingly translated and 
formalized into analytical terms. The discussions were resolved by forgetting the 
problems. 

Although these issues of construction and representation of curves were later 
forgotten, at the time they had a decisive influence on the development of math
ematics. Analytic geometry originated in the context of geometrical construc
tion by the intersection of curves. The first techniques for solving differential 
equations were elaborated with the aim of finding appropriate geometrical repre
sentations of the solution curves of inverse tangent problems. And, for instance, 
the early studies on elliptic integrals by Jakob Bernoulli, Fagnani, and others 
were a result of the effort to interpret integrals as arclengths. 

Conclusion. I hope I have shown that the question of the criteria of adequacy 
of representation and solution provides an intriguing and fruitful way of looking 
at the mathematics of the seventeenth century. It provides new insights on three 
different levels. 

On the technical level, an awareness of these issues leads to a better un
derstanding of the terminology and the mental images of seventeenth-century 
mathematical practice. Curves were studied intensively in that period, but most 
of them (in particular the transcendental ones) could not be represented by 
equations. An understanding of the alternative ways of representation, of the 
reasons behind them, and of the mental images of mathematical objects which 
they presuppose is essential for understanding the texts of the period. 

On the level of the development of mathematics, the approach helps in under
standing certain directions and tendencies in seventeenth-century mathematical 
research, which would otherwise merely seem peculiar or superfluous, such as the 
interest in the geometrical construction of roots of equations or in representing 
integrals as arclengths. 

Finally, on a more general level, a study of the criteria of adequacy is useful in 
understanding the processes of change in mathematics caused by the introduction 
of radically new methods (such as analysis in the seventeenth century) and the 
process of habituation to new ways of mathematical thinking. These processes 
operate both on the level of technique and on the level of motivation, meaning, 
and sense of the mathematical enterprise. They are not special to the seventeenth 
century, they belong to the mathematics of all times. They have received little 
attention until now; the research on which I am reporting may be of interest as 
an experiment in how these processes can be studied. 
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On a simplistic level, it is easy to explain how the theory of the structure 
and representation of semisimple Lie algebras originated. In 1874 Sophus Lie 
introduced the notion of a Lie group and the associated infinitesimal group or 
Lie algebra. In 1888 Wilhelm Killing determined all simple and semisimple Lie 
algebras. His results were more rigorously established and somewhat extended by 
Elie Cartan in his doctoral dissertation of 1894. Then in 1913 Cartan introduced 
his theory of weights and determined all irreducible representations of simple and 
semisimple Lie algebras. Finally, in 1924 Hermann Weyl proved the complete 
reducibility theorem for semisimple Lie algebras and introduced the notion of 
a character to determine the dimension of an irreducible representation, which 
Cartan had been unable to do. 

There is nothing factually incorrect with this account, but it is almost com
pletely devoid of historical content. One would never know from this account 
that the works of Lie, Killing, Cartan, and Weyl are inextricably intertwined 
with a multitude of strands of nineteenth and early twentieth century math
ematics involving many of the most prominent mathematical schools of that 
period. The challenge to the historian is to depict the origins of a mathematical 
theory so as to capture the diverse ways in which the creation of that theory was 
a vital part of the mathematics and mathematical perceptions of the era which 
produced it. The challenge is particularly formidable in the case of the structure 
and representation theory of Lie algebras because its historical roots reach out 
to an unusually broad and diverse spectrum of nineteenth and early twentieth 
century mathematical thought. But the challenge is for the same reason tanta
lizing because it affords the historian an extraordinary opportunity to bring to 
life the mathematics and mathematicians of the past. 

In my work on the history of Lie algebras I have attempted to undertake the 
task of "revitalization" in various ways. One approach is to relate, when ap
propriate, a mathematician and his mathematics to the research programs and 
disciplinary ideals of the mathematical school in which he was trained or within 
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which he subsequently worked. I have applied this approach to the groundbreak
ing work of Killing, who was trained in the Berlin School of Weierstrass [1, 2]. 
Another way in which I have attempted to bring to life the mathematics and 
mathematicians of the past is to identify a mathematical event, such as the artic
ulation of a mathematical idea or problem which, when followed through time, 
provides an interesting historical mirror in which to view the developments that 
produced the representation theory of Lie algebras. In this manner one obtains, 
so to speak, a one-dimensional representation of a more complex historical real
ity which has the advantage that it focuses upon one type of link between the 
history of Lie algebras and the mathematics of bygone eras. 

One example of such an event is provided by the geometrical Principle of 
Transfer which Otto Hesse introduced in 1866. Inspired by the duality between 
points and lines in the projective geometry of the plane, Hesse showed how to 
establish a correspondence between the projective geometry of n-dimensional 
space (with special attention to the case n = 3) and the projective geometry of 
the line. As time went on and Hesse's Principle was viewed in the light of Klein's 
Erlanger Programm, Lie's theory of transformation groups, the Clebsch-Gordan 
"series expansions" in the theory of invariants and the varieties introduced into 
algebraic geometry by Veronese and Segre, the Principle changed considerably. 
So much so that by 1913 Cartan viewed himself as applying Hesse's Principle 
when he showed how to construct all irreducible representations of a simple 
Lie algebra of rank I from / "fundamental" representations. That is, what is 
nowadays sometimes called the Cartan product of two irreducible representations 
was for Cartan himself a consequence of Hesse's Principle. The Principle had 
changed considerably, of course, and in the process played a role in the history 
of the theory of Lie algebra representations. 

I have recently discussed Hesse's Principle in greater detail elsewhere [3]. Here 
I shall go into more detail regarding another "historical mirror" and the view 
of Lie algebra history it affords. This one is provided by a seminal paper on 
the new theory of invariants which Arthur Cayley published in 1854 and which 
introduced a problem I shall refer to as Cayley's Counting Problem. (I am grate
ful to Jacob Towber for calling my attention to Cayley's work on this problem.) 
Like Hesse's Principle, Cayley's Problem changed with time. As we shall see, 
Cayley's Problem is an interesting historical mirror in which to view some of 
the developments in the representation theory of Lie algebras not reflected in 
Hesse's Principle. An example is the discovery of the first proof of the complete 
reducibility theorem for semisimple Lie algebras. Hesse's Principle had encour
aged Lie's colleague at Leipzig, Eduard Study, to interpret the series expansions 
of Clebsch and Gordan as special cases of this theorem and to conjecture the 
theorem for any semisimple Lie algebra. Cartan made the same conjecture, but, 
as he later explained, he lacked the tools to prove it. A proof was first discovered 
by Weyl in 1924. He made critical use of the tools provided by Issai Schur in a 
seminal paper published that same year. The historical background to Weyl's 
work is far too complex and diverse to consider fully here. Here the discussion 
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will be restricted to the one-dimensional but nonetheless enlightening view of 
the background to Weyl's paper afforded by tracing the vicissitudes of Cayley's 
Problem. 

The theory of invariants grew up around the general problem of describing, 
in one way or another, the in- and covariants associated with an n-ary form, i.e., 
a homogeneous polynomial in n variables. This general problem was first posed 
by Cayley, who was inspired to do so through some papers written by Boole in 
the 1840s [4]. Consider, for example, the case of a single binary form F(a,x) of 
degree d: F(a, x) = X)j=o {1j)a3xi~3 xi- A linear change of variable x = Sxf, S G 
GL(2), transforms F into a polynomial in x1: F(a,x) = F(a,Sxf) = F(a',x'), 
where the coefficients a£ of the transformed F are linear homogeneous expressions 
in the aj which thus define a linear transformation 

a1 = Pd(S)a, Pd(S) e GL(d + 1). (1) 

In the above definitions, GL(ra) can be regarded as defined over the real or 
complex field, an ambiguity present in the nineteenth century literature. A 
polynomial C(a, x) in the aj and the Xi which is homogeneous of degree p in a 
and of degree q in x is a covariant with respect to F(a, x) if 

C(af, x1) = (det S)wC(a, x) VS e GL(2). 

An invariant is a covariant in the "limiting case" in which q = 0 so C(a, x) = 
C(a). 

The notation we have used in sketching the above definitions is historically 
misleading in the sense that it has a group theoretic flavor, whereas group the
oretic considerations played no part in the theory of invariants until the 1890s. 
Nonetheless for our purposes it will be helpful to keep the group theoretic aspect 
in mind. For example, the correspondence S —• Pd(S~x) defines a representation 
of GL(2). 

As Cayley realized, one way to describe, say, the covariants associated with 
F(a, x) would be to determine, if possible, a finite number of covariants such that 
every covariant can be represented as a polynomial in these. We shall refer to this 
as the Finiteness Problem. A related problem is Cayley }s Counting Problem: For 
fixed values ofp andq, determine the number of linearly independent covariants 
C(a, x) of degrees p and q in a and x respectively. Cayley posed his Counting 
Problem in a paper written in 1852 for Crelle's journal [5]. By the time it 
appeared in print in 1854 he had solved it. The solution was presented in the 
second of Cayley's famous memoirs on "qualities" [6]. 

Cayley's solution was based upon his discovery that the in- and covariants of 
the binary form F(a, x) can be characterized by means of differential equations. 
That is, if differential operators X and y are defined by 

d d-l 

3=1 3=0 
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then we have 

THEOREM 1. C(a, x) is a covariant iff 

XC = x2dC/dx\ and ]JC = X\dC/dx2. 

C(a) is an invariant iff XC = yC = 0. 

An immediate consequence of Theorem 1 is that if C(a, x) is a covariant then 
Z(C) = 0 where Z denotes the commutator 

Z = (X - x2d/dXl)(y - x1d/dx2) -(y- x1d/dx2)(X - x2d/dx1). 

By writing Z in the simplified form 

z = xy-yx + (-x1d/dx2 + x2d/dx!) 
where Xy — yX = ]Cy=o(^ "" ^3)aj9/daj, Cayley discovered that ZC = 0 
imposes a condition on the terms of C(a, x). That is, if 

C(a,x) = J2(q)B3Ìa)xrJ4, (2) 
3=0 U / 

where Bj(a) is a homogeneous polynomial of degree p, viz. 

mo H \rmd=P 

then each term of Bj has the same "weight" Wj = (pd — q)/2 + j , where the 
weight of a term of B3 (a) is defined to be Wj = ]Ci=o îm*- Later a homogeneous 
polynomial such that each term has the same weight was termed isobaric, a term 
we shall use. If x\ and x2 are assigned weights 1 and 0, respectively, so x\~3x3

2 

is assigned weight q — j , then each term of C(a, x) as given in (2) has the same 
weight so that C(a, x) is also isobaric. That is, we have 

THEOREM 2. IfC(a, x) is a covariant then it must be isobaric of total weight 
(pd + q)/2. 

A mathematician reading Cayley's papers today will see immediately that 
their contents can be interpreted readily in terms of Lie algebras, although of 
course that concept was not introduced until twenty years later. Viewed in 
modern terms, the operators X,y and [X,y] = Xy — yX act on the vector 
space of all homogeneous polynomials B(a) of degree p, thereby making it into a 
module for the Lie algebra sl(2, C). Indeed, as Cayley realized, if B(a) has degree 
p and weight w, (Xy — yX)B = (pd — 2w)B. Thus B(a) is a weight vector of 
Cartan weight pd — 2w. Furthermore, Cayley's solution to his Counting Problem 
for covariants C(a, x) of degrees p and q in a and x respectively, involved, in 
effect, the irreducible representation of sl(2, C) of highest weight q. 

This follows from the fact that, if one writes out the two differential equations 
of Theorem 1 characterizing a covariant C(a, x) they are equivalent, respectively, 
to 

XB0 = 0 , . . . , XBj = jBj-U. ..,XBq= qBq-X (3) 
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and 

yBq = o , . . . , yBq-j = y ß g _ i + i , . . . , yß0 = qBx. (4) 

Since, by Theorem 2, Bo(a) has Cayley weight w = (pd—q)/2, equations (3) and 
(4) imply to us that Bo is a highest weight vector (XBQ = 0 ) of Cartan weight 
q = pd — 2w and that the Bj generated by Bo under application of y as in (4) 
define a basis for the corresponding irreducible sl(2, C) module. For Cayley the 
significance of equations (3) and (4) was that they showed that a covariant is 
determined by its leading coefficient Bo. Eventually he obtained the converse 
result contained in 

THEOREM 3. If Bo (a) is any homogeneous polynomial of degree p and weight 
w = (pd — q)/2 which satisfies XBo = 0, then if B\,..., Bq are defined by (4), 
the resulting polynomial C(a, x) defined by (2) is a covariant. 

To prove Theorem 3, Cayley showed (3) and (4) were satisfied. This meant 
showing that yBq = 0 (or equivalently that yq+1Bo = 0) and that XBj = jBj-i 
for j > 0. 

A homogeneous isobaric polynomial B(a) such that XB = 0 was later called 
a semi-invariant (or seminvariant) since it satisfies half the conditions for an 
invariant given in Theorem 1. Adopting this terminology, we may say that 
Theorem 3, by setting up a correspondence between covariants and their leading 
coefficients, provided Cayley with the following 

COROLLARY. If M(p,d,w) denotes the number of linearly independent sem-
invariants of degree p and weight w = (pd — q)/2, then M(p, d, w) is the solution 
to the Counting Problem. 

Cayley discovered a simple characterization for the number M(p,d,w): 

THEOREM 4 (CAYLEY'S LAW). If N(p,d,w) denotes the number of non-

negative integral solutions mo, . . . ,md to the two equations X ^ = o m J = P> 

Z^Lo 3m3 = w> then M(p, d, w) = N(p, d, w) - N(p, d, w - 1). 

The idea behind Cayley's proof is quite simple. Each simultaneous solution 
to the above Diophantine equations determines a monomial am°ami • --amd of 
degree p and weight w. Thus N(p,d,w) = dimV(p,d,w), where V(p,d,w) 
denotes the vector space of all homogeneous isobaric polynomials in a of de
gree p and weight w. Since application of X lowers weight by 1, X is a linear 
transformation from V(p, d, w) into V (p, d,w — l). The kernel of X consists pre
cisely of the seminvàriants of degree p and weight w. Thus if X is surjective, 
dim[ker(JC)] = dimV(p,d,w) — dimV(p,d,w — 1), and Cayley's Law follows. 
Cayley's actual proof was along these lines, albeit expressed in nineteenth cen
tury terminology. He felt it was evident that X was surjective. As he expressed 
it: if B(a) is the "general" polynomial of degree p and weight w, then XB will 
represent the general polynomial of degree p and weight w — 1 [6, p. 256]. Cayley 
was correct, but the proof turned out to be rather nontrivial. 
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Cayley's Law afforded him with a solution to the Counting Problem conge
nial to computations, which he relished. Although there is no simple formula 
for the number N(p,d,w), it can be represented, as Cayley showed, as the co
efficient of xwzp in the series expansion of the generating function <t>(x,z) = 

n„_o(l — x*z)\ . From this representation Cayley obtained a generating 
function representation of the numbers M(p, d, w) as well and worked out their 
values in extensive tables. 

Were history a rational process, Cayley's work would have played a seminal 
role in the events that culminated in the publication of Cartan's theory of weights 
in 1913. Indeed, shortly after Cayley published his characterization of in- and 
covariants by differential equations (Theorem 1), his friend J. J. Sylvester re-
derived the equations using the notion of infinitesimal transformations [7], which 
is the way the elements in a Lie algebra were conceived in the nineteenth century. 
Sylvester also briefly considered the n-ary analog of Theorem 1, which involves 
sl(n, C) and even suggested studying the invariants of an n-ary form defined by 
considering only orthogonal transformations. In fact, in a series of papers in the 
period 1887-1892, the Belgian mathematician Jacques Deruyts (1862-1945) did 
extend Cayley's theory of seminvariants to the context of the in- and covariants 
associated with an underlying n-ary form F(a, x). (On Deruyts, see [8].) He even 
posed and solved Cayley's Problem within this context, although the solution 
is complicated. Lie algebras had been introduced by the time Deruyts did his 
work, but he made no reference to them, despite Lie's attempts in the 1880s to 
call attention to their relevance to invariant theory. This is unfortunate because 
Deruyts's papers involve, in effect, the irreducible modules for sl(n, C) just as 
Cayley's had for n = 2. 

History is not quite rational, however, and the work of Cayley, Sylvester, and 
Deruyts played no role in the developments that produced the Killing-Cartan 
theory of the structure and representation of semisimple Lie algebras. The ir
rational element in history actually makes it more fascinating than its "rational 
reconstructions." What happened is that Cayley's Problem and his solution did 
play a role in the origins of the representation theory of Lie algebras but not 
by influencing the developments that culminated in Cartan's theory of weights. 
Instead they played a role in the developments leading up to the proof of the 
complete reducibility theorem for semisimple Lie algebras—developments that 
came from outside the Killing-Cartan mathematical milieu. Since Cayley's Law 
can be, and nowadays is, proved using the complete reducibility theorem [9], it 
is perhaps fitting that, historically, its proof owes something to Cayley's Law. 
With this in mind, we consider the fate of Cayley's Counting Problem. 

Although Cayley's Problem and his solution were omitted from the treatises 
on invariant theory by Clebsch (1872) and Gordan (1887)—the two leading con
tinental practitioners of invariant theory during the 19th century—they were 
readily accessible to continental mathematicians through other publications. For 
example, Francesco Faà di Bruno, Professor of Mathematics at the University 
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of Turin, included them in his Théorie des formes binaires (1876) which was 
translated into German in 1881. Faà di Bruno's discussion of Cayley's Law is 
especially interesting because he questioned its general validity in a footnote 
while giving essentially Cayley's proof in the text itself! Although his footnote 
lacked clarity, his remarks (especially as presented in the German edition of 1881) 
seem to indicate that he had put his finger on the lacuna in Cayley's proof—the 
matter of the surjectivity of JT. To justify his caveat regarding the general va
lidity of the theorem itself, he referred to Gordan's affirmative solution, in 1868, 
of the Finiteness Problem for binary forms. Gordan'ä solution was relevant to 
Cayley's Law because Cayley had deduced incorrectly from his generating func
tion representations that the Finiteness Problem has a negative solution for the 
covariants associated with a binary form of degree five and the invariants of a 
binary form of degree seven [6, pp. 252-253, 268]. As Sylvester was to suggest 
in 1878 [10], Faà di Bruno had evidently concluded that Cayley's Law might 
be the source of Cayley's error, especially given the questionable proof. "Thus 
error breeds error," Sylvester lamented, "unless and until the pernicious brood 
is stamped out for good and all under the iron heel of rigid demonstration" 
(p. 117n). Sylvester then proceeded to provide such a demonstration. 

Sylvester's proof was unfortunately not known to the editor of the German 
edition of Faà di Bruno's book, which consequently still contains the same crit
icisms of Cayley's solution to the Counting Problem. But in 1887 a young 
mathematician named David Hilbert removed all doubt about the veracity of 
Cayley's Law by providing another, simpler proof that X is surjective [11]. The 
proof made crucial use of the differential operator M defined on homogeneous 
isobaric polynomials B(a) by 

X[B] = B- yX [B]/l\2\ + y2 X*[B}/213\ - y3X3[B]/3W. + • • •. (5) 

Hilbert had introduced the operator M in his doctoral thesis of 1885 on binary 
forms. Hilbert, who was to become famous for his affirmative solution, in 1888, 
to the Finiteness Problem for n-ary forms, thus put his blessing on Cayley's 
Problem and solution. 

Hubert's work on the Finiteness Problem was also instrumental in bringing 
about generalizations of Cayley's Problem that proved to be consequential for the 
representation theory of Lie algebras. His solution to this problem involved two 
steps, as he himself emphasized [12]. First of all, by virtue of his groundbreaking 
"Basis Theorem," it followed that if 3 denotes the invariants 1(a) relative to the 
general n-ary form of degree d, then 

THEOREM 5. There exist J i , . . . , Im in 3 such that for any I G 3 homoge
neous polynomials Bk may be chosen so that 

I = B1h+" + BmIm. (6) 

Theorem 5 constituted the first step. The second step consisted in deducing 
from (6) by means of various differential operators that 

/ = ./l/l + --- + ./mim, (7) 
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where each J^ is an invariant or a constant. Thus each B^ is replaced by an 
invariant J^. Then Theorem 5 can be applied to each nonconstant Jk and then 
the analog of (7) deduced from the analog of (6), and so on. Since, depending 
on the differential operator used, it can be arranged so that either the degrees 
or the weights of the J^ strictly decrease in this process, it must come to a halt 
after a finite number of steps: all the Jk at some stage will be constants and 
J will be expressed as a polynomial in the /&. Thus the Finiteness Problem is 
solved affirmatively. 

For n-ary forms with n > 2, Hilbert used what later became known as the 
omega process to go from (6) to (7). This was somewhat complicated, and for 
binary forms he showed that the operator # in (5) can be used. Indeed, his 
observations had the following implication. Let 3 be any set of homogeneous 
polynomials which are invariants in some generalized sense, and suppose an 
operator V can be defined on homogeneous polynomials B with the following 
properties: 

D[B) e 3, ZJ[fl! + B2] = P[Bi] + D[B2], 
(8) 

D[I) = I and D[BI) = D[B]I for I G 3. 

Then Theorem 2 still applies, and if D is applied to (6), then, by virtue of the 
above properties, the result is (7). Thus the Finiteness Problem would be solved 
affirmatively for the "invariants" compromising 3. 

These implications of Hubert's work stood out because he himself endorsed 
the idea of cultivating a theory of invariants based upon a broader conception 
of an invariant suggested, he said, by Klein's Erlanger Programm and by Lie's 
theory of transformation groups. Traditionally invariants of an n-ary form were 
defined by considering all transformations of GL(n) applied to the variables of 
the form. Hilbert proposed considering the invariants that arise when only the 
transformations of some subgroup G of GL(n) are applied to the variables of the 
n-ary form. Hilbert naturally focused on the Finiteness Problem for invariants 
in this generalized sense. He pointed out that his own method, using an analog 
of the omega operator, could be extended to deal with certain subgroups G 
connected with linear associative algebras; but these subgroups are very special. 
For example, Hubert's method extends, as he showed, to the subgroup G of 
GL(3) consisting of all real orthogonal transformations with determinant +1, 
i.e., the rotation group in 3-space, which may be defined using quaternions. But 
his method did not extend to the rotation group in n-space for n > 3. As we 
shall see, Hubert's former teacher and colleague, Adolf Hurwitz, took up the 
challenge of the rotation group inspired by the idea that there were other ways 
to create an appropriate D. This idea had its origins in the work of Klein. 

As noted, Hilbert had referred to Klein's Erlanger Programm to support the 
view of a group theoretic generalization of the notion of an invariant. The groups 
Klein had in mind in the Erlanger Programmâmes continuous groups, and it was 
probably such groups that Hilbert had in mind as well. But Klein never devel
oped the ideas of the Erlanger Programm in his subsequent research. Instead he 
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became involved with problems that involved "discontinuous groups" of various 
sorts. In particular, his interest in developing a generalization of Galois's theory 
of equations which would treat the solution of equations not solvable by radicals 
led him to stress the notion of an invariant of a finite subgroup G of GL(n), 
an invariant being defined in the modern manner as a homogeneous polynomial 
I(x) = I(xi,..., xn) such that I(Sx) = I(x) VS G G. (For further details on 
this aspect of Klein's work and its influence on the representation theory of finite 
groups, see §§4-5 of [13].) 

Thus among Klein's students and others familiar with this aspect of Klein's 
work, Hilbert's call for a group theoretic theory of invariants was taken to include 
finite groups as well. In this connection the following observations were made in 
the 1890s. Let J be defined on functions F(x±,...,xn) by 

J[F] = £ F(Sx), (9) 
seG 

where G denotes a finite subgroup of GL(n). E. H. Moore of the University 
of Chicago was one of several mathematicians who observed that when F is a 
positive definite Hermitean form, then J[F] is a G-invariant positive definite Her
mitean form. This implied that the group G is equivalent to a group of unitary 
transformations. In 1898 Moore's colleague at Chicago, Heinrich Maschie, used 
this fact to prove in effect the complete reducibility theorem for finite groups. 
Although he did not relate this result to Frobenius's theory of group characters 
and representations which was just being created itself (starting in 1896), others 
did so later. / 

Hurwitz, another former student of Klein's, observed that for any F, J[F], 
as given in (9), defines an invariant of G and that, in fact all G-invariants are 
so expressible. Hurwitz also realized that J has the properties described in (8), 
which implies that the Finiteness Problem has an affirmative solution for finite 
subgroups of GL(n). To these observations Hurwitz added the following fertile 
idea: J is defined by summation over the group G; for continuous groups such as 
the rotation group in n-space, the analog of J may be defined by replacing sum
mation over the group by integration. In this way Hurwitz solved the Finiteness 
Problem for the n-space rotation group in 1897 [14]. 

Neither Maschke nor Hurwitz related their work to the theory of characters 
that Frobenius was just then creating. Another of Klein's former students, how
ever, did just that. His name was Theodor Molien. Molien had the misfortune 
to independently introduce the basics of the theory of group characters and rep
resentations shortly after Frobenius. How this occurred has an interesting but-
rather involved history [13]. Here we simply point out that Molien, who had 
written something akin to a master's thesis under Klein's direction in 1885, wrote 
his doctoral thesis in 1892 at the University of Dorpat, Estonia, now part of the 
Soviet Union. His thesis advisor was Friedrich Schur, who had spent time at 
Leipzig in association with Lie during the years in which Killing was working on 
the structure of semisimple Lie algebras. In his thesis Molien used Killing's work 
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as a paradigm for the study of linear associative algebras. Among other things, 
he obtained a criterion for when such an algebra is semisimple in the sense that 
it decomposes into a direct sum of complete matrix algebras. Motivated by the 
problem of, in effect, determining the representation of minimal degree for a 
finite group, a problem suggested by Klein's attempt to generalize Galois's the
ory, he later applied his theory to the group algebra, which always satisfies his 
criterion for semisimplicity. In this way he discovered independently the basics 
of Frobenius's theory, including the two orthogonality relations for characters of 
irreducible representations. These results were published by Molien in 1897 and 
quickly came to the attention of Frobenius, who informed Molien that he had 
obtained similar results. Soon after learning his discoveries had been anticipated 
by a prominent Berlin mathematician, Molien responded by submitting a paper 
through Frobenius to the Berlin Academy of Sciences in which he showed how 
Cayley's Counting Problem could be solved for finite groups by means of the 
theory of characters [15]. 

Expressed briefly and in more modern terms, Molien's idea was as follows. 
Let G be a finite subgroup of GL(n), The problem is to determine the number 
of linearly independent invariants of fixed degree p. To this end, consider the 
G-module of homogeneous polynomials F(x) of fixed degree p. The complete 
reducibility theorem states that this G-module decomposes into irreducible G-
modules; and the number of linearly independent invariants of degree p is pre
cisely the number of times the trivial or 1-representation is contained in this de
composition. Let us denote this number by mp. Using character theory Molien 
showed that 

mp = è E a(5)*» (10) 
seG 

where M is the order of G and a(S)p denotes the coefficient of the pth power of 
A in the series expansion of the function 

/(A) = [det(l-AS)]-1 . (11) 

For specific groups, including the icosahedral group, Molien showed how to com
pute mv, the solution to Cayley's Counting Problem, using (10) and (11). 

In summary: Molien showed how to solve Cayley's Problem for finite groups 
by using the complete reducibility theorem and character theory for such groups. 
Hurwitz's work suggested that results obtained for finite groups by summing over 
all elements of the group could be extended to continuous groups such as the 
rotation group with finite sums replaced by invariant integration. Suppose now 
that a mathematician was familiar with the above work of Hurwitz and Molien. 
Suppose in addition he realized that summation over the elements of a finite 
group can be made a basic operation from which the orthogonality relations and 
complete reducibility theorem can be derived for finite groups. Then he would 
be in a position to realize that they can be extended to the rotation group by 
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replacing summation by integration so that the prospect of a solution to Cayley's 
Counting Problem presents itself for this group as well. Issai Schur was such a 
mathematician. 

Schur had been a student at the University of Berlin during the years when 
Frobenius was working out his theory of group characters and representations. 
His doctoral dissertation of 1901 was a brilliant application of Frobenius's theory 
to the study of the representations of a continuous group, namely GL(n). There 
Schur studied finite-dimensional polynomial representations of GL(n), the repre
sentations implicit in invariant theory being examples, e.g., S —• Pd(S~1) in the 
notation of (1). Schur showed that each homogeneous polynomial representation 
of degree d corresponds biuniquely to a representation of the symmetric group 
Sd so that polynomial representations can be studied by invoking the results of 
Frobenius's theory as applied to S .̂ This indirect approach involved using the 
representation theory of Sd rather than directly attempting to build an analo
gous theory for GL(n). But in 1905 Schur gave a simple derivation—using his 
now familiar Lemma—of the fundamental propositions of Frobenius's theory of 
group characters which made fundamental the process of summation over the 
group [16]. Shur's derivation left no doubt that some parts of Frobenius's theory, 
such as the orthogonality relations for characters and the complete reducibility 
theorem, could be established, via the Hurwitz integral, for the rotation group. 
These are precisely the elements of Frobenius's theory that Molien had used to 
solve Cayley's Problem for finite groups. Thus as early as 1905 it would seem 
that Schur was in a position to envision the possibility of an analogous solution 
for the rotation group. But it was not until 1924 that he published a solution. 
Why? Schur himself never provided an answer, but the following considerations 
make the apparent twenty year hiatus less of a surprise than it otherwise might 
seem. 

First of all, it was only the prospect of an analogous solution to Cayley's 
Problem that presents itself by combining the ideas of Hurwitz and Molien. One 
obtains thereby the analog of Molien's formula (10) for the number mp of G-
invariants of degree p, but it involves an integral over the rotation group rather 
than a finite sum. The problem of expressing this integral in a more explicit 
form congenial to computation still remained. Thus if circa 1905 Schur realized 
the integral analog of (10), he may have lacked the motivation to try and make 
something useful out of it. 

With regard to motivation, it should be noted that although in 1905 Schur cer
tainly knew Molien's work and probably had some acquaintance with Hurwitz's 
solution to the Finiteness Problem, it is far from certain that he was familiar 
with Cayley's beautiful and explicit solution to the Counting Problem for GL(2). 
If he knew only Molien's solution for finite groups, he would not have realized 
that this Problem had a tradition and elegant solution within classical invariant 
theory. That Schur's knowledge of the classical theory of invariants might have 
been limited in 1905 is quite likely because at Berlin there were no lectures on 
this subject. Frobenius regarded it to be of minor significance and most of the 
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research done on it as "hack work." (See [17, p. 209].) Frobenius specifically 
applied that description to Hubert's early work, which included his proof of 
Cayley's Law. Frobenius had great respect for Hubert's solution to the Finiteness 
Problem, but he felt that Hilbert had thereby put an end to the subject. In 
fact, Frobenius felt that Hilbert had simultaneously founded and finished off the 
theory: By bringing the concepts of "higher algebra" to bear on the theory, he 
had laid the foundations for a legitimate mathematical theory; but by solving 
its central problem he had also finished it off! 

So it is quite possible that Schur, although probably more open minded about 
invariant theory than his mentor, either did not know the classical literature on 
Cayley's Problem or was not inclined to devote much time to research in an area 
Frobenius deemed unimportant. In any case, other promising and important re
search projects were at hand. Many of these had to do with Frobenius's theory of 
group representations, such as the study of representations over algebraic num
ber fields, which Frobenius also investigated, and the extension of Frobenius's 
theory to projective representations. The extension was motivated in part by 
the interest within Klein's school in the problem of determining finite subgroups 
of PGL(n), a problem treated computationally with little or no guiding theory. 
Frobenius was very pleased with the way Schur demonstrated what could be 
done using representation theory (see [17, p. 224]). Schur 's fondness for linear 
algebra, a fondness he shared with Frobenius, also prompted him, starting in 
1911, to contribute to the new theory of linear transformations on infinite di
mensional vector spaces that Hilbert and his school had initiated. Thus in the 
decades following the publication of his doctoral thesis, Schur found many inter
esting and challenging problems to investigate. Furthermore, during these years, 
there was relatively little activity in the type of invariant theory that Hilbert had 
endorsed. Undoubtedly this was due in part to the fact that soon after solving 
the Finiteness Problem for Gl(n) Hilbert himself stopped doing research on the 
theory of invariants. 

The situation was quite different in 1922, when Schur was elected to the Berlin 
Academy, having been appointed Professor at the University in 1919. Frobenius 
was gone, having died in 1917; and although Schur was still engaged in research 
on the arithmetical aspects of Frobenius's theory, his inaugural speech before the 
Academy [18] indicates that he was also looking for research projects that would 
combine algebra and analysis in a fruitful way. Furthermore a renewed interest 
in Hilbert-style invariant theory was now evident among mathematicians associ
ated with Hilbert's school, such as Emil Fischer, Emmy Noether, and Alexander 
Ostrowski. Ostrowski in particular emphasized the group-theoretic aspects of fu
ture research in the theory of invariants, an emphasis which evidently appealed to 
Schur, who in fact collaborated with Ostrowski on a paper [19] which Ostrowski 
considered paradigmatic for his vision of a research program for invariant theory 
[20]. Schur 's increasing interest in the theory of invariants is also reflected in 
the fact that during the Winter Semester of 1923-24 he took the unprecedented 
step of introducing a course of lectures on this subject into the curriculum at 
Berlin. A subsequent version of these excellent lectures was eventually published 
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by Grunsky in 1968 [21], but we are also fortunate to have notes of the lectures 
as Schur first gave them. The notes were taken by the late Richard Brauer, one 
of Schur's most distinguished doctoral students. (I am grateful to the late Mrs. 
Richard Brauer and to Walter Feit and Jonathan Alperin for kindly making these 
notes available to me.) 

Given the extensive literature on the theory of invariants what did Schur 
choose to present in his lectures? Aside from some necessary preliminaries, he 
focused primarily upon two topics: (i) Cayley's theory of seminvariants and 
its application to the Counting Problem, with Hilbert's proof of Cayley's Law; 
(ii) the Finiteness Problem for GL(n), for finite subgroups and for the rotation 
group in n-space, with solutions via Hilbert's Basis Theorem and the use of 
both differential and integral operators to go from (6) to (7). The choice of the 
second topic is not surprising because Schur shared the view of Frobenius and 
the Hilbert school that Hilbert's solution of the Finiteness Problem was the most 
significant result in the theory of invariants. The choice of the first topic was 
not so obvious, however, and reflects Schur's appreciation for this product of the 
classical or pre-Hilbert stage of the theory. 

Having immersed himself in these two topics, Schur saw clearly what he per
haps had overlooked or dismissed before: Hurwitz's integral method for solving 
the Finiteness Problem for the rotation group could be used to extend Molien's 
method of solving Cayley's Problem to this group, as well as the entire real or
thogonal group. And now he took up the challenge of making Molien's solution 
workable for these groups. He succeeded, and on 10 January 1924 he presented 
his solution in a paper to the Berlin Academy [22]. To solve Cayley's Problem 
Schur of course first showed that an analog of Frobenius's theory of characters 
and representations, including orthogonality relations and a complete reducibil
ity theorem (with Maschke's proof), could be developed for these groups. At 
the conclusion of his paper he pointed out that, since Hurwitz had showed how 
to define an invariant integral for more general Lie groups, the theory he had 
developed could be extended to other groups. He then added, as justification 
for the more limited scope of his paper, that the rotation and orthogonal groups 
"stand out, not only by virtue of the important role they play in applications 
but also by virtue of the fact that here the integral calculus provides a solution 
of the counting problem that is actually practically useful" (p. 208). It would 
only be worthwhile to extend the notions of representation theory to a more 
general class of groups if one could describe the irreducible representations. But 
when he wrote his paper Schur did not see how to do this even for the rotation 
and orthogonal groups (p. 197). It was the "elegant" solution to the Counting 
Problem for these groups that justified discussing the elements of the associated 
representation theory, and this is why Schur included it in his paper (p. 190). 
His paper was motivated by the Counting Problem rather than by the conviction 
that his paper would lead to the creation of a theory of representations applicable 
to a broad class of continuous groups. 

Inspired by reading Schur's paper and by their ensuing correspondence, Weyl 
went on to show, with the aid of Cartan's results which were unfamiliar to 
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Schur, that a representation theory for semisimple groups could be worked out 
in considerable detail [23, 24]. In this manner the complete reducibility theorem 
for semisimple Lie algebras was first proved and the notion of a character added 
to what Killing and Cartan had created. But that is another story altogether 
and one that transcends the purview of the history of Lie algebra representations 
as reflected in Cayley's Counting Problem. 
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1. Introduction. We shall restrict ourselves to the study of Chinese math
ematics in ancient times, viz., from remote ancient times up to the fourteenth 
century. In recent years such studies were vigorously pursued both in China and 
in foreign countries. Much deeper understandings have since been gained about 
what Chinese ancient mathematics really was. The author will freely use their 
results but will be solely responsible for all points of view expressed in what 
follows. 

Two basic principles of such studies will be strictly observed, viz.: 
PI. All conclusions drawn should be based on original texts fortunately pre

served up to the present time. 
P2. All conclusions drawn should be based on reasonings in the manner of 

our ancestors in making use of knowledge and in utilizing auxiliary tools and 
methods available only at that ancient time. 

For PI we shall mention only [AR, AN, SI, MA], which will be referred to 
repeatedly in what follows. 

For P2 we shall emphasize that the use of algebraic symbolic manipulations or 
parallel-line drawings should be strictly forbidden in any deductions of algebra 
or geometry since they were seemingly nonexistent in ancient Chinese classics. 
In fact, Chinese ancient mathematics had its own line of development, its own 
method of thinking, and even its own style of presentation. It is not only inde
pendent of, but even quite different from the western mathematics as descendents 
of Greeks. Before going into more details of concrete achievements, we shall first 
point out some peculiarities of Chinese ancient mathematics. 

First, instead of calculations of pencil-paper type, the ancient Chinese made 
all computations in manipulating rods on counting boards. This was possible 
because the Chinese already possessed, in very remote times, the most per
fect place-valued decimal system; it allowed them to represent the integers by 
properly arranged rods placed in due positions on the board. In particular, the 
number 0 in, or as, a decimal integer was just represented by leaving some empty 
place in the right position. In fact the word "arithmetic," the usual terminology 
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for "mathematics," was just a literal translation of Chinese characters "Suan 
Shui" meaning "counting methods." 

Secondly, results were usually presented in the form of separate problems, 
each of which was divided into several items, as follows. 1. Statement of the 
problem with numerical data. 2. Numerical answer to the problem. 3. "Shui," 
or the method of arriving at the result. It was most often just what we call 
today the "algorithm," sometimes also just a formula or a theorem. Note that 
the numerical values in Item 1 play no role at all in the method, which was 
so general that any other numerical values could be substituted equally well. 
Item 1 thus served just as an illustrative example. 4. Sometimes "Zhu," or 
demonstrations which explained the reason underlying the method in Item 3. 
In Song Dynasty and later, there was often added a further item: 5. "Cao," or 
drafts which contained details of the calculations for arriving at the final result. 

2. Theoretical studies involving integers. In this section, by an integer 
we shall always mean a positive one. 

In ancient Chinese mathematics there were no notions of prime number and 
factorization or its likeness. However, there was a Mutual-Subtraction Algorithm, 
for finding the GCD of two integers; its name literally meant equal. The algo
rithm ran as follows: 

"Subract the less from the more, mutually subtract to diminue, in order to 
get the equal." 

As a trivial example, the equal (:= GCD) of 24 and 15 is found to be 3 in the 
following manner: 

(24,15) --» (9,15) ~+ (9,6) --• (3,6) --> (3,3). (2.1) 

The underlying principle is, as pointed out by Liu Hui in [AN], that during 
the procedure the integers are steadily diminished in magnitudes while the equal 
duplicates remain the same. 

In spite of the fact that the prime number concept was never introduced in 
our ancient times, there were some theoretical studies involving integers which 
were not at all trivial. We shall cite two of these mainly based on works of S. K. 
Mo at Nanking University and J. M. Li at Northwestern University, China. 

The GouGu form (:= right-angled triangle) was a favorite object of study 
throughout the lengthy period of development of mathematics in ancient China. 
In particular, the triples of integers which can be attributed to 3 sides Gou, 
Gu, and Xuan (:= shorter arm, longer arm, and hypothenuse) of a GouGu form 
had been completely determined early in the classic [AR]. Thus, in the GouGu 
Chapter 9 of [AR] there appeared eight such triples, viz., 

(3,4,5), (5,12,13), (7,24,25), (8,15,17), 

(20,21,29), (20,99,101), (48,55,73), (60,91,109). 

The occurence of such triples was not merely an accidental one. In fact, in 
Problem 14 of that chapter a method of general formation of such integer triples 
was implied. We record this problem. 
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"Two persons start from same position. A has a speed-rate 7 while B rate 
3. B goes eastward while A goes first southward 10 units and then meets B in 
going northeasternwise. Find the units traversed by A and £?." 

The Shui (:= method or algorithm) for the solution was: 
"Squaring 7, also 3, taking half of the sum, this will be the slantwise unit-ratio 

of A. Subtract this unit-ratio from square of 7, rest is the southern unit-ratio. 
Multiply 7 by 3 is eastern unit-ratio of £." 

As already mentioned in §1, the particular numbers 7 and 3 in the problem 
serve merely as illustrations and we may equally well substitute these numbers 
by any pair of integers say m, n with m > n > 0. The Shui then says that the 3 
sides are in the ratio 

Gou: Gu: Xuan = [m2 - (m2 + n2) /2]: m*n: (m2 + n 2 ) /2 . 

The eight triples given above may then be determined by the pairs 

(m,n) = (2,1), (3,2), (4,3), (4,1), (5,2), (10,1), (8,3), (10,3). 

In Liu Hui's [AN] a demonstration or a proof of geometrical character was 
given which was based on some general Out-In Complementary Principle, and 
it will be explained in more detail in §3. We note here that Liu's proof showed 
also that m : n is in reality the ratio of Gou + Xuan to Gu which will be a ratio 
in integers if and only if the three magnitudes Gou, Gu, Xuan are in ratio of 
integers. The Shui had thus given an exhaustive list of integer triples for the 
three sides of the GouGu form. 

As a second example let us cite the Seeking-1 Algorithm which is now well 
known as the Chinese Remainder Theorem. Recent studies have shown that 
the algorithm originated in calendar-making since Hans Dynasty, and there 
was a sufficiently clear line of development until the appearance of the clas
sic [MA] of Qin in 1247 A.D. In Qin's preface to his work he stated that 
the method was not contained in [AR] and no one knows how it was deduced, 
but it was widely applied by calendarists. The method was well-explained for 
the first time in the first part of [MA] and contained nine problems, rang
ing from calendar-making, dyke-erection, treasure-computing, tax-distribution, 
rice-selling, military-expedition, brick-architecture, up to even a case of stealing. 
All the problems were reduced to one which, in modern writings, would be of 
the form (:=: stands for "congruent to") 

U :=: Uj mod Mj, 1 < j < r, (2.2) 

with integers Uj, Mj known and U to be found. The integers Mj were called 
by Qin Ting-Mu (:= moduli), literally meaning fixed-denominators which were 
not necessarily prime to each other. Qin first gave an algorithm for reducing 
the problem to one with the moduli prime to each other two by two in apply
ing successively the Mutual-Subtraction Algorithm. We shall therefore restrict 
ourselves, in what follows, to the case of Uj pairwise prime. 

To a modern mathematician a solution to (2.2) would be found in the following 
manner (cf., e.g., [AP, p. 250]). 
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Let (j)(N) be the Euler function of the integer N which can be determined 
from a factorization of N into prime numbers. Set 

M = Ml * • • • * Mr, 
^ • > (2.3) 

Nj=(M/Mj)^M3\ l<j<r. J 

Then the solution of (2.2) will be given by 

U :=: ^2 U3 * N3 m o d M-
3 

Both the method and the result are really simple and elegant. However, in view 
of the difficulty of factorization and the amount of computation involved in (2.3), 
it would be rather difficult to get final answers to the nine problems in Qin's 
classic, even with the aid of modern computers. 

On the other hand, the method of Qin ran as follows. 
As a preliminary step let us take the remainder Rj of M/Mj mod Mj which 

was called Qi-Shu, literally meaning odd-number, but just some technical term. 
Now determine numbers Kj such that 

Kj * Rj :=: 1 mod Mj. (2.4) 

The final answer to be found is then given by 

U:=:Y^Uj*Kj*(M/Mj) mod M. (2.5) 
3 

The integers Kj were called, by Qin Cheng-Lui, also a technical term literally 
meaning multiplication-rate (multiplier below). The algorithm for determining 
Kj to satisfy (2.4) was called, by Qin, da-yan qiu-yi shui, for which qiu-yiliterally 
means seeking-1, while da-yan is some philosophical term of little interest to us. 
The first step of the Seeking-1 Algorithm consisted then in placing four known 
numbers 1, 0 (i.e., empty), Rj, Mj in the left-upper (LU), left-lower (LL), right-
upper (RU), and right-lower (RL) 

_ [~LU RUj fl Rj] 
corners of a square: ' ^ i = I * • H I LL RL i i Mj i 

• i i tl 
We remark that these four numbers verify the trivial congruences 

LU * Rj :=: RU mod Mj, LL * Rj :=: -RL mod Mj. (2.6) 

The next steps of the algorithm consisted then of manipulating the four numbers 
in the square by steadily reducing their magnitudes while keeping the validity 
of congruences (2.6). After a finite number of steps the number, say RU, will be 
reduced to 1, and according to (2.6) the number LU is then the multiplier Kj to 
be found. The underlying principle of this Seeking-1 Algorithm, as listed below 
in details, is thus essentially the same as the Mutual-Subtraction Algorithm in 
finding the equal (:= GCD) of two integers, only much more complicated. The 
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algorithm was: 
"Put Qi at RU, and Ting at RL, and put Tian-Yuan-1 at LU. First divide RL 

by RU. Multiply quotient with 1 of LU and put it to LL. Next take the numbers 
RU and RL, mutually divide the more by the less. Then mutually multiply 
quotients to numbers in LU and LL. Stop until odd-1 in RU. Verify then the 
number in LU and take it as multiplier." 

As a concrete example let us consider Problem 9 of Chin's classic which dealt 
with a stealing case. The judge in charge of the case was able to determine the 
amount of rice stolen by each of the three thiefs by means of the algorithm. For 
one of the thiefs the determination of the corresponding multiplier ran as follows: 

j"l~"Ï4"J |Y~14"i |rl~14Ì |ï~~4~! 2 frTi 
j 19j"*l 5 j l " \ ' l 5 j " * |1 5j " ' J I o '"* 
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,r3"~4~i r3"4"j Î3~ï"|3 |T5~'f! , , 1K 

ll m—'U i ! - "* '4 H "*I4 l!~* st°p:fc = 15-
L I L I L - _ _ J L I 

One may compare this sequence of computations with the trivial one (2.1). 
The numerical data in the above example is the simplest one among the nine 

problems of Chin's classic, but already not an easy one in using the mentioned 
method with Euler functions. The other eight problems will eventually involve 
astronomically large numbers which may be eventually out of reach of the Euler-
function method, but were still done with ease by Qin in using the Seeking-1 
Algorithm. 

3. Geometry. In contrast to what one usually believes, geometry was in
tensely studied, in addition to being well-developed, in ancient China. The mis
understanding is likely due to the fact that Chinese ancient geometry was of a 
type quite different from that of Euclid, both in content and presentation. Thus, 
there were no deductive systems of euclidean fashion in the form of definition-
axiom-theorem-proof. On the contrary, the ancient Chinese formulated, instead 
of a lot of axioms, a few general plausible principles on which various geometrical 
results were then discovered and proved in a deductive manner, as shown by Liu 
Hui [AN]. 

The points of emphasis in Chinese ancient geometry and in the geometry of 
Euclid were also quite different. Thus, the Chinese ancestors paid no attention at 
all to the parallelism but, on the contrary, showed great interest in orthogonality 
of lines. In fact, the GouGu form, or the right-angled triangle, had incessantly 
occupied a central position among the geometrical objects to be studied through
out thousands of years of development. Secondly, the Chinese ancestors showed 
little interest in angles but heavily emphasized distances. Thirdly, geometrical 
studies were always closely connected with applications so that measurements, 
determination of areas and volumes were among the central themes of study. 
Finally, geometry was always developed in step with algebra, which culminated 
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in the algebrization of geometry in Song-Yuan Dynasties. This later discovery 
was rightly pointed out, e.g., by Needham to be the first important step (and 
indeed, the decisive step) toward the creation of analytical geometry. 

We shall illustrate these points with a few examples. 
EXAMPLE 1. The Sun-Height Formula. On the earth-level plane erect two 

gnomons Gl, G2 of equal height with a certain distance apart. The sun-shadows 
of the gnomons are then measured and the sun's height over the level plane is 
given by 

Sun-hgt = Gnomon-hgt * Gnomon-dist/Shadow-difference + Gnomon-hgt. 

This formula, already depicted in some classic of early Hans Dynasty and 
cited very often in later calendarical works, was clearly too rough an estimate 
to rely on. Liu Hui had, however, translated the formula into earth measure
ments by replacing the sun by some sea-mountain, thus turning the Sun-Height 
Formula into a realistic Sea-Island Formula. His classic [SI] contained all nine 
such formulae beginning with the above one as the simplest. There were proofs 
as well as diagrams accompanying this classic; they are still mentioned in some 
classics of Song Dynasty but have since been lost. Based on fragments and 
incomplete colored diagrams of some classic by Zhao Shuang in 3c A.D., the 
author has reconstructed a proof of the above Sun-Height or Sea-Island Formula 
by rearranging the arguments in that classic as follows (Y =yellow, B =blue): 

sun 

sun I N x I " ^ 1 - " - ^ I 
-hgt« - K - - - ! " * 

' B3 Gl tSi _ ~ _ _ïl^J_-i 
— r -
56 | 

I 

heaven 

gnomon-hgt 
earth level 

shadow 1 shadow 2 
gnomon-distance 

"Fl and Y2 are equal in areas. YI connected with B3 and F2 with B6 are 
also equal in areas. B3 and J36 are also equal in area. Multiply gnomon-distance 
by gnomon-height to be the area of F l . Take shadow-difference as breadth of 
Y2 and divide, one gets height of Y2. The height rises up to same level as sun. 
From diagram gnomon-height is to be added." 

With the accompanying diagram the proof of the formula is evident. 
EXAMPLE 2. The Out-In Complementary Principle (OICP). In Example 1, 

various area-equalities were all consequences of a certain general Out-In Com
plementary Principle which was clearly formulated inthe classic [AN] in very 
concise terms. It means simply that whenever a figure, planar or solid, is cut into 
pieces and moved to other places, then the sum of areas or volumes will remain 
unchanged. This seemingly most common-place principle had been applied suc
cessfully to problems of extreme diversity, sometimes unexpected, besides that 
of Example 1. As further examples consider the GouGu form with three sides: 
Gou, Gu, and Xuan. One may form various sums and differences from them 
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FIGURE l 

c + d = Hsieh2 - Gou2 = d + e = Gu2 = n2, 
2 * tf^Gi/ = £ F # L = m2 + n2 = (Gou+Hsieh)2 + Gu2, 
a + Y = Hsieh * m = Hsieh * (Gou+Hsieh), 
b + R = E F / J - SFGH = Gou * m = Gou * (Gou+Hsieh) = m2 - (m2 + n2)/2. 

like Gou-Gu sum, Gou-Xuan difference, etc. In the GouGu Chapter 9 of [AR], 
there were a number of problems for determining Gou, Gu, and Xuan from two 
of these nine entities, and all were solved by means of this principle. In par
ticular, the general formula of Gou-Gu integers as described in §2 was obtained 
by applying the principle to Problem 14 by considering as known the ratio of 
Gou-Xuan sum to Gu. Liu Hui then demonstrated the result by OICP as shown 
in Figure 1 (R =red, Y =yellow). 

In [MA] there was formula for determining the AREA of a triangle with three 
sides: the GReatest one, the SMallest one, and the MIDdle one in the form 

4 * AREA2 = SM2 * GR2 - [(GR2 + SM2 - MID2)/2]2. 

This formula is clearly equivalent to the Heron one. It cannot be deduced from 
the latter since it is so ugly, in form, in comparison to the elegant latter formula. 
By applying some formula given in [AN] about Problem 14, based on OICP, the 
author has reconstructed a proof which is in accordance with Chinese tradition 
and leads naturally to Qin's formula. 

We note that the Chinese ancient methods of (square and cubic) root-extrac
tion and quadratic-equation solving were in fact all based on OICP geometrical 
in character. We also note that all the formulae in [SI], in quite intricate form, 
will be arrived at in a natural manner by applying OICP. On the other hand it 
seems difficult, or at least a roundabout, unnatural manner, to get these formulae 
if the euclidean method is to be used. 

EXAMPLE 3. Volume of solids. With the OICP alone the areas of any polyg
onal form can be determined. This will not be the case for volumes of polyhedral 
solids, and Liu Hui was well aware of it. Liu Hui had, however, completely solved 
the problem in reasoning as follows. Let us cut a rectangular parallelopiped 
slantwise into two equal parts called Qiandu, and then cut the Qiandu slantwise 
into two parts called Yangma (a pyramid) and Bienao (a tetrahedron on special 
type). Using an ingenious reasoning corresponding to a certain limiting process, 



1664 WU WEN-TSUN 

QIANDU YANGMA BIENAO 

+ 

FIGURE 2 

he made some assertion which the author has baptized as the Liu Hui Principle, 
viz., 

"Yangma occupies two and Bienao one, that's an invariable ratio." 
Together with the OICP the volume of any polyhedral solid can then be de

termined, and a lot of beautiful formulae for various kinds of solids were deter
mined in this way in the Sang-Gong Chapter 5 of [AR]. Liu Hui's demonstration 
of his principle, which was both elegant and rigorous, consisted of cutting a big 
QIANDU into smaller yangma's, etc., as in Figure 2. 

From Figure 2 it is now clear that 

1 YANGMA - 2 BIENAO = 2(1 yangma - 2 bienao). 

Continuing, the right-hand side will become smaller and smaller and can be 
ultimately neglected, as argued by Liu Hui: 

"The more they are cut into smaller halves, the smaller will be the remains. 
The ultimate smallness is infinitesimal, and infinitesimal is formless. Accordingly 
it is no need to take into account the remain." 

For more details see [WA], a remarkable paper by Wagner. 
Liu Hui had also considered the determination of curvilinear solids, notably 

that of a sphere. He showed that the solution will depend on the determination of 
the volume of a curious solid defined as the intersection of two inscribed cylinders 
in a cube. Liu Hui himself cannot solve this problem and left it, being rigorous 
in thinking and strict in attitude, to later generations, saying that 

"Fearing loss of Tightness, I dare to leave the doubts to gifted ones." 
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The keen observation of Liu Hui had been closely followed and ripened finally 
to a complete solution of the problem in 5c A.D. by Zu Geng, son of great 
mathematician, astronomer, and engineer Zu Congtze. In fact, Zu Geng had 
formulated a general principle which was equivalent to the later rediscovered 
Cavalieri Principle, viz., 

"Since areas in equal height are equal the volumes cannot be unequal." 
We shall leave Zu Geng's beautiful proof about the formula of volume of 

sphere to other known works. On the other hand, this principle was, in reality, 
already used by Liu Hui himself in deriving formulae of volumes of various simple 
curvilinear solids treated in [AR], though without an explicit statement. For this 
reason the author has proposed to use the name Liu-Zu Principle instead of the 
name Zu-Geng Principle which is usually used by our Chinese colleagues. 

In a word, the OICP, the Liu Hui Principle, and the Liu-Zu Principle were 
sufficient to edify the whole theory of solids, curvilinear or not, in a satisfactory 
manner as done by the Chinese ancestors. 

4. Algebra. Algebra was no doubt the most developed part of mathematics 
in ancient China. It should be pointed out that algebra at that time was actu
ally a synonym for method of equation-solving. The problems of equation-solving 
seem to come from two different sources. One of the sources was rudimentary 
commerce or goods-exchange which led to the Excess-Deficiency Shui in very 
remote times up to Fang-Cheng Shui as depicted in Chapter 8 of [AR]. This 
Chapter 8 dealt with methods of solving simultaneous linear equations along 
with the introduction of negative numbers. The title "Fang Cheng," the same 
terminology for "equations" used in Chinese texts nowadays, could be better 
interpreted as "square matrices." In fact, "Fang" literally means square or rect
angle while "Cheng," as explained in Liu Hui's [AN], was just data arranged on 
the counting board in the form of a matrix, viz. 

"Arranged as arrays in rows, so it is called Fang Cheng." 
Furthermore, the method of solution was just manipulations of rows and 

columns as in elimination nowadays. Details of such stepwise reduction of arrays 
to normal forms in some examples can also be found in [AN]. 

A second source of equations was from measurements or geometrical prob
lems. Thus, in the study of sun-heights there were formulae for both sun-height 
and sun's level distance from the observer. The sun-observer distance was then 
determined by means of the Gou-Gu Theorem, well known in quite remote times, 
which then required extraction of square roots. Both the proof of the Gou-Gu 
Theorem and the method of square root extraction were seemingly based on 
the OICP—so, also, for the cubic root extraction. Now in Gou-Gu Chapter 9 
of [AR] there was also a problem which led naturally, by OICP, to a quadratic 
equation. There was some technical terminology for solving such an equation lit
erally meaning "square-root extraction with an extra term Cong," which clearly 
implied the origin as well as the method of solving such equations. 



1666 WU WEN-TSUN 

The second line was developed further to solving cubic equations in early Tang 
Dynasty, at the latest, and culminated in the method of numerical 
solution of higher degree equations in Song Dynasty, identical, actually, to the 
later rediscovered Horner's method in 1819. 

A discovery of utmost importance during Song-Yuan Dynasties (10-14c) was 
the introduction of the notion "Tian-Yuan," literally meaning "Heaven-Element," 
which was nothing but what we call an unknown nowadays. Though equation-
solving occupied a central position in the development of mathematics for thou
sands of years already, this was perhaps the first time that precise notion and 
systematic use of unknowns were thereby introduced. The Chinese mathemati
cians at that time recognized very well the power of this method of Tian-Yuan 
as expressed in some classic of Zhu Szejze: 

"To solve by Tian-Yuan not only is clear the underlying reasons and is versatile 
the method but also saved large amounts of efforts." 

The method of Tian-Yuan was further developed in Song-Yuan Dynasties up 
to the solving of simultaneous high-degree equations involving four unknowns. 
Along with it, algebrization of geometry, manipulations of polynomials, and 
the method of elimination were also developed. The two lines of development 
of equation-solving thus merged into one which was closer to algebra in the 
modern sense. The limitation to four unknowns was largely due to the fact that 
all manipulations had to be carried out on counting boards with coefficients of 
different-type terms of a polynomial to be arranged in definite positions on the 
board. If one was to get rid of the counting board in adapting another system, 
as was fairly probable since communications with the outside arabic world were 
more influential than ever, then mathematics would face an exceedingly fertile 
era of flourishment. However, all further developments stopped and mathematics 
actually came to death since the end of Yuan Dynasty. When Matteo Ricci came 
to China at the end of Ming Dynasty, almost no Chinese high intellectuals knew 
about "Nine Chapters" ! 

5. Conclusion. We shall leave other achievements about limit concept, high-
difference formulae, series summation, etc. owing to space limitation. In short, 
Chinese ancient mathematics was mainly constructive, algorithmic, and mechan
ical in character so that most of the Shuis can be readily turned into computerized 
programs. Moreover, it used to draw intrinsic conclusions from objective facts, 
then sum up the conclusions into succinct principles. These principles, plain in 
reasoning and extensive in application, form a unique character of ancient Chi
nese mathematics. The emphasis has always been on the tackling of concrete 
problems and on simple, seemingly plausible principles and general methods. 
The same spirit permeates even such outstanding achievements as the algebriza
tion and the place-value decimal system of numbers. In a word, Chinese ancient 
mathematics had its own merits, and, of course, also its inherited deficiencies. 
It is surely inadmissible to neglect the brilliant achievements of our ancestors, 
as was the case in the Ming Dynasty. It would also be absurd not to absorb the 
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superior techniques of the foreign world, as was the case of early Tang Dynasty. 
At that time the writing system of Indian numerals was imported, but its use as 
an alternative for the counting board system was rejected. In fully recognizing 
the powerfulness of our traditional method of thinking, and in absorbing at the 
same time the highly developed foreign techniques, we foresee a novel new era 
of achievements in Chinese mathematics. 
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1. Introduction. Since this is a paper in the education section, let me start 
with a classroom experience. It happened in a course in which my students 
had read some of Euclid's Elements of Geometry. A student, a social-science 
major, said to me, "I never realized mathematics was like this. Why, it's like 
philosophy!" That is no accident, for philosophy is like mathematics. When I 
speak of the centrality of mathematics in western thought, it is this student's 
experience I want to recapture—to reclaim the context of mathematics from the 
hardware store with the rest of the tools and bring it back to the university. To 
do this, I will discuss some major developments in the history of ideas in which 
mathematics has played a central role. 

I do not mean that mathematics has by itself caused all these developments; 
what I do mean is that mathematics, whether causing, suggesting, or reinforcing, 
has played a key role—it has been there, at center stage. We all know that 
mathematics has been the language of science for centuries. But what I wish 
to emphasize is the crucial role of mathematics in shaping views of man and 
the world held not just by scientists, but by everyone educated in the western 
tradition. 

Given the vastness of that tradition, I will give many examples only briefly, 
and be able to treat only a few key illustrative examples at any length. Sources 
for the others may be found in the bibliography. (See also [26].) 

Since I am arguing for the centrality of mathematics, I will organize the paper 
around the key features of mathematics which have produced the effects I will 
discuss. These features are the certainty of mathematics and the applicability of 
mathematics to the world. 

2. Certainty. For over two thousand years, the certainty of mathematics— 
particularly of Euclidean geometry—has had to be addressed in some way by any 
theory of knowledge. Why was geometry certain? Was it because of the subject-
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matter of geometry, or because of its method? And what were the implications 
of that certainty? 

Even before Euclid's monumental textbook, the philosopher Plato saw the 
certainty of Greek geometry—a subject which Plato called "knowledge of that 
which always is" [41, 527b]—as arising from the eternal, unchanging perfection 
of the objects of mathematics. By contrast, the objects of the physical world were 
always coming into being or passing away. The physical world changes, and is 
thus only an approximation to the higher ideal reality. The philosopher, then, 
to have his soul drawn from the changing to the real, had to study mathematics. 
Greek geometry fed Plato's idealistic philosophy; he emphasized the study of 
Forms or Ideas transcending experience—the idea of justice, the ideal state, the 
idea of the Good. Plato's views were used by philosophers within the Jewish, 
Christian, and Islamic traditions to deal with how a divine being, or souls, 
could interact with the material world [46, pp. 382-383; 51, pp. 17-40; 34, 
p. 305ff; 23, pp. 46-67]. For example, Plato's account of the creation of the 
world in his Timaeus, where a god makes the physical universe by copying an 
ideal mathematical model, became assimilated in early Christian thought to the 
Biblical account of creation [29, pp. 21-22]. One finds highly mathematicized 
cosmologies, influenced by Plato, in the mystical traditions of Islam and Judaism 
as well. The tradition of Platonic Forms or Ideas crops up also in such unexpected 
places as the debates in eighteenth- and nineteenth-century biology over the 
fixity of species. Linnaeus in the eighteenth, and Louis Agassiz in the nineteenth 
century seem to have thought of species as ideas in the mind of God [16, p. 34; 
13, pp. 36-37]. When we use the common terms "certain" and "true" outside of 
mathematics, we use them in their historical context, which includes the long-
held belief in an unchanging reality—a belief stemming historically from Plato, 
who consistently argued for it using examples from mathematics. 

An equally notable philosopher, who lived just before Euclid, namely Aris
totle, saw the success of geometry as stemming, not from perfect eternal ob
jects, but instead from its method (Aristotle, Posterior Analytics, I 10-11; 11-2 
(77a5, 71b ff)) [19, vol. I, Chapter IX]. The certainty of mathematics for Aristo
tle rested on the validity of its logical deductions from self-evident assumptions 
and clearly stated definitions. Other subjects might come to share that cer
tainty if they could be understood within the same logical form; Aristotle, in 
his Posterior Analytics, advocated reducing all scientific discourse to syllogisms, 
that is, to logically deduced explanations from first principles. In this tradition, 
Archimedes proved the law of the lever, not by experiments with weights, but 
from deductions à la Euclid from postulates like "equal weights balance at equal 
distances" [18, pp. 189-194]. Medieval theologians tried to prove the existence 
of God in the same way. This tradition culminates in the 1675 work of Spinoza, 
Ethics Demonstrated in Geometrical Order, with such axioms as "That which 
cannot be conceived through another must be conceived through itself," defi
nitions like "By substance I understand that which is in itself and conceived 
through itself" (compare Euclid's "A point is that which has no parts"), and 
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such propositions as "God or substance consisting of infinite attributes... nec
essarily exists," whose proof ends with a QED [48, pp. 41-50]. Isaac Newton 
called his famous three laws "Axioms, or Laws of Motion." His Principia has a 
Euclidean structure, and the law of gravity appears as Book III, Theorems VII 
and VIII [37, pp. 13-14, pp. 414-417]. The Declaration of Independence of the 
United States is one more example of an argument whose authors tried to inspire 
faith in its certainty by using the Euclidean form. "We hold these truths to be 
self-evident..." not that all right angles are equal, but "that all men are created 
equal." These self-evident truths include that if any government does not obey 
these postulates, "it is the right of the people to alter or abolish it." The central 
section begins by saying that they will "prove" King George's government does 
not obey them. The conclusion is "We, therefore,... declare, that these United 
Colonies are, and of right ought to be, free and independent states." (My ital
ics) (Jefferson's mathematical education, by the way, was quite impressive by 
the standards of his time.) 

Thus a good part of the historical context of the common term "proof" lies 
in Euclidean geometry—which was, I remind you, a central part of western 
education. 

However, the certainty of mathematics is not limited to Euclidean geometry. 
Between the rise of Islamic culture and the eighteenth century, the paradigm 
governing mathematical research changed from a geometric one to an algebraic, 
symbolic one. In algebra even more than in the Euclidean model of reasoning, the 
method can be considered independently of the subject-matter involved. This 
view looks at the method of mathematics as finding truths by manipulating 
symbols. The approach first enters the western world with the introduction of 
the Hindu-Arabic number system in the twelfth-century translations into Latin 
of Arabic mathematical works, notably al-Khowarizmi's algebra. The simplified 
calculations using the Hindu-Arabic numbers were called the "method of al-
Khowarizmi" or as Latinized "the method of algorism" or algorithm. 

In an even more powerful triumph of the heuristic power of notation, François 
Viète in 1591 introduced literal symbols into algebra: first, using letters in gen
eral to stand for any number in the theory of equations; second, using letters 
for any number of unknowns to solve word problems [4, pp. 59-63, 65]. In 
the seventeenth century, Leibniz, struck by the heuristic power of arithmetical 
and algebraic notation, invented such a notation for his new science of finding 
differentials—an algorithm for manipulating the d and integral symbols, that 
is, a calculus (a term which meant to him the same thing as "algorithm" to 
us). Leibniz generalized the idea of heuristic notation in his philosophy [30, pp. 
12-25]. He envisioned a symbolic language which would embody logical thought 
just as these earlier symbolic languages enable us to perform algebraic operations 
correctly and mechanically. He called this language a "universal characteristic," 
and later commentators, such as Bertrand Russell, see Leibniz as the pioneer 
of symbolic logic [45, p. 170]. Any time a disagreement occurred, said Leibniz, 
the opponents could sit down and say "Let us calculate," and—mechanically— 
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settle the question [30, p. 15]. Leibniz's appreciation of the mechanical ele
ment in mathematics when viewed as symbolic manipulation is further evidenced 
by his invention of a calculating machine. Other seventeenth-century thinkers 
also stressed the mechanical nature of thought in general: for instance, Thomas 
Hobbes wrote, "Words are wise men's counters, they do but reckon by them" 
[21, Chapter 4, p. 143]. Others tried to introduce heuristically powerful notation 
in different fields: consider Lavoisier's new chemical notation which he called a 
"chemical algebra" [14, p. 245]. 

These successes led the great prophet of progress, the Marquis de Condorcet, 
to write in 1793 that algebra gives "the only really exact and analytical language 
yet in existence Though this method is by itself only an instrument pertaining 
to the science of quantities, it contains within it the principles of a universal 
instrument, applicable to all combinations of ideas" [9, p. 238]. This could make 
the progress of "every subject embraced by human intelligence... as sure as that 
of mathematics" [9, 278-279]. The certainty of symbolic reasoning has led us 
to the idea of the certainty of progress. Though one might argue that some 
fields had not progressed one iota beyond antiquity, it was unquestionably true 
by 1793 that mathematics and the sciences had progressed. To quote Condorcet 
once more: "the progress of the mathematical and physical sciences reveals an 
immense horizon... a revolution in the destinies of the human race" [9, p. 237]. 
Progress was possible; why not apply the same method to the social and moral 
spheres as well? 

No account of attempts to extend the method of mathematics to other fields 
would be complete without discussing René Descartes, who in the 1630s com
bined the two methods we have just discussed—that of geometry and that of 
algebra—into analytic geometry. Let us look at his own description of how to 
make such discoveries. Descartes depicted the building-up of the deductive struc
ture of a science—proof—as a later task than analysis or discovery. One first 
needed to analyze the whole into the correct "elements" from which truths could 
later be deduced. "The first rule," he wrote in his Discourse on Method, "was 
never to accept anything as true unless I recognized it to be evidently such 
The second was to divide each of the difficulties which I encountered into as many 
parts as possible, and as might be required for an easier solution—" Then, "the 
third [rule] was to [start]... with the things which were simplest and easiest to 
understand, gradually and by degrees reaching toward more complex knowledge" 
[10, Part II, p. 12]. Descartes presented his method as the key to his own math
ematical and scientific discoveries. Consider, for instance, the opening lines of 
his Geometry: "All problems in geometry can easily be reduced to such terms 
that a knowledge of the lengths of certain straight lines suffices for their con
struction. Just as arithmetic is composed of only four or five operations..., so in 
geometry..." [11, Book I, p. 3]. Descartes's influence on subsequent philosophy, 
from Locke's empiricism to Sartre's existentialism, is well known and will not be 
reviewed here. But for our purposes it is important to note that the thrust of 
Descartes's argument is that emulating the method successful in mathematical 



1672 J. V. GRABINER 

discovery will lead to successful discoveries in other fields [10, Part Five]. 
Descartes's method of analysis fits nicely with the Greek atomic theory, which 

had been newly revived in the seventeenth century: all matter is the sum of 
atoms; analyze the properties of the whole as the sum of these parts [17, Chap
ter VIII, esp. p. 217]. Thus the idea of studying something by "analysis" was 
doubly popular in seventeenth- and eighteenth-century thought. I would like to 
trace just one line of influence of this analytic method. Adam Smith in his 1776 
Wealth of Nations analyzed [47, p. 12] the competitive success of economic sys
tems by means of the concept of division of labor. The separate elements, each 
acting as efficiently as possible, provided for the overall success of the manufac
turing process; similarly, each individual in the whole economy, while striving 
to increase his individual advantages, is "led as if by an Invisible Hand to pro
mote ends which were not part of his original intention" [47, p. 27]—that is, the 
welfare of the whole of society. This Cartesian method of studying a whole sys
tem by analyzing it into its elements, then synthesizing the elements to produce 
the whole, was especially popular in France. For instance, Gaspard François de 
Prony had the job of calculating, for the French Revolutionary government, a set 
of logarithmic and trigonometric tables. He, himself, said he did it by applying 
Adam Smith's ideas about the division of labor. Prony organized a group of 
people into a hierarchical system to compute these tables. A few mathemati
cians decided which functions to use; competent technicians then reduced the 
job of calculating the functions to a set of simple additions and subtractions of 
pre-assigned numbers; and, finally, a large number of low-level human "calcu
lators" carried out the additions and subtractions. Charles Babbage, the early 
nineteenth-century pioneer of the digital computer, applied the Smith-Prony 
analysis and embodied it in a machine [1, Chapter XIX]. The way Babbage's 
ideas developed can be found in a chapter in his Economy of Machinery enti
tled "On the Division of Mental Labour" [1]. Babbage was ready to convert 
Prony's organization into a computing machine because Babbage had long been 
impressed by the arguments of Leibniz and his followers on the power of notation 
to make much mathematical calculation mechanical, and Babbage, like Leibniz, 
accounted for the success of mathematics by "the accurate simplicity of its lan
guage" [22, p. 26]. Since Babbage's computer was designed to be "programmed" 
by punched cards, Hollerith's later invention of punched-card census data pro
cessing, twentieth-century computing, and other applications of the Cartesian 
"divide-and-solve" approach, including top-down programming, are also among 
the offspring of Descartes's mathematically-inspired method. 

Whatever view of the cause of the certainty of mathematics one adopts, the 
fact of certainty in itself has had consequences. The "fact of mathematical 
certainty" has been taken to show that there exists some sort of knowledge, and 
thus to refute skepticism. Immanuel Kant in 1783 used such an argument to show 
that metaphysics is possible [25, Preamble, Section IV]. If metaphysics exists, 
it is independent of experience. Nevertheless, it is not a complex of tautologies. 
Metaphysics, for Kant, had to be what he called "synthetic," giving knowledge 
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based on premises which is not obtainable simply by analyzing the premises 
logically. Is there such knowledge? Yes, said Kant, look at geometry. Consider 
the truth that the sum of the angles of a triangle is two right angles. We do 
not get this truth by analyzing the concept of triangle—all that gives us, Kant 
says, is that there are three angles. To gain the knowledge, one must make a 
construction: draw a line through one vertex parallel to the opposite side. (I 
now leave the proof as an exercise.) The construction is essential; it takes place 
in space, which Kant sees as a unique intuition of the intellect. (This example 
[24, II "Method of Transcendentalism," Chapter I, §1, p. 423] seems to require 
the space to be Euclidean; I will return to this point later on.) Thus synthetic 
knowledge independent of experience is possible, so metaphysics—skeptics like 
David Hume to the contrary—is also possible. 

This same point—that mathematics is knowledge, so there is objective truth— 
has been made throughout history, from Plato's going beyond Socrates' agnostic 
critical method, through George Orwell's hero, Winston Smith, attempting to 
assert, in the face of the totalitarian state's overwhelming power over the human 
intellect, that two and two are four. 

Moreover, since mathematics is certain, perhaps we can, by examining math
ematics, find which properties all certain knowledge must have. One such ap
plication of the "fact of mathematical certainty" was its use to solve what in 
the sixteenth century was called the problem of the criterion [43, Chapter I]. 
If there is only one system of thought around, people might well accept that 
one as true—as many Catholics did about the teachings of the Church in the 
Middle Ages. But then the Reformation developed alternative religious sys
tems, and the Renaissance rediscovered the thought of pagan antiquity. Now 
the problem of finding the criterion that identified the true system became 
acute. In the seventeenth and eighteenth centuries, many thinkers looked to 
mathematics to help find an answer. What was the sign of the certainty of 
the conclusions of mathematics? The fact that nobody disputed them [43, 
Chapter VII]. Distinguishing mathematics from religion and philosophy, Voltaire 
wrote, "There are no sects in geometry. One does not speak of a Euclidean, 
an Archimedean" [49, Article "Sect."]. What every reasonable person agrees 
about—that is the truth. How can this be applied to religion? Some reli
gions forbid eating beef, some forbid eating pork—therefore, since they dis
agree, they both are wrong. But, continues Voltaire, all religions agree that one 
should worship God and be just; that must therefore be true. "There is but 
one morality," says Voltaire, "as there is but one geometry" [49, Miscellany, p. 
225]. 

3. Applicability. Let us turn now from the certainty of mathematics to its 
applicability. Since applying mathematics to describe the world works so well, 
thinkers who reflect on the applicability of mathematics find that it affects their 
views not only about thought, but also about the world. For Plato, the applica
bility of mathematics occurs because this world is merely an approximation to 
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the higher mathematical reality; even the motions of the planets were inferior to 
pure mathematical motions [41, 529d]. For Aristotle, on the other hand, math
ematical objects are just abstracted from the physical world by the intellect. 
A typical mathematically-based science is optics, in which we study physical 
objects—rays of light—as though they were mathematical straight lines [Physics 
II, Chapter 2; 194a]. We can thus use all the tools of geometry in that science 
of optics, but it is the light that is real. 

One might think that Plato is a dreamer and Aristotle a hard-headed practi
cal man. But today's engineer steeped in differential equations is the descendant 
of the dreamer. From Plato—and his predecessors the Pythagoreans who taught 
that "all is number"—into the Renaissance, many thinkers looked for the mathe
matical reality beyond the appearances. So did Copernicus, Kepler, and Galileo 
[7, Chapters 3, 5, 6]. The Newtonian world-system that completed the Coper-
nican revolution was embodied in a mathematical model, based on the laws of 
motion and inverse-square gravitation, and set in Platonically absolute space 
and time ([6]; cf. [7, Chapter 7]). The success of Newtonian physics not only 
strongly reinforced the view that mathematics was the appropriate language of 
science, but also strongly reinforced the emerging ideas of progress and of truth 
based on universal agreement. 

Another consequence of the Newtonian revolution was Newton's explicit help 
to theology, strongly buttressing what was called the argument for God's exis
tence from design. The mathematical perfection of the solar system—elliptical 
orbits nearly circular, planets moving all in the same plane and direction—could 
not have come about by chance, said Newton, but "from the counsel and do
minion of an intelligent and powerful Being" [37, General Scholium, p. 544]. 
"Natural theology," as this doctrine was called, focussed on examples of design 
and adaptation in nature, inspiring considerable research in natural history, espe
cially on adaptation, which was to play a role in Darwin's discovery of evolution 
by natural selection [14, pp. 263-266]. 

Just as the "fact of mathematical certainty" made certainty elsewhere seem 
achievable, so the "fact of mathematical applicability" in physical science in
spired the pioneers of the idea of social science, Auguste Comte and Adolphe 
Quetelet. Both Comte and Quetelet were students of mathematical physics and 
astronomy in the early nineteenth century; Comte, while a student at the École 
polytechnique in Paris, was particularly inspired by Lagrange, and Quetelet, by 
Laplace. Lagrange's great Analytical Mechanics was an attempt to reduce all of 
mechanics to mathematics. Comte went further: if physics was built on math
ematics, so was chemistry built on physics, biology on chemistry, psychology 
on biology, and finally his own new creation, sociology (the term is his) would 
be built on psychology [8, Chapter II]. The natural sciences were no longer (as 
they had once been) theological or metaphysical; they were what Comte called 
"positive"—based only on observed connections between things. Social science 
could now also become positive. Comte was a reformer, hoping for a better 
society through understanding what he called "social physics." His philosophy 
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of positivism influenced twentieth-century logical positivism, and his ideas on 
history—"social dynamics"—influenced Feuerbach and Marx [32, Chapter 4]. 
Still, Comte only prophesied but did not create quantitative social science; this 
was done by Quetelet. 

For Quetelet's conception of quantitative social science, the fact of applica
bility of mathematics was crucial. "We can judge of the perfection to which 
a science has come," he wrote in 1828, "by the ease with which it can be ap
proached by calculation" (quoted by [27, p. 250]). Quetelet noted that Laplace 
had used probability and statistics in determining planetary orbits; Quetelet was 
especially impressed by what we call the normal curve of errors. Quetelet found 
empirically that many human traits—height, for instance—gave rise to a normal 
curve. From this, he defined the statistical concept, and the term, "average man" 
(homme moyen). Quetelet's work demonstrates that, just as the Platonic view 
that geometry underlies reality made mathematical physics possible, so having 
a statistical view of data is what makes social science possible. 

Quetelet found also that many social statistics—the number of suicides in 
Belgium, for instance, or the number of murders—produced roughly the same 
figures every year. The constancy of these rates over time, he argued, indicated 
that murder or suicide had constant social causes. Quetelet's discovery of the 
constancy of crime rates raises an urgent question: whether the individuals are 
people or particles, do statistical laws say anything about individuals? or are 
the individuals free? 

Laplace, recognizing that one needed probability to do physics, said that 
this fact did not mean that the laws governing the universe were ultimately 
statistical. In ignorance of the true causes, Laplace said, people thought that 
events in the universe depended on chance, but in fact all is determined. To 
an infinite intelligence which could comprehend all the forces in nature and the 
"respective situation of the beings who composed it," said Laplace, "nothing 
would be uncertain" [28, Chapter II]. Similarly, Quetelet held that "the social 
state prepares these crimes, and the criminal is merely the instrument to execute 
them" [27]. 

Another view was held by James Clerk Maxwell. In his work on the statistical 
mechanics of gases, Maxwell argued that statistical regularities in the large told 
you nothing about the behavior of individuals in the small [33, Chapter 22, pp. 
315-316]. Maxwell seems to have been interested in this point because it allowed 
for free will. And this argument did not arise from Maxwell's physics; he had 
read and pondered the work of Quetelet on the application of statistical thinking 
to society [44]. The same sort of dispute about the meaning of probabilistically-
stated laws has of course recurred in the twentieth-century philosophical debates 
over the foundations of quantum mechanics. 

Thus discussions of basic philosophical questions—is the universe an accident 
or a divine design? is there free will or are we all programmed?—owe surprisingly 
much to the applicability of mathematics. 
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4. More than one geometry? Given the centrality of mathematics to west
ern thought, what happens when prevailing views of the nature of mathematics 
change? Other things must change too. Since geometry had been for so long the 
canonical example both of the certainty and of the applicability of mathematics, 
the rise of non-Euclidean geometry was to have profound effects. 

As is well known, in attempts to prove Euclid's parallel postulate and thus, 
as Saccheri put it in 1733, remove the single blemish from Euclid, mathemati
cians deduced a variety of surprising consequences from denying that postulate. 
Gauss, Bolyai, and Lobachevsky in the early nineteenth century each separately 
recognized that these consequences were not absurd, but rather were valid results 
in a consistent, non-Euclidean (Gauss's term) geometry. 

Recall that Kant had said that space (by which he meant Euclidean 3-space) 
was the form of all our perceptions of objects. Hermann von Helmholtz, led in 
mid-century to geometry by his interest in the psychology of perception, asked 
whether Kant might be wrong: could we imagine ordering our perceptions in a 
non-Euclidean space? Yes, Helmholtz said. Consider the world as reflected in a 
convex mirror. Thus, the question of which geometry describes the world is no 
longer a matter for intuition—or for self-evident assumptions—but for experience 
[20]. 

What did this view—expressed as well by Bernhard Riemann and W. K. 
Clifford, among others—do to the received accounts of the relation between 
mathematics and the world? It detached mathematics from the world. Eu
clidean and non-Euclidean geometry give the first clear-cut historical example 
of two mutually contradictory mathematical structures, of which at most one 
can actually represent the world. This seems to indicate that the choice of 
mathematical axioms is one of intellectual freedom, not empirical constraint; 
this view, reinforced by Hamilton's discovery of a noncommutative algebra, sug
gested that mathematics is a purely formal structure, or as Benjamin Peirce put 
it, "Mathematics is the science which draws necessary conclusions" [40]—not 
the science of number (even symbolic algebra had been just a generalized sci
ence of number) or the science of space. Now that the axioms were no longer 
seen as necessarily deriving from the world, the applicability of mathematics 
to the world became turned upside down. The world is no longer, as it was 
for Plato, an imperfect model of the true mathematical reality; instead, math
ematics provides a set of different models for one empirical reality. In 1902 the 
physicist Ludwig Boltzmann expressed a view which had become widely held: 
that models, whether physical or mathematical, whether geometric or statistical,' 
had become the means by which the sciences "comprehend objects in thought 
and represent them in language" [3]. This view, which implies that the sci
ences are no longer claiming to speak directly about reality, is now widespread 
in the social sciences as well as the natural sciences, and has transformed the 
philosophy of science. As applied to mathematics itself—the formal model of 
mathematical reasoning—it has resulted in Gödel's demonstration that one can 
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never prove the consistency of mathematics, and the resulting conclusion among 
some philosophers that there is no certainty anywhere, not even in mathematics 
[2, p. 206]. 

5. Opposition. The best proof of the centrality of mathematics is that every 
example we have given so far has provoked strong and significant opposition. 
Attacks on the influence of mathematics have been of three main types. Some 
people have simply favored one view of mathematics over other views; other 
people have granted the importance of mathematics but have opposed what they 
consider its overuse or extension into inappropriate domains; still others have 
attacked mathematics, and often all of science and reason, as cold, inhuman, or 
oppressive. 

Aristotle's reaction against Platonism is perhaps the first example of opposi
tion to one view of mathematics (eternal objects) while championing another (de
ductive method). Another example is Newton's attack on Descartes's attempt 
to use nothing but "self-evident" assumptions to figure out how the universe 
worked. There are many mathematical systems God could have used to set up 
the world, said Newton. One could not decide a priori which occurs; one must, 
he says, observe in nature which law actually holds. Though mathematics is the 
tool one uses to discover the laws, Newton concludes that God set up the world 
by free choice, not mathematical necessity [35, pp. 7-8; 36, p. 47]. This point is 
crucial to Newton's natural theology: that the presence of order in nature proves 
that God exists. 

Another example of one view based on mathematics attacking another can be 
found in Malthus's Essay on Population of 1798. He accepts the Euclidean de
ductive model—in fact he begins with two "postulata" : man requires food, and 
the level of human sexuality remains constant [31, Chapter I]. His consequent 
analysis of the growth of population and of food supply rests on mathemati
cal models. Nonetheless, one of Malthus's chief targets is the predictions by 
Condorcet and others of continued human progress modelled on that of math
ematics and science. As in Newton's attack on Descartes, Malthus applied one 
view of mathematics to attack the conclusions others claimed to have drawn 
from mathematics. 

Our second category of attacks—drawing a line that mathematics should not 
cross—is exemplified by the seventeenth-century philosopher and mathematician 
Blaise Pascal. Reacting against Cartesian rationalism, Pascal contrasted the 
"esprit géométrique" (abstract and precise thought) with what he called the 
"esprit de finesse" (intuition) [39, Pensée 1] holding that each had its proper 
sphere, but that mathematics had no business outside its own realm. "The 
heart has its reasons," wrote Pascal, "which reason does not know" [39, Pensée 
277]. Nor is this contradicted by the fact that Pascal was willing to employ 
mathematical thinking for theological purposes—recall his "wager" argument to 
convince a gambling friend to try acting like a good Catholic [39, Pensée 233]; 
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the point here was to use his friend's own probabilistic reasoning style in order 
to convince him to go on to a higher level. 

Similarly, the mathematical reductionism of men like Lagrange and Comte 
was opposed by men like Cauchy. Cauchy, whom we know as the man who 
brought Euclidean rigor to the calculus, opposed both Lagrange's attempt to 
reduce mechanics to calculus and calculus to formalistic algebra [15, pp. 51-
54], and opposed the positivists' attempt to reduce the human sciences to an 
ultimately mathematical form. "Let us assiduously cultivate the mathematical 
sciences," Cauchy wrote in 1821, but "let us not imagine that one can attack 
history with formulas, nor give for sanction to morality theorems of algebra or 
integral calculus" [5, p. vii]. Analogously, in our own day, computer scientist 
Joseph Weizenbaum attacks the modern, computer-influenced view that human 
beings are nothing but processors of symbolic information, arguing that the 
computer scientist should "teach the limitations of his tools as well as their 
power" [50, p. 277]. 

Finally, we have those who are completely opposed to the method of analysis, 
the mathematization of nature, and the application of mathematical thought 
to human affairs. Witness the Romantic reaction against the Enlightenment: 
Goethe's opposition to the Newtonian analysis of white light, or, even more 
extreme, William Wordsworth in the The Tables Turned: 

Sweet is the lore which Nature brings; 
Our meddling intellect 
Mis-shapes the beauteous forms of things:— 
We murder to dissect. 

Again, Walt Whitman, in his poem "When I heard the learn'd astronomer," 
describes walking out on a lecture on celestial distances, having become "tired 
and sick," going outside instead to look "up in perfect silence at the stars." 

Reacting against statistical thinking on behalf of the dignity of the individual, 
Charles Dickens in his 1854 novel Hard Times satirizes a "modern school" in 
which a pupil is addressed as "Girl number twenty" [12, Book I, Chapter II]; 
the schoolmaster's son betrays his father, justifying himself by pointing out that 
in any given population a certain percentage will become traitors, so there is no 
occasion for surprise or blame [12, Book III, Chapter VII]. In a more political 
point, Dickens through his hero denounces the analytically based efficiency of 
industrial division of labor, saying it regards workers as though they were nothing 
but "figures in a sum" [12, Book II, Chapter V]. 

The Russian novelist Evgeny Zamyatin, in his early-twentieth-century antiu-
topian novel We (a source for Orwell's 1984), envisions individuals reduced to 
being numbers, and mathematical tables of organization used as instruments of 
social control. Though the certainty of mathematics, and thus its authority, has 
sometimes been an ally of liberalism, as we have seen in the cases of Voltaire 
and Condorcet, Zamyatin saw how it could also be used as a way of establishing 
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an unchallengeable authority, as philosophers like Plato and Hobbes had tried 
to use it, and he wanted no part of it. 

6. Conclusion. As the battles have raged in the history of western thought, 
mathematics has been on the front lines. What does it all—to choose a phrase— 
add up to? 

My point is not that what these thinkers have said about mathematics is right, 
or is wrong. But this history shows that the nature of mathematics has been— 
and must be—taken into account by anyone who wants to say anything important 
about philosophy or about the world. I want, then, to conclude by advocating 
that we teach mathematics not just to teach quantitative reasoning, not just as 
the language of science—though these are very important—but that we teach 
mathematics to let people know that one cannot fully understand the humanities, 
the sciences, the world of work, and the world of man without understanding 
mathematics in its central role in the history of western thought. 
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Cet exposé s'inspire de l'étude de la C.I.E.M.1 sur l'influence des ordina
teurs et de l'informatique sur les mathématiques et leur enseignement. Il con
tient également des appréciations personnelles de ma part sur les calculettes et 
l'enseignement. 

L'étude de la C.I.E.M. En 1983 la C.I.E.M. a décidé de mettre à l'étude des 
questions d'intérêt mondial, sur lesquelles une approche internationale pouvait 
apporter d'utiles mises au point. Le but, dans chaque cas, n'est pas de fournir 
des solutions garanties—C.I.E.M.; c'est de faire l'état de la question, en vue de 
permettre la poursuite de la réflexion et, lorsque c'est possible, des initiatives au 
plan régional, national ou institutionnel. 

C'est dans ce cadre que s'est déroulée la première étude, en 1984 et 1985. 
Le comité de programme2 a établi entre janvier et mars 1984 un document de 
discussion—rédigé d'abord en français puis en anglais, puis traduit en plusieurs 
langues—publié dans sa version anglaise par la revue L'Enseignement Mathéma
tique [II], distribué aux représentants nationaux, et appelant à des contribu
tions à la discussion. Le document indiquait trois grands thèmes: l'influence 
des ordinateurs et de l'informatique sur les mathématiques en tant que science 
(leur développement, leurs concepts, leurs valeurs); les changements que les or
dinateurs et l'informatique peuvent induire dans le contenu des programmes 
d'enseignement; l'aide qu'ils peuvent apporter dans l'enseignement lui-ïnême. 

*I1 est bon de rappeler ce qu'est la C.I.E.M.—commission internationale de l'enseignement 
mathématique, alias I.C.M.I, International Commission on Mathematical Instruction. Créée 
par Félix Klein en 1907, c'est une commission de l'U.M.I. (Union Mathématique Internationale) 
dont le statut actuel a été établi sous la présidence d'Hassler Whitney, en 1980. Elle est con
stituée par un comité exécutif, élu par l'assemblée générale de l'U.M.I., et par des représentants 
nationaux—un par pays, désigné selon des formules différentes selon que le pays est membre 
ou non de l'U.M.I. 

2Constitué de R. F. Churchhouse (Cardiff), B. Cornu (Grenoble), A. E. Eräov (Novosibirsk), 
A. G. Howson (Southampton), J. P. Kahane (Orsay), J. H. Van Lint (Eindhoven), F. Pluvinage 
(Strasbourg), A. Ralston (Buffalo), M. Yamaguti (Kyoto). 
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Pour mieux centrer la discussion, on se bornait à considérer le niveau universi
taire et préuniversitaire (c'est-à-dire les élèves de plus de 16 ans). 

Les contributions écrites ont été nombreuses (une cinquantaine), variées, et 
intéressantes. Le comité de programme a alors organisé une rencontre d'une 
semaine, à Strasbourg, fin mars 1985, pour discuter à la fois du document de 
base et des contributions. Dès la fin de la rencontre, le travail était bien préparé 
pour l'édition des documents finaux: les Proceedings (environ 160 pages) édités 
par Cambridge University Press [12], et les Supporting Papers (équivalent à plus 
de 600 pages dactylographiées) éditées par PI.R.E.M. de Strasbourg [13]. 

Sur le déroulement du colloque et sur les résultats de l'étude, un excellent 
article est paru dans Zentralblatt für Didaktik der Mathematik [14]. A côté 
d'appréciations flatteuses, je retiens une critique: malgré la publication dans 
l'Enseignement Mathématique et d'autres journaux, le document de discussion 
n'a atteint qu'une faible partie des collègues intéressés. Le présent congrès est 
l'occasion d'assurer une meilleur publicité aux travaux de la C.I.E.M. 

Après le colloque de Strasbourg, la reflexion s'est poursuivie: un colloque de 
l'I.C.O.M.I.D.C. (International Committee on Mathematics in Developing Coun
tries) à Monastir (Tunisie) en février 1986, sur l'informatique et l'enseignement 
des mathématiques avec 40 contributions très variées [I-I], et une rencontre inter
nationale à Luminy (France) en janvier 1986, à l'invitation de la sous-commission 
française de la C.I.E.M., qui a abouti en particulier à la constitution d'une banque 
de logiciels d'enseignement mathématique au niveau universitaire [I-F]. 

A partir de maintenant, mon exposé s'inspirera librement de cet ensemble de 
travaux, sans chercher à en rendre compte. 

L'informatique et la mathématique. L'informatique est partout. L'infor
matique influe sur toutes les sciences. Les ordinateurs sont utilisés dans toutes 
les disciplines. Directement, au plan du laboratoire et du travail scientifique. 
Indirectement, quand il s'agit de communiquer, de produire ou de consommer 
l'information. Les effets indirects sont déjà de grande portée: l'informatique a 
permis aux bases de données bibliographiques d'absorber la croissance exponen
tielle de la production scientifique (qui double tous les dix ans, si on la mesure en 
nombre d'articles publiés); elle permettra, sans doute, de faire face aux nouveaux 
besoins de publication et de communication rapide. Ces possibilités techniques 
produisent de nouvelles exigences intellectuelles. Pour prendre un exemple, les 
Mathematical Reviews sont devenues un outil de travail indispensable, mais elles 
ne jouent plus le rôle de guide et de critique qu'elles avaient il y a 30 ans. Pour se 
retrouver dans la littérature scientifique contemporaine, il faut des synthèses, des 
mises au points, des exposés historiques et critiques: on voit cette sorte d'articles 
scientifiques, qualifiés autrefois de "secondaires" prendre une place de premier 
plan. Le fait est général: ni la puissance de calcul, ni la capacité de mémoire, 
ni les logiciels les plus élaborés, ni les systèmes experts n'éliminent l'activité in
tellectuelle; l'informatique déplace cette activité vers des champs nouveaux, et la 
stimule. 



1684 J.-P. KAHANE 

L'informatique est entrée dans l'enseignement. L'usage des microordinateurs 
s'est largement répandu en Europe, aux Etats-Unis, au Japon [13, pp. 14-
16, 22-23, 39, 43-45]. L'Open University du Royaume Uni a introduit des 
graphiques animés produits par ordinateurs dans un cours de mathématiques 
de base dès 1971 [13, p. 24]. En Union Soviétique, des cours de programma
tion pour étudiants en mathématiques existent depuis 1959, et en 1986 un cours 
sur les bases de l'informatique ("science de l'informatique et techniques de cal
cul") est introduit dans les écoles secondaires [13, p. 8]. Avec des réticences 
diverses (notamment au Japon) les calculettes font ime entrée en force dans 
les enseignements élémentaire et secondaire. Depuis 1978, elles sont autorisées 
pour tous les examens du "General Certificate of Education" en Ecosse [ICR]. 
A partir de 1986, elles figurent explicitement dans les programmes français de 
mathématiques au début des études secondaires (11-12 ans). 

L'informatique est partout, mais inégalement distribuée. Les investissements 
et les frais de maintenance interdisent aux pays pauvres la diffusion massive des 
microordinateurs [I-I]. Par contre, une distribution massive de calculettes comme 
fournitures scolaires est envisageable—au même titre qu'une distribution massive 
de livres d'enseignement. C'est une raison, parmi d'autres, pour s'intéresser 
particulièrement au renouvellement possible de l'enseignement mathématique 
par l'usage des calculettes. En retour, les besoins de l'enseignement peuvent 
amener à de nouvelles spécifications pour les calculettes destinées aux fournitures 
scolaires. 

Enfin l'informatique est doublement liée aux mathématiques. Gomme moyen 
nouveau de calcul et d'écriture, elle a, et elle aura de plus en plus, un im
pact sur les pratiques, les valeurs, et les concepts même des mathématiques. 
Comme outil à base mathématique, son histoire est liée à celle de la logique, 
et on doit s'attendre d un va et vient constant entre l'informatique {c'est-à-dire 
les ordinateurs et leurs usages), la logique, l'algèbre, et d'autres branches des 
mathématiques. 

• • • 

Dans l'étude de la C.I.E.M., il était bon de commencer par là: l'influence de 
l'informatique sur la mathématique comme science. En particulier, sur une série 
d'exemples, on voit que les ordinateurs et l'informatique ont suscité de nouvelles 
recherches, remis à l'ordre du jour des questions étudiées il y a longtemps, et 
rendu possible l'étude de questions nouvelles. Ils ont multiplié brusquement nos 
possibilités d'observation et d'expérimentation en mathématiques. Ils ont val
orisé tout ce qui peut se traduire en algorithmes. Au delà du calcul numérique, 
ils ont développé des possibilités de visualisation, et maintenant de calcul sym
bolique, qui sont de grande conséquence pour la recherche mathématique. 

Cette influence est incontestable. Elle est déjà beaucoup plus profonde au 
niveau de la recherche que de l'enseignement. Pour certains, elle apparaît comme 
une menace. D'abord, ime menace sur l'esprit même de la mathématique— 
comme science de l'ordre et des concepts unificateurs; la preuve du théorème des 
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quatre couleurs au moyen de l'ordinateur peut être correcte, elle n'est pas "belle." 
Ensuite, une menace sur l'avenir du métier de mathématicien, concurrencé par 
l'appel des métiers de l'informatique, et par conséquent une menace sur l'héritage 
mathématique. 

Au niveau de l'enseignement, on peut aussi énumérer les vues pessimistes: 
• les élèves vont devenir paresseux 
• ils ne vont plus savoir calculer à la main 
• ils ne s'intéresseront plus qu'à l'informatique 
• les enseignants ne pourront jamais s'adapter aux nouveaux outils 
• ceux qui s'adapteront deviendront informaticiens 
• si en plus on touche au contenu de l'enseignement, on court au même désastre 

qu'avec les "mathématiques modernes." 
Ces dangers existent. Mais il faut également apprécier les chances nouvelles. 

Il y a de belles mathématiques à faire pour dominer l'usage des ordinateurs, 
et on peut attendre, dans l'avenir, un stimulant venant de l'informatique aussi 
important que le stimulant—classique—venant de la physique; aujourd'hui déjà, 
les "mathématiques discrètes" se trouvent ainsi stimulées et valorisées. D'autre 
part—et c'est là une raison essentielle d'être optimiste—les ordinateurs et même 
les calculettes ressuscitent de très belles mathématiques qui étaient oubliées ou 
négligées. J'illustrerai cela par quelques exemples tout à l'heure. Cette possi
bilité de réanimer des sujets dormants—parfois pendant des siècles—est un trait 
particulier des mathématiques dans l'ensemble des sciences, et c'est ce qui en 
fait un héritage extrêmement précieux. C'est une justification, pour le présent 
et pour l'avenir, d'une formation en grand nombre de jeunes mathématiciens. 

On peut déjà dire qu'en face des ordinateurs, les élèves sont souvent actifs, 
intéressés et agiles—ils acquièrent l'usage des outils plus vite que leurs pro
fesseurs. Ils adoptent facilement l'attitude expérimentale. Mails ils ne peuvent 
pas découvrir seuls les bonnes voies où s'engager. L'expérience mathématique 
des enseignants est irremplaçable. Face à l'ordinateur, l'enseignant devient un 
conseiller. Plus encore que par le passé, l'essentiel est sa qualification comme 
mathématicien. 

Après ces vues très générales, je vais évoquer des choses très anciennes sur 
lesquelles l'informatique, les ordinateurs et les calculettes font porter un regard 
neuf: les nombres, les figures, les symboles, les algorithmes. 

Les nombres. Avec les cailloux (l'origine du "calcul") on a une conception 
claire de nombres entiers petits. Pour les nombres entiers plus grands, la vision 
qu'on en a dépend du mode de notation. Chez les Grecs de l'Antiquité, le système 
usuel permettait d'écrire 3 ou 700 avec une seule lettre, mais ne permettait pas 
d'écrire 2.100 (d'où la question de Socrate au savant Hippias: "toi qui es si savant, 
si on te demandait combien fait 3 fois 700, tu saurais répondre avec célérité et 
exactitude?"). Aujourd'hui, ne fût-ce que par la radio et la télévision, tous les 
enfants sont familiarisés avec des nombres entiers très grands; à chaque élection 
par exemple, on voit défiler des grands nombres, et des rapports exprimés en 
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pourcentages. On change constamment d'échelle—le budget de la famille, le 
budget de la cité, les dépenses militaires dans le monde; l'âge de l'humanité, de 
la terre, de l'univers; les dimensions de l'atome, du système solaire, etc. Ce qui 
permet d'appréhender ces nombres et ces changements d'échelle, c'est l'écriture 
décimale et les puissances de 10. Ce qu'affiche une calculette, c'est justement ime 
écriture décimale, et éventuellement (en virgule flottante) une puissance de 10. 

L'enfant qui dispose d'ime calculette se trouve immédiatement devant de 
grands nombres entiers, et aussi devant des développements décimaux assez 
longs. Des développements décimaux assez longs permettent d'imaginer na
turellement des développements décimaux illimités. Ainsi la définition d'un nom
bre réel par un développement décimal illimité—esquissée par Simon Stevin il y 
a tout juste quatre siècles [B]—mérite d'être bien connue des enseignants. En 
France, un livre vient de paraître, sur les fondements de la géométrie, dont le 
premier chapitre est la théorie des réels à partir des développements décimaux 
illimités; c'est une présentation simple et complète, à l'intention des enseignants 
du secondaire, qui me paraît venir à son heure [F]. 

Cela ne supprime pas, mais au contraire valorise, la représentation du nombre 
réel positif comme rapport de deux longueurs. L'algorithme d'Euclide pour 
trouver une partie aliquote commune à deux longueurs, nous allons le retrouver 
comme algorithme des fractions continues. 

• • • 

La calculette ne se contente pas d'écrire. Elle permet de traiter les données 
numériques, elle calcule. La facilité du calcul doit permettre aux élèves, en 
arithmétique élémentaire comme en géographie, de traiter des données réelles, 
et beaucoup de suggestions intéressantes sont faites à ce sujet dans des ouvrages 
d'enseignement récents. Je ne m'y étend pas, quoiqu'il s'agisse d'une chose 
essentielle dans les écoles primaires. Ce traitement des données réelles oblige 
à réfléchir pour savoir quelles opérations faire, et par contre rend superflus les 
algorithmes d'opérations posées sur papier. 

Ainsi l'addition, la multiplication, la soustraction, la division cessent d'être des 
opérations qu'on pose, pour devenir des opérations qu'on ordonne à la machine 
de faire. Il n'y a sans doute plus lieu, au début de l'enseignement élémentaire, 
d'insister sur les modes opératoires et les refrains traditionnels ("je pose, je 
retiens,..."). Par contre le calcul mental, et particulièrement le calcul des ordres 
de grandeurs, doivent permettre de deviner et de contrôler les résultats donnés 
par la machine. Les modes opératoires traditionnels ne disparaissent pas pour 
autant; mais ils prennent leur importance bien plus tard, quand on peut faire 
découvrir aux enfants les opérations en "multiprécision," c'est-à-dire quand on 
opère en base 10n en utilisant la calculette comme table de multiplication. 

• • • 

La calculette fait instantanément les divisions. Plus précisément, elle donne 
immédiatement une écriture décimale à n chiffres (disons n = 10) en guise de 
quotient. Elle fait donc passer d'une fraction, disons 14/31} à un développement 
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décimal, 0,451612903. Ce développement décimal, illimité, serait périodique, 
mais on ne voit apparaître le fait qu'en multiprécision. Si l'on donne l'écriture 
décimale 0,451612903, comment remonter à la fraction? On inverse, on prend 
la partie décimale et on recommence, et on trouve 1/(2 + 1/(4 + 1/(1 -f 1/2))).3 

C'est donc l'algorithme des fractions continues qui permet de passer de l'écriture 
décimale à la fraction (ou à une fraction égale). Si un de vos collègues affirme que, 
dans sa classe, 45,16% des élèves ont été capables de répondre à une question, 
vous pouvez, si vous avez une calculette sous la main, lui dire que sa classe a 31 
élèves (ou un multiple de 31). 

Les fractions continues expliquent pourquoi 22/7 et 113/355 sont de bonnes 
approximations de n. Elles se prêtent à des jeux (découvrir deux nombres entiers 
quand on donne leur quotient), à des expériences, à des découvertes. Person
nellement, je n'ai pas découvert la formule 

e1/* = (l,z - 1,1,1,3a - 1,1,1,5z - 1,...) 

dans la littérature, mais en jouant avec une calculette. Les racines carrées des 
nombres entiers sont un vaste champ d'expériences. D'abord, on constate que la 
décomposition de 

\/2 = l,414... = 1 + 1/2,414... 

semble ne pas s'arrêter. L'ayant constaté, il est facile de le démontrer. C'est 
la preuve la plus naturelle que y/2 est irrationnelle (sa version géométrique 
était bien antérieure, chez les Grecs, à la démonstration par l'absurde qui se 
trouve chez Euclide, et qui est sans doute due à Théétète). Les propriétés des 
décompositions de y/n se découvrent expérimentalement, et fournissent de jolis 
problèmes. C'est d'ailleurs un sujet d'actualité. On sait que la factorisation de 
nombres très grands est essentielle pour le décodage. Or, depuis la factorisation 
du septième nombre de Fermât F*? (= 2128 + 1) par Morrison et Brillhart en 
1970, il apparaît que les développements en fractions continues des y/kN peu
vent fournir la clé de la factorisation de N, surtout si on les utilise en calcul 
parallèle [W]. 

• • • 

J'insiste encore sur les fractions continues. Les fractions continues, familières 
à Euler et à Lagrange [L], importantes dans les applications et dans différentes 
branches des mathématiques, n'ont jamais fait partie de l'enseignement sec
ondaire, et occupent encore aujourd'hui une place marginale dans l'enseignement 
supérieur. Elles me paraissent, grâce aux calculettes programmables, pouvoir 
être enseignées au lycée et devenir une connaissance commune. 

De façon générale, ce qui est facile à programmer peut devenir facile à en
seigner. Ainsi la sommation des séries (et ses pièges: pour éviter des additions du 
type A+0+0-1—, une série doit être sommée "à l'envers," ou par blocs). Ainsi la 
méthode de Newton pour le calcul des racines d'une équation (intéressante même 
pour y/n). Ainsi la transformation en moyennes arithmétique et géométrique de 

3En vérité, il faut identifier à un entier les nombres qui en sont assez voisins. 
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Gauss T(a, b) = ((a+6)/2, y/âb), dont nous allons voir une application. Ces deux 
dernières méthodes donnent des approximations "quadratiques," c'est-à-dire, en 
gros, doublent le nombre de décimales exactes à chaque opération. 

• • • 

La calculette permet de se familiariser avec les nombres en général, et aussi 
avec des nombres particuliers: les nombres premiers, les carrés, les solutions 
d'équations diophantiennes; les racines carrées, le nombre e, le nombre 7r. Je 
m'attarderai un instant sur 7r. 

La tradition, pour le calcul de 7r, est le calcul de séries, par l'intermédiaire de 
formules du type 

^ = 4 a r c t g ± - a r c t g ^ , 

qui avait permis à J. Machin vers 1700 de calculer TT avec 100 décimales; des 
formules analogues ont été introduites et exploitées par Euler [E], et elles ont 
servi dans les années 1960 pour le calcul de TT sur ordinateur, avec 100.000 
décimales. Il y a pourtant beaucoup mieux. Voici le meilleur procédé actuel— 
découvert par E. Salamin en 1976, repris par Borwein et Borwein en 1984 [BB], 
et perfectionné par D. J. Newman récemment [N]. La transformation de Gauss 
(a, b) —• T(a, 6) = ((a + 6)/2, y/âb) laisse invariante l'intégrale 

I(a,b)= / dx 
y/(x*+a*)(x*+b*) 

et les Tn(a,b) convergent très vite vers leur limite m(a,b). Ainsi 

dx i(a,b)= r 
J—c z2 + (m(a,6))2 

Or 

= nm(a,b). 

I(l,N) = 2f 
Jo 

^ dx 

y/{x2 + l){x*+N*) 

et le calcul de m(l,N) avec n ~ logiV décimales exige environ logn itérations 
de T. Si on veut se débarrasser du logarithme, on écrit 

N({N + l)m(l, N + 1) - Nm{l, N)) -i+°tè) 
C'est un procédé remarquablement efficace, même avec une calculette, et qui 
peut intéresser des étudiants. 

• • • 
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On peut donc faire beaucoup de choses intéressantes, à plusieurs niveaux, avec 
de simples calculettes. Tout l'aspect numérique—aussi bien de l'enseignement 
élémentaire que de l'analyse mathématique—se trouve ainsi valorisé.4 

Les figures. Les possibilités de tracés par ordinateurs et de visualisation sur 
écran ont déjà été exploitées avec succès par des mathématiciens. J'évoquerai 
deux exemples. 

Autour de 1920, Fatou et Julia, indépendamment, avaient mené très loin 
l'étude des itérations d'applications rationnelles de C dans C (plan complexe 
complété); en particulier, ils avaient étudié les diverses formes des orbites et 
des ensembles invariants, et ils avaient reconnu les deux situations typiques— 
ensembles parfaits totalement discontinus, ou ensembles connexes dont la fron
tière est généralement très irrégulière. Dans le cas des applications z —• z2 + c (c 
complexe), on a appelé ensembles F, ou ensembles de Julia, l'ensemble invariant 
constitué par les points dont l'orbite reste bornée; c'est B. Mandelbrot qui a eu 
l'idée de reprendre les recherches de Fatou et de Julia en utilisant les possibilités 
graphiques des ordinateurs. A. Douady et J. Hubbard, D. Sullivan et d'autres 
ont étudié de près les ensembles F, et aussi l'ensemble M (pour Mandelbrot) 
des points c pour lesquels F est connexe. On connaît maintenant assez bien la 
dynamique de la transformation sur les ensembles F, et on a des formules pour 
la dimension de Hausdorff de F (dans le cas totalement discontinu) ou de sa 
frontière (dans le cas connexe), on sait que M est connexe et on a considéré sa 
frontière à la loupe, en y découvrant des invariants universels des applications 
rationnelles. Du coup, les mathématiciens retrouvent et comprennent mieux les 
phénomènes de bifurcation découverts par les physiciens en particulier, les invari
ants de Feigenbaum. Tout ce domaine—itérations et systèmes dynamiques—est 
le siège d'une compétition fructueuse entre physiciens et mathématiciens. Sans 
les ordinateurs, on n'aurait sans doute jamais tenté de reprendre le sujet si pro
fondément exploré par Fatou et Julia (13, p. 48). 

L'autre exemple concerne les surfaces dans R3. C'est un domaine où toutes 
les possibilités de visualisation (contour apparent, sections, agrandissements, ro
tations) se révèlent précieuses. En 1901, W. Boy, étudiant le plan projectif réel, 
avait montré qu'on pouvait l'immerger dans R3 sous la forme d'une surface dont 
la courbe d'autointersection est une hélice tripale. Dès cette époque, la ques
tion s'était posé de représenter une telle surface par une équation polynomiale 
P(x, y, z) = 0. En 1984, au terme d'une suite d'essais où la visualisation a joué 
un rôle majeur, F. Apéry est parvenu à résoudre la question, avec un polynôme P 
de degré 6. En fait, F. Apéry a utilisé non seulement les possibilités graphiques, 
mais un langage de programmation symbolique, pour traiter des calculs qui au
raient été autrement impraticables (13, p. 46). 

4 J'ai désigné par calculette aussi bien l'ordinateur de poche que la calculette "4-opérations." 
Il faut porter grande attention à la qualité de ces outils et à leur maîtrise par les élèves. 
L'éducation est un marché assez important pour qu'elle impose ses normes aux fabricants. 
Encore faut-il définir ces normes. La "transparence" semble recommandable. "Simplicity is a 
virtue" (W. Kahan, UCB). 
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Ainsi, au niveau de la recherche, la visualisation par ordinateur a au moins 
deux effets: (1) rendre accessibles des formes considérées classiquement comme 
étranges, introduire à ce que B. Mandelbrot appelle la géométrie fractale (2) 
développer l'intuition en matière de géométrie des surfaces, en particulier des 
surfaces algébriques. 

En matière d'enseignement, on peut prévoir des conséquences du même ordre. 
D'abord, intégrer à la culture mathématique—des mathématiciens, mais aussi 

des physiciens et des ingénieurs—des objets autrefois réputés étranges, tels que 
les ensembles parfaits totalement discontinus, les courbes simples sans tangentes, 
les courbes de Peano, les mesures singulières. Une manipulation simple permet 
de refaire l'expérience de Michelson découvrant avec surprise que les graphes des 
sommes partielles de la série de Fourier d'une fonction discontinue débordent sans 
cesse le graphe de la fonction (le phénomène de Gibbs"). La non-dérivabilité 
des fonctions de Weierstrass ^2ancosbnx (0 < a < 1, ab > 1) est évidente 
quand on zoome leurs graphes. La fonction partout non derivable de Takagi 
53 dis(z, 2""nZ) mérite d'être vue, d'autant plus qu'elle peut apparaître dans 
des problèmes physiques très naturels [13, p. 50]. La courbe de von Koch peut 
être dessinée à partir d'un programme très simple: remplacer le segment 

0 
par les quatre segments ,-yv 
et répéter. Le simple examen de cette courbe (et des courbes analogues où 1/3 
est remplacé par une autre valeur) est ime excellente introduction à la notion 
de dimension fractionnaire, ou fractale. La courbe de Peano la plus simple—et 
la plus utile—s'obtient en remplaçant 1/3 par 1/2. Au delà de ces exemples, 
c'est la théorie géométrique de la mesure à laquelle il conviendrait de faire ime 
place dans l'enseignement, aux côtés de la mesure abstraite, de l'intégration 
et des probabilités. Les probabilités fournissent d'ailleurs les exemples les plus 
naturels de comportements non classiques: une trajectoire brownienne n'est pas 
difficile à programmer, et elle explique bien l'intuition de Jean Perrin, que le 
mouvement brownien fournit des fonctions nulle part dérivables. Toute cette 
géométrie fractale a aussi ses régularités, ses invariants (à commencer par la 
dimension de Hausdorff), et ses ressources esthétiques lui donnent un charme 
particulier. 

Ensuite, réintégrer à la culture mathématique la géométrie dans l'espace, 
et en particulier la géométrie des surfaces. Autrefois, chaque département de 
mathématiques avait ime "salle des modèles," avec des moulages de quadriques, 
de tores, de cônes, de rubans, de bouteilles et d'autres surfaces. L'informatique 
graphique a tous les avantages des moulages en plâtre, et beaucoup d'autres— 
comme d'aller inspecter de près les singularités. La géométrie dans l'espace sur 
ordinateurs se développe dans l'industrie, dans l'architecture, dans la médecine. 
En chimie, la géométrie des grosses molécules joue un rôle essentiel, et d'excel-
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lents logiciels de visualisation ont été développés. L'enseignement mathématique 
ne peut pas l'ignorer. 

La visualisation sur écrans ou sur tables traçantes a été déjà largement utilisée 
dans l'enseignement mathématique. On connaît les succès de Logo en géométrie 
élémentaire. De nombreux logiciels de géométrie plane sont maintenant commer
cialisés. Il faudrait y consacrer la même attention qu'aux manuels d'enseignement, 

Dans l'enseignement supérieur, l'étude des fonctions et surtout l'étude des 
équations différentielles avec des moyens graphiques est un succès incontestable, 
Plusieurs équipes dans le monde ont des approches voisines: de l'exploration 
des figures naissent des conjectures et des problèmes, qui amènent à un travail 
mathématique beaucoup plus intéressant que la simple recherche (souvent illu
soire!) d'une formule permettant de représenter les courbes intégrales. Etudier 
un système différentiel, c'est, dans cette approche, chercher quelle est l'allure 
globale et locale des solutions. Les notions relatives aux points critiques (cols, 
noeuds, foyers, centres) ou aux branches infinies (asymptotes, entonnoirs) appa
raissent naturellement par l'inspection d'exemples. On peut obtenir des dessins 
surprenants à l'aide de systèmes très simples, tels que 

dx du 
— = cosy, -jt = sin xy [12, p. 107; 13, p. 49]. 

Equations différentielles et itérations—appelées parfois: équations aux différ
ences—constituent les deux approches mathématiques les plus simples des sys
tèmes dynamiques. Un excellent livre récent est consacré à leur expérimentation 
sur ordinateur [Ko], L'itération des homéomorphismes du cercle serait d'ailleurs 
une bonne occasion de retrouver les fractions continues, et les rotations qu'elles 
définissent. 

Les symboles. Dans l'aspect numérique et dans l'aspect graphique, on se 
préoccupe de valeurs approchées, de procédés d'approximation, d'étude qualita
tive. Pour la résolution des équations numériques ou des équations fonctionnelles, 
peu importent les formules exactes (résolution à l'aide de radicaux, ou résolution 
en termes de fonctions élémentaires) pourvu qu'on ait un moyen pratique de cal
culer ou de représenter la solution. 

Il est remarquable que l'informatique réhabilite aussi les aspects algébriques, 
les manipulations de formules littérales, les solutions en forme finie. C'est ce 
qu'apportent les systèmes symboliques formels. 

Remontons à un siècle et demi. En 1835, J. Liouville établissait un théorème 
général sur les intégrales indéfinies exprimables "sous forme finie." En voici 
l'énoncé: si fPdx est exprimable, sous forme finie, en fonction de x,y,z,... 
(y1 ,z',... étant des fonctions algébriques de x, y, z,...), comme superposition de 
fonctions algébriques, d'exponentielle et de logarithme, il est permis de poser 

/ 
Pdx = t + A\ogu + B\ogv H h Clog tu, 

A,B,...,G étant des constantes, et t, u, v,..., w des fonctions algébriques de 
x,y,z,.... 
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Le même énoncé vaut en remplaçant "algébrique" par "rationnelle," d'où, par 
exemple, l'impossibilité d'exprimer / e~x dx sous forme finie. Ce théorème fut 
très apprécié en son temps, puis oublié. 

A. Ostrowski dégagea de là en 1946 l'aspect algébrique, en définissant les 
"corps liouvilliens." Le théorème devient purement algébrique avec M. Rosen-
licht (1968), algorithmique avec R. H. Risch (1969), et concrètement applicable 
au calcul formel avec J. H. Davenport (1982). Grâce à ces travaux, la machine 
peut décider si ime intégrale compliquée se calcule ou non sous forme finie, et, 
dans l'affirmative, donne la forme en question [12, p. 76]. 

La machine fait donc, beaucoup mieux, ce que peut faire un étudiant expert en 
calcul des intégrales. Cela signifie que l'agilité à calculer des intégrales pourrait 
être complètement supprimée des buts de l'enseignement. Si le temps laissé 
libre permet d'accéder au théorème de Liouville ou à ses versions modernes, tant 
mieux. Il faut préférer aux techniques ad hoc les énoncés les plus généraux et les 
plus puissants. Comme on le voit, l'ordinateur nous pousse vers l'abstraction! 

Le calcul symbolique, ou calcul formel, n'était naguère accessible que sur de 
gros ordinateurs. Actuellement, un système tel que muMATH est accessible 
sur micro. Pour les élèves, le calcul littéral deviendra bientôt aussi facile à ef
fectuer que le calcul numérique. Ce sont les principes les plus généraux du calcul 
littéral—les aspects algébriques—qui méritent donc d'être explicités [12, p. 35]. 

Les algorithmes. Le concept majeur en informatique est celui d'algorithme. 
En mathématiques, les algorithmes ont toujours joué un rôle important. Cepen
dant, dans les définitions et dans les preuves, les procédés non constructifs ont 
naguère été préférés aux procédés constructifs, à cause de leur élégance et de 
leur puissance (ainsi toutes les utilisations de l'axiome du choix). Les procédés 
constructifs reviennent à la mode, et l'élégance que nous leur attribuons dépend 
évidemment des outils dont nous disposons. 

Par exemple, considérons la théorie et la définition du pgcd. En voici trois 
approches. 

(1) L'algorithme des divisions successives. Si r est le reste de la division de 
a par ft, on pose (6, r) = T(a, b), et on répète T jusqu'à obtenir (p, 0). Tous les 
diviseurs de a et ft divisent p, et p divise a et 6. C'est le pgcd. 

(2) Le procédé des idéaux. L'ensemble aZ + 6Z a un plus petit élément > 0, 
soit p. On démontre pZ = aZ + 6Z, et p est le pgcd. 

(3) La récurrence descendante: 

pgcd(a, 6) := si b = 0 alors a 

sinon si a > ft alors pgcd(a - ft, ft) 

sinon pgcd(ft, a) [13, p.32]. 

Cette dernière définition est incontestablement la plus simple, pour le pro
gramme comme pour la théorie. On peut juger la rédaction rébarbative, et la 
changer pour la rendre conforme au bon usage. Mais on peut également se 
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demander si le bon usage ne sera pas influencé par le langage de la programma
tion. Naturellement, même si la définition 3 est la plus simple (c'est l'algorithme 
des "soustractions successives"), les autres gardent leur valeur. 

Voici un autre exemple, de définition par algorithme, emprunté à la vie poli
tique française. Les dernières élections législatives ont eu lieu en appliquant dans 
chaque département "le système de représentation proportionnelle à la plus forte 
moyenne." Il s'agit de désigner D députés. Il y a L listes de candidats, chacune 
portant D noms. Chaque électeur vote pour une liste, sans rayure ni mélange. 
Le dépouillement du vote fait apparaître le nombre total de votants, N, et le 
nombre de voix pour chaque liste, m, n2,... ,WL (ni + • • • + nz, = N). Voici 
l'algorithme qui définit le système. On calcule le "quotient électoral" Q = [N/L]. 
On attribue à la fc-ième liste [nk/Q\ députés. Si tous les sièges sont attribués, 
on s'arrête. Sinon, dk étant le nombre de sièges attribués à la fc-ième liste, on 
calcule nk/(dk + 1) et on attribue un nouveau siège à la liste pour laquelle ce 
rapport (cette "moyenne") est le plus grand. On recommence jusqu'à ce que 
tous les sièges soient attribués. 

Cet algorithme, très commode pour le calcul à la main (sauf au début, on 
ne divise que par de nombres petits, et le classement se fait d'un coup d'oeil), 
n'est pas agréable à programmer sur un ordinateur de poche. Il a pour autre 
inconvénient qu'on ne voit pas immédiatement à quoi il vise. C'est un autre 
algorithme, la résolution d'équation par dichotomie, qui convient à la machine: 
la fonction Y2ink/q] est une fonction décroissante de q, prenant (on le suppose!) 
toutes les valeurs entières positives quand q varie sur R+. On choisit q de façon 
que cette somme soit D. Le nombre de sièges de la fc-ième liste est alors [rtk/q]-
Ce qu'on explique à la machine permet de comprendre ce qu'on cherche. 

Les algorithmes disponibles ont un effet sur les définitions et sur les preuves, 
sur le style de rédaction, et sur la pensée mathématique elle-même. Je me 
suis déjà étendu sur les itérations, et en particulier sur les fractions continues. 
De manière générale, les algorithmes faciles à programmer peuvent avoir un 
contenu mathématique, et ce sont alors des candidats naturels pour entrer dans 
un programme d'enseignement. La complexité des algorithmes est un beau sujet 
mathématique dont on peut avoir rapidement une idée intuitive. 

• • • 

Le langage des algorithmes fait appel aux mathématiques discrètes. Depuis 
quelques années, des programmes de mathématiques discrètes sont proposés 
dans quelques universités des Etats-Unis sous la forme de cours d'un semestre 
ou de cours annuels, et il faut être attentif à leur évolution. Lorsqu'on en 
énumère les matières, on peut avoir l'impression d'un pot-pourri: ensembles et 
relations, logique élémentaire, induction et définitions récursives, combinatoire, 
équations aux différences, graphes et arbres, probabilités discrètes, matrices et 
programmation linéaire, systèmes de numération, groupes et anneaux, machines 
à états finis et leurs relations avec les langages et les algorithmes [12, p. 16]. 
Mais ce pot-pourri constitue la culture commune aux étudiants en informatique 
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et aux étudiants en mathématiques, comme les éléments d'analyse (fonctions 
d'ime variable réelle, dérivées, intégrales, équations différentielles, fonctions de 
plusieurs variables) constitue la culture commune aux étudiants en physique et 
aux étudiants en mathématiques. Qu'on en fasse un cours séparé ou non, il est 
clair que des mathématiques discrètes doivent être enseignées dès la tranche d'âge 
16-18 ans, même si c'est au détriment du "calculus." On peut économiser sur la 
virtuosité dans le calcul des intégrales ou la résolution des équations différentielles 
au moyen de fonctions élémentaires: la compréhension des méthodes générales, 
et de ce que peuvent apporter les systèmes de calcul formel, est maintenant plus 
importante que le calcul à la main. 

• • • 

La machine de Turing a tout juste 50 ans. C'est l'origine des machines 
à calculer modernes, et c'est aussi l'origine de la théorie moderne des algo
rithmes. L'idée de base de Turing est de réduire une activité mentale à ime 
action mécanique: "according to my definition, a number is computable if its 
decimal can be written down by a machine." Naturellement, il ne s'agit pas là 
de l'activité d'invention, mais de l'exécution d'un programme de calcul. 

La théorie des langages et celle des automates est sortie de là. Les automates à 
état fini sont devenus l'une des bases de l'informatique théorique. Les suites qu'ils 
engendrent—suites "automatiques"—interviennent en analyse et en théorie des 
nombres, soit comme outils, soit comme objets. Par exemple, la suite découverte 
indépendamment par H. S. Shapiro (1951) et W. Rudin (1959) 

obtenue à partir du mot abcd par l'application des règles a —• ac, ft —• de, 
c —• aft, d —• db puis en remplaçant a et c par -h, ft et d par — est très importante 
en analyse de Fourier, et ses généralisations donnent de bonnes approximations 
automatiques du mouvement brownien. Les constructions automatiques (tra
ductions géométriques de suites automatiques, type pavage de Penrose) donnent 
aussi un large champ d'étude. Les automates devraient faire partie de la cul
ture d'un mathématicien [13, p. 33; 12, p. 69; S]. Peut-être, sur des exemples, 
conviendraient-ils aussi à de non-mathématiciens, comme modèles simples de ce 
que sait faire une machine. 

L'idée de Turing s'applique également à la théorie de la preuve: une preuve 
est complètement formalisée si elle peut être vérifiée par ime machine. C'est plus 
qu'une idée, c'est déjà une réalisation, avec le système Automath de N. de Bruijn. 
L'idée d'Automath, c'est d'expliquer les choses à ime machine. Naturellement, 
ce n'est pas ainsi qu'il faut les expliquer à des étudiants. Mais, remarque de 
Bruijn, si on ne sait pas expliquer les choses à une machine, on peut avoir des 
difficultés à les expliquer à des étudiants [12, p. 61]. 

Une remarque finale. La plupart des participants au colloque de Stras
bourg avaient beaucoup plus d'expérience que moi en informatique et dans 
l'usage des ordinateurs. Si j'ai été invité à parler sur ce thème, ce n'est donc pas 
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comme expert, mais comme amateur. Et c'est comme amateur que je crois pou
voir m'adresser aux collègues non-experts. On n'a pas besoin d'être informaticien 
pour apprécier le rôle de l'informatique sur la pensée mathématique—par contre, 
une telle appréciation est impossible à un non-mathématicien. 

On doit réfléchir à ce rôle quand on pense à la place des mathématiques dans 
l'enseignement obligatoire. Quelles mathématiques enseigner, pourquoi et com
ment? Il y a maintenant de bons arguments pour les mathématiques discrètes, 
mais aussi pour la statistique, les probabilités, l'analyse numérique. On peut 
utiliser les outils de bien des façons—enseignement assisté par ordinateur ou 
expérimentation libre; calcul numérique, visualisation, calcul formel. Le champ 
des contenus possibles s'élargit autant que le champ des méthodes. Le champ 
des contenus souhaitables—fût-ce du seul point de vue de l'informatique—risque 
de croître encore plus vite. 

L'enseignement des mathématiques—comme métier—n'est donc pas menacé 
par l'intrusion de l'informatique. Au contraire, dans presque tous les pays du 
monde, on trouvera qu'il est insuffisant—qu'il y faudrait consacrer plus d'heures, 
plus de moyens, plus d'enseignants. 

Reste la question principale. Comment les enseignants peuvent-ils faire face 
à ce monde changeant, où il s'agit de renouveler et d'élargir les contenus et les 
méthodes? C'est une question très difficile, qui n'admet certainement pas de 
réponse universelle. Le signe le plus encourageant à cet égard, c'est l'ensemble 
des initiatives prises par le milieu lui-même pour élargir simultanément sa qual
ification mathématique et sa compétence en matière d'outils. Il y a maintenant 
d'excellents livres, où l'on trouve à la fois les règles d'utilisation d'un outil, d'un 
langage ou d'un système, X, et une série d'applications mathématiques de grand 
intérêt. Ainsi, le mathématicien désireux de s'initier à X a, du même coup, 
l'occasion de faire de bonnes mathématiques—et c'est actuellement dans des ou
vrages mixtes de ce type (dont le plus avancé est sans doute [G]) qu'on trouve les 
meilleurs exposés des langages ou systèmes en usage [Ki, G, CR, JL, Se, Ko]. 

Nous devons être capables—et c'est un grand enjeu de société—de répondre 
aux nouvelles possibilités et aux nouveaux besoins qu'amènent les nouvelles tech
nologies. L'apprentissage des mathématiques est un des moyens de développer 
l'intelligence humaine au même rythme que l'intelligence artificielle. L'enseigne
ment des mathématiques n'a jamais été plus important et plus passionnant. 
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Verbal Problems in Arithmetic Teaching 

ZBIGNIEW SEMADENI 

When mathematics educators think of the role of verbal problems (or word 
problems, or story problems), most of them take it as problem-solving, that is, 
solving verbal problems prepared beforehand by the teacher or by a textbook au
thor. There is an enormous literature on the subject (see, e.g., NCTM 1980 Year 
Book [6] or research surveys [5] and [11]). My talk, however, will concentrate 
on the following topics, which have received little attention: 

I. Formulation of problems by a child. 
II. Transformation of given problems by a child. 
III. Dealing with intentionally ill-posed verbal problems. 

They are prospective topics for inclusion in the child's mathematical learning. 
I would like to stress that my talk will be entirely concerned with primary 

education, with special attention paid to the beginning of schooling. This is a 
crucial period for the child: the formal instruction starts; the child is in danger 
of getting lost in school math which seems to make no sense; the rote learning 
is likely to begin, with numerous cases and subcases, each with its own mean
ingless rules to be remembered. Children can learn mathematics successfully, if 
Polya's principle is (at least partially) implemented: "Let the students discover 
by themselves as much as feasible under the given circumstances" (cf. [11, p. 
12]). However, most commonly teachers just follow the textbook and students 
are trained to give responses in just the form expected by the teacher; this is the 
root of students' failures. The issue is not easy to deal with, but if we want to 
improve the tragic situation of mathematics in schools, we must begin with the 
early grades. My own experience in the subject is based on my work during the 
last eighteen years in Poland and elsewhere. 

For a decade the official Polish curriculum for grades 1-3 has encouraged 
teachers to include activities of the above three types in mathematics lessons, 
with special emphasis on problem-formulating. However, little is known about 
how these ideas are orchestrated in practice. I myself had the opportunity to 
organize and observe some experimental lessons in 1985 and 1986, and this taught 
me a great deal. In the literature, I could find scattered contributions from 
various countries but hardly any body of systematized knowledge. 
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The purpose of my talk is to call mathematicians' attention to the significance 
of these three topics for problem-solving. I believe that their present neglect is 
unwarranted. They are potentially useful for the child's learning, but are also 
likely to result in series of artificial, boring, meaningless exercises if children are 
not given opportunity to think and to have good enough communication with 
the teacher. 

In the sequel, the term "problem" will mean a verbal arithmetical problem. 

I. Formulation of problems by a child. Problem-solving is extremely 
important for mathematics learning and should begin very early. We do not 
have to wait until the children master addition to give them a story that will 
be of interest to them and can be solved by simulating the situation (or action) 
with, e.g, marbles, and simply counting them. There is abundant evidence that 
children can do this prior to formal instruction on problem-solving. 

At first, problems should not be purely verbal: the teacher may use pictures 
or just enact the situation. And then, gradually, the child conceives an idea of 
what a problem is and what a solution is. To help to clarify the idea, the teacher 
should suggest that the students try to formulate problems themselves. "One 
way of involving students in problem solving is to have them formulate their own 
problems" (Jeremy Kilpatrick [11, p. 12]). 

The idea of problem-formulation (or problem-posing) is an old one, though 
apparently every generation of educators has to discover it anew. Recent years 
have seen renewed interest in the topic (see, e.g., [6, p. 94]). Yet it may take 
several years for educators to appreciate fully the role of problem-formulation 
for the child's conception of what a verbal problem is all about.1 

Problem-posing is hard for children. That is known (see, e.g., [2]). But it 
is so significant when it arises in their experience that it should accompany 
problem-solving almost from the beginning, when it need not mean much more 
than verbalizing stories, e.g., enacted by the teacher. 

Later children may be invited to formulate problems to: (1) a given picture, 
situation, etc. (children tell the story); (2) a given theme (e.g., "Can you formu
late a problem about boys and girls walking together?"); (3) a graphic scheme 
(e.g., consisting of three dots and four other dots, representing sweets and cook
ies, say); (4) a formula, e.g., 7 —3 = 4; (5) an equation, written as, e.g., 3 +a; = 7 
or expressed in some other form; (6) a given question (e.g., "How old is Bob?"). 
The teacher may formulate a problem with blanks instead of numbers and ask 
children to provide numbers and then to solve the problem; or the students get 
a story with numbers and are asked to make up meaningful questions. 

Activities in problem-posing should form a significant supplement to problem-
solving. As we may expect, problems formulated by pupils usually are imitations 

1 There are several publications on problem-posing at the secondary level (e.g., those by M. 
I. Walter and S. I. Brown). Much less is known about problem-posing at the primary level, 
though some hints for teachers can be found in Arithmetic Teacher. 
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of problems given to them previously. Still, the most important is that children 
have the opportunity to speak, to express their thoughts, to exchange ideas. 

II. Transformation of a given problem into another by a child. 
Problem-posing can be enriched with problem-transforming. This can be done 
in various ways. 

1. Having a child transform a given problem into an isomorphic one. Two 
problems are called isomorphic if they differ only in their nonmathematical con
text, but have the same intrinsic mathematical structure. For instance, children 
first solve a problem of the type "3 apples + 5 apples = 8 apples" and are invited 
to formulate another problem which fits the same formula 3 + 5 = 8. At first, the 
two problems may be very similar, almost identical, e.g., if "apples" are replaced 
by "oranges" ; gradually, the children should learn to formulate problems which 
are less similar. (To make it easier, the teacher may suggest the context.) 

"It would be especially helpful for students to see that the same 
numbers in the same relationship can be provided with different 
'cover stories,' and I would place more emphasis on the students 
actually working up to cover stories themselves" (J. Kilpatrick 
[5, p. 470]). 

The object of such activities is to help the child learn what is mathematically 
essential in a problem. 

2. Transforming a simple problem (with one operation) into an inverse one. 
Thus, the result of solving the given problem becomes a given number in the 
inverse problem, while a previously given number is now deemed to be unknown; 
the context is otherwise unchanged. For instance, a multiplication problem is 
converted into a division problem. 

Such a change should be motivated. After having solved a problem, the child 
may see no point in posing an inverse problem; after all, the answer is known, 
so why pretend that we do not know it? The teacher may first tell a story of, 
say, a mother who wanted to know how many candies she should buy if each of 
her 4 daughters was to get 3 candies. Of course, she had to multiply the two 
numbers. When she came home, the girls noted that mummy brought 12 candies 
and wondered how many candies would be given to each of them. "Can you help 
the girls to answer the question?" the students may be asked. They divide 12 
by 4 and find just the number that mummy had thought of. 

Such activities are to contribute to the child's understanding of inverse oper
ations and, more generally, inverse problems. 

3. Asking a new question (to the same story, in case of a complex problem). 
This may help to develop the attitude: "What else can we ask?" 

4. Varying the given data while keeping the story and the question otherwise 
unchanged. Rather than giving students a single problem (e.g., "Mummy bought 
10 rolls. Three of them were eaten. How many rolls were leftV) and jumping 
to another problem with unrelated story, once in a while the teacher should 
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extend the problem by just changing some data. E.g., keeping the information 
that mummy bought 10 rolls we may ask: "How many rolls were left when 4 
rolls had been eaten?", "How many were left when 5 rolls had been eaten" and 
so on (including 2, 1 and zero rolls eaten). This gives a new dimension to the 
problem and prepares the child to think in terms of variables and functions (e.g., 
by noting that the more rolls are eaten, the fewer are left). 

Similarly, in the problem "A tailor must sew on 3 buttons to each of 8 shirts. 
How many buttons does he need?" the number of shirts may vary. To record 
the successive answers, the pupils may fill out certain tables. They label rows 
(or columns) by words "shirts" and "buttons" which are—at a later stage— 
abbreviated to s and b, say. This leads to natural questions like "what number 
is s" and opens the way to the use of letters as variables. 

Varying numbers in a verbal problem may help children to grasp some concep
tually difficult extensions of arithmetical operations, where the ordinary intuition 
fails. This includes products of the form 0 • n, n • 0, powers ra°, operations on 
fractions and on negative integers. A general approach of this sort, formulated 
as the concretization permanence principle, can be found in [10]. 

As an example suppose that students already know powers of the type 25 = 
2 • 2 • 2 • 2 • 2 and are to learn what are the powers 21 and 2°. We need a 
concretization and choose a family tree, say, with one (unnamed) child, two 
parents, four grandparents, eight great grandparents, and so on. The students 
draw such a family tree, count the ancestors in successive generations and write 
the number of branches of the tree at each level: 1,2,4,8, — When they reach 
32, say, they express the previously written numbers as powers: 32 = 25, 16 = 24 

and so on. When they come down to the numbers 2 and 1, the pattern suggests 
that 2 = 21 and 1 = 2°. If we asked "What number is 2°?", we would invite the 
wrong answer that 2° is zero. The approach presented here enables us to ask 
"What power of 2 is 1?". What is crucial here is the fixed context with varying 
exponent. 

5. Transforming a given problem into a more complicated one is an operation 
inverse to decomposing a multistep problem into simpler ones. For instance, the 
children first solve the problem: "A hamburger costs $1.50. How much are 2 
hamburgers?" and then they are asked to formulate and solve more complicated 
problems (e.g., about the price of 2 hamburgers and a coke). In this way the 
children may learn to build up a multistep problem themselves and to recognize 
its structure. This should help them solve such problems and think in terms: 
"I've solved this problem and am going to formulate another, more interesting 
one!" 

6. Transforming a given series of isomorphic problems into another according 
to a single principle. This can best be explained with an example. During an 
experimental lesson near Warsaw, eight- and nine-year-olds got the following 
problem: "Daddy brought 8 kilograms of apples from his garden. He gave 3 
kilograms of apples to uncle Peter. How much was left? Write a formula." The 
children solved the problem, wrote 8 — 3 = 5, and then they were given the first 
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sentence of the next problem: uIn a pail there were 8 liters of milk." They were 
supposed to finish the story and to pose a question as to get a problem fitting 
the same formula 8 — 3 = 5. When this had been done ("3 liters of milk was 
poured out to a can...") the students got first sentences of successive problems: 
"8 cabbage-coles grew on a garden-bed" "Henry had 8 meters of string" "Stan 
had 8 zlotys" (zloty is the unit of currency in Poland). 

After this series of problems had been formulated, the teacher gave the chil
dren a new problem. Its context was the same as in the first problem of the 
series and there were the same numbers 8 and 3, but the operations were differ
ent: "Daddy brought 3 boxes of apples from the garden. There were 8 kilograms 
of apples in each box. How many kilograms of apples did daddy bring?" The 
children solved the problem and wrote the formula 3 • 8 = 24. Then the teacher 
asked them to formulate another problem so that the story would be about the 
same as in the second problem (that is, about milk in a pail) but the formula 
would be 3 • 8 = 24. A child proposed a problem about 3 pails with 8 liters of 
milk in each. And then the students were asked to tell how to reformulate the 
remaining problems: they were speaking of 3 garden-beds, 3 pieces of string, etc. 

Such activities may hopefully contribute to the child's understanding of what 
is mathematically essential in a problem and to the flexibility of their thinking. 

For more examples, see Janet H. Caldwell [5, pp. 393-404]. 

III. Dealing with intentionally ill-posed problems. In the sequel, a 
problem will be called well-posed if it is uniquely solvable and no numerical 
information given in the story is superfluous. Accordingly, a problem is ill-posed2 

if either (1) there is not enough information to answer the question uniquely, or 
(2) there is too much numerical data, or (3) the data is impossible (logically 
or physically). Thus, we distinguish three main categories of ill-posed problems: 
with missing (incomplete) information, with surplus data, with impossible data.3 

There may be various types of problems within such a category. E.g., among 
problems without enough information we may distinguish: lack of some data in 
an otherwise standard problem; or a standard story with an irrelevant question; 
or a story with unrelated data from which no conclusion follows; or an ambiguous 
story, open to more than one interpretation; or a story with no reasonable arith
metical mathematization, e.g., in case of nonlinear growth. Surplus data may 

21 hesitated whether to use such terms as "well-" or "ill-posed" verbal arithmetical problems. 
In fact, I believe that intentionally ill-posed problems may be didactically significant. But this 
talk is addressed to mathematicians who know what a well-posed or incorrectly-posed Cauchy 
problem is and may even know that incorrectly-posed problems are of increasing importance, 
e.g., in mathematical physics. As I do not have any better names, for the moment I am using 
these terms. 

3The above categories are not sharply determined. One can even formulate (see [9]) a 
one-parameter family of problems (Pfl)fl>o with the same story, where s is a given variable 
datum, such that for certain values si, S2, S3 problem Paj is well-posed, P82 has incomplete 
information, whereas P83 has impossible data; therefore by changing the parameter s we may 
"continuously" pass from one category to another. 
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be extraneous (irrelevant) or redundant (duplication of information). Impossible 
data may be contradictory (inconsistent) or simply impossible in real life. 

To avoid confusion, we should clearly distinguish three possible setups for an 
arithmetical problem: 

(a) Logico-mathematical setup. The answer is to be deduced from what is 
said in the story (without using any additional information, except of general 
knowledge, e.g., that the value of a nickel is 5 cents). To solve the problem 
one may perform arithmetical operations, solve equations, simulate the situa
tion with concrete materials (marbles, building blocks, drawings), and use some 
systematic trial-and-error procedure. (Unfortunately, many teachers interpret 
mathematical reasoning too strictly as performing some narrowly prescribed op
erations, not accepting simulation or systematic search.) 

(b) Applied-mathematics setup. In order to solve a genuine problem in science 
or real-life one can use any valid outside source of pertinent data. Mathematics 
is one of the tools. 

(c) Real-life setup. In order to answer a question involving numbers the solver 
can argue as in (a) or (b), but other options are also open: guessing, choosing a 
solution because of, e.g., the preference for the color blue over green, or ignoring 
the problem. 

Both (a) and (b) are very important. In this paper, however, our attention is 
restricted to setup (a), and only to problems formulated so that a single quantity 
should be an answer. Thus, in case of missing data, the solver is supposed to say 
that the question cannot be answered because we do not know certain facts. A 
more sophisticated approach would be to think in terms of an open problem: The 
solver would have to note that several objects satisfy the given condition(s) and 
try to find all of them. The former approach is closer to the concrete thinking 
of the child; the latter is more formal and is less likely in early grades. (An 
intermediate approach would be: We do not know the number in question, it 
could be this or that.) 

One of the goals of education should be that the students master suitable 
rudiments of (a) and (b). However, the school beginner thinks in terms of (c) 
and does not understand the tacit conventions of setup (a). The transition 
takes years of solving problems, reflecting upon them and developing the child's 
natural powers. Prematurely forcing the child to think in terms of (a) usually 
leads to rote learning and frustration. But if children have the opportunity to 
think meaningfully, freely, at their own pace, then they can make progress. 

Within the above framework we shall discuss intentionally ill-posed problems, 
that is, problems with missing, surplus, or contradictory data given to students 
with the intent that they think whether the problem can be solved, explain its 
deficiency, and suggest how it could be emended so as to get a solvable problem 
with just enough data. 

It is widely recognized that problem-solving is hard for children. Dealing with 
intentionally ill-posed problems is still harder. Research confirms this. Reports 
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of various tests (formal and informal) of how children deal with intentionally ill-
posed problems are disconcerting. Actually, most tests have concerned problems 
having superfluous data; it was found that—even in easy problems—these data 
confused many students. V. A. Kruteckiï [7], who made intensive psychological 
tests of how children reason when they are given (not necessarily arithmetical) 
problems with missing or superfluous data, found in particular that in a problem 
of a new type, the average pupil at first perceives only disconnected facts. Still 
worse is that during some tests a significant percentage (sometimes a majority) 
of students gave absurd answers. In the test organized in Grenoble [3], reported 
in Berkeley at ICME 1980, children aged 8 to 12 were given variations of the 
celebrated problem: "There are 26 sheep and 10 goats on a boat. How old is 
the captain?" Almost 75% of those aged 7 to 9 and 20% of those aged 9 to 11 
used the given numbers to compute the age of the captain without expressing 
any doubt. 

These appalling results (which could probably be confirmed in most coun
tries) are usually explained by referring to rigid teaching routines which make 
mathematical operations meaningless for many children, and to the artificial
ity of numerous textbook problems. Children giving wrong answers to school 
problems may correctly solve mathematically equivalent problems when these 
actually arise in their own lives (see, e.g., [1] and [12]). 

However, we should also take into account the natural epistemological ob
stacles that pupils may have to overcome while learning to solve problems. At 
the beginning of their schooling, most children do not understand what a verbal 
problem is; they consider it just as a puzzle and try to guess the answer. Later, 
as a result of inadequate teaching, they may develop distorted concepts instead 
of the clear ones that one might expect. 

H. Preudenthal [4], in his profound analysis of various aspects of the Grenoble 
test, pointed out two more factors: 1° children may not have a clear concept of 
the age of a person; 2 something magical may be involved (note that for many 
children, and even for certain adults, performing mathematical operations is a 
ritual to be strictly observed though its meaning may not be understood). 

Anyway, there seems to be enough evidence to support the stereotypic view 
that the use of intentionally ill-posed problems in school is a poor idea. Never
theless, I think otherwise. Life is full of such problems and the children should 
learn to deal with them. But more important is the question of whether such 
problems may help children learn problem-solving. 

One of the taboos of the traditional instruction is that nothing erroneous be 
ever shown to students (in fear that it might be imprinted in their memory). In 
case of mathematics learning, the opposite argument seems to be more convinc
ing: One cannot protect children from making errors by always showing them 
the correct way. Mathematics requires understanding rather than memory. To 
overcome the conceptual difficulties the children should be given the opportunity 
to discuss suitable ill-posed problems and to find out themselves what is wrong 
with the problems. 
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I believe that—aside from the natural limitations of the child's thinking— 
the astonishing answers to tests with ill-posed problems resulted from the total 
absence of such problems in the instruction. The students had met only well-
formulated, standard problems. They were surprised by the test. A task of a 
completely new type was given to them without any preparation, perhaps even 
without warning (a short formal warning would not help much). 

School beginners first think that adults talk seriously. Then they get varying 
ideas about a game being played or think that all math problems are solvable. 
They learn that if the teacher gives them a problem to solve then they must 
perform some arithmetical operation. They look for clues. Sometimes they 
choose the right operation, sometimes not. Often they do not read the problem 
carefully for its meaning and just guess what operation to use. Now, suppose 
that they are exposed to an ill-posed problem. It is not the first problem that 
they find strange. Though the previous problems given them by the teacher 
were well-posed (from an educator's point of view), many of them appeared 
meaningless or inconsistent to children. The teacher kept telling them that they 
were supposed to try hard to solve a problem (even if they could see no sense in 
it). Consequently, when they get a problem with missing or contradictory data 
they follow the previous routine. 

I have outlined the philosophy that underlies Polish attempts to incorporate 
ill-posed problems in regular classroom lessons in primary grades. The idea goes 
back to L. Jelenska; half a century ago she advocated that very easy problems 
with missing or redundant data should be given to children to help them grasp 
the idea of a verbal problem. A year ago, during experimental lessons, children 
aged 7-9 were given a series of ill-posed problems of various types. In each class, 
the teacher read problems, explained them in the usual way, and asked children 
whether somebody wanted to say something. When I watched these lessons and 
made notes of what the pupils were saying, it struck me that they were more 
active than during lessons with other material taught previously. They frequently 
laughed after a problem had been read or upon hearing the naive answers of their 
colleagues. Many of those answers were as nonsensical as those in Grenoble, but 
they were followed by the laughter and protests of peers; this created a situation 
quite different from that of a single child answering test questions. Samples of 
problems and of childrens' reactions follow (for a more complete report with a 
survey of the literature, see [8]). 

"Johnnie bought 2 kilograms of apples and 1 kilogram of pears. How much 
did he pay?" (Reaction: "We do not know the prices.") "Mary invited 5 girls 
and 3 boys to her birthday party. How old is she?" (Some pupils answered: "8 
years"; others objected this.) "A farmer had 12 pigs. He went to the market 
and sold 4 hens. How many pigs did he have left?" (There were several answers 
"eight" remonstrated by peers: "Why, he sold hens, not pigs!"; some students 
suggested: "Maybe it's a slip.") "At the market yesterday an egg cost 15 zlotys. 
Today an egg costs 14 zlotys. What will be the price of an egg tomorrow?" ( "We 
can't know," "We can. Because yesterday it cost 15, today 14, so tomorrow it'll 
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cost 13. Because the price goes down!," "It may go up as well.") "Jim and 
Mike are sitting at their desk in a classroom. There are girls standing at the 
blackboard. Jim sees 3 girls and Mike sees 3 girls. How many girls are standing 
at the blackboard! (Several pupils said "six," but there were also answers "three," 
with explanation, e.g., "Because Jim and Mike saw the same girls.") "It takes 5 
minutes for a student to walk from a school to the nearest bus stop. How long does 
it take for 3 students to walk from the school to the bus stop?" ("15 minutes," "5 
minutes, because they go the same way/' "The same, unless a student is slow.") 
"Each day Olga puts money in her piggy-bank and keeps a record of how much 
she has there. On Monday she had 3 zlotys in her piggy-bank. On Tuesday she 
had 4 zlotys there. On Wednesday she had 8 zlotys in the piggy-bank. How much 
money has she put to her piggy-bank altogether?" ("Fifteen," "Eight. One does 
not have to make computations, it is just said!") "Anna is 7 years old and Bob 
is 10. How much older is Anna?" ("Older??," "Three years older," "Zero years, 
for she is younger," "Why, how can a smaller number be greater?") 

In some classes, the problems were presented in the following story-setting, 
involving a clever boy, nicknamed Gapcio, playing with his sister Dolly. One of 
them formulates a problem and the other is to solve it. "Today I'll give you a 
cunning problem", says Gapcio to Dolly. "Something will be wrong with it. You 
try to solve it and tell me what is wrong. We'll see whether you can be fooled!" 
The pupils were to help Dolly recognize what was wrong, and then to propose 
how to amend the problem. Sample: "Gapcio says: lI had 8 zlotys, and I bought 
2 copy-books at 3 zlotys each, and candy costing 4 zlotys. How much change did 
I get?) What should Dolly say?" ("He did not get any change at all," "Zero," 
"He even did not have enough for candies," "Or he had more money with him.") 

Teachers who had volunteered to give students those problems were generally 
in favor of them. But the most important is that children liked the problems and 
in some classes they later urged the teacher to give them more of these "funny 
problems." 

In conclusion, may I stress what is the main message of my talk: children 
in primary grades can learn mathematics successfully if they are encouraged to 
explore mathematics on their own (with the use of concrete material if they 
need it) rather than to memorize rules imposed upon them by the teacher. In 
particular, children should not only solve problems prepared by somebody else 
(and often meaningless to them), but should have the opportunity to formulate 
problems themselves, or to transform problems into new ones, and should learn 
to distinguish whether a problem (of their own or given to them) is well-posed. A 
lot of research is needed to learn more about how these ideas can be implemented, 
but I believe that it is worthwhile. 
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