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Preface 

The Proceedings of the International Congress of Mathematicians 1990, held in 
Kyoto from August 21 through 29, 1990, are printed in two volumes, 

Volume I contains the official record of the Congress, the list of ordinary 
members, the reports on the work of the Fields Medalists and the Nevanlinna 
Prize Winner, the plenary addresses, as well as the invited addresses in Sections 
1-6. Volume II contains the invited addresses in Sections 7-18. A complete author 
index is included in both volumes. 

The short communications made by members at the Congress are not included 
in the Proceedings, but the names of the communicators are marked in the list 
of ordinary members. Summaries of these contributions, if received in time, were 
printed in the Abstracts, issued to members during the Congress. 

Sendai, April, 1991 The editor 
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Organization of the Congress 

The International Congress of Mathematicians 1990 was held in Kyoto at the 
invitation of the Science Council of Japan (JSC) and the Mathematical Society 
of Japan (MSJ) under the cosponsorship of the Japan Society of Mathematical 
Education, the History of Science Society of Japan, the Institute of Actuaries 
of Japan, the Japan Society for Software Science and Technology, the Japan 
Statistical Society, and the Operations Research Society of Japan. The Congress 
was also supported by the Ministry of Education, Science and Culture, by Kyoto 
Prefecture, Kyoto City, Kyoto University, and the Information Processing Society 
of Japan. 

The members of the Organizing Committee and its subcommittees are listed 
on the following pages. However, until the Organizing Committee was established 
on August 14,1989, all preparations were carried out by the Committee of ICM-
90, which was set up in the MSJ in December, 1986. 

The scientific program of the Congress was in the hands of the Program Com
mittee, which was appointed by the International Mathematical Union (IMU) in 
May, 1987. Its members were Nicolaas H. Kuiper (Chairman), Vladimir I, Arnold, 
Alain Connes, Ronald L. Graham, Heisuke Hironaka, Masaki Kashiwara, Robert 
P. Langlands, Sigeru Mizohata, and Daniel G. Quillen. 

Recipients of the Fields Medals and the Rolf Nevanlinna Prize were se
lected by the respective committees appointed by the IMU in April, 1988. The 
Fields Medal Committee consisted of Ludwig D. Faddeev (Chairman ex officio), 
Michael F. Atiyah, Jean-Michel Bismut, Enrico Bombieri, Charles L. Fefferman, 
Kenkichi Iwasawa, Peter D. Lax, and Igor Shafarevich. The Rolf Nevanlinna 
Prize Committee consisted of Laszló Lovâsz (Chairman), Alexandre J. Chorin, 
Michael Rabin and Volker Strassen. 

The Organizing Committee was responsible for the other activities of the 
Congress. The Japan Travel Bureau (JTB) handled accommodations for the 
participants as the official travel agent. 

All sessions of the Congress took place inside the Kyoto International Confer
ence Hall. There were 15 one-hour Plenary Addresses and 138 forty-five-minute 
Section Lectures in 18 Sections. In addition to these invited lectures, 5 forty-five-
minute lectures were invited by the International Commission on Mathematical 
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Instruction. Participants gave 620 Short Communications in total and conducted 
more than 40 informal seminars and other meetings. 

Various social events were arranged for all participants. Ancient court music 
and dance accompanied the Opening Ceremony. A reception followed the Pre
sentation of the Works of the Fields Medalists and the Rolf Nevanlinna Prize 
Winner. A cello recital was held in the evening of August 23, and traditional mu
sic performances in the afternoon of August 25. Sunday, August 26 was a holiday, 
on which several guided tours were arranged by JTB. The Closing Ceremony was 
followed by a banquet with an entertainment of folk music and dance. 

In the evening of August 22, Kyoto Prefecture, Kyoto City, and Kyoto Uni
versity were hosts to a reception for the Fields Medalists, the Rolf Nevanlinna 
Prize Winner, invited speakers, and officials of the IMU. 
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Faddeev giving the opening speech to the Congress 
(From left to right: Araki, Komatsu, Ito, Hattori, Kondo, Lovâsz, Hori, Aramaki, Tanabe, 
Nishijima, Onozawa) 



Opening Ceremonies 

The opening ceremonies of the Congress were held in the Event Hall of the 
Kyoto International Conference Hall, starting at 9:30 a.m. on August 21, 1990, 
The Gagaku Club of Tenri University entertained the participants with a Gagaku 
(court music) recital entitled Etenraku. Academician Ludwig D. Faddeev, Presi
dent of the International Mathematical Union (IMU), opened the Congress with 
the following speech : 

After this symbolic opening let me formally declare the International 
Congress of Mathematicians (ICM-90) in Kyoto open. 

This is the first Congress in the history of the International Mathe
matical Union to take place outside of Europe and North America. This 
is consonant with the main goal of the Union - the promotion of math
ematical research throughout the world. For this reason, the proposal of 
the Japanese Committee of Mathematicians to hold the Congress in Ky
oto was enthusiastically accepted by the General Assembly of IMU four 
years ago. I believe that I can already express admiration for the efforts 
being made by the Organizing Committee to make the Congress work 
effectively. It appears that the attendance is the highest in the history of 
ICM. 

The scientific program of ICM is traditionally in the hands of the 
Program Committee appointed by the Executive Committee of IMU, Let 
me disclose to you the list of its members. Professor Nicolaas H, Kuiper 
was appointed as chairman. Professors Vladimir I. Arnold, Alain Connes, 
Ronald L. Graham, Heisuke Hironaka, Masaki Kashiwara, Robert P. 
Langlands, Sigeru Mizohata, and Daniel G. Quillen served as members. 
We shall witness the effectiveness of their choice of speakers in the coming 
days. 

Now I come to the important duty of designating the President of the 
Congress. Let me nominate Professor Hikosaburo Komatsu for this post. 

Acclamation. 

I take this as confirmation of the proposal. Thank you. 
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Komatsu, President of the 
Congress, showing the first sheet 
of the ICM-90 commemorative 
stamps 

Professor Komatsu, as President of the Congress, made the following address: 

Thank you Mr. President. I am honored to serve as President of the Congress. 

Ladies and Gentlemen, 

On behalf of the Organizing Committee I would like to welcome you to the 
International Congress of Mathematicians 1990 (ICM-90). I very much hope 
that your stay in the historical city of Kyoto will be a pleasant one. 

First of all, let me explain how the Congress has been prepared. It was 
more than seven years ago that the Liaison Committee for Mathematics in 
the Science Council of Japan (JSC), which is the Committee for Mathematics 
in Japan, and the Mathematical Society of Japan (MSJ) started planning to 
host ICM-90. After the Feasibility Committee chaired by Professor Kiyosi 
Ito made a careful initial investigation of this issue, MSJ decided in 1985 to 
invite ICM-90 to Kyoto. Fortunately this invitation was accepted by the Site 
Committee of IMU and was approved by the General Assembly of IMU at 
Oakland in 1986. 

The actual preparations started when MSJ formed the Committee of ICM-
90 in December, 1986. Its Executive Committee consists of the following: 
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The full Committee of ICM-90 had an additional 29 members. 
By the end of 1987, the Japan Society of Mathematical Education, the 

History of Science Society of Japan, the Institute of Actuaries of Japan, the 
Japan Society for Software Science and Technology, the Japan Statistical 
Society, and the Operations Research Society of Japan decided to sponsor the 
Congress and elected their representatives to the Committee of ICM-90 and 
its Science Committee, 

In June, 1989, JSC made the final decision of sponsoring ICM-90 with 
the consent of the Government. Then, according to the general rules of JSC, 
the Committee of ICM-90 was reorganized into the Organizing Committee 
in August, 1989. 

Second, as the President of IMU reported, the scientific program of the 
Congress and, in particular, the list of invited speakers were prepared by 
the Program Committee, appointed by the Executive Committee of IMU. 
However, a few additional speakers working in Japan, and also substitutes 
for speakers who declined were invited by the Organizing Committee on its 
own initiative, in which the latter were selected from the list of alternatives 
made by the Program Committee. 

Finally 15 speakers were invited to give one-hour Plenary Addresses. 
Among them two declined and were replaced by other choices. Also 144 
speakers were invited to give 45-minute Section Lectures, 19 were substituted, 
and 6 lectures were cancelled. In addition, the International Commission on 
Mathematical Instruction invited five 45-minute speakers. 

We have benefited very much by the recent reconciliation in the world 
politics and the prosperity of the Japanese economy. As far as I know, no 
invited speakers declined for political or economic reasons. 

Adopting Professor Mary Rudin's proposal, the last General Assembly 
of IMU in 1986 recommended that Subfields of Mathematics, Women, and 
Mathematicians in Small Countries should not be overlooked when speakers 
to the ICM are selected. I believe both the Program Committee and the 
Organizing Committee have respected this recommendation. 

The selection of additional speakers and the scheduling of scientific pro
gram were carried out by the Science Committee in the Organizing Committee, 
chaired by Sigeru Mizohata. 

Thirdly, the budget of this Congress amounted to approximately 
300,000,000 Yen (approximately US$2,000,000). One third of the revenue 
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is the registration fees, one third the donations from private corporations, 
and the rest consists of subventions from IMU, JSC and MSJ, the donations 
by individual members of MSJ, and the miscellaneous income (here the do
nations by 1138 members of MSJ are actually more than the total of all the 
other subventions). We are very sorry that we had to set a high registration 
fee of 30,000 Yen but we were forced to do so because the Japanese tax 
regulations do not allow us to receive tax-exempted donations exceeding the 
total amount of registration fees. 

In addition to the budget of the Organizing Committee, the Japan Asso
ciation for Mathematical Sciences, MSJ, the Oriental Life Insurance Cultural 
Development Center, the Commemorative Association for the Japan World 
Exposition (1970), and The Kajima Foundation allocated a total of 60,000,000 
Yen to support 269 foreign participants mostly from developing countries or 
countries with foreign currency restrictions. This number includes 47 IMU 
Scholars whose travel expenses are supported by the Special Development 
Fund of IMU. 

Most funds from these foundations also originated from donations so
licited from enterprises by the Organizing Committee. 

The biggest contributors are insurance and electronic companies. On 
behalf of all the participants, I would like to thank all these bodies for 
their generous donations. A list of donors is in the Program and will be 
published in the Proceedings. 

It is not an easy task to raise so much money. But I must confess that it 
was a pleasant one, too, because every executive I met for this purpose showed 
a liking for mathematics and appreciated that mathematics had played an 
important role in the development of the Japanese economy. 

The Fund Raising Committee is chaired by Kiyosi Ito and its office was 
set up in Gakushuin University with Shigeru Iitaka in charge. 

Assistance with visa applications was carried out by Shinichi Kotani at 
the office located in the University of Tokyo. 

The other preparations have been planned and implemented by General 
Secretary Huzihiro Araki, Treasurer Hirosi Toda and the Local Committee 
chaired by Masayoshi Nagata. The Secretariat was set up in the Research 
Institute for Mathematical Sciences, Kyoto University. 

The Proceedings of the Congress will be edited by the Publications Com
mittee with Ichiro Satake as the chairman. Its office is in Tohoku University. 

I would like to thank these institutions and, in particular, Kyoto University 
for their kind cooperation. 

Today, 4,000 mathematicians from 83 countries have assembled here to 
review our scientific achievements over the last few years and to set goals 
for the future in all fields of mathematics ranging from pure mathematics 
through applied mathematics to mathematical education. This seems to be an 
almost megalomaniac dream at this time of specialization. I do not know any 
other discipline which attempts to hold this kind of congresses regularly. 

I have often wondered why mathematicians do have Congresses and what 
Congresses mean to them. My answer is that Congresses are to mathematicians 
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what Bon and New Year Festivities are to Japanese, in which they abandon 
their daily life completely. 

Japanese are believed to work continuously without vacations, but that is 
not true. Even in the Edo Period there were two one-week long holidays. One 
is the New Year Festivities and the other is the Bon Festivities which take 
place a week earlier than this time of the year, 

On these holidays people are relieved from labor and go back to their 
native home. People are not allowed to cook on the first days of the Festivities, 
so that they have a busy time preparing all meals before the holidays start, 

New Year Festivities are associated with the future. We renew everything 
we can and start again, Bon Festivities are for the past, We receive ancestors' 
ghosts, make conversations with them, and then send them back. In cities 
like Kyoto people decorate their entrance halls with their treasures and keep 
the doors open. The whole city becomes a big museum. In the countryside 
people gather in the village square and dance. There is no distinction between 
performers and spectators; all dance. That is the way Japanese refresh them
selves, inherit their traditions and unite. Bon and New Year Festivities also 
give young people the opportunity to meet together to make a new family, 

I would like to ask all speakers at the Congress to make their lectures 
accessible to a wide audience, and not just to the specialists, at least in the 
first part. This is certainly not the time to work in a daily manner. 

I hope you all enjoy this big event. 
Thank you. 

Professor Akio Hattori, President of the Mathematical Society of Japan, spoke 
as follows : 

Mr. Chairman, Distinguished Guests, Ladies and Gentlemen, 

I should like to extend a warm welcome to you all for having gathered from 
all parts of the world to attend this Congress, The Japanese mathematical 
community is proud of a pioneer; I am referring to Professor Kiyosi Ito, a 
renowned probabilist. He has been instrumental in bringing this Congress 
to Japan and in its organization. I propose that Professor Ito be elected 
Honorary President of this Congress. 

Professor Ito was elected by acclamation and spoke as follows : 

Mr. Chairman, Distinguished Guests, Ladies and Gentlemen, 

It is my great honor to speak to you as Honorary President of the Congress. 
Before now, some Japanese mathematicians have tried to bring the 

Congress to Japan. As early as the 1960s, Professors S. Iyanaga and Y. 
Kawada began campaigning for the Congress to be held in Japan. Now that 
this Congress is starting, I feel a certain nostalgia for their pioneering efforts. 
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When we formed the Organizing Committee chaired by Professor Kuni-
hiko Kodaira, the first Japanese Fields medalist, our big problem was how to 
raise funds. In this respect, I would like to give credit to Professor Kodaira. 
Impressed by his fame and his fine personality Mr. H. Tanimura, Professor 
Kodaira's friend, together with Messrs. R. Ishikawa and M. Kitoku set up a 
fund-raising program for us and appealed to leading companies. We thank 
them for their tremendous efforts, which enabled us to make concrete plans for 
the Congress. To our great regret, Professor Kodaira is unable to come here 
today. I would like to express our sincere gratitude to him on this occasion. 

The next problem was that we anticipated there would be less participants 
than usual because of Japan's geographic location an4 the worldwide eco
nomic upheaval. Professor H. Komatsu proposed to make a grant available to 
help participants from abroad. This idea was welcomed by several foundations 
whose support contributed to the increase in the number of participants. 

In Japan, people have been more concerned with science and technology 
than with mathematics. Despite this, we are proud of two exceptional projects 
which have helped mathematicians: the International Symposia supported by 
Mr. Toyosaburo Taniguchi and secondly, the Exchange Program of the Japan 
Association for Mathematical Sciences established by Professor H. Hironaka, 
the second Japanese Fields medalist. Through these projects many Japanese 
mathematicians have acquired a sense of international cultural exchange, 
which is perhaps one of the main aims of the Congress. 

A large number of members of the Mathematical Society of Japan helped 
the Organizing Committee in many respects, academically or nonacademically. 
At the final stage of preparation a tremendous amount of business had to 
be carried out within a limited time. We are very grateful to Professors H. 
Komatsu, H. Araki, H. Toda, S. Iitaka, S. Kotani, and their secretaries for all 
their hard work. 

We are very happy to welcome you here in Kyoto. Please enjoy the lectures 
and participate as much as possible in the informal discussions. 

Thank you. 

Professor Jiro Kondo, President of the Science Council of Japan, gave the 
following welcome address : 

Mr. Chairman, Distinguished Guests, Ladies and Gentlemen, 

It is a great pleasure to have this opportunity, on behalf of the Science Council 
of Japan, to speak to all of you who have gathered here from as many as 
80 countries, at the opening of the International Congress of Mathematicians 
1990. 

The Science Council of Japan was established in 1949 as government 
organization representing qualified Japanese scientists both internally and 
internationally, covering all scientific fields consisting of Cultural, Social and 
Natural Sciences. The aim of the Council is to promote scientific development 
and to improve administration, industry and living standards through science. 
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Since that time, we have been working to contribute to the progress 
of science in cooperation with the academic organizations of the world by 
sponsoring many international congresses here in Japan, and by sending 
Japanese delegations to international congresses held overseas. We do this 
because we believe that the promotion of international scientific exchanges is 
one of our most important duties, 

We have opened today the International Congress of Mathematicians in 
cooperation with the Mathematical Society of Japan, the Japan Society of 
Mathematical Education, the History of Science Society of Japan, the Institute 
of Actuaries of Japan, the Japan Society of Software Science and Technology, 
the Japan Statistical Society, and the Operations Research Society of Japan. 
It is an extraordinary pleasure for me to have this opportunity to be with so 
many distinguished scientists from around the world, and to listen to your 
lectures and presentations on the recent achievement. 

The first Meeting of the International Congress of Mathematicians was 
held in Zürich in 1897. Since then, the Congress has been held nearly every 
four years somewhere in the world, and this is the first Congress to be held 
outside Europe and North America. I offer my heartfelt congratulations on 
the remarkable growth of the Congress in terms of both quality and number 
of participants and at the same time I express my great pleasure in being 
able to welcome the Congress to Japan for the first time. Since I graduated 
from the Department of Mathematics, Imperial University of Kyoto in 1940, 
I am very happy to hold this Congress here in Kyoto. After my graduation I 
worked mostly in the field of mathematical applications, such as theoretical 
aerodynamics, operations research, systems engineering and environmental 
sciences. 

Recent international trends clearly indicate the importance of basic re
search in science and technology. In particular, mathematical sciences are 
entrusted with the crucial mission of providing the backbone for all sci
ences and the theoretical basis for the new era of information science in the 
twenty-first century, and they must also live up to people's high expectations. 
Moreover, because of the rapid progress in computer technology, many sci
entists in other fields, as well as engineers and businessmen, are coming to 
expect a greater contribution from mathematicians. 

As researchers of all branches of mathematics gather from all over the 
world at this International Congress, it is expected that much interaction 
among the different branches will be made and that this will result in a new 
development of mathematics as a unified discipline. While we see recently a 
strong tendency of specialization in all branches of science, I have learned 
that essential progress in mathematics has often arisen out of the unexpected 
connection of different areas. The interaction of researchers with different cul
tural backgrounds is also expected to produce such an effect. I hear that this 
Congress is organized with an emphasis on interdisciplinary and international 
interactions and efforts have been made to provide various opportunities for 
contact among participants. I hope that through the interaction with neigh
bouring fields of science which will inject new blood into mathematics and 
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through friendship among participants crossing the boundaries of different 
branches of mathematics and different countries, this Congress serves as a 
stepping stone towards active worldwide research cooperation in the future. 

I earnestly hope that everyone who participates in this Congress, will gain 
worthwhile experience in both fundamental and applied aspects of mathe
matics. 

In closing, I sincerely hope for the great success of the Congress. I also 
hope that all of you from abroad will enjoy their stay in Japan. I believe 
that this Congress will become truly memorable for you through contact with 
fellow scientists, and I wish this to be a chance for you to learn more about 
Kyoto, the ancient capital of Japan, and about Japanese culture. 

Thank you. 

The following congratulatory telegram from Prime Minister Toshiki Kaifu 
was read both in Japanese and in English by Professor Huzihiro Araki: 

PLEASED TO EXTEND A HEARTY WELCOME TO ALL DELEGATES FROM AROUND 

THE WORLD AT THE OPENING OF THE l l T H GENERAL ASSEMBLY OF THE IN

TERNATIONAL MATHEMATICAL UNION AND THE INTERNATIONAL CONGRESS OF 

MATHEMATICIANS 1990 HELD IN JAPAN UNDER THE COSPONSORSHIP OF THE SCI

ENCE COUNCIL OF JAPAN, MATHEMATICAL SOCIETY OF JAPAN, JAPAN SOCIETY OF 

MATHEMATICAL EDUCATION, THE OPERATIONS RESEARCH SOCIETY OF JAPAN, THE 

HISTORY OF SCIENCE SOCIETY, JAPAN SOCIETY FOR SOFTWARE SCIENCE AND TECH

NOLOGY, THE JAPAN STATISTICAL SOCIETY AND THE INSTITUTE OF ACTUARIES OF 

JAPAN. 

I WISH A GREAT SUCCESS IN THIS INTERNATIONAL CONGRESS. 

TOSHIKI KAIFU 

PRIME MINISTER 

Mr. Kosuke Hori, Minister of Education, Science and Culture gave a con
gratulatory address as follows: 

Distinguished Delegates, Ladies and Gentlemen of the Audience, 

It is a real pleasure and privilege for me to be afforded this opportunity to 
address congratulatory greetings to this distinguished audience at the opening 
of the Twenty-first International Congress of Mathematicians. 

First of all, I would like to extend my sincerest welcome to you all, 
especially to those who have travelled far in order to come to Japan. At the 
same time, I am deeply grateful and wish to pay respect to all the people who 
have made great efforts in mathematical research. 

Recently, pure mathematics, applied mathematics, mathematical educa
tion, and other fields of mathematics have achieved remarkable progress in 
research. This International Congress has been held every four years since 
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1897 for the purpose of bringing together mathematicians in all fields from all 
over the world in order to share the significant progress achieved in each area 
of mathematics and to help further new progress in mathematics. In these 
respects, the International Congress of Mathematicians has attained excellent 
achievements. 

I am told that this International Congress is the first to be held in Asia, 
and distinguished mathematicians from Japan and abroad who participate in 
it will present many new discoveries in mathematics. I am confident that this 
Congress will further enrich the knowledge that is common property to all 
human beings. 

I hope that those participants who have travelled from overseas will have 
the opportunity to acquaint themselves with some aspects of Japanese culture 
and society and that they will have a pleasant stay in Japan, 

Finally, I would like to pay our deepest respects to those people who have 
already worked so hard in organizing this Congress and I anticipate that it 
will be highly successful. 

Thank you very much for your attention. 

Mr, Teiichi Aramaki, Governor of Kyoto Prefecture, gave a congratulatory 
address as follows: 

Distinguished Delegates, Ladies and Gentlemen of the Audience, 

As Governor of Kyoto Prefecture, I would like to extend my sincerest congrat
ulations for the Twenty-first International Congress of Mathematicians to be 
held here in Kyoto from today, with distinguished mathematicians assembled 
from various countries of the world, 

The First International Congress of Mathematicians was held in 
Zürich, Switzerland in 1897 and since then, the congress has produced ex
cellent results, establishing a long history and tradition. The fact that the 
Fields Medal, which is said to be the Nobel Prize of mathematics, and the 
Nevanlinna Prize have been awarded to superb mathematicians has attracted 
the attention of not only the people concerned but also many others. 

It is a great pleasure and privilege for us living in Kyoto Prefecture that 
this authoritative International Congress is being held in Kyoto which itself 
is recognized as an academic and scientific center. On behalf of the people of 
Kyoto Prefecture, I would like to extend a cordial welcome to all of you. 

The International Congress of Mathematicians has been held only in 
western cities so far and so it is a great pleasure and honor that this is the 
first International Congress of Mathematicians to be held outside Europe and 
North America. I am sure that this fact will further encourage many Japanese 
mathematicians. 

Finally, I would like to pay our deepest respects to the scientists of the 
Research Institute for Mathematical Sciences, Kyoto University and to those 
who have gone to great pains in organizing this International Congress. I 
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anticipate that each of the participating mathematicians will take an active 
role in the discussions and that the Congress will be highly successful. 

Thank you for your attention. 

Dr. Tomoyuki Tanabe, Mayor of Kyoto City, gave the following congratula
tory address : 

Ladies and Gentlemen, 

Firstly, please let me welcome you all to Kyoto. 
I am delighted that the Twenty-first International Congress of Mathemati

cians is starting today and on behalf of the citizens of Kyoto, I would like to 
extend a cordial welcome to you all. 

As you may know, Kyoto is an ancient city with a history that looks back 
on 1,200 years of culture and tradition. This is why Kyoto is said to be the 
spiritual root of Japan. 

Kyoto is rich in cultural heritage and a variety of time-honored customs 
based on Japanese tradition still exist as -part of our everyday way of life. 
Traditional industries which embody the quintessence of Japanese folk art 
and technology can also be found. 

On the other hand, Kyoto is a scientific city which has produced several 
superb Nobel Prize winners and Fields Medalists. At the same time, Kyoto 
is an industrial city which has given birth to world leaders in high-tech 
industries. 

About ten years ago, we declared Kyoto as a City Open to the Free 
Exchange of World Cultures. In this connection, it is a profound feeling of 
pleasure and privilege that the International Congress of Mathematicians is 
being held here in Kyoto. 

I am confident that everyone who has travelled from afar to participate 
in this International Congress, will renew old friendships as well as begin 
new acqaintances. I also hope that you will enjoy the mixture of traditional 
Japanese culture and the modern atmosphere of our city. 

Let me close my greetings by wishing the International Congress of 
Mathematicians success and combine this with a wish for your good health 
and happiness. 

Thank you for your attention. 

Dr. Yasunori Nishijima, President of Kyoto University, delivered this con
gratulatory address: 

Ladies and Gentlemen, 

It is my honor and great pleasure to greet this distinguished gathering at the 
opening of the International Congress of Mathematicians. 

I have learned that this Congress had its first meeting in 1897. That is also 
the year that Kyoto University was founded as the Kyoto Imperial University 
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and this marked the establishment of the modern academe in the old capital. 
Ninety-four years have passed since then and today Kyoto welcomes this 
gathering of the world's notable mathematicians to Japan for the first time, 
Kyoto is most honored to be the chosen site. 

Last week, the General Conference of the International Association of 
Universities took place in Helsinki, Finland. It was very cool and dry, unlike 
the hot and wet weather here. The Chancellor, Professor Olli Lehto, and all 
the members of the University of Helsinki, including the most delightful of 
students, made the meeting a great success, 

The theme of the Conference was 'The Mission of the University: Univer
sality, Diversity, and Interdependence," and I had the opportunity to chair the 
whole-day commission on "Diversity within Universality." In this rapidly and 
dramatically changing world, Diversity tends to be emphasized. However, at 
the same time, Universality is the human aspiration to create a higher degree 
of wisdom for the future and this is the mission of the world's academic 
community. 

After the exciting and fruitful meeting in Helsinki, I returned to Japan 
a few days ago. In the airport transit lounge, I met Chancellor Lehto, who 
was on his way to this Congress. He was holding a small bag on his lap with 
great care. I thought it was the medal for the Rolf Nevanlinna Prize which 
will be presented at today's Ceremony. I said, "Is that top secret?" Chancellor 
Lehto simply smiled and nodded. We boarded the same airplane for the last 
stretch of our long journey from Helsinki to Kyoto. This morning, following 
the performance of a classic Japanese court dance, Bugaku, the presentation 
of the Fields Medals and the Rolf Nevanlinna Prize will reveal all the secrets. 

I really think mathematics is the core of the universality of human wisdom. 
Mathematics has since ancient times conveyed wisdom throughout the history 
of human endeavor. At the same time, mathematics covers all branches of 
knowledge and leads us along the road to Truth and Reason. 

David Hilbert said, "Mathematics is an organism for whose vital strength 
the indissoluble union of the parts is a necessary condition." 

I would like to congratulate all those who have worked so hard to prepare 
and organize this most important meeting. I anticipate it will be a great 
success. 

I wish all participants a most fruitful and pleasant meeting in Kyoto. 

On behalf of Takashi Fukaya, Minister of Posts and Telecommunications, 
Mr, Tomoyuki Onozawa, Director General of Posts, presented a sheet of com
memorative stamps with the following letter: 

To Professor Hikosaburo Komatsu, President of the International Congress 
of Mathematicians. 

It is of high significance and a matter for congratulations that the Twenty-
first International Congress of Mathematicians is being held here in Kyoto, 
for the first time in Asia. 
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The Ministry of Posts and Telecommunications has issued a specially 
designed postage stamp to commemorate this event, and the first sheet of 
stamps is now presented to you. 

From Takashi Fukaya, Minister of Posts 
and Telecommunications 
On August 21, 1990. 

Kyoto Gagaku-Kai then performed a Bugaku (court dance) entitled Gosechi 
no Mai accompanied by the Gagaku Club of Tenri University which played a 
Gagaku (court music). 

Academician Ludwig D. Faddeev, Chairman of the Fields Medal Committee, 
announced the recipients of the Fields Medals as follows: 

The Fields Medal and Prize Committee is appointed by the Executive Com
mittee of the IMU. For this term the following people were appointed and 
worked for the Committee : Professors M. Atiyah, J. M. Bismut, E. Bombieri, 
C. Fefferman, K. Iwasawa, P. D. Lax and I. Shafarevich. Since it is the duty 
of the President of the IMU to chair the work of this Committee, I served as 
chairman. 

After thorough consideration of the material at our disposal, we decided 
to award four Medals. The recipients are 

Vladimir G. Drinfeld 
Vaughan F. R. Jones 
Shigefumi Mori 
Edward Witten 

I believe that these names are well known to the mathematical community 
throughout the world. Their scientific contributions will be described during 
the afternoon session. 

Let me proceed to the pleasant task of presenting the awards. I ask the 
Honorable Minister Hori to do this. 

The winners came forward and received their medals and prize checks from 
Mr. Kosuke Hori, Minister of Education, Science and Culture. 

Professor Lâszlo Lovâsz announced the recipient of the Rolf Nevanlinna Prize 
as follows: 

The Nevanlinna Prize Committee consisted of Alexandre Chorin from Berke
ley, Michael Rabin from Jerusalem, Volker Strassen from Konstanz, and 
Lazio Lovâsz from Budapest as chairman. After considering a number of 
outstanding candidates, the Committee decided to award the Rolf Nevanlinna 
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Prize to Alexander A, Razborov from the Steklov Institute in Moscow, for his 
groundbreaking work on lower bounds for circuit complexity, 

The winner came forward and received his medal and prize check from Mr. 
Kosuke Hori, Minister of Education, Science and Culture, 

The opening ceremonies adjourned at 11:00 a,m, 
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The closing ceremonies were held in the Main Hall of the Kyoto International 
Conference Hall, starting at 1:15 p,m. on August 29, 1990, 

Academician Ludwig D. Faddeev, President of the International Mathematical 
Union began the closing ceremonies with the following words : 

Time runs very fast and we have come to the end of our Congress. I believe 
that we can now judge very highly the results of the scientific program and 
congratulate the Program Committee on their success. Personally, I was glad 
to observe how prominently Mathematical Physics was represented in its 
connections with other domains of Mathematics. 

The work of the Congress has been so smooth that some of you did not 
notice the efforts of the Organizing Committee to achieve this. We are all 
highly indebted to our Japanese colleagues for their excellent job. 

Let me also add that the general atmosphere of the Congress has been 
very friendly and this has allowed us to concentrate on purely mathematical 
problems. 

It is my pleasure to inform you that the Emperor and Empress of Japan 
invited the winners of the Fields Medals and the Nevanlinna Prize to visit 
them in Tokyo, The Honorary President of the Congress, Professor Ito, as 
well as Professor Hironaka and I were also present. The interest expressed by 
the Imperial Family in the work of our Congress is a great honor to us all. 

Let me now inform you of the results of the General Assembly which 
took place in Kobe just before the Congress. It represented 52 members of 
the IMU most of whom attended the meeting. 

During the last few years Saudi Arabia has been accepted as a new 
member. Spain and Israel have upgraded their membership to Group III, 

The General Assembly elected new Committees and Commissions, 
The new Executive Committee is composed as follows : 

President J. L. Lions 
Vice-Presidents J. Coates 

D. Mumford 
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Secretary 
Members 

J. Palis 
J. Arthur 
A. Dold 
H. Komatsu 
L. Lovâsz 
E. Zehnder 

I shall remain on the Executive Committee as the past President. 
Half of the Executive Committee has changed. So it is appropriate to 

cite one of the resolutions adopted at the General Assembly: "The Gen
eral Assembly gives special thanks to Professor Olli Lehto for his excellent 
work as Secretary to the IMU during the last eight years, ably assisted by 
Mrs. Mäkeläinen. It also thanks the University of Helsinki and the Finnish 
Ministry of Education for their generous support of the IMU secretariat over 
this period." 

The General Assembly also appointed the Commissions. 
The ICMI Executive Committee: 

President 
Vice-Presidents 

Secretary 
Members 

M. de Guzman 
J. Kilpatrick 
Lee Peng-Yee 
M. Niss 
Yu. L. Ershov 
E. Luna 
A. Sierpinska 

The ex-officio members are: the past President of ICMI, the President of 
IMU, the Secretary of IMU and the IMU representative at CTS (ICSU). The 
next ICME will take place in 1992 in Quebec. 

Commission on Developments and Exchange: 

Chairman M. S. Narasimhan 
Members P. Bérard 

C. Camacho 
A. Grunbaum 
A. O. Kuku 
J. Mawhin 
T. Ochiai 
P. L. Papini 
Wu Wen Tsun 

The ex-officio members are: the past Chairman of CDE, the President of IMU, 
the Secretary of IMU and the IMU representative at COSTED (ICSU). 

Besides the administrative business, there was lively and important dis
cussion at the General Assembly on the role of Applied Mathematics and its 
balance in the program of the ICM, the increasing relevance of Mathematics 
in Industry, and related problems of mathematical education. 

Finally the Site Committee made its proposal to the General Assembly 
on the time and location of the next Congress, which was adopted after some 
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Chatterji inviting the 
Congress to Zürich 

©1990H.Kono 

discussion. The next Congress, ICM-94 will be held in Zürich, Switzerland. I 
shall now step down and give the floor to Professor Chatterji. 

Professor S. D. Chatterji of the Ecole Polytechnique Fédérale de Lausanne 
invited the audience to the next International Congress of Mathematicians with 
these words,: 

Ladies and Gentlemen, 

On behalf of the Swiss Mathematical Society and the entire Swiss math
ematical community, it is my great privilege to invite you all to the 1994 
International Congress of Mathematicians in Zürich. As you know, the honor 
and responsibility of organizing the Congress have fallen on Zürich twice 
before in the past: in 1897 and 1932. Zürich is an important financial, com
mercial and cultural centre of Switzerland ; it is also the seat of two of our 
important institutions of higher education—the Swiss Federal Institute of 
Technology (ETH) and the University of Zürich. Situated in beautiful natural 
surroundings in the heart of Europe, Zürich is easily accessible by rail, road 
and air. 

Our Japanese hosts have set such high levels of hospitality and efficiency 
at this Congress that it would be difficult to match them. However, we shall 
do our best to make your participation at the 1994 Congress agreeable and 
fruitful. 

Rendezvous then for August 1994 in Zürich. 

Dr. Jose Felipe Voloch of the Instituto de Matemàtica Pura e Aplicada, 
Brazil, and Professor Carol Wood of Wesleyan University, USA, President-Elect 
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of the Association of Women in Mathematics, were invited to give comments on 
ICM-90. 

Professor Hikosaburo Komatsu, President of the Congress, closed the meeting 
and the Congress with these words : 

Thank you for your kind remarks. The organizers of the Congress are really 
rewarded to hear them. However, all praise should go to Professors Kenji 
Ueno, Masaki Maruyama, and Chiaki Tsukamoto, as well as to Miss Tanaka, 
Mrs. Ichiki, Miss Ishii to name just a few of the people who have carried out 
all the plans of the Congress so perfectly. 

Our thanks are also due to Professors Gleason and Mesirov for sending 
us the material they prepared for the last Congess in Berkeley. This was of 
great help to us. 

This Congress has been admired for its smooth organization but this was 
true only in appearance. In spite of all the devoted works, I often had to remain 
in the Secretariat to solve many minor problems. Even when I was attending 
a lecture, the buzzer, you might have heard, called me back there. Therefore, I 
must admit that my impression of the Congress is very partial. Nevertheless, 
I felt that we are at another turning point in the history of mathematics. 
The previous one was marked at the Second Congress in 1900 when Hilbert 
gave his famous lecture, Since then we have obtained an enormous number of 
general results by axiomatization and abstract formulation, often at the hands 
of mathematical giants. This time it is a transition from abstract simplification 
to more concrete synthesis. We are now in a fortunate time when we can solve 
many problems which remained open for many years in spite of all the efforts 
of past generations of mathematicians. We no longer have a single genius but 
many people work together developing new strong streams. It was only many 
brooks last time at the Congress in Berkeley. They meet together and now we 
see a big river or a sea or even an ocean. 

On behalf of all participants, I would like to praise Professor Kuiper and 
the other members of the Program Committee for their outstanding work in 
selecting the invited speakers. I would also like to thank the speakers for their 
admirable efforts. 

At our time of democracy, international cooperation is indispensable and 
so is the unity of mathematics. We are proud of the fact that this Congress 
has helped these goals. 

As reported in the Daily Bulletin, the Congress has been attended by 3,954 
ordinary members, 452 accompanying members, and 92 child members from 
76 countries. 

Unfortunately, all the preregistered members from 7 countries were unable 
to attend because of the crisis in the Persian Gulf. World politics has once 
again cast its shadow on the Congress. I do hope that the next Congress in 
1994 will be a truly universal one. 

I declare the Congress closed. 

The closing ceremonies adjourned at 1:45 p.m. 
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Invited One-Hour Addresses at the Plenary Sessions 

Spencer Bloch: Algebraic üC-Theory, Motives, and Algebraic Cycles 43 
Stephen A. Cook: Computational Complexity of Higher Type Functions , , 55 
Boris L. Feigin: Conformai Field Theory and Cohomologies of the 

Lie Algebra of Holomorphic Vector Fields on a Complex Curve 71 
Andreas Floer: Elliptic Methods in Variational Problems 87 
Yasutaka Ihara: Braids, Galois Groups, and Some Arithmetic Functions . . 99 
Vaughan F. R. Jones: Von Neumann Algebras in Mathematics 

and Physics 121 
Lâszlo Lovâsz: Geometric Algorithms and Algorithmic Geometry . . . , 139 
George Lusztig: Intersection Cohomology Methods in 

Representation Theory 155 
Andrew J. Majda: The Interaction of Nonlinear Analysis and Modern 

Applied Mathematics 175 
Grigorii A, Margulis : Dynamical and Ergodic Properties of Subgroup 

Actions on Homogeneous Spaces with Applications to Number Theory 193 
Richard B, Melrose: Pseudodifferential Operators, Corners and 

Singular Limits 217 
Shigefumi Mori : Birational Classification of Algebraic Threefolds 235 
Yakov G. Sinai: Hyperbolic Billiards 249 
Karen Uhlenbeck: Applications of Non-Linear Analysis in Topology . . , 261 
Alexandre Varchenko : Multidimensional Hypergeometric Functions in 

Conformai Field Theory, Algebraic K-Theory, Algebraic Geometry . . 281 

Invited Forty-Five Minute Addresses at the Section Meetings 

Section 1: Mathematical Logic and Foundations 

Ehud Hrushovski: Categorical Structures (Manuscript not submitted) 
Theodore A. Slaman: Degree Structures 303 
John R. Steel: Iteration Trees (Manuscript not submitted) 
Lou P. van den Dries; The Logic of Local Fields (Manuscript not submitted) 

There were 15 Short Communications in this section. 
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Section 2: Algebra 

Jon F. Carlson: Cohomology and Modules over Group Algebras 317 
Rostislav I. Grigorchuk: On Growth in Group Theory 325 
Craig Huneke: Absolute Integral Closure and Big 

Cohen-Macaulay Algebras 339 
Alexander R. Kemer: Identities of Associative Algebras 351 
Paul C. Roberts : Intersection Theory and the Homological Conjectures 

in Commutative Algebra 361 
Klaus W. Roggenkamp: The Isomorphism Problem for Integral Group 

Rings of Finite Groups 369 
Robert W. Thomason: The Local to Global Principle 

in Algebraic iC-Theory 381 
Efim I. Zelmanov: On the Restricted Burnside Problem 395 

There were 59 Short Communications in this section. 

Section 3: Number Theory 

Henri Gillet: A Riemann-Roch Theorem in Arithmetic Geometry 403 
Martin N. Huxley: Area, Lattice Points and Exponential Sums 413 
Kazuya Kato : Generalized Class Field Theory 419 
Victor Alecsandrovich Kolyvagin: On the Mordell-Weil Group and 

the Shafarevich-Tate Group of Modular Elliptic Curves 429 
Gérard Laumon: La Transformation de Fourier Géométrique 

et ses Applications 437 
Yuri Nesterenko : Algebraic Independence of Values of Analytic Functions 447 
Peter C. Sarnak: Diophantine Problems and Linear Groups 459 
Tetsuji Shioda: Theory of Mordell-Weil Lattices 473 

There were 29 Short Communications in this section. 

Section 4: Geometry 

Kenji Fukaya: Collapsing Riemannian Manifolds and Its Applications . . 491 
Etienne Ghys: Le Cercle à l'Infini des Surfaces à Courbure Négative . . . 501 
Karsten Grove : Metric and Topological Measurements of Manifolds . . . 511 
Helmut Hofer: Symplectic Invariants 521 
Peter B. Kronheimer: Embedded Surfaces in 4-Manifolds 529 
Dusa McDuff: Symplectic 4-Manifolds 541 
John J. Millson: Rational Homotopy Theory and Deformation Problems 

from Algebraic Geometry 549 
Eugenii I. Shustin: Geometry of Discriminant and Topology 

of Algebraic Curves 559 
Joseph H. M. Steenbrink: Applications of Hodge Theory to Singularities . 569 
Toshikazu Sunada: (with M. Nishio) Trace Formulae in Spectral Geometry 577 
Gang Tian : Kähler-Einstein Metrics on Algebraic Manifolds 587 

There were 38 Short Communications in this section. 
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Section 5: Topology 

Marcel A. Bökstedt: Algebraic X-Theory of Spaces and the Novikov 
Conjecture (Manuscript not submitted) 

Francis Bonahon: Ensembles Limites et Applications 599 
David Gabai: Foliations and 3-Manifolds , . , 609 
Thomas G, Goodwillie: The Differential Calculus of Homotopy Functors 621 
Cameron McA. Gordon: Dehn Surgery on Knots 631 
Kiyoshi Igusa: Parametrized Morse Theory and Its Applications 643 
Lowell E. Jones: (with F, T. Farveli) Rigidity in Geometry and Topology 653 
Shigeyuki Morita : Mapping Class Groups of Surfaces and 

Three-Dimensional Manifolds 665 
Henri Moscovici: Cyclic Cohomology and Invariants of Multiply 

Connected Manifolds 675 
Vladimir G. Turaev: State Sum Models in Low-Dimensional Topology . , 689 

There were 43 Short Communications in this section. 

Section 6: Algebraic Geometry 

Yujiro Kawamata: Canonical and Minimal Models 
of Algebraic Varieties 699 

Jânos Rollar: Flip and Flop 709 
Robert K. Lazarsfeld: Linear Series on Algebraic Varieties 715 
Morihiko Saito : Mixed Hodge Modules and Applications 725 
Leslie Saper: L2-Cohomology of Algebraic Varieties 735 
Carlos T, Simpson: Nonabelian Hodge Theory 747 
Paul Vojta: Arithmetic and Hyperbolic Geometry 757 

There were 25 Short Communications in this section. 

Section 7: Lie Groups and Representations 

Dan Barbasch: Unipotent Representations for Real Reductive Groups . , 769 
Günter Harder: Eisenstein Cohomology of Arithmetic Groups 

and Its Applications to Number Theory 779 
Masaki Kashiwara: Crystallizing the ^-Analogue 

of Universal Enveloping Algebras 791 
Olivier Mathieu: Classification of Simple Graded Lie Algebras of 

Finite Growth 799 
Toshihiko Matsuki: Orbits on Flag Manifolds 807 
Colette Mœglin: Sur les Formes Automorphes de Carré Intégrable . , . . 815 
Gopal Prasad : Semi-simple Groups and Arithmetic Subgroups 821 
Stephen Rallis: Poles of Standard L Functions 833 

There were 23 Short Communications in this section. 
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Section 8: Real and Complex Analysis 

Eric Bedford: Iteration of Polynomial Automorphisms of C2 847 
Michael Christ: Precise Analysis of db and d on Domains 

of Finite Type in (C2 859 
Ronald R. Coifman: Adapted Multiresolution Analysis, Computation, 

Signal Processing and Operator Theory 879 
Curt McMullen: Rational Maps and Kleinian Groups 889 
Takafumi Murai: Analytic Capacity for Arcs 901 
Takeo Ohsawa: Recent Applications of I? Estimates for the Operator d . 913 
David Preiss : Differentiability and Measures in Banach Spaces 923 
Kyoji Saito : The Limit Element in the Configuration Algebra 

for a Discrete Group: A précis 931 
Nessim Sibony: Some Recent Results on Weakly Pseudoconvex Domains 943 
Nicholas Th. Varopoulos: Analysis and Geometry on Groups 951 
Alexander L. Volberg: Asymptotically Holomorphic Functions and 

Certain of Their Applications 959 

There were 73 Short Communications in this section. 

Section 9: Operator Algebras and Functional Analysis 

Joachim Cuntz: Cyclic Cohomology and K-Homology 969 
Adrian Ocneanu: Quantum Symmetry and Classification of Subfactors 

{Manuscript not submitted) 
Michael V. Pimsner: K-Theory for Groups Acting on Trees 979 
Sorin Teodor Popa: Subfactors and Classification in 

von Neumann Algebras 987 
Georges Skandalis: Operator Algebras and Duality 997 
Michel Talagrand: Some Isoperimetric Inequalities and 

Their Applications 1011 

There were 52 Short Communications in this section. 

Section 10: Probability and Mathematical Statistics 

Martin T. Barlow: Random Walks and Diffusions on Fractals 1025 
Persi Diaconis : Applications of Group Representations 

to Statistical Problems 1037 
Roland L. Dobrushin: Large Deviation of Gibbsian Fields 

{Manuscript not submitted) 
Richard Durrett: Stochastic Models of Growth and Competition . . . . 1049 
Hillel Furstenberg: Recurrent Ergodic Structures and Ramsey Theory . 1057 
Shinichi Kotani : Random Schrödinger Operators 1071 
Shigeo Kusuoka: De Rham Cohomology of Wiener-Riemannian 

Manifolds 1075 
Lucien M. Le Cam (not delivered at the Congress) : Some Recent Results 

in the Asymptotic Theory of Statistical Estimation 1083 
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Stanislav A. Molchanov: Localization and Intermittency: New Results . 1091 
Marc Yor : The Laws of Some Brownian Functionals 1105 

There were 37 Short Communications in this section. 

Section 11: Partial Differential Equations 

Demetrios Christodoulou : The Stability of Minkowski Spacetime . , , , 1113 
Jean-Michel Coron: Harmonic Maps with Values into Spheres 1123 
Matthias Günther: Isometric Embeddings of Riemannian Manifolds , . 1137 
Mitsuru Ikawa: On Scattering by Obstacles 1145 
Gilles Lebeau ; Interaction des Singularités Faibles pour les Equations 

d'Ondes Semi-linéaires 1155 
Fang Hua Lin: Static and Moving Defects in Liquid Crystals 1165 
Pierre-Louis Lions: On Kinetic Equations 1173 
Pierre Schapira: Sheaf Theory for Partial Differential Equations 1187 
Michael Struwe: The Evolution of Harmonic Maps 1197 
Kanehisa Takasaki : Integrable Systems in Gauge Theory, 

Kahler Geometry and Super KP Hierarchy ~ Symmetries and 
Algebraic Point of View 1205 

Luc Tartar: H-Measures and Applications 1215 
Michael E. Taylor : Microlocal Analysis in Spectral and 

Scattering Theory and Index Theory 1225 

There were 48 Short Communications in this section. 

Section 12: Ordinary Differential Equations and Dynamical Systems 

César Camacho : Problems on Limit Sets of Foliations on Complex 
Projective Spaces 1235 

Lennart Carleson: The Dynamics of Non-uniformly Hyperbolic Systems 
in Two Variables 1241 

Jean P. Ecalle: The Acceleration Operators and Their Applications 
to Differential Equations, Quasianalytic Functions, and the 
Constructive Proof of Dulac's Conjecture 1249 

Ju. S. Il'yashenko: Finiteness Theorems for Limit Cycles 1259 
Anatoly I, Neishtadt: Averaging and Passage Through Resonances . . . 1271 
Sheldon E. Newhouse : Entropy in Smooth Dynamical Systems 1285 
Mary Rees: Combinatorial Models Illustrating Variation of Dynamics 

in Families of Rational Maps 1295 
Jean-Christophe Yoccoz: Optimal Arithmetical Conditions in 

Some Small Divisors Theorems (Manuscript not submitted) 

There were 41 Short Communications in this section. 
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Section 13: Mathematical Physics 

R. J. Baxter: Hyperelliptic Function Parametrization for the 
Chiral Potts Model 1305 

Sergio Doplicher: Abstract Compact Group Duals, Operator Algebras 
and Quantum Field Theory 1319 

Joel Feldman: Introduction to Constructive Quantum Field Theory . . . 1335 
Michio Jimbo: Solvable Lattice Models and Quantum Groups 1343 
Igor Krichever: The Periodic Problems for Two-Dimensional 

Integrable Systems 1353 
Antti Kupiainen: Renormalization Group and Random Systems . . . . 1363 
Nicolai Reshetikhin: Invariants of Links and 3-Manifolds Related 

to Quantum Groups 1373 
Albert Schwarz : Geometry of Fermionic String 1377 
Graeme Segal: Geometric Aspects of Quantum Field Theory 1387 
I. M. Sigal: Quantum Mechanics of Many-Particle Systems 1397 
Akihiro Tsuchiya: Moduli of Stable Curves, Conformai Field Theory 

and Affine Lie Algebras 1409 
Stanislaw L. Woronowicz: Noncompact Quantum Groups 

(Manuscript not submitted) 

There were 39 Short Communications in this section. 

Section 14: Combinatorics 

Noga Alon: Non-Constructive Proofs in Combinatorics 1421 
Peter J. Cameron: Infinite Permutation Groups in Enumeration and 

Model Theory 1431 
Alexander A. Ivanov: Geometric Presentations of Groups with 

an Application to the Monster 1443 
Vojtech Rodi : Some Developments in Ramsey Theory 1455 
Eva Tardos: Strongly Polynomial and Combinatorial Algorithms 

in Optimization 1467 
Carsten Thomassen: Graphs, Random Walks and Electrical Networks 

(Manuscript not submitted) 

There were 25 Short Communications in this section. 

Section 15: Mathematical Aspects of Computer Science 

Laszló Babai: Computational Complexity in Finite Groups 1479 
Lenore Blum: A Theory of Computation and Complexity 

over the Real Numbers 1491 
Alexandre L. Chistov: Efficient Factoring Polynomials over Local Fields 

and Its Applications 1509 
Shafi Goldwasser: Interactive Proofs and Applications 1521 
Avi Wigderson: Information Theoretic Reasons 

for Computational Difficulty 1537 

There were 5 Short Communications in this section. 
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Section 16: Computational Methods 

Ami Harten: Recent Developments in Shock-Capturing Schemes , . , . 1549 
William M. Kalian: Paradoxes in Our Concepts of Accuracy 

(Manuscript not submitted) 
Alexander V. Karzanov: Undirected Multiflow Problems and 

Related Topics - Some Recent Developments and Results 1561 
Robert Krasny : Computing Vortex Sheet Motion 1573 
Masatake Mori: Developments in the Double Exponential Formulas 

for Numerical Integration 1585 
James Renegar: Computational Complexity of Solving Real Algebraic 

Formulae 1595 

There were 26 Short Communications in this section. 

Section 17: Applications of Mathematics to the Sciences 

Philip Holmes : (with G, Berkooz and J, L, Lumley) Turbulence, 
Dynamical Systems and the Unreasonable Effectiveness 
of Empirical Eigenfunctions 1607 

Yves F. Meyer; Wavelets and Applications 1619 
Masayasu Mimura: Pattern Formation in Reaction-Diffusion Systems , 1627 

There were 18 Short Communications in this section. 

Section 18: History, Teaching and the Nature of Mathematics 

Annick M. Horiuchi: The Development of Algebraic Methods 
of Problem-Solving in Japan in the Late Seventeenth and the 
Early Eighteenth Centuries 1639 

Jesper Lützen: The Birth of Spectral Theory - Joseph Liouville's 
Contributions 1651 

Yuri Ivanovich Manin (delivered by Barry Mazur) : 
Mathematics as Metaphor 1665 

Haruo Murakami: Teaching Mathematics' to Students Not Majoring 
in Mathematics - Present Situation and Future Prospects - 1673 

There were 22 Short Communications in this section. 

In addition there were 2 Short Communications in the Post Deadline Session. 
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On the Mathematical Work of Vladimir Drinfeld 

Yuri Ivanovich Manin * 

Steklov Mathematical Institute, 42 Vavilova, 117966 GSP-1, Moscow, USSR 

I 

Drinfeld has written his first published paper when he was a schoolboy. He 
proved there a nice result in the style of Hardy's classic treatise "Inequalities" 
and solved a problem to which R, A. Rankin devoted two notes. This paper 
still makes an interesting reading. It starts a series of Drinfeld's works which 
can be considered somewhat isolated in the general context of his mathematical 
production but which contains such worthy results as: 

- a proof that the cuspidal degree zero cycles on a modular curve generate a 
torsion subgroup of the Jacobian; 

- classification of instantons (ADHM construction, jointly with Atiyah, Hitchin 
and Manin) ; 

- reduction theory of completely integrable systems of KdV-type (jointly with 
Sokolov)) ; 

- a sharp asymptotic upper bound for the number of points of a curve defined 
over a finite field of order pln (jointly with Vladut); 

- a proof that an SO(n+l)-invariant finitely additive measure on S"? is Lebesgue 
for n J= 2 and 3 (the cases n — 1 and n > 4 were treated earlier by Banach, 
Margulis and Sullivan). 

The limitations of space and time make it impossible for me to review 
Drinfeld's contributions referred to above, and I shall concentrate upon the two 
subjects that were Drinfeld's main preoccupation in the last decade. These are 
Langlands' program and quantum groups. In both domains, Drinfeld's work 
constituted a decisive breakthrough and prompted a wealth of research. 

II 

Langlands' program is a series of conjectures, theorems and insights aimed to an 
understanding of the Galois groups of local and global fields of dimension one, 
that is Q, Fp(t)9 their finite extensions and completions. 

* Delivered by Michio Jimbo. 
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4 Yuri Ivanovich Manin 

One can convincingly argue that these Galois groups constitute a primary 
object of number theory, more fundamental than the integers themselves. Anyway, 
most of the classical themes of number theory, like prime numbers, L-functions, 
and modular forms reveal a lot of hidden structure when viewed from the 
Galois-theoretic angle. 

The highest achievement of the classical period was the class-field theory 
which gave a description of Gal(/cab//c) in terms of the arithmetics of k. If k is 
local, Gal(fcab/fc) is (canonically isomorphic to) the profinite completion of k*; 
if k is global, Gal(/cab/fc) is the profinite completion of the group A*Jk* where 
Au denotes the adèle ring of k. Of course, to describe Gal(fcab/fc) is the same 
as to describe one-dimensional representations of Gal(fe/fe). Langlands suggested 
that the next step should be a description of certain rc-dimensional represen
tations of Gal(fc/fc). The main content of his conjectures, in a very simplified 
and imprecise form, can be summarized in two statements. First, n-dimensional 
representations of Gal(fe//c) are in a natural bijection with automorphic irre
ducible infinite-dimensional representations of GL(n,k) (resp. GL(n,Ak)) in the 
local (resp. global) case. Second, this correspondence (the non-commutative reci
procity law) is described via the identification of the L-functions that can be 
constructed in a natural way for both Galois representations and the adèlic gen
eral linear group representations. In the classical (global) cases when the structure 
of these L-functions is known, they are Mellin's transforms of modular forms 
which represent, roughly speaking, the de Rham aspect of the cohomology of 
certain modular spaces, while Galois representations embody their étale coho
mology. Thus, Langlands' program is related to Grothendieck's motives, a largely 
conjectural universal cohomology theory of algebraic varieties. 

Drinfeld proved Langlands' conjectures for GL(2) over global fields of finite 
characteristic. His decisive contribution was the discovery of a new class of 
modular spaces and their detailed investigation. While the classical modular 
spaces parametrize elliptic curves, abelian varieties or Hodge structures, Drinfeld 
had an astonishing idea that in order to treat the finite characteristic case one 
should parametrize objects of a new kind. The first approximation is now called 
Drinfeld modules (earlier examples of which were introduced by Carlitz). A more 
general notion indispensable for the complete theory is known under the equally 
uninspiring names "shtuka" (meaning approximately "a piece of something" in 
English) and "F-sheaf" (which Drinfeld uses for the lack of something better; as 
a mild reproach I must say that in the domain of terminology his imagination 
produces less brilliant solutions than in the theorem-proving). 

For completeness, I shall give below a formal definition of an F-sheaf and 
the statement of the main theorem of Drinfeld's theory. 

Let X be a smooth complete model of the ground field k = Fq(X). A (left) 
F-sheaf of rank d over a scheme S is a diagram 

se 
V 

(id* x Frs)*J£? 
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in which if and SF are locally free sheaves on X X S of rank d9 i and j are 
injective, Coker(/) is an invertible sheaf on the graph F« of a certain S-point 
a : S —> X, CokerQ") is an invertible sheaf on a similar graph F/?. 

F-sheaves can be rigidified by imposing a level structure. F-sheaves with a non-
trivial level structure admit coarse moduli schemes, which can be conveniently 
compactified, For d = 2, GL(29Aj() acts upon compactified moduli spaces, much 
in the same way as GL(2, >4Q,/) acts upon moduli spaces of elliptic curves via 
Hecke operators. A Galois-theoretic analysis of this action upon the cohomology 
furnishes the following results. 

Let Wk <= Gal(F//c) be the group of all automorphisms inducing upon Fq an 
integer power of the Frobenius morphism. Fix a prime / ^ char(/c). Denote by 
S\ the set of continuous representations Q : Wk —> GL(n, Q/) with the following 
properties; i) Im(g) c GL(n9F) for a finite extension F of Q/; ii) inertia subgroups 
of almost all points of k are contained in Ker(#). 

Let now E be an algebraically closed field of characteristic 0. A cuspidal 
representation of GL(2, A^) is, by definition, an irreducible representation over E 
belonging to the space of F-valued cusp forms. Denote by E]

2 the set of cuspidal 
representations over Q/. 

The principal theorem of Drinfeld states that l\ and S[ are bijective with 
respect to a map conserving L-functions. 

Drinfeld's proof is long and involved, both technically and logically. Although 
it is contained in a series of journal papers, the most comprehensive treatment of 
the whole theory is given in his two still unpublished manuscripts (totalling up 
to about 800 type-written pages). It is to be hoped that after a final brushing up 
they will be given to a book publisher. The reason it has not been done to this 
moment seems to be Drinfeld's preoccupation with another new and fascinating 
subject - quantum groups. 

I l l 

Formally speaking, quantum groups constitute a vaguely defined subclass of Hopf 
algebras. Their first examples were discovered by the mathematical physicists of 
Leningrad school, students and collaborators of L. D. Faddeev. Drinfeld first 
summarized the basic definitions and results of this theory, largely conceived or 
systematized in his own work, in his talk at the Berkeley ICM four years ago. This 
report and several articles of M. Jimbo played a decisive role in the crystallization 
of this new domain and drew to it attention of many mathematicians. 

Somewhat schematically, one can describe several principal themes of this 
theory in the following way: 

a) For many decades, a common wisdom was that simple Lie groups and Lie 
algebras are rigid objects: they are classified by discrete data (Dynkin diagrams), 
they do not vary in a continuous family, A remarkable discovery, due in this 
generality to Drinfeld and Jimbo, is that this ceases to be true if one considers the 
deformations in the class of non-commutative and cocommutalive Hopf algebras. 
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More precisely, for any simple Lie algebra g (and more generally, for algebras 
defined by Cartan root data) there exists a one-parametric deformation Uq(o) of 
the universal enveloping algebra C/(g), with comultiplication and antipode. More 
than that, the whole structure and representation theory deforms in this way, 
with many remarkable new twists. 

b) The properties of quantum groups are closely related to certain remarkable 
non-linear algebraic equations defining the so-called Yang-Baxter operators. The 
simplest Yang-Baxter equation is a condition on a linear operator R € End(F<8)F) 
where F is a linear space. The condition is that R satisfies the braid relation: 
#12^23^12 = #23#i2#23 as operators on V®3. A more general Yang-Baxter equa
tion concerns operators depending on spectral parameters. Many solutions of 
Yang-Baxter equations were discovered by the specialists working in the two-
dimensional statistical physics because such solutions give rise to exactly solvable 
lattice models generalizing the famous Ising model. 

Drinfeld introduced the notion of a universal Yang-Baxter operator which is 
an invertible element in the (completed) tensor square of a Hopf algebra. He has 
proved its existence in Uq(q)®2 and has given a general "double" construction 
allowing one to generate Yang-Baxter operators in the representation categories 
of various Hopf algebras. 

c) Until recently, the quantum group theory lacked a classification theorem 
describing precisely what class of objects we want to consider and what is the 
structure of this class. Such a theorem was recently formulated and proved in the 
two important papers by Drinfeld. It can be compared with the first theorems of 
Lie establishing the relations between Lie algebras and local Lie groups. 

Indeed, this theorem is local, even formal, in nature, because Drinfeld con
siders formal deformations of formal groups (or, in the dual language, of their 
universal enveloping algebras). He also imposes from the very beginning a Yang-
Baxter type condition ("quasi-triangularity"). He proves then that the whole 
deformation is defined by the lowest order non-trivial data. 

In the course of proof, he introduces a new notion of quasi-Hopf algebra, 
weakening in an appropriate way the coassociativity condition on the comulti
plication. He connects quasi-Hopf algebras with the Knizhnik-Zamolodchikov 
differential equation whose monodromy is related to the Drinfeld-Jimbo R-
operators as was shown by Kohno. Finally, he shows that in a formal situation 
the quasi-Hopf algebras can be reduced to the usual Hopf algebras by a kind of 
gauge transformation. The proof involves killing a lot of cohomological obstruc
tions arising in the complex perturbative scheme. 

d) One should mention also the notions of a Poisson-Lie group and a Poisson-
Lie action introduced by Drinfeld at an earlier stage of his work on Yang-Baxter 
equations. They form one of the most basic differential geometric structures 
connected with Hamiltonian mechanics, and their role in future will certainly 
grow. 
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IV 

I hope that I conveyed to you some sense of broadness, conceptual richness, 
technical strength and beauty of Drinfeld's work for which we are now honoring 
him with the Fields medal, For me, it was a pleasure and a privilege to observe 
at a close distance the rapid development of this brilliant mind which taught me 
so much, 





The Work of Vaughan F. R. Jones 

Joan S. Birman 

Department of Mathematics, Columbia University, New York, NY 10027, USA 

It gives me great pleasure that I have been asked to describe to you some of the 
very beautiful mathematics which resulted in the awarding of the Fields Medal 
to Vaughan F. R. Jones at ICM '90, 

In 1984 Jones descovered an astonishing relationship between von Neumann 
algebras and geometric topology. As a result, he found a new polynomial invariant 
for knots and links in 3-space. His invariant had been missed completely by 
topologists, in spite of intense activity in closely related areas during the preceding 
60 years, and it was a complete surprise, As time went on, it became clear that 
his discovery had to do in a bewildering variety of ways with widely separated 
areas of mathematics and physics, some of which are indicated in Figure 1. These 
included (in addition to knots and links) that part of statistical mechanics having 
to do with exactly solvable models, the very new area of quantum groups, and 
also Dynkin diagrams and the representation theory of simple Lie algebras. The 
central connecting link in all this mathematics was a tower of nested algebras 
which Jones had discovered some years earlier in the course of proving a theorem 
which is known as the "Index Theorem". 

My plan is to begin by discussing the Index Theorem, and the tower of 
algebras which Jones constructed in the course of his proof. After that, I plan 
to return to the chart in Figure 1 in order to indicate how this tower of algebras 
served as a bridge between the diverse areas of mathematics which are shown on 
the chart. I will restrict my attention throughout to one very special example of 
the tower construction, and so also to one special example of the associated link 
invariants, in order to make it possible to survey a great deal of mathematics in 
a very short time. Even with the restriction to a single example, this is a very 
ambitious plan. On the other hand, it only begins to touch on Vaughan Jones' 
scholarly contributions. 

1. The Index Theorem 

Let M denote a von Neumann algebra. Thus M is an algebra of bounded 
operators acting on a Hilbert space Jf. The algebra M is called a factor if its 
center consists only of scalar multiples of the identity. The factor is type Hi if 
it admits a linear functional, called a trace, tr : M *-> (C, which satisfies the 
following three conditions : 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 



10 Joan S. Birman 

Continuous dimension 
von Neumann algebras 

Statistical 
mechanics 
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links in R3 
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Jones Index 
Theorem 

Dynkin diagrams and 
representations of simple 

Lie algebras 

Fig. 1. The Jones Index Theorem 

tr(xy) = tr(yx) for all x, y G M 
tr(l) = l . 

tr(xx*) > 0 for all x e M, where x* is the adjoint of x. 

In this situation it is known that the trace is unique, in the sense that it is the 
only linear form satisfying the first two conditions. An old discovery of Murray 
and von Neumann was that factors of type Hi provide a type of "scale" by which 
one can measure the dimension dimM(i^) of ffl. The notion of dimension which 
occurs here generalizes the familiar notion of integer-valued dimensions, because 
for appropriate M and Jf it can be any non-negative real number or co. 

The starting point of Jones' work was the following question: if Mi is a type 
Hi factor and if Mo <= Mi is a subfactor, is there any restriction on the real 
numbers which occur as the ratio 

A = dimMo(^)/dimMlpf) ? 

The question has the flavor of questions one studies in Galois theory. On the face 
of it, there was no reason to think that X could not take on any value in [l,co], 
so Jones' answer came as a complete surprise. He called X the index [Mi : Mo] 
of Mo in Mi, and proved a type of rigidity theorem about type Hi factors and 
their subfactors. 
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The Jones Index Theorem. If Mi is a Hi factor and Mo a subfactor, then the 
possible values of the index [Mi : Mo] are restricted to: 

[4, oo] U {4 cos2(A;/p), where p e N, p ^ 3}. 

Moreover, each real number in the continuous part of the spectrum [4, oo] and also 
in the discrete part {4cos2(n/p)9 p e N,p ^ 3} is realized. 

We now sketch the idea of the proof, which is to be found in [Jol], Jones 
begins with the type Hi factor Mi and the subfactor Mo- There is also a tiny 
bit of additional structure: In this setting there exists a map ei ; Mi -> Mo, 
known as the conditional expectation of Mi on Mo. The map ei is a projection, 
i.e. (ei)2 = ei. 

His first step is to prove that the ratio X is independent of the choice of the 
Hilbert space ^f. This allows him to choose an appropriate ffl so that the algebra 
M2 = (Mi,ei) generated by Mi and ei makes sense, He then investigates M2 
and proves that it is another type Hi factor, which contains Mi as a subfactor, 
moreover the index IM2 : Mi| is equal to the index |Mi : Mo|, i.e. to X, Having 
in hand another Hi factor M2 and its subfactor Mi, there is also a trace on M2 
which (by the uniqueness of the trace) coincides with the trace on Mi when it is 
restricted to Mi, and another conditional expectation e2 : M2 —• Mi. This allows 
Jones to iterate the construction, to build algebras Mi,M2-.. and from them a 
family of algebras : 

J„ = {l,ei,...,e„_i} c M „ , w= 1,2,3,... . 

Rewriting history a little bit in order to make the subsequent connection with 
knots a little more transparent, we now replace the e '̂s by a new set of generators 
which are units, defining: 

g* = q*k - (1 - e/c) > 

where 
( l - « ) ( l - « - 1 ) = l/A. 

The g/c's generate J„, because the e/ç's do, and we can solve for the e/('s in terms 
of the gfc's. So 

J« = Jn(«) ^={l,gi,. . . ,g„_i}, 

and we have a tower of algebras, ordered by inclusion : 

Ji(«) c h(q) ^h(q) c=... . 

The parameter q, which replaces the index X, is the quantity now under investi
gation. 

The parameter q is woven into the construction of the tower. First, defining 
relations in Jn(q) depend upon q: 

(1) g/gfr^gfcg/ i f | / - / c | ^ 2 , 

(2) g/g/+i& = g/+ig/g/+i» 

(3q) g? = (3~l)g/ + «, 

(4) 1 + 6 + g/+i + g/gf+i + g/+i& + +&6+ig/ = ° • 
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A second way in which q enters into the structure involves the trace. Recall that 
since M„ is type Hi it supports a unique trace, and since Jn is a subalgebra it 
does too, by restriction. This trace is known as a Markov trace, i.e. it satisfies the 
important property: 

(5q) tr(wg„) = x(q) tr(w) if w G Jn, 

where x(q) is a fixed function of q. Thus, for each fixed value of q the trace is 
multiplied by a fixed scalar when one passes from one stage of the tower to the 
next, by multiplying an arbitrary element of Jn by the new generator g„ of J„+i. 

Relations (1) and (2) above have an interesting geometric meaning, familiar to 
topologists. They are defining relations for the n-string braid group, Bn, discovered 
by Emil Artin [Ar] in a foundational paper written in 1923. We pause to discuss 
braids. 

An n-braid may be visualized by a weaving pattern of strings in 3-space which 
join n points on a horizontal plane to n corresponding points on a parallel plane, 
as illustrated in the example in Figure 2, where n = 4. In the case n = 3, the 
familiar braid in a person's hair gives another example. The strings are allowed 
to be stretched and deformed, the key features being that strings cannot pass 
through one-another and always proceed directly downward in their travels from 
the upper plane to the lower one. The equivalence class of weaving patterns 
under such deformations is an n-braid. One multiplies braids by concatenation 
and erasure of the middle plane. This multiplication makes them into a group, 
the n-string braid group B„. The identity is a braid which, when pulled taut, goes 
over to n straight lines. Generators are the n — 1 elementary braids which (by an 
abuse of notation) we continue to call gÌ9..., gn_i- The pictures in Figure 3 show 
that relations (1) and (2) hold between the generators of B„. In fact, Artin proved 
they are defining relations for BM. Thus for each n there is a homomorphism from 
the n-string braid group B„ into the Jones algebra Jn(q), and from the group 
algebra CBn onto Jn(q)-

1 2 3 4 

1 2 3 4 

i v I 

Trivial 4-braid 

Examples of 4-braids 

Fig. 2 

Returning to the business at hand, i.e. the proof of the Index Theorem, Jones 
next shows that properties (1), (2), (3q) and (5q) suffice for the calculation of the 
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gì e B4 

^ 
J 

^•m. 7" 

gigk = gkgi \k-i\>l 

k fc-f-1 fc+2 k /c+1 fc+2 

gk gk+\ gk = gA+l gk gk+l 

Fig. 3. Generators and defining relations in B„ 

trace of an arbitrary element x e 3n(q)- It turns out that trace(x) is an integer 
polynomial in (<Jq)±l. (We will meet it again in a few moments as the Jones 
polynomial associated to x.) Jones proof of the Index Theorem is concluded 
when he shows that the infinite sequence of algebras J„(q), with the given trace, 
could not exist if q did not satisfy the restrictions of the Index Theorem, 

2. Knots and Links 

We have already seen hints of topological meaning in Ju(q) via braids. There is 
more to come. Knots and links are obtained from braids by identifying the initial 
points and end points of a braid in a circle, as illustrated in Figure 4. It was proved 
by J. W. Alexander in 1928 that every knot or link arises in this way. Earlier we 
described an equivalence relation on weaving patterns which yields braids, and 
there is a similar (but less restrictive) equivalence relation on knots, i.e. a knot 
or link type is its equivalence class under isotopy in 3-space. Note that isotopy in 
3-space which takes one closed braid representative of a link to another closed 
braid representative will pass through a sequence of representatives which are not 
closed braids in an obvious way. For example see the 2-component link which is 
illustrated in Figure 4. The left picture is an obvious closed braid representative, 
whereas the right is not. 
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x G Bn 
Another representative 
of the link type of Lx 

Closed braid Lx 

Fig. 4. Braids determine links 

Let Boo denote the disjoint union of all of the braid groups Bw, n = 1,2,3,.... 
In 1935 the mathematician A.A. Markov proposed the equivalence relation on 
Boo which corresponds to link equivalence [M]. Remarkably, the properties of the 
trace, or more particularly the facts that tr(xy) = tr(yx) together with property 
(5q), were exactly what was needed to make the trace polynomial into an invariant 
on Markov's equivalence classes ! Using Markov's proposed equivalence relation 
(which was proved to be the correct one in 1972 [Bi]), Jones proved, with almost 
no additional work beyond results already established in [Jol], the following 
theorem: 

Theorem [Jo3]. Ifwe Bœ, then (after multiplication by an appropriate scalar, 
which depends upon the braid index n) the trace of the image of w in Jn(q) is a 
polynomial in (^/q)±l which is an invariant of the link type defined by the closed 
braid Lw. 

The invariant of Jones' theorem is the one-variable Jones polynomial Yx(q)-
Notice that the independent "variable" in this polynomial is essentially the index 
of a type Hi subfactor in a type Hi factor! It's discovery opened a new chapter 
in knot and link theory. 

3. Statistical Mechanics 

We promised to discuss other ways in which the work of Jones was related to yet 
other areas of mathematics and physics, and begin to do so now. As it turned 
out, when Jones did his work the family of algebras Jn(q) were already known 
to physicists who were concerned with exactly solvable models in Statistical Me j 

chanics. (For an excellent introduction to this topic, see R. Baxter's article ill these 
Proceedings.) One of the simplest examples in this area is known as the Potts 
model In that model one considers an array of "atoms" arranged at the vertices 
of a planar lattice with m rows and n columns as in Figure 5. Each "atom" 
in the system has various possible spins associated to it, and in the simplest 
case, known as the Ising model, there are two choices, "-f" for spin up and "—" 
for spin down. We have indicated one of the 2nm choices in Figure 5, determining a 
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Fig. 5 

state of the system. The goal is to compute the free energy of the system, averaged 
over all possible states. 

Letting o\ denote the spin at site ?, we note that an edge e contributes an 
energy Ee(üi,GJ), where o\ and Oj are the states of the endpoints of e. Let E be 
the collection of lattice edges. Let ß be a parameter which depends upon the 
temperature, Then the Gibbs partition function Z is given by the formula: 

Z = Z Y[e*p(-ßEt(<rh<Tj)). 

All of this is microscopic, nevertheless the major macroscopic thermodynamic 
quantities are functions of the partition function. In particular, the free energy 
F, the object of interest to us at this time, is given by Z = exp(—ß¥). 

To compute the manner in which the atoms in one row of the lattice interact 
with atoms in the next, physicists set up the transfer matrix T, which expresses 
the row4o-row interactions. It turned out that, in order to be able to calculate 
the free energy, the transfer matrices must satisfy conditions known as the Yang-
Baxter equations and (to the great surprise of everyone) they turned out to be 
the braid relations (1) and (2) in disguise! (Remark: before Jones' work, to the 
best of our knowledge, it was not known that the Yang-Baxter equation was 
related to braids or knots.) Even more, the algebra which the transfer matrices 
generate in the Ising model, known to physicists as the Temperley-Lieb algebra, 
is our algebra J»(q). The partition function Z is related in a very simple way to 
the transfer matrix: 

Z = trace(T)m. 

In fact, it is closely related to the Jones trace. 
The initial discovery of a relationship between the Potts model and links 

was reported on in [Jo3]. It opened a new chapter in the flow of ideas between 
mathematics and physics. We give an explicit example of a way in which the 
relationship of Jones' work to physics led to new insight into mathematics. 
Learning that the partition function was a sum over states of the system, Louis 
Kauffman was led to seek a decomposition of the Jones polynomial into a 
related sum over "states" of knot diagram, and arrived in [Kl] at an elegant 
"states model" for the Jones polynomial. The Jones polynomial, and Kauffman's 
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states model for it, were later seen to generalize to other polynomial invariants, 
with associated states models, for links in S3 and eventually into invariants for 
3-manifolds M3 and links in 3-manifolds. The full story is not known at this 
writing, however we refer the reader to V. Turaev's article in these Proceedings 
for an excellent account of it, as of August 1990. 

4. Quantum Groups and Representations of Lie Algebras 

We begin by explaining the structure of the algebra Jn(q). It will be convenient 
to begin with another algebra Hn(q), which is generated by symbols gi,...,g„_i 
(which now have a third meaning), with defining relations (1), (2) and (3q). The 
algebra Hn(q) is very well-known to mathematicians. It's the Iwahori-Hecke alge
bra, also known as the Hecke algebra of the symmetric group [Bo]. Its relationship 
with the symmetric group is simple to describe and beautiful. Notice that when 
q = 1, relation (3q) simplifies to (gk)

2 = 1. One recognizes (1), (2) and (3i) as 
defining relations for the group algebra (CS„ of the symmetric group Sn. Here 
gfe is to be re-interpreted as a transposition which exchanges the symbols k and 
k-fl. In this Way we may view Hn(q) as a "^-deformation" of the complex group 
algebra CSn = H„(l). 

The algebra (CS„ is rigid, that is if one deforms it in this way its irreducible 
summands continue to be irreducible summands of the same dimension, in fact 
Hn(q) is actually algebra-isomorphic to CSn for generic q. Thus Hn(q) is a direct 
sum of finite dimensional matrix algebras, its irreducible summands being in 
one-to-one correspondence with the irreducible representations of the symmetric 
group Sn. In this setting, Jones showed in [Jo2] that for generic q the algebra 
Jn(q) may be interpreted as the algebra associtated to the ^-deformations of 
those,irreducible representations of S„ which have Young diagrams with at most 
two rows. 

We now. explain how Hn(q) is related to quantum groups. It will be helpful 
to recall the classical picture. The fundamental representation of the Lie group 
GLn acts on <Cn, and so its fc-fold tensor product acts naturally on (Ç?)®k. The 
symmetric group S& also acts naturally on (<Dî)®k, permuting factors. (Remark: 
In this latter action, the representations of S* which are relevant are those whose 
Young diagrams have < n rows.) As is well known, the actions of GLn and 
S* are each other's commutants in the full group of linear transformations of 
(<Cn)®fc. If one now replaces GLn and CS& by the quantum group Uq(GLn) and 
the Hecke algebra Hk(q) respectively, then the remarkable fact is that Uq(GLn) 
and Hk(q) are still each other's commutants [Ji]. The corresponding picture for 
Jn(q) is obtained by restricting to GL2 and to representations of S& having Young 
diagrams with at most 2 rows. 

We remark that these are not isolated instances of algebraic accidents, but 
rather special cases of a phenomenon which relates a large part of the mathemat
ics of quantum groups to finite dimensional matrix representations of the group 
algebra CBn which support a Markov trace (e.g. see [BW]). 
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5. Dynkin Diagrams 

Dynkin diagrams arise in the tower construction which we described in § 1 via 
the inclusions of the algebras Jn(q) in the Jones tower. The inclusions for the 
Jones tower are very simple, and correspond to the Dynkin diagram of type An, 
However, other, more complicated towers may be obtained by replacing the Hi 
factor Mj in the tower construction of § 1 above by Mi Pi (Mo)', where (Mo)' is 
the commutant of Mo in Mi. We refer the reader to [GHJ] for an introduction 
to this topic and a discussion of the "derived tower" and the Dynkin diagrams 
which occur. The connections with the representations of simple Lie algebras can 
be guessed at from our discussion in §4 above. 

6. Concluding Remarks 

I hope I have succeeded in showing you some of the ways in which Jones' 
work created bridges between the areas of mathematics which were illustrated in 
Figure 1. To conclude, I want to indicate very briefly some of the ways in which 
those bridges have changed the mathematics which many of us are doing, 

There is another link polynomial in the picture, the famous Alexander poly
nomial. It was discovered in 1928, and was of fundamental importance to knot 
theory, both in the classical case of knots in S3 and in higher dimensional knot
ting. Shortly after Jones' 1984 discovery, it was learned that in fact both the 
Alexander and Jones polynomial were specializations of the 2-variable Jones 
polynomial. That discovery was made simultaneously by five separate groups of 
authors : Freyd and Yetter, Hoste, Lickorish and Millett, Ocneanu, and Przytycki 
and Traczyk, a simple version of the proof of Ocneanu being given in [Jo3], One 
of the techniques used in the proof was the combinatorics of link diagrams, and 
that technique led to the discovery of yet another polynomial, by Louis Kauffman 
[K2]. 

From the point of view of algebra, the Jones polynomial comes from a trace 
function on 3n(q), and the 2-variable Jones polynomial from a similar trace on 
the full Hecke algebra H„(#). Beyond that, there is another algebra, the so-called 
Birman-Wenzl algebra [BW], and Kauflman's polynomial is a trace on it, Even 
more, physicists who had worked with solutions to the Yang Baxter equation, 
realized that they knew of still other Markov traces, so they began to grind out 
still other polynomials, in initially bewildering confusion. That picture is fairly 
well understood at this moment, however the work of Witten [W] indicates there 
are still other, related, link invariants. The generalizations are vast, with much 
work to be done. 

There is also a different and very direct way in which Jones has had equal 
influence. His style of working is informal, and one which encourages the free 
and open interchange of ideas. During the past few years Jones wrote letters to 
various people which described his important new discoveries at an early stage, 
when he did not yet feel ready to submit them for journal publication because 
he had much more work to do. He nevertheless asked that his letters be shared, 
and so they were widely circulated. It was not surprising that they then served 
as a rich source of ideas for the work of others. As it has turned out, there has 
been more than enough credit to go around. His openness and generosity in this 
regard have been in the best tradition and spirit of mathematics. 
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The most profound and exciting development in algebraic geometry during the 
last decade or so was the Minimal Model Program or Mori's Program in con
nection with the classification problems of algebraic varieties of dimension three. 
Shigefumi Mori initiated the program with a decisively new and powerful tech
nique, guided the general research direction with some good collaborators along 
the way, and finally finished up the program by himself overcoming the last 
difficulty. The program was constructive and the end result was more than an 
existence theorem of minimal models. Even just the existence theorem by itself 
was the most fundamental result toward the classification of general algebraic 
varieties in dimension 3 up to birational transformations. The constructive nature 
of the program, moreover, provided a way of factoring a general birational trans
formation of threefolds into elementary transformations (divisorial contractions, 
flips and flops) that could be explicitly describable in principle. Mori's theorems 
on algebraic threefolds were stunning and beautiful by the totally new features 
unimaginable by those algebraic geometers who had been working, probably very 
hard too, only in the traditional world of algebraic or complex-analytic surfaces, 
Three in dimension was in fact a quantum jump from two in algebraic geometry. 

Historically, to classify algebraic varieties has always been a fundamental 
problem of algebraic geometry and even an ultimate dream of algebraic ge
ometers. During the early decades of this century, many new discoveries were 
made on the new features in classifying algebraic surfaces, unimaginable from 
the case of curves. They were mainly done by the so-called Italian school of 
algebraic geometers, such as Guido Castelnuovo (1865-1952), Federigo' Enriques 
(1871-1946), Francesco Severi (1989-1961) and many others. Since then, there 
have been several important modernization, precision, reconstruction with rigor, 
extensions, in the theory of surfaces. The most notable among those were the 
works by Oscar Zariski during the late 1950s (especially, Castelnuovo's criterion 
for rational surfaces and minimal models of surfaces) and those by Kunihiko 
Kodaira during the early 1960s (especially, detailed study on elliptic surfaces and 
complex-analytic extensions, especially non-algebraic). In particular, Kodaira and 
his younger colleague S. Iitaka have produced many talented followers and col
laborators. Up to and after the "Algebraic Surfaces" by I. R. Shafarevich, Yu. I. 
Manin, B. G. Moishezon, et al. (1965), the Russian school of algebraic geometers 
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advanced the study of some important algebraic surfaces and their deformations, 
especially the study of Torelli problems. As for the extensions to positive char
acteristics, outstanding and remarkable were the works of D. Mumford and E. 
Bombieri, and their followers during the late 1960s and 1970s. There have been 
so many other important contributors to the theory of surfaces that I would not 
try here to fist all the important names and works in the theory of surfaces. There 
were also several unique works on classification problems of non-complete sur
faces or complete surfaces with specified divisors, whose studies were instigated 
as being "2.5 dimensional" by S. Iitaka around 1977. 

As for the higher dimensional algebraic varieties, the decade of 1970's saw 
three Unes of new progress, just to name a few. One was the discovery, in the 
early 1970's, of the gap between the rationality and unirationality. The second 
was an attempt to classify Fano 3-folds, of which the birational classification was 
begun by Yu. I. Manin (1971), V. A. Iskovskih (1971, 1977-78), and followed by 
V. V. Shokurov (1979). However the biregular classification of Fano 3-folds in 
case B2 > 1, with existence and number of moduli, had to wait a few more years 
to be achieved by Mori, jointly with S. Mukai, after a new powerful technique 
was invented by Mori in 1980. (The biregular classification in case B2 = 1 was 
recently completed by S. Mukai using moduli of vector bundles on K3 surfaces.) 
The third line of progress was an early version of serious attempts toward higher-
dimensional classification problems, largely inspired by S. Iitaka's bold conjectures 
proposed around 1970, and especially pressed hard during the latter half of the 
1970's, by the Tokyo school of complex-algebraic geometers. The essence of their 
results was reported by H. Esnault in her Bourbaki talk, exp.. 568 (1981). 

Notably, K. Ueno produced some structure theorems in higher dimensions 
during 1977-79, which appeared at that time to boost the program of Iitaka et 
al. However, the scope of their achievements were limited toward the original 
goal of classifying general algebraic 3-folds in a style of extending the beautiful 
old theory of classifying surfaces. Their crucial limitation was the lack of a good 
higher-dimensional analog to Zariski's theory of minimal models. Technically, as 
it later became clear, the drawback was the absence of Mori's stunning success 
in analyzing birational transformations from the point of view of extremal 
contractions in dimensions higher than 2. In short, a new insight had to be injected 
into the classification program and it came from the technique of extremal rays 
inaugurated by Mori which inspired M. Reid, J. Kollâr, Y Kawamata et al. to 
begin working in earnest in search of minimal models around the turn of the 
decade. 

Early in 1979, Mori brought to algebraic geometry a completely new excite
ment, that was his proof of Hartshorne's conjecture, proposed in 1970, which said 
that the projective spaces are the only smooth complete algebraic varieties with 
ample tangent bundles. It was also exciting news to differential geometers, such 
as Y.-T. Siu and S.-T. Yau who subsequently found an independent proof for 
Frankel's conjecture of 1961, which was implied by Hartshorne's. It is not clear 
that Hartshorne's conjecture can actually be proven by the differential-geometric 
method of Siu and Yau. In all approaches, the most important step was to show 
the existence of rational curves in the manifold in question. Mori's idea was sim-
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pie and natural as good ones were always so, while the proof was not. The idea 
was that, under some numerical conditions, rational curves should be obtained 
by deforming a given curve inside the manifold and degenerating it into a bunch 
of curves of lower genera. But the difficulty was proving such plentifulness of 
deformations. There, Mori's ingenuity was to overcome this difficulty first in the 
cases of positive characteristics, where the Frobenius maps did a miracle, and 
then deduce the complex case from them. 

Mori extended and reformulated his new and powerful technique of finding 
rational curves, which was referred to as extremal rays in the cone of curves by 
himself in another monumental paper of his on "Threefolds whose canonical 
bundles are not nef" (nef = numerically effective). The cone of curves in a 
projective 3-fold was defined to be the closure of the real convex hull generated 
by the numerical equivalence classes (or classes in the second homology group 
over the real numbers) of irreducible algebraic curves, and an extremal ray was 
to be an edge of the cone within the region where the canonical divisor takes 
negative intersection number. Mori's discovery was that the cone was locally 
finitely generated in the canonically negative region and that each extremal ray 
was generated by a rational curve. In the above "not nef" paper, moreover, Mori 
established an outstanding theorem which, in dimension three, completely classi
fied the geometric structures of the family of rational curves corresponding to an 
extremal ray. The union of such curves was either an irreducible divisor (either a 
smooth projective line bundle, or a projective plane, or a quadric in a projective 
3-space) or the entire 3-fold. The former led to a birational blowing down while 
the latter to a fibration map (either conic bundle, or Del Pezzo fiber space or 
Fano 3-fold), In each case, the description was precise and the target variety 
(blown-down birational model or the base of fibration) was again projective, 
This result was absolutely stunning to anybody who have had experiences with 
non-projective or even non-algebraic examples of birational transformations, and 
it was so beautiful as to encourage many algebraic geometers once again to look 
into the birational problems in dimension 3. Subsequently, Mori completed the 
classification of Fano 3-folds, jointly with S. Mukai in 1981, and he established 
a criterion for uniruledness, jointly with Y Miyaoka in 1985. The Fano 3-folds 
and uniruled 3-folds were those to be investigated separately in all details and 
there are still left open some important problems about those special 3-folds. 
Excluding these, the most important general problem was to prove the existence 
of minimal models in which the canonical bundles were nef. 

Mori's "not nef" paper showed, for the first time in the history of algebraic 
geometry, that a general birational transformation between smooth algebraic 3-
folds was not completely untouchable and in fact "finitely manageable" in some 
sense. Naturally the dimension 3 was far more complicated than the dimension 
2, and moreover some sort of singularities (seemingly finitely classifiable after 
Mori) were created in the process of factoring it into elementary transformations. 
Excited with Mori's discoveries, several algebraic geometers began clustering to 
him, this time with much clearer vision and better hope than ever, to work on 
factorization of birational transformations, and more importantly to work on 
defining what minimal models should be and how to obtain them, notably M. 
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Reid, V. V. Shokurov, Y Kawamata, J. Kollär and of course S. Mori himself. 
Mori's Program, named by J. Kollâr and meant to imply the process of obtaining 
minimal models, was as follows: Start from any projective smooth variety X, 
which is not birationally uniruled, and find a finito succession of "elementary" 
birational transformations by which X is transformed to a "minimal modeP'. 
Of course, the central questions here were the meanings of "elementary trans
formation" and "minimal model". Firstly, the inverse of a blowing-up with a 
smooth center in a smooth 3-fold (even in a 3-fold with a "mildly" singular 
point) was definitely elementary. It was called a divisorial contraction. This cer-
taily decreased the Néron-Severi number and hence it should make the variety 
closer to its minimal model. Suppose we could not make a divisorial contraction 
any more and the Néron-Severi number reached its minimum. Is the variety then 
good enough to be called a minimal model? The answer was clearly no, although 
the singularities created by those divisorial contractions were quite acceptable. 
Unlike the 2-dimensional cases, the resulting 3-fold can still have extremal rays 
which cause unpleasant behaviors of the canonical and pluricanonical bundles. 
The importance of these bundles had been clearly recognized even from the time 
of Castelnuovo and Enriques in the theory of classification problems as well as 
in the theory of deformations. Thus, to eliminate an extremal ray, a completely 
new type of elementary transformation was needed. This was the one later called 
flip, which was, roughly speaking, to take out extremal (canonically negative, or 
with negative intersection number with the canonical divisor) rational curves and 
put some rational curves back in with a new imbedding type so that new curves 
are canonically positive. Such a surgery type operation is unique if it exists. The 
existence, however, turned out to be extremely delicate and hard to prove. 

As early as in 1981, encouraged by Mori's "not nef" paper, Miles Reid made 
fairly clear the idea of what minimal models should be and what elementary 
transformations would be, by publishing a paper on "Minimal models of canon
ical 3-folds", which was an expansion of his lecture "Canonical 3-folds" in the 
Journées de Géométrie Algébrique d'Angers 1980. It then became absolutely clear 
(mildly suggested by Mori's work before) that some special kind of singularities 
must be permitted in the good notion of minimal models. M. Reid introduced the 
notions of canonical singularity and terminal singularity, which turned out to be 
very useful in the minimal model program of which he was the first to conjecture 
in literature. (See Miles Reid "Decomposition of Toric morphisms" 1983.) The 
former was, as the name suggests, the kind of singularity that appeared in the 
canonical models and could be quite horrible algebraically and geometrically. 
The latter was the kind that behaved much better than the former and which 
people hoped to be the only kind to appear in the minimal models. In any case, 
Reid's definition was simple and clear and some basic theorems were proved by 
himself, in which he showed that terminal singularities were closely related to the 
deformations of the classic singularities of Du Val. 

Historically, P. Du Val in 1934 systematically studied the singularities that 
did not affect the condition of adjunction, that is, in the language of Reid, 
the canonical singularities in dimension 2. In 1966, M. Artin extended and 
modernized the classification of what he called rational singularities. Du Val 



On the Work of Shigefumi Mori 23 

singularities were exactly rational singularities of multiplicity 2, or rational double 
points. After M. Reid's introduction of canonical and terminal singularities, 
rational singularities and their deformations were studied once again, Extensive 
and direct studies on terminal singularities followed M. Reid's works and by 1987 
a complete classification of terminal singularities in dimension 3 was achieved with 
technically useful lemmas by a combination of works by several mathematicians, 
V. I. Danilov, D. Morrison, G. Stevens, S. Mori, J. Kollâr, N. Shepherd-Barron, and 
others. Some experimental works were done about higher dimensional terminal 
singularities, such as the one in dimension 4 by S. Mori, D. Morrison and 
I. Morrison which seemed to indicate far more complexity than the case of 
dimension 3. 

Back to the minimal model problem, Mori's technique of extremal ray con
traction had to be generalized to singular varieties, at least to the varieties with 
only terminal singularities, which were even "rationally factorial". It does not 
look completely hopeless that eventually Mori's all characteristics method can be 
modified and extended to such singular cases. (See J, Kollâr's work that is to ap
pear in the proceedings of the Algebraic Geometry Satellite Conference at Tokyo 
Metropolitan University, 1990.) However it then was not done in Mori's way. 
Instead, the generalization was obtained first by generalizing Kodaira's Vanishing 
Theorem and then by making an ingenious use of this generalization. Here, and 
subsequently, the contributions of Y. Kawamata were big to the minimal model 
program. 

The celebrated Vanishing Theorem was proven by K. Kodaira in 1953. Nu
merous generalizations, in special cases or in general, were done especially during 
the 1970's and 80's mostly in an effort to investigate the nicety of the structure 
of the canonical ring of a projective variety. Here the canonical ring means the 
graded algebra generated by sections of pluricanonical bundles (say, on a desin-
gularized model). As for the nicety, they looked for the property of being finitely 
generated of the canonical algebra or "rationality or better" properties of the 
singularities of the canonical model. Y Kawamata had a very clear objective 
in generalizing and using the Vanishing Theorem, that was to generalize Mori's 
theory of extremal ray contractions and then verify the minimal model program. 

The operation called flip is clearly directed, i.e., it changes "canonically 
negative" to "canonically positive". There is a similar operation for a rational 
curve with zero intersection number with the canonical divisor, which is called 
Sì flop. Unlike flips, the inverse of flops are again flops. A flop is symmetric in 
this sense. A flip changes a variety into another, birational to and better than 
the original, better in singularities, better in terms of pluricanonical bundles, and 
so on. Historically, there had been known many examples of flops. The simplest 
flop, between smooth 3-folds, was known and used even by earlier algebraic 
geometers. Some flops were shown to be useful in studying degeneration of K3 
surfaces by V. Kulikov in 1977, In contrast, examples of flips are not so easy to 
find because 3-folds had to be singular in order to have singularities improved. P, 
Francia gave an explicit example in his paper published in 1980. Other examples 
were seen in a paper of M. Reid published in 1983, here with prototypes of 
minimal models. In 1983, V. V. Shokurov published the Non-vanishing Theorem, 
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which was proven by using the Vanishing Theorem. His theorem implied that 
flips cannot be done infinitely many times. 

For Mori's Program, therefore^ not only the divisorial contractions are finite 
but also the flips are finite in any sequence. The Very final problem was hence to 
prove the existence of flips for given extremal rational curves, after all the previous 
works by S. Mori, M. Reid, J. Kollâr, V. V. Shokurov and Y Kawamata, just to 
name some of the rriost important contributors to the Program. At any rate, Y 
Kawamata reduced the problem of the flip to the existence of a "nice" doubly 
anticanonical divisor globally in a neighborhood of a given extremal rational 
curve, while the existence had been only proven by M. Reid locally about each 
point of the curve. This seemingly small gap between global and local was actually 
enormous. Mori finally overcame this gap by checking cases after cases with very 
delicate and intricate investigations and established the final existence theorem 
of algebraic flips by reducing them to sequences of simpler analytic flips and 
smaller contractions. This monumental paper of Mori was published in the very 
first issue of the new Journal of the American Mathematical Society, establishing 
a constructive existence theorem of minimal models which had been shown to 
have many important consequences. 

We need much more of Mori's originality to break the stubborn prejudice 
that it is a Herculean task to extend the classical classification theorems to all 
dimensions. 
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It is a duty of the chairman of the Fields Medal Committee to appoint the 
speakers, who describe the work of the winners at this session. Professor M. 
Atiyah was asked by me to speak about Witten. He told me that he would not 
be able to come but was ready to prepare a written address. So it was decided 
that I shall make an exposition of his address adding my own comments. The 
full text of Atiyah's address is published separately. 

Let me begin by the statement that Witten's award is in the field of Mathe
matical Physics. 

Physics was always a source of stimulus' and inspiration for Mathematics so 
that Mathematical Physics is a legitimate part of Mathematics. In classical time its 
connection with Pure Mathematics was mostly via Analysis, in particular through 
Partial Differential Equations. However quantum era gradually brought a new 
life. Now Algebra, Geometry and Topology, Complex Analysis and Algebraic 
Geometry enter naturally into Mathematical Physics and get new insights from 
it. And1 

In all this large and exciting field, which involves many of the leading physicists and 
mathematicians in the world, Edward Witten stands out clearly as the most influential 
and dominating figure. Although he is definitely a physicist (as his list of publications 
clearly shows) his command of mathematics is rivalled by few mathematicians, and his 
ability to interpret physical ideas in mathematical form is quite unique. Time and again he 
has surprised the mathematical community by a brilliant application of physical insight 
leading to new and deep mathematical theorems. 

Now I come to description of the main achievements of Witten. In Atiyah's 
text many references are given to Feynman Integral, so that I begin with a short 
and rather schematic reminding of this object, 

In quantum physics the exact answers for dynamical problems can be ex
pressed in a formal way as follows : 

= Je^X[dn 

where A is an action functional of local fields - functions of time and space 
variables x, running through some manifold M. The integration measure is a 

Small print type here and after refers to Atiyah's text. 
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product of local measures for values of fields in a point x over all M. The 
result of integration Z could be a number or function of parameters defining the 
problem - coupling constants, boundary or asymptotical conditions, etc. 

In spite of being an ill-defined object from the point of view of rigorous math
ematics, Feynman functional integral proved to be a powerful tool in quantum 
physics. It was gradually realized that it is also a very convenient mathematical 
means. Indeed the geometrical objects such as loops, connections, metrics are 
natural candidates for local fields and geometry produces for them interesting 
action functionals. The Feynman integral then leads to important geometrical or 
topological invariants. • 

Although this point of view was expressed and exemplified by several people 
(e.g., A. Schvarz used 1-forms a; on a three dimensional manifold with action 
A = fcodco to describe the Ray-Singer torsion) it was Witten who elaborated 
this idea to a full extent and showed the flexibility and universality of Feynman 
integral. 

Now let me follow Atiyah in description of the main achievements of Witten 
in this direction. 

1. Morse Theory 

His paper [2] on supersymmetry and Morse theory is obligatory reading for geometers 
interested in understanding modern quantum field theory. It also contains a brilliant proof 
of the classic Morse inequalities, relating critical points to homology. The main point is 
that homology is defined via Hodge's harmonic forms and critical points enter via station
ary phase approximation to quantum mechanics. Witten explains that "supersymmetric 
quantum mechanis" is just Hodge-de Rham theory. The real aim of the paper is however 
to prepare the ground for supersymmetric quantum field theory as the Hodge-de Rham 
theory of infinite-dimensional manifolds. It is a measure of Witten's mastery of the field 
that he has been able to make intelligent and skilful use of this difficult point of view in 
much of his subsequent work. 

Even the purely classical part of this paper has been very influential and has led to 
new results in parallel fields, such as complex analysis and number theory. 

2. Index Theorem 

One of Witten's best known ideas is that the index theorem for the Dirac operator 
on compact manifolds should emerge by a formally exact functional integral on the 
loop space. This idea (very much in the spirit of his Morse theory paper) stimulated 
an extensive development by Alvarez-Gaume, Getzler, Bismut and others which amply 
justified Witten's view-point. 

3. Rigidity Theorems 

Witten [7] produced an infinite sequence of such equations which arise naturally in 
the physics of string theories, for which the Feynman path integral provides a heuristic 
explanation of rigidity. As usual Witten's work, which was very precise and detailed in 
its formal aspects, stimulated great activity in this area, culminating in rigorous proofs 
of these new rigidity theorems by Bott and Taubes [1]. A noteworthy aspect óf these 
proofs is that they involve elliptic function theory and deal with the infinite sequence of 
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operators simultaneously rather than term by term. This is entirely natural from Witten's 
view-point, based on the Feynman integral. 

4. Knots 

Witten has shown that the Jones invariants of knots can be interpreted as Feynman 
integrals for a 3-dimensional gauge theory [11]. As Lagrangian, Witten uses the Chern-
Simons function, which is well-known in this subject but had previously been used as an 
addition to the standard Yang-Mills Lagrangian. Witten's theory is a major breakthrough, 
since it is the only intrinsically 3-dimensional interpretation of the Jones invariants: all 
previous definitions employ a presentation of a knot by a plane diagram or by a braid. 

Although the Feynman integral is at present only a heuristic tool it does lead, in this 
case, to a rigorous development from the Hamiltonian point of view. Moreover, Witten's 
approach immediately shows how to extend the Jones theory from knots in the 3-sphere to 
knots in arbitrary 3-manifolds. This generalization (which includes as a specially interesting 
case the empty knot) had previously eluded all other efforts, and Witten's formulas have 
now been taken as a basis for a rigorous algorithmic definition, on general 3-manifolds, 
by Reshetikin and Turaev. 

Now I turn to another beautiful result of Witten - proof of positivity of 
energy in Einstein's Theory of Gravitation. 

Hamiltonian approach to this theory proposed by Dirac in the beginning of 
the fifties and developed further by many people has led to a natural definition 
of energy. In this approach a metric y and external curvature h on a space-like 
initial surface S® embedded in space-time M^ are used as parameters in the 
corresponding phase space. These data are not independent. They satisfy Gauss-
Codazzi constraints - highly nonlinear PDE. The energy H in the asymptotically 
flat case is given as an integral of indefinite quadratic form of Vy and h. Thus it 
is not manifestly positive. The important statement that it is nevertheless positive 
may be proved only by taking into account the constraints - a formidable problem 
solved by Yau and Schoen in the late seventies and as Atiyah mentions, "leading 
in part to Yau's Fields Medal at the Warsaw Congress". 

Witten proposed an alternative expression for energy in terms of solution of 
a linear PDE with the coefficients expressed through y and h. This equation is 

@®y) = 0 

where @® is the Dirac operator induced on S® by the full Dirac operator on 
M^\ Witten's formula somewhat schematically can be written as follows: 

Jï(V>o,Vo) = / (IVyf + y>'Chp)dS 

where i/̂ o is the asymptotic boundary value for y) and G is proportional to the 
Einstein tensor R,/c — \gikR. Due to the equation of motion G = T, where T 
is the energy-momentum tensor of matter and thus manifestly positive. So the 
positivity of H follows. 

This unexpected and simple proof shows another ability of Witten - to solve 
a concrete difficult problem by specific elegant means. 

file:///gikR
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1. General 

The past decade has seen a remarkable renaissance in the interaction between 
mathematics and physics. This has been mainly due to the increasingly sophisti
cated mathematical models employed by elementary particle physicists, and the 
consequent need to use the appropriate mathematical machinery. In particular, 
because of the strongly non-linear nature of the theories involved, topological 
ideas and methods have played a prominent part. 

The mathematical community has benefited from this interaction in two 
ways. First, and more conventionally, mathematicians have been spurred into 
learning some of the relevant physics and collaborating with colleagues in theo
retical physics. Second, and more surprisingly, many of the ideas emanating from 
physics have led to significant new insights in purely mathematical problems, and 
remarkable discoveries have been made in consequence. The main input from 
physics has come from quantum field theory. While the analytical foundations 
of quantum field theory have been intensively studied by mathematicians for 
many years the new stimulus has involved the more formal (algebraic, geometric, 
topological) aspects. 

In all this large and exciting field, which involves many of the leading physicists 
and mathematicians in the world, Edward Witten stands out clearly as the most 
influential and dominating figure. Although he is definitely a physicist (as his list 
of publications clearly shows) his command of mathematics is rivalled by few 
mathematicians, and his ability to interpret physical ideas in mathematical form 
is quite unique. Time and again he has surprised the mathematical community by 
a brilliant application of physical insight leading to new and deep mathematical 
theorems. 

Witten's output is remarkable both for its quantity and quality. His list of 
over 120 publications indicates the scope of his research and it should be noted 
that many.of these papers are substantial works indeed. 

In what follows I shall ignore the bulk of his publications, which deal with 
specifically physical topics. This will give a very one-sided view of his contribution, 
but it is the side which is relevant for the Fields Medal. Witten's standing as a 
physicist is for others to assess. 
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Let me begin by trying to describe some of Witten's more influential ideas and 
papers before moving on to describe three specific mathematical achievements. 

2. Influential Papers 

His paper [2] on supersymmetry and Morse theory is obligatory reading for 
geometers interested in understanding modern quantum field theory. It also 
contains a brilliant proof of the classic Morse inequalities, relating critical points 
to homology. The main point is that homology is defined via Hodge's harmonic 
forms and critical points enter via stationary phase approximation to quantum 
mechanics. Witten explains that "supersymmetric quantum mechanics" is just 
Hodge-de Rham theory. The real aim of the paper is however to prepare the 
ground for supersymmetric quantum field theory as the Hodge-de Rham theory 
of infinite-dimensional manifolds. It is a measure of Witten's mastery of the field 
that he has been able to make intelligent and skilful use of this difficult point of 
view in much of his subsequent work. 

Even the purely classical part of this paper has been very influential and has 
led to new results in parallel fields, such as complex analysis and number theory. 

Many of Witten's papers deal with the topic of "Anomalies". This refers to 
classical symmetries or conservation laws which are violated at thé quantum 
level. Their investigation is of fundamental importance for physical models and 
the mathematical aspects are also extremely interesting. The topic has been 
extensively written about (mainly by physicists) but Witten's contributions have 
been deep and incisive. For example, he pointed out and investigated "global" 
anomalies [3], which cannot be studied in the traditional perturbativi manner. 
He also made the important observation that the rç-invariant of Dirac operators 
(introduced by Atiyah, Patodi and Singer) is related to the adiabatic limit1 of a 
certain anomaly [4]. This was subsequently given a rigorous proof by Bisrriut and 
Freed. 

One of Witten's best known ideas is that the index theorem for the Dirac 
operator on compact manifolds should emerge by a formally exact functional 
integral on the loop space. This idea (very much in the spirit of his Morse theory 
paper) stimulated an extensive development by Alvarez-Gaumé, Getzler, Bismut 
and others which amply justified Witten's view-point. 

Also concerned with the Direc operator is a beautiful joint paper with Vafa 
[5] which is remarkable for the fact that it produces sharp uniform bounds for 
eigenvalues by an essentially topological argument. For the Dirac operator on an 
odd-dimensional compact manifold, coupled to a background gauge potential, 
Witten and Vafa prove that there is a constant C (depending on the metric, 
but independent of the potential) such that every interval of length C contains an 
eigenvalue. This is not true for Laplace operators or in even dimensions, and is a 
very refined and unusual result. 
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3. The Positive Mass Conjecture 

In General Relativity the positive mass conjecture asserts that (under appropriate 
hypotheses) the total energy of a gravitating system is positive and can only be 
zero for flat Minkowski space. It implies that Minkowski space is a stable 
ground state. The conjecture has attracted much attention over the years and 
was established in various special cases before being finally proved by Schoen 
and Yau in 1979. The proof involved non-linear P. D. E. through the use of 
minimal surfaces and was a major achievement (leading in part to Yau's Fields 
Medal at the Warsaw Congress). It was therefore a considerable surprise when 
Witten outlined in [6] a much simpler proof of the positive mass conjecture based 
on linear P. D. E. Specifically Witten introduced spinors and studied the Dirac 
operator. His approach had its origin in some earlier ideas of supergravity and it 
is typical of Witten's insight and technical skill that he eventually emerged with a 
simple and quite classical proof. Witten's paper stimulated both mathematicians 
and physicists in various directions, demonstrating the fruitfulness of his ideas. 

4. Rigidity Theorems 

The space of solutions of an elliptic differential equation on a compact manifold is 
naturally acted on by any group of symmetries of the equation. All representations 
of compact connected Lie groups occur this way. However, for very special 
equations, these representations are trivial. Notably this happens for the spaces of 
harmonic forms, since these represent cohomology (which is homotopy invariant). 
A less obvious case arises from harmonic spinors (solutions of the Dirac equation), 
although the relevant space here is the "index" (virtual difference of solutions of 
D and D*). This was proved by Atiyah and Hirzebruch in 1970. Witten raised 
the question whether such "rigidity theorems" might be true for other equations 
of interest in mathematical physics, notably the Rarita-Schwinger equation. This 
stimulated Landweber and Stong to investigate the question topologically and 
eventually Witten [7] produced an infinite sequence of such equations which arise 
naturally in the physics of string theories, for which the Feynman path integral 
provides a heuristic explanation of rigidity. As usual Witten's work, which was 
very precise and detailed in its formal aspects, stimulated great activity in this 
area, culminating in rigorous proofs of these new rigidity theorems by Boti and 
Taubes [1], A noteworthy aspect of these proofs is that they involve elliptic 
function theory and deal with the infinite sequence of operators simultaneously 
rather than term by term. This is entirely natural from Witten's view-point, based 
on the Feynman integral. 

5. Topological Quantum Field Theories 

One of the remarkable aspects of the Geometry/Physics interaction of recent 
years has been the impact of quantum field theory on low-dimensional geometry 
(of 2, 3 and 4 dimensions). Witten has systematized this whole area by showing 
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that there are, in these dimensions, interesting topological quantum field theories 
[8], [9], [10]. These theories have all the formal structure of quantum field theories 
but they are purely topological and have no dynamics (i.e. the Hamiltonian is 
zero). Typically the Hilbert spaces are finite-dimensional and various traces give 
well-defined invariants.'For example, the Donaldson theory in 4 dimensions fits 
into this framework, showing how rich such structures can be. 

A more recent example, and in some ways a more surprising one, is the 
theory of Vaughan Jones related to knot invariants, which has just been reported 
on by Joan Birman. Witten has shown that the Jones invariants of knots can 
be interpreted as Feynman integrals for a 3-dimensional gauge theory [11]. As 
Lagrangian, Witten uses the Chern-Simons function, which is well-known in this 
subject but had previously been used as an addition to the standard Yang-
Mills Lagrangian. Witten's theory is a major breakthrough, since it is the only 
intrinsically 3-dimensional interpretation of the Jones invariants: all previous 
definitions employ a presentation of a knot by a plane diagram or by a braid. 

Although the Feynman integral is at present only a heuristic tool it does 
lead, in this case, to a rigorous development from the Hamiltonian point of view. 
Moreover, Witten's approach immediately shows how to extend the Jones theory 
from knots in the 3-sphere to knots in arbitrary 3-manifolds. This generalization 
(which includes as a specially interesting case the empty knot) had previously 
eluded all other efforts, and Witten's formulas have now been taken as a basis 
for a rigorous algorithmic definition, on general 3-manifolds, by Reshetikin and 
Turaev, 

Moreover, Witten's approach is extremely powerful and flexible, suggesting 
a number of important generalizations of the theory which are currently being 
studied and may prove to be important. 

One, of the most exciting recent developments in theoretical physics in the 
past year has been the theory of 2-dimensional quantum gravity. Remarkably this 
theory appears to have close relations with the topological quantum field theories 
that have been developed by Wittert [12]. Detailed reports on these recent ideas 
will probably be presented by various speakers at this congress. 

6. Conclusion 

From this very brief summary of Witten's achievements it should be clear that 
he has made a profound impact on contemporary mathematics. In his hands 
physics is once again providing a rich source of inspiration and insight in 
mathematics. Of course physical insight does not always lead to immediately 
rigorous mathematical proofs but it frequently leads one in the right direction, 
and technically correct proofs can then hopefully be found. This is the case with 
Witten's work. So far his insight has never let him down and rigorous proofs, of 
the standard we mathematicians rightly expect, have always been forthcoming. 
There is therefore no doubt that contributions to mathematics of this order are 
fully worthy of a Fields Medal. 
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Perhaps the most difficult and deepest field in computer science is the derivation of 
lower bounds for the computational complexity of various problems (i.e., proving 
that no algorithm whatsoever can solve the given problem within a certain time 
or space). While these questions are very natural extensions of classical problems 
on undecidability, they turn out much more difficult. Up to some years ago, very 
few results were known, and these gave very poor bounds and concerned very 
restricted models of computation. At the same time, some of the most exciting 
unsolved problems in theoretical computer science (like 9 = J\r0>) are in this 
area; to prove those, one would need lower bounds on the running time which is 
exponential in the size of the input. 

One conclusion drawn from the situation was that the methods of mathemat
ical logic used in decidability theory are not powerful enough to yield negative 
results in complexity theory, and that combinatorial methods would be needed 
to obtain such results. 

The idea of using combinatorial methods is suggested by the Boolean circuit 
model of computation. In this model, the computation is described by an acyclic 
directed graph, whose nodes (also called gates) correspond to elementary steps in 
the computation. Nodes with no edge entering them are called input gates, and 
the input of the computation is an assignment of a Boolean value (0 or 1) to 
each input gate. Every other gate computes some simple (Boolean) function of 
the values computed by the the tails of edges entering it; this recursively defines 
a value of each gate. For simplicity, we shall assume that there is only one gate 
with no edge leaving; this serves as the output gate. 

Every algorithm in other possible models (Turing machine, RAM machine 
etc.) can be transformed into a Boolean circuit (more exactly, into a series of 
Boolean circuits, one for each input size). The number of gates in the circuit 
corresponds to the running time of the algorithm. Another important parameter 
of the circuit is its depth, i.e., the maximum length of a path from an input node 
to an output node. This corresponds to the running time of the algorithm if 
parallel processing is allowed; in this case, the width (the maximum number of 
gates mutually inaccessible by paths) corresponds to the number of processors 
needed for this degree of parallelization. 

The two simplest kinds of gates are AND gates and OR gates, computing the 
logical conjunction and disjunction of Boolean values, respectively. A Boolean 
circuit consisting of such gates can compute only monotone functions. If we 
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allow, however, that each input node receives either a variable or its negation, 
then every Boolean function can be computed using only AND and OR gates. 

The famous & ^ Jf0* problem would follow if one could show the following. 
For every n > 2, let Dn be a Boolean circuit with AND and OR gates, whose 
input gates correspond to pairs (i, j) with 1 < i < j < n. Every input to such a 
circuit, i.e., every assignment of values 0 or 1 to the input gates, corresponds to 
a graph on {1,...,n}. Assume that Dn computes the value 1 if and only if this 
graph has a clique larger than s/n (or has a Hamiltonian circuit, or is 3-colorable; 
we could use here any ^T^-complete property). Conjecture: the number of gates 
in Dn is necessarily superpolynomial (perhaps exponential) in n. 

While we are still far from being able to prove this, in the last few years 
combinatorial methods for proving good (exponential) lower bounds on the circuit 
complexity of various Boolean functions have been developed. These methods 
still impose restrictions on the computation model, but these restrictions are quite 
natural and much weaker than those considered previously. One class of results 
is for bounded-depth (or, more generally, small-depth) circuits. This development 
is the result of contributions from many authors (Furst-Saxe-Sipser 1981, Ajtai 
(1983), Yao (1985), Hastad (1986), Razborov (1987))., The other (mathematically 
perhaps even more difficult) class of results concerns monotone circuits; this 
restriction of the model was introduced by Valiant, and the breakthrough is due 
to Razborov (1985a, 1986). We start with describing this fundamental result. 

While every monotone Boolean function can be computed by a monotone 
Boolean circuit, it can be expected that monotone circuits are less powerful 
than general circuits. So (as suggested by Valiant), exponential (or at least 
superpolynomial) lower bounds on the monotone circuit complexity of monotone 
problems in Jf@ might be easier to prove, and at the same time they may 
eventually lead to exponential lower bounds for general circuits. 

Razborov (1985a) justified part of this expectation by proving the following 
fundamental result. 

Theorem. For deciding the existence of a clique with given size in a graph, no 
polynomial size monotone circuits exist. 

This basic result and its powerful proof method have immediately inspired 
much further work. Andreev (1985) used similar techniques to obtain an expo
nential lower bound on a less natural J^-complete problem. Alon and Boppana 
(1987), by strengthening the combinatorial argurnents of Razborov, proved an 
exponential (not merely superpolynomial) lower bound on the monotone circuit 
complexity of the clique problem. 

Razborov (1985b) proved that even the bipartite matching problem (decide 
whether a bipartite graph has a perfect matching, which is a special case of the 
clique problem) needs superpolynomial-sizë monotone circuits. This problem is 
solvable in polynomial time if we do not require monotonicity of the circuit; 
therefore this result separates monotone and non-monotone, polynomial time. 
Such separation results are extremely rare. Tardos [T] used Razborov's methods 
to prove the existence of a polynomial time computable monotone Boolean 
function which takes an exponential number of gates if we want to conipute it 
by a monotone Boolean circuit. 

The proof technique of Razborov is also very important: he introduces a 
very powerful new method, namely approximation. The method applies in many 
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situations, but to fill in the details, difficult special considerations are needed. We 
shall sketch the method below; it is, however, best described through another of 
its applications to the complexity of bounded-depth circuits. 

Every Boolean function can be computed by a circuit with depth 2 (this 
follows from the existence of the "conjunctive normal form"), but circuits with 
small depth will typically have exponential size even for quite simple Boolean 
functions, The parity function (or XOR function) of n bits is defined as the sum 
of these bits modulo 2. It was proved by Hastad (1986) that a circuit with AND 
and OR gates, with n input bits and depth d, computing the parity function of these 
bits, has at least exp^.lw1/^"1)) gates. 

Razborov (1985b) showed that the approximation method can also be applied 
to prove lower bounds on the size of non-monotone but small-depth circuits. 
Among the really simple functions of n bits, besides AND, OR and XOR, the 
majority function comes to mind : the value of this function is 1 if at least half of 
the input bits are 1, and 0 otherwise. Razborov proved an exponential lower bound 
for the size of small-depth circuits computing the majority function. An interesting 
feature of the result is that he can even allow XOR gates, computing the mod 
2 sum of arbitrarily many bits in a single step. (This shows the complementary 
nature of this result and Hastad's.) To be exact, Razborov's important result is 
the following: 

Theorem. A circuit with AND, OR and XOR gates, with n input bits and depth d, 
computing the majority function of these bits, has at least exp(0.1??^/2^) gates. 

This application of the approximation method is in fact much simpler, and it is 
a "textbook" example of a lower-bound proof combining algebraic, probabilistic, 
and combinatorial ideas. 

To sketch the general idea, assume that we want to prove an exponential lower 
bound on the number of gates in a Boolean circuit computing some Boolean 
function / . One introduces a notion of "distance" between Boolean functions and 
specifies a class of "simple" Boolean functions so that the distance of the function 
/ from any "simple" function is exponentially large. Furthermore, one defines 
gates which "approximate" the original gates in the sense that if we replace an 
original gate by the approximating gate, the new circuit computes a Boolean 
function which is at a distance at most 1 from the original. These approximating 
gates must have the property that if all the original gates are replaced by their 
approximations, the new circuit will compute a "simple" function. So this new 
function is exponentially far from the original function / , and hence, we must 
have changed exponentially many gates. In particular, the circuit must have 
exponentially many gates. 

In the proof of the lower bound for small-depth circuits, "simple" functions 
will be those expressible as polynomials over GF(2) with small degree. We 
measure the distance of two functions in terms of the number of inputs on which 
they differ. An elegant argument shows that the majority function is "far" from 
every polynomial with low degree. Approximations are only needed for the AND 
gates; this is achieved by a nice randomized construction. 

For proving his lower bound for the monotone complexity of the /c-clique 
problem, Razborov has to use much more involved constructions, and the proofs 
are based on difficult combinatorial methods, in particular on the powerful 
method of "sunflowers" from hypergraph theory. 
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In a recent paper (1989), he analyses the approximation method and in a 
rather novel manner, is able to establish its boundaries. (This to me shows that 
this is indeed a "method" and not just a language to present various arguments.) 
He shows among others that for Boolean circuits without any restriction, this 
method can yield at most quadratic lower bounds (while, as we have seen, both 
for monotone and bounded-depth circuits it yields exponential lower bounds). 

Razborov's work (of which here we discussed only one cluster of results) was 
received with great interest and discussed enthusiastically at seminars all around 
the world. In an area where any step forward seemed almost hopeless (but which 
was at the same time a central area of theoretical computer science) his results 
meant that deep methods could be developed and to obtain strong lower bounds 
for algorithms was not impossible. 
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Algebraic JT-Theory, Motives, and Algebraic Cycles 

Spencer Bloch 

Department of Mathematics, University of Chicago, Chicago, IL 60637, USA 

The concept of motive was introduced by A. Grothendieck. Roughly, one wants to 
think of smooth projective varieties over a field k as objects in an additive category 
ir(k) with morphisms X-> Y being correspondences (i.e., suitable equivalence classes 
of algebraic cycles o n l x Y.) Thé category of motives, Jt(k), is a Q-linear abelian 
(or weaker, Karoubian) category equipped with a tensor product, an invertible Tate 
twist functor ? ® Q(l) : J/(k) -+ J/(k), and a cohomology functor H* : i^(k) -> Jt(k) 
which is universal for cohomology functors like Betti, Hodge, or étale cohomology. 
Standard conjectures about algebraic cycles imply Jt(k) is semi-simple, but these 
conjectures have proved quite intractable. 

Inspired by work of Deligne on mixed Hodge structures, Beilinson started to 
study a more general abelian category of mixed motives Jf.Jt(k). The smallest full 
abelian subcategory oïJtJt(k) containing the Tate motives Q(n), n e Z, and closed 
under extensions, would be the category JK&~JK(k) of mixed Tate motives. Objects 
in this category would have a canonical weight filtration with Q(7i) of weight — 2n, 
and the functor associating to an object M the corresponding (^)(gr!f2„M)( — n) 
should be a fibre functor making Jt$~Jt(k) a neutral Tannakian category. In other 
words, automorphisms of the fibre functor compatible with tensor product form an 
algebraic group Gd\(JtlFJf,(k)) which, because it must preserve the weight filtra
tion, is of the form Jf xi <GWI with Jf nilpotent. The category JlZTJtijC) is equivalent 
to the category of representations over Q of Jr x Gm. The graded Lie algebra 

J?(fc) =f Lie(.yfO, S£(k) = £SLX 0 JZL2 © • • • (0,1) 

is a fundamental invariant of k. Beilinson further stipulated that M8TJ4{jC) should 
be related to the Quillen K-theory of the field k via the basic formula 

E x l ^ w ( Q , Q(w)) S gr';K2,lH(/c)® Q (0.2) 

where the grading is with respect to the y-filtration on K^(k). 
It seems likely this expected relation between motives and K-theory has a 

natural interpretation in terms of algebraic cycles, Although technical problems 
involving moving lemmas currently block any definitive results, I want to show that 
cycles can be used to define reasonable candidates for motivic cohomology and also 
for the Lie algebra associated to Jt$~J4(k). The basic cycle-theoretic objects, the 
higher Chow groups CW(X, n) associated to a variety X and non-negative integers 
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n and r, are integrally defined (i.e. not Q-vector spaces). In § 3 I exploit this to show 
how, in an arithmetic situation, these groups give natural generalizations of the 
global points of an abelian variety over a number field and of the corresponding 
group in. One is led to a general Birch-Swinnerton-Dyer conjecture for motives. 
This conjecture has been proved by K. Kato [BK] for the case of the Riemann zeta 
function. 

Everything I know about mixed motives I learned from Beilinson and Deligne. 
I am grateful to M. Hanamura for many helpful conversations about these ideas. 
A. Suslin pointed out an error in the proof of the moving lemma in [Bll]. I have 
another proof, but it is too complicated to inspire confidence at this point, so I 
prefer to formulate the relation between X-theory and higher Chow groups condi
tionally. Results about a spectral sequence relating higher Chow groups and K-
theory are joint work with S. Lichtenbaum. Finally, the arithmetic conjectures in 
the last section were inspired by joint work with K. Kato on Tamagawa numbers 
of motives [BK]. Over the years, he has graciously shared credit with me for any 
number of his ideas, including a number of those discussed in § 3. 

1. Higher Chow Groups 

Let X be a variety over a field k. A cosimplicial scheme is built from affine spaces 
An = Spec(fc[>0,..., *„]/(]£ h - 1)) with face maps An_x cz> An defined by tt = 0 and 
degeneracies ti\-*ti + ti+1. For any r > 0 and any algebraic fe-scheme X, a simplicial 
abelian group &r(X, •) is defined by taking %r(X, n) to be the free abelian group 
generated by irreducible subvarieties F c X x z/nofcodimensionr meeting all faces 
of codimension > 1 properly. The boundary maps dt : ££r(X, n) -> %r(X, n — 1) are 
given by restriction to the i-th face. One defines the higher Chow groups 

CW(X, n) = nn(^
r(X, •)) ^ Hn(3T{X9 •))• (1.1) 

In particular, one checks easily CW(X, 0) is the classical Chow group, and 
C H 1 ^ , 1) s r(X, 0 | ) for X regular. 

Conjecture (1.2) (Moving Lemma for Cycles). Let JJ aX be Zariski open. Write 
&r(U, •)' = I m a g e d * , -)^^r(U, •)]. Then for all r, X, and U, the inclusion 
3?r(U, •)' ci* ££r(U, -)is a quasi-isomorphism. 

Conjecture (1.2) would immediately yield a long exact localization sequence for 
higher Chow groups. With more work, one gets: 

Theorem (1.3) [Bll]. Assume the moving lemma for cycles holds. Then there are 
isomorphisms 

CW(X, ri) ® Q s gfyK'n(X) ® Q, (1.3.1) 

where K' is the K-theory of coherent sheaves, and gry is the y-grading. 

Let T be a smooth fe-variety. Let Dl9 . . . , Dm be smooth divisors on T, and 
assume all intersections of the Dt are transversal. The multi-relative K-theory 
K^(T; Dt,..., Dm) is defined via a homotopy fibre construction. One has long exact 
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sequences 

K*(T; Du..., DJ -+ K*(T; Du... , D,„-i) -+ K*(Dm; D, n Dm,..., D„,-i n Dm) 

-+K^1{T;Du...9DJ-+~' 

-+ K0{Dm; DinDÄ A„-i n DJ, 

For W ^ T closed, one defines K^W(T; Dx,,,., DJ again by a homotopy fibre so 
there are long exact sequences 

K^w(T,Dl,...,DJ^K^(T;Du...,DJ^K^(T-W;D1,.,.,DJ 

^ K r l , ( r i l ) 1 , . 1 „ D J ^ - ^ K 0 ( r ^ ; D 1 DJ, 

Conjecture (1.4) (Moving Lemma for Relative K0). Let X be a smooth k-variety, 
Write öj? 5= X x An^t c^ X x An for the codimension 1 faces. Let f j c l x An be 
the union of all algebraic subsets of dimension i meeting all faces f] öj of codimension 
^ 1 properly. Let W c= i^be an algebraic set of dimension <i — 1, Then the map 

Kolw-r,-1nw(X X ^ - ^ - l ^ o ^ . - ^ J ^ ^ o . y ^ y ^ ^ x An-i^; ÖQ,..., Sfl) 

is zero. 

Intuitively, this conjecture says a class in K0 supported on W — W n i^-x can 
be moved on i^ to a class supported on ir

{-x. 

Theorem 1.5 (with S. Lichtenbaum). Let X be a smooth k-variety, and assume the 
moving lemma for relative K0 holds for X and all n, i > 0. Then there is a spectral 
sequence 

E%« = CH-*(X, -p-q)*>K_„_q{X). (1.5.1) 

This should be compared with the Atiyah-Hirzebruch spectral sequence in 
topological X-theory. Unlike the localization spectral sequence in algebraic K-
theory, (1.5.1) may be non-trivial for X = Spec(fe). Viewing !%r(X, •) as a complex 
in negative degrees, one may conjecture the complex 

/ > ) ' d ^ ( X , * ) [ - 2 r ] (1.6) 

satisfies the axioms formulated by Beilinson and Lichtenbaum, The spectral sequence 
can be rewritten 

E^ = H^(r(q))^Kq_p(X), (1.7) 

2. Motives 

The philosophy is something like this. Associated to a smooth variety X there 
should be a Tannakian category M^M(X) of mixed Tate motives, with a fibre 
functor Mh^i/°(0gr2^IRBetti(M)(?i)), where RBGtii(M) is a Tate variation of Hodge 
structure on X, the Betti realization of M. There should be a space Mot(X) with 
7Ui(Mot(X))A ^ Gal(^X#pO) (where "A" means nilpotent completion) so mixed 
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Tate motives (e.g. the Q(n)) can be thought of as Q-local systems on Mot(X). Indeed, 
one might hope for natural Z-local systems 7L(n). Moreover one expects isomor
phisms in the derived category 

r(r)' s RT(Mot(X), Z(r)), (2.1) 

and hence 

CW(X, p) s H2r~p(Mot(X), Z(r)). (2.2) 

Let GrassXf,J+pn denote the Grassmannian of rank n quotients of (9^n+p. By 
analogy with the work of Dwyer and Friedlander [DF], one might hope to identify 
the K-theory K^(X) with the homotopy of the space of sections 

%% lim lim 
L « p 

. lim Hom(Mot(X), Mot(GrsLSsXn+pn)) 
p ' _ 

In [op. cit.] the Z-adic étale homotopy groups of the fibre are calculated: 

nt I lim lim fibre(Grass^,„+p>M>ét -> Xèt) U \ \ Z ^ (2-3) 

The homotopy groups of the fibre lim lim Mot(Grassx>„+pn) -> MotpQ, viewed as 
local systems on the base should, by the same token, be 0 in odd degrees and TL(j) 
in degree 2/. The usual spectral sequence in topology converging to the homotopy 
groups of the space of sections of a fibration 

Ep
2> ~q = Hp(Bsise, 7cg(Fibre)) => 7c9_p(Space of Sections) (2.4) 

would give 

£5' -q = Hp(Mot(X), TL(qj2))) => Kq_p(X) (2.5) 

where by convention Z(g/2) = (0) for q odd. Note that all even differentials d2n are 
necessarily 0. Using this it is straightforward to check that the spectral sequences 
(1.7) and (2.5) are at least potentially in agreement up to renumbering (décalage). 

Of course, all this is completely speculative. One can, however, make a start at 
understanding the space Mot(X). For X = Spec(F) a field, one expects Mot(X) = 
Mot(F) to be a K(n, 1) with TCA = Gal(.>#^#(F)). (Note this should not be the 
general case. Indeed, for X a flag variety over F, JiZTJt(X) should equal M2TJ((F\ 
but the motivic cohomology groups 

^yK2n_iX) ® Q / gr«iC2M_f(F) ® Q.) (2.6) 

Beilinson and Deligne have made progress in writing down what should be the Lie 
algebra if(F) (0.1). I want to propose a candidate i£ycie(F) for J£?(F) constructed 
using algebraic cycles. 

Let F be an algebraically closed field. Write X = P£ - {1}, Xs = X x • • • x X 
(s times). Faces on Xs are obtained by setting various coordinate functions = 0 or 
oo. The symmetric group Sfs acts on Xs. Let yr(s) denote the group of codimension 
r algebraic cycles with Q-coefficients on Xs which meet all faces properly and which 
are alternating with respect to the action of 5fs. Define 
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^K-iy-^-an. (2.7) 
where d( is the restriction map on cycles obtained by setting the r-th coordinate 
function = ;. The map d preserves alternating representations so we have d : f r(s) -• 
rr(s - 1). 

Define a graded group Jf* — @ri
rr(2r — i) and a complex Jf* which is Jf* in 

degree / with boundary d:Jri-^ Jr*+1 induced by d on if r(s). One has a product 
structure ifr(s) x ̂ (u) -> irrH(s + u) given by obvious (external) product of cycles 
composed with projection on the alternating representation. This induces a graded 
product structure Jf* x Jfj -+ Jf**K With this product, Jf' is a DGA (i.e, associa
tive and graded commutative with the usual identities for d. Note Jf* ^ (0) for i < 0.) 

Defined04" = Ker(^° -> iTo(0)).Let J = [ © ^ ^ ^ 0 ^ 0 + ] - ^ . The ideal 
7 is graded but not stable under <9. Let / be the differential graded ideal generated 
by J. f is generated as an ideal by @i<-xJfl®JfQ+® djr0+ because iT0(p) = (0) 
for p *£ 0 so ô^T"1 c f̂04". One shows for F algebraically closed and / > 0, 

AW/)lc(^//)'- (2.8) 
Writing 

« = { * G ( ^ r / / ) 1 \ d x G A 2 G W ) 1 } , « = * i e ^ 2 e • • • ( 2 . 9 ) 

one proves 

5^ c / \ 2 ^ c /^(Jf/f)1. (2,10) 

As a consequence, one has a complex 

<%A/\2mA/\3<%^-'. (2.11) 

Define J%ycle(F) to be the pro-vector space dual to 0t, i.e, write ^ = lim 0t^ with ^ a 

finite dimensional and take JSPoyoleia = Hom(^cycIe>a, Q), J5fcycle(F) = lim J%ycie,a. The 
graded pro-Lie algebra ^cycie(F) is zero in non-negative degrees. 

A (mixed Tate) motive on Spec(F) is a finite dimensional graded Q-vector space 
V with a representation (compatible with gradings) JS?(F) -> End(F). This leads to 

Conjecture (2.12). A (mixed Tate) motive on Spec(F) is an algebraic cycle with 
coefficients'in End(F), Ze0t® End(F) which is of degree 0 for the tensor product 
grading, and which satisfies ÖZ — [Z, Z], 

By way of example, I want to describe the polylogarithm motives as cycles. (This 
discussion is modeled on Deligne's interpretation of a conjecture of Zagier on the 
higher X-theory of number fields [Dl].) Write St = ®Mr with 0tr c rr(2r - 1)/ 
(relations). One checks that 

# t = ^(^/(relations) ^ F* (g) Q. (2.13) 

Define a map 

6r:Z[F-{0,l}-]^Mr (2.14) 
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as follows: take 
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Q^a) = (1 - a) G 0tx s F* ® Q. (2.15) 

For r > 2, let T0 , . . . , 7^_! be homogeneous coordinates on P ' _ 1 . For a e F — {0,1}, 
let Va c X 2 r _ 1 be the subvariety described parametrically by 

K = {(aT^/T^,..., aTo/T^!, (T0 - TWr«,, (7Ì - T2)/Tu ..., 

(Tr_2 - T ^ ) / ^ , (Tf_t - aT^/T^)}. (2.16) 

One checks that Va meets faces properly. Define 

Qr(a) = alt(Fa) (2.17) 

where alt is the projection on the alternating representation of £f2r-\ • (The cycle 
Q2(a) was found by Totaro [T].) One verifies for r > 2 

dQr(a) = -(a) • q^a) = Qr^(a) • (a). (2.18) 

Define ^iog>r = Imagefe,). It follows that ^ l o g c 0t is a graded sub-co-Lie algebra, 
with dual graded Lie algebra J^og a quotient of i£ycle. 

Let AT > 2 be an integer. The iV-polylog motive, MN, should be viewed as an 
object in JiZTJKfR1 — {0, 1, oo}). We consider its specialization MNtZ at some 
F-point z e IP1 - {0, 1, oo}. Define (following Deligne [op. cit.]) (N + 1) x ( J V + l ) 
matrices (viewed as acting on Q[0,iV]): 

0 
0 0 
0 1 
0 0 

0 

0 " 

0 
1 0 

1 0 

0 
1 0 

0 

0 

0 

eo = 

Then MNtZ e &log® End(Q[0,iV]) should be associated to an algebraic cycle Zz. 
Taking 

yields 

Zz = -(z) ®e0-YJ Qriz) ® a d f o r ^ i ) 

dzz = [zz, z z] 

(2.19) 

(2.20) 

so the resulting map J^ycie - » J%og -> End(Q[0,iV]) is a representation. 
Of course much work remains to be done, for example, to spread out the 

construction to define MFJlifT) for a variety T over a field. It seems reasonable 
to expect a construction analogous to (2.12), applied to sums of cycles of codimen
sion r{ on T x X2^'1 which are equidimensional over T, should yield objects in 
MFM(T). 
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3. Arithmetic 

As suggested above, assuming the moving Conjecture (1.2), the higher Chow groups 
of a variety over a field can be thought of as giving an integral structure for motivic 
cohomology. In [BK], we define a Tamagawa number for motives, and we use 
this to give an integral version of the Beilinson conjectures relating values of a 
regulator map on rational motivic cohomology with values of L-functions. Our 
formulation only involved motivic cohomology ® Q, but availability of integral 
motivic cohomology suggests a natural interpretation for the group III appearing 
in the Tamagawa volume formula. I will outline these ideas briefly. In [op. cit.], the 
local constructions are completely proven and do not depend on any conjectures. 
This forces us to work with an integral model of our variety. In what follows I will 
indicate (following the brief discussion at the end of § 5 of op. cit.) what is needed 
to formulate a conjecture depending only on the variety over Q. For a general 
variety X, this formulation involves a number of other "standard" conjectures about 
étale cohomology, L-functions, and K-theory. However, for varieties like curves and 
rational surfaces the necessary conditions can be verified directly, 

Let I be a smooth projective variety over Q. We think of CW(X, 2r — ri) 
«_» Hn(Mot(X), Z(r)). It is suggestive (although I do not know how precise) to 
think of the motive H"(X, Z(r)) as the "local system" on Mot(Spec(Q)) given 
by Hn(Fibre[Mot(X) -> Mot(Spec(Q))], Z)(r). Assuming 2r > n, this local system 
would have "weights" < 0 and hence no non-zero sections, so one would get 

CW(X, 2r - n) -» ExC (Spec(Q))(Z, H""1 (X, Z(r))). (3.1) 

In the case 2r = n, 

CH'(X)0 = Ker[CH'(X) -> Uomtbm^(V)i{Z, H2'(X, Z(r)))] 

- E x t à o ^ ^ Z , H2'-\X, Z(r))). (3.2) 

One hopes that (3.1) and (3.2) are isomorphisms. 
Next one wants to understand ExtM0t(Spec(Q »(Z, F P ' - 1 ^ , HL(r))) for p < oo. We 

assume henceforth that n — 2r < — 1, so the motive 

has weight n — 1 — 2r < — 2. 
Let MHS/R denote the category of mixed Hodge structures defined over IR, i.e. 

endowed with an R-linear conjugation Fœ. Following [D3], one expects 

Ext^ol(Spec(IR))(Z, M) £ Ext^Hs/MÄ H'-^X, Z(r))) 

= im-^Xv, V)l{H>^(X^ Z(r)) + FHi-HXc, <^)}T-
(3.3) 

Note that this is a Lie group. 
The situation at the non-archimedean primes is more delicate. One wants 

ExtL l (Spec ( (M(Z, M) c= HHGäHfy/Q,), Affò). (3.4) 

where M(Z) = H'^^X^, Z(r)). There are defined [op. cit.] subgroups 
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Hl œ H} c Hl c H ^ G a l ^ / Q , ) , M(î)). (3.5) 

If elements in H1 are viewed as extensions, the TLX part (l ^ p) of H} (resp. H,,1 ) 
coincides with extensions which split after tensoring with Qj and restricting to the 
maximal unramified extension of Qp (resp. all extensions). The 1Lp part of Hj (resp. 
Hi) are crystalline (resp. de Rham) extensions, i.e. those which split when tensored 
with the Fontaine rings J3cris (resp. 5DR). In [op. cit.] the main object of study is Hj, 
which should be thought of as Ext^speccz ))• One knows the TLX part of Hl/Hj is 
torsion free of rank equal to the rank of the jjpace of coinvariants for frobenius 
acting on Hom /(M(Q i), Q/(l)), where I c= Gal(Qp/Qp) is the inertia group (and there 
is a similar interpretation of the p-part in terms of Crys(M*(l))/(l — / ) , cf. op. cit.) 
Standard conjectures say that these ranks are all equal and coincide with the order 
of vanishing of the local factor of the dual L-function Lp(M*(l), s)"1 at s = 0, 
i.e. with the rank of H2d_n+ltét(XWp, Qz(r — 1 - d)), where d = dim XF . What one 
expects is that the cycle class map [B12] 

CW(X%, 2r-ri)^ H* (Gal(Qp/Qp), M(±)) (3.6) 

has image c Hi and maps CW(XZ , 2r — ri) into Hj. Moreover, one has a 
chern class map gr^K^^X^) ® Q, -> H2d__n+uét(XWp, Q,(r - 1 - d)) which by 
Jannsen's generalization of Tate's conjecture [J] should be an isomorphism. Putting 
these ideas together with localization yields (conjecturally) 

Q ® Hl/H} ^ [CW(X%, 2r - n)/CW(XZp, 2r - n)] ® Q 

= Lgrr
yK2r_n(X%)/gvr

yK2r_n(Xzß ® Q s gr'-'K'^^Xv,,) ® Q, (3.7) 

the inclusion i being an isomorphism after tensoring with Q. Let N = (Hl/Hj) n 
image(i), and "define" Ext^specCQ » Ä M) c Hi to be the pre-image of N. One has 

0 -> Ex4, t(Spec(zp))(Z, M) -* E^otiSpec{%))(Z, M) -> N -+ 0 (3.8) 

so ExtMot(sPec(<Q ))(%> *0 can be thought of as a topological group containing 
ExtMot(sPec(z ) )Ä M)as a n ° P e n compact subgroup. In the special case X = Spec(Q), 
n = r = 1, one sees from op. cit. Example 3.9 that Hj ^Zp, Hi ^ Q* ® Q, and 
N = Z embedded in Hl/Hj in the natural way, so Ext^ot(Spec(Qjj))(Z, Z(\)) * Qp

x. 
It will be convenient to write 

B(TLp) = Hj = ExtLt(spec(Zp))(Z, M); 5(QP) = ExtL t ( S p e c ( Q p ) )(Z, M); 

5 ( R ) = ExtLt(Spec(iR))(Z,M). (3.9) 

One of the main results in op. cit. was to endow the groups (compact for p < oo) 
B(Zp) and B(JR) with Haar measures œp (depending on a choice of trivialization of 
det(jr7£Rpf/Q)/Fr)). We extend the cop to measures on the locally compact groups 
£(Qp)3 P < oo. Writing L(M, s) = Y\Lp(M, s) for the L-function associated to M, 
one has for almost all p, 

cop(B(Zp)) = Lp(M,0)-1. (3.10) 

The resulting measure \i on 

£(AQ) = f i ß(Qj>) (restricted direct product with respect to B(Zp)) (3.11) 
p<oo 
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is independent of the choice of trivialization. Note that this measure converges (i.e. 
gives finite non-zero measure to the compact set Y[ B(%P)) when n — 2r ^ —2. In 
general, it is necessary to assume meromorphic continuation of the L-function, 
define cop = œp • LP(M, 0) for all p outside a finite set S of bad primes (œp = œp for 
/; G S), and then define 

H = li'/L8{M90) (3.12) 

where Ls is the partial L-function with p e S omitted. 
Assume n — 1 — 2r < —3. The Tamagawa number conjecture, as formulated in 

op. cit., reads 

/i(B(AQ)/JB(Q)) = #H°(Gal(Q/QX M*(l)(Q/Z))/#ffl(M) (3.13) 

where 

B(Q) = {x G H^GalfQ/Q), M(£))|x ® Q G image\_gfyK2r_n(X) ® Q 

Iîi = Ker 

H^GaKQ/Q), M(Q))]}; 

"H^GaUQ/Q), M(Q/Z)) / f ^ G a l ^ / Q , ) , M(Q/Z))' 
5 (Q)®Q/Z ^ ^ 5(Q P )®Q/Z 

. (3.14) 

Construction (3.15). Assume n — 1 — 2r < — 2. 
(i) There is a natural map 

CHf(XQ, 2r - n) -• B(Q). (3.15.1) 

(ii) Assume moreover H^_1(A"Q, 2) has no torsion. Then there is a natural map 

nrçCH'pf,, 2r - n - 1)) -> ffl(M). (3.15.2) 

Here, of course, 

in(CHr(XQ, 2r - n - 1)) = Ker(CH'pfQ, 2r - n - 1) 

-+ f i C H r ( ^ Q P . 2r-n- 1)). (3.15.3) 
pSoo 

The arrow in (3.15.1) is the cycle class [B12]. The first step in constructing the map 
(3.15.2) is to consider the exact sequence (with S£r{X, m) as in § 1) 

0 -»• Z2£\X^ 2r - n) -» ^'(X^, 2r - n) 4 B3T{X^, 2r - n - 1) -> 0. (3.15.4) 

Taking galois cohomology yields a map 

K e r C C H ' ^ , 2r - » - 1) -» C H ' ( * Q , 2r - n - 1)] 

-• H^GaKQ/Q), Z ^ ' ( Z Q , 2/- - n)) 

-> jf^Ga^Q/Q), CHr(XQ, 2r - n)) (3.15.5) 

and hence a map 

in^H^Zd j , 2r - n - 1)) -• H I ^ G a K Q / Q ) , CH'(X<Q, 2r - n))). (3.15.6) 
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The rest of the argument is more complicated, and will not be given in detail. Note, 
however, that in many cases of interest (e.g. r = n = 2 and X a curve; or r = 2, n = 3, 
and X a surface over Q whch is Q-rational; or r = 2, n = 1, and X = Spec(X) for 
K a number field) one has an exact sequence (3.15.7) 

0 - • H^^X^, Q/Z(r)) - • C H ' ( X Q , 2r - ri) -* CW(X^, 2r - n) (g) Q - • 0. (3.15.7) 

In these cases, a straightforward diagram chase gives 

W(H^GaKQ/Q), C H ^ A T Q , 2r - n))) - • ffl(M). (3.15.8) Q 

Conjecture (3.16). T/ie map (3.15.1) is surjective, and identifies J3(Q) vWtfi the 
image of CHr(X<Q, 2r — ri) -> CHr(XQ, 2r — ri). The map (3.15.2) is an isomorphism 
mCW(X<%, 2r-n-l)^ ffl(M). 

The author attaches particular importance to the possibility of giving a geo
metric interpretation of tfi(M) via the higher Chow groups. 

Example (3.17). Using an important result of Suslin [Su] 

CH r(K, r) s Kfnnor(K) (3.17.1) 

for any field K, and assuming the moving Conjecture (1.2), one gets a localization 
sequence for any curve 

K2(k(C)) -> U k(P)* -> CH 2 (C, 1) - • 0, (3.17.2) 
PeC 

whence CH 2 (C , 1) ^ SK\(C). Let X be a smooth surface, and let ^ c X be the 
union of all curves in X. Repeating the above localization argument yields 

K2(k(X)) -> SK\(&>) - • CH 2 (X, 1) -> 0, (3.17.3) 

so CH 2 (X , 1) s H\X, Jf2) (Zariski cohomology of the sheaf K2[Q\). 

Assume now that X i s a surface over Q which is Q-rational, it follows \_CT1 that 
for any number field K, 

CH2(XK,D = T(K), (3.17.4) 

where T is the algebraic torus with character group the Gal(Q/Q)-module N S ( X Q ) 
( = Néron-Severi group of divisors on X^.) In this case 

M(Z) = Hl(X^, Z(2)) s NS(X<z) ® Z(l) (3.17.4) 

and it is not hard to show 

ffi(M) s ffl(T) = K e r ^ ^ G a U Q / Q ) , T(Q)) -> f ] ^ ( G a l ^ / Q , ) , T(Qp))]. 
(3.17.5) 

The Tamagawa number conjecture (3.13) (suitably modified because here n — 1 — 
2r = —2) follows in this case from work of Ono [ O ] . 

file:///_CT1
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One knows in general for a rational surface that there is an inclusion 

Ker(CH2(JTQ) -+ CH 2 (JTQ)) ^ H'(Gal^/Q), T(ty) [CT]. (3.17.6) 

If we assume in addition that X admits a rational pencil of genus 0 curves, a beautiful 
theorem of Salberger [Sa] says that this inclusion induces an isomorphism 

niCH2(XQ, 0) = IIICH2(ZQ) s III(T). (3.17.7) 

Exercise (3.18). Show that for F a number field, IIICH2(Spec(F), 2) coincides with 
the "wild kernel" 

KeT(K2(F)^ftK2(Fv)), (3.18.1) 

where v runs through all places of F, and Fv denotes the completion of F at v. Show 
the Tamagawa number conjecture for (F(2) is compatible with Lichtenbaum's 
conjecture. 
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Computational Complexity of Higher Type Functions 
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Abstract. The customary identification of feasible with polytime is discussed, 
Next, higher type functions are presented as a way of giving computational 
meaning to theorems. In particular, if a theorem has a "feasibly constructive" 
proof, the associated functions should be polytime. However examples are given 
to illustrate the difficulty of capturing the notion of polytime for higher type 
functions. Finally, König's Lemma is used to illustrate a theorem whose compu
tational meaning is naturally expressed by functions of type level 3. 

1. Traditional Complexity and Polytime 

The title of Alan Cobham's 1964 lecture [Cob] "The intrinsic computational 
difficulty of functions" expresses well the subject matter of complexity theory, 
A major subgoal of the theory is to identify and study the so-called feasible 
functions. It has become customary to identify the notion of feasible with that of 
polynomial time computable (polytime, for short). In this section we will examine 
this identification. 

In defining polytime, it is important to emphasize that the parameter used 
is always the length \x\ of the input number x, where \x\ = pog2(:x; + 1)] = the 
number of bits in the binary notation for x. 

Definition 1. / : N —> N is polytime iff there is a Turing machine M and a number 
k such that for all x e N, M on input x computes f(x) within 0(|x|fc).steps. 

The class of polytime functions is very robust. Thus, for example, "Turing 
machine" in the above definition can be replaced by any reasonable abstraction 
of a computer, and the class remains unchanged. 

The equation feasible = polytime needs interpretation before it can be justi
fied. It is not literally true, since the function f(x) = 2'*1 is polytime but is not 
computationally feasible in any sense, (We assume that radix notation is used for 

* Supported by the Natural Sciences and Engineering Research Council of Canada. 

Proceedings of the International Congress 
of Mathematicians. Kvoto. Janan. 1990 
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numbers.) Thus we must restrict attention to functions arising from "natural" 
computational problems. 

Convention 2. NAT is the class of functions arising from natural computational 
problems. 

A problem whose description requires mention of a large exponent such as 
1000 is considered contrived, and not natural. 

For the sake of argument here, we identify "feasible" with "practically solv
able" in the following sense: 

Convention 3. PracSolv is the class of functions / which can be computed by 
some actual computer on all inputs of 10,000 bits or less. 

Note that a practical program for computing / need not be known. We only 
require that one exists. The Convention 3 is not as technology dependent as it 
may appear. There are physical limits on the power of any conceivable actual 
computer, as illustrated by the examples below. 

The equation feasible = polytime can now be replaced by a somewhat more 
precise statement. 

Thesis 4. PracSolv n NAT = polytime n NAT. 

There are countless examples arising from computing theory and practice 
which tend to support this thesis. To give just a few, the functions f(x) = x2, 
f(x, y) = gcd(x, y), and f(x) = \</x ] all lie clearly in both the left side and right 
side of 4. On the other hand, the function f(x) = 2X lies clearly outside both the 
left side and right side of 4. This function is not in PracSolv, because when x 
has length 1000 bits, f(x) has length about 21000 bits, which cannot be physically 
written using all the atoms on Earth to express bits. 

There are also 0-1 valued functions in NAT which are clearly outside both 
sides of Thesis 4. For instance, let / represent truth in WS IS (the weak second 
order theory of one successor). That is, f(x) = 1 if x codes (say using ASCII con-

. ventions) a true formula in WS IS, and f(x) = 0 otherwise. Then / is computable, 
but provably not polytime [Mey]. Furthermore Stockmeyer [Sto] proved that any 
Boolean circuit that correctly decides the truth of an arbitrary WS IS formula 
of length 616 symbols must have more than 10123 gates. Thus any conceivable 
actual computer that is correctly programmed to solve an arbitrary such instance 
would take until the sun burns out to solve at least one of them. 

There are many natural problems whose status with respect to both sides of 
Thesis 4 is questionable. Among these are the 300 or so "NP complete" problems 
listed in the book by Garey and Johnson [GJ]. None of these is known to be 
polytime and none is known to be in PracSolv. If any one of these problems is 
polytime, then provably they all are (i.e. P = NP). It is conceivable that one 
(and therefore all) are polytime, but nevertheless the satisfiability problem has 
no practical algorithm. This would refute Thesis 4. Unless and until this unlikely 
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situation is demonstrated, however, the assumption P =/= NP together with the 
thesis 4 provides a very useful orientation for programmers in the field. Anyone 
who is trying to write a program for a problem and discovers the problem is NP 
complete would be well advised to change goals and work on a more feasible 
version of the problem, 

There are other potential candidates for refuting Thesis 4, and it is instructive 
to consider some of these. 

CANDIDATES FOR (polytime n NAT) - (PracSolv n NAT) 

A) Factoring in Q[x] 

Lenstra, Lenstra and Lovasz [LLL] were the first to prove that factoring univariate 
polynomials over the rationals can be performed in polytime. The original runtime 
proved for their algorithm was 0(n12), and it did not appear to be practical. 
However more recent versions [Scho] have smaller runtimes and do appear to 
work on large inputs in a reasonable amount of time. Before [LLL] there were 
programs which effectively solved the problem in most cases, although these 
programs were known to "blow up" on a small set of inputs. These "bad"inputs 
can arise in algebraic number field computations. 

B) Minor-Closed Graph Families 

Robertson and Seymour [RS] proved the remarkable result that every minor-
closed family of finite graphs has a finite obstruction set. Here an undirected 
graph if is a minor of G iff H can be obtained (up to isomorphism) from G by 
contracting certain edges and deleting certain edges and vertices. A family 5" of 
graphs is minor-closed iff whenever G e 3T and H is a minor of G, then H e 2T, 
A graph Go is an obstruction of ST iff Go 4- ^ but if H is any proper minor of 
Go, then H e 2T. Thus to determine whether a given graph G is in 2T it suffices 
to check, for each obstruction Go of ST, whether Go is a minor of G. 

Robertson and Seymour also proved that for each fixed H there is a polytime 
algorithm which takes an arbitrary graph G as input and determines whether H 
is a minor of G. It follows that every minor-closed graph family has a polytime 
recognition algorithm. Later the minor checking algorithm was improved to run 
in time 0(n3), but in either case the runtime increases by an extremely large 
constant factor with increasing H. None of these algorithms is practical when H 
has four or more vertices. 

The most famous minor-closed family is the class of planar graphs, which 
have the Kuratowski graphs Ks and £3,3 as the obstruction set. More generally, 
for any fixed surface, the set of graphs embeddable on that surface forms a 
minor-closed family and hence is in polytime. When the surface is a torus, there 
are some 800 known obstructions, and there may be more. Another interesting 
minor-closed family consists of graphs embeddable in R3 in such a way that no 
two cycles are linked. See [FL] for other examples. 

Although the work of Robertson and Seymour does not yield practical algo
rithms for the recognition of any of these minor-closed families, such algorithms 
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are known in some cases (e.g. planar graphs). Also the knowledge springing 
from [RS] that these problems are polytime has spurred research to find prac
tical algorithms, with success in some cases [FL]. Time will tell whether some 
natural minor-closed family resists long and concerted efforts to find a practical 
recognition algorithm. 

CANDIDATES FOR (PracSolv n NAT) - (polytime n NAT) 

A) Linear Programming 

The simplex method has long been an extremely useful practical method for 
solving linear programming problems, even though the method, or at least some 
versions of it, are known to be exponential in the worst case. Thus linear 
programming used to be a candidate for the above difference set. However, 
in 1979 Khachian [Kha] proved that the problem is in polytime, using a very 
different algorithm. 

B) Probabilistic Polytime (Verified Answer) 

There are some natural problems not known to have (deterministic) polytime 
algorithms but which do have verified probabilistic polytime algorithms. These 
"Las Vegas" algorithms require a random source of input bits (e.g. coin tosses). 
For every problem instance the algorithms terminate in polytime with high 
probability, and when they do terminate the answer given is always correct. An 
early example of such a problem is factoring univariate polynomials over large 
finite fields [Ber]. A more recent example is the set of prime numbers. Probabilistic 
algorithms for compositeness have been known for some time [SS], [Rab], but 
these have one-sided error, as in C) below. Recently Goldwasser and Kilian [GK] 
found a probabilistic polytime algorithm for prime testing which is always correct 
when it gives an output, but it fails to give an output for certain prime inputs. 
This was improved [AH] to yield a provably correct but impractical Las Vegas 
algorithm for prime recognition. A practical version has also been developed 
[AM], but this algorithm lacks a proof that the runtime is polynomial. 

It turns out that both the polynomial factoring algorithm [Ber] and the 
practical prime recognition algorithm [AM], although probabilistic in principle, 
work perfectly well in practice when the random source of bits is replaced 
by some simple deterministically generated sequence of bits. Thus there exist 
plausible deterministic polytime algorithms for these problems, and it may be 
only a question of time until someone proves them correct. In fact, Miller [Mil] 
proved that prime recognition is deterministic polytime, assuming the Extended 
Riemann Hypothesis. 

C) Probabilistic Polytime (One-Sided Error) 

Some probabilistic set recognition algorithms always terminate in polytime; if 
they accept the input then that answer is always correct, but if they reject 
the input then there is a small error probability. This error probability can be 
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made arbitrarily small simply by repeating the computation a number of times, 
assuming that the random input bits are truely random and independent. 

One example [Schw] of a problem with this kind of probabilistic algorithm, but 
not known to be in (deterministic) polytime, is the set of nonsingular n xn matrices 
whose entries are linear polynomials over % in n variables. The probabilistic 
algorithm consists of choosing small random integer values for the variables and 
evaluating the resulting determinant. If the value is nonzero, then the original 
matrix is certainly nonsingular; if the value is 0, that is evidence that the original 
matrix was singular. The experiment can be repeated any number of times. 
Assuming we have access to a truely random source of bits, this is a practical 
algorithm, However in practice truely random sources are scarce or non-existent, 
so pseudo random number generators with weakly random seeds are used. These 
seem to work well, but if the algorithm repeatedly outputs "singular" for a given 
input matrix it is hard to justify having total confidence in the result. Hence on 
the one hand the problem may not really be in PracSolv, while on the other hand 
it may be deterministic polytime for the reasons outlined in B) above. 

A second example in this category is testing irreducibility of polynomials 
in many variables over Q5 using "concise" representation [vzG]. Here a "yes" 
answer from the probabilistic algorithm means the input polynomial is certainly 
irreducible, while a "no" leaves some room for doubt. The algorithm has been 
extended [KalT] to find likely factorization in case of a "no" answer. For each 
input polynomial of size n (in concise representation), the probability of the 
factorization algorithm producing a false factor can be made much less than 
2~". Nevertheless, the possibility of error persists, because there is no known 
deterministic polytime algorithm for testing divisibility of polynomials in many 
variables. 

In sum, there are no very convincing candidate counterexamples to thesis 4. 
However some natural polytime problems, especially certain minor-closed graph 
families, certainly do not have known practical algorithms. But the tendency is 
for practical algorithms for a problem to be discovered, once it is known that the 
problem is polytime and a concerted effort is made, 

2. Realizing Constructive Proofs 

A constructive proof of a theorem provides computational information. For 
example, if the theorem has the form Vx3yA(x, y) the proof should (at least 
implicitly) provide an algorithm for computing a function / such that VxA(x,f(x)) 
holds. We say that / realizes the assertion VxByA(x,y), We are interested in 
studying the complexity 'of functions / needed to realize such assertions; for 
example, determining whether there is a polytime such / , The notion of a feasibly 
constructive proof is discussed in [CU], A necessary condition for a proof of a 
theorem to be feasibly constructive is that it provide polytime algorithms for any 
functions needed to realize the theorem. 

Here are some theorems with feasibly constructive prtoofs : 
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Kuratowski's Theorem. Every finite graph G can either be embedded into the 
plane, or one of the graphs K5 and £3,3 can be homeomorphically embedded in 
G. If / is a realizing function, then f(G) is either a planar embedding of G or 
identifies an embedding of either K5 or ^ 3 in G. One can in fact infer a polytime 
such / from the usual proof of Kuratowski's theorem. 

Many theorems of graph theory and finite combinatorics can be feasibly 
realized in a similar manner, including Hall's theorem and Menger's theorem. 

The Extended Euclidean Algorithm. For all integers a and b there exist integers x, 
y, and d such that d = ax-{-by and d\a and d\b. Again Euclid's proof shows how 
x, y, and d can be computed from a and b in time at worst 0((loga + logfc)2). 

An interesting example whose feasibility status is unknown is Fermat's "Little 
Theorem", which we state in contrapositive form: For all integers n and a there 
exists an integer d such that if 0 < a < n and an~{ -fi 1 (mod ri) then 1 < d < n 
and d divides n. A feasibly constructive proof of this theorem would provide a 
polytime / which produces a divisor d = f(a, ri) for n whenever a and n satisfy 
the hypotheses above. Such an / would provide a major breakthrough in the 
quest for practical algorithms for large integer factorization. This is because if 
n > 1 is composite and not one of the rare "Carmichael numbers" [HW] then at 
least half of the integers a such that 0 < a < n satisfy an~x zjk 1 (mod ri). (The 
fl's in the multiplicative group Z* which satisfy an~{ = 1 (mod ri) form a proper 
subgroup of Z*, assuming n is not a Carmichael number.) 

3. Type 2 Functions 

Higher type functions take functions (as well as numbers) as arguments. We 
may as well suppose that such functions take numbers (as opposed to functions) 
as values, because of the following device. If F : MN —> NK , then we define 
Fi : N N x IN -» N by 

F{(g,x) = F(g)(x). 

Thus Fi is for practical purposes the same as F. 
Higher type functions may be needed to realize theorems for two reasons. 

First, the theorem may make an assertion about functions, as in VgVx3yA(g,x, y). 
Second, even if the subject matter is numbers rather than functions, the usual 
way of realizing an implication A —> B is by a function F such that for all objects 
g realizing A, F(g) realizes B. 

In order to discuss the complexity of such functions F we must explain how to 
compute them. For now, we restrict attention to "type 2" functions F(g, x) which 
take as arguments a numerical function g : N -> N and a number x e N. An 
algorithm for computing F takes x as input in the ordinary way, but it accesses 
the function g via an "oracle". Thus a machine executing the algorithm has a 
special query register (or tape). When the machine assumes a query state with a 
number y in this register, the "oracle" replaces y by g(y). 
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This is the only mechanism by which the machine can acquire knowledge of 
the input g. It follows that for fixed g and x, the value F(g,x) can only depend 
on g(y) for finitely many values y. 

In measuring the runtime of the machine which computes F(g,x), we shall 
make the convention that each oracle call g(y) takes just \g(y)\ steps. This pins 
down the definition of runtime, but does not solve the problem of defining a 
complexity class, such as polytime, for type 2 functions. For type 1 functions, 
polytime means time polynomial in the length of the input. To generalize this to 
type 2, we must decide what is the "length" of an input function g : N —• N. 
The definition below is a first step in that direction. 

Definition 5. A type 2 function F is in the class OPT (oracle polytime) iff there 
is an algorithm which computes F whose runtime on input (g, x) is bounded by 
a polynomial in m and |x|, where m is the length of the maximum query answer 
g(y) returned during the computation. 

If we restrict attention to inputs g which are 0-1 valued, then OPT provides a 
perfectly reasonable way to formalize polytime for type 2 functions. This was the 
original method used to define a polytime version of Turing reducibility between 
sets [Cool]. 

However, for arbitrary input functions g, OPT is too broad to be identified 
with polytime. For example, if 

F(g,x)=gW(x) 

(g composed with itself |x| times and evaluated at x) then F is in OPT. But if 
we define go by go(y) = y2, and let f(x) = F(go,x), then f(x) = x2^, which is 
not polytime. Thus there are type 2 functions in OPT which, when interpreted 
as operators on the set of type 1 functions, do not preserve the set of polytime 
functions. 

Nevertheless, we will take F G OPT to be a necessary condition for F to be 
intuitively polytime. This is enough to show that the pigeon hole principle below 
has no feasibly constructive proof. 

Proposition6 (Pigeon Hole Principle). VgVx3a3b[a,b < x and (g(a) ;> x 
or (a^b and g(a) = g(&)))] 

A functional F realizing the above proposition would satisfy F(g,x) = 
< a,b >, where < a,b > is a natural number coding the pair (a,b) using a 
standard pairing function, and a and b satisfy the condition in Proposition 6. 

Theorem 7. No function F in OPT realizes the Pigeon Hole Principle. 

The proof is an easy consequence of the definition of OPT. Consider an 
algorithm which computes an F which realizes the Pigeon Hole Principle and fix 
some input x > 0. Each time the algorithm poses a distinct new query j ; < x w e 
choose the answer g(y) to be the least natural number not yet given as a query 
answer for this computation. In this way we can force the algorithm to query 
g(y) for each y in {0,1,...,x} before it finds a and b satisfying Proposition 6. 
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Thus the algorithm must make at least x + 1 different queries, a number which 
grows exponentially in \x\. 

4. The Basic Polytime Functions 

As mentioned above, it seems that some definition of length for functions must 
be given in order to give a proper generalization for polytime to type 2 functions. 
One possibility is to define the length \g\ of g to be,a function, as follows: 

Defìnition8. If g : N —> N, then the length \g\ of g is the type one function 
defined by 

|g|(n)=max|g();)|. 

This definition and the development below appears in [Kap] and [KC]. 
We define a type 2 polynomial to be any type 2 function P(L, ri) represented by 

a "polynomial expression" in the type 1 variable L and the numerical variable n. 
More formally, We give a recursive definition of polynomial expression as follows : 

a) The variable n and the constants 0 and 1 are each polynomial expressions. 
b) If P and g are polynomial expressions, so are P -\-Q,P • Q, and L(P). 

Each polynomial expression represents a type 2 function (which by definition 
is a type 2 polynomial) in the obvious way. An example of a type 2 polynomial 
is 

P(L,w)=L(L(n + 3)-L(n)). 

Definition1). The type 2 functional F(g,x) is basic polytime iff for some type 
2 polynomial P(L,ri) some oracle algorithm computes F(g,x) within F(|g|,\x\) 
steps, for all g and x. 

It can be shown that every basic polytime function is in OPT. Thus, for 
example, the bounded maximum function 

M(g,x) = \g\(\x\) = max\g(y)\ 
\y\<\x\ 

is not in OPT and hence not basic polytime, since 2 |x| oracle calls are necessary 
to evaluate M(g,x) in case g is identically 0. This shows that the permissible 
runtime bounds for basic polytime functions are not necessarily themselves basic 
polytime, because M(g,x) = P(L, ri) = L(ri) is a type 2 polynomial, where L = \g\ 
and n = \x\. On the other hand the length maximum function 

LM(g,x) = max \g(y) \ 
y<\x\ 

is basic polytime, with runtime bound 

P(L,ri) = 0(n-L(n)), 

where n = \x\ and L = \g\. 
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The basic polytime functions have nice closure properties, and (unlike OPT 
functions) they preserve the set of type 1 polytime functions. What is more 
remarkable they turn out essentially to coincide with the polynomial operators 
defined by Mehlhorn [Meh] in 1976. The latter functions were defined using Cob-
ham's [Cob] limited recursion on notation, and the definition does not mention 
machines or runtimes. Polynomial operators were introduced to generalize the 
notion of polytime reducibility from sets to that of functions. 

Theorem 10 [Kap, KC], A type 2 function F(g,x) is basic polytime iff it is a poly
nomial operator. 

It is straightforward to prove the "if" direction in the above result. The 
converse requires considerable effort, however, because of the necessity of pre-
bounding the growth rate each time the operation of limited recursion on notation 
is applied to a function. 

Theorem 10 reinforces the conclusion that the basic polytime functionals form 
a natural robust class. However we will give an example in the next section of a 
type 2 function outside the class that still seems to merit the label "polytime". 

5. Realizing Well-Quasi-Orders 

Definition 11. Let g be a set and < be a binary relation in g. Then (g, <) is a 
quasi-order iff < is reflexive and transitive, (g, <) is a well-quasi-order (wqo) if 
in addition, for every infinite sequence qo,qi,..., from g, there exists indices i,j 
with 7 < j and q\ < qj. 

Note that (N, <) is a wqo; and in fact every well-order is a wqo. A more 
interesting example is (^, <„,), where ^ is the set of finite graphs and H <„, G 
iff FT is a minor of G. Robertson and Seymour's monumental work [RS], which 
will cover more than 1500 pages, shows that (^,<m) is a wqo. An immediate 
corollary is the fact that each minor-closed graph family has a finite obstruction 
set, as mentioned in Sect. 1. 

Robertson and Seymour's proof is not only long, it is nonconstructive. Yet the 
assertion that some pair (g, <) is a wqo should have computational significance, 
as suggested by the following definition. 

Definition 12. A function F realizes a wqo (g, <) iff for all g : N —• g, F(g) = 
( /, j ) , where / < j and g(i) < g(j). 

We are interested in the complexity of the functions F required to realize a 
given wqo (g, <). This gives an indication of what techniques are required to 
prove that (g, <) is a wqo. In the case of (K, <), it turns out that there is a 
realizing basic feasible functional. We first note however that the "brute force" 
algorithm is not polytime. By brute force we mean: query g(0),g(l),g(2),...g(j) 
until g(j — 1) < g(j). This algorithm could require up to g(0) + 1 queries, and is 
not in OPT, 
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A basic polytime realizing function F(g) for (N, <) can be computed using 
binary search. We initialize a = 0 and b = g(0) + 1. First compare g(a) and g(b); 
if g (a) < g(b) then output < a,b> and halt. Otherwise we note that 

(*) 0<g(a)-g(b)<b-a. 

Let c = [\(a-\- b)\. Assign to the pair (a,b) either (a,c) or (c,b) as follows. If 
after one of these assignments a < b and g (a) < g(b) then make that assignment, 
output < a,b >, and halt. Otherwise choose the assignment which maintains the 
invariant (*) and repeat the above starting with the computation of c. 

This algorithm terminates after at most |g(0)| iterations. The largest query 
argument is g(0) + 1 , so the time charged for each query is at most |g|(|g(0) +1|). 
Hence the runtime is bounded by P(L) = O(L(0) • (L(L(0) + 1) + L(0))), where 
L = \g\. Hence the functional it computes is basic polytime. 

As a second example, consider the lexicographical order (JN x N , < ) , where 
(a,b) < (a',b') iff either a < d or (a = d and b < b1). Then no basic polytime 
functional realizes this wqo. In fact no polytime function realizes this wqo under 
any reasonable definition of polytime. To see this, we define for each parameter 
c e N a sequence gc(0),gc(l),gc(2),... of pairs as follows: 

(c,c), (c,c-l),..., (c,0) 
( c - l , c " c " ) , ( c - l , c l c l - l ) , . . . , ( c - l , 0 ) 
( c - 2 , c " c " 2 ) , . . . , ( c - 2 , 0 ) 

(0 ,cl c l c ) , . . . , (0 ,0) 
( 0 , 0 ) , . . . . 

We argue below that the function / defined by f(c,i) = gc(i) is polytime com
putable. Suppose however that we assume that F realizes the wqo (N x N, <) 
and define h by 

(**) h(c) = F(Xif(c,i)) . 

Since the sequence gc(0),gc(l),gc(2),... is strictly decreasing with respect to < for 
at least the first c'c'c values, it follows that j > c,c,c, where h(c) = (i,j). Hence h 
is not polytime. Thus (**) indicates a sense in which F does not preserve polytime 
functions. 

To see that / is polytime computable, note that if gc(i) = ( c—k, c|c| ) for some 
k,\<k<c, then i > cIcl*"\ Hence \c\k = 0(\i\), so in general |gc(i)| = G(|z|2 + \c\). 

As a third example, consider the length lexicographical order ( N x N , <% 
defined by (a,b) <f (d,V) iff either \a\ < \d\ or (\a\ = \d\ and \b\ < \V\). We then 
have 

Theorem 13 [Coo2]. No basic polytime F realizes (N x N, <f). 

Nevertheless, the brute force algorithm defines a realizing function F which 
seems intuitively to be polytime. In particular, F is in OPT, and F preserves 
polytime functions in the sense of (**). This suggests that the class of basic 
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polytime functions should be enlarged if it is to include all intuitively polytime 
type 2 functions (see [Coo2]). 

As a fourth and final example we return to graph minors. 

Theorem 14 [FRS]. Suppose F realizes (&, <„,). Then there is f : N x N - • & such 
that f(c,i) has at most c + / nodes, and if 

h(c) = Fßif(cM 

then h grows faster than any function provably recursive in Peano Arithmetic. 

Peano Arithmetic refers to the standard first order theory of N under + and 
x. Roughly speaking, it can formalize any argument not involving infinite sets, 
In particular, Ackermann's function is provably recursive in Peano Arithmetic, 
Thus any function realizing (^, <,„) is infeasible in a very strong sense. 

6. Type 3 Functions 

The most natural way to realize the Weak König's Lemma (König's Lemma for 
binary trees) is via a type 3 function. We state the lemma in contrapositive form, 
to give it computational content. 

Proposition 15 (Weak König's Lemma (WKL)). If every path is finite in a binary 
tree, then there is a uniform bound on path length in the tree. 

A realizing functional B should take a function K, which bounds paths, 
to a uniform bound B(K). To make sense of the path-bounding function K, its 
argument g should code a potentially infinite branch. This branch can be specified 
by a function g : N —• {0,1}, where the binary sequence g(0),g(l),g(2),.,. 
indicates successive choices (left or right) of children of nodes in the tree, starting 
with the root. Then K(g) is an upper bound on the longest path in the tree 
which is specified by an initial segment of the sequence g(0),g(l),... . Thus two 
different functions g and gf might both be extensions of the same finite maximal 
path in the tree, and we do not require that the two upper bounds K(g) and 
K(gf) for this path be the same. Any total function K e N^0'^ provides enough 
information to specify a uniform bound B(K) on path length, even though K 
does not uniquely determine the tree. 

Definition 16. The type 3 function B realizes WKL iff for all K G N^0 '1^ and all 
g e {0,1}N there exists g' e {0,1}N such that g(i) = g'(i) for all / < K(g% and 
K(g')<B(K). 

Notice that we do not require K(g) < B(K), but only K(g') ^ B(K) for some 
gf which extends the same finite maximal path as g. (For an alternative definition 
of realizing WKL see [Fef].) 

It turns out that not just the complexity of B is in question, but there is even 
doubt about whether a computable B exists which realizes WKL in the above 
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sense. In fact computability theory for type 3 functions suffers because there 
are at least two different plausible but inconsistent definitions of computable 
function in the literature. Fortunately these definitions are essentially equivalent 
for type 2 (and type 1) functions; namely computable means computable by a 
Turing machine with oracles. The two definitions we have in mind are Kleene's 
general recursive functionals and the so-called recursively countable functionals 
(see [GH] for an excellent presentation of both). 

It turns out that no Kleene general recursive functional B realizes WKL. 
Roughly speaking, this is because an algorithm for computing B can access its 
input function K only by posing query arguments g to an oracle, which returns 
K(g)> Further, the only possible arguments g that can be posed are recursive. But 
it turns out (see [GH]) that there exists an infinite binary tree with no infinite 
recursive branch. Of course this tree has arbitrarily long finite branches. Thus 
one can define K such that K(g) is an upper bound for the longest path which 
g extends, when g is recursive, and K(g) is arbitrary if g is not recursive. When 
presented with such an input K, no Kleene algorithm can compute a sensible 
value for B(K). 

On the other hand, there is a recursively countable function B which realizes 
WKL. This is partly because recursively countable type 3 functions have as their 
domain only the set of "continuous" type 2 functions K. Here K is continuous 
iff for each g e {0,1}M, there exists m G N such that K(g) is determined by 
the restriction of g to {0, \,...,m— 1}. (In other words, K(g') = K(g) for all g' 
such that g'(z') = g(i), 0 < i < m.) A recursively countable oracle only queries its 
input at finite restrictions go = g | {0,l,...,m — 1} of a function g. The oracle 
may return K(g), or the symbol J_, denoting "unknown". But it can only return 
_L for a finite number of restriction sizes m. By systematically querying K at all 
possible finite 0-1 sequences go of length m, where m = 1,2,... the algorithm will 
(by König's Lemma) eventually reach a value of m for which the oracle can give 
a value K(g) for each g0 of length m. The algorithm then outputs the maximum 
of all these values of K(g) as the value of B(K). 

7. Conclusion 

One general phenomenon we have seen is that the higher the type level, the 
harder it is to pin down suitable definitions for complexity classes. Thus for type 
3 functions we are not sure what computable means. For type 2 functions we are 
not sure what polytime means. We might add that for type 1 functions we are 
not sure what linear time means. 

We have talked about the notion of realizing theorems informally, but lo
gicians have given various general formal definitions of realizability [Tro]. This 
development includes specification of a formal system whose theorems are to be 
realized. Buss's system IS\ [Bus] is especially interesting here, since in some sense 
it captures first order polynomial time reasoning. In particular, the functions 
provably recursive in IS\ are precisely the polytime functions. The underlying 
logic is the intuitionistic predicate calculus, and hence the proofs are "feasibly 
constructive" (see [CU]). 
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In [CU] a class of functionals of all finite types is introduced using the typed 
lambda calculus and a type 2 "recursor" for limited recursion on notation. This 
class, called the basic feasible functionals in [CK], turns out at type level 2 to 
coincide with the basic polytime functionals discussed in Sect. 4. In [CU] it 
is shown that the basic feasible functionals provide realizability interpretations 
for the system IS2 in two different senses: Kreisel's "modified realizability" and 
Gödel's "Dialectica interpretation". These interpretations are used to study the 
proving power of IS2 and related systems. 

A major goal of studying formal systems such as IS2 is proving independence 
results and conservative extension results. An example of the latter, proved in 
[Fer] and [Fef], is that when a version of Weak König's Lemma is added as an 
axiom to IS2, there are no new resulting theorems of the form Mx3yA(x,y), where 
A(x, y) is a polytime relation. 

A nice (but so far elusive) result would be to show that a standard theorem, 
such as Fermat's Little Theorem, is independent of IS^* This would not show 
that the factor finding function f(a,n), discussed in Sect. 2, is not polytime 
computable. But it would show that no algorithm for such a function has 
a feasibly constructive correctness proof. The significance of this lies in the 
following general observation: Natural problems solvable by polytime functions 
can be solved by polytime functions with algorithms which have correctness 
proofs that involve only polytime notions. 

Acknowledgements. I am grateful to Erich Kaltofen, Stephen Bellantoni, Toni Pitassi, and 
other colleagues for pointing out errors and suggesting improvements in the original 
manuscript. 
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Introduction 

In this text we shall deal with only one aspect of the conformai field theory - the 
concept of the modular functor. Recall the main structure of the conformai field 
theory. Let M be a complex curve. First of all the theory associates to M a finite 
dimensional vector space H(M). The construction of H(M) depends on the choice 
of a complex structure on M, but really the correspondence M -> H (M) is topo
logical by nature. Our approach to the definition of H(M) is the following. Let 
Dif(JVf) be the group of all C°°-diffeomorphisms of M. The group Dif(M) acts on the 
space of all complex structures on M. 

If a group G acts on a manifold S and n is a point of S we can define Gn - the 
stability group of 77. If G acts transitively on S, then S = G/Gn. It is possible to define 
the object "G„" for a non-transitive action so that we have always S ^ G/"G". 
Assume that a group H acts transitively on S and Hn - the stability group of 77; 
define G„ as the following diagram in the category of groups: G -> H — Hn. In other 
words, Gn is the "intersection" G and Hn in H. 

So we can assign to a complex structure "com" on M the "subgroup" Difcom(M) 
c Dif(M). It can be shown, that for different complex structures com! and com2 

the "subgroups" Difconil(M) and Difcom2(M) are "conjugate" in some "derived" sense. 
We want to think about the space H(M) as the space of cohomologies of 

the group Difcom(M) with coefficients in some one-dimensional representation. 
This representation is related to the value of the central charge of the theory. In 
this text we shall give some arguments in favour of this fact. Really, we shall 
construct the Lie algebra of the group Difcom(M), and realize H(M) as the space of 
"integrable" homologies of this Lie algebra with coefficients in some distinguished 
one-dimensional representation. 

So, from this point of view, a minimal conformai field theory is the investigation 
of the group of symmetries of a complex structure on a surface. By the same method 
we can explore the symmetries of other geometrical structures. For example, the 
Wess-Zumino theory is attached to the group of holomorphic transformations of 
a vector bundle on M, 
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In more general cases we have a sheaf of associative algebras on M (e.g. 
conformai field theory associated with a W-algebra). The modular functor is the 
homologies of this object. 

The contents of the text are clear from the titles of the sections. The main result 
is a theorem of the Section VI. 

Now a few words about the references. Information about continuous coho
mologies of the Lie algebras of vector fields on smooth manifolds is contained in 
the book: D.B. Fuchs, Cohomologies of infinite dimensional Lie algebras, Plenum 
Publishing Corporation, New York 1986. 

Conformai field theories, associated with Kac-Moody algebras are discussed by 
Akihiro Tsuchiya, Kenji Ueno, and Yasuhiko Yamada in the article Conformai field 
theory on universal family of stable curves with gauge symmetries (Advanced Studies 
in Pure Math. 19 (1989) 459-565). 

The Segal's article in these Proceedings is devoted to the notion of modular 
functor. Determinant bundles on the moduli space of curves are explored in: A.A. 
Beilinson and V. A. Schechtman, Determinant bundles and Virasoro algebras, Comm. 
Math. Phys. 118(1988)651. 

Minimal conformai field theories were constructed in: A.A. Bela vin, A.M. 
Polyakov and A.B. Zamolodchikov, Nucl. Phys. B241 (1984) 333. 

The theory of singular support of representations of a Lie algebra is developped 
in O. Gabber, The integrability of the characteristic variety, Amer. J. Math. 103 
(1981)445. 

In the article: B.L. Feigin and B.L. Tsygan, Riemann-Roch theorem and Lie 
algebra cohomology I, Proceedings of the winter school on geometry and physics, 
Srni, 9-16 January, 1988, pp. 15-52, you can find the calculations that may be useful 
for generalization of the results of this text on the manifolds of dimension greater 
than one. 

Ideas of deformation theory are in the works of Gerstenhaber, Quillen, Halperin, 
Stasheff, and others. 

The construction of the modular functor in the Virasoro case is contained in: 
B.L. Feigin and D.B. Fuchs, Cohomology of some nilpotent subalgebras of the 
Virasoro and Kac-Moody Lie algebras, IGP, vol. 5, no. 2 (1988). 

I. Definition of the Lie Algebra of Vector Fields 
on a Complex Manifold 

Let M be a complex manifold of dimension n. What is the Lie algebra of holo
morphic vector fields on Ml 

Let T be the tangent bundle of M, T = T 0 ' - 1 0 T~uo - the Hodge decomposi
tion of the complexification of T The space of C00 sections F(T_ 1 '°) of the bundle 
T - 1 ' 0 is closed with respect to the bracket. Locally, an element of r(T~lt0) has the 
form 

Z J - M Z 1 > • • • ' Z n > Z l > • • • J Z n ) ^ ~ • 

i OZ: 
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Denote by TiJ the bundle (/\" 'T_ 1 '0) ® (/\~-,T,0*~1), where /,; are integers. In 
particular F 1 , 1 is the bundle of volume forms. Consider the Dolbeault resolution 
of the sheaf of holomorphic vector fields on M: 

0 _• T - 1 ' 0 -^ T~ul ^ T"1 '2 -> • • • T - 1 ' " -• 0. 

The bracket on the space F(T~1,0) is extended in a natural way on the space 
F(T-1 '0) © T(T~U1) © • • • © r(T~l>n). (Since elements of r(T~ui) are (0, l)-forms 
with values in the bundle T~1,0). It is easy to see that this extended bracket defines 
a structure of differential. Lie superalgebra on the following complex 

o -• r(T~U0) -+ r(T~ul) ^ r(T~U2) -• • • • r(T~Un) -+ o. 

We shall call this differential superalgebra the Lie algebra of holomorphic vector 
fields on M since it is the space of global sections of the resolution of the sheaf of 
holomorphic vector fields on M. We shall denote this complex by F(Lie(M)). It is 
clear that for affine M the algebra F(Lie(M)) is equivalent to Lie(M), where Lie(M) 
is the Lie algebra of holomorphic vector fields on M. Another approach to the 
definition of the Lie algebra of vector fields on a manifold is the following. Choose 
a covering {Uh i e 1} of M, where each C/f is affine. Let us associate to any subset 
h < ii < " ' < h °f J t n e Lie algebra Lie(£/fi n l//2 n • • • n Uti). Using this set of data 
we can define by standard method a cosimplicial object in the category of Lie 
algebras. We omit details of the construction, but it is possible to show that such 
cosimplicial Lie algebras for different coverings are equivalent in some sense. In 
particular, we can use the covering consisting of all open sets. So, we shall call this 
cosimplicial object the Lie algebra of vector fields on M and denote it by Lie^(M). 
The differential Lie superalgebra F(Lie(M)) defines in the standard way a co
simplicial Lie algebra which is equivalent to LiezJ(M). 

Remark. Let A be a group, £ an >4-bundle on M, End(£) the bundle of endo-
morphisms of £. Denote by End(^) ® T0,i the bundle of (0, /)-forms with values in 
End(£). The Dolbeault complex of F End(£): 

0 -> r(End({) ® T°'°) ^ F(End(0 ® T0 '1) ^ • • • -• F(End(£) ® T°>") -• 0 

has an obvious structure of differential Lie superalgebra. This object is the natural 
candidate for the Lie algebra of the endomorphisms of the bundle. We can also give 
the cosimplicial version of this definition, using coverings of M. Note that all 
statements in this text have their counterpart for the algebra FEnd(^), or for the 
cosimplicial version End^(^). 

II. Continuous Cohomologies of Lie(Af) 

Using the methods of the Gel'fand-Fuchs theory of the continuous cohomologies 
of the Lie algebra of vector fields on a smooth manifold it is possible to define 
and to calculate the continuous cohomologies of the differential Lie superalgebra 
FLie(M). First we recall main definitions and results from the Gel'fand-Fuchs 
theory. 
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Let AT be a C00-manifold and L(N) be the Lie algebra of C°°-vector fields on N; 
L(N) is a topological Lie algebra with respect to the C°°-topology. Continuous 
cohomologies of L(N) are defined as the cohomologies of the subcomplex of the 
standard cohomological complex of L(N) which consists of continuous cochains. 
The procedure of calculation of the continuous cohomologies H*(L(N)) is divided 
into two parts - "local" and "global". The aim of the "local" part is the calculation 
of the continuous cohomologies of the Lie algebra Wn of formal vector fields on R", 
where n = dim N. An element of Wn is a vector field on the formal neighbourhood 
of the origin in R". Gel'fand and Fuchs proved, that H*(Wn) is isomorphic to the 
algebra of cohomologies of some topological space Xn. The space Xn may be 
described as a preimage of 2n-skeleton of the base space of the universal GL(n, (C)-
bundle in the total space of this bundle. It is important for us that Xn is a GL(n, <C)-
space and therefore a GL(n, R)-space, since GL(n, R) c GL(n, C). 

The aim of the "global" part of the calculation is to "sew" the local calculations 
at all points of N. To do this let us associate with the tangent bundle of AT the bundle 
Q:U -> N, of which each fiber is isomorphic to Xn. The main theorem on continuous 
cohomologies asserts that the algebra Hf(L(N)) is isomorphic to the cohomologies 
of the topological space of all sections of the bundle Q. Note that in the most 
important case (for us) where n = 1 the space Xn is homotopic to the three-
dimensional sphere S3. 

The differential Lie superalgebra F(Lie(M)) is also equipped with C00-topology. 
So we can define the continuous cohomologies and calculate them using the same 
technique. Let us formulate the result in the case dim M = 1. 

Proposition. In the case dim M = 1, the algebra FT*F(Lie(M)) is isomorphic to the 
algebra of cohomologies of the space of all continuous maps Hom(M, S3) from M (as 
a topological space) into S3. 

It is not hard to find out the structure of the algebra if*(Hom(M, S3), (C). 
Consider the natural map 6 : M x Hom(M, S3) -> S3; 9(m,f) = f(m), where msM, 
f e Horn (M, S3). The corresponding map between cohomologies gives us a map 
C ^ H3(S3, <C) -> H*(M, C) (g) tf *(Hom(M, S3), <C) which we can rewrite as a set of 
three maps 0t : Ht(M, <C) -> H3~i{Rom(M, S3), C), i = 0, 1, 2. It can be proved that 
the algebra if*(Hom(M, S3), C) is a free skew-commutative algebra and the images 
of 0l9 62, 92 are the space of generators. Now we shall write down the explicit 
formulas for the cochains in the standard complex of F(Lie(M)) which represent 
the classes corresponding to the images of {0f}. 

We need some preparations. First we recall the definition of holomorphic 
projective connections on a one-dimensional manifold, A projective connection 
defines the following holomorphic differential operator of order three: 

D: r (T- 1 ' ° ) -> /XT 2 ' 0 ) 

such that in a neighbourhood of an arbitrary point three independent solutions of 
the equation D(q>) = 0 constitute the Lie algebra which is isomorphic to sl2(C). This 
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operator is defined by the projective connection up to a constant. We can fix this 
constant if we suppose that in the local coordinate Z the highest symbol of D is 

/ d\3 

equal to [ —— j .An operator D with these properties defines a projective connection. 

Remark. Fix a closed curve y e M without self-intersections. After restriction on y 
the operator D defines the operator of the second hamiltonian structure in the KdV 
theory. Note that a projective connection provides the family of operators: 

Di'.r^^^^T2^). 

Locally, the kernel of the operator D, consists of antiholomorphic tensors of type 
(0,1) with values in the kernel of D0 = D. We suppose that all operators Df have the 
same symbol. It is easy to see that D, is adjoint to Dx^{. (Recall that for any 
differential operator U : F -> F, where F, F are vector bundles on a manifold, the 
adjoint operator acts from the bundle F* ® Vol into F* ® Vol, where Vol is the 
bundle of volume forms, and * is a sign for the dual bundle.) 

Let us consider the following maps: 

¥0:A
3r(T-1'0)-^r(T0'0), 

¥1:A
2r(T^°)-^r(T1'0). 

Here the operator iF1 is given by the formula: ^ ( a , b) = (Da)b — a(Db), a, 
b G r(T~1,0). The map WQ is characterized up to a constant by the property: *F0 is 
a r(T_1 '0)-homomorphism. (Note that the spaces T(TiJ) are F(T~1'°)-modules.) 
The explicit formula for WQ\ 

J\ J2 J3 

V0(UU U2, U3) = Det fi fi fi 

/
'ft ftf fit 
1 J2 J3 

l / je/Xr-1-0) . Ut = ft{z,z)^, 

where z is a local coordinate on M, and "" ' means the derivation —. The value of 
oz 

the determinant does not depend on the choice of a coordinate. We need also the 
maps W2, W3. 

¥2 : A2r(T~^°) ® T(T~U1) -+ T^T0'1), 

^ . r(T-i,o) 8 / ^ r - i . i ) _> r(Tul). 

The formula for !F3 is similar to the formula for *Pl9 namely ^(f l , b) = D0(a)-b — 
a • Dt (b), a e r(T~u°), b e T(T~U 1). The map ¥2 is a r(r_1 '°)-homomorphism and 

is given by the same determinant as WQ, where U1 = ft —, U2= f2— and l/3 = 
~ ÖZ ÖZ 

1,3 3z 
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Proposition. There is a map ç from the standard homological complex of the Lie 
algebra F(Lie(M)) into the de Rham complex of M. The construction of <p is clear 
from the following diagram. In the top of the diagram is a fragment of the homo-
logical complex and the de Rham complex is on the bottom. 

A°r(T-^°) 

<P 

r(T~U0) 
© 

rrCT""1'0)®/^-1'1) 

±r{Tul) 

A2r(T-^0)-

r ^ 2 F ( T - 1 ' 0 ) ® F ( T - 1 ' 1 ) 

r(T1>°)< 
© T i 

A3r(T~U0) 

Vo 

I 
F(T°'°) 

Note that the de Rham complex here is reflected and shifted. 

Now let ß be an element of H^M). We can assign a continuous cochain of the 
Lie algebra F(Lie(M)) by the formula u -> </?, <p(u)}, where u is a chain, and < , > 
is the integration of cp(u) over the cycle ß. It is easy to see that this construction 
gives us the desired map H((M) -• H3'l(r(Uc(M))). 

Remark 1. The following part of our diagram 

*- A2r(T~U0) «- A3r(T~U0) <-

0 r ( T l , 0 ) r(T°>°) o 

is a morphism from the standard complex of the Lie algebra F(T"1 , 0) into the 
Dolbeault complex of M. For non-compact M the continuous cohomologies of 
F(T_ 1 '°) is infinite-dimensional at least in dimension three. This map of complexes 
induces the map V* -> H3(r(T~1,0)) where Fis the space of holomorphic functions 
on M. But for compact M we have dim /^(/"(T"1,0)) < oo for arbitrary i. Let us 
formulate the important corollary from the results of this section. 

Corollary. The dimension of the space Hc
1(F(Lie(M))) is equal to one if M is compact. 

It means that the algebra F(Lie(M)) has a non-trivial one-dimensional representation. 

Remark 2. If U is a finite dimensional Lie algebra and v : U -> End(F) is a finite 
dimensional representation of U, then the map a i-> tr v(a), a e U is a 1-cocycle of U. 
We can interpret this 1-cocycle as an element of the space H°(U, U*). This construc
tion can be easily generalized. The function a"\->tr(v(an))/nl is an element tr^n) of 
the space H°(U,Sn(U*)). In other word, the representation v defines a functional 
trv e H°(U, 5*(U*)), trv = ^ t x ^ Let us consider the Lie superalgebra U © Ql = 
U ® C[£] , where C[<^] is a Grassmann algebra in one variable; U © £U is a graded 
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Lie superalgebra with deg(tf) = 0, deg(^U) = — 1. It is evident that H*(U © ÇU) = 
H*(U, S*(U*)). So we have trv G H°(U © £U). This idea can be applied to the Lie 
algebra F Lie(M). Namely, using Gel'fand-Fuchs technique it is possible to find out 
the continuous cohomologies of the algebra F Lie(M) © ÇT Lie(M). This problem 
is also divided into two parts: "local" and "global". The local part consists of the 
calculation of the algebra H*(W1 © ^Wx) where Wx is the algebra of formal vector 
fields on a line. The answer is the following: 

fl*(Wi © tWx) S Hc*(Wi) © Hf(Wu Wf) © H*(WU S2W?) © • • • ; 

HkWJ^V ifi = 0,3 and Hc '(Wi)sO if/ ^ 0 , 3 ; 

H2(WU SW?) s H3(Wi, S'Wl*) s C 

and in other dimensions the cohomologies are equal to zero (i ^ 0). The multi
plication in the space H*(W1 ®^WX) is trivial. The cohomologies of the algebra 
T Lie(M) © CT Lie(M) are the same as those of the space of all continuous maps of 
M (as a topological space) into Y, where Y is the space satisfying H*(Y, <C) ^ 
H*(W1 © £WX). In particular, we can conclude that HC°(F Lie(M) © £F Lie(M)) is 
an algebra of polynomials in an infinite set of variables al9 a2,..., G i/c°(F Lie(M) © 
^FLie(M)). Therefore we can associate with a representation v of FLie(M) an 
analog of trace - an element of the space (£>[_&x, cr2 , . . .]. 

III. Description of a 1-Cocycle of the Cosimplicial 
Lie Algebra hieA(M) 

In this section we shall suppose that M is compact and one-dimensional. 
Choose the following simple Zarisky covering of M. Let p be a point of M, 

V1 = M{p), U2 is a small neighborhood ofp; {Ul9 U2} is a covering and let Lie0(M) 
be the following diagram of Lie algebras: 

Lie([/1) Lie(l/2) 

M 

Liefl/j n U2) 

We shall work with this diagram in the category of Lie algebras instead of the full 
object Lie^M). A 1-cocycle of Lie0(M) is the following set of data: {vl5 v2, Q}, here 
Q is a 2-cocycle of the Lie algebra Lie([/1 n U2), vt is a 1-cochain of Lie(£/j) and 
7r*£ = dvi9 where d is the differential in the standard cohomological complexe. Let 
z be a local coordinate at p, and Q is a standard Virasoro-type cocycle: 

8 fd\-ne, (d2fidf2 82f*dfi 
ldz'hdz) - KeS '=°l W Tz~ ~Wz Tz 

It can be proved that the restrictions of Q on Lie(l/1 ) and Lie(U2) are homologous 
to zero. It means that we can find yx and v2 such that dv{ = Q; these equations 
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(i = 1, 2) have only one solution since LT1(Lie(l/i)) = 0. Let us write down the 
formula for Q without using a local coordinate. 

Let us fix a projective connection on M and the corresponding operator D. The 
expression for the cochain: Q(UU U2) = Resp(Du1 •u2—u1- Du2), ut e Lie([/1 n U2). 
It is evident that § is homologous to Q. The restriction of Q onto Lie(LQ is zero since 
in this case (Du1)u2 — u1(Du2) is holomorphic on Uh ifuiy u2 e Lie(C/i). 

So, we have constructed the class in the space f/1(Lie0(M)). Really this is the 
same class as we constructed earlier for F(Lie(M)). Note that our construction of 
the cochain of the algebra F(Lie(M)) depends on the choice of projective connec
tions, but the corresponding cohomology classes are equal. The same is true 
for the algebras Lie0(M) and Lie^(M). In this section we have constructed a map 
H2(IàQ(U1 n U2)) -> i/1(Lie0(M)) ^ if1(Lie^(M)). It enables us to associate a one-
dimensional representation of the algebra Liez,(M) to any value of the central charge 
of the Virasoro algebra. 

It is not hard to calculate the whole space of cohomologies of Lie^(M). The 
result is: H*(Lie0(M)) s tf *(Lie„(M)) s tfc*(F(Lie(M))). This is a consequence of 
the following fact. Let N be an affine one-dimensional manifold and Lie(Af) is a Lie 
algebra of algebraic vector fields on N. 

Proposition. The natural pairing between the spaces Ht(Lie(N)) and FTJ(F(Lie(N))) 
is non-degenerate for arbitrary i. The algebra H?(r(Lk(N))) is free and skew-
commutative with one generator in degree three and r generators in degree 2, where 
r = dimff1(iV,C). 

IV. Homologies of the Lie Algebra of Holomorphic 
Vector Fields on a Compact One-dimensional Manifold M 

As in the previous section we choose the diagram (*) as a model for the Lie algebra 
of holomorphic vector fields Lie^(M). Let us fix a one-dimensional representation 
of the diagram Lie0(M) which we denote by Dc , c G C. It means that the correspond
ing element H1(Lie0(M)) is the image of the class a G H2(Lie(U1 n U2)) which is 
represented by the cocycle: 

We shall denote by Vir(l/1 n U2) = Lie(C/1 n U2) © (CC the central extension of 
Lie(t/1 n U2), where C is the central element, and the cocycle a corresponds to the 
value c = 1. 

The diagram (*) is the same as the set of mappings: 

Lie(l/1) 

Lie0(M) Lie(C/1 n U2) (**) 

^Lie(t/2) 
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Informally speaking, Lie0(M) is an intersection of the subalgebras Lie([/1) and, 
Lie([72) in L i e ^ n U2). By the standard arguments in the spirit of the Frobenius 
reciprocity law the homologies if,(Lie0(M), Dc) are isomorphic to 

Hf(Lie([/1), Ind(Lie0(M), Qc; Lie([/1))). 

Here we denote by the symbol Ind(y4, M; B) the induced representation of the Lie 
algebra B from the representation M of subalgebra A c B. It is evident from the 
diagram (**) that the representation Ind(Lie0(M), \3C; Lie(f/1)) is isomorphic to the 
restriction onto Lie(C/1) of the Vir(Uî n t/2^representation Ind(Lie((/2) © (DC, lc; 
Vir([/1 n U2)). Here lc is the one-dimensional module of the algebra Lie(C/2) © (CC, 
where Lie([/2) acts in trivially on lc and C acts by multiplication with c e C . l t is 
easy to see that if the genus of M is greater than one, then the representation 
Ind(Lie0(M), •«,; Lie(t/1)) is free over the universal enveloping algebra of Lie([/1). 
Now we are ready to formulate the result about the homologies but first we recall 
the standard notations about the representations of the Virasoro algebra. The 
algebra Vir is the central extension of the Lie algebra of vector fields on a punctured 
disk around the origin in C. Let C be the central element of Vir. There are two 

important subalgebras Vir+ and Vir+ in Vir : Vir+ = \f(z) — Q CC|/(0) = 0 [ and 
— ( d ) I dz J 
Vir+ = y(z)—-©(CC>, where / is regular at z — 0. Denote by lc the one-

dimensional Vir+-module, where C acts by multiplication with c G C; lhc denotes the 

one-dimensional Vir+-module, whose corresponding character is f(z)—\-^hf'(0), 
dz 

Ch->c, for h, c e C . W e also put Mc = Ind(Vir+, lc; Vir) and MhtC = Ind(Vir+, 1,,>C; 
Vir). Usually MhtC and Mc are called a Verma module and a parabolic Verma module 
respectively. 

We can attach to an arbitrary point p G M the Virasoro algebra Vir(p) which is 
the central extension of the Lie algebra of holomorphic vector fields in a punctured 
neighborhood U(p) of p. The algebras Vir+(p) and Vir+(p) consist of regular vector 
fields and regular vector fields which are zero at p respectively. So, for any p e M 
we have the Vir(p)-modules MKc(v) and Mc(p). It is easy to see that the representa
tion Mc(p) is isomorphic to Ind(Lie(t/2) © CC, lc; V i r ^ n U2)). 
Proposition. Suppose that the genus of M > 1. Then for any i ^ 0 H{(Lie0(M), Dc) £ 

H,(Lie^(M), D J = 0;Ho(Lieo(M), U ) S H0(Lie^(M), Dc) = Mc(p)/(Lie(t/1)Mc(p)); 
the last term is the space of Lie(t/1) - coinvariants in the module Mc(p). 

Now we fix a set of distinct points pu p2,..., pn of M and let W(pu p2,..., pn) = 
A^\{Pi» P2> - - • -> Pn}' We want to describe the induced representation Ind(Lie^(Af), 
• c : Lie W(pup2,...,pn)). Let Z„ be the sum Lie U(px)® Lie U(p2)©• • • Lie U(pn) 
and let Z„ be the central extension of the Lie algebra Zn which corresponds to the 
cocycle: 

http://ceC.lt
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/ l ( Z l ) ^ 7 + fz{z2)dz~2-
+ " ' + / " ( z " ) â 7 ' 

9 1 ( ^ + 92(z2)^2 + - + gn(za)± 

^KfC-g'i-fi-g'n, ce€, 

where zt is a locai coordinate at pt. It is clear that the algebra Zn acts on the space 
Mc(px) ® Mc(p2) ® • • • ® Mc(Pn\ The Lie algebra Lie W(pu p2,..., pn) is a sub-
algebra of Zn, and the imbedding 9 : Lie W(pl9 p 2 , . . . , pn) -> ZM sends a vector field 
a G L\Q(W(p1, p 2 , . . . , pn)) to the set of the Laurent expansions of a at the points pl9 

p2, ..., pn. It may be shown that the imbedding 9 has a lift to an imbedding 
9 : LIQ(W(P1, p 2 , . . . , pn)) -> Zn. Using the same arguments as in the beginning of 
this section we can see that the module Ind(Lie^(M), Dc; LìQ(W(P1, p2,..., pn))) is 
isomorphic to the restriction of the Z„-module Mc(Pi) ® Mc(p2) ® • • • ® Mc(pn) on 
LiG(W(p1,p2,...,pn)). 

It is easy to define the (cosimplicial) Lie subalgebra Lie^M, pl9 p2,..., pn) a 
Liezf(M) which consists of holomorphic vector fields on M with zeros at the points 

Each point pt defines the homomorphism cp(hj) : IàQA(M,pu p2,..., pn)-> C, 
h{e<L which assigns to a vector field in a neighbourhood of p the number by the 

rule: (pihMf^)—) = htf(0). We also have a map \x ; Lie^(M, pu p2,..., pn) -> 

Lie^(M) -> C, where the last arrow corresponds to the representation Qc- The tensor 
product of all these 1-dimensional modules gives us the representation Ohl,...thnic 
of the algebra Lie^(M, pl9 p2,..., pn). Consider the imbedding 

Lie„(M, Pi, p 2 , . . . , pn) -> UQ(W(pu p2,..., pn)) 

and the corresponding induced representation. 

Proposition. 1) The module Ind(Lie^(M,p1 ,p2 , . . . , pn), \Jhl hniC', UQ(W(PUJ2, 
• • • » Pn))) is isomorphic to the restriction of the representation of the Lie algebra Zn in 
the space MhitC(Pi) ® Mh2tC(p2) ® • • • ® MhntC(pn) on UQ(W(P1, p2,..., pn)). 

2) For i / 0, Hi(UeA(M, pup2,..., pn), Dhu...,hniC) = 0 if the genus g(M) > 1 or 
g(M) = 1 and n>\ or g(M) = 0 and n>3. 

3)H0(UQA(M,Pl,p2,...,pn),nhl hnic) = MhliC(p1)®Mh2tC(p2)(g)-'-® 
MhntC(pn)/LiQ(W(pi, p2,..., pn))(MhuC(Pi) ® Mh2tC(p2) ® • • • ® MhntC(pn)). 

Remark. Let yt be a small circle around the point pt G M and D(y() is the group of 
diffeomorphisms of yt with itself; D(yt) is a real infinite-dimensional Lie group, and 
let LieR(yf) be the Lie algebra of the group D(yt). Denote by Lieft;;) = C ®R Lie^fyj) 
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the complexification of Lie111^,). It is impossible to construct the complexification 
of the group D(y{), but it is possible to define a local complex group with the Lie 
algebra Lie(y,.). Fix two subalgebras L+ and L~ in LiefyJ © Lie(y2) © • • • © Lie(yJ. 
The algebra Lie+ consists of vector fields which admit extensions on the small disks 
with the bounderies yx,..., yn. The Lie algebra L~ is the image of Lie(VK) <= ©Liefy,-), 
where W is the manifold obtained by deleting the disks from M. Let D, D+ , D~ be 
the local groups with the Lie algebras ©Lie(y,-), L+ , LT respectively. Define also 
the local group DQ <= D+, where an element of the Lie algebra of DQ is a set of vector 
fields on the disks (f,... ,fn) such that f(p{) = 0. 

Denote by M(g, n) the moduli space of curves of genus g with n marked points, 
Our object (M, pl9...9 p„) is a point of M(g, n). It is easy to see that the double coset 
space DQ\D/D~ is isomorphic to the formal neighbourhood of (M, pl9..., pn) in 
the M(g, n). The double coset space D+\D/D~ is the formal neighbourhood of M 
in the moduli space M(g) = M(g, 0). As in the Section III a value CE<£ of the central 
charge defines a central extension of the Lie algebra © Liefy,) and therefore a central 
extension of the local group D00. This extension is the map Dc -> D9 whose the kernel 
is isomorphic to C. Let us fix liftings fi0 : DQ -> Dc, H\'.D~ -• Dc. The local group 
DQ has the family of one-dimensional representations 9(hl9..., hn) : ( e x p ^ ) , . . . , 
exp(wj) i—• exp(£ hiUKPj)), where ht G C, and w, is a little vector field on the disk with 
boundary y{. 

Using these data we can construct a line bundle £,,, /lnJC over the formal 
neighbourhood of (M, pl9. ..,pn) G M (g, n). First define a line bundle £c by the 
map 4 ; }ìQ(DQ )\Dclixx(D~) -> DQ\D/D~. The representation 0(hl9..., hn) defines a 
homogeneous line bundle on DQ\D, hence a line bundle f/fi hn over DQ\D/D~, 

Now put {Äi hnlc = U, *n®fc. 
Denote by ^ the following line bundle on M(g, n); the fiber of ^ is the tangent 

vector space to M at p{. Let zf be the pull-back on M(g, n) of the bundle of vol
ume forms on M(g, 0) (it is given by the natural map from M(g, n) onto M(g, 0)). 
Then, the bundle Çfh hniC is isomorphic to the tensor product ^ ® ^2

2 ® • • • ® 
^ " ® Acl26. (If the numbers hl9 ..., hn and c/26 are integers, then Çhi hniC is a 
bundle defined over the whole M(g9 n)9 otherwise £hl hn.c exists only in a small 
neighbourhood. 

The space of coinvariants MhuC(Pi) ® AfÄaiC(p2) ® • • • ® MhntC(pn)/Lic(W(pl9 p2, 
...,pti))(MhltC(pl) ® M/l2iC(p2)® • • • ® MhniC(pn)) can be identified with the space of 
generalized sections of the bundle £hl hn.c with support in the point (M, Pi,..., p„). 
More precisely; the space of coinvariants is: 

H(M,Pi p,Mhi hnic\ 

where H%(F) is the local cohomology of a sheaf F with support in a submanifold 
X, in our case N = n + 3g — 3. 
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V. An Analytic Version of the Homology of the Lie Algebra 
of Holomorphic Vector Fields on M with Coefficients 
in the One-dimensional Representation Qc 

In this section we shall calculate the homology of the differential Lie superalgebra 
F(Lie(M)) with coefficients in a one-dimensional representation. Let us write down 
the standard homological complex: 

2 ^ ^ 

/f2(F(r-1-0))^- A\r(T-{f))) *-

F (F-1'0) <g> F ( F - ^ - ^ [ 2 F (F"1'0) (8) F (F-1-1 ) 

S2r{T-{-1) < =r~F(F-1 '0)(8)S2(F(F-1J)) *-

0 < S3F(F-M) « ^ ^ 

Here the horizontal and vertical arrows are derived from the bracket in 
F(Lie(M)). They constitute the differential in the standard complex of F(Lie(M)) 
with trivial coefficients. The dashed arrows are the following maps: 

Alr(T-U0) ® sjr(T~ul) -> A^IXT'1-0) ® s^riT-1-1). 

They arise as a contraction with the multiple of the tensor corresponding to the 
map r(T-lf0) ® F(T"1 '1) ^ T(TU1) -> C, where the last map is the integration of 
forms over the manifold. (Recall that the map *F3 is related to the operator D with 
the highest symbol (d/dz)3. If we multiply *F3 with c/24 we get the one-dimensional 
representation of F(Lie(M)) corresponding to the value c of the central charge.) 

Our complex has a natural filtration {Kn}9 the subcomplex Kn consisting of the 
first n columns. First let us calculate the first term of the spectral sequence, i.e., the 
homologies of the columns. If the genus of M is greater than one, then the first term 
is concentrated in degree zero and is equal to the sum ®SlV9 where V is the space 
of homologies of the complex r (T _ 1 ' ° ) -» F(T"1 '1), of dim V = 3g - 3. The first 
term of the spectral sequence coincides with the limit term. 

Proposition. H^(rLÌQ(M)9 Qc) ä f/JLie^M), Dc). 

The previous calculation illustrates this fact. We saw in the Section III, that 
Hi(LieA(M)9 \3c) = 0» f° r i ^ 0; and HQ{L\QA(M)9 Q C ) is the space of distributions 
on the space of complex structures on M. 

Remark 1. Recall the idea of the deformation theory (in a very rough form). Let A 
be an algebraic object (algebra, Lie algebra, algebraic manifold), RA be a resolution 
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of A. For example, if A is a ring, then RA is a simplicial free ring; if A is a commutative 
algebra, then RA is the Tyurin resolution. Let G be the group of transformations of 
RA and //*(G) be the algebra of cohomologies of G. Then, the spectrum of the 
skew-commutative algebra H*(G) is the space of versai deformations of A. The 
model for deformation is the standard complex of G with coefficients in RA. The 
results of the Sections V and IV are realizations of this idea in the case where A is 
a one-dimensional manifold M. We associated to M the cosimplicial Lie algebra of 
transformations of M (or the differential Lie algebra F(Lie(M))). In terms of this 
cosimplicial Lie algebra we calculated the small neighbourhood of M in the moduli 
space. A representation % of the group (or Lie algebra) of transformations defines 
a sheaf over the moduli space (versai deformations), of which the space of sections 
is JJ*(G, %). 

Remark 2. There is another (very informal) way of thinking about all these facts. Let 
M be a compact complex manifold and Dif(M) be a group of all C°°-diffeomorphisms 
of M and Difc(M) <= c Dif(M) be the subgroup of diffeomorphisms preserving the 
complex structure. If dim M = 1 and the genus of M is greater than one, then 
Difc(M) is very little (finite). But we want to think about the group Difc(M) in a 
"derived" sense. The Lie algebra of Difc(M) is the differential Lie algebra F(Lie(M)) 
and the Euler characteristic of the complex F(Lie(M)) is the formal dimension of 
the group Difc(M). So, if M is a curve, then dim(Difc(M)) is negative and equal to 
3 — 3g, where g is the genus of M. The double coset space Difc(M)\Dif(M)/Dif(M) 
is exactly the space of all complex structures on M. In this remark we suppose 
dim M = 1. The group of Difc(M) has a negative dimension, so the dimension of 
the double coset space is equal to 3g — 3 = dim M(g, 0). A one-dimensional repre
sentation of the group Difc(M) defines a homogeneous line bundle over the factor 
space Difc(M)\Dif(M) and, therefore, over the moduli space. By this construction 
we get powers of the determinant bundle. From this point of view it is very 
interesting to investigate all representations of the group Difc(M). 

Example. Consider the complex L„ = {F(T"'°) -• T(TnA)}, n e %. It is clear that L„ 
is a F(Lie(M))-module. It means that we have a representation v„ : F(Lie(M)) -> 
End(L„). The trace of this representation is an element of i/1(F(Lie(M))). The 
corresponding value of the central charge is equal to —2(6n2 — 6n + 1). 

From the presentation of M(g, 0) as a double coset space Difc(M)\Dif(M)/ 
Dif(M) we see that there is a Difc(M)-bundle * = Dif(M)/Dif(M) -• M(g). 

This is a principle Difc(M)-bundle. We can apply the Weil construction of the 
characteristic classes to this bundle. Let G be a Lie group and ^ be the Lie algebra 
of G. The usual Weil homomorphism associates with a principal G-bundle E -> S 
and an invariant polynomial p on the space 0, p e Sn(&*) a cohomology class of 
the space S of dimension 2n. In our case we have also a map: #c°(F(Lie(M)), 
SJ"(F(Lie(M)*)) -> H2j(M(g9 0), C). 

We saw that the algebra ifc°(F(Lie(M)), SJ"(r(Lie(M)*)) is an algebra of poly
nomials in an infinite number of variables C \ox, o2,... ] . So we get the (well-known) 
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map C[ö-1 ? G2, . . . ] -+H*(M(g, 0), C). The calculation of this map gives us the 
Riemann-Roch theorem for families of curves. 

VI. Integrable Homologies of the Lie Algebra Lie^(M) 

For any open subset (in the Zarisky topology) U c M we have an imbedding 
LieA(M) c Lie(l/). A representation v of the algebra Lie^(M) is actually the set 
of Lie([/)-modules H(U) ^ Ind(Liezl(M), v; Lie(U)) and isomorphisms <p{Ul9 U2) : 
Ind(Lie([/2), H(U2); Lie(C/1)) -> H(UX), where Ul is a subset of [/2. Such morphisms 
<p(Ul9 U2) should satisfy the evident compatibility condition: for a couple of im-
beddings U3 -> U2 -> l^ the composition of the maps 

Ind(Lie(C/2), Ind(Lie(C/1), tf (t/J; Lie(£/2)); Lie(t/3)) 

I n d^2 > L / l )) Ind(Lie(t/2), if (l/2); Lie([/3)) _ ^ M + H(U3) 

is equal to (p(£/3, t /J . 
In a more general context it is reasonable to call such a set of data as a 

representation of the algebra 1àQA(M) also in the case when the maps q>(Ul9 U2) are 
not necessarily isomorphisms. It is easy to define the homologies of the algebra 
Lie^(M) with coefficients in such a representation. 

Let It be a Lie algebra and n be a representation of U. Let us denote by ss(n) <= U* 
the singular support of %. We shall call % integrable (or lisse) if ss(n) = 0. Note that 
for finite dimensional It the class of integrable representations coincides with the 
class of finite dimensional ones. We shall call a representation of the algebra Lie^(M) 
lisse if for any open set U c M the singular support of the corresponding Lie(lf)-
module H(U) is zero. (We also suppose that H(U) has a finite set of generators.) 

y 
Proposition. Let nbe a representation of the Virasoro algebra from the category of 
representations with highest weight. We suppose that the central element C e Vir acts 
on % by multiplication with a constant ce<D. The following conditions are equivalent: 

(1) n is a lisse representation of Vir. 

(2) c = cn a = 1 , where p9 a are two natural relatively prime num-
p-q 

bers. The representation % decomposes as n1 © n2 © • • • © nN, where 7Cf is an irreduc
ible representation of the corresponding minimal conformai field theory. 

Let us denote by LhtC the irreducible quotient of the Verma representation MKc. 
Fix two natural relatively prime numbers (p, q). The irreducible representations of 

the minimal (p, ^-theory are LhtCpq, where h = hrs is equal to , 

1 < r < p — 1, 1 < s < r; Lhi i is called the vacuum representation. 
Now we attach to a minimal (p, ^-theory a lisse representation of the alge

bra LieA(M). A Lie^(M)-module D c is defined in the following way. Consier the 
open set W(pl9 ...,p„) = M\{pl9 ...,pn}. We previously attached to each point 
Pi a copy of the Virasoro algebra and let L(p{) be its vacuum representation. The 
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Lie algebra Lie W(pl9..., pn) acts on the space L(px) ® L(p2) ® ••• ® L(pn) = 
nCp>q(W(pi,...,pn)). The induced representation from the Lie W(pl9..., pn)-
module \2Cpq(W(pl9..., pn)) to the algebra Lie W(plt..., p,J+1) is isomorphic to 
L(pJ® L(p2)® ••• ® L(pJ® M0|C (p„+i). So it is clear that there is a natural 
map 

Ind(Lie W(Pl , . . . , pn); DCp,q; Lie W(P l , . . . , p„+1)) -> DCp,g(W(Pi,..., Pn+1)). 

We see that Dc is the lisse quotient of the Lie^(M)-representation Dc . If 
c ^ cPtq for any p, q, then the module Dc has no lisse quotient. 

Fix a set of distinct points {au ..., af] of M. We can define in a similar way the 
notion of lisse representations of Lie^(M, al9 ...9 ar,). An example of a lisse repre
sentation of Lie^(M, al9..., at) is the following. Let us attach to each point a{ the 
number h(af) = hritSi. If a point a is not in{a1,..., ax) put h(a) = 0. The representa
tion \3(h(at)9..., h(at); cPtQ) associates to the open set W(p1,...,pn) the space 
LMp&,cp,g ® Lh(p2)icp,q ® ' ' ' ® Lh(pnhcPtg-

The conformai field theory defines the so-called modular functor. This functor 
associates with a Riemann surface a finite dimensional vector space (another name 
of this space is the conformai block for the holomorphic statistical sum). The 
definition of the modular functor for the minimal conformai field theory is the 
following: H(M, p, q) = L0jC /U • L0jC . Here L0>c is the vacuum representation 
of Vir attached to an arbitrary point of M, and U is the Lie algebra of vector fields 
on M-{point}. 

Theorem. 1) The algebra H*(T Lie(M)) acts on the space H^(L\GA(M), DC ) and the 
dual space is a free H*(riÀQ(M))-module with generators in degree zero. 

2) H0(UcA(M), DCJ = H(M, p, q). 

A similar statement is true for the algebra Lie^(M, au a2,..., an). 
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1. Introduction 

Morse theory, invented in the 1930s, has had remarkable applications both in 
Topology and Analysis. Applied to infinite dimensional manifolds, it leads to 
existence proofs for solutions of certain differential equations which entirely cir
cumvent the problem of calculation. One of the earliest examples is Schnirelman's 
existence proof for closed geodesies on spheres obtained by considering the en
ergy function on loop space. Conversely, Morse theory on the same function led 
in 1956 to Bott's periodity theorem [5] for classical Lie groups. 

In the 70ies the hypotheses for infinite dimensional Morse theory were formal
ized into a condition of "essential positivity" of the function *, and an analytic 
compactness condition [23], the much discussed Palais-Smale condition. In the 
following decade, attention focussed on certain essentially positive functions 
which just fail to satisfy this second condition, called "borderline cases". The 
most prominent examples are the minimal-surface problem [25] and Yang-Mills 
theory in dimension 4. These problems were not only these very "natural " prob
lems from the geometric and physical point of view, but also revealed similar 
special properties. 

In this contribution, we consider functions which are also of "Palais Smale 
borderline*' type, but which are not "essentially positive". The point is that while 
the usual approach to Morse theory does not apply to such cases, a different 
approach yields applications to existence of solutions to differential equations 2, 
as well as to topology. Instead of developing an abstract setting for this method, 
we present the two main applications. First, however, we discuss the two different 
approaches to Morse theory in the finite dimensional case. 

2. Morse Theory in Finite Dimensions 

Consider a smooth real valued function / : M —> IR on a smooth (finite dimen
sional) manifold M. Morse theory is concerned with the relation between the 

* fMay 15, 1991. 
1 Meaning boundedness from below and finiteness of the Morse indices. 
2 i.e. Hamilton's equation. 

Proceedings of the International Congress 
nf Mal1iemn1înîans. Kvnin. Janan. 1990 
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critical set 

C(f) = {xeM\df(x)=0} (1) 

off and the topology of M. Here, we assume that C(f) is "nondegenerate", i.e. 
that for every x 6 C(f), the second derivative of / (called the Hessian of / at x) 
is a nondegenerate quadratic form. That such relation should exist is seen most 
easily in the "waterlevel picture" : Consider as a standard example of a manifold 
the two-torus T2, embedded in 3-space IR3 in the usual way as the surface of a 
tire. Let / be given by the height3, such that C(f) consists of four points. Now, 
imagine IR3 to be flooded, and consider the portion 

Ma = {x e M I f(x) < a} (2) 

of M below the "waterlevel" a e IR. The crucial observation is that the topology 
of Ma changes precisely at those levels which are the values of a critical point 
of / . Moreover, up to homotopy, this change is described by gluing to Mfl_E 

the "unstable manifold" of x, which is a cell whose dimension is called the 
Morse index IJL(X), and equals the dimension of the negative "eigenspace" of the 
Hessian at x. This successive attaching of cells implies the well-known "Morse 
inequalities" in homology, which can be stated as follows: 

If M is closed, then H* (M) is obtained from a chain complex, which is 
given by a boundary operator d on the free abelian group over the critical 
set. 

We will denote this "chain complex" by 

a(f)~zd with d=\c(f)\ . 

To make this procedure more precise, we have to introduce an auxiliary metric 
y on M, and consider the corresponding "gradient flow trajectories" of / , i.e. 
smooth paths u : R -> M satisfying the equation 

^ f + V,/(ii(t))=0. (3) 

With the exception of the constant solutions u(t) = x for x e ^(f), the function 
decreases along gradient flow trajectories. The stable and unstable manifolds of 
x e #( /) are the sets W^(x) of all trajectories u with lim^^oo = x.4 The metric 
on TM(x) also converts the Hessian into a symmetric operator on TM(x) whose 
negative eigenspace E~(x) is the tangent space at x of Wy(x).5 

There is a different, in some sense dual approach to Morse theory, which 
instead of the unstable manifolds considers only the spaces 

Jty(x9y) = {u : IR -> M | u satisfies (5). } = W~(x) n Wy
+(y). (4) 

3 The tire assumed to be in upright position. 
4 We can always identify trajectories and points in M through the correspondence u=u(0). 
5 In fact, it is globally diffeomorphic to W~(x). 



Elliptic Methods in Variational Problems 89 

with 

ft =-vr/(«(t)) , 
lim u(t) = x , (5) 

?->-oo 

lim u(t) = y . 
t—>co 

These are spaces of gradient flow lines connecting two given critical points 
x,yeC(f). 

For "generic" y, these intersections are transversal, resulting in smooth man
ifolds J£y(x,y) of dimension JJ,(X) — jj,(y). Such gradient flows are called "Morse 
Smale flows". Note that if we assume an orientation on E~(x) at all critical points 
x e C(f), then Jf.y(x,y) is naturally oriented as the intersections of the oriented 
W~(x) with the co-oriented W+(y). Finally the translational symmetry implies a 
splitting 

Jty(x,y) — Jky(x,y) X R U { constant trajectories} . (6) 

where Jiy(x,y) will be called the reduced trajectory space. To formulate the 
Morse inequalities, we consider for x, y G ̂ (f) the integer 

<dx | y >=#J£y(x,y) (7) 

where # applied to an oriented manifold denotes its algebraic number, counted 
with sign, if it is discrete, and is zero otherwise. In other words, < dx \ y > is the 
number of "isolated trajectories" of the Vr/-flow, i.e. of components of Jty(x,y) 
of type R, between x and y, counted positively, if its "intrinsic" orientation points 
in the flow direction and negatively otherwise. 

We interprete (7) as the matrix elements of an endomorphism on C*(/). That 
is, if x G W(f), then ôx is the formal sum over the endpoints of all isolated 
trajectories originating at x, counted by sign. Then we have the following 

Theorem 1 (Morse Inequalities). If M is closed and (f,y) defines a Morse Smale 
flow on M, then 
1. the discrete parts of the sets Jky(x,y) are finite, and do = 0 
2. ker/im ô s H* (M) 

In the example of the torus, we may have to perturb the metric given by 
standard embedding slightly to obtain a Morse Smale flow. For example, there 
should be no trajectories connecting the two critical points of Morse index 1. For 
any Morse Smale flow, however, we will find that isolated trajectories come in 
pairs of opposite sign: the boundary operator is zero, since H*(M) = C*(f) = Z4 . 
(This is called a perfect Morse function.) An example with nontrivial d is easily 
constructed e.g. by creating an additional local maximum of / . 

Let us have just a glimpse of the proof of the boundary property of d. The 
matrix element < ddx \ y > of the homomorphism dd for x,y G ^(f) is given 
by the algebraic number of "double trajectories", i.e. pairs of isolated flow lines 
connecting x and z with a stopover at a third critical point y. In this situation, it 
can be shown that if we change the outgoing direction at x slightly in a particular 
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way, we generate a 1-parameter family in Jky(x,z) for any Morse Smale flow. In 
fact, there exist local diffeomorphisms 

Jty (x, y) x (0,1] x Jty (y, z) <-> My (x, z). (8) 

Now, every non-compact component of a 1-dimensional manifold must have two 
ends, and compactness of M implies that such ends always correspond to "double 
trajectories". Analysing the orientation involved, we find that each of these pairs. 
of double trajectories cancel in < ddx \ y >. We see that compactness properties 
of the spaces Jty(x,y) are crucial in the definition of d as well as in the proof 
of its boundary property. These compactness properties can be derived from 
compactness of M, but they would follow in the same way from compactness of 

S = { u(0) \ueJ?y (x, y) for some x, y G %(f) } (9) 

as subset of M. Hence, if this set, the union of all bounded flow trajectories, is 
compact in M, then we can associate to it the homology group 

L(S,f,y) = kev/imd. (10) 

If M is noncompact, then this group will in general differ from H*(M); it is a 
new invariant of the flow and of its compact invariant set S. One can show that 
I*(S9f9y) is invariant under the deformation of / and y (through non-Morse-
Smale flows) as long as S remains compact throughout the deformation. In fact, 
M^/ jg) c a n be shown to be the homology of the "Conley Index" of S; which 
is the homology of a neighbourhood U of S relative to a suitably defined "exit 
set" A c U. For details, see [10] and [17]. 

3. The Symplectic Action 

We want to extend the idea of the Conley index to infinite dimensional variational 
problems. Consider the "phase space" R2n, of positions and moments of a linear 
mechanical system, parameterized by Z = {pi9 ̂ }f=1. For every loop z : S1 -> R2w, 
we define the "action function" 

-/*.+/ ah(z) = / pdq + / hs(z(s))ds (11) 

where h : S1 x R2" —> R is a smooth function, considered as a "time dependent 
Hamiltonian". In the simplest case, it is the sum of the kinetic term jp2 and 
a potential term Vs(q). Hamilton's principle states that the critical points of ah 
in ß(R2w) = C00(S1,R2n) are the solutions of Hamilton's equation. If R2" is 
identified with (Cn by means of a complex structure J and a metric g, then these 
equations take the form6 

fdz 
ds 

J—„+Vghs(z(s))=0. (12) 

6 Here, co := g(J-, •) is assumed to be skew-symmetric, and the equation (12) is essentially 
determined by this "symplectic form" alone. 
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The left hand side of (12) can be considered as the gradient of ah on ß(R2") with 
respect to the "L2-metric" on this infinite dimensional space defined by g. 

To apply Morse theory to Hamilton's principle, one might extend 0(R2") 
to some Banach space Q, and modify the gradient to a smooth vector field on 
Q. Then the gradient flow would be available as a homotopy on Q decreasing 
the action. Note, however, that the Hessian of ah at a critical point is a zero-
order perturbation of the selfadjoint operator jj^9 which has infinite dimensional 
positive and negative eigenspaces. Hence, the unstable manifolds are infinite 
dimensional cells, the addition of which does not change the homotopy type. 
Therefore, one cannot relate critical points of «/, to the topology of subsets of 
ß(R2"). Nevertheless, the problem was attacked in 1978 by Rabinowitz [24]: He 
restricted the function to finite dimensional Fourier-subspaces of loops, and used 
a method of Morse theory which was "stabilized" with an increase of dimension, 
Thus the topological invariants used by Rabinowitz were trivial in the total 
loopspace, but existed nevertheless in some sort of a "stable limit". In the following 
decade, one came to understand these invariants in the framework of a special 
homology theory in fì(R2") which pays special respect to the decomposition into 
positive and negative Fourier components of loops, and in which the unstable and 
stable manifolds would define cycles and cocycles, respectively. Though this idea 
was' never made precise, it inspired various existence proofs for closed solutions 
of Hamiltonian systems in R2". 

The dual approach to Morse theory can be used to define such "half-infinite" 
dimensional homology groups without having to consider infinite dimensional 
subsets. Since we are interested in individual trajectories rather than in the entire 
gradient flow, we do not have to "regularize" the gradient, but can consider maps 
u : R x S1 -» R2" satisfying the equation 

dJir+J^ir+(Vg/Is) (M (s> t)] = &u+Dg/t(M)) (s> ° = ° • ( 1 3 ) 

Here, we have combined the derivative in the flow time and the differential part 
of the gradient of o/, to the Cauchy Riemann operator, whose zero set is the 
set of holomorphic maps from R x S1 = <C//Z to C". Thus the "gradient flow 
equation" for ah is a zero order perturbation of the equation for "holomorphic 
curves" in (C", which Gromov [21] introduced to symplectic geometry in 1985. 
Ellipticity of dj and nondegeneracy of (̂fl/,) implies that the spaces 

Jth(x) = { u : R x S1 -* R2" | u satisfies (15) } (14) 

dju + Dgh(u)= 0 , 

lim u(t,s) =x(s) , (15) 

lim u(t,s) = y(s) 
/-•oo 

are, for generic h and J, finite dimensional manifolds, with an orientation defined 
through a "determinant bundle". Moreover, Gromov's compactness theory of 
(pseudo)-holomorphic curves implies that the integers (7) are still defined for 
suitable h. 
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The trajectory spaces (14) can be defined equally well if R2n is replaced 
by any symplectic manifold (P,co) with symplectic (i.e. nondegenerate closed) 
form co G Q2(P). In fact, let us assume that P is compact. In this case, Gromov's 
compactness theory predicts that the spaces JKy (x, y) are compact (in the topology 
of local convergence) up to the phenomenon of "bubbles" : A sequence Uk in 
J£y(x,y) may converge to u outside a point (s,t) G S1 x R, but may "blow 
up" to form a holomorphic map (S2,oo) —> (P,u(s,t)) in arbitrarily small 
neighbourhoods of (s,t). Such "holomorphic spheres" always define nontrivial 
elements in 7i2(P). This leads to the following chain complex: 

Theorem 2. Let (P,co) be a compact symplectic manifold with %2(P) = 0. Then for 
generic h and J, the trajectory spaces (14) define a boundary operator d = dhj on 
C*(ah). 

Its homology is independent of the choice of h and J. For the proof of the 
boundary property 3d = 0, the "gluing maps" (8) are now defined by a version of 
Taubes' grafting constructions, which was first defined for instantons, but applies 
to other elliptic equations as well. The crucial point is invariance property, which 
implies that the "new homology group" depends only on P, and that it may be 
calculated e. g. for "small" Hamiltonians. Since (̂flo) is the set of constant loops, 
it turns out that it coincides with H*(P). The result [18] is a "Morse inequality" 
between the set of closed solutions of (12) and the homology of P ; in particular, 
the number of such solutions must be greater than or equal to the dimension 
of H*(P). Recall that all solutions were assumed to be non^degenerated. In 
the general case, the method can be extended to yield "cuplenght estimates". 
This fact, conjectured by Arnold in [3,2], had been established by Conley and 
Zehnder in [8] for the torus T2n, applying the Conley index to a "reduced" finite 
dimensional problem. The construction of the complex in Theorem 2 was in fact 
an attempt to define the Conley index directly in an infinte dimensional situation. 
It can be defined in various other situations involving the symplectic action, e.g. to 
Lagrangian intersections [15] and symplectic manifolds with contact boundaries7. 
It is not always as readily calculable, in fact, it may yield new invariants in 
symplectic geometry which are yet to be explored. 

4. Gauge Theory 

The method described in the preceeding section uses strongly the special geomet
ric and analytic features of the symplectic action function. There exists, however, 
another natural variational problem with remarkably similar properties. To de
scribe it, we have to replace the loop space Q(P) by the space of SU2-connections 
on a closed oriented three-manifold M. Recall that all SU2-bundles of M are 
trivial, and that with respect to such a trivialization, the space of connections on 
M x SU2 can be identified with 

sé u :=ß1(M)®su2 (16) 

Work in progress. 
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where su2 is the Lie algebra of SU2. A connection a defines a covariant derivative 
Vfl£ = V£ + at; of "sections" Ç. M -» (C2, where V is the usual derivative, and 
SU2 acts on (C2 in the usual way. The gauge group 

9M = C°>(M9SU2) (17) 

of bundle transformations of M x (C2 also acts on such sections, and hence on 
sé M through 

g"1 V , g = Vg,ö ; g.a = g-iVg + g-'ag. (18) 

The curvature-2-form Fa of a G sé M is ^M-equivariant, where @M a c t s linearly 
on Q2(M) ® SU2, i.e. we have Fg,fl = g^Fag"1. Such a ^M-equivariant map can 
also be considered as a section of an infinite dimensional vector bundle8 over the 
quotient space $M = S^M/^M- The latter is known to contain as an open subset 
the infinite dimensional manifold ffl*M of irreducible connection classes. 

So far, we have not made use of the dimension of M. However, the particular 
position of Q2(M) in the De Rham complex of M lends a special aspect to gauge 
theory in dimensions 2,3 and 4. In the present case, note that curvature defines 
a 1-form on séM> which turns out to be exact. More precisely, it defines up to an 
additive constant a function 5* : sé M —• R by 

/ tv(FaAb)=dS(a)b. (19) 
M 

This function is almost gauge invariant: It defines a function S : 01M —• R / Z 
first considered by Chern and Simons. Thus the critical point set ^(S) of this 
Chern Simons functions is the set of flat connections, which can be described 
algebraically through their holonomy: 

V(S) = {aeséM\Fa = 0\/<ZM (20) 

= Horn (711 (M), SU2) /ad(SU2). 

Though the actual description of (17) may be a rather complicated problem, 
we cannot really expect infinite dimensional Morse theory to be of much help. 
In fact, the objective in this case is entirely reversed : If RM is related by such 
a Morse theory to some homology group, then this group could define a new 
invariant of M. Since the Hessian of s at a G RM, which is given by the symmetric 
bilinear form 

D2S(OL)(U)= I tr(£A4C) (21) 
JM 

on ß1(M)®su2, has again an infinite dimensional negative and positive subspaces, 
we cannot expect the topology of $M itself to come in. Just as solutions of the 
Cauchy-Riemann equation on R x Sl are the gradient flow trajectories for the 
symplectic action, the gradient flow trajectories for S are given by instantons on 
R X M. To see this, note that every connection on R X M is gauge equivalent 

8 With fibre ß2(M)®su2. 
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to a connection a with component in R-direction9 vanishing. Such a connection 
describes a family in 0&M by a(s) = fl{SXM}- If 7M is a metric on M, and a metric 
on R x M is defined by (ds)2 + ^M, then the antiself duality equation on R x M 
takes on the form 

0 = —a(s) + *MFa{s) (22) 

where *M denotes Hodge duality in Q*(M) with respect to yM- By (17), we can 
consider *Ffl as the gradient of the Chern-Simons function with respect to the 
L2-metric on sé M defined by yM- We arrive at the conclusion that instantons 
on R x M represent "trajectories of the L2-gradient flow" of the Chern-Simons 
function S, even though sucri a flow is not defined everywhere as a homotopy on 
&M- The analogue of (4) and (14) is now the family of instanton spaces 

M(u | R x M | ß)i = {a G séwixM I A satisfies (24) } / ^ R X M (23) 

with 

F + = 0 

lim a(t) = a , (24) 
f—>—00 

lima(t) =j8 . 
£->oo 

The connection a G ^(S) is nondegenerate as a critical point of S in 0&M iff the 
first cohomology group H\ (M, sn2) with coefficients twisted by a vanishes. Under 
this condition, it follows from Taubes' analysis that "generically" the spaces (18) 
are smooth finite dimensional manifolds. (Here, we may need perturbations not 
only of the metric but also of S itself, and such perturbations may also be used to 
make ^(S) nondegenerate whenever this is riot a priori the case. However, for the 
sake of brevity we will have to ignore this point here.) Orientations can be derived 
from Donaldson's work [11,12] and a "weak compactness theory" of instanton 
spaces was developed by Uhlenbeck [28,29]. With these three ingredients, we 
can again set up the dual "Morse inequalities". Assume first that H\(M) = 0, to 
avoid "abelian" elements of C(S). Denote by C*(M) the free abelian group over 
^(S) \ {6} (which is finite when nondegenerate), and define 

d : C*(M) -> C*(M) < da,ß >= # i f ( a | R x M | ß) (25) 

with # and M defined as before. The proof of the boundary property do = 0 
now relies on an analogue of (8) which is almost the original Taubes grafting 
procedure. The result is the following new topological invariant: 

Theorem 3. We have dd = 0, and the homology groups 

F*(M) =kerd/ imd 

9 Which we will consider as the zero-component aQ. 
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do not depend on the choice of the metric y^» Moreover, for every oriented ho
mology 3-sphere there are perturbations of S whose critical set is nondegenerate, 
and which give rise to a chain complex (C*(M9h)9dy)h)9 whose homology depends 
only on M. 

The groups F*(M) were calculated by Fintushel and Stern for Brieskorn 
spheres M(p9q9r). Here S truns out to be "perfect", and F*(M) = C*(M). For 
more complex Brieskorn spheres M(p\9...9pn)9 S is still perfect in the sense 
that although C(S)\{6} is not discrete, its homology coincides with F*(M)9 see 
[4,22]10. There is, however, no reason to believe that 5* will be perfect for 
any large class of 3-manifolds, and other methods of calculation are needed. 
These rely very much on the functorial property of F* with respect to (oriented) 
cobordism, and on certain exact sequences which define a system of "axioms" for 
the "homology theory" F*. To explain functoriality, consider a smooth compact 
oriented cobordism W between M and N, which we denote as FF : M —• N, 
Add half cylinders R_ x M and R + x N to W to obtain an open 4-manifold 
Wa, and consider a metric on Wa which is cylindrical on the ends. Then we can 
define finite dimensional, oriented, and weakly compact manifolds Jty(a \ W \ ß) 
for a G RM and ß G Rjy in much the same way as in the case W = R x M. 
(Of course, the translational symmetry is not defined anymore.) It turns out that, 
counting the discrete part of the (unreduced) moduli spaces, we obtain a chain 
homomorphism 

W* : C*(M) -*C*{N) <a\W.\ß>= #JI(OL \W\ß). (26) 

The proof of the chain property is similar to the proof of dd = 0. Hence, 
cobordisms W : M —• N of homology 3-spheres induce homomorphisms W* : 
F*(M) —• F*(W). This construction turns out to be functorial with respect to the 
obvious composition law for cobordism. 

In the category of 3-dimensional cobordisms between surfaces, such a functor 
(taking values in finite dimensional Hilbert spaces) has been recently discovered, 
the Witten-Jones "topological quantum field theory". Its initial definition uses 
the path integral of the Quantum-Field-theory on 3-dimensions, in which the 
Chern-Simons function S plays the role of the Lagrangian.11 The path integral 
itself does not have an entirely rigorous mathematical meaning, but physical 
reasoning implies certain axiomatic properties the resulting functor which allow 
its construction by combinatorial techniques. To a certain degree the functor 
F* may also be considered as a topological quantum field theory, though its 
"axioms", besides functoriality itself, differ strongly from those of Witten-Jones 

10 This is similar to the determination of h(P) in the symplectic case. 
11 It is quite remarkable that this function thus leads to two apparently quite independent 
sets of topological invariants for three manifolds, but no direct relation can be derived 
from the definition. 
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theory: the central ingredient seems to be an exact sequence 

F*(M) 

F* (Mo) ^ F* (Mi) (27) 

where Mo and M\ are given by two different kinds of surgery on the same knot in 
M, see [19]. Moreover, even though such exact sequences can be shown to define 
a "complete" axiomatic system, i.e. to "characterize" the functor F* in the same 
way as the Eilenberg-Steenrod axioms characterize usual homology, they do not 
yield a straight forward calculation for the groups F* due to the ambiguities 
inherent in exact sequences. Exact sequences are nevertheless the most useful 
tools for calculations in ordinary homology, and we expect the same to be true 
for F*. The functorial structure also suggests that F* should find applications 
to special (e.g. integral) cobordism groups of 3-manifolds. For example, parts of 
the work of Fintushel and Stern on the integral cobordism classes of Brieskorn 
spheres can be put into a "homological" framework, and can thus be extended 
to more general classes of manifolds. Moreover, F* comes up in connection with 
Donaldson's applications of instantons on 4-manifolds. For a manifold W with 
boundary dW = M, the Donaldson polynomials can be extended to Z-linear 
maps 

S*H2(W) - • F*(M). (28) 

This allows us to formulate "obstructions" to closing a 4-manifold. (In particular, 
we have F* (M) ^ 0 whenever a homology 3-sphere M bounds a 4-manifold whose 
intersection form is "forbidden" by one of Donaldson's theorems.) Moreover, with 
luck, one may be able to analyse the change of the Donaldson polynomial (22) 
under handle addition. The exact triangle for surgery on M may be considered 
as one step in this direction. 
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This lecture is about some new relations among the classical objects of the title. 
The study of such relations was started by [Bi, G, De, Ihj] from independent 
motivations, and was developed in [A3, C3, A-I, IKY, Dr2, O, N], etc. It is still 
a very young subject, and there are several different approaches, each partly 
blocked by its own fundamental conjectures! But it is already allowing one to 
glimpse some new features of the classical "monster" Gal(Q/Q), and providing 
a bridge connecting Gal(Q/Q) even with such "modern" objects as the quantum 
groups [Di'2]. I will not try to "explain" any general philosophies that are still 
in the air, but to draw a few lines sketching the concretely visible features of the 
subject. 

§1. Introduction 

The absolute Galois group over the rational number field Q, denoted by GQ = 
Gal(Q/Q), is one of the classical mathematical objects which we really need to 
understand better. It is primarily a (huge) topological group; the automorphism 
group of the field Q of all algebraic numbers in (C, equipped with the Krull 
topology. It is moreover equipped with arithmetic structure, i.e., the system of 
conjugacy classes of embeddings GQ —> GQ of all local absolute Galois groups 
into GQ. Through the arithmetic structure of GQ, each "natural" representation 
of GQ provides the set of all prime numbers with a "natural" additional structure. 
For example, the character XN • GQ —> (Z/JV)x defining the action of GQ on the 
group of iV-th roots of unity gives rise to the classification of prime numbers 
modulo N. Study of the group GQ and its natural representations has an ultimate 
goal to understand the "total structure" of the set of all prime numbers. 

Now if X is an algebraic variety over Q, the fundamental group 7Ci(Z((C),b), 
when suitably completed, is equipped with a natural action of GQ. Here, b is a 
Q-rational base point of X. Already in some basic cases, this action gives rise to 
a very big and interesting representation of GQ. What this action amounts to is 
the following. (We may, and will, assume X to be geometrically connected.) As 
is well known, all finite (topological) coverings of X((D) and morphisms between 
two such coverings are algebraic and defined over Q. The above action contains 
all information related to the "field of definition" and the GQ-conjugations of 
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these coverings, morphisms and the points above b. In particular, if they are all 
defined over some Galois extension ß / Q ( ß c= Q), then GQ acts via its factor 
group Gal(ß/Q). (The converse is also valid if the completion of TTI has trivial 
center.) Choice of completions of m depends on the family of finite coverings 
one wants to consider. If this is all the finite coverings, the choice should be 
the profinite completion %\ = \im(%i/N), the projective limit of all finite factor 

<— 
groups of %\. It is also important to consider the pronilpotent completion nf1, 
where one allows only those %\/N (the covering groups) that are nilpotent. 

If there is no family of finite coverings of X having a remarkable common 
field of definition, then the representation of GQ on %\(X(<E),b) would not be 
so interesting. But already when X = P 1 — {0,1, oo}, there are several natural 
families with various remarkable arithmetic features in their fields of definition 
(see (4) below). One of the reasons why this type of representations is interesting 
lies in that these different arithmetic features can be viewed simultaneously from 
a certain height, the representation of GQ on h\. Other reasons and motivations 
will also be explained below, with names of the main contributors. Before this 
we shall give a sequence of basic examples of X starting with P 1 — {0,1, oo}. For 
n>4,Xn is the moduli space of ordered n-tuples (xi , . . . , xn) of distinct points on 
the projective line P 1 . The corresponding fundamental group Pn = %i(Xn(<E),b) is 
the quotient modulo center (= Z/2) of the pure sphere braid group on n strings. 
Note that X4 ^ P 1 - {0,1, oo}, P4 ^ F2 (free, rank 2). 

Recently, several substantial works have been done in connection with these 
"big Galois representations." They include the following (1)~(6): 

(1) Already for more than a decade, this type of Galois representations has 
been used effectively to construct finite Galois extensions over Q with given 
Galois groups, for various cases of finite simple groups (G. V. Belyï, M. Fried, B. 
Matzat, K. Y. Shih, J. G. Thompson, . . . ) . By the Hilbert irreducibility theorem, 
it suffices to construct a Galois extension over some rational function field 
Q(ti,. . . ,tm)(m > 1) having a given Galois group. Many such extensions have 
been detected among the (function fields of) coverings of Xm+3 (etc.) by combining 
(i) only the basic knowledge on how GQ acts on fti(X((C),b), with (ii) a deep 
knowledge on specific finite groups and their characters. As there is a distinguished 
report on this topic in the last ICM [B2] (see also [Ma] for the later development), 
we shall only recall and stress the following: 

Belyï proved, among other things in [B{] that the canonical representation 

(px : G Q - * Out fti (*(€)) 

for X = P 1 — {0,1,00} is injective. This sets in evidence the importance of the 
problem to characterize the image. Here, Out %\ is the outer automorphism group, 
and cpx is induced from the GQ-action on ni(X(<D),b). cpx is "independent" of b 
in the obvious sense. 

(2) A. Grothendieck made some basic proposals related to the study of the GQ-
action on TCI(X(C), b) [G]. One of them is as follows. Take X = XA = P 1 - ^ , 1,00}. 
Then it has the obvious S3 -symmetry but there is no S3-invariant choice of a 
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base point b, This already indicates that the use of the fundamental groupoid on 
a suitable S^-stable set B of base points would be better. (The natural action of 
S4 on X4 factors through its quotient ~ S3.) He also suggests using all possible 
combinatorial relations among the X„((C) (n = 4,5,.,.), and that, in a certain 
sense, the two cases of n with dimZ„ = 1,2 (i.e., n •= 4,5) would be basic, In 
particular, understanding and using full relationship between X|((C) and X$((E) 
would give, presumably, all the crucial non-obvious information on the image of 
cpx f°r X = X4. 

We shall describe more about these in the main text; the action of GQ on the 
completed fundamental groupoids (§2), Deligne's tangential base points (which 
will serve as B) (§2.3), Drinfeld's new information on the image of cpx (§3), and 
the Lie version of the study of the GQ-action on {7ifl(Xu((C))}n (§5). 

(3) %fx as a new test case for motivic philosophy, 
In [De], P. Deligne develops a motivic theory of nilpotent quotients of fun

damental groups in algebraic geometry. The first main point is that %fx is not 
just a topological group with a GQ-action but is a limit of objects with more 
structures -: To each %\ = %\(X(<L),b), one can associate, via Malcev, some 
projective system {Um%\}mi>\ of linear unipotent algebraic groups Um%\ over Q. 
One may assume that the group of Z-valued points (Uw%i)(Z) is the quotient 
modulo torsion of %\l%\{\n + 1), where %\(m + 1) is the (m + l)-th member of 
the lower central series of %\. The Galois group GQ acts on the profinite groups 
(Umm)(Z)(m ^ 1), from which the GQ-action on 7c"11 can be almost recovered. 
Under some assumptions on X, the underlying vector space over Q of the Lie 
algebra Lie(t/m7Ci) has mixed Hodge structure (J. Morgan, D. Sullivan, K, T. 
Chen, R. Hain,...). Deligne adds more structures to Lie(U'"7ti) (and accordingly, 
on Umn{), the mixed motif structure, in terms of various realizations. 

When X = P1 — {0,1,00}, the motivic Lie(Um7Ci) is a successive extension of 
Tate's motives " Q(/c) " (1 < k < m). Knowledge on the motivic extension of " Q " 
by " Q(/c) " turns out to be crucial in order to understand a certain portion of 
the Galois action on (Um7i{)(Z). Deligne constructs a basic extension of "Q " 
by " Q(/c) " (k ;> 3, odd), describes a certain portion of the Galois action on the 
double commutator quotient of nf\ and under the hypothesis "Ext1 (Q, Q(/c)) for 
such k is one-dimensional ", derives further desirable consequences related to the 
size and the " Q-rationality " of the Galois image. (See §5.4 below.) 

(4) Some new objects in number theory, such as adelic analogues of beta 
and gamma functions, and higher circular /-units, have been constructed and 
used to give explicit comparisons of the GQ-actions, on nf1 of P1 — {0, l,oo}5 on 
torsion points of Fermât Jacobians, and on higher circular /-units (G. Anderson, 
R. Coleman, the author, ..,)• This series of work was started in [Ihi] and was 
developed in [A3, C3, IKY, Ih/, A-Ii^], etc, by combining with other ideas [Ai, 
Ci, C2], .... 

The following special towers of coverings of P1 — {0, l,oo} are relevant; (i) the 
meta-abelian tower, (ii) the nilpotent tower, and (iii) the genus 0 tower. Here, (i) 
corresponds to the double commutator quotient tt\/n" of %\, (ii) to nfx, and (iii) 
is also quite big - what it generates is bigger than (ii). As for the common field 
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of definition, (i) is related to abelian extensions over the cyclotomic field Q^oo), 
(ii) to a very natural sequence of Galois extensions over Q that are nilpotent over 
Q(Moo)5 and (iii) to (the field generated by) higher circular /-units. 

As for (i), the conclusion is that the Galois actions on %\l%'{, on torsion 
points of Fermât Jacobians, and on roots of circular units, can be compared with 
each other in terms of explicit universal formulas. The size of the Galois image is 
also measured explicitly. The theory developed to that of Anderson's hyperadelic 
gamma function, which also plays the role of a bridge connecting Gauss sums 
with circular units. 

As for (ii) and (iii), the main conclusion is that the action of a € GQ on 7ufl 

can be expressed explicitly mod /", for any n > 1, in terms of its action on the 
group of higher circular /-units. 

For more of these, see §6. 

(5) V. G. Drinfeld more recently discovered a striking connection between 
(what is expected to be) the automorphism group of the tower {TCI(Z„(C))}W>4 

and a "universal braid transformation group" 

(A,A,8,cj*,R)^(A,A,z,ci)',R!) 

acting on the structures of quasi-triangular quasi-Hopf algebras [Dr2]. These 
groups become non-trivial after suitable completions of %\, etc. The Galois image 
in Aut7Ci(Z4((C)) is contained in these (essentially the same) groups. (See §4.) 

(6) There are several other important works on this subject including the 
following. 

(i) Grothendieck raises a question as to whether the intertwiners of two Galois 
representations in %\ arising from two algebraic varieties always correspond to 
algebraic morphisms in the "non-abelian" situation. In the special case of P 1 

minus finitely many points, H. Nakamura [N] gives an affirmative answer. 
(ii) T. Oda and Y. Matsumoto each gives, from different viewpoints, a non-

abelian analogue of the Néron-Ogg-Safarevic criterion for good reduction of 
curves, using rcf11 instead of iff; cf. [O]. 

Due to the lack of time, these will not be included in this lecture. 
We shall start by defining the Galois action on the completed fundamental 

groupoids. 

§2. The Basic Definitions 

2.1 Let X be an algebraic variety defined over Q, and X(<D) be the set of 
(C-rational points of X equipped with the usual (complex analytic) topology. We 
assume X to be geometrically connected, which is equivalent with X((C) being 
connected. For a,b e X(<£), call %\(X(<L);a,b) the set of homotopy classes (rei. 
to a,b) of paths from a to b on X((C). When a = b,it is denoted by 7Ci(X((C),b). 
The composition rule 

7n(X(C);fo,c) x 7Ci(Z(C);a,b) —• rci(X(C);a,c) (2.1.1) 
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gives the system {ni(X((ü);a,b)}a)beB structure of groupoid, the fundamental 
groupoid of X(C) with base point set B (B <=z X(C)). When B = {b}, m(X(€),b) 
is the fundamental group, 

We shall recall the definitions of the profinite completion 7i\ (X(<£) ; a, b) and 
the GQ-action on nx(X((D);a,b) when a,b e X(Q) (the Q-rational points of X), 

First, n\ (X(<D) ; a, b) is the completion of ii\ (X((H) ; a, b) with respect to the 
following topology, Two elements p,p' of the latter set are sufficiently close 
to each other if the associated "round trip" pr • p belongs to a sufficiently 
small subgroup of ni(X(<E),a) with finite index, The completed set n\(X(<E)\a,b) 
is then profinite, i.e., compact and totally disconnected topological space, The 
composition (2.1.1) is continuous and carries over to the completion. Each path 
class p G %\ (X(<D) ; a, b) gives rise to a "compatible" system of fiber bijections 
Pf : f (a) •—> f (b), where / runs over all finite coverings of X((D), and pf is 
induced by tracing above a path representing p. Here, "compatible" means that 
for any / , / ' , pf and py are compatible with the fiber projections induced from 
each element of Horn(/,/')• This procedure p -> {pf}f induces the bijection 

{compatible systems of fiber 1 

i - *• t f U i ~ f-i(n\ ' bijections pf : /-* (a) -—• f~x (b) J 
This is because X((ü) is locally arcwise connected and locally simply connected, 
being an underlying space of an analytic space. 

Since all finite coverings of Z((C) are algebraic and defined over Q (the 
generalized Riemann existence theorem), we may assume that / runs over all finite 
etale coverings of X ® Q. If a, b G X(Q), each a e GQ induces the fiber bijections 
r\a) ^ (of)"1 (a), rl(b) ^ (Gfrx(b); hence o acts on Ä, (X(V) ; a, b) by 

{Pf}—-»{^ivi/00"-1} • 
It is easy to see thai this action is compatible with the composition induced 
from (2.1.1) by completion, Therefore, GQ acts as an automorphism group of 
the completed fundamental groupoid of X((E) with base point set B c X(Q) ; in 
particular, as that of the completed fundamental group with base point b G X(Q). 
These actions are compatible with the groupoid homomorphisms induced from 
any algebraic morphisms X1 -> X over Q. 

Example. Take X = P 1 - ^ , ^ } and b = 1. Then ni(X(<ü), 1) ä TL, being generated 
by the class p of the loop % -> exp(27i/"i) (0 < % < 1), and rci(X((C), 1) = % = 
Hm(Z/iV). If fN is the cyclic covering t -> tN of X (N == 1,2,... ), then 

fJjHl) = { U N , - ttt1}* 0v - oxp(2ni/N) . 

Write a(fo) = Cth (* e GQ^WJV G Z/JV). Then PfN acts on / ^ ( l ) by 
0 —> Civö, and <r acts on / ^ ( l ) by 0 —• 0*M" (0 G /j^(l)). Therefore, 

cropfNoa^=pff» . (2,1.2) 
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Call x(c) = limx(ö")iv G Z x . Then x is a (continuous) homomorphism 

X:GQ—>ZX , (2.1.3) 

called the cyclotomic character. By (2.1.2), o acts on it\ = % via %(o)-
multiplication. (Here and in the following, for any associative ring A with unit 
element, Ax denotes the group of invertible elements of A.) 

2.2 We return to the general case. The Galois group GQ thus acts on the com
pleted fundamental groupoid {îti(X((C);a,b)}a,beB (B <= X(Q)) and in particular 
on 7ti(X((C),b) (b G X(Q)) as an automorphism group: 

q>x,b : G Q ^AutÄi(X((C) ,b) . 

The induced homomorphism obtained by forgetting the role of the base point is 
also of interest: 

q>x : G Q ^ O u t £ i ( X ( C ) ) 

(Out(7ti) = Aut(Äi)/Int(7ti), where Int(7üi) is the inner automorphism group). 
Replacing fti by the pronilpotent completion nf[

9 we obtain cp^b, etc. 
As for X, we shall mainly consider the varieties 

Jf = Xn = {(x 1 , . . . ,x„)G(P 1 r ; xtïxj for i^j}/PGL(2) 

(n > 4), where PGL(2) = AutP 1 acts on X diagonally. Note that 

X4~ ^ - { 0 , 1 , 0 0 } , 

X5 ~ (X4)
2 -A (A : the diagonal), 

Pn = 7Ci(Xn((C), *) is the quotient modulo center (= %i(PGL(2, (C)) ~ Z/2) of the 
pure sphere braid group on n strings, and that 

F4 ^ F2 (free, rank 2) 

P5 = Pi X F3 (semi-direct, F2 acts on F3) . 

Now let X = X4 = P 1 - {0, l,oo}, so that TUI(X((C)) ^ F2. As reviewed in §1, 
V 

Belyi proved that cpx is then injective. This focuses light on the following 

Question 1. What can one say about the images of cpx,(p^, etc.? 

If one can characterize the image of cpx explicitly, then one is led to a 
completely different description of GQ. 

Question 2. What can one say about the ''elementwise description" ofcpx,(Pxl> etc-? 

Actually, this Q2 is not well posed at this stage of the development of 
mathematics, as we know no good system of NAMES for elements of GQ. As far 
as the author knows, no element of GQ other than the identity element and the 
complex conjugation (remember that Q a (C in our formulation) has an explicit 



Braids, Galois Groups, and Some Arithmetic Functions 105 

name to identify itself. Nor is it so for F2. Before asking to give an explicit 
description of the homomorphism cpx, we must ask ourselves the possibility of 
giving good names to elements of GQ,Fr(r ^ 2). If, however, we replace Fr by 
the nilpotent completion F™\ each element of F™1 then has a good name to 
identify itself which is obtained from the non-commutative Taylor expansion in 
r variables with coefficients in Z(^ f]/ 2£/). Thus, at present, the sense of Q 2 is to 
ask to give a new system of names for elements of GQ using cp'f and describe any 
interplay in terms of these names, (cpx1 is no longer injective; hence it concerns 
with a certain quotient of GQ which is "big and small",) 

We shall mainly discuss : 
1) Works of Deligne, Drinfeld, and the author on QÎ (§§3,4,5), 

and 
2) Works of Anderson, Coleman, and the author on Q2 (§6). 

Among them, 1) is closely related to cpXß for X = X5. 

2.3 Let X = P1 — {0, l,oo}, and F2 be the free group of rank 2 on two letters 
x,y. Our first goal is to show that for each er G GQ, cpxfo) is determined by two 
"coordinates", %(o) and fa, where % : GQ —> Z* is the cyclotomic character and 
fa is an element of Ff

2 — (F2,%), the commutator subgroup of F2. This can also 
be done relying more on group-theoretic normalization as in [Bi], [Ihj], but we 
proceed more "conceptually" using Deligne's tangential base points [De]. 

Let B be the set of "arrows" ij with i,j e {0, l,oo},/ ^= j . Thus, B has six 
elements and the symmetric group S3 acts simply transitively on B. For a, b e B, 
Deligne defines 7Ci — 7i\(X((E);a,b) and the GQ-action on its profinite completion. 
Topologically, it is clear what %\ should mean when, in general, a, b are simply 
connected subspaces of X(<D). The base point ij plays the same role as the open 
interval iy on IR bounded by i,j and not containing the third point k from 

{0, l,oo}. For a finite etale covering Y -> X over Q, the fiber above ij consists 
of points P G Y(Q$) above i given together with a "topological branch" (i.e., a 
lifting of Ijj) at each F, Here / : Y —• P1 is the compactification of/. In order to 
define the GQ-action on n\(X((C);a,b) for a,b G B, it suffices to give an algebraic 
interpretation of the branches at P. One way to put it is as follows. (This device 
proved to be useful [A-Ii].) Let ty be the linear fractional function P1 —• P1 

which maps i, j , k toj), l,oo, respectively. Then a branch at F is a local embedding 
of the local ring of 7 at F into the ring of Puiseux series in ty which extends: (i) 
the obvious embedding of the local ring of P1 at / into the ring of power series 
in tjj9 and (ii) the residue field embedding determined by the geometric point 
P. The corresponding topological branch is obtained by the principle to choose 
"the positive real root for t^ , on Jy". The group GQ acts on the fibers above ij 
via its action on the Puiseux coefficients G Q, One may prefer to reinterpret this 
in terms of the normalization of the fiber product of / with SpecCfi^ ] (e: the 
ramification index). 

Now we consider ni(X((£);0Î,ÏÔ), TCI(X((C),CÏÎ) and the Galois action on 
their completions. The first set contains an obvious element defined from the 
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interval (0,1). Call it p. The second group contains a small positive loop around 
0, called x, and y = p~l o x ' o p , where x' is the transform of x by t —> 1 — t 
(t = toi). This group is free on x9y. 

Q H - T H 0 * -

Now for each o G GQ, put 

fa = P~l o cr(p) G Ä I ( X ( Q , ÔÎ) . (2.3.1) 

Then er acts on the generators of 7ii(X((C), ÖT) = F2 as 

x —> x^\ y —> J"1 • y**> • / , . (2.3.2) 

It follows easily that fa G F2, and that (2.3.2) with this requirement characterizes 
fa. When er is the complex conjugation, x(&) = —1> fa = 1-

Remark. By (3.1.1)(I),(II) below, it follows also that z = (xy)~l (a loop around 
00) is mapped to g^z^g^, where ga = fa(x,z)x^i~1^\ 

Although F2 contains much more than the free words on x, y, we shall express 
an element of this group conveniently as /(x, y)9 because it will then make sense 
to speak of f(Ç,rj) for any elements c;,rj G G of any profinite group G; the image 
of / under the unique homomorphism F2 -> G mapping x,j/ to <̂ ,f/ respectively. 

§3. The Galois Action (Profinite) 

3.1 So what is the image of the mapping GQ —> 2P x F£ defined by a \—> 
(l(o),fa) ? The known equations satisfied by X = x(a)9 f = fa are as follows. 

if "xyz = 1, m = ì ( A - 1); ( 3 ' L 1 ) 

(I) /(x, j) /(y,x) = l; 

(II) f(z9 x)zmf(y9 z)ymf(x9 y)x™ = 1, 
— 2 

(III) (Drinfeld) Let F5 = TCI(X5(C), «5) and xy G F5 

(1 <i,j < 5) be as defined below..Then in F5, 

/(^12î^23)/(^34î^45)/(^515^12)/fe3,^34)/(^455^5l) = 1 • 

Remark. Drinfeld's formula given in [Dr2] is in terms of plane braid group on 
4 strings and is non-cyclic. The above formula is equivalent to his. The author 
previously wrote down more complicated formulas as 4 transposition relations 
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(w.r.t. (1 2),(2 3),(3 4),(4 5) in S5 instead of (12345)) in [Ih6]. Drinfeld thinks this 
type of formula may very well be known to Grothendieck. 

As for the more obvious question: "use of Xn (n ;> 6),,,?", see §3.3. 

The definitions of $}] and xy. Let J*„ be the space of all 77-tupJes (&i,,.. ,bn) 
of distinct points of Ru(oo) satisfying the condition: bi+i is next to b\ in the 
positive direction for all i (1 < / < n — 1) including the case of passing through 
00, Then PGF J (IR), the real projective linear group of degree two with positive 
determinant, acts on J1,, diagonally, and the quotient space 3$n == ^„/FGLjfR) 
is naturally embedded into X„((C). The space $n is simply connected and hence 
it makes sense to speak of the fundamental group Pn = 7ti(X„((C), J1,,). It is 
generated by the elements xy (1 < i,j < n) shown below: 

0 
/ 
\ 

1 

r 

00 
s 
/ 

3.2 Sketch of proof of (3.1.1), (I) Apply the automorphism 0 : t —> 1 — t to 
both sides of (2,3.1). 

(II) Let r be the element of TCI(Z((C);Î0, loo) corresponding to the rotation of 
argument % at the point 1 : 

0 1 00 
1 > > 

Then it is easy to see that 

r 1 • <j(r) = 0(x)^(x(ff)^1) G 7ii(Z((C),lÜ) , 

Therefore, if q = r op, we have o(q) = qy^a^V)fa(x,y). Let co be the auto
morphism t -• (1 —1)~{ of X. Then co2(q)co(q)q = 1. Apply a on this to obtain 
ai). 
(Ill) The symmetric group S5 acts on X5 from the left by substitution of coor
dinates, as (xi) -• (XS-J/) (s G S5). Let s = (13524). Then for a certain "tangential 
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base point"/? and a path class q G ni(X5(<L);ß,s(ß)), one can naturally identify 
ni(X5(<n)9ß) with ni(X5(€)9@5) = P5 and show that 

°(<l) = 4 • fa(*45,X34) , (3.2.1) 

s4(q)-s3(q)-s2(q) • s(q) • q = 1 . (3.2.2) 

The equation (III) follows directly from these. A topological illustration: 

b\ = &2 

(3.2.3) 

Z>2 = &3 &3 = b\ 

b5 = bl 

The author used a double Puiseux series expansion to define the algebraic 
interpretation of ß. 

3.3 As in [Dr2], define GT (the "Grothendieck-Teichmüller group") to be the 
subgroup of Aut F2 consisting of all automorphisms of the form 

x - ^ x \ y-^f-i.yi.f (XeZ^fefy, 

where X and / satisfy (3.1.1)(I),(II),(III). (It forms a subgroup!) Then by definition, 
the image of cpx,b (b = ÔÎ) is contained in GT. As cpx is injective (Belyi), so is 
cpxjb- Therefore, cpx,b induces an inclusion 

<Px,b :GQ^GT . (3.3.1) 

Two questions arise: 

Question 3.3.2 Can one still obtain new relations using Xn for higher n's ? 

Question 3.3.3 Can one characterize the image of GQ using these types of relations 
(or to ask more strongly, is (3.3.1) already a bijection) ? 

If one believes a strict analogy with conformai field theory, then no more 
essentially new relations would be obtained by using Xn for higher n (|M-S, G, 
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T-K, Dr2]). Drinfeld's new quantum group theoretic interpretation of GT (see §4 
below) gives a very impressive version of this philosophical reasoning. 

See §5.3 for the Lie version of these questions. 

§4. Connection with Transformation of Structure 
of "Complete" Quasi-Triangular Quasi-Hopf Algebras 

4.1 Drinfeld introduced the concept of quasi-triangular quasi-Hopf algebra 
(abbrev. qtqH algebra) [Dri, Dr^]. It is more general than Hopf algebra in 
that the coassociativity and the cocommutativity assumptions are weakened 
(equalities replaced by conjugations). Thus, a qtqH algebra over a field k is a 
quintuple (A,A,G,C/),R), where (i) A is an associative /c-algebra with unit element 
1, (ii) A : A *-> A ® A (comultiplication) and e : A -> k (counit) are /c-algebra 
homomorphisms mapping 1 to 1 (® : the tensor product over k), such that 

(e ® id) o A - (id ® e) o A = id , (4.1.1) 

(iii) 0 G (A ® A ® A)x and R G (A ® A)x satisfy: 

(A) The basic conjugacy relations: 

(id ® A)(A(a)) *=ct)'(A® id)(A(a)) • cj>^ , (4.1.2) 
tA(a)^R^A(a)'RTi , (4.1.3) 

for all a G A, where b ~-> fb (b e A ® A) denotes the transposition of two factors, 
It is not assumed that rR • R = 1. 

(B) The compatibility equalities: 

(id®£®id)0 p= 1 , (4.1.4) 

(the pentagon relation) (4.1.5) 

(id ® id ® A)cj) ' (A ® id ® id)0 = (1 ® (j)) • (id ® A ® id)0 • (cj) ® 1) , 

(two hexagon relations) omitted (cf. [Dr2](I'6,ab)). (4,1.6) 
Finally, the existence of an antipode is assumed. 

As is explained in [Dr2] the assumptions in (iii) can be understood more 
conceptually in terms of isomorphisms between tensor products of y4-modules. 
If V, W are (left) yl-modules (w.r.t. the /c-algebra structure of A), then their 
tensor product V ® W over k is natually an (A ® A)-module, and via A, again 
an ^4-module. If Fi,p2, F3 are three ,4-modules, then the (A ® A ® A)-module 
Ki ® V2 ® V3 can be regarded as an yl-module in two different ways, and (4.1.2) 
imposes that the (^-multiplication induce an yl-isomorphism 

(Fi ® V2) ® V3 -^ Vx ® (V2 ® V3) . 
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The pentagon relation requires the diagram 

{{Vi ® V2) <8> V3) ® VA 

(Vi ® (K2 ® V3)) ® F4 (Vi ® V2) <8> (V3 ® V4) (4.1.7) 

Vi ® ((F2 ® V3) ® F4) - ^ Fi ® (F2 ® (V3 ® F4)) 

to be commutative. In the diagrams for hexagon relations, the choice of directions 
of arrows related to "R" is delicate. The two diagrams (3.2.3),(4.1.7) are related 
to each other via Knizhnik-Zamolodchikov equations ([Dr2]§2) 

4.2 Now take meZ and f(x, y) G F2. If we replace cj>, R by 

R' =R- ('RR)"1 , ( ' ' ' { 
respectively, then the 2 equalities in (A) are still satisfied. Here, if R = ]T ai ® bi9 

R23 = £ 1 ® Ui ® bt, R32 = £ 1 ® bt ® at, etc. Drinfeld shows that (A, A, s, ft, Rf) 
satisfies (B) if and only if (X,f) satisfies the 3 equalities of (3.1.1), where m = 
\(X — 1). Actually, the only pairs of X and / satisfying (3.1.1) are (X,f) = (±1,1). 
But if TL and F2 are replaced by suitable completions, then there are many 
solutions. It suffices to recall that for 1 G 2 X and / G Ff

2, (3.1.1) was the 
system of defining equations for the group GT, and that GT contains GQ(\). The 
above two explicit solutions correspond to the identity element and the complex 
conjugation of GQ. Drinfeld considers some types of complete qtqH algebras 
over the ring of formal power series fep] over a field k of characteristic 0, called 
quantized universal enveloping algebras (abbrev. QUE-algebras). In this case, ® 
is replaced by the completed tensor product ®. For such qtqH algebras, the 
transformation (4.2.1) will make sense if X,f are elements of kx, Ffi(k) (the "fe-
nilpotent completion" of F2) respectively, and if R is sufficiently close to 1. Thus, 
one may define the group GT(k) which is still "big" and has a meaning as the 
group of transformations of structures of QUE-algebras over /cPJ. (The group 
law for GT corresponds to the reverse of the composition of transformations 
(4.2.1).) Roughly speaking, one may consider GT as the universal group of 
transformations of structures of qtqH algebras. 

Remark. There is another type of transformations of structures of qtqH algebras 
called twists [Dr2]. The two types of transformations commute with each other, 
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and the twists do not change the structure (as quasi-tensor category) of the 
category of ,4-modules. 

Question 4,2.2. Is there any "profinite" (A,A,E,C/)9R) over some ring related to 
Q on which GQ acts "naturally" and for which the natural action of o^1 coincides 
with the transformation (4.2.1) obtained by (x(a),fo) ? 

§5, The Galois Action (Pronilpotent) 

5.1 For 7tj = 7ii(X((C), *), instead of %\ we may also consider the pronilpotent 
completion nf\ the projective limit of all finite nilpotent factor groups of ii\. It 
is the direct product of its /-Sylow subgroups %\\ the pro-/ completion of %\, 
where / runs over all prime numbers. For a topological group G, we denote by 

G = G(l) 2 G(2) 2 • • • 2 G(m + 1) 2 • • • 

its lower central series defined by G(m + 1) = (G, G(m)) (m > 1), Here, (, ) is the 
closure of the algebraic commutator, Note that 

p|G(m)^{l}, for G^nf, nf . 
m 

The representations (px>q>x,b of GQ induce the quotient representations (Pxl><Px> 
etc. There are various advantages of passage to these quotients : (i) For a "canon
ical" choice of X such as P1 — {0,1, oo}, cp^1 gives rise to a natural filtration of 
some quotient of GQ which is of arithmetic interest, (ii) Each element of %fx, 
for P1 — {0, l,oo} etc, allows an explicit presentation as formal non-commutative 
power series over %. So, we may ask more explicit questions about the projection 
offa(x,y) on nfl (than about fa(x,y) itself), (iii) For nf\ we may use Lie algebra 
techniques, (iv) The nilpotent quotients of the fundamental group %\ are, in some 
sense, close to cohomology groups and are known to have additional structures. 
Under some assumptions on X, the Lie algebra of %x/ni(m+1) has mixed Hodge 
structure (J. Morgan, D, Sullivan, K. T. Chen, R. Hain), and further, mixed motif 
structure (Deligne). 

We shall start by explaining (i). 

5.2 For each prime number /, there is a canonical sequence 

Q c Q(0(i) c . . . £ Q(0(W) cz . . . c Q(»(oo) *= UQ ( / )(w) (5- z l) 

of (infinite) Galois extensions over Q, starting with Q^(l) = QGu/°°) (/i/°° : the 
group of roots of unity of /-power order), and an associated graded Lie algebra 
ßWj defined as follows. For each m ^ l,Q^(w) is the field corresponding to the 
kernel of the representation 

G Q —•Out( i f / j f (m + l)) 
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induced from cp^ for X = X4 = P 1 — {0,1,00}. This kernel will not change 
if X4 is replaced by Xn (n > 5) [II15]. The union field Q^(oo) corresponds 
to the kernel of cp% for X = Xn, for any n > 4. It is a pro-/ (non-abelian) 
extension over Qfe«) unramified outside /. For each m > 1, the Galois group 
Gal(Q^(m + 1)/Q^(m)) is a free Z rmodule of finite rank (call it r®(m)). It is 
centralized by Gal(Q(/)(™+ l)/<Qi®(l))9 a n d as Gal(Q^(l)/Q)-module, has the 
Tate twist m. The graded Lie algebra g(/) is the direct sum of its m-th graded 
pieces 

Gal(Q(/) (m + 1)/Q(0 (m)) ®Z/ Q, (m = 1,2,3,... ), 

each of which is a Q/-module (Q/ : the /-adic number field); cf. [II14]. This graded 
Lie algebra gw over Qj is a standard "approximation" of the filtered Galois 
group Gal(Q^(oo)/Q)-

Here is a set of very basic open questions. 

Question 5.2.2 (i) What is the structure of g^ ? (ii) Does there exist a natural 
graded Lie algebra g over Q such that g^ ~ g ® Q/ /or a// J ? (iii) In particular, 
is the rank r®(m) for each m independent of I ? 

We shall discuss two approaches to Q 5.2.2 (ii). 

5.3 We shall define a candidate for the Lie algebra g in question (cf. [II15]). As 
before, let Pn = %i(Xn(<L),@n) (n > 4) (see §3.1), and let S$n be the graded Lie 
algebra over Q associated with the lower central series of Pn. Thus, the m-th 
graded piece grm^5n of S$n is the Q-module 

(P„(m)/Pn(m+1))®Q ( m > l ) . 

If Xij (1 < i,j < n) denotes the element of S$n of degree 1 represented by x̂ -
(§3.1), then Sßn is the graded Lie algebra over Q generated by the Xi/s which 
satisfy the fundamental relations 

n 

Xu = 0, Xij = Xji, £ X * = 0 (l<i,j<n) 
k=i 

[xij,xkl]=o if {i,j}n{k,i} = cj> 

([K, Ih5]). A special derivation of Sßn of degree m (> 1) is a derivation D of Sfin into 
itself such that D{Xij) = [F0-,Zï7] with some Ttj G grm^pn (1 < i,j < n). Let @n 

be the graded Lie algebra over (Q whose m-th graded piece is the Q-module of all 
symmetric special outer derivations of S$n of degree m (m> 1). Here, "symmetric" 
refers to the invariance with respect to the obvious ^„-action on S$n, and "outer" 
refers to considering modulo inner derivations. 

The sense of considering such a Lie algebra @n is that the GQ-action on P® 
gives rise to a degree-preserving Lie algebra embedding 

g ( 0 -_>^ n ®Q/ ( n > 4 ) (5.3.1) 
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for each prime number /. Now, when n increases, 2&n gets smaller. More precisely, 
the projection 3̂„ —• ^3„_i, defined by letting Xy —• 0 for / or j = n, induces a 
Lie homomorphism 3}] -» @}1-\. We know that this is infective for n ^ 5. Thus, 
these embeddings give rise to an infinite chain 

0op *= f) % £ . «. c sn £ ... c ^ 5 c ^ 4 , (5.3.2) 

of graded Lie algebras over Q. By (5.3.1) and some compatibility, 

B»£0oo®Qj . (5.3,3) 

Now we ask the following Lie versions of Q 3,3.2, Q 3,3.3 \ 

Question 5.3.4 (i) ^ = ^5 ? (ii) 9(0 - ^oo ® Q/ /or a// / ? 

Remark From (5.3,2) (5,3.3), it follows that 

r{1)(m) < dimgrm^oo < • < dimgr'"®5 < dimgrm^4 

for each m > 1, It is interesting to see which of the < are equalities, For 
m < 7, r®(m) *= dimgr'"^4, But r®(l) = 1 and dimgr7®4 = 2, Terada-Ihara and 
Drinfeld independently verified that dimgr7^5 = 1 ([II17, Dr2]), which is in favor 
of the affirmative aspect of Q 5.3.4. See [Ih3, II14] for more about these ranks. 

Problem 5.3.5. Construct elements of @œ by algebraic or topological means. 

5.4 Deligne constructs a basic motivic extension of the Tate motives, "Q" by 
"Q(m)" (m ^ 3, odd) [De]. Moreover, assuming his conjecture (Joe. cit. (8.1)) 
which asserts that such extensions form a 1-dimensional space generated by his 
extension, and using [So 1,2], he proves the following. 

The Galois representation in 7r}y7Ej'(77? + 1) is "Q-rational" in the following 
sense (for X = P1 — {0, l,oo}, n\ = m(X(<L), 01)): There exists a linear algebraic 
group Del,,, over Q and a short exact sequence 

1 —> [/Del,,, —> Del,,, —> GL(l) —• 1 , 

with t/Del,„ unipotent, all independent of I, such that for each I the Galois repre
sentation in ni /7ii\m + l) factors through a representation GQ —• Del,„(Q/) which 
has an open image at least if / > 2, Moreover, the abelianization of UDdlm, with 
the GL(iyaction, decomposes as 

([/Del,„)ab^ 0 A1 (ft) 
3</c<m,orfd 

(A1 : the affine line, k : the Tate twist). Finally, {Del„,}„,->i forms a GQ-compatible 
projective system. 
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In particular, if one assumes the above conjecture on the extension of "Q" 
by "(Q(m)", then Q 5.2.2(H) will have an affirmative answer with an additional 
information: the graded Lie algebra g is generated by some subset of the form 
{sm}m, where m runs over odd integers > 3 and s\n is of degree m. 

§6. Arithmetic Aspects 

6.1 In §6, we shall review some works of Anderson, Coleman, the author, ... , 
on the "elementwise description" and the arithmetic study of the representation 
cpf for X = 1P1-{0,l,ao}. 

Let X = P 1 — {0,l,oo} and, as in §2.3, identify the fundamental group 

7Ti(X(C),ÖT) with the free group F2 on x,y. The Galois group GQ acts on 
7ti(X(<n),ÔÎ), and hence on % and Ff = Ui^- T a k e a n y a e GQ- T h e n t h e 

action of er on F2 can be expressed by two coordinates x(ff) a n d fa (x(&) £ 
Zx,fff G F2) (see §2.3). Therefore, its action on Ff1 can be expressed by %(o) 
and the projection ff of fa on Ff1. Call sé — % <C £>,r\ *> the non-commutative 
power series algebra in two variables over Z. Then Ff11 can be embedded into 
séx via x —> 1 + Ç, y —> 1 + Y\, and ff can be regarded as an element of séx. 
Each coefficient of the power series ff1 may be regarded as a new invariant of 
CT. One is motivated to compare it with other invariants of o, the old ones (§§6.2, 
6.3) or the newly constructed ones (§6.5). 

Now as a Z-module, sé is the direct sum 

sé = Z-lesé-Ç®sé-ri , (6.1.1) 

and (ff)'1 decomposes as 

(ff)-i = l+AiZ + A2ri (AuA2esé) . 

Put Wc(Ln) = 1 + Mt Then it follows easily from (3.1.1)(I) that 

ft = WG(n^)'V«(Lr\Yl • 

Thus, knowing xpff is equivalent to knowing ff. Moreover, xpff is an anti 1-cocycle 

Wax = ff (VT) ' Wa (ff, T G GQ) 

with respect to the action of GQ on sé extending that on Ff, and is more 
convenient for describing the <j-action on abelian subquotients of n\ ([II12] ; cf. 
also [A-I2§2]).1 

Our first subject now is an explicit formula for the commutative power series 
ipf obtained from \pa by letting £ and r\ commute. Let sé*h = Z[[£, rç] be the 
commutative formal power series algebra, with the induced GQ-action 1 + £ -> 
(1 + É)*(ff), 1 + fj - • (1 + YI)X{(7) (ff e GQ). Then GQ -» ( j / a b ) x (<r •-• ^ b ) is a 

1 In these papers, the base point is ööl and x9 y are loops around 0, 1, respectively. So, the 
definitions are slightly different. See Remark at the end of §6.5. 
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1-cocycle, and it turns out that each coefficient of ipf can be expressed in terms 
of "old invariants" of o which we now recall. 

6.2 The Old Invariants. Fix a prime number /, 
(i) The l-adic cyclotomic character %^ is the /-component of %, i,e,? %(o) = 

(ii) The cyclotomic elements (Soulé, Deligne), These are certain continuous 
mappings 

rcjj >.GQ^Z} (m>l,odd) , 
satisfying the 1-cocycle relation 

4>{GT) *= 4>(<r) + X ( V)" '4>(T) («T.T e GQ) . (6.2.1) 

[Construction] Let n > 1 (but n ̂  2 if / = 2). Put £„ = exp(^) and 

^=n^- i ) < a '"" , > > 
a 

where the product is over all integers a such that 0 < a < /" and (a, Ì) = 1; 
{am~x) is the smallest positive integer congruent to am~l mod /", Note that em>„ 
is totally real and totally positive (because m is odd). It is easy to see that each 
of ew>H+i/eWjH and c(ßw,w)/fiJJIW is an /"-th power of a totally positive element of 
Q(/i/oo), where or G GQ, b e TL, b •= ^(^"'"(rnod/"), Hence there is a unique 
7c$(o-) G 2/ such that 

holds for all n ^ 2. Moreover, ?ĉ  satisfies (6.2.1), Here, for any positive real 
number c, c1^" denotes its positive real root. By (6,2.1), /c$ factors through 
Gal(Q(/i/«.)ab/Q), Q(/i/°°)ab being the maximal abelian extension of Q(/i/«). More
over, by Soulé [Soi^], these 1-cocycles K$ do not vanish at least if / > 2. 

6.3 The following explicit formula for the coefficients of xpf is due to the 
contributions of Anderson, Coleman, Deligne, the author, Kaneko and Yukinari; 
cf. [A3, C3, IKY]. (See also [Ich] for a simplification of [IKY].) 

For each a G GQ, define 1^(0) G Zx = JJ/Zf by 

^ U f f ) - « / ' " - 1 - ! ) - 1 ^ ^ ) ) / • 

Theorem [A3, C3, IKY]. 77?e commutative power series y)a
h(c;,ii) can be expressed 

explicitly as follows. 

7CJ>) t 
m\ vfK,j/)=exp^ X ^ ( ( x + y r ~ x ' " - r » ) 

expi4 s 
^ nfe2tev 

K (1 ZWO ^X + yyn _ ^ _ yWj 

mi 
»eue» 
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where X = log(l + £)> Y = l°g(l + rl)> and the constants bm are defined by 

l-tm . 
m>l 

(mbm is the m-th Bernoulli number.) 

Note that y)f(Ç,rj) is of the form 

^«^(^((i+öa+^-ir1 . 
This power series ya is closely related to Anderson's hyperadelic gamma function 
Fff. 

The image of G —> y)f(Ç,rj) was studied closely by Coleman [C3], Ichimura 
and Kaneko [IK]. The expected image can be figured out via Coleman theory 
[Ci, C2], and the difference from the expected image can be measured in terms 
of the "Vandiver gap". 

6.4 We now explain another aspect ofipf. It is a connection with the action of 
er on the double commutator quotient F2/F2 of F2, or equivalently, on torsion 
points of Fermât Jacobians. Put #" = F2, and consider the abelianizations J5rab = 
# 7 ^ ' and #"'ab = &'!&" of & and &' first as (additive) Z-modules. Then 
#"ab = Zx ©Zy on which a acts via x(o)-multiplication (because of (2.3.2)). Here 
x,y are the classes of x,y. Now #"ab acts on ^"/ab by conjugation. Therefore, 

#"/ab may be regarded as a module over the completed group algebra Z\3F^°\ 
But one can show that this module is free of rank 1 generated by the class & of 
(x,y) — xyx~xy~x. As cr acts semi-linearly on #"/ab, this action is presented by the 
unique element B'a of Z p ^ ] such that 

o(Q')=B'a-e' . (6.4.1) 

Now define Ba G TL\&*h\ by the formula 

K=\^è^y. (6.4.2) 

This Ba is connected with ipf as follows. Consider the projection 

pr : Z\^\ —> ÊE, rjì=séab { ~ ^ \ "[" ^ (6.4.3) 

Then 
pr(B„) = V*b . (6.4.4) 

The projection pr has a big kernel Jf. In fact, X • Q' (<= Jf'/J^") is the kernel of 
J^/J^" —> Ff^/iFf1)". Thus, \pf> is the power series which describes the a-action 
on (Ff)'/(Ff)" universally. 
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This power series was first treated in [Ihi], including its connections with the 
/-power torsion points of Fermai Jacobians of /-power degree and Jacobi sums. 
We shall explain this briefly keeping in sight its generalized and refined version 
due to Anderson [A3]. First, we make the following identification 

#"ab = Hom((Q/Z)2, /v> (6.4.5) 

(/4oo : the group of roots of unity in (C), with x (resp, y) corresponding to 
(s,i) -> exp(27i/s) (resp, sxp(2nit)); s,t G Q/Z. Note that the GQ-action on ^ a b is 
recovered from its action on fiœ via (6.4.5). Through (6,4.5) we may regard each 
element of Zp*"813]] as a function 

(Q/Z)2r->Z®Q(iu00) . (6.4.6) 

The above Ba, considered as a function (6.4.6), is the adelic beta function Bff(s,t) 
(s,t G Q/Z). It is strikingly analogous to the classical beta function [A3]. Very 
roughly speaking, BG plays the role of (the classical beta)ff_1. 

Now, the abelian covering of X = P1 — {0, l,oo} corresponding to ^h/(N) 
(N = 1,2,.,, ) is the Fermât curve 

YN :{uN + vN = 1; uv^O} . 

The covering map is given by (u,v) -> uN, The abelian coverings over 7jy are 
controlled by the* group of torsion points of the Jacobian of Yjy (the compact-
ification of Y^), Thus the action of er on J^/J5"" is directly tied to that on the 
group of these torsion points ([Ihi, A2/3]). As the Frobenius elements act on the 
latter group by multiplication of Jacobi sums (etc.), these collected together in 
terms of xpf (or Ba) give a universal expression of Jacobi sums, For xpf, it is: 

Theorem [Ihi]. Let I be a prime number, n i> 1, p be a prime ideal o/Q^/«) not 
lying above I, and u = cr^ be a Frobenius element of p, Then for any ̂ -torsion 
points s,t of Q/Z with s,t, s + t ^ 0, the special value of the l-component ofxpf 
(G Z/[[<!;, 77]) at t; = exp(27ris) — I, r\ = exp(2nit) — 1, is essentially the Jacobi sum 
(w.r.t, p, /", s, t), 

More generally, the values of Ba(s,t) (s,t G Q/Z) are related to Jacobi sums 
and also Gauss sums [A3]. Note that the two theorems of §6.3, §6.4, combined, 
give a direct connection between the circular units and the Jacobi sums. 

Anderson [A3, A4] defined the hyperadelic gamma function 

ra : Q/Z •—> (some arithmetic ring) 

which factors Ba just as ya factors xpf. It interpolates Gauss sums, and its 
"logarithmic derivative" can be given explicitly in terms of circular units so that 
it forms a bridge connecting Gauss sums and circular units. The last connection 
was partly established independently by a different method by Miki [Mi]. See 
Coleman [C3] for connections with and applications to other aspects of cyclotomy. 
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6.5 ipff(ct,rj) and Higher Circular /-Units (Anderson-Ihara [AIij2]). This connection 
arises from a comparison of the tower of nilpotent coverings and of genus 0 
coverings. 

Call a finite subset S c P^C) l-elementary, if S is obtained from SQ = {0, l,oo} 
by finite number of operations of the form S —> S1/l (all Z-th roots), S -> Tatb,c(S). 
Here, a,b,c G S (distinct), and Ta^c is the projective linear transformation of P 1 

that maps a,b,c to 0, l,oo respectively. 

Definition 6.5.1. E® is the subgroup of (Cx generated by the constituents of 
S — {0,oo}, where S runs over all /-elementary subsets of P 1 ((C). 

It is easy to see that elements of E® are /-units, i.e., element of Q which, 
together with its reciprocal, is integral over Z[l/l]. They are called higher circular 
l-units. The group E® contains such elements as 

l - C . (l-fl-C)1"")1"",..., 

where £„ = exp(27ri//n) (n = 1,2,... ). 

Theorem [A-I2]. Each coefficient of \pa(t\,r\) (mod /") can be expressed explicitly 
in terms of the o-action on F ^ . 

A key dialogue : "How to distinguish different /-th roots in E® intelligibly?" 
: "In terms of a natural structure of "forest" with vertices in F w . " 

Corollary [A-Ii] 
QW(OO)=Q(JB®) . 

We shall conclude this lecture with two additional open questions. 

Question 6,5.2. i) Is Q^(oo) the maximal pro-l extension over QGuj«,) unramified 
outside I ? 

ii) How big is E® and £ ( / ) n Q t o » ) ? 

Remark. The non-commutative (resp. commutative) Z-adic power series xp(cr) G 
Zi < u,v > of [Ih2] §1 (D) Ex. 1 (resp. Fff G Z{\u,v\ of [Ihi] §2) are related to 
the above ipa (resp. i/;ab) as follows. Write ^,Y\ instead of u,v respectively. Then 
\p(a) and Fa are the /-components of 

/„0>,z)rWffM)-i/v07,É) 

and 

respectively, where z = (xy)-1. Note that / a b = 1 and that ipab is symmetric in £ 
and Y\. 
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Added in proof. The author found later that Question 5,3.4 (i) has an affirmative answer. 
The proof is based on [Di'2, H15]. 
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Motivation 

The last ten years or so have seen a considerable synthesis in mathematics and 
mathematical physics. In this talk I will be concerned only with those topics 
appearing in Fig. 1, all connected by having something to do with braids. 
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mechanics) 
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Quantum groups 

Fig.l 

Many very different themes could be used for a talk such as this one, but I 
have chosen von Neumann algebras because they are what led me into this circle 
of ideas. Thus the presentation will be historical rather than logical. 

A von Neumann algebra M is a *~algebra of bounded operators on a Hilbert 
space (Jf, ( , )) which contains the identity and is closed in the weak operator 
topology, i.e. if an is a net of operators in M and {an^Vl) —• (fl&ty) f°r some a 
and all £ and ;/ in Jf, then a is in M. Most of the interest is when M is infinite 
dimensional so it should be pointed out at the outset that a finite dimensional 
von Neumann algebra is just a direct sum of matrix algebras, each acting with a 
certain multiplicity on Jf. 

Proceedings of the International Congress 
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These algebras were first introduced by Murray and von Neumann in [MvNl]. 
Their motivations were many, not the least being a beautiful result of von Neu
mann in [vN] which showed that von Neumann algebras could equally be defined 
as commutants of self-adjoint sets (notation: if S is a set of bounded operators, 
S', the commutant of S, is by definition the set of all bounded operators x 
such that xs = sx for all s in S). This means that von Neumann algebras are 
the algebras of symmetries for any structure belonging to Hilbert space, such as 
geometric configurations of subspaces or unitary group representations. Let me 
discuss some other motivations for looking at von Neumann algebras. 

a) Unitary Group Representations 

The abstract theory of representations of a compact group is very complete but 
as soon as the group is not compact, many different phenomena occur. A unitary 
representation no longer decomposes simply as a direct sum of irreducibles, 
which is reflected in a possibly exotic structure of the commutant of the group. 
This already happens for, say, the regular representation of the free group on 
two generators. Of course a semisimple Lie group G is an example of a "type I" 
group where there is a satisfactory reduction to irreducible representations, but 
even here the restriction of a discrete series representation of G to a lattice F in 
G will resemble the regular representation of F . So even in arithmetic questions 
(say G = PSL2ÇR), F = PSL,2(Z)), "exotic" von Neumann algebras occur quite 
naturally. For infinite dimensional groups such as loop groups the situation is 
even more interesting. 

b) Abstract Algebra 

The abstract theory of finite dimensional semisimple algebras over a field is 
also a complete theory. When the algebra becomes infinite dimensional, general 
theory must be replaced by a heterogeneous collection of examples unless some 
analysis is introduced. Over C semisimplicity is implied (in finite dimensions) by 
the existence of a * operation and to say that an algebra is closed in the weak 
topology is the strongest reasonable condition on it. So von Neumann algebras 
should be the best behaved abstract family of infinite dimensional algebras. 
Although the theory is considerably richer than in finite dimensions there do 
exist non-trivial general results and there is a significant class of von Neumann 
algebras (those approximable by finite dimensional algebras) for which a complete 
classification exists. 

c) Unbounded Operators 

At first sight the important operator d/dx appears unnatural on Hilbert space 
since it is not defined on all vectors (in L2(R)). However the opposite is true. 
Provided d/dx is given the right domain its graph is a closed subspace and hence 
natural to Hilbert space. In general an operator is called pre-closed if it is densely 
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defined and the closure of its graph is the graph of an operator. All interesting 
linear operators seem to be pre-closed.1 

The trouble with domains comes when one tries to add and multiply un
bounded operators. For this reason one would hope to replace unbounded op
erators by bounded ones. Thus the relations [P, Q] = id can be handled in the 
Weyl form with two unitary groups U(t) and V(t) with U(t)V(s) = e2nis1V(s)U(t). 
In general one could use the von Neumann algebra of all bounded operators 
having the same symmetries as the unbounded ones. 

d) Quantum Theory 

The very language of quantum mechanics suggests von Neumann algebras. 
States are vectors in a Hilbert space. Observables are self-adjoint operators 
and numerical information about observables for systems in states is given by 
scalar products. Thus it is quite natural to consider a von Neumann algebra 
of observables associated with any subsystem of a quantum system. Certainly 
von Neumann was thinking along these lines. Such an approach was indeed 
adopted as an "algebraic" approach to quantum field theory by Haag and 
Kastler [HK] who postulated von Neumann algebras associated with regions 
of space time and satisfying certain causality, positivity and Lorentz covariance 
conditions. Although it is very abstract and difficult to produce mathematical 
examples, some things can be deduced from such a general theory and new results 
in von Neumann algebras have recently added to the possibilities. 

1. Factors and Their Ttypes 

The spectral theorem shows that abelian von Neumann algebras are abstractly 
of the form U°(X,ix) acting with some multiplicity on a Hilbert space. Attention 
turns immediately to factors which are by definition von Neumann algebras 
with trivial centre. The simplest example of such a factor is ^ ( J f ), the algebra 
of all bounded operators. One of the fundamental discoveries of Murray and 
von Neumann was that of factors not abstractly isomorphic to any fflffl). 

The first example was that of the commutant M of the left regular represen
tation of any discrete group F all of whose (non-identity) conjugacy classes are 
infinite (such as free groups F„ or PSLn(Z) for n ^ 2). One can show that this 
von Neumann algebra is generated by the right regular representation and that 
it is a factor. Also if i\ e /2(F) is the characteristic function of the identity then 
the linear functional tr(x) = (xi),!;) defines a trace on M (i.e. tr(xy) = tr(yx)). 
There is no such functional on fflffl) if dim j f = oo. 

An infinite dimensional factor admitting such a trace is called a type Hi factor 
and a factor of the form $(&?) ® (a type Hi factor) is called a type lit» factor 
if dim Jf = oo. A factor which is neither of type I (= fflffl)) nor of type II is 
called a type III factor. 

1 I can only think of one exception - the "derivations" in Fox's free differential calculus 
are not pre-closed on I2 of the free group. 



124 Vaughan F. R. Jones 

A Hi factor shares some of the nice features of a finite dimensional matrix 
algebra (e.g. it is simple). Its most seductive feature is continuous dimensionality. 
If one looks at the numbers trace(p) (trace normalized so that trace(l) = 1), where 
p e Mn((C) are projections, one obtains the numbers m/n for m = 0,1,..., n, where 
m is of course the rank of p. In a Hi factor one obtains the whole unit interval 
[0,1]. 

2. GNS Construction 

An important construction is the Gelfand-Naimark-Segal construction. One be
gins with a *-algebra A and a linear functional (state) cp : A —> C with cp(a*a) > 0. 
Define ( , ) on A by (a,b) = cp(b*a). Quotienting if necessary A becomes a pre
Hilbert space and its completion is written 34?^. Under mild conditions A will 
act on Jfp by left multiplication and the von Neumann algebra it generates is 
said to result from the GNS construction from cp. It should be thought of as 
the completion of A with respect to cp. Examples of all types of factors can 
now be obtained, using A = ®£iM2((C). If h G M2(<C) are positive matrices of 
trace 1 then the formula cpfà^xì) = n £ i trace(Ä,-x,-) defines a state, said to be a 
product state. The result of the GNS construction is then always a factor. It is 

of type I if hi = ( J J J, of type Hi if h = (1/2) ( J J J and of type III if 

hi = (1 + A)-1 f n - j for 0 < k < 1. In the last case the state is known as the 

Powers state after R. Powers [Pow] who proved that the factors for different k 
are mutually non-isomorphic. 

3. Modular Theory 

The Tomita-Takesaki theory shows that to every weakly continuous state cp on a 
von Neumann algebra M there is a one parameter group <rt of automorphisms 
of M characterized by the KMS condition cp(xy) = cp(oi(y)x). It allows one to 
subdivide the type III factors into type IIU, k e [0,1] where the Powers factors 
are of type UIx, k e (0,1). Types Ilio and Uli can be obtained from product 
states by suitable choices of the Vs. Generically a factor is of type Uli. For 
details we refer to Connes' Helsinki congress talk [Col], or [Ta]. 

4. Hyperfiniteness 

A von Neumann algebra M is hyperfinite if there is an increasing sequence of 
finite dimensional *-subalgebras whose union is weakly dense in M. Thus our 
infinite tensor product factors are hyperfinite, by construction, but Murray and 
von Neumann showed that the free group Hi factor is not hyperfinite, nor are 
the examples coming from lattices in semisimple Lie groups. 

All hyperfinite factors are known. Here is a table of them. 
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Table 1. Hyperfinite factors 

Type I„ 
n = 1,2,.,., oc 

Type Hi 

Type II«, 

Type Ilio 

Type IIIj 
0 < A < 1 

Type Uli 

One for each n 
) Proof: elementary 

A unique factor, denoted R. Uniqueness 
proved by Murray and von Neumann in [MvN2] 

A unique factor. Uniqueness proved 
by Connes in [Co2] 

One for each ergodic non-transitive flow. 
Proved by Krieger [Kr] and Connes [Co2] 

Powers factors are the unique examples, 
Uniqueness proved by Connes [Co2] 

A unique example, first analysed by Araki and Woods 
in [AW]. Uniqueness proved by Haagerup [Ha] 
and Connes [Co3] 

In quantum field theory it is expected that the von Neumann algebra of 
observables localized in a nice region is a hyperfinite type IHi factor, 

The classification of hyperfinite (also called "injective") factors is a great 
achievement. Among other things it paves the way for the study of subfactors, to 
which I now turn. 

5. Index for Subfactors 

The representation theory of a Hi factor is very simple. There is a single parameter 
- a positive real number (or oo), dim^ (jf), which measures the size of ^ 
compared to the Hilbert space L2(M) obtained from M by the GNS construction 
using the trace (for which dim^ (L2(M)) = 1). Thus if N <= M are Hi factors we 
define the index of AT in M to be the real number (^ 1) : 

[M :N]=dimN(L2(M)). 

Examples : 

(i) [N®Mn(C) :N]=n2 

(ii) [M : MG] = \G\ if G is a group of outer automorphisms of M. 

The next theorem shows that this is an interesting notion. 

Theorem [Jol]. a) If [M : N] < 4 then there is an n e Z, n > 3 for which 
[M : N] =4COS27E/H. 

b) All values of the index of part a) are realized, as is any real number ^ 4, by 
subfactors of thé hyperfinite Hi factor. 

This theorem may be proved by iterating a certain basic construction which 
associates to N <= M an extension (M,e^) of M where e^ projects from L2(M) to 
L2(N), One obtains a tower M/ with N = Mo, M = M\ and Mn — (M,e\,...,e„_i), 
ej being orthogonal projection from L2(Mj) to L2(Mj-\), 
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The ez's satisfy the following properties 

1) e2 = et = e* 
2) eieì = ejet if \i-j\ >2 
3) eterei = ze{ (x = [M : N]~l) 
4) tr(wen+i) = Ttr(w) if w is a word on ì,e\,...,en. 

The hermitian form tr(x*y) on the algebra generated by the efs must be 
positive definite and this forces [M : N] to be 4 cos2 n/n. We will see later how 
the same form arises in connection with surgery on three-manifolds and this 
result about degeneracies of the form is precisely what allows a simple explicit 
formula for some new three-manifold invariants ! 

The construction of examples of subfactors proceeds by the explicit construc
tion of a sequence of efs and a trace satisfying l)-4) above. The Hi factor is 
then obtained by the GNS construction and the subfactor is that generated by 
e2,e3,... . I n the case of index > 4 these subfactors have non-trivial centralizer. 
For more details on what happens in index > 4 see Popa's talk in this volume. 

6. Commuting Squares 

The tower M,- arising from N c M defines two towers of finite dimensional 
algebras which we will call the centralizer towers. They are the commutants 
Ai = M'nMi and Bt = JV'nM,-. Clearly At c Bt and they satisfy the "commuting 
square" condition (first used by Popa in a different context) that the orthogonal 
projections from Bi+i to Ai+\ and Bt commute and Bt n Ai+\ = At. 

This condition allows one to control the von Neumann algebra inclusion 
of the GNS closures of UAt and UBt, which would be impossible without the 
condition. 

In fact commuting squares give subfactors automatically by iterating the 
basic construction and the study of commuting squares constitutes a new and 
intriguing problem in finite dimensional linear algebra. A machine for producing 
examples from quantum groups has been developed by Wenzl. Other examples 
abound - see [Su], [HJ] and [HS], but the general structure of commuting squares 
is quite unclear. 

7. Finite Depth, Classification Results 

Actions of finite groups are completely classified on the hyperfinite type Hi 
factor ([Jo7]) and one might hope for an extension of these results to finite index 
subfactors. This is unlikely since one may take any finite set of automorphisms 
ai, 0C2,..., an and form the subfactor 

f/* \ 
ai (x) O 

IV 
o 

ccn(x) ) 

xeR 
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of JR ® M„((C). This subfactor remembers too much about the group generated 
by oc], ai,.,., a„ and although if this group is amenable we are in a good situation 
([01]), if it is not there will be no nice classification. 

On the other hand there is a class of subfactors, first stressed by Ocneanu, of 
R for which classification is a well-posed problem. A subfactor N <= M is said 
to be of finite depth if the dimensions of the centres of the centralizer towers 
Ai and B\ are bounded. It is then easy to see that the centralizer towers exhibit 
periodicity beyond a certain ppint, The index of a finite depth subfactor is given 
by the square of the norm of the matrix, with integer entries, describing the 
stabilized inclusion for Ai c Aj+\. See [GHJ]. 

Popa has shown in [Po] that the stabilized commuting square of centralizer 
towers is a complete invariant for subfactors of .R of finite depth. Another version 
of the result is claimed by Ocneanu who has a more elaborate and computable 
version of the invariant, 

If the index is less than 4 a complete classification is possible. Coxeter-Dynkin 
diagrams arise out of the combinatorics of the centralizer towers and according 
to Ocneanu subfactors of index < 4 are classified by Dynkin diagrams of types 
An, D%n, Ee and Fg, there being one for each An and D2,, and two for each of Ee 
and Es. The index of the subfactor is 4 cos2 n/n, n being the Coxeter number (see 
[02, GHJ]), Popa has extended this to index 4, where infinite depth and extended 
Dynkin diagrams occur (see [GHJ] and Popa's talk in these proceedings). 

Popa has given a deep generalization of his result to cases of infinite depth 
provided certain asymptotic behavior of the combinatorics can be controlled, 
Combined with ideas of Wasserman in [Was] this gives new results about compact 
group actions. See Popa's paper in these proceedings. 

8. Statistical Mechanical Models 

The abstract algebra presented by the e,- relations 1), 2) and 3) was used by 
Temperley and Lieb [TL, Ba] to show the equivalence of the ice-type and self-
dual Potts models of statistical mechanics. The relations are satisfied by certain 
matrices which combine to give the row-to-row transfer matrices of the models. 
The same abstract algebra occurs in the models of Andrews, Baxter and Forrester 
[ABF] but the parameter is now in the discrete series 4cos27c/7i. Pasquier used 
the ADE Coxeter graphs to get more models ([Pa]). 

The ice-type model is a vertex model where the interactions between the 
elementary components of a system take place at the vertices of a graph. The 
Potts model is a spin model where interactions are on the edges and the ABF 
and Pasquier models are IRF models with many-spin interactions around faces 
of a planar graph. 

Many more elaborate models can be obtained from quantum groups and 
there are corresponding algebraic relations generalizing the e,- ones. One may use 
these models to construct subfactors including the Wenzl ones but apparently 
others as well ([Jo2, D+]). 

The relation of subfactors to the solvability of the model, if any, remains 
unclear. 
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9. Bimodules, Hypergroups, Paragroups, Quantized Groups ... 

The combinatorics of the centralizer towers are very rich and attempts are being 
made to extract the data in them. The most ambitious project is Ocneanu's. He 
uses bimodules and intertwiners and obtains a structure with many properties of 
an IRF model of statistical mechanics, where the "faces" become closed paths 
around induction-restriction diagrams. See his notes in these proceedings. 

Sunder has used a less detailed structure called a hypergroup which is only 
supposed to contain the combinatorial structure of tensor products of bimodules 
([Su]). 

The idea of using bimodules was first stressed by Connes. See [Co4, Jo3]. 

10. Braid Groups 

The braid group Bn on n strings may be presented on n — 1 generators 
<XI,ö"2,...,crn-i with relations GìCTì+ICTì = crj+irr,-o"i+i and cTfCTj = CTJCTì if \i — j \ > 2 
(see [Bi]). These relations bear a resemblance to the et ones and one may represent 
the braid group by sending Gì to tet — (1 — et) if 2 + t + f1 = T - 1 . The discrete 
series corresponds to t = e2ni^n, at unitary, and the continuous part to t > 0, Oi 
self-adjoint. 

The presence of such braid group representations is a pervasive feature of 
all the generalizations to do with quantum groups and solvable models. The et 
representations correspond to the 2-dimensional representation of Uq(sh). It is 
not known whether these representations, either collectively or individually, are 
faithful for n > 3. Lawrence has found these representations as natural actions of 
braid groups on homology groups - see [La]. See also Varchenko's talk in these 
proceedings. 

11. Hecke Algebras 

If H < G are groups, the Hecke algebra is the commutant of the representation 
of G on the vector space of functions on G/H. In the case where G is GLn(¥q) 
and H is the upper triangular matrices, this algebra admits a presentation on 
generators gi, g2,..., gn-\ with relations 

gf = (<1- l)gi + 4, gigi+igi = gi+igigi+u gigj = gjgi if \i - j \ > 2. 

For \q\ =fc 1 or 0 this algebra is isomorphic to the group algebra of the symmetric 
group Sn (see [Bo]). 

Clearly the braid group can be represented in the Hecke algebra in the 
obvious way. In fact these representations contain the et ones (with q = t) 
as direct summands. Under the isomorphism with <£Sn, the e,- representations 
correspond to Young diagrams with at most 2 rows. (See [Jo4].) 
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12. Knot Polynomials 

Braids may be closed by tying the top to the bottom to form links (see below), 

TT 
The braid o\o2 ^jcr;,:1 ; V) Its closure; 

It is clear that the closure of a braid oc e Bn does not change if a is conjugated 
in Bn, nor if a is embedded in BH+j and multiplied by a^1. These two "Markov 
moves" generate the equivalence relation of having the same closure, It follows 
from this and relation 4) in the e?- algebra that a normalized version of the trace 
of the algebra element representing a braid will be an invariant of the closure 
of the braid. For a link L this invariant turns out to be a polynomial VL(ì) in 
the variable t (or *Jt) and can be calculated, though not always rapidly, from the 
following "skein relation". 

Skein Relation ([Cnw]). If L+, L_ and Lo are links identical except near one 
crossing where they are as below 

then 

X 
L+ 

•-,'<•-

X 
L_ 

-tvL_ = (V~t- • i M m « , . 

The right-handed trefoil has V(t) = t +13 — t4 and the left-handed one has 
V(t) s= 1/t+l/t3 — i/tA. The Alexander polynomial has a similar relation and this 
prompted many people to develop a 2-variable polynomial called the HOMFLY 
polynomial FL(/,W) having arbitrary coefficients in its skein relation ([Jo5, F+, 
Lil]). 

Kauffman found an explicit formula for FL(£) in [Kal] from an arbitrary knot 
diagram which was used by him, Murasugi and Thistlethwaite to prove some 
old conjectures of Tail about alternating knots ([Kal, Mu, Th]). He also found 
another two-variable polynomial generalization of V(t), called the Kauffman 
polynomial F(a,x). It does not contain the Alexander polynomial. 

The polynomials are very useful in calculating the minimal number of cross
ings for a diagram of a knot and the minimal number of strings for a closed 
braid representation of a knot ([LT, Mo, FW]). 
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13. The A-Matrix, Powers State Picture 

A special representation of the relations l)-4) of §5 was discovered by Pimsner 
and Popa in [PP]. If e e End((C2®C2) is defined by e = Ten®e22 + \A(1 -T)(ßi2® 
en + 2̂1 ® 612) + (1 — T)^22 ® ^n, then if we let et on (CC2)®" be defined between 
the ith and (i + l)th tensor components as e and the identity on the others, one 
finds that 1), 2) and 3) are satisfied. Moreover if cpx is the Powers state (giving 
a type III^ factor), then its restriction to the algebra generated by l,e\,...,en 

defines a trace satisfying 4). This gives a useful way of calculating FL(£), with 
t = k. This representation, without cpx, was used also in [TL] where the efs give 
the transfer matrix for an ice-type model. 

At this point a remarkably rapid development in the understanding of the 
polynomials was made possible by the existence of the theory of quantum 
groups. Fadeev's Leningrad group, particularly Sklyanin [Sk] and Kulish and 
Reshetikhin [KR] had uncovered a new structure related to the ice-type model 
for which the relevant Lie algebra was sfafö). For background see [Fa]. This 
had been generalized by Jimbo [Jil] and Drinfeld [Dr] to produce analogues of 
the braiding matrices obtained from the et representation I have just described, 
one for each finite dimensional representation of every simple Lie algebra. The 
analogue of the Powers state was soon found and the following picture was 
established by Reshetikhin [Re] and Rosso [Ro] : 

Let ^ be a simple finite dimensional complex Lie algebra and let ££ be 
the class of links with distinguished components Ci,C2,...,Cn. Then to each 
way of assigning finite dimensional representations of ^ to C\,...,Cn there is a 
polynomial invariant of isotopy for links in S£. 

The polynomial Vjjf) corresponds to ^ = s/2 and the assignment of its 2-
dimensional representation to all components. The HOMFLY and Kauffman 
polynomials are obtained in a similar way from sln and the symplectic (or 
orthogonal) algebras respectively. 

In this picture the geometric operations of cabling (and satellites in general) 
can be understood in terms of tensor products of representations ([MSt]). 

Explicit formulae on any (not necessarily braided) picture of a link may be 
given. This was first done for HOMFLY in [J06] and generalized to the Kauffman 
polynomial in [Tul]. 

14. Positivity of the Markov Trace 

Ocneanu's approach to the HOMFLY polynomial was a direct generalization 
of my construction of FL(0> by defining a trace on the Hecke algebra by the 
property tr(wg„+i) = z tr(w) if w is a word on gi, g2,..., gn, and where z is a new 
variable. Subfactors occur for the values of (q,z) allowing a *-algebra structure 
on the Hecke algebra for which the trace is positive. This set of values was 
determined by Ocneanu, and Wenzl constructed the subfactors and calculated 
their indices ([F+, Wei]). It is convenient to use the variables z = q/(l + q)2 and 
rj = (1 + z)/(l + q). Then the "positivity spectrum" (Fig. 2) is as follows: 
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The discrete points are the intersections in [0,1] x [0,1] of the curves 77 = 
Pfr(T)/Pk_i(T) with the curves Y\ — TF/(/_2(T)/F/C'_I(T) as indicated, where Pj((i]) are 
the polynomials given by P/f+i — F/c — i]Pk-\, Po = 1, Fi — 1, and k + kf = 1 + 3, 
k = 2 ,3 , . . . , / + 1, / indicating the horizontal row on which the point is situated. 
The index of the subfactor at the point labelled (/, k) is sin2

 /CTC/(/+3)/ sin2 n/(l+3) 
([Wei]). 

15. Brauer and BMW Algebras 

A new algebra was developed in [BW] and [Muk] to play the role for the Kauff
man polynomial that the Hecke algebra plays for the HOMFLY polynomial. The 
idea, inspired by Kauffman, is to add objects like | . . . | x | . . . | to the braid group 
generators. Calling these generators Ej and the usual braid group generators G„ 
the BMW algebra with parameters a,x, has presentation: 

G,G7+iG, s= G/+iG/G/+i, GiGj = GjGi if |/ - j \ ^ 2, 

G, + Gf1 = x(l + Ei), EiGi = GiEi = aEu E? *=(a + a~l - x)x~iEu 

EjG^Ei = a+ Ei, EìGì±\Gì p= ß/£/±i. 

These relations are best understood in terms of diagrams. The third is used 
because of the Kauffman polynomial. Using Markov traces and the basic con
struction of subfactor analysis Wenzl determined the structure of the BMW 
algebra for generic values of the parameters and a lot about it for special values. 
Its dimension is 1 • 3 • • • (2n + 1), n being the number of G/'s as above, It has the 
Hecke algebra as a natural quotient and the e,- algebra as a natural subalgebra. 



132 Vaughan F. R. Jones 

Brauer in [Br] defined algebras of the same dimension as a model for the 
commutant of the symplectic and orthogonal groups in tensor powers of the 
vector representation. Wenzl in [Wez] solved the problem of the generic struc
ture of the Brauer algebra essentially by viewing it as a specialization of the 
BMW algebra. Wenzl has also obtained subfactors from the BMW algebra using 
positivity considerations. 

The commutant of the quantum group Uq(sln) on the tensor powers of the 
w-dimensional representation is the Hecke algebra ([Ji2]). The BMW algebra does 
the same job for quantum groups of types B and C (see [We3]). 

16. Conformai Field Theory 

There are many similarities between subfactor theory and conformai-field theory. 
I cite the discrete and continuous values of the central charge c ([FQS]), the 
ADE classification for c < 1 ([CIZ]), the "fusion rules" corresponding to the 
combinatorics of the centralizer towers ([GW]) and the existence of a tractable 
subclass called rational CFT's corresponding to finite depth subfactors. But the 
most compelling evidence for a connection is that the braid group representations 
which occur canonically in the subfactor picture for index < 4 occur also for 
the SU(2) case of one of the main models of CFT - the Wess-Zumino-Witten 
model. Following [KZ], Tsuchiya and Kanie calculated the monodromy of the 
n-point functions in the holomorphic sector of this model and found the e rbraid 
group representations (for spin 1/2). Thus the subfactors themselves could be 
constructed out of the WZW theory but in a somewhat indirect way. 

Moore and Seiberg showed in [MSe] that the braid group situation was just 
the genus zero case of a theory that works in arbitrary genus for any conformai 
field theory. To do this they checked that the defining relations ([Waj]) for the 
mapping class group do indeed follow from their axioms for CFT. 

Conformai field theories are often obtained as continuum limits of critical 
2-dimensional classical statistical mechanical systems. It is not clear that there 
is any deep relationship between the appearances of the braid group in solvable 
models and in the CFT of the continuum limit. 

17. Algebraic Quantum Field Theory, Superselection Sectors 

Several people ([Fr, FRS, Lo]) have noticed that the braiding and Markov trace 
structure is inherent in any (not necessarily conformai) low dimensional QFT. 
In the framework of algebraic QFT ([HK]), Doplicher, Haag and Roberts in 
[DHR] introduced superselection sectors as representations of the observable 
algebra which are equivalent to the vacuum representation when restricted to 
the algebra of the causal complement of some bounded region. Haag duality 
is the property that the algebras of such bounded regions and their causal 
complements are each other's commutants. This duality is supposed to hold in 
the vacuum sector. A simple calculation shows that superselection sectors give rise 
to endomorphisms of the local observable algebra. Using geometric properties of 
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space-time, implementers of the endomorphism give rise to unitary braid group 
representations where the endomorphism takes u\ to cr/+i. The Markov trace may 
be obtained as a simple weak limit. 

The square root of the index of the subfactor which is the image of the 
endomorphism was called the "statistical dimension" of the sector in [DHR], but 
because they were considering 4 dimensions this dimension was necessarily an 
integer in their theory. 

One of the problems with all this work is that there do not seem to be any 
concrete examples where the subfactors and braid group representations have 
been calcualted to the satisfaction of an expert in von Neumann algebras, 

18. Loop Groups and Subfactors 

The loop group LSU(2) has a discrete series of "positive energy" projective 
unitary reprseentations labelled by a level / and a spin j , 0 < 2j < 1. Inspired by 
[TK] and in an attempt to understand and implement the ideas of superselection 
sectors, and to provide naturally occuring examples of subfactors, A. Wassermann 
and I have been working on the best known example, WZW theory, especially 
for LSU(2), We interpret the superselection sectors as being the discrete series 
of the loop group for a fixed level. Given an interval / in the circle S1 (Ie will 
denote the complementary interval), let LjG be the group of loops supported 
in I. The von Neumann algebra (LjG)n corresponds to the local algebra. Haag 
duality (which we have proved) says that for the vacuum sector (spin = 0), 
(LjG)' = (L}cG)ft. These von Neumann algebras are type Uli factors in any 
sector and we have shown that, if the level is fixed, the representations of LjG 
for any spin are unitarily equivalent. 

We conjecture that [(UG)1 : (L^G)"] = sin2{(2; + l)n/(l + 2)}/ sin2(7c/(/ + 2)) 
and in general that the subfactor is the tensor product of a Wenzl subfactor and 
the hyperfinite type IIIi factor. The vertex operators of Tsuchiya and Kanie, 
if made to become unbounded operator valued distributions on S\ should 
provide explicit intertwiners between the representations of LjG for fixed level 
and different spin. 

19. Witten's Interpretation of Vi(t) and Its Generalizations 

Motivated by his own work, ideas of Atiyah and Segal and the relations between 
subfactors, knots and CFT, Witten proposed the following formula for a link L 
with components L\, L2,...,L„ ([Wil]). 

F L ( é >/ / /C+ 2 ) = f[aA]e1kf83*{AAdA+ÎAAAAA) J J w ^ 

^A 7 = 1 

where A runs over all sw(2)-valued 1-forms on S3 (modulo the gauge group) 
and W(Li) is the trace of the parallel transport using A (in the 2-dimensional 
representation) along the closed curve L/. A measure \ßA\ with the appropriate 



134 Vaughan F. R. Jones 

properties has not been shown to exist so this formula must be taken in the context 
of Witten's topological QFT ([A]), which predicts enough formal properties of 
such an integral for it to be calculated (i.e. identified with FL(0)- This can be 
thought of as the solvability of this particular topological QFT. 

The generalizations are now apparent. SU(2) can be replaced by any compact 
Lie group G and one may choose any finite dimensional representation of G per 
component of L. This reproduces the ingredients of the picture that emerged 
from quantum groups in §13. 

More significantly S3 may be replaced by any closed 3-manifold so that 
Witten's theory predicts the existence of invariants for links in 3-manifolds and 
gives explicit formulae for calculating them from a surgery description of the link 
in the 3-manifold. These formulae have been checked using the Kirby calculus 
([FR]) at least for SU(2) in [RT| and [KM] using quantum groups. In [KM] 
certain explicit evaluations are given in terms of classical invariants. In [Li2] an 
elementary formula for these invariants occurs using no more than cabling and 
VL(ì). The key ingredient in the proof is the degeneracy of the trace on the et 

algebra of §5. One wonders whether the 3-manifold invariants may be obtained 
directly from subfactors. 

20. Topological Quantum Field Theory 

Witten has developed a formalism in which a quantum field theory in d + 1 
dimensions assigns a "Hilbert space" to any d-dimensional manifold I with extra 
structure and every time this manifold is the boundary of a d + 1 dimensional 
manifold M with compatible extra structure there is a vector in the Hilbert space 
of the boundary. In the simplest case M = l x [ 0 , l ] the vector is supposed to 
define an operator giving the time evolution of a system from time 0 to time 
1. The Hilbert spaces and vectors are supposed to satisfy certain important and 
powerful axioms. If the "extra structure" is little more or less than an orientation 
one talks of topological quantum field theory. See [A] where examples are given 
connected with Donaldson and Floer theory. 

In the case of the theory given by the Chern-Simons action tr(Ad^4+(2/3)v43), 
d = 2 and Witten identifies the Hilbert space corresponding to a surface Z as 
being the (finite dimensional) vector space of conformai blocks for the corre
sponding Wess-Zumino-Witten theory with the same gauge group. This is crucial 
for his calculations as it allows him to assert that, for the SU(n) theory the 
vector space corresponding to the sphere with 4 marked points is 2-dimensional. 
This, together with the "gluing" axioms of topological QFT allows the formal 
calculation of the functional integral via skein theory. 

The Hilbert space for a surface I is also deduced via a "geometric quantiza
tion" approach using a complex structure on I. That the Hilbert space should 
be independent of the complex structure is interpreted as implying the existence 
of a flat connection on certain natural bundles over Teichmüller space. See the 
talk by Tsuchiya in these proceedings. 

Witten's surgery formula comes from identifying a basis for the Hilbert space 
of a torus with the vectors obtained by realizing the torus as the boundary of a 
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solid torus containing one simple homotopically non-trivial closed curve to which 
an irreducible representation of the compact group is assigned. The action of 
the diffeomorphisms in this basis (all that is required for surgery formulae given 
the gluing axioms) is precisely that of SL(2,Z) on the characters of the relevant 
affine Lie algebra at the given level. 
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0. Introduction 

In this paper I would like to illustrate two facts. First, that ideas borrowed from 
convex, projective, and other classical branches of geometry play an important 
role in the design of algorithms for problems that do not seem to have anything 
to do with geometry: for problems in optimization, combinatorics, algebra, and 
number theory. Second, that such applications of geometry suggest some very 
elementary algorithmic questions concerning geometric notions, whose solution 
is far from complete. How to compute the volume? How to decide whether or 
not a convex body contains the other? How to present a convex body as an input 
to an algorithm? Even partial answers to these problems require a wealth of 
mathematical ideas, often (again) quite unrelated to the original question. On the 
other hand, answers to these questions have a very wide range of applicability. 

In the first chapter some typical constructions are surveyed which lead from 
non-geometric problems to geometric ones. Such is, of course, the classical field 
of the "Geometry of Numbers". This is the application of lattice geometry and 
convexity to number theory, and was initiated by Minkowski around the turn of 
the century. We only touch upon this area to point out that the recent shift of 
interest from structural problems to algorithmic ones has induced a lot of activity, 
and this new approach has even fertilized classical types of investigations. 

We also give a brief introduction to polyhedral combinatorics, developed in the 
60s by Ford, Fulkerson, Hoffman, Edmonds, and others. Here polyhedral theory 
and linear programming are applied to combinatorial optimization problems. 
This approach yields surprisingly successful algorithms both from a theoretical 
and practical point of view. We also show how some enumeration problems are 
related to the computation of the volume of certain polytopes. 

The second chapter treats verious forms of presentation of a convex body 
to an algorithm. This seemingly technical issue leads to a powerful equivalence 
principle between different ways of presentation. A combination of this principle 
with polyhedral combinatorics provides (at least theoretically) efficient algorithms 
for most combinatorial optimization problems that can be solved efficiently by 
any other means. 

Chapter 3 describes a basic construction in algorithmic geometry, namely 
the Löwner-John ellipsoids. These are used in the ellipsoid method of Shor, 
Yudin, Nemirovskii and Khachiyan (in particular in establishing the equivalence 
principle formulated in the previous chapter) and in many other geometric 
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algorithms. We also sketch the geometric background of Karmarkar's celebrated 
linear programming algorithm. 

In the last chapter we discuss recent developments concerning the problem of 
computing the volume of a convex body. After some very discouraging negative 
results, Dyer, Frieze and Kannan designed a polynomial time randomized algo
rithm which approximates the volume with an arbitrarily small error. It turns 
out that the crucial issue is to generate a random point uniformly distributed 
over a general convex body. The solution of this problem leads to Markov 
chains, eigenvalues of matrices, differential geometry, and even to some algebraic 
topology. 

There is an extremely important branch of algorithmic geometry which is not 
treated here; this is usually called computational geometry. Polyhedral combina
torics leads to high-dimensional problems; other - more immediate - applications 
in image processing and robotics lead to two- and three-dimensional questions. In 
such cases, a different notion of efficiency is the crucial one. Our concern will be 
polynomial time; in computational geometry, usually linear or almost-linear time 
is the target. The interested reader may consult the monographs by Preparata 
and Shamos (1985) and by Edelsbrunner (1987). 

1. Number Theory, Combinatorics, and Convex Sets 

In this chapter we illustrate some of the most important constructions which 
transform algorithmic problems in various branches of mathematics into geomet
ric questions, and in fact into very simple ones. These examples will also serve 
to help us put the corresponding general algorithmic problems into the right 
framework. 

1.1 Geometry of Numbers 

This is the classical area where the application of geometric ideas to non-
geometric problems has been very successful ever since Minkowski's work. In 
the last decade, algorithmic questions arising from numerical methods, primality 
testing, computational algebra, cryptography, and other areas have revigorated 
the field; it turns out that to solve these algorithmic problems, often new structural 
insight is needed. 

The classical problem in number theory which lead Minkowski to the "Geom
etry of Numbers" is the problem of simultaneous diophantine approximation: given 
n real numbers ai , . . . ,a„, and an "error bound" e > 0, find integers p\,...,pn and 
q such that q > 0 and 

Pi 

4 
< - (i=l,...,n). 

The answer is trivial for s = 1/2 (we can choose q arbitrarily); it was proved by 
Dirichlet that such integers exist for every e > 0 and in fact we can require that 
q < s~n. 

While the proof of Dirichlet's theorem is quite easy (using "Dirichlet's Princi
ple"), no efficient algorithm is known to find such an approximation. A geometric 
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translation is useful, among others, in finding a solution with a worse bound on 
q. 

Consider the following vectors in R"+1 : e\,...,en (the first n basis vectors) and 
(ai,...,a„, 1)T, The linear combinations of these vectors with integer coefficients 
form a lattice L, whose typical point looks like (qoc\ — p\,...,qan — p„,q)T with 
integral p\,...,pn and q. Dirichlet's Theorem is equivalent to asserting that the 
lattice L has a non-zero lattice point in the brick 

K = [-£, c] x ... x [-e, B] x [-e"", e~"]. 

Minkowski's famous "First Theorem" shows that the fact that K is a brick is 
irrelevant: all that matters is that K is a convex body centrally symmetric with 
respect to the origin with volume at least 2"+1 times the determinant of the lattice. 

The convex body K can be viewed as the unit ball of a norm, and so 
Minkowski's theorem guarantees the existence of a "short" non-zero lattice 
vector in every lattice, measured in an arbitrary norm, 

Many other problems turn out equivalent to the existence of a short non-zero 
lattice vector in appropriately defined lattices. For example, let f(x) = YlLi aix1 be 
a polynomial with integral coefficients ; we want to know whether / is irreducible. 
Let a be a root of/; for simplicity, assume that a is real. Let K be a sufficiently 
large real number (computable from /) and let L £ R"+1 be the lattice generated 
by the vectors e/ + Ka'_1e„+i, 1 < / < n. If/ is reducible over the rational field, 

then L contains a non-zero vector with (euclidean) length at most 2" v/X)i aì- ^ n 

the other hand, if / is irreducible then every non-zero vector in the lattice is at 
least 2" times this length. This fact is the basis of the efficient (polynomial time) 
algorithm for factoring polynomials (Lenstra, Lenstra and Lovâsz 1982). 

We shall not go into geometric algorithms involving lattices in this survey; 
instead, we refer to (Lovâsz 1989) for a survey. 

1.2 Polyhedral Combinatorics 

Polyhedral combinatorics provides perhaps the most successful general approach 
to various combinatorial problems. To illustrate the idea, consider the following 
simple graph-theoretic problem. Let G be a (finite) graph with node set V and 
edge set E. A set of nodes of G is called stable if no two elements of it are 
connected by an edge. Let a(G) denote the maximum cardinality of a stable set 
in G. To determine a(G) is difficult (NP-hard) in general; but the approach of 
polyhedral combinatorics suggests efficiently solvable special cases, as well as 
efficiently computable estimates of a(G). 

Let us construct the following convex polytope: for every stable set S of 
nodes, let %s denote the incidence vector of S (in the space R F of vectors indexed 
by the nodes of G), and let STAB(G) be the convex hull of such incidence vectors. 
Then 

a(G) s= max{|S| : S stable} = max{l • xS ' S stable} 
= max{][\ Xi : x e STAB(G)}. 

(since the maximum of a linear objective function over a polytope is automatically 
assumed at a vertex). 

The hope is to apply the powerful methods of linear programming to find this 
maximum. To this end, however, we have to find a representation of STAB(G) as 
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the solution set of a system of linear inequalities. Such a representation exists of 
course; but how to find it? Note that the arguments presented so far would work 
for the problem of finding a maximum cardinality member in any collection of 
subsets of a finite set V; where we have to be problem-specific is in finding the 
linear representation of the corresponding polytope. 

There is a. very large - number of results presenting linear descriptions of 
various combinatorial polyhedra; we shall restrict ourselves to the stable set 
polytope and be content with giving a couple of illustrations. A natural starting 
point is the following set of linear inequalities: 

0<Xi<l (i£V), (1) 

Xi+Xj<l (ijeE). (2) 

It is clear that the incidence vector of any stable set, and therefore every vector 
in STAB(G), satisfies inequalities (1) and (2). The solution set of this system is, 
however, a larger polytope than STAB(G) in general. In fact, inequalities (1) and 
(2) suffice to describe STAB(G) if and only if G is a bipartite graph. So at least for 
bipartite graphs, <x(G) can be determined using linear programming algorithms. 
Or, applying the Duality Theorem of linear programming, one can obtain a 
min-max formula for a(G) (which, after some transformations, turns out to be 
equivalent to the König Theorem). 

If the graph is non-bipartite then it contains a circuit of odd length and we 
can use such a circuit to add further constraints to (1) and (2): for every odd 
circuit C we write up the inequality 

Z ^ !9fi. (3) 
ieV(C) 

Graphs for which (1), (2) and (3) suffice to describe STAB(G) are called t-perfect; 
these graphs are less well understood than bipartite graphs, but several important 
classes of them are known. We mention series-parallel graphs, i.e., graphs which 
can be obtained by the repeated application of series and parallel extensions 
(Chvâtal 1975, Boulala and Uhry 1979) 

Assume that G is t-perfect; then a(G) can be expressed as the optimum value 
of a linear program with constraints (l)-(2)-(3). Note, however, that (3) includes 
possibly exponentially many constraints (in n = \V\), and so writing up this 
program and calling a linear program solver would be inefficient. We shall see 
that general geometric considerations provide efficient solution methods for such 
systems which do not need the whole system explicitly. 

Further natural inequalities valid for STAB(G), but not implied by the previous 
ones, can be written up. Let B be a clique (a set of mutually adjacent nodes in 
G). Then every stable set meets B in at most one node and hence the inequality 

Z * ^ 1 ' (4) 
ieB 

is valid for STAB(G). Those graphs for which (1) and (4) suffice to describe 
STAB(G) are called perfect. This rich class has been defined by Berge (1961) 
before these polyhedral methods were introduced, motivated by many classes 
of examples. Let us mention one: Let (V, <) be a (finite) partially ordered set. 
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Define a graph G by connecting two elements of V iff they are comparable. 
Comparability graphs obtained this way are perfect. 

It is beyond the scope of this paper to treat perfect graphs; we refer to Berge 
and Chvâtal (1984) and Grötschel, Lovâsz and Schrijver (1988). It should be 
mentioned, however, that polyhedral methods play a central role in their study, 
even in proving seemingly elementary properties. 

Polyhedral combinatorics is closely related to integer linear programming. The 
basic problem here is to solve a system of linear inequalities in integers. For 
example, the integer solutions of the system (l)-(2) are exactly the incidence 
vectors of stable sets. The problem of simultaneous diophantine approximation 
can also be viewed as an integer programming problem: Given a?-,s, and Q, find 
a solution of 

-c<qUi-Pi<s (/= l,...,n), 
l<q<Q. 

For a long while, integer programming and lattice geometry have developed 
independently, and used rather different methods. A first substantial connection 
was established by Lenstra (1983), who designed a polynomial time algorithm to 
solve integer linear programs with a bounded number of variables, using methods 
borrowed from the geometry of numbers. This approach to integer programming 
seems to gain further momentum in recent years. 

1.3 Enumeration and Volume 

Some enumeration problems also have useful translations into geometry. This 
connection is not so well understood and we only give one example. Let P = 
(F,<) be a partially ordered set. A linear order of F which is compatible with the 
given partial order is called a linear extension of the partial order. The number 
of linear extensions is a measure of how incomplete the partial order is, and it 
plays an important role in several algorithmic and other questions. There is no 
reasonable formula or efficient algorithm known to find this number. In fact, no 
such algorithm can be expected by the recent important result of Brightwell and 
Winkler (1990), which asserts that to determine the number of linear extensions 
of a poset is #P-complete. But an efficient approximation algorithm can be 
obtained, which is based on the following construction (Stanley 1986). 

Consider the linear space RE and the incidence vectors of filters in F. The 
convex hull of these incidence vectors is a polytope FILT(F), By the methods 
of polyhedral combinatorics mentioned in the previous section, it can be shown 
that FILT(F) is defined by the inequalities 

0 < Xi < 1 (/ e E), 

Xi < Xj (i < j) . 

This fact can be used, as sketched above, to solve optimization problems involving 
filters. Right now, however, the following fact is important: the number of linear 
extensions of P equals n\ times the volume of F1LT(P). This observation reduces 
the problem of enumerating linear extensions to the problem of determining the 
volume of a polytope, which is described as the solution set of a small number of 
simple linear inequalities (in w-space we have 0(n2) inequalities). We shall return 
to this general geometric problem in Chapter 4. 
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2. What is a Convex Body? 

We have seen that various number theoretic, algebraic, and combinatorial ques
tions can be reduced to quite fundamental problems in geometry, such as com
puting the volume or finding the maximum of a linear objective function over 
a convex body. Before treating geometric algorithms to solve such problems, we 
have to introduce the right framework. 

A convex body is a closed, bounded, full-dimensional convex set in R". 
This simple definition becomes insufficient, however, if we are interested in 
algorithmic questions. In this chapter we discuss our aspects for algorithms and 
the algorithmic notion of a convex body. 

2.1 Basic Algorithmic Problems for a Convex Body 

Our condition for the "efficiency" of an algorithm is worst-case polynomial time: 
this means that there exists a constant c > 0 such that for every input of length 
n, the algorithm makes 0(nc) bit-operations. Here the length of the input is the 
total number of bits needed to describe the input. We assume that input numbers 
are always rational, and their contribution to the input length is the total number 
of digits in the binary representation of the numerator and of the denominator. 

For the theory of polynomial time algorithms, and for related notions in 
complexity theory like NP and NP-hard, see e.g. (Garey and Johnson 1979). To 
follow this paper, it should suffice to translate "NP-hard" or "#P-complete" as 
"it is hopeless to find a polynomial-time algorithm for this problem". 

We want to study algorithms whose input is a convex body, and with this 
we run into trouble. How to present a convex body? Various forms occur in 
various problems. In linear programming, one always considers convex polyhedra, 
presented as the solution set of a system of linear inequalities. An equally natural 
form in which convex bodies come up is a convex polytope, presented as the 
convex hull of an explicitly given set of vectors. In Banach space theory, convex 
bodies arise as unit balls of norms, where the norm may be given by some 
formula; e.g. Xilx*l3 ^ 1 defines the unit ball of the /3-norm. In geometry, a 
convex body X ç R" is sometimes described by its support function: this is 
essentially the function QK '• Rn —> R, defined by QK(U) = max{w • x : x G K}. 

The polytope STAB (G) is defined as the convex hull of a set of vectors 
(incidence vectors of stable sets), but to describe it, it would be very inefficient to 
list these vectors; it suffices to specify the graph G. So STAB(G) is presented by 
implicitly specifying its vertices. 

We are interested in algorithms that are as independent of the specifics of the 
presentation of the body as possible. It turns out that most geometric algorithms 
depend on the possibility to carry out one or more of the following tasks : 

- Membership Test: Given a (rational) vector x, decide whether or not x e K. 
- Separation: Given a (rational) vector x, decide whether or not x e K, and if 

not, find a hyperplane separating x from K. 
- Validity Test: Given a linear inequality a • x < a (with rational coefficients), 

decide whether or not the inequality is valid for all x G K. 
- Violation: Given a linear inequality a-x < a (with rational coefficients), decide 

whether or not the inequality is valid for all x G K, and if not, find an x G K 
violating it. 
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It is clear that finding a separating hyperplane is a more difficult task than 
testing for membership, and finding a violating point is more difficult than testing 
for validity. Scanning through the examples above, we see that depending on the 
presentation of K, one or the other of these tasks can be carried out easily while 
others appear non-trivial. For example, if the body is given as the solution set of 
linear inequalities, then it is trivial to test membership by substituting x in each 
of the defining inequalities; and if it violates one, this also yields a separating 
hyperplane. On the other hand, there is no obvious way to test the validity of 
an inequality. Similarly, if the body is presented as the convex hull of vectors, 
then it is trivial to test validity of a linear inequality, but testing membership is 
non-trivial. 

For STAB(G), neither one of the above tasks is easy, at least if we allow only 
polynomial time in n (note that the input size in 0(n2)). In fact, each of the above 
tasks is NP-hard. 

To get presentation-independent results, we define a membership oracle as a 
black box which works as follows: if we plug in a vector x G R", it returns 
"YES" or "NO". Its answers must be consistent with the interpretation that 
"YES" means x G K for some convex body K. We can call such an oracle in an 
algorithm; one call counts as a single step. Of course, if we have an algorithm to 
test membership in polynomial time, then we can "put this inside the black box", 
and this increases the running time by a polynomial factor only. 

One can introduce separation, validity, and violation oracles in a similar way. 
The following is a surprising and powerful principle (not a theorem !) : 

Equivalence Principle. The four oracles above are equivalent from the point of view 
of polynomial time algorithms. 

In other words, if for a class of convex bodies we have a polynomial time 
algorithm to solve either one of them, then all the others can be solved in 
polynomial time. This principle is true only under some technical assumptions 
and restrictions which, however, seldom cause any problem in its applications. 
There are various ways to formulate technical conditions making the Equivalence 
Principle valid; we only sketch some, and refer for a complete discussion to the 
monograph (Grötschel, Lovâsz and Schrijver 1988). 

One set of these technicalities consists of making the "boundedness" and 
"full-dimensionality" properties of convex bodies effective: we need to know a 
number R > 0 such that K is contained in the ball with radius R about the 
origin, and another number r > 0 such that K contains a ball with radius r. 
These numbers must be considered part of the input to any algorithm, so the 
number of bits needed to write them down must be included in the input size. 
If the body is given by a membership oracle, and we want to solve the other 
tasks, then in addition the center of an inscribed ball with radius r must be 
given in advance. It is easy to argue that without this kind of information, the 
Equivalence Principle would not be valid. 

Another set of limitations comes from numerical errors. We have to re-define 
the oracles so that an "error bound" e > 0 is also part of the input, and then 
allow a small error in the answer. For example, in a membership oracle we should 
allow either a "YES" or a "NO" answer if the distance of x from the boundary 
of X is less than e. One can formulate "weak" versions of all the above oracles 
in an analogous way. A precise form of the Equivalence Principle holds for these 
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weak versions. (If the convex body K is a polytope with (say) 0-1 vertices, then 
we do not have to restrict ourselves to weak versions.) 

The main ingredient in the proof of the Equivalence Principle is the Ellipsoid 
Method, to be sketched in the next chapter. 

2.2 Applications of the Equivalence Principle 

Some consequences of the Equivalence Principle are immediate. Since testing 
membership in a polyhedron presented by an (explicit) system of linear inequal
ities is trivial, we can test validity of a linear inequality for such polyhedra in 
polynomial time. This result implies a polynomial time test for the solvability of 
a system of linear inequalities, which in turn implies a polynomial time algorithm 
to solve linear programs. 

In a similar way it follows that quadratic programs with positive definite 
constraints can be solved in polynomial time. 

Several basic algorithmic issues concerning convex bodies can be solved using 
just the Equivalence Principle; let us mention two of these. The issue of validity 
of a linear constraint can be viewed as a special case of either of the following 
questions: 

- Given two convex bodies K\ and K2, are they disjoint? 
- Given two convex bodies K\ and K2, is K\ g f t ? 

Due to the necessary uncertainty around the boundary, in both cases we can 
only expect an approximate answer; we specify an e > 0 and if \ol(Ki n K2) < s, 
or if vol(Ki \ K2) < s, then the "YES" answer is acceptable. 

Having separation oracles for K\ and K2, we can design a separation algorithm 
for K\nK2 trivially. Suppressing technical details (the number r), the Equivalence 
Principle yields a polynomial time solution for the violation problem for K\ C1K2. 
Let c • x < y be any inequality which is invalid for all points in K\9 and solve 
the violation problem for K\ n K2. If the inequality is valid for K\ n K2 then 
this intersection must be empty; else, the violation algorithm returns a common 
point. 

The second problem is more difficult; in fact, to solve it (even with the 
e-tolerance) would yield polynomial-time solutions for NP-complete problems. 
But using the randomized methods discussed in Chapter 4 below, we can test 
Ki ç K2 (with the e-tolerance) in time polynomial in n and 1/e. (Note that a 
"truely" polynomial algorithm ought to be polynomial in log(l/e).) 

The most interesting applications of the Equivalence Principle are in the field 
of combinatorial optimization. We illustrate this by two results due to Grötschel, 
Lovâsz and Schrijver (see 1988). Consider the problem of determining a(G) for a 
t-perfect graph G. As discussed earlier, this is equivalent to maximizing the linear 
objective function J \ Xi over STAB(G), which could be easily solved by binary 
search if we could test validity for STAB(G). By the Equivalence Principle, it 
would suffice to find a polynomial time membership test for STAB(G). In other 
words, given a vector x G TR.V, is x G STAB(G)? 

At this point we want to use the linear description of STAB(G), which we have 
determined for t-perfect graphs: STAB(G) is the solution set of inequalities (1)-
(2)-(3) above. So all we have to do is to test whether x satisfies these inequalities. 
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For (1) and (2), this is trivially checked by simply substituting x in them. But for 
(3) this does not work: there are (typically) exponentially many inequalities in 
(3), and we do not want to generate them all. 

However, there is a way to check in polynomial time whether or not x satisfies 
all these inequalities. We may assume that we have checked (1) and (2) and that 
x satisfies these. For every edge ij G F, let yy = 1 —Xj — xj. Since x satisfies (2), 
these numbers are non-negative, and we may consider them as "lengths" of the 
edges. Let C be an odd circuit in G, then 

E 3'y = |C | - E *<• 
ìeE{C) ieV{C) 

and hence x satisfies the constraint of (3) belonging to this circuit C if and only 
if the "length" of C is at least 1. So x satisfies (3) iff the length of every odd 
circuit is at least 1. 

Now there is a rather simple version of breadth-first-search that finds the 
shortest odd circuit in any graph with non-negative edge-lengths (the details of 
this do not belong here). Using this, all we have to do is to check whether this 
minimum length is less than 1 or not. 

The stability number of a perfect graph can also be determined in polynomial 
time. This algorithm is also based on the Equivalence Principle, but it is substan
tially more complicated. If we want to copy the above argument, we run into 
the following difficulty: the membership test for STAB(G) is equivalent to the 
validity test for the stable set polytope of the complementary graph, and so the 
equivalence principle reduces the problem of determining a maximum stable set 
to (esssentially) the same problem for the complementary graph. One has to go 
up to the \V\2 dimensional space to apply the Equivalence Principle successfully. 

This type of application of the Equivalence Principle is not rare; in fact, 
it is shown by Grötschel, Lovâsz and Schrijver (see 1988) that most of those 
combinatorial optimization problems whose polynomial time solvability was 
known by (often quite involved) ad hoc algorithms, can be solved in polynomial 
time using a combination of the Equivalence Principle with very elementary 
algorithmic ideas. There are also several combinatorial optimization problems 
which can be solved in polynomial time, but for which no polynomial time 
algorithm avoiding the use of the Equivalence Principle is known (two very 
important such problems are finding the independence number of a perfect 
graph and minimizing a submodular setfunction). 

Unfortunately, algorithms derived from the Equivalence Principle are polyno
mial, but very slow (their running time is a polynomial with a very high degree), 
and therefore practically useless. This is quite natural, considering how general 
this method is. These results should be interpreted as "existence proofs" for poly
nomial time solvability of the problem; having established this much, one can 
try to design problem-specific algorithms which are more efficient. The remarks 
above show that this is often very difficult. 
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3. Convex Bodies and Ellipsoids 

3.1 The Löwner-John Ellipsoid 

It was proved by Löwner that for each convex body K, there exists a unique 
ellipsoid E with minimum volume containing it. John proved that if we shrink this 
ellipsoid of a convex body Kfrom its center by a factor ofn, we obtain an ellipsoid 
that is contained in K. We call this ellipsoid the Löwner-John ellipsoid of the 
body (see (Grötschel, Lovâsz and Schrijver 1988) for details). Analogues of the 
theorems above hold if we consider an inscribed ellipsoid with largest volume. 

If we restrict ourselves to centrally symmetric convex bodies, then of course 
the center will be the center of the Löwner-John ellipsoid as well, and in John's 
theorem it suffices to shrink by a factor of s/n. 

The Löwner-John ellipsoid itself may be difficult to compute. However, an 
ellipsoid E with somewhat weaker properties can be computed in polynomial 
time, using a version of the shallow cut ellipsoid method due to Yudin and 
Nemirovskii (1976). We call an ellipsoid E a weak Löwner-John ellipsoid for K, if 
E contains K and if we shrink E from its center by a factor of 2n3^2, we obtain 
an ellipsoid that is contained in K. 

Theorem 3.1 Given a separation oracle for a convex body K, a weak Löwner-John 
ellipsoid for K can be computed in polynomial time. 

We remark that if K is given in a more explicit manner (e.g., as the solution 
set of a system of linear inequalities or the convex hull of a set of vertices) then 
the factor n3?2 can be improved to 2«. 

The algorithm proving Theorem 3.1 is based on a natural proof of John's 
theorem. Let E be the ellipsoid with smallest volume containing K. Applying an 
affine transformation, we may assume that E is the unit ball about the origin. 
Let E' denote the ball with radius 1/n about the origin, and assume that E' is 
not contained in K. Let x G E'\K, and let H be a hyperplane separating x from 
K. H cuts E into two parts, one of which, say E\, includes K. Now E\ is smaller 
or only slightly larger than a half-ball, since x £ E\. Therefore it is a routine 
computation in linear algebra to verify that E\ can be included in an ellipsoid 
which has smaller volume than E. 

To turn this proof into an algorithm, two ideas have to be added. We want 
to start out with some ellipsoid containing K (say, with the ball with radius R 
about the origin), and replace it as in the above proof with ellipsoids of smaller 
and smaller volume until a weak Löwner-John ellipsoid is obtained. In order to 
guarantee a good running time, we have to reduce the volume by a substantial 
factor like 1 — (1/n2); this will be achieved if the radius of E' is chosen, say, l/2n 
instead of 1/n. The other problem is to find the vector x G Ef\K. This is easy if 
K is the solution set of a system of linear inequalities, but hard in general. What 
we can do is to test the 2n intersection points of the axes with the surface of E' 
for membership in K; if one of them is not in K, then the separation algorithm 
yields the hyperplane H. If each of them is in K then K contains the smaller ball 
obtained from E' by shrinking by a factor of ^/n. Thus F is a weak Löwner-John 
ellipsoid. 

Recently some interesting new results concerning the computation of the 
"true" Löwner-John ellipsoid have been obtained. If K is a convex polytope 
presented by an explicit list of its vertices, then for any e > 0 an approximation 
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of the Löwner-John ellipsoid with error at most e can be found in polynomial 
time. The "polar" problem of finding an inscribed ellipsoid with (approximately) 
maximum volume can also be solved in polynomial time, provided the polytope 
is presented as the solution set of an explicit system of linear inequalities. Such 
an algorithm was given by Nesterov and Nemirovskii (1989), and improved 
by Khachiyan and Todd (1990). These results are very presentation-dependent; 
Khachiyan and Todd conjecture that to compute an approximate Löwner-John 
ellipsoid for a polytope presented by linear inequalities is NP-hard. 

The diameter and width of the weak Löwner-John ellipsoid can be used to 
estimate the diameter and width of K with relative error at most n3/2. This 
estimate is not as bad as it looks at a first glance; it can be shown (Bârâny and 
Füredi 1986) that if K is given by any of the oracles above, then any estimate on 
the width of a body K computable in polynomial time is off by a factor which 
grows as a power of n. 

3.2 The Ellipsoid Method 

The algorithm sketched above is the heart of various versions of the algorithm 
called the Ellipsoid Method, developed by Shor (1970) and Yudin and Nemirovkii 
(1976). The method became widely known when Khachiyan (1979) applied it to 
obtain the first polynomial time linear programming algorithm. To show the idea, 
assume that we want to find the optimum of a linear objective function c • x 
over a convex body K ç R" for which we have a separation oracle. Design a 
black box which does the following: we plug in a vector xo G R". If XQ ^ K, it 
returns a hyperplane separating x from K. If xo G K, it returns the hyperplane 
c - x = c ' xo. This is essentially a separation oracle for the set of vectors in K 
optimizing the linear objective function c • x. Even though this convex set is not 
full-dimensional, an appropriate modification of the argument above gives that 
we can use this black box as a separation oracle in the ellipsoid method and 
obtain an "approximately optimal" point in K. 

Once we can solve the optimization problem over K, the validity and violation 
problems are easily settled. 

It is more difficult to handle these problems when K is given by a membership 
test rather than by a separation oracle. It takes a nice but difficult argument by 
Yudin and Nemirovskii (1976) to settle this case. 

3.3 Karmarkar's Method 

The ellipsoid method yields a polynomial time algorithm to solve linear programs, 
but it is too slow in practice to be useful in actual computations. The classical 
method to solve linear programs, namely Dantzig's simplex method, takes ex
ponential time in the worst case but works very efficiently for the majority of 
real-life problems. A linear programming algorithm which is both theoretically 
efficient (polynomial-time) and competitive with the simplex method in practice 
was given by Karmarkar (1984). Since this method also has a very geometric 
background, it is worth sketching here. 

Assume that we want to maximize a linear objective function c • x over a 
convex body K. Also assume that we have already found an interior point XQ 
and we want to find a sequence of interior points x\,X2,... converging to the 
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optimum point. When stepping from Xi to xi+\, it would be natural to move in 
the direction of c, or, in other words, orthogonal to the hyperplane c • x = const. 
This leads us, however, to points close to the boundary and (possibly) far from 
the optimum, and then we have to move in some other direction. 

However, it is not really natural to move orthogonal to c; this is not in
variant under affine transformations while the hole task is. The idea of many 
optimization algorithms is to change the metric of the space so that the notion of 
"orthogonality" should be tailored to the particular body (such are the variable 
metric methods, but the ellipsoid method can also be viewed this way). 

There is a very natural metric inside every convex body, introduced by Hilbert. 
The distance of any two points u, v G int(X) is defined as the logarithm of the 
cross ratio of u, v, and the two points of intersection of the line through u and 
v with the boundary of K. (This construction may also be familiar from the 
Caley-Klein model of hyperbolic geometries.) It is not difficult to see that if we 
move in the direction of steepest descent with respect to this metric to, say, half 
way to the boundary, and then repeat this, then we get very close to the optimum 
very fast. For example, if K is centrally symmetric with respect to xo then we 
approach the optimum on a straight line and the distance from the optimum is 
halved at each step. 

Unfortunately, there is no easy way to compute the Hilbert metric in a convex 
body, but we can approximate it in the neighborhood of an interior point v by 
finding a projective transformation which maps K onto a convex body Kf so 
that the unit ball includes K, K includes the ball with a reasonably large radius 
Q about the origin, and v is mapped onto the origin. Then the euclidean metric 
will approximate the projective metric. Except for the condition on v, this sounds 
like the ellipsoid method, but we have more freedom because we are allowed to 
use projective transformations. (The optimization problem itself is not projective 
invariant, but one can transform it into projective invariant problems easily; for 
example, the Violation Problem above is projective invariant.) 

The crucial part of Karmarkar's method is to construct such a projective 
transformation very fast in the case of polytopes presented by an explicit system 
of m linear inequalities. The inner radius Q he achieves is 1/m; this shows 
that (unlike the ellipsoid method) this method is sensitive to the number of 
constraints. This is of course only a very rough sketch; many ingenious details 
must be added to make this procedure work for really large linear programs. For 
details, extensions, and related algorithms see the survey of Todd (1989). 

4. The Volume of a Convex Body 

Now we turn to the fundamental problem of determining, or at least estimat
ing, the volume of a convex body. This question has recently brough exciting 
developments. For a while, a number of negative results were obtained (Section 
4.1), which showed that even to compute an estimate in polynomial time with 
decent relative error is hopeless. But recently Dyer, Frieze and Kannan (1989) 
designed a randomized polynomial time algorithm (i.e., an algorithm making use 
of a random number generator) which computes an estimate of the volume such 
that the probability that the relative error is larger than a prescribed e > 0 is 
arbitrarily small. This outstanding result uses a number of tools from probability 
and geometry, and we sketch it in Section 4.2. 
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4.1 The Difficulty of Computing the Volume 

One thing we can do is to find a weak Löwner-John ellipsoid of the body. Since it 
is easy to follow how an affine transformation modifies the volume (it multiplies 
by the determinant of the corresponding matrix), we .may assume that the body 
is contained in the unit ball and contains the ball with radius l/2n3/2 about the 
origin. In this case, we have the trivial bounds on the volume: 

TT"/2
 U „ K"'1 

< vo\(K) < 2»n3»l2r (1 + n/2) " v ; ~ F (1 + n/2) ' 

So for an arbitrary convex body (given by, say, a separation oracle), we can 
compute an upper bound on its volume with relative error at most 2"n3"/2, 

The following surprising result of Bârâny and Füredi (1986), improving a 
somewhat weaker bound given by Elekes (1986), shows that no substantially 
better estimate can be given on the volume, at least if the convex body is given 
by one of the four equivalent oracles discussed in Chapter 2. 

Theorem 4.1. Consider any polynomial time algorithm which assigns to every convex 
body K, given by (say) a membership oracle, an upper bound w(K) on vol(K). Then 
there is a constant c > 0 such that in every dimension n there exists a body K for 
which w(K) > ncnvol(K). 

Let us sketch the proof of this result. It depends on the following geometric 
lemma: 

Lemma 4.2. There exists a constant c > 0 such that the volume of the convex hull 
of any p > 0 points in the unit ball is less than p • n~cn. 

To prove Theorem 4.1, first apply the algorithm to the unit ball B. The 
algorithm runs and asks the membership of a polynomial number p of points 
v\,...,vv from the oracle, and computes an upper bound w(B) of the volume. 
Now apply the algorithm to the convex hull K of {e\,...,en,v\,...,vp} DB. It 
follows that the algorithm runs exactly as in the previous case : it asks the same 
questions from the oracle and therefore it gets the same answers. So the algorithm 
finds the same estimate w(K) ?= w(B). But since the volume of K is much smaller 
than the volume of B, this estimate must have a large relative error. 

This result does not say anything about computing the volume of convex 
bodies given in any specific way, say as the solution set of a system of linear 
inequalities. However, in both cases the exact computation of the volume is 
NP-hard (Dyer and Frieze 1988, Khachiyan 1988) and even #P-hard (Khachiyan 
1989). (This latter fact also follows from the result of Brightwell and Winkler 
(1990) mentioned in Section 1.3.) 

The approximate computation of the volume of explicitly described polyhedra 
is an open problem. 
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4.2 Markov Chains, Isoperimetric Inequalities, 
and Approximating the Volume 

In this section we sketch the randomized algorithm of Dyer, Frieze and Karman 
(and variants) for estimating the volume of a convex body K £ R". About this 
body, we only need to assume that it is given by a separation oracle. 

At this point, many readers may ask: what's wrong with the straightforward 
Monte-Carlo algorithm? We have already made the assumption that K is included 
in the unit ball B. Let us generate many random points in B, and count how 
often we hit K. This gives us an estimate on the ratio of the volumes of K and 
B. 

The problem is that the volume of K may be smaller than the volume of B by 
an exponential factor (in n). Hence the first exponentially many random points 
will miss the body K. This method can be applied to estimate the ratio of the 
volumes of two convex bodies (one including the other) only if this ratio is not 
too small. 

This suggests, the first trick: "connect" K and B by a sequence of convex 
bodies K = K0 ç Ki ç ... e Km = B, so that vol(X/)/vol(X/+i) > 1/2 (and 
m is polynomial in n). Then these ratios can be estimated by the Monte-Carlo 
method, and their product gives an estimate on the ratio vol(K)/vol(£). Such a 
sequence is easily constructed: we can take e.g. Ki = B n (1 + ^)lK- Since K 
contains the ball (l/(2n3/2))K, it follows that Kt = B for i > 4nlogn. 

However, estimating vol(K,-)/vol(Ki+i) by the Monte-Carlo method is not so 
easy; the key question in this algorithm (and in all versions of it) is: 

How to generate a random point (with uniform distribution) in a convex body? 

The solution by Dyer, Frieze and Kannan is the following. Consider the lattice 
of vectors whose coordinates are integer multiples of a sufficiently small number 
<5. Call two lattice points adjacent if their distance is exactly <5. Starting from the 
origin, take a random walk on the lattice points in K. If we are at a lattice point 
v, select an adjacent lattice point w at random. If w G K, then move to w; else, 
stay at v. (For technical reasons, we flip a coin before the move and if it falls on 
head, we stay where we are anyway.) After an appropriate number of steps, we 
stop; our current position can be considered as a random point in K. 

It is easy to see, using the theory of Markov chains, that if wt denotes the 
(random) lattice point obtained after t steps, then the distribution of wt tends 
to the uniform distribution over the set V of lattice points accessible from the 
origin along legal walks. (Note that V is essentially LnK, except possibly for 
some lattice points near the boundary of K.) 

The problem is to find a good bound on the rate of this convergence (on the 
mixing rate of the Markov chain (wo,Wi,...)). By general results on the mixing 
rate of Markov chains (Sinclair and Jerrum 1989), we know that this depends on 
the conductance of the Markov chain. This (in our case) can be defined as the 
largest 0 > 0 such that for every S ^ V, the number of pairs (u, v) of adjacent 
lattice points with u G S and v G V \ S is at least $ • (2n) • min{|S|, \V\ S\}. The 
least t for which the distribution wt is essentially uniformly distributed is about 
1/<P2. 

So the question is to find a lower bound on the conductance of this Markov 
chain. Let S ^V and let K\ be the set of points in K nearer to S than to V\S. 
Then we expect that 
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(a) the volume of K\ is about <5"|S|, 
(b) the volume of K \ K^ is about ön\V \ S\, 
(c) the surface area of the K\ inside K is about 5""1 times the number of 

adjacent pairs of lattice points (u,v) with w G S and v G V\S. 

If we accept these approximations (which is a technically quite difficult part of 
the argument), then the problem reduces to the following isoperimetric inequality: 

Theorem 4.3. Let K be a convex body in R" with diameter d, Let F be a surface 
with (n — l)-dimensional measure / , cutting K into two parts with volumes v\ and 
V2. Then 

/ ^ -min{z;i,t»2}. 

A weaker inequality (but still sufficient to prove the polynomiality of the 
volume algorithm) was proved by Dyer, Frieze and Kannan. This form is due to 
Karzanov and Khachiyan (1990) (who use methods from differential geometry) 
and to Lovâsz and Simonovits (1990) (who use the so-called Ham-Sandwich 
Theorem; to justify the remark that algebraic topology also.plays some role, let 
us mention that the Ham-Sandwich Theorem is derived from the Brouwer Fixed 
Point Theorem). 

Unfortunately, even with these improvements the algorithm is practically 
useless; its running time grows with the 16th power of n. The main problem is 
that random walks are slow in getting to the distant part of K. It is easy to come 
up with other Markov chains of points in K which "jump around" faster (and 
also have uniform limit distribution). Unfortunately, to prove the corresponding 
analogues of the isoperimetric inequality in Theorem 4.3 seems to take new 
methods. It is clear the algorithm of Dyer, Frieze and Kannan, representing a 
theoretical breakthrough, is not the last word in the area of volume algorithms. 

An algorithm to efficiently generate random points in a convex body has 
many further applications. Numerical integration by Monte-Carlo methods is an 
obvious one. We have also mentioned in Section 2.2 the problem to test whether 
a convex body K\ is included in another convex body K2. This can be done by 
generating many random points in K\ and test whether these are contained in 
K2. (To be convinced that at most a fraction of e of the volume of K\ is not 
contained in K2, we have to generate about 1/e points. Thus this algorithm is 
not "truely" polynomial if e is part of the input.) 
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Intersection Cohomology Methods 
in Representation Theory* 

George Lusztig 

Department of Mathematics, Room 2-276 
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1. Introduction 

In recent years, the theory of group representations has greatly benefited from a 
new approach provided by the topology of singular spaces, namely intersection 
cohomology (IC ) theory. 

Let G be a connected reductive algebraic group over an algebraically closed 
field (which will be assumed to be C unless otherwise specified) ; although G itself 
is clearly a non-singular variety, the study of the representations of G (or its Lie 
algebra, or its forms over various fields) leads to singular varieties connected with 
G. 

The main theme of this article is that the invariants of IC theory, applied to 
the singular varieties arising from G appear again and again in a broad range of 
problems of representation theory: construction of representations, computation 
of their character, construction of nice bases for representations. 

Chronologically, both the earliest [22, 23] and the most recent [45] such 
problem was that of constructing canonical bases in certain representations of 
Iwahori-Hecke algebras (resp. in irreducible, finite dimensional representations of 
G). The relevant singularities were Schubert singularities (resp. quiver singulari
ties) ; their local IC provided the necessary ingredients. 

Certain misterious and apparently intractable quantities in representation 
theory, like the multiplicities in the Jordan-Holder series of Verma modules, were 
recognized to be expressible in terms of certain local IC spaces and this has led 
to understanding and computing them. 

IC methods are needed for the classification of complex irreducible represen
tations of a reductive group over a finite field; furthermore, the character values 
of such representations appear to be intimately related to certain IC complexes, 
the character sheaves. 

IC methods have been used to give a new construction of the Springer 
representations of Weyl groups; an elaboration of this idea has been used to 
construct representations of affine Iwahori-Hecke algebras and hence of p-adic 
groups. 
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Unfortunately, several important topics had to be omitted from this account. 
Among them are the use of ^-modules, the role of the Fourier-Deligne transform 
and the geometric theory of automorphic forms (see Laumon [26]). 

2. IC Theory 

This theory has been originally introduced by Goresky and MacPherson [15]. 
(See also MacPherson's survey [48].) Subsequently, it has been developed into a 
very powerful tool by Beilinson, Bernstein, Deligne and Gabber [4], who blended 
IC theory into Deligne's theory of weights. 

Consider an irreducible complex algebraic variety Y. An IC datum for Y 
consists of an open dense smooth subvariety Yo of Y together with a local 
system ££ on YQ. ($£ corresponds to a finite dimensional complex representation 
of the fundamental group of Yo.) 

In general, it is not possible to extend if to a local system on the whole of 
Y ; even if such extension existed, local Poincaré duality with coefficients in it 
would not necessarily hold, when Y has singularities. Now IC theory provides a 
canonical extension ££$ of ££ from Yo to Y, not necessarily as a local system, 
but as a complex of sheaves (well defined up to quasi-isomorphism) which has 
constructible cohomology sheaves ffll<£$, does satisfy local Poincaré duality and 
is the most economical possible with these properties. 

We say that if# is the IC extension of i f to Y or that if* is an IC complex 
with support Y. The stalks J^i f* at points x G Y are the local IC spaces of Y 
with coefficients in if. The global IC of Y with coefficients in S£ is by definition 
the cohomology of Y with coefficients in <£*. 

These concepts are also well defined in the case of algebraic varieties over an 
algebraic closure Fq of a finite field Fq ; one uses Z-adic local systems and /-adic 
(étale) cohomology. 

We shall give three examples, which will be amplified in the following sections. 
In the first example (the prototype of a Schubert variety singularity, see §3), we 

take Y to be the variety of all flags of subspaces V\ c V2 <= V3 in C4 (dim Vt = i) 
such that V2 has non-zero intersection with a fixed two dimensional subspace 
£2 <= C4. We take Yo to be the open subset of Y defined by the condition V2 ̂  E2 
and we take Se = C. The stalks ^Se* of the IC extension of i f to 7 can be 
described as follows. If x G Y0 we have dim ^&% = 1 and œl

x&* = 0 for i £ 0. 
If x G Y - Yo we have dim J^°if# = 1, dim ̂ fx

2if# = 1 and J^x^ = 0 for 
i ^ 0 , 2 . 

In the second example (the prototype of a character sheaf, see §14) we take 

Y = {(a
c

 h
d\\a,b,c,deC,ad-bc = \} 

and we take Yo to be the open set of Y defined by the condition a-\- d ^ ±2 
(matrices with distinct eigenvalues). Let n : Yo —> Tb be the two-fold covering 
defined by the equation z2 = (a + d)2 — 4. We define ^£ to be the local system 
on Yo whose stalk &y at y G YQ is the one dimensional vector space of functions 
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ft-100 ~~* C with sum of values equal to 0. The stalks fflx3?$ of the IC extension 
of if to Y can be described as follows. If x G Yo we have 2tfxS£* = £?x and 
J îf# = 0 for / ^ 0. If x is ± the identity matrix, we have dim #P2<e* = 1 and 
2tf\<£$ = 0 for / •=£ 2. If x has eigenvalues ±1 but it is not + the identity matrix, 
then 2/ex$£* = 0 for all /'. 

In the third example (the prototype of a cuspidal character sheaf, see §§13, 
14) we take 

Y = {(a
c

 h
dj\a,b,c,deC,ad-bc = l,a + d = 2} 

and we take Yo to be the open set defined by the condition (b,c) ^ (0,0). We 
define a two-fold covering n : Yo -> Yo by 

% = {(21,22) G C?|(Z1,Z2) ^ (0,0)} , 71(ZUZ2) = (ZlZl
z?

 l _~z
ZJ+ j ) 

and we associate to it a local system S£ on Yo as in the second example. The 
stalks fflxS£$ of the IC extension of if to Y can be described as follows, If 
x G Y0 we have ^ ^ = <£x and W^ = 0 for / ^ 0. If x is the identity matrix, 
we have 2/eÌ<£* = 0 for all /. 

3. Left Cells in Weyl Groups and Schubert Varieties 

In this section we describe the first instance when IC methods made their 
appearance in representation theory. 

The theory of primitive ideals in enveloping algebras leads naturally to a 
remarkable partition of the Weyl group W of G into subsets called left cells 
(see Joseph [18]); the left cells can be used to parametrize primitive ideals. (This 
generalizes a partition of the symmetric group Sn which was found earlier by 
combinatorists.) It is known that each left cell carries a natural representation of 
W with a canonical basis (in 1-1 correspondence with the elements in the left 
cell). These representations provide a decomposition of the regular representation 
of W into representations which are close to being irreducible. 

Let H be the Iwahori-Hecke algebra over Z^t;"1] corresponding to W; here, 
v is an indeterminate. H has a standard basis Tw (as a 7J[V,V~1]-module) indexed 
by elements w G W. Its multiplication rule is a deformation of the multiplication 
rule in the group algebra of W : 

TW7V = fmv> if l(wwf) = l(w) + 1(w'), 

(fs + v-1)(fs-v) = 0 ifl(s) = l; 

here, / : W —> N is the length function. 
In [22], Kazhdan and the author came across a new basis Cw (w G W) of H 

which had some very remarkable properties with respect to multiplication. It can 
be defined as follows. 
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Let ~ : H —> H be the ring homomorphism which takes fw to f~\ for all w 
and v to v~l. Let J^ be the Z[v~{]-submodule of H generated by the standard 
basis and let n : S£ -> £/v~l<£ be the canonical projection. It turns out that 
for each w G W, there is a unique element Cw G S£ such that Cw = Cw and 
* (C W ) = 7C(fw). 

This definition is equivalent to (but simpler than) the one given in [22] ; unlike 
the definition in [22], it does not use the partial order on W. 

It turns out that 

yew 

where the PVtW are polynomials with integral coefficients. Moreover this basis is, 
in principle, computable. 

In terms of this basis, we found a new definition of left cells (which was later 
shown to be the same as the one of Joseph). Our definition had the advantage 
of being elementary, of carrying representations of H (not only of W) endowed 
with canonical bases, and of making sense for an arbitrary Coxeter group. 

Let $F be the collection of all subsets K c W with the following property: 
the submodule of H spanned by the elements Cw (w G K) is a left ideal. The 
definition [22] of left cells can be given as follows. Two elements w,wl G W are 
in the same left cell if the following condition is satisfied: for any K G«f we 
have w G K if and only if w' G K. 

In [23], Kazhdan and the author found a geometric interpretation of the 
polynomials PyjW above. To explain the result, we need some notation. 

Assume that we are given a Borei subgroup B of G, with unipotent radical UB 

and a maximal torus T of B. The orbits of B acting by conjugation on the variety 
X of all Borei subgroups (the flag manifold) of G are naturally parametrized by 
the elements of W. Let &w be the orbit corresponding to w G W and let (9W 

be its closure in X (a Schubert variety). Let ^ be the local system C on <9W 

and let <£% be its IC extension to 0W. If y,w G W, we say that y < w if 
0y c 0W. We then showed that, for such y, w, we have PyiW(v2) = ]T. ny^p\ where 
ny,Wii = dim J^jif* (notation of §2), for any x G (Vy. (If y £ w, we have Py,w = 0.) 
Thus, the polynomials PVtW contain encoded all information about the local IC 
of Schubert varieties. 

Apart from their relevance to the theory of primitive ideals, the theory of 
left cells in W has been crucial in the study [33] of representations of groups 
over Fq (and also in [35]); in the opposite direction, the results of [33] gave new 
information on the structure of left cells, in particular they have made possible 
the explicit determination [37] of all representations of W which are carried by 
left cells. (For example, if G is a classical group, these representations of W are 
multiplicity free, with a number of irreducible components equal to a power of 2.) 

Another definition of left cells has been found in [36] in terms of leading 
coefficients of the structure constants hXiy}Z G Z[i;,u_1] (x,y,z G W) of the algebra 
H with respect to the basis Cw. Namely, for each z G W, there is a well defined 
integer a(z) > 0 such that u f l ( z ) / iw G Z[v] for all x,y and va^~lhXiyiZ £ Z[v] for 
some x,y. Let yXj},jZ-i be the constant term of (—v)a^hXiyz-i. Quite remarkably, 
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it turns out that the rule txty = YJZEW Vx.y^-^z defines a structure of associative 
ring with 1 on the free abelian group J with basis (tx)xew- Then the left cells of 
W can be characterized as follows: we have txty ^ 0 if and only if x,y~l are in 
the same left cell. 

The ring J has several interesting features. First, there is a explicit homomor
phism of algebras H —> J ® 7J[V,V~X] (see [36]) which becomes an isomorphism 
whenever v is specialized to any non-zero complex number which is either 1 or 
is not a root of 1. Second, the multiplication in J can be (conjecturally, see [39]) 
described in very simple terms, in terms of convolution of equivariant vector 
bundles on some finite sets with some finite group action. (The conjecture of [39] 
gives a precise description of the apparently complicated pattern in which left 
cells meet right cells, i.e. images of left cells under w —> w"1.) 

4. Highest Weight Modules 

Let g,b,n,t be the Lie algebras of G,B, UB, T. In [22], Kazhdan and the author 
formulated a conjecture relating the polynomials P)f)W (see §3) to multiplicities in 
the Verma modules of g. More precisely, assuming that A is a linear form on t, 
we denote by Mx the Verma module of g with highest weight X and by Lx its 
unique irreducible quotient. Let Q : t —> C be half the sum of the positive roots. 
Our conjecture was that for all w G W we have 

L_w(e)_e = ^(-l) 'W-'^P J , ,H ,(l)M_ J , ( e )_e (a) 
y<w 

in the appropriate Grothendieck group. By an inversion formula for the P)>tW 

proved in [22], one sees that (a) admits the following equivalent formulation 

M)>(Q)-Q = YJ P^(l)Avte)-ff • (b) 

In view of [23], this relates multiplicities in Verma modules to local IC of 
Schubert varieties. Our conjecture has been proved by Beilinson, Bernstein [2] 
and by Brylinski, Kashiwara [8] using the theory of ^-modules. 

Not only the value of P3MV at 1 but also the coefficients of the various powers 
of v2 in it have representation theoretic meaning (actually two different ones) : 
they can be interpreted as dimensions of higher Ext groups between a Verma 
module and a simple module (Vogan [59]) or as multiplicities of a simple module 
in the successive quqtients of the Jantzen filtration of a Verma module (Beilinson, 
Bernstein [3]). 

5. Symmetric Spaces 

Let 9 : G —> G be an involution and let K be the identity component of the 
fixed point set G°. Let Yo he a i^-orbit on X and let i f be a one dimensional 
X-equivariant local system on Yo-
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By [2, 59], the local IC of the closure % with coefficients in ^ enters in an 
essential way in the representation theory of the real reductive group attached to 
G,9. 

An algorithm for computing this local IC (generalizing that in [22]) has been 
proposed by Vogan and has been established in [47]. 

6. Groups over Fq 

In this section we take G,X as before, but we assume that the ground field 
is Fq rather than C and that we are given an Fq -rational structure on G with 
corresponding Frobenius map F : G -^ G. This induces a Frobenius map F : X —> 
X. Following [12], we consider for any w G W the set Xw of all Borei subgroups 
Bf of G such that Br, F(Bf) are in relative position w. The finite group G(Fq) acts 
on Xw by conjugation; this induces an action on the i-adic cohomology groups of 
Xw with compact support. Although one has from [12] good information about 
the alternating sum of these cohomology groups (as a virtual representation) one 
knows very little about the representations on the individual cohomology groups, 
due to the fact that Xw is non-proper. The situation is much better if we replace 
Xw by its closure Xw and consider the natural representations of G(Fq) in the 
global IC groups of Xw with constant coefficients. Although Xw is singular in 
general, it is locally isomorphic to a Schubert variety hence its local IC is as in §3. 
Hence we still have good information on the alternating sum of these IC spaces 
(as a virtual representation) ; but this time we can also get good information on 
the individual IC spaces using especially the Weil conjectures in IC (see [4]). 
We can in this way compute explicitly [33] the way in which individual IC 
spaces decompose in irreducible representations and at the same time classify the 
irreducible representations occuring there (these are the unipotent representations 
otG(Fq)). 

This method extends to non-unipotent representations (see [33]). 

7. Affine Schubert Varieties 

In this section we take G to be simply connected, almost simple. 
Let g be the the lattice of coroots of G and let W be the the semidirect 

product of W with Q; thus, W is the affine Weyl group. 
Let G((s)) (resp. G[[e]]) be the group of points of G over C((e)) (resp. C[[e]]) 

where 8 is an indeterminate. The inverse image of B under the canonical homo
morphism G[[e]] -> G induced by e -> 0 is denoted by L Let X be the set of all 
subgroups of G((e)) which are conjugate to I. It is called the affine flag manifold', 
a closely related space has been first studied in Bott's work [7]. Now G((e)) acts 
transitively on X and the stabilizer of / is known to be J itself. The restriction 
of this action to / has countably many orbits on X which may be naturally put 
in 1-1 correspondence (as in Iwahori and Matsumoto [17]) with the elements of 
W. Let (9W be the /-orbit corresponding to w G W. Now (Vw may be naturally 
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regarded as an affine space over C of dimension l(w) where / : W —• N is the 
length function (see [17]). 

One can regard naturally X as an increasing union of projective algebraic 
varieties over C, each of the varieties in this union being /-stable. (See [23, 31, 
58].) Then the closure 0W of 0W in X is a well defined projective variety over C, 
called an affine Schubert variety. We can then define the relation y <w on W, as 
in §3. Now the polynomials P)I}W in §3 are well defined for y,w G W (see [22]). 
They again record the dimensions of the local IC of 0W at a point in (9y c Qm 

for y < w, as in §3 (see [23]). 
(The elementary definition of the polynomials Py>w given in [22] makes sense 

for arbitrary Coxeter groups; it is expected [23] that they always have > 0 
coefficients, although it is not clear what the geometrical interpretation of these 
coefficients should be in the non-crystallographic case. This positivity property 
has been verified by Alvis, for the finite Coxeter group of type H4, using a 
computer.) 

8. Highest Weight Modules for Affine Lie Algebras 

In this section we assume that G is almost simple, simply connected and of simply 
laced type, We shall recall some basic facts on affine Lie algebras. Consider the Lie 
algebras obtained by extending scalars: g[e,fi_1] = g ® Cfoe"1], g[e] = g (8) C[e]. 
We regard g as a subalgebra of g [e] by x —• x ® 1. It is known that there is a 
non-trivial central extension TT : g —• g [e, e"1] of Lie algebras over C with one 
dimensional kernel D ; moreover, it is unique up to isomorphism. The Lie algebra 
g is said to be an affine Lie algebra. Let Ü be its enveloping algebra. 

Let T G t be a coroot and let T',T" G g be such that TC(T') = ex, n(z") = e"1!. 
Then [T', T"] is a non-zero element of D, independent of the choice of T, T', T" ; we 
denote it c, 

Let k G C. A fr-module is said to have central charge k if c acts on it as k 
times identity. 

Let p be the inverse image of g[e] under %. It is known that % : p —• g[e] has 
a unique cross-section g[s] —• p which is a homomorphism of Lie algebras (over 
C); using this we may identify p = D © g[e] as Lie algebras. 

Let i (resp. io) be the inverse image of b (resp. of n) under the canonical 
homomorphism g[e] —> g induced by e —• 0. We have a direct sum decomposition 
i = t © io as vector spaces. Let t = D©t, i = D©i = t©io and let X : t —• C 
be a linear form. Consider the C-linear map i —• C given by X on t and by 0 on 
io. This is a Lie algebra homomorphism hence it extends to a homomorphism of 
the enveloping algebra IJ\ of ï to C. We induce this to a &-module; the resulting 
&-module M^ = Ü (g)̂  C is called a Verma module; it has central charge 1(c). 

Let h be the Coxeter number of G. The existence of Segal-Sugawara operators 
implies that M^ has a unique simple quotient module (denoted Lj) provided that 
1(c) is not equal to — h. 

Let Q : t —> C be the linear form which is equal to Q on t (see §4) and takes 
the value h on c. Let Q be the lattice of roots of g (regarded as a group of linear 
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forms t -> C). Let W be the semidirect product of W and ß (the affine Weyl 
group); this may be identified with the affine Weyl group in §7 since we are in 
the simply laced case. We have an action of W on the space of linear forms on 
t as follows: an element £ G g acts by 1 —> 2 + 1(c)c;; the action of W is. the 
contragredient of the action on t which is the usual one on t and the identity on 
D. 

The statements (a) and (b) below (which are entirely analogous to §4(a),(b)) 
have been recently proved by Casian [11] and by Casian [10], Kashiwara[19]: 

L_waHB = Yii-lf^MPyADM-rtfrt (a) 
y<w 

My(Q)-Q = X pyA^)LHo)-Q • (b) 
w>y 

Here w,y G W; the sums are in the appropriate Grothendieck groups (but the 
sum in (b) is infinite) and PytW are the polynomials in §7 describing the local IC 
of affine Schubert varieties. Note that L_w(g)_g and Fw(§)_g are well defined since 
—W(Q) — Q and W(Q) — Q take at c the values —2h and 0, which are =̂  —A. While 
the identities §4(a),(b) are equivalent to each other, the identities (a),(b) above 
are quite different: (a) is typical for integral highest weights with central charge 
< —h, while (b) is typical for integral highest weights with central charge > —h. 
Note that in [19] the geometry used is not the one in §7, but that of "affine 
Schubert varieties of finite codimension" (see [23, 20]). Note also that, in [10, 19], 
a formula like (b) is proved for any symmetrizable Kac-Moody Lie algebra. 

9. Modular Representations 

Assume that G is as in §8. Let W° be the set of all elements in the affine Weyl 
group W which have maximal length in their left W-COSQL 

Let p be a (not too small) prime number. Let <& be the category of finite 
dimensional rational representations (over Fp) of the algebraic group over Fp of 
the same type as G. 

The simple objects of W are indexed by the set of dominant integral weights 
t -> C but their structure is unknown. They appear as the unique simple quotients 
of certain "Weyl modules" whose weight structure is well understood (it is given 
by Weyl's character formula). By Steinberg's tensor product theorem, the structure 
of simple objects of ^ would be known in general if it were known for simple 
modules with restricted highest weight (i.e. with coordinates in [0,p —1]). In [29] a 
conjecture was formulated expressing the character of certain simple modules in 
<& (including those with restricted highest weight) as linear combinations of Weyl 
modules with explicit coefficients involving the values at 1 of the polynomials 
Py,w(y>w £ W°) as in §7. This conjecture has been tested in a variety of ways 
and seems to be extremely plausible. However, the connection between local IC 
of affine Schubert varieties and modular representations is quite misterious. It 
seems likely that to establish this connection one should use two intermediate 
steps, which we now explain. 
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Besides <€ we consider two other categories <€'9 <€" of representations. 
<€' has as objects the finite dimensional representations of the quantized 

enveloping algebra corresponding to G with parameter exp(2ni/p) (in the sense 
of [43]) in which the p-th powers of the canonical generators Ki (see [43]) act as 
identity. 

%>" has as objects the [/-modules with central charge ~p — h (see §8), of finite 
length, with all composition factors of form L~x (as in §8) where the restriction of 
1 to t is a dominant integral weight. 

In both these categories, the simple objects are naturally indexed by the 
same set; the set of dominant integral weights t —> C. The simple modules 
appear again as the unique simple quotients of certain "Weyl modules" (also 
contained in our category). For <ß'9 the Weyl modules have the same weight 
structure as the corresponding simple module of G (over C) hence are described 
by Weyl's character formula; for #" a Weyl module is defined by inducing from 
the enveloping algebra of p (see §8) to Ü the representation of p on which c acts 
as — p — h times identity and g[e] acts through a finite dimensional irreducible 
representation of its quotient g. 

In [44] it is conjectured that 
(a) the categories &, fé"' are equivalent; the equivalence should preserve the 

indexing of simple modules and takes Weyl modules to Weyl modules. 
(For this, p need not be a prime,) 
Although #,¥' are not equivalent, one can expect a very close connection 

between them; in particular, one can expect [43] that 
(b) two simple modules in #,# ' which have the same restricted highest weight 

should have the same weight structure. 
Now, in #", the simple modules can be expressed in terms of Weyl modules 

with coefficients involving the values at 1 of the polynomials P},iW(y,w G W°) as 
in §7. (This can be deduced by a "translation principle" from §8(a), see [25].) In 
view of (a), (b), the same should hold for #' and, in the restricted case, for (€. In 
this way, our conjecture on modular representations would follow from (a) and 
(b). 

In the non-simply laced case one should use twisted affine Lie algebras. 

10. Affine Schubert Varieties and Weight Multiplicities 

A number of features of the theory of finite dimensional representations of G can 
be recovered in a purely geometric way from the IC of affine Schubert varieties. 
We preserve the assumptions of §7, 8. If X : t —> C is a dominant weight contained 
in Q, we define nx G W to be the unique element of maximal length in the W — W 
double coset of W containing X. Consider the finite dimensional representation 
Lx of G with highest weight X and consider another dominant weight Xf G Q. The 
following result is proved in [31]. 

In the weight decomposition ofLx, the weight X' appears with multiplicity equal 
to PM;/|„A(1) ifnx' < nx and zero, otherwise. 
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Taking the polynomial itself instead of its value at 1 we get a ^-analog of 
weight multiplicities. An interpretation of this in representation theoretic terms 
has been found by R. K. Brylinski [9] (modulo some restrictions which were 
removed by Ginsburg [16]). 

11. Periodic Affine Schubert Varieties 

We preserve the setup of §7. We want to discuss (in a somewhat non-rigurous 
way) some variants of affine Schubert varieties. We need some further notation. 

Let B((s)) (resp. UB((S))) be the group of C((e))-points of B (resp. UB). Let 
T[[s]] be the group of C[[e]]-points of T. Let R = T[[s]]UB((e)) be the "identity 
component" of B((e)), so that B((e))/R ^ Q. 

Now / acts by left translation on G((s))/B((s)) with finitely many orbits, which 
may be put naturally in 1-1 correspondence with the elements of W. 

We have a "principal fibration" n : G((s))/R -• G((s))/B((e)) with group ß 
and any /-orbit on G((s))/R (for the left translation action) is mapped by % 
bijectively onto an /-orbit on G((e))/B((s)). Thus, Q acts freely on the set of 
/-orbits on G((s))/R with quotient space W. More precisely, we see that the set 
of/-orbits on G((e))/R may be put in 1-1 correspondence with W; however, this 
is canonical only up to composition with a translation in Q. 

Let F be the fixed point set of T acting on G((s))/R by left translation. Each 
/-orbit G on G((e))/R contains a unique point x® G F. 

The orbits of / on G((s))/R are seen to be both of infinite dimension and 
of infinite codimension. The "closure" G of such an orbit G can be defined as 
follows. 

Let G[ß_1] be the group of points of G over C[e-1]; let B~ be the Borei 
subgroup of G such that B n B~ = T and let / " be the inverse image of 
B~ under the canonical homomorphism G[s-1] —> G induced by £-1 —> 0. By 
definition, G is the union of all /-orbits G' such that G has non-empty intersection 
with the the /"-orbit l~x& of x&. For such &, the intersection l~x® n G is a 
(finite dimensional) irreducible variety and I~XQ< n (V is an open dense smooth 
subvariety of it. 

Then G is a union of countably many /-orbits of larger and larger (finite) 
codimension; the orbits and their closure relation form a periodic pattern, with 
Q as the group of periods. The orbit closures G may be called periodic affine 
Schubert varieties. 

We can define the local IC of the closure G of one /-orbit along another 
/-orbit & a G to be the local IC of I~x& n G at x& with respect to the local 
system C on I~x& n G. 

I was led to consider these periodic affine Schubert varieties about ten years 
ago while trying to find support for the conjecture on modular representations 
mentioned in §9. This has led to a periodicity property of the polynomials PVtW9 

for the affine Weyl group, with y,w G W° as in §9, which I could prove directly 
[28]. The periodicity property means that these polynomials (in the stable range) 
may be regarded as being indexed by a pair of/-orbits on G((E))/R; it turns out 
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that they can be interpreted geometrically as the polynomials which record the 
local IC spaces of the periodic affine Schubert varieties. 

The previous discussion suggests that the singularities of periodic affine Schu
bert varieties might be isomorphic to singularities of (ordinary) affine Schubert 
varieties. This is false; there is equality only for local IC spaces, which are not 
sensitive to torsion phenomena. In fact, periodic affine Schubert varieties are less 
singular than the corresponding ordinary ones; for example, if G = SL2, the 
periodic affine Schubert varieties are non-singular, while the ordinary ones are 
rational homology manifolds with singularities. 

The periodic affine Schubert varieties have been considered independently by 
B. Feigin and E. Frenkel in their work [14] on Wakimoto modules. It would 
be very interesting to find a connection between their representation theoretic 
considerations and the local IC spaces considered above. 

12. Local IC of Closures of Unipotent Classes 

Let °U be the variety of unipotent elements of G. We denote by £ the set of 
all pairs (C,^) where C is a unipotent class in G and ^ is an irreducible G-
equivariant local system on C defined up to isomorphism. (Thus, S£ corresponds 
to an irreducible representation of the group of components of the centralizer 
of an element of C ; this group is naturally a quotient of the fundamental group 
of C.) Let (C, Jäf) G J. Then the cohomology sheaf ^S£^ of the IC complex 
on the closure C of C can be restricted to a unipotent class C c C and is a 
G-equivariant local system there; a given irreducible G-equivariant local system 
& on C appears with a certain multiplicity, say mo9&';c9&ii in this restriction. 
The polynomials 

^ C ' , J ^ ' ; C , ^ = ^^mC'i&'iC&'jV ( a ) 

describe the local IC of C with coefficients in £^. We want to describe a natural 
partition of J into blocks. We define a relation < on J as follows : (C, 3?f) < 
(C,S£) means that C a C and //C',^';C,J^ ^ 0. A pair (C,S£) G J is said to 
be minimal if (C,S£') < (C,&) implies \c',^f) = (C,&). For a minimal pair 
(C,S£), we define the block of (C,^) to be the set of all (C",&") G J such 
that (C,5£) < (Cn,<£"). This block contains a unique minimal pair: (C,X). Any 
element of «/ is contained in a unique block, i.e. the blocks form a partition of 
J. 

Let us fix a minimal pair (C, ä') and choose u G C. Let ZT be a maximal 
torus of the centralizer of u in G, let L be the centralizer of &* in G and let if 
be the normalizer of y modulo L; one can identify naturally iV with the Weyl 
group of a maximal reductive connected subgroup of the centralizer of u. 

(b) The pairs (C',3?') in the block of (C,ä?) are in natural 1-1 correspondence 
with the irreducible representations of if. 

Originally, a statement of this kind has been established by Springer [57] 
in the case where C = {1}, i f = C; in that case, we have if = W. Springer's 
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construction has been reformulated in IC terms in [30] (see also [6]) and, in [34], 
the "generalized Springer correspondence" (b) has been established. 

The construction of [30, 34] is based on the following idea. We can start with 
a very simple minded action of if on a local system on an open dense smooth 
subset of some irreducible variety (the action being the identity on the base). By 
functoriality of the IC complex, this extends automatically to an action of if on 
the corresponding local IC at any point of our variety and this provides many 
interesting representations of W. 

The Springer correspondence (resp. the generalized one) has been explicitly 
described in each case, see [1, 51, 52, 55] (resp, [34, 46, 56]). 

The polynomials (a) have been described in all cases in the form of tables 
or algorithms. In the first case which has been considered, type A (see [30]), the 
computation of these polynomials was based on a connection between unipotent 
classes and affine Schubert varieties. The case of the block containing ({1},C) for 
types T̂  A, was done in [5, 53, 54], using results of [6, 21]. The general case is 
considered in [35] in the framework of the theory of character sheaves. 

These results (in Z-adic version) remain valid in characteristic p, at least if 
p is a good prime for G. In this form they are of direct significance for the 
representation theory of reductive groups over Fq ; indeed, the polynomials (a) 
for the block of ({1},Q/) are very closely related with Green functions (character 
values of generic representations at unipotent elements), while in the case of the 
other blocks, they are closely related with character values of more degenerate 
representations at unipotent elements. (See [42].) 

13. Cuspidal Pairs 

A pair (C, S£) is said to be cuspidal (cf. [34, 35]) if for any proper parabolic 
subgroup F of G with unipotent radical U and any unipotent element g G P, the 
cohomology with compact support of gUnC with coefficients in the restriction of 
S£ is zero. This implies that (C, 3?) forms a block by itself; conversely, if a block 
of J consists of a single element, then that element is cuspidal. The cuspidal pairs 
are quite rare. For example, if G is of type Es, there is a single cuspidal pair; its 
C is the unique unipotent class whose fundamental group is the symmetric group 
Ss and ^ corresponds to the sign representations of S$. If G = Sp2n, then G has 
exactly one cuspidal pair if n is a triangular number and none, otherwise. 

14. Character Sheaves 

It is possible to immitate very closely the representation theory of a reductive 
group over Fq, using certain IC complexes (called character sheaves) on G or 
subvarieties of G as substitutes for the irreducible representations. One obtains 
in this way a purely geometric character theory which makes sense over any 
algebraically closed field (in particular, over C). 

We refer to [34, 35] for the definition of character sheaves. Here we give two 
(extreme) examples. Let Yo be the set of regular semisimple elements in G. The 
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fundamental group of Yo has as a canonical quotient the semidirect product of 
W with the lattice of coweights of G; consider an irreducible representation of 
the fundamental group which factors through a finite quotient of this semidirect 
product and let S£ be the corresponding local system on YQ. The IC complex on G 
corresponding to (Yo, S£) is an example of a character sheaf. If G = GLU this gives 
all character sheaves; for other types, there may be in addition character sheaves 
supported by a proper closed subset of G; in particular, if G is semisimple, the 
IC complex on C corresponding to a cuspidal pair (C,S£) (see §13) is a character 
sheaf (said to be a cuspidal character sheaf). The existence of these character 
sheaves with thin support is the main reason why representation theory for groups 
other than GLU is so much more complicated than for GLU itself. 

The character sheaves have been classified in [34, 35] in two different ways: 
in terms of their support and also in terms of objects connected with the dual 
group. This last classification is extremely similar to that of the irreducible 
representations of a reductive group over a finite field [33]. In both cases the 
essential ingredients are: a semisimple element in the dual group, a "special" 
unipotent element in its centralizer, and a certain (small) finite group. 

There are at least two, quite different, applications of character sheaves to 
representation theory. The first one is to characters of groups over a finite field 
(see §15). The second one is to the construction of representations of p-adic 
groups (see §§16, 17). 

15. Character Sheaves and Frobenius 

In this section we assume that G is as in §6. 
The theory of character sheaves remains valid (in the /-adic version) for G, at 

least in good characteristic (and probably in bad characteristic as well). Consider 
a character sheaf of A of G such that A and its inverse image F*A under the 
Frobenius map F : G -^ G have the same support and are isomorphic (as objects 
in the derived category of that support). Choose a specific isomorphism and, for 
x a fixed point of F in the support, take the alternating sum of traces of that 
isomorphism on the stalks of the cohomology sheaves of A at x. We obtain a 
class function XA ' GF —• 0/ on the finite group GF = G(Fq) (for x G GF, not in 
the support of A, we set XA(X) = 0). It is independent, up to a non-zero factor, 
of the choice of isomorphism. One of the main results of [35] is that, when A 
runs over the character sheaves as above, the functions XA (suitably normalized) 
have values in the cyclotomic integers and they form an orthonormal basis of the 
space of all class functions on GF. Thus, this space has two natural bases; one, of 
geometric origin, is provided by the functions XA \ the other one is formed by the 
characters of the irreducible representations of GF. The elements in the first basis 
are essentially computable, hence the character table of GF would be known if 
the transition matrix between these two bases would be determined. For GLn, 
this transition matrix is the identity, but in general it is not so. However, there is 
considerable evidence that this transition matrix is quite simple, almost diagonal; 
more precisely this matrix should consist of small diagonal blocks, and each such 
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diagonal block should be the matrix of a non-abelian Fourier transform (as in [33, 
39]) over a small finite group. (This has been verified in a number of cases [38].) 

16. Some Algebras Attached to Blocks 

We fix r0 G C*; let 

V = {(N, er) G g x g|N nilpotent, er semisimple, [<r,N] = 2r0iV}. 

We have a natural action of G on V by conjugation on both factors. Let Jf 
be the set of pairs (G, !F) where G is a G-orbit on V and J* is an irreducible 
G-equivariant local system on the variety G. We consider some (G, #") G J. The 
first projection defines a map G -> c for a well defined nilpotent G-orbit c on g. 
We identify c with a unipotent class C in G using the exponential map; we obtain 
a map G —> C. We can find a G-equivariant local system if on C whose inverse 
image under the last map contains J5" as a direct summand. Let (% be the block 
of J containing (C, ££). One can show that Sß is independent of the choice of i f ; 
it depends only on (#,#"). We thus have a map (G, SF) -> Si from Jf to the set of 
blocks of J\ its fibres define a partition of Jf into subsets in 1-1 correspondence 
with the blocks of./. These subsets are called the blocks of Jf. 

It turns out that the elements of Jfin a fixed block (corresponding, say, to SS) 
index in a natural way the isomorphism classes of simple modules over a certain 
algebra H. 

To define this algebra, we need some notation. Let (C,3?) be the unique 
minimal pair in SB\ choose u G C and associate to it $~,L,if as in §11. We 
choose a parabolic subgroup F of G having L as Levi subgroup; let UP be its 
unipotent radical. Let Pi,..., Pm be the parabolic subgroups which contain strictly 
F and are minimal with this property. Let Lt be the Levi subgroup of Ff which 
contains L. Let l,lj,n' be the Lie algebras of L,Li} UP. Let h,hf be the centres of 
l,lz-. For any linear form a : h —> C we set ga = {x G g|[y,x] = a(y)x,Vy G h}. For 
each i, there is a unique non-zero linear form at : h —> C such that 0 ^ gKj. c \ir\nf 

and ga./2 = 0. Let S be the symmetric algebra of h*. 
Let St be the unique non-trivial element of if which can be represented by 

an element of L\. Then s\9..., sm are Coxeter generators of if. We have a natural 
action £ —>w £ of if on h hence on S. Let xo G 1 be the nilpotent element 
such that exp(xo) = u. For each i, let ct be the largest integer > 2 such that 
ad(x0)c~2 : li n n7 - • 1,- n n7 is ^ 0. We define a C-vector space H = S ® C[iT]. 
There is a unique structure of associative C-algebra with unit 1 ® e on H such that 
the following properties hold. First, the maps S —> H (£ —> £ ® e) and C [ ^ ] -> H 
(w —> 1 ® w) are algebra homomorphisms. Second, we have (̂  ® e)(l ® w) = £ ® w 
for any c; G S, w G ̂  Finally, we have 

(a) (1 ® s,)« ® e) - (*£ ® e)(l ® s,) = C/r0({ -Si Ç)c*ll ®e, (£ G S, 1 < i < m). 

One can show that 

(b) t/ie isomorphism classes of simple H-modules are in natural 1-1 correspondence 
with the elements in the given block of Jf. 
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The connection between these kind of objects is given in [40]. In that paper 
an H-module is constructed for any element of J. The idea is to apply the 
IC construction [34] of generalized Springer representations using fully its sym
metry group (i.e. in equivariant homology); thus we do that construction with 
parameters in the classifying space of that symmetry group, or a smooth, finite 
dimensional approximation of it. 

In the case where Sfl is the block of ({1},C), the algebra H is closely related 
to an affine Iwahori-Hecke algebra whose simple modules were classified in [24], 
In fact, the proof of (b) shares a number of features with the proof of the main 
result in [24]; one important difference is that in [24] the main technique is 
equivariant K-theory where IC methods are not available. 

In the case where G = SLm Si is the block of ({1},C) and ro = 1, the algebra 
H appears also in Drinfeld's work [13] on Yangians of type A. Can one construct 
finite dimensional representations of Yangians of general type using IC methods 
parallel to those just described ? 

17. Unramified Representations of Simple /?-Adic Groups 

In this section we take G as in §7. Let 0 be the group of rational points of a 
simple split adjoint algebraic group of type dual to G over a nonarchimedean 
local field with residue field Fq. An irreducible admissible representation V of 
0 is said to be unramified if there exists a parahoric subgroup SP of ^ with 
"unipotent radical" U& and "reductive part" SP = SP/U& (a reductive group 
over Fq) such that the [/^-invariant part of V contains some unipotent cuspidal 
representation W of the finite group &. (We get the same concept if we omit the 
word "cuspidal".) The following refinement of the Deligne-Langlands conjecture 
has been formulated in [32]. 

There should be a natural 1-1 correspondence between the set of isomorphism 
classes of unramified representations of & and the set of triples (N, s, (j)) up to G-
conjugacy, where N is a nilpotent element of g, s is a semisimple element of G such 
that Ad(s)N = qN and (j) is an irreducible representation of the (finite) group of 
components of the simultaneous centralizer Z(N,s) of N and s on which the centre 
of G acts trivially. 

This is rather similar to the classification of unipotent representations for a 
reductive group over Fq given in [33]. 

(One can allow ^ to be not necessarily split, but an inner form of a split 
group; this gives rise to a character x of the centre of G and one should take 
the same set of parameters except that the centre should be required to act on (j) 
according to x) 

We would like to suggest a way prove this. Let us fix SP, W as above. To 
these one can associate an Iwahori-Hecke algebra J f corresponding to a certain 
(extended) Dynkin diagram A and some parameters qm,

9 (m7- > 1), one for each 
vertex t\ of zi. Let F be the (extended) Dynkin diagram corresponding to 0 and 
let F be the its subdiagram (of finite type) corresponding to SP. By definition, 
the vertices of A are the vertices of F which are not in F , assuming that there 
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are at least two such vertices; otherwise, A is defined to be empty. Assume that 
A is non-empty and let t( be one of its vertices. Let SP\ => SP be the parahoric 
subgroup corresponding to the subgraph whose vertices are those of F together 
with ti. The representation of SP\ induced from SP by W decomposes into a sum 
of two irreducible representations; the quotient of their dimension is known to 
be of form qm for some integer m\ > 1. (This integer is explicitly known by 
[27, p.35].) Now let U,tj be two different vertices of A; we want to define the 
multiplicity of the bond joining them in A. If A has exactly two vertices, this 
multiplicity is defined to be infinite. If A has at least three vertices, we denote by 
0>ij n> SP the parahoric subgroup corresponding to the subgraph whose vertices 
are those of F together with tt, tj. The representation of SP[j induced from SP 
by W decomposes according to the representations of an Iwahori-Hecke algebra 
(with possibly unequal parameters) of type Ai x A\,A2,B2 or G2; accordingly, the 
sought for multiplicity is by definition 0,1,2 or 3. (See again [27, p.35].) One can 
check that the A is an (extended) Dynkin diagram. This completes the definition 
of Jf (except that there is an indeterminacy due to isogeny, but we will skip over 
this difficulty). 

It seems likely (and probably not difficult to prove) that the unramified repre
sentations of ^ which correspond to our SP, Y are in natural 1-1 correspondence 
with the simple Jf-modules. 

This is well known in the case where SP is an Iwahori subgroup. In that case, 
Jf is an Iwahori-Hecke algebras with equal parameters and one can use the 
classification [24] of its simple modules. 

But it seems to be difficult to extend the K-theoretic method of [24] to the 
general case. Instead, in the general case we can argue as follows. We can replace 
^ by its generic version (over C[v,v~1]) and take (as in [41]) certain associated 
graded algebras (over C[r]) of it and then specialize r to ro = \og(q)/2. The 
resulting algebras turn out to be of the type considered in §16 (hence their simple 
modules can be classified as in §16(b)); on the other hand, from the representation 
theory of these algebras one can completely recover the representation theory of 
2^, by the results of [41]. This should give the desired result. 

18. Cells in Affine Weyl Groups 

We preserve the assumptions of §7. The definition of left cells and right cells of 
W given in [22] (see also §3) extends without change to the case of W. (But in 
this case, this is the only known definition; it is not known how to extend the 
definition from the theory of primitive ideals). 

One can also define a partition of W into two-sided cells: the two sided cells 
are the smallest subsets of W which are unions of left cells and also unions of 
right cells. 

It is known (see [36]) that there are only finitely many left cells in W but 
their structure is not well understood except in type A (see Shi [50]) ; however, the 
two-sided cells of W have been shown in [36] to be in natural 1-1 correspondence 
with the unipotent classes in the corresponding group over C. The proof in [36] 
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is quite complicated. One ingredient is the use of the function a : W —> N defined 
as in §3; another one is the use of the results of [24] on representations of affine 
Iwahori-Hecke algebras; in addition, the theory of character sheaves also plays a 
role in the proof. 

It is interesting that many invariants of a unipotent class can be reconstructed 
from the corresponding two-sided cell, in purely combinatorial terms. For exam
ple, if a two-sided cell corresponds to the class of the unipotent element u, then 
the variety of Borei subgroups containing u has dimension a(z) where z is any 
element in the two-sided cell. 

19. Quiver Singularities and Canonical Bases 

In this section we assume that G is as in §8. In [45], methods of IC have been 
used to construct some particularly nice bases of the finite dimensional irreducible 
representations of g. We will explain how this is done. (Another approach to these 
questions has been recently found by Kashiwara; see his lecture at this Congress.) 

We assume that we are given a basis element in each root space in n corre
sponding to a simple root; we denote these elements by e\,...,en. (They are in 
1-1 correspondence with the vertices of the Dynkin graph, denoted 1,...,n.) 

Let U (resp. U+) be the enveloping algebra of g (resp. of n). Recently, Ringel 
[49] gave a very elegant description of U + in terms of representations of a quiver 
(the Dynkin graph of G with a fixed orientation). All representations of the quiver 
are assumed to be finite dimensional over G The dimension of a representation 
is naturally a vector d = (du..., dn) G N". 

Given three representations V, V, V" of the quiver, we can consider the set 
of all subrepresentations of V" which are isomorphic to V and such that the 
corresponding quotient is isomorphic to V. This set is naturally an algebraic 
variety and we denote by cvtvtv" ^ s Euler characteristic in cohomology with 
compact support. Let 0t be the C-vector space with basis elements V indexed 
by the isomorphism classes of representations of the quiver. Then the cvyw" 
can be regarded as the structure constants of an algebra structure on M and 
Ringel shows that there is a unique algebra isomorphism U + = SÎ which takes 
each e\ G U + to the irreducible representation of our quiver corresponding to 
the vertex / of the Dynkin graph. Via this isomorphism, U + aquires from 0t a 
C-basis. Note that this basis depends on the chosen orientation of the Dynkin 
graph. 

We want to look at ways in which a representation of the quiver can be 
deformed to a more degenerate one. It is known that the isomorphism classes 
of representations of our quiver correpond to certain orbits of algebraic group 
actions and we are lead to consider closures of such orbits. One of the ideas of 
[45] was to exploit the fact that these closures of orbits may be singular hence 
have invariants coming from IC theory. (These singularities may be called quiver 
singularities.) 

We shall define such invariants jvy G N for any two representations V, V1 

of the quiver. In the case where V, V have different dimensions we set jyy = 0. 
Assume now that they have the same dimension d = (d\,...,dn). Let 
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E = ©^Hom(C*,C*) 

sum over all arrows i —> j in the given orientation, and let Gd = fli GLd.(C). The 
group Gd acts naturally on the C-vector space E by (g,-) : (fij) —> (gjfijgf1). Any 
point in Ed may be regarded as a representation of dimension d of our quiver 
and all representations of dimension d arise in this way. Moreover two points in 
E define isomorphic representations if and only if they are in the same Gd-orbit. 
Thus, V, V correspond to two Gd-orbits G, & on E. If G is contained in the 
closure of &, we define ivy to be the Euler characteristic of the local IC of that 
closure (with coefficients C) at a point in G. Otherwise, we set jv,y = 0. 

The elements ^vjv,v'V (for various representations V of the quiver) form 
a new basis of ffl\ upon transfering it to U+ , we obtain a basis of U + which, by 
one of the main results of [45], is independent of the chosen orientation. For this 
reason, we call it the canonical basis. 

Assume that we are given an irreducible, finite dimensional representation of 
U with a specified lowest weight vector. If we apply the elements of the canonical 
basis to this lowest weight vector, the resulting elements less 0 will miraculously 
form a basis for the representation space. This is a canonical basis of the given 
representation of U. It is a basis with extremely favorable properties (see [45]). 

All these bases have natural ^-analogs in the framework of quantized en
veloping algebras. 
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Introduction 

Many of the physical phenomena that are currently important research topics 
in applied mathematics involve strong, irregular, and typically unstable fluctua
tions with intense activity occurring on extremely small length scales. Examples 
include fully developed turbulence and the instability of thin layers in fluid flows, 
phase transitions and homogenization in materials, dendrite formation in crystal 
growth, the focusing of laser beams, and various problems in classical statistical 
physics such as the kinetic theory of gases. For a discussion of the mathematical 
progress in this last topic, see the report of P.L. Lions at this Congress. The 
quantitative physical phenomena are usually described by solutions of nonlin
ear partial differential equations in various singular limits involving either small 
spatial/temporal scales or coefficients of the equation. A prototypical example of 
such a process is the high Reynolds number limit of the Navier-Stokes equations, 

-j£ + div (vc ® v8) = -Vp£ + eAvB , 

div vc = 0 . 

Here v = '(^1,1^3) is the fluid velocity, p is the scalar pressure, v ® v = (v\vj), 
and e is the reciprocal of the Reynolds number. Fully developed turbulence is 
characterized by the fact that the parameter e in (0.1) is extremely small, i.e. 
e < 1; the formal limiting equations with e = 0 in (0.1) are called the Euler 
equations. 

The recent development of powerful, user friendly, supercomputers and work
stations combined with high resolution graphics and sophisticated numerical 
algorithms has enabled researchers to discover interesting and unexpected new 
phenomena in the solutions of nonlinear P.D.E.'s with a resolution often exceeding 
the capabilities of contemporary experiments. Understanding these phenomena 
has created the need for a highly interdisciplinary interaction involving ideas 
from nonlinear analysis, numerical computation, and sophisticated asymptotic 
methods. The reports by Mimura [51] and Krasny [33] at this Congress illustrate 
aspects of this type of interaction in modern applied mathematics; some recent 
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papers of the author [46, 36, 37] describe this modern research mode in the 
context of various problems in fluid dynamics. Except for brief remarks and 
some references, it will not be possible due to limitations on length to describe 
examples of such exciting interdisciplinary developments in any detail in this 
article and the main emphasis will involve the nonlinear analysis of the new 
phenomena. 

The problems which I discuss below have a common theme. There is a 
sequence of solutions of a nonlinear P.D.E. which satisfies the bound, 

/ 
JQ 

\vB\ldy < C (0.2) 
Q 

as e I 0 so that there is a function v and a subsequence with 

ve -* v i.e. weakly in L2(Q). (0.3) 

In applications, the bound in (0.2) is usually guaranteed by a physical principle 
such as an energy estimate and the small parameter e J, 0 represents the limit 
of increasingly smaller scale fluctuations. The use of the L2-norm in (0.2) is for 
simplicity in exposition. Various kinds of defects can happen in such a limiting 
process. These are illustrated by the heuristic decomposition 

ve = ve
osc + vlonc + ve (0.4) 

of vE. Here ve converges strongly in L2 so that there is a v with 

û e - û | 2 d y - > 0 a s e J 0 . (0.5) 
Q 

The functions v^ measure the small scale oscillations in the limit in the sense 
that 

ICOOlL-rSC, (0.6A) 

and there is a i;0Sc € L00 so that 

/ <l>ve
oscdy -> / (j)voscdy for all functions 0 G Co (Q), (0.6B) 

JQ JQ 

but ve
osc does not converge strongly in L2 to vosc. A prototypical example of a 

sequence with small scale oscillations in R1 is given by v^ = v (£) where v(y) is a 
fixed smooth periodic function. The functions ^onc in the heuristic decomposition 
in (0.4) measure the development of intense small scale concentrations in the limit 
in the sense that ve

conc satisfies the uniform L2-bound in (0.2) and there is a function 
fconc so that 

"conc-^conc a.e. in Q, (0.7) 

but nevertheless, i^onc does not converge strongly to t;conc in L2. A prototypical 
example illustrating concentration in L2(RN) is given by the sequence u*onc = 
e=?o (f) with Q e C0°°, Q>0, fQ = l. 

Most of the research in nonlinear P.D.E. prior to the late 1970's involved 
problems where suitable apriori estimates automatically guaranteed strong con
vergence so that ve

osc and v*onc in (0.4) were zero and the relevant nonlinear maps 
g(vE) are continuous in the limit. With the strong motivation from understanding 
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many of the new phenomena described earlier, an important current research di
rection in nonlinear P.D.E.'s involves situations where both fine scale oscillations 
and/or concentrations occur in various physical problems so that i;£sc and/or 
ĉonc a r e non-zero in the heuristic decomposition in (0.4). In the next section 

some of the mathematical tools and physical problems that have been studied 
recently with oscillations and/or concentrations are described briefly. Of course, 
this article is not intended to be a detailed survey and the discussion is limited 
by both the taste and expertise of the author. The final sections of the article 
contain a more detailed report on problems with oscillations and concentrations 
in incompressible fluid flow - this is a rich and important class of problems 
where both effects occur simultaneously and many interesting problems remain 
unsolved. 

1. The Development of Oscillations and Concentrations 
in Problems from Applied Mathematics 

IA. Some Mathematical Tools 

An effective tool for nonlinear analysis associated with a sequence t>£sc satisfying 
the L°°-bound in (0.6A) is the Young measure introduced by Tartar in this context. 
If the vector field v is a mapping from Q £ RN to RM, the Young measure theorem 
asserts that there is a family of probability measures on RM, {vy} indexed by y e Q 
so that after passing to subsequence, weak limits of composite non-linear maps 
g(vE) are given by 

um / <l>(y)g(vc
0Jdy = [ <f>(y) / g(X)dvy(X)dy. (1.1) 

ß->° JQ JQ JRM 

There is strong convergence of vE
0SC to vosc on Q if and only if the probability 

measure vy is given by the Dirac mass, <5Ü0SC(j,), for each y e Q. An elementary 
probabilistic interpretation of the Young measure utilizing the Lebesque dif
ferentiation theorem has been developed recently by Ball [6]. Diperna [18, 19] 
introduced the concept of measure-valued solution of a system of conservation 
laws associated with an L00 bounded sequence so that only oscillations occur 
in the limit. The effectiveness of this tool for interpreting the limit of fine scale 
oscillations in model problems such as the zero dispersion limit of solutions of 
the KdV equation has been surveyed earlier by Diperna (see [18, 19]). A very 
general extension of the Young measure theorem for general sequences with only 
the uniform L2(LP) bound in (0.2) has been developed by Diperna and the author 
[20] for the specific applications of constructing suitable measure-valued solutions 
of problems from mathematical physics where both fine scale oscillations and 
concentrations develop in the limit. Strong motivation for this work was provided 
by the problems involving the high Reynolds number limit of solutions of the 
Navier-Stokes equations with finite kinetic energy described in (0.1); the limiting 
solution is a suitable measure-valued solution of the Euler equations with both 
oscillations and concentrations (see [20]). Unlike (1.1), the generalized Young 
measures in this context are often singular continuous with respect to Lebesque 
measure, reflecting the development of concentrations - more will be said about 
this topic later in this paper. 
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In physical problems where the phenomena of concentration from (0.7) occurs 
Without the development of oscillations (so that v^c = 0 in (0.4)) it is very 
natural to measure the. size of the set where concentration occurs; two types of 
defect measures have been introduced recently for this purpose, the weak* defect 
measure [35] and the reduced defect measure [22]. With the uniform L2-bound 
in (0.2) and vE —* v, there is a non-negative Radon measure a so that 

/ cpda = lim / cp\ve — v\2dy (1.2) 
J ß->° JQ 

for all cp G Co(Q). The measure o is the weak* defect measure; if G is zero on an 
open set, there is strong convergence on that open set. Motivated by problems 
in the calculus of variations with critical Sobolev exponents, P.L. Lions [35] has 
proved a beautiful simple theorem guaranteeing that the weak* defect measure is 
always concentrated on a rather small set in this context. An illustration of this 
theorem is provided by the following example: if v8 is a sequence of functions in 
R2 satisfying the bound 

/ \vE\2+ [ | V u e | < C , (1.3A) 
JR2 JR* 

then there is a countable number of points {yj}JLi and weights ay > 0 with 
^ a •' < oo, so that necessarily 

" = Z a A , . (1-3B) 
j 

with öyj the Dirac mass at yj. 
The reduced defect measure [22] is the finitely sub-additive outer measure 6 

defined by 
6(E) = lim sup f \vE - v\2dx. (1.4) 

JE 
Obviously, the reduced defect measure has the property that 6(E) = 0 for any set 
E if and only if there is strong convergence on E. Furthermore, for any closed 
set F, it is easy to see that 

0(F) <a(F), (1.5) 
so that 6(F) can be very small even though a(F) is large. Examples of the use 
of estimates for the size of the reduced defect measure occur in the important 
physical problem involving vortex sheets for incompressible fluid flow and will be 
discussed in the later sections of this paper [22]. In these examples the support 
of o can include all of JR3 while 6 concentrates on a set of small measure with 
Hausdorff dimension one and this is crucial for the applications. 

The discussion just presented of some tools for measuring phenomena in weak 
convergence is necessarily sketchy and incomplete. The interested reader should 
consult the recent lecture notes of L.C. Evans [25] for a more complete discussion 
of these matters. There is a need to develop other theoretical tools to measure 
additional structure in weak convergence with defects; one interesting new con
cept with potential applications is the H-measure introduces independently by 
Tartar [57] and Gerard [26]. Tartar's lecture at this Congress [58] provides an 
introduction to these topics. 



Analysis and Applied Mathematics 179 

IB, The Development of Fine Scale "Twinning" and Defects in Materials 

Very recently an elegant mathematical theory has been developed to explain at 
the macroscopic level certain phase transitions in solids as the temperature, 6, 
varies [7, 8, 13, 16, 32]. In such austenitic-martensitic phase transitions there is a 
decrease in crystal symmetry at a transition temperature; for example, from a high 
temperature solid phase with cubic symmetry (austenite) to a low temperature 
solid phase with tetragonal symmetry (martensite). At the transition temperature, 
it is observed in experiments that the martensitic phase develops small scale 
regular fluctuations and is often "finely twinned" along planes related to the 
crystal lattice and also there is an austensite/finely twinned martensite interface, 
The key point in the mathematical analysis is the fact that the symmetries in a 
macroscopic continuum theory of crystals for both the austensite and martensite 
phases at the critical temperature oo leads to a variational problem to minimize 
the free energy over deformations y(x): Q 2 R3 -> R3 with a structure so 
that the finite infimum is not achieved. In other words, for the appropriate free 
energy density, W(A,6) with A e M+x3, the set of 3 x 3 matrices with positive 
determinant, / is finite with 

/ = min / W (j^,00)dx, (1.6) 

but there is no weak deformation y so that the minimum, / , is achieved. In 
particular, the appropriate free energy functionals W(A,6) at the critical tem
perature, oo, are necessarily not rank-one convex and thus are not quasi-convex 
[5], The rigorous theory predicts that in the process of attempting to achieve 
the minimum, the sequence of deformation gradients, ^ , necessarily develops 
apriori fine scale but regular oscillations in the martensitic phase which admit an 
elegant characterization via classical Young measures (see (1.1)) as combinations 
of weighted Dirac masses located on an appropriate set of matrices. Numerical 
computations [16] confirm the continuum theory and specific tests for detailed 
experiments based on the mathematical theory have recently been proposed [8], 
An extremely readable mathematical account of this interdisciplinary research is 
presented in the paper by James and Kinderlehrer [32]. 

In the previous paragraph, an application in materials science with fine scale 
oscillations was described. Next the solution of a model problem motivated by 
the issue of prescribing strengths and locations of defects in the theory of liquid 
crystals [24] will be described where concentrations develop in a certain fashion 
so that the weak defect measure from (1.2) is nontrivial. The model problem 
analyzed by Brezis, Coron, and Lieb [10] concerns harmonic maps with values 
in S2 and defects at prescribed locations a\ with specified (Brouwer) degree, deg 
(0,0/), at the location a\ for 1 <i < N. Thus, the admissible maps are given by 

t = U e C{(R3 ~ u ^ f a h S ^ l d e g (0,*,) = h and j ^ |V0|2 < ooj 

The model problem consists of finding 

E = mf^J\Wcß\2. (1.7) 
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The number E is finite and there is a beautiful explicit formula for this value 
[10]; as in (1.6), the infimum in (1.7) is not achieved but concentrations develop in 
the minimizing deformation gradients rather than the fine scale oscillations from 
(1.6). Specifically, in attempting to achieve the minimum, vE = V0fi concentrates 
so that vE —x 0 but \vB\2 —̂  a in the sense of Radon measures where the weak* 
defect measure is given by o = 8nöc', the set C consists of a finite union of 
straight line segments in R3 defined by some minimal connection, where öc is the 
uniform one-dimensional Lebesque measure on these lines (see [10]). 

IC. The Development of Concentrations in Focusing Solutions 
of Nonlinear Schrödinger Equations 

This is a very rich class of problems providing simplified models for focusing 
laser beams where concentrations develop spontaneously in time in a problem 
with critical Sobolev exponents. These equations have the form 

ivt = -Av - \v\4/Nv, v(x,0) = v0(x), (1.8) 

for x € RN. The equations in (1.8) have a Hamiltonian structure and a special 
conformai invariance as a consequence of the special exponent in (1.8); further
more, the L2-norm is conserved in time on intervals of existence. Weinstein [59] 
has proved that solutions of (1.8) exist for all time provided that I^OIIL2 < IIÔIIL2 

where Q(x) is a suitable ground state. For suitable initial data with critical mass so 
that | |uoIII2 = IIÔIIL2> he exploited the conformai invariance to construct explicit 
focusing solutions which develop dynamic concentrations as t / T* < oo and 
studied the stability of this process through methods of concentration compact
ness [60]. In very recent work, Merle [50] has attacked the intriguing question 
of continuation of these special solutions past the blow up time. He considers 
sequences of smooth initial data ug regularizing the data vo(x) which develops 
singularities so that the regularized data VQ satisfy \\v^\\ < \\Q\\ and \\VQ — VQ\\ —> 0. 
As mentioned earlier, the corresponding solutions vE(x,t) are defined globally in 
time and the limiting behavior as s J, 0 is analyzed in [50] for t> T* ; the singular 
solution is unstable in time in the setìse that ths singularity disappears in this limit 
for t > T* and suitable special subsequences of v8 converge to explicit defocusing 
solutions of (1.8) characterized by arbitrary phase shift parameters. There is "loss 
of information" in time once the dynamic concentration develops because these 
phase shifts are not uniquely determined and depend on the special subsequence. 
This author conjectures that appropriate measure-valued solutions [20] of (1.8) 
arise for t > T* in the general case in order to reflect the loss of information. The 
nature of singularity formation for solutions of (1.8) with H^OIIL2 > IIGIIL2 is a n 

active research topic in applied mathematics [34] with rich additional phenomena 
in the structure of singular solutions beyond those discussed briefly here. 
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ID. Nonlinear Geometric Optics and Oscillations for Hyperbolic Systems 
of Conservation Laws 

Recently, there has been a great deal of activity in developing the theory of 
nonlinear geometric optics for general hyperbolic systems of conservation laws in 
multi-D [29, 42, 30, 28, 49]. As in linear geometric optics, these formal asymptotic 
theories utilize short wave length approximations so they involve the propagation 
of oscillations in hyperbolic systems. In nonlinear geometric optics, approximate 
solutions of general quasi-linear hyperbolic systems are constructed with the 
general form, 

vE = v(x, t) + Mi ( *, x, tj + 0(e), e < 1 (1.9) 

where 0 = ((j)i(x,t),...,(j)d(x,t)) is a vector of phase functions. Through self-
consistent asymptotic approximations, simplified equations for the phase func
tions and amplitudes in v\ are developed and in many instances these approxima
tions can be solved exactly; thus, a great deal of genuine insight can be gained 
into complex physical problems. One of the theoretical achievements is a gen
eral theory for resonantly interacting small amplitude periodic wave trains with 
many new phenomena that are completely absent in geometric optics for linear 
problems [42, 30, 49, 12, 43]. In applications, the general theory of nonlinear 
geometric optics has been used recently to explain a variety of complex phe
nomena in physical problems involving compressible fluid flow [43, 3, 4], wave 
propagation in reacting materials [41, 2, 45] and dynamic nonlinear elasticity 
[49]. For example, a completely new theory of nonlinear instability for supersonic 
vortex sheets has been developed recently by the author and his recent Ph.D. 
student, Artola which combines the theory of hyperbolic mixed problems with 
nonlinear geometric optics [3, 4, 48] in a sophisticated fashion; this theory has 
been motivated and confirmed by large scale computations of Woodward (see 
the discussion in [36]. Another important use of nonlinear geometric optics is 
to extract mathematically tractable model equations which retain some of the 
essential features of much more complex physical phenomena [52, 44, 45]. 

This general topic has been mentioned briefly here because it involves interdis
ciplinary interactions in applied mathematics with the propagation of oscillations, 
and there is a definite need for more work on the rigorous theory of nonlinear 
geometric optics beyond the contribution of Diperna and the author [23]. Some 
important and accessible open theoretical problems are discussed in two re
view articles [37, 40]. Unlike the linear case, the effects of diffraction are not 
understood even at the formal level for small amplitude discontinuities. Current 
surveys of the formal aspects of nonlinear geometric optics including a discussion 
of problems with diffraction have been given by Hunter [31] and Rosales [53]. In 
interesting recent work, D. Serre [55, 54] has used the classical Young measure 
to describe the propagation of large amplitude oscillations in special quasi-linear 
hyperbolic systems with linearly degenerate wave fields. 
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IE. Oscillations and Concentrations for Incompressible Fluid Flow 

Ingenious numerical computations [15,14] and physical experiments reveal bewil
dering complexity at finite times in solutions of the incompressible fluid equations 
from (0.1) both at high Reynold's number for the Navier-Stokes equations with 
e < 1 in (0.1) and as various numerical regularization parameters tend to zero 
for the incompressible Euler equations (the equations in (0.1) with e = 0). The 
work of Diperna and the author [20, 22, 21] involving measure-valued solu
tions of the three-dimensional Euler equations is a first attempt to quantify 
such observed .catastrophic instabilities in a mathematical fashion. Due to the 
rapid amplification of vorticity in three-dimensional fluid flows [36], very little 
apriori information is available and the only generally bounded positive physical 
quantity of an approximating sequence, vE, is the local kinetic energy. Thus, it is 
reasonable to assume the uniform bounds 

' J\x\: 
max / \vT(x,t)dx<CRT (1.10) 
° ^ T J\x\<,R 

for any R > 0, T > 0. In [20], measure-valued solutions of the three-dimensional 
Euler equations are ' constructed which arise from the Weak limit of suitable 
approximate solution sequences satisfying the uniform bound in (1.10); a pro
totypical example from [20] is the fact that in the limit as e J, 0, a family of 
Leray-Hopf weak solutions of (0.1) converges to a measure-valued solution of 
the 3-D Euler equations. In general, these measure-valued solutions allow for both 
oscillations and concentrations and several examples of both of these phenomena 
are discussed in [20, 21]. 

The simplest way to generate examples of approximate solution sequences 
and measure-valued solutions for 3-D Euler is to take a sequence of smooth 
exact solutions and examine the generalized Young measure in the limit. It is an 
easy exercise for the reader to check that any sequence of smooth velocity fields 

vE = (0,0,vE
3(xux2)), (1.11A) 

with the kinetic energy bound in (1.10), defines a sequence of exact smooth 
solutions of the 3-D Euler equations converging to a measure-valued solution of 
3-D Euler; clearly all of the phenomena of development of simultaneous oscilla
tions and concentrations in solutions of the fluid equations can be displayed in 
such solution sequences by mimicking the constructions below (0.6) and (0.7). If 
v\ -* vi(^\,X2) ih L2, then 

v = (0,0,v3(xux2)) (1.11B) 

defines a weak solution of the 3-D Euler equations despite the fact that typically 
(v\)2 does not converge weakly to (v3)

2. A more interesting example of an exact 
solution sequence for the 3-D Euler equations displaying the development of fine 
scale oscillations [20] is given by 

vB = (v (y,x2J,0,w (xi-v {-f>X2J t'*2' ~fj) ' ( U 2 ) 

where v and w are fixed smooth bounded functions with v(y,X2) periodic in y; 
in particular, this sequence satisfies the uniform L°°-bound, \VE\L°° < C. Unlike 
the example in (1.11), the weak limit o/(1.12) is an explicit smooth function but 
this smooth function is no longer an exact solution of the 3-D Euler equations -
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new phenomena occur through the persistence of oscillations and the limiting 
process is an explicit example of a nontrivial measure-valued solution. It is worth 
remarking that both of the exact solution sequences for the Euler equations in 
(1.11) and (1.12) inherently involve three space dimensions; furthermore, these 
examples are constructed in a systematic fashion beginning with suitable exact 
two-dimensional solutions, (0,0) and (y ( - f ,^ ) >0) respectively (see p. 445 of [17] 
for a description of the general recipe). Steady exact solutions of the 2-D Euler 
equations (see [47]) are given by the radial eddies, 

u = ( - - ^ , - ^ - J / sœ(s)ds, (1.13) 

with r î= (x\ + x2)1/2. Elementary examples of exact solution sequences for the 
2-D Euler equations exhibiting concentrations can be generated in two different 
ways; 

A) Pick a positive function co(r) > 0 
with bounded support and define the vE by 

,=(,ogi)-"Y,(?) 
with v given from co by (1.13). 

B) Pick a function co(r) with compact support 
reo 

but / sco (s)ds = 0 so that there is 
Jo 

zero circulation and define vB by (1.14B) 

with v given from co by (1.13). 

The scalings in both examples have been chosen to guarantee the uniform local 
kinetic energy bounds in (1.10). In both examples, vB —k 0 but the nonlinear terms 
in the Euler equations, v (8> v from (0.1), satisfy 

vE
 ®VB -» C (J l)a(x) (1.15) 

with weak convergence in the sense of measures. Here ö(x) is the Dirac mass at 
the origin and the constant C varies in the two examples and depends on the 
core (see [20] and [21] for the details). Such examples illustrate the phenomena of 
concentration in solutions of the 2-D Euler equations; these two exact solution 
sequences generate measure-valued solutions of the 2-D Euler equations where 
the associated Young measure is singular continuous with respect to Lebesque 
measure due to the appearance of concentrations. It is useful to note here that 
in example (1.14A) 

/ | cu r lu c | <C , but fimßio / \W\ = +oo (1.16) 
JRI JR2 
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while ||Vuß||Li < C in example (1.14B). Other amusing examples of measure-
valued solutions for the 3-D Euler equations with fine scale oscillations have 
been developed in interesting recent work by Brenier [9], 

The following general problem is of interest in the present context: 

Problem. Characterize the closure in the L2^weak topology of smooth exact 
solutions of the 3-D Euler equations. 

The above explicit examples all provide insight into this question. There is 
a need to find other interesting examples like the one in (1.12) which illustrate 
that the weak closure is larger than merely the weak solutions of 3-D Euler; 
such solutions involving interacting oscillations and concentrations would be 
particularly useful. • 

2. Vortex Sheets, Potential Theory, and Concentration-Cancellation 
for 2-D Incompressible Flow 

Incompressible fluid flow in two-space dimensions is generally much simpler than 
that in three space dimensions because given the velocity v = (v\,V2), the scalar 
vorticity, co = (v2)Xl — (vi)x2, is conserved along fluid particle paths for the 2-D 
Euler equations. Thus, it is a classical fact that smooth solutions of the 2-D 
Euler equations exist for all time while the analogous question for 3-D Euler is 
an outstanding and very important open problem due to vorticity amplification 
[36, 47]. Nevertheless, there are important practical problems involving weak 
solutions of the 2-D Euler equations, and here recent progress [22, 21, 27, 1, 61] 
is described in understanding the new mathematical phenomena and structure 
that occurs for vortex sheet initial data. 

À two dimensional incompressible velocity field, VQ, defines vortex sheet initial 
data provided that curl vo = coo is a finite Radon measure and vo has locally finite 
kinetic energy. In applications, coo is typically a surface Dirac measure supported 
on a smooth curve. Recent ingenious large scale numerical computations reveal 
tremendous complexity in the solutions of the 2-D fluid equations with vortex 
sheet initial data as various regularization parameters converge to zero; there is 
also much more complexity in the computed solutions when mo changes sign than 
if coo has a distinguished sign i.e. coo > 0 (see Krasny's report at this Congress [33] 
and also [46] for a detailed description and references for the numerical results). 
Furthermore, classical linearized stability analysis of the simplest vortex sheets 
reveals that they define a classical Hadamard ill-posed initial value problem 
like that for the Laplace equation, so both the computational and theoretical 
issues are extremely subtle. All of this complexity combines with the fact that 
vortex sheets are ubiquitous as approximations to velocity fields in engineering 
applications [11] to make the study of conceivable weak solutions for the 2-D 
Euler equations a fascinating contemporary research topic. One large research 
effort (see [11] for references) restricts the study of vortex sheets to analytic 
initial curves and attempts to use complex analysis to study the first relatively 
faint singularity formation in such vortex sheets. In typical computational and 
practical applications, vortex sheet initial data are usually not defined by real 
analytic curves [46, 38]. The methods and results described here [22, 21, 27, 1, 
61] are completely different and address the global complexity of approximations 
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for vortex sheets for all times with general (non-analytic) vortex sheet initial data 
through ideas naturally involving the weak topology. 

Vortex sheets are regularized [21] by a sequence of globally smooth solutions 
of the 2-D Euler equations, vE(x,t), satisfying the bounds, 

max ( / \vE(x,t)\2dx+ f \œE(x,t)\dx] <CR}T, (2.1) 
0<t<,T \J\X\£R JR2 J 

for any R, T > 0 with œE = curl vE ; a very general mathematical framework 
for these and other important regularizations satisfying (2.1) such as the high 
Reynolds number limit of 2-D Navier-Stokes and computational vortex methods 
is developed in [21]. If vE(x,0) —̂  vo where VQ defines vortex sheet initial data, does 
vE(x, t) converge to a weak solution of the 2-D Euler equations with this vortex 
sheet initial data? Are there new phenomena in the limiting process? There has 
been partial progress on the first question which is described here along with 
the fact that striking new mathematical phenomena do occur. In particular, one 
result in [21] is the existence of a measure-valued solution of 2-D Euler defined 
for all time with a special structure so that there are only concentrations and not 
oscillations (such as in (1.12)) in the limit as c J, 0 with the bounds in (2.1). The 
key fact proved in [21] is that with (2.1) there is a subsequence vB so that vE —̂  v 
in Lfoc and 

rT II 
JO J\x\. 

>E-v\dxdt->0 (2.2) 
J\x\£R 

for any T > 0,R so that in particular vE —̂  v a.e. and only concentrations can 
occur (see (0.7)). The elementary examples for 2-D Euler described in (1.14)— 
(1.16) above satisfy the bounds in (2.1) and illustrate that the phenomena of 
concentration can occur with the natural bounds in (2.1) for vortex sheets. 
An important issue in deciding whether the function v defined in (2.2) is a 
suitable weak solution of 2-D Euler involves various estimates on the size of the 
concentration set [22, 21, 27, 1, 61]. These topics are discussed next. 

2A. Size of the Weak Star and Reduced Defect Measures 
for the Problem of Vortex Sheets 

The problem of existence for vortex sheet initial data with the bounds in (2.1) 
has some of the flavor of a problem involving critical Sobolev exponents. This 
fact is supported by the result proved in [21] that if the approximating sequence 
vE satisfies the IP -bound on the initial vorticity, IICOQIILP :< C for some p > 1, in 
addition to (2.1), then vE converges strongly to v in L2 and v defines a classical 
weak solution for 2-D Euler. Also recall that the bounds already presented in 
(1.3) in discussing concentration compactness resemble those in (2.1) except that 
in (2.1) only div vE = 0 and curl vE are bounded in L1 rather than the complete 
gradient. The elementary example of concentration with positive vorticity in 
(1.14A) and (1.16) directly illustrates that the bounds in (2.1) for exact solutions 
of 2-D Euler are not sufficient to guarantee the stronger bound in (1.3A). Thus, 
one suspects that sequences of smooth solutions of 2-D Euler satisfying (2.1) will 
not have a weak * defect measure with the simple structure from (1.3B) involving 
a countable number of Dirac masses. C. Greengard and Thomann [27] have 
constructed a beautiful family of explicit examples which illustrate this point in 
dramatic fashion. 
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Theorem [27]. Consider an arbitrary positive finite Radon measure o on R2, then 
there is a sequence of exact steady solutions of the 2-D Euler equations, v8 satisfying 
the bounds in (2.1) with vE —* 0 in L2 so that the weak*defect measure associated 
with this sequence is a. 

Actually, the example in [27] produces uniform Lebesque measure for the unit 
square as weak* defect but it is an elementary exercise for the reader involving 
simple functions to deduce the more general result in the theorem from the 
construction in [27] ; the construction superimposes "clouds of vortices" like the 
ones in (1.14B) but utilizes two scales in such elementary solutions in a clever 
fashion. In agreement with some of the trends of numerical solutions when the 
vorticity changes sign [46], the theorem indicates that almost arbitrary complexity 
can occur in the weak topology in concentrations when the bound in (2.1) is 
satisfied. 

One of the main results in [22] is that despite this almost arbitrary complexity 
as regards the weak* defect measure for sequences vB with the bounds in (2.1), the 
reduced defect measure, 6, defined in (1.4) nevertheless concentrates on small sets. 
The following operational definition is useful and implicit in the constructions in 
[22]. 

Definition. The reduced defect measure, 6, concentrates on a set with Hausdorff 
dimension p provided that there is a constant C depending only on <5 and closed 
sets Fr so that 6(Fr) = 0 with the complement of Fr, F$, satisfying Hf+Ò(F$) < C 
for any <5 > 0 and r <, ro. Here Hf denotes Hausdorff premeasure of dimensional 
d and level r. 

In particular, Z/,?+2<5 (F??) vanishes as r [ 0 for any ö > 0. Recall from (1.5) 
that 6 satisfies 6(F) < a(F) for closed sets; thus, it is possible that even though er 
has very large support and charges a closed set Fr, 6 satisfies 6(Fr) = 0. In fact, 
the following is true: 

Theorem [22]. A) Assume that v8 is a sequence of steady time-independent ve
locity fields with div vB = 0 and satisfying the bounds in (2.1), then the reduced 
defect measure associated with a subsequence concentrates on a set with Hausdorff 
dimension zero. 

B) Assume that v8 is a time-dependent approximate solution sequence for 2-D 
Euler (see [21, 22]) satisfying the bounds in (2.1), then the reduced defect measure 
concentrates on a set with space-time cylindrical Hausdorff dimension one. 

The examples in (1.14) show that the theorem is sharp in general. Here are 
some brief comments on the proof of the theorem. There is a stream function \pE 

so that A\pE = coB and vE = V1-^)8 = (—1/^,1/;^) and thus 

-L vB(x,t)= / K(x-y)coE(y,t)dy, (2.3) 
JR2 

with kernel K(x) = (2n\x\)~2(—X2,xi). There are two main steps in the proof 
from [22] for time independent velocity fields. In the first step, (see Theorem 4.1 
in [22], the radial distribution function of the vorticity at an arbitrary point is 
introduced, 



Analysis and Applied Mathematics 187 

coE(B(s,x))= [ \mE(y)\dy, (2.4) 
JB(S,X) 

where B(s,x) denotes the open ball of radius s centered at x. The key point is 
to prove a uniform decay estimate for the vorticity distribution function for an 
appropriate subsequence, i.e. for any S > 0 there exists a closed set FR SO that 

FR C {X\OJE(B(S,X)) <KSô, 0 < s < 1}, (2.5) 

and Hjf(Fx) < C. Here the constants K and C depend on ö. For a fixed measure 
with finite total mass, the conclusion in (2.5) follows from standard covering 
arguments (see Stein [56]); however, it is important here that the set FR in (2,5) is 
uniform for the entire sequence so a different proof is needed - Riesz potentials 
and a refined Chebyshev inequality for Hausforff premeasure are utilized to 
achieve this. In the second step (see thm 6.1 in [22], the uniform decay estimate 
in (2.5) is used with the convolution representation in (2.3) yielding the improved 
velocity estimate 

j \vE\p'<tC(R) f o r s o m e p / > 2 , ' (2.6) 
JFR 

The facts in (2.6) and (2.2) are then combined with simple interpolation to 
establish that 6(FR) = 0 and this completes the proof of the theorem for steady 
velocity fields. For the time-dependent case of the theorem, these estimates are 
combined with uniform Holder estimates in time 

x 1/2 

vE(x, h) - vE(x, t2)\
2) < CqA\tx - fe|« (2.7) 

for 1 < q < 2, 0 < a < 1 which are valid for approximate solution sequences for 
2-D Euler. One subtlety is that the estimates in (2.7) are also critical in the sense 
that Cg>a / o o a s # / 2 o r a / l . Recently, L.C. Evans [25] has found another 
proof of part A) of the theorem for steady velocity fields by utilizing capacity 
theory. 

2B. Concentration-Cancellation 

The terminology "concentration-cancellation" was introduced in [21, 22] and 
describes the phenomena that even though v8 ® v8 does not converge weakly 
to v ® v due to the development of concentrations while \\vE — v\\Li —• 0, the 
velocity field v nevertheless defines a weak solution for 2-D Euler - in simple 
exact solutions such as those in (1.14), the concentrations in (1.15) actually cancel 
against test functions in the weak form in the limit (see [21]). At the present time, 
it is an important open problem to determine whether concentration-cancellation 
always occurs in the limit for solution sequences satisfying the bounds in (2.1) 
which are appropriate for vortex sheet initial data. Nevertheless, there are some 
interesting partial results [22, 27, 1, 61]. The first results are given in the following 

Theorem [22]. A) For steady solution sequences for 2-D Euler satisfying the bounds 
in (2.1), concentration-cancellation always occurs. 

B) For time-dependent solution sequences for 2-D Euler satisfying the bounds 
in (2.1) assume additionally that the reduced defect measure, 6, concentrates on a 
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set with Hausdorff dimension strictly less than one, then concentration-cancellation 
occurs. 

Lack of space prevents a detailed discussion of the proof of the theorem 
but a few comments are appropriate. The proofs crucially exploit the special 
nonlinear covariant structure in the weak form of the Euler equations which is a 
direct consequence of the rotational invariance of solutions of (0.1), i.e. if vE(x, t) 
satisfies 2-D Euler, so does tav8(ax,t) for any rotation matrix a. The proofs also 
crucially use the fact that the reduced defect measure, 6, concentrates on a small 
set (see the theorem in the previous subsection) to build a "shielding sequence" 
of test functions which shields the limit process from the concentration defects 
(see Section 3 of [22]). A simpler proof of part B) of the theorem was presented 
in [27]. Recently, in interesting work, Alinhac [1] and Zheng [61] have proved 
that concentration-cancellation occurs provided it is assumed that the weak star 
defect measure (not the reduced defect measure!) has support which is a set 
of roughly one-dimensional Hausdorff measure. These proofs use the "shielding 
sequence" strategy from [22] in an essential fashion. All of these partial results 
still leave unanswered the following basic issue: 

Problem. Does concentration-cancellation always occur for time-dependent so
lution sequences with the bound in (2.1) when 6 concentrates on a set with 
space-time cylindrical Hausdorff measure exactly one? 

There is probably an affirmative answer to this question when the vorticity 
has a distinguished sign, i.e. coB(x,t) > 0. It should be mentioned here that 
for smooth solutions of 2-D Euler a non-negative vorticity at later times is 
automatically guaranteed by a non-negative initial vorticity, COQ(X) because the 
vorticity is transported along fluid particle trajectories. In particular, Theorem 
3.1 from [21] guarantees that for coB(x,t) > 0 the solution sequence vE converges 
strongly to v in L2 and v defines a weak solution of 2-D Euler provided that the 
vorticity maximal function using (2.4) decays at the extremely slow rate, 

maxcoE(B(r,x),t) < C (log ( - j J , r < 1 (2.8) 

for some ß > 0 and any T > 0. On the other hand, it is not difficult to prove [38] 
the following apriori decay estimate for this maximal function assuming positive 
vorticity distributions, coB(x, t) > 0 with bounded support: 

max coE(B(r,x),t) < C (log (-jj , r < 1. (2.9) 

Thus, for positive signed vorticity, (2.8) and (2.9) indicate that there is an 
extremely small discrepancy between conditions guaranteeing strong conver
gence to a weak solution and the general case. Of course, the elementary 
examples in (1.14A) can be used to show that concentration does occur 
with positive vorticity distributions and also that the estimate in (2.9) is 
sharp so that some assessment of concentration-cancellation is still needed. 
On the other hand, the elementary examples in (1.14B) illustrate that there 
is no apriori decay rate for the vorticity maximal function when the vorticity 
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changes sign. The interested reader can consult [46] for a report on the strik
ing computational evidence indicating vastly increased complexity in numerical 
solutions when the vorticity changes sign. 
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Dynamical and Ergodic Properties 
of Subgroup Actions on Homogeneous Spaces 
with Applications to Number Theory 
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ul. Ermolovoi 19, Moscow 101447, USSR 

A subgroup action on a homogeneous space is a classical object of study in ergodic 
theory. Some old and new results about ergodic properties of this section will be 
stated. We shall also formulate results on orbit closures and give applications of 
these results to number theory and, in particular, to the study of sets of values of 
indefinite quadratic forms at integral points. In the last section, formulations of 
some new results about actions on general manifolds and measure spaces will be 
given. 

1. Ergodicity Theorems 

Let G be a Lie group, F a subgroup of G and D a closed subgroup of G. Let us 
consider the natural action of F by left translations on the homogeneous space G/D. 
This action is called ergodic if, for every F-invariant Borei subset A of G/D, either 
ji(A) = 0 or n((G/D) — A) = 0 where \i is a G-quasiinvariant measure on G/D. One 
can easily prove the following two assertions. 

Proposition 1. The action of F on G/D is ergodic if and only if the closure of F acts 
ergodically on G/D. 

Proposition 2 (Duality Principle). Let us assume that F is closed. Then the action of 
F on G/D is ergodic if and only if the action of D on G/F is ergodic. 

We say that the homogeneous space G/D has finite volume if there exists a finite 
G-invariant measure on G/D. If G/D has finite volume and D is discrete then D is 
called a lattice. 

1.1 Mautner Property 

If G/D carries a G-invariant measure \i then one can define a continuous unitary repre
sentation Q of the group G on the Hilbert space L2(G/D, p) of square /i-integrable 
functions on G/D by the formula (g(g)f)(x) = f(g~xx) where / G L2(G/D, jx),g G G 
and x G G/D. It turns out that many ergodic properties of the action of F on G/D 
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can be reformulated in terms of the representation Q. This observation gives an 
approach to the study of ergodic properties based on representation theory; this 
approach was first used by I.M. Gelfand and S.V. Fomin (see [28]). 

One can easily see that, in the case where G/D has finite volume, the action of 
F on G/D is ergodic if and only if each o(F)-invariant function / G L2(G/D, p) is 
constant or, in other words, iff is g(G)-invariant. Therefore Lemma 1 stated below 
is true. Before the formulation of this lemma we give 

Definition 1. We say that a subgroup H of G has Mautner property with respect to 
F if, for any continuous unitary representation cp of G on a Hilbert space W and 
any w e W such that cp(F)w = w, we have that cp(H)w = w. 

Lemma 1. Let the homogeneous space G/D have finite volume, and let H be a subgroup 
of G. Let us assume that H has Mautner property with respect to F and that the closure 
of the subgroup generated by F and H acts ergodically on G/D. Then the action of F 
on G/D is ergodic. 

Mautner property was first used by F.J. Mautner to prove the ergodicity of 
geodesic flows on symmetric Riemannian spaces (see [43]). CC. Moore proved 
Theorem 1 formulated below about Mautner property of Ad-compact normal 
subgroups. Let us give at first the definition of these subgroups. 

Definition 2. The Ad-compact normal subgroup for F is the smallest subgroup in the 
class of all connected normal subgroups H of G satisfying the following condition 

(A) for each g from the closure of F, the linear transformation Ad(n(g)) is diagonal-
izable and its eigenvalues have absolute value 1 where Ad is the adjoint 
representation of G/H and n : G -> G/H is the canonical epimorphism. 

Remark. It is not difficult to prove that the condition (A) is equivalent to the 
condition 

(A') the subgroup Ad(7c(F)) is relatively compact in the group GL(©/§) of linear 
transformations of the Lie algebra ©/$ of the group G/H. 

Let us denote the Ad-compact normal subgroup for F by HF. If G is connected 
and semisimple then HF is the product of all almost simple factors Gt of G such that 
the restriction of Ad(F) to the Lie algebra ©f of G( is not relatively compact in 
GL(<5f). 

Theorem 1 (see [45]). The subgroup HF has Mautner property with respect to F. 

Remark 1. It is not difficult to show that the closure of the subgroup generated 
by F and HF is the maximal subgroup of G having Mautner property with respect 
t o F . 
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Remark 2. An analogue of Theorem 1 for semisimple groups over locally compact 
fields of characteristic zero was proved by S.G. Dani in [10]. 

Roughly speaking, the proof of Theorem 1 is based on the following simple 

Lemma 2. Let G be a topological group, F a subgroup of G, cp a continuous unitary 
representation of G on a Hilbert space W, and let g0EG and we W. Assume that, for 
any neighbourhood V a G of the identity e e G, g0 is contained in he closure of the 
subset FVF. Then cp(g0)w — w whenever cp(F)w = w. 

To prove Lemma 2, it is enough to consider the function f(g) = (cp(g)w, w), 
g G G, and remark that (a) since cp is unitary and cp(F)w = w, the function / is 
constant on a double coset modulo F; (b) the function / is continuous; (c) f(e) = 
||w||2 and f(g) = \\w\\2 if and only if cp(g)w = w. A special case of Lemma 2 is the 
following 

Lemma 3 (Generalized Mautner Lemma). Let G be a topological group and let x, 
y e G be the elements such that the sequence {xnyx~n} converges to e as n -• +oo. / / 
cp is a continuous unitary representation of the group G on a Hilbert space W, w G W 
and (p(x)w — w then cp(y)w = w. 

Example 1. Let G = SL2(1R) be the group of real unimodular 2 x 2 matrices and let 
fa 0 
^0 Gf 

by g, and let 

' r\ ty 

9 = ( n -i)e SL2(IR) where \a\ ^ 1. Let F denote the cyclic subgroup generated 

" = • 1 0 1 
f e K l and V~ = {[ ° tGlR 

One can easily check that if y G U u U~ then one of the sequences {g"yg~n} and 
{g~"ygn} converges to e a s / w +oo. In view of Lemma 3, it implies that both U 
and U~ have Mautner property with respect to F. But these subgroups generate G. 
Hence G has Mautner property with respect to F. 

Example 2. Let G, g, a, F and U denote the same as in Example 1. If c ^ 0 we have 
that 

1 c-\\ - a)\ fa 0 \ / l 0^(1 - a'1)^ _ (\ 0 

0 1 )\c fl~7V° 1 / Ve ! 

and hence I _. G UI . 17. It implies that, for any neighbourhood V c= G 
V a J V V 

of e, g is contained in the closure of the subset UVU. Now applying Lemma 2, we 
get that F has Mautner property with respect to U. On the other hand according 
to Example 1, G has Mautner property with respect to F. Hence G has Mautner 
property with respect to XJ. 
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1.2 Criteria of Ergodicity for Semisimple G 

Theorem 1 and Lemma 1 imply 

Theorem 2 (see [45]). Let G be a Lie group, F a subgroup of G, and D a closed subgroup 
of G such that G/D has finite volume. Let HF denote the Ad-compact normal subgroup 
for F. Then the action of F on G/D is ergodic if and only if the closure of the subgroup 
FHF acts ergodically on G/D. 

Using Theorem 2 and Propositions 1 and 2, it is not difficult to prove 

Theorem 3 (see [44], [45] and [46]). Let G, F, D and HF be the same as in Theorem 2. 

(a) / / the subgroup DHF is dense in G then the action of F on G/D is ergodic. 
(b) Let us assume that G is semisimple and that the action of F on G/D is ergodic. 

Then DHF is dense in G. 

Definition 2. A lattice f c G i n a connected semisimple Lie group without compact 
factors is reducible if G admits connected normal subgroups H, H' such that 
HH' = G,HnH'is discrete and F/(Fn H)(Tn H') is finite. A lattice is irreducible 
if it is not reducible. 

It is known (see [54, Corollary 5.21]) that if a lattice Fez G in a connected 
semisimple Lie group without compact factors is irreducible then, for any nontrivial 
connected normal subgroup H of G, the subgroup TH is dense in G. Therefore 
Theorem 3 implies 

Theorem 4 (see [44] or [80, Theorem 2.2.6]). Let G be a connected semisimple Lie 
group without compact factors, F an irreducible lattice in G, and F a G a subgroup 
which is not relatively compact in G. Then the action of F on G/T is ergodic. 

Let us note that Theorem 4 is used in an essential way in the proofs of the strong 
rigidity theorem and the superrigidity theorem (see [40] and [47]). 

Example 3. Let G, g, F and U denote the same as in Example 1 and let F be a lattice 
in G. Then in view of Theorem 4, both F and U act ergodically on G/F. This assertion 
follows also from Lemma 1 and Examples 1 and 2. Let us note that the ergodicity of 
actions of F and U on G/T implies (in fact, is equivalent to) the classical results of 
E. Hopf and G.A. Hedlund on ergodicity of geodesic and horocycle flows on a 
surface of constant negative curvature and finite area (see [29]). 

1.3 Criteria of Ergodicity for Nilpotent and Solvable G 

For the case of nilpotent G, there is a good ergodicity criterion due to L. Green. 
Before we formulate this criterion, let us recall that (a) G/D is compact if and only 
if G/D has finite volume; (b) whenever G/D is compact, the subgroup D • [G, G] is 
closed and, consequently, G/D • [G, G] is a torus where [G, G] denotes the com
mutator subgroup of G (see [54, Chap. II]). 
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Theorem 5 (see [1, Chap. V]). Let G be a connected nilpotent Lie group, F a subgroup 
of G, and D a closed subgroup of G such that G/D is compact. The action of F on G/D 
is ergodic if and only if n(F) is dense in the torus G/D • [G, G] where n:G-+ 
G/D - [G, G] denotes the canonical epimorphism. 

Remark 1. In [1], Theorem 5 is formulated only in the case of one-parameter F. But 
the proof given there is applicable in general case. 

Remark 2. It is possible to deduce Theorem 5 from Theorem 3(a). 

If G is solvable but not nilpotent then the ergodicity criterion is rather compli
cated (see Appendix 1 to the Russian translation of [1], [5] or [67]). This criterion 
is based on the reduction to the case of nilpotent G. The reduction consists of two 
steps: (1) the reduction to the case of solvable groups of type (R) (by definition, a 
group G is of type (R) if, for each g G G, all eigenvalues of Ad g have absolute value 
1); (2) the reduction from the case of solvable groups of type (R) to the case of 
nilpotent groups. The first reduction is based on Mautner lemma (Lemma 3), and 
the second one is based on Malcev's construction of semisimple splitting. 

1.4 Ergodicity Criterion for Arbitrary G 

Let G be a connected Lie group and D a closed subgroup of G. By a quotient of 
G/D we mean a homogeneous space G/B where B <= G is a closed subgroup which 
contains D. IfB contains a closed normal subgroup L of G such that the factor group 
G/L is Euclidean (resp. semisimple) then the quotient G/B is called Euclidean (resp. 
semisimple); a connected solvable Lie group is called Euclidean if it is locally 
isomorphic to an extension of a vector group by a compact commutative Lie group. 
It is clear that there exists the maximal Euclidean (resp. semisimple) quotient G/B 
of G/D, i.e. if G/B' is another Euclidean (resp. semisimple) quotient of G/D then 
B' 3 B or, in other words, G/B1 is a quotient of G/B. Let us note that if G/D has 
finite volume then arbitrary (resp. arbitrary Euclidean) quotient of G/D has finite 
volume (resp. is compact). 

Theorem 6 (see [5] and [12]). Let G be a connected Lie group, F cz G a subgroup 
which is either one-parameter or cyclic, and D a G a closed subgroup such that G/D 
has finite volume. The action of F on G/D is ergodic if and only if the actions of F 
on the maximal Euclidean and semisimple quotients of G/D are both ergodic. 

Remark. It is assumed in [5] and [12] that G/D is so called admissable homogeneous 
space. But according to [66], this condition is satisfied whenever G/D has finite 
volume. 

1.5 Ergodic Decomposition of Nonergodic Flows 

A.N. Starkov obtained a number of results on the ergodic decomposition of non
ergodic flows (i.e. nonergodic actions of one-parameter subgroups). Let us formulate 
some of these results in the form of the following 
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Theorem 7 (see [65], [67] and [69]). Let G be a connected Lie group, F = {ft} a 
one-parameter subgroup of G, and D a closed subgroup of G such that G/D has finite 
volume. Then there exists two partitions E and E of G into closed F-invariant 
submanifolds E(x) and E(x) with the following properties 

(i) x G E(x) c E(x) for each x e G/D; 
(ii) E(x) = E(x) for almost all x e G/D (i.e. for all x e (G/D) — A where p(A) = 0 

and p is a G-invariant measure on G/D); 
(iii) for each x e G/D, there exist smooth finite F-invariant measures px on E(x) 

and flx on E(x); 
(iv) for each x e G/D, the action of Fon E(x) is ergodic (relative to the measure px); 
(v) E(x) = FHFx and E(x) = FIFx for each x e G/D where A denotes the closure 

of a subset A, HF denotes the Ad-compact normal subgroup for F, and IF c HF is a 
normal subgroup of G. (The subgroup IF is called the Dani subgroup and is charac
terized as the smallest connected normal subgroup of G such that, for each g e F, the 
operator Ad g have on ®/3 only eigenvalues with absolute value 1 and this operator 
is diagonalizable on ®/9t + 3 where © (resp. 3) is the Lie algebra of G (resp. IF) and 
9t is the radical of ©). 

(vi) for each x G G/D, there exist a connected Lie group Gx, a one-parameter 
subgroup Fx = {fXtt} <=• Gx, a closed subgroup Dx c Gx, and a finite covering % : 
Gx/Dx -> E(x) such that Gx/Dx has finite volume, the action of Fx on Gx/Dx is ergodic, 
and n(fXtty) = ft%(y) for each y e Gx/Dx. 

2. Spectrum and Mixing 

We refer to [9] and [63] about the notions of pure point spectrum, Lebesgue 
spectrum, X-flow, Bernoulli shift etc. and about results from ergodic theory. 

2.1 Spectrum of Flows on Homogeneous Spaces 

Let G be a connected Lie group, F = {ft} a one-parameter subgroup of G, and D 
a closed subgroup of G such that G/D has finite volume. Let p denote the normalized 
(p(G/D) = 1) Borei G-invariant measure on G/D. As in Sect. 1, let us define the 
unitary representation Q on L2(G/D, p). For any quotient E = G/B of G/D, let 

L2(E) = {feL2(G/D, p)\f(QlD) = f(g2D) \fQl G g2B}. 

It is clear that L2(E) is ^(F)-invariant. 

Theorem 8 (see [5]). Let E denote the maximal Euclidean quotient of M = G/D. 
Suppose that the action of F on M is ergodic. Then the restriction of Q(F) to L2(E) 
has pure point spectrum (the set of eigenvalues being a finitely generated subgroup of 
the real line of rank equal to the dimension of E). If L2(E) ^ L2(M) i.e. if M is not 
Euclidean, the restriction of Q(F) to the orthogonal complement L2(M) © L2(E) has 
Lebesgue spectrum of infinite multiplicity. 

Remark 1. It follows from Theorems 7 and 8 that, also in the case where the action 
of F on G/D is not ergodic, the space L2(G/D, p) can be decomposed into the direct 
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sum of two ^(F)-invariant subspaces Hx and H2 such that the restriction of Q(F) to 
Hx has pure point spectrum and the restriction of Q(F) to H2 has Lebesgue spectrum 
of infinite multiplicity. 

Remark 2. The proof of Theorem 8 is based on some results about unitary represen
tations of semi-direct products and about the spectrum of K-ilows. 

Remark 3. Theorem 8 generalizes some earlier results about the spectrum of flows 
on homogeneous spaces (see [1, 10, 12, 28, 43, 44, 45, 53, 61, 70, 71]). 

2.2 Mixing Properties 

Theorem 8 implies the following 

Theorem 9 (see [5]). Suppose that the action of F on G/D is ergodic and that there 
are no nontrivial Euclidean quotients of G/D. Then the section of F = {ft} on G/D is 
mixing, i.e. 

Wmp(ftAnB) = p(A)p(B) 
f-»oo 

for any measurable susets A, B c G/D. 

Analogues of Theorems 8 and 9 for cyclic F are proved in [12]. In [10, 11] and 
[12], S.G. Dani obtained criteria when the translation Tg : G/D -+ G/D, Tg(x) = gx, 
x G G/D, is a K-automorphism, when Tg is a Bernoulli shift, and when Tg has positive 
entropy. In particular, he proved that Tg has positive entropy if and only if \X\ ^ 1 
for at least one eigenvalue X of Ad g (the same is true for algebraic groups over 
nonarchimedean locally compact fields). 

B. Marcus proved that, in many cases, the action of F on G/D is mixing of all 
degrees. In particular, he proved 

Theorem 10 (see [34]). Suppose that the group G is semisimple and has no compact 
factors and that the action of F = {ft} on G/D is ergodic. Then this action is mixing 
of all degrees, i.e. 

lim p(A0nfuA1nfu+t2A2n"-nfu+l2+....+trAr) = p(A0)-...-p(Ar) 
f l f . , . , f - > + oo 

for any integer r. > 1 and any measurable subsets A0, Al9..., Ara G/D. 

Combining Theorem 4 and Theorem 10, we get 

Theorem 11. Let G be a connected semisimple Lie group without compact factors, F 
an irreducible lattice in G, and F aGa one-parameter subgroup which is not relatively 
compact in G. Then the action of F on G/T is mixing of all degrees. 

A special case of Theorem 11 is 
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Corollary (see [34]). The horocycle flow on a surface of constant negative curvature 
and finite area is mixing of all degrees. 

This corollary proves the conjecture which was posed by Ya.G. Sinai on the 
International congress of mathematicians in Stockholm (1962). In [34], B. Marcus 
stated the conjecture that "mixing => mixing of all degrees" for the action of F on 
G/D. 

3. Invariant Measures for Actions of Unipotent Subgroups 

Let G be a Lie group. An element u of G will be called unipotent if the transformation 
Ad u of the Lie algebra of G is unipotent, i.e. if all eigenvalues of Ad u are equal to 
1. A subgroup U of G will be called unipotent if it consists of unipotent elements. 

3.1 Description of Finite Ergodic Measures 

Let F be a subgroup of G and D a closed subgroup of G. A F-invariant Borei measure 
p on G/D is called F-ergodic if the action of F on G/D is ergodic relative to p, i.e., 
if for every F-invariant Borei subset A of G/D, either p(A) = 0 or p((G/D) — ,4) = 0. 
Let us note that each F-invariant Borei measure on G/D can be decomposed into 
a (continuous) sum of F-ergodic measures. It seems impossible to describe in the 
general case all F-invariant Borei probability measures on G/D. But in view of the 
following recent fundamental theorem of M. Ratner, this is possible in the case 
where F is unipotent and D is discrete. 

Theorem 12 (see [58, 59] and [60]). Let G be a Lie group, F a discrete subgroup of 
G (not necessarily a lattice) and U a unipotent subgroup of G. Then for any U-invariant 
U-ergodic Borei probability measure a on G/T, there exist x G G/F and a closed 
subgroup H a G containing U such that the set Hx is closed in G/T and G is a finite 
H-invariant measure the support of which is Hx. (In other words, Hx is a lattice in H 
and the measure a is the image of a H-invariant measure on H/Hx under the canonical 
map H/Hx -> Hx where Hx = {h G H\hx = x} is the stabilizer of x in H.) 

Roughly speaking, the difference between the case of unipotent subgroups and 
the general case is explained by the fact that, for an action of unipotent subgroups, 
the divergence of trajectories is "polynomial" in contrast to an action of general F 
where the divergence of trajectories is usually exponential. 

Theorem 12 proves a conjecture which M. Ratner suggests to call Raghunathan's 
measure conjecture. It was first posed in [13]. The conjecture was suggested by the 
results of H. Furstenberg and W. Parry for nilpotent G and of S.G. Dani for the 
case where G is reductive and U is horosprerical (see [13], if G/F is compact see 
also [72]; a subgroup U -> G is called horospherical if there exists g G G such that 

U = {UG G\gjug~j -> e as 7 -> +oo). 

Generalizing a result of H. Furstenberg from [27], S.G. Dani proved the conjecture 
for the case where G = SL2(R) (see [14]). 
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Theorem 12 provides many important ergodic theoretic consequences. In partic
ular, it implies the joinings theorem and the factor theorem (see [59]), The joinings 
theorem describes invariant ergodic measures for a product of two actions of cyclic 
unipotent groups, and the factor theorem describes [/-invariant measurable parti
tions of G/r where U is a cyclic unipotent subgroup which acts ergodically on G/T. 
These theorems generalize analogous results for G = SL2(IR) obtained by M, Ratner 
(see [56] and [57]). Let us formulate a corollary of the joinings theorem. 

Theorem 13 (The Rigidity Theorem; see [59]). Let Gi be a connected semisimple Lie 
group, ri a lattice in Gf containing no non-trivial normal subgroups of Gi and w,- a 
unipotent element of Gf, / = 1,2. Let Vi denote the cyclic subgroup generated by wf. 
Suppose that the action of U1 on G1/r1 is ergodic and there is a measure preserving 
map \j/ : G1/r1 -> G2/F2 such that \JJ(XUI) *= i//(x)u2 for p—almost every x G Gx/ru 

where px denotes a G-invariant measure on Gl/rl. Then one can find h G GX and a 
surjective homomorphism a : Gx -> G2 such that a(Fx) c hr2h~x and \l/(grx) — %(g)hr2 

for p-almost every gTx G G1/Tl. Also a is a local isomorphism whenever \ff is finite 
to one or Gx is simple and it is an isomorphism whenever \JJ is one-to-one or Gx is simple 
with trivial center. 

Theorem 13 generalizes Ratner's rigidity theorem for Gt = SL2(1R) (see [55]). 
This theorem had been previously obtained by D. Witte (see [78] and [79]) with 
the help of methods from [55] and [57]. 

3.2 Finiteness of Ergodic Measures 

Theorem 12 gives the description of finite ergodic measures for actions of unipotent 
groups. Now let us formulate a theorem about the finiteness of ergodic measures 
for these actions. 

Theorem 14 (see [15]). Let G be a connected Lie group, F a lattice in G, and U a 
unipotent subgroup of G. Let v be a locally finite U-invariant measure on G/T. Then 
there exist Borei U-invariant subsets Xf, i G N, such that v(Xf) < oo for all i and 
G/r~ \Jf=1Xf. In particular every locally finite XJ-ergodic U-invariant measure is 
finite. 

For the case where G = SLH(IR) and F = SL„(Z), Theorem 14 is essentially 
equivalent to the following assertion: for any lattice A in Rn and any unipotent 
one-parameter subgroup {ut} of SL„(R), one can find ô > 0 such that the set 

Q(A, S) = {ti> 0| ||u,z|| > Ö for all z G A - {0}} 

has positive density. A strengthened version of this assertion is proved in [17] and, 
in a weak form, it is proved in [35] (namely it is proved in [35] that Q(A, S) is 
unbounded for some ö = ö(A) > 0). 

Using Theorem 1, one can deduce from Theorem 14 
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Theorem 15. Let G be a connected Lie group, F a lattice in G, and H a connected 
subgroup of G such that the quotient of H by its unipotent radical is semisimple (by 
the unipotent radical of H we mean the maximal connected normal unipotent subgroup 
of H). Let v be a locally finite H-invariant measure on G/T. Then there exist Borei 
H-invariant subsets X{, i G IN, such that v(Xt) < oo for all i and G/T = {J?=1 Xt. In 
particular every locally finite H-ergodic H-invariant measure is finite. 

One can see that Theorem 15 differs from Theorem 14 only in the replacement 
of a unipotent subgroup U by a connected subgroup H such that the quotient of H 
by its unipotent radical is semisimple. 

The following is a special case of Theorem 15. 

Theorem 16. Let G, rand H be the same as in Theorem 15, and let x G G/T. Suppose 
that the orbit Hx is closed in G/T. Then Hr\Gx is .a lattice in G where Gx = 
{g G G\gx = x} is the stabilizer of x. 

Applying Theorem 16 in the case where G = SL„(1R), F = SL„(Z), x = eT, and 
H c= G is the set of R-rational points in a (Q-subgroup of G, we obtain the following 
theorem of Borei and Harish-Chandra. 

Theorem 17. Let H be a connected d^-group. Suppose that the quotient of H by its 
unipotent radical is semisimple. Then HÇE) is a lattice in H(1R). 

Remark. In the most general form of Borel-Harish-Chandra theorem, the condition 
"the quotient of H by its unipotent radical is semisimple" is replaced by a weaker 
condition "Ff has no non-trivial Q-rational characters". 

4. Orbit Closures 

4.1 Raghunathan's Conjecture 

Roughly speaking, ergodicity theorems of Sect. 1 claim that "almost all" orbits of 
subgroup actions on a homogeneous space are dense. But these theorems say 
nothing about the behaviour of "individual" orbits. M.S. Raghunathan stated a 
conecture about closures of orbits of unipotent groups and also noted the connec
tion of his conjecture with Oppenheim-Davenport conjecture. 

Conjecture 1 (Raghunathan's Conjecture). Let G be a connected Lie group, Ta lattice 
in G and U a unipotent subgroup of G. Then for any x G G/T, there exists a closed 
subgroup L = L(x) c G containing U such that the closure of the orbit Ux coincides 
with Lx. 

Conjecture 1 can be generalized in the following way: 

Conjecture 2 (Generalized Raghunathan's Conjecture). Let G be a connected Lie 
group, fa lattice in G and H a subgroup óf G. Suppose that H is generated by unipotent 
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elements. Then for any x G G/T there exists a closed subgroup L = L(x) <= G contain
ing H such that the closure of the orbit Hx coincides with Lx. 

Raghunathan's conjecture has been proved in the following cases: (a) G is 
reductive and U is horospherical (see [18]); (b) G = SL3(R) and U = {u(t)} is a 
one-parameter unipotent subgroup of G such that u(t) — J has rank 2 for all f ^ 0 
where J is the identity matrix (see [21]); (c) G is solvable (see [68] and [69]). 

Let G, T and U be the same as in Conjecture 1, A closed [/-invariant subset 
7 c G/ris called JJ-minimal if it does not contain any proper closed [/-invariant 
subset or, equivalently, if Uy is dense in Y for any y G Y, It is proved in [38] that 
any closed [/-invariant [/-minimal subset of G/T is compact. On the other hand 
since the unipotent subgroup U is nilpotent and, consequently, amenable, we have 
that, for any compact [/-invaraint subset Y c G/T, there exists a [/-invariant Borei 
probability measure on Y. In view of these observations, Theorem 12 implies that 
any closed [/-invariant [/-minimal subset of G/T is an orbit of a subgroup L <= G. 
This proves Conjecture 1 in the case where the closure of Ux is [/-minimal, 

Remark 1. It is not possible to assume in Conjecture 2 that H is an arbitrary 
subgroup of G. For,example, if 

X G R, X ^ 0 

a, b G R, a ^ 0 >. Then for any point x G G/T, the orbit Px 

G = SL2(R), r=SL2(Z), D = {(1 A°i 

then there exists x G G/F such that the closure of Dx is not a manifold. On the other 
hand in Conjecture 2, the condition "H is generated by unipotent elements" is not 
the most general of all possible conditions. Let G = SL2(R), let F be a lattice in G, 

andletp = {(o A 
is dense in G/T. Also it seems plausible that if G is a semisimple Lie group without 
compact factors, D c G is a maximal R-split torus in G, F c= G is an irreducible 
lattice, x G G/T, Dx is relatively compact in G/F and R-rank of G is greater than 1, 
then the closure of Dx is an orbit of a subgroup L d G. 

Remark 2. Let L <= G be a closed subgroup, x G G/F and Gx = {g G G|#X = x}. Then 
the orbit Lx is closed in G/F if and only if the canonical map L/L n Gx -+ G/F is 
proper. Using this observation and Theorem 15, it is not difficult to prove that, in 
Conjectures 1 and 2, Lx admits a finite L-invariant measure or, equivalently, LnGx 

is a lattice in L, 

Remark 3. Using Remark 2 and Borel's density theorem (see [3]), it is not difficult 
to prove that if G = SLM(R), F = SL„(Z) and x = gTG G/F then, in Conjectures 1 
and 2, the subgroup g~lL(x)g is algebraic and defined over Q (more precisely, 
g~xL(x)g is commensurable with the set of R-rational points of a Q-subgroup of 
si*). 

Remark 4. It seems that Conjecture 2 should follows from Conjecture 1. This is so if 
Fis an arithmetic subgroup of G. In that case as it was noted by M.S. Raghunathan, 
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the mentioned reduction follows from Remark 3 and the countability of the set of 
Q-subgroups. 

Let us say that an element g of a. Lie group is quasiunipotent if all eigenvalues 
of the transformation Ad g have absolute value 1. If Conjecture 2 is proved then it 
will be possible to prove the following conjecture; for one-parameter F, this conjec
ture was stated by A.N. Starkov in [69]. 

(*) Let G be a connected Lie group, F a subgroup of G, and D a closed subgroup 
of G such that G/D has finite volume. Suppose that F is generated by quasiunipotent 
elements. Then for any x G G/D, the closure of the orbit Fx is a manifold. 

4.2 Closures of Orbits of Non-Quasiunipotent One-Parameter Subgroups 

It is not difficult to prove (see for example [68]), that whenever D is a lattice in G, 
F is one-parameter and F does not consist of quasiunipotent elements, there exists 
x G G/D such the closure of Fx is not a manifold. 

Conjecture (A) stated below has been proved by S.G. Dani in the following cases: 
(i) G = SL„(R)andg t = diag(e - f , . . . , e~\ eXt,..., eXt) whereXis such that the deter
minant is 1 (see [16] where some results of W.M. Schmidt on badly approximable 
systems of linear forms are used); (ii) G is a connected semisimple Lie group of 
R-rank 1 (see [19]). 

Conjecture (A). Let G be a Lie group and Ta lattice in G. Let {gt}bea one-parameter 
subgroup of G such that gx is not quasiunipotent. Then for any nonempty open subset 
Q of G/r 

{x G Q\the {gt}-oribt of x is bounded (relatively compact)} 

is of Hausdorff dimension equal to the dimension of G. 

It is plausible that the following strengthening of Conjecture (A) is true. 

Conjecture (B). Let G, F and {gt} be the same as in Conjecture (A), and let Y be a 
finite subset of G/T. Then for any nonempty open subset Q of G/T 

{x G Q\the {gt}-orbit of x is bounded, the closure of this orbit is of Hausdorff 
dimension less than the dimension of G, and the intersection of this 
closure with Y is empty} 

is of Hausdorff dimension equal to the dimension of G. 

5. Values of Indefinite Quadratic Forms at Integral Points 

In this section, we give some applications of results on orbit closures to the study 
of sets of values of indefinite quadratic forms at integral points. 
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5.1 Proof of Oppenheim-Davenport Conjecture 

According to Meyer s theorem (see [6] or [62]), if B is a rational nondegenerate 
indefinite quadratic form in n variables and n ^ 5 then B represents zero over Z non-
trivially i.e, there exist integers xx,.,.,x„ not all equal to 0 such that B(xx, ...,xn) — 0. 
Theorem 18 stated below can be considered as an analogue of this assertion in the 
case where B is not a multiple of a rational form. Note that in Theorem 18, the 
condition lin ^ 5" is replaced by a weaker condition "n ^ 3". 

Theorem 18 (see [36] and [37]; a simplified proof is given in [22] and [39]). Let B 
be a real nondegenerate indefinite quadratic form in n variables. Suppose that ft ̂  3 
and that B is not a multiple of a rational form, Then for any c > 0, there exists 
x G %n - {0} such that \B(x)\ < c. 

Let us formulate a stronger version of Theorem 18, 

Theorem 18' (see [37]), Let B and n be the same as in Theorem 18, Then for any 
e > 0, there exists x G Zn — {0} such that 0 < \B(x)\ < s. 

Theorems 18 and 18' are of course equivalent for forms that do not represent 
zero over % nontrivially, One can easily see that if Theorems 18 and 18' are proved 
for some n0 then they are proved for all n ^ n0. So it is enough to prove these 
theorems for n = 3. We note that, in Theorems 18 and 18', the condition "n = 3" 
can not be replaced by the condition "n = 2"; to see this, consider the form x\ — Xx\ 
where X is an irrational positive number such that *JX has a continued fraction 
development with bounded partial quotients. 

Theorem 18 was conjectured by A. Oppenheim in 1929 for n ^ 5 (see [48] and 
[49]) and by H. Davenport in 1946 for all n > 3 (see [25]). Theorem 18' was 
conjectured in 1953 by A. Oppenheim (see [51]). 

Theorem 18' had been proved earlier by BJ. Birch, H. Davenport and H. Ridout 
for n ^ 21 (see [26] or [31, Sect. 42.4]) and by H. Davenport and H, Heilbronn for 
diagonal forms in 5 variables i,e. for forms B of the type B(xx>..,, x5) = Xxx\ + 
••• + X5x\ (see [25]). G.L. Watson [77] extended the result of Davenport and 
Heilbronn to forms which include a single cross-product term (say A6x4x5). R.C, 
Baker and H.P. Schlickewey [2] proved Theorem 18' for n equal 20, 19 or 18 
but under some restrictions on the signature of B, Theorem 18' was proved by 
A. Oppenheim for forms in n > 4 variables representing zero over Z nontrivially (see 
[51] and [52]) and by H. Iwaniec [30] and G.L. Watson [76] for some types of 
forms in 3 and 4 variables. The proofs mentioned above are in the context of analytic 
number theory and reduction theory. 

Theorems 18 and 18' are deduced from the following 

Theorem 19. Let G = SL3(R) and F = SL3(Z). Let B be a real nondegenerate in
definite quadratic form in 3 variables. Let us denoted by HB the group of elements of 
G preserving the form B and by Q the space of lattices in R3 having determinant 1. 
(The quotient space G/T can be canonically identified with Q. Under this identification 
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gT goes to g"E3.) Let Gy denote the stabilizer {g G \gy = y} of y G Q. If z G Q = G/T 
and the orbit HBz is relatively compact in Q then the quotient space HB/HB n Gz is 
compact. 

Theorem 19 proves generalized Raghunathan's conjecture in a very special case. 
Now we explain how Theorem 18 is deduced from Theorem 19. As mentioned 
above, it is enough to prove Theorem 18 for n = 3. Suppose that the assertion of 
Theorem 18 is not true. Then one can easily show using Mahler's compactness 
criterion that the set HB1? is relatively compact in Q. Now we apply Theorem 19 
for z = Z 3 and get that the quotient space HB/HB n F is compact. Then in view of 
Borel's density theorem, HBnris Zariski dense in HB. But F = SL3(Z). Therefore 
the algebraic subgroup HB a G is defined over Q, and hence B is a multiple of a 
rational form. Contradiction. 

5.2 Values of Quadratic Forms at Primitive Integral Points 

Let B be a real nondegenerate indefinite quadratic form in n variables. In [51], it 
is shown for n > 3 that if the set (0, e) n B(Zn) is not empty for any s > 0, then the 
same is true for the form — B. On the other hand, it is clear that B(Zn) is invariant 
under multiplication by square of integers. Thus Theorem 18' implies that if n > 3 
and B is not a multiple of a rational form then B(l?) is dense in JR. Let us con
sider now the set of values of B at primitive integral points, namely on P(Zn) = 
{x G %n\x ± ky for any y G P and k G % with \k\ > 2}. Then theorem 18' doesn't 
imply, under the condition ofthat theorem, that B(^(TLn)) is dense in R. Neverthe
less it is possible to prove the following 

Theorem 20 (see [20]). Let B be a real nondegenerate indefinite quadratic form on 
R", where n > 3, which is not a multiple of a rational form. Let B2 be the corresponding 
bilinear form definedby 4B2(v, w) = B(v + w) — B(v — w) for all v,w G R". Let a, b, 
c be such that there exist v,w G R" for which B(v) = a, B(w) = b, B2(v, w) = c. Then 
for any 8 > 0 there exist x, y G S$ÇZn) such that \B(x) — a\ < s, \B(y) — b\ < s and 
\B2(x, y) — c\ < e. In particular B(Sß(Zn)) is dense in R. 

Theorem 20 is easily deduced from Theorem 16 and the following strengthening 
of Theorem 19. 

Theorem 21 (see [20]). Let G, F, Q and HB be the same as in Theorem 19. Let 
XG Q = G/T. Then the orbit HBx is either closed or dense in G/F. 

Remark. Generalized Raghunathan's conjecture entails that if n > 3, B is a non-
degenerate indefinite quadratic form on R" and HB = {g G SLn(lR)\gB = B} then, 
for any x G SL„(R) /SL M (Z) , the orbit HBx is either closed or dense in SL„(R)/SL„(Z). 
This and Theorem 16 easily imply that if B as above is not a multiple of a rational 
form and B2 is the corresponding bilinear form then for any {a^ij = 1, 2 , . . . , 
n — 1} cz Rfor which there exist vx,..., vn_x G Rn such that B2(vh Vj) = atjand for 
any s > 0 there also exist xx,..., xn-x G S$(Zn) such that \B2(xh xj) — ai}\ < e for all 
i,j = 1, ...,n- 1. 
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As mentioned in Sect. 4, Raghunathan's conjecture is proved in [21] in the case 
where G — SL3(R) and U = {u(t)} is a one-parameter unipotent subgroup of G such 
that u(t) — I has rank 2 for all t ^ 0, This and Theorem 16 easily imply the following 

Theorem 22 (see [21]), Let Bx and B2 be two real quadratic forms on R3 for which 
the following conditions are satisfied: 
(i) there exists a basis of R3 such that 

Bx(x) p= 2xxx3 — xj and B2(x)*=xl 

where xx, x2, x3 are coordinates of x with respect to the basis; 
(ii) no nonzero linear combination of Bx and B2 is a multiple of a rational form. 

Then for any a, b G R, b > 0, and any e > 0 there exists a primitive integral vector 
p such that 

\Bx(p)-a\< and \B2(p) - b\ < e. 

Digressing from quadratic forms, let us note at the end of the section that there 
a connection between results on closures of orbits of horospherical subgroups and 
some results on orbits of frames under discrete linear groups (see [13], [17] and 
[23]), These results on orbits of frames haye the flavour of results on Diophantine 
approximation with matrix argument. 

6. Markov Spectrum 

Let B(x) = Y,i<,ij£nDìjxixP fyj = b~ji> be a real nondegenerate indefinite quadratic 
form in n variables and let us denote by <Pn the set of all such forms. Let d(B) denote 
the determinant of the matrix (fcy). Let us set 

m(£)= M \B(x)\ and M5) = £ S 
*ez»-{o} \d(B)\ 

It is clear that p(XB) = p(B) for every X G R, X ^ 0. Let M„ denote p(&„). The set Mn 

is called Markov spectrum. It easily follows from Mahler's compactness criterion 
that Mn is bounded and closed. 

Two forms B, B' G &n will be called equivalent if there exist g G SL„(Z) and X G R 
such that gB = XB'. One can easily see that p(B) = p(B') if B and B' are equivalent, 

6.1 Discreteness of Markov Spectrum for w ^ 3 

In 1880, A.A. Markov described the intersection of M2 with the segment (4/9, oo) 
and described corresponding quadratic forms (see [7] and [41]). It follows from 
this description that M2 n (4/9, oo) is a discrete countable subset of (4/9, 4/5] and 
that, for any a ;> 4/9, there are only finitely many equivalence classes of forms BG<P2 

with p(B) > a. On the other hand, the intersection M2 n [0, 4/9] is not countable 
and moreover has quite a complicated topological structure (see [7]). 
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It follows from Meyer's theorem and Theorem 18 that Mn = {0} whenever n > 5. 
In 1955 (see [8]), J.W.S. Cassels and H.F.P. Swinnerton-Dyer proved the condi
tional result that Theorem 18 implies the following 

Theorem 23. Let n>3 and e > 0. Then the set Mn n (e, oo) is finite and moreover 
there are only finitely many equivalence classes of forms BG0H with p(B) > s. 

For rational forms B, Theorem 23 had been proved earlier by L.Ya. Vulakh 
(see [75]). Really he proved a stronger assertion that there are only finitely many 
equivalence classes of forms B with p0(B) > e where 

m (BY 

^(B) = -SM and m°w= inf 'Bw-
\a(£>)\ xeZn-{0},B(x)*0 

As noted in [74], Vulakh has obtained the complete description of spectra of 
nonzero minima of rational Hermitian forms. 

Both the proof of Theorem 23 based on Theorem 18 and the proof given in [75] 
are non-effective. In particular these proofs do not give an explicit upper bound for 
the cardinality of Mn n (s, oo) for n = 3, 4. It would be very interesting to get such 
a bound. 

For n = 3, A.A. Markov determined first 4 values of p(B)~1 and B.A. Venkov 
determined next 7 values (see [42] and [73]). These values are 

3/2, 5/2, 3, 25/8, 1200/73 = 3,498..., 7/2, 15/4, 3-132/53 = 4,056, 

112/33 = 4,148..., 135/25 = 4,218..., 9/2. 

For n = 4 and forms of signature 0, A. Oppenheim determined first 7 values of 
p(B)~x (see [50]). These values are 

9/4,17/4, 25/4, 117/16, 33/4, 9, 625/64. 

It should be noted that there are two inequivalent forms which correspond to the 
value 9. For n = 4 and forms of signature —2 or 2, A. Oppenheim determined also 
the first value of p(B)~x which is 7/4. 

6.2 A Strengthened Version of the Discreteness Theorem 

Let us formulate now a strengthened version of Theorem 23. 

Theorem 24 (see [39]). Let a, b, c G R and let 

(a,b,c) = l 0n(a,b,c) = <BG0n there exist v, w e Rw such that 

B(vf B(w)n , AB2(v,w)n , n . ^ 
-TTT = a, -TT^r = b and , ' ' = c where B2 is the 
d(B) d(B) d(B) 2 

bilinear form corresponding to B >. 
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Suppose that n ^ 3. Then for any e > 0, there are only finitely many equivalence 
classes of forms B G <Pn(a, b, c) for which it is not possible to find primitive integral 
vectors x,yG S$(Zn) such that 

B(xf 

d(B) 
<c, 

B(yf 

d(B) 
< c and 

B2(x,yf 

d(B) — c < c. 

The proof of Theorem 24 is based on the following slight generalization of 
Theorem 21. 

Theorem 21' (see [39]), Let G, F, Q and HB be the same as in Theorem 21, Let A be 
a closed HB-invariant subset of Q - G/T. Suppose that A^Q. Then A is the union 
of finite number of closed HB-orbits. 

A. Borei and G. Prasad proved in [4] a generalization of Theorem 18' for a 
family {Bs} where s G S, S is a finite set of places of a number field k containing the 
set Sm of archimedean places, Bs is a quadratic form on k", and ks is the completion 
of k at s. It would be interesting to prove analogues of Theorems 20, 22, 23 and 24 
for families {Bs}. 

7. Generic Points 

Let X be a locally compact cr-compact topological space and cp a homeomorphism 
of X. We say that a point x G X is generic (with respect to cp) if there exists a Borei 
probability measure px on X such that for any bounded continuous function fonX 

lim - £ f(cpJx) = 
n-*«) n /=o fa fix 

According to Birkhoff individual ergodic theorem for any ^-invariant Borei prob
ability measure p on X, one can find a subset A a X such that p(A) — 0 and each 
point x G X — A is generic. 

The following conjecture was stated in [14] (for the case where G = SL„(R) and 
r=SLn(Z)). 

Conjecture 3. Let G be a connected Lie group, F a lattice in G and u a unipotent 
element of G. Then every point x G G/T is generic with respect to the homeomorphism 
y - • u y , y G G / T . 

Conjecture 3 can be strengthened in the following way: 

Conjecture 4. Let G, F and u be the same as in Conjecture 3. Then for any x G G/T, 
there exist a closed subgroup L <= G containing u and a L-invariant Borei probability 
measure p on G/T such that the orbit Lx is closed, the support of the measure p is Lx, 
and for any bounded continuous function f on G/T 

l fi—i 

lim - £ f(u 
«-»oo n i*=o JG/r 

fdfi. 
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Remark. Considering appropriate increasing sequences {Sn} c U and replacing 
1 "-1 I f 
- Z f(ulx) fey -~7?TT f(ux) da(u) where o is Haar measure on U, one can formu-
n i=o o(Sn) JSn 

late an analogue of Conjecture 4 for an arbitrary closed unipotent subgroup U <= G. 
Let us also note the connection of Conjecture 4 with Theorems 12 and 14. 

It is clear that for a cyclic U, Raghunathan's conjecture follows from Conjecture 
4. Conjecture 4 was proved for nilpotent G by E. Lesigne (see [32] and [33]) and 
for G = SL2(R) by S.G. Dani and J. Smillie (see [24]; for F = SL2(Z) see also [14]). 
For G = SL2(R), we have the following formulation 

Theorem 25 (see [24]). Let G = SL2(R), let rbea lattice in G, let x G G/T, let {ut} 
be a one-parameter unipotent subgroup of G, and let u denote ux. Suppose that the 
orbit {utx\t G R} is not periodic i.e. that utx ^ x for every t ^ 0. Then the orbit 
{utx\t G R} and the sequence {unx\n G Z} are uniformly distributed with respect to the 
G-invariant Borei probability measure p on G/T; i.e. for any bounded continuous 
function f on G/T 

l ÇT i N-l 

lim - f(utx) dt =lim- Y f(unx) = 
T->ao 1 J o JV-»ao iV n = 0 

fdp. 
Gir 

The following number theoretic assertion is deduced from Theorem 25. 

Theorem 26 (see [14]). For t G R, let ft] denote the largest integer x with x < t and 
let {t} = t — [t], For m,nG N + , let (m, n) denote the g.c.d. of m and n. Then for any 
irrational 9 

limi £ {m0}-1= JL « 
T-»oo i 0<m<T{mO} Ç ( / J K 

(m,[ffi0])=l 

where £ denotes Riemann zeta-function. 

Conjecture 4 entails quantative versions of results from Sect. 5. In particular, if 
this conjecture is proved it will be possible to prove the following assertions. 

(i) Let n, B, B2,a,b and c be the same as in Theorem 20. Then for any e > 0, one 
can find d = d(e, a, b, c,B)>0 such that for all sufficiently large S there exist at least 
dS pairs of primitive integral vectors x, y G Sß(Zn) for which 

||x|| < S, | |y| |<S, | f l (x) - f l |<e , |B(y)-6 |<c and \B2(x, y) - c\ < s 

where || || denotes the Euclidean norm on Rw. Moreover we can choose d(e, a, b, c, B), 
so that it is a rational function of e, a, b, c and coefficients of B. 

(ii) Let Bx and B2 be the same as in Theorem 22. Then for any a, b G R, b > 0, 
and any e > 0, one can find c = c(s, a, b, Bx, B2) such that for all sufficiently large S 
there exist at least cS112 primitive integral vectors p for which 

\\p\\ < S, \Bx(p) -a\<s and \B2(p) - b\ < e. 

Moreover of c(s, a, b, Bx, B2), can be chosen to be a rational function of e, a, b and 
coefficients of Bx and B2. 
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8. Actions of Semisimple Groups and Discrete Subgroups 
on Manifolds and Measure Spaces 

Let us give formulations of some recent results about actions on general manifolds 
and measure spaces. We refer to [80] and [81] for the definition of notions which 
are used in these formulations. 

Theorem 27 (see [64]). Let G be a connected simple Lie group with finite center, finite 
fundamental group, and TSl-rank(G) ^ 2. Let M be a compact manifold and suppose 
there is a nontrivial real analytic action of G on M preserving a (real analytic) 
connection and a finite measure. Then nx(M) is not isomorphic to the fundamental 
group of any complete Riemannian manifold N with negative curvature bounded away 
from 0 and — oo. 

Theorem 28 (see [82]). Let a locally compact group G act continuously on a compact 
metrizable space M, Suppose G preserves a finite measure on M with respect to which 
the Gr-action is ergodic. Suppose further that G is a semisimple group of higher rank 
(i.e. G is a finite product \\ Gf where each Gi is the set of kfpoints of a kf simple 
connected krgroup of krrank at least 2). If P -> M is a principal H-bundle on which 
G acts by principle bundle automorphisms, where H is a real algebraic group, then the 
algebraic hull of the action is a reductive group with finite center. 

Theorem 29 (see [83]). Let G be a semisimple group of higher rank and f c G a 
lattice. Suppose Tacts smoothly on a compact manifold M preserving a volume density. 
Then the following are equivalent'. 

(a) The T-action has zero entropy, i.e. the entropy h(y) equals 0 for all y G F. 
(b) The r-action is measurably isometric, i.e. it is measurably conjugate to an action 

which obtained by a homomorphism of F into a compact group K which acts 
continuously on M. 

(c) There is a T-invariant measurable Riemannian metric on M. 

Concluding Remarks Made During the Congress 

(i) I learnt at the beginning of the Congress that very recently (about two weeks 
before the Congress) M. Ratner proved Conjectures 1, 2, 3 and 4. Also recently, 
N.A. Shah proved some partial results in the direction of the proof of Conjecture 4 
(even these results are enough to prove assertions (i) and (ii) from Sect, 7 and the 
assertion mentioned in the remark after Theorem 21), Proofs of M. Ratner and N.A. 
Shah are based on the reduction to Theorems 12 and 14. 

(ii) Let G = SL2(R), let F = SL2(Z) and let U = {ut} be a one-parameter uni
potent subgroup of G. For each t > 0 there is a unique closed orbit of U on G/T of 
period t, call it Ct (utx = x and ut>x ^ x for xGCt and 0 < t' < t). P» Sarnak informed 
me about the following observation which was essentially due to D. Zagier, The 
famous Riemann hypothesis about zeroes of Riemann zeta-function is equivalent 
to the following statement. For any function / G CQ(G/T) (i.e. / is smooth and has 
a compact support) and any c > 0 
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Oc, 
fdl = fdp + 0Etf(t 

G/r 

"(3/4)+8^ 

as t -> oo where / is the Lebesgue measure on Ct and p is the G-invariant probability 
3 

Borei measure on G/T. It should be noted that (a) the power — — + s is different 

from the usual power — \ + e which appears in ergodic theory; (b) the equivalence 
remains true if one considers only K-invariant functions / where K is a maximal 
compact subgroup of G. 
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Pseudodifferential Operators, Corners 
and Singular Limits 

Richard B. Melrose 

Department of Mathematics, Room 2-243, Massachusetts Institute of Technology 
Cambridge, MA 02139, USA 

In the first part of my talk I shall describe some of the properties one should 
expect of a calculus of pseudodifferential operators which corresponds to the 
microlocalization of a Lie algebra of vector fields, This is not intended to be 
a formal axiomatic program but it leads one to consider conditions on the Lie 
algebra for such microlocalization to be possible. The symbolic structure of the 
calculus also shows how it can be applied in the solution of analytic questions 
related to the Lie algebra, especially to the inversion of elliptic elements of the 
enveloping algebra. 

In the second part I shall consider several such analytic question which arise 
in various differential-geometric settings and are, or appear to be, amenable to 
the application of these pseudodifferential techniques. For those examples which 
have already been analyzed the Lie algebra is identified and then a specific 
question is discussed using the calculus of pseudodifferential operators which 
arises from it. 

Finally in the third part of the talk I shall briefly outline a general strategy for 
the construction of'the' calculus of pseudodifferential operators which microlocal-
izes a given Lie algebra satisfying conditions which make it a boundary-fibration 
structure, This construction applies to most of the situations described in the 
second part of the talk and, I conjecture, can be extended to apply to the others. 

I. Pseudodifferential Operators 

Even though many of the examples of interest here arise on singular or non-
compact spaces it is very convenient from an analytic point of view to work 
always in a fixed category of spaces. The simplest class of spaces which seems to 
be sufficiently wide to allow many different types of problems to be attacked is 
that of compact manifolds with corners; the morphisms are the fo-maps, discussed 
below. Such a space is a compact topological manifold with boundary, X, with a 
#°° structure locally modeled on the spaces 

RJ=[0,oo)*xRn"*. (1) 

This fixes the space ^°°(X) of smooth functions on X; locally these are just 
the functions on R}J which are the restrictions of #°° functions on R". For 
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simplicity we also insist that all the boundary hypersurfaces of X are embedded. 
If we let Mi(X) be the set of boundary hypersurfaces then this means that each 
H e M\(X) has a defining function 

QH e r ° ( X ) s.t. H = {QH = 0}, OH >0,dQH^0eLtH. (2) 

We denote by M(i)(X) the set of true boundary faces, the connected closed 
submanifolds locally given by intersection of the boundary hypersurfaces and 
set M(X) = M{\)(X) U {X}; all these submanifolds are embedded. Limiting 
the analysis to compact manifolds with corners implies that in many cases a 
preliminary geometric step involving a compactification or blow-up procedure is 
required. 

It is always possible to embed a compact manifold with corners as a subset 
of a compact manifold, X, without boundary: 

lx : x - - x, V(x) = xx (<r°(!)). (3) 

This allows one to readily discuss any of the usual structures on a ^°° manifold, 
by restriction from X, provided only that such structures are invariant under 
diffeomorphisms of X which fix each point of dX. In particular ^°° vector fields, 
the tangent bundle, cotangent bundle, form bundles etc. can all be defined in this 
way; of course they also have more intrinsic definitions. 

In most cases the structure we are seeking is most readily expressed in terms 
of a space of real ^°° vector fields: 

f ( I ) c r ( I ; T I ) . (4) 

The two most basic properties we insist upon are : 

"^(X) is a Lie algebra (5) 

under the commutation bracket and 

1T(X) is a <^°(X)-module. (6) 

Of course the space of all smooth vector fields, ^œ(X; TX), has these two 
properties. However, in order that the vector fields in i^(X) correspond to 
infinitesmal diffeomorphisms of X we also require that 

each V G ^(X) is tangent to each H e MX(X). (1) 

The simplest example is just the space fb(X) of all ̂ °° vector fields oh X satisfying 
(7). Thus we can summarize these properties as requiring 

r(X) a 1Th(X) is a Lie subalgebra and ^°(X)-submodule. (8) 

Near any point x G X there are local coordinates x\,...,xn in which x is 
mapped to the origin of RJJ, for some k. Then ^(X) is locally the span, as a 
^°°-module, of the vector fields 
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XidXì,...,xkdXk,dXk+l,...,dXn. (9) 

There are no relations between these vector fields so there is a natural vector 
bundle, which we denote ^X, of which i^(X) forms the space of all sections. 
Since these sections are vector fields there is a natural vector bundle map 

^X —• TX (10) 

which is an isomorphism over the interior, but has corank k at a boundary face 
of codimension k, since the first k elements in (9) are mapped to zero, In general 
we insist that the Lie algebra ir{X) have a similar structure. Thus we require 
that there be a vector bundle rTX and vector bundle maps 

y/TX —• *TX —• TX (11) 

where the overall map is /f and 

r(X) = ir o %™(X; rTX). (12) 

We denote by rT*X the dual bundle to rTX, and by rAkX the associated form 
bundles. 

Since «T is a Lie algebra of operators acting on ^°°(X) the enveloping algebra 
is naturally a filtered ring of operators, denoted Diff^(X), acting on ^œ(X). 
In fact, since the elements of ir are local diffeomorphisms, twisted versions, 
Diff™,-(X ;E,F), of these spaces of operators are defined between sections of any 
two vector bundles, E and JF, over X. 

One easy way to see why we might be interested in these structures is the 
following elementary result, 

Proposition (13). Exterior differentiation defines a complex 

<e°{X) ^ <g"(X\rAx) -1+...-1+ V°(X;rAq) (14) 

where q is the fibre dimension of rTX. If g is a fibre metric on rTX then the 
associated Laplacian is an element ofDiff^(X;rAk) for each k, 0 < k < q. 

The assumption (12) means that the filtration of the ring Diffy/̂ X) is given 
by symbol maps, v^, giving a short exact sequence 

0 —• Diffpx(X;E,F) ^ Diffk
r(X;E,F) ^ Ph(rT*X;E,F) - ^ 0, (15) 

where Pk(rT*X;E,F) is the space of ^°° homomorphisms of the lifts to rT*X 
of the vector bundles E,F which are homogeneous polynomials of degree k on 
the fibres. An operator is (i^-) elliptic if its symbol in this sense is invertible 
off the zero section of rT*X< The symbol of the Laplacian is always given by 
multiplication by the square of the length, so it is always elliptic as an element 
ofDiffk

r(X;rAk). 
Now by a small calculus of ^-pseudodifferential operators we mean linear 

spaces of operators 
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¥fi(X;E,F) 3 A : <T°(X;£) —> V°(X;F)9 m e R, (16) 

with (at least) the following additional properties. First these spaces should extend 
the ring of ^-differential operators: 

Diffkr(X;E,Ef) c W^(X;E,Ef) (17) 

V$(X;E,Ef) o vfi(X;E',E") a ¥™+m'(X;E,E"). (18) 

Moreover we require that the filtration be fixed by symbol maps giving short 
exact sequences analogous to (15): 

0 —• W^r{(X;E,F) ^-> T$(X;E,F) ^ S[m](rT*X;E,F) —> 0, (19) 

where now S^(rT*X;E,F) is the quotient of the space of homomorphisms, 
as before, but now only required to be symbols of order m, (see (79)) by the 
subspace of symbols of order m — 1. In fact we require that (19) should split 
(continuously), i.e. there should be a ^-quantization map: 

qr : Sm(rT*X;E,F) —> W$(X;E,F) (20) 

which splits (19) and which is surjective modulo the residual algebra 

W^(X;E,F) = Ç\W™r(X;E,F). (21) 
m 

Naturally the map (19) is to be consistent with (15) as is the product formula: 

Gm+m'sfr (A oB)= omir(A) o G^^B) . (22) 

Finally we require the algebra to be asymptotically complete with respect to the 
filtration. Thus if Aj e W^~j(X;E,F) then there must exist A e ¥fi(X;E,F) 
such that 

A~YJAP
 i e- A~Y<AJe Yr~N(x'>E>F) V iVeN. (23) 

J J<N 

Then A is determined up to the addition of an element of the residual algebra. 
These conditions hold for the calculus of pseudodifferential operators on a 

compact manifold without boundary. Various of the standard theorems in that 
case can be extended to any algebra with these properties. For example 

Proposition (24). If A e W™(X;E,F) is elliptic, in the sense that its symbol has a 
representative which is invertible outside a compact set, and the conditions (16)-(21) 
hold then there exists B e ¥^m(X;F,E) such that 

AoB-lde W^°(X;F,F), BoA-lde W^°(X;E,E). (25) 

In the familiar case, that is dX = 0 and "V = #°°(X; TX), the residual calculus 
consists of smoothing operators, which are compact operators on any Sobolev 
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space. Then (25) is a rather strong conclusion. In other cases, such as those 
discussed below, the residual calculus does not consist of compact operators, 
Then for most applications (25) must be improved. The proof of (25) itself is 
straightforward. Using the surjectivity of the symbol map in (19), the composition 
formula (22) and the exactness in (19) one can make an initial choice B\ for B 
which satisfies the weaker form of (25) : 

AoBi-ld^Rie W^1 (X;F). (26) 

The space W^(X;E) is an ideal in W^(X;E) so, again using (18) the Neumann 
series for (Id+Ki)^3 converges asymptotically in the sense of (23), allowing 
B ~ Bj(ld +R\)~1 to be constructed. To improve (25) we should therefore look 
for other ideals which allow finer approximations to an inverse to be constructed, 

To find such ideals in the calculus we need to assume more about the algebra 
"T. Through any point x E X let Q ?= Q(x) be the closure of the set of endpoints 
of integral curves of nK starting at x. We shall demand that this be always a 
p-submanifold. This is the strongest condition on a submanifold in the category 
of manifolds with corners, it just means that near each point of Q there is a 
coordinate system reducing the point to the origin in RjJ, and such that Q is 
locally given by the intersection of coordinate planes; the first k of these being 
the local boundary hypersurfaces, Restriction to Q of the elements of "T defines 
a Lie algebra of vector fields on Q : 

r(x)^wr(Q)^rb(Q), (27) 

We demand that 

Tĵ -(ß) = ir (Q) span rh(Q) over the interior of ß . (28) 

It follows that the null space of the restriction (27), Jf[^T\ Q), defines a subbundle 
rNQczrTQX. (29) 

The fibres of this bundle are finite dimensional Lie algebras and 

ir(Q) = V°(Q;rTQX/rNQ) 

i.e. the structure bundle, irTQ, of iT is just the quotient bundle rTQX/rNQ. 
We actually require that these conditions on the integral leaves of 'T hold 

locally uniformly in an appropriate sense, To explain this we first consider the 
notion of a fo-map between compact #°° manifolds with corners. A ^°° map 

/ : X —> X1 (30) 

is a b-map if, for each boundary hypersurface H' e M\(X!) of Xf the lift of the 
ideal of functions, J(H') <= (^co(X,)9 vanishing at Hf is the product of such ideals 
iwX : 

fJ(Hf)= H J(H)e{H>H\ (31) 
HeMiiX) 

In terms of defining functions of the boundary hypersurfaces this just means 
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fQR* = aw n éH'H\ 0<awe V°{X). (32) 

The powers e(H,Hf) are non-negative integers. One important consequence of 
(32) is that the differential of / extends to the ft-tangent space V x , introduced 
above : 

% : <TXX —• ^ ( ^ r V x e X. (33) 

We introduce three refinements of the notion of a fc-map related to the properties 
if this fe-differential. Namely a fe-map is said to be a b-submersion if the b-
differential, (33), is everywhere surjective. It is said to be a b-normal map if 

V H G MX(X) e(H,Hf) ± 0 for at most one H' G Mi(X'). (34) 

Finally a fc-map is said to be a b-fibration if it is both i-normal and a b-
submersion. A fibration of compact manifolds with corners is easily seen to be a 
h-fibration. The converse statement is not true. For any fc-fibration (j) : X —> X1 

the subspace f^(X) <= fl(X), just the sections of the null space of %*, is a Lie 
algebra of vector fields satisfying all the conditions imposed so far, as is the 
weighted version 

Q
kn(x) = {Ve n(X);V = Q

kW, W G r+(X)} 

: n Qm (35) 
heMi{X) 

Qk 

for any map k : M{(X) —> N 0 = {0,1,...}. 
The final condition we wish to impose on "T is that each boundary face 

F G M(X) (including X itself) should have a fo-fibration 

<i>F:F-+L(F) (36) 

such that 
Q(x) = ^((frpfr)) V x in the interior of F. (37) 

Moreover we require that the Lie algebra is not too far from being that of the 
ft-fibration corresponding to the interior: 

iT(X) ID okr$(X) for some k : Mi(X) —* N 0 (38) 

where (j) = 0x- Although the integral leaves through the interior points of F are 
just the leaves of 0j? through those points this still allows considerable freedom 
for the Q to change, in dimension, from face to face. 

Definition (39). A boundary-fibration structure on a compact manifold with 
corners is a subspace "T(X) c irb(X) satisfying (8), (11), (12), (28), (37) and (38). 

With these additional conditions it follows that for each integral submanifold 
Ô = Q(x) 

each fibre rNvQ, p G Q, is a solvable Lie algebra. (40) 



Pseudodifferential Operators, Corners and Singular Limits 223 

Notice that we are immediately forced to consider a more general notion than that 
of a boundary-fibration structure, namely the structure induced by a boundary-
fibration structure on each of the leaves. In this extended type of structure there 
are hidden variables, namely those in the bundle, rNQ of solvable Lie algebras. A 
small calculus of pseudodifferential operators, still denoted W™(X), corresponding 
to such a structure should behave as convolution operators on the fibres of the 
associated bundle of Lie groups. 

The ideals needed to obtain finer approximate inverses of elliptic operators 
are associated with the quotients 

o —• jQ(x). r{X) —• r{X) —* <%(Q) = v*3(Q;rTQx) —* o. (4i) 
Since *f(Q) • ir is an ideal this gives rise to a homomorphism of the enveloping 
algebras, which we call the normal operator at Q\ 

NQ : Diffk
r(X;E,F) - » DiK%(Q;E,F). (42) 

We require (as a condition on the "/^-pseudodifferential operators) that there be 
an extension of this map 

NQ : Yfi(X;E,F) - » ViJKQi E,F), (43) 

The ideal 

Wf (X;E,F)~{Ae ¥fi(X;E,F);NQ(A) = 0 V Q c dX} (44) 

and its powers 

rpk(X; E, F) - Vf (X; E, F) • wf~x (X; E) (45) 

are then of considerable interest and in particular we would expect that 

V^°(X;E9F) B A : <#™(X;E) —•> ^(X;F), (46) 

the latter space being the subspace of ^(Xji*1) consisting of the sections van
ishing to all order at dX. 

Error terms of the type in (46) would be extremely satisfactory, but in most 
practical cases it is not possible to obtain them directly. This can be understood 
from the discussion of (26). In order to get the error in ^^}il(X;F), which could 
be improved by iteration, as in the proof of (25), we need to be able to solve the 
model problem 

NQ(A)-NQ(B) = Id (47) 

exactly, for all integral submanifolds Q a dX. This can often be done, and this is 
precisely the method used in the problems discussed below. However the inverse, 
NQ(B), is seldom in the small calculus associated to °U. In practice it is therefore 
necessary to consider full calculi which have more off-diagonal singularities. This 
is discussed in III below. 
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II. Applications and Examples 

Next I shall consider various examples of Lie algebras of vector fields, nr, and 
give some representative results concerning f-differential operators which can 
be obtained by use of the calculus of "/^-pseudodifferential operators. 

(i) A-Structure 

The first example is the one already mentioned, namely "^(X). This is naturally 
defined on any compact manifold with corners. For a compact manifold with 
boundary the associated fe-calculus was described in [22], see also [15; Chap
ter 18], and called the totally characteristic calculus. For the general case of a 
compact manifold with corners the small calculus is described in [25] and the 
full calculus in [23]. Certainly i^(X) is a boundary-fibration structure and the 
calculus has all the properties described above. In the case of a compact manifold 
with boundary the only integral submanifolds are X and the components of the 
boundary H G M\(X). The fc-fibrations required in (37) are all the single-leaf 
fibrations. Consider the normal operator for the calculus, as indicated in (43). 
Since this is such a natural calculus the normal operator can be realized as 
an operator on an associated geometric space. Namely the normal bundle to a 
component of the boundary, N {X;H}, H G M\(X), can be compactified to a 
bundle of intervals, denoted XH over H. This has a natural action of [0,oo). The 
normal operator takes the form 

NH : T?(X) - » ¥ft(XH) (48) 

where the suffix J denotes the [0, oo)-invariant elements. The invertibility proper
ties of these operators can be discussed using the Mellin transform. In fact the 
Mellin transform of the normal operator gives an entire family of pseudodiffer
ential operators on H, called the indicial family: 

<£3X^->I(A,X)eWm(H). (49) 

If A is elliptic as a b-pseudodifferential operators this family is elliptic for each X 
(in fact the principal symbol is independent of X) and I(A,X) is invertible except 
for a discrete set of points: 

specò(v4) = {Xe<E:I(A,X) is not invertible}. (50) 

Theorem (51) (Melrose and Mendoza [24]). An elliptic element of *F™(X) is Fred-
holm as a map on the space Qr(€co(X) if and only if 

ImX^-r V X G specb(Ä). (52) 

The formula for the index of such an elliptic fo-pseudodifferential operators 
involves extensions of the work of Atiyah, Patodi and Singer [1] on index theory 
and the ^-invariant. 
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Metrics on the bundle *TX are related to conic geometry. If X is a compact 
manifold with boundary then near dX it decomposes as a product, since dX has 
a (global) defining function x G ^œ(X). By a conic metric (of weight s) on X we 
mean a Riemann metric on the interior which, near dX, takes the form 

gb ~ x2s — ) +h(x,y,dx,dy) (53) 

for some defining function x, and with h(0,y,0,dy) a metric on dX. This is 
slightly more special than simply a fibre metric on *TX. Cheeger considered such 
questions as the identity of the I? cohomology groups of X with respect to gb 
(see [6, 7, 8]). These questions can be treated rather directly by constructing a 
good parametrix for the Laplacian using the b-calculus, see [23]. 

Another differential-geometric question involving the fc-calculus is suggested 
by the work of Baum, Douglas and Taylor [3]), Namely to find an analytic 
construction of Poincaré duality for X-theory (Kasparov [16, 17]) for compact 
manifolds with boundary, extending the original motivation for J^-homology of 
Atiyah. 

Theorem (54) (Melrose and Piazza [25]). A ^quantization map induces isomor
phisms realizing Poincaré duality: 

K\T*X) <—• Ki(X,dX), K\T*X,dT*X) <—> K^X), / = 0,1. 

This means that the Ko-homology groups can be identified with equivalence 
classes of elliptic fc-pseudodifferential operators on X. The K\ groups can be 
identified with such classes on X x [0,1], so the calculus on manifolds with 
corners is useful even if X is a manifold with boundary. 

The b-calculus also has other more analytic applications, particularly as 
related to spaces of conormal distributions. 

(ii) O-Structure 

A second natural boundary-fibration structure on any compact manifold with 
boundary is the 0-structure. The Lie algebra of vector fields is 

r0(X) = {V G rb(X); V = 0 at dX} . (55) 

The associated calculus described in [19] has all the properties introduced above, 
The integral submanifolds are simply X and the individual points of the boundary. 
The b-fibrations are therefore again trivial, the single-fibre fibration of X and 
the point-fibre fibration of the boundary. Since each boundary point is a leaf the 
fibre of the structure bundle °TPX is a solvable Lie algebra for each p G dX; it 
is just the homogeneous extension of an abelian algebra. The normal operators 
at each boundary point are convolution operators on the associated solvable Lie 
group. Again the naturality of the 0-structure means that the normal operators 
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actually act on a geometric space, in this case on the inward-pointing half of the 
tangent space to X at p. 

Fibre metrics on the structure bundle °TX are always of the form 

g o ^ (56) 

where h is a metric in the ordinary sense on X and x is a defining function for 
the boundary. The invariant metric on hyperbolic n-space, represented as the ball 
{|x| < 1} in R", 

\dx\2 

g H _ ( l - | x p ) 
is clearly an example of such a metric. In fact the normal operator of the 
Laplacian of a metric (56) is always reducible to the hyperbolic Laplacian. This 
can be used to show that the spectral theory (indeed the scattering theory) of a 
0-metric is similar to that of the hyperbolic Laplacian. For example 

Theorem (57) (Mazzeo and Melrose [19]). IfO<KE #°°(X) and K\dx\2
h = 1 at 

dX then the kernel of the normalized resolvent of the metric (56), 

[A - Ks(n - s)]'1 , (58) 

extends to a meromorphic family of ^-pseudodifferential operators, s G C 

Mazzeo in [18] used the construction of a parametrix for the Laplacian to 
find the Hodge cohomology of a 0-metric as in (56). Metrics of this form arise on 
cuspless, infinite volume, quotients of hyperbolic space by a geometrically finite 
discrete group (e.g. Schottky groups). 

Other problems can be tackled using these operators, in particular the solution 
operators to elliptic boundary problems lie in this calculus. 

(iii) Bergman Geometry 

Any #°° bounded strictly pseudoconvex domain ß c C " carries Kahler metrics 
with Kahler form 

œe = —idd log Q (59) 

where — Q is a plurisubharmonic defining function for ÔQ. The Laplacian of this 
metric corresponds to a boundary-fibration structure on X = Qi, the manifold 
obtained from (and diffeomorphic to) Q by adjoining ^/Q to ^°°(ß), to give 
^œ(Qi). Thus there is a #°° map (with fold singularity at the boundary) a : 
X —> Q. On X the boundary-fibration structure is determined by the contact 
form 6 on dQ. This form fixes a class of 1-forms on X such that for any 
representative, 0, 

rQ(X) = {Ven(X);0(V) = 0(r2)} (60) 

where r = (ii)*y/Q G %°°(X). 
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Theorem (61) (Epstein, Melrose and Mendoza [11]). The resolvent of the Bergman
type Laplacian, of the metric corresponding to (59), has an analytic extension similar 
to that of the Laplacian on the ball: 

extends from Res > \ to be a meromorphic family of ©-pseudodifferential opera
tors, S G (C. 

Using this same approach, i.e. by studying the Bergman-type Laplacian, but 
now on (n,0) and (n,l)-forms one can provide an alternate solution of Kohn's 
5-Neumann problem: 

du = f,fE^(Q;A^),df = 0 

uX^(Q)^{ueL2(Q),du^=0}. 

Corollary (63). On any ^°° strictly pseudoconvex domain Kohn's d-Neumann prob
lem (62) is solved, u = Nf, by a 0-pseudodifferential operator of order — 1, 

The standard regularity properties, see [13], then follow readily, 

(iv) Adiabatic Limit of a Fibration 

Consider a fibration of compact manifolds 

F M 

On the total space, M, consider a 1-parameter family of metrics which becomes 
singular as the parameter, x j 0 : 

«* = &» + £ ? . (64) 
X 

Here g^ is a metric on M (or just a symmetric cotensor which is non-degenerate 
on the fibres) and h is a metric on Y, 

This is an example of a singular limit It was considered by Witten ([28]) in 
a special case to study the ^-invariant In general the behaviour of the adiabatic 
limit of the rç-invariant was discussed by Bismut and Cheeger [2] and by Dai [9]. 
The analytic torsion or Ray and Singer can be examined by similar methods (see 
Dai, Epstein and Melrose [10]). 

The associated boundary-fibration structure provides a simple way to describe 
the adiabatic limit of the Hodge cohomology. The manifold with corners on which 
we work is X = M x [0,1] where the extra factor is the parameter x. Then set 

ra(X) - {V erb(X);Vx s 0 and 
V is tangent to the fibres of cp at x = 0} . 
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If local coordinates are taken for the fibration, y in the base and z in the 
fibres then locally 

ra(X) = sp {xdy, dz} = %™(X; T X ) . (66) 

The fc-fibrations required, in (37), to show that fl(X) is a boundary-fibration 
structure are given by the projection X —> M over the interior and {x = 1} and 
by the fibration <j> over {x = 0}. The metrics (64) fix a fibre metric on T X and 
so, from (13) the Laplacian Aa e Diff2

a(X;aAk). Then 

Jffe = {u G <<r(X;aAk);Aau = 0} 

is the space of all #°° sections of a vector bundle over [0,1] with fibre Hk c 
^œ(Xx;

aAk). The behaviour of these fibres at 0 brings out the Leray spectral 
sequence for the fibration. Namely 

Proposition (67) (Mazzeo and Melrose [20]). For each k the spaces, defined for 
each £ G No, 

£*/ = \u0 G <<r(X0;
aAk);3 Ü G ^(X;aAk) 

, „ \ (68) 
with u\x=Q = uo, Aau = 0(x ) j 

form a decreasing sequence of vector spaces stabilizing to H§, which has the dimen
sion of the cohomology of M : 

Ek>° => £ M => Ek'2 =D • • • ZD Ek>N = ••• = Efe'°° = H0
fe. (69) 

Here Ek'° = ^ ( X o j M ^ ) , El'k is the space of sections of a vector bundle over Y 
and Ekil is finite dimensional. 

(v) Töplitz Correspondence 

Any compact ^°° manifold, Y, can be embedded as a totally real submanifold of 
a complex manifold, Q, with dime Q = dimrc. Y, (Bruhat and Whitney [5]). There 
exists Q G #°°(ß) with 

Q > 0, Y = {Q = 0} 

and a non-degenerate minimum at, i.e. non-degenerate Hessian normal to, Y. 
Then the tubes around Y 

QB = {z GQ;Q(Z) <s2} 

are, for e > 0 small enough, strictly pseudoconvex neighbourhoods of Y. A 
fibration of ß near Y and transversal to it can be chosen so that Im do vanishes 
on the fibres. The Töplitz correspondence is the map obtained by fibre-integration 
of holomorphic (n,0) forms: 

/ 
TE:{ue «ÏT(a ; A"-0) ; du = 0} ^ <^°(Y). (70) 
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Boutet de Monvel and Guillemin [4] showed that this map is Fredholm and 
conjectured the following 

Theorem (71) (Epstein and Melrose [12]). There exists BQ > 0 such that for 
0 < e < ßo the Töplitz correspondence (70) is an isomorphism. 

The main step in the proof is the uniform solution of the ^-Neumann problem 
in ßß as c I 0. For this we start with the manifold M ~ ßCo x [0,eo], obtained by 
blowing up the singular set in the cone formed by the shrinking tubes, 

Y x {0} c {(Z,S);Q(Z) < e2, 0 < e < ß0} . 

Thus M is a manifold with corners, it has three boundary hypersurfaces, The 
blow-up procedure introduces an 'adiabatic' boundary Ha, and this has a fibration, 
(j)0 : Ha •—> Y. There is a trivial boundary at {e = £o} and the 0-boundary, HQ. 
The 0-boundary corresponds to the boundary of Q and has a contact bundle 
defined on it, Let X be the manifold with the square-root ^°° structure introduced 
at HQ, there is a conformai class of 1-forms, with representative 0, defined at the 
new HQ, On X the a-structure is obtained by combining the 0-structure of (iii) 
with the adiabatic structure of (iv) : 

r«(X) = {Ven(X);Vx^0, 
V is tangent to the fibres of </;fl and (72) 

V vanishes at HQ with 0(V) = O(Q2
0)} , 

Here Q© is a defining function for HQ; "/̂ (X) is a boundary-fibration structure. 
The adiabatic Bergman-type metric with Kahler form 

-/OS log ( | - l ) 

is a fibre metric on the structure bundle °TX of ir
a. Thus, by Proposition (13) 

the Laplacian is an elliptic element of Diff2(X;°/lM). One of the crucial steps in 
proving Theorem (71) is to show that the Bergman projection, onto holomorphic 
functions oil the tube of radius s, is an a-pseudodifferential operator. 

(vi) Analytic Surgery 

Suppose M is a compact manifold without boundary and H c M is an embedded, 
oriented closed hypersurface. If Q is a defining function for. H and x is a parameter 
consider the 1-parameter family of metrics 

gx = adQ
2 + (Q2 + x2)h. 

Here a > 0 is a ^°° function in (g,x)-polar coordinates, i.e, on the manifold, 
X = [M X [0, l); H x {0}], obtained by blowing up H x {0} in M x [0,1] and h is 
a metric on M. As x J, 0 the metric gx degenerates to a conic metric (incomplete) 
on the manifold with boundary obtained by closing M\H with two copies of H. 
The boundary-fibration structure on X is 
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rv={Verb(X);Vx = Q}. (73) 

McDonald in his PHD thesis [21] has constructed the v-calculus which contains 
the inverse of the Laplacian of gx- This allows one to describe, somewhat as in 
(iv), the behaviour of the Hodge cohomology as x I 0. Partial results of this type 
have been obtained by Seeley and Singer [27] and more recently extended by 
Seeley [26]. 

(vii) Projective Algebraic Varieties 

One rather intriguing question is whether the notion of boundary-fibration in 
Definition (39) applies to a singular projective algebraic variety M. More precisely 
let X be a compact manifold with corners obtained from M in two steps. First 
let F : M —> M be a resolution of M, so the preimage of the singular locus of 
M is a finite union of hypersurfaces in M with only normal intersections. From 
the real point of view these are embedded submanifolds of codimension two, let 
X be obtained by real blow-up of these submanifolds. Now we ask : 

Question (74). Is there are boundary-fibration structure on X (for an appropriate 
choice of M) such that the induced (Fubini-Study) metric on the regular part of 
M is a weighted fibre metric on the structure bundle? 

A weighted metric is as in (53), i.e. a fibre metric with a conformai factor which 
is a product of powers of defining functions for boundary hypersurfaces. If such 
a boundary-fibration structure exists then the construction of the corresponding 
^-pseudodifferential calculus, as outlined next, should allow a rather direct 
treatment of the Hodge cohomology of the Laplacian. 

III. Microlocalization 

In the final part of my talk I wish to give a brief description of a general procedure 
to construct a calculus of ^-pseudodifferential operators. For simplicity I shall 
only consider the cases involving no parameters, i.e. when y spans the tangent 
space over the interior of X. This description therefore only applies to cases (i)-
(iii) although the general case is quite similar, simply more complicated. Also for 
simplicity of presentation I shall suppress various line bundles, typically weighted 
density bundles, which occur during the construction by describing their sections 
as 'distributional densities'. 

Schwartz' kernel theorem asserts that the space of continuous linear maps 

A:^co(X)^^~co(X), (75) 

where the range space is the space of extendible distributions on a compact 
manifold with corners, can be identified with a space distributional densities over 
the product X2 = X x X; namely the sections of the 'kernel density bundle' KD. 
Thus kA is the kernel if A if 
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Axp(x) = JkA(x,xf)y)(xf). (76) 
x 

If ôX — 0 then under this identification 

Wm(X) <-^ Im(X2, A;KD). (11) 

The notation for the space of conormal distributions on the right, on X2 associ
ated to the diagonal, A = {(x,x!) G X2;x = x'}, is that of Hörmander ([14]). The 
differential operators on X are precisely the local pseudodifferential operators so; 

Diff*(X) ^ { / c G Ik(X2, A;KD); supp(/c) c A } . (78) 

This means that the kernels of differential operators are Dirac sections of KD, 
The conormal distributions in (77) are those distributions which are singular 

only at A and in any local coordinates have Fourier transform in directions 
transversal to A a, symbol: 

a(x,Ç) - [ k(x,x')ei{x-x'Hdxf e Sm i.e. satisfies 
J (79) 

\da
xdla(x,0\<Ca)ß(l + \^\r^ Va,/?. 

A function which is smooth in x and a polynomial in f certainly satisfies these 
estimates. The differential operators are pseudodifferential operators for which a 
is a polynomial. Thus if we think of the algebra extension 

DifT(X) <—> W*(X) (80) 

as microlocalization of #°°(X;TX) it consists in the replacement of all poly
nomials by all symbols in (79), or all Dirac sections smooth along A in (76) 
by all conormal sections. Then one can think of pseudodifferential operators as 
non-commutative symbolic functions of vector fields, just as differential operators 
are non-commutative polynomials in vector fields. 

Algebraically it is clear that this construction should be extendible to boun
dary-fibration structures. Indeed the assumption (12) means that the elements 
of y are just linear functions on the fibres of the bundle rT*X. Thus one can 
think of the elements of Diff^(X) as corresponding to all polynomials on rT*X. 
However we need to realize this in a more geometric fashion to generalize (77). 
Note that Diffy/-(X) cannot correspond to all the Dirac sections at the diagonal, 
since the full algebra of differential operators does ! 

So we look for a new manifold with corners, the "/^-stretched product X2
r, 

which resolves the diagonal from this point of view. More precisely there should 
be a b-map 

ßr \X2r—»X2 (81) 

which is a diffeomorphism of the interior of X2
r to the interior of X2 and a 

p-submanifold A^ a X2
r such that 

ßr :Ar<—y A. (82) 
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Moreover X?r should be constructed in such a way that each element of Y, lifted 
to X2 acting on the left factor of X, is /^-related to a vector field on X2

r, i.e. the 
Lie algebra lifts from the left factor, and so that the lifted algebra is transversal to 
A»y, meaning it spans the normal bundle. It is also natural to demand symmetry 
of the construction, so that the reflection giving interchange of the factors, 

T : X 2 3 ( x , x ' ) > — • ( x ' , x ) G X 2 

should lift to diffeomorphism %r of X2
r. 

Once we find such a resolution we can define a corresponding class of 
operators. The fact the ßr is a fo-map which is an isomorphism over the interior 
means that 

ß*r : ̂ -°°(X2) <—» ̂ -°°(X^). (83) 

Thus the kernel of an operator can just as well be considered as a distributional 
density on X ^ as on X2. Next we need to find a replacement for the space on the 
right in (77). This is also easy since the assumption that Ar, the lifted diagonal, 
is a p-submanifold means that it is natural just to take Im(X^, Ar) to be the set 
of restrictions to X2

r of the conormal distributions with respect to an extension 
of AY in an extension of X2 as in (3). Away from Ar these distributions are ^°° 
so we can impose additional conditions to get 

I™m(X}nAr) = {K eIm(X}fr,Ar);K = 0 at all 

H G Mi(X$r) s.t. HnAr = 0}. 

This allows us to define the small calculus by analogy with (77) : 

Y?(X) <—> O X 2 . , Ar;KD). (85) 

In all the cases (i)-(vi) (and various others) which have been analyzed the stretched 
product can be defined by a process of blowing up the integral submanifolds Q 
of Y in dX as submanifolds of the boundary of the diagonal in X2. 

This definition automatically gives the inclusion (17) and a symbol map as in 
(19). The product formula (18) is not so immediate. Before discussing this briefly 
let me note where the 'full' calculus, alluded to above, comes from. The kernels 
in (85) are singular just at the diagonal. However it is rather natural to expect 
similar conormal singularities to arise at the other naturally defined submanifolds 
of Xipr, namely the boundary hypersurfaces. Thus we can consider more general 
spaces of conormal distributions, denoted Im'm(X^-,A), where m : Mi(X) —> R 
associates an order to each boundary face. Then 

W^m(X) <—> r>m(X^,Ar;KD). (86) 

In practice one should consider polyhomogeneous spaces, with elements hav
ing expansions in terms of powers of the defining functions at the boundary 
hypersurfaces and the diagonal. The small calculus then just corresponds to ker
nels of order +oo (meaning rapidly vanishing) at hypersurfaces not meeting Ar 
and smooth up to the other hypersurfaces (having expansions with non-negative 
integral powers only). 

(84) 
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The most important outstanding point is the proof of a product formula, (18), 
or more generally for the full calculus (although this is not usually an algebra 
so the orders must, satisfy appropriate bounds for operators to compose). This 
proof is also carried out geometrically in these cases. The crucial construction is 
that of the "/^-triple product, X?r. This is related to X2

r in essentially the same 
way that X3 is related to X2. Namely there are three maps 

%0r * Xr '—** Xnfr (°7) 

for o — f,c,s corresponding to projection off the left, the central and the right 
factor of X. The notation corresponds to the fact that in the product formula 

C = A • B (88) 

the kernel of C, the composite operator, can be computed from those of A, 
the second operator, and B, the first operator, by pull-back, product and push-
forward operations: 

Kc *= (%lr)* [(nlr)*KA ' (n}trYKB\ • (89) 

Here of course one needs to interpret the operations appropriately in terms of 
distributional densities. Thus the functorial properties of conormal distributions 
are of primary importance. In particular it is crucial that the stretched projections 
(87) be fc-fibrations since the push-forward and pull-back of polyhomogeneous 
conormal distributions under fo-fibrations are polyhomogeneous conormal, see 
[23], 
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§1. Introduction 

Let us begin by explaining the background of the birational classification. We 
will work over the field (C of complex numbers unless otherwise mentioned. 

Let X be a non-singular projective variety of dimension r. The canonical 
divisor class Kx is the only divisor class (up to multiples) naturally defined on an 
arbitrary X. Its sheaf @x(Kx) is the sheaf of holomorphic r-forms, An alternative 
description is Kx = —ci(X), where c\(X) is the first Chern class of X. Therefore 
it is natural to expect some role of Kx in the classification of algebraic varieties. 

The classification of non-singular projective curves C is classical, and sum
marized in the following table, where g(C) is the genus (the number of holes) of 
C, H *= {z G C | Imz > 0} and T is a subgroup of SL2QR) : 

(1.1) 

Here we see three different situations, For instance, everything is explicit if 
g(C) t= 0; the moduli (to parametrize curves) is the main interest if g(C) ^ 2. 

Our interest is in generalizing this to higher dimensions. The first difficulty 
which arises in the surface case is that there are too many varieties for genuine 
classification (biregular classification). 

(1.2) For a non-singular projective surface X and an arbitrary point x G X, 
there is a birational morphism % : BXX —> X from a non-singular projective 
surface BXX such that E = ^ ( x ) is isomorphic to P1 (E is called a (— l)-curve) 
and n induces an isomorphism BXX — E cz X — x, 

In view of (1,2), it is impractical to distinguish X from BXX, ByBxX,... if we 
want a reasonable classification list, More generally, we say that two algebraic 
varieties X and Y are birationally equivalent and we write X ~ Y if there is 
a birational mapping X • • —> Y or equivalently if their rational function fields 
<C(X) and (C(7) are isomorphic function fields over (C. We did not face this 
phenomenon in the curve case, since X ^ Y iff X ~ Y for curves X and Y, 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
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In view of the list (1.1) for curves, we need to divide the varieties into several 
classes to formulate more precise problems. This is why the Kodaira dimension 
K(X) of a non-singular projective variety X was introduced by [Iitakal] and 
[Moishezon]. 

(1.3) Let H°(X,(9(vKx)) be the space of global v-ple holomorphic r-forms 
(v > 0,r = dimX), and cj)o,... ,(j)N be its basis. If N > 0, then 

®VKX :X-- -*JPN given by <PvK(x) = ((ßo(x) feW) 

is a rational map. We set PV(X) = N + 1. It is important that H°(X,0(vKx)) 
and <PVK are birational invariants, that is X ~ Y induces H°(X,&(vKx)) = 
H0(Y,(9(vKY)) for v > 0. We set K(X) = -oo if PV(X) = 0 for all v > 0. If 
Pe(X) > 0 for some e > 0, then 

K(X) := Max{dim $vKx(X) | v > 0}. 

In particular, PV(X) and K(X) are birational invariants of X. 
We remark that K(X) G {—oo, 0 ,1 , . . . , dim X}, and that X with ;c(X) = dim X 

is said to be of general type. We have the following table for curves. 

(1.4) 
g(Q 
K(C) 

0 
—oo 

1 
0 

> 2 
1 

To have some idea on higher dimensions, we can use the easy result K(XX Y) = 
K(X) + K(Y). In particular, 

( 1 . 5 ) c a s e (K(X) = - o o ) KQP1 X Y) = - o o , 

( 1 . 6 ) c a s e ( 0 < K(X) < d i m X ) 

K(JE x • • • x E , x £ x • • • x Q = b i f g ( £ ) = 1 a n d g(C) > 2 . 

a times b times 

The case 0 < K(X) < dimX is studied by the Iitaka fibration. 

(1.7) Iitaka Fibering Theorem [Iitaka2]. Let X be a non-singular projective vari
ety with 0 < K(X) < dimX. Then there is a morphism f : X' -> Y' of non-singular 
projective varieties with connected fibers such that Xf ~ X, dim Yf = K(X) and 
K(f~x(y)) = Ofor a sufficiently general point y G Y'. 

In (1.7), we cannot expect K(Y') = dim Y' or even K(Y') > 0. Therefore X' is not 
so simple as (1.6). Nevertheless (1.7) reduces the case 0 < K(X) < dimX to the 
cases K(X) = —oo,0,dimX. Thus we can explain the birational classification as 
in (1.1) for higher dimensions. 
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§2. Birational Classification 

For a non-singular projective variety X, we define a graded ring (called the 
canonical ring) 

R(X) = ®v^H0(X,Ö(vKx)). 

If K(X) > 0, the v-canonical image <PVK(X) is a birational invariant of X. 
The existence of stable canonical image is interpreted in terms of R(X) by the 
following easy proposition, 

(2.1) Proposition. Let X be a non-singular projective variety of K(X) > 0. Then 
<PvK(X) for sufficiently divisible v > 0 are all naturally isomorphic iff R(X) is a 

finitely generated (C-algebra, 

(2.2) For X of general type, constructing moduli spaces is one of our main 
interests. One standard way is to try to find a uniform v such that <PVK : X • • —> 
$VK(X) is birational for all X and classify the image, One can expect nice 
properties of the image (canonical model to be explained later) if there is a stable 
canonical image. Therefore we would like to ask whether the canonical ring is 
finitely generated for X of general type (2.1). 

(2.3) The case K(X) = dimX suggests to reduce the birational classification 
of all varieties to the biregular classification of standard models (like <PVK(X) 

for sufficiently divisible v). However, when K(X) < dimX, there are no obvious 
candidates for the standard models. For 0 < K(X), we can ask to find some 
"standard" models. 

We only say the following for K(X) < 0 at this point, 

(2.4) For X with K(X) = 0, we would like to find some "standard" model 7 ~ X 
and to classify all such Y. 

(2.5) For many X with K(X) ?= —oo, there exist infinitely many "standard" 
models ~ X. To study the relation among these models is a role of birational 
geometry. We would like to have a structure theorem of such models. One 
general problem is to see if all such X are uniruled, i.e. there exists a rational 
curve through an arbitrary point of X, or equivalently there is a dominating 
rational map P 1 x Y • • —> X for some Y of dimension n — 1. (It is easy to see 
that uniruled varieties have K = —oo as in (1.5).) 

Since we use the formulation by Iitaka and Moishezon, one basic problem 
will be the deformation invariance of K. 

(2.6) Conjecture [Iitakal, Moishezon]. Let f : X -+ Y be a smooth projective 
morphism with connected fibers and connected Y. Then K(f^(y)) and Pv(f~

1(y)) 
(v ;> 1) are independent ofyeY. 
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§3. Surface Case 

We review a few classical results on surfaces which may help the reader tô 
understand the results for 3-folds. 

The basic result is the inverse process of (1.2). 

(3.1) < Castelnuovo-Enriques. Let E be a curve on a non-singular projective surface 
X'. Then E is a (—l)-curve (i.e. X' = BXX and E is the inverse image of x for 
some non-singular projective surface X and x G X) iff E ~ P 1 and (E-Kx>) = —1. 
We write contg : Xf —> X and call it the contraction of the (—ì)-curve E. 

Finding a (—l)-curve in every exceptional set, we have the following: 

(3.2) Factorization of Birational Morphisms. Let f : X -> Y be a birational 
morphism of non-singular projective surfaces. Then f is a composition of a finite 
number of contractions of (—Y)-curves. 

Starting with a non-singular projective surface X, we can keep contracting 
(—l)-curves if there are any. After a finite number of contractions, we get a non-
singular projective surface Y(~ X) with no (—l)-curves. Depending on whether 
Ky is nef ((Ky • C) > 0 for all curves C), K(X) takes different values. 

(3.3) Case where Ky is nef. Then Y is the only non-singular projective surface 
~ X with no (—l)-curves. To be precise, if Yf is a such surface, then the composite 
Y • • —> X • • —> Yf is an isomorphism. This Y is called the minimal model of X 
and denoted by Xm^. In this case, we have K(X) > 0. 

(3.4) Case where Ky is not nef. Then an arbitrary Y' (including Y) which is 
birational to X and has no (—l)-curves is isomorphic to either P 2 or a P1-bundle 
over some non-singular curve. In this case, X has no minimal models and we . 
have K(X) = —oo by (1.5). 

The above (3.3) together with (3.4) says that the birational classification of X 
with K > 0 is equivalent to the biregular classification of minimal models. 

Based on (3.3) and (3.4), the canonical model is defined. 

(3.5) Let X be a non-singular projective surface of general type. Then there 
exists exactly one normal projective surface Z ( ~ X) such that Z has only Du 
Val (rational double) points and Kz is ample, where Du Val points are defined 
by one of the following list. 

An:xy + zw+1 = 0 (n > 0), 

Dn : x2 + y2z + z""1 = 0 (n > 4), 

E6 :x2 + j / 3 + z 4 = 0, 

E7 :x2 + y 3 + j / z 3 = 0 , 

Es :x2 + y 3 + z 5 = 0. 
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Such Z is called the canonical model of X and denoted by Xcan. The natural map 
Xmjn • • • —• Xcan is a morphism which contracts all the rational curves C with 
(C * Kxmin) = 0 into Du Val points and is isomorphic elsewhere. 

(3,5,1) Remark. This Xcan can also be obtained as $Vjc(Xmin) = $VK(X) for an 
arbitrary v > 5 (Bombieri). 

(3.6) Let X be a non-singular projective minimal surface with K S= 0, Thus X 
has torsion Kx, i.e. some non-zero multiple of it is trivial. There is a precise 
classification of all such X, 

(3.7) The deformation invariance of K(X) and PV(X) was done by [Iitaka3] 
using the classification of surfaces. [Levine] gave a simple proof without using 
classification. 

§4. The Extremal Ray Theory (The Minimal Model Theory) 

The first problem in generalizing the results in §3 to higher dimensions is to find 
some class of varieties in which there is a reasonable contraction theorem because 
there is no immediate generalization of (3.1) to 3-folds, since the contraction 
process inevitably introduces singularities [Morii]. To define the necessary class 
of singularities, the first important step was taken by Reid [Reid 1,3]. 

(4.1) Definition [Reid3]. Let (X,P) be a normal germ of an algebraic variety (or 
an analytic space) which is normal. We say that (X, P) has terminal singularities 
(resp. canonical singularities) iff 

(i) Kx is a Q-Cartier divisor, i.e. rKx is Cartier for some positive integer r 
(minimal such r is called the index of (X, P)), and 

(ii) for some (or equivalently, every) resolution % : Y -> (X,P), we have ai > 0 
(resp. a\ ̂  0) for all / in the expression: 

r K y = 7 l > K y ) + £ > £ , , 

where E\ are all the exceptional divisors and a\ G TL, 

For surfaces, a terminal (resp. canonical) singularity is smooth (resp, a Du Val 
point). We note that, for projective varieties X with only canonical singularities, 
the same definitions of PV(X), $VK and K(X) work and these are still birational 
invariants, We can also talk about the ampleness of Kx and the intersection 
number (Kx C) e($ for such X. 

The idea of the cone of curves which is the core of the extremal ray theory 
was first introduced in Hironaka's thesis [Hironaka]. 

(4.2) Definition. Let X be a projective w-fold, A 1-cycle ]j£ acC is a formal finite 
sum of irreducible curves C on X with coefficients ac G Z, For a 1-cycle Z and 
a Q-Cartier divisor D, the intersection number (Z • D) G Q is defined. Then 
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Ni(X)z = {l-cycles}/{l-cycles Z | (Z • D) = 0 for all D} 

is a free abelian group of finite rank Q(X) < oo. Thus ATi(X) = Ni(X)% O^IR is a 
finite dimensional Euclidean space. The classes [C] of all the irreducible curves C 
span a convex cone NE(X) in Ni(X). Taking the closure for the metric topology, 
we have a closed convex cone NE(X). Then 

(4.3) Cone Theorem. IfX has only canonical singularities, then there exist count-
ably many half lines Ri c NE(X) such that 

(i) NE(X) = ^Rt + {z G NË(X) I (z • Kx) > 0}, 
(ii) for an arbitrary ample divisor H of X and arbitrary e > 0, there are only 

finitely many Ri s contained in 

{z G NË(X) I (z • Kx) < s(z • H)}. 

Such an Rt is called an extremal ray of X if it cannot be omitted in (i) of 
(4.3). We note that an extremal ray exists on X iff Kx is not nef. Each extremal 
ray Ri defines a contraction of X. 

(4.4) Contraction Theorem. Let R be an extremal ray of a projective n-fold X 
with only canonical singularities. Then there exists a morphism f : X —> Y to 
a projective variety Y (unique up to isomorphism) such that f*@x = &Y and 
an irreducible curve C a X is sent to a point by f iff [C] G R. Furthermore 
Pic Y = Ker[(C-) : PicX —> 2L\ for such a contracted curve C. This f is called the 
contraction of R and denoted by cont#. 

The contraction of an extremal ray is not always birational. 

(4.5) Let X be a smooth projective surface with an extremal ray R. Then cont^ 
is one of the following. 

(i) the contraction of a (—l)-curve} 

(ii) a IP1-bundle structure X -> C over a non-singular curve, 
(iii) a morphism to one point, when I ^ P 2 . 

The description of all the possible contractions for a nonsingular projective 
3-fold X is given in [Morii]. Here we only remark that cont^X can have a 
terminal singularity <C3/ < a > of index 2, where a is the involution o(x,y,z) = 
(-x,-y,-z). 

(4.6) The category of varieties in which we play the game of the minimal model 
program is the category ^ of projective varieties with only terminal singularities 
which are (^-factorial (i.e. every Weil divisor is Q-Cartier). The goal of the game 
is to get a minimal (resp. canonical) model, i.e. a projective n-fold X with only 
terminal (resp. canonical) singularities such that Kx is nef (resp. ample). Let us 
first state the minimal model program which involves two conjectures. 

(4.7) Let X be an n-fold G (€. If Kx is nef, then X is a minimal model and we 
are done. Otherwise, X has an extremal ray R. Then contÄ : X —> X' satisfies one 
of the following. 
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(4.7.1) Case where dimX' < dimX. Then COIììR is a surjective morphism with 
connected fibers of dimension > 0 ahd relatively ample — Kx (like P1-bundle), 
and X is uniruled ([Miyaoka-Mori]). This is the case where we can never get a 
minimal model, and we stop the game since we have the global structure of X, 
coni* : X -> X'. 

(4.7.2) Case where cont# : X —> X1 is birational and contracts a divisor, This 
contj? is called a divisorial contraction, In this case X' G ^ and Q(X') < Q(X), 
Therefore we can work on X' instead of X. 

(4.7.3) Case where cont# : X -> X1 is birational and contracts no divisors. In 
this case, Kx> is not Q-Cartier and Xf ^ #. So we cannot continue the game with 
Xf. This is the new phenomenon in dimension > 3, 

To get around the trouble in (4.7.3) and to continue the game, Reid proposed 
the following. 

(4.8) Conjecture (Existence of Flips). In the situation of (4.7.3), there is an n-fold 
X + G <$ with a birational morphism f+ : X + —• X' which contracts no divisors and 
such that Kx+ is /+-ample, The map X • • —• X + is called a flip. 

Since Q(X+) = Q(X) in (4.8), the divisorial contraction will not occur for 
infinitely many times. Therefore the following will guarantee that the game will 
be over after finitely many steps. 

(4.9) Conjecture (Termination of Flips). There does not exist an infinite sequence 
offl1psXi-"-+X2'~->---. 

Therefore the minimal model program is completed only when the conjectures 
(4.8) and (4.9) are settled affirmatively. 

The conjecture (4.9) was settled affirmatively by [Shokurovl] for 3-folds and 
by Kawamata-Matsuda-Matsuki [KMM] for 4-folds. (4.8) was first done by 
[Tsunoda], [Shokurov2], [Mori3] and [Kawamata6] in a special but important 
case, Finally (4.8) was done for 3-folds by [Mori5] using the work of [Kawamata6] 
mentioned above. 

(4.10) Thus for 3-folds, we can operate divisorial contractions and flips for a 
finite number of times and get either a minimal model G ̂  or an X G ̂  which 
has an extremal ray R of type (4.7.1). Thus we can get 3-fold analogues of results 
in §3. 

(4.11) For simplicity of the exposition, we did not state the results in the 
strongest form and we even omitted various results. Therefore we would like to 
mention names and give a quick review. 

After the prototype of the extremal ray theory was given in [Morii], the 
theory has been generalized to the relative setting with a larger class of sin
gularities (toward the conjectures of Reid [Reid3,4]) by Kawamata, Benveniste, 
Reid, Shokurov and Kollâr (in the historical order) and perhaps some others. 
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First through the works of [Benveniste] and [Kawamata2], Kawamata intro
duced a technique [Kawamata3] which was an ingenious application of the 
Kawamata-Viehweg vanishing ([Kawamatal] and [Viehweg2]). Based on the 
works by [Shokurovl] (Non-vanishing theorem) and [Reid2] (Rationality theo
rem), [Kawamata4] developped the technique to prove the Base point freeness 
theorem (and others) in arbitrary dimensions. The discreteness of the extremal 
rays was later done by [Kollârl]. As for this section, we refer the reader to the 
talk of Kawamata. 

§5. Applications of the Minimal Model Program (MMP) 
to 3-Folds 

Considering MMP in relative setting, one has the factorization generalizing (3.2) : 

(5.1) Theorem. Let f : X —> Y be a birational morphism of projective 3-folds 
with only Q-factorial terminal singularities. Then f is a composition of divisorial 
contractions and flips. 

Since minimal 3-folds have K > 0 by the hard result of Miyaoka [Miyaokal-
3], one has the following (cf. (3.3) and (3.4)). 

(5.2) Theorem. A 3-fold X has a minimal model iff K(X) > 0. 

Unlike the surface case, the minimal model of a 3-fold X is not unique; it is 
unique only in codimension 1. If we are given a Q-factorial minimal model Xmm, 
every other (Q-factorial minimal model of X is obtained from Xmin by operating 
a simple operation called a flop for a finite number of times ([Kawamata6], 
[Kollâr4]). Many important invariants computed by minimal models do not 
depend on the choice of the minimal model. We refer the reader to the talk of 
Kollâr. 

(5.3) Theorem. For a 3-fold X, the following are equivalent. 
(i) K(X) = —oo, 
(ii) X is uniruled, 
(iii) X is birational to a projective 3-fold Y with only Q-factorial terminal 

sigularities which has an extremal ray of type (4.7.1). 

It will be an important but difficult problem to classify all the possible Y 
in (iii) of (5.3). There are only finitely many families of such Y with Q(Y) = 1 
([Kawamata7]). 

Since a canonical model exists if a minimal model does ([Benveniste] and 
[Kawamata2]), one has the following (cf. (3.5)). 

(5.4) Theorem. IfX is a 3-fold of general type, then X has a canonical model and 
the canonical ring R(X) is a finitely generated (C-algebra. 
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The argument for (5.4) can be considered as a generalization of the argument 
for (3.5.1). However the effective part "v > 5" of (3.5.1) has not yet been 
generalized to dimension > 3. 

To study varieties X with K > 0, [Kawamata4] posed the following. 

(5.5) Conjecture (Abundance Conjecture). If X is a minimal variety, then rKx is 
base point free for some r > 0. 

For 3-folds, there are works by [Kawamata4] and [Miyaoka4] (cf, [KMM]), 
However the torsionness of K for minimal 3-folds with K = 0 is unsolved, and it 
•remains to prove: 

(5.6) Problem. Let X be a minimal 3-fold with H an ample divisor such that 
(K\) .= 0 and (K\ • #) > 0, Then prove that K(X) = 2. 

(5.7) Remark (K = 0), The 3-folds X with K(X) = 0 and H] (X, (9X) î 0 were 
classified by [Viehwegl] and (5.5) holds for these. This was based on Viehweg's 
solution of the addition conjecture for 3-folds, and we refer the reader to [Iitaka4]. 
However not much is known about the 3-folds X with ;c(X) ;= 0 (or even Kx 
torsion) and Hj(X,&x) = 0: so far many examples have been constructed and 
it is not known if there are only finitely many families. There is a conjecture of 
[Reid6] in this direction. 

By studying the flips more closely, [Kollär-Mori] proved the deformation 
invariance of K and Pv (cf. (3.7)): 

(5.8) Theorem. Let f : X —• A (unit disk) be a projective morphism whose fibers 
are connected 3-folds with only Q-factorial terminal singularities. Then 

(i) ic(Xt) is independent ofteA, where Xt = f~l(t), 
(ii) Pv(Xt) is independent of te A for all v > 0 ific(X0) ^ 0. 

Indeed for such a family X/A, the simultaneous minimal model program is 
proved and the (modified) work of [Levine] is used to prove (5.8). We cannot 
drop the condition "yc(Xo) ^ 0" at present since the abundance conjecture is not 
completely solved for 3-folds. 

As for other applications (e.g. addition conjecture, deformation space of 
quotient surface singularities, birational moduli), we refer the reder to [KMM] 
and [Kollar6], 

§6. Comments on the Proofs for 3-Folds 

Many results on 3-folds are proved by using only the formal definitions of 
terminal singularities. However some results on 3-folds rely on the classification 
of 3-fold terminal singularities [Reid3], [Danilov], [Morrison-Stevens], [Mori2] 
and [KSB] (cf. Reid's survey [Reid5] and [Stevens],) The existence of flips and 



244 Shigefumi Mori 

flops heavily rely on it. Thus generalizing their proofs to higher dimension seems 
hopeless. At present, there is no evidence for the existence of flips in higher 
dimensions except that they fit in the MMP beautifully. I myself would accept 
them as working hypotheses. A more practical problem will be to complete the 
log-version of the minimal model program for 3-folds [KMM]. This is related 
to the birational classification of open 3-folds and n-folds with K = 3. Since 
log-terminal singularities have no explicit classification, this might be a good 
place to get some idea on higher dimension. Shokurov made some progress in 
this direction [Shokurov3]. 

There are two other results relying on the classification. 

(6.1) Theorem [Mori4]. Every 3-dimensional termal singularity deforms to a finite 
sum of cyclic quotient terminal singularities (i.e. points of the form <C3/Zr(l,—l,a) 
for some relatively prime positive integers a and r). 

This was used in the Barlow-Fletcher-Reid plurigenus formula for 3-folds 
[Fletcher] and [Reid5] (cf. also [Kawamata5]). Given a 3-fold X with only 
terminal singularities, each singularity of X can be deformed to a sum of cyclic 
quotient singularities <E?/Zr(l,—l,a). Let 5(X) be the set of all such (counted 
with multiplicity). For each P = <E?/Zr(l9-l,a) G S(X), we let 

where {m}r is the integer se [0,r — 1] such that s = m(mod r). For a line bundle 
L on X, let x(L) = ^(--1)' aim H'(X9L) and let c2(X) be the second Chern 
class of X, which is well-defined since X has only isolated singularities. Then the 
formula is stated as the following. 

(6.2) The Barlow-Fletcher-Reid Plurigenus Formula. 

x((9x(mKx)) = m{m" ^ " °(K\) + (1 -2m)I(®x) + £ Mm), 

X{®x) = -^-ÀKx-c2(X))+ X 

PeS{X) 

r2-l 
24v A ^ " ^-r 24r " 

PeS(X) 

This is important for effective results on 3-folds (cf. §7). 

(6.3) Theorem ([KSB]). A small deformation of a 3-dimensional terminal singu
larity is terminal. 

This is indispensable in the construction of birational moduli. An open 
problem in this direction is 
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(6.4) Problem. Is every small deformation of a 3-dimensional canonical singularity 
canonical? 

Since this remains unsolved, we, cannot put an algebraic structure on 

{canonical 3-folds}/isomorphisms. 

§7. Related Results 

I would like to list some of the directions, which I could not mention in the 
previous sections. This is by no means exhaustive. For instance, I could not 
mention the birational automorphism groups (cf. [Iskovskih] for the works before 
1983) due to the lack of my knowledge. 

(7.1) Effective Classification. The Kodaira dimension K is not a simple invariant, 
For instance, we know that K(X) — —oo iff PV(X) = 0(Vv > 0). Therefore 
P\2(X) = 0 was an effecitve criterion for a surface X to be ruled, while K(X) = —oo 
was not. The 3-dimensional analogue is not known yet. 

There are results by Kollâr [Kollar2] in the case d imiJ^X,^ ) > 3 (cf. 
[Mori4]), The Barlow-Fletcher-Reid plurigenus formula (6.2) is applied for in
stance to get aKx ~ 0 with some effectively given a > 0 for 3-folds X with 
numerically trivial Kx by [Kawamata5] and [Morrison], and to get Pi2(X) > 0 
for canonical 3-folds X with %((9X) < 1 by [Fletcher]. 

(7.2) Differential Geometry. As shown by [Yau], there are differential geometric 
results (especially when K is positive) which seem out of reach of algebraic geom
etry. Therefore we welcome differential geometric approaches. In this direction is 
Tsuji's construction of Kähler-Einstein metrics on canonical 3-folds [Tsuji]. 

(7.3) Characteristic p. [Kollar5] generalized [Morii] (extremal rays of smooth 
projective 3-folds over (C) to char p. This suggests the possibility of little use of 
vanishing theorems in MMP for 3-folds. A goal will be the MMP for 3-folds in 
char p. However even the classification of terminal singularities is open. 

(7.4) Mixed Characteristic Case. One can ask about the extremal rays (and so 
on) for arithmetic 3-folds X/S. The methods of [Shokurov2] and [Tsunoda] 
might work, if X/S is semistable. In the general case, I do not know any results 
in this direction, 

(7.5) Analytic or Non-projective 3-Folds. Studying analytic or non-projective 3-
folds will require a substitute for the cone of curves modulo numerical equiva
lence. However analytic or non-projective minimal 3-folds can be handled by the 
flop [Kollär4]. There is a work of [Kollar6]. 
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Hyperbolic Billiards 

Yakov G. Sinai 

Landau Institute of Theoretical Physics, Academy of Sciences of USSR 
Moscow, 117334 USSR 

1. Definition of Billiards 

Billiards are dynamical systems which correspond to the uniform motion of a 
material point inside a domain on a Riemannian manifold with elastic reflections 
off the boundary. Thus billiards are geodesic flows on manifolds with boundaries. 
Specific features of billiards arise when the role of the boundary is much more 
important than the role of the underlying manifold. Ergodic properties of billiards 
have been discussed already in the works of Hadamard and Birkhoff. An impor
tant contribution was made by the Soviet physicists N. S. Krylov [KI], During 
the last two decades the theory of billiards has been developed enormously in 
various directions and some part of this development will be the main content 
of this lecture. Billiards constitute an important class of dynamical systems due 
to the following reasons : 

1. some classes of billiards demonstrate a strong chaotic behavior and can be 
considered among the best examples of deterministic chaos; the theory of 
such billiards is discussed below in detail; 

2. many interesting examples of dynamical systems of physical or mechanical 
origin can be reduced to billiards; especially it is true for systems where the 
interaction involves elastic collisions between the particles ; 

3. a deep analysis of properties of billiards is essential for some problems in the 
theory of quantum chaos and asymptotical problems in partial differential 
equations; 

4. the theory of billiards suggests many beautiful geometrical problems. 

A rich theory of billiards relates to cases where the table of the billiard is a 
closed compact subset of Euclidean space Rd or d-dimensional flat torus Tord, 
d is the dimension. The tables which we shall consider here can be described 
as follows. Let there be given r C°°-functions fj(q), 1 < / < r, defined on Rd or 
Tord and such that fj~{ (0) do not contain critical points of /,•. Then ß = {q e 
Rd\fi(<l) > 0, 1 ^ i < r} or ß = {q e Tord\fi(q) ^ 0, 1 < / < r}. In order to 
avoid some trivial complications it is natural to assume also that if q e Q and 
fiM) = fh(<U = 0 then grad fix(q), grad fÌ2(q) are non-collinear. The boundary 
dQ is the union dQ = |J)=i öß/ where dQ\ = {q e dQ\fi(q) = 0}. The points of a 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
fi?) Tlip. Mnl1ip.malir.q1 Snr.ip.tv nf Tanan 1991 

http://Mnl1ip.malir.q1


250 Yakov G. Sinai 

component dQ\ which do not belong to other components dQj, j ^= i, are called 
regular points of the boundary. At regular points q e dQ the unit normal vector 
n(q) directed inside Q as well as the operator K(q) of the second fundamental 
form of the boundary are defined. Recall that n(q + dq) — n(q) + K(q)dq where 
dq e &q(dQ) and &~q(dQ) is the tangent space to dQ at q. The geometrical 
properties of the boundary which we shall use below will be expressed in terms 
of K(q). 

As was already mentioned billiards correspond to the uniform motion of a 
point (billiard ball) inside ß with elastic reflections off dQ. This means that at 
the reflection the normal component of the velocity changes its sign while the 
tangential component remains unaltered. The phase space M of the billiard is 
the unit tangent bundle over Q. The points of M are denoted as x = (q, v) where 
q e Q, ve &~q(Q), M = 1. The canonical projection x -> q is denoted by n. 
The space M is also a manifold with a piece-wise smooth boundary, the boundary 
dM = UJ=i dMi,dMi = n~l(dQi). Regular points of dM are such points x G dMt 

that %(x) are regular points of dQ. 
Introduce the set of incoming vectors 

dM~ = {x = (q, v) e dM\q e dQ is regular and (v, n(q)) < 0} 

and the set of outgoing vectors 

3M+ = {x = (q,v) e dM\q e dQ is regular and (v,n(q)) > 0}. 

The law of reflection corresponds to the transformation R : dM~ -> 3M+ where 

Rx = R(q, v) = (q,v- 2(n(q), v)n(q)) e dM+ if (q, v) e dM~. 

A point moves inside M and when it reaches the boundary dM~ it jumps 
instantly to a new point of 3M+ under the action of R. In what follows we 
consider only a subset M1 c: M consisting of such x whose trajectories pass only 
through regular points of the boundary and have finitely many reflections during 
any finite interval of time. If dp = const dqdœq(v) where dcoq(v) is the Lebesgue 
measure on the unit sphere Sd~l c ^(Q) is the normed Liouville measure on M 
then it is easy to show that p(Ml) = 1. Thus we may define the one-parameter 
group {S1} of transformations of M1 onto itself which corresponds to the billiard 
motion and preserves p (see [CFS1]). The flow {S1} is discontinuous because 
the dynamics is discontinuous. It is an often situation in ergodic theory that 
discontinuous flows are easier for an analysis than their smooth approximations. 

Sometimes it is useful also to consider the induced map or the so-called billiard 
ball map T : dM+ nM1 -+ 3M+ n M1 which transforms a point x G 3M+ fi M1 

to the point x1 G dM+ n M1 corresponding to the next reflection. The map 
T preserves the measure dp\ = const (n(q),v) • do(q)coq(v) where da(q) is the 
Riemannian volume on dQ. 

The first examples of billiards are billiards inside polygons or polyhedra. Some 
of them appear in connection with the dynamics of one-dimensional particles on a 
segment interacting through elastic collisions. The billiards in triangles correspond 
to the dynamics of two such particles. It turns out that even this simple case 
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is very difficult for an analysis and still many problems remain open. Deep 
results here were obtained by Kerchkoff, Mazur and Smillie (see [KMS1]) using 
the theory of quadratic differentials and some methods of algebraic geometry. 
In particular they showed that for billiards inside polygons with commensurate 
angles the system has only obvious first integrals. The first applications of these 
methods appeared in the papers by Veech (see [VI]). 

2. Hyperbolic Billiards 

The main content of this lecture will concern the theory of hyperbolic billiards, 
i.e., billiards where the behavior of trajectories has many common features with 
the behavior of geodesies in manifolds of negative curvature. Take a point 
x = (q,v) e M1 and a (d — l)-dimensional open C°°-submanifold y e g passing 
through q, orthogonal to v at q and homeomorphic to the (d — l)-dimensional 
disk. Denote by y its continuous framing by unit normal vectors such that x e y. 

Definition 1. A submanifold y is called a local stable manifold (Ism) of x if 
during the dynamics Sfx and S'y for any y e y have reflections from the same 
components of the boundary dM for all t > 0 and one can find positive numbers 
C(x),À(x) such that for all t > 0 

dist(n(Stx),n(Sty)) < C(x)exp{-À(x)\t\}. 

If in this definition we take t < 0 we shall get the definition of a local 
unstable manifold (lum) of x. Lsm and lum will be denoted by y®(x) and y^u\x), 
respectively. 

Definition 2. A global stable (unstable) manifold of x G M consists of all y for 
which one can find % ^ 0 (T < 0) such that S%y belongs to yW(STx) (y{u)(STx)). 

We shall denote them by T^(x) and T^(x) and use the abbreviations gsm 
and gum. Stable and unstable manifolds are the main objects in the theory of 
smooth hyperbolic dynamical systems like Axiom-A systems of Smale [Sml] and 
Anosov systems [Ani]. Contrary to the case of smooth hyperbolic systems gsm 
and gum in billiards have singularities (see examples below) which arise from 
trajectories tangent to the boundary. Definitions 1 and 2 can be introduced in 
the same way for the induced map T. 

We shall now introduce the main definition. 

Definition 3. Billiard in a domain ß is called hyperbolic if /i-almost every point 
has gsm and gum, 

We shall discuss now various conditions under which billiard is hyperbolic. 
As it will be seen the corresponding problems are particular cases of a more 
general problem of finding sufficient conditions for a dynamical system to display 
some kind of a chaotic behavior. 
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Definition 4. Billiard is called dispersing if at all regular points of the boundary 
the operator K(q) > 0. 

This definition implies that at any regular point the boundary is locally strictly 
concave. 

Theorem 1. Every dispersing billiard is hyperbolic. 

This theorem is in fact some version of the well-known Hadamard-Perron 
theorem (see [Ani, Gl , S2] and [KS1]), which gives sufficient conditions for the 
existence of Ism and lum in the case of smooth dynamical systems. Theorem 1 
gives an easy way to construct examples of hyperbolic billiards. 

Dispersing billiards are in many respects similar to geodesic flows on compact 
manifolds of negative curvature. For many applications it is important to con
sider billiards which correspond to geodesic flows on manifolds of non-positive 
curvature. 

Definition 5. Billiard is called semi-dispersing if at all regular points of the 
boundary K(q) > 0. 

Semi-dispersing billiards arise naturally when we study the dynamics of hard 
disks or spheres interacting via elastic collisions (see for example [CFS1]). In 
those cases the boundary is the union of subsets of cylinders having many flat 
directions. It is a more difficult problem to find conditions under which a semi-
dispersing billiard is hyperbolic. A natural approach is the following (see [CSI]). 
Let us write down the sequence of positive times of reflections from the boundary, 

0 < ti < t2 < "• < tn,..., and let tj = tj — */_I,TI = t\. Introduce also 
the points of the boundary where these reflections take place: quq.2--- and 
Kj = K(qj). We shall need also the operators Ut mapping ^+ onto ^~ in parallel 
to n(qi) where the subspace 3T.+(&:-) is orthogonal to v^(v^),Sti±0x = (q,vf), 
and the operators Vi mapping ZT^ onto ^qi(dQ) in parallel to vf. The adjoint 
operator V* maps ^(dQ) onto ZT^ in parallel to n(qt). Now write down the 
following operator-valued continued fraction 

B+(x) = . (1) 
TI J + t/i j UT1 

2 COS0IF;KIFI + I /2-7- Vi1 

T2i + 

Here cos cßj = (vf, n(qì)), cj)j is the reflection angle. For semi-dispersing billiards 
all operators VJKJVJ are non-negative. It is easy to show that this continued 
fraction is converging as soon as tn —> 00 and B+(x) > 0. The following theorem 
is a particular case of Chernov's theorem (see [CI]). 

Theorem 2. If B+(x) > 0 a.e. then the semi-dispersing billiard is hyperbolic. 
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This theorem can be derived also from the results in the book by Katok and 
Strelcyn (see [KS1]). 

The operator B+(x) for x = (q, v) is a self-adjoint operator acting on the (d—1)-
dimensional space passing through q orthogonal to v. It has a simple geometrical 
meaning. Namely, if y ̂ (x) is alum of x>yM(x) = n(y^(x)) then y^(x) is a (d — 1)-
dimensional submanifold lying inside ß and B+(x) is the operator of the second 
fundamental form of y^(x) at q = TC(X). The condition B+(x) > 0 means that the 
submanifold y^ (x) is strictly concave. The appearance of continued fractions in 
(1) is quite natural. If we write down the Jacobi equations corresponding to our 
flow then they will be second order linear differential equations with piecewise 
constant coefficients having discontinuités at the moments of reflections. It is 
well-known that the solutions to such equations can be written as continued 
fractions, The operators B+(x) are exactly these solutions. 

An interesting non-trivial example of the semi-dispersing billiard where one 
can already see the main difficulties of the theory was proposed by Kramli, 
Simanyi and Szasz (see [KSS1]). The table consists of the three-dimensional torus 
from which two non-parallel cylinders are removed. As was already mentioned 
the system of r hard disks or balls moving uniformly inside a cube and interacting 
via elastic collisions can be reduced to semi-dispersing billiards. Apparently these 
billiards are hyperbolic but now it is known only for small values of r. 

It is very surprising that hyperbolic billiards are encountered also among 
two-dimensional convex domains. The first example was proposed in the famous 
paper by Bunimovich [Bl]. The table is the Bunimovich's stadium where the 
boundary consists of two straight segments and two circular arcs. The boundary 
is a C1-curve and it is essential that the curvature is a discontinuous function 
on the boundary. If it were sufficiently smooth then the corresponding billiard 
cannot be hyperbolic because a theorem of Lazutkin (see [LI]) says that in such 
cases there exist so many caustics that the set of their tangent vectors has positive 
measure. Recently the result by Bunimovich was extended by Bunimovich (see 
[B2]) and Donnay (see [Dl]). Namely the form of the stadium can be perturbed 
in such a way that two segments remain but the circular arcs can be replaced by 
arbitrary C2-arcs whose curvature is close to a constant. 

In connection with [Bl, B2, DI] a general problem emerges of describing 
two-dimensional tables for which the billiard is hyperbolic. Wojtkowski in [Wl] 
proposed a general approach to this problem based on the existence of invariant 
families of cones (see also [S3]) and found several new examples of hyperbolic 
billiards. Some other examples were constructed in the paper by Markarian (see 
[Ml]). 

3. Fundamental Theorem in the Theory of Hyperbolic Billiards 

In this section we discuss the problems related to ergodicity and mixing of 
hyperbolic billiards. We remark first that the existence of Ism and lum for the 
flow {S*} implies the existence of these manifolds for the induced map T. Their 
dimensions are equal to d — 1 while the dimension of dM is 2(d — 1). It is an easy 
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part of the theory of piecewise smooth hyperbolic dynamical systems which says 
that ergodic components of T and {S1} have positive measures (see, for example, 
[PI] and [KS1]). The proof is based upon an idea of Hopf [HI] according to 
which the ergodic component of a.e. x contains also T^(x) and T®(x). Thus we 
can take a lum y^u\x) and construct Ism y®(y) for every y e y^(x). It needs some 
efforts to show that starting with an a.e. x we get a set of positive measure. The 
main ingredient of the proof is the so-called property of absolute continuity of 
foliations generated by T^\T^ (see details in [KS1]). However it is a much more 
difficult problem to prove that the ergodic component of T or {S*} is unique. 
The difficulty is due to the fact that because of singularities the sizes of Ism or 
lum are everywhere discontinuous and can be arbitrarily small. Therefore apriori 
it is not clear whether one can connect two arbitrary points by a chain of sets of 
the described form. 

In [S2] a theorem was proven which showed how to overcome the difficulty 
in the case of two-dimensional dispersing billiards. Later it was called the fun
damental theorem in the theory of dispersing billiards. The idea was to show 
that in a neighborhood of a typical point for a given lum y^ the probability 
to find y^(y), y e y(u), whose length is greater than C/(y(u)), / is the length, C 
is an arbitrary constant, tends to 1 as the radius of the neighborhood tends to 
zero. It follows from this statement that a small neighborhood of this point lies 
within one ergodic component. The ergodicity follows from an easy statement 
that the set of typical points is connected. There are two other publications [BS1] 
and [S4] which contain some modifications of the original proof and a proof of 
ergodicity based on a slightly different idea. 

In our joint paper with Chernov [CSI] the ideas of the fundamental theorem 
were extended further. Let R c dM be the union of singular points of dM, of 
tangetit points of 3M+ U dM~, i.e., points x = (q,v) where (n(q),v) = 0 and 
the points of discontinuity of T. We imposed the following condition: for a.e. 
point of R the image under dynamics of a plane framed by unit normals locally 
extends in all directions. Under this condition we proved that typical points 
have neighborhoods belonging to one ergodic component (local ergodicity). An 
immediate consequence of this theorem is 

Theorem 3. Every dispersing billiard is ergodic. 

Kramli, Simanyi and Szasz in [KSS2] made an important improvement in 
the conditions of the fundamental theorem which is essential for semi-dispersing 
billiards and gave a very detailed proof of their version of the fundamental 
theorem which they called "A transversal fundamental theorem". 

Using their improvement they proved the following remarkable result (see 
[KSS3]). 

Theorem 4. Consider the system of three balls on Tord,d > 2. Then it is ergodic on 
the subspace of the phase space where the total momentum is zero and the centrum 
of mass is fixed. 
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In the paper by Bunimovich [B3] it was shown that the fundamental theorem 
is applied to the billiards in stadium and some other convex domains. Thus these 
billiards are also ergodic. 

In systems with hyperbolic behavior ergodicity usually implies much stronger 
statistical properties. Namely it is easy to show under the conditions of Theorems 
3 and 4 that the billiard is a K-fiow, It means in particular that the adjoint group 
of unitary operators has countable Lebesgue spectrum and strong properties of 
mixing. It is a more difficult problem to prove the Bernoulli property which says 
that the induced map T is isomorphic to a Bernoulli shift. This was done by 
Gallavotti and Ornstein in [GOl] for two-dimensional dispersing billiards. 

4. Markov Partitions and Strong Statistical Properties 
of Two-Dimensional Hyperbolic Billiards 

If we intend to study more deeply statistical properties of hyperbolic billiards 
like central limit theorem and decay of time-correlation functions we must use 
some special symbolic representations of these systems. The most convenient one 
is the representation which can be obtained with the help of a Markov partition. 
Let us recall the corresponding definitions (see [Bol, BoRl, Rl, R2, S5, S7]). We 
shall deal with the induced map T. 

Take a point x G 5M+ and lum y^(x), Ism y®(x), choose subsets 77 M <= 
yM(x),J7« czyW(x). 

Definition 6. A subset 77 c 3M+ is called a parallelogram with basic sets 77^,77® 
if for any y\ e 77^,^2 G 77® the Ism y^(y\) and the lum y^(yi) intersect each 
other and the intersection y®(yi) Hy^fo) consists of one point also belonging 
to 77. 

If 77 is a parallelogram then for any x' G 77 the sets y^(xf) n 77,y®(x') n 77 
can be taken as basic sets, If n',n,f are parallelograms then 77' 0 77" is also 
a parallelogram. Each parallelogram has two natural partitions £^(77), £®(77). 
The elements of these partitions are Qoo(rj)(y) = 77 Hy^(y), C^(S)^(y) = 
77 Ciy^(y) respectively. Assume that we are given a partition Y\ whose elements 
are parallelograms H\,Hi,...,77,., This means that (̂77^ n77/2) = 0 for i\ ̂  ii 
and /i(U77;-) = 1. We shall denote by fM,fW the partitions of 3M+ where for 
a.e.x we have Q(»)(x) = C^n^(x)9C^)(x) = C^S)^n^(x) when x G 77̂ . 

Definition 7 (see [Bol, S5, S7]). The partition )] is called Markov partition if for 
a.e. x 

T^C^x) E C^T^x), TC^)(x) ç Q«(TX). 

In the case of smooth hyperbolic systems natural Markov partitions are 
usually finite. For billiards and other hyperbolic discontinuous systems such 
partitions are by necessity countable. If p(n) > 0 then the basic sets 77^,77® 
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are subsets of y^(x),y^(x) which do not contain open components and usually 
they are Cantor-like sets of positive measure. The reason is again due to the fact 
that in any neighborhood of a typical point lum and Ism can be arbitrarily small. 
Apparently similar Markov partitions can appear in other dynamical systems 
with a non-uniform hyperbolic behavior like some classes of one-dimensional 
maps, Henon maps etc. 

Returning to billiards suppose that we have an arbitrary partition r\ of dM+ 

which is the phase space for T. Having a partition r\ we construct the symbolic 
representation for T as follows. Assume that all 77/ are closed and write down 
the inclusions Tnx e Hjn, —oo < n < oo. 

Definition 8. The sequence j = {jn} is called the symbolic representation of x. 

It is clear that if j o x then T77yH_1 n 77jn ^ <j). The usefulness of Markov 
partitions is due to the fact that the inverse statement is in a sense also true: if 
j is any sequence for which p(THjn_v n 77/J > 0 for all n, —oo < n < oo, then 
there exists x for which j is a symbolic representation. In other words the phase 
space dM+ of T is coded by realizations of a topological Markov chain up to a 
subset of measure zero. In the paper [BS2] we constructed Markov partitions for 
two-dimensional dispersing billiards. In the recent paper [BCS1] using the same 
ideas we proved under some technical assumptions the following theorem. 

Theorem 5. For two-dimensional hyperbolic billiards there exist countable Markov 
partitions. Moreover, the diameters of parallelograms can be made less than any 
given e > 0. 

In particular such Markov partitions exist for dispersing billiards, Bunimovich's 
stadium and its perturbations and some other cases. 

Describe now some corollaries which follow directly from Theorem 5. 

Corollary 1. The set of periodic orbits of a hyperbolic billiard is everywhere dense. 

It was shown to us by Pesin how this statement can be proven by "standard 
arguments from hyperbolic theory". L. Stojanov in [Stl] proved that for any 
multi-dimensional semi-dispersing billiard in Rd the number N(R) of periodic 
orbits whose period is not more than R is not bigger than C\ Qxp{C\R} for some 
C\ > 0. Theorem 5 gives a possibility to obtain an estimation of N(R) from 
below. 

Corollary 2. The number N(R) is bigger than exp{C2R} for some C2 > 0 and all 
sufficiently large R. 

Apparently as in the case of smooth hyperbolic system there exists the 
asymptotics lim^oo ^WW connected with the topological entropy of billiard but 
it still remains as an open problem. 
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In our paper [BS3] such statistical properties as the central limit theorem, 
time decay of correlation functions for two-dimensional dispersing billiards were 
studied. These results can be extended to a wider class of two-dimensional 
hyperbolic billiards (Bunimovich, Chernov, Sinai - in preparation). Using Markov 
partitions one can prove for these billiards some version of H-theorem in statistical 
mechanics. 

5. Some Other Results and Concluding Remarks 

As one can see from what was said above the theory of dispersing billiards 
is similar to some extent to the theory of hyperbolic dynamical systems. The 
theory of semi-dispersing billiards is in the same sense similar to the theory of 
partially hyperbolic dynamical system, Unfortunately it is not still developed in 
a sufficiently general manner, Only some particular results have been obtained. 
Chernov in [Chi] constructed Ism and lum under rather general conditions. Their 
dimensions may be less than d — 1. He gave also (see [Ch2]) a detailed proof of 
the formula for the measure-theoretic entropy 

h({St}) = Jtr(B+(x))dß(x •) 

which is positive unless K(q) = 0 like in the case of flat boundaries. Wojtkowski 
in [W2] studied the asymptotical behavior of entropy when the mean free path 
tends to zero. 

Some examples of multi-dimensional hyperbolic billiards analogous in sense 
to billiard in stadium are described in [B3] (see, however, the remarks in [W3]). 

Several Hamiltonian systems behave in many respects as hyperbolic billiards. 
In the papers by Kubo [Kul] (see also [S6]) the motion of a particle on the 
two-dimensional torus under the action of some repelling forces was studied, It 
was shown that it is hyperbolic (in the same sense as in the definition 3). A 
surprising result was obtained in a recent paper by Donnay and Liverani [DL1]. 
The authors found examples of attractive potentials for which the dynamics 
is also hyperbolic. In the paper by Wojtkowski [W4] (see there some other 
references) a system of particles with different masses moving along a semi-line 
with a constant acceleration and undergoing elastic collisions was studied. It was 
shown that it has several positive Lyapunov exponents which implies through 
the Pesin's formula [PI] that this system has positive entropy and a partially 
hyperbolic behavior. 

Arnold in [Ari] gave an heuristic explanation why two-dimensional dispersing 
billiards should behave like geodesic flows on surfaces of negative curvature. He 
proposed to consider doubles of the corresponding tables and represent them 
as limits of smooth surfaces of negative (more precisely, non-positive) curvature. 
However, this idea being very beautiful has a defect. The flow which appears under 
this limiting transition contains "extra" trajectories which can have common parts 
with the boundary. In this connection some questions may be asked. For example, 
one can take the double of the billiard table, its universal covering and ask the 
following: 
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L will the lift of a billiard trajectory to the universal covering go to infinity; 
2. if so, what is the structure of points at infinity which are the end-points of 

the lifted trajectories, going out of some points; 
3. will a lifted trajectory of the billiard lie to a finite distance from some 

Lobachevsky geodesies. 

Some answers to these questions were obtained recently by Babenko [Bal]. 

In conclusion I thank the Organizational Committee of ICM-90 for the 
honorable invitation to present this talk. I thank V.l. Arnold and J. Lebowitz 
who read the text and made many useful remarks. Also I am very glad to 
express my sincere gratitude to Bunimovich, Chernov, Kramli, Szasz with whom 
we worked together for many years on various problems concerning billiards. 
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If there is any single characterizing feature of the mathematics of the last few 
years, it is the interactions among subdisciplines, This activity is well-documented 
by the talks at ICM90. This lecture contains a small part of the background for 
applications of non-linear analysis in the field of topology. My discussion covers 
roughly the last twelve years, with emphasis on the earlier period of this time. 
There are many other articles in this volume which describe in more detail 
current areas of research. We refer particularly to Floer's Plenary address, and 
section lectures by McDuff, Simpson, Tian, Kronheimer, and many talks related 
to topological quantum field theory. 

The specific mathematical tools I am considering in this paper are those of 
"hard" analysis, by which we mean two things. Hard analysis refers in graduate 
student slang to the use of estimates. But here it refers as well to what Gromov 
[Gr] calls "hard" — the realization of "soft" or "flabby" topological concepts 
via the solution of specific rigid partial differential equations. These techniques 
are naturally not to every mathematician's taste. Topologists have spent a great 
deal of effort reproving theorems such as the Bott periodicity theorem in ways 
more related to the general constructive methods of algebraic topology. For 
mathematicians like myself these geometric methods provide a concrete geometric 
realization of what is otherwise very much algebraic abstraction. 

1. Background Discussion 

Our first step is to illustrate the content of this talk with an example which uses 
only advanced calculus. We define a real-valued function 

/ : (C"+1 - {0} -> IR 

by the formula 

for v = (z1,..., zn) e (C"+1 — {0}. Here A is any Hermitian complex (n +1) x (n +1) 
matrix. It is easy to see that if a e (C — {0}, f(ay) = f(\). So f induces a map 
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[f] = (<Cn+1 - {0})/(C - {0}) = (CPn -> IR 

by UKM) = /(v). The critical points off (and [/]) are points where the derivative 
vanishes. It is a standard exercise in advanced calculus to show that the equations 
for critical points of [f] are the lines [v] for 

Ay - ks = 0 

where X = f(y). 
Now the connection with topology comes from the relation between the critical 

points of [f] and the topology of (CPn. If the eigenvalues of A are distinct, one 
can compute that the smallest is the minimum, the largest the maximum, and 
the n — 1 other critical points occur with index (number of negative directions 
in the second derivative) 2,4,...,2(n— 1). Standard Morse theory tells us that 
<CPn is built from one handle in each even dimension. The Betti numbers b^ = 1, 
0 < i < n and &2i+i = 0. Of course, this is not the usual way of computing the 
Betti numbers of <LPn. 

However, much closer in spirit to many of our examples is the case when A is 
a Hermitian projection operator of rank n — k. Then the minimum of \f] on (CP" 
is zèro and it occurs on a (CPfe sitting in (CP". The other critical points consist of 
a (CPn-fe-1 on which the maximum occurs. We obtain a very simple topological 
result by using the gradient flow for [f] to retract <EPn - (CP"-''-1 into €P / c . 
The result is that the embedding <DPk ç (CP" is a homotopy equivalence up to 
dimension k. 

The prototype theorem1 for this talk is the Bott Periodicity theorem for 
the unitary group, as originally proved by Bott in 1959 [B]. Here the theory of 
ordinary differential equations replaces the advanced calculus of our first example. 
The space which replaces <LPn is C^°//([0,1],SU(2m)), or the parametrized smooth 
curves between —I and +J in the special unitary group SU(2m). The function 
[f] is replaced by energy 

E{s)=X-j\s{t)\2dt. 

The equation for critical curves is the equation for geodesies 

Dts(t) = 0. 

The minimum for this functional occurs on the set of great circles between 
(—/,+/). This can be. checked to be the complex Grassmannian G(m,2m) of m 
planes in 2m space. All the other critical points have index at least 2m + 2. The 
gradient flow provides a homotopy equivalence between the loop space and the 
Grassmannian up to dimension 2m. Namely for 0 < i < 2m, we have the result 
that 

7Zi+iSU(2m) = %i(QSU(2)) .= %iG(m,2m). 

There are methods from algebraic topology which show that 

7üf_iSU(m) = m-iSU(k) 

for i <2m< 2/c and 

UiG(m,2m) = 7Zi-\SU(m) for i <2m. 
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Bott Periodicity Theorem [B]. 

ni-1SU(k) = nwSU(k), i<k. 

Other older results which use the theory of geodesies have more to do with 
differential geometry. 

Theorem (Hadamard). Suppose M is a compact, connected manifold with negative 
sectional curvature, then 7i,+i(M) = 0/or / ^ 1. 

One version of this proof is obtained by showing that all geodesies are of 
shortest length. As a consequence, every connected component of the loop space 
is topologically trivial. Hence %i(Q(M)) = rc/+i(M) = 0 for / > 1. 

Theorem (Myers). If M is compact with positive Ricci curvature, then %\(M) is 
finite, 

This can be proved by showing all the minimizing geodesies are short. A 
general reference is Milnor's book on Morse theory [Mi]. 

The infinite dimensional loop spaces Q(M) were originally handled by retrac
tion onto finite dimensional spaces using piecewise solutions as approximations. 
This does not work in more than one variable because of the difficulties involved 
in gluing small solution pieces together. It may have been that mathematicians 
hoped that the multivariable problems could be easily handled once the proper 
tools for treating global problems were developed. This turned out to be not 
quite true. 

The modern developments do rest entirely on the foundations of functional 
analysis and elliptic operator theory. The analytic tools are Holder spaces, Sobolev 
spaces,' embedding theorems, interpolation theorems and the fundamental esti
mates for elliptic and parabolic systems. 

In the 1960s, an ambitious subject called "global analysis" developed with 
the explicit goal of solving non-linear problems via methods from infinite di
mensional differential topology. During this period, a different set of tools was 
developed. A short list of these tools includes : the notion of Fredholm operator 
and the the Atiyah-Singer index theorems (1963) [A-S]; the definition of infi
nite dimensional .manifolds [L] ; metric structures and refinements such as layer 
structures and Fredholm structures; the definition of a non-linear Fredholm op
erator and Smale's extension of the Sard theorem [Sm] (1965); the Palais-Smale 
conditions and applications in the calculus of variations (1964) [P-S]; in ad
dition, several variants of infinite dimensional degree theorems, K-theory and 
transversality. A good sense of the spirit of this development can be obtained 
by browsing through the three volumes of the proceedings of the Berkeley 1968 
AMS conference organized by S.S. Chern and S. Smale [C-S]. 

The optimism of the era of global analysis has ultimately been justified, but 
this did not happen immediately. The problem is essentially as follows : In order 
to discover properties of solutions of ordinary or partial differential equations 
which have global significance, it is essential to make estimates. Now, it usually 
happens that certain estimates are natural to the problem. Sometimes it may 
be an estimate on a maximum of a norm, or more usually an integral estimate 
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on solutions is available. Typically the estimate is on the L2 norm of the first 
derivative of a solution. In other words, an estimate in the Banach space L\ is 
natural. However, in order to obtain the results which have topological meaning, 
the estimates have to imply something about the space of continuous solutions, 
or at the very least, some information about continuity. This occurs when the 
Banach space L\ lies in C°. However, L\ c C° is a dimensionally dependent 
inclusion. It holds for n = 1, or for the case of ordinary differential equations, 
but not for n > 2, the dimensions of partial differential equations. 

Hence the explanation for the success of the cited examples on loop space 
is not exactly what it was expected to be. The problems work at least partly 
because the Sobolev embedding theorem L\ c C° is true in dimension 1, and 
naive attempts to apply the theories to partial differential equations do not 
work except in restrictive cases. Many of the applications which were ultimately 
found are extremely deep. Especially significant are the dimensional differences. 
In retrospect, one could not expect one single aspect of non-linear analysis to 
magically provide for a variety of deep applications. 

2. Results 

S.T. Yau's proof of the Calabi conjecture, published in 1978, showed for the first 
time the effect which modern methods of solving partial differential equations 
could have on other fields. The analytic theorem Yau proved was for an arbitrary 
complex Kahler manifold with non-positive first Chern class. Yau proved that 
there is a Kahler metric which solves Einstein's equation. 

Theorem [Y-l]. Let M be a complex Kahler manifold with c\(M) < 0. Then there 
is a Kahler metric g in the same Kahler class as the given one with 

Ricci(g)-#g = 0. 

The topological conditions imply that R<0, where the constant R is a multiple the 
constant scalar curvature of the Einstein metric. 

This result had been conjectured by Calabi and partially proved by Aubin. 
However, its importance in algebraic geometry lies in the following application. 

Corollary. If M is a complex Kahler manifold with c\ (M) < 0, then 

(-l)"c2(M)Cl(M)»-2[M] > | l ^ C l ( M ) " [ M ] . 

This theorem is cited in every theorem on the classification of higher dimen
sional algebraic varieties. It is essentially the only topological restriction known 
for algebraic manifolds. The theorem is not true for positive Chern class. One 
of the satisfying results of Yau's proof is that the importance of the topological 
condition ci(M) < 0 is apparent. Yau's original theorem (in the case of complex 
3-folds with ci = 0) is fundamental in the current model for fundamental physics 
(string theory). 
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In the ensuing years, the applications of partial differential equations have 
been extensive, and we give a very brief survey of the initial results in each field. 
It would not be possible to list all the latest results and their fine points in a 
general survey article. 

Minimal Surfaces 

Yau and his coworkers obtained a number of interesting results. Many but not all 
of these results have alternate proofs. The first theorem is in the spirit of Myer's 
theorem, and was published in 1980 by Schoen and Yau. I call it the topological 
positive mass theorem, as it is the topological version of the well-known positive 
mass theorem of general relativity. (Schoen and Yau used the same techniques 
to prove the theorem in general relativity.) Scalar curvature is local mass. An 
alternate proof using linear analysis (Dirac operators) now exists. The analytical 
basis for the Schoen-Yau proof is a theorem on minimal surfaces. 

Theorem [S-Y, S-U]. If£g is a surface of genus g > 0, and M any compact manifold 
with 7ii(I) £ n\(M), then there exists an area minimizing branched immersion of 
E in M. 

Application (Topological Positive-Mass) [S-Y]. If M — M3 has non-negative scalar 
curvature, then the group ii\(M) does not contain n\(Zg) as a subgroup unless 
Ig = S1 x S1 and M3 = S1 x S1 x S{/r is a quotient of the flat torus. 

To prove this, look at the second variation of the minimal surface. The positive 
scalar curvature forces it to have a negative direction. 

Meeks and Yau proved a series of results which show that minimal surfaces 
in 3-manifolds are embedded. In many cases, this provides alternate more rigid 
proofs of basic theorems in 3-manifold topology, such as Dehn's lemma, the loop 
theorem, and the sphere theorem. As part of this program they gave the first 
proof of the equivariant loop theorem. 

Equivariant Loop Theorem (Meeks-Yau). Let M3 be a handle-body with boundary 
Igl and K £ Diff(M3,Ig) be a finite group. Assume M3 is given a metric in which 
K acts as isometries, and in which Ig has positive scalar curvature (outward like 
S2 = dD3). Then there exists an embedded minimal disk (D2, S1) £ (M3,Eg) such 
that the elements k e K either leave D2 invariant, or map D2 to a disk k(D2) with 
/c(D2)nD2 = 0. 

The first step in the analysis consists in showing that there is indeed a smallest 
disc in M3 with boundary on Ig (this leads to a boundary value problem which 
is a combination of Dirichlet and Neumann conditions). If the solution is not 
embedded, or if it intersects an iterate, it turns out that it cannot really be of 
smallest area. Meeks and Yau pioneered the use of 3-manifold techniques to show 
that minimal surfaces in 3-manifolds are often embedded rather than immersed 
[M-Y]. 

The proof due to Siu and Yau of the Frankel conjecture dates from the same 
year as the proof due to Mori. 
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Frankel Conjecture. If M" is a complex Kahler manifold with positive bisectional 
curvature, then Mn is biholomorphically equivalent to (CP". 

Siu and Yau use the minimal 2-spheres shown to exist by Sacks and Uhlenbeck 
[S-U]. Positive curvature tends to place restrictions on what can be minimal (as in 
Myer's theorem and in Schoen and Yau's proof of the positive mass conjecture). 
In this case, Siu and Yau show that the minimal sphere is actually a holomorphic 
curve [Si-Y]. 

Finally, we mention a much more recent result. The method due to Sacks 
and myself for finding minimal 2-spheres in manifolds had been used by Meeks 
and Yau to handle embedding problems for spheres in 3-manifolds, as well as 
by Siu and Yau in the Frankel conjecture. However, these proofs use the area 
minimizing spheres, whereas Micallef and Moore [M-M] later found a use for 
the non-minimizing critical points. Their isotropic curvature condition is satisfied 
if the Riemannian curvature is pinched between K and AK. 

Theorem [S-U]. If M is a compact manifold and %t(M) ̂  Q for some i =£ 1, then 
there is a 2-sphere which is a stationary point of the area functional. • 

Sphere Theorem of Micallef and Moore. IfMn is simply connected and has positive 
curvature on isotropic 2-planes, then Mn has the homotopy type of a n-sphere. 

Proof Show that %t(M) = 0 for i < [n/2]. If this is true, the Hurewicz homo
morphism and Poincaré duality complete the proof. If TCì(M) is the first non-zero 
homotopy group, a difficult minimax argument leads to the construction of a 
minimal 2-sphere of index at most (i — 2). However, the curvature condition 
forces the existence of at least [n/2] — 1 directions in which the second variation 
is negative. This leads to a contradiction. 

Gauge Theory and 4-Manifolds 

Donaldson's announcement of the restrictions on the topology of 4-manifolds 
with differentiable structures is a more recent mathematical event. Donaldson's 
startling use of gauge theory in four dimensions followed almost immediately 
the successful use of minimal surfaces, and development of these gauge theory 
techniques is still an active field. 

The program instigated and to a great extent carried out by Donaldson 
consists of encoding the properties of differential structures on 4-manifolds by 
studying the self-dual Yang-Mills equations on the manifold. The difficulty is 
that the mathematician must introduce a metric onto the smooth manifold. The 
first step is to understand the analysis, then the dependence on the metric must 
still be analyzed. 

The non-linear analysis part of Donaldson's theory consists in construction 
of the space of self-dual solutions of Yang-Mills equations over a conformai 
manifold M in a bundle with structure group SU(2) and second Chern class 
—k. (In the more recent literature, the orientation is reversed to study the anti-
self-dual equations in a bundle of second Chern class +fe. This fits in better 
with complex analysis). The basic ingredients is the list of theorems developed 
by global analysts. The Atiyah-Singer theorem determines the dimension of the 
moduli space and the Sard-Smale theorem can be used to show it is generically a 
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manifold. Taubes' implicit function theorem developed to construct solutions by 
gluing instantons on a manifold was later modified by Donaldson to include the 
construction of solutions on the connected sum M\ # Mi from solutions on M\ 
and M2. The solution spaces are not compact. However, the boundary is well-
understood via exactly the arguments developed to understand the convergence 
of minimal surfaces. 

Theorem (Donaldson) [D-2], If MA is a simply connected 4-manifold with positive 
definite self-intersection form, then the moduli space of solutions to the self-dual 
Yang-Mills equations with k = —1 and group SU(2) is generically an oriented 
manifold with isolated singularities whose boundary can be identified with M. 

The isolated singularities correspond to solutions where E = L © L"1 splits 
into line bundles. This is a theorem an analyst might well have proved, although 
it would certainly not be obvious to include the orientability. However, the 
topological use of this theorem appears a a corollary. 

Corollary. M4 is topologically the connected sum of(EP2's. 

Each singularity looks like a (CP2 with a positive orientation. There isn't 
anything else with definite form oriented cobordant to this sum of (CP2's. 

The theory has been developed further, and more elaborate properties of the 
solution space of the Yang-Mills equation are used in later results. We refer the 
readers to a forthcoming survey by Freed [Fr] and the article by Donaldson 
[D-l]. 

Some of the properties of the moduli spaces in gauge theory are quite similar 
to properties of Gromov's pseudoholomorphic curves. McDuff has used these to 
distinguish different symplectic forms [Gr, McD]. 

Complex Moduli Spaces 

The results about 4-manifolds obtained from the Yang-Mills equation are ob
tained by looking at the topology of the "moduli spaces of solutions." Here by 
moduli space we refer to the actual solutions to Yang-Mills divided out by the 
natural geometric equivalence. This is in many ways similar to older examples 
of moduli spaces, such as the Riemann moduli space of conformai structures 
on surfaces. In a development which is related to the moduli space of self-dual 
Yang-Mills equations, a whole class of problems in algebraic geometry can be 
put in a general framework which we might call infinite dimensional geometric 
invariant theory. 

The foundational paper is the paper by Atiyah and Bott on Yang-Mills 
equations over Riemann surfaces [A-B], An older result of Narasimhan and 
Sheshadri [N-S] proves that the moduli space of stable holomorphic bundles 
Mg over a complex curve Eg of genus g ^ 2 can be identified with the moduli 
space of projectively flat connections. These connections can be identified with 
the minima of the Yang-Mills functional on connections in Ig. Atiyah and Bott 
conjectured that there is a very beautiful analytic picture which fits this functional. 
The symmetry group of Yang-Mills is the real group of gauge transformations 
^. However, its complexification ^ acts and stratifies the sets of connections 
91 into classes of holomorphic structures 51/^c on the bundle. The Yang-Mills 



268 Karen Uhlenbeck 

functional is the L2 norm of moment map for this action. Stable orbits are 
(essentially) the orbits on which the action is free and the quotient Hausdorff. By 
a very general principle, the equivariant topology of the stable moduli space can 
be computed from the topology of 91 /^ by examining the Morse theory. 

Atiyah and Bott were not able to carry through the analysis, but obtained 
their results from algebraic geometry. Frances Kirwan [Ki] carried out this very 
general program in a finite dimensional setting. This pattern of development is 
strikingly similar to the original construction of the Morse theory of geodesies, 
which inspired the very useful finite dimensional development. Donaldson [Do-
3,4], Hitchin [Hi]> Daskalapoulos [Da], Bradlow [Br], Corlette [Co] and Simpson 
[Si] have carried out the analysis and extended the picture to cover coupled 
equations and complex manifolds of higher dimension. Naturally, the topological 
results are much better in complex dimension 1. This is because of the Sobolev 
inequalities. We discuss this in more detail in the next section. 

We finish this section by stating one of the basic results of these computations. 
It corresponds to the bundle version of Yau's solution of the Calabi conjecture. 
The topological consequences are similar, although as with the Calabi and Frankel 
conjectures, there is also an algebraic proof. 

Theorem (Donaldson, Uhlenbeck-Yau) [D-5, U-Y]. The moduli space of stable 
bundles on a complex Kahler manifold is isomorphic to the space of irreducible 
solutions to the holomorphic Yang-Mills equations (an extension of the anti-self 
dual equations to arbitrary dimension). 

Corollary. If E is a stable holomorphic bundle of rank r on a complex Kahler 
manifold of dimension n, then 

d(E)2 A con~2[M] < -^jC2(E) A œn~2[M]. 

This is a purely topological statement about the cohomology class of the 
Kahler form and the characteristic classes of the complex tangent bundle. This 
inequality is easily seen to be true by applying Chern-Weil theory to the holo
morphic Yang-Mills connections. 

The Poincaré Conjecture 

The Poincaré conjecture refers to one of the best known problems in topology. 
If a manifold M" has the homotopy type of Sn, is it S" (differentiably or 
continuously)? I don't think that analysts have gotten very close to proving or 
disproving the Poincaré conjecture. It is perhaps not so well-known that this 
conjecture has been the inspiration for a number of fundamental developments 
in analysis. 

Most of the ideas have focussed on Einstein's equation. This equation is 
the Ëuler-Lagrange equation for a critical metric for the variational integral 
fMKg dpg. Here vol M = fMdpg is kept fixed. Here Kg is the scalar curvature of 
the metric g. Einstein's equation reads 

Ricc i (g ) -4Kg = 0. 
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It goes without saying that we know more about a manifold if it has a solution 
of Einstein's equation on it. In particular, for a 3-manifold Einstein's equation 
is equivalent to the metric having constant Riemannian curvature. Clearly not 
every 3-manifold supports a solution to Einstein's equation because there is no 
metric of constant Riemannian curvature on most 3-manifolds. Nevertheless, this 
fact may not have been widely recognized by analysts in the past. 

Solving Einstein's equation is very difficult. Yamabe [Yam] proposed as the 
first step to fix the conformai structure and vary only the function describing 
lengths. This leads to a much studied conformally invariant problem usually 
called the Yamabe Problem [L-P], 

Palais was motivated to construct a very general theory of the calculus of 
variations [P]. He claims that he hoped to apply it to the Einstein functional. 
However, he very quickly realized that the critical points of the Einstein functional 
have infinite index and coindex. Hence they cannot be detected by the topological 
methods he developed. There is still some hope of using a minimax argument 
and the known solution to the Yamabe problem. I am not sure how much faith 
any of us have in this project, though. 

Hamilton's results on the Einstein equation (1982) were very surprising and 
promising. He showed via a heat flow argument that a 3-manifold with positive 
Ricci curvature supports a solution to Einstein's equation. This makes it the 
quotient of S3 by a finite group. This result has been very influential on analysis 
in general without providing a solution to the Poincaré conjecture. 

Finally, I would like to comment that the inspiration of the Poincaré conjecture 
is still very much with analysts. Thurston's results on 3-manifolds go a long way 
towards describing the geometry of 3-manifolds. Present thinking is that it may 
be possible to use some other variant of a curvature integral. An example might 
be 

/ |Riem(g)|^(g) 
M 

for p ^ 3/2 in 3 dimensions. The hope is that, by transposing gauge theoretic 
techniques over to manifolds, the obstructions to minimizing such integrals can 
be better understood. 

Conjecture (Due to Deane Yang). / / M3 is aspherical and atoroidal, then the 
minimum of the integral 

j 
JM 

|Riem(g)|3/2d/u(g) 
M 

under the constraint vol M = 1 is either zero, or is taken on by a metric of constant 
negative curvature, 

This result is in fact nearly implied by Thurston's conjectures on 3-manifolds. 
Yang's conjecture should lead to interesting analysis, even if it doesn't touch the 
Poincaré conjecture, 
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3. Analytical Technique 

The variety of topological results cited in the previous section is matched by 
the variety of different analytical methods which were used. There is no neat 
classification which matches a set of results with a set of techniques. I roughly 
classify the methods under the subheadings: 

Continuity method, 
Borderline dimension, 
Gauge theory, 
Heat equation methods. 

This is not an exhaustive list of methods. A theory such as that constructed 
by Andreas Floer uses nearly all the ideas mentioned in this section and more. 
Many of the latest developments involve topological index theory constructions 
on. the solution spaces as are needed for Donaldson's invariants of 4-manifolds 
and applications of Gromov's pseudo-holomorphic curves. 

Continuity Method 

The continuity method is on the surface naive. The goal is to solve an equation 

where F is a non-linear elliptic system. To use the continuity method, start with 
a trial go, and compute P(go) = Po- Put in a parameter e e [0,1] and solve 

F(ge) = (l-s)Fo. 

This is done by showing that dF(g8) is invertible as a map between appropriately 
introduced Banach spaces, and that the solution gt stays bounded in the tangent 
norm. The invertibility of dF implies via the implicit function theorem that the set 
of e € [0,1] for which we have a solution to our equation is open. The estimates 
(and some weak convergence) show this set is closed. The sophistication comes 
from the usual necessity of dealing with a number of Banach spaces, and from 
the further necessity of estimating the inverse of dF. 

This is the method used by S.T. Yau to solve the Calabi conjecture. While the 
equation is Einstein's equation 

R i c c i ( g ) - % ) = 0, 

in the Kählercase an equation can be written for a Kahler potential (p(s) where 
gM = go + ddcp(e) is a new metric. The equation becomes one for the potential 
function cp. The first stage of the estimates follow easily from the maximum 
principle. However, essentially all derivatives of cp have to be estimated, although 
the estimates become iterative after the third derivatives. No method of solution 
has been found which avoids estimates (nor would we expect this to happen). 
However the estimates themselves have been given a more geometric foundation 
and have found a wider application in the general study of Monge-Ampere 
equations. 

Uhlenbeck and Yau used the same method to solve the holomorphic Yang-
Mills equations on a Kahler manifold. Here, the metric is in a bundle, and there 
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is no potential, but there is a maximum principle. By adding an e, we obtain an 
invertible equation 

Pg + clng = 0. 

For e > 0, it is easy to solve this equation. As e —• 0, the solution does blow 
up unless an extra geometric condition of stability is satisfied. We show that, if 
blow-up does occur, that the normalized solutions *jj| converge to a degenerate 
metric n which violates the stability condition. The sophisticated analysis occurs 
in higher order estimates, not in the initial outline. 

Finally, Taubes' construction of instantons on four manifolds is via an implicit 
function theorem proved in the same style [T-l], His original iterative proof can 
be rewritten using the continuity method. He glues in the standard instantons on 
R4, localized to lie in a ball of radius X into a ball centered at p on an arbitrary 
compact four manifold. The resulting approximate solution can be modified by 
a small amount to give a solution to the instanton equation. Donaldson further 
needs to obtain a moduli space with the parameters (X,p). Again, it is the estimates 
and the invertibility of an operator very close to the derivative operator which 
are essential [D-2]. 

The continuity method is best suited to cases where invertibility of the 
derivative is built into the situation. In all the cases just cited, there is a moduli 
space of solutions whose dimension and structure can be understood by using 
the appropriate choice of coordinates (or gauge) when looking for the solution. A 
maximum principle is available for the Kähler-Einstein and Holomorphic Yang-
Mills examples. Invertibility in Taubes' construction comes from topological 
constraints and knowledge of S4. It remains a question when Taubes' gluing of 
point localized solutions applies to other partial differential equations. Schoen has 
applied a somewhat similar idea in constructing solutions of the Yamabe problem 
with point singularities [S] and Kapouleas [Ka] has shown the existence of many 
complicated surfaces of constant curvature in R3 by a not unrelated technique. 
These problems all exhibit conformai invariance, which allows the scaling of 
solutions. The resulting approximate solutions have a number of parameters. 
In the simple cases there is a projection onto a moduli space; in complicated 
examples the parameters must be chosen carefully. 

Borderline Dimension 

The critical ingredient in geometric problems is the Sobolev embedding theorems. 
For the usual mapping examples, L\ a C° is true in dimension 1, false in 
higher dimensions. Dimension 2 is the borderline or scale invariant dimension, 
because the integral ff \ds\2(dx)2 scales the same way as maxx€M \s(x)\. Both 
are scale invariant. A similar phenomena is observed for the Yamabe problem. 
In dimension n, L2 c LP for p < ^ . The relevant power of /; in the Yamabe 
problem is p — ^ [L-P]. 

For borderline problems, solutions can easily be found using minimization 
and weak convergence methods. The difficulty is that the limiting functions may 
not satisfy the constraint satisfied by the approximating functions. A typical 
example would be to fix a domain bounded by a simple closed curve T in the 
plane. Consider maps s : D2 —• R2 such that s\S{ : S1 -» T has degree one. Now 
minimize 
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3s 
dx 

2 

+ 
3s 

dy 

2> 

dxdy. 

The minimum occurs on a conformai map, and will provide a solution of 
the Riemann mapping problem. The difficulty is to keep the weak limit of 
a minimizing sequence from being trivial (i.e., to preserve the condition of 
sIS1 : Sl —> T is of degree one). One solution is to use the conformai invariance 
to fix the map on three points of S1. C.B. Morrey [Mo] used these ideas (which 
originate with Douglas' solution of the Plateau problem) to find minimal surfaces 
in arbitrary Riemannian manifolds. 

The fundamental observation is that in conformally invariant problems energy 
estimates plus scale invariance imply that the estimates and convergence are valid 
except possibly at an isolated set of points. At these points, small neighborhoods 
may conformally expand to cover large pieces of the geometric solution. The 
mathematician can recover the geometric solution by blow-up. For st -> 0, set 

(H Si(x) . 

Then st(x) -> s : R" = Sn - {p} -> M will be a solution on Sn [S-Ul]. 
This principle allows the construction of a large number of two-dimensional 

minimal surfaces, and underlines our present understanding of the Yamabe 
problem. Later it came to be fundamental in the analysis of solutions of the self-
dual Yang-Mills equation on 4-manifolds. The borderline dimension for Yang-
Mills turns out to be 4 instead of 2, and many results for harmonic maps and 
minimal surfaces have counterparts in theorems on Yang-Mills in dimension four 
[Ma, Se]. However, the topological results have come from Donaldson's study of 
the solution spaces of the self-dual Yang-Mills equations. Here existence theorems 
are proved by the implicit function theorem mentioned in the previous section. 
Whatever compactness of the solution space has is shown by the same techniques 
used in the construction of minimal surfaces [Do-2, F-U]. Gromov later applied 
these same ideas back in two dimensions to study pseudo-holomorphic 2-spheres 
in symplectic manifolds [Gr, McD]. 

It is an interesting question whether mathematicians will discover new and 
useful scale-invariant geometric partial differential equations. These techniques 
are just waiting to be used again! 

Gauge Theory (New Sobolev-Inequalities) 

Until gauge field theory appeared in mathematics, well-posed, natural, topological 
calculus of variations problems seemed confined to one dimension. It is possible to 
artificially construct variational problems of all sorts. However, the geometrically 
natural variational problems seem to be the only ones which are useful in 
topology. These are (a) first order in derivatives and (b) quadratic. Conditions (a) 
and (b) imply that the natural estimates are L2. Topological results come from 
C°, so we are stuck in the classical case of dimension one with geodesies for good 
problems and in the case of dimension 2 with minimal surfaces for the borderline 
case. 

However, in gauge field theory on a manifold M, the unknown is the con
nection A which is a one-form. The natural function is the I? norm of curvature 
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FA = dA-\- [A, A], which is the first derivative of A. However, topology comes from 
the overlap functions, which relate y4's via their derivatives, Intuitively speaking, 
curvature is the second derivative of the structure functions of a bundle. The 
relevant Sobolev embedding is L2 c C°. This embedding is true in dimensions 2 
and 3, and borderline in dimension 4. 

Some basic estimates need to be obtained before analysis can be done. Gauge 
theory problems have an infinite dimensional symmetry group, and the curvature 
FA = dA + [A, A] contains only part of the full derivative of A. These problems 
are related and are taken care of in the same analytical lemma. Because of 
the nonlinearity in the problem, the estimates are stated globally in terms of 
convergence. 

Theorem [U-l]. Let D\ be a sequence of connections on a compact manifold M 
of dimension n. If F\ is the curvature of Di, and P,- e LP forms a bounded se
quence for p > n/2, then there exists a subsequence D? and a sequence of gauge 
transformations s? such that s*,Dj> —̂  D in L\. 

A weaker version of this lemma applies in the borderline case p = n/2. 
Yang-Mills in dimensions 2 and 3 gives us new examples of variational 

problems in which the topology and analysis match. The 2-dimensional example 
has been extensively studied [A-B] and gives us the topological results on the 
moduli space of stable bundles over Riemann surfaces. Recently the analytical 
details were completed by Daskalapoulos [Da]. The 3-dimensional problem is 
not very well understood geometrically. We do not as yet know how to use the 
many solutions to Yang-Mills which exist on a 3-manifold. 

Heat Equation Methods 

One of the earliest global non-linear results was that of Eells and Sampson 
[E-S], Recall that the energy functional is defined on maps between two compact 
Riemannian manifolds s : M —> N 

E(s)= f \ds\2dp. 
JM 

Critical maps are called harmonic maps. Eells and Sampson constructed a har
monic map in every homotopy class of maps s e [M, N] when N has non-positive 
sectional curvature. They did this by following L2 gradient curves. Thus L2 flow 
is a non-linear system of parabolic equations 

dS Y 7 * J 

In fact, early in his career S.T. Yau wrote a number of papers which apply this 
existence theory [Y-2]. 

A potential method of solving a non-linear elliptic equation is to solve the 
associated non-linear parabolic equations and follow the solutions as t —> oo. This 
at first seems unduly cumbersome, and at least one mathematician expended some 
effort in finding "better" ways to find the Eells-Sampson harmonic maps [U-2]. 
In 1983 Richard Hamilton [H] was able to solve Einstein's equation on some 
3-manifolds by solving the associated parabolic equation and following the time 
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dependent solution to a solution of the elliptic equation. This result has already 
been noted in the section on the Poincaré conjecture in section 2. Hamilton's 
result has had a remarkable effect on geometric PDE, since this result surely 
cannot be obtained by variational methods. In the wake of Hamilton's work, 
both the Einstein and the Kähler-Einstein equation have been reexamined and 
solved in certain contexts using the heat equation method. 

The non-linear heat flow was the geometric gradient used by Atiyah and 
Bott to study the Yang-Mills equations. Their analysis was shown to be rigorous 
by Donaldson, and was used by Donaldson to solve the holomorphic version of 
Yang-Mills in arbitrary complex dimension [Do-3,Do-4]. Carlos Simpson [Si] has 
shown that this approach fits in very nicely with geometric invariant theory. The 
method can be used to obtain the same results as obtained by Yau and myself 
[U-Y] and is more philosophically satisfying than the perturbation method. 

Strüwe has gone a long way towards showing that many of the useful 
properties of harmonic maps (or minimal surfaces) can be obtained via the 
parabolic equation [St]. In many cases, the rigid method of looking for solutions 
of a geometric elliptic equation via the parabolic equation will give the most 
delicate results. This fits in best with the topology when there are moduli spaces 
of solutions, the equation is geometrically natural, and fewer choices are involved 
in following a parabolic equation compared to picking a minimizing sequence. 

4. Failures 

There are a number of theorems and conjectures which seem to be suitable for 
attack by the methods discussed in the previous section. Some mathematicians 
might regard these as "open problems." This is a matter of perspective. Perhaps, 
since I confess to having spent considerable time on them myself, the failure is 
personal. 

Mostow-Rigidity Theorem. If s : Mn —> Nn, n > 2, is a dijfeomorphism between 
hyperbolic manifolds, then s is homotopic to an isometry. 

The proof of this theorem ought to go somewhat as follows. Let s be the 
harmonic map homotopic to s. The existence of this map dates back to [E-S] in 
1963. Because M" and Nn have constant curvature —1, the map s is an isometry. 

Unfortunately, the only way we know that s is an isometry is by applying 
Mostow rigidity in a circular argument. This is, of course, only the simplest version 
of the Mostow rigidity theorem. There are some extensions due to Gromov which 
ought to be accessible by these means. Ultimately we would generally like to know 
better the relationship between curvature and volume. So far partial differential 
equations have not been helpful. 

A related theorem by Siu uses harmonic maps to establish rigidity of complex 
manifolds with negative bisectional curvature [Si]. Other work has been done 
by Codette, Gromov and Schoen, but a partial differential equation's proof of 
Mostow's theorem remains elusive. 

Theorem [Se]. Let Cf(S2,S2) be the space of maps of degree d between S2 and 
S2. Let Mf(S2,S2) Ç Cf(S2,S2) be the meromorphic maps of degree d. Then the 
inclusion of Md in Cf is a homotopy equivalence up to dimension d. 
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The proof ought to proceed as follows : Consider the energy integral 

E(s)=X-jj\ds\2dp 
s2 

on maps s : S2 —» S2. The meromorphic functions are the set on which E takes 
on its minimum. After removing a set of codimension d + 2, the gradient flow 
retracts the remainder of the space of C00 functions onto the minimum. 

This is a conformally invariant problem and we have not learned to handle 
the finer points of the topology of the flow! Segal's theorem is actually very 
extensive, applying to surfaces of arbitrary genus as the domain and a whole 
class of (positively curved) complex manifolds as the image [Se], It is related to 
the Atiyah-Jones conjecture on the topology of instantons embedded in the space 
of connections [A-J]. 

There is actually an analytic proof of Segal's theorem. It can pieced together 
by applying a theorem of Donaldson [Do-6] on monopoles and Taubes' proof of 
a Morse theory for the monopole equation [T-2], This seems too unwieldy to be 
a model proof, however. 

Thurston's Techniques for 3-Manifolds. As part of his theory of 3-manifold topol
ogy, Thurston develops techniques for analyzing hyperbolic 3-manifolds which 
depend heavily on rigidly embedded surfaces in the manifolds. These surfaces 
are geodesically embedded with constant Gaussian curvature, and are broken 
along geodesies. It is more natural from the point of view of analysis to examine 
the properties of constant mean curvature surfaces in 3-manifolds, (Zero mean 
curvature characterizes locally minimizing surfaces.) Up until this date, attempts 
to replace Thurston's broken surfaces with smooth surfaces have been strikingly 
unsuccessful. While some results in 3-manifolds are obtained by partial differ
ential equations techniques, Thurston's program has been unaffected by these 
methods. 

Jones-Witten Invariants. Two of the four fields medals at this congress were given 
out at least in part for a theory designed to produce 3-manifold invariants. There 
are many approaches to this theory, but the unifying approach of Witten is 
to start with a classical geometrical integral similar to those which have been 
used already in the applications of analysis to topology. Witten in fact takes 
the integral used by Floer. The classical Chern-Simons integral is defined for an 
su(N) valued one-form A on a 3-manifold. 

CS(A) = ^- f irfdAAA+^AAAAA 

The Jones-Witten invariant for the manifold has the form 

W(k,N) = lf eikcs{A)dA. 
J all A 

The symbol if indicates the Feynman path integral used heavily in quantum field 
theory. Unfortunately, this is not a situation which has been made completely 
rigorous. However, many tools exist as input into calculations in quantum field 
theory. We list a few, in the hopes of giving some flavor of the subject. 
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Perturbation Theory. Calculations in quantum field theory which relate to physical 
experiment are meant to obtain asymptotic formulas as 1/fe —> 0. They are done 
via Feynman diagrams, which represent power series expansion around a vacuum 
(usually A = 0). In all physical cases I know of, the domain manifold is R", n < 4. 
These methods would fail here, due to the lack of a proper Green's function. 

Stationary Phaze (and Ghosts). There are two separate problems which can be 
formally dealt with in more geometric problems. One is that of several important 
classical solutions and the other is the lack of ellipticity. Witten has carried out 
these asymptotic expansions and obtained the first order asymptotic in k [W-2]. 
There are clearly severe problems in the theory since further calculations cannot 
even be guessed at. No one has yet obtained lower order terms for manifolds, 
although some calculations exist for knots [B-N]. 

Finite Approximation. The approximation of the infinite dimensional integral / 
by finite integrals is known as lattice gauge theory. A large amount of super
computer time is spent on more down-to-physics calculations than those of 
Chern-Simons theory. The value of these type of calculations is not clear. They 
certainly shed no light on arbitrary 3-manifolds. 

Axiomatic Approach The quantum field theory involved in the Chern-Simons 
theory is particularly simple, and the formulation of the correct axioms seems to 
have been the greatest success of the theory so far. Atiyah has formuated the 
axioms for topological quamtum field theory (TQFT) [A-l]. 

Geometric Quantization. This formulation of quantum theory is probably the 
best understood by mathematicians. Witten and his students have a successful 
formulation of the Chern-Simons theory in terms of calculations on the moduli 
space of flat bundles [A-PD-W]. 

Canonical Quantization. It is usually necessary to use both the path integral 
and the Hamiltonian approach in computing the ingredients of quantum field 
theories. In many contexts, the Hamiltonian approach makes contact with group 
representations. We know that the input from 2-d conformai field theory is very 
useful in setting up the building blocks for the 3-d Chern-Simons theory. We can 
hence include on our list of useful mathematics : 

Group representation theory, 
Integrable lattice models of statistical mechanics, 
Quantization of completely integrable systems. 

Quantum Groups. Finally, some topologists have found that the direct quantum 
group (Hopf algebra) approach leads to the most direct construction of the 
Jones-Witten invariants [Q,Wa]. 

In classical mechanics, Lagrangian and Hamiltonian formulations are equiv
alent. In quantum field theory, both are necessary and complementary. What 
remains in question is the consistency (not equivalence) of the facts gained from 
the different approaches* To someone like myself, who has worked in topolog
ical applications of partial differential equations, the situation is analogous to 
the plurality of approaches which can be made to understanding the Laplace 
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operator on a Lie group. It is possible to get input from a wide variety of 
mathematical directions: separation of variables, special functions, finite-element 
approximation schemes, group representations, asymptotic heat kernel methods 
and a variety of different types of geometric constructions. However, we know 
what the Laplace operator itself is. This holds the different ideas together. The 
study of Jones-Witten invariants is similar, but we are missing the central in
gredient which corresponds to the Laplace operator — a proper definition of 

Recent computer calculations of D. Freed and R. Gompf indicate that two 
approaches (both due to Witten), from conformai field theory and from stationary 
phase approximation actually agree for lens spaces and some homology spheres 
[F-G]. Any mathematical demonstrations of this agreement would of necessity 
contain the proof tht analytic torsion agrees with combinatorial (Reidemeister) 
torsion. Perhaps we should look forward to a construction of f which will pull 
this theory together. 
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Multidimensional Hypergeometric Functions in Conformai 
Field Theory, Algebraic iT-Theory, Algebraic Geometry 

Alexandre Varchenko 

Moscow Institute of Gas and Oil, Leninski Prospekt 65, 117917 Moscow, USSR 

Rudolf Arnheim in the book Visual Thinking (LA. 1969) writes that usually concepts 
tend to crystallize into simple, well-shaped forms. They are tempted by Platonic 
rigidity. This creates troubles when the range they are intended to cover includes 
relevant qualitative differences. The variations can be so different from each other 
that to see them as belonging to one family of phenomena requires mature under
standing. To the young mind, they look as different from each other as did the 
morning star from the evening star to the ancients. 

The notion of a general hypergeometric function was introduced by I.M. Gelfand 
in the mid 80s. Now it is clear that general hypergeometric functions play a 
major role in interesting parts of mathematics such as Conformai Field Theory, 
Representation Theory, Algebraic K-Theory, Algebraic Geometry and provide new 
connections among them. 

The general hypergeometric functions are generalizations of the Euler beta-
function. The beta-function is the integral of a product of powers of linear functions 
over the segment. In the generalization the segment is replaced by a polytope and 
the integral 

-I I(A,fi*)= \ fp...fj»dx1...dxn 

is considered as a function of the polytope A a R", the linear functions {f}, and 
the exponents {aj c C. The simplest examples are the classical hypergeometric 
function, the Euler dilogarithm, the volume of a polytope. The systematic study of 
the general hypergeometric functions was begun only recently in works of I.M. 
Gelfand's school and K. Aomoto. 

There are three basic reasons for the appearance of general hypergeometric 
functions: the general hypergeometric functions satisfy remarkable differential equa
tions, the general hypergeometric functions satisfy remarkable functional equations, 
the general hypergeometric functions, as analytic functions of their arguments, have 
remarkable monodromy groups. 
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1. Functional Equations 

1.1 Volume of Poly tope 

The volume of a convex polytope in R 3 has the following properties. The volume 
does not change under movements of the polytope. If a polytope is divided into two 
parts by a plane, then the volume of the polytope is equal to the sum of the volumes 
of the parts. These properties are functional equations of the volume considered as 
a function on the space of all convex polytopes. The properties of the volume suggest 
the following definition. The group of polytopes in R 3 is the abelian group generated 
by the symbols (A), where A c R 3 is any convex polytope, subject to the relations 

(a) (A) = (gA) for any motion g. 
(b) (A) = (A{) + (A2), if A is divided by a plane into parts Au A2. 

Is an element of this group uniquely determined by its volume? Is a regular 
tetrahedron equivalent to a cube of the same volume? These questions form the con
tent of the third Hilbert problem. The third Hilbert problem was solved in Dehn's 
articles in 1900-1902, before it was published. It turned out that the regular 
tetrahedron cannot be composed from a cube because the two have different Dehn 
invariants. 

Consider an edge of a polytope. An edge has two characteristics: the length / 
and the angle 0 at the edge. The angle is defined up to a multiple of n and lies in 
R/TCZ. The Dehn invariant of a polytope is the expression D(A) = Yjk® 6» where 
the sum is taken over all edges of the polytope. The Dehn invariant is an element 
of the group R ® z (R/rcZ). It is obvious that the invariant does not change under 
movements of the polytope and is additive under cuttings. It is easy to see that the 
Dehn invariant of a cube is equal to zero (as is that of any prism) and that the Dehn 
invariant of a regular tetrahedron is not equal to zero. So a regular tetrahedron 
cannot be composed from a cube. According to Sydler, 1965, the equivalence class 
of a polytope is uniquely determined by its volume and Dehn invariant, see also 
[Cl, Du, DuPS, DuS, S]. 

This example demonstrates the scheme leading from a hypergeometric function 
to interesting algebraic concepts. Given a function on some space satisfying some 
functional equations one considers the abelian group generated by the points of the 
space subject to relations given by the functional equations of the initial function. 
If the initial function satisfies some differential equations then the group has addi
tional structure. 

1.2 Example 

The Euler dilogarithm is the function defined by the power series 
00 

Li2(z) = £ zm/m2 for \z\ < 1. 
m = l 

The dilogarithm is a hypergeometric function. It has the integral representation 

dy 
Li200= — A 

JA * 
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Fig.l 

where the triangle A is shown in Fig. 1. The dilogarithm satisfies the differential 
equation 

dLi2(t) = ln(ì -t)dln(t) 

and the functional equation 

/y(l - x)\ , 11 - x 
Li2(x) - Li2(y) + U2(y/x) - Li2 ( ̂  4 ) + Li2 

x(i-y). 1 

*= n2/6 - ln(x) In 
1 

1 

for 0 < y < x < 1. 
The algebraic construction. The Bloch group of afield F is the abelian group B2, 

generated by the symbols (t), where t e F\{0, 1}, subject to the relations 

(x)-(y) + (ylx)-(}\ {) + 0 (1) 
\x(i - y)J ' Vi - y 

for any x, y eF \{0 ,1} . 
Consider the multiplicative group F* of a field F and its exterior square F* A z F*. 

The map 
t)->(t) A (1 - 0, 

sending the symbol (t),t e F\{0, 1}, to the element (f) A (1 - t)of the group F* A F\ 
has a remarkable property. It sends the alternating sum of the elements on the 
left-hand side of (1) to the zero element of the group F* A F*. This gives a well-
defined homomorphism 

S : B2 -> F* A F*, 

called the 5/OC/î complex. 
The homology groups of the Bloch complex are connected with the Quillen 

iC-groups of the field F. In algebraic K-theory with any field F there is associated 
the sequence of groups Ktt(F), n^O. For these groups a multiplication Kp ® Kq -• 
Kj,^ is defined. 

Theorem (Matsumoto, Suslin). 

1) Coker S ^ K2(F); 
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2) (Ker S) ® Q ^ K3
nd(F) ® Q, 

w/iere K3nd = K3/K\ is the indecomposable part of K3. 

This theorem gives an elementary definition of K2 and the indecomposable part 
of K3 (modulo torsion). An interesting problem is to find elementary definitions of 
all the groups Kn(F). Conjecturally such definitions arise from functional and 
differential equations of polylogarithmic functions. 

There are several possible generalizations of the logarithm and the Euler 
dilogarithm [A3, Le, GM, HaM]. One of them is the Aomoto polylogarithms. 

1.3 Aomoto Polylogarithms 

A simplex in P"((C) is an ordered set L = (LQ, Lu ..., Ln) of hyperplanes. A simplex 
defines the differential n-form 

coL = d ln(zjz0) A • • • A d ln(zjz0), 

where z{ = 0 is a homogeneous equation of L{. With a second simplex 
M = (M0,...,Mn) n-chain AM in Pn(<E)\L is connected. AM is a curved oriented 

M0 

M, 
M2 

P2(<C) 

Fig. 2 

n-simplex with boundary in M, see Fig. 2. With a pair of simplices an integral 

an(L; M) = ML 

is associated called the Aomoto polylogarithm of order n. The integral depends on 
the choice of the chain AM, but does not change under its deformation. The Aomoto 
polylogarithm has the following properties. 

(2) Antisymmetry. The integral is antisymmetric with respect to renumbering of the 
hyperplanes of the first or the second simplices. 

(3) Additivity with respect to a form. If L0, . . . , Ln+1 are (n + 2) hyperplanes and 
Ü := (L 0 , . . . , Li,..., Ln+1), then 

Z (-l)JaM(L'-;M)==0. 

(4) Additivity with respect to a chain. If M 0 , . . . , Mn+1 are (n + 2) hyperplanes, then 
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"£ (-l)jan(L;MJ) = 0 

for a suitable choice of AMJ. 
(5) Projective invariance. For every g E PGL(n -f- 1, (C) if AgM = gAM, then 

an(gL; gM) = an(L; M). 

For example, an Aomoto polylogarithm of order 1 is defined by two pairs of 
points L = (L0, Lt),M = (M0, M J on P^C) and is equal to an integral of the form 
(ßL = dln(z1/z0) over a path going from M1 to M0. flj(L;M) is equal to the 
logarithm of the cross ratio of the four points (L0, Ll9 M0, Mx). The Euler di
logarithm is a special case of the Aomoto dilogarithm, see Fig. 1. 

There are two connections of polylogarithms of different orders: the multi
plication and the differential equation. 

(6) The product of Aomoto polylogarithms of orders p, q may be expressed as a 
sum of Aomoto polylogarithms of order p -f q, see [BGSV]. 

(7) The differential of the polylogarithm of order n, considered as a function on the 
space of all configurations (L, M) may be expressed through suitable poly
logarithms of orders n — 1 and 1 [A3]. 

Aomoto polylogarithms describe parameters of the mixed Hodge structure of 
cohomology groups of a pair Pn((D)\L, M\M n L, where L, M are configurations 
of hyperplanes, see [BMS, BGSV]. For example if two points L0, Lx e PA(C) are 
removed and two points M0, M1 eP1^) are identified then the mixed Hodge 
structure of the first cohomology group of this space is defined by the number 
e x p ^ ^ L o ^ i j M o ^ i ) ) . 

1.4 Hopf Algebra of Pairs of Simplices 

Taking properties of Aomoto polylogarithms as a starting point, it is possible to 
suggest a definition of a graded Hopf algebra A(F) = A0 © Ax © A2 © • • • for any 
field F [BMS, BGSV]. Here A0 := TL, An is the abelian group, generated by the 
symbols (L; M), where L = (L 0 , . . . , Ln), M = (M0,..., M„) are ordered sets of 
hyperplanes in Pn(F), subject to relations similar to (2)-(5). The multiplication 
pM\Ap®Aq-+ Ap+g and the ̂ multiplication v„ = © J = 0 W , : An -• 0 £ = o Ap ® 
An_p of the Hopf algebra are modeled by properties (6), (7). 

There is the sequence of complexes A[n2, neTL+, associated with any graded 
Hopf algebra A. The simplest of these complexes are 

Al\']:0-^A1-^0, 

A[2] :0-+A2
 Vl>1 > A1®A1-^0, 

>4 [3 ] :0^X 3
 V2|1*VllZ >A2®A1®A1®A2

 v^1'1®v^> A± ® Al ® A, ->0. 

The complex A[rf\ is concentrated in degrees from 1 to n. Conjecturally, the 
cohomology groups of these complexes give the K-groups of the field F modulo 
torsion. 
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Conjecture (Beilinson) [BGSV]. 

[(»-D/2] 

Kn(F)®<t}~ 0 Hn-2j(Aln-n®<$). 

Theorem [BGSV]. The conjecture holds for n<3: 

K^H^AfY]), K2^H2(A[21), K3,Q * H3(A[3\)® H^A^l 

In the last years efforts have been undertaken to construct a motivic cohomology 
theory of algebraic manifolds which would be an arithmetical variant of the singular 
cohomology theory. According to Beilinson a category of motivic sheaves over the 
spectrum of a field F is a category of graded modules over a suitable algebra and a 
possible candidate for it could be the algebra (A(F) ® Q)* dual to the algebra 
A(F) ® Q. 

1.5 Bloch-Wigner Function 

The Euler dilogarithm may be continued to a multivalued analytic function on 
(C\{0, 1}. The Bloch-Wigner function is its imaginary part 

D(z) = Im(Li2(z)) + arg(l - z) ln|z|, 

see [B2, Z]. The Bloch-Wigner function has^the following properties. 

(8) D(z) is single-valued real analytic on C except at the points 0 and 1, where it is 
only continuous. 

(9) D(x) - D(y) + D(y/x) - D ( g ~ ) + D ( ^ j = 0 

f o r a n y x , y e C \ { 0 , 1}. 

In particular, for any field F c C the Bloch-Wigner function defines a homo
morphism B2(F) -> R of the Bloch group to real numbers. 

1.6 Polylogarithms and Zeta-Function 

Let F be an algebraic number field of degree n over Q with rx real and r2 complex 
places, rx + 2r2 = n. Let ÇF(s) be the Dedekind zeta-function of F. The value £^(2) 
is expressed in terms of the values of the Bloch-Wigner function at points of the 
field F. 

Theorem [Bo, B, Su, Z]. In the Bloch complex of F the group Ker S is isomorphic 
(modulo torsion) to rEr2. The co-volume of the image of the map Ker S -> W2, defined 
by the composition of complex imbeddings and the Bloch-Wigner function, is a 
non-zero rational multiple O/7C"2(,"1+,"2VFI1/2CZ?PX where dF is the discriminant of F. 

D. Zagier conjectured that for any natural number m the value (f(m) has similar 
expression in terms of value's of the classical polylogarithms of order at most m at 
points of F, [Z]. Recently A. Goncharov proved this conjecture for m = 3. 
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Let Z[F\{0, 1}] be the free abelian group generated by the symbols (t), 
t G F\{0,1}. Q[F\{0, 1}] := Z[F\{0, 1}] ® Q. For any function D : C\{0, 1} -• R 
there is a homomorphism D : Q[C\{0, 1}] -> R, D : $>*('/) -• £n,D(fj. 

Let {^}, j = 1 Ti + 2r2, be all possible imbeddings F -+<E, ari+k = ari+f2+k. 

Theorem [Go]. There exist zl9..., zri+r2 E Q[F\{0,1}], such that 

W3) = W^|^r^det(D3(^f)X 
where j ^ 1 , . . . , ^ + r2, 

D3(z) = Re(Li3(z) - ln|z|Li2(z) + èln^zILi^z)), 

L\n(z), n > 1, is the classical polylogarithm of order n, defined by the power series 

00 

Li„(z) = I z">" for \A < 1. 
WI = 1 

2. Hypergeometric Integrals 

2.1 Classical Hypergeometric Function 

The hypergeometric series 

F ( M ; C ; Z H I + - Z +
 l

l i 2 c ; ; + 1 ) v 

fl(q + l)(a + 2)fo(b + l)(b + 2) 3 
+ l-2-3c(c + l)(c + 2) Z + ' " 

satisfies the differential equation 

z(l - z)F" + (c- ( f l + H l)z)F' - abF = 0 

and has the integral representation 

r(b)r(c-b)F^ b; ä p _ _ 2)_a A> 
Ac) J i 

Thus the classical hypergeometric function has three definitions: as a power 
series, as the solution of a differential equation, as an integral depending on a 
parameter. 

These objects are associated with the family of the configurations of the triples 
of the points 0,1, z of the complex line and are generalized naturally to the case of 
a family of configurations of hyperplanes in an affine space [A, G, GGZ, GKZ]. 

2.2 Cohomology of Complement of Configuration of Hyperplanes 

Let ^ be a finite set of hyperplanes in C". Choose a linear equation fH = 0 for any 
hyperplane. Define the closed differential form dfH/fH. The Orlik-Solomon algebra 
is the exterior algebra generated by 1 and the forms dfH/fH, H e (€. 
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Theorem [Ari, Bri]. The Orlik-Solomon algebra is naturally isomorphic to the complex 
cohomology ring of the complement of a configuration. 

In other words every cohomology class can be represented as a polynomial in 
the forms dfH/fH, such a polynomial defines the zero class only if it is equal to zero. 

Example [Ari]. The Orlik-Solomon algebra of the configuration of all diagonal 
hyperplanes tt — tj = 0 in <CM is isomorphic to the exterior algebra generated 
by 1 and the symbols wtj subject to the relations wtj = Wß, wu A wjk + wjk A wki + 
wfci A Wij = 0 for pairwise different i, j , k. P(t) = (1 + t)(l + 2t)... (1 -f (n — \)t) is 
the Poincaré polynomial of the algebra, see also [Or, OS]. 

V.l. Arnold computed this example in connection with study of superpositions 
of algebraic functions and Hubert's 13th problem; see [Ar2]. 

A configuration is called weighted if a complex number a(H) is assigned to each 
hyperplane H. The weights define the function 

4= UfSiH)-

This function is a multivalued function on the complement of a configuration. The 
differential of this function has the form 

dla = la X oc(H)dfH/fH. 

A hypergeometric differential form of a weighted configuration is any form lam, 
where co is a differential form of the Orlik-Solomon algebra. 

Hypergeometric forms form a finite-dimensional complex, as the differential of 
a hypergeometric form is a hypergeometric form: 

d(lao>) = L E «(//) dfH/fH A co. 

The weight local system ^(a) on the complement of a configuration is the 
complex one-dimensional local system of coefficients with the monodromy around 
a hyperplane H equal to the multiplication by exp( — 2nia(H)). 

The cohomology of the complement of a configuration with coefficients in the 
weight local system is computed by the complex of hypergeometric forms. More 
precisely for any number t denote by ta the weights H i-> ta(H), H e % homothetic 
to the initial ones. 

Theorem [SV3]. For almost all £ e C the cohomology of the finite dimensional 
complex of hypergeometric forms with weights ta is naturally isomorphic to the 
cohomology of the complement of a configuration with coefficients in ^(ta). 

For example, this is true for t = 0 according to the Arnold-Brieskorn theorem. 
Exceptional values of t form a deserete set. Conjecturally the exceptions form 
explicitly given arithmetical progressions [Aol]. 
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2.3 Determinant Formulas 

The Euler beta-function is the alternating product of Euler gamma-functions: 

B(a,ß) = r(a)r(ß)/r(a + ß). 

There is a generalization of this formula to the case of a configuration of 
hyperplanes in an affine space [V, Se, A6]. 

Z2 23 

Fig. 3 

Example. Consider the configuration of three points zu z2, z3 on a line, see Fig. 3. 
The point Zj is the zero of the function fj = t — zjt Put 

la = (t-z^(t-z2r
2(t-z3f

2, 

a>i = <*il*d{t - zx)/(t - z j , m2 = a2lad(t - z2)/(t - z2), 

then 

Thus the determinant of integrals of basic hypergeometric forms of a con
figuration over all bounded components of the complement of the configuration is 
equal to the product of values of powers of linear functions at the vertices of the 
configuration up to a multiplicative constant equal to an alternating product of 
values of the gamma function [V], 

The formula has an arithmetical analog. F. Loeser extended it to the case of a 
configuration of hyperplanes in an affine space over a finite field [Lo]. In this case 
the gamma-functions are replaced by Gauss sums, the determinant of the hyper
geometric integrals is replaced by an alternating product of the determinants of the 
Frobenius operator in suitable cohomology groups. 

3. Hypergeometric Functions and Representation Theory 
of Lie Algebras 

The appearance of hypergeometric functions in the representation theory of Kac-
Moody algebras, their quantum deformations, and in the Conformai Field Theory 
(CFT) is connected with integrals of the form 

I(tu...,tn) = 
V ) 

n (tj-tk)^dtn+1 A - A A*, 
l<j<fc^JV v y ) 

m 

N = m + n. 
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Such integrals correspond to special configurations. The characteristics of these 
configurations, in particular the homology groups with twisted coefficients of the 
complement, the complex of hypergeometric forms ar̂ e interpreted as objects of the 
representation theory of Kac-Moody algebras. Such integrals satisfy the differential 
equation which is described in terms of representation theory and is known in CFT 
as the Knizhnik-Zàmolodchikov equation. The branching of such integrals is 
described in terms of quantum groups corresponding to Kac-Moody algebras. 

The appearance of these integrals in physical models isn't surprising. Imagine a 
model in which points tl9 ..., tN of the line pairwise interact. The interaction is 
described by the function (tj — tk)^

k. In this case the average of the interaction over 
all positions of the last m points is an integral characteristic of the first n points, 
described by the hypergeometric integral. 

In applications the constants of the interaction Xik have the form 

hk = B(VP Vk)/K> 

where vl9 ..., vN are vectors of some complex linear space V, B is a symmetric 
bilinear form on V, and K is a complex parameter of the model. 

In applications to the representation theory of Kac-Moody algebras, V is the 
dual space to the Cartan subalgebra of the Kac-Moody algebra, B is the Killing 
form on it. The vectors vn+1, ...,vN corresponding to the averaged points belong to 
the set of simple negative roots. The vectors vl9 ..., vn corresponding to the 
parameters of the integral are the highest weights of the representations of the 
Kac-Moody algebra. 

3.1 Hypergeometric Construction 

Assume given 

(a) natural numbers n <> N, N = m + n; 
(b) a complex linear space V, symmetric bilinear form B on V and an ordered set 

of (weight) vectors v1,...,vNeV, not necessarily different. 

From these data the construction builds a complex linear space W and a 
differential equation on a W-valued function ^(z l 9 . . . , z„): 

H = K~l E Qjk<l>à(Zj - zk)l(Zj - zk), 
l<j<k^n 

where Qjk :W->W are suitable linear operators, K is a complex parameter. 

The Construction. Consider the configuration of all the diagonal hyperplanes tj = tk 

in <EN. Define the weights of the diagonals: Xjk = B(v}, vk)/K. 
The weights define the complex of hypergeometric forms, the one-dimensional 

complex local system Sf on the complement of the diagonals with the monodromy 
around the diagonal t-3 = tk equal to the multiplication by exp(27rf/lJfc). Hyper
geometric forms have well-defined integrals over chains with coefficients in y . 

Let CN -> <Cn be the projection on the first n coordinates. A fiber over a point z 
is the space <Cm in which the diagonals cut a configuration depending on z. Denote 
it by »(z). 
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'(z) c C" 
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Fig. 4 

A point of the base is called discriminantal if the configuration in the fiber over 
it is degenerate. The discriminantal points form the discriminant, the configuration 
of all diagonal hyperplanes. Over the complement of the discriminant, fibers with 
distinguished configurations form a locally trivial bundle. The fundamental group 
of the complement of the discriminant is the pure braid group on n strings. 

Consider the restriction 9(z) to the fiber <Cm\#(z) over a point z of the local 
system 9*, and the top homology group Hw,(C'"\^(z), 9(z)) of the fiber with coeffi
cients in this restriction. The homology bundle is the complex vector bundle over 
the complement of the discriminant with fiber JJm(<C'"\^(z), 9"(z)) over the point z. 

The homology group Hm(^n\€(z), £f(z)) depends on z and is uniquely translated 
along paths in the base. The Gauss-Manin connection is this integrable connection 
on the homology bundle. 

The monodromy representation of the Gauss-Manin connection is the represen
tation of the pure braid group in the automorphism group of the homology group, 
induced by translations of the homology group along loops in the complement of 
the discriminant. 

The monodromy representation gives the well-known Burau representation 
of the braid group in the special case of one-dimensional fiber and equal weights 
[K2, GiS, Gi]. As will be explained the representations of the braid groups appear
ing in the theory of quantum groups are closely connected with the monodromy 
representations of the constructed Gauss-Manin connections. 

An integral of a hypergeometric form on <EN over any cycle in a fiber is equal to 
zero certainly if this form is the differential of some form or the restriction of this 
form on any fiber equals zero. 

Accordingly we define the hypergeometric cohomology group as 

3ßT = Qml(Zm + dQ™-1), 

where Qm is the space of hypergeometric m-forms on <EN, Zm c Qm is the subspace 
of forms with zero restriction on any fiber, dQ"1'1 <= Qm is the subspace of differen
tials of hypergeometric (m — l)-forms. 

The integration defines the homomorphism 

i : Hm(<Em\W(z), Sf(z)) -* (tfm)* 
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of the homology group over a point z to the space independent of z. The homo
morphism depends on z and the parameter K, I = i(z, K). 

Theorem [SV]. For almost all K'1 with exceptions in a suitable discrete subset of C the 
homomorphism i(z, K) is an isomorphism for all points z outside the discriminant. 

Theorem [Ao, SV]. There exist linear operators Qjk : (Jfm)* -> (•#"")*, 1 < j < k < n9 

with the following properties. For any locally constant homology class 
A(z) e Hm(<Em\<#(z), 9>(z)) the (Jtrn)*-valued function c/)(z) := i(z, /c)[z/(z)] satisfies 
the differential equation 

d<t> = K~1 E Qìk<t>d(Zj-zk)l(Zj-zk). (10) 
l<J<fc<N 

In other words hypergeometric integrals satisfy the differential equation (10) and 
for a general K all solutions of the equation are given by the integrals. 

This picture has a symmetry group. Any permutation of the coordinates in <DN 

accordingly enumerates the weight vectors vi9 ...9vNeV. Any permutation of the 
last m coordinates preserving the ordered set of the weight vectors preserves the 
fibers of the projection, the weights of the diagonals, acts on the complex of 
hypergeometric forms, on homology groups of fibers, on solutions of the differential 
equation (10). 

The twisted homology group f/m(Cm\#(z), ^(z))ant is the antisymmetric part of 
the group Hn((C

m\^(z), £f(z)) with respect to the action of the permutation group 
of the last m coordinates preserving the ordered set of weight vectors. The twisted 
hypergeometric cohomology group M^t is the antisymmetric part of the hyper
geometric cohomology group with respect to the action of the same group. 

The result of the construction is the complex linear space («^„t)* a nd a (^nt)*_ 

valued differential equation (10) on <CW. 

3.2 Representations of Lie Algebras and Knizhnik-Zamolodchikov Equation 

As an example consider the Lie algebra g = sI2(C) of complex 2 x 2-matrices with 
the zero trace, g is generated by the standard generators e,f, h subject to the relations 
le,n = h,th,n = -2f,[h,el = 2e. 

Fix an invariant scalar product on g (the Killing form). Let Q e g ® g be the 
tensor corresponding to the invariant scalar product (the Casimir operator). 

Let L!,. . . , L„ be representations of g, L = Lx ® • • • ® Ln. Let Qjk be the linear 
operator on L1 ® • • • ® Ln, acting as the Casimir operator on Lj ® Lk and as the 
identity operator on the other factors. The Knizhnik-Zamolodchikov (KZ) equation 
on the L-valued function ${zl9..., zn) is the system of the differential equations 

dj = KT1 E QjJà(Zj - zk)/(zj - zk), 
l^j<k<n 

where K is a complex parameter. 
The KZ equation defines the integrable connection on the trivial bundle L x <C" 

with singularities over the diagonals. This connection has a remarkable property: 
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parallel translations of this connection commute with the action of g on fibers. Thus 
the eigenspaces of the operators e, f, h are invariant under parallel translations. 

It turns out that the KZ equation restricted on suitable invariant subspaces 
coincides with suitable hypergeometric equations constructed above. 

More precisely, let I) cz g be the Cartan subalgebra generated by h. The Verma 
module of g with the highest weight A e I)* is the infinite dimensional representation 
of g generated by one (vacuum) vector v with the properties ev = 0, hv = </?, A)v. 
Verma modules are the simplest representations from which all finite-dimensional 
representations may be constructed. Let M l5 . . . , M„ be Verma modules with the 
highest weights Al9...9A„e I)*. Put M = M1 ® • • • ® M„, A = Ax + • • • + An. M is 
the direct sum of the eigenspaces of the operator h, M = (£)m^oMA^ma, where 
MA-mai is the eigenspace with the eigenvalue </?, A — ma}, a e I)* is the single 
positive root of sI2(C). The vacuum subspace V a c ^ , ^ cz MA-ma is the subspace of 
all vectors annihilated by the operator e. 

Theorem [SV, DJMM]. The vacuum subspace Vac^_ma and the KZ equation 
restricted on it are canonically isomorphic, respectively, to the space (^„t)* dual to 
the twisted hypergeometric cohomology group, and to the differential equation with 
values in (JtfZni)* constructed by the hypergeometric construction from the projection 
<Em+n ->• CD", the linear space I)*, the Killing form on I)* and the ordered set of the 
vectors A l9..., A„, — a,..., —a e I)*. 

m 

Corollary. For a general K all solutions of the KZ equation with values in a tensor 
product of Verma modules are given by the hypergeometric functions. 

An analogous picture has a place if the algebra sl2((C) is replaced by any 
Kac-Moody algebra, see [SV, DJMM, Ma, Ch, CF, L]. 

This theorem shows that the KZ equation has topological nature, it is just the 
Gauss-Manin connection of the simple fiber bundle. 

3.3 Hypergeometric Functions in the Conformai Field Theory 

The KZ equation was invented in the CFT. Its solutions describe (n + l)-point 
correlation functions on the Riemann sphere in the Wess-Zumino-Witten model 
[BPZ, KZ]. In the minimal models of the CFT correlation functions on the sphere 
have also integral representations in terms of the same configurations [DF]. For 
the first time integral representations of correlation functions in the CFT appeared 
in the works by Dotsenko and Fateev. 

Any model of the CFT have a certain set of primary fields {(f>n(z, z)} and an 
operator algebra 

^„(z, z)^m(0,0) = £ C * m z ^ - ^ - ^ - z » ' - 2 » ^ ( 0 , 0) + • • •, 
P 

where the numbers An, Zn are the conformai dimensions of the field (j)n, the numbers 
Cfm are the structure constants of the model, in this expression the terms containing 
non-primary fields are omitted, see [BPZ]. The integral representations of the 
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correlation functions allowed one to calculate the structure constants of the minimal 
models of the CFT and of the Wess-Zumino-Witten model corresponding to sI2(C) 
[DF, Do]. It turns out that in these cases the structure constants are equal to certain 
alternating products of values of the gamma-function similar to that appearing in 
the determinant formula of Sect. 2.3. In these cases any structure constant was 
represented by a certain hypergeometric integral. Probably in other models of the 
CFT the structure constants are connected with suitable determinants of hyper
geometric integrals which in their turn may be expressed as alternating products of 
values of the gamma-function. 

3.4 Hypergeometric Functions and Quantum Groups 

The hypergeometric integrals as functions of the parameters satisfy the KZ equation. 
The monodromy of the KZ equation is described in terms of quantum groups. 

The monodromy representation of the KZ equation is the representation of the 
pure braid group on n strings in the group Aut(Lt ® • • • ® Ln) generated by analytic 
continuation of solutions along loops in the base. Denote it by zK. Algebraically we 
define another representation of the pure braid group. 

According to Faddeev, Kulish, Reshetikhin, Sklynin, Jimbo, Drinfeld [Drl, J] 
the universal enveloping algebra If g of the algebra g = sI2((C) is deformed to the 
quantum universal enveloping algebra Uq§ (the quantum group) depending on the 
complex parameter q. 

For the quantum group a comultiplication A : L^g -> L^g ® UqQ is defined. If 
Vl9 V2 are representations of the quantum group then the comultiplication induces 
a representation structure on their tensor product. The representations Vx ® V2 and 
V2 ® Fi are isomorphic. The isomorphism is defined by the formula 

V1®V2^V1®V2^ V2 Vu 

where P is the transposition of the factors and R e UqQ ® UqQ is the distinguished 
element called the universal R-matrix of the quantum group. 

i + l 

Fig. 5 

Let Vl9 ..., Vn be representations of the quantum group. Then the pure braid 
group acts,on their tensor product. Namely let al9..., on^ be the elementary braids 
shown in Fig. 5. To any braid o{ assign the linear operator 
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Vx®'"®Vi®Vi+1®-'-®Vn^V1®---® Vi+1®Vi®--®Vn 

acting as PR on the i-th and (/ + l)-th factors and as the identity operator on the 
other factors. These operators define the representation oq of the pure braid group 
on n strings in A u t ^ ® • • • ® Vn). 

For general values of q the representation theory of the quantum group Uq§ is 
the same as the representation theory of the algebra g, any representation of the 
algebra g is deformed canonically to the representation of the quantum group. Let 
Ll9..., Ln be representations of g and Llq,..., Lnq be their quantum deformation. 

Theorem [K, Dr2], The monodromy representation zK of the KZ equation with values 
in Aui(L1 ® • - • ® L„) is equivalent to the R-matrix representation Qq, q = cxp(2ni/K), 
with values in Aut(Llq ® • • • ® Lnq), if K is not a rational number. 

An analogous statement holds if sl2((C) is replaced by any Kac-Moody algebra. 
This theorem is a wonderful statement. Given the differential equation of the 

CFT described in terms of the representation theory of the Lie algebra one considers 
its global characteristic, the monodromy representation defined by analytic con
tinuation of solutions and one gets the representation defined by R-matrix of the 
quantum group which in its turn is defined as the deformation of the universal 
enveloping algebra of the initial Lie algebra. 

It is interesting that new invariants of knots defined by Jones and others 
are constructed in terms of the same representations of the braid groups, see 
[C2, Jo, L, RT]. 

The realization of the KZ equation as the Gauss-Manin connection allows 
one to make explicit the equivalence of the representations xK and Qq, q = exp(2ni/K). 
It turns out that for real z1 <••• < z„ there is a canonical isomorphism of 
the quantum deformation of the vacuum subspace to the twisted homology 
group: 

V a c ^ , , -+ Hm(Vm\V(z), ^(z))anl, 

which sends the jR-matrix representation to the monodromy representation of the 
Gauss-Manin connection. The equivalence of the Kohno-Drinfeld theorem is the 
composition 

Vac,_„a,, -+ ifm(C"'\^(Z), ^(z))anl -4 A ) * -+ Vac^ n a . 

Thus a correspondence between a representation of Lie algebra and its quantum 
deformation is the correspondence between the twisted homology group and the 
dual space to the twisted hypergeometric cohomology group given by the integra
tion of the hypergeometric forms. 

The details of the proof of this statement and the analogous statement for 
arbitrary Kac-Moody algebra are being checked in [SV4]. On this subject see also 
[L]. 
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4. Concluding Remarks 

Many interesting works on hypergeometric functions are not mentioned in this talk. 
Among them there are works by Deligne and Mostow, Beukers and Heckman on 
monodromy of hypergeometric functions, works by Gelfand, Kapranov, Zelevinsky 
on combinatorial description of differential equations on hypergeometric functions, 
works on g-analogs of hypergeometric functions, on difference equations on hyper
geometric functions, works by Heckman and Opdam on hypergeometric functions 
and root systems. 

The main problem is to unify numerous and remote investigations on hyper
geometric functions into a united theory in which it might be possible to pass 
from Conformai Field Theory to Algebraic K-Theory by analytic continuation on 
parameters. 
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The Turing degrees 3d were introduced by Kleene and Post ([9], 1954) to isolate 
and study those properties of the subsets of the natural numbers N which are 
expressed purely in terms of relative computability. Intuitively, we form 3d by 
identifying any pair of subsets of N which are mutually computable and ordering 
the resulting equivalence classes by relative computability. The natural hierarchies 
of definability within arithmetic, analysis and higher fragments of set theory all 
have sharply focused images in 3d. 

We will focus our attention on the second order properties of the Turing 
degrees. We will phrase our discussion of the known results and especially of the 
techniques of their proofs within as large a context as possible, so to apply to 
degree structures based on other forms of relative definability, as well as to 3d, 

Formally, suppose that A and B are subsets of N, henceforth called reals, 
We say that A is Turing reducible to B (A <T B) if there is a computational 
procedure which takes an input n from N; over the course of its execution on 
input n, asks whether various numbers are in B ; and, if it receives the correct 
responses to those questions, after finitely many computational steps returns the 
answer as to whether n is an element of A. In other words, if we were given B 
then we would be able to compute A, We say that A and B are Turing equivalent 
(A = T B) if A <T B and B <>T A, The Turing degrees D are the ==T-equivalence 
classes. The degree structure 2 associated with Turing reducibility is the partial 
ordering (D, <T), the Turing degrees with the ordering inherited from <T. 

3d is the most intensively studied degree structure but not the only one. 
Although we cannot introduce them all in detail, we will point out a few other 
examples. Among the many degree structures on the real numbers obtained 
by varying the notion of relative definability, we might mention the arithmetic 
degrees, the hyperarithmetic degrees, the ^-degrees (A <Ek B if A is in the least 
set which is ^-admissible relative to B), the many-one degrees, the enumeration 
degrees, the ^-degrees and the degrees of constructibility. Alternately, we can 
retain relative computability and vary the class of reals on which it acts. We can 
form the Turing degrees of the recursively enumerable sets, the Turing degrees 
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of the zl^-sets (i.e. the structure 3d(<r 0') on the degrees below 0') or the Turing 
degrees of the arithmetically definable sets. We will refer to these examples as 
local substructures of 3d. For any degree x, we can also look at 3d( T> X), the 
partial order of the degrees greater than or equal to x. 

Extending our scope to include degree notions on other than sets of integers, 
we can also mention the Kleene degrees of sets of reals, the degrees of sets of reals 
modulo 3E, and the a-degrees of subsets of an admissible ordinal a. Similarly, we 
can form their local substructures such as a-recursively enumerable a-degrees or 
the Kleene degrees of the 77/-subsets of the continuum. 

To some extent, in our discussion of these structures, we will follow the 
historical order in which their properties where discovered. We will focus our 
discussion on the Turing degrees since historically 3d has been the proving 
ground for the analysis of degree structures. To begin with the obvious : there is 
a least degree consisting of the computable reals; since there are only countably 
many computational procedures, each Turing degree is countable and has only 
countably many predecessors, any two degrees x and y have a least upper bound 
x V y (so 3d is an upper-semi-lattice with a natural operation of join) and the 
cardinality of the whole structure is the same as the continuum. To continue 
beyond these immediate observations we must directly analyze the notion of 
relative computability. 

In the first section, we will discuss the early results about the Turing degrees. 
For the most part, these were to the effect that 3d has a rich existential theory, 
showing that 3d plays various roles as a universal object. In the second section, 
we will describe the subsequent results which simultaneously limit ^ ' s universal 
role and reveal its detailed structure. In the final sections, we will discuss some 
recent results and conjectures of Slaman and Woodin. If true, the conjectured 
structural theorem would provide a complete logical characterization of 2. We 
prove the conjecture for the hyperarithmetic degrees and for 3d with finitely many 
additional parameters. 

§1. The Embedding Theorems of the Late 1950s, 1960s 
and Early 1970s 

Partial Order Embeddings 

In their 1954 paper [9], Kleene and Post used a Baire category argument, one 
involving a primitive form of Cohen forcing, to show that there are sets of 
incomparable Turing degree. In fact, Kleene and Post proved that every finite 
partial order can be embedded in 3d. Sacks ([18], 1963) extended the Kleene-Post 
embedding theorem to show that every countable partial ordering, and even every 
one of size Ni which is locally countable, could be embedded in 3d. 

Sacks conjectured: 

(1) (Sacks ibid., 1963) Conjecture: A partially ordered set P is imbeddable 
in the (Turing) degrees if and only if P has cardinality at most that of the 
continuum and each member of P has at most countably many predecessors. 
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The Kleene-Post and Sacks partial order embedding results indicated a uni
versal quality of 3d. Sacks expressed a belief in this quality by conjecturing that 
the strongest possible purely existential property would be satisfied by 3d. (Sur
prisingly, this conjecture is still open.) Furthermore, the algebraic properties of 
3d seemed to be based more in the nature of relative definability than in specific 
properties of computability. The proofs of the embedding theorems apply to any 
of the above mentioned degree notions on the reals which are countably based, 
i.e. excluding only the ^-degrees and the degrees of constructibility, 

Initial Segments 

Say that a subset I of 3d is an ideal if it is an initial segment and closed under join. 
/ is a principal ideal if in addition it has a greatest element. Spector ([23], 1956) 
answered a question of Kleene-Post [9] by constructing a two element ideal, i.e. a 
minimal nontrivial degree. Spector's theorem rules out the potential classification 
of the principal ideals in 3d (as the countable model of an No-categorical theory). 
For example, there are two nontrivial ideals which are not isomorphic. Spector's 
method could be extended to build many examples of isomorphism types of 
initial segments in 3d. Prompted by Spector's results, Sacks made the following 
conjecture, 

(2) (Sacks [19], 1966) Conjecture: S is a finite, initial segment of the degrees 
if and only if S is order isomorphic to a finite, initial segment of some 
upper-semi-lattice with a least member. 

Sacks's conjecture postulated that another universal property would hold of 
2 : the initial segments of 3d would realize all the finite possibilities. Extending 
work of Thomason and Lachlan, Lerman ([12], 1971) confirmed this conjecture. 
Lachlan and Lebeuf ([11], 1976) showed that every initial segment of a countable 
upper-semi-lattice with least element is isomorphic to an initial segment of 3d, 
Ultimately, Abraham and Shore ([1], 1986) showed that every initial segment of an 
upper-semi-lattice which is locally countable and of cardinality Ni is isomorphic 
to an initial segment of 2. Groszek and Slaman ([4], 1983) showed that the 
Abraham-Shore theorem is best possible; it is independent of ZFC + 2œ > Ni 
whether every initial segment of an upper-semi-lattice which is locally countable 
and of cardinality N2 can be embedded in 3d as an upper-semi-lattice. 

The proofs of these theorems, while more technically demanding than the 
proofs of the embedding theorems, could still be applied to a wide range of 
countably based degree structures. The enumeration degrees are the only notable 
exception. 

From the progress on the Sacks conjectures, degree theorists speculated 
whether 3d might have an algebraic characterization, or at least occupy a distin
guished position among the upper-semi-lattices. 
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Questions from the 1960s 

Workers in the field faced several fundamental questions. We pose them here for 
2, but they are completely general. Is there a global structure theory for 3d. Is 
the theory of 3d specific to Turing reducibility or is it applicable to a general class 
of degree structures? Is the structure of 2 tied to the continuum or is it reflected 
in the local substructures of 21 

We recall some specific questions from that time. 

(3) (Sacks [19], 1966) Is the theory of 2 decidable? 
(4) (Sacks ibid., 1966) Are the Turing degrees and the Turing degrees of the 

arithmetic sets (sé) elementarily equivalent? 
(5) (Rogers [17], 1967) For a degree a, let 2(>T a) denote the restriction of 2 to 

those degrees above a. Is it the case that for all a and b, 2(>T a) —> 2(>T b) ? 
(6) (Rogers ibid., 1967) Is there a nontrivial automorphism of 21 (If not then 

we say that 2 is rigid) 

Rogers defined a relation JR on degrees to be absolutely definable in 2 if R is 
invariant under all automorphisms of 2. 

(7) (Rogers ibid., 1967) Are the Turing jump and the relation recursively enumer
able in absolutely definable in 21 In general, which relations are absolutely 
definable in 21 

§2. Coding and Definability Theorems 
of the 1970s and Early 1980s 

The results of the 1970s to the mid 1980s ruled out any reasonable understanding 
of the Turing degrees in algebraic terms. But then, the exact properties of 2 that 
make it algebraically intractable were used during this period to settle almost all 
of the Sacks and Rogers questions. Their solutions illustrate the complexity of 
2: 2 is not decidable; the theory of 2 is not equal to the theory of the Turing 
degrees of the arithmetic sets; there are a and b such that 2( T> a) and 2( T> b) 
are not isomorphic. Rogers's question whether the jump is definable was only 
recently settled (the jump is definable), but the techniques in its solution were 
steadily developed through this period. The only questions that remain open are 
whether 2 is rigid and to give a classification of which relations are definable in 
2, 

The trend is for the global properties of degree structures to follow those of 
the Turing degrees. The notable exception has been the many-one degrees. There, 
Ershov ([3], 1975) and Paliutin ([16], 1975) succeeded in obtaining an algebraic 
characterization for the partial ordering of the many-one degrees. The reader 
might also see Odifreddi ([15], 1989). 
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A Cone of Minimal Covers 

One of the earlier questions to fall was whether 2 is elementarily equivalent to 
sé\ Jockusch and Soare ([8], 1970) showed that there is no arithmetic degree x 
such that every y above x is a minimal cover of some z less than y. Jockusch ([5], 
1973) showed that there is a nonarithmetic degree with the above property. Thus, 
the Turing degrees of the arithmetic sets are not elementarily equivalent to 2. 

Coding in 2 and Undecidability 

A primary ingredient in the work during this period was the proving and exploit
ing of coding theorems. 

Definition. Suppose that 91 is a model of the finite .language J£? and p is a finite 
sequence of parameters from 2. 91 is coded by p in 2 if there is an isomorphic 
image of 21 whose universe, relations, functions, constants and quantifiers are 
all first order definable in the language of 2 with additional symbols for the 
parameters p. 

A disparate sequence of coding schemes preceded the one which we have 
isolated below, see Simpson ([20], 1977) or Nerode-Shore ([13], 1979). Say that a 
relation R is countable if there is a countable subset of the degrees such that all 
of the solutions to R come from that set. 

Coding Lemma (Slaman-Woodin [21], 1986). For any countable relation R on 
degrees there are parameters p such that R is definable in 2 from p. 

The coding lemma is uniform in the following sense. For each n, there is a 
fixed first order formula cp such that for every countable n-ary relation R on 2 
there is a sequence p so that R is defined from p using the formula cp in 2. 
The proof of the coding lemma uses finite conditions to construct p from R; 
consequently, it does not use any machinery that is special to the Turing degrees. 
It applies or can be modified to apply to a very broad class of degree structures, 
even to some without minimal degrees such as the enumeration degrees, see 
Slaman-Woodin ([22], to appear). 

We can use the coding lemma to present the solution to Sacks's question 
whether 2 is decidable. By the coding lemma, we can both code the standard 
model of arithmetic and also define the collection of codes of standard models. In 
addition, we can interpret second order quantifiers over a coded countable model 
by quantifiers over sequences in 2 which define unary relations. Thus, (Simpson 
[20], 1977) there is an interpretation of second order arithmetic in the first order 
theory of 2. Lachlan ([10], 1968) gave the original solution to Sacks's question 
but only showed that the theory of 2 is not recursive. Simpson calculated the 
degree of the first order theory of 2.) 
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Shore's Program 

The next developments which we will discuss were initiated by Nerode and 
Shore ([14], 1980) and pursued extensively by Shore and his collaborators. 

Suppose that R is a relation on degrees. We note that the degrees which 
are produced by the coding lemma to define R in 2 are recursion theoretically 
close to R. By this we mean the following. Let X be a real of degree x. If R is 
recursively presented relative to X then there is a sequence of degrees p which 
codes Rm 2 and is arithmetic in x. As a special case, there is a sequence Px 
of sets which is arithmetically definable from X and whose degrees code (in 2) 
an isomorphic copy of the standard model of arithmetic with a unary predicate -
for X. Thus, the set X is coded in 2 by parameters which are near its degree. 
Furthermore, if X is sufficiently complicated, say above 0', then a sequence of 
parameters whose degrees code X in 2 can be found recursively in X, that is 
below x in 2. 

The next step was to find a notion of neighborhood which would be first 
order definable in 2 and link an arbitrary degree x to the reals coded in its 
neighborhood. The Jockusch-Soare theorems pointed in the correct direction. 
Jockusch and Soare defined a filter in 2 and proved that it is disjoint from the 
degrees of the arithmetic sets. Their theorem suggested that there might be a 
related definable filter whose complement was exactly the arithmetic degrees or 
even the degrees below 0'. 

The search for such a filter lead to the development of the theory of REA-
operators, see Jockusch-Shore ([7], 1984). Recently, Cooper ([2], 1990) combined 
the analysis of R£^4-operators with his study of the degrees of differences of 
recursively enumerable sets to prove that the Turing jump is definable in the 
Turing degrees. In fact, Cooper proved the stronger theorem that the relation x is 
recursively enumerable in and above y is definable in 2 (solving Roger's question). 
We remark that this approach is specific to the Turing degrees. The proofs directly 
exploit the way that Turing reducibility can be recursively approximated. 

We list some applications, in the strongest form obtained by these techniques. 
(Unfortunately, we do not have the space to describe the historical development 
and give credit where it is due.) 

Theorem. 
- (Jockusch-Shore [7], 1984) For all x and y, if 2( T> x) -^ 2( T> y) then x and 

y have the same arithmetic degree. 
- (Cooper [2], 1990) If % is an automorphism of 2 then % is the identity on all 

degrees greater than or equal to 0'". 
- (Cooper ibid.) If R is a relation on the reals which are Turing above 0"', R 

is invariant under Turing degree and R is definable in second order arithmetic 
then the relation induced by R is definable in 2. 

The last two examples were known to follow from the definability of the 
jump, see Nerode-Shore ([14], 1980). 
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A Shortcoming of Method 

The three structural properties of 2 we isolated above were proven above by 
following some practical advice: examine the neighborhood of x and recover 
some information about which reals belong to x. In fact, we will exactly recover 
the set of representatives of x provided that the set of representatives of x is 
coded in the neighborhood of x and that the neighborhood of x and the method 
employed decode the set of its representatives are uniformly recursive in x, Since 
the statement of the Turing order between reals involves I,\ and Il\ predicates, 
x has to provide 0'", the information necessary to evaluate these predicates. 
Consequently, our conclusions for the Turing degrees have all been confined to 
the realms of sufficiently large degrees or arithmetic equivalence between Turing 
degrees. Even using Cooper's theorem to get the strongest possible bound on the 
orbit of 0', these methods have (so far) been confined by this three quantifier 
limit. 

We should remark that this shortcoming does not apply to the degrees of 
constructibility. In that notion of degree, the partial ordering of the degrees of 
constructibility is below x is just another set constructed from x. In fact, with 
reasonable set theoretic hypotheses the techniques we have touched upon are 
sufficient to give a complete analysis of the global theory of the constructibility 
degrees, in the sense of the next section. 

§3. Recent Results 

In this section, we will discuss some recent work of Slaman and Woodin ([22], 
to appear). Unless we specifically indicate otherwise, all of the following results, 
conjectures and even remarks are drawn from that source. 

Assignment of Representatives 

Suppose that ê is a degree structure on a set of reals, possibly the set of all reals. 
Say that S is determined by the equivalence relation =E and the ordering <#. 

Definition, ê has & first order assignment of representatives if 
(1) for every ^-degree x there is a sequence p from S which uniformly codes a 

representative of x (say using the formulas (pi,,..(pk); 
(2) the relation p codes a representative of x is an <f-definable relation (say by 

the formula xp), 

We say that $ has a first order assignment of representatives in parameters 
if the same conditions hold as above except that we allow (pu^-Çk and \p to 
mention parameters from ê. 

Suppose that ê has a first order assignment of representatives. If ê is definable 
in second order arithmetic and is a degree structure on all of the reals then we 
say that ê is biinterpretable with second order arithmetic. If S is definable in first 
order arithmetic and is a degree structure on a uniformly arithmetic set of reals 



310 Theodore A. Slaman 

then we say that ê is biinterpretable with first order arithmetic. Similarly, we can 
define biinterpretability with parameters. 

If ê is biinterpretable with the standard model second order arithmetic then 
all of the logical properties of ê can be reduced to the reals. We will list some 
examples. Others will undoubtedly occur to the reader. 

Assuming S is biinterpretable with second order arithmetic: 

- ' A relation is definable in ê if and only if it is induced by an =E -invariant 
relation that is definable in second order arithmetic. 

- S has no nòntrivial automorphism, i.e. S is rigid. 

Assuming that ê is biinterpretable with second order arithmetic, we sketch 
an example proof. The standard model of first order arithmetic is rigid because 
each number is definable. Consequently, the standard model of second order 
arithmetic is also rigid since each subset of N is determined by its elements. The 
fact that no representative of a degree can be moved by an automorphism of the 
standard model of second, order arithmetic implies that an automorphism of ê 
can only move a degree to another one with the same set of representatives. Of 
course, this last condition is another way of saying that the only automorphism 
of ê is the identity. 

If we allow parameters we obtain the boldface versions of the above conclu
sions. 

Assuming S is biinterpretable with second order arithmetic using the param
eters e: 

- A relation is definable from finitely many parameters in S if and only if it 
is induced by an =E -invariant relation on reals that definable from finitely 
many parameters in second order arithmetic, i.e. is induced by a projective 
relation. 

- Any automorphism of S is determined by its action on e. That is, e is an 
automorphism base. 

Just knowing that ê has a finite automorphism base gives us some information 
about its group of automorphisms. For example, if S is a degree structure on the 
reals then the cardinality of the. orbit of any finite sequence from S is bounded 
by the cardinality of the continuum. Thus, if ê has a finite automorphism base 
then it has at most continuum many automorphisms. Similarly, if S is a degree 
structure on a countable set of reals and has a finite automorphism base then the 
automorphism group for S is countable. 

A Finite Automorphism Base 

We will now sketch a heuristic approach to proving that a degree structure on the 
reals has a finite automorphism base. The method directly applies to the specific 
structures of the Turing degrees, the arithmetic degrees, the hyperarithmetic de
grees, the ^-admissible degrees, the PTIME Turing degrees and the enumeration 
degrees. 
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Let 2 denote any of the above degree structures on the reals. In the next few 
paragraphs we will be measuring definability in terms of a number of jumps. The 
interpretation of jump depends on the interpretation of 2. By arithmetic in, we 
mean below some finite number of jumps. The reader may comfortably imagine 
that we are discussing the Turing degrees with the Turing jump. 

For the first step, we prove the coding lemma with its full uniformity. In 
particular, there is a degree ZQ such that if x is above ZQ then all the representatives 
of x are coded below x. Some examples for ZQ are 0" in the Turing degrees, 0œ 

in the arithmetic degrees and the degree of Kleene's (9 in the hyperarithmetic 
degrees. Let ZQ be fixed. 

We continue with some countable algebra for 2. 

Definition. Let / be a countable ideal in 2 and let Q be an automorphism of 
I. We say that Q is persistent if for every x in 2 there are an ideal J and an 
automorphism Q* of J such that x e J, I e J and Q* agrees with Q on J. 

Next we prove that every persistent countable automorphism extends to an 
automorphism of 2. The proof employs a generalization of an insight due to 
Odifreddi and Shore: the coding lemma can be used to show that the restriction 
of an automorphism of 2 to a countable ideal is recursion theoretically close 
to any uniform upper bound on that ideal. Specifically, we show that if Q is a 
persistent automorphism of the ideal I then Q is arithmetic in any upper bound 
of J. 

We now introduce some metamathematical methods. We know that there is 
a nontrivial automorphism of 2 if and only if there is a nontrivial countable 
automorphism that is persistent. The latter condition is upwards absolute between 
well-founded models of ZFC, 

Applying results of Slaman-Woodin ([21], 1986), we obtain the following 
theorem. 

Theorem. 2 is rigid if and only if 2 is biinterpretable with second order arithmetic, 

Continuing the metamathematical discussion, let V denote the universe of 
sets. Let V[@] be a generic extension of V, Using the absoluteness theorem, we 
show that if % is an automorphism of 2V, the degrees in V, then n lifts to an 
automorphism n* of 2V^, the degrees in the generic extension. By moving to 
a generic extension of V, we can use the definition of forcing to analyze n*. In 
particular, if ^ is generic with respect to the partial order to add œ\ Cohen reals 
to V then n* is represented as a continuous function on the set of generic reals. 
In fact, we can use our proof that n(x) is close to x to show the following. There 
is a recursive functional {e} and an integer n such that if G is a Cohen generic 
real over V then the degree of {e}(G © ( ^ ( Z o ) ) ^ ) is n* of the degree of G, 
Here we let ZQ denote a representative of ZQ, %~X(ZQ) denote a representative of 
Ti"1 (zo) and (TC_1(ZO))^ denote the nth jump of n~i(zo). 

Our next step is to extract a representation of n on a comeager set of reals 
in V from the representation of n* on the comeager set of generic reals in V[@]> 
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We prove that the same representation of % (using the functional {e} relative to 
7T-1(Zo)W) holds on the set C of reals which are sufficiently generic relative to 
7i_1(zo). The level of genericity required is only finitely many jumps, in the sense 
of the reducibility determining 2. Furthermore, if there is one G in C such that 
G and {e} (G ® (%~1(ZQ))^) have the same degree then % is the identity on the 
degrees represented in C. 

In ([6], 1981), Jockusch and Posner show that the Turing degrees represented 
by any comeager set of reals generate the Turing degrees under the operations 
of meet and join. Their argument is completely general, so we may conclude that 
C is an automorphism base. 

Now we can make two observations. 
First, suppose that rc(zo) = ZQ. Then the set C consists of those reals which 

are arithmetically generic relative to zo. Let go be any degree of an element of C. 
If n also maps go to go then TU must be the identity on C and therefore % must 
be the identity on all of 2. Thus, {zo,go} is a finite automorphism base for 2. 

Second, from the arithmetic representation of % on C relative to TU-1 (Zo) we 
can find a function arithmetic in 7c"1 (Zo) which represents % on all the reals. 
Consequently, the fact that the rigidity of 2 is absolute may be explained by the 
fact that every automorphism of 2 is arithmetically definable in a real parameter. 

Biinterpretability with Parameters 

The fact that 2 has a finite automorphism base can be combined with the analysis 
of persistent automorphisms to show that 2 is biinterpretable with second order 
arithmetic in parameters. 

Let Zo and Go denote representatives of the degrees zo and go above. Suppose 
that xp is a map from the reals onto 2 which induces an automorphism on 2, i.e. \p 
is degree invariant, preserves order in the sense of ^-reducibility and has distinct 
values on reals of distinct degree. If xp maps Zo to z0 and Go to go then xp must 
induce the identity automorphism. In other words, xp must be an assignment of 
representatives to 2. Let the parameters pzQ code Zo and pcQ code Go. With some 
finesse, we can use the coding lemma to express the following condition in D: 
There is a persistent countable assignment of representatives sending ZQ to ZQ, GO 
to go and X to x. By the characterization of persistent countable automorphisms 
as restrictions of global automorphisms, this statement is equivalent to one saying 
that there is a map from the reals to 2 with the values as above that induces an 
automorphism. Of course, this automorphism is the identity. Thus, the statement 
above defines X is a representative of x as expressed in the codes for the real 
X. Consequently, 2 is biinterpretable with second order arithmetic using the 
parameters PZQ,ZO,PG0 and g0. 

Theorem. The structures of the Turing degrees, the arithmetic degrees, the hyper-
arithmetic degrees, the Hk-admissible degrees, the PTIME Turing degrees and the 
enumeration degrees are all biinterpretable with second order arithmetic in param
eters. 
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Special Arguments for the Turing, Arithmetic, Hyperarithmetic 
and IV-Admissible Degrees 

\ 
In this section, we will discuss results obtained using special properties common 
to the Turing, Arithmetic, Hyperarithmetic and ^-admissible reducibilities. We 
should note that these arguments do not intersect with those of Jockusch-Shore 
and Cooper and provide new proofs of the three structural properties of the 
Turing degrees mentioned above. 

Since the proofs here are more technically involved than the ones that we 
have discussed so far, we have to resign ourselves to merely stating results. 
We can only say that the proofs of these results involve a direct analysis how a 
continuous function must behave to represent the restriction of a degree structure 
automorphism to a comeager set. 

By the remark of the previous section, for all of our degree structures of 
interest, rigidity is equivalent to biinterpretability with second order arithmetic, 
Thus, the central problem for any of these structures is whether it has a nontrivial 
automorphism. 

Theorem. 
(1) The hyperdegrees are rigid (and thus are biinterpretable with second order 

arithmetic.) Similarly, all of the Zjradmissible degrees structures are biinter
pretable with second order arithmetic. 

(2) Any automorphism of the arithmetic degrees is the identity above 0°\ 
(3) Any automorphism of the Turing degrees is the identity above 0". 

Corollary. There are only countably many automorphisms of the Turing degrees. Any 
automorphism of the Turing degrees is represented by an arithmetically definable 
function on reals. 

A similar corollary holds for the arithmetic degrees; any automorphism is 
hyperarithmetically representable. 

Special Arguments for the Turing Degrees 

We now restrict 2 to denote the Turing degrees. We also drop any restraint 
against using very special properties of 2. In particular, we will make full use of 
Cooper's theorem that the relation x is recursively enumerable in and above y is 
definable in 2. 

Earlier, we sketched a metamathematical proof that any automorphism of 2 
is arithmetically definable. We can also give more traditional, purely recursion 
theoretic proof of this fact. Of course, this proof is a more difficult local version 
of its metamathematical progenitor. With the sharper argument, we can replace 
the full structure of 2 by any ideal in 2 which has 0 ^ as element. 
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Theorem. Suppose the I is an ideal in 2 and 0^ G I. 
(1) Ifn'.I^fl then % is represented by an arithmetically definable function on 

reals. $ 
(2) / is biinterpretable in parameters with the fragment of second order arithmetic 

in which the second order quantifiers range over the reals whose degrees lie in 
I. 

As a corollary to the theorem, we can demonstrate a connection between the 
existence of a local automorphism and a global one. By the Kleene basis theorem, 
if an arithmetic function does not represent an automorphism of 2 then there is 
a counter-example which is recursive in Kleene's (9. Thus, we can conclude that 
any automorphism of 2(<T @) extends to an automorphism of 2. 

A Concrete Automorphism Base for the Turing Degrees 

We already know that there is a finite automorphism base for 2. The question 
arises as to how concrete can we make the base elements. Outside of proving that 
the Turing degrees are rigid, we can give the best possible result. We show that 
there is a finite set of recursively enumerable degrees which is an automorphism 
base for 2. 

Our approach is to provide a generating family of first order formulas such 
that the smallest set including the recursively enumerable degrees and closed 
under definition by these formulas includes the degrees of 0" (i.e. zo) and of a 
real G which is sufficiently generic for the pair of degrees to form a base. We 
isolate an result which we prove along the way which is of independent interest. 

Theorem. 
(1) 2(<,T 0') is biinterpretable with first order arithmetic in parameters. In fact, 

we may take the parameters to be recursively enumerable degrees. 
(2) Any automorphism of 2(<,T 0') is arithmetically definable. 

Ultimately, we prove that there is a finite set F of recursively enumerable 
degrees such that 2 is biinterpretable with second order arithmetic in the pa
rameters from F. In fact, the analogous theorem holds of any ideal / such that 
0(7) G J. Thus, we have the following theorem. 

Theorem. 
(1) The recursively enumerable degrees are an automorphism base for 2. Further, 

2 is biinterpretable with second order arithmetic using recursively enumerable 
parameters. 

(2) / / the recursively enumerable degrees are rigid then 2 is rigid. 
(3) If2(<T 0') is rigid then 2 is rigid. 

It is open whether every automorphism of the recursively enumerable degrees 
extends to one of 2(<T 0') or even to 2. Any result along this line would be 
valuable. 
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§4. Conjectures 

We make the following conjectures jointly with W. H. Woodin. 
We say that a real number G is 1-generic if for every recursively enumerable 

set S of finite Cohen conditions either there is an element of S which is satisfied 
by G or there is a neighborhood condition satisfied by G which is incompatible 
with all the elements of S. 

Conjecture I. If I is an ideal in the Turing degrees such that there is the degree 
of a 1-generic real in / then I has a first order assignment of parameters. 

In particular, we believe that the partial ordering of the Turing degrees is 
biinterpretable with second order arithmetic and that 2(<T 0') is biinterpretable 
with first order arithmetic, 

Conjecture II. The partial ordering of recursively enumerable degrees is biinter
pretable with the standard model of first order arithmetic. 

We end with a question. Is there a general proof of rigidity and equivalently of 
biinterpretability with second order arithmetic that is based on simple properties 
of Turing reducibility and applies to a wide range of degree structures? 
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Introduction 

The last several years have witnessed an increasing interaction between homo-
logical algebra and the representation theory of finite groups. The aim of the 
effort has primarily been the development of a module theory for group rings 
and algebras. Of course, it is not surprising that homological methods would play 
a role in such an investigation. After all, cohomology theory really is a theory 
of extensions and, in small degrees, its relevance to the structure of modules is 
apparent. However the connection has proven to be deeper. The module theory 
is directly related to some of the larger features of the cohomology of groups. 
By this we mean such items as the ring theoretic properties of cohomology -
the maximal ideals, Krull dimension, and modules for cohomology rings. In this 
lecture I will survey some of the developments in this area. For the most part, 
we will stick to the case in which the group G is finite and the coefficient ring K 
is a field of characteristic p > 0. Nevertheless, many of the results hold true for 
integral coefficients and for more general groups. 

The work which I wish to survey is based on several finiteness conditions. 
First, we consider only finitely generated modules. But more than that, the 
foundation rests on two fundamental results of group cohomology. 

Theorem (Evens [14]). H*(G,K) = Ext*KG(K,K) is a finitely generated K-algebra. 
If M is a KG-module, then H*(G,M) is a finitely generated module over H*(G,K). 

Even's Theorerh permits us to consider the maximal ideal spectrum, VG(K), of 
H*(G,K). We need not be concerned here that H*(G,K) is not commutative. The 
only noncommutativity occurs among elements of odd degree. These, however, 
are all in the radical and hence are in every maximal ideal. Note that VQ(K) 
is a homogeneous affine variety. For a KG-module M, we can define VQ(M) 
to be the subvariety of VG(K) associated to the annihilator of Ext*KG(M,M) = 
H* (G, Hom^ (M, M)). It is the set of all maximal ideals containing the annihilator. 

The other foundational result is the "Dimension Theorem" of Quillen, 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
(n) T I I P \yfnl1ipinn'fïr.5i1 S n n î H v n f Tnnan 1QQ1 



318 Jon F. Carlson 

Theorem [19]. The components ofVo(K) are in one-to-one correspondence with the 
conjugacy classes of maximal elementary abelian p-subgroups E(= (%/p)r °-> G) via 
the restriction maps. 

For algebraists, the best proof of the theorem is given in [21]. All proofs have 
required some variation on a theorem of Serre [22] which says that for p-groups 
which are not elementary abelian, the product of all Bocksteins of elements of 
degree 1 is nilpotent. One of the inspirations in the development of the subject 
was the extension of Quillen's theorem to the varieties of modules. The first 
attempt considered only the complexity or dimension of the varieties [3]. The full 
result was obtained independently by Alperin and Evens and by George Avrunin 
[4, 5]. The importance of this step is obvious. It says that in this context we can 
restrict our attention to the elementary abelian p-groups. 

Elementary Abelian Groups 

For this section assume that the field K is algebraically closed. Suppose that 
E = (xi, • • • ,xn) = (Z/p)w is an elementary abelian p-group, It is well known that 

j r ( E , K ) / R a d = K[Ci, • '•,£„] 

is a polynomial ring in n = rank(F) generators. Here Rad denotes the radical of 
H*(G,K). If p = 2 then Rad = 0 and the generators d , • • • ,(« have degree 1. If 
p > 2 then Rad is generated by the elements of degree 1 and each Ci has degree 2. 
In either case, the maximal ideal spectrum VE(K) = Kn, is affine n-space. 

For a = (#i, • • • , an) e Kn, let 

ua = 1 + ^ afa - 1) G KE. 

It is easy to see that ua is a unit of order p in KE and that the inclusion map 
K{ua) <—> KE is an injection of group algebras. Moreover KE is a free K(ua)-
module. Hence, it makes sense to speak of a restriction map on cohomology from 
E to (wa). Thus, for a KE-module M, the set of all ua which will measure nonzero 
cohomology of M should be special. This leads to the following definition. 

Definition. Let M be a KF-module with K, E as above. The set 

VE(M) = {a e Kn\M is not free over K{ua)} U {0} 

is a homogenous affine variety called the rank variety of M. 

The fact that it is a variety is fairly easy to show. The proof shows further 
that VE(M) can be computed directly from elementary information such as the 
representation Q : E -> GL(m,K) which defines M as a module [9,10]. But more 
importantly we have 
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Theorem. VE(M) S V]
E(M). 

This is only an isomorphism of algebraic sets, subsets of Kn, There seem 
to be no natural, corresponding maps on the coordinate rings. For p — 2, it 
can be viewed as an equality. However for p > 2, the restriction map to the 
subgroups (wa) introduces a Frobenius twist on cohomology. The existence of 
a relationship between the varieties was clear from the beginning. Avrunin and 
Leonard Scott [6] proved the more difficult containment by altering the Hopf-
algebra structure required for cup products. 

For more general groups G, the variety VG(M) can be pieced together from 
the VE(M)'S, E < G. This is true in theory. In practice it may be very difficult. 
Avrunin and Scott also showed that VG(M) is stratified as in [20]. 

The variety VG(M) has several useful properties. Some can be derived easily 
by considering the rank variety. 

Theorem, (a) VG(M) = {0} if and only if M is projective. 
(b) VG(M ®K N) = VG(M) n VG(N). ' 
(c) J / 0 - • A{ - • Ai - • A3 - • 0 is exact then VG(Ai) <= VG(Aj) U VG(Ak) for 

{i,j,k} = {1,2,3}. 
(d) IfW £ VG(K) is a (Zariski) closed subvariety, then there exists a module 

M with VG(M) = W. _ 
(e) If M is indecomposable then the corresponding projective variety VG(M) is 

connected [11]. 

Property (d) has been particulary useful. Its proof is completely constructive. 
Suppose that we are given ( e Hm(G,K),m ^ 2. Let P o , ' " >Pm-i be minimal 
projective modules so that 

0 -+ Qm(K) - • Pm_! - • > P 1 - > P 0 - > K - > 0 

is exact and Qm(K) has no projective submodules. Then Ç is represented by a 
cocycle £ : Qm(K) —> K. Assuming that £ =£ 0, we have an exact sequence 

0-^Lc-^Qm(K)^K^0. 

By using the rank variety we may show that VG(Lç,) = VG(V), the subvariety 
corresponding to the ideal generated by £• Thus (d) can be proved by choosing 
a set of generators for the ideal of W and using (b). 

Two Asides 

I want to mention two related areas which have been the subject of some 
recent study. The first involves the structure of the cohomology rings E*(M) = 
Ext*KG(M,M) = H*(G,UomK(M,M)) for M a KG-module. The variety of M 
is certainly associated to this ring but not as its maximal ideal spectrum. The 
problem is that E*(M) is not commutative. We do not simply mean that it 
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is graded commutative, but rather, it can be noncommutative in an essential 
way[12]. There exist examples, which are not exotic, where the ring E*(M) has 
simple modules of K-dimension greater than one. That is, there exists a surjective 
homomorphism of E*(M) onto the ring of nxn matrices for n > 1. However the 
news is not all bad. E*(M) is a Pi-ring and hence all of its simple modules have 
finite dimension. Recently Niwasaki has settled a question concerning the nature 
of the simple modules. 

Theorem [17]. IfUcz Ext*KG(M9M) is a maximal ideal then there exists an elemen
ti 

tory abelian p-subgroup E = (xi,• • • ,xn) c G and a unit ua = 1 + ^afai — 1) G 
i=i 

KE such that U contains the kernel of the composition of the restrictions of 
Ext*KG (M,M) to E and to (ua). 

In another direction, a very similar sort of theory has been developed for 
the restricted p-Lie algebras associated to an algebraic group in characteristic 
p (see [18] for a survey). Suppose that G is a connected linear algebraic group 
defined over the prime field F p . Let G\ denote the kernel of the Frobenius map 
on G. Here G\ should be regarded as a group scheme or as a functor, since as 
a group it has only a single element. The Lie algebra g of G may be equipped 
with a p-power operation x —> x[p], thus making it a restricted p-Lie algebra. 
The representation theory of rational G-modules is related to that of rational 
Gi-modules via spectral sequences. Moreover the category of rational G\ -modules 
is equivalent to the category of restricted g-modules. 

For restricted g-modules it is possible to define cohomological support vari
eties and rank varieties as in the finite group case. That is, H*(g,K) is a finitely 
generated ring and H*(g,M) is a finitely generated module over it, provided M 
is finitely generated. The analogue of the rank variety is the null cone 

jr = {xe g|xw = 0} 

which is isomorphic to the maximal ideal spectrum of the cohomology ring [16]. 
For M, the variety is the set of points x e Jf such that M is not injective as 
a Kx-module. Many of the same properties for the variety have been shown to 
hold in this context. A major part of this work was done jointly by Friedlander 
and Parshall (e.g. see [15]). 

It should be noted that our friends in the field of algebraic groups have left us 
with some sticky problems. What happens with G2 or Gr for r > 2? Is H*(Gr,K) 
finitely generated? The answers are not known except in some special cases. 

Projective Resolutions and Homogeneous Parameters 

In recent years, some interesting results have been obtained on systems of 
parameters for cohomology rings and for the cohomology of a module. Suppose 
that Ci»"' An are homogeneous elements in H*(G,K) which have the property 
that H*(G,K) is a finitely generated module over K[£i , - " , ( n ] , the polynomial 
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ring in the symbols ( b ' " , £„. Another way of stating the condition is that 
r\VG(d) = {0}. For each /, let m\ = deg £/ and let £,• be a cocycle representing Ç/. 
Then we have the following commutative diagram. 

• • • - 4 P m r H —>Pmi—+Pmi-i-^Pm-i—> > Po ~^K—>0 

i U . I i II II 
E» : 0 - + K ^ U L, —>P„,_2—>•••—>Po^K—^0 

II II II 

Here (P*,e) is a minimal projective resolution of K. The middle row E® is the 
pushout along (,- of the upper row and is exact. The complex C® has homology 
Hj(C®) = K for j = w,—1,0 and Hj(C®) = 0 otherwise. Let X^ be the complex 
which is obtained by splicing copies of E® as 

(X(0) ... -+ p0 Jî» L, _> > p0 - Â L, -> • • • -• Po -• 0. 

The first result on systems of parameters for cohomology was the following 
theorem proven in joint work with Dave Benson some 5 years ago. 

Theorem [7]. X = X^ ®K'" ®K X^ is a projective resolution of K. 

The proof is very easy. The exactness except in degree zero follows from 
the Künneth formula, while the projectivity comes mostly from the properties 
of varieties. Actually the theorem can be stated more generally. If Ext^G(M,M) 
is finitely generated as a module over K[Cu'" ,(r], d e H*(G,K), then X = 
X^ ®K" '®KX^ ®xMisa projective resolution of M. Hence every module has 
a projective resolution which is a tensor product of periodic complexes. Moreover 
the number of such complexes can be taken to be the complexity of M or the 
dimension of VG(M). 

With appropriate modifications a similar theorem can be proved for a ZG-
lattice. Adem [2] has adapted some of these ideas to get a similar result for 
groups with finite virtual cohomological dimension. 

Remark. Similar techniques will also prove facts about the exponents of cohomol
ogy with integral coefficients. For example, ifH*(G,Z) is finitely generated over 
Z[Ci, * • ' ,Cn] then the order of G divides the product ]lexP(C/)> w/iere exp(Ç/) is 
the additive order of Ci £ H*(G,Z) [13]. The method has also been used to deal 
with some questions concerning equivariant cohomology of topological spaces with 
an action of a finite group [1]. The theorem can be extended to exponents ofZG-
lattices and to a similar result on the Farrell cohomology of a group with finite 
virtual cohomological dimension. 

As an example we wish to consider the case in which n = 3, That is, we 
assume that H*(G,M) is finitely generated over K[x,ß,y]. Then we can form the 
Kozsul complex: 
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H*{M)^H*(M) 

0—•ir(M)-^->fT(M) H*{M)^>H*{M)—>0 

.y ~ .. , N - , „ 

H*(M)^->H*(M) 

where /T(M) = H*(G,M). The maps are cup products with the indicated ele
ments. Let /, m, n be the degree of a, ß and y respectively. We need to assume that 
the degrees are even if p is odd. The complex has a graded version 

e e 
( * ì Q > H s > H s + m • f j s + l + n > ß s + 1 + m + n > Q 

© © 
FP + n jjs+m+n 

where £T = Hr(G,M). Of course for any set of parameters Cw" ,Ct we get 
similar complexes (*s) which have length t. In any case it is not difficult to prove 
the following. 

Proposition. / / s is sufficiently large then (*s) is an exact sequence. 

The proof is based on the facts that polynomial rings have finite global di
mension and that the Koszul complex with H*(G, M) replaced by the polynomial 
ring is a projective resolution of K. The proposition allows us to define a new 
invariant for modules. Notice first that if we use Tate cohomology then s can 
be negative. Moreover the sequence (*s) for M is the same as the complex (*s+i) 
for Q(M). Here Q(M) is the kernel of the epimorphism P —> M where P is a 
projective cover for M. 

Definition. The index of a KG-module M is the least integer r such that (*s) is 
exact for all s>r. 

The index of a module is a benchmark for the degree shifting process in 
cohomology. Clearly Index(ß(M)) = Index (M) + 1. Also we have the following. 

Proposition. The index of M does not depend on the choice of parameters. That is, 
the index is the same for any set £i, • • • ,Çm such that H*(G,M) is finitely generated 
over K[Ci,"- ,Cml 

Some interesting questions are raised by the construction. For example, is the 
index of trivial module zero? The answer is yes when the p-rank of G is two and 
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in several other situations [8]. What is the index of an irreducible module? Is it 
zero? 

One of the connections with the representation theory is contained in the 
following. We state this only in the context of the example (n = 3,a,ß,y as 
above). The proof follows from results in [8]. 

Theorem. If s> Index([/ ®K M*) for all simple modules U, then there is an exact 
sequence 

&*+'+'» (M) QS+](M) 
© © 

0 —> ßs+/+m+"(M) —> ßs+/+"(M) —• ßs+'"(M) —-* Q(M) —+ 0 
© © 

ßs+'»+»(m) Qs+n(M) 

where the maps are induced by (±1) times a,ß,y as appropriate. 

There is another view which we may take of this theory. Consider the complex 
C® associated to (/• Recall that Hj(C®) is K if j = 0,77?/—1 and zero otherwise. 
Of course, 0 , • • • , £„ is a homogeneous set of parameters for H*(G,K). Let 

C = C(1) <g)x • • • ®K C(?,). 

Theorem [8]. The complex C is a Poincaré duality complex of projective KG-
modules. That is, there is a duality C* —• C which is a homotopy equivalence. 

Among other things the duality implies that when H*(G,K) is a Cohen-
Macaulay ring then its Poincaré series, f(t), satisfies the functional equation 
f(\) = ("0 r/(05 where r = p-rank(G). It is conjectured that the condition is 
equivalent to H*(G,K) being Cohen-Macaulay. 

It can be seen that H*(C) = A(li,- • • , Q , an exterior algebra, where £/ is a 
cohomology element (in degree deg(C) —1 = m\ — 1) coming from the cohomology 
of C^. In some cases the cup product here is G-equivariant. We can form the 
hypercohomology spectral sequence whose £o-term is 

FS's = HomXG(Pr®Q,K) 

and whose £2-term is 

E'2>
s = Hr(G,Hs(C)) = Hr(G,K) ®K H*(C), 

and which converges to the hypercohomology 

H^(C,K) - Hr+s(UomKG(C,K)). 

The early differentials in the spectral sequence are simply cup products with 
the corresponding group cohomology elements. That is, 

dmi(a®ti) = aC/® 1. 
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The higher differentials are a sort of twisted Massey product - a matric Massey 
product. The results seem to indicate that some of these Massey products are 
zero in high enough degrees. The questions about the index of the trivial module 
K are closely related to the nature of the differentials in this spectral sequence. 
A smiliar construction can be made for the cohomology of modules. 
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On Growth in Group Theory 

Rostislav I. Grigorchuk 

Moscow Institute of Railway Transportation Engineers 
ul. Obraszowa 15, Moscow, USSR 

1. General 

The concept of growth appeared in group theory in the mid-fifties and now it plays 
an increasing role in this theory. Among different notions concerning the idea of 
growth in group theory the most important and successful is the notion of growth 
of a finitely generated (f.g.) group. 

We start with the main definition, then enumerate the results concerning this 
definition and at the end we shall touch some other aspects of growth in group 
theory. 

1.1 The Main Definition 

Let G be a finitely generated (f.g.) group with generator system A = {al9..., am}, 
and let d(g) be the length of the element g e G with respect to the system A, in other 
words the minimal number k such that g can be represented in the form 

g = all...a%, 

fi/ = ± 1, j=l,...,k. 

The growth function of the group G with respect to the system A is the function 

y(n) = card{# e G; ô(g) < n}. 

As y(n) depends on the generator system it is convenient to introduce an equiv
alence relatiop on the set of growth functions: 

yM ~ y2(n)oiC(yM < y2(Cn)&y2(n) < 7l(Cn)) 

and the preordering relation: 

yi(n)<y2(n)olC(yi(n)<y2(Cn)). 

The equivalence class [y/(n)] is an invariant of the group G. We shall call it the 
growth degree of the group G, 

Obviously the growth degrees of a group and of any of its subgroup of finite 
index coincide. 

The partially ordered (with respect to <) set 2B of the growth degrees of f.g. 
groups will be the main object of our consideration. 
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© The Mathematical Society of Japan, 1991 
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1.2 Examples 

If G = Zd is the free abelian group of rank d, then y(n) ~ nd. If G = Fm is an (absolute) 
free group of rank m > 2 then y(n)coen. Thus the growth of a group can be 
polynomial of any degree d e Z+ and can be exponential. 

1.3 Connection with Geometrical Growth 

The notion of the growth function was introduced by A.S. Schwarze [1] and 
independently by J. Milnor [2]. This notion is a combinatorial form of the geo
metrical growth notion explored by VA. Efremovich [3]. 

Let M be a Riemannian manifold. Its growth at infinity is characterized by the 
growth when r -> oo of the function 

v(r) = Vol(Bx(r)), 

expressing the volume of the geodesic ball of radius r with center at the point xe M. 
The examples of the Euclidean space Rd and hyperbolic space H d show that this 
function in the first, case grows as the polynomial rd and in the second case as the 
exponential function er. 

On the other hand the growth function yG(n) of the f.g. group G expresses the 
volume of the ball Bx(n) of radius n with center at the unit element 1 e G if the group 
G is supplied with the metric d(g, h) = d(g~1h) and Haar measure. 

The connection between geometric and algebraic growths can be also illustrated 
by A.S. Schwarzc's theorem [1]: if the manifold M is a universal covering manifold of 
the compact Riemannian manifold M then 

"MW ~ y*l(M)(r)-

In other words the growth of the covering manifold M is the same as the growth of 
the fundamental group nx(M) of the manifold M. 

2. Milnor's Problems 

2.1 Some Results 

Intensive investigation of the growth functions of f.g. groups began after J. Milnor's 
paper [2] was published. A series of important results was obtained within a short 
time interval. Here are some of them, 

2.1.1 A f.g. nilpotent group G has polynomial growth (Wolf [4]) like hd, where 

d = YJkvmkQ(Gk/Gk+1) 
k 

and {GjJ is the lower central series of the group G (Bass [5]). 

2.1.2 A f.g. solvable group has exponential growth if it is not virtually nilpotent 
(Wolf [4], Milnor [6]). (Virtually nilpotent means: contains a nilpotent subgroup of 
finite index). 
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2.1.3 A f.g. linear group has exponential growth if it is not virtually nilpotent (Tits 
[7]). 

2.1.4 A free periodic Burnside group 

B(m,n) = (au...,am\gn = l,geG} 

has exponential growth when m > 2 and n > 665 is odd (Adyan [8]). 
In 1968 J. Milnor [9] proposed a number of problems concerning growth of 

groups. 

1) "Is the growth function y(n) necessarily equivalent either to a power of n or to 
the exponential function TT 2) In particular, is the growth exponent 

d l = l i m ! o g y W (1) 

»-oo log 77 

always either a well-defined integer or infinitelyl For which groups is d < oo? (A 
possible conjecture would be that d < oo if and only if G contains a nilpotent subgroup 
of finite index)". 

(Division of Milnor's problem into Parts 1) and 2) has been made by me). 
As a conjecture Problem 1) was formulated by Wolf [4] and Bass [5]. 

Conjecture: "A f.g. group of non-exponential growth is virtually nilpotent". 

2.2 Two Definitions 

A group whose growth function is not majorized by any function nd and is not equiva
lent to the function e" is called an intermediate growth group. And a group G is called a 
group of subexponential growth if y(n) •< en (strong inequality), in other words, if 

lim */yfr) = 1 
I I-+00 

(the limit exists due to the semi-multiplicativity of the function y(n)). 

3. Answer to Milnor's Problem 1) 

Milnor's problem 1) was solved negatively in [10,11, 12]. 
s 

3.1 On the Construction of Intermediate Growth Groups 

The simplest example of such a group is the group /"from the paper [13] which 
was constructed as a simple example of a f.g. infinite periodic group. T is defined as 
the group of transformations of the interval [0,1] from which rational points of the 
form fc/2", n — 1, 2, ..., 0 < k < 2" are removed. This group is generated by four 
transformations a, b, c, d, where a is the permutation of the halves of the interval 
[0, 1] and b, c, d, are defined with the help of infinite periodic words 
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P P P T . . . 
a\ 1 b\ 1 1 1 1 
0 1 0 I I J...1 

P T P ... T P P . . . 
c | 1 _ | _ | 1 d | 1 1 1 1 

0 Ì 3 7 1 A 1 I 7 | 
U 2 4 g . . . i U 2 4 g . . . l 

Fig. 1. (P denotes the permutation of the halves of the interval, T is the identity 
transformation). 

PPTPPT... 
PTPPTP... 
TPP TPP ... 

as in Figure 1. 
We constructed uncountably many intermediate growth groups on the basis 

of this example (see [10-12]). 

3.2 The Main Idea of the Growth Function yr(n) Upper Estimation 

The group T contains a subgroup H of finite index, which allows an embedding W 
in the direct product of eight copies of the group T: 

H^H<rxrxrxrxrxrxrxr, 

and H is a subgroup of finite index in 7"8. 
This embedding has the following property: if g e H and 

^(0) = (0i,02, •••>08)ei? 

then 

where k is some constant less than 1. Hence 

y(«)<cSr(Wl)...yK) (2) 

(C is some constant), where the summation in (2) is taken over those sets of non-
negative integers nl9..., n8 for which the inequality 

8 

Y nt < kn 
i=l 

is valid. 
If we assume that 

lim 7y(n) = X > 1 
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then we shall obtain a contradiction k < Xk from (2). So r has sub-exponential 
growth. 

The fact that the function y(n) grows faster than any polynomial results, for 
example, from the following consideration. 

The group r is commensurable with its square, in other words the groups T 
and r x T contain isomorphic subgroups of finite index. Hence y(n) satisfies the 
so-called ^-condition y(n) ~ y2(n), which results in the lower estimate by some 
function of the type e"p, where ß > 0. 

However, the lower estimate of the function yr(n) can be obtained directly. It is 
proved more precisely in [11] that 

e^x < yr(n) < en\ 

where a — log32 31. This obviously gives a negative answer to Milnor's problem 1). 
On the basis of a construction which generalizes this example we proved the 

following theorem (see [11, 14]). 

Theorem 1. The set of growth degrees of f.g. groups has the cardinality of the 
continuum. It contains a chain of the cardinality of the continuum, and an antichain 
of the cardinality of the continuum. 

I would like to stress that we are speaking precisely about intermediate degrees 
of groups in this theorem. 

Another example of a group of intermediate growth was constructed by 
J. Fabrykowski and N. Gupta [15]. 

3.3 Some Properties of Intermediate Growth Groups 

Intermediate growth groups can be constructed both in the class of p-groups (p is 
any given prime) and in the class of torsion free groups [11, 12]. 

The intermediate growth groups known up to this moment belong to the class 
of residually finite groups. Moreover, the groups from the papers [10-12] are 
residually-p-finite. 

The periodic groups constructed in [11,12] have the property that all their 
proper factor groups are finite. At the same time in [16] for any prime p, & f.g. 
p-group of intermediate growth having continuum nonisomorphic factor groups 
was constructed. 

The torsion free group of intermediate growth constructed in [12] admits an 
invariant linear ordering. 

The intermediate growth groups from [11, 12] are not finitely presentable. 
There exist recursively presentable (by generating elements and defining 

relations) intermediate growth groups having solvable word problem. At the same 
time there are analogous groups with unsolvable word problem [11, 14]. 

4. On Groups with Polynomial Growth 

An exhaustive answer to Part 2) of Milnor's problem was given in the papers 
[17, 18] and Milnor's conjecture suggested in this part was confirmed. Note that a 
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more general result was obtained in [18], although this paper is mainly devoted to 
proving Gromov's theorem by methods of nonstandard analysis. 

4.1 On Gromov's Theorem 

Gromov's theorem proved in [17] gives the description of f.g. groups whose growth 
functions admit polynomial estimate 

y(n)<nd, (3) 

(d is some constant). This theorem states that a group G is virtually nilpotent if the 
estimate (3) is valid for its growth function. 

Hence the estimate (3) results in an equivalence y(n) ~ nd for a suitable deZ+. 
The proof of this theorem is based on geometric considerations. The left 

invariant metric d(g, h) = d(g~1h), g,hsGis built on the group G and the sequence 

Xn = (G,±d), n e N 

of metric spaces is considered* 
Gromov proved that from this sequence one can extract some subsequence 

which converges in an exactly defined way to some metric space X^ if the condition 
(3) is valid. A homomorphism G -> Isomf-X^) from the group G into the isometry 
group of X^ arises and Isorn^^) is a Lie group with a finite number of connected 
components. Some simple algebraic considerations complete the proof of this 
theorem. 

4.2 On L. van den Dries and A. Wilkie's Theorem 

The main result of [18] is: if the inequality 

y(n) < Cnd 

is valid on some infinite subset N 0 ç N of the set of natural numbers then the group 
G is virtually nilpotent. 

From this statement if follows that the limit (1) (finite or infinite) always exists, 
and also d < oo if and only if the group G is virtually nilpotent. 

5. On the Growth of Cancellation Semigroups 

The notion of the growth function of a f.g. semigroup is defined as in the case of 
a group. The growth of a semigroup can be very strange even in the case when the 
condition (3) holds true. But if we consider the class of semigroups with left and 
right cancellation laws then in this case the statement similar to Gromov's theorem 
is valid. 

5.1 The Nilpotency of Semigroups Due to A.I. Malcev 

Let x, y, Çl9 Ç2, ..., Çn, ... be symbols denoting variables running through a 
semigroup S. Let us denote X0 = x, Y0 = y and after that by induction 
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X„+i = Xnç„Yn, Y)l+1 = YnçnXtr 

The semigroup S whose elements satisfy the identity Xn = Yn for some n is called 
nilpotent. 

A.I. Malcev proved [19] that the classical nilpotency identity for groups is 
equivalent to the semigroup identity X„ = Yn for corresponding n. 

5.2 On Cancellation Semigroup of Polynomial Growth 

Let S0 £ S be a subsemigroup. We shall say that S0 has finite index in S if there 
exists a finite subset K ^ S such that for any se S there exists k e K for which 
ske S0. 

Theorem 2. A f.g. cancellation semigroup S has polynomial growth (Condition (3)) if 
and only if S contains a nilpotent subsemigroup of finite index. 

The proof of this theorem is based on the remark that for a cancellation 
semigroup of subexponential growth the Ore condition is satisfied and this semi
group possesses a group Gs = S - 1 S of left quotients. 

The estimate (3) on the growth function of the semigroup S makes it possible to 
give a polynomial type estimate on the growth function of the group Gs after detailed 
analysis. Then Gromov's theorem can be applied. 

5.3 Some Remarks 

In [20] it was proved that if a semigroup S with cancellation has polynomial growth, 
then the group Gs of left quotients also has polynomial growth of the same degree. 

It would be interesting to construct examples of semigroups with cancellation 
of subexponential growth for which there is a jump of growth degree in the diagram 
S^GS. 

If one could construct a semigroup S with cancellations of subexponential 
growth such that Gs has exponential growth, then Problem N12 from [21] will be 
positively solved. 

6. On Lacunae in the Set of Growth Degrees 
of Residuali} Nilpotent Groups 

Recall that a group G is residually-p if for any nonunit element g e G there exists a 
finite p-group K and a homomorphism cp:G -> K such that cp(g) ^ 1. 

Theorem 3 [22]. Let p be any prime, let the f.g. group G be residually-p and its growth 
function satisfy the estimate (3). Then G is virtually nilpotent and so has polynomial 
growth. 

6.1 Proof of Theorem 3 

Let Fp be a finite prime field, Fp[G] the group algebra, A < Fp[G] the augmentation 
ideal, in other words the ideal generated by elements of the form g - 1, g e G, gr(G) 
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Polynomial degrees 

Lacunae 
1 n n2 ... nd ... 

Chain . en exp. 
degree 

e^1 Antichain 

Fig. 2 

the associative graded algebra defined by means of the powers of the augmentation 
ideal 

gr(G)=@A„ = ©A"/A»+\ 
n=0 n=0 

:aré series of the algeb: 

n=0 n=0 

let fGtp(t) be the Hilbert-Poincaré series of the algebra gr(G): 

where an(G) = dimF An. 
It follows from Lazard's Theorem 3.11 [23] that either the sequence an(G) has 

polynomial growth and then the p-completion G is p-analytic or an(G)>e^. 
Besides if y (ri) is the growth function of the group G with respect to any system of 
generators then the inequality an(G) < y(n), n = 1, 2 , . . . is valid. 

Using Lazard's result and Condition (3) we obtain that the growth of coefficients 
an(G) when n -» oo is polynomial and so the p-completion G is analytic. It follows 
from Tit's theorem [7] that either G contains a free subgroup with two generators 
or G is a virtually solvable group. But the first case is impossible due to limitation 
on the growth, and in the second case, we can conclude that G is virtually nilpotent 
due to results of [4, 6]. 

Recently A. Lubotzky and A. Mann [24] have pointed out that in Theorem 3 
the assumption that G is residually-p can be changed by the assumption that G is 
residually nilpotent. 

6.2 On the Scale of Growth Degrees of Residually-/? groups 

Let p be any prime and denote by Wp the set of growth degrees of f.g. residually-p 
groups. Theorem 1 formulated above for the whole class of groups is also true for 
every set 2Bp. So, due to Theorem 3 the structure of the partially ordered set 2Bp 

can be presented in the form as in Figure 2. 

7. On the Generating Series of Growth Function 

Many questions of a theoretical and applied character require more detailed in
vestigation of the asymptotic behavior of the growth function y (ri) than up to the 
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equivalence ~, defined above. For this it is sometimes useful to connect the 
generating series 

m = t y(r>)t" 
N = 0 

to the function y(n). 

7.1 Some Cases When the Function T(t) is Rational for any System of Generators 

i) The group is virtually abelian (Benson [25]) 
ii) The group is a cocompact group of isometries of the hyperbolic space WLd 

(Cannon [26]) 
iii) The group is hyperbolic (Gromov [27]). 

For many nilpotent groups the series the r(t) also represents a rational function 
(see for example [28]). At the same time the conjecture that for any f.g. nilpotent 
group and any of its finite generating set the function T(t) is rational proved to be 
false. Namely F. Grunewald proved that for the nilpotent group 

G = <fll5 a2, bu b2, z\\_au foj = \_a2, fc2] = z,ze Z(G), 

f<*u a2] = [Pu M = [ßu hl = \ßi> M = O 

(Z(G) is the centre of the group G and the function T(t) defined using the system of 
generators {al9 a2, bx, b2, z}), the generating series r(t) is not a rational function. 

7.2 Information on the Growth Functions of Nilpotent Groups 

Let G be a nilpotent group, y (ri) the growth function of G with respect to any system 
of generators, d the power of polynomial growth of G. Then 

a) there exists the limit 

l i m ^ = C 
n -»oo n 

(Pancu [29]), 

b) the estimate 

y(ri) = Cnd + 0(nd~112) 

is valid (Grunewald, unpublished). 
It is interesting to find new examples of rationality of the growth function T(i) 

and also to obtain another information about the generating series of growth 
functions. 

8. Some Problems and Conjectures 

The theory of growth degrees of groups has been developed for more than three 
decades and has already accumulated a lot of unsolved problems. Let me formulate 
some of them. 
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8.1 (A well known problem.) Is there a f.g. group of intermediate growth with a 
finite set of defining relations? 

8.2 Is it true that if the growth function of a f.g. group G grows slower than the 
function e^n, then G is virtually nilpotent? 

8.3 Does there exist a f.g. group whose growth function is equivalent to the function 

8.4 Is it true that any group of subexponential growth is residually finite? 

8.5 To find the asymptotic behaviour of the growth function of the group T from 
[13] (conjecture is that y (ri) ~ e*" in this case). 

8.6 Is it true that for any f.g. nilpotent group the function T(t) is meromorphic or 
even algebraic? (F. Grunewald). 

Let 
G = (A\r= l ( r e Ä ) ) 

be f.g. and 3 be the Cayley graph of G with respect to the system of generators A. A 
spanning tree T s ^ i s regular if it is defined by a finite automaton. A spanning tree 
T is minimal if every word in T is the shortest. 

8.7 Conjecture. G has a rational growth function if and only if 3 has a minimal 
regular spanning tree (Machi, Schupp). 

9. Other Aspects of Growth in Groups 

9.1 Cogrowth 

Let a f.g. group G be realized as a factor group FJH of the free group Fm of rank 
m, H < Fm2L normal subgroup, the elements of which will be further considered 
as reduced words over the basis of Fm. Denote by h(ri) the number of words of 
length <n in H. Obviously h(ri) <, 2m(2m - l)w_1. Let 

00 

aH = limsup y/h(n), J^(t) = £ h(ri)tn. 
ii-»oo n=0 

The value aH which appeared in [30] is called the. growth exponent of the normal 
subgroup H and belongs to the interval (y/2m — 1, 2m — 1]. 

In [31] the following amenability criterion was proved. 

Theorem 4. The group G = Fm/H is amenable if and only if ocH = 2m — 1. 

The function J^(t) and growth exponent aH can be defined also for any subgroup 
H < Fm. In [31] it was proved that if if is a f.g. group then J f (t) is a rational function 
which can be effectively calculated if the system of generators of H is known. 
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9.2 Subgroup Growth 

Let G be a f.g. group, and let Qn(G) be the (finite) number of its subgroups of index 
n. The problem of investigation of the asymptotic behavior of the sequence g(n) when 
n -» oo has been drawing more and more interest. For example in [32] F. Grunewald, 
D. Segal and G. Smith investigated in detail the Dirichlet series 

EG(s) = £ft,(G)n-' 

of the sequence gn(G) for the case when G is nilpotent. 
On the other hand A. Lubotzky and A. Mann [24] showed that if G is a 

residually nilpotent f.g. group then Qn(G) has polynomial growth if and only if G is 
solvable of finite rank. 

The general case of a residually finite group is still open. See [24] for other 
references and comments. 

9.3 On the Growth of Graded Algebras Associated to Groups 

During investigations of groups different graded algebras associated to these groups 
arise. For example the associative graded algebra gr G was defined above. Studying 
the growth of algebras and in particular graded algebras associated to groups is 
important from different points of view and is connected with different applied 
aspects of algebra [33-37]. 

9.4 On the Asymptotic Behavior of Random Walks on Groups 

Investigation of random walks on groups was started by H. Kesten in [38]. It is 
interesting to investigate the asymptotic behavior when n -^ oo of the probability 
Plf i

(/,) of returning to the unit element after n steps [38, 39], to calculate the entropy 
of random walks [40], to describe Martin's and Poisson's boundaries [41, 42] and 
so on. 

10. Applications 

10.1 To the Theory of Invariant Means 

The definition of an invariant means and the corresponding notion of amenable 
groups belong to J. von Neumann [43]. 

Finite and abelian groups are amenable. The class of amenable groups is closed 
under operations of extension and inductive limit. 

Let us denote the class of amenable groups by AG, the class of groups without 
free subgroups with two generators by NF, and the class of elementary amenable 
groups constructed by J. von Neumann by EG, i.e. the minimal class of groups 
containing finite groups, abelian groups and closed under the operations of exten
sion and inductive limit. The following imbeddings EG £ AG £ NF hold true. 



336 Rostislav L Grigorchuk 

In 1957 M. Day [44] proposed the following two problems: 

(1) Is it true that AG = NF? 
(2) Is it true that AG = EG? 

Some mathematicians ascribe Problem (1) to J. von Neumann but there is no 
written confirmation of the fact that it was he who suggested this problem. 

In 1979 to disprove the conjecture AG = NF I suggested A.Yu. Olshanskii to 
apply the amenability criterion (Theorem 4) to the groups constructed by him at that 
moment for the solution of some famous problems of group theory. This suggestion 
was realized in the short paper [45]. 

A little later S.I. Adyan [46] also applied the amenability criterion to prove that 
free periodic Burnside groups B(m, ri) are nonamenable when m > 2 and n > 665 is 
odd (the conjecture that these groups are nonamenable was expressed by S.I. Adyan 
in 1975). 

The negative answer to the problem (2) was given in [11]. 

Theorem 5. There exist uncountably many amenable groups not belonging to the class 
EG. 

Hence the class AG of amenable groups is much more than the class EG of 
elementary amenable groups. 

Theorem 5 is an easy corollary to the existence of a continuum of nonisomorphic 
intermediate growth groups. 

Using intermediate growth groups we managed [48] to disprove one of 
Rosenblatt's conjectures [47] (see also [21], Problem 11) about the so-called 
superamenable groups. 

10.2 To Riemannian Geometry 

The results concerning the growth functions of groups are widely used in the 
classification theory of Riemannian manifolds up to quasi-isometries, in the theory 
of foliations, in the investigation of Laplace operator on Riemannian manifolds 
(see [49, 50]),.... 

10.3 Other Applications 

Information concerning the growth functions of groups is used in many, sometimes 
unexpected branches of mathematics: in the theory of random walks [38, 39], 
ergodic theory [50, 52], the theory of finite automata [20] and so on. 

In my lecture I did not touch upon many other aspects of applications of the 
notion of growth in group theory, many of which at this moment are only in their 
initial stage of development. 
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Absolute Integral Closure and 
Big Cohen-Macaulay Algebras 

Craig Huneke* 

Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA 

Introduction 

Our purpose in this paper is to discuss a recent result by this author jointly with 
Melvin Höchster which gives the existence of big Cohen-Macaulay (C-M) algebras 
in equicharacteristic. In general proofs will be omitted, though sometimes sketchy 
arguments will be given. Before stating the main theorem, we give a review of the 
basic definitions and concepts used in this paper, particularly the property of a ring's 
being C-M. Throughout this paper, "ring" means commutative noetherian ring with 
identity, with one notable exception: the integral closure of a domain R in an 
algebraic closure of its quotient field will come into play. However, as these rings 
are never noetherian if dim(R) > 0, no confusion will arise. 

Definition 1.1. Let R be a ring, let M be an R-module, and let x l 5 . . . , xn e R. The 
elements x1,...,xn are said to be a regular sequence on M (or simply an M-sequence) 
ifi) Xf is not a zerodivisor on the module M/(xl9..., xf_i)M for each i between 1 and 
n, and ii) M ^ (xl9..., x„)M. 

Condition ii) is a nondegeneracy restriction, which is especially relevant when 
the module M is not finitely generated. For example if R is a domain and M is its 
quotient field, then i) is trivially satisfied, but ii) fails. 

The first condition can be rephrased in several ways of which we list two: 

i)' whenever Y,ì=iJW = 0 with yf e M, 1 <>k < n, then yke(x1,..., xk^)M. 

If M is finitely generated and the xt are in the Jacobson radical of R, then i) is 
equivalent to, 

i)" The first Koszul homology Hx (x, M) = 0, where here and below x stands for 
all the xf. (The Koszul complex K.(x, M) is the tensor product of the n complexes 
0 -> R % R -+ 0 with M.) 
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In any case, if the x form a regular sequence on M, then the first Koszul 
homology is 0; it is the converse that requires some restrictions. 

The (Krull) dimension of a ring R, dim(R), is sup{n e N|P 0 ^ Px ^ • • • ^ Pn : Pt 

are prime ideals of R.} 
A ring (R, m) is local if there is a unique maximal ideal m of R. The dimension 

of a local ring (R, m) can also be characterized as the least integer n for which there 
exist n elements xl9 ..., xn with the property that the nilradical of the ideal they 
generate is exactly m. Such a system of elements is called a system of parameters 
(s.o.p.). A sequence of elements which can be extended to an s.o.p. will be called 
parameters in this paper. 

Definition 1.2. A local ring R (necessarily noetherian, recall) is Cohen-Macaulay, if 
there is a regular sequence xl9 . . . , xn in m whose length n = dim(R). A noetherian 
ring R is C-M if Rp is C-M for every prime ideal p of R (equivalently, every maximal 
ideal p of R). 

Any sequence as in (1.2) will have to be an s.o.p. Moreover if R is C-M then any 
s.o.p. will form a regular sequence. In general the length of a maximal regular 
sequence of elements in the maximal ideal m of a local ring (R, m) is called the depth 
of R, denoted depth(.R). It always holds that depth(K) < dim(R); R is C-M precisely 
when equality occurs. Some examples of C-M rings and how they occur are given 
below. 

Example 1.3. Any 0-dimensional ring is C-M vacuously. Any 1-dimensional domain 
R is C-M, since any non-zero element is a nonzerodivisor. 

Example 1.4. Not all 2-dimensional rings, even domains, are C-M (cf. 1.9 below). 
However, integrally closed 2-dimensional domains are C-M. As integral closure and 
finite maps play an important role in this paper, we review these concepts here. If 
A ç S , a n element s e S is said to be integral over R if s satisfies a monic polynomial 
equation with coefficients in R. The set of all elements of S integral over R form a 
ring T called the integral closure of R in S. If R is a domain and S is its quotient 
field, then T is called the integral closure of R. If further R = T, R is said to be 
integrally closed. A homomorphism from R into S is said to be finite if S is a finite 
.R-module. This is equivalent to saying S is a finitely generated IE-algebra in which 
every element is integral over R. 

Example 1.5. Any regular ring is C-M. A local ring (R, m) is regular if the maximal 
ideal m can be generated by an s.o.p. A noetherian ring is regular if all its local rings 
at prime (equivalently maximal) ideas are regular local rings. Regular local rings are 
exactly those local rings in which every finitely generated module has finite projec
tive dimension. Examples of regular rings include polynomial rings and power series 
rings over fields. Regularity is the analogue of the geometric notion of being 
non-singular. 

Example 1.6. If (R, m) is C-M local and xl9 ..., xk are parameters (hence also a 
regular sequence) then the quotient ring R/(xl9..., xk) is also C-M. Combining this 
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example with (1.5) gives that the so-called complete intersections are C-M. A 
complete intersection is by definition a ring which is a regular ring modulo an ideal 
generated by a regular sequence. More generally a local Gorenstein ring is C-M. 
Gorenstein local rings are characterized by the property that they have finite 
injective dimension over themselves, or alternatively that every s.o.p. generates an 
irreducible ideal (irreducible means not the intersection of two strictly larger ideals). 

Example 1.7. If G is a linearly reductive algebraic group over k acting k-linearly on 
a polynomial ring S = k[xl9..., x„], then the ring of invariants R = SG is C-M. 
This is due to Höchster and Roberts [H-R], and includes an enormous number of 
examples. A more general result was recently obtained by myself and Höchster 
[H-Hl]: if S is any regular local ring containing a field, and R is a subring of S such 
that the inclusion of R into S splits R-linearly, then R is C-M (in positive characteris
tic this was known [H-R]; see also [Bo]). Our proof uses the theory of tight closure 
which is discussed below, cf. (2.3). 

Example 1.8. If X ^ PjJ is a projective variety of dimension d which is arithmetically 
normal (i.e., its homogeneous coordinate ring R is integrally closed) then X is 
arithmetically C-M (equivalently, R is C-M) iff for all integers t and all /, 1 < / < 
d - 1, H\X, 0x(t)) = 0. X is said to be C-M itself if its local rings are C-M. 
Geometrically C-M varieties are quite an important and good class; for instance 
Serre duality holds if X is C-M. Furthermore the computation of the degree of X 
(equivalently the multiplicity of R) is made easy if X is arithmetically C-M - one 
only needs to take a general linear space L of complementary dimension such that 
X n L is empty, and then deg(AT) = dimk(S/I(X) + I(L)), where I(Y) is the homoge
neous ideal of functions vanishing on Y and S = kfX0,..., Xn~\. In fact, this property 
characterizes when X is arithmetically C-M. 

Example 1.9. To see an explicit ring which is not C-M take R to be the subring 
k[tA, t3s, ts3, s4] of the polynomial ring k\_t, s] in two variables over a field k. It is 
easy to see that t4 and s4 form a homogeneous s.o.p. for R but are not a regular 
sequence, since t4(ts3)2 = sA(t3s)2, but t4 does not divide t6s2 in R, as it would have 
to do if R is C-M. The element t2s2 is missing. If we adjoin this element to R, we 
actually arrive at the integral closure of R, which is then C-M as it is a 2-dimensional 
integrally closed domain (see (1.4)). 

Example 1.10. While C-M rings can be highly singular, nonetheless they are in a 
partial sense homologically trivial over regular rings - this is made precise below 
for two important classes of rings, complete local rings and nonnegatively graded 
rings over a field. To this end, let (R, m, k) denote either a complete local ring with 
maximal ideal m (complete means complete in the topology determined by the 
powers of the maximal ideal) and coefficient field k (a coefficient field is a field k 
contained in R such that the map from k to R/m is an isomorphism; if R contains 
a field and is complete, then such fields always exist), or let R = ® f ;> 0 R* be a graded 
ring with R0 = k, and m = ®,->i R,-. In this case R/m ~ R0 = k. We will say we are 
in case 1 if (R, m, k) is complete local, and in case 2 if (R, m, k) is graded. In both of 
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these fundamental cases, R can be represented as finite over a regular ring A. In 
case 2, the Noether normalization theorem shows that if xx,..., xn is any homoge
neous s.o.p. for R, then the subring k[xx,..., x„] of R has the properties that R is 
a finite ,4-module, and A is isomorphic to a polynomial ring in «-variables over k, 
i.e., the elements xx, ..., xn are algebraically independent. In case 1, the Cohen 
structure theorem for complete local rings shows that if xx,..., xn is any s.o.p. for 
R and we take A to be the complete s.ubring kf[xx,..., x,J] of R generated by 
xx,..., xn, then R is a finite ,4-module, and A is isomorphic to a power series ring 
in n-variables over k, i.e., xx,..., xn are analytically independent. We may thus study 
the properties of R through thinking of it as an yl-module in both cases. The homo-
logical properties of A are much nicer in general - regular rings are characterized 
by the fact that modules over them have finite free resolutions. 

The property that R is C-M can now be easily expressed in terms of the 
^[-module structure of R. In both cases, R is C-M iff R is a free A-module, i.e., is 
"homologically trivial" over A. This is a useful point of view. 

2. Trivializing Relations on Parameters 

Let me return for a moment to (1.9). There we had a 'bad' relation on the parameters 
t4 and s4, namely the relation t4(ts3)2 = s4(t3s)2. This relation is nontrivial in the 
sense that it does not come from the trivial relation on t4 and s4, i.e., the relation 
t4(s4) = s4(t4). To be precise, if xx, ..., xn are elements in R, we say a relation 
(rx,..., rn) on these elements (i.e., £Vfxf = 0) is trivial if it is an R-linear combination 
of the Koszul relations (0,..., 0, xp 0,..., 0, — xh 0,..., 0) where the Xj is in the ith 
spot and the — xt is in the jth spot. In a C-M local ring all relations on parameters 
are trivial; this is the fundamental property of C-M rings. However, even if R is not 
C-M we can ask if a given relation on parameters xx,...,xk can be made trivial in 
some nice extension of R. This phenomenon occurred in (1.9), where by passing to 
the integral closure of R, we add the element t2s2, and then write our nontrivial 
relation (over R) (t2s6, - t6s2) as t2s2(s4, -14) (over S). 

Unfortunately, or perhaps fortunately, else life would be too simple, it is not 
enough to pass to the integral closure to ensure relations on parameters become 
trivial, since not all integrally closed rings are C-M. The homogeneous coordinate 
ring of an elliptic curve cross P1 is a 3-dimensional integrally closed non C-M ring. 
Nonetheless one might naively hope that it is possible to trivialize relations on 
parameters of R in some finite extension S of R. There has been no known natural 
way to increase depth past 2 (one can obtain depth 2 by taking integral closure). A 
similar situation prevails for modules over normal rings, where by taking double 
duals one can pass to modules having depth 2, but no construction is known to 
'make' a module have depth bigger than 2 if it does not already possess this property. 

In characteristic 0 it is not in general possible to trivialize relations in finite 
extensions. Indeed, if R is an integrally closed local domain containing the rationals, 
and Y!i=i rixt = 0 is a nontrivial relation on parameters xx,..., xk of R, then this 
relation can never be made trivial by passing to a finite extension S of R: if such an 
S existed, then rk e (xx,..., xk_x)S. Let ß denote the map (1/[L : K~\)txLfK, where K 
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is the quotient field of R, L the quotient field of S, and tr( ) is field trace. Then ß is 
an R-linear map from S to R, splitting the inclusion of R into S. In particular, 
h = ßih) e (ß(xi)> • - • > ß(xk-i))R = (*i> • • • > x*-i)<R> a contradiction. This impos
sibility in characteristic 0 makes the following main theorem (in characteristic p) 
somewhat miraculous. 

Main Theorem 2.1 [H-H5], Let (R, m) be an excellent local domain of positive 
characteristic p, and let R+ denote the integral closure of R in an algebraic closure of 
the quotient field K of R (called an absolute integral closure in [Ar]). If xx, ...,x„ 
is an s.o.p. of R, then xx, ..., x„ is a regular sequence in R+, i.e., R+ is a big C-M 
algebra for R. 

Here 'big' refers to the fact that R+ is not a finitely generated R-module. In fact, 
since the quotient field of R+ is algebraically closed, R+ cannot even be noetherian 
(unless R = K is a field). We will not give an explicit definition of "excellent" except 
to say all algebras essentially of finite type over a field and all complete local rings 
are excellent. 

The meaning of (2.1) is that given any nontrivial relation on the parameters 
xx,..., x„ of R, there will be a finite extension domain S of R in which the relation 
becomes trivial! Of course, passing to S may reap a harvest of new bad relations, 
but each one can again be trivialized in a further finite extension. While no one 
finite extension S may suffice to trivialize all relations (in such a case S would be 
C-M), by passing to the union of all finite extensions, namely R+, we do obtain such 
trivialization. 

The Frobenius map F : R -• R sending r to rp plays an important role in the 
proof of (2.1), as one might expect. To explain how the Frobenius is used I need to 
digress to talk about the unmixed part of an ideal. 

Every ideal in a noetherian ring R has a primary decomposition. An ideal J is 
unmixed if all the primes associated to primary components of J are minimal over 
J, i.e., there are no embedded components. (One note for experts; one usually also 
demands that minimal components of J have the same dimension to call J unmixed, 
but in the context in which we will use this concept, this latter condition will be 
automatic.) C-M rings got their name from theorems of Macaulay (for polynomial 
rings) and Cohen (for general regular rings) which state that in a regular local ring 
R ideals generated by parameters are unmixed. Nagata showed that this unmixed-
ness property characterizes C-M rings. 

If J is an ideal of R, we let Ju be the unmixed part of J, i.e., J" equals the 
intersection of the minimal primary components of J. If J is generated by parameters 
in a local ring R, and R is C-M, then J = Ju, so it is no surprise that (2.1) is equivalent 
to the following claim: 

(2.2) If R, R+, are as in (2.1) and J is an ideal of R generated by parameters 
xx,...,xk, then JUR+ = JR+. In fact there is a finite extension domain S of R such 
that JUS = JS. Note however that (JS)U need not be equal to JS. 

The last part of (2.2) follows at once from the first, since J" is finitely generated, 
and hence by collecting coefficients in R+, one can get the extension S. 
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The first general problem confronting one in attacking this claim, without which 
one cannot even leave the ground, is this: given two ideals I, J ina, ring R, how can 
one force J to be contained in J in some finite extension S of R? We want this only 
in the special case where / is generated by parameters and J is /", but this case is 
no easier than the general problem. Of course, one cannot arbitrarily force an ideal 
J into J in some finite extension; there are obstructions. In fact in characteristic p, 
if this occurs then J is in the tight closure of J. The tight closure of an ideal was 
introduced in [H-Hl], and the study of tight closure was a key in proving (2.1), 
although the proof is independent of the theory of tight closure. The definition of 
tight closure is given below. 

Definition 2.3. Let Rbe a ring of characteristic p > 0, let I be an ideal of R, and let 
xe R. We say that x is in the tight closure of I, denoted by I*, if there exists an 
element c of R, not in any minimal prime of R, such that cxq e Ilq] = (iq :ie R> for 
all q = pe » 0. Note that I[q] is the image of I under the e-th iteration of the 
Frobenius. (We also note there is a similar definition for the tight closure of a 
submodule N of a module M, though we do not give the definition here) 

While this definition is technical, it has proved to be a powerful tool, and has 
been used by Höchster and myself (cf. [H-Hl-10]) to give strong improvements and 
new proofs in equicharacteristic (especially simple in characteristic p) of many 
theorems, which are not apparently related: the intersection conjecture [P-S, Hoi, 
Rl-2], the criterion for acyclicity of Buchsbaum and Eisenbud [B-E], the syzygy 
theorem [E-G], the monomial conjecture [Hoi], the Briançon-Skoda theorem 
[B-S], [L-S], and the Hochster-Roberts theorem mentioned in (1.7) [H-R, K, Bo]. 
Many other results also ensue from the theory. 

We return to the general problem of finite extensions. Although it is true that if 
J is forced into J in a finite extension then J ç /*, the starting point for us was 
that we knew this to be true in the case where J is generated' by parameters and 
J = Iu [H-Hl, 4.7]. Being in the tight closure gives strong equational constraints 
upon the elements of J in terms of the elements of I. However, as far as we know it 
is not necessarily true that if/ is generated by parameters in a complete local domain 
R, then I*R+ = IR+, although this is true for parameters of length at most three 
and is probably true. A careful analysis of the equations for tight closure does lead, 
nonetheless, to the following lemma which gives a sufficient criterion for pushing J 
into the extension of / in a finite extension of R: 

Equational Lemma 2.4. Let Rbe a domain of char p > 0, and let I, J be ideals of R. 
Write I = (xx,...,xk).If 

jiPi ç fp]^ + (Xl... xky-ijR+, (#) 

then there is a finite extension domain S of R such that J S Ç IS. 

We would like to apply (2.4) in the case where / is generated by parameters and 
where J = Iu. Unfortunately, the condition (#) is quite a strong one and certainly 
will not be true for general parameters xx, ...,xk. The difficulty in proving (2.2) by 
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using (2.4) is finding appropriate parameters (which we call extraordinary, cf. (2.7) 
below) which are special enough to satisfy (#), with J = Iu, but general enough so 
that they exist, and in enough profusion to allow us to pass from arbitrary s.o.p.'s 
to extraordinary ones in the proof of (2.2). One thing that makes this hard is that 
whatever the definition of extraordinary might be, it will surely be lost under finite 
extensions, so one cannot carry through the entire proof using only special types of 
parameters. There is a delicate balance between the two necessary properties needed 
by these special parameters. However, there is an appropriate definition: we want 
s.o.p.'s which kill as much cohomology as possible. To describe this precisely, we 
need a couple more definitions. 

Definition 2.5. A parameter xof R is said to be a CM multiplier if for all parameters 
xXi ..., xk+x, x annihilates the quotient module N = (xx,..., xk): xk+x/(xx,..., xfc), 
where, in general, I :J = {r e R.rJ ^ /}. 

The quotient module N of (2.5) can often be interpreted as some cohomology 
group of the ring. Notice that N = 0 if R is C-M. It is not clear that such x exist; the 
quantification over all parameters makes the existence of such x a problem. (For 
instance if we set xx = x" for large n then it is immediate that x" annihilates N, but 
not at all clear that x will. Unless x is chosen quite carefully, xiV ^ 0.) The next 
lemma, found in [H-Hl, 11.5] gives the existence of many such elements in excellent 
rings. 

Lemma 2.6. Let xe Rbe such that Rx is C-M. Then there is a fixed power of x which 
is a CM multiplier. 

In an excellent domain R, the locus of the non Cohen-Macaulay primes of R is 
closed, and the defining radical ideal has height at least 2, since 1-dimensional 
domains are C-M. (2.6) guarantees that we can always find two parameters x, y in 
such a ring, each of which is a CM multiplier. This allows a flexibility which is crucial 
to the proof. 

Definition 2.7. Parameters xx, ...,xkin a local ring R are said to be extraordinary 
// xk is a CM multiplier, and the image of x{ is a CM multiplier in the ring R{ = 
R/tx!,...,^)". 

One quick note - in the paper [H-H5], a slightly different requirement is given 
for xk but our change here does not affect the proof in any essential way. 

Sequences of extraordinary parameters do exist, in any length up to the dimen
sion of the ring, in excellent local domains. Furthermore any s.o.p. in such a ring 
can be moved to an extraordinary s.o.p. by a sequence of the following three types 
of operations: 

i) Switching two of the parameters. 
ii) Replacing xt by x, + rxj for any j ^ i, 
iii) Replacing parameters xx,...,xk with yxx, x2,..., xk, where y, x2,..., xk are 

also parameters. 

The third condition allows enormous change. 
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Suppose that we know by induction on k, in the context of (2.2), that any k — 1 
parameters form a regular sequence in R+. Then it turns out that any extraordinary 
parameters xx, ...,xk satisfy the equational lemma (2.4) with I = (xx, ...,xk) and 
J = Iv. In particular we can trivialize relations on the parameters xx,.,., xk; said 
otherwise, the map on Koszul homology, Hx(x; R) - • Hx(x; R+) is zero. If this latter 
property holds for x, which is derived from y by repeated applications of i)—iii) 
above, then it also holds for yk This gives us that relations on parameters can be 
trivialized in R+, which finishes the sketch of the proof of (2.2) and thus (2.1). 

3. Remarks 

In this section we give a little background as well as some indications of how the 
main theorem can be applied. The existence of big C-M modules was shown by 
Höchster [Hol] in equicharacteristic around 1975. He went on to show that the 
existence of such a module, even though not finitely generated, implied many of the 
so-called "local homological conjectures" in equicharacteristic. Most remain open 
in mixed characteristic, although the recent work of Paul Roberts [Rol-2], using 
the intersection theory of Fulton, MacPherson, and Baum, has resulted in the 
solution of many of the conjectures, even in mixed characteristic. 

Hochster's construction of a big C-M module was universal in the sense that he 
showed if any Cohen-Macaulay module exists for a given local ring, then his 
construction must also necessarily give one. This very universality makes it difficult 
to understand the structure of the modules he constructs. Moreover although the 
module is canonically constructed from the ring the actual structure of the module 
is mysterious. It is difficult to interpret its structure in terms of the original ring. 
Höchster also gave a construction of a big C-M algebra, without identity, [Ho2]. 
Again it is somewhat universal in nature and hard to understand its structure. On 
the other hand the ring R+ of (2.1) has a great deal of structure and provides a wealth 
of insight into why such modules even exist. Moreover its structure is attached to 
that of R: for instance the going up and going down theorems hold between R and 
R+ in the case where R is integrally closed. Another example is provided in the 
remarks below concerning the structure of R+: if R, a char, p excellent local domain, 
maps to S, also an excellent local domain of char, p, then the map extends (not 
naturally, however) to a map from R+ to S+. If the original map is injective 
(surjective) then the map from R+ to S+ can be chosen to be injective (surjective). 
In other words, the + construction is enough like a functor to be helpful. 

Moreover although (2.2) is false, in characteristic 0 one can show, by standard 
methods of reduction to characteristic p, there exist big Cohen-Macaulay algebras 
(with identity) in equicharacteristic 0. The existence of big C-M algebras (as opposed 
to big C-M modules) has recently been used by Ian Aberbach [Ab]. 

We next make some remarks, which we collect in a lerhma, concerning some of 
what we know about the structure of R+. 

Proposition 3.1. Let R be an excellent local domain, and let R+ be as in Section 
2. Then, 
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i) the sum of any two prime ideals of R+ is again a prime ideal, or is the whole 
ring (cf. [Ar]); 

ii) jfpe Spec(R), and P e Spec(R+) lies over p, then (R/p)+ ~ R+/P; 
iii) / / W is a multiplicative system in R, then (W^R)+ ~ W~1(R+). 

Thus R+ is, both locally and globally, a C-M algebra, even modulo any prime 
ideal! Part ii) also explains the comments above concerning R+ mapping onto S+ 

when S is a domain which is a homomorphic image of R; simply write S = R/p, and 
use ii). 

It is interesting to see what (2.1) says when one restricts to case 1 of Example 
1.10. In this case R is a complete local domain, finite over a power series subring A 
generated (as a complete subring of R) by any s.o.p. xx,...,xn. Since R is finite over 
A, R+ = A+. Any given s.o.p. in R can be used to define such an A, so (2.1) says 
simply that when A is a power series ring over a field of characteristic p, A+ is a 
C-M /4-algebra. Then it is not difficult to see that Theorem 2.1 is equivalent to the 
following theorem: 

Theorem 3.2. Let Abe a power series ring over a field of characteristic p, and let A+ 

be the integral closure of A in an algebraic closure of its quotient field. Then A+ is 
flat over A. 

Lest this theorem sound too simple, recall that it is wildly false for dimension 
> 3 in characteristic 0. 

The flatness of A+ over A has strong consequences concerning the syzygies of 
certain finitely generated modules M over complete local non C-M domains R. 
Suppose that the R-module M comes via base change from a module N over a 
power series ring A contained in R over which R is finite (i.e., M ^ N ®A R). The 
module N has a finite resolution of the form, 

F : 0 -• Fd -* Fd_! -> • • • -> Fx -* F0 -> N -+ 0, 

where Ft is a finitely generated free ^-module. When we tensor with R to obtain M, 
the sequence is no longer exact; the homology comes exactly from the failure of R 
to be C-M. (Recall from 1.10 that R is C-M iff R is free as an y4-module.) However 
since R+ = A* is flat over A, when we tensor IF ®A R with R+ the sequence becomes 
exact. Thus, e.g., the relations on the generators of M over R, while not coming from 
the original relations of JV over A, are linear combinations of the original relations 
over some finite extension of R. This has profound conséquentes, especially in the 
graded case, which we discuss below. 

4. The Graded Case 

We close this paper by making a few remarks on the graded case. Let R be a domain 
of char, p > 0 and as in case 2 of 1.10. We are able to prove a graded version of 
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Theorem 2.1 by replacing R+ by a subring R+gr of R+ which contains R, and is 
N-graded extending the grading on R. In this case (2.1) becomes the following 
theorem. 

Theorem 4.1. Any s.o.p. in R consisting of homogeneous elements is a regular sequence 
in R+gr. 

If A is a graded polynomial subring of R as in case 2 of 1.10 then A+sr = R+gr 

is free over A, and the closing remarks of Section 3 apply in this case as well for 
graded modules and resolutions. Theorem 4.1 can be translated into a vanishing 
theorem on maps of cohomology of projective varieties as follows. 

Theorem 4.2. Let X bea closed, irreducible, reduced, d-dimensional subscheme of Wk, 
where k is afield of characteristic p > 0. Then for alii, I <i <d— 1, and all integers 
t, there is a finite surjective morphism fit = f:Y-*X from a projective scheme Y, 
also reduced and irreducible, over a finite extension kfofk such that the induced map 
Hl(X, Ox(t)) -* Hl(Y, f*Ox(t)) is zero. 

A similar result holds without assuming X is irreducible and reduced; one only 
needs to assume that X is unmixed, and in this case the corresponding projective 
scheme Y can be chosen to be unmixed. 

One very special case of this result, which already has many consequences is 
that in any reduced graded ring R, any s.o.p. xx, ...,xd generated by one forms is 
"C-M" up to degree 2, i.e., £ rfxt = 0, with rt homogeneous, then up to a trivial 
syzygy, degfo) > 2. 

For many problems, where a ring R is assumed to be C-M, what is really 
important is not that R is C-M, but rather that a given finite set of relations can be 
trivialized in the ring. Moreover proof analysis often shows that it suffices that the 
relations be trivialized only is some finite extension of the ring; a good example of 
this is a connectedness theorem of Hartshorne which says that if R is C-M (or even 
has Serre's property S2) then R is connected in codimension 1. An analysis of 
this proof, in light of (2.1), shows that in characteristic p (and hence also equi
characteristic 0 by reduction to equicharacteristic p) that the assumptions on depth 
are not really needed, and allow one to prove the following generalization: if 
R is complete local domain of dimension d and xx, ..., xk are elements of R 
with k<,d — 2, then the punctured spectrum of R/(xx,..., xk) is connected. This 
was already known and is a result of Faltings. The point is that (2.1) provides 
considerable insight into what might be true and provides the ammunition to carry 
proofs through. It seems that significant insight can be gained if one follows the 
intuition that "all" domains in characteristic p are C-M; while this is false, passing 
to R+ will recapture the C-M property. 
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Identities of Associative Algebras 

Alexander R. Kemer 

Ulyanovsk Branch of Moscow State University, Str. Tolstogo 42, Ulyanovsk 432700, USSR 

Preliminaries 

Let F be field, F<Z> the free associative algebra over F generated by a countable 
set of variables X. One may consider an element from F(X} as a polynomial in 
non-commutative variables from X. 

Definition 1. We shall say that an associative algebra A over F satisfies an identity 
f(xx,..., xn) = 0, where / = f(xXi..., xn) e F<Z>, if for arbitrary elements at G A 
the equality f(ax,..., an) = 0 is always valid in A. 

Definition 2. The set of all polynomials / e F<Z> such that A satisfies the identity 
/ = 0 is said to be the ideal of identities of the algebra A. We shall denote this ideal 
by T[i4]. An ideal of F(X} which is an ideal of identities of some algebra is called 
a T-ideal. 

Definition 3. An Algebra A is said to be Pi-algebra if it satisfies a non-trivial identity 
(i.e. TIA] * 0). 

The structure theory for Pi-algebras is well developed. Some results of this 
theory are classic now. One of them is Kaplansky's theorem which asserts that a 
primitive Pi-algebra is finite dimensional over its centre. Another example is the 
theorem of Nagata-Higman which asserts that any algebra over a field of zero 
characteristic satisfying identity x" = 0 is nilpotent. 

In 1957 A.I. Shirshov proved his famous Height Theorem: 

Theorem (A.I. Shirshov [1]). For any finitely generated Pi-algebra A there exist a 
number h and elements ax, ...,ane A such that elements 

af>>...-a%, k<h 

generate A as .a space. 

The Height Theorem implies the positive solution of Kurosh's problem for 
Pi-algebras: A finitely generated algebraic Pi-algebra is finite dimensional. 
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Although Kurosh's problem for Pi-algebras was solved earlier in 1948 by I. 
Kaplansky, Shirshov's approach shows clearly the contributions of both conditions 
(PI and algebraicity) in order that algebra be finite dimensional. The Height 
Theorem shows also that finitely generated Pi-algebras are close to finite dimen
sional algebras. 

Shirshov's Height Theorem was the first result which gave some information 
about identities of Pi-algebras. 

This paper is also devoted to the study of the structure of identities of associative 
algebras. 

1. Finitely Generated Pi-Algebras 

First of all we recall the famous result in Pi-theory which was proved by 
A. Braun in 1982. 

Theorem (A. Braun [2]). The radical of a finitely generated Pi-algebra is nilpotent. 

This theorem has the following important corollary: 

Corollary. A finitely generated Pi-algebra satisfies for some n the identity 

Z ( - l ) % ( l ) ) ' l *<7(2)J>2- ••••J>,,-l*a(,,) = 0 (1) 
a e S(n) 

where S(n) is the symmetric group of degree n\ (—Vf = \ if o is an even permutation, 
(-l)a= -lifeisodd. 

The identity (1) is called the Capelli identity of n-th order. 
It is well known that if char F = 0 then the Capelli identities "distinguish" 

finitely generated Pi-algebras from infinitely generated algebras. 

Theorem. Let an associative Pi-algebra A over a field of zero characteristic satisfy 
the Capelli identity of some order. Then there exists a finitely generated Pi-algebra 
B such that T [ i ] = T[ß] . 

If char F =£ 0 then the conclusion of this theorem is not true. We shall discuss 
this case later. 

The main result about identities of finitely generated Pi-algebras is the following 
theorem which was proved by the author in 1988. 

Theorem 1 ([3, 4]). For any finitely generated PI-algebra A over an infinite field F 
there exists a finite dimensional F-algebra C such that T[X] = T[C~\. 

In other words finitely generated Pi-algebras cannot be distinguished from finite 
dimensional algebras in the language of identities. 
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If F is a finite field then the conclusion of Theorem 1 is not valid, but Theorem 
1 gives a full information about identities which are homogeneous with respect to 
every variables. 

One may consider Theorem 1 as a theorem on classification of finitely generated 
Pi-algebras in the language of identities. 

Definition 4. Let r b e a T-ideal in the free algebra F (X}. The factor algebra F (X)/r 
is said to be a relatively free algebra generated by the set of variables X. 

Definition 5. An algebra over a field F is called representable if it can be embedded 
into a matrix algebra of finite order over some extension of the basic field F. 

Theorem 1 has the following important corollary: 

Corollary. Any relatively free PI-algebra of finite rank is representable (the basic 
field is infinite). 

Since the proof of Theorem 1 has been published we give the main ideas of this 
proof. 

Let A be a finitely generated Pi-algebra. Using the theorem of Braun and Levin's 
theorem it is easy to prove that 

T[A] 2 T[C] 

for some finite dimensional algebra C. That is the initial situation. Then we want 
to find an intermediary finite dimensional algebra Cx such that 

TIA] => TIC,] ? T[C]. 

Then we want to find a finite dimensional algebra C2 such that 

TLA] 2 T[C2] ^ T [ Q ] 

and so on. 
If we shall follow this way then two problems arise. 

1) How can one find those intermediary algebras? 
2) Does every ascending chain of ideals of identities of finite dimensional algebras 

terminate? 

We shall not discuss the first problem because it is the most technical part of 
the proof. We construct those algebras using the so-called trace identities. 

The solution of the second problem is also technical. The main idea is to 
translate structure properties of a finite dimensional algebra into the language 
of identities. 

We assume for simplicity that the basic field is algebraically closed. Consider 
a finite dimensional algebra C with a unit. The algebra C may be represented in 
the form 

C = P + Rad C 
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where P is the semisimple part of C. The algebra P is a direct sum of full matrix 
algebras Mtli(F). We define the following paramètres of the algebra C: 

«(CHI* 
ß(C) = dimF P 

y(C) = the index of nilpotency of Rad C. 

The triple 

t(C) = (a(C), ß(C), y(Q) 

is called the type of the algebra C. We order the types lexicographically. 
How do we translate the properties of the algebra C into the language of 

identities? For example, the property a(C) = n is translated into the following 
identity 

ffi akeS(n+l) 

'...'X y<T l(M + 1)+""+ < Tk(w + 1) - f c = 0 (2) 

where k = y(C). 
If T[Cf] 2 TIC] for another finite dimensional algebra C, then it is proved that 

there exist finite dimensional algebras Cx, ...,Cm such that 

7] = T[®C< a(Q < a(C), TIC] 

Other identities translate some other properties. Finally we can prove the following: 

Proposition. Let C, C be finite dimensional algebras over an infinite field, 
T[_C] 2 T[C]. Then there exist finite dimensional algebras Cx,>..,Cm such that 

UH- TIC]. 

This proposition is principal for the solution of the second problem. 

2. Infinitely Generated Pi-Algebras 

The methods of studying the identities of infinitely generated algebras highly depend 
on the characteristic of the basic field. 

2.1 Algebras over Field of Zero Characteristic 

Definition 6. Let A be an associative algebra, A0, Ax subspaces of A such that 

A = A0®AX 

^o^o» AXAX ^ AQ, A0AX, AXA0 ^ Ax. 
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Then the algebra A = A0 © Ax is said to be the Z2-graded algebra or superalgebra 
graded by A0, Ax. 

Consider the Grassmann algebra G generated by elements ex, e2, e3,... satisfying 
the relations e^ = —e^ for every /, j . Let G0 be the subspace of G generated by 
monomials of even degree, Gx the subspace generated by monomials of odd degree. 
Then G = G0 © Gx is the Grassmann superalgebra. 

Definition 7. The subalgebra G(A) = G0®F A0 + Gx® Ax of the algebra G ®F >4 is 
called the Grassman Hull of the superalgebra A = A0 © Ax. 

In 1981 the author proved that any T-ideal equals the ideal of identities of the 
Grassmann Hull of some finitely generated Pl-superalgebra. This theorem has 
reduced the studying of identities of infinitely generated Pi-algebras to the studying 
of graded identities of finitely generated Pl-superalgebras. We recall that the 
characteristic of the basic field equals zero. Theorem 1 formulated above is valid 
also in the graded case ([3]). Hence we obtain the following main result about the 
identities of Pi-algebras over the field of zero characteristic: 

Theorem 2 [3]. For any Pi-algebra A there exists a finite dimensional superalgebra C 
such that 

TIA] = TIG(C)]. 

Theorem 2 has an interesting corollary: 

Corollary. A relatively free Pi-algebra can be embedded into the matrix algebra of 
finite order over an algebra satisfying the identity [[x, y], z] = 0 ([x, y] = xy — yx). 

2.2 Specht's Problem 

We want to classify associative Pi-algebras in the language of identities. Theorem 
2 is a satisfactory theorem of classification for algebras of zero characteristic. In the 
general case we do not have any hypothesis about the classification. 

Definition 8. The minimal set of identities of an algebra A which implies all the other 
identities of A is said to be the base of identities of the algebra A. 

In 1950 W. Specht formulated the following problem [5]: Has any associative 
algebra of zero characteristic a finite base of identities? 

The problem of finite base may be formulated not only for algebras of zero 
characteristic but also for arbitrary algebras, rings, groups and so on. The problem 
of finite base may be considered as a strict formulation for problem of classification 
(if there is no more satisfactory hypothesis). 

In 1986 the author [6] solved Specht's Problem positively: 

Theorem 3. Any associative algebra over a field of zero characteristic has a finite 
base of identities. 
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Theorem 3 has other formulations: 

1) Any T-ideal is finitely generated as a T-ideal. 
2) The set of T-ideals satisfies the ascending chain condition. 

In the case of non-zero characteristic the problem of finite base is open, but 
Theorem 1 yields the positive solution of local Specht's problem for algebras over 
an infinite field. 

Theorem 4. Any T-ideal of a finitely generated free algebra is generated by a finite 
set of polynomials (as a T-ideal). 

2.3 Identities of Algebras over a Field of Characteristic p 

In the case of characteristic p Theorem 2 is not true. Moreover the author has 
no classification hypothesis. The structure of identities of algebras over fields of 
characteristic p is not clear and there are no strong results on this theme. 

In 1981 LB. Volichenko formulated the strange problem: Does any Pi-algebra 
over a field of non-zero characteristic satisfy the standard identity 

I (-irxff(1)-..--^(„) = o 
a e S(n) 

for some n? 
It is not difficult to prove that Volichenko's hypothesis is true if and only if any 

Pi-algebra of non-zero characteristic satisfies the symmetrized standard identity 

a e S(n) 

for some n. 
Indeed, let A be any Pi-algebra over a field F and G a Grassmann algebra over 

F. It is well-known that the algebra A ®F G is a Pi-algebra. If A ®F G satisfies the 
standard identity (symmetrized standard identity) of some degree then it is easy to 
see that the algebra A satisfies the symmetrized standard identity (standard identity) 
of the same degree. 

Note that the symmetrized standard identity of n-th degree is a full linearization 
of the identity xn = 0. 

The author has solved these problems recently. 

Theorem 5. Any Pi-algebra over a field of non-zero characteristic satisfies the 
standard identity and the symmetrized standard identity of some degree. 

Proof. First of all we remark that it is enough to prove the theorem for algebras 
with unit over algebraically closed field. 

Let r be the T-ideal of identities of the given algebra with unit f ç F(X}, 
X = {xx, x2,...}. Consider the finitely generated Pi-algebras Fk/rnFk, where 
Fk = F(xx,..., xfc>. By Theorem 1 

TlFk/rnFk] = TlAk] 

for some finite dimensional algebra Ak. 
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The primitive images of the algebra F(X)/r are full matrix algebras over the 
basic field F. The maximal order of these matrix algebras is called the complexity 
of the T-ideal T. 

We represent the algebra Ak in the form 

Ak = Pk + Rad Ak, 

where Pk is the semisimple part of Ak. The algebra Pk may be represented in the form 

Pk = e0Pk + exPk + • • • + esPk, s = s(k), 

where eQ, ex, ..., es are orthogonal idempotents, etPk = Mq(F), i > 0 (q the com
plexity of T); e0Pk a direct sum of other matrix algebras Mn(F), n < q. 

We prove the theorem by induction. The base of induction (q = 1) and the 
inductive step will be proved simultaneously. Consider the ideal Ik of the algebra 
Ak generated by all mixed elements e{aei9 i ^ j , a e Ak. Note that it is sufficient to 
prove that the algebras Ik satisfy the symmetrized standard identity of some degree 
n = n(T). 

Indeed, if q = 1 we put k = An. The algebra Ak/Ik satisfies the identity 

[x,y,...,y]=0 (3) 

for some m. Therefore the algebra Ak satisfies the identities 

S^(zxlxx,yx,...,yx]tx,..., z„[xn, yn,...,yn]tn) = 0 (4) 

(S* is the symmetrized standard polynomial), where zh tjG Xu {1}. Since the 
identities (4) contain at most k variables, these identities are valid modulo T. Hence 
we obtain that the algebra F(X)/ris an extension of some algebra satisfying (3) 
by an algebra satisfying the symmetrized standard identity of degree n. It is easy to 
verify that the full linearization of (3) is the symmetrized standard identity of degree 
pm, hence the algebra F (X}/r satisfies the symmetrized standard identity of degree 
p m - n . 

If q > 1 then we may assume that the theorem is proved in the case when the 
complexity is less than q. 

Let B be an algebra such that T[Mq(B)] 3 T. Since q is the complexity of /"the 
complexity of the T-ideal T[B] is equal to 1. Hence by the inductive hypothesis the 
algebra B must satisfy the symmetrized standard identity of some degree. It is easy 
to prove that then the algebra Mq(B) must satisfy the symmetrized standard identity 
of some degree m = m(T). 

Let h(xx,..., xr) be a polynomial such that for all s the algebra Mq(F) does not 
satisfy the identity hs = 0, but the algebra Mq-X(F) satisfies the identity hs = 0 for 
some s. 

We put k = (m -f r + 3)w. Consider the algebra Ak/Ik. This algebra is a direct 
sum of algebras of the type Md(B), where B is a local algebra, d < q. Therefore the 
algebra Ak/Ik must satisfy the identities 

f(xx,..., xm, yx,..., yr, u, v, w) = uS+(xx,..., xm)v(h(yx,..., y,))'w = 0 (5) 
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for some m, t, where u,v,we X u {1}. Hence we obtain that the algebra Ak satisfies 
the identities 

W(1\...,/wH0, (6) 
where / « = f(xf,..., x£, y^ , . . . , y<°, w(0, u(l), w(0), u{i\ i/°, w{i) eXu{l}. Since the 
identities (6) contain at most k variables these identities are valid modulo T. 
Therefore the algebra F(X}/ris an extension of some algebra satisfying (5) by an 
algebra satisfying the symmetrized standard identity of degree n. By the inductive 
hypothesis the identity h* = 0 implies the symmetrized standard identity of some 
degree n0. Hence we obtain that the algebra F(X}/r satisfies the symmetrized 
standard identity of degree (n0 + m) • n. 

Let us prove that the algebra Ik satisfies the symmetrized standard identity of 
some degree n = n(T). 

Let h(xx,..., xr) be a central polynomial for the algebra Mq(F). Then the algebra 
F(X}/r satisfies all identities of the type 

\_h(ux,..., ur), v]xil[h(ux,..., ur), v]xh-...-x'--1 \_h(ux,..., ur), v] = 0. (7) 

Since T\_Ak] ^ T, the algebra Ak also satisfies the identities (7). If m > s = s(k) 
then we substitute into the identity (7) the following elements of Ak: x = 1, 
v = YA=Ieiaiei+u ui = °ì-> where b{ are such elements that h(bx, ...,br) = Yjaiei-> 
a( =£ oij, at e F (these elements exist because h is a central polynomial for Mq(F)). As 
a result we get the equality vm = 0. Hence we obtain 

0 = exv
m = exaxe2a2...emamem+x. 

It means that we may assume that s <m. 
If we substitute into (7) x = be Ik, v = e{ae}, i ^ j , ut = bt, where bt are such 

elements that h(bx, ...,br) = ej, then we get 

vailvaÌ2... aim~lv = 0. 

Linearizing this equality we can see that if we substitute into the polynomial 
S*(xx,..., xn) 2L lot of elements of mixed type etaej9 i ^ j , then we annihilate this 
polynomial. Therefore it is sufficient to prove that for all i, j , i ^ j , the algebra 
Bk = ßiA^jA^i satisfies the symmetrized standard identity of some degree n = n(T). 

Put ix = i3 = i5 = • • • = 0 in (7). Substituting into (7) v — y + z, ye e^ej, 
z e ejA^ii x e e^e^ h(vx, ...,vr) = eh we get the equality 

(z - y)2xjl(z - y)2xh ... xJt~l(z - y)2 = 0 

where jd — i2d, t = [(m + l)/2]. Multiplying this equality by et from the left side we 
get the identity 

xj°yzxhyz ... xjt~lyzxjt = 0 (8) 

for all y e e^e^ z e ejAkei9 x e e^e^ 
Substituting y = y + yx into (8) and taking the component of degree 1 by yx, 

we get the identity 

xj°yxzxhyz • • • + xj°yzxhyxz- •• + ••• = 0. (9) 
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Substitute yx = xyx into (9) and subtract the result from (9) where j 0 is replaced 
by 7o + 1- We get the identity of the type 

xj°yzxh(axyxzxhyz- - • + a2yzxJ2yxz-- + •••) = 0, (10) 

at e F. Then we again substitute yx = xyx into (10) and subtract the result from 
(10) where jx is replaced by jx + 1. Continue the described process. Finally we get 
a non-trivial identity of the type 

£ oiU)x
joyzxh -...•yzxjt-lyxzxjt = 0. (11) 

U)=UoJu-Jt) 

We repeat this process again t times and then repeat this process with respect to z. 
Finally we get the identity of the type 

Z ßu)xJoytzixh '•••' ^h~ly\zxx
ji = o 

U)HJo Jt) 

for all x ê e^Ci, y e e^e^, z e ß/>4ftef. Hence we obtain that the algebra Bk satisfies 
the non-trivial identity of the type 

£ ßU)x
3oxxx

hx2 -...- x,xj< = 0 (12) 
(j) 

for all x, x{ e Bk. 
So we may assume that the algebra F (X)/T satisfies the identity (12). Therefore 

the algebra Ak satisfies the identity (12). Substituting x = a + ej9 a e Bk, xx = eibxeJ, 
x2 = ß/Z ß̂f, *i e Bk, i > 3, we see that the algebra Bk satisfies the identity of the type 
(12) where t is replaced by t — 1. • 
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Intersection Theory and the Homological Conjectures 
in Commutative Algebra 

Paul C. Roberts 

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA 

The subject of this article is a set of conjectures which have been a central 
topic of investigation in Commutative Algebra for several years. Many of these 
conjectures are closely related to questions in Intersection Theory, and in some 
cases they arose directly from attempts to define intersection multiplicities in 
an algebraic setting. We begin with a discussion of some of these questions in 
Intersection Theory and their influence in Commutative Algebra. Next we discuss 
a few of the main conjectures related to this topic. Finally, we show how recent 
developments in Intersection Theory have made it possible to settle some of these 
problems. 

1. Introduction: Serre's Definition of Intersection Multiplicities 

We begin this section with some background on the problem of defining intersec
tion multiplicities. The general question is as follows : given a variety V, a point 
p of V, and subvarieties X and Y of F such that p is an isolated point of the 
intersection X n Y, we wish to to define the multiplicity of the intersection of X 
and Y at the point p. We are interested here in an algebraic definition (which 
does not involve topology, for instance), and in one which is defined locally at 
the point. 

As an illustration, we consider the case in which X and Y are curves in the 
plane. Let A be the local ring at the point p; that is, the ring of rational functions 
defined in a neighborhood of p. Let the curves X and Y be defined locally near p 
as the sets of zeros of polynomials f(x,y) and g(x,y). Then the correct definition 
for the multiplicity is the length of the quotient ring (A/(f,g)), where (f,g) is the 
ideal generated by / and g (or, in the complex case, the dimension of A/(f,g) 
as a vector space over (C). This definition agrees with intuition; if the curves are 
smooth and not tangent at p it gives multiplicity one, and if they are tangent it 
is greater than one. In addition, it satisfies Bézout's Theorem, which states that if 
V is the projective plane, and if X and Y are subvarieties of V of degrees m and 
n respectively, then the total number of intersections, counted with multiplicities, 
is mn. This theorem is very important in enumerative geometry. 

Before proceeding, we recall some basic definitions and notation. Let A be 
a commutative Noetherian local ring with maximal ideal m and residue field 
A/m = k. Let dim (A) = d denote the Krull dimension of A; this can be defined 
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either as the maximum length of a chain of prime ideals or as the minimum 
number d such that there are elements x\,...Xd G m which generate an ideal 
primary to the maximal ideal. Such a sequence of elements is called a system 
of parameters. The ring A is regular if the maximal ideal can be generated 
by d elements; in the geometric situation, the local ring at a point is regular 
when the variety is smooth at the point. The ring is Cohen-Macaulay when the 
system of parameters form a regular sequence; that is, when axt G (xi,...,Xf_i) 
implies a G (xi,...,Xj_i) for each i. We remark that the above definition of 
multiplicities for curves works because A is Cohen-Macaulay and (f,g) is a 
system of parameters in that case. 

If A is an integral domain, we say that A is equicharacteristic if the char
acteristic of A is the same as the characteristic of k; otherwise A has mixed 
characteristic. 

We now return to the question of defining intersection multiplicities. Let A 
be a local ring, and let / and J be ideals of A; in the geometric situation, J 
and J will be the ideals of functions vanishing on subvarieties X and Y. The 
straightforward generalization of the definition for curves would be to define the 
multiplicity to be the length of the quotient A/(I + J). However, this will not 
satisfy Bézout's Theorem (among other things). 

The idea of Serre was to add extra correction terms. In addition, it is more 
convenient to generalize from the quotients A/1 and A/J of the ring A to more 
general finitely generated modules M and N. 

Definition (Serre [28]). Let A be a regular local ring and let M and N be finitely 
generated ^4-modules such that M ®A N is a module of finite length. Then the 
intersection multiplicity of M and N is defined to be 

X(M,N) = ^(-l)4ength(Tor f(M,iV)). 

This definition makes sense since all modules over regular local rings have 
finite projective dimension. Furthermore, it satisfies Bézout's Theorem, and it 
agrees with the definition given above in the case of curves. Serre stated three 
additional properties and proved them in the equicharacteristic case. 

1. dim(M)+ dim(N) < dim(A). 

2. (Vanishing) If dim(M)+ dim(iV) < dim(A), then x(M,N) = 0. 

3. (Positivity) If dim(M)+ dim(iV) = dim(A), then x(M,N) > 0. 

The first of these Serre proved in general; we note that it can be interpreted 
as a statement on the topology of intersections in smooth varieties. The second 
and third were proven in the equicharacteristic case, and were conjectured in the 
general regular case. 
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2. The Peskine-Szpiro Intersection Theorem 

Attempts to prove Serre's conjectures in the ensuing years included various 
generalizations of them to non-regular rings. The three statements listed above 
make sense for any local ring as long as M is assumed to have finite projective 
dimension (and, of course, M ®AN has finite length). In fact, the first statement 
makes sense even without the assumption of finite projective dimension, but it is 
false in this generality; whether it holds with this assumption is not known. 

The next major advance was the proof of the "Intersection Theorem" in a 
quite general situation by Peskine and Szpiro [16, 17]. This theorem states: 

Theorem (Intersection Theorem). Let M be a module of finite projective dimension 
and let N be a module such that M ®A N has finite length as a module. Then 

dim N < proj dim M. 

If one replaces projective dimension in this theorem by codimension (i.e. 
dim(y4)— dim(M)), it becomes the first statement of Serre's conjectures, and, like 
that statement, it can be considered to describe the topology of the intersection 
of a variety which is the support of a module of finite projective dimension. The 
importance of the theorem was demonstrated by the fact that it implies several 
other conjectures (Peskine-Szpiro [17]): 

Corollary (Bass's Conjecture). If A has a non-zero finitely generated module of 
finite injective dimension, then A is Cohen-Macaulay. 

Corollary (Zero-Divisor Conjecture). If M is an A-module of finite projective di
mension and x in A is a zero-divisor on A, then x is a zero-divisor on M. 

Shortly thereafter, a stronger version of this theorem was stated (Peskine-
Szpiro [18], Roberts [20]): 

Theorem (New Intersection Theorem). Let 

0 - • Fk -> ... - • F0 -> 0 

be a complex of finitely generated free modules with homology of finite length. Then 
if Fm is not exact, we have dim(A) < k. 

This theorem implies the original Intersection Theorem. 
In the paper cited above, the Intersection Theorem was proven for rings of 

positive characteristic and for rings whose completion is the completion of a ring 
of finite type over a ring of characteristic zero. The method, which has since 
been applied successfully to a wide variety of questions, was to reduce (using the 
Artin Approximation Theorem) to the case of a ring of positive characteristic p, 
and then to use iterations of the Frobenius map (the map which sends a to ap) 
to prove the theorem in the positive characteristic case. The method of reducing 
using the Artin Approximation Theorem was extended by Höchster [11] to the 
general equicharacteristic case. These techniques did not extend to the case of 
mixed characteristic. 
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3. The Homological Conjectures 

The conjectures of Serre and the Intersection Conjecture in mixed characteristic, 
together with a number of others, became known as the Homological Conjec
tures. These conjectures dealt with intersection multiplicities, modules of finite 
projective dimension, the existence of Cohen-Macaulay modules, and proper
ties of systems of parameters, together with relations between these topics. A 
summary of these conjectures in 1975 can be found in Höchster [12]; in this 
monograph Höchster introduced big Cohen-Macaulay modules and proved their 
existence (thus implying several other conjectures, including the Intersection Con
jecture) in the equicharacteristic case. The proof made use of reduction to positive 
characteristic. 

In a somewhat different approach, in Roberts [21] the notion of Cohen-
Macaulay complex is defined and proven to exist in the complex algebraic case 
via the Grauert-Riemenschneider vanishing theorem. The connection between 
the technique of reduction to positive characteristic and vanishing theorems in 
cohomology coming from Hodge theory was further shown by a proof of the 
Kodaira vanishing theorem by reduction to positive characteristic, conjectured 
by Szpiro and proven recently by Deligne and Illusie [2]. 

Among these conjectures, as mentioned above, was the question of whether 
Serre's vanishing and positivity conjectures held for arbitrary rings, when M 
was assumed to have finite projective dimension. This conjecture was proved for 
graded modules over a graded ring by Peskine and Szpiro [18] using computations 
with Hilbert polynomials in a free resolution, and they showed that several other 
conjectures followed from this one. These results led to specuation that an 
appropriate theory of Chern classes and Riemann-Roch theorem over general 
local rings could be used to prove the multiplicity conjectures, and hence many 
others, in general. The idea was that a bounded complex of free modules F. 
would define a sequence of Chern characters chj(F.), and that these would vanish 
for i less than the codimension of the support of Fm. In codimension one this 
program was carried out by Foxby [7], using a construction of MacRae [15], 
leading to proofs of some of the conjectures in low dimension. 

However, Dutta, Höchster and McLaughlin [4] constructed an example which 
showed that this generalization of Serre vanishing was false in dimension three. 
They construct a module M of finite projective dimension and finite length over 
the ring A = k[[X, Y,Z, W]]/(XY -ZW), which has dimension three, such that 
if jV = A/(X,Z), then x(M,N) = - 1 . Thus the theory of local Chern characters, 
even if it existed, could not have the hoped for vanishing properties. In the next 
section we describe such a theory and then show how in spite of these setbacks, 
it could solve some of the conjectures. 

4. Localized Chern Characters 

The Chern characters alluded to in the previous section were defined by Baum, 
Fulton, and MacPherson [1]. There were two major problems in defining such a 
theory for complexes over a local ring. The first was that there is no cohomology 
theory. This problem was answered by defining Chern characters as operators on 
the Chow group. The second problem was that there are no non-trivial vector 
bundles over a local ring, so that straightforward definitions of Chern characters 
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tend to give zero. The solution here was to give a "localized" definition, with 
values not in the Chow group of the entire ring, but in the Chow group of the 
support of the complex. We give a very brief summary of the part of the theory 
we need ; we refer to Fulton [8] for a more complete description. 

Let V = Spec(>4), and let Y be a closed subset of V. For each integer i, let 
Zi(Y) denote the rational group of cycles of dimension /'; that is, Z/(7) consists 
of the free Q-module with generators all reduced and irreducible subschemes 
of Y of dimension /, or, equivalently, all prime ideals P with dim(A/P) = /. 
Then the y-th graded piece of the Chow group, denoted Aj(Y), is Z,(7) modulo 
rational equivalence, where rational equivalence is defined by setting the divisor 
of a rational function on a reduced and irreducible suscheme of dimension i + 1 
to zero. 

Let Fm be a bounded complex of free modules with support Z. Then there 
are Chern characters chk(Fm) for each k ^ 0, which map A^(X) to Ai-k(X n Z). 

The connection with Euler characteristics was given by the local Riemann-
Roch theorem (Fulton [8], Example 18.3.12). We state a very special case of this 
theorem here. Let F. be a complex of free modules with homology of finite 
length, or, equivalently, with support at the closed point of Spec(yl). Assume that 
A is an integral domain, and let [A] denote the class of Spec(y4) in the highest 
dimensional graded piece of the Chow group Ad(SpGc(A)). Then there is a class 
T(A), with [A] as its highest component, which satisfies 

X(Fm) = ^(äii(F.)(zi(A)). 
feO 

In this equation, the left hand side is an integer, and the right hand side is an 
element of the Chow group of the support of F.. In this case, the support of F. 
is a point p, so its Chow group reduces to Ao(p), which we identify with Q. 

Furthermore, if A is regular (or, more generally, a complete intersection), then 
T(A) = [A]. 

5. The Proofs of Serre's Vanishing Conjecture 
and the Intersection Conjecture 

Using the theory described in the last section, it is possible to prove Serre's 
vanishing conjecture without regard to characteristic and to prove the Peskine-
Szpiro Intersection Theorem in mixed characteristic. We briefly outline these 
proofs here and attempt to show how the theory of localized Chern characters is 
used in their solution. 

Let M and N be modules over a regular local ring A such that M ®AN has 
finite length and dim(M) + dim(iV) < dim(>4). Let F. and G. be free resolutions 
of M and N respectively. The problem is to show that #(F. ® G.) = 0, since the 
homology of F. ® G. is precisely Tor(M,N). By the local Riemann-Roch formula 
we have 

x(F.®G.)=ch(F.®G.)([A\). 

We must now use some properties of local Chern characters. First, they are 
multiplicative, which means that we can write 
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ch(F. ® G.)([A]) = £ chl(F.)(chi(G.))(M). 
i+j=d 

Let X and 7 denote the supports of M and N respectively; these are also 
the supports of F. and G.. Now suppose that d — j > dim(7). Then the element 
chj(G.)([A]), which is in the group Ad-j(Y), must be zero, since there can be no 
subvarieties of 7 of dimension larger than the dimension of 7. Thus all terms 
for which d—j> dim(7) are zero. Using the commutativity of Chern characters 
(proven in Roberts [23]), one shows also that terms with d — i> dvax(X) are zero. 
The hypothesis that dim(X) + dim(7) < d implies that all terms fall into one of 
these two sets, and therefore the entire sum is zero, as was to be shown. . 

This theorem also holds if A is a complete intersection. It was proven inde
pendently using Adams operations in X-theory by Gillet and Soulé [9,10]. It was 
proven when the singular locus has dimension at most one in Roberts [23]. We 
note that this argument gives a vanishing theorem for intersection multiplicities 
defined by local Chern characters for modules of finite projective dimension in 
general, and this approach appears to work better than the approach based on 
Euler characteristics for singular points. 

We next describe how localized Chern characters are used in the proof of the 
New Intersection Theorem in mixed characteristic. Let A be a domain of mixed 
characteristic of dimension d, and let 

0 -> Fd-i ->.. .-> F0 -> 0 

be a complex of free modules with homology of finite length which is not exact. 
We wish to prove that such a complex cannot exist. Let F. denote F. ® A/pA, 
where p is the characteristic of the residue field of A. Then F. is a complex of 
free modules over A/pA. 

The main idea of the proof is to compute chd-i([A/pA]) in two different 
ways. First, using the properties of localized Chern characters and the fact that 
F . comes from restriction to a divisor of a complex supported at one point, we 
deduce that chd-i([A/pA]) = 0. Second, we use that F. is a non-trivial complex 
of length d — 1 over a ring of positive characteristic of dimension d — 1. By means 
of an asymptotic Euler characteristic introduced by Dutta [3] and put on a firm 
foundation by Seibert [27], together with a local cohomology argument, we can 
then show that it must be positive (details can be found in Roberts [24, 25]). This 
contradiction proves the theorem. 

6. Open Questions 

We conclude with some remarks on three questions which are still open. 

1. Serre's Positivity Conjecture. The method of local Chern characters provides a 
geometric approach to the question of positivity, but as of yet it has not led to a 
solution. A result of Tennison [30] states that if one computes x(A/P,A/Q), where 
dim(A/P) + dim(A/Q) = dim(4), and if the subschemes defined by the prime 
ideals P and Q are not tangent at the closed point of Spec(R) (this condition can 
be stated precisely in terms of associated graded rings), then x(R/P,R/Q) is the 
product of the multiplicities of the A/P and A/Q and is therefore positive. We 
remark that an example of Roberts [26] shows that positivity is unlikely for two 
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modules of finite projective dimension in the non-regular case, even using Chern 
characters rather than Euler characteristics, although this question is also open. 

2. The Improved New Intersection Conjecture (Evans-Griffith [5, 6]). This con
jecture states the following: Let F. = 0 -> Fk -» ... - • Fo -> 0 be a complex 
of free modules with finite length homology except possibly for Ho(F.). Assume 
that there is a minimal generator of Ho(Fm) which is annihilated by a power of 
the maximal ideal of A. Then k > dim(A). 

It seems reasonable to try to prove this theorem using the methods which 
worked for the "unimproved" version, but this version appears to be more difficult. 
This conjecture is equivalent to several others, such as Hochster's Monomial 
Conjecture (see [13]), and is open in dimension three in mixed characteristic. 

3. Another Conjecture on Bounded Complexes. The New Intersection Theorem 
states that the minimum length of a bounded complex of free modules is d. 
Suppose that F. has length exactly d. In this case, the question is whether 
the cycles Z\ are integral over the boundaries B\ in degrees larger than zero. 
This result would imply the Monomial Conjecture, it can be proven in positive 
characteristic by the theory of tight closure of Höchster and Huneke [14], and it 
has been proven by Rees [19] for the Koszul complex in any characteristic. 
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1. The History of the Isomorphism Problem 

The modern theory of groups originated with the treatments of Galois (1811-
1832), Cauchy (1789-1857) and Serret (1819-1885) on finite discontinuous sub
stitution groups. That is permutation groups, or group actions on sets, to use 
modern language. At that time the theory of abstract groups was only little 
developed. So it was natural next to study abstract groups by letting them act on 
sets or linearly on vector spaces. Time has shown that studying linear actions of 
groups on vector spaces is a much richer theory than letting groups act on sets, 
since one can invoke the arithmetic of the general linear groups. 

In this spirit W. Burnside, F. G. Frobenius and later I. Schur developed the 
ordinary (complex) representation theory of finite groups in the years 1896-1910. 

In modern language, the idea of Frobenius, Burnside and Schur was to study 
homomorphisms 

<p : G->GL(n,R) , (1) 

of G into (n x n) -matrices over the commutative ring R and use the informations 
on the matrix groups lm(cp) to obtain informations on the abstract finite group 
G ; originally R was the ring of complex numbers. (Strictly speaking Burnside 
and Frobenius, especially, only worked with traces of these matrices.) 

An important demonstration of the power of complex representation theory, 
where one did use the arithmetical properties of Im(<p) cz GL(n,(C), was Bumside's 
Theorem (1911) : A finite group, whose order involves at most two different primes 
is solvable. 

In modern times a purely group theoretical proof was found, though a theorem 
of Frobenius of the same spirit has never been proved without representation 
theory. 

Modular representation theory - i.e. representations in GL(/7, K) , where K is 
a field such that char(iC) divides the order of the group - lay dormant until R. 
Brauer in 1935 - at the suggestion of I. Schur - developed the theory further, 
using ring theory, which enters as follows: Given a representation 

cp : G -> GL(n,R) cz Mat(w,Ä) , 

g "-> <p(g) • 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
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Since Mat(n,R), the ring ofnxn matrices over R, is an R-algebra, we may 
associate with cp the R-algebra 

A(p = {ZgeGrg'<p(g)\rgeR}, (2) 

generated by lm(cp) over R. Studying the representation cp is tantamount to 
studying the R-algebra Ay. The universal such R-algebra is the group ring, 
consisting of formal linear combinations, 

RG={ZgeGrg-g\rgeG} ; (3) 

addition is componentwise, and the R-linear multiplication is induced from 
the multiplication in G. This group ring maps onto each of the various A(p. 
The original motivation of Burnside, Frobenius, Schur and Brauer can thus be 
rephrased as the question: 

Which properties of the finite group G are reflected in RG? 

Already in early time it was known, that (CG does not reflect all properties of 
G, since finite abelian groups G and H have isomorphic complex group algebras 
if and only if |G| = |H| . 

However, if one considers the group rings KG for all fields K, then the 
various isomorphism types of abelian groups can be distinguished by their group 
algebras. That this is not so in general was shown only in 1971 by E. Dade: 

Theorem 1 (Dade [D]). There are two non-isomorphic finite metabelian groups G 
and H of order p6 • q6, p and q different primes, such that KG ~ KH for every 
field K. 

It is still an open 

Problem 2. Let char(K) = p > 0, and let G and H be p-groups, such that 
KG~KH. Is then G - i f ? 

Very little is known here, except, that - by computer-analysis - for 2-groups 
of order < 26 , the problem has a positive answer [Pas] and [RS4]. 

Now the ring of integers Z is the universal commutative ring, and if for two 
finite groups the integral group rings ZG and ZH are isomorphic, then RG ~ RH 
for every commutative ring. Thus we come to 

Problem 3 (Isomorphism Problem). Assume that for two finite groups the integral 
group rings ZG and ZH are isomorphic. Is then G c^Hl 

A positive answer would imply that representation theory - especially, the 
integral representation theory of a finite group would determine the group up to 
isomorphism. This issue has a fundamental appeal in and of itself, aside from the 
original motivation by Burnside and Frobenius. There is a huge literature [Sa]. 

The rational group algebra, say for a p-group G of odd order, has the form: 

QG=Q+n(riMat(n-^) 
w=l 
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where Kj are algebraic number fields, 1 < / < v, and Q + comes from the trivial 
representation. 

The integral group ring ZG is then in general a subring of finite index in 

ZG c: Z+H m Mal(">> *')) , (4) 

where R,- are the algebraic integers in the number fields Kj , 1 < / < v. 

2. Major Results Until 1980 

The isomorphism problem was first considered by Graham Higman, SL student of 
G. Whitehead, in his thesis in 1939. One of his most spectacular results was: 

Theorem 4 (G. Higman [Hi]). Let u be a unit of finite order in ZA for a finite 
abelian group A. Then u = ±a for some group element a e A. 

The proof uses the fact, that the group ring of a finite group G over the 
commutative ring R is not only an augmented R-algebra, with augmentation 

£G : 2:g G G rg-g-* ZgeG rg , (5) 

but also a Hopf-algebra with antipode 

*G : £gec rg-g~* ZgeG rg • g
_ 1 . (6) 

Let now — more generally — G be a finite group and u G ZG a central unit 
of finite order n. (We shall here only deal with the case, where n is odd.) Then 
w* = *G(W) is also a central unit of order n, as well as v = u • u* (note that 
u is central), which is fixed under *G, and hence must be equal to 1. Now the 
coefficient of 1 in v is 1 = E zg. Since zg G Z, we have u = ±go for some go £ G. 

Though this argument has heavily used the fact that the ring of coefficients 
is Z, the result is still valid for any integral domain R of characteristic zero, in 
which no rational prime divisor of \G\ is invertible. We shall call such a ring G-
adapted. 

Definition5. U(RG) stands for the units in RG and 

V(RG) = {u G U(RG) | £G(w) = 1} are the units of augmentation 1. 

Then U(RG) = V(RG) x U(R). 

Let us turn to our aim, the isomorphism Problem 4 : 
If RG = RH, then H cz U(RG), in general however, it will not be contained in 
V(RG). But this can easily be remedied: Replace H by H' = {h • eG(h)~l \ h G H). 
Then H ~ Hl and RH = RH'; moreover, H' cz V(RG). 

Thus from now on we will always assume that an equality of group rings RG = 
RH is always augmented; i.e. H cz V(RG). 
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Higman's result then says that the abelian group A is unique in ZG as 
augmented group of units. This result is a very elegant positive answer to the 
isomorphism problem. 

Actually, Higman, in his 1939 thesis "Units in group rings", was the first to 
speculate about the isomorphism problem: "Whether it is possible for two non 
isomorphic groups to have isomorphic group rings I do not know; but the results 
... (here) ... suggest that it is unlikely". So, Higman was a bit in favor of a positive 
answer to the isomorphism problem. 

In this connection I should also mention Richard Brauer, who in his "Harvard 
Lecture on Modern Mathematics, Representations of finite groups" in 1963 [Br] 
listed the isomorphism problem as one of the important open questions in 
representation theory; however, he did not commit himself in either direction. 
Contrary to Hans Zassenhaus, who firmly believes in a positive answer to the 
isomorphism problem and even made a much stronger conjecture in 1974 [Za] 
(cf. below). 

The isomorphism problem, ZG = ZH as augmented algebras, appears in a 
new light, if we assume that *G = *H (cf. (5)). 

Proposition 6 (Banachevski [Ba]). Let ZG = ZH as augmented algebras and as
sume that both rings have the same antipode i.e. *G = *H- Then G = H in 

The proof is in the same spirit as the proof of Higman's result. 
Given an equality of augmented algebras RG = RH. Then the elements 

{g I g € G} form a finite subgroup in V(RH), consisting of R-linearly independent 
elements. S. D. Berman [Ber, Sak] has observed, that the linear independence is 
often automatic for G-adapted rings. This result allows to phrase the isomorphism 
problem differently: 

Problem7. Let U be a finite subgroup in V(ZG), with \G\ = \U\. Is then U ~ G? 

In order to gain more insight into the structure of V(ZG), one should even 
ask: How is U embedded in V(ZG)7 G. Higman gave the answer for abelian 
G. However, in general, one can not expect that U = G, since V(ZG) need 
not be abelian and G need not be normal in V(ZG). Moreover, even for the 
dihedral group D of order 8, there exists a unit u G <QD\V(ZD), such that 
D =£u- D • u~l G ZD, and this conjugation is not inner in ZD. 

In this connection, H. Zassenhaus[Z&] made a far reaching conjecture: 

Zassenhaus Conjecture. Let U < V(ZG) be a finite subgroup with \V\ = |G|. Then 
there exists a unit a G QG with 

a-V-a-1 = G. (1) 

A direct extension of Higman's result for G a finite group and R G-adapted 
is given by 
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Theorem 8 (Berman [Ber], Glauberman (Passman [Pa]), Saksonov [Sak]). Let 
as augmented algebras and let 

Kg= S *g 
xeG/CG(g) 

be a class sum in G — CG(g) denotes the centralizer of g in G. Then Kg = K^ is 
a class sum in RH. 

An immediate consequence is : 

Corollary 9. Let N be a normal subgroup of G, and let RG = RH as augmented 
algebras. Then in RG = RH we have ^ „ e N n = Y*meM mfor a normal subgroup M 
in H. 

Using the above result, we can reformulate the Zassenhaus conjecture: 

Isomorphism Problem over the Class Sums: ZG = ZH implies that there exists 
an isomorphism x'G -» H inducing the class sum correspondence; i.e. for g G G, 

Kg=Kxie). (8) 

The next result pushes the isomorphism problem further to metabelian groups : 

Theorem 10 (Whitcomb [Wh], Jackson [J] 1968). Assume that G is metabelian with 
a normal abelian subgroup A and G/A abelian. 

If RG = RH, then G~H 
for R a G-adapted ring. 

This follows easily from Higman's result and by considering the lismall group 
ring'' RG/(I(A) • 1(G) • RG). Here we have denoted for a normal subgroup N 
of G by I(N) • RG, the augmentation ideal of N, the kernel of the natural map 
RG ->• RG/N. We note that the proof does not give any information of how G 
is embedded into V(RH). 

The following result was in 1989 obtained by Kimmerle, Lyons and Sandling, 
using the classification of finite simple groups : 

Theorem 11 [KLS]. Let ZG = ZH as augmented algebras, and let 

l = No<...<Nt = G 

be a chief series of G. Then H has a chief series of the same length, and both have 
isomorphic chief factors. 

This shows in particular that finite simple groups are determined by their 
integral group rings - most of them though are already determined by their 
order. 
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3. Recent Progress 

When, in 1980, we started to consider the isomorphism problem, the Zassenhaus 
conjecture was at first a tempting target for a counterexample. At that time 
we were not successful, and eventually started to believe, that the Zassenhaus 
conjecture might be true for certain classes of groups; in fact, it was a guide for 
our work on p-groups. 

Roughly speaking, the Zassenhaus conjecture states, that there are only few 
automorphisms of the integral group ring ZG of the finite group G. After having 
done plenty of calculations, we were looking for some heuristic evidence for the 
Zassenhaus conjecture. Borrowing ideas from Lie theory we found it in the fact 
(first noted by us, though the proof is easy), that every derivation <5 : ZG —> ZG 
is inner. 

One might even go one step further than Zassenhaus and ask - this problem 
was briefly touched upon by Berman and Rossa [BR] for complete rings, like the 
p-adic integers Zp : 

Problem 12 (Conjugacy Problem). If V(ZPG) = V(%H), are G and H conjugate 
in V(ZPG), provided G is a p-group ? 

3.1 Progress on the Isomorphism Problem 

The next results were obtained with Leonard Scott in 1985 [RSI] and 1987 [RS3] : 

Theorem 13. Let G be a finite group such that there exists an exact sequence 

l - > i l - > G - > i V - » l , 

where A is abelian and N is nilpotent. If ZG ~ ZH, then G is isomorphic to H. 
(More generally, we can replace N by a product of pi-constrained groups Gt with 
Op>(Gi) = 1 of relatively prime order, with slight restrictions on A.) 

Remark. For a solvable group G the above implies: 
a) For every prime p, the group G/0^(G) is determined by ZG, where Ov>(G) 

is the largest normal subgroup of G of order prime to p. 
b) The Sylow subgroups of G are determined - up to isomorphism - by ZG. 

It was shown in [KR], that for ZG = ZH there exists for each prime p and a 
Sylow p-subgroup P of G a unit a(p) G QG such that a(p) • P • a(p)~{ is a Sylow 
p-subgroup of H. 

3.2 Drawbacks and Progress on the Zassenhaus Conjecture 

Let us recall, that the Zassenhaus conjecture (7) implies that the action of every 
automorphisms a of ZG on the center of ZG can be compensated there by a 
group automorphism. 
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Theorem 14. The Zassenhaus conjecture is true for the following classes of groups: 
(i) G is nilpotent. (It has been reported to us, that in this case A.Weiss has 

shown that for every finite subgroup U of V(ZG), there exists a unit a G QG such 
thata-U-a-1 cz G [We].; 

(ii) There exists a prime p G Z, such that G has a normal p-subgroup P with 
CG(P) a p-group. 

On the other hand, the Zassenhaus conjecture is false [RS2, Ro] : 

Theorem 15. There exists a finite metabelian - even supersolvable - group G, and 
an automorphism a ofZG, commuting with the augmentation eG, such that a • Q is 
not a central automorphism for any group automorphism Q of G, 

Note that the groups in Dade's example (Theorem 1) are metabelian! 

3.3 Progress on the Conjugacy Problem 

In connection with the possibility, that group bases may be conjugate (cf. conju
gacy Problem 12), we have obtained (1985, 1986) the following result [RS3]: 

Theorem 16. Let G be a finite group with normal Sylow p-subgroup, such that 
Opi(G) = 1. Let a be an augmented automorphism of ZPG. Then there exists a 
unit u G V(ZPG), such that w G • u~l = a(G). 

The theorem we have proved is actually much more general: Let G be a finite 
p-constrained group with Op>(G) = 1 and let JV = Op(G). If a is an augmented 
automorphism of ZPG, stabilizing Ig (N)G, then G and a(G) are conjugate in 

V(ZPG). This stability always occurs for JV = Op(G), if a arises from an augmented 
automorphism of ZG. 

The result applies in particular to p-groups. For the groups in Theorem 16, the 
Zassenhaus conjecture is true. Our result is so strong, that it allows to compute 
the Picard group of the group ring ZN of a nilpotent group JV semilocally [RS, 
RI]. However, the conjugacy problem has a negative answer both for V(ZN) 
and for V(jfcpN). Our results, and the evidence we have gathered up to now, let 
it appear reasonable to ask whether V(ZPG) has the 

Sylow Property. Let G be a finite p-group and U a finite subgroup of V(ZPG). 

Is U conjugate in V(ZPG) to a subgroup of G ? (9) 

Even more generally, one might formulate some version of this for the 
principal p-block, in the spirit of the defect group question of [S3]. 

Because of the results in [RS] we know, this is true in case | l / | = |G|. 
Theorem 16 can be interpreted as a first step to prove Sylow's theorems for finite 
subgroups of V(RG). In an attempt to prove (9) we recalled that a fancy way of 
proving Sylow's theorems for the finite group H is to show that the spectrum of 
the cohomology ring H*(H,FP) is connected; this is also true for the unit group, 
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More precisely, let F be a profinite p-group, and denote by H*(V,FP) the 
continuous (even-dimensional for p odd) cohomology ring of V with coefficients 
in Fp, the field with p elements. If the spectrum of H*(V,TFP) is connected, we 
say that the variety of V is connected. We shall write VC(VJFP) for the variety 
oîH*(V,Wp). 

Though we could not reach our original goal (in the spirit of [Ca]), we were 
able to prove for R a complete Dedekind domain of characteristic zero with 
residue field of characteristic p: 

Theorem 17. The following conditions are equivalent for a p-group G: 
(i) Every finite p-subgroup U of V(RG) is conjugate in V(RG) to a subgroup 

ofG. 
(ii) For every p-subgroup P of G, the natural inclusion 

NG(P)/P^NV{RG)(P)/P 

induces a continuous map 

VC(NG(P)/P,FP) -+ VC(NV{RG)(P)/P,FP), 

which is a bijection. 
(iii) The variety of NV(RG)(P)/P is connected for every p-subgroup P of G. 

(In the statement of the result we have used NA(B) to denote the normalizer of 
B in A.) 

We want to point out, that the statements (i) and (iii) are not true in general 
for profinite p-groups; in fact we have examples of unit groups of orders, where 
(i) is false. It would be interesting to have a group theoretical criterion for when 
(iii) is true for a profinite p-group V and P = 1. 

Let us return to a discussion of (9). Some years ago we found a proof of (9) 
for G a 2-group [Rl]. Later on we were able to handle groups of order p3, and 
we developed a sketch of the proof in the general p-group case in Nov. 1985 
[SI]. Since in this proof We had not worked out all the details, we only made 
at the Arcata-meeting in 1986 the conjecture, that (9) is true for p-groups. (In 
the meantime, Gary Thompson, a student of Leonard Scott, has worked out the 
details in [SI, Th].) In October 1986 we learnt that Al Weiss from the University 
of Alberta [W] had a different proof of: 

Theorem 18 (Subgroup Rigidity Theorem). Let G be a finite p-group, and U a 
finite subgroup ofV(ZpG). Then U is conjugate in V(ZPG) to a subgroup of G. 

4. Some Remarks to the Proof of Theorem 16 

Questions about isomorphisms of group rings reduce to questions of automor
phisms by Kimmerle's trick [Ki, RS]. The main result, Theorem 16, is a conse
quence of the following statement: Let G be a finite group and R an unramified 
extension of Zp. Put JV = Op(G). 
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Theorem 19. Assume that CG(N) cz JV and let a be an augmented automorphism of 
RG with a(JV) cz IR(N) • G - the induced augmentation ideal of JV. Then a(G) is 
conjugate to G in the units of RG. 

Remark. 1. It turns out, that in the proof of Theorem 19 we do not really require 
that a stabilizes IR(N) • G, but only that it stabilizes 7F(JV) • G, where F = R/rad R. 

2. We do not know, whether the stabilization of either ideal in 1.) is automatic 
for an augmented automorphism a of RG. This is indeed the case when JV is a 
Sylow p-subgroup, since then RG/N is the largest R-algebra homomorphic image 
of RG, which is torsionfree and whose reduction over the residue field F of R 
is semi-simple. The obstruction lies in the fact, that we do not know, whether a 
class sum correspondence holds for classes of p-power elements in RG. 

3. The Theorem 19 is likely to be true for any complete discrete valuation 
domain of characteristic zero with residue field of characteristic p, assuming 
appropriate generalizations of the results of Weiss [W], which have been obtained 
by Gary Thompson [Th] and in [R]. 

Corollary 20. Let G be a p-constrained group such that 0P'(G) = 1 for some prime 
p. Then the isomorphism problem and the Zassenhaus conjecture have a positive 
answer for RG. (Any two normalized group bases are even p-adically conjugate.) 

Corollary 21. Let G be a finite group with a normal Sylow p-subgroup for some 
prime p. Then the defect group of the principal R-block of G — R is an unramified 
extension of Zp — is uniquely determined, up to conjugacy in the block, by the 
principal block, (i.e., ifa:RG —• RG is an augmented automorphism, then (x(P) and 
P are conjugate in the principal block). 

This result was extended by L. L. Scott in [S3], who proved it for a finite 
group with a cyclic Sylow p-subgroup, which is a T.I. set. 

We shall now state the main ingredients of the proof of Theorem 19. There are 
three main ingredients in the proof. The first one, which we already proved in 
April 1986 is: 

Theorem 22. G is a p-constrained group with P a Sylow p-subgroup. R is a com
plete Dedekind domain of characteristic zero with pR=f= R. Let a be a normalized 
automorphism of the principal block Bo = R[G/Op'(G)] of RG - note that BQ is 
an augmented algebra, the augmentation being induced from that of RG. Assume 
that a stabilizes the image of P in BQ; i.e. a(P) = P in BQ. Then a\p — the re
striction of a to P — is induced from an automorphism ß of G/Op>(G), such that 
the automorphism induced from ß on Bo agrees with a up to inner automorphisms 
centralizing P. 

The proof is based on the following two results : 

Lemma 23 (Generalized Coleman-Ward Result [C,Wa]). Let G be a finite group, 
P a p-subgroup of G, and S an integral domain, in which p is not invertible. Let 
V = V(SG). Then we have for the normalizers 

NV(P) = NG(P)'CV(P). 
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We shall be using the following notation: Given an automorphism a of RG, 
and an RG-bimodule M, we denote by aM\ the bimodule, which has the original 
action on the right, but the left action is twisted by «, i.e. x • m • y = a(x)my, x, y G 
RG, m e M. 

Lemma 24. R is a complete Dedekind domain of characteristic zero with pR^= R, G 
is a finite group and B a block ofRG with defect group D. Let a be an automorphism 
of B, which stabilizes the image of D in B, b is the Brauer correspondent in JV = 
NG(D) to B. Then the Green correspondent to the twisted module aBi on Gx G, is 
ßb\ on JV x JV for some automorphism ß of RN. Moreover, <x\D = ß\D, where we 
regard D c b cz B. 

The second main ingredient is the following: Let R be an unramified extension 
of Zp with residue field F . Let JV be a normal p-subgroup of a finite group G, 
and assume CG(N) cz JV. 

Theorem 25. Let a be an augmented automorphism ofRG, with N and G as above, 
and assume that a stabilizes the ideal Iw(N) • G in FG. Then a(N) is conjugate to 
JV by a unit of RG. 

The third main ingredient is an extension of results of Weiss [W] combined 
with a criterion on the indecomposability of permutation modules, which is the 
main tool to show that group bases are conjugate. We let R be an unramified 
extension of Zp, the p-adic integers. F = R/pR is the residue field of R, and we 
denote by x —» x the natural projection from R to F , and also for any R-module 
X we put X = X/pX. 

Theorem 26. Assume that P and Q are p-groups. Let M be an R(P x Q)-module 
(with the action (x,y) • m = x • m • y1, x G P, y G Q, m G M), which is free of 

finite rank as RQ-module. If M/(M • IR(Q)) is a permutation module for F P , then 
M is a permutation module for F(P © ß). 

The next result is the place where we use that CG(N) c JV. 

Lemma 27. Suppose CG(N) cz JV. Then the F(JV x G)-module FG — with the 
action (n,g)-x = n-x- g"1, ne N, g e G, x e FG — is absolutely indecomposable. 
Moreover, the same is true if the action ofN on the left is twisted by an augmented 
W-algebra automorphism a of WG, or by a group automorphism QofN- i.e., (n,g) • 
x = g(n) • X' g - 1 for ne N, g G G and X e FG. 

We shall next come to the proof of the "Subgroup Rigidity Theorem" 18 
as it was generalized from [W] in [R]. R will be a complete Dedekind domain 
of finite rank over Zp, the p-adic integers, K is the field of fractions of R and 
rad(R) = n • R. G is a finite p-group. Theorem 18 is an immediate consequence of 
the following result, which generalizes and was inspired by the work of Al Weiss 
[W]: 

Theorem 28. Let M be an RG-lattice, and let JV be a normal subgroup ofG. Assume 
that 
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1. M IN is a free RN-module, 
2. M/(I(N) • M) is a permutation module for G/N. 

Then M is an RG-permutation module. 

The next result plays a major role in the proof of Theorem 19, though it is 
also of interest for its own sake. A generalized permutation module is a direct 
sum of modules induced from one dimensional representations of subgroups. 

Theorem 29 [R], 1. Assume that K is a splitting field for G and all of its subgroups. 
If C be a primitive p-th root of unity in R, then we require n1 • R cz (1 — Q • R, 
An RG-lattice M is a generalized permutation module if and only if Mj%x is a 
generalized permutation module. 

2. IfV R ÇÉ (1—Q'R, then there is an RG-lattice M, which is not a generalized 
permutation module, but M/rf is a generalized permutation module. 

Let us point out, where the restrictive condition on R/nr becomes apparent: 

A 

Lemma 30. Let R be a complete Dedekind domain of finite rank over Zp. The in
duced map 

Ext],G(M,JV) -+ Extj^,G(M/7r',JV/^) 

is injective for all generalized permutation lattices M and N if and only if either R 
does not contain a primitive p-th root of unity or %x • R cz (1 — Q • R, where Ç is a 
primitive p-th root of unity. 
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The Local to Global Principle in Algebraic ÜT-Theory 
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In the early 70s, Quillen [Q] succeeded in finding a good definition of the higher 
algebraic X-groups, generalizing the usual Grothendieck group K0. To a noetherian 
ring or scheme X, his theory associates two distinct series of X-groups: K^(X), the 
theory associated to the exact category of finitely generated projective modules or 
algebraic vector bundles on X; and G^.(X) or K'^(X), the theory associated to 
the abelian category of all finitely generated modules or coherent sheaves on X. 
Quillen's localization theorem for the X-lheory of abelian categories applies to 
G^(X), and enables him to prove many fundamental results for this theory, including 
invariance of G^ under replacing the ring R by the ring of polynomials R[_T^\ or the 
scheme X by X\T~], a Mayer-Vietoris exact sequence for a cover of X by two open 
subschemes, and a Brown-Gersten local-to-global spectral sequence which reduces 
many G-theory problems to the case of local rings. For regular rings or schemes X, 
the existence of finite projective resolutions for all finitely generated modules shows 
that K^(X) = G%(X), so all these good results apply to K%(X) in the regular case. 
However if X has singularities, Quillen's methods give many fewer results about 
K^(X). Unfortunately, this case arises often: for example the integral group ring of 
a non-zero finite group is always singular. The essential difficulty was the lack of 
the key tool: a good localization theorem for X-theory. 

The author and Thomas F. Trobaugh have remedied this lack by finding the 
good localization result, using the techniques of Waldhausen's "algebraic X-theory 
of spaces" [Wa2] and returning to some ideas of Grothendieck about defining 
X-theory using "perfect complexes" in place of single vector bundles [SGA6]. Using 
a characterization of perfect complexes, essentially defined as finite complexes of 
algebraic vector bundles, as being the finitely presented objects in the derived 
category of modules, we obtain the result that the K0 class is the only obstruction 
to extension up to quasi-isomorphism of a perfect complex on an open subscheme 
of X to à perfect complex on all of X. This extension result and Waldhausen's theory 
give the localization theorem for X-theory, Theorem 2.1 below. This in turn un
leashes a pack of new fundamental results for X-theory, including the Mayer-
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Vietoris exact sequence, the Brown-Gersten local-to-global spectral sequences for 
both the Zariski and Nisnevich topologies, the generalizations to schemes from 
rings of the results of Weibel, Ogle, and Goodwillie controlling the failure of X^ to 
be invariant under polynomial or nilpotent extension or to satisfy Mayer-Vietoris 
for closed covers, and the isomorphism between mod / algebraic X-theory localized 
by inverting the Bott element and etale topological X-theory. Recently Dongyuan 
Yao has obtained some similar localization results for the X-theory of non-
commutative rings. Hiding in the background of all this is the fact that the Wald-
hausen X-theory of a category of complexes depends essentially only on the derived 
category; this idea has been much advanced by work in progress of Giffen and 
Neeman, which unfortunately I will not discuss below. 

§ 1. Perfect Complexes and Waldhausen Ä-Theory 

We consider schemes X which are quasi-compact and quasi-separated. Quasi-
compact means that X is covered by a finite number of open subschemes which are 
affine, i.e. isomorphic to Spec(R) for some commutative rings R. Quasi-separated 
means that the intersection of any two such affines is again quasi-compact. These 
conditions are indeed very mild, and are met by all algebraic varieties over a field, 
by all schemes of finite type over a noetherian ring, and by Spec(R) for any 
commutative ring R. 

Recall that a map between two chain complexes in an abelian category is a 
quasi-isomorphism if it induces an isomorphism on the homology of the complexes. 
Two complexes E and F are quasi-isomorphic if they are connected by a chain of 
quasi-isomorphisms 

E^Azzf LztF 

Definition (Grothendieck [SGA6]). A perfect complex on a scheme X is a complex 
E of (9x-modules, such that for every affine open U = Spec(R) in X, the restriction 
E\Uis quasi-isomorphic to a finite complex of finitely generated projective R-modules. 

For E to be perfect, it suffices that E\U be quasi-isomorphic on U to a finite 
complex of such projective modules for all the U in some affine open cover of X. 
In particular, for X = Spec(R), the perfect complexes are those quasi-isomorphic 
to such complexes of projective R-modules. 

The category of perfect complexes on X is a "category with cofibrations and 
weak equivalences" in the sense of [Wa2] 1.2, i.e., it is a Waldhausen category. The 
cofibrations are the maps of complexes which are degree-wise split monomorphisms; 
the weak equivalences are the quasi-isomorphisms. For Y a closed subspace of X, 
there is a full Waldhausen subcategory of those perfect complexes which are co-
homologically supported on Y; i.e., those which are acyclic on X — Y. 

The theory of Waldhausen [Wa2] associates higher algebraic X-groups to 
Waldhausen categories: these are the homotopy groups of a space, or even better, 
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of an infinite loop space or spectrum in the sense of algebraic topology. Let K^.(X) 
denote the Waldhausen algebraic X-groups associated to the category of perfect 
complexes on X, and K(X) denote the associated X-theory spectrum. Let K^(X on 
Y) and K(X on Y) denote the X-groups and spectrum associated to the Waldhausen 
subcategory of those perfect complexes on X which are acyclic on X — Y. 

K0(X) is the Grothendieck group of [SGA6], generated by quasi-isomorphism 
classes [F] of perfect complexes on X, modulo an Euler characteristic relation 
that [F] = [F'] + [F"] whenever one can choose representatives of the quasi-
isomorphism classes that fit in a short exact sequence of complexes 0 -• E -» E -+ 
E" -> 0, that is, whenever they are the vertices of an exact triangle in the derived 
category D(X) of ^-modules. 

Suppose X satisfies the mild hypothesis of having an "ample family of line 
bundles" in the sense of [SGA6] II.2.2.3. This condition is inherited by all sub-
schemes of X and is satisfied when X is a commutative ring, or is quasi-projective 
over a commutative ring, or is a separated regular noetherian scheme. In partic
ular, this condition holds for all classical algebraic varieties, since they are quasi-
projective over a field. For a scheme X with an ample family of line bundles, a global 
resolution theorem of Illusie ([SGA6] II.2.2.8) says that every perfect complex on X 
is globally quasi-isomorphic to a finite complex of algebraic vector bundles defined 
on all of X. Then the K0(X) above is isomorphic to the "naive" Grothendieck group 
of algebraic vector bundles on X, and the Waldhausen XJK(Ar) are isomorphic to 
the Quillen X-groups of X ([TT2] 3.10, 3.9). 

We have an easy to verify but very useful characterization of perfect complexes 
in terms of the derived category D(X). Recall that this category is obtained from the 
category of all chain complexes of ^-modules by inverting the quasi-isomorphisms 
(see Verdier [Ve]). D(X)qc denotes the full subcategory of those complexes whose 
homology sheaves are quasi-coherent, i.e., which locally on affine subschemes 
Spec(R) are isomorphic to R-modules. D+(D)qc is the further subcategory of com
plexes E such that the homology sheaves Hk(E) are 0 for all k sufficiently large. 

Proposition 1.1. Let X be a quasi-compact and quasi-separated scheme. Let E be an 
object of D+(X)qc. Then the following are equivalent: 

a) E is a perfect complex 
b) For any. direct system of complexes Fa with quasi-coherent homologies, the 

canonical map is an isomorphism of morphism sets: 

colima D(X)(E, Fa) * D(X)(E, colima Fa) 

c) The functor D(X)(E, ) sends infinite direct sums in D+(X)qc to direct sums in 
the category of abelian groups. 

Proof. [TT2] 2.4.3 yields that a) iff b). That b) implies c) is clear, and that c) implies 
b) follows from a demonstration dual to that of [T3] 2.6. • 

Comparing condition b) with Grothendieck's characterization of finitely pre
sented modules or algebras A over a ring or scheme as those such that Mov(A, ) 
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preserves direct colimits ([EGA] IV 8.14), we see this proposition characterizes 
perfect complexes as finitely presented objects in the derived category. This suggests 
interesting generalizations. Thus, the "perfect complexes" in the stable homotopy 
category turn out to be the homotopy finite cell spectra: they have an associated 
X-theory, which turns out to be Waldhausen's A(pt) ([Wal] § 1). The proposition 
also suggests that we could apply the yoga for extending finitely presented objects 
from an open subscheme to all of X ([EGA] 1.6.9). This suggestion leads to: 

Key Proposition 1.2. Let Xbea quasi-compact and quasi-separated scheme, j : U -> X 
the inclusion of a quasi-compact open subscheme, and F a perfect complex on U. Then 
F is quasi-isomorphic to the restriction j*E of a perfect complex on X if and only if 
the class [F] of F in K0(U) is in the image ofj* : K0(X) -> K0(U). 

Proof. [TT2] 5.2.2 The basic idea is to write the complex with quasi-coherent 
homology Rj*(F) on X as quasi-isomorphic to a direct colimit of perfect complexes, 
colim Ea « Rj^F. Then on U, F is quasi-isomorphic to colim7*Fa. As F is perfect, 
Proposition 1.1 shows that this quasi-isomorphism factors through some7*Fa. Thus 
F is quasi-isomorphic to a summand oîj*Ea, the restriction of a perfect complex 
Ea on X. This is the miracle for general U, although it would be trivial for affine 
U. The next step, more ordinary, is to show that given a morphism on U between 
restrictions of perfect complexes, j*Ex -+j*E2, one can extend this to a morphism 
Ex - > £ 2 o n l after replacing the old Ex by another perfect complex whose restric
tion to U is quasi-isomorphic to that of the old one. An induction and excision 
reduces this to the case where X has an ample family of line bundles. If X — U is a 
divisor, one succeeds after replacing E± by its tensor product with a power of the 
line bundle of the divisor. For X — U general, one succeeds after replacing Ex by 
its tensor power with the positive degree part of a Koszul complex of line bundles 
for divisors whose intersection is X — U. From this extension result on morphisms, 
it follows that if 2 out of 3 terms in an exact triangle of perfect complexes in D(U) 
extend, so does the third. We now adapt an idea of Grayson from cofinality theory: 
consider the abelian monoid of quasi-isomorphism classes of perfect complexes on 
U, and take the quotient monoid by setting equal to 0 the classes that are restrictions 
of perfect complexes on X ; using the preceding sentence one sees that the class of 
a perfect complex on U is zero in this quotient if and only if it extends to a perfect 
complex on X. The miracle above shows this monoid has inverses, and so is an 
abelian group. We see from the above that this obstruction group to extension 
satisfies the Euler characteristic relation for exact triangles, and thus in fact that it 
is the quotient of X0(U) by the image of K0(X). • 

In particular, this key Proposition gives a X0-criterion for an extending up to 
quasi-isomorphism an algebraic vector bundle on U to a perfect complex on X, 
that is, to a finite complex of algebraic vector bundles on X in the usual case where 
X has an ample family. No similar criterion is possible for the question of extension 
to a single vector bundle on X: it is for this reason that it is necessary to go to 
the framework of perfect complexes and leave the framework of algebraic vector 
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bundles to prove a good localization theorem for algebraic X-theory. The impos
sibility of such a criterion was noted by Serre ([Se] 5a), who observed that as the 
tangent vector bundle to the projective plane P2 is not a sum of line bundles, its 
preimage on A3 — 0 is a vector bundle which is not free, and which does not extend 
to a vector bundle on A3, even though X0(A

3) -• X0(A
3 — 0) = Z is an isomor

phism, and though this vector bundle on A3 — 0 is the quotient of a monomorphism 
of free vector bundles on A3 — 0, which of course do extend. The vast literature on 
the Serre conjecture contains many negative and a few special positive results on 
the problem of extending to vector bundles on X for X regular: one may consult 
the articles of Horrocks, Swan, Murthy, Vasserstein, Bass, M. Kumar, Suslin, and 
Quillen on this conjecture. Very few have dared to say anything about the case 
where X is singular. 

§ 2. The Localization Theorem and Its Basic Consequences 

Theorem 2.1 (Localization Theorem) Let X be a quasi-compact and quasi-separated 
scheme, and let Y be a closed subspace of X such that X — Y is quasi-compact. Then 
there is a natural homotopy fibre sequence, and an associated long exact sequence of 
homotopy groups: 

K(X on Y) -• K(X) -» K(X - Y) 

• • • -> Kn(X on Y) -+ Kn(X) -• Kn(X - Y) -» Kn^(X on Y) -> 

Proof. [TT2] 7.4. For n > 0, this results easily from the Key Proposition above and 
Waldhausen's fibration and approximation theorems [Wa2] 1.6.4 and 1.6.7. As the 
map K0(X) -> K0(X — Y) is not always surjective in the singular case, it is necessary 
to construct new non-zero negative X-groups Kn for n < 0 to continue the exact 
sequence to the right, and to replace the spectrum K(X) by a new non-connective 
spectrum of which the Waldhausen X-theory spectrum is a covering space. This is 
done by following an inductive procedure due to Bass [B], which depends on the 
part of the localization theorem already proved for higher n, and which uses the 
exact sequence of 2.2 to inductively define Kn^ for n ^ 0 given Kn. • 

The special case of 2.1 where X — Y is affine and Y is a Carrier divisor is due to 
Quillen [Gr] (at least in light of [TT2] 5.7 which identifies K(X on Y) with Quillen's 
third term K(HYX) in this case). Painful efforts to squeeze a bit more out of Quillen's 
method have been made by Levine [Le3]. The counterexample of Deligne given in 
Gersten's paper ([Ge] §7) shows the limits of an exact category approach to 
localization. 

Corollary 2.2 (Bass Fundamental Theorem). Let X be a quasi-compact and quasi-
separated scheme. Denote by X[T~\ the scheme X x A1 = X ®z Z[T], and similarly 
by A^T -1] another polynomial extension of X, and by X[T, T"1] the Laurent 
polynomial extension. Then there is a natural exact sequence for all integers n e Z: 
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0 -> KH(X) -> Kn(X[TJ) e Kn(XlT~'-]) -> X„(X[T, T"1]) -> Kn_,(X) -> 0 

Similarly for K^(X on Y). 

Proof. [TT2] 7.5. This is proved by descending induction on n using the formula of 
Quillen ([Q] § 8) that X„(Pi) s Kn(X) 0 Kn(X), and the Mayer-Vietoris Corollary 
2.3 to the localization theorem applied to the cover of P* by X[T~\ and X[T - 1] 
with intersection X[T, T"1]. For X affine and n < 1, the result is indeed due to 
Bass [B]; and for X affine and n > 2, it is due to Quillen [Gr]. • 

Corollary 2.3 (Mayer-Vietoris Theorem). Let U, V be two quasi-compact open 
subschemes of a quasi-separated scheme X. Then there is a homotopy cartesian square: 

K(UuV) > K(U) 

K(V) > K(UnV) 

and an associated long exact Mayer-Vietoris sequence: 

• • • ^ Kn(U u F ) - . Kn(U) 0 Kn(V) -* Kn(U nV)-> K^U u V) -> • • • 

Proof [TT2] 8.1. The localization theorem calculates the homotopy fibres of the 
horizontal maps in the square, and an easy excision result shows they are equivalent, 
as U is an open neighborhood of Y = (U u V) — V = U - (U n V) in U u V. • 

Theorem 2.4 (Brown-Gersten or Local-to-Global Spectral Sequence, Spectral Se
quence of Cohomological Descent). Let Xbea noetherian scheme of finite dimension. 
Then there is a strongly converging spectral sequence whose E2 term is the cohomology 
of X for the Zariski topology with coefficients in the sheaf associated to the presheaf 
of K-groups: 

E%-« = Hr(XZar;Kq)=>Kq_p(X) 

In fact, the augmentation map to the Zariski hypercohomology spectrum ([Tl] 
§1) is a homotopy equivalence identifying this spectral sequence to the canonical 
hypercohomology spectral sequence. 

K(X)^M(XZat;K) 

One has the same results after replacing the Zariski topology by the slightly finer 
Nisnevich topology ([N] § 1, [TT2] Appendix E). 

Proof. [TT2] 10.3,10.8. In the Zariski case, Brown and Gersten showed this would 
follow from Mayer-Vietoris [BG], and proved the case for regular X or for G-
theory. The argument for the Nisnevich topology is similar, but needs a slightly 
stronger excision result that K(X on Y) is unchanged by replacing X by its henseliza-
tion along Y. Nisnevich [N] proved the Nisnevich case for regular X or for G-theory. 
Weibel [We4] proved the theorem in the case X has isolated singular points, using 
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ideas of Collino and Pedrini. We note that the Nisnevich topology plays a big role 
in the work of Kato and Saito [KS], who call it the henselian topology. • 

2.5 This spectral sequence reduces many problems to the case of local rings for 
the appropriate topology, since the stalks of the coefficient sheaves are the values 
of Kq at these local rings. For the Zariski topology, these are the local rings of X 
in the usual sense. For the Nisnevich topology, the local rings are the hensel local 
rings of X, the henselizations of the usual local rings. It is a theorem of Gabber 
[Ga], completing ideas of Suslin, that for Rm a hensel local ring and n an integer 
such that l/n e Rm, then the reduction map to the residue field, Rm -• R/m, induces 
an isomorphism on mod n X-theory, at least in positive degrees, X/nJ|s(Rm) = 
K/n^(R/m). Thus many problems for mod n X-theory reduce to the case of fields. 
For example, this reduction plays an essential role in the proof of the étale cohomo
logical descent Theorem 4.1 below. 

2.6 In the previously known case where X is a regular scheme of finite type over 
a field k, this spectral sequence has interesting relations with classical intersection 
theory because of the formula for AP(X), the Chow group of codimension p algebraic 
cycles on X, inspired by Gersten, proved by Quillen ([Q] §7.5), and ascribed to 
Bloch (who in fact did prove the case p = 2, the case p = 1 being due to Cartier): 
AP(X) = HP(X; Kp). As Nisnevich observed, this works either for the Zariski or the 
Nisnevich topology. It would be interesting to have a geometric interpretation of 
HP(X; Kp) and a relation to some kind of intersection theory in the singular case. 
Some work on this has been done by Collino [Co], Gillet [Gi], Levine [Lei, Le2, 
LeW], Pedrini [PW1, PW2], Weibel, and Barbieri Viale [Vi]. In the singular case, 
the Zariski and Nisnevich cohomologies are different, and there is some evidence 
that the Nisnevich cohomology works better. 

2.7 The hard-core algebraist may have been wondering if all this scheme business 
gives anything new for the X-theory of ordinary commutative rings. The answer 
is that it does. For the proof of spectral sequence 2.4 for the case of a noetherian 
ring A, X = Spec(>4), and thus the reduction of problems about K(A) to the case of 
local rings, depends on an induction which requires considering arbitrary open 
subschemes U of Spec(A), not all of which will be affine when the dimension of A 
is greater than one. This is one of the reasons why Quillen's localization result with 
its hypothesis that X — Y be affine did not suffice to prove Theorem 2.4 for 
noetherian rings. I also offer the following two new results: 

Proposition 2.8. Let Rbe a commutative ring, and let r, SE Rbe two elements such 
that the ideal generated by r and s is all R. Then there is a long exact Mayer-Vietoris 
sequence: 

--+ Kn(R) -> Kn{R[l/r]) ©Ku(R[l/s]) -> KH(R[l/rs]) - K„-i(R)- • ••. 

Proof. This is a special case of 2.3 with U = Spec(R[l/r]) and V = Spec(R[l/s]). 
Since the ideal (r, s) is all of R, Spec(R) = U u V. The result would follow from 
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Quillen's localization theorem [Gr] under the additional hypothesis that either r 
or 5 is not a zero-divisor in R, but this hypothesis is often embarrassing, e.g. in the 
case of group rings. • 

Proposition 2.9 (Weibel). Let Rbe a commutative ring, and reR. Denote by Rf the 
completion limfc R/rkR. Then there is an exact Mayer-Vietoris sequence: 

• • • -> Kn(R) -> Kn(R?) © XM(R[l/r]) -+ X„(R* [1/r]) -> Kn^(R) 

Proof This follows from 2.1 and an excision result that K(R on R/r) « X(R* on 
Rr/r), which Weibel observed could be proved by the method of [TT2] 2.6.3 and 
3.19. D 

§ 3. Generalizations to Schemes of Some Results 
Known in the Affine Case 

The Mayer-Vietoris Theorem 2.3 often permits one to generalize results known for 
affine schemes to general quasi-compact separated schemes X, by inducting on the 
number of affines in an open cover of X. (A second induction on the number of 
quasi-affines needed to cover X then relaxes the hypothesis of separation to that of 
quasi-separation). Work of Weibel [Wei, We2, We3, We5], Ogle [Og, OW], Geller, 
Goodwillie [Go], Soulé [So], Staffeldt [Sta], van der Kallen [vdK], and Vorst [Vo] 
have produced many results controlling the failure of X-theory of rings to be 
invariant under polynomial or nilpotent extensions, and the failure of Mayer-
Vietoris for closed covers of affine schemes. Their demonstrations depend on the 
use of projective objects and other ring-theoretic techniques, and do not readily 
generalize to schemes, where the locally projective algebraic vector bundles are not 
globally projective. However, our method generalizes their conclusions to the case 
of schemes. As a sample, I give the following results. The first two concern the mod n 
X-theory defined by Karoubi and Browder; these groups fit in a short exact 
universal coefficient sequence: 

0 -> Kq(X) ® Z/n -+ K/nq(X) -+ Tor^X^PO, Z/n) -+ 0 

Theorem 3.1 (Weibel) Let X bea quasi-compact and quasi-separated scheme, and let 
W->X be the total space of a vector bundle over X (or even a tor sor under a vector 
bundle). Let n be an integer such that 1/n e (9X. Then W-+X induces an isomorphism 
on mod n K-groups: 

K/n*(X)^Kln*(W) 

In particular, this is true when W = X[T~\. 

Proof. [TT2] 9.5. This is deduced by the method above, using the 5-lemma and the 
Mayer-Vietoris sequence 2.3, from the affine case due to Weibel [Wei] 3.3, [We3]. 
The critical case is that of the polynomial extension R[T] of a ring R. In general, 
the induced map K^(R) -+K^(R[T~\) has a non-trivial cokernel, although it is 
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obviously injective, split by the map induced by the ring homomorphism sending 
T to 0. Stienstra [Sti], following work of Almkvist, Grayson, and Bloch, showed 
that the cokernel was a module over the ring of Witt vectors of R. Weibel observed 
this shows the cokernel is uniquely w-divisible if l/n e R, yielding the result in the 
critical case. • 

Theorem 3.2 (Weibel). Let X be a quasi-compact and quasi-separated scheme, with 
two closed subschemes Y, Z, such that X — YuZ as spaces. Give the intersection 
YnZ the scheme structure of the fibre product of Y and Z over X. Let n be an integer 
such that 1/n e (9X. Then there is a homotopy cartesian square: 

K/n(X) > K/n(Y) 

K/n(Z) > K/n(YnZ) 

and an associated long exact Mayer-Vietoris sequence: 

• • • ^ K/nq(X) -+ K/nq(Y\® K/nq(Z) -+ K/nq(Yn Z) -+ K/nq^(X) 

Proof. [TT2] 9.8. Again one reduces to the affine case, which is due to Weibel, 
essentially [We2] 1.3. The corresponding statement for X^ in place of K/n^ would 
not be true, but its failure can be analyzed locally using cyclic homology [OW], 
which result can be globalized by the method of 3.3 below. • 

3.3 Much recent work has focused on cyclic homology HC^, which serves as a 
sort of "linear approximation" to algebraic X-theory, and is more readily calculable. 
Discovered for operator algebras by Connes, cyclic homology has been extended 
to algebras over a field k by Loday-Quillen and Feigin-Tsygan, and has been 
extensively developed by J. Block, Brylinksi, Burghelea, Carlsson, Cathelineau, R. 
Cohen, Goodwillie, J. Jones, Karoubi, Kassel, Ogle, Staffeldt, Vigué-Poirier, Weibel, 
Wodzicki, and others in a torrent of articles [Lo]. 

Independently, several people, including J. Block, Loday, and Weibel have 
proved that HC^ has a Cech-Mayer-Vietoris spectral sequence for a cover of 
Spec(R) by affine open subschemes. This allows one to extend the definition of 
HC^(X) to schemes X over a field k, by taking homology of the total complex of 
the Cech complex of an affine cover of X, with coefficients in the cyclic homology 
complex HC. We deduce, as suggested by Weibel: 

Theorem 3.4 (Goodwillie). Let X' be a quasi-compact and quasi-separated scheme 
over Spec(Q). Let i : X -» X' be a closed immersion defined by a sheaf of nil ideals. 
Then there is a natural isomorphism between the relative cyclic homology over Q and 
the relative algebraic K-theory: 

K^X-^X^^HC^X-iX). 

Proof. Here K(X -> X) is the homotopy fibre of the map f * : K(X') -> K(X), so that 
the relative X-groups K^.(X -• X') fit in a long exact sequence with K^.(X) and 
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K^(X')\ and similarly for the relative cyclic homology complex HC(X -> X'). For 
X' affine, the main theorem of [Go] gives a natural homotopy equivalence between 
K(X -* X') and the complex HC(X -> X') shifted one degree and considered as a 
generalized Eilenberg-MacLane spectrum. The result for general X then follows by 
Mayer-Vietoris, cf. [TT2] 9.10. • 

Levine has remarked that this result is interesting when X is smooth over a field 
k of characteristic 0, and X' is the singular infinitesimal thickening of X to X[s]/e2. 
Then K^(X -> X') is by Grothendieck's definition the "tangent space" to X+ at X, 
and the result shows that it indeed equals the tangent space to the "linear approxi
mation" HC%. One has the spectral sequence of tangent spaces given by applying 
2.4 to the fibre of K(X) -> K(X); using cyclic homology to calculate the E2 term 
gives: 

EJ-« = HP(X; Ql1 © Qx~
3 © Qx~

5 © • • •) 

where Qx are the absolute Kahler differentials over Q, not the relative ones over k. 
This does suggest somewhat obscure relations between this tangent space, Hodge 
theory, and infinitesimal deformations of algebraic cycles. 

§ 4. Comparison of Algebraic and Etale Topological /iT-Theory 

4.0 Suppose now that X is a scheme of finite type over a ring k, where k is one of 
the following: an algebraically closed field, a separably closed field, a number field, 
a ring of integers in a number field, Zp, Q£, F g [ [ f | ] , Wq((t)), or 1F̂ . Fix a prime 
power lv > 3. Suppose that 1// e (9X, and that if / = 2 then (9X contains a square root 
o f - 1 . 

If k contains all the Zv-th roots of unity, this gives a torsion subgroup Z/lv in the 
group of units fe*, and hence in Kx(k). By the universal coefficient sequence, this 
corresponds to an element ß in K/lv

2(k). One may then localize the ring Kßv^(X) 
by inverting the image of this Bott element ß. If k doesn't contain all the P-th roots 
of unity, one can still form this K/lv(X) [/T1]: as Dwyer showed, essentially a power 
of ß exists in K/lv^(k), although ß in degree 2 does not ([Tl], Appendix A). 

Theorem 4.1. For X as in 4.0, there is a strongly converging spectral sequence from 
etale cohomolgy: 

The canonical map which forgets the algebraic structure on an algebraic vector bundle 
and remembers only the underlying topological vector bundle induces an equivalence 
with the Dwyer-Friedlander etale topological K-theory [DF]: 

Q : X//v(Z)[j8"1] 2t X//vTop(*) 

Proof. [TT2] 11.5. The method of 2.5 reduces this to the case where X is replaced 
by its various residue fields, which case was done in [Tl] , as was the case where X 
is regular. • 
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One notes that the results of Suslin-Gabber-Gillet-Thomason [Ga, Sul, Su2, 
GiT] on the X-theory of strict hensel local rings, the local rings for the etale 
topology, show that the values of the sheaves K/lv

q in the etale topology are the 
/-times Tate-twisted cyclic groups Z/lv(i) for q = 2/ even and non-negative, and are 
0 for q odd and positive. Thus this spectral sequence is the spectral sequence of etale 
cohomological descent for X//VJ|{, at least in positive degrees. However, it converges 
to K/l\(X)lß~1'], and not to K/l\(X), which is in general different. I believe that 
K/lv

q(X)[_ß-1'] equals K/l\(X) for q sufficiently large (cf. the results of [T2]), but 
this is definitely false for q small, e.g. for q = 0 and I a X 3 surface over C or 
Spec(R[l//]), where R is a ring of integers in a number field which has more than 
one prime lying over / ([Tl] Example 4.5). 

The relation between algebraic X-theory and etale cohomology remains a very 
active area. Leaving aside the infinity of baseless conjectures, there remain some 
other actual theorems in special cases: the surjectivity results of Soulé in the case 
of rings of integers, as perfected by Dwyer-Friedlander [DF]; complete results on 
X2 of fields due to Merkurjev and Suslin [MSI]; less complete results about X3 of 
fields due to Merkurjev-Suslin ([MS2], [MS3]), Levine [Le4], and Rost [R]; and 
the descent result of Carlsson for 7csK5GLJV

+ with respect to finite Galois extensions 
of certain localized rings of integers. The X2 result of Merkurjev-Suslin has been 
extensively employed to study algebraic cycles in codimension 2, notably in the 
hands of Colliot-Thélène, Coombes, M. Gros, Raskind, Salberger, Sansuc, and 
Soulé. M. Harada has proved a Riemann-Roch theorem for singular varieties 
without a quasi-projectivity hypothesis by using the homology version of 4.1 for 
G-theory to reduce Riemann-Roch to the projection formula ([H], [T4] § 15). 

§ 5. The Case of Non-commutative Rings 

D. Yao has begun the study of the localization theorem for non-commutative rings 
[ Y]. This involves many new technical problems, and the construction of a sort of 
algebraic geometry of Grothendieck abelian categories. As a sample of his results, 
one has: 

Theorem 5.1 (D. Yao) Let Rbe a ring, not necessarily commutative. Suppose that sl9 

s2,...,sn are elements of R such that the ideal they generate is all of R. Suppose there 
exist ring automorphisms fa for i = 1,2,...,« such that: 

1) for allr e R, fa(r)s{ = str 
2) fa(sj) = Sj 

3) fafa = fafa 

(For example, the Sj could be central, and the fa = id.) Then there is a strongly 
converging Cech cohomology spectral sequence computing XS|C(R) from the K-groups 
of the localizations: 

£5.-t = tfp(..._» 0 K,(R[l/st0A/Sll-...-l/s,J)^~)=>Kq-p(R). 
\ l0</,< •••<!„ / 
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On the Restricted Burnside Problem 

Efim I. Zelmanov 

Institute of Mathematics, Universitetskii pr. 4, Novosibirsk-90, 630 090 USSR 

In 1902, W. Burnside formulated his famous problems for periodic groups [6]: 

The Burnside Problem (also known as the Ordinary Burnside Problem) : Is it true 
that every finitely generated group of bounded exponent is finite? 

The General Burnside Problem: Is it true that every finitely generated periodic 
group is finite? 

After many unsuccessful attempts to obtain a proof in the late 30s-early 40s 
the following weaker version of The Burnside Problem was studied: Is it true 
that there are only finitely many 7??-generated finite groups of exponent nl In 
other words the question is whether there exists a universal finite m-generated 
group of exponent n having all other finite m-generated groups of exponent n as 
homomorphic images. Later (thanks to W. Magnus [35]) this question became 
known as The Restricted Burnside Problem. 

In 1964 E. S. Golod gave a negative answer to The General Burnside Problem 
(cf. [9]). Since then a considerable array of infinitely generated periodic groups 
was constructed by other authors (cf. Alyoshin [2], Suschansky [44], Grigorchuk 
[ll],Gupta-Sidki [54]). 

In 1968 P. S. Novikov and S. I. Adian [39] constructed counter-examples 
to The Burnside Problem for groups of odd exponents n > 4381 (now for odd 
exponents n > 115, cf. I. Lysenok [33]). Olshansky's Monsters (cf. [40]) shows 
how wildly periodic groups may behave. 

At the same time there were two major reasons to believe that The Restricted 
Burnside Problem would have a positive solution. One of these reasons was the 
reduction theorem obtained by Ph. Hall and G. Higman [14]. Let n = p\l . ..pf, 
where /;,• are distinct prime numbers, iq > 1, and assume that (a) The Restricted 
Burnside Problem for groups of exponents pf has a positive solution, (b) there 
are only a finite number of finite simple groups of exponent n, (c) the factor group 
Out(G) = Aut(G)/Inn(G) is solvable for any finite simple group of exponent n. 
Then The Restricted Burnside Problem for groups of exponent n also has positive 
solution. 

Another reason was the close relation of The Problem to Lie algebras. Suppose 
n = pk, where p is a prime number. Then the finite group G of exponent pk is 
clearly nilpotent. It is easy to see that it is sufficient to find an upper bound 
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f(m, pk) for the class of nilpotency of all m-generated groups G of exponent pk. 
Consider the lower central series G = 71(G) > yi(G) > • • • > ys(G) = (l),7i+i(G) = 
(yt(G), G), 1 < i < S, and the direct sum of abelian groups 

Ly(G)= S@yi(G)/yi+1(G). 
1=1 

Brackets [aiyi+i(G),bjyj+1(G)] = (ai,bj)yi+j+1(G), where at e yt(G),bj e jj(G),(, ) 
is the group commutator, define the structure of a Lie ring on Ly(G) (cf. [4], [12, 
34, 48]). It is obvious that the Lie ring Ly(G) has the same class of nilpotency as 
the group G. If G is generated by elements xi , . . . ,xm then Ly(G) is generated by 
xty2(G), 1 < z < m. 

If n = p is a prime number then Ly(G) is an algebra over the field Zp, \Zp\ = p, 
which satisfies Engel's identity 

[... [y,x\,x],...,x) = 0 Fp_i 
v 

p-i 

(cf. [35]). Thus The Problem for groups of prime exponent has been reduced to 
the following problem in Lie algebras: is it true that a Lie algebra over Zp, which 
satisfies Engel's identity Fp-i , is locally nilpotent? 

The last problem was successfully solved by A. P. Kostrikin [27, 28] wo solved 
in this way The Restricted Burnside Problem for groups of prime exponent. 

If G is a finite group of prime power exponent pk then Ly(G) is no longer an 
algebra over the field Zp, it is an algebra over the ring Z(pk) of residues modulo 
pk. That's why along with the lower central series yt(G) we shall consider the 
lower central p-series of G (cf. [21], [31, 48, 46]): 

G == Gi ZD G2 =3 ... , 

where G,- is the subgroup of G generated by commutators ((... (xi, x-f), X3),..., xr), 
r > i, and powers ((...(xi,X2),X3),...,xr)

p',r • p* > i. It is easy to see that 
Gt 2 yi(G) 2 G,pfe, 

L(G)= ®Gt/Gm 
ï > I 

is an algebra over Zp. Neither the Lie ring Ly(G) nor L(G) need necessarily satisfy 
Engel's identity Epk_x (cf. [13, 16]) but 

(1) the Lie algebra L(G) satisfies the linearized Engel's identity Fp*_i, that is, 
for arbitrary elements a\,...,apk_i G L(G) we have 

I"ad (aff(i))... ad ( a ^ - i ) ) = 0 , o e S ^ , 

(G. Higman, [17]). 
(2) for an arbitrary commutator Q on the generators X1G2,1 < i < r, we have 

3.d(Q)pk =0 

(I. N. Sanov, [42]). 
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Now let us turn to what was happening in associative and Lie nil algebras. 
A. G. Kurosch [30]* and independently J. Levitzky (cf. [3]) formulated two 

problems for nil algebras which were similar to Burnside's problems. 

The General Kurosh-Levitzky Problem: Is every finitely generated nil algebra 
nilpotent? 

The (Ordinary) Kurosh-Levitzky Problem: Is every finitely generated nil algebra 
of bounded degree nilpotent? 

Actually it was a counterexample to the General Kurosh-Levitzky Problem 
which was constructed in the paper, [9] of E. S. Golod, then this counterexample 
was used to construct the first counterexample to the General Burnside Problem. 
Remark that so far it remains the only counterexample to the General Kurosh-
Levitzky Problem. 

For the (Ordinary) Kurosh-Levitzky Problem we have a quite different situa
tion. Unlike Group Theory it has only positive solutions in all important classes 
of algebras. To appreciate the impact this problem had on the Ring Theory let 
us mention that N. Jacobson's Structure Theory of Algebras was stimulated by 
the Kurosh Problem and I. Kaplansky introduced the concept of a Pi-algebra in 
search of the most general conditions which ensure the positive solution of the 
Problem. The following result (in its final form) was due to I. Kaplansky [23]. 

Theorem. A finitely generated nil algebra which satisfies a polynomial identity is 
nilpotent. 

In 1956 A. I. Shirshov suggested another purely combinatorial direct approach 
to the Kurosh-Levitzky Problem. 

Theorem (A. I. Shirshov [43]). Suppose that an associative algebra A is generated by 
elements xi,...,xr and assume that (1) A satisfies a polynomial identity of degree 
n, (2) every monomial in {x,} of degree < n is nilpotent. Then A is nilpotent. 

It is very important that the nilpotency assumption here is imposed not on 
every element of A, but only on the monomials in the generators (even on a finite 
collection of them). 

Now let us turn to Lie algebras. It is natural to call an element a E L 
nilpotent if the operator ad (a) is nilpotent. With this definition both Kurosh-
Levitzky problems become meaningful for Lie algebras. Moreover, by the results 
of G Higman and I. N. Sanov (cf. above) the Lie algebra L(G) of a finite group 
G of exponent p" satisfies the assumptions of the Kurosh-Levitzky Problem in 
the form of A. I. Shirshov (the role of monomials is played by commutators). 

In [52, 43] we solved this problem for those Lie algebras which satisfy the 
linearized Engel's identity £„. 

* Actually Kurosh's Problem concerned algebraic algebras but we consider only the 
important case of nil algebras. 
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Theorem 1. Suppose that a Lie algebra L is generated by elements xi,...,x r and 
assume that there exist integers n > \,m > 1 such that (1) L satisfies the linearized 
Engel's identity En, (2) for an arbitrary commutator Q on the generators Xi we have 
ad (o)m = 0. Then L is nilpotent. 

Corollary. A Lie ring which satisfies Engel's identity is locally nilpotent. 

From Theorem 1 we derive 

Theorem 2. The Restricted Burnside Problem has a positive solution for groups of 
exponent pk. 

By the Reduction Theorem of Ph. Hall and G. Higman, the Restricted 
Burnside Problem has a positive solution in the class of soluble groups, in 
particular it has a positive solution for groups of odd exponent (by the celebrated 
Theorem of W. Feit and J. Thompson [8])' and for groups of exponent n = 
paqß,p,q are prime numbers (cf. W. Burnside, [7]). 

The announced classification of finite simple groups (cf. [10]) implies that 
the Restricted Burnside Problem has a positive solution for groups of arbitrary 
exponent. Now we shall try to explain briefly the idea of the proof of Theorem 1. 

In [50] we proved that to prove Theorems 1, 2 it suffices to prove that a 
restricted (in the sense of N. Jacobson [18]) Lie algebra over an infinite field, 
which satisfies an Engel's identity, is locally nilpotent. An element a of a Lie 
algebra L is called sandwich if 

[[L,a],a]=0, [[[L,a],L],a]=0 

(cf. A. I. Kostrikin, [27]). In case of odd characteristics the second equality easily 
follows from the first one, however if char = 2 then both conditions are necessary. 
We call a Lie algebra a sandwich algebra if it is generated by a finite collection 
of sandwiches. The following theorem is due to A. I. Kostrikin and the author. 

Theorem About Sandwich Algebras [49]. A sandwich Lie algebra is nilpotent. 

This theorem suggests the following plan of attack on Theorem 1 (which has 
been outlined in [50]). Assume that there exists a nonzero Lie algebra L over an 
infinite field K which satisfies an Engel's identity but isn't locally nilpotent. Then 
taking the factor-algebra of L modulo its locally nilpotent radical (cf. [26, 41]) we 
may assume L doesn't contain any nonzero locally nilpotent ideals. Suppose we 
manage to construct a Lie polynomial f(xi,...,xr) such that fis not identically 
zero on L and for arbitrary elements a\,...,aY e L the value f(a\,...,ai) is a 
sandwich of L. The X-linear span of f(L) = {f(a\,...,aì)\a\,...,ar e L} is an 
ideal in L. By the theorem about sandwich algebras the ideal Kf(L) is locally 
nilpotent which contradicts our assumption. 

However one year of effort didn't bring us a desired sandwich-valued polyno
mial (its existence a posteriori follows from Theorem 1). Instead in November of 
1988 we constructed an even sandwich-valued superpolynomial / , which means 
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that for a Lie superalgebra L = Lo + L\ satisfying the superization of En every 
value of / is a sandwich of Lo. It turned out to be a good substitute of sandwich-
valued polynomials. The sketch of this rather complicated construction appeared 
in [51], Unfortunately it worked only for characteristics =^2,3. 

In January of 1989 we constructed another "generalized" nonzero sandwich-
valued polynomials (this time involving "divided powers" of ad-operators), their 
full linearizations being ordinary polynomials. Every value of such a full lin
earization is a linear combination of sandwiches. This approach worked for any 
p (cf. [52, 53]). 

Some lengthy computations from the proof (which are really hard to read) 
may be explained within the framework of Jordan Algebra Theory (cf, [19, 
20]). We shall demonstrate the idea for the simpler case p ^ 2,3. The first (less 
computational) part of the construction of a sandwich-valued polynomial is a 
construction of a polynomial / such that f(L) ^ 0 and for an arbitrary element 
a G f(L) we have ad (a)3 = 0. Choose arbitrary elements a,b e f(L) and consider 
the subspaces J + = Lad (A)2, &~ — Lad(fc)2. Then for an arbitrary element 
e e 2L~ the operation x o y = [x,c,y];x,y e £+, defines the structure of a Jordan 
algebra on £+ (cf. [5, 19, 22, 25]). The pair of subspaces (J~, J+) is a so-called 
Jordan pair (cf. [32, 38]). 

For p = 2 or p = 3 we define 2r and J + with the divided powers of adjoint-
operators and apply Kevin McCrimmon's Theory of Quadratic Jordan Algebras 
([20, 36, 37]). 

For odd p we managed to translate Jordan arguments into the language of 
elementary computations in [52]. For p = 2 this substitute didn't work so Jordan 
Pairs and Algebras played an important role in our paper [53]. However, recently 
M. Vaughan-Lee succeeded in getting rid of Jordan Algebra Theory even in the 
case p = 2. 

Not much is known about the upper bound for classes of nilpotency of r-
generated finite groups of exponent p (let alone the exponent pk,k > 1). S. I. 
Adian and N. N. Repin [1] proved that it grows at least exponentially with respect 
to p. For comparison let us mention the recent result of A. Belov which asserts 
that there exists a constant a such that an arbitrary r-generated associative ring 
which satisfies the identity x" = 0 is nilpotent of degree < ra". 

Conjecture. There exists a constant oc such that an arbitrary r-generated finite group 
of exponent p is nilpotent of class < r • ap. 

Residually Finite Groups and Compact Groups 

The following generalization of Theorem 1 solves the Kurosh-Levitzky Problem 
(in Shirshov's form) in the class of Lie Pi-algebras. 

Theorem 3. Suppose that a Lie algebra L is generated by a finite subset X e L, 
\X\ =m and assume that 
(1) L satisfies a polynomial identity of degree n, 
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(2) for an arbitrary commutator Q on X of weight < h(m, n) the operator ad (Q) is 
nilpotent. 

Then L is nilpotent. 

This theorem has some applications to the General Burnside Problem in group 
varieties and to compact groups. It is well known that there are counterexamples 
to the General Burnside Problem even among residually finite p-groups (such are 
the counterexamples of E. S. Golod and R. I. Grigorchuk). However Theorem 3 
implies 

Theorem 4. A residually finite p-group which satisfies a nontrivial group identity is 
locally finite. 

Apparently this theorem can be generalized from p-groups to periodic groups 
in the spirit of the theorem of P. Hall and G. Higman [14]. 

The assumption of a nontrivial identity can be further weakened to the 
"infinitesimal" assumption that the adjoint Lie algebra L(G) is PL The last 
assertion in its turn is related to the General Burnside Problem for compact 
groups. V. P. Platonov conjectured that periodic compact (Hausdorff) groups are 
locally finite. J. S. Wilson [47] proved that (under the assumption that there 
are finitely many simple sporadic groups) it suffices to prove the conjecture for 
pro-p-groups. That's what is done in the following theorem. 

Theorem 5. Every periodic pro-p-group is locally finite. 

Indeed, let G be a periodic pro-p-group. Consider the closed subsets G(„) = 
{g e G\gpH = 1}, G = UG{n). By Baire's Category theorem one of the subsets G(w) 
contains some neighborhood, that is G(„) => gH, where if is a normal subgroup 
of G of finite index. Then we show that every finitely generated subgroup of H 
which is invariant under conjugation by g, satisfies an "infinitesimal" identity. 

From Theorem 5 combined with [47] and with what is known about locally 
finite groups [15, 24] there follows 

Theorem 6. Every infinite compact group contains an infinite abelian subgroup. 

Remark as far as Theorem 6 is concerned the reduction to pro-p-groups in 
[47] didn't use the classification of finite simple groups. 

References 
. 2 

1. Adian, S. L, Repin, N. N.: On exponential lower bound for class of nilpotency of 
Engel Lie algebras. Matem. Zametky 39, no. 3 (1986) 444-452 

2. Alyoshin, S. V. : Finite automata and the Burnside problem on periodic groups. Matem. 
Zametky 11, no. 3 (1972) 319-328 

3. Amitsur, S. A: Jacob Levitzki 1904-1956. Israel J. Math. 19 (1974) 1-2 



On the Restricted Burnside Problem 401 

4. Baer, R. : The higher commutator subgroups of a group. Bull. Amer. Math. Soc. 50 
(1944) 143-160 

5. Benkart, G. : Inner Ideals and the Structure of Lie algebras. Dissertation. Yale Uni
versity 1974 

6. Burnside, W. : On an unsettled question in the theory of discontinuous groups. Quart. 
J. Pure Appi. Math. 33 (1902) 230-238 

7. Burnside, W.: Theory of groups of finite order. Cambridge Univ. Press, 1911; Reprint, 
Dover, New York 1955 

8. Feit, W., Thompson, G.: Solvability of groups of odd order. Pacific J. Math. 13 (1963) 
755-1029 

9. Golod, E. S.: On nil algebras and residually finite p-groups. Izv. Akad. Nauk SSSR 
28, no. 2 (1964) 273-276 

10. Gorenstein, D.: Finite simple groups. New York 1982 
11. Grigorchuk, R. I.: On the Burnside Problem for periodic groups, Funct. Anal. Appi. 

14, no. 1 (1980) 53-54 
12. Grün, O. : Zusammenhang zwischen Potenzbildung und Kommutatorbildung. J. Reine 

Angew. Math. 182 (1940) 158-177 
13. Grunewald, F. J., Havas, G„ Mennicke, J. L., Neumann, M. F.: Groups of exponent 

eight. Bull. Austral. Math. Soc. 20 (1979) 7-16 
14. Hall, P., Higman, G. : On the p-length of p-soluble groups and reduction theorems for 

Burnside's problem, Proc. London Math. Soc. GN3 (1956) 1-42 
15. Hall, P., Kulatilaka, C. R.: A property of locally finite groups. J. London Math. Soc. 

39 (1964) 235-239 
16. Havas, G , Newmann, M. F.: Application of computers to questions like those of 

Burnside. (Lecture Notes in Mathematics, vol. 806.) Springer, Berlin Heidelberg New 
York 1980, pp. 211-230 

17. Higman, G.: Lie ring methods in the theory of finite nilpotent groups. Proc. Intern. 
Congr. Math. Edinburgh 1958, pp. 307-312 

18. Jacobson, N : Restricted Lie algebras of characteristic p. Trans. AMS 50 (1941) 15-25 
19. Jacobson, N : Structure and representations of Jordan algebras. AMS, Providence, RI 

1969 
20. Jacobson, N.: Lectures on quadratic Jordan algebras. Bombay. Tata Institute of 

Fundamental Research, 1969 
21. Jennings, S. A.: The structure of the group ring of a p-group over a modular field. 

Trans. AMS 50 (1941) 175-185 
22. Kantor, I. L. : Classification of irreducible transitively differential groups. Sov. Math. 

Dokl. SN SSSR 5 (1964) 1404-1407 
23. Kaplansky, I.: Rings with a polynomial identity. Bull. AMS 54 (1948) 575-580 
24. Kargapolov, M. I.: On a problem of O. Ju. Smidt. Siber. Math. Z. 4 (1963) 232-235 
25. Koecher, M.: Imbedding of Jordan algebras into Lie algebras. Amer. J. Math. 89 

(1967) 787-816 
26. Kostrikin, A. L: On Lie rings with Engel's condition. Dokl. Akad. Nauk SSSR 108, 

no. 4 (1956) 580-582 
27. Kostrikin, A. I.: On the Burnside Problem. Izv. Akad. Nauk SSSR 23, no. 1 (1959) 

3-34 
28. Kostrikin, A I.: Sandwiches in Lie algebras. Matem. Sb. 110 (1979) 3-12 
29. Kostrikin, A. I.: Around Burnside. Nauka, Moscow 1986 
30. Kurosh, A. G. : Problems in ring theory which are related to the Burnside Problem for 

periodic groups. Izv. Akad. Nauk SSSR 5, no. 3 (1941) 233-240 
31. Lazard, M.: Sur les groupes nilpotents et les anneaux de Lie. Ann. Sci, Ecole Norm. 

Sup. 71, no. 3 (1954) 101-190 
32. Loos, O.: Jordan pairs. Springer, Berlin Heidelberg New York 1975 



402 Efirn I. Zelmanov 

33. Lysenok,' L: On the Burnside problem for odd exponents n > 115. Materials of the 
International Conference in Algebra, Novosibirsk, 1989 

34. Magnus, W. : Über Gruppen und zugeordnete Liesche Ringe. J. Reine Angew. Math. 
182 (1940) 142-159 

35. Magnus,' W.: A connection between the Baker-Hausdorff formula and a problem of 
Burnside. Ann. Math. 52 (1950) 11-26; Errata Ann. Math. 57 (1953) 606 

36. McCrimmon, K.: A general theory of Jordan rings. Proc. Nat. Acad. Sci. USA 56 
(1966) 1072-1079 

37. McCrimmon, K., Zelmanov, E.: The structure of strongly prime quadratic Jordan 
algebras. Adv. Math. 69 (1988) 113-222 

38. Meyberg, K: Lectures on algebras and triple systems. Lecture Notes, The University 
of Virginia, Charlottesville, 1972 

39. Novikov, P. S., Adian, S. I.: On infinite periodic groups. I, II, III. Izv. Akad. Nauk 
SSSR 32, no. 1 (1968) 212-244; no. 2, 251-254; no. 3, 709-731 

40. Olshansky, A. Yu.: Geometry of defining relations in groups. Nauka, Moscow 1989 
41. Plotkin, B. I.: Algebraic sets of elements in groups and Lie algebras. Uspekhi Mat. 

Nauk 13, no. 6 (1958) 133-138 
42. Sanov, I. N.: On a certain system of relations in periodic groups of prime power 

exponent. Izv. Akad. Nauk SSSR 15 (1951) 477-502 
43. Shirshov, A. I : On rings with identical relations. Mat. Sb. 43 (1957) 277-283 
44. Suschansky, V. I. : Periodic p-groups of permutations and the General Burnside Prob

lem. Dokl. Akad. Nauk SSSR 247, no. 3 (1979) 447-461 
45. Vaughan-Lee, M.: The Restricted Burnside's Problem. Oxford University Press, 1990 
46. Wall, G. E. : On the Lie ring of a group of prime exponent. Proc. 2nd Intern. Conf. 

Theory of Groups, Canberra, 1973, pp. 667-690 
47. Wilson, J. S. : On the structure of compact torsion groups. Monatsh. Math. 96 (1983) 

404-410 
48. Zassenhaus, H.: Ein Verfahren, jeder endlichen p-Gruppe einem Lie-Ring mit der 

Charakteristik p zuzuordnen. Abh. Math. Sem. Univ. Hamburg 13 (1940) 200-207 . 
49. Zelmanov, E. L, Kostrikin, A. I. : A theorem on sandwich algebras. Proceedings of the 

V A Steklov Math. Institute of Akad. Nauk SSSR 183 (1988) 142-149 
50. Zelmanov, E. I. : On some problems in the theory of groups and Lie algebras. Mat. 

Sb. 180, no. 2 (1989) 159-167 
51. Zelmanov, E. L: On the restricted Burnside problem. Siberian Math. J. 30, no. 6 (1989) 

68-74 
52. Zelmanov, E. I. : The solution of the restricted Burnside problem for groups of odd 

exponent. Izv. Akad. Nauk SSSR 54 (1990) 
53. Zelmanov, E. L: The solution of the restricted Burnside problem for 2-groups. To 

appear in Mat. Sb. 
54. Gupta, N., Sidki, S.: On the Burnside problem for periodic groups. Math. Z. 182 

(1983) 385-386 



A Riemann-Roch Theorem in Arithmetic Geometry 
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1. Introduction 

This talk describes joint work with Christophe Soulé; for full details the reader 
can consult the papers [22,24]. 

Given an arithmetic variety X, together with a Hermitian metric on its set 
of complex points, the arithmetic Riemann-Roch theorem computes, given a 
Hermitian vector bundle Ë on X, the degree (in the sense of Arakelov [1,2]) of 
the determinant of its cohomology equipped with the Quillen metric. The Quillen 
metric is an invariant of the Laplace operator on X((ü) with coefficients in E, 
The computation is in terms of characteristic classes, which are invariants of the 
Hermitian bundle and the arithmetic variety itself, in the 'arithmetic Chow ring' 
of the variety. The arithmetic Chow ring is inspired by the ideas of Arakelov 
(ibid.) and Deligne [15] in the case of arithmetic surfaces, and the arithmetic 
Riemann-Roch theorem itself generalizes the work of Faltings [16] and Deligne 
(ibid.) in the relative dimension one case. One application of the theorem, to the 
existence of sections with small norm, will be described. 

2. Preliminaries 

2.1 Basic Definitions 

Definition 1. In this note by an arithmetic variety over Z, we mean a regular 
scheme X, flat and quasi-projective over Z. However in general we need only 
assume that the generic fibre ZQ is smooth, and for much of what follows we 
can also replace the integers % by a more general 'arithmetic ring'; see [18], We 
shall write F^ for the antiholomorphic involution of the complex manifold X((ü) 
induced by complex conjugation. 

Definition 2. A Hermitian bundle Ë = (E, h) over X consists of a vector bundle 
E over X, and a choice of C00 Hermitian metric (i.e. positive definite Hermitian 
inner product) h on E over X((C), which is invariant under Fœ. 

* Supported by N.S.F. grant DMS-8901784. 
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Example 1. If X = Spec(Z), then a Hermitian bundle over X is the same thing as 
a lattice in IR" for some n. 

Example 2. If X = Spec(##;) for OK the ring of integers in a number field K, 
then a Hermitian bundle Ë consists of a finitely generated projective 0% -module 
E together with a Hermitian inner product on E ®&K Kv for each archimedian 
completion K» of K. The set of isomorphism classes of Hermitian bundles over 
X is classified by the double coset space 

GLn(K)\GLn(AK)/U , 

where AK is the ring of adeles of K, and U is the maximal compact subgroup of 
GLn(AK). 

These examples show that the if one views Spec(^x) as being compactified by 
adding the archimedian places of K as points at infinity, then Hermitian vector 
bundles over Spec(0jc) have a similar adelic description to vector bundles over 
a smooth projective curve. In this case a Hermitian bundle has a well-defined 
degree. Let det(F) be the top exterior power of E, with the induced Hermitian 
form, and let a e det(F) be a non-zero element. Then set 

d^i(F) = log(#(det(£)/fea)) - £ log ||a||0 

V 

where the sum is over the complex embeddings v : K °-> (C, and || \\v denotes 
the absolute value corresponding to the choice of metric on E <g)y C Equivalently 
the degree is equal to minus the logarithm of the covolume (i.e. the volume of a 
fundamental domain), with respect to the euclidean measure determined by the 
Hermitian inner product, of the lattice E e E ® R. See [1,2]. 

2.2 Riemann-Roch for Curves, and Its Analog for Lattices 

Let X be a smooth projective curve over a field k, and let F be a rank n vector 
bundle over X. Recall that the degree of E equals the degree of detF, which is 
the degree of the divisor of a meromorphic section of detF. We write gx for the 
genus of X. Then the classical Riemann-Roch theorem for curves is : 

X(X,E)=n(l-gx) + deg(E) . 

If k is a finite field of order q, and F is a finite dimensional fe-vector space,then 
dimfc V = logq #(F). This leads, given a Hermitian bundle over Spec(Z), i.e. a 
lattice A cz IRn, to the folowing definition of a numerical analog h°(A) of the rank 
of H°(E) of a vector bundle E over a curve. 

Definition3. Let A a IRn be a lattice. We set 

^ V ) = l 0 g # { x G ^ | | | x | | < l } . 

We also write A* for the dual or 'polar' lattice. 
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It is an immediate consequence of Minkowski's theorem that there exists a 
constant a such that: ^ 

h°(A) > dzg(A) + an . (1) 
This is analogous to Riemann's theorem : 

h°(E)>deg(E) + (l-gx)n . 

See [28] for a discussion of this analogy. The following result is more analogous 
to the Riemann-Roch theorem, in that it estimates the difference between the two 
sides of (1). See [23] for a proof. 

Theorem 4. With the above notation, 

\h°(A)-h°(A*)-tei(A)\ < nlog(6/y/n) +log (2" !F Q + l ) ) . 

2.3 Grothendieck-Riemann-Roch for Varieties over a Curve 

Let X be a smooth projective variety over a field k, and let F be a vector bundle 
over X. Suppose that / : X —> C is a map of X onto a smooth projective curve, 
and let us write Td(X/C) = Td(X)f*Td(C)~1 for the relative Todd class of X 
over C in any suitable cohomology theory, such as the Chow ring CH*(X)Q, 

On C there is a line bundle X(E) = X(X/C,E) = det(R/*F). The fiber of X(E) 
at a point y e C is naturally isomorphic to ®^0det[ir(/_1(y),F)](_1) '. (Here, 
if L is a line bundle, L~l denotes its dual). It follows from the Grothendieck-
Riemann-Roch theorem that 

degA(F) = deg(ch(F)Td(Z/C)) . 

Here deg : CH*(X)<$ —> CH°(Spec(/c))Q ~ Q is the map which, if X has dimension 
n, is zero on CHJ(X)<Q for / ^ n, and on CHn(X)(^ takes a dimension zero cycle 
to its degree. The Riemann-Roch theorem for a curve tells us that: 

X(E) = xif~Hy),E)(l - gc) + deg(A(£)) . (2) 

Here y e C is arbitrary. Notice that this formula allows one to deduce the 
Hirzebruch-Riemann-Roch formula for E over X from the corresponding formula 
for the generic fiber of X over C, together with the computation of deg(/1(F)). 

3. The Arithmetic Riemann-Roch Theorem 

3.1 Motivation 

Suppose now that / : X -• Spec(Z) is a projective arithmetic variety, and we 
fix a Kahler metric œ on X((C) which is invariant under F^. What might a 
Riemann-Roch theorem for a Hermitian bundle Ë on X look like? If we view / 
as being analogous to a map to a curve, then (2) suggests that such a theorem 
combines three ingredients : Theorem 4, the Hirzebruch-Riemann-Roch theorem 
for E on the generic fibre XQ, and the computation of the degree of a Hermitian 
line bundle X(X,Ë). We need therefore to define a metric on X(E) = Rf*(E). Note 
that such a metric on X(E) = Rf*(E) can be interpreted as measuring the torsion 
in Rf*E supported on the 'closed points at infinity.' 
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3.2 The Quillen Metric 

Procedures have been proposed for putting a metric on X(E) = Rf*(E) by Faltings 
[16] (for X an arithmetic surface) and Quillen [25] . We shall follow the method 
of Quillen. 

Let / : M —> B be a proper smooth map of complex manifolds. (This of 
course includes the case of X(C) mapping to a point, for X an arithmetic 
variety). Suppose that co is a closed (1, l)-form on M which restricts to a Kahler 
form on each fiber off. If F is a Hermitian holomorphic vector bundle on M, i.e. a 
locally free coherent analytic sheaf E equipped with a C00 Hermitian metric, then 
X(E) = X(M/B,E) = det(R/*F) is a holomorphic line bundle on B. Here Rf* is 
the direct image in the derived category of perfect complexes of analytic sheaves. 
If b € B is a point, the Hermitian metric on E, together with the induced Kahler 
metric on Mb = f~l (b) and the d operator on Mb determine an inner product and 
a laplace operator A\ on A°>l(Mb, E). By Hodge theory we may identify canonically 
the cohomology Hl(Mb,E) of E over Mb, with the subspace Ker(zlf) c A0^(Mb,E). 
The inner product on A0ii(Mb,E) then induces an inner product, the L2 inner 
product hL2,.on Hl(Mb,E) and hence on X(Mb,E) = {g)^0[H'(Mò,F)](-1)f. There 
is a canonical isomorphism X(Mb,E) ~ X(M/B,E)b', however in general the L2 

inner product on this complex line will not vary in a C00 fashion with b e B. 
Following Quillen, we modify the L2 inner product as follows. For each i > 0 
and b e B we consider the zeta function (f (s) = ]T 1/A*,where the sum is over 
the non zero eigenvalues of ä\. The sum defining Ct(s) converges absolutely for 
the real part of s large enough, and £? (s) has a meromorphic continuation to 
the whole complex plane, with a regular point at zero. The Ray-Singer analytic 
torsion, [26], is then defined as 

T(Mft,£) = X ( - l ) 9 + 1 < ( 0 ) . 

Finally we define X(Ë) = (X(E),hQ = hLi exp(r(F))). The following theorem was 
joint work with J.-M. Bismut, and C. Soulé, see [8] for details. 

Theorem 5. Let f : M —> B, co, and Ë, be as above. Then: 
1. The Quillen metric hq on the holomorphic line bundle X(E) on B is C00. 
2. There is an equality of (1, l)-forms on B: 

chi(A(£),fcQ) = j ch(Ë)Td(TM/B) 

Here ch(£) is the representative of the Chern class in deRham cohomology obtained 
by applying the Chern-Weil homomorphism to the unique unitary connection of type 
(0,1) determined by the metric and holomorphic structure on E. 

Remark. The Grothendieck Riemann-Roch theorem predicts the equality of co
homology classes which corresponds to the above equation. This result is built on 
some earlier work of Bismut and Freed on C00 determinant bundles for families 
of Dirac operators. 
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3.3 Arithmetic Chow Groups 

If / : X -> Y is a proper morphism between arithmetic varieties which restricts 
to a (proper) smooth map X(<£) —• T((C), and F is a Hermitian bundle on X, 
X(X/Y,Ë) is a Hermitian line bundle on Y. It is the isomorphism class, up to 
torsion, of this Hermitian line bundle which we would like to determine. Notice 
that the "classical" Grothendieck-Riemann-Roch theorem computes the Chern 
character chj(X(X/Y,E)) e CH{(Y)^ while by Theorem 5 the Quillen metric 
determines a form representing the de Rham representative of this class. 

If X is an arithmetic variety, and F = (E, h) is a Hermitian bundle on X, 
then we have the Chern character ch(F) e CH*(X)Q in the Chow group of 

— def 

cycles modulo rational equivalence, and forms ch(F) e Z*(X) = © fe0ZM(Z((C)) 
determined by the Chern-Weil homomorphism. (Here Z/,f(X((C)) denotes closed 
forms of type (/,/)). We shall combine these together into a single theory carrying 
the characteristic classes we need to compute X(X/Y,Ë). 

Definition 6. Let X be an arithmetic variety as above. A codimension / arithmetic 
cycle on X is a pair (Z,gz) consisting of a codimension 7 algebraic cycle Z on X, 
and a current (i.e. a form with distribution coefficients) of type (/ — 1, i — 1), such 
that ddcgz + àz is C00, where öz is the current of type (/, /) given by integration 
over the complex points of Z. We also require that F^gz = (— l) /_1gz- We call gz 
a Green current for Z, and we view two Green currents gz and g'z as equivalent 
if their difference lies in the image of d + d. 

If W cz X is an integral subscheme of codimension 7* — 1, and / e k(W) is 
a rational function on W, we define div(/) = (div(/), — log|/ |2). Here log| / |2 

is the current of type (/ — 1, / — 1) obtained by integration against the function 
log| / |2 on the complex points of W: by the Poincaré-Lelong lemma log| / |2 

is a Green current for div(/). We say that an arithmetic cycle is rationally 
equivalent to zero if it is the sum of cycles of the form div(f), and we define 

the codimension / arithmetic Chow group CH (X) of X to be the quotient of the 
group of codimension / arithmetic cycles by the subgroup of cycles rationally 
equivalent to zero. 

An element of CH (X) determines a rational equivalence class of algebraic 
cycles on X, a C°° form representing their de Rham cohomology class on X((E), 
together with secondary data. In the paper [18] we make this relationship precise 
and show how to lift the product and pull back structures from cycles and forms 
to the arithmetic Chow groups : 

Theorem 7. Suppose that X is an arithmetic variety, with Z Q projective. Then there 
is an exact sequence 

CHj~Ui(X) £ ff'-1'-1 (Jf) A CH\X) ^ CH\X) © Z^(X) c^ Hui(X) . 

Here Cff'-^pf) is a group which is up to torsion the weight / part of K\(X), 
Q is the Beilinson regulator ([4]), ff'-1''-1^ is the subspace of ff'-1'-1 (*(€$) 
on which FQO acts by (— l)'"1, a is the map a i-> (0,a), £ is the map forgetting 
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the Green current, co(Z,gz) = ddcgz + <5z, e maps a cycle to its cohomology 
class and h maps a closed form to its cohomology class. If we had not assumed 
that X Q was projective we would have to modify the definition of the Dolbeault 
cohomology groups in the sequence; cf. [18]. 

Example 3. Let K be a number field and X = Spec(0#;). Then 

CH\X)~K*\IK/U , 

where 1^ is the idele group of K, and U c IK is its maximal compact subgroup. If 
C\((9K) is the ideal class group of K, the exact sequence of Theorem 7 becomes : 

(9*K -> Wi+ri -* CH(X) -> C\((9K) - • 0 . 

Example 4. For a general arithmetic variety X, let Pic(Z) be the group of isomor
phism classes of Hermitian line bundles on X, with the group operation given by 
tensor product. Then there is an isomorphism 

Ci :lfic(X)-+CHi{X) , 

given by L i—> (div(s), — log ||s||2), for s an arbitrary rational section of L. 

Example 5. On projective space over the integers P^> viewed as an arithmetic 
variety, we have a tautological Hermitian line bundle 0(1), with the metric 
induced by orthogonal projection from the trivial bundle. If x : SpecZ —> P^ is 
an integral point, then deg x*(0(1)) is the Arakelov height of x; cf. [27]. 

Theorem 8. 1. If f : X —> Y is a map between (regular) arithmetic varieties, there 
is a pull back map f* : CH (Y) -> CH*(X). If f : X -> Y and g : Y -+ Z, then 
fg = (gf)*-

2. CH (X)Q is an associative ring with unit, and the product is compatible, via 
the maps £ and co, with the intersection product on cycles and the wedge product 
on forms. 

3. If f : X ~> Y is a proper map of relative dimension d, smooth over Q, there is 
. -* . .*—d 

a direct image map f* : CH (X) -> CH (Y), with the obvious projection formula 
holding. 

The proof of the theorem, and in particular the construction of the product, 
involves showing that if Y and Z are two cycles on a projective variety over C 
which intersect properly, choices of Green currents gy and gz determine a Green 
current gY * gz, with good properties, for the product cycle Y • Z. This product 
of Green currents must then be combined with the intersection product of cycles 
on the regular scheme underlying the arithmetic variety. However, because there 
is as yet no intersection theory with integral coefficients on a general regular 
scheme, we use our construction in [17], via Adams operations on Ko, of an 
intersection theory with rational coefficients. Observe that if / : X -> Spec(Z) 

is projective, the pushforward /* induces a map deg : CH (X) -> R, where 
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d is the relative dimension of X over Z; explicitly, (Z,gz) H-> log#F(Z,(9Z) + 
\ fx(C) gz' Composing the product with the degree map gives a pairing CH (X) ® 
. .fZ-j-i—p . — _ * 
CH (X) -> IR. If we restrict this pairing to the subgroup CH (X)Q = ker(co), 
it factors, at least if X has no bad fibers, through the subgroup of CH*(X<$) 
consisting of cycles which are homologically equivalent to zero, where it becomes 
the height pairing defined by Beilinson and Bloch [5], [13] generalizing the Neron 
height pairing. 

3.4 Characteristic Classes for Hermitian Bundles 

In [19] we show that any characteristic class defined by invariant polynomials 
has a common lifting from the Chow ring and the ring of differential forms to 
the arithmetic Chow ring. The following theorem summarizes this result in the 
case of the Chern character, which will be sufficient for our purposes, since the 
Chern character determines the Todd genus. 

Theorem 9. There is one and only one way of assigning to each Hermitian bundle 
_ ^ _ --——•—* 
F on an arithmetic variety Xa class ch(E) e CH (X)Q, the "arithmetic Chern 
character", with the following properties: 

1. Under the maps £ and m it maps to the classes ch(F) G CH*(X)Q and 
ch(Ë)eZ*(X) . 

2, IfL is a Hermitian line bundle, then ch(L) =exp(Ci(L)) . 
3, Given two Hermitian bundles Ë and F we have: 

ch(Ë <g> F) = cîi(F) • cîi(F) , 

and 
ch(É © F) = ch(F) + ch(F) . 

Here Ë © F is the orthogonal direct sum. 
4. ch commutes with pullbacks. 

Remark. If ê : 0 -» E' -> E -» F" —> 0 is an exact sequence of vector bundles 
on an arithmetic variety X, and we choose metrics hf, h, hn on the three bundles, 
then 

cîi(F', h1) + ch(F", ti')) - cîi(F, h) = (0, ch(<f, ti, h, h")) , 

which is the secondary chern character defined by Bott and Chern [14] satisfying 
ddcdk(£,ti,h,ti') = ch(F',/7') + ch(F//,/i//) -ch(F,/i), i.e. it measures the failure of 
the Whitney sum formula to be true at the level of forms. 

3.5 The Main Theorem 

Let / : X - • Y be a proper map between nonsingular arithmetic varieties, which 
restricts to a smooth map XQ - • TQ; fix a Kahler metric on X((ü) which is 
invariant under F^. Let F be Hermitian bundle on X, and let X(Ë) be the 
corresponding determinant line bundle on Y, equipped with the Quillen metric. 
Let TX/Y denote the relative tangent bundle with the metric induced by the 
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Kahler metric on X(C); note that strictly speaking, unless / is smooth, this 
relative tangent bundle is a virtual object. Consider the difference 

ch1(A(£))-|/.(c'h(Ê)Ty(fx/y))]1 , 

where [ ]{ denotes the component in CFTQ. By the 'classical' Grothendieck-
Riemann-Roch theorem, together with Theorem 5 we know that this difference 
has image zero under both £ and a>, and so by Theorem 7 must lie in the image 
of the map a : H°>°(Y) —> CH (Y)Q. If one computes this difference for X = P^ 
and Y = Spec(Z), one does not get zero, showing that a naive translation of the 
Grothendieck-Riemann-Roch theorem is false. By computing, with the help of 
D. Zagier, the difference for the trivial bundle on X = P | for all n, we were led 
in [20] to define an "arithmetic Todd genus" : 

Definition 10. Consider the power series 

R(x) = £ [2C'(-m) + C(-m)(l + 1/2 + . . . + 1/m)] (£) . 
m odd t \ ' / 

Using the splitting principle, we have an additive characteristic class R(F) e 
H*(X) for complex vector bundles F over topological spaces X, such that R(L) = 
R(Ci(L)) for a line bundle L. Now given / : X —> Y as above, define the arithmetic 
Todd genus: 

TdA(X/Y) = Td{tx/7)(l + a(R(Txm/Ym))) . 

Remark. Notice that power series R(x) used to define the correction term in TdA 

has a mysterious relationship to the power series used to define the Todd genus 
itself: 

Td(x) = l - x £ Ç ( - m ) r l y . 

Theorem 11. Let f : X —> Y, Ë, be as above. Then we have 

ch!(A(F)) = \f*(&(Ë)Td\TxlM -

The strategy of the proof is based on the method used to prove the "classical" 
version of the theorem* That is, to factor the map / as the composition of a 
closed immersion i : X —> P \ followed by the projection g : Py -> Y. The main 
ingredients are: 

1. The computation, with Zagier, of the analytic torsion of the trivial bundle 
on PÇr, [20]. 

2. Following the series of papers [6] (by J.-M. Bismut), and [9] and [10] (with 
J.-M. Bismut and G Soulé), given a resolution rj : £. -> UE, by a complex of 
Hermitian bundles, the 'torsion' of £. is defined. This is a current on P"(C), and 
in [9] it is shown that it plays for closed immersions between complex manifolds 
a role similar to that played by the Ray-Singer torsion for submersions. In [10] 
we then prove a Riemann-Roch theorem for i. 
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3. The papers [7], by J.-M, Bismut, and [11], by J.-M. Bismut and G. Lebeau, 
compute the ratio of the Quillen metrics on X(Ë) and A(£.) in terms of the the 
torsion of £. This can be viewed as showing that f\ = g\i\ in the K-theory of 
Hermitian bundles, up to a correction involving the exotic class R(Nx/w» ). 

Remark. 1. If Y = Spec(Z), then the theorem gives: 

(tegX(Ë) = de^[ch(F)Td^(X/Z)] , 

which is the analogue of the Riemann-Roch theorem for a map to curve that we 
were looking for. 

2. We have proved a more general result, in the style of [3], in which X 
is allowed to have singularities away from its generic fibre. This requires a 
careful analysis of the behaviour of complexes under the Grassmannian-graph 
construction of [3]. 

3. G. Fallings has recently given a more direct proof of the result, without 
appealing to the results of [6,7,9,10,11]. 

3.6 An Application 

Let X be an arithmetic variety of dimension d + 1, and fix a Kahler metric on 
X((C). Let F be a Hermitian vector bundle, and L a Hermitian line bundle, on 
X. Suppose that L is relatively ample over X and that C\ (L) is strictly positive. 
Write h°(X,Ë) for log#{s G H°(X,E) \ \\s\\L2 < 1}. The proof of the following 
theorem uses an earlier, weaker, version of the arithmetic Riemann-Roch theorem, 
Minkowski's theorem, and a result of J.-M. Bismut and E. Vasserot, [12]. See [21] 
for further details. 

Theorem 12. Ifdcg(Ci(L)d+1) > 0, then: 

h°(Ë ® L") > „ r f+1_|-_de^(C1(L) r f + 1) + 0(nd log(w)) . 
(d + l)\ 

In particular, if n is sufficiently large, E ® L" has a non-zero section with L2 norm 
less than one. 
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Area, Lattice Points and Exponential Sums 

Martin N. Huxley 

School of Mathematics, University of Wales, College of Cardiff, Senghenydd Road 
Cardiff CF2 4AG. Wales, UK 

Suppose you have a closed curve. How do you find the area inside? While I was 
writing my first paper on exponential sums and lattice points, my seven year old 
daughter came home from school and said. "I know how you find the area of a 
curve. You count the squares". In other words, copy the curve onto squared paper 
and count how many squares lie inside the curve. If you want the area to greater 
accuracy, use paper with smaller squares. If the side of the squares is 1/M, and you 
count N squares, then the area A is approximately N/M2. As a number theorist I 
prefer to take the squares as unit squares, the curve as enlarged by a factor M, and 
the relation as being that N is approximately AM2. 

Some squares are inconveniently cut by the curve. When do you count them? 

Rule 1. Count a square if its centre lies inside. 
Rule 2. Count a square if its lower left corner lies inside. 
Rule 3. Count all incomplete squares as half a square. 

Rules 1 and 2 are really the same rule: if we shift the squared paper by half a 
unit in the x and y directions, then the corners of the squares are now where the 
centres were before. Rule 3 is locally like Rule 2, but it counts extra squares where 
the curve has maxima and minima, and where x takes its extreme values. Take Rule 
2 as the basic rule. The corners of squares are the points in two dimensional space 
with integer coordinates x, y, the lattice points. 

How accurate is the rule? If the curve fits into a rectangular box C high, B broad 
(in terms of unit squares), then the number of squares cut is at most 2B + 2C + 4. 
As M tends to infinity, this discrepancy has order of magnitude M, whilst the area 
has order M2. 

Lattice points on the curve limit the accuracy. Whether by convention one 
counts them in or out, changing M to M + e makes little change to the area, and 
counts them all in, whilst changing M to M — e counts them all out. If the curve is 
a polygon, especially a rectangle with sides parallel to the axes, there can be M lattice 
points on the sides of the rectangle, so that order of magnitude M is then best 
possible. 

So take a smooth curve, convex for convenience. What is the mathematics 
available? The curve is described in a coordinate-free way by an equation connecting 
the arc length s with the tangent angle \j/, the radius of curvature being ds/di/j. The 
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lattice of integers has an algebraic isomorphism group SL(2, Z), the two by two 
integer matrices of determinant one. The lattice is also periodic in two dimensions, 
so that you can take Fourier transforms. These tell you that for a smooth curve the 
discrepancy N — AM2 has root mean square lying between bounded multiples of 
y/M (bounded in terms of the shape of the curve). The mean is taken over transla
tions of the curve. As a consequence, for some constant c, 

\N-AM2\ <cJM 

for at least half the positions of the curve on the squared paper. The two dimensional 
Fourier transform does not help much with pointwise upper bounds, even for a 
circle centred on a lattice point, the Gauss circle problem. 

The upper bound so far corresponds to replacing the curve by a step func
tion. Voronoi and Sierpinski used Archimedes' idea of replacing the curve by a 
polygon. The polygon is chosen so that the gradients of its sides are small rational 
numbers. Small is measured by the height norm: the height of a/q in lowest terms 
is max(|fl|, \q\). As far as I know, they did not treat the general curve, but only the 
hyperbola (for the Dirichlet divisor problem) and the circle. If you assume merely 
that the curve has a radius of curvature bounded away from zero and infinity, then 
you can show that the discrepancy \N — AM2\ has order of magnitude at most 
(M log2 M)2/3 by using the estimate for the discrepancy of a right-angled triangle 
in terms of the continued fraction expansion.of the gradient a/q. Sierpinski had this 
result in the Gauss circle problem without the logarithmic factor, so being a perfect 
circle is a little help. The sides of the polygon have rational gradients, so that they 
may contain many lattice points. 

The next step is obvious with hindsight: instead of approximating the curve by 
a piecewise constant or piecewise linear function, approximate by a piecewise 
quadratic function. Here the argument becomes highly analytic. Define e(t) to be 
exp 27iit, and g(t) to be the row-of-teeth function, with o(t) = 1/2 — t for 0 < t < 1, 
and with period one. Then g(t) has the Fourier series 

The number of integers n in an interval a<n<b is b — a + g(b) — g (a). I can now 
explain Iwaniec and Mozzochi's attack on the circle problem (1987). It is closely 
related to Bombieri and Iwaniec's great paper (1986) on the size of the Riemann 
zeta function. Bombieri and Iwaniec's paper turns out to be related to Jutila's work 
on the Dirichlet series of modular forms. The connection is that modular forms are 
functions of two dimensional lattices. 

The first step is to divide the curve into arcs corresponding to the sides of the 
Voronoi-Sierpinksi polygon, and to take a new basis for the integer lattice so that 
(q, a) is a basis vector. This brings in a 2 x 2 integer matrix. The curve is then 
approximated as a quadratic in a coordinate n in the direction of the vector (q, a) 
tangential to the curve. 
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The sum involving g(t) gives an exponential sum in two summands n and h when 
the Fourier series for g(t) is truncated. The next two steps are Poisson summation 
in each variable. There is a serious danger of error terms adding up. It is lucky that 
the integral to compute is a Bessel function of order one half which has an exact 
expression of the form 

e(t)/Jt. 

After approximating, the main terms involve an inner product: 

c(x(*',).j>c/)), 

where xik,I) is a four dimensional vector 

(M, h 1y/K 1/y/k) 

indexed by two integers k and /, and yU) is a four dimensional vector constructed 
from the quadratic approximation. The index j refers to the arc of the curve. 

If a/q has small height (a major arc), then k and / take a bounded number of 
values, and you estimate trivially (in fact one need not go so deep). If a/q has large 
height (a minor arc), then k and / run through complicated ranges. When these have 
been simplified, the next step is a form of the large sieve. 

The modern large sieve is best described as a sort of Sobolev inequality relating 
the discrete L2 norm of a function to the ordinary L2 norms of the function and its 
derivatives. The discrete L2 norm in one dimension is 

sup£|/(z,)|2 

S S 

taken over sets S = {zl9..., zR) with \z{ — zj\ > ö for / + j . In number-theoretic 
applications we have a fixed set S, usually corresponding to a subset of the rational 
numbers, and the function f(z) is an exponential sum, which can be regarded as an 
integral with respect to a discrete measure supported on the integers. In this case 
there is a duality principle and an underlying bilinear form, in which the vectors x 
are on the same footing as the vectors y. A further generalisation replaces the 
condition \z{, — Zj\ > ö by a factor in the upper bound which counts the number of 
pairs of points differing by less than ö (the convolution of the discrete measure 
supported on the points of S with itself, against a kernel function supported on a 
^-neighbourhood of the diagonal). 

The next two steps are counting the number of coincidences among sums of 
pairs of x vectors, which is number theory, and the number of coincidences among 
pairs of y vectors, which is number theory mixed with analysis. A coincidence 
between two y vectors means that on two different arcs, the curve weaves between 
lattice points in the same way. A large set of mutually coincident vectors will add 
up to a systematic error in the discrepancy N — AM2. 

Rather than write down the conditions for entries of the y vectors to coincide, 
I try to describe them. A y vector corresponds to a minor arc and a two by two 
integer matrix. Coincidence in the first entries means that the two integer matrices 
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are close in the sense that FQ - 1 is a matrix with small integer entries, and so PQ~l 

is a short word in the generators I J and f J. Coincidence in the second 

entry involves the matrix, the constant term and the gradient. Coincidence in the 
third entry is a relation between the denominators q of the gradients a/q and the 
coefficients of n2 in the quadratic approximations. Coincidence in the fourth entry 
involves all the coefficients of the approximating polynomial, but if the other three 
entries coincide, then the condition simplifies to one involving the constant terms 
and the denominators q of the gradients a/q. 

What arguments can one use in counting the number of pairs of coincident 
vectors? The first is compactness, or in its discrete version, Dirichlet's box principle. 
If there are many points in a bounded region, then there is a small set containing 
many of them. The second principle is approximation, or the mean value theorem. 
A smooth function on a small set can be approximated by a polynomial, or still 
better, a linear function. The third principle is the boon and bane of analytic 
number theory. The only arbitrarily small integer is zero. An inequality which is 
strengthened too much turns into an equation. When these three arguments are 
used in turn, we pass from discrete to continuous and back to discrete again. 

At present we are overestimating the number of coincidences because we cannot 
handle the constant term in the quadratic polynomial. So the second and fourth 
entries of the y vectors are not used. Iwaniec and Mozzochi (1987) could count 
coincidence only for the rectangular hyperbola. Huxley and Watt (1988) generalised 
the relevant lemma in Bombieri and Iwaniec (1986), getting bounds for one 
dimensional exponential sums, and Huxley (1990) adapted the Iwaniec-Mozzochi 
method to general smooth closed curves to get 

N = AM2 + 0(M7/11(log M)47/22). 

Can this be improved? There is some hope of using the second and fourth entries 
of the y vectors, which would give a small improvement on the exponent 7/11. To 
reach one half one must avoid taking moduli. Bombieri and Iwaniec (1986) suggest 
using the Fourier theory of the modular group, which acts on the vectors (q, a) 
corresponding to the sides of the Voronoi-Sierpinski polygon. This Fourier theory 
was suggested by Selberg (1956) and worked into a usable form by Kuznietsov (1980) 
and Deshouillers and Iwaniec (1982). 

There are many- related questions. Bombieri and Pila (1989) have shown by 
algebraic geometry that if the curve is not algebraic, then the number of integer 
points on it is 0(ME) for any positive e, improving the earlier result of Swinnerton-
Dyer (1974). Huxley (1988,1989) has considered the number of integer points within 
a small distance ö of the curve, using a mixture of elementary and exponential sum 
techniques. The lattice point problem is a special case of rounding error in numerical 
approximation, and one can give estimates there too (Huxley 1991). 

This method seems to be purely two dimensional, because a quadratic approxi
mation to a surface contains too many terms. Even the continued fraction rule does 
not generalise. But I hope that someone will take up the challenge of finding an 
arithmetic method for counting lattice points in three or more dimensions. 
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Generalized Class Field Theory 

Kazuya Kato 
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This paper is a survey of the X-theoretic generalization of class field theory. 
For a field K, let Kah be a maximal abelian extension of K, that is, the union 

of all finite abelian extensions of K in a fixed algebraic closure of K. The classical 
local (resp. global) class field theory says that if K is a finite extension of the 
p-adic (resp. rational) number field Qp (resp. Q), the Galois group Gal(Kah/K) 
is approximated by the multiplicative group Kx (resp. the idele class group CK), 
and via this approximation, we can obtain knowledge on abelian extensions of 
K. 

In §1 (resp. §2), we give a £>theoretic generalization of the classical local (resp. 
global) class field theory. There finite extensions of Qp (resp. Q) are replaced by 
"higher dimensional local fields" (resp. finitely generated fields over prime fields), 
and the group Kx (resp. CK) is replaced by Milnor's JC-group K^(K) (resp. by 
the JC^-idele class group), where n is the "dimension" of K. 

In §3, we discuss some other aspects of generalizations of local class field 
theory. 

In §4, we discuss generalizations of the classical ramification theory to higher 
dimensional schemes. 

1. Local Class Field Theory 

An n-dimensional local field is defined inductively as follows. A O-dimensional 
local field is a finite field. For n ^ 1, an rc-dimensional local field is a complete 
discrete valuation field whose residue field is an (n — 1)-dimensional local field. 

For example, a finite extension of Qp is a one dimensional local field. 
For a field k, let K*f(k) be Milnor's X-group of fe defined by 

K?(Jc) = {(k*)°*)/J 

where J is the subgroup of the q-fold tensor product of /cx (as a Z-module) 
generated by elements of the form a\ ® ... ® aq such that a\ + aj = 1 for some 
i ^ j . (Cf. Milnor [Mi].) The main result of the local class field theory of an 
fl-dimensional local field is the following (Parsin [Pa2], Kato [Kai] II). 
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Theorem 1. Let K be an n-dimensional local field. Then, there exists a canonical 
homomorphism 

g : K?(K) —• Gal(Kab/*0 

which induces an isomorphism K^(K)/NL/KK^(L) - ^ Gal(L/K) for each finite 
abelian extension L of K. Here NL/K '• K^(L) —» K^f(K) is the norm homomor
phism ([Kai] II 1.7). The correspondence Li—> NL/KKjf(L) is a bijection from the 
set of all finite abelian extensions of K in a fixed algebraic closure of K onto the 
set of all open subgroups of Kff(K) of finite indices. (For the definition of the 
openness of a subgroup of K^(K), see [Ka2D-

2. Global Class Field Theory 

Let X be a proper integral scheme over the ring of rational integers Z and let K 
be the function field of X. For simplicity we assume here char(K) = 0 and that 
K has no ordered field structure. 

For a non-zero coherent ideal / of ox and for q > 1, define the sheaf of 
abelian groups K^((Dx, I) on Zza r by 

Kf(6x, I) = Ker(Kf (0*) -> Kf(Gx/I)) 

where 

with J the subgroup sheaf of the tensor product generated by local sections of 
the form a\ ® ... ® aq such that a,- + a,- = 1 for some i =£ j , and K^(6X/I) is 
defined similarly. Define 

CI(X)=Hn(Xzar,K^((Dx,I)), where n = dim(X). 

If / and / ' are non-zero coherent ideals of Ox, the inclusion I cz f induces a 
surjection Cj(X) —> Cr(X). The main result of the class field theory of K is the 
following. 

Theorem 2.1. (1) Ci(X) is a finite group for any I. 
(2) We have a canonical isomorphism of profinite abelian groups 

fimC/(X)^Gal(Xab/^), 

where I ranges over all non-zero coherent ideals of Gx-
(3) For a non-empty regular open subscheme U of X, there exists a canonical 

isomorphism of profinite abelian groups 

UmC7(X)^7cab(l7), 
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where I ranges over all non-zero coherent ideals ofQx such that U n Spec(&x/I) = 

(j), and Kih(U) is the quotient of the algebraic fundamental group ni(U) ofU modulo 
the closure of its commutator subgroup. 

(4) If X is regular, then C&X(X) is isomorphic to the group CHQ(X) of the 
classes of zero cycles on X modulo rational equivalence, and we have a canonical 
isomorphism of finite abelian groups 

CHo(X)^nf(X). 

An essential part of this theorem was proved by Bloch [Bli] in the case 
dim(X) = 2. Cf. also [Pai] for the two dimensional case. The general case 
was proved in [KS2] (see also S. Saito [SSi]) by using the method in Bloch 
[Bli], except that we adopted in [KS2] another definition of Cj(X) which uses 
Nisnevich topology [Ni], a Grothendieck topology defined by Nisnevich [Ni] 

def 

(called the henselian topology in [KS2]), instead of Zariski topology. (Cj(X) = 
H"(XNis, K™(&x, I)) in [KS2].). It was found later that Nisnevich topology and 
Zariski topology give the same Cj(X) [KS3]. 

The relation of the above theorem with the classical global class field theory 
is that if X = Spec(Ox) lor a finite extension K of Q, then Ci(X) coincides with 
the ideal class group of conductor / of Ox-

The positive characteristic version of (4) of the above theorem is that if X is 
a proper smooth variety over a finite field k, CHQ(X)° = Ker (deg : CHQ(X) —> Z) 
is finite and canonically isomorphic to Ker(7cab(X) —> Gal(/cab//c)). This fact was 
proved in [KSi], and another proof was given in Colliot-Thélène, Sansuc and 
Soulé [CSS] and Gros [Gr]. That the former group surjects onto the latter was 
proved long ago by Lang whose paper [Lan] is the first work on the higher 
dimensional class field theory. 

As an application of the generalized global class field theory, we have 

Theorem 2.2. For any scheme S of finite type over Z, the abelian group CHo(S) is 
of finite type. 

The case dim(S') = 2 of this theorem was proved by Bloch [Bli], and the 
general case was proved in [KS2]. 

Some finiteriess theorems on nlh(S) for arithmetic schemes S were proved in 
Katz-Lang [KL]. 

3. Some Aspects of the Generalized Local Class Field Theory 

I give rough indications on some aspects of generalizations of local class field 
theory, which are not included in §1. 
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3.1 Explicit Reciprocity Law 

The explicit reciprocity law for a finite extension of Qp ha,s been generalized to 
higher dimensional local fields of mixed characteristic by Vostokov-Kirrilov [VK] 
and Vostokov [V]. A generalization to complete discrete valuation fields of mixed 
characteristic (0,p) with residue field F such that [F : Fp] < oo is given in [Ka4], 
as an application of the p-adic cohomology theory of Fontaine-Messing [FM]. 

Let K be "the most important two dimensional local field" 

(lim(Z/pnZ)[[q]][q-1]) ®z Q 
n 

where q is the g-invariant in the theory of moduli of elliptic curves. This field 
appears as a certain p-adic completion at infinity of a modular curve. As is 
shown in [Kas], the explicit reciprocity laws of the two dimensional' local fields 
K(£pn), where Cp» is a primitive pn-th root of 1, are related to the special values 
of L-functions of elliptic modular forms and to an Iwasawa theory of elliptic 
modular forms, just as the explicit reciprocity laws of QP(ÇP«) are related to the 
special values of Riemann zeta function and to the classical Iwasawa theory. 

3.2 Semi-Global Theories 

The class field theory of curves over (usual) local fields was studied by Coombes 
[Co] and S. Saito [SS2L a.nd that of surfaces over local fields was studied recently 
by S. Saito and Salberger. 

The class field theory of complete discrete valuation fields whose residue fields 
are (usual) global fields of positive characteristic was sought for first by Ihara 
[Ih], and studied by [KaJ III. 

The class field theory of two dimensional complete noetherian local rings with 
finite residue fields (for example ZP[[T]]) was studied by S. Saito [SS3], 

3.3 Serre's Local Class Field Theory 

Serre's local class field theory of a complete discrete valuation field with alge
braically closed residue field [Se2], and its generalization by Hazewinkel to the 
perfect residue field case [Ha], are generalized to the imperfect residue field case 
as a duality theorem of the following form: If K is a complete discrete valuation 
field with residue field F such that char(F) = p > 0 and [F : Fp] = pr < 00, then 
the Galois cohomologies 

(*) Rr(K,Z/pnZ(s)) and RT(K, Z/pnZ(t)), s + t = r + l 

are in perfect duality via the dualizing functor ÄHomZ/p«z( , WnQ
r
F[og)[r + 1]. 

Here the objects (*) and the logarithmic part of the de Rham-Witt sheaf WnQ
}
F{og 

([II]) are not regarded just as a complex of abelian groups or as objects on 
the small etale site on Spec(F)et, but regarded as objects on a much bigger site. 
(Precisely speaking, they are regarded as objects on the site of schemes S over 
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F which are locally isomorphic to "relative perfections" ([Ka3] I, II) of smooth 
schemes over F, endowed with the etale topology.) The details of this duality 
theorem are given in [Ka3] III. 

For example, if F is an algebraically closed field, this duality and the inclusion 

UK/(UKyn cz K*/(K*)f = H\K, Z/fZ(l)) 

induces HX(K, Z/pnZ) S Ext1 (I/*, Z/p"Z), where UK is the unit group of K 
which is not regarded just as a group, but regarded as a pro-algebraic group over 
F. This reproduces the p-primary part (the essential part) of Serre's local class 
field theory 

m(UK)^G^(Kah/K). 

4. Ramification Theory 

In the classical ramification theory, we mainly consider a finite extension B/A of 
discrete valuation rings with perfect residue fields, We have the following three 
kinds of important invariants of ramification: The different ö(B/A) e Z; in the 
case of Galois extension with Galois group G, the Lefschetz numbers 

i(o) = length^//,) e Z for oeG~{l}, 

with Iff the ideal of B generated by {er(fo) — b ; b e B] ; also in the Galois case, the 
Artin (or Swan) conductors of representations of G. Is it possible to generalize 
these invariants and relations between them such as 

(*) S(L/K)= X ''(ff) 
aeG-{l] 

to higher dimensional schemes? 
Concerning ö(B/A) and i(o), Bloch obtained in [BI2] a nice ramification 

theory in higher dimensions, generalizing ö(B/A) and i(o) to zero cycle classes 
on the ramification locus (i.e. to elements of CHQ(E) where E is the ramification 
locus). His projection formula [Bl2] (7.1) is an extension of (*) to two dimensional 
schemes. 

Concerning conductors, there are many different attempts of generalizations 
(Deligne [De], Laumon [La], S. Saito [SS4], Berthelot [Bei, Be2]). In the following, 
I only introduce my method on the conductors of one dimensional Galois repre
sentations [Ka7] which is closely related to the generalized local class field theory. 
I generalize, under the influence of Bloch's theory [By, the Swan conductors to 
zero cycle classes on the wild ramification locus in the two dimensional case (the 
plan exists even for dimension > 3), and give applications Theorems (4.1)—(4.3). 

Let X be an excellent connected normal scheme, U a regular dense open 
subscheme of X, and let x '- 7cab(C/) —• Ax be a continuous homomorphism where 
A is a discrete (commutative) field. We are interested in the wild ramification of % 
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on X. We assume that the wild ramification locus F of x on X (with the reduced 
scheme structure) is a disjoint union of schemes of finite type over perfect fields. 
This condition is satisfied for example if X is of finite type over Z or over a 
perfect field. 

First, we have a divisor called "Swan conductor divisor" ([Kaô]) sw(x) = 
Xp s w ptò{P} o n % ({P} denotes the closure of {p}), where p ranges over all 
points of codimension one. The integer swp(%) has the following properties: (i) 
If dim(X) = 1, it coincides with the classical Swan conductor of x at p. (ii) 
swp(x) > 0 if and only if x is wildly ramified at p. Furthermore, if the following 
condition 

(C) X is regular and D = (X — C/)red is a divisor with normal crossings on X, 

we have a canonical global section 

rsw(z) e F (E, (9E ®&x ß^(log(/))) ®&x Ox(sw(x))) 

called the refined Swan conductor ([Kay] I). Here ß^(log(D)) is the ^-module 
on XGt defined by generators dlog(a) (a G j*(Oij) with j the inclusion map 
U —> X) subject to natural relations such as "adlog(a) is additive in a", and 
$x(sw(x)) denotes the invertible Ox -module corresponding to the divisor sw(%). 
In this case, E coincides with the support of the divisor sw(x). It can be shown 
that the d^-module &E ®&X Qir0og(D)) is locally free of rank (locally) dim(F) + 1 . 
If X is of finite type over Z, these sw(x) and rsw(#) have explicit descriptions in 
terms of K-theoretic class field theory ([Kay] I). We say (X, U,x) is clean if at 
any point x of E, the stalk of rsw(x) at x (which is always non-zero) is a part of 
a basis of (9E ®&x ß^(log(D)) ®@x &x(sw(x)) a t x- If Ĉ > U,x) is clean, we define 
a cycle Charpf, U,x) on the vector bundle (9E ®GX ß^(log(D)) over E by 

CharpT, U,X) = YJ SWP(X) Image(<pp), 
p 

where (pp is the map (9E ®ox &x(—sw(%)) -> (9E ®&x Qx(log(D)) induced by rsw(#), 
and Image(()9p) is regarded as a subbundle of (9E ®&x Qx(log(D)). In the clean 
case, we define our generalization of the Swan conductor 

c(X,U,x)eCH0(E) 

to be (—l)dun(£) times the intersection class of the two cycles Char(X, U,x) and 
the zero section of the vector bundle (9E ®QX fì^(log(D)). This Char(X, U,x) is an 
analogue of the charateristic cycle in the theory of ^-modules. 

Now without the condition (C), I conjecture that there exists a proper bira-

tional morphism / : X' -> X such that f~l(U) -^ U and (JT',/"1 ([/),*) is clean. 
It can be proved ([Kay] I) that if dim(X) < 2, this conjecture is true and 

c(X, U,x) =f*c(X',f-HU),x) e CHQ(E) 

is independent of the choice of such X'. 
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Theorem 4.1. Let X be a proper normal surface over an algebraically closed field k, 
U a regular dense open subscheme of X, £ a prime number different from char(fc), 
X : K\h(U) —• F^ a continuous homomorphism, and SF the F/--sheaf on Uei of rank 
one corresponding to x- Then, 

X(U,tF) = x(U,¥,) - deg(c(X, U,X)) • 

Here x( ) denotes the Euler-Poincaré characteristic £,(—l^'dim^ H'ci( ). 
This theorem was generalized by T. Saito [ST2] to the case dimpf) is arbitrary 

under a certain assumption on x • 
The Riemann-Roch formula for the Euler-Poincaré characteristics of ^-adic 

sheaves (tf =̂  characteristic), which should generalize the Grothendieck-Ogg-
Shafarevich formula on /-adic sheaves on curves to higher dimensional varieties, 
was sought for first by Grothendieck. A formula in the characteristic zero case 
was obtained by MacPherson [Ma]. In the positive characteristic case, results 
for surfaces, of types different from (4.1), have been obtained by Deligne [De], 
Laumon [Lau] (using ideas of Deligne), S. Saito [SS4]. Deligne is the first 
person who had the idea of the characteristic cycle of an Aadic sheaf. Recently, 
Berthelot obtained a Riemann-Roch formula for ^-modules with Frobenius in 
characteristic p by defining the characteristic cycle of a ^-module with Frobenius 
([Be2] basing on his theory [Bei]). There should be close relations between his 
characteristic cycle, the characteristic cycle of Deligne, and the characteristic cycle 
Char(X, U, x) discussed above. 

Theorem 4.2. Let A be a complete discrete valuation ring with field of fractions k 
and with perfect residue field F. Let X be a regular connected A-scheme which is 
proper flat of relative dimension one over A, U a dense open subscheme of X^ = 
X®AK let tbe a prime different from char(F), let x '• 7tab(I/) —> ¥/ be a continuous 
homomorphism, and let 3F be the ¥/-sheaf of rank one on U corresponding to x • 
Assume x is at worst tamely ramified at points in Xk — U. (This last condition is 
satisfied automatically //char(fe) = 0). Then 

sw(#F(([%)el,^)) = sw(i^F((^)e l,F,)) + deg(c(X, U,X)). 

Here sw(Rr( )) = ^f(—l)'sw(ü/'( )), with sw the Swan conductor of a 
representation of Gal(/csep/'c). 

In [BI2], Bloch obtained a formula which expresses sw(jRF(([/^)et,F^)) in terms 
of the differential module ß j ^ . 

Finally we discuss a conjecture of Serre. Let B be a regular local ring and let 
G be a finite subgroup of Aut(B). Assume that the following conditions (i)(ii) are 
satisfied. 

(i) For any o e G — {1}, B/Ia is of finite length where IG denotes the ideal of 
B generated by {o(b) -b;b e B}. 

(ii) Let A = {b e B ; o(b) = b for any o E G}. Then, A is noetherian and 
A/niA —> B/ìUB is an isomorphism (m* denote the maximal ideals). 
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Define the function aG : G -> Z by 

aG(a) = -length(jB/Jff) for oeG- {1}, 

aG(l) = - ]T ac(<r)-
aeG-{l} 

If dim(jS) = 1, aG is a character of a representation of G called Artin 
representation. Serre conjectures that aG is a character of a representation of G 
evefi when dim(B) > 1 ([Sei]). 

Theorem 4.3. The conjecture is true if dim(J3) = 2. 

This theorem was proved in Kato, S. Saito, T. Saito [KSS] in the equal 
characteristic case, and in T Saito [STi] in the mixed characteristic case under a 
certain assumption. 

The outline of the proof of (4.3) given in [Kay] II is very similar to the proof 
for the one dimensional case. It is sufficient to prove that if x is the character of 
a representation of G, then 

Card(G)-1 E x t o r t ' ) 6 Z. 
o-GG 

By using the two dimensional version in Bloch [BI2] of the formula (*) at the 
bigining of §4 and by the theory of Brauer, just as in the one dimensional case, 
we are reduced to the case x is of degree one. We may assume that A is complete, 
A/mA is perfect, and x is wildly ramified. Let X = Spec(4), E = Spec^/m^) c 
X and U = X — E. Then, we can prove 

Card(G)"1 £ aG(o)x(o) = 1 + deg(c(X, U,x)) e Z 
oeG 

where deg is the canonical isomorphism CHQ(E) - ^ Z. 
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On the Mordell-Weil Group and the 
Shafarevich-Tate Group of Modular Elliptic Curves 

Victor Alecsandrovich Kolyvagin* 

Steclov Mathematical Institute, u. Vavilova 42, 117966 Moscow GSP-1, USSR 

The main purpose of this paper is to describe some recent results pertaining to the 
diophantine analysis of elliptic curves. A new element is an extension of the set of 
explicit cohomology classes, see Section 2. 

1. The Conjecture of Birch and Swinnerton-Dyer and the 
Hypothesis of Finiteness of the Shafarevich-Tate Group 

Let E be an elliptic curve defined over the field of rational numbers Q, for example, 
by its Weierstrass equation y2 = 4x3 — g2x — g3. Let R be a finite extension of Q. 
We are interested in the group E(R) called the Mordell-Weil group of F over R 
and the Shafarevich-Tate group III(R, E). The group IÏÏ(R, E) is, by definition, 
ker(Hx(.R9 F) -> J~J Hx(R(v), E)), where v runs through the set of all places (equiva-

V 

lence classes of valuations) of R, R(v) is the u-adic completion of R. For an arbitrary 
extension L of Q, we let L denote an algebraic closure of L. If V/LJs SL Galois 
extension, then G(V/L) denotes its Galois group, and H1 (L, E) = H^G&L), E(L)). 

Let Y be some set of algebraic curves over R. By definition, the Hasse principle 
holds for Y, if for all X e Y one has: X(R) is nonempty oX(R(v)) is nonempty for 
each v. The group III(R, E) is the obstacle to the Hasse principle for the set Y(R, E) 
of main principal homogeneous spaces over E defined over R. In particular, the 
Hasse principle holds for Y(R, E) if and only if the group JR(R9 E) is trivial. 

According to the Mordell-Weil theorem, E(R) - F x Zr{R>E\ where F ~ E(R)tor 

is a finite group, and r(R, E) is a nonnegative integer called the rank of E over R. 
Concerning the group W(R, E), it is conjectured that it is finite. In general, it is 
known that IH(R, E) is a torsion group (being a subgroup of the torsion group 
HX(R, E)) and for a natural number M its subgroup IÏÏ(R, E)M is finite. If A is an 
abelian group, we let AM denote its subgroup of all elements of exponents M. Only 
recently in works of Rubin and the author, the finiteness of III (R, E) was proved for 
some E and R. We shall discuss these results later. 

* This work was partly prepared during a visit of the author at the Max-Planck-Institute für 
Mathematik at Bonn. He wishes to express his gratitude for the support and hospitality 
provided by this institute. 
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The elements of E(R)ior can be effectively calculated. For example, let R be 
Q and let E be defined by an equation u2 = w3 + aw + ß, where a, ß e TL, ö = 
4a3 ~f 27jS2 =fi 0 (this is always possible). According to the Nagell-Lutz theorem, if 
P e E(<$)toT is nonzero, then u(P) = 0 or u(P)2\ö. Mazur determined all possible 
types of F(Q)tor, in particular, [F(Q)tor] < 16. 

We are interested here in the case R = Q. No algorithm is known in general for 
calculating r(Q, E) and generators of F(Q)/F((Q)tor. But recently here and in the 
study of ni(jR, E) essential progress was made. 

More specifically, it is connected to advances towards proving the Birch-
Swinnerton-Dyer conjecture (BSD) which predicts a connection between the arith
metic of E and its L-function. 

We let L(E, s) denote the L-function of E over Q, defined for Re(s) > 3/2 as 

Y[Lq(E,s)= tw-*, aneZ. 
q n=l 

Here q runs through the set of rational primes. Let N e N be the conductor of E. If 
(q, N) = 1, then Lq(E, s) = (1 - aqq~s + tf 1 _ 2 T \ where aq = q + 1 - [Ë(Z/qZ)l Ë 
being the reduction of E modulo q (E has the good reduction at q). If q\N, then 
Lq(E, s) = 1, (1 ± q~s)~l depending on the type of bad reduction of F at q. 

Assume that E is modular, that is there exists a weak Weil parametrization 
y : X0(N) -> E [12]. Here X0(N) is the modular algebraic curve over Q parametriz
ing classes of isogenics of elliptic curves, with cyclic kernel of order N. According to 
the Taniyama-Shimura-Weil conjecture, every elliptic curve over Q is modular. 
Then L(E, s) has an analytic continuation to an entire function on the complex plane 
which satisfies a functional equation 

Z(E, 2-s) = sZ(E, s) (1) 

where Z(E, s) = (2n)~sNs/2r(s)L(E, s) and e = ± 1 depends on E. 
An analogeous L-function L(R, E, s) of F over R can be defined (its definition is 

essential for us only up to a finite product of Euler factors), having analogous 
properties. We let ar(R, E) denote the oder of vanishing L(R, E, s) at s = 1. Accord
ing to BSD, one conjectures the identity: 

r(R,E) = ar(R,E). (2) 

Moreover BSD connects the first nonzero coefficient of the expansion of L(R, E, s) 
around s = 1 with the order of III(R, E) (using the hypothesis that III(JR, E) is finite) 
and other parameters of E, but we do not go into this here. 

In the sequel we will omit the letter Q in the notations IH(Q, E), r(<$, E), flr(Q, E). 
It follows from (1) that ar(E) is even when e = 1, ar(E) is odd when s = — 1. E is 
called even or odd, respectively. 

For R = Q the current state of conjecture (2) and of the hypothesis of finiteness 
of in(F) is expressed by the result: 

Theorem 1. The equality r(E) = ar(E) holds and HI(F) is finite if ar(E) < 1. 
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We remark that empirical material shows that curves with ar(E) > 1 compose 
a relatively small part in the set of all curves. Apparently (taking into account the 
Taniyama-Shimura-Weil conjecture), Theorem 1 covers a substantial part of all 
elliptic curves over Q. 

Further we discuss a scheme of the proof of Theorem 1, formulate earlier results 
and give some examples. 

Let D be a fundamental discriminant of the imaginary-quadratic field K = 
Qtv/i)) such that D = D(mod 4N), D ^ - 3 , - 4 . As E is modular, there exists the 
Heegner point PD e E(K) (which will be defined later), it satisfies the condition: 

oePD = —cePD (3) 

where e = exponent of F(Q)tor, a is the generator of G(K/Q). The author proved 
[6]-[8]: 

Theorem 2. The equality r(E) = ar(E) holds and IH(F) is finite if 1) ar(E) < 1, 2) 
3D\PD has infinite order. 

From the Gross and Zagier results [5] it follows 

Theorem 3. / / (D, 2N) = 1, then ar(K, E)>\, ar(K, E)=\oPD has infinite order. 

Waldspurger [21] for ar(E) = 1 and, independently, Bump, Friedberg, Hoffstein 
[2] and M. Murty, V.K. Murty [14] for ar(E) = 0 proved 

Theorem 4. / / ar(E) < 1, then (D, 2N) = 1 and ar(K, E) = 1 for an infinite set of 
values of D. 

So from Theorems 3, 4 it then follows that condition 2) in Theorem 2 follows 
from condition 1), that is Theorem 2 is equivalent to Theorem 1. 

From (1) we have that ar(E) = 0 => e = 1, ar(E) = 1 => e = - 1 . Using (3), we 
deduce from the conditions: PD has infinite order, r(K, E) = 1, and ar(E) < 1, that 
r(E) = ar(E). The kernel of the natural homomorphism III(F) -> W(K, E) is III(F) n 
HHG(K/(^), E(K)) C I1I(F)2 which is a finite group. 

Thus Theorem 2 is a consequence of the author's result [8]: 

Theorem 5. The equality r(K, E) = 1 holds, and W(K, E) is finite, if PD has infinite 
order. 

We note that Theorems 5,3 give (1) for R = K when ar(K, E) = 1. The inequality 
r(E) ^ 1 when ar(E) = 1 follows already from Theorem 3 and Waldspurger's result. ' 

A subclass in the class of modular elliptic curves is formed by elliptic curves with 
complex multiplication: End(F) ^ TL and then End(F) is an order with class number 
one of an imaginary-quadratic extension k of Q, We let W denote this subclass. 
The modular invariant; = g\/(g\ — 21 g\), which runs through all rational numbers 
on the set of elliptic curves over Q, takes on 13 values on the set W. 
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The specific property of a curve from W is the possibility to use, in studying it, 
the theory of abelian extensions of k because F(Q)tor c E(kab) for E e W. In partic
ular, by using so called elliptic units, Coates and Wiles [3] proved (2) for E e W, 
ar(E) / 0. Recently Rubin [17], also using elliptic units (we will come back to this 
later), proved under the same condition that III(F) is finite. This gave the first 
examples of finite groups III(F). Moreover he proved that, for E G W, ar(E) = 
l = > r ( F ) < l . 

2. Explicit Cohomology Classes 

Now we discuss briefly the method of proof of Theorem 5. 
For an arbitrary extension L of Q the exact sequence 0 -> EM -> E(L) -> E(L) -> 

0 (EM = E((Ö)M) induces the exact sequence 

0 -+ E(L)/ME(L) -> H\L, EM) -+ H\L, E)M -+ 0. (4) 

The Selmer group SM(R, E), by definition, is the subgroup of Hl(R, EM) consist
ing of elements whose image in Hi(R(v), EM) lies in E(R(v))/ME(R(v)) for all places 
v of R. In particular, (4) induces the exact sequence 

0 -• E(R)/ME(R) -• SM(R, E) -> IB (JR, E)M -• 0. (5) 

It is known (the weak Mordell-Weil theorem) that SM(R, E) is a finite M-torsion 
group. In particular, III(R, E)M is a finite group as we remarked before. 

Let R = K. If P = PD has infinite order, then we define C = CD to be the maximal 
natural number dividing the image of P in E(K)/E(K)tor ~ Zr{K'E). We let C = 0 if 
P G E(K)tor. Thus P has infinite order o C =£ 0. We let S'M denote the factor group 
of SM(K, E) modulo the subgroup generated by P. Taking into account (5) and the 
Mordell-Weil theorem: E(K) - F x Z«K>E\ with F finite, Theorem 5 will follow 
from the existence of C e IN such that CS'M = 0 V M e N. 

The non-degenerate alternating Weil pairing [ , ] M : EM x EM -• pM = Q& 
induces a pairing 

< , V „ : HHK(v), EM) x H\K(v), EM) ^ H2(K(v), »M). 

For v = oo the field K(oo) — C and the corresponding cohomology groups are 
trivial. For v ^ oo the group H2(K(v), pM) is identified canonically with Z/MZ by 
local class field theory. If a, b G ̂ (K, EM), then <a, byMv = <a(u), b(v)}MtV, where 
a(v), b(v) are the localizations of a, b. According to global class field theory (the 
reciprocity law) <a, b}Mv ^ 0 only for a finite set of places v and the following 
relation holds: 

E <«, &>AM = 0. (6) 

Relation (6) can be considered as a condition on a if an element b is fixed. To 
use (6) for the study of SM(K, E) it is necessary to find explicit elements b. This was 
my strategy. Thus I constructed a set T of explicit elements of HX(K, EM) by using 
Heegner points over ring class fields of K. The special properties of these elements 
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allowed to deduce from (6) with a e SM(K, E) and b e T the relation CS'M = 0 for 
some C G N, the divisor and main component of which is C. 

Now we describe the construction of an element from T. First we define the 
Heegner points. Fix an ideal / in the ring of integers O of K such that O/i ~ Z/NZ 
(i exists in view of the assumptions on D). If X e N, then Kx denotes the ring class 
field of K of conductor X. It is a finite abelian extension of K. Let Ox be Z + XO, 
ix — i n Ox, If (X, N) = 1, we define the point zx G X0(N)(KX) as corresponding to 
the class of the isogeny <C/0A -» (C//^1, where ix

l is the inverse of ix in the group of 
proper 0A-ideals. We let yx = y(zA) G F ( K A ) , P = PD^= the norm of j ^ from Kj to 
K, The points yA, P are called Heegner points (corresponding to the parametrization 
y:X0(N)-+E,K = <H(^)andi). 

We use the notation p (or p with (a subscript) for rational primes which do not 
divide N and remain prime in K. We let Ar denote the set of all products Pi ... pr 

with distinct pm, A = \J™=1 Ar. 
Let Xe A,GX — G(KX/K^). The group Gx is the direct product of the subgroups 

Gx p = G(Kx/KXjp) for p\X. The natural homomorphism GXp-> Gp is an isomor
phism. The group Gp is isomorphic to the group Z/(p + \)Z. For each p, we fix a 
generator tpe Gp; tpe Gx p denotes the corresponding generator of GXp. We let 
Trp = XjL0 t

3
p. Recall that £,?=i ann~s = L(E, s) for Re(s) > 3/2. For p\X one finds 

the relation: 

TrpyA = apyXjp. (1) 

The relations (7) are the basis for the definition of explicit cohomology classes. 
Let Ax denote the ring Z[GA]. We define a ^-module Bx in the following way. 

Let Fx be the direct sum Y,v\i Aq, where Gx acts on A1} by the natural homomorphism 
Ax -> Ar Let \i} denote the unit of Ai}, Hx be the z^-submodule of Fx generated by 
the elements Trpl„ — ap\1]jp for all p\rf\X. Then Bx = Fx/Hx. 

It is not difficult to prove that (BA)lor = 0. Let \'n be the image of 1,; in Bx, then 
{Yf}, 1]\X} is a system of generators of Bx over Ax. By (7) 3! homomorphism (p:Bx-+ 
E(KX) such that i; -• yn. We let Ip = -^UH e Ax, h = UPì^P-

 L e l
 6A be the 

element IXYX. 
For M G N we define A(M) as the subset of A consisting of elements X such that 

M\(p+\),M\apVp\X. Further,/F(M) = / n / l ( M ) . We claim that (1 - g)Qx e MBX 

for X G A(M) and # G GX. It is enough to verify this for g = tpì where p\X. It is clear 
that 

( l - g / p = T r p - ( p + l ) . (8) 

Thus, we have (1 - tp)Qx = Ix/p(\ - tp)IpVx = Ixlp(Tvp - (p + \))VX = 
hlp(apïxlp-(p+l)ïx)eMBx. 

As (BA)lor = 0, there exists a unique element ((1 — g)Qx)/M G BX. We define the 
element zx(M) G H1(K1, EM) to be the class of the cocycle: 

<A :g»(g - l)(<p(Qx)M + ?(((! - ^)ÖA)/M), 

where ^ G G^^/K^. The element TA(M) G Z / 1 ^ , F M ) we define as the corestriction 
of z'x(M). We call T the set {TA(M), M G N, A G /1(M)}. 
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Let (b) denote the image of è e H\K, EM) in H\K, E)M, cx(M) = (TA(M)). That 
is, cx(M) is the corestriction of the element of H1(K1, E)M defined by the cocycle, 
g\-+cp((l — g)Qx)/M). If Xe Ar(M), then the automorphism a e G(K/Q) acts on 
cx(M) by multiplication by (— l)r+1e. The symbol (a, b}Mv depends only on (b), if 
aeSM(K,E). 

The elements cp(M) were defined first, see [6]. This allowed to prove the relation 
C(o + s)SM(K, E) = 0, which is equivalent to the finiteness of F(Q) and III(F) when 
8 = 1 , and to the finiteness of F(jD)(Q) and IÜ(F(Z))) when e = — 1. Here EiD) is the 
elliptic curve (the form of F over K) defined by the equation Dy2 = 4x3 — g2x — g3. 

In [8] there were defined elements TA(M) for some subset of the set 
{ M e N , XEA(M)} containing the set {M\(M, d) = 1, X e A(M)}, where d = 
exponent of F(K)tor, K is the composite of the Kx, for X e A. By using here the 
modules Bx and the property (BA)tor = 0 we shake off the additional restrictions on 
(M, X) when (M, d)>\. The relation (6) with (b) = ck(M) when X G Ar(M), r<2, 
allowed to prove the relation CS'M = 0. 

We note that an application of the elements TX(M) when X e Ar with arbitrary 
r > 0 allowed in [8] to pass from a relation of the type C III(K, E) = 0 to a relation 
of the type [III(K, F)]|C2. Because of the existence on Ht(K, E) of a non-degenerate 
(as W(K, E) is finite) alternate Cassels pairing with values in Q/Z, it then follows 
that the second relation implies the first relation. 

In [20] Thaine used the cyclotomic units for a new proof of annihilating relations 
in the ideal class groups of real abelian extensions of Q. Rubin [16] adapted Thaine's 
approach, using elliptic units instead of cyclotomic units, for proving annihilating 
relations in the ideal class groups of abelian extensions of the imaginary-quadratic 
field k = End(F) (x) Q when E e W. By using the natural connection between ideal 
class groups and the Selmer group SM(Q, E) Rubin proved an universal annihilating 
relation for 5M(Q, E) by the condition that ar(E) = 0. 

A comparison of the approaches of Thaine [20] and of the author [6] for proving 
annihilating relations in the ideal class groups and in the Selmer groups, respec
tively, suggested the possibility in [7] of combining them into a single general 
framework. A further step was a construction and use in [8] of sets of cohomology 
classes of the type T, both in the theory of modular elliptic curves and in the theory 
of ideal class groups of abelian extensions of Q or an imaginary-quadratic extension 
of Q. For information on this theory and some further applications we refer to the 
papers [8,1, 4, 9, 10, 11, 13,15, 18, 19]. 

3. Examples 

Example 1 (Rubin [17]). For the curves with complex multiplication (k = Q(>/—1)) 
y2 = x3 - x, y2 = x3 + 17x we have: r(E) = ar(E) = 0, m(F) = 0, Z/2Z + Z/2Z, 
respectively. 

Example 2 (Kolyvagin [7]). Let E:y2 = 4x3 — 4x + 1. It is an odd modular curve 
without complex multiplication, of conductor N = 37. Let (D, 2N) = 1. The curves 
F(D): 
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Dy2 = 4x3 - 4x + 1 (9) 

are even and have no complex multiplication. For computation of L(E{D)i 1) and 
CD the following identity can be used: 

L(EiD), 1) = 2 t - (Z ) iexp(-27rn/( |ö |N /37)) = (2ß_/v
/D)C^ (10) 

#1=1 n \nj 

where ß_-,he imaginary period of E, ( 5 ) * , Legend« S y mbo,. See [22] for (10); 

the connection between L(E{D), 1) and CD is a consequence of the results of Gross 
and Zagier [5]. 

Let L(EiD), 1) 7e 0 or, equivalently, CD ^ 0. Then F(D)(Q) is finite and, moreover, 
is trivial because always F(D)(Q)lor = 0. That is equation (9) has no solutions in 
rational numbers. Further, IH(F(D)) is finite and CDH1(E{D)) = 0, For example, if 
D = — 1, — 11 then CD = 1, so III(F(I))) = 0. See [7] for further information on this 
example. 

We recall that CD ^ 0 for an infinite set of values of D according to a result of 
Waldspurger. 

It is a classical fact tht E(Q) ~ Z is generated by the point (y = 1, x = 0). Of 
course, ar(E) = 1, see [22], for example. The author proved [8] that IÏÏ(F) = 0. 
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La Transformation de Fourier Géométrique 
et ses Applications 

Gérard Laumon 

Université Paris-Sud, URA D 0752, Bâtiment 425, F-91405 Orsay Cedex, France 

1. La transformation de Fourier géométrique 
[Br, Del, IH, Kal, Ka-La, Lai] 

Dans tout cet exposé, on fixe deux nombres premiers distincts p et *f, une 
clôture algébrique Q̂< du corps Q^ des nombres /-adiques et un caractère additif 
non trivial xp : F p —• Q^. On fixe aussi un corps algébriquement clos k 
de caractéristique p. On désignera par q une puissance de p (q = pf, f G 
N x ) , par Vq l'unique sous-corps de k k q éléments et par Frob^ G Gal(k/Wq) 
l'inverse de l'élément de Frobenius (Frobg(a)9 = a, Va G k). On utilisera librement 
le formalisme des 6 opérations de Grothendieck entre les catégories dérivées 
D£(X,Q^) (X un /c-schéma de type fini) ainsi que le formalisme des ^-structures 
(cf. [SGA4, SGA5, SGA7, B-B-D, De2 et Ek]). 

Soient S un fc-schéma de type fini, n : E —• S un fibre vectoriel de rang 
constant d,n' : E' —• S le fibre dual, pr : E' xs E —• F, pr' : F ' xs E —> E1 

les projections canoniques et (,) : E' Xs E —> Aj l'accouplement de dualité. Sur 
Ax

s = S [u], on a le revêtement d'Artin-Schreier 

S[v] —> S[u], v\—> u = vp - v 

qui est étale, galoisien, de groupe de Galois F p . Si l'on pousse ce Fp-torseur par 
le caractère t/;-1 on obtient un Qrfaisceau lisse de rang 1 (un "Q^ -torseur") sur 
Ag9 noté JS?V. La transformation de Fourier géométrique, inventée par Deligne, est 
l'opération 

^ : D * ( £ , Q , ) — • £*(£', Q, ) , 

^ , ( - )=/ îpr ' ! (pr*H®( J )* i? V ) ) [ r f ] . 

Théorème 1.1 (Deligne). (i) 3F^ est une équivalence de catégories triangulées, de 
quasi-inverse J^'(—)(rf), où &' est la transformation de Fourier géométrique pour 
n' :E' —> S (on a identifié E" à E par e\—> (e! i—> -(e1, e))). 

(ii) Si E = E\ Xs E2 pour deux fibres vectoriels E\ et Ei de rang constant sur 
S, on a 

. 9^ (pr î ( - ) ® pr5(-)) ~ pr7; J ^ ( - ) è pr'2* ^ , j 2 ( - ) , 
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où &ïp,i(—) est la transformation de Fourier géométrique pour Et et prf : E\ xs 

E2 —> Ei (resp. pr(. : E[ x$ F2 —> E[) la projection canonique. 
(iii) Si f : E\ —> F2 est un morphisme de fibres vectoriels de rang constant 

sur S, on a 

r^i(-)[di -dil * ^ ä / I H , 
où f est le transposé de f, où d\ est le rang de E\ et où J^- est la transformation 
de Fourier géométrique pour E[. 

Théorème 1.2 (Verdier). Pour tout K G ob Db(E,<Qf), la flèche d'oubli des supports 

Rpr',(pr* K ® (,)*J^) —> Rpr'*(pr* K ê Q*XV) 

est un isomorphisme dans Db(Er,^). 

Compte-tenu de la dualité de Verdier, de la ^-exactitude à droite de /* pour / 
affine (prouvée par Artin) et de la forme forte des conjectures de Weil (prouvée 
par Deligne), le Théorème 1.2 admet les corollaires suivants: 

Corollaire 1.3. On a un isomorphisme canonique 

RMm(^(K),nnL) ~ ^-i(RMbm(K,n[L))(d) 

bi-fonctoriel en (K,L) G ob(Db(E,^)0^ x Db(S,^)). 

Corollaire 1.4. Ĵ > est t-exact et induit une équivalence de catégories abéliennes 

^ : Perv(F,Q,) - ^ Perv(F',Q,) 

de quasi-inverse J^(—)(d). 

Corollaire 1.5. Si S et E —> S sont définis sur Fq, pour tout K e ob Db(E,^) 
défini sur ¥q et pur de poids w, ^W(K) G ob Db(E',<!±s) est défini sur ¥q et pur de 
poids w -{-d. 

2. Application aux sommes trigonométriques 
[Br, Ka2, Ka3, Ka-La] 

Dans ce paragraphe S = Spec(/c) et E = Spec(fe[xi,...,x^]) (avec sa F^-structure 
naturelle). On identifie alors E' à Specfilx^,...,^]) de sorte que 

(x',x) =Y^x'òxà-
5=1 

Pour tout schéma X de type fini sur k, défini sur Fq, pour tout x G XÇFq) = {x G 
X(k)\ Frobg(x) = x} et pour tout M G ob Db(X,^), défini sur Wq, Frob^ agit sur 
la fibre de M en x et on note tM(x) la trace de cet endomorphisme de Mx. La 
formule des traces de Grothendieck pour Frob^ entraine immédiatement: 
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Proposition 2.1. Pour tout K e ob Db(E,^), défini sur JFq, et tout x' G E'QPq) = 
( F / , on a 

tm)(x') = (~V)d YJ ^ M v o t r p ^ ^ ^ x ) ) 
*e(F g ) ' 

(en d'autres termes, t^{K) est, au signe près, la transformée de Fourier de la fonction 
tK). 

Soit R une sous-Z-algèbre de type fini de C, soit X un R-schéma affine, 
lisse, purement de dimension relative m, et soit / = (fi,...,fd) : X —> Ad

R 

un R-morphisme fini. Pour tout homomorphisme d'anneaux v : R_̂ —• k avec 
v(l) = 1, on note (—)v le changement de base par v. Alors, Kv = (fv)*Q/[m] est un 

Q^-faisceau pervers sur Ad
k = E, Kv est défini sur Wq a k dès que Fq => R/ Ker(t>) 

et Kv est pur de poids m. Par suite, ^W(KV) est aussi sur Q^-faisceau pervers sur 
Ad

k = E', &\i>(Kv) est aussi défini sur JFq a k dès que Wq ZD R/Ker(u) et ^(Kv) 
est aussi pur de poids m + d (cf. (1.4), (1.5)). De plus, d'après (2.1), on a 

tm(*') = (- l )^ '" X V o tTF,flP,((x!jv(x))v) 
xexvÇFq) 

pour tout Fq avec k ZD Fq zz> R/Kev(v). 
Comme l'a remarqué le premier Brylinski, il résulte du théorème de structure 

des Q^-faisceaux pervers simples et purs qu'il existe un entier Xv > 0 et un 
polynôme non nul (pv(x

f) dans (R/Ker(v))[x[,...,xf
d] tels que 

(2.2) 
2 7 1 / 4 V e

dfL**q/Fp((x'Jv(x))9) 

xeXvÇPq) 

<Xvqm/2 

dès que k => F^ => R/Ker(t;) et que x' G (Fq)
d satisfait cpv(x

f) ̂  0. 

Théorème 2.3 (Katz et Laumon). Il existe x G N et cp(xf) G R[x[,...,xf
d] non nul 

tels que, pour tout k et tout v, Xv = X et <Pv = v((p) fassent marcher les estimations 
(2.2) ci-dessus. 

Exemple 2.4 (Adolphson et Sperber [Ad-Sp], Denef et Lœser [De-Lo]). Soient 
I cz V avec \I\ = d,X = (GmtR)n el / = (fùiei ' X —> A £ = A{ avec /,(x) = x\ 
Alors / est fini (et par suite (2.3) s'applique) si et seulement si l'enveloppe convexe 
de I dans R"1 est de dimension m et contient 0 dans son intérieur. Dans ce cas, x 
et (p sont déterminés explicitement dans loc. cit. 
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3. Localisation de caractéristiques d'Euler-Poincaré 
et de déterminants [Kal, IH, Lai] 

Soient X un /c-schéma de type fini, A = Spec(fc[x]), D = A U {00} la droite 
projective correspondante, / : X —> D un fc-morphisme propre, Â = Spec(/c[x']) 
la droite affine duale de A et D' = Â U {oo'} la droite projective correspondante. 
On pose Y = f'^oo), U = X-Y = f~l(A). On note j :A^D, f : Ä *-• D'les 
inclusions, p r z : D' XjcX —> X, prD, :Df x^X —> D'les projections canoniques, 
^ ( x ' x ) le Q^-faisceau lisse de rang 1 sur A! X/c A associé au revêtement d'Artin-
Schreier vp — v_= x'x et au caractère \p et prolongé par 0 à Df Xk D tout entier 
et S£w(x!j) le Q^-faisceau sur D' Xk X image réciproque de ^(x'x) par D1 x^f. 
Enfin, soit K G ob Db(X,^). 

Posons , _ 
K' = j\^,U'Rf,K)[-i] € ob Db

c(D',<&). 

On a encore 

K , = Rp r Z ) : (p r^Kê i f v (x7 ) ) . 

Si l'on note d l'origine de A!, Y\^ (resp. r\af) le point générique de l'hensélisé de Df 

en o' (resp. oo') et r\0, (resp. Tfœf) un point géométrique localisé en r}0f (resp. rjœ>), 
on a le triangle distingué 

(3.1) Rrc(U,K) —> JS^ —> Rr(X,R^) — 

(1Ç = RFc(l/,K)) et l'isomorphisme 

(3.2) 4 œ / ^ R F ( X , R < ^ J 

( K ^ = 0), où R < ^ G o b ^ ^ Q . J G a l ^ / ^ ) ] ) (resp. R4>^ G ob D* 
(XjQ/tGal^z/^oo/)])) sont les cycles évanescents pour pr^ relativement à 

L 

pr^X ® S£w(x!f) en O' (resp. oo'). 
Le support de R$rjot est clairement contenu dans Y. Soit F cz (7 l'ouvert 

formé des points x e U tels que / et les Q^-faisceaux de cohomologie J^l(K) 
(ieH) soient lisses en x et soit Z = U — V le fermé complémentaire. 

Théorème 3.3 (Laumon). Le support de RËyf^ est contenu dans Y U Z. 

Ce théorème est l'analogue en cohomologie /-adique du principe de la phase 
stationnaire: si U est une variété différentielle (êco

9 si / : U —> IR est une fonction 
V*3 et si œ est une densité ^°° à support compact sur U telle que 

Supp(co) n{xe U\df(x) = 0} = 0, 

on a 
' ^fœ = 0(x'-n) L lu 

pour tout entier n > 0 quand x' G IR tend vers 00. 
On ne peut pas comparer directement K^ et K^,. Par contre, K^ et K^, 

ont même caractéristique d'Euler-Poincaré. On déduit donc de (3.1) , (3.2) et (3.3) 
que : 
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(3.4) x(X, K) = X(Y, K) - x(Y, R^) + X(YUZ, R^J. 

Application 3.5. Si X est une variété projective sur k et si K\9 K2 G ob Db(X,^) 
sont localement isomorphes pour la topologie étale sur X, Deligne a démontré 
que #(X,Ki) = x(X,K2) (cf. [112]). On peut en donner une autre démonstration 
par récurrence sur la dimension de X basée sur (3.4). 

On peut aussi comparer les déterminants de Kyio, et K^. En particulier, on 
peut déduire de (3.1), (3.2) et (3.3) la conjecture de Deligne suivante : 

Théorème 3.6 (Laumon). Soient X une courbe projective, lisse et connexe sur k, œ 
une 1-forme méromorphe non identiquement nulle sur X et K G ob Db(X,^). On 
suppose X, œ et K définis sur Wq. Alors la ''constante globale" de Grothendieck 

e(X, K) = de t ( - Frob^, RF (X, K))~l 

admet la formule du produit 

s(X,K)=q«-^K) f ] B(Xix),K\X{x),œ\X{x)) 
XE\X\ 

où g est le genre de X, r(K) est le rang générique de K et, pour tout point fermé 
x de X, X(x) est Vhensélisé de X en x et e(X(x),K\X(x),m\X(x)) est la "constante 
locale" de Deligne, Dwork et Langlands. 

Récemment, Loeser a obtenu par la même méthode une formule du produit 
pour le déterminant de la cohomologie étale du complémentaire d'un arrangement 
d'hyperplans dans FJJ à valeurs dans un Q^-faisceau lisse de rang 1 de type 
Kummer (cf. [Lo]). 

4. Transformations de Fourier locales [Lai] 

Il y en a de trois types 9$°***\ J^00'0') et ^ ( o o '0° , ) . On ne s'intéressera ici qu'au 
premier type. Soient T = Spec(/c[[ro]]) (resp. T' = Spec(/c[[o7']])) avec sa r e 
structure naturelle (w (resp. w') est une indéterminée sur k), r\ (resp. if) le point 
générique et s (resp. sf) le point fermé de T (resp. T'), r\ (resp. t?) un point 
géométrique localisé en Y\ (resp. if) et 9 (resp. ^') la catégorie des Gal(7f/rç) 
(resp. Gal(?f/*7'))-rnoclules s u r Q ^ Si F G ob 0, on note encore V le Q^-faisceau 
lisse sur rç correspondant et V\ sur prolongement par zéro à T tout entier. Alors 
par définition 

^')(V) = R%(pT*(Vi) ® Se^w/v/))^ G ob 9' 

où pr : T' Xjc T —>_T et pr' : V X/c T —> T' sont les projections canoniques et 
où ^ ( m / m ' ) est le Q^-faisceau lisse de rang 1 sur if Xk T associé au revêtement 
d'Artin-Schreier vv — v = wjvf et au caractère y; et prolongé par zéro à T' X/c T 
tout entier. 
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Théorème 4.1 (Laumon). 
(i) J^0'00 ^ est un fondeur exact de & vers &. 
(ii) Pour tout V G ob 9, on a 

r(^')(V)) =r(V) + s(V) 

s(^\V)) =s(V) 

où r(—) est le rang et s(—) le conducteur de Swan, de sorte que J ^ 0 ' 0 0 ^ ) c ^[0,i[' 
où #[o,i[ est la sous-catégorie.pleine de & formée des objets Vf dont tous les sous-
quotients irréductibles W vérifient s(W) < r(W). 

(iii) Le foncteur J^0'00') : ^ —> ^[o,i[ est une équivalence de catégories 
abéliennes. 

(iv) J ^ ( F ) V ~^v
(rVv)(i). 

(v) Si V est défini sur ¥q, il en est de même de &^0,CO'\V) et la "constante 
locale" so(T, V,dm) de Deligne, Dwork et Langlands est égale à 

sQ(T, V,dm) = ( - 1 ) ^ det(F')(tu') 

où V1 = ^œ,)(V) (on a identifié G^Ì(Fq((w
,))/Fq((w

,Wb à (Fq((m'))x)A par la 
théorie du corps de classe abélien). 

Cette transformation de Fourier locale donne une construction cohomologique 
locale de la représentation d'Artin et de la "constante locale". Elle a aussi permis 
à Henniart de démontrer la conjecture de Langlands locale numérique, i.e. de 
dénombrer les objets simples de ^ de conducteur borné (cf. [He]). 

5. Une nouvelle preuve d'une conjecture de Weil [Lai] 

Si K est un Q^-faisceau pervers, irréductible, défini sur Wq et pur de poids 0, sur 
une droite projective D définie sur Fq, Deligne a montré que Rr(D,K) est aussi 
pur de poids 0. La transformation de Fourier géométrique permet d'en donner 
une nouvelle démonstration, inspirée par la preuve de Witten des inégalités de 
Morse. Supposons que D = A U {oo}, où oo G D(Fq) et A = Spec(/c[x]) est défini 
sur Fq, et que les Q^-faisceaux de cohomologie J^l(K) (i G TL) sont fisses en oo. 
Alors la restriction de ^p(K\A) à Â — {o'} (A! = Spec(fe[x'])) est de la forme 
/'[l] pour un Q^-faisceau_ lisse irréductible f . La remarque essentielle est que 
ff est un constituant du Q/-faisceau lisse réel 

œ~\^((K e KV)\A) e ^-ì((K e KV)\A))\A' - (o'} 

où Kv = RJfàm(K,aìf[2](l)) est le dual de Verdier de K. Par suite, d'après un 
théorème clé de Deligne, ß1 est lui même pur d'un certain poids (on a fixé un 
isomorphisme i : <Q/ —> (C, de sorte que i o xp~{ = Tölp). 
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6. La transformation de Radon géométrique [Br, 111] 

Il s'agit d'une variante homogène de la transformation de Fourier. Soient n : 
P = P(F) —> S et %' : P' = P(F') —> S les fibres projectifs associés aux fibres 
vectoriels du paragraphe 1. On note Z <zz P' xs P la variété d'incidence entre 
ces deux fibres projectifs en dualité et Q : Z —> P, Q' : Z —> Pf les projections 
canoniques. La transformation de Radon géométrique, inventée par Brylinski, est 
l'opération 

®:Db
c(P,^)-^Db

c(P',^) 

®(-)=RQ>^(-)[d-2}. 

On note £f cz Perv(P,Q^) (resp. ^ cz Perv(P', Q/)) la sous-catégorie 
strictement pleine formée des Q^-faisceaux pervers sur P (resp. P') isomor
phes à n*L[d — 1] (resp. n'*Lf[d — 1]) pour un L G ob Per v (S, Q^) (resp. 
V G ob Perv(S, Q^)) ; c'est une sous-catégorie de Serre. 

Théorème 6.1 (Brylinski). (i) Pour tout K G ob Perv(P,Q^) et tout entier i ^ 0, 
P^(m(K)) G ob sr'. 

(ii) Le foncteur K i—> PJ^°(^(K)) induit une équivalence de catégories 
abêliennes de la catégorie quotient P e r v ( P , ^ ) / ^ sur la catégorie quotient 
Perv(P',Q^)/y" ; un quasi-inverse est induit par K' i—• Pj^°(^'(K'))(d - 2 ) , où 
M' est la transformation de Radon géométrique pour P ' . 

Brylinski applique ce théorème à l'étude, dans le cas singulier, de la mono
dromie des pinceaux de Lefschetz. 

Dans [La2], nous utilisons cette transformation de Radon pour l'étude des 
faisceaux automorphes cuspidaux de Drinfeld. 

7. Une application à la théorie des représentations 
des groupes réductifs sur les corps finis [Kaz-La] 

Soient V un espace vectoriel de dimension 2 sur k et œ G A2 V — {0} une forme 
volume. On suppose que V et œ sont définis sur Fq. On identifie le dual Vf de V 
k V k l'aide de la forme symplectique œ. On a donc une involution 

JV(-)(1) : Perv(F,Q,) —• Perv(F,Q,) 

si l'on considère V comme un fibre vectoriel sur Spec(/c) de manière^ évidente. 
Soit sé la catégorie abélienne des paires (A, cp) où A G ob Perv(F,Q^) et cp : 
J*v,(Frob* A)(l) —> A est un isomorphisme dans Perv(F,Q^). Soit K(sé) le 
groupe de Grothendieck de sé. On considère l'application 

ob sé X ob sé —> Q^ 

((Ahcpì),(A2,cp2)).—• £ ( - 1 ) ' tiicp\Ex^Tv{v^)(AuDA2)) 



444 Gérard Laumon 

où DA2 = R3fàm(A2,0^[2](Vj), où les Ext1' (i ^ 0 ) sont les Ext1' de Yoneda dans la 
catégorie abélienne Perv(F,Q^) (ce sont des Q^-espaces vectoriels de dimension 
finie, nuls pour i > 0, d'après [Be]) et où cp1 est induit par cp\ et cp2. Elle induit 
un accouplement _ 

(,):K(sé)xK(sé)-^(^ 
dont on notera N(sé) le noyau. 

Le gtoupe algébrique sur k, Aut(F,œ) xGm,k, agit sur V par (g,t)-v = g(tv) = 
tg(v) d'une part et par (g, t) • v = g(t~lv) = t~lg(v) d'autre part, d'où deux actions 
de Axxt(V,œ) x <Gmjfc sur Perv(F,Q<f) échangées par &\p(—)(1). On en déduit une 
action de Aut(V, œ)(JFq) x {t G k\tq+l = 1} sur K(sé) qui respecte l'accouplement 
(, ) et donc son noyau. 

Théorème 7.1 (Kazhdan). (i) K(sé)/N(sé) a une structure naturelle de <Qrespace 
vectoriel de dimension finie sur lequel Au.t(V,co)(JFq) x {t € k\tq+l = 1} agit. 

(ii) Si X '• {t £ k\tq+l = 1} —> Q^ est un caractère régulier (x2 =£ 1) la 
composante isotypique ox de x dans K(sé)/N(sé) est la représentation irréductible 
de la série discrète de Aut(F,ca)(Fg) ~ SL2(¥q) associée à x par la construction 
de Weil. 

Dans [Kaz-La], nous construisons un analogue de K(sé)/N(sé) pour un 
groupe semi-simple et simplement connexe arbitraire (à la place de Aut(F, co)) et 
conjecturons une généralisation de (7.1). 

Remarque 7.2. Pour d'autres applications à la théorie des représentations des 
groupes réductifs sur les corps finis, voir [Br, De3, Lu]. 

Remerciement. Je remercie Mme Le Bronnec pour la magnifique composition de ce 
manuscrit. 
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Algebraic Independence of Values of Analytic Functions 

Yuri Nesterenko 

Department of Mathematics, Moscow State University, 119899, Moscow, USSR 

The first result on the algebraic independence of values of analytic functions was 
obtained by F. Lindemann in 1882: 

If al9..., am are algebraic numbers linearly independent over Q, then numbers 

ea\..,,ea™ 

are algebraically independent over Q. 

This means that for any polynomial P e Z [ x l 9 . . . , x,„], P ^ 0, the inequality 
\P(ea\ ..., e°m)\ > 0 holds. The algebraic independence of any numbers col9..., com 

over Q implies, in particular, that all the numbers co{ are transcendental. Side by 
side with problems of the algebraic independence of numbers, an object of study in 
the theory of transcendental numbers is to obtain quantitative characteristics of 
independence. By a measure of algebraic independence of complex numbers col9..., 
com we mean a function of two variables f(d, H) such that for any polynomial P e 
Z[X 1 } . . . , Xm\ P ^ 0, whose degree does not exceed d and whose coefficients have 
modulus not greater than H, the estimate 

\P(œ1,...,œJ\>f(d,H) 

holds. 

It is easy to prove for all complex numbers col9..., com the inequality 

m> d, H) = min \P(œu ..., œj\ < /Tc>dm, 

where c1 = l/(2m\) and minimum is taken over all polynomials 

PeZ[xu...,xml P # 0 , d e g P < d , H(P) < H 

(H(P) is the maximum of the moduli of the coefficients of P). But any lower estimate 
of this minimum cj)(œ\ d, H) depends on the individual properties of numbers cox, 
..., œm and estimates are obtained only for special kinds of numbers. 

In 1932 K. Mahler [16] proved that, under the conditions of Lindemann's 
theorem, 

cj)(eai,...,ea™',d,H)>H-c*dm, 
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where c2 > 0 depends only on numbers a l5 . . . , am, and H exceeds some bound, 
which depends on a1 ? . . . , am and d. 

1. JF-Functions 

Function eaz with algebraic number a, a ^ 0, belong to a certain class of entire 
functions, introduced in 1929 by C. Siegel [39] and called by him F-functions. This 
class of functions contains hypergeometric functions 

p (au...,ap 

\bl9...9bq 
zH q-p+1), P<q, 

with rational parameters-^, bj and is a ring, closed with respect to differentiation, 
integration between 0 and z, and replacing z by Xz, where X is algebraic. After the 
basic articles of Siegel the complete result was proved in 1955 by A.B. Shidlovskij 
[38]. 

Theorem 1. Suppose that the E-functions fi(z),..., fm(z) form a solution of the system 
of linear differential equations 

m 

y'k = 4ko(z) + E <lki(z)yh k = 1, 2 , . . . , m, (1) 
i= l 

qki(z) e <C(z); suppose that a is an algebraic number not equal to zero and the singular 
points of the system (1). Then 

tr degQ Q(/i(a), . . . ,fm(a)) = tr degC(z) <C(z)(/i(z),... ,/m(z)). 

Lindemann's theorem follows from the theorem of Shidlovskij, if we take 
ft(z) = e«iZ and a = 1. 

Theorem 1 gave rise to a great number of results concerning specific F-functions 
(see [38]). For example, the function 

oo zkn 

11=1 (nl) 

satisfies a linear differential equation of order k with coefficients in (C(z); it can be 
proved that, for any algebraic number a ^ 0, the r(r + l)/2 numbers ^ ( a ) , 0 < i < 
k, 1 < k < r, are algebraically independent over Q. 

There exists an important problem, connected with applications of Theorem 1: 
proving the algebraic independence of solutions of linear differential equations over 
<C(z). In different specific cases it was the subject of many papers. We mention here 
only recent papers by W. Salichov [34, 35] and F. Beukers, D. Brownawell and 
G. Heckmann [2]. This subject is related to the Picard-Vessiot theory of linear 
differential equations and the calculation of Galois groups of such equations. 

In 1962, using the Shidlovskij results, S. Lang [13] obtained a quantitative 
variant of the above theorem in a form similar to the Mahler's theorem (see also 
the article by Galochkin [8]). In the next assertion, which was proved in 1977 [20], 
the dependence on d of the lower bound for H is effective. 
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Theorem 2. Suppose that the E-functions fi(z),..., fm(z) and the number a satisfy the 
conditions of Theorem 1. There exists constant i > 0, which depends only on the 
system (1), the functions f(z),..., fm(z) and the number a, such that for 

l n ln f l >Td2m\n(d+ 1) 

the following inequality holds: 

</>(fM,---Jm(«);d,H)>H-°*'m, 

where c3 = 4mxm(mx2 + x + 1), and x is the degree of the algebraic field, which 
contains a and the coefficients of Taylor expansions off(z). 

In many cases the constant T may be computed effectively, [4] and [25]. 

2. Mahler's Functions 

Here we briefly discuss the values of power series (in general, in several variables) 
which satisfy certain functional equations. Mahler was the first to study such series 
in 1929 (see [17]). Besides the works of Mahler, we mention here the results of 
J. Loxton and A.J. van der Poorten, K.K. Kubota, D.W. Masser. Recently interest
ing relations between Mahler's functions and automata theory were found [14]. 

For an integer n > 1 let T = (ty) be a nonsingular matrix of order n with 
nonnegative integer entries such that none of the eigenvalues of T is a root of unity. 
We define a transformation T: <C" -> <C" by the rule 

T(z1 , . . . ,zj=(^n^-..5n^')-

The next theorem was proved by Loxton and van der Poorten [15]. 

Theorem 3. Let A(z) be an m x m matrix whose entries are rational functions 
of the variable z with algebraic coefficients such that det ,4(0) ^ 0. Let f(z) = 
(/i(z),..., fm(z)) be a vector of power series inz = (zx,..., zn) with coefficients in an 
algebraic number field K, [K : Q] < oo, which converge in some neighbourhood U of 
the origin in C" and satisfy the equations 

f(z) = A(z)*f(Tz). 

If the matrix A and vector ä with algebraic components satisfy some technical 
conditions, then 

tr degQ Q(/1(ä),...,/M(ä)) = tr deg c w C(z)(fi(z)> • • • ,/«(*))• 

Recently K. Nishioka [27], using a method introduced in [23] and based on 
the general theory of elimination (see § 5), in the case n = 1 proved the same assertion 
under weaker conditions: a is an algebraic number such that 0 < |a| < 1, A(udi) is 
nonsingular and a(adl) / 0 for all / > 0, where a(z) is a common denominator of 
entries of y4(z). 
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The first estimate for the measure of algebraic independence of values of 
Mahler's functions were proved in 1985 in [23]. But this estimate was not effective 
in the degrees of polynomials. Using the zero estimate for Mahler functions, which 
was proved by Nishioka, Becker found effective algebraic independence measures of 
those numbers (see [1, 28]). 

Theorem4. Let A(z) beanmxm matrix andB(z) be anm-dimensional vector whose 
entries are rational functions of one variable z with algebraic coefficients. Let f = 
(fi(z),... ,fn(z)) be a vector of power series with algebraic coefficients which converge 
in some neighbourhood U of the point z = 0 and let f satisfy 

nz') = A(z)*f(z) + B(z), 
where t>2isan integer, and which are algebraically independent over <C(z). Suppose 
that a is an algebraic number, aeU, 0 <\a\ < 1, and the numbers atl, l> 0, are 
distinct from the poles of A(z) or B(z). Then 

Wi(4 • • • XW; d, H) > exp(-c4<nin H + dm+2)). 

3. Exponential Functions 

One of the problems suggested by D. Hilbert in 1900 was the conjectural transcen
dence of values of the function az with algebraic base a ^ 0,1 at algebraic irrational 
points ß. This assertion was proved in 1934 by A.O. Gelfond and independently by 
Th. Schneider. The natural analog of the Lindemann's theorem is the next 

Gelfond's Conjecture. If oc ^0, 1 is an algebraic number and algebraic numbers ßl9 

..., ßm and 1 are linearly independent over Q, then the numbers 

aß\...,aßm 

are algebraically independent over Q. 

This problem is equivalent to the algebraic independence over Q of numbers aß, 
aß2,..., aßd~\ where ß is an algebraic number of degree d > 3. It was proved for 
d = 3 by Gelfond [9] in 1948. Now the best result in general case is the lower 

p±i for transcendence degree over Q of the field K = estimate tr deg K > 

Q(a /?,aß2,..., aßd~l), where [ ] denotes the integer part. 
Let us consider a more general situation. Suppose ai9..., ap and bl9..., bq be 

complex numbers which for any nonzero vectors k = (kl9..., kp) E V and / = 
(l1,..., lq) e 7Lq satisfy the inequalities 

\k1a1 + ••• + kpap\ > exp(-y|fc| ln \k\), \k\ = max \kt\, 

\l,h + ••• + lqbq\ > exp(-y|7j ln |7|), |7j = max |/,|, 
l<i<q 

where y is a positive constant. In particular, it is well known that this condition is 
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satisfied by algebraic numbers and by the logarithms of algebraic numbers which 
are linearly independent over Q. Traditionally the three sets of numbers have been 
studied 

1) ea^, 2) ah e"ib\ 3) ah bj, ea^, \<i<p,\<j<q. 

Many estimates for transcendence degree of these sets of numbers were proved 
after appearance of Gelfond's articles [9, 10]. We mention here papers by 
R. Tijdeman, A. Shmelev, W.D. Brownawell, G. Chudnovsky, M. Waldschmidt, 
E. Reyssat. P. Philippon, and others (see [40]). The best result now is the next 
assertion. 

Theorem 5. Among the numbers in the sets l)-3) there are at least 

pq pq 
_/> + <?_ 

5 

~P(\ + P 
_P + q_ p + q 

respectively which are algebraically independent over Q. 

The lower estimate for tr deg K follows immediately from this theorem if in the 
set 2) we take p = q = d,a{ = ßi~1

9 fy = /J'-1 ln a, / = 1, . . . , d. 
P. Philippon in 1984 [31] proved a little weaker estimate for the sets 1), 2) and 

the estimate for the set 3) in Theorem 5. The main tools for obtaining these results 
were introduced by the author [20-23] and P. Philippon [32], and are connected 
with application of some classical ideas of "constructive" commutative algebra, 
developed in the works of K. Hentzelt, E. Noether, B.L. van der Waerden, W.L. 
Chow (see Section 5) to the theory of transcendental numbers. The estimates for the 
sets 1) and 2) in the Theorem 5 were established in 1987 by G. Diaz [6] who used 
a new construction of auxiliary function in the analytical part of the proof (for 
another variant see [24]). 

For d = 3 the estimate for integral polynomials at the point (aß, aß2,..., a1**'1) 
was established by Gelfond and Feldman in 1950. It was later improved by W.D. 
Brownawell [3] and G. Diaz [7]. In the general case d ^ 4 such an estimate is 
not proved yet. But it is possible to prove a lower estimate for the maximum of 
absolute values at this point of any set of polynomials which generate an ideal in 

Z[x 1 ? . . . , xd_i] with rank higher than — — (see [23]). 

4. Elliptic Functions 

Let p(z) be the Weierslrass elliptic function with algebraic invariants g2, g2. This 
function satisfies an algebraic differential equation with algebraic coefficients and 
an addition theorem. That is why its transcendence behaviour is similar to the 
behaviour of ez. First results about the transcendence of values of this function were 
proved by Schneider in 1934 [36]. The next assertion, the elliptic analogue of the 
Lindemann's theorem, was proved in 1983 by G. Wustholz [42] and P. Philippon 
[30] after the previous paper of G Chudnovsky [5]. 
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Theorem 6. / / p(z) has the complex multiplication over the field k = Q(T) and oc1,..., 
am are algebraic numbers, linearly independent over field k, then the numbers 

p(a j , . . . ,p(am) 

are algebraically independent over Q. 

Now it is possible to estimate a measure of the algebraic independence of these 
numbers (see [26]). 

Theorem 7. Let p(z), a l9 ..., am be the same as in Theorem 6, H and d be positive 
numbers such that 

ln ln t f > e 5 * d m * l n ( d + 1), d > 1. 

Then the following inequality holds 

m«i),-;P(«m);d,H)>H-«dm. (2) 

Here c5 and c6 are a positive constants, depending only ona1, ...,am, g2 and g3. 

This inequality was established for m = 1 by G. Chudnovsky [5] in 1980. In the 
general form with exponent m -f- e instead of m in the right hand side of the 
inequality (2) it was proved by E.M. Jabbouri [11] as a consequence of a result for 
algebraic groups. 

Now let p(z) have algebraic invariants g2, g3 and possibly be without complex 
multiplication. Let a l9 . . . , am be algebraic numbers linearly independent over Q. 
One can prove (see [26]) that, among the numbers p(ax), . . . , p(am) at least there are 

[?] algebraically independent over Q and there exists a quantitative result like in 

the exponential case. 
In the general case (g2 and g3 may be transcendental numbers) ifal9...,ap and 

bl9..., bq are complex numbers with almost the same condition on linear forms in 
at and bj there are results about the lower estimates for the transcendence degree of 
the fields Lx = Q(#2, g3, p(a1bl), ..., p(apbq)), L2 = (^(g2,g3,au ...,ap,p(a1b1), 
• • • 5 P(flp&«))> L3 = Q(flf2, g3,a1,...,ap,b1,..., bq, p(a1b1),..., p(apbq)). 

Small estimates were proved by W.D. Brownawell and K.K. Kubota, D.W. 
Masser and G. Wüstholz, R. Tubbs. In 1983 D.W. Masser and G. Wüstholz [19] 
under the assumption that g2 and g3 are algebraic, proved for t = tr deg L1 the 
estimate 

2t+2(t + Z)>pq/(p + 2q). 

Later in the papers of M. Waldschmidt [41] was published a sketch of the proof of 
the inequalities 

^ ^ d n S - 1 ' t r d e g L 2 > ^ - l , t r d e g L 3 > ^ - l . 
p + lq p + 2q p + 2q 

The paper [37] of S. Shestakov contains the proof of the inequality tr deg L2 > 
~P1 + P~] 

LP + 2<1_ 
from which follows "one half" of the elliptic variant of Gelfond's conjee-
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ture: if g2, g3 are algebraic, p(z) has complex multiplication over a quadratic field k, 
ß is algebraic of degree d over k and u ^ 0 is such that p(u) is algebraic, then among the 

numbers p(ßu), p(ß2u), ..., p(ßd~1u) at least —-— are algebraically indepen

dent over Q. In [29] a weaker estimate was proved. 
The paper [41] contains estimates for fields, generated by the values of both 

exponential and elliptic function. 
We should note here that recent articles of D.W. Masser and G. Wüstholz [18], 

P. Philippon [33] contain estimates for the number of zeros of polynomial defined 
on group varieties, which are very useful in the proofs of algebraic independence of 
numbers, especially of the values of elliptic and abelian functions. 

5. Algebraic Base of Methods 

Any homogeneous unmixed ideal / c 2£[x0,..., xm~] may be characterized by 
numbers deg J, H(I), which are analogous to deg P, H(P) for polynomials P e 
Z [x 0 , . . . , x,J. One may also define \I(œ)\ for the point œ = (œ0,..., œm) e C'"+1, 
analogous to |P(ûJ)|. 

For exact definitions we need the notion of rank for ideals. The rank of the prime 
ideal p c 2£[x0,..., xni] is the maximal length of any increasing chain of prime 
ideals terminating with p. The rank of any ideal J is the minimal rank of prime ideals 
p, containing L The rank of an ideal J will be denoted by h(I). Recall that an ideal 
/ cz 7L[xQ,..., xnJ is called unmixed if all of the primary components of I have rank 

Hi). 
Let / be a homogeneous unmixed ideal of the ring Z[x 0 , . . . , x„J and r = 

m + 1 — h(I) > 1. We introduce the linear forms 
IM 

Li(x) = £ uuxP i=l,2,...,r, 
j=o 

where u{j are variables, Ut = (ui0,..., uim), and denote I(r) the ideal of Z[w l 5 . . . , wm], 
consisting of the polynomials G for each of which there exists a natural 
number M such that Gxf for all / = 0, . . . , m belong to the ideal generated in 
% [x 0 , . . . , xm, ü1,..., ür~\ by the linear forms Ll9..., Lm and the elements of L One 
can prove that J(r) = (F) is a principal ideal. The polynomial F is a Chow form of 
L We define (see [21]) deg / as the degree of F in the variables tf1 and H(I) = H(F). 
Now consider r skew-symmetric matrices S{i) = \\sjk\\, 0 < j , k < m, 1 < i < r, where 
we suppose that, except for the skew-symmetry sjft + sjy = 0, the variables sjk are 
not connected by any algebraic relation over the ring Z[x 0 , . . . , x,„]. If ae(F) is the 
polynomial in the variables sjk,j < k, which is obtained from F Vjy substituting the 
vectors S{i)m, i = 1,. . . , r, for the variables ïïi9 we define 

\I(œ)\ = \œ\-r*dc*I*H(x(F)). 

Now the problem may be put as follows. For a given point œ = (œ0,..., œm) e 
C",+1 we are searching for a lower estimate for \I(œ)\ in terms of the H (I) and 
deg L For the principal ideal J = (P), its rank equals 1, and the quantities |/(<ü)| and 
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|P(cö)|, deg / and deg P, H (I) and H(P) are closely related, which gives us possibility 
to obtain the lower estimate for \P(œ)\ in terms of the properties of P. 

For example, the proof of the Theorem 7 is based on the next assertion. 

Theorem 8. Let D and H be positive numbers satisfying the inequalities 

ln ln t f >c7*Z)w*ln(Z) + 1), D > 1. 

For every integer r, 1 < r < m there exist constants Xr > 0 and pr > 0 such that for 
all homogeneous unmixed ideals I c 7L[x0,..., xm] with conditions h(I) = m+ 1 — r, 

deg / < XrD
m+1~r, ln H (I) < XrD

m'r ln H 

the inequality holds (œ = (1, p f a j , . . . , p(am))) 

ln\I(m)\ > -pr(D * ln H(I) + deg J * ln H)Dr~l. 

The Theorem 8 may be proved by induction on r. The step of induction contains 
two stages. 

i) Reduction of the estimate of \I(co)\ to the analogous estimate for prime ideals. 
It is based upon the fact that numbers deg /, H (I) and \I(OJ)\ have almost linear 
behaviour under decomposition of the ideal into primary ideals. 

Proposition 1 (see [22]). Suppose that I is an unmixed homogeneous ideal in 
Z[x 0 , . . . , xm], h(I) < m; there exist prime ideals px, . . . , ps associated with I and 
natural numbers kl,...,ks such that 

s 

1) Y, fci*degp,~degJ, 
Z = l 

2) £ kx * ln H(pj) < ln H(I) + m2 deg /, 
i=i 

3) J kx * In |pj(co)| < In | J(cô)| + m3 deg /. 
i=i 

ii) Increasing of the rank of ideal. The algebraic base of this stage is the next 
assertion. 

Proposition 2 (see [24]). Suppose that p is a homogeneous prime ideal of 
Z[x 0 , . . . , xm], p n Z = (0), h(p)<m and Q is a homogeneous polynomial in 
Z[x 0 , . . . , xm] , Q$p. If r = m + 1 — h(I) > 2, then there exists an unmixed homo
geneous ideal J cz Z [ x 0 , . . . , xm] whose zeros coincide with the zeros of the ideal 
(p, Q), for which h(J) = m — r + 2, and such that 

1) deg J < deg p * deg Q, 
2) ln H(J) < deg Q * ln H(p) + deg p * ln H(Q) + m(r + 1) * deg p * deg g, 
3) / / œ e (Cw+1, |6(cö)| < |ô>|degQ and Q is the distance between œ and the set of 

zeros of the ideal p, then the following inequality holds 

In | J(co)\ < ln A + deg Q * ln H(p) + deg p * In H(ß) + 11m2 * deg p * deg ß, 
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where A = \Q(CD)\ *|cö|"de8Q
9 if Q < \Q(CD)\ * |dördegQ, and A = \p(œ)\ in opposite 

case. 
If r = 1 the right side of the inequality in 3) is nonnegative. 

If we can construct some polynomial Q, which is sufficiently small at the point 
cö and does not belong to the ideal p, then the inequality from 3) and the induction 
assumption about the \J(CD)\ give us a lower estimate for \p(co)\. The inequalities 
from 1) and 2) enable us to recompute this estimate in terms of deg p and H(p). 

The constructions of the desired polynomials Q are based on the analytic 
properties of the functions considered and of course are different in different 
problems (for example in Theorems 4, 5, 7). 

It is possible to axiomatize the situation and to prove a general assertion in 
which from the existence of a set of polynomials, sufficiently small at œ and indepen-, 
dent in some sense, follows a lower estimate for the number of algebraically inde
pendent coordinates of the vector CD. The first assertion of this kind for polynomials 
in one variable was proved by Gelfond [10] (see [40] for history). Recently 
P. Philippon [32] by means of the above ideas established a general algebraic 
independence criterion. One of the forms of it is 

Theorem 9. Suppose col9..., com are complex numbers algebraically independent over 
Q, CD = (œ l 9 . . . , cDm)\ y and rj are positive numbers. Suppose that for any N > N0 there 
exist polynomials P l 9 . . . , PM e TL\xu ..., xH1] with finite set of common zeros in the 
ball B(CD, exp( — 3yNt])) and with conditions 

deg Pt + ln H(Pi) < N, i=l,...,M, 

max {\Pi(cD1,...,CDm)\} <exp(-yJV"). 
l<i<M 

If y is sufficiently large with respect of m, then the inequality m > r\ — 1 holds. 

Jabbouri [12] obtained a quantitative form of this criterion which made it 
possible to estimate in this way the measure of algebraic independence of numbers. 
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Diophantine Problems and Linear Groups 
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1. Group Varieties 

In this lecture we describe and exploit the relation between analytic Diophantine 
problems on homogeneous varieties and harmonic analysis on the corresponding 
groups. For the case G = SL(2) this relation has been well studied and striking 
applications to analytic number theory have been found, especially by Iwaniec 
and his collaborators [II]. Our focus here will be on general G where this aspect 
of the theory is still in a primitive state. 

Let V cz A" be a variety in affine n space and we assume that V is defined 
over Q (or more generally a number field F/Q). Let V(Z) denote the integral 
points in V and define the counting functions JV by 

N(T,V) = \{meV(Z)\\\m\\<T}\ (1.1) 

N(T,V,U) = \{m e V(Z) | M < T, m EE £ (modq)}\, (1.2) 

where T > \,q G N, Ç G V(Z), and || • || is some suitably chosen Euclidean norm 
on A11. 

The basic problem is to determine the asymptotic behavior of JV as T —> oo. 
In certain special cases where there are sufficiently many additive terms in 
the equations defining V, the Hardy-Littlewood method may be applied, see 
Schmidt [Sc]. One obtains an asymptotic in the form 

N(T,v)~cTß, j Î G N . (1.3) 

The constant c is given by a product of local densities [Sc]. Another case, due 
to Moroz [M], that can be successfully handled by algebraic number theory is 
algebraic varieties of the form /i(xj) = fi&i) = ... = fr(xr)> where fj(xj) is 
a norm form of an order in a number field. Besides these cases1 very little is 
known even in terms of upper bounds for JV, see S.D. Cohen's bound described 
in Serre [SER]. However, if we assume that V is also a homogeneous variety 
for a linear algebraic group action, then much more can be said. In particular if 
V ~ H\G with #(R)\G(R) an affine symmetric space then a reasonably complete 

1 Also see [F-M-T] for rational points on homogeneous projective varieties. 

Proceedings of the International Congress 
of Mathematicians. Kvoto. Janan. 1990 
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theory can be developed, see [D-R-S]. We give some concrete examples of the 
latter which go beyond the well studied case of quadratic forms. 

Example 1. (a) For k £ 0 let 

Vk = fa, i = 1,2,3, j = 1,2,3 | det(xij) = k} cz A9. (1.4) 

V\ is the group variety G = SL(3), while for the general k, G acts on Vk 

by multiplication. In this way Vjc decomposes into finitely many homogeneous 
spaces for G. We have [D-R-S] 

N(T,Vk) = ckT
6 + 0(T23/4) as T - > o o . 

Here and elsewhere the constant ck is explicitly computable and is given in terms 
of products of local densities. 

(b) Let 

Cp(x\, X2, X3, X49 Xs, Xß) = X1X4X6 + 2X2X3X5 — X1X5 — X6X2 — X4X3 

/xi x2 x 3 \ (1.5) 
= det I X2 X4 X5 J = det X. 

V X3 X5 xe J 

Let 
Wk = {xeA6\ cp(x) = k}, k ^ O . 

G = S'L(3) acts on Wk by 
X^tgXg. 

Again Wk decomposes into finitely many G orbits. We have 

N(T,Wk)~dkT
3 a s T - > o o . 

(c) Let 

D(a, b, c, d) = \%abcd + b2c2 - 4ac3 - 4b3d - 27a2d2 

be the homogeneous form of degree four in four variables which is the discrimi
nant of binary cubics. Let 

Uk = {(a, b, c, d) | D(a, b, c, d) = k}. 

SL(2) acts on binary cubics and hence on U, which is again a homogeneous 
space. Relative to the norm 

\\(a,b,c,d)\\2 = a2+h- + C-+d2 

we have for k =£ 0 
N(T, Uk) - Ck T

2/3 as T -> oo. 
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For the purposes of this report we specialize now to the case that F is a group 
variety G. We assume that G(R) is semisimple and that we have a realization 

G cz GL(m) cz A™2. (1.6) 

Without loss of generality we assume that 

K = G(R)nO(m,R) (1.7) 

is a maximal compact subgroup of G(R). Using (1.6) we get from the Euclidean 
norm on Am a norm, || • ||, on G(R) and hence on V. Let 

log / dg 
J\\R\\<T 

«(G) = Mm Z T T ' t1-8) 
T->co log T 

a(G) depends on the realization (1.6) but does not depend on the Haar measure 
used in definition (1.8). As usual let T(q) be the principal congruence subgroup 
ofF(l) = G(Z) = F(Z), that is 

T(q) = {y e G(Z)\y ^1 (modq)}. (1.9) 

Denote by W(q) the index [F(l) : T(q)]. 

Theorem 1.1 [D-R-S]. For Ç e G(Z) 

N(T,V,^q)^^Ta asT^œ. 

Remarks 1.1. (a) A special case of this is well known. That is in hyperbolic 
spaces (G(R) = SO(n,l)) where the problem reduces to counting lattice points 
in a non Euclidean ball. This goes back to Delsarte [DE], Selberg [SEL2], Hu-
ber [HUB], Patterson [P], and Lax-Phillips [L-P]. Also in this case, Elstrodt-
Mennicke-Grunewald [E-G-M] have investigated the arithmetic aspects of the 
asymptotics. Bartels [BA] obtains the asymptotics of lattice points in a non-
Euclidean ball (which in general is quite different from the above counting 
problem)2 for general Riemannian symmetric spaces, when F\G(R) is compact. 

(b) The constant cv is essentially Vol (G(Z)\G(R))-1 which is non-zero by the 
Borel-Harish Chandra theorem [B-HC]. Moreover, by the theory of Tamagawa 
numbers, see [KNE], cy is given by a product of local densities which at almost 
all places is the Hardy-Littlewood local density. 

(c) If G is not semisimple some care must be taken. For example, if V = 
{(x,y) | x2 — y2 = 1} then V(Z) is finite, while for norm forms of number fields 
the asymptotics is of the form c (log T)r. 

Theorem 1.1 can be improved to give remainder terms as well but these depend 
on the spectrum of L2(F(^f)\G(R)/K). More precisely, let G(R) = NAK be an 

See also Terras [TE], p. 248. 
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Iwasawa factorization of G(R) and W =« Weyl (G(R), A) the corresponding Weyl 
group. S = G(R)/K is a globally Riemannian symmetric space. The algebra of 
invariant differential operators on S is isomorphic to the algebra of polynomials 
on a* (where a = Lie (A)) which are W invariant [V]. Thus the spectrum of 
this ring of invariant operators acting on L2(T(q)\G(R)/K) may be identified 
with a subset of a*Q/W \V\. In fact it is a subset of G^R), the set of X e a*Q/W 
which correspond to positive spherical functions. Note too that this spectral 
parameter space comes with a natural topology. We denote the above spectrum 
by cT1(r(q)\G(R)), the super 1 denoting "class-1" representations [KN]. It consists 
of discrete eigenvalues as well as unitary Eisenstein series when T(q)\G is not 
compact [LS]. In our normalization of a*, Q = 1/2 sum of positive roots, 
corresponds to the spherical function 1 and ia* to the tempered spectrum 

denoted Gt
1
emp(R). Note that the notion of spectrum (71(F\G(R)) makes sense for 

any discrete subgroup F < G(R). 

Definition 1.2. F < G(R) (F discrete and not necessarily of finite volume) is called 
tempered if a1(F\G(R)) cz Glmp(R). 

Theorem 1.3 [B-L-S]. If T < G(R) is tempered then 

N(T,T)= £ l = Oß(Ta/2+e), for all e > 0 . 
\\y\\<T 

One might (optimistically) hope that the "Ramanujan conjectures" of G = 
SL(2) (see Selberg [SEL], Satake [SA]) would be true in this general setting. That 
is for all q > 1 

o\r (q)\G(R)) cz ÔLpW U {Q} . (1.13) 

Such a bound would lead to optimally small remainder terms in Theorem 1.1, at 
least for smoothed versions thereof. Unfortunately (1.13) is not true in general. 
The first counterexamples to (1.13) (at least to its analogue at the finite places) 
were found in SP (4), numerically by Kurokawa [KU] and using 0-liftings by 
Howe and Piatetski-Shapiro [H-PS]. Actually, we can see that (1.13) is not true in 
general for certain structural reasons that come from an examination of JV(T,F). 
Indeed the truth of (1.13) would imply the same for any T(q) a F cz F(l), i.e., 
any congruence subgroup. Now suppose that A = n^Ti is an intersection of 
congruence groups. A need no longer be of finite index in G(Z). It is easy to see 
[B-L-S2] that 

OO 00 

tr1(zl\G(R)) cz f| U<rHFAG(R)). (1.14) 
3=1 i=j 

In particular if c{(A\G(R)) is nontempered (and does not contain Q) then the same 
must be true of o-1(F\G(R)) for F = n^Ti where / is sufficiently large. That is 
(1.13) fails for suitable large q. To find A as above with o-1(̂ l\G(R)) nontempered 
we note that if Ff < G is a g-subgroup then A = H(Z) is the intersection of 
congruence groups [B-L-S2]. Moreover we can compute N(T,H(Z)) by virtue of 
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H(Z) being (essentially) a lattice in H(R). Hence using Theorem 1.3 we can show 
H(Z) — A is nontemprered by showing it has too many elements. We illustrate 
this with an example. 

Let G = SO(n + 1,1) cz GL(n + 2,R) be the orthogonal group of the form 

F(xu..., x„+2) = x\ + x\ +... + x2
+1 - x2

+2. (1,15) 

Then 
a(G) = n for n> 1. (1.16) 

If H < G corresponds to the subgroup fixing x\,..., x„, then 
H ~SO(n + l-m,l) and 

u(H(Z)) = n-m. (1.17) 

Hence H is nontempered if 
l < m < ^ . (1.18) 

Thus for n > 3, G(Z) has congruence subgroups with exceptional spectrum, that 
is for which (1.13) fails. In fact, a more refined analysis shows that 

{Q = -r-2-U-2-2,..., - - [-]} (1.19) 

are limit points of exceptional eigenvalues of congruence subgroups of G(Z). An 
explicit lower bound for the automorphic spectrum L)qcj(r (q)\G(R)) is developed 
in [B-L-S2] along these and related lines. The results show the important role 
played by all Q-subgroups in the general Ramanujan conjectures. In fact one 
obtains a powerful and general method to construct automorphic forms and 
spectrum. This new method complements the only other general method for 
constructing automorphic forms viz. theta liftings [Ho].3 In particular it leads to 
new results on nonvanishing of Betti numbers of arithmetic lattices [B-L-S2]. 

To end this section a word about the proofs of Theorem 1,1 and its gen
eralizations. The problem reduces to one of counting points of F = G(Z) (or 
subgroups thereof) lying in an expanding family of regions RT CZ G(R). One 
forms the F invariant function 

FT(g) = YjXRr(y&> 
yer 

where XR is the characteristic function of R. Under suitable assumptions about 
RT, FT can be asymptotically spectrally analyzed. When successful, one deduces 
from the asymptotic behavior of certain eigenfunctions on G(R)/K, such as the 
spherical functions, that the main term in the asymptotics of F^(l) comes from 
the component of FT along constants. The latter is Vol (RT)/Vol (G(Z)\G(R)). 
Various L2 averaging arguments reduce the spectral analysis to a minimum so 
that a result like Theorem 1.3 may be deduced without any detailed knowledge 
of the nature of the spectrum (here Vol (F\G(R)) = oo). 
3 We add, however, that when lifting by the trace formula can be carried out successfully 
it typically yields the most complete picture known - see for example Arthur-Clozel [A-C]. 
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2. Density Hypothesis 

We have noted that the naive Ramanujan conjecture is false in most cases. 
Borrowing from the analytic theory of the zeta function we formulate certain 
weaker but still very useful hypotheses. If v G GX(R) is an eigenvalue occuring 
in L2(r(p)\S), p a large prime, then we get a representation of the finite group 
F(l) /F(p) on the eigenspace corresponding to v. Under suitable assumptions 
F( l ) /F(p) ~ G(Z/pZ) and we may use the lower bounds on the dimensions of 
the smallest nontrivial irreducible representations of G(Z/pZ) [H-H, LUS] to 
deduce a lower bound on the multiplicity m(v,F(p)) of v in L2(F(p)\S) 

m(v,r(p))>pôM, (5(G) > 1 . (2.1) 

In particular in such a case if an exceptional eigenvalue occurs it must do so with 
high multiplicity. The substitute for Ramanujan is a sharp upper bound for this 
multiplicity. Notice that we are sticking to the principal congruence subgroups 
F (q). In fact this is forced on us in view of the Q-subgroup phenomenon discussed 
in the previous Section. We begin with a basic conjecture concerning the integer 
points on the group variety VG. For what follows we assume that VQ is as in (1.6) 
and the norm is the Euclidean one on Rm . 

Main Conjecture 2.1 [S-X]. For T,q>\ 

W(q) 
N(T, V, I, q) <e -Z^T^ + T a / 2 , e > 0. (2.2) 

Remarks 2.1. (a) The point of this conjecture is the uniformity in T and q. The 
value of T for which it is most useful (and hardest to prove) is when the terms 
on the right hand side are equal. Theorem 1.1 implies (2.2) is true for fixed q. 

(b) The Main Conjecture (MC) follows from the naive Ramanujan conjecture 
1.13. 

(c) MC has been established in two important cases: 
(i) If F is any arithmetic lattice in G(R) = 5L(2,R) or SL(2,C) (see [BO] for 

a classification) and F (q) are corresponding congruence subgroups then MC is 
true [S-X]. 

(ii) J. Katznelson [KA] has recently established MC for G = SL(m), m>2. 

We consider the implications of MC. We begin with the density hypothesis 
and consider only the case G(R) of (real) rank 1. The reason is that in this case 
there is a natural ordering of the spectrum. In the general case one must order 
by regions. If G(R) is rank 1 then G*(R) is contained in 

i a ; u ( 0 , e ] c : a ; . (2.3) 

For 0 < v < Q let 
M(y,q)= £ m(fi,r(q)). (2.4) 

V<fl<Q 
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Thus M(v,q) counts the number of exceptional eigenvalues which are more 
nontempered than v. Clearly 

M(Q,q) = l 

M(0,q) = O(W(q)). 

The Density Hypothesis is the linear interpolation of these 

Density Hypothesis 2.2 [S-X]. Assume G(R) is rank 1, then 

M(v, q) = Oc(W(q)]-v/e+c), for all e > 0. 

Proposition 2.3 [S-X]. MC => Density Hypothesis. 

Remarks 2.3. (a) Combining (2.3) with Remark 2.1 (c) we find that the Density 
Hypothesis is true for any arithmetic lattice F (relative to its principal congruence 
subgroups) in SL(2,R) or SL(2,C). For F = SL(2,Z) this was first proved by 
H. Iwaniec and J. Szmidt [I-S] and M. Huxley [HU] using trace formulae. Iwaniec 
[12] has obtained an even stronger bound for Fo(<?) in SL(2,Z). 

The Main Conjecture also implies bounds on the multiplicities of the % G G(R), 
the unitary dual of G(R), which appear discretely in the decomposition of the 
regular representation of G(R) on L2(F(g)\G(R)). Denote this multiplicity by 
m(%,r(q)). For n class 1, n corresponding to v as in the previous Section, we 
have m(v,r(q)) = m(%,F(q)) by the duality theorem [G-G-PS]. If TU G G(R) we 
let p(%) be the infimum over all p > 2 such that all matrix coefficients of % are in 
LP(G) [KN]. For % = Q the trivial representation, p(%) = oo and m(n,r(q)) = 1. 
For n G L2(G), i.e., % discrete series, p(n) = 2 and m(n,F(q)) is of order W(q), 
see deGeorge-Wallach [G-W]. Linearly interpolating leads to 

Conjecture 2.3 [S-X]. Let n G G(R) 

m(n,r(q)) = Oc(W(q)2^+E). 

We have 

Proposition 2.4 [S-X]. i/G(R) is of rank 1 then MC => Conjecture 2.3. 

Remarks 2.4. (a) If we drop the assumption that G(R) is of rank 1 then we can 
prove (in the case G((VE)\G(R) is compact) that MC implies a somewhat weaker 
bound for multiplicities. 

(b) Conjecture (2.3) as well as the others are typically false for noncongruence 
families of G(Z). See for example the Abelian covers in Section 3. 

(c) Combining the bound in Conjecture 2.3 with Matsushima's formula [B-W] 
in the case F\G(R) is compact, gives rather sharp bounds for the Betti numbers 
of principal congruence subgroups of F . 

Finally Conjecture 2.3 implies certain "arithmetic vanishing theorems"' and in 
particular lower bounds on small eigenvalues. The lower bound (2.1) applies to 
any representation n G G(R) and hence we conclude: 

Under Conjecture 2.3, if p(n) > 2/0(G) then m(n,r(q)) = 0 for all q. (2.5) 



466 Peter C. Sarnak 

As an application of this where MC has been established we have the following 
[S-X]: 

Let F < SL(2,R) (or 5L(2,C)) be arithmetic. Thus F is commensurable with 
G(@E) where F is a number field over Q and G is the unit group of a quaternion 
algebra A over F which is ramified at all infinite places of F except one, call it 
v, and A <g> v ~ M(2,R). Let r(P) = G(P) n F , where P is a prime ideal of (9E. 
Denote by h(P) the smallest non zero eigenvalue of the Laplacian on F(P) \H, H 
being the hyperbolic plane. Clearly X\(P) < Ai(F) and the last may be arbitrarily 
small, see Randol [R]. 

Proposition 2.5 [S-X]. For Norm(P) large 

min fxiin ^\ < h(r(P)) < Ai(r). 

The number 5/36 also appears in Huxley [HU] for essentially the same 
reason; viz. (2.5). This kind of vanishing theorem in (2.5) can also be derived 
for the graphs constructed in [L-P-S] to prove, in an entirely elementary fashion, 
that they are expanding families with good expansion coefficients. 

Arithmetic vanishing results of the type of (2.5) have been established uncon
ditionally for certain (in particular noncompact) congruence lattices in SO(n, 1) 
by Elstrodt-Grunewald-Mennicke [E-G-M2] and Li-Piatetski Shapiro-Sarnak [L-
PS-S]. The method used in these papers is quite different (and special) and goes 
via Kloosterman sums as in Selberg [SEL]. 

3. Variations 

We have restricted our discussion to G(R) and its spectrum. There are numerous 
Diophantine problems which are related to G(QP) for finite p. We illustrate 
this with certain Diophantine problems studied by Linnik [LIN, LIN2]. Let 
F(xi , . . . ,x r) be a homogeneous form in r variables and of degree d. For m G N 
and x G TI for which 

F(x) = m (3.1) 

we associate to x, 

Thus F(x') = 1. With the use of his ergodic method Linnik was able, in certain 
cases, to study the distribution of these points xf on the surface V\ = {F = 1} as 
m —> oo. 

For example, let 

F(xi, x2 , . . . , xr) = x\ -I- X2 + .. • + x2 , r > 3. (3.3) 

The basic problem is the equidistribution with respect to Lebesgue measure of the 
x7 on the unit sphere 5 r _ 1 . Linnik [LIN] proved this for r > 4 and conditionally for 
r = 3 [LIN]. By the use of classical ^-functions [SI] this problem is immediately 
reduced to one of estimating Fourier coefficients of classical modular forms (of 
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half integer weight if r is odd). For r ^ 4 standard estimates give the result. 
For r = 3 the estimates needed lie much deeper and were only proven recently 
by Iwaniec [12]. The general case of this problem for quadratic forms in three 
variables requires similar estimates for Fourier coefficients of Maass forms as 
well. These were established by W. Duke [D] whose work resolves this instance 
of Linnik's problem completely. 

Concerning forms of higher degree Linnik and Skubenko [L-S] considered 
the form 

F(Xij) = det(xij), i,j = l,...,n. (3.4) 

Using the ergodic method they show that if Q cz R" is a (nice) compact set and 

Rß(w) = | { x G Z " 2 | F ( x ' ) G ß } | (3.5) 

then 

meas(O') n (pf'+1 - l)(pf'+2 - 1 ) . . . ( p ^ - i - 1) 

Pi 

where Q' = Q n SL(n,R), meas (Q') its Euclidean content, and 
m=p\{p]%...pkj ->oo. 

We outline a proof of (3.6) using harmonic analysis on G(QP). Let G(R) = 
SL(n,R), r = SL(n,Z). The usual Hecke operators [TE], Tp (or more generally 
Tm) are defined by 

T P :L 2 (F \G(R) )^L 2 (F \G(R) ) 

TpH(g)= X * ( i M ; s ) 
det Mj=p 

Mj integral 
Mjj=Mk (mod T) 

(3.7) 

Let / e q°(G(R), then 

X /(x') = (T;)H)(/), (3.8) 
delX=p 

X, ïïXï7 integral 

where 

Now 

H(g) = £ / ( ? * ) • (3-9) 
ver 

/" H(g)rfg = / /(g)rfg (3.10) 
Jr\G{R) JG(R) 

(for a fixed Haar measure dg) from which it is easy to see that (3.6) follows from 

lm\B\\2 [m"-1-0 (3.11) 



468 Peter C. Sarnak 

for ö > 0 (ö = ö(n)), where 

B = \heL2(r\G(R)) | / h(g)dg=:o\. 

For n > 3, (3.11) follows from the classification of the spherical dual G(QP) [TA], 
together with the standard relation between Hecke operators and representations 
of G(QP). For n = 2 we need well known, nontrivial bounds on the Fourier 
coefficients of holomorphic and Maass forms on SL(29Z)\H to establish (3.11). 

By examining more carefully the best <5 that can be achieved in (3.11) (again 
this is the "Ramanujan Conjecture") or the best estimates for Fourier coefficients 
in the other cases, one can go well beyond the equidistribution of the points x'. 
In fact one can examine how well the points x1 with F(x) = m cover the set 
V\. The harmonic analysis method above leads to sharp results [D-R-S]. For an 
elementary approach concerning the last problem, in the case SL(n), see Harman 
[HA]. Determining the optimal covering exponent for these points (as m —> oo) is 
an interesting and apparently difficult problem [D-R-S]. 

Finally we make comments related to Conjecture 2.3 but in connection with 
other families of coverings of G(Z)\S. Assume that FTi(F,Z) ~ Zr with r > 1. 
Then there are uniquely defined (Z/qZ)r Galois coverings of r\S given by 
$(q)\S where 

<%) = {J e F I p(y) = 0 (mod q)}, (3.12) 

p : r —> H\(r,Z) being the canonical projection. An interesting example of 
this is the family Fq : xq + yq = 1 of Fermât curves. These are (Z/q Z)2 Galois 
coverings of F(2)\H where H = {z\ Imz > 0} and F (2) < SL(2,Z) is the 
principal congruence subgroup of level 2, see [LAI]. Another example is the 
family of Hirzebruch surfaces [HI]. 

For such families the behavior of m(%, <I>(q)), for n G G(R) fixed, is closely 
tied to another Diophantine problem; one of counting the number of ^-division 
points in an r dimensional torus which lie on a real analytic subvariety, see [S2]. 
For % G G(R) which correspond to cohomology, the subvariety V in question 
is algebraic in the sense that it is a zero set (or intersection of such) of a 
trigonometric polynomial. For these there is a definite structure to the set of such 
torsion points lying on V. This was conjectured by Lang [LA2] and proved in 
Laurent [LAU]. See also [S2] for an effective solution. As a consequence one has 

Theorem 3.1. [S2] Let M(q) = $(q)\S as above, then the j-th Betti numbers 
ßü)(M(q)) are polynomial periodic in q, that is 

r 

ß^{M(q)) = ^\q)qv 

v=0 

with a\/\q) periodic in q. 

This is in sharp contrast to the congruence family. For the general % G G(R) 
we cannot conclude such strong results. However, using some recent work of 
Bombieri-Pila [B-P] one can get asymptotic results for m(%, 0(q)) for the Fermât 
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and related families [P-S]. Actually for the Fermât family we prove in [P-S] an 
exact formula for the number of exceptional eigenvectors coming from Eisenstein 
series residues. In the notation of (2.4) with obvious modifications 

MEis(0,tf) = 6 [ | ] . (3.13) 

What is striking about (3.13) is that the constant term of the Eisenstein series for 
the noncongruence groups <I>(q) corresponding to Fq, are not (as far as is known) 
computable in terms of classical zeta like functions. 

We have touched on some aspects of the analysis of G(Z)\G(R) which are 
directly related to analytic Diophantine problems. The aspects of the theory 
relating to L-functions associated to automorphic forms on general G, have been 
well developed at the hands of Langlands, Piatetski-Shapiro, and their coworkers. 

Acknowledgements. I would like to thank M. Burger, W. Duke, Jian Shu Li, Z. Rudnick, 
and X. Xue. My various collaborations with them form the core of this report. 
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Theory of Mordell-Weil Lattices 

Tetsuji Shioda 

Department of Mathematics, Faculty of Science, Rikkyo University 
Nishi-Ikebukuro 3-chome, Tokyo 171, Japan 

0. Introduction 

The basic idea of Mordell-Weil lattices is to view the Mordell-Weil group ( = the 
group of rational points on an elliptic curve or an abelian variety defined over some 
"global" field) as a Euclidean lattice by means of suitable inner product. 

The necessary setup for this has been known for some time. First of all, the finite 
generation of such a group was established by Mordell and Weil in 1920s (thus 
named after them) in the case of elliptic curves over Q [Mo] or Jacobian varieties 
over a number field [Wl]. After the general theory of abelian varieties was founded 
by Weil [W2], it was extended by Néron and Lang in 50s to a more general situation 
[L]. Second the notion of the canonical height on abelian varieties was developed 
by Néron, Tate and Manin in 60s [N2, TI, T3, Ml; cf. L, Se2]. A more geometric 
method, based on the theory of elliptic surfaces [K], was used by the author [SI] 
and Cox-Zucker [CZ] in 70s. 

Certainly the lattice-theoretic feature of Mordell-Weil groups has appeared in 
various works, e.g. in the statement of the Birch-Swinnerton-Dyer conjecture. But 
the idea to view them as lattices seems relatively new, and a systematic study of 
Mordell-Weil lattices has been done only very recently by the author [S3, S4, S5, 
S6, S7] and independently by N. Elkies [E], in the case of elliptic curves over 
function fields, or equivalently, in the case of elliptic surfaces. Actually the general 
scope of the theory of Mordell-Weil lattices should cover also the case of algebraic 
surfaces with higher genus fibration and the case of arithmetic surfaces as well (cf. 
[F, H] for the latter). But, in this talk, we shall restrict our attention to the case of 
elliptic surfaces. 

In Part I, we review the definition and the basic results on Mordell-Weil lattices, 
and in Part II, we consider the Galois representations and algebraic equations 
arising from them, and discuss some applications. In the case of rational elliptic 
surfaces, we obtain some new insight into various problems related to F 6 , F 7 , 
F8—a mysteriously rich subject in Mathematics. In particular, we can answer some 
questions raised by Weil [W3] and Manin [M2] concerning the Galois representa
tion arising from the 27 lines on a cubic surface. 

Proceedings of the International Congress 
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© The Mathematical Society of Japan, 1991 
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Parti 

1. Definition of Mordell-Weil Lattices 

Let K = k(C) be the function field of a smooth projective curve C over an algebrai
cally closed field k. Let F be an elliptic curve defined over K, and let E(K) denote 
the group of X-rational points of F, with the origin O e E(K). For what follows, the 
main reference is [S7]. 

Our basic tool is the associated elliptic surface f:S->C (the Kodaira-Néron 
model of E/K) and the intersection theory on S. Recall [K, NI, T2] that S is a 
smooth projective surface over k and / is a relatively minimal fibration with the 
generic fibre F. We can naturally identify the global sections of / : S A C with the 
X-rational points of E, and so E(K) denotes the group of sections. For P e E(K), 
(P) will denote the image curve of P : C -> S. 

We assume throughout that (*) / is not smooth, i.e., there is at least one singular 
fibre. Then E(K) is finitely generated by the Mordell-Weil theorem. On the other 
hand, let N = NS(S) be the Néron-Severi group of S, i.e. the group of divisors 
modulo algebraic equivalence. It is a free module of finite rank under the assumption 
(*), and it becomes an indefinite integral lattice with respect to the intersection 
pairing (D • D'). Let T be the sublattice of N generated by the zero section (O), a fibre 
F and the irreducible components of fibres. Then T is a direct sum: 

T=<(0),F}z®V, F = 0 T y (1.1) 
veR 

where R = {v e C\FV = f~x(v) reducible} and Tv is generated by the irreducible 
components of Fv other than the identity component; each Tv is a root lattice of type 
A, D, E up to the sign. Let L = TL be the orthogonal complement of T in N. Then 
L is a negative-definite even integral lattice, as follows from the Hodge index 
theorem, the adjunction formula and the canonical bundle formula; see [S7, §7]. 
We call T or L the trivial or essential sublattice of NS(S). 

Now the map P -* (P) mod T induces an isomorphism: 

E(K) ~ NS(S)/T (1.2) 

(cf. [S7, Th.1.3]). By splitting this isomorphism; we get a unique homomorphism 
([S7,§8]) 

cp:E(K)-^NS(S)®<$ (1.3) 
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such that 

<p(P)EE(P)modT®Q9 lm(cp)lT and Kev(cp) = E(K)ior. (1.4) 

Theorem 1.1. For P, P' e E(K), let 

(P,P')=^(cp(P)'cp(P')). (1.5) 

Then it defines the structure of a positive-definite lattice on E(K)/E(K)ior, called the 
Mordell-Weil lattice of E/K or off:S^ C. 

The explicit formula of the height pairing (1.5) is as follows: 

<P, F> = x + (PO) + (P'O) - (PF) - £ contra ?)• (1-6) 
veR 

Here % is the arithmetic genus of S (a positive integer under (*)). (PQ) = ((P) • (Q)) is 
the intersection number of the curves (P) and (Q). The local contribution term 
contr„(P, P') is a non-negative rational number, which is non-zero only if both P 
and P' pass through non-identity components of Fv; it is then determined by the 
type of Fv and the position of the components hit by P, P' ([S7, § 8]). 

On the other hand, let E(K)° be the subgroup of E(K) consisting of those sections 
which pass through the identity component of every fibre. It is a torsion-free 
subgroup of finite index in E(K). 

Theorem 1.2. With respect the height pairing, E(K)° is a positive-definite even integral 
lattice, which is isomorphic via the map cp to the opposite lattice IT of the essential 
sublattice L. It will be called the narrow Mordell-Weil lattice of E/K or off : S -> C. 

Observe that 

<p, p'> = z + (PO) + (P'O) - (PF) e l if P or P' e E(K)°, (1.7) 

<P, P> = 2x + 2(PO) > 2x for any P e E(K)°, P ^ 0. (1.8) 

The former shows that E(K)/E(K)i0T is contained in the dual lattice M* of 
M = E(K)°. 

Theorem 1.3. Assume further that NS(S) is unimodular. Then E(K)/E(K)lOT is equal 
to the dual lattice M* of M = E(K)°. Moreover we have [M* : M] = det M = 
(det T)/\E(K\or\

2 (see [S7, Th.9.1]). 

2. Basic Invariants of MWL 

By the very definition, the Mordell-Weil lattices (abbreviated henceforth as MWL) 
are of Diophantine nature and have quite rich structure, as will be seen later. But, 
apart from that, they provide a purely algebraic method for constructing lattices of 
some interest. 

In general, given a lattice L, one would like to know its basic invariants 
such as the rank rk(L), the determinant det(L) and, if L is positive-definite 
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(which we assume now), the minimal norm p(L); recall (cf. [CS] for what 
follows) that det(L) = |det(<xf, Xy»| for any Z-basis {xj of L, and p(L) = 
Min(<x, x>|x e L — {0}). Now a lattice L of rank r gives rise to a sphere packing 
in L ® IR = W by spheres of radius QL = ^y/p(L). The density A(L) is the ratio of 
the volume of one sphere to that of the fundamental domain of L, i.e. y/det(L). 
The quantity ô(L) = A(L)/\ol(unit sphere) is called the center density: we have 
<5(L) = (V^/2)7Vdet(Z). 

As for Mordell-Weil lattices, it follows from the results of § 1 that their invariants 
can be expressed in terms of geometric data on the associated elliptic surface: 

Theorem 2.1. Let M = E(K)° be the narrow MWL of E/K. Then 

r = rk(M) = Q(S) - 2 - £ (mv - 1), (2.1) 
veR 

where Q(S) = rk NS(S) is the Picard number of S and mv is the number of irreducible 
components of the singular fibre Fv. Further we have 

det M = det NS(S) • v2/det T, v = [F(/C) : F(K)0]. (2.2) 

p(M) = 2x + Min{(PO)|P G E(K)°, P * 0} > 2%. (2.3) 

It is not so easy in general to evaluate the rank and det, though we have a good 
lower bound 2% for p. In particular, it is a nontrivial problem to find E/K with 
large rank. A notable exception to this is the results of Shafarevich and Tate[ShT] 
and of the author [S2] that the rank can be arbitrarily large in case p = char(K) > 0; 
the proof uses supersingular Fermât curves [ShT] or supersingular Fermât surfaces 
[S2]. From the viewpoint of MWL, Elkies and the author have independently 
studied these cases and obtained, among others, the following (see [E] and [S4], cf. 
[G]): 

Theorem 2.2. Let E be the elliptic curve y2 = x3 + tq+1 + 1 over K = k^(t), k1 

any extension of the finite field of q2 elements with q = pe = — 1 (mod 6). Then 
E(K) = E(K)° is an even integral lattice with the invariants: 

r = 2q-2, det = q^^/b, ti = 2X (x = (q+ l)/6), (2.4) 

where b is a positive integer (an even power of p) such that 

b = \(e = l), b> ^C-D(CP-5)A5)- (ß > j) (2.5) 

in which equality holds if e = 3. The integer b is equal to the order of the Shafarevich-
Tate group of E/K for k± = ¥q2orofthe Brauer group of S/kx (cf. [TI]). Inparticular, 
we have 

ô = y/b-((q + l ) / 1 2 r V ^ 5 " 6 . (2.6) 

N.B. This gives denser sphere packings than previously known ones in certain 
dimensions; for instance, for q = 41, we haver = 80andlog2 <5 = 40.14, the previous 
record being 36 (cf. [CS, Table 1.3], [E], [S4, Ex. 1.3]). 
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3. Rational Elliptic Surfaces 

With the notation of § 1, suppose that S is a rational elliptic surface, i.e. birational 
to P2 . Then we have C = F 1 , X = k(t), x = 1, and JV = NS(S) is unimodular of rank 
Q= 10.Hencer<8by(2.1). 

The structure of the MWL and MW group of a rational elliptic surface is 
completely determined by the reducible singular fibres. Namely, look at the embedd
ing of lattices, deduced from (1.1): 

K = 0 r p c H = <(O)>F> ic=M (3,1) 
veR 

Note that H is a negative-definite even unimodular lattice of rank 8, i.e. the root 
lattice F 8 up to the sign, and V is a direct sum of root sublattices (cf. [B, CS] for 
root lattices). Theorem 1.3 gives: 

Theorem 3.1. For a rational elliptic surface, the narrow MWL is isomorphic to the 
orthogonal complement of V in F 8 , and the MWL is its dual lattice. The torsion 
subgroup of E(K) is V'/V, where V is the primitive closure of V in F 8 , i.e. 
F' = K ® Q n E 8 , Thus we have 

E(K) ~ (V1)* © (V'/V), E(K)° ~ V1, (3.2) 

where the isomorphism preserves the pairing. (See [S7, Th.10.3]). 

The structure theorem in the case of rank r = 89 7 or 6 is: 

Theorem 3.2. The narrow MWL E(K)° is the root lattice F 8 , E1 or E6, according to 
whether / : S -• P 1 has (i) no reducible fibres, (ii) only one reducible fibre of type I2 

or III ([X]), or (iii) only one reducible fibre of type I3 or IV. Further E(K) is 
torsion-free and isomorphic to F 8 , Ff or E% accordingly. (Cf. [S7, Th.10.4]). 

More generally, we have a complete structure theorem by using Dynkin's 
classification of V a F 8 (see [OS]). As a consequence, we obtain an effective result 
on the generators: 

Theorem 3.3. The Mordell-Weil group of any rational elliptic surface is generated by 
the sections P with (PO) = 0, hence by those P with <P, P> < 2. If E/K is defined by 
the Weierstrass equation 

y2 + a^(t)xy + a3(t)y = x3 + a2(t)x
2 + a±(t)x + a6(t), (3.3) 

with af(t) G k[f], deg a{(t) < i, then E(K) is generated by rational points P = (x, y) of 
the form: 

x = gt2 + at + b, y = ht3 + et2 + dt + e (g, a,..., e e k). (3.4) 

There are at most 240 such rational points. (Cf. [S7, Th.10.10]). 
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Part II 

4. Galois Representations Arising from MWL 

From now on, we consider the following situation. Let k0 be a perfect field and k 
its algebraic closure; let G = Gal(/c/fc0). Let C be an absolutely irreducible smooth 
projective curve defined over k0 and K = k(C) or K0 = k0(C) the function field of 
C over k or fe0. Now let F denote an elliptic curve defined over K0 and consider 
E/K. The associated elliptic surface / : S -> C is now defined over fe0. 

Obviously the Galois group G acts on E(K), and E(K0) coincides with E(K)G, 
the subgroup of G-invariants. First we note: 

Lemma 4.1. (i) The map cp defined by (1.3) is G-equivariant. (ii) The height pairing 
(1.6) on E(K) is stable under G. (Cf. [S7, Prop.8.13]). 

Therefore we get a Galois representation on the MW group 

Q : G = Gal(fe//c0) -» Aut(F(X), < , » = a finite group (4.1) 

and its variant on the MWL or the narrow MWL of E/K, say M, 

Q':G-+ Aut(M) c GLr(Z) (r = rk(M)). (4.2) 

Let Jf/k0 be the extension corresponding to Ker(#); equivalently, Jf is the smallest 
extension of fc0 such that F(jf (C)) = E(K). By definition, Jf /k0 is a finite Galois 
extension such that 

Gal(Jf /k0) = Imte). (4.3) 

The basic problem on the Galois representation (4.1) is this: 

Problem 4.2. Determine the image of Q. In particular, we ask: (i) How big or (ii) how 
small can Im(g) be? 

To study this will be a main theme in the subsequent sections. 

Remark 4.3. The Galois representations Q or Q' arising from MWL are quite different 
from those arising from the torsion points of an elliptic curve or an abelian variety 
(e.g. the Tate modules), because we are dealing with poiiits of infinite order here! 

Next we note the connection to the Hasse zeta functions (cf. [M2, Sel]). We 
state the result in the simplest situation, which is related to the questions of Weil 
[W3] and Manin [M2]; see Theorem 8.4. 

Proposition 4.4. Let k0 = Q. Assume that S is a rational elliptic surface (over <Q) and 
that the trivial lattice T is a trivial G-module. Then the Hasse zeta function of S over 
Q is given by 

C(S/Q, s) = Ç(s)Ç(s - l)10-'Ç(s - 2) • L(s - 1, Q, Jf/Q), (4.4) 
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where Ç(s) is the Riemann zeta function and L(s, Q, Jf/Q) is the Artin L-function 
attached to the representation g of Gal(jf/Q) on the MWL. 

Proof. By [Sel], the Hasse zeta function is determined by the /-adic representation 
of G on Hlt(S, Qj) (0 < / < 4). The other cases being trivial, consider the case / = 2. 
For a rational surface, the cycle map induces a G-isomorphism 

JVS(S)®Q,*ffJ,(S.Qi(l))- (4.5) 

On the other hand, the results in § 1 imply 

N5(5)®Q = L ( 8 ) Q © T ® Q and L ® Q ~ E(K) ® Q, (4.6) 

where the latter is a G-isomorphism by Theorem 1.2 and Lemma 4.1. • 

(N.B. We have exact equality in (4.4), as pointed out by J-P. Serre.) 

5. Algebraic Equations Arising from MWL 

Given an elliptic curve E/K0, take a singular fibre Fv = f~^(v) and a G-stable finite 
subset / of E(K). Then we define 

0{X) = &(E/K0, v, I;X)=Y\(X- spUP)) e * [ * ] . (5.1) 
Pel 

Here, sp'v is the specialization map at v, defined as follows. For any P e E(K), the 
section (P) intersects the fibre Fv dit a unique smooth point of Fv; call it spy(P). The 
smooth part Ff of Fv is an algebraic group over k, which is the product of <Erfl or 
<&m by a finite group (at least if char k / 2, 3; cf. [K, NI, T2]), and the map 

*pv:E(K)-+F*{k) (5.2) 

is a G-equivariant homomorphism. We denote by sp'y(P) the projection of spv(P) to 
the factor Ga or <Bm. 

As a typical example of the set /, we have (by Lemma 4.1) 

In = {PeE(K)\(P,Py = n} (n>0). (5.3) 

Proposition 5.1. Assume v e C(k0). Then &(X) has coefficients in k0, i.e. &(X) e k0 [_X^\. 
The splitting field of the algebraic equation <P(X) = 0 over k0, say C/f', is contained 
in Jf defined in §4, and we have Jf ' = Jf if 1) spj, is injective and 2) I contains 
generators of E(K). 

Proof. Immediate by Galois theory. • 

Remark 5.2. The algebraic equations (5.1) look somewhat analogous to the classical 
"division equations" arising from torsion points on an elliptic curve, whose study 
goes back to Abel and Galois ([ST, Ch.l]). As noted in Remark 4.3, we are 
concerned here with points of infinite order on an elliptic curve F, and in general 
the algebraic equations will lead to highly non-abelian extensions (see Theorems 
6.1,7.1). 



480 . Tetsuji Shioda 

6. Generic Galois Representation and Algebraic Equation of Type Er 

To illustrate the nature of the Galois representations and the algebraic equations 
arising from MWL, we consider some special cases. Let F = FA be the elliptic curve, 
defined by one of the following equations, over K0 = k0(t) where k0 = Q(/l) = 

(E8) y2 = x3 + x ( £ Pit^j + ( t «i*1 + S 

*> = (Po> Pu Pi> Pa> 4o> Qu Qu #3) e A8 

(E7) y2 = x3 + x(p0 + Pl t + t3) + f £ ftt' 

^ = (Po> Pl> <?0> 4l> ^2> <?3> ^4) G A 7 

2 \ / 2 

(6.1) 

(E6) y2 = x3 + x\J£ pf) + ( ^ 9lt' + ̂  

^ = (Po. Pi» P2, Qo, <lu li) e A6. 

Let / : 5A -> P 1 be the associated elliptic surface. The fibre f~l(oo) is an additive 
singular fibre of type II, III or IV according to the case (Er) for r = 8, 7 or 6 and 
/ _ 1 (oo) # ~ <Ba x Z/(9 - r) [K, NI, T2]. Assume that X satisfies the condition: 

every fibre of/ over t + 00 is irreducible. (6.2) 

Then the MWL E(k(t)) is isomorphic to F* by Theorem 3.2, and we get the Galois 
representation 

Q = QX : Gal(fc//c0) -> Aut(F*) = Aut(Fr). 

Recall that Aut(Fr) = W(Er) for r = 8 or 7, and W(Er) {± 1} for r = 6, where W(Er) 
denotes the Weyl group of type Er (cf. [B, CS]). In any case, we have Im(^A) c W(Er). 
It should be noticed that W(Er) is almost a simple group: with the notation of simple 
groups in Atlas [C], W(E6) contains £/4(2) (order 26345) as a subgroup of index 2, 
W(E1)/{ ± 1} ~ S6(2) ( = Sp6(lF2), order 29345 • 7), and W(F8) has a subgroup H of 
index 2 such that H/{ ± 1} - 08

+(2) (order 21235527). 
Now we assume that X is generic, i.e. pf, ^ are algebraically independent over 

Q. Then (6.2) obviously holds. 

Theorem 6.1. Let X be generic over Q. Then (Ï) the image of the Galois representation 
QX is the full Weyl group W(Er): 

ImfeJ = W(Er). (6.3) 

(ii) Let JfA//c0 be the Galois extension corresponding to Ker(^A), and let 
{P l 5 . . . , Pr} be a basis of E(k(t)) ~ F* consisting of minimal vectors. Further let 
ui = sPœ(Pi) e JfA c fc. Thenuu ...,urare algebraically independent over Q, and we 
have 
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•#i = M " i , . - -, wr) = Q(wi,..., wr) (6.4) 

Gal(Q(Wl , . . . , «r)/Q(p„ %)) = W(Fr). (6.5) 

(iii) W(Er) acts on the vector space £Qw, and hence on the polynomial ring 
Q[«i , . . . , Mr], and the ring of the invariants is: 

Q [«! . . . . . M rr
( J W = Q[p„%]. (6.6) 

Jj? particular, pt and qjform the fundamental invariants of the Weyl group W(Er) and 
we can explicitly write 

Piorqj = Jd{uu...9ur)9 (6.7) 

where Jd denotes a W(Er)-invariant of degree d, d E {2, 5, 6, 8, 9, 12}, {2, 6, 8, 10, 
12, 14, 18} or {2, 8, 12, 14, 18, 20, 24, 30} for r = 6, 7 or 8. 

The universal polynomial of type Er is defined as a special case of (5.1), and it has 
degree N = 27, 56 or 240 for r = 6, 7 or 8: 

tf^X, A) = <2>(FA/Q(A) (t), oo, I; X) = ft (X - sp'JP)) e Q(A) [X]. (6.8) 
JPeJ 

Here J = 1^ is the set of minimal vectors for r = 8 or 7 (thus p = 2 or 3/2, and 
# / = 240 or 56 accordingly). For r = 6, we take / = I*, either one of 2 orbits 
of W(F6) in I„ (p = 4/3, # J = 27), and modify the right hand side of (6.8) by 
Y\(X - (-2) sp^(P)). Then we have 

Theorem 6.2. For X generic, <PEr(X, X) is a monic irreducible polynomial in X with 
coefficients in the polynomial ring TL\K\ = Z[p f , qf\9 and its splitting field over Q(/l) 
is equal to JfA in Theorem 6.1. 

Considering the elliptic curve (6.1) over the field JfA(£) = Q(w l 5 . . . , ur)(t), we 
have the following: 

Theorem 6.3. Suppose wl9 . . . , ur are algebraically independent over Q, and define 
X = (Pi, qj) by (6.7) and the elliptic curve FA by (6.1). Then the Mordell-Weil group 
F(Q(w l5..., ur)(t)) ~ F* is of rank r, and has a basis {P1,...,Pr} such that 
sPlao(Pi) = ui- More explicitly, we have Pt = (x, y) where x, y are polynomials in t of 
the form (3.4) which are given as follows: 

(i) / / r = 8, then g = wj"2, h = u^3 and 

a,..., e e Q[Wi,..., w8] [ur1] n Q(p0> • • •, fl3)("i)-

(ii) / / r = 1, then c = ut and 

a, b, d, e E Q[W1 ? . . . , w7] n Q(p0, • • •, q*){ut\ g = h = 0. 

(iii) / /> = 6, t/ien a = — 2-uf, c = 1, and 

b,d,eE Q[wl5 ..^u^nQ(p0,..., g2)(u,), g = h = 0. 
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Let us briefly sketch the proof of the above theorems (for details, we refer to 
[S6, § 8]). By Theorem 3.2, we know the structure of the MWL Ex(k(t)). For instance, 
if r = 8, it is F 8 and there exist 240 minimal vectors P = (x, y) of the form (3.4). 
Substitute (3,4) into the equation (F8), and we obtain polynomial relations among 
the coefficients a,...,g,h. Then the successive elimination leads to a monic relation 
of u = g/h = spQ0(P) with coefficients in Z[A], of degree 240, which must coincide 
with the universal polynomial of type F 8 . This implies (6.6) and (6.7) by comparison 
of the coefficients of ud, d being the degree of fundamental invariants. The rest of 
Theorems 6.1 and 6.2 follow immediately from this, and Theorem 6.3 from a closer 
look at the elimination process. • 

Remark 6.4. Actually the proof shows that, in the above theorems, the ground field 
Q can be replaced by any field F, provided that its characteristic is different from a 
few primes which come into the denominators of the expression (6.7); they are 
{2, . . . , 7}, {2,. . . , 11, 29, 1229} or {2,. . . , 19, 41, 61, 199} for r = 6, 7 or 8. 

7. Galois Representations of Type Er over Q 

We can compare the results of §6 with the classical theory of the generic algebraic 
equation of degree n. Let 

F(X, e) = Xn + E2X
n~2 + ••• + ( - 1)X (c, : alg.indep./Q) 

be such an equation, normalized so that the sum of the roots xt is 0. Let C/f be the 
splitting field of F(X, 8) over k0 = <Q(fi2, • • •, ß„)- Then 

(i) JIT = k0(xl9..., xn) = Q(x 2 , . . . , x j . 
(ii) Gal(Q(x2 , . . . , x„)/Q(e2,..., £„)) = S„ = W(An_1). 

(iii) Q[x 2 , . . . , xtJ
WiA^ = Q[e 2 , . . . , fij. 

(iv) ßj = the fundamental invariants of ©B. 

Thus Theorems 6.1 and 6.2 (based on the theory of MWL) give a complete analogy 
for the exceptional type Er (r = 6, 7, 8) of what the theory of generic equation does 
to the classical type An_1. 

The latter theory has a standard application to number theory: (a) construction 
of Galois extensions of Q with Galois group ®„ (via specialization "downstairs" 
(s£) -> (a{) e Qn _ 1 and Hilbert's irreducibility theorem (cf. [L, Se2])9 and (b) construc
tion of an algebraic equation with the prescribed roots (via specialization "upstairs" 
(xt) -> (bt) e Q"), which is indeed trivial. 

In what follows, we describe similar application of our theory. 
First consider the specialization "downstairs": X -> X° e Qr. We keep the same 

notation as in § 6, except that we write X for X° (to simplify printing) so that JfA/Q 
is now a Galois extension. 

Theorem 7.1. Fix r = 6, 7 or 8, and let 

A = Ar={X = (Pi, qj) e Q'|Gal(JfA/Q) = W(Er)}. (7.1) 
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Then A is a Zariski dense subset of <Qr (more precisely, it is the complement of a 
"thin set" in Q r in the sense of [Se2]). There exist infinitely many {X} a A such that 
{jfA} are linearly disjoint over Q. 

Proof. Immediate from Theorem 6.1 (esp. (6.5)) by applying Hubert's irreducibility 
theorem [Se2, Ch.10]. Q 

We note that, for each X E A, we have an elliptic curve FA/Q(f) with the MWL 
FA(Q(f)) = FA(jfA(0) ^ F* and FA(Q(0) = {0}, and a rational elliptic surface SA 

defined over Q, having the Hasse zeta function (4.4) with non-abelian Artin 
L-function L(s, QX, JfA/Q). 

Theorem 7.2. Every Galois extension of Q with Galois group W(Er) is obtained as JfA 

for some XE A. In other words, every such extension arises from the MWL of the 
elliptic curve FA/Q(£) for some X E Qr. 

Proof. Let X/Q be any extension with Galois group W(Er). Viewed as a W(Er)-
module, K is equivalent to the regular representation, and hence it contains a 
subspace, say U, isomorphic to F r ® Q (a natural irreducible representation of 
W(Er)). Fixing such an isomorphism, choose a Z-basis {wj of F* cz U and define 
^ = (Pi> Qj) by (6.7). Then we have X E Qr, since p,-9 qj are H^(Fr)-invariant. The 
splitting field JfA of <PEr(X, X) E Q[X] is contained in K and contains U. We claim: 
jfA = K. Indeed, any o E Gal(K/jfA) acts trivially on V c jfA. But U is a faithful 
representation of W(Er). Hence a = 1, which proves the claim. (Our original proof 
of the claim used the structure of W(Er) (cf. § 6). We owe the above simplification 
to T. Ekedahl). • 

We can also prove a formal analogue of Tate's conjecture for abelian varieties 
Let X = (ph qj), X' = (p\, qj) E Ar for r = 6 or 7. 

Theorem 7.3. The following conditions are equivalent: 
(i) The Galois representations QX and QX> are equivalent. 
(ii) JfA = JfA, and the roots {u{} and {u[} of the polynomials <P(X, X) and <P(X, X') 

defined by (6.8) are related (up to ordering) by 

u'i = A(ut) (all i) for some A(X) = £ avX
v E Q[X]. 

(iii) JfA = JfA/ and p\, qj can be expressed by certain polynomials in ph qj with 
(^-coefficients. 

Proof. We consider the case r = 6. First assume (i). Then clearly JfA = JfA>, which 
we denote by K. There are exactly n = 27 minimal subfields M of K such that 
[M : Q] = n, because K/Q has Galois group W(Er), which has so many maximal 
subgroups of index n (cf. [C]). Thus the n subfields Q(wf) (1 < / < n) of K give all 
such, and hence Q(w-) = Q(w,) (all /) up to reordering. Let u[ = £"=o avu\ (av E Q). 
Then by the action of a E Gal(X/Q) on both sides, we see (i) implies (ii). Conversely, 
if (ii) holds, then the permutations induced by o on the sets {w,} and {u\} are identical. 
Hence we have QX ~ QX>, i.e. (i). The equivalence of (ii) and (iii) follows from (6.6), (6.7). 
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The case r = 1 can be treated in the same way. (We omit the case r = 8 here, 
since more work is needed in addition to the information on the maximal subgroups 
in [C].) D 

Our method allows us to find explicit examples. 

Example 7.4 (r = 6). Take X = (1, 0,1; 1,1, 1). The elliptic curve is: 

E = FA : y2 = x3 + x(l + t2) + (1 + t + t2 + t4). (7.2) 

Then the MWL F(Q(t)) ~ F | . We claim: Gal(JfA/Q) = W(E6), i.e. X e A6. Further 
JfA is the splitting field of F(X) == &(X, X) below: 

F(X) = X2 7 + 12X25 + 60X23 + 264Z21 + 1302Z19 - 1344X18 

+ 3792X17 - 5568X16 + 22252X15 - 8832X14 + 57560X13 

+ 4224X12 + 39025X11 - 49728X10 + 88516X9 - 50880X8 

- 95024X7 - 150016Z6 - 35840X5 - 16384X4 - 104192X3 

+ 5888Z - 4096. 

This can be verified as follows. Look at the decomposition of F(X) mod p into 
irreducible factors. For p = 3, it has 3 irreducible factors of degree 9 each, denoted 
symbolically by (9)3. Similarly, for p = 19, it has (2)(5)3(10). Then the claim follows 
from: 

Lemma 7.5 (Serre). Let Cx or C2 be the conjugacy classes in W(E6) of the elements 
of order 9 or 10 with cycle type (9)3 or (2)(5)3(10) in S 2 7 (cf. [Sw, p.57]). Suppose 
a subgroup H of W(E6) has the property that H nCt^ 0 for i = 1, 2. Then 
H = W(E6). 

Proof If not, take a maximal subgroup containing H. The possible orders of such 
are given in [C], but none of them are divisible by both 9 and 10 except one. But 
this last group does not contain any element of order 9. Hence a contradiction. • 

(We can show further that the ramification occurs only at p = 2,137,15784603.) 

Example 7.6 (r = 7). Let X = (1,1; 1,1,1,0, 1) and 

E = FA : y2 = x3 + x(l + t + t3) + (1 + t + t2 + t4). (7.4) 

Then the MWL F(Q(t)) ^ £?, and Gal(JfA/Q) = W(E7), i.e. XEA7. The universal 
polynomial F(X) = &(X, X) equals f(Y) below (Y = X2), and the splitting field of 
f(Y) over Q has the Galois group isomorphic to W(E7)/{±1} ~ S6(2) (a simple 
group of order 1451520). 

f(Y) = Y28 - 3672 7 + 594726 - 6084725 + 43935T24 - 240192Y23 

+ 1039392722 - 3661764Y21 + 10681839T20 - 26088660719 

+ 53894394718 - 95282532Y17 + 145821463Y16 - 194265660Y15 
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+ 223728462Y14 - 216948108Y13 + 168475770Y12 - 98229852Y11 

+ 42796234Y10 - 19590492Y9 + 14262444Y8 - 9949084Y7 

+ 4609696Y6 - 1118808Y5 + 53521Y4 + 160Y3 + 4288Y2 

-5312Y + 1024. (7.5) 

The proof is similar to Example 7.4. The decomposition type of F(X) mod p 
is (7)8 for p = 47, and (3)2(5)4(15)2 for p = 131. This suffices to conclude 
Gal(JfA/Q) = W(En) in view of [C]. D 

In the above, we have taken Q as the ground field, but the same idea works in 
more general situation. Here is one such example. 

Example 7.7 (r = 6). Let k0 = F3(s) be the rational function field over the finite field 
F 3 . Then the following simple equation 

F(X) = X21 + X12 - X1 - X2 - s3
 E F3[s] [X] (7.6) 

has the Galois group W(E6)\ It arises from the elliptic curve E/k0(t) 

y2 = x3 + Xt + St + t4 (1.1) 

having the MWL E(kQ(t)) = E%. This is proven by checking that F(X) mod p has 
the conjugacy type Cx or C2 for the prime ideal p = (s — 1) or (s + 1) of F 3 [s] and 
by applying Lemma 7.5. 

8. Further Applications 

We briefly mention other applications of Theorems 6.1, etc. 

1) Construction of Elliptic Curves over Q(£) with Rank r = 6, 7, 8 

We consider the analogy for Er, mentioned before, of (b) writing down an algebraic 
equation with prescribed roots. By specializing the parameters "upstairs" (wf) to 
some (wf)EQr in Theorems 6.1 or 6.3 in such a way that the condition (6.2) 
is satisfied, we obtain an elliptic curve E = Ex over Q(t), together with r rational 
points P;. Observe that each P, has the prescribed value uf as its essential parameter; 
e.g. Pt = ( — 2uft + • • •, t2 -f • • • ) for r = 6. The condition (6.2) is equivalent to certain 
polynomial <50(w°) / 0 (see [S6]). 

Theorem 8.1. Assume ö0(u°) ^ 0. Then the Mordell-Weil group F(Q(t)) ~ F* has rank 
r(= 6, 7, 8), and {P{} forms a set of generators. 

See [S6] for the proof, as well as for explicit examples. 

Corollary 8.2. Given F/Q(t) as above, we have an infinite family {F (T) |T G Q — £ } 
( # £ < °°) °f elliptic curves over Q of rank > r, with r independent points Plx), by 
specializing t -• T G Q. Further 
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det«/*>, PPXJh(x)) -> 1/2'd as h(x) -> oo, (8.1) 

where < , >can is the canonical height and h(x) the standard height (esp. h(x) = logli | 
for T G Z), and d = 1, 2 or 3 for r = 8, 7 or 6. 

This follows from a result of Néron, Silverman [Si], Tate [T3]. 

2) The 27 Lines on a Smooth Cubic Surface 

In the equation (F6) of (6.1), let y = y' ± t2 and (x : y' : t : 1) = (jf : Y : Z : J F ) . T h e n 

we have a cubic surface F = Vx
± in IP3: 

Y2W ± 2YZ2 = X3 + X(p0W
2 + PiZW + p2Z2) + ^ o ^ 3 + fliZW2 + <?2Z

2W 
(8.2) 

It is smooth if and only if (6.2) holds. Under this assumption, the narrow 
MWL Ex(k(t))°~&6 is isomorphic to the primitive part of NS(V) (= {(ov}

L 

in the notation of [M2, Ch.4]). The 27 minimal sections of the form 
P = (at + b, t2 + dt + e) in the MWL Ex(k(t)) are transformed into the 27 lines on 
V = Vx defined by the equation 

X = aZ + bW, Y = dZ + eW. (8.3) 

(Similarly, the 27 sections — P are mapped to the 27 lines on Vx) 
Hence the universal polynomial &(X, X) of type F6 becomes the "algebraic 

equation of the 27 lines" on Vx. As a consequence, we can easily deduce the following 
from our previous results. 

Theorem 8.3. For X = (ph q^ generic over any field F of char. p ^ 2 , the Galois group 
of the 27 lines on the cubic surface Vx over F(X) is equal to the full Weyl group W(E6). 

Proof. This is immediate from Theorem 6.1 and Remark 6.4 if p is different from 3, 
5, 7, in which case the assertion can be verified as in Example 7.7. (A similar result 
holds also for p = 2.) • 

Theorem 8.4. For XE A6a Q6, the Galois group of the 27 lines on Vx over Q is W(E6), 
and the Hasse zeta function of P^/Q is given by 

TOO. s) = Ç(s)Ç(s - l)Ç(s - 2)L(s - 1, Qi, jfi/Q). (8.4) 

Proof. Immediate from Theorem 7.1. • 

Example 8.5. We easily obtain an explicit example of a cubic surface over Q with the 
Galois group W(E6). For instance, Example 7.4 gives: 

Y2W + 2 YZ2 = X3 + XW2 + XZ2 +W3 + ZW2 + Z2W. (8.5) 

The 27 lines are defined over Xk given by (7.3). Compare [Ek]. 

We believe that these results clarify some of Weil's statements at the end of his 
1954 Congress address [W3]. Also we can essentially answer the problems raised 
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by Manin [M2, Ch.4, 23.13] by translating Theorems 7.2 and 7.3 into the language 
of cubic surfaces. 

We also have a systematic construction of cubic surfaces over Q such that all 
of the 27 lines (8.3) are defined over Q. 

Example 8.6, Let V be the cubic surface 

Y2W + 2YZ2 = X3- X(1%Z2 + 59475W2) + 18226Z2W + 2848750W3. (8.6) 

The 27 lines are given by 

(X, Y) = (411W, -69Ì6W), ( - 2 Z + 515W, 74Z - 12600WO, 

( - 4 Z + 275 W, 124Z - 2100W), ( - 6 Z + ISW9 126Z + Ì400W), 

( - 8 Z - 85W, 56Z + 2100W), ( - 10Z - 49W, -110Z - 2316W)9 (8.7) 

etc.; the above 6 correspond to the generators of F(Q(t)) ^ E%. 

3) The 28 Double Tangents to a Plane Quartic Curve 

This classical topic is closely connected with the case (F7). In the same way as in 2) 
above, we can prove the following: 

(i) The Galois group of 28 double tangents on a generic quartic curve over any 
prime field is W(E1)/{ ± 1} ~ S6(2). 

(ii) Construction of a quartic over Q with the Galois group ~ S6(2). 
(iii) Construction of such with all double tangents defined over Q. 

As a by-product, we can also prove 
(iv) the rationality of the moduli space of plane quartic curves (genus 3) with a 

flex (over any base field of char ^ 3). 

4) Deformation of Er-Singularities 

The equation (Er) in (6.1) defines the universal deformation of the rational double 
point of type Er; at X = 0, we have y2 = x3 + t4, y2 = x3 + xt3 and y2 = x3 + t5 

for r = 6,7, 8. By Theorem 6.1, we can easily reprove some results due to Brieskorn, 
Tjurina and others (cf. [Br, DP, SI]). Indeed (6.6) implies immediately that the map 

% : Ar -• Ar/W(Er) ~ Ar, (i#,) -> X = (ph qj) (8.8) 

is a finite covering, ramified along the discriminant locus D ([B]), so that (in case 
k = (C) the monodromy map below is surjective: 

nx{1Er-D)-*W{Er). (8.9) 

Further we can describe the stratification of D according to the type of singularities 
(see [S5]); also it will be evident that our method applies to the case of char p > 0 
as well. 

On the other hand, let g denote the simple Lie algebra of type Er and I) 
the Cartan subalgebra, A = {a} the root system in I)*, then the characteristic 
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polynomial of the adjoint representation ad (FT) on g (H E f) = A') is given by 

det(X - ad(iJ)) = Xr • f ] (X - a(H)) 

(8.10) 
= Xr-0*(X,X) (X = n(H)), 

where 0*(X, X) = <P(Ex/k0(t), oo, I2; X) is the special case of our algebraic equation 
(5.1) (cf. (6.8)), of degree 72, 126 or 240 for r = 6,l, 8. According to K. Saito and 
Slodowy, the study of the roots of (8.10) led Killing [Ki] (about 100 years ago)4o 
introduce the "root" systems in classifying Lie algebras. 

Thus the theory of Mordell-Weil lattices has unexpectedly rich applications eveiH, 
in the simplest case of rational elliptic surfaces. We close this paper with the hope 
to see much more fruits in future coming from the study of the Mordell-Weil lattices. 
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Collapsing Riemannian Manifolds and Its Applications 
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§1 

One of the typical problems to which Hausdorff convergence and collapsing 
of Riemannian manifolds can be applied is the study of local structure of 
Riemannian manifolds. 

Problem 1.1. Let ^ be a class of Riemannian manifolds. Can we find a positive 
number e# such that for each p e M e W there exists a neighborhood Up of p 
with the following properties ? 

(1.1.1) Up contains BP(B%,M), the metric ball of radius e^ and centered at p. 
(1.1.2) We can control the topology of Up. 

The essential point here is that 8% is independent of p and M. 
In the case when % is the class of homogeneous spaces, this problem is solved 

in Zassenhauss [Z] and Kazdan-Margulis [KM]. In that case, Up is controled 
by nilpotent groups. In the case of negatively curved manifolds, this problem is 
studied by Margulis [M], Heintze [H] and Gromov [Gl]. 

We consider the following two classes. 

Jtn = {M\ dim M = n, \KM\ < 1}, 

Jfn = {M| dim M = n,KM> - 1 } . 

Here KM stands for the sectional curvature. Problem 1.1 for class Mn is first 
studied by Gromov [G2]. 

§2 

In §§2-6, we deal with the class Mn. First let us take the following two extremal 
cases. 

(1) When we consider the subclass Jd„(k) of Jin consisting of manifolds with 
injectivity radius > /0, we can choose B<# = io, since /o-ball is diffeomorphic to 
Euclidean space. 
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(2) When we consider the subclass consisting of manifolds with small diameter, 
we can apply the following theorem. (In this case we choose Up = M.) 

Theorem 2.1 (Gromov [G2], Ruh [R])« There exists sn > 0 such that if 

\KM\ • Diam M2 <sn, 

then M is diffeomorphic to N/T, where 

(2.1.1) N is a nilpotent Lie group, 
(2.1.2) F is a discrete subgroup of the semidirect product Nx Aut JV, the group 

of affine diffeomorphisms of N, 
(2.1.3) The index, [F : F nN] is finite. 

(1) is the case when no direction of M is degenerate. (2) is the case when 
every direction of M is degenerate. In general there are both degenerate and 
nondegenerate directions. Hence we have to separate those two directions. For 
this purpose we study the following: 

Problem 2.2. For a small neighborhood Up of p in a Riemannian manifold Mn, 
find a Riemannian manifold Vm such that 

(2.2.1) the injectivity radius of V is larger than a constant depending only on 
the class ^ containing M, 

(2.2.2) V is Hausdorff close to Up. 

The Hausdorff closeness between spaces is defined as follows. 

Definition 2.3 (Gromov [G3]). Let X and Y be compact metric spaces. A (not 
necessary continuous) map / : X -> Y is said to be an s-Hausdorff approximation 
if 

(2.3.1) the e-neighborhood of f(X) is Y, 
(2.3.2) \d(f(x),f(y)) - d(x,y)\ < s, for each x,y e X. 

We say that the Hausdorff distance, dn(X,Y), between X and Y is smaller 
than s if there exist e-Hausdorff approximations from X to Y and from Y to X. 

If V is as in Problem 2.2, a nondegenerate direction in Up is one which is 
"parallel" to some direction in V. 

§3 

In fact the answer to Problem 2.2 itself is negative. But we can prove a bit 
modifided statement. The construction of the space V in 2.2 is based on a 
limit argument. In other words, the space F is a limit of Riemannian manifolds 
contained in class Mn. Hence to study Problem 2.2, we need to study the limit 
behavior of the sequence of Riemannian manifolds. 
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First we need to show that there exist sufficiently many convergent sequences. 
The following result ensures it. 

Theorem 3.1 (Gromov [G3]). Let Sf(D) be a set of all Riemannian manifolds with 
diameter < D and Ricci curvature > — 1. Then ̂ (D) is precompact in the set of 
all compact metric spaces, with respect to the Hausdorff distance. 

Next we need to study the following: 

Problem 3.2. Let M,- G M^ and X be a compact metric space. Suppose that M\ 
converges to X with respect to the Hausdorff distance. What kind of singularity 
can X have ? 

We are mainly interested in the case when the dimension of X is smaller than 
that of M. In this case, we say that M\ collapses to X. 

The first important example of collapsing Riemannian manifolds is discovered 
by M. Berger. In his example, a family of metrics on S3 collapses to S2. Here S2 

is regarded as the quotient of S3 by an action of S1. 
In general, one can construct a collapsing family of metrics on manifolds M 

with torus action, provided each orbit is of positive dimension. The Hausdorff 
limit of this family is the quotient space M/T, which, in general, is singular. The 
other important example is a nilmanifold, which collapses to a point. (See [G2, 
BK].) 

The systematic study of the collapsing phenomena for Riemannian manifolds 
was initiated by Cheeger-Gromov [CGI]. We discuss their results in §5. 

Now we present results about Problem 2.2. In case when M/ is a K(n, 1)-space, 
we can prove the following : 

Theorem 3.3 ([F4]). Let M\ and X be as in Problem 3.2. Assume 7ik(M\) = I, for 
k > 1. Then X = Y/T, where Y is a contractible manifold and F a discrete group 
of isometries. 

In fact we can prove the following: 

(3.4.1) M/ converges to Z. Z is a manifold of the same dimension as M/. The 
convergence is compact C1,a-convergence of metric tensors. 

(3.4.2) Tj converges to a group G of isometries of Z. 
(3.4.3) The connected component Go of G is a simply connected nilpotent Lie 

group. 
(3.4.4) Y = Z/Go, F = G/G0. 

Thus, roughly speaking, the Hausdorff convergence of JC(7c;l)-manifolds is a 
generalization of the convergence of discrete subgroups of Lie group. Collapsing 
phenomenon occurs when discrete groups converge to a continuous group. 

Before discussing the general case, we give applications of Theorem 3.3. 
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Theorem 3.5 ([F4]). There exists a positive number eD such that if an n-dimensional 
Riemannian manifold M (n > 1) satisfies 

(3.5.1) 7tk(M) = l,fork>l, 
(3.5.2) \KM\ < 1, Diam M < D, 
(3.5.3) %\(M) does not contain Z2, 

then 

Vol M > sD. 

Conjecture 3.6. The assumption Diam M < D can be removed. 

In case KM < 0, this was proved by Heintze [H], Gromov [Gl]9 Buyalo [Bu]. 
The following result is not a direct application of Theorem 3.3 but its proof 

uses an idea of the proof of Theorem 3.3. 

Theorem 3.7 (Fukaya-Yamaguchi [FY1]). There exists a positive number SD such 
that if 

£D > KM > - 1 , 

Diam M <D, 

then the universal covering space of M is dijfeomorphic to Rn. 

Theorem 3.7 is an affirmative answer to a conjecture by Gromov [G4]. 

As we remarked before, the limit of manifolds in class Jtn is not necessary 
a manifold. The reason is that a singular space can arise as the quotient space 
M/T of a manifold M by its torus action. Note, however, that the quotient space 
FM/T is always nonsingular. Here FM is the frame bundle of M and the action 
of T on FM is a lift of one on M. This observation leads us to the following: 

Theorem 3.8 ([F3]). Let Mi € Jl, FM\ be their frame bundles equipped with 
metrics induced by ones on M. Let X be a compact metric space. Suppose that 
FM{ converges to X with respect to Hausdorff convergence. 

Then X is a smooth manifold with C1>a-metric. 
Furthermore, there exists a smooth 0(n) action on X such that Mi converges to 

X/0(n) and that the connected components ofisotropy groups are abelian. 

Using Theorems 3.1 and 3.8, we can prove the following: 
Let M e Mn, p e M. Then there exists a manifold V such that 

(3.9.1) injectivity radius of V > const > 0, 
(3.9.2) dH(FBP(s, M), V) is small. 
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§4 

To apply Problem 2.2 to Problem 1.1, we need to study the relation between the 
topological structures of Up and Vp in 2.2. Namely: 

Problem 4.1. Let M\ and X be as in Problem 3.2. Find the relation between the 
topological structures of M/ and X. 

We have the following two results: 

Theorem 4.2 (Fukaya [Fl,2], Yamaguchi [Y2]). Let M\ G JTn and N be a compact 
Riemannian manifold. Suppose that M?- converges to N with respect to the Hausdorff 
distance. Then for each suffciently large i, there exists a map // : M/ —> N, such 
that 

(4.2.1) // 75 a locally trivial fibre bundle, 
(4.2.2) fi is an almost Riemannian submersion, namely 

+ > MQl > e-, 
W\ 

holds for vectors V G TM perpendicular to the fibre, 

(4.2.3) the fibre of fi is of almost nonnegative curvature. (See §7). 

If we assume Mi G JKn in addition, then 

(4.2.4) the fibre is almost flat, namely it satisfies (2.1.1)—(2.1.3), 
(4.2.5) the structure group of fibration is reduced to the group of affine diffeomor

phisms. 

Theorem 4.3 ([F3]). Let Mi and X be as in Theorem 3.8. Then, for each sufficiently 
large i, there exist 0(n) maps fi : F Mi -> X satisfying (4.2.1), (4.2.2), (4.2.4), (4.2.5). 

It follows from Theorem 4.3 that there exists a singular fibration: M/ —• 
X/0(n). The singular fibre corresponds to the singular point of X/0(n). 

Using the results of §§2, 3, 4, we can prove the following: 

Theorem 4.4 ([F5]). There exists a positive number e„ such that if p G M G Mn 

then there exists a neighborhood Up ofp with the following properties. 

(4.4.1) Up is diffeomorphic to a vector bundle over Np/Fp, where Np and Tp is as 
in (2.1.1)-(2.1.3). 

(4.4.2) Up contains Bp(en9M). 

Ghanaat, Min-no, Ruh [GMR] proved a closely related result. 
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§5 

The nilpotent Lie group JVP in Theorem 4.4 depends on the point p. In other 
words the dimension of the collapsing directions changes from point to point. In 
fact, consider the metric 

dt2 + et-2Cdx2 + e-t-2Cdy2, 

on [—C, C] x T2. (Here x and y are coordinates of T2.) Then, in a neighborhood 
of {±C} x T2, the dimension of collapsing direction is one, and in a neighborhood 
of {0} x T2 the dimension of collapsing direction is two. 

In order to study the global behavior of the collapsing part of the manifolds, 
we need to study the above phenomenon. Cheeger and Gromov introduced the 
notion of the local action of the groups for this purpose. 

Definition 5.1 (Cheeger-Gromov [CGI]). An F-structure on a manifold M is a 
subsheaf SF of the sheaf of vector fields such that 

(5.1.1) 3F is a sheaf of abelian Lie algebra, 
(5.1.2) for each p e M there exists a neighborhood Up, its finite covering space 

Up, an action of torus, Tp, on Up, such that the lift of $F to Up is induced 
by the action of Tp. 

They proved the following two results : 

Theorem 5.2 ([CGI]). Let M be a manifold. Assume that there exists an F-structure 
on M such that the dimension of each orbit is nonzero. Then there exists a family 
of metrics gE on M such that 

(5.2.1) (M,ge)eJ£n, • 
(5.2.2) the injectivity radius of (M, ge) is smaller than s. 

Theorem 5.3 ([CG2]). There exists a positive number e„ with the following proper
ties. Let M G Jin. Put • 

Mthin = {p G M | injectivity radius at p < sn}. 

Then there exists an F-structure 3F on Mthm-such that every orbit of it is of positive 
dimension. 

Cheeger-Gromov applied these results to study Gauss-Bonnet type formula 
for noncompact manifolds. ([CG 3,4] etc.) 
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§6 

In Theorem 4.4, we obtained a nilpotent structure but the result is local. In Sect. 5, 
we obtain more global structure but the structure is abelian and not nilpotent. To 
combine them, we need to introduce the action of sheaf of nilpotent Lie algebra. 

Definition 6.1 (Cheeger-Fukaya-Gromov [CFG]). A nilpotent structure on a man
ifold M is a sheaf Jf of vector fields such that for each p there exists a 
neighborhood Up and an action of group Gp on a Galois covering Up of Up with 
the following properties. 

(6.1.1) The connected component Np of Gp is nilpotent. 
(6.1.2) The deck transformation group Tp of the covering: Up -> Up is contained 

in Gp. 
(6.1.3) Gp is generated by Np and rp. 
(6.1.4) [rp : rp n Np] = [Gp : Np] is finite. 
(6.1.5) The lift of Jr to Up is generated by the action Np. 

Theorem 6.2 ([CFG]). There exist e„ and kn with the property that, for each M G 
Jdn there exists a nilpotent structure Jr such that the following holds in addition. 

(6.2.1) Up contains BCn{p,M). 
(6.2.2) The injectivity radius of Up is larger than e„. 
(6.2.3) [Gp : Np] < kn. 

Definition 6.3 ([CFG]). A Riemannian metric g on M is said to be (ß,k)-round, if 
there exists a nilpotent structure Jf on M such that it satisfies (6.2.1)-(6.2.3) in 
addition and that the section of Jf is a Killing vector field of the metric g. (In 
other words the action of Np is isometry for induced metric.) 

Theorem 6.4 ([CFG]). For each ò there exist e = e(ö,n) and k = k(ö,n) such that 
for each Riemannian manifold (M,g) in the class Jtn we can find a metric gs on 
M with the following properties. 

(6.4.1) (M,gs) is (s,k)-round. 
(6.4.2) \g-gs\c»<S. 

We expect that there is a result similar to Theorem 5.2 for nilpotent structure. 
The proof of it is not yet complete. 

§7 

In this section we consider the class Jfn. To study the collapsing phenomena of 
Riemannian manifolds in class Mn, the starting point was Theorem 2.1, which 
characterize the manifolds collapsing to a point. The corresponding problem for 
class Jfn is the study of almost nonnegatively curved manifolds. 
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Problem 7.1. Find a characterization of manifolds M admitting a metric with 

KM ' Diam M2 > —sn, 

where sn is a positive small number depending only on dimension. 

This problem should be very difficult, since it includes the characterization 
of nonnegatively curved manifolds. We describe some results concerning the 
topology of almost nonnegatively curved manifolds. (Some of them hold for 
manifolds of almost nonnegative Ricci curvature.) 

Theorem 7.2 (Gromov-Gallot [G3, Ga]). There exists a positive number Cn such 
that if M is an n-dimensional Riemannian manifold with 

RìCCÌM " Diam M2 > — D, 

then 
bi(M',Q) = rankHi(M;Q) < n - 1 + C£ . 

In particular, if M is of almost nonnegative Ricci curvautre then the first Betti 
number does not exceed the dimension. This is a generalization of a classical 
result by Bochner [B]. 

Theorem 7.3 (Yamaguchi [Y2]). There exists a positive number sn depending only 
on dimension such that if an n-dimensional Riemannian manifold M satisfies 

KM ' Diam M2 > — sn, 

then a finite cover of M is a fibre bundle over b\(M;Q)-dimensional torus. 
If the first Betti number is equal to the dimension then M is diffeomorphic to a 

torus. 

(Compare also [Yl].) 

Theorem 7.4 (Fukaya-Yamaguchi [FY2]). / / M satisfies the assumption of The
orem 7.3 then the fundamental group of M contains a nilpotent subgroup of finite 
index. 

Theorem 7.4 is an affirmative answer to another conjecture in [G4]. 
In fact we can prove a bit more than Theorem 7.4. (The precise statement is 

omitted. See [FY2].) As a corollary we have: 

Theorem 7.5 ([FY2]). There exists cn such that if M satisfies the assumption of 
Theorem 7.3 then we have 

bi(M;Zp)<n, 

for each prime p > cn. 
In case when the equality holds, M is diffeomorphic to a torus. 
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Using Theorem 7.4 we can control the fundamental group of the small 
neighborhood. Namely we have the following: 

Theorem 7.6 ([FY2]). There exists a positive number £„ depending only on dimension 
such that if M G Jr

n and p G M then the image 

Im[7ti(Bp(fin>Af))->7Ci(Bp(l,JfeO)] 

contains a nilpotent subgroup of finite index. 

Conjecture 7.7. Theorems 7,3-7.6 still hold if we replace sectional curvature by 
Ricci curvature. 

In the case when M G J(n one can choose a neighborhood Up which is K(n; 1) 
and whose fundamental group is almost nilpotent. (See Theorem 4.4.) But we can 
not choose such Up of uniform size for M in Jr

n, since the nonnegatively curved 
manifold is not necessary a K(n; l)-space. Hence Theorem 7.6 does not give 
enough information to determine the local topological structure of manifolds in 
the class Jr

n. So far, our knowledge about higher homology or homotopy groups 
of (almost) nonnegatively curved manifolds is quite restricted. The best result 
seems to be Gromov's Betti number estimate, [G5], 

As for Hausdorff convergence of manifolds in the class Jr
n, we have Theorem 

4.2 due to Yamaguchi. But we do not know so much about Problem 3.2 for 
this class. (Recently Burago and Gromov proved that the limit space is almost 
everywhere a manifold.) 

On the other hand, Yamaguchi [Y2] constructed examples of collapsing 
family of metrics using an action of compact groups. Namely, on a manifold M 
on which a compact Lie group K acts, there exists a sequence of metrics gE such 
that (M, gc) G Jfn and that (M, gE) converges to M/K for Hausdorff distance. 
This construction is closely related to the fact that compact Lie group admits a 
metric of positive sectional curvature. 

In noncollapsing situation, (namely the case we assume Vol M > constant > 0, 
in addition,) Grove-Petersen-Wu [GPW] proved a strong result. They conjectured 
that the limit space is a topological manifold in this case. 
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Le Cercle à l'Infini des Surfaces à Courbure Négative 

Etienne Ghys 

Ecole Normale Supérieure de Lyon, 46, allée d'Italie F-69007 Lyon, France 

1. Introduction 

Soit S une surface compacte orientée munie d'une métrique riemannienne g de classe 
C°° à courbure variable strictement négative. Il est bien connu que le revêtement 
universel S de S peut naturellement être compactifié par l'adjonction d'un bord à 
l'infini, noté dS (voir par exemple [1]). Par définition, un point de dS est représenté 
par un rayon géodésique, c'est-à-dire un plongement isométrique r : [0, +oo[ -• S 
et deux tels rayons ri et r2 définissent le même point du bord si la distance entre 
i\(t) et r2(t) est uniformément bornée. Si p est un point de S, on peut représenter 
chaque point de dS par un unique rayon issu de p. Ainsi, le bord ôS s'identifie à 
l'espace des vecteurs unitaires de l'espace tangent à S en p; il est donc homéomorphe 
à un cercle. Bien sûr, le groupe fondamental F de S opère sur S et donc sur le cercle 
dS. Nous nous proposons ici de décrire quelques résultats relatifs à cette action. 
Notre but n'est pas de les démontrer mais d'essayer de les motiver et d'indiquer les 
liens qui les unissent. 

2. L'aspect topologique et la cohomologie bornée 

D'un point de vue topologique, il n'y a qu'une action à étudier. C'est un fait bien 
connu depuis longtemps. 

Théorème. Soient gx et g2 deux métriques à courbure négative sur la même surface 
compacte S. Alors les actions du groupe fondamental de S sur les bords pour g1et g2 

du revêtement universel S sont topologiquement conjuguées. 

Pour montrer ce théorème, on constate qu'un rayon r1 dans S pour la métrique 
g-y n'est pas nécessairement un rayon pour g2 mais que c'est un "quasi-rayon": la 
02-distance entre i\(t) et i\(tf) est comprise entre c"1^ — t'\ et c\t — t'\ pour une 
certaine constante c > 0. Ceci permet de montrer l'existence d'un rayon r2 pour g2 

qui est à distance bornée de r^. Les bords de S pour gx et g2 sont alors naturellement 
identifiés de manière F équivariante. 

De manière plus conceptuelle, on peut associer un bord à un groupe de type fini 
G (voir [7] et [19]). Pour cela, on se fixe une partie génératrice finie et on considère 
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le graphe de Cayléy de G correspondant à cette partie génératrice. Si une arête relie 
les éléments yx et y2 de G, on équipe cette arête d'une métrique qui la rend iso
métrique à un intervalle de longueur (n + 1)~2 où n = infflly! ||, \\y2 II) et ||ft|| désigne 
la longueur de y{ par rapport à la partie génératrice choisie. Le graphe de Cayley 
de G devient ainsi un espace métrique non complet (si G est infini). Le bord dG de 
G est alors défini comme l'espace qu'il faut ajouter à ce graphe pour le compléter. 
Il ne dépend pas du choix de la partie génératrice. Le groupe Aut(G) des auto-
morphismes de G opère naturellement sur ôG. En particulier, G opère sur dG (via 
les automorphismes internes). Ce bord est particulièrement utile lorsque G est un 
groupe hyperbolique au sens de M. Gromov [19]. Par exemple, si G est le groupe 
fondamental F d'une surface compacte S de genre supérieur ou égal à 2, le bord ôG 
s'identifie à dS. Ainsi, l'action que nous étudions n'est autre que celle du groupe T sur 
son bord. 

Examinons rapidement le cas particulier où la courbure de la métrique g est — 1. 
Le revêtement universel S s'identifie alors au disque de Poincaré D2 et son groupe 
d'isométries directes à PSL(2, JR). Le bord de D2 est le cercle, ici identifié à la droite 
projective réelle P1. Dans ce cas, l'action étudiée de F sur P1 est projective et 
provient d'un plongement de F dans PSL(2, R) comme sous-groupe discret 
co-compact. L'espace de ces plongements (à conjugaison près) est l'espace de Teich
müller; il est de dimension finie. Bien que toutes ces actions projectives soient 
topologiquement conjuguées, il est facile de s'assurer qu'elles ne sont C^-conjuguées 
que si elles sont projectivement conjuguées. D. Sullivan [31] montre même que si 
deux de ces actions sont conjuguées par une application mesurable qui respecte les 
ensembles négligeables au sens de Lebesgue, alors ces actions sont projectivement 
conjuguées. 

Comment caractériser le type topologique de cette action? Si un groupe dis
cret G opère sur le cercle en respectant l'orientation, on peut construire un fibre 
en cercles au dessus de l'espace d'Eilenberg-MacLane K(G, 1). La classe d'Euler 
de ce fibre, élément de H2(G, Z), est évidemment un invariant de conjugaison 
topologique (respectant l'orientation). Cet invariant est cependant insuffisant. Si 
G = Z par exemple, ce second groupe de cohomologie est trivial. Dans [12], nous 
introduisons un invariant plus fin, élément de Hl(G, Z), second groupe de coho
mologie bornée à coefficients entiers [18]. Cette cohomologie est celle du sous-
complexe du complexe d'Eilenberg-MacLane formé des cochaînes bornées (comme 
fonctions de G" vers Z). Voici comment on procède pour définir l'invariant en 
question, 

Soient / i , f2, /3 trois homéomorphismes directs du cercle S1 et x un point base 
sur S1. Posons c(fuf2, /3) = 1 si les points fx(x), f2(x), f2(x) sont distincts et placés 
dans un ordre cyclique rétrograde sur le cercle ou si f^(x) = f3(x) ^ f2(x) et posons 
c(/i» fi» fs) = 0 dans les autres cas. Il est aisé de s'assurer que c est un cocycle. Si (j> 
est une action du groupe discret G sur le cercle par homéomorphismes directs, on 
obtient ainsi, par image réciproque, une classe ^*(c) dans H2(G, Z). 

On vérifie facilement que l'image de cette classe dans la cohomologie usuelle est 
la classe d'Euler (voir aussi [25]). Nous appellerons cette classe la classe d'Euler 
bornée de l'action (j). Si G = Z, on a H%(G, Z) ~ R/Z et la classe d'Euler bornée n'est 
autre que le nombre de rotation du générateur de l'action. 
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Théorème [12]. Soient (j>x et <f)2 deux actions du même groupe G sur le cercle, par 
homéomorphismes directs. On suppose que toutes les orbites de (j)x et (j>2 sont denses 
dans le cercle. Alors, (f>i et <j>2 sont topologiquement conjuguées, par un homéomor-
phisme direct, si et seulement si les classes d'Euler bornées (f>f (c) et (f>*(c) sont égales 
dans Hë(G, Z). 

Lorsque les orbites ne sont pas supposées denses, on a un énoncé plus faible qui 
utilise une notion de semi-conjugaison (voir [12] et aussi [32]). 

Revenons au cas où G est le groupe fondamental F de S. La classe d'Euler d'une 
action de F sur le cercle est un élément de H2(T, Z), c'est-à-dire un entier que nous 
noterons eu. Un théorème de Milnor-Wood [35], qui est d'ailleurs l'une des origines 
de la notion de cohomologie bornée, affirme que cet entier vérifie l'inégalité 
\eu\ < \x(S)\ °ù x(S) désigne la caractéristique d'Euler-Poincaré de S. Dans le cas 
de l'action de F sur le cercle ôS qui correspond à une métrique à courbure négative, 
on a en fait l'égalité eu = ±x(S). 

Dans un joli article [28], S. Matsumoto montre que si F opère sur le cercle et 
si le nombre d'Euler est maximal, i.e. si eu = x(S)> alors la classe d'Euler bornée ne 
peut prendre qu'une valeur, à savoir celle correspondant à l'action de F sur son 
bord. Il peut alors en déduire la caractérisation topologique suivante qui répond 
positivement à une conjecture de W. Goldman [17]. 

Théorème [28]. Considérons une surface compacte orientée S de genre supérieur ou 
égal à 2 et une action du groupe fondamental de S sur le cercle, par homéomorphismes 
directs. On suppose que toutes les orbites sont denses sur le cercle et que le nombre 
d'Euler vérifie eu = ±x($)- Alors, cette action est topologiquement conjuguée à 
l'action naturelle de ce même groupe sur le bord dS du revêtement universel de S, pour 
n'importe quelle métrique à courbure négative sur S. 

L'hypothèse de densité des orbites est en fait inutile si l'on se restreint à des 
actions suffisamment différentiables. 

Théorème [13]. Considérons une surface compacte orientée S de genre supérieur ou 
égal à 2 et une action du groupe fondamental de S sur le cercle, par difféomorphismes 
directs de classe C2 (resp. analytiques réels). On suppose que le nombre d'Euler du 
fibre associé vérifie eu = ±x(S) (resp. eu ^ 0). Alors, toutes les orbites sont denses 
dans le cercle. 

La démonstration se fonde sur les théorèmes de structure des feuilletages de 
codimension 1, à la Denjoy-Sacksteder. 

Citons encore un résultat, obtenu avec J. Barge, et dont la démonstration utilise 
aussi la cohomologie bornée. Soit x un point base sur le bord dS correspondant à 
une métrique g. Si yx, y2, y3 sont trois éléments de F, on peut considérer l'aire 
a(yl9 y2, y3) du triangle idéal de S de sommets ^(x), y2(x), y3(x). C'est un 2-cocycle 
borné sur F à valeurs réelles. Dans le cas de courbure — 1, l'aire de ces triangles 
vaut ± n et la classe de cohomologie bornée de a est égale à 2TC fois la classe d'Euler 
bornée (considérée comme classe réelle). La réciproque est plus délicate. 
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Théorème [2]. Soit g une métrique riemannienne à courbure négative sur la surface 
compacte S. On suppose que tous les triangles idéaux du revêtement universel S sont 
d'aire %. Alors, la courbure de g est constante, égale à — 1. 

3. La différentiabilité du bord 

Soient p et q deux points de S. Nous avons déjà observé que dS est naturellement 
identifié aux cercles unités Sp et Sq dans les espaces tangents en p et q à S. Ainsi, il 
existe un homéomorphisme naturel npq entre Sp et Sq. Quel est le degré de régularité 
de ces homéomorphismes? Un résultat classique de E. Hopf affirme qu'ils sont de 
classe C*[23] (voir aussi [22]). Un résultat plus fort a été obtenu par S. Hurder et 
A. Katok. 

Théorème [24]. Les homéomorphismes %pq sont de classe C2~E pour tout s > 0. 

Ce résultat est à comparer au suivant sur lequel nous allons nous attarder un 
peu plus. 

Théorème [15]. Si les homéomorphismes npq sont de classe C2, alors la courbure de 
la métrique considérée est constante. 

Ce théorème fait suite à un théorème local de S. Hurder et A. Katok [24] qui 
se fondait sur un résultat de [11] que nous mentionnerons plus loin. Il a donné lieu 
par la suite à un certain nombre de développements, tout spécialement en dimension 
supérieure. Puisque nous ne traitons ici que du cas des surfaces, nous ne décrirons 
pas ces développements qui aboutissent à une caradtérisation analogue des espaces 
localement symétriques à courbure négative mais nous renvoyons à [3, 5, 6, 8, 
20, 26]. Grâce à ces travaux, et tout particulièrement à ceux de M. Kanai, la 
démonstration du théorème précédent s'est significativement simplifiée. Nous allons 
esquisser ici une preuve assez élémentaire. 

Soit TXS le fibre unitaire tangent à S et <ßt le flot géodésique de S, agissant sur 
TtS. Soient &' et J*"" les feuilletages^tables et instables faibles de $v Les feuilles du 
relevé # 5 de !F* au fibre unitaire Tx S sont constituées de tous les vecteurs unitaires 
qui définissent des rayons géodésiques asymptotes. L'espace des feuilles de # s 

est donc homéomorphe au bord ôS. Les fibres de la fibration en cercles de TtS 
sont transverses à # s et les applications d'holonomie induites sur ces fibres sont 
précisément les homéomorphismes %pq. Ainsi, la différentiabilité des npq est équi
valente à celle du feuilletage #"s (ou, d'ailleurs, de 3FU puisque ces deux feuilletages 
sont conjugués par l'involution de TXS envoyant un vecteur sur son opposé). 

Plaçons nous donc dans l'hypothèse où ces feuilletages sont de classe C2. La 
première étape consiste à montrer qu'ils sont en fait transversalement projectifs. Un 
disque D transverse à ^ est muni d'une forme d'aire Q (provenant de la forme de 
Liouville) et de deux champs de directions Ls et L", traces de ^s et #"". Ces structures 
permettent de définir une métrique pseudo-riemannienne q sur D: si v est un vecteur 
tangent à D et si vu et vs sont ses composantes sur U et L", on pose q(v) = Q(vu, vs). 
C'est une métrique de classe C2 si J^5 est de classe C2 et Ls et L" sont les directions 
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isotropes de q. On a ainsi construit une métrique pseudo-riemannienne sur le fibre 
normal à <fit, évidemment invariante par <j)v La courbure de q est donc une fonction 
continue constante sur les orbites de </>t9 elle est donc constante car (f>t est transitif. 

En d'autres termes, tous les disques transverses sont localement isométriques à 
un même plan lorentzien de courbure constante. Il est très facile d'en conclure que 
J*5 est muni d'une structure transverse projective (ou affine si la courbure de q était 
nulle). Chaque fibre de Tx S, étant transverse à !FS, est ainsi équipée d'une structure 
projective ou affine et les applications d'holonomie préservent cette structure. 
Puisque nous connaissons a priori la topologie de l'action de F sur le cercle, on 
montre que c'est en fait le cas projectif qui se présente et que l'action de F sur le 
cercle est C2-conjuguée à celle d'un sous-groupe discret co-compact de PSL(2, R). 

Ainsi, si le feuilletage ^s est de classe C2, il est C2-conjugué au feuilletage stable 
du flot géodésique d'une métrique à courbure —LU faut encore en conclure que la 
métrique considérée est elle même à courbure constante. On dispose actuellement 
de deux méthodes pour y parvenir. La première consiste à développer encore des 
arguments analogues à ceux utilisés plus haut et à montrer qu'en fait (j>t est conjugué 
au flot géodésique d'une métrique à courbure constante. On peut alors conclure en 
appliquant le théorème de rigidité de A. Katok [27] qui caractérise la courbure 
constante en termes d'entropie. La seconde méthode est due à Y. Mitsumatsu et elle 
est reliée à l'invariant de Godbillon-Vey. Nous avons choisi de décrire ici cette 
méthode car cet invariant interviendra encore par la suite. 

Rappelons la définition de cet invariant. Soit !F un feuilletage de codimension 1, 
transversalement orientable et de classe C2 sur une variété M et soit œ une 1-forme 
différentielle qui le définit. Il existe alors, d'après le théorème de Frobenius, une 
forme œx telle que dœ = œ A œx. Il se trouve que la 3-forme œx A dœ1 est fermée 
et que sa classe de cohomologie ne dépend que de 3F\ c'est la classe de Godbillon-
Vey de #", notée GV(#"). Lorsque M est une variété fermée orientée de dimension 
3, l'évaluation de GV(#") sur la classe fondamentale de M est un nombre réel; c'est 
l'invariant de Godbillon-Vey que nous noterons gv(êF). Par exemple, considérons 
le cas du feuilletage stable #"s du flot géodésique d'une métrique à courbure 
constante — 1. Nous savons que le fibre TXS s'identifie à un espace homogène 
PSL(2, R)/F. Sur PSL(2, R), il existe une base de formes invariantes à droite œ, cox, 
œ2 telle que: 

dœ = œ A cox; dœx = œ A œ2; dœ2 = cox A œ2. 

La forme œ passe au quotient sur Tx S et définit le feuilletage &*. L'invariant de 
Godbillon-Vey est alors facile à calculer: c'est le volume de Tx S. Le théorème de 
Gauss-Bonnet donne: 

gv(<Fs) = 4n2x(S). 

Dans [29], Y. Mitsumatsu eut l'idée de calculer l'invariant de Godbillon-Vey 
du feuilletage stable du flot géodésique d'une métrique à courbure négative variable, 
en supposant celui-ci de classe C2. Voici le principe de son calcul. Sur Tx S, la théorie 
du repère mobile permet de construire trois champs de vecteurs V, Xx, X2 qui 
forment en chaque point un repère orthonormé et sont tels que: 
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i) V est le champ associé à l'action de S0(2) sur TXS, 
ii) Xx engendre le flot géodésique, 
iii) IV, X{\ = X2; [V, X2-] = -Xx; [_XX, X J = -(k oP)Voùk est la courbure 

de S et p est la projection de TXS sur S. 
Il existe une fonction F définie sur TXS telle que le feuilletage stable #"s soit 

engendré par Xx et X2 + FV. La condition d'integrabili té est facile à écrire; elle est 
équivalente à l'équation de Ricatti: 

Xx(F) + F2 + kop = 0 

où XX(F) désigne la dérivée de la fonction F dans la direction Xx. On dispose alors 
de toutes les données nécessaires à l'évaluation de l'invariant gv(3Fs). Tous calculs 
faits, on trouve: 

J-gv(^
s) = 4n2x(S) - 3 V(F)2 dvol. 

Revenons à notre situation. Si le feuilletage #"s est de classe C2, nous avons vu 
qu'il est C2-conjugué au feuilletage stable du flot géodésique d'une métrique à 
courbure —1. L'invariant gv(!Fs) est donc égal à 4n2x(S). La formule précédente 
montre alors que V(F) est identiquement nul, c'est-à-dire que F est constant sur les 
fibres de p. Il est facile d'en conclure que la courbure est constante. 

4. Le problème de l'invariance topologique 
de la classe de Godbillon-Vey 

Soit J^s le feuilletage stable du flot géodésique d'une métrique de S à courbure — 1. 
Nous avons déjà vu que l'invariant de Godbillon-Vey de #"s ne dépend pas du choix 
de cette métrique. Est-il possible de perturber #"s parmi les feuilletages de classe 
C00, hors de l'espace des feuilletages stables de flots géodésiques, de façon à faire 
varier la classe de Godbillon-Vey? 

Nous savons que ^s peut être défini par une forme co telle que dœ = œ A cox 

avec œx A dœx non singulière. Il est clair que cette même propriété est satisfaite 
pour tous les feuilletages J ,̂ disons de classe C00, qui sont C3-proches de tFs. En 
dérivant la relation dœ = œ A œx, on constate qu'il existe une forme œ2 telle que 
dœx = œ A œ2. Les formes œ, œx,œ2 sont alors linéairement indépendantes partout 
et on peut donc définir deux champs de vecteurs X et Y, tangents à #" par: 

œ(X) = 0; œx(X) = 1; œ2(X) = 0 

œ(Y) = 0; œx(Y) = 0; œ2(Y) = 1 

Des calculs extrêmement simples montrent alors que les champs X et Y préservent 
le volume co A œx A co2 et que [X, 7] = — Y. Cette dernière relation décrit l'algèbre 
de Lie du groupe affine GA de la droite, i.e. du groupe des transformations 
xh+ax + b(a> 0). On conclut donc que le feuilletage 3F est défini par une action 
localement libre de G A sur TXS, préservant le volume œ A œx A œ2. Ces actions 
sont complètement classées dans [11], ce qui permet alors d'obtenir le résultat de 
rigidité suivant: 
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Théorème [11]. Tout feuilletage de classe C00 qui est suffisamment C3-proche du 
feuilletage stable du flot géodésique d'une métrique à courbure —\,est C°°-conjugué 
au feuilletage stable du flot géodésique d'une (autre) métrique à courbure — 1. 

Résumons la situation. Toutes les actions de Fde classe C2 sur le cercle, de classe 
d'Euler maximale, sont topologiquement conjuguées. Deux actions projectives 
provenant de métriques à courbure — 1 ne sont ^-conjuguées que si les métriques 
correspondantes sont isométriques. Une action de classe C00, qui est C3-proche 
d'une de ces actions projectives est C°°-conjuguée à une autre action projective. 
Peut-on globaliser ce dernier énoncé? 

Problème. Soit F le groupe fondamental d'une surface compacte orientée S de genre 
supérieur ou égal à 2. Considérons une action de T sur le cercle par difféomorphismes 
directs de classe C00. Si le nombre d'Euler de l'action est maximal (i. e. égal à ±x(S)), 
peut-on affirmer que l'action est C™-conjuguée à une action projective (associée à une 
métrique à courbure —1)1 

Ainsi, les déformations des feuilletages stables de flots géodésiques, dans l'espace 
des feuilletages de classe C00, gardent un type topologique constant mais ont aussi 
un invariant de Godbillon-Vey constant. C'est l'une des motivations de la question 
suivante. 

Problème. Soient (Mx, 3Fx) et (M2, 3F2) deux variétés compactes feuilletées, de co
dimension 1, transversalement orientables, et de classe C2. On suppose qu'il existe un 
homéomorphisme h entre Mx et M2 qui envoie 3FX sur 3F2. L'isomorphisme h* entre les 
cohomologies de Mx et M2 envoie-t-il la classe de Godbillon- Vey de 3F2 sur celle de 3FX ? 

Si l'on consent à un élargissement du domaine de définition de la classe de 
Godbillon-Vey, la réponse à la question précédente est négative. Nous allons 
mentionner rapidement deux tels élargissements. 

Il n'est pas possible de définir un invariant pour les feuilletages de classe C1. 
Ceci résulte de la contractibilité du classifiant des feuilletages transversalement 
orientables, de codimension 1 et de classe C1, démontrée par T. Tsuboi [33], La 
classe de Godbillon-Vey est cependant invariant par conjugaison de classe C1 (voir 
[16] et [30]). D'autre part, dans [24], S. Hurder et A. Katok définissent un invariant 
pour les feuilletages de classe C1+E, avec e > 1/2. En particulier, on peut calculer 
l'invariant du feuilletage stable du flot géodésique d'une métrique à courbure 
négative variable. Dans ce cas, la formule de Y. Mitsumatsu est encore valable et 
montre que l'invariant de Godbillon-Vey varie effectivement si la courbure varie. 
Cette même formule montre d'ailleurs que l'invariant prend sa valeur maximale 
précisément sur les métriques à courbure constante. 

Dans une autre direction, on peut aussi définir l'invariant de Godbillon-Vey 
pour les feuilletages de classe C2 par morceaux [10] et on peut aussi se poser le 
problème précédent dans ce contexte élargi. Nous y répondons négativement à 
travers le résultat suivant: 
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Théorème [14]. L'action du groupe fondamental d'une surface à courbure négative sur 
le bord de son revêtement universel est topologiquement conjuguée à une action affine 
par morceaux. 

Ceci donne effectivement une réponse négative au problème car un feuilletage 
transversalement affine par morceaux a un invariant de Godbillon-Vey nul. 

Pour démontrer ce dernier théorème, on utilise le fait que le flot géodésique fa 
possède une section de Birkhoff, c'est-à-dire qu'il existe une surface à bord E dans 
TXS dont l'intérieur est transverse à fa et dont le bord est constitué d'orbites 
périodiques de fa. De plus, toute orbite de fa coupe E une infinité de fois et on 
peut donc définir une application de premier retour r;E^>E (voir [4,9]). Les 
feuilletages #"s et #"" tracent sur E deux feuilletages transverses ayant un comporte
ment bien contrôlé au voisinage du bord. On montre alors que r est topologiquement 
conjugué à un difféomorphisme pseudo-Anosov qui agit de manière affine sur 
l'espace de ses feuilles stables. Par conséquent, 3FS est topologiquement conjugué à 
un feuilletage transversalement affine par morceaux, les cassures correspondant aux 
feuilles contenant les courbes du bord de E. Une description explicite des homéo
morphismes affines par morceaux ainsi obtenus a été récemment donnée par 
N. Hashiguchi [21]. 

D'une certaine façon, ce contre-exemple à l'invariance topologique de la classe 
de Godbillon-Vey est peu satisfaisant. On est tenté de penser que par cette 
conjugaison topologique, la classe de Godbillon-Vey s'est concentrée dans les 
singularités du feuilletage affine par morceaux. Il est effectivement possible de définir 
un "invariant discret" qui tient compte de ces singularités mais on montre que, même 
en ajoutant cette contribution, la classe n'est pas un invariant topologique. 

Les deux extensions du domaine de définition de la classe de Godbillon-Vey que 
nous Venons d'évoquer ont été récemment unifiées par T. Tsuboi [34]. Il définit un 
pseudogroupe d'homéomorphismes de la droite qui contient à la fois les difféo-
morphismes de classe C1+8 (s> 1/2) et les homéomorphismes qui sont de classe 
C2-par morceaux. Il montre ensuite comment définir une classe de Godbillon-Vey 
pour les feuilletages de codimension 1 dont la structure transverse est modelée sur 
ce pseudogroupe. Il semble bien que ceci soit "le" domaine maximal d'existence de 
l'invariant. 

Le problème de l'invariance topologique dans le cadre des feuilletages de classe 
C2 reste cependant ouvert. 
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Metrie and Topological Measurements of Manifolds 

Karsten Grove 

Department of Mathematics, University of Maryland, College Park, MD 20742, USA 

A basic question in riemannian geometry asks how properties detected by metric 
measurements of a riemannian manifold are reflected in properties detected by 
topological measurements. If (M, g) is riemannian manifold, a metric measurement 
can by definition be given in terms of its distance function. A topological measure
ment on the other hand is given in terms of algebraic topological invariants of M 
and/or of objects associated with M. Examples of invariants resulting from such 
measurements are e.g. diameter, volume, and sectional curvature bounds on the metric 
side, and Betti numbers, characteristic numbers etc. on the topological side. 

Here we consider only metric invariants that assign to any (closed) riemannian 
manifold a number. These invariants can therefore be thought of as functions on 
the collection Jt of all isometry classes of (closed) riemannian manifolds, and 
as such they divide this class into smaller natural subclasses. Since topological 
properties are not affected by scaling of the metrics, one needs to normalize, or at 
least bound the size of (M, g). Quantities commonly chosen for this purpose are 
diameter or volume. 

Ultimately one would like to give a complete topological description of a 
riemannian manifold making as few metric measurements as possible. As a first step 
one tries to bound the topology in terms of its geometry. Results of that type are 
usually referred to as finiteness theorems. In metrically extreme cases the goal is to 
determine all the possible topological types. Results of this kind are called pinching 
theorems. 

As an illustration, suppose we normalize all closed, connected riemannian 
71-manifolds, M,n>2, so as to have the same diameter as the unit w-sphere, i.e. 
diam M — %. The function minsec, that assigns to any such manifold the minimum 
of its sectional curvatures, is then bounded above by 1, i.e. minsec M < I, according 
to the classical Bonnet-Myers theorem. For the superlevel sets, minsec > A one has 
the following finiteness theorem. 

0.1 Betti Number Theorem [G2]. Let n > 2 be an integer and A < 1 a real number. 
There is a constant C = C(n, A), such that for any field, F and any closed riemannian 
n-manifold, M with diam M = n and sec M > A one has dim H%(M; F) < C. 
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Near the extreme value 1 of minsec there is only one manifold topologically as 
stated in the following pinching theorem. 

0.2 Diameter Sphere Theorem [GS]. Any closed riemannian n-manifold M, n > 2, 
with diam M = n and sec M > 1/4 is homeomorphic to the n-sphere. 

The bound sec M > 1/4 is optimal in this theorem as e.g. the real projective 
space of constant curvature 1/4 shows. A corresponding rigidity theorem for mani
folds with diam M = % and sec M > 1/4 was proved in [GG1, 2]. 

In the general setting of (0.1), one cannot expect much more information (other 
than possibly improving the constant C [A]). To get more refined information it 
seems therefore natural to subdivide the superlevel sets minsec > A in terms of other 
metric measurements. 

The purpose here is to report on recent progress in this general area. This 
progress involves on the metric side the use of critical point theory for distance 
functions as conceived in [GS] (cf. [G2] and for a survey [Gr]), and the use of 
Hausdorff convergence of metric spaces as initiated in [Gl] (cf. [P2] for a survey). 
On the topological side, powerful results from controlled topology as developed in 
[CF, F] and [Ql, 2, 3] play a crucial role. 

1. Distance and Volume Comparison 

Throughout we let M denote a closed, connected riemannian n-manifold with n > 2. 
Following Rinow [R], SJ is the complete, simply connected «-dimensional space 
form of constant curvature A. The distance function on M, Sn

Â, or any other metric 
space will be denoted by d. To distinguish point in SJ from points in other metric 
spaces we use the notation p,q,..., etc., rather than p,q,..., etc. 

For each p e M and r > 0, let B(p, r), resp. D(p, r) be the open, resp. closed r-ball 
in M centered at p. Moreover, let 9è(p) <= TpM be the region bounded by the tangent 
cut locus <&(p), i.e. v G @(p) if and only if the exponential map expp : TpM -> M maps 
the segment, [0, v\ in TpM to a segment, i.e. minimal geodesic in M. 

The injectivity radius of M, inj M, is by definition the largest r > 0 so that 
expp|B(0p, r) is injective for all p e M. The smallest R > Oso that some expp|D(0p, R) 
is surjective is easily seen to be the number minp maxg d(p, q), which makes sense 
in any compact metric space. This number is called the radius of M and is denoted 
by rad M. 

Obviously rad M < diam M < 2rad M. In particular, imposing a bound on the 
diameter is equivalent to imposing a bound on the radius. 

Now suppose sec M > A. This condition can be viewed in the following way: 
For each p e M replace the euclidean metric on B(0p, r) <= TpM by a constant 
curvature A metric via a radial conformai change (r < u/^/Ä if A > 0). Then <3(p) is 
a proper compact subset of SJ for every p e M, except when A > 0 and M isometric 
to SJ. In the latter case we interpret <3(p) as SJ. The Toponogov triangle comparison-
theorem is then equivalent to 
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1.1 Distance Comparison Theorem. The exponential map expp : $)(p) -• M is distance 
nonincreasing, when Q)(p) <= SJ is given the induced metric from SJ. 

This is the basis also for volume comparison of metrically defined subsets of M 
with corresponding subsets in SJ. For clarity, we list three situations of obvious 
interest although they are all special cases of one general result [GP2] (cf. also 
[Du]). 

1.2 Half Spaces. Fix peM and a closed Q a M. Consider p = exp~1(p) and 
Q = exp;|_(ß)in®(p) c SJ. For the half spaces H(p, Q) = {x e M\d(x, p) < d(x, Q)} 
and H(p, Q) in M and SJ respectively we have 

vol H(p,Q)< vol H(p, Q). 

1.3. Swiss Cheeses. Define the swiss cheese K relative to D(p, R) and r : Q -• 1R+ as 
the complement K((Q, r); (p, R)) = D(p, R) - [jqeQ B(q, r(q)). Then 

vol K((Q, r); (p, R) < vol K((Q,r); (p, R)) 

where f = i\ o expp : Q -> R+. 

1.4 Ball Collection. For the union D(Q, r) = [jqeQ D(q, r(q)) one has vol D(Q, r) < 
vol D(I(Q), r o r 1 ) , provided I.Q-+ I(Q) c SJ is an isometry. 

The estimates (1.2)—(1.4) and (1.7), (1.8) below do not hold under the weaker 
curvature assumption Rie M >(n — I)A. This, however, is sufficient for the follow
ing simple extension of the so-called Bishop-Gromov volume comparison theorem. 

1.5 Relative Volume Comparison. For finite Q c M, the function vol D(Q, R)/v'}(R) 
is non-increasing in R. Here UJ(JR) = vol D(p, R) in SJ. 

This theorem is the basis for various packing arguments. A subset Q cz M is called 
a weak R-net in M if D(Q, R) = M. Examples of such nets are provided by maximal 
sets Q for which B(q, R/2), q e Q are mutually disjoint. For fixed « > 2 , / e R and 
D > 0 this together with (1.5) yields a covering function. 

1.6 N(E) = CXS-", EE(0,DI Cx = C(n,A,D)>0. 

For any closed riemannian n-manifold M with diam M < D and Rie M >(n — 1)A, 
i.e. for every e G (0, D], any such M can be covered by <N(s) closed e-balls. 

The relative volume comparison (1.5) can also be used to estimate the right hand 
sides of (1.2) and (1.3) in an important special case: (i) there is an r > 0 such that 
d(p, q) = r,qe Q, and (ii) the set of directions of segments pq><iEQ f ° r m a weak 
ö-net, 0 > 7i/2 in the unit sphere S""1 <= 7^SJ. If furthermore quq2e SJ are chosen 
so that d(p, qx) = d(p, q2) = r and ang (fpqx, pq2) = 2% — 29, then 

1.7 vol H (p, Q) < vol H(p, {qx, q2}), and 

1.8 vol K((Q, r); (p, R)) < vol K({qx, q2}, r); (p, R)), r constant. 
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Now fix v > 0 in addition to JV, A and D as above. Combining (1.2) and (1.7) 
with a critical point theory argument for d : M x M -> R considered as the 
distance function in M x M from the diagonal A a M x M gives constants 
C2 = C2(n, / , D9 v) > 1 and £ = R(n, A, D,v)>0 such that 

1.9 g(e) = C2e, e G (0, K] 

is a contractibility function for any closed riemannian n-manifold M satisfying 
sec M > A, diam M < D and vol M >v, i.e. every £-ball in such M is contractible 
in the concentric C2 • e-ball. 

The existence of covering and contractibility functions as in (1.6) and (1.9) are 
key ingredients in the finiteness and pinching theorems reported on here. 

2. The Gromov-Hausdorff Topology 

In this section we outline topological and geometric properties of Gromov-Hausdorff 
limit spaces (cf. [Gl]) suited for our purposes. 

Let X, Y, Z, Xt, i = 1,2,... be compact metric spaces. If X and Y are isometrically 
embedded in Z, the classical Hausdorff distance, d^ satisfies d^(X, Y) < s if and 
only if y cz B(X, s) and X cz B(Y, s). For the Gromov-Hausdorff distance dGH one 
has dGH(X, Y) < s if and only if d^(X, Y) < e from some metric on Z = XMY 
extending the ones on X and Y. Similarly X = lim Xt in the Gromov-Hausdorff 
topology if and only if d%(X, Xt) -> 0, i -> oo in some extended metric on Z = 

2.1 Precompactness Theorem [Gl] . A class x of compact metric spaces is precompact 
if and only if there is a common covering function for all X e x-

Now let x(N, Q) be the class of compact metric spaces which have JV in (1.6) as 
a covering function and Q in (1.9) as a contractibility function. Since all spaces having 
(1.6) as covering function have dimension <n by [PS], a result of Borsuk [Bo] 
combined with (2.1) implies (cf. also [PI]). 

2.2 Compactness Theorem [GPW]. The class /(JV, Q) is compact and dim X < n 
for any X e x(N, Q). 

Using the contractibility properties of X e x(N, Q) one can construct explicit 
homotopy equivalences between nearby spaces as in [GP1] (see [PI]). In particular 

2.3 Homotopy Finiteness Theorem [PI] . The class x(N, Q) contains only finitely 
many (simple) homotopy types. 

The application of controlled topology is based on the important observation 
that the homotopy equivalences and corresponding homotopies alluded to above 
are controlled in size in terms of dGU(X, Y). In the context of manifolds, this together 
with the results of Begle [B] and Quinn [Q3] proves 
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2.4 Almost Compactness Theorem [GPW]. Let M(N, Q) be the subset of closed 
topological n-manifolds in /(JV, Q). Any X e Ji(N, Q) is a generalized n-manifold and 
if n^3 it admits a manifold resolution. 

Since X x S1 x S1 satisfies the disjoint disc property (cf. [D]) it follows from 
Edwards approximation theorem [E] that it is a manifold. Consequently, by results 
of Chapman and Ferry [CF, F] there are only finitely many homeomorphism types 
among M x S1 x S1, M e M(N, Q). The controlled n-cobordism theorem [Ql, 2] 
is then used to complete the proof of 

2.5 Topological Finiteness Theorem [GPW]. The class of closed n-manifolds, n / 3, 
with metrics having (1.6) as covering functions and (1.9) as contractibility function 
contains at most finitely many homeomorphism types. 

We conclude this section with a brief discussion of geometric properties of limit 
spaces X = lim Mi9 where sec Mt ^ A and diam M < D. First of all, X is an inner 
metric space, i.e. the distance between points in X is the infimum of lengths of curves 
joining them. In particular, one has the notion of geodesies in X. Moreover, 

2.6 Exponential Maps [GP2]. Let p e X = lim Mh sec M^A and p G SJ. There 
is a compact subset <3(p) cz SJ and a distance nonincreasing surjective map 
expp : $)(p) -• X. Moreover, exp^ maps segments from p G @(p) cz SJ to segments in 
X from p, and any segment from p is the image of a segment from p. 

It should be pointed out that the pairs (@(p), expp) in (2.6) are by no means 
unique! Using the nontrivial fact that geodesies in X are limits of geodesies in Mt 

one gets 

2.7 Curvature for Limits [GP2]. X = lim Mi9 sec M^A has Toponogov curvature, 
sec X ^ A, i.e. standard distance comparison holds for geodesic triangles in X. 

As an interesting consequence, X has everywhere constant dimension. This is 
of interest in situations of collapse (cf. also [Fu]). 

3. The Volume Function 

In this and the next section we consider sub- or superlevel sets of functions restricted 
to the classes of J^(n), and M*(n) of closed connected riemannian n-manifolds M, 
n > 2 with sec M > A and diam M < D, rad M < R respectively. 

The following finiteness theorem is an immediate corollary of (1.6), (1.9), (2.3), 
(2.5) and the fact that every closed topological n-manifold carries at most finitely 
many inequivalent smooth structures, when n ^ 4 (cf. [KS] for n ^ 5). 
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3.1 Diffeo/Top-Theorem [GP1, GPW]. Fix n > 2, A e IR and D,v>0. The class 
of closed riemannian n-manifolds M with sec M > A, diam M < D and vol M > v 
contains at most finitely many diffeomorphism-, homeomorphism-, and homotopy types 
when n ^ 3, 4, n = 4, and n = 3 respectively. 

We now turn to the corresponding metrically extreme cases of small and large 
volume. 

Let {Mi} be a sequence in the Jt%(n) where volM f->0 as i->oo. Then a 
subsequence will converge in the Gromov-Hausdorff topology (cf. (1.6) and (2.1)) 
to a lower dimensional inner metric space X with diam X < D and Toponogov 
curvature sec X > A. In the exceptional case where X is a riemannian manifold, a 
thorough investigation has been carried out in [Y2]: For large i, Mt fibers almost 
riemannian over X, and a finite cover of the fibers, F fiber almost riemannian over 
the b1(F)-dimensional flat torus. 

In the (weakly) extreme case of manifolds M with sec M > A, diam M < D and 
vol M < e, e small, one would expect some similar kind of decomposition of M. 
This of course is related to the structure of general inner metric spaces X with 
sec X > A. For progress in this direction we refer to [BGP]. 

To treat the other extreme case of manifolds with large volume one first needs 
to have optimal bounds. Such bounds are not known for the class J^^(n). If on the 
other hand sec M > A and rad M < R we get from (1.4), (1.3) and (1.8) (cf. [GP4]) 
that 

3.2 vol M < -

vn
d(R); R<nßy/ÄifA>0 

vol SJ if / > 0 and R > %ßJ~A 
Vlyfi 

There are riemannian metrics on S" (and RP") showing that (3.2) is optimal (cf 
[GP4]). Moreover, using (1.3), (1.4), (1.8), (1.9), (2.6), (2.7) and controlled topology 
as in Sect. 2 one can prove the following pinching theorem in this (strongly) extreme 
case. 

3.3 Large Volume Theorem [GP4]. Given n > 2, A e R and R e R + (< nßy/Ä if 
â > 0). There is an e = e(n, A, R) > 0 such that any riemannian n-manifold M with 
sec M > A, rad M < R and vol M > üJ(JR) - s is topological^ either Sn or RPn . 

In the case sec M > A > 0 and rad M > nß^/Ä, of course M is S" topologically 
by (0.2). In all cases, however, there are (singular) constant curvature A models with 
equality in (3.2), and manifolds with volume close to this are metrically similar 
to these models (cf. [GP4]). In the special cases A > 0 and JR = nß^JA, n/y/Ä 
corresponding to the only nonsingular models, it is possible to conclude diffeo
morphism [OSY]. 

These pinching theorems may also be viewed as a solution to a generalized 
analog of Aleksandrov's area problem for convex surfaces in R 3 [Al]. 
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4. The Excess and Other Shape Invariants 

The Theorems 0.1, 0.2, 3.1 and 3.3 are in essence exhaustive. Clearly therefore, in 
order to gain more information about individual manifolds M G Jf%(n) where 
vol M > v it is necessary to make more measurements. 

Other than maxsec, inj, and to some extent, FillRad [G3], no such invariants 
seem to have been studied very extensively. This includes the intermediate diameters, 
diam M = diam0 M > diam^ M > ••• > d i a m ^ M > diam,, M = 0considered by 
Urysohn [U] and more recently in [G3] (cf. also [P2]). 

Here we discuss briefly a measurement based on the excess in the 
triangle inequality. Following [GP3] we define the excess of M by exe M = 
min(p>g) max^ (d(p, x) + d(x, q) — d(p, q)). Obviously 0 < exe M < diam M. 

A smooth manifold M admits a Riemannian metric with exe M = 0 if and only 
if M is a twisted sphere (cf. [GP3]). On the other hand, any M admits a riemannian 
metric with exe M/diam M arbitrarily small. 

When restricted to J^v(n), however, the sublevel sets exc < s, c small, contain 
only one topological type: 

4.2 Exotic Sphere Theorem [GP3]. Fix n > 2, A G R and D, v > 0. There is an 
£ = a(n, A, D, v) such that any closed riemannian n-manifold M, with sec M > A, 
diam M < D, vol M >v and exc M < 8, is a homotopy sphere. 

This result is also optimal in its context. Observe that in contrast to all other 
known sphere theorems in riemannian geometry, the metrically extreme case is 
represented not only by the unit sphere S" but by any exotic sphere! 

The other extreme exc M = diam M occurs when M contains three points at 
maximal distance. This is related to the triameter of M, which is the second in an 
infinite sequence of invariants beginning with the diameter. That and another 
related infinite sequence beginning with twice the radius and the excess is currently 
under investigation in [GM]. 

5. Curvature Free Problems 

We conclude in the generality we started, now scaling all closed riemannian n-
manifolds M so that vol M = vol Sx = vx(n). In this generality we consider the 
superlevel sets inj > /. 

5.1 Isoembolic Rigidity Theorem [Be]. The injectivity radius of any closed riemannian 
n-manifold M so that vol M = vx(n) satisfies inj M <n, with equality if and only if 
M is isometric to S". 

5.2 Isoembolic Pinching Theorem [C2]. For any n = N there is an e = e(n), such that 
any closed riemannian n-manifold M with vol M = vx(%) and inj M > n — e is homeo-
morphic to S". 
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5.3 Isoembolic Finiteness Theorem [GPW, Yl] , Fix n G IN and Q G (0,7c]. There are 
at most finitely diffeomorphism-, homeomorphism-, or homotopy types of closed 
riemannian n-manifolds M satisfying vol M = vx(%), inj M > Q and n ^ 3, 4, n = 4, 
or n = 3 respectively. 

The geodesic flow plays an essential role in the proof of these results. Here we 
only point out that a basic volume estimate from [CI] implies that the class of 
closed riemannian n-manifolds M with vol M < v and inj M > Q has a covering 
function as in (1.6). Since it has a contractibility function as in (1.9) with C2 = 1 by 
assumption, (5.3) is a corollary of (2.3) and (2.5) just like (3.1) was. 

The subclass consisting of closed riemannian n-manifolds M with Rie M > 
(n — \)A, diam M < D and inj M > Q has recently been investigated in [AC]. In 
particular it is shown there, that this class contains at most finitely many diffeo
morphism types also in dimensions 3 and 4. 
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1. Introduction 

In 1985 M. Gromov proved in his seminar paper Pseudoholomorphic Curves 
in Symplectic Manifolds [17] among other things a striking rigidity result, the 
so-called squeezing theorem. 

Consider the vectorspace (C" equipped with its usual Hermitian inner prod
uct (•, •)• Denote by (•, •) = Re(-, •) the associated real inner product and by 
o = —Im (•, -) the usual induced symplectic form. If B2"(r) denotes the Euclidean 
r-ball and Z2ll(R) = B2(R) x CC""1 the symplectic cylinder of radius R, M. Gro
mov proved that B2"(r) admits a symplectic embedding into Z2n(R) iff r < R. 
This result exhibits a striking C°-rigidity phenomenon in the symplectic category. 
Hence already on the C°-level, volume-preserving and symplectic maps can be 
distinguished. 

Coming from the variational theory of Hamiltonian dynamics, I. Ekeland and 
the author observed in [5, 6] that the study of periodic solutions of Hamiltonian 
systems can be effectively used to prove the squeezing theorem and - more 
important - gives even infinitely many new symplectic invariants. 

Finally combining the key construction in [5, 6] with Floer's Instanton Ho
mology [12-15] one is able to construct a new theory called Symplectic Homology 
[16]. 

2. Symplectic Capacities 

Let us first motivate why periodic solutions of Hamiltonian systems occur as 
obstructions in a symplectic rigidity theory. 

Given any hypersurface S in a symplectic manifold (M,co) we see that S 
carries a distinguished 1-dimensional distribution 3?s -* S which is defined 
by J?$ =ker(co \s). We denote by L$(x) the leaf through x G S. If S is a 
compact hypersurface, of particular interest are the closed characteristics, i.e. 
closed integral curves L$(x) œ S1. We shall write ^(S) for the set of periodic 
characteristics. 

Now, suppose, coming back to Gromov's Theorem that we have an optimal 
symplectic embedding of some open subset °U of (C" into Z2"(r). Optimal here 

Proceedings of the International Congress 



522 Helmut Hofer 

means that there is no symplectic embedding for any rf < r. Of course, it is 
in general not clear, if there exists an optimal embedding. Identifying % with 
its image, we may assume without loss of generality that % c Z2n(r). Let us 
even suppose that 3% is smooth. If we try to do, what is impossible by our 
assumption, namely to make °U smaller, one likes to proceed as follows. It seems 
reasonable to try to push the set (d°U) n (dZ2n(r)) into Z2n(r). Then the new set 
W, at least if %f is compact, would strictly stay away from dZ2n(r) and we would 
be able to replace Z2n(r) by a smaller symplectic cylinder. The optimal way to 
carry out this procedure is, at least locally, to take a Hamiltonian H : Cw -> IR, 
which is increasing on the parts of the characteristics of d°U which touch dZ2n(r). 
The associated Hamiltonian flow pushes (locally) d% into %. However, there are 
obvious global obstructions against the existence of Hamiltonians increasing on 
leaves, namely characteristics in @>(d%), i.e. periodic characteristics. There is an
other more diffuse obstruction, namely Poincare's recurrence: The characteristics 
properly parameterized define a volume preserving flow on dtft. So, there is a 
set of full measure consisting of points which return to every neighbourhood of 
themselves under the flow. Obviously this is a second obstruction. 

The surprising fact is, that the above can be turned into a qualitative and 
quantitative theory of symplectic rigiditiy. 

We start with the theory of symplectic capacities initiated in [5, 6], see also [20, 
21, 23, 35]. Motivated by a break through results of C.Viterbo [34] concerning 
the existence of periodic solutions of Hamiltonian systems on a prescribed energy 
surface, a very simple, refined approach was given by E. Zehnder and the author 
in [24]. This is best described as follows; If E denotes the loop space of C" and 
% is any bounded open set in (Cw let H : <Cn -> [0, +oo) be a smooth Hamiltonian 
vanishing on °U but growing sufficiently fast to infinity outside from °U. We define 
a map $H : E -> IR by 

= / * * A - / J $H(X) = J xl- j H(x), 

where the integrals are taken over S1 = R / Z , and X is a primitive of a. Now, if 
H is in some sense "sharp" enough at °U it turns out that every critical point of 
4>H with &H(X) > 0 is a 1-periodic solution of x = Xjj(x), which is close to d°U. 
How close the periodic solutions are to d°U depends solely on the growth of H 
outside of °U. This observation leads to an existence result of periodic solutions 
on almost all energy surfaces [24]. Precisely this abundance of periodic solutions 
is used in [5, 6]. One constructs a universal subset SF of the power set of E and 
defines for every H : <CW -> [0, +oo), which vanishes on some nonempty open set 
% a min-max-characterisation defining a number c(H) e [0, -f-oo) 

c(H) := sup inf ##(F). 

Obviously if H > K then c(K) > c(H). Finally one puts for a bounded subset % 
of€ w 

c(f) := inf c(H), 
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where the infimum is taken over all such H which vanish on °U. One can even 
show that for good sets °U the number c(^U) is the action of a closed (perhaps 
iterated) characteristic on d°U. This number turns out to be a symplectic invariant. 
Moreover, different choices of 3F lead to infinitely many invariants. 

These invariants satisfy a set of axioms, and are called symplectic capacities. 
To give the axioms, let us denote by F = (0, +00] the extended strictly positive 
half line equipped with the obvious ordering "<". We view (F,<) as a category. 
Let £f denote the category of (2w)-dimensional symplectic manifolds together 
with the symplectic embeddings as the morphisms. 

Definition 1. A symplectic capacity is a covariant functor c : 9* —> F such that 
- c(M,aco) =| a | c(M,œ) for a ^ 0 5 

- c(Z2n(l),o)<+oo, 
where Z2"(l) is equipped with the symplectic structure induced from (C". 

We note that a convex combination of symplectic capacities as well as positive 
multiples are again capacities. So the collection of all capacities build a cone, 
One can show that this cone is infinite dimensional. 

The first capacity constructed in [5] satisfies in addition the normalisation 
c(B2"(l)) = c(Z2"(l)) = n and is therefore similar to Gromov's width [19]. But 
there are many other capacities [6], allowing for example to prove that the 
polydisk B2(l) x ... x B2(l) can only be symplectically embedded into the round 
ball B2"(R) iff R>^/n. 

Next we present some results which emphasize the importance of symplectic 
capacities. 

Theorem 2. A smooth embedding Y : B2"(e) —• (C" preserving the capacity of open 
subsets ofB2l1(e)for some capacity c, is either symplectic or anti-symplectic. 

Even stronger, a homeomorphism h : CC" —• (C" preserving locally capacity, has 
at every point x9 where it is differentiable, either a symplectic or anti-symplectic 
linearization. If h and h X Id<£ preserve some capacities and h is smooth it is even 
symplectic. This motivates the following definition 

Definition 3. A homeomorphism h : °U —> V between two open sets % and y of 
(C" is said to be C°-symplectic if h and h x Jdc : °U x C —• 'V x (C preserve every 
capacity of open subsets of their domains. 

In view of the above results this is a natural C°-definition of "symplectic". 
It is not very practical yet since our knowledge of the cone of capacities is very 
limited. However, it is by now clear that the symplectic notion is a C°- rather than 
a C1-concept. There are many known constructions for a symplectic capacity [5, 
6, 16, 20, 21, 23, 35, 36], A very interesting one is the following, which is only 
defined for subsets of C" [20]. 

Let <$ be the vectorspace of all compactly supported smooth maps H : 
[0,1] x C" -> R. We define a norm ||ff|| by 

IMI 
Jo 

sup H(t,x) — inf H(t,x) dt 
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Associated to H e W is the time-1-map Y H obtained by integrating the Hamilto
nian system associated to H The collection of all time-1-maps forms a group 3 
under composition. We define a map F : 3 -» [0, +00), called the "Energy", by 

E(W) = inf{||ff|| I YH = Y}. 

One verifies easily that 

E(Y~1) = E(Y) = E(0-{ o Y o <f>) and F(<F o *) < F(<F) + F(<S>). 

Of course the above would be true if F = 0 (in fact that was everyone's favorite 
guess). However, 

Theorem4. E(Y) = 0 iff Y = Id. In particular d : 3 x 3 -> [0,+oo) defined 
by d(Y,0) = E(Y~x0) defines a bi-invariant metric on 3. Moreover the map 
<€ —» 3 : H —> Y H is globally Lipschitz continuous with constant one. 

Thus the infinite dimensional group 3 admits a bi-invariant metric. This 
distinguishes 3 from many other diffeomorphism groups. The d-topology on 3 
is very strange. So, one has for example the following fact: Given any volume 
preserving diffeomorphism Y : (Cn -> (Cn there exists a sequence (Yk) c 3) such 
that Yk -> Id in (3, d) but 

L I Yk(x) - Y(x) f dx - • 0 as k -> +00 

for every compact set X in C" and every 1 < p < 00. Hence there seems to be 
no relation between the d-topology and the L£c-topology, 1 < p < 00. However, 
[20], we have 

Theorem 5. The inclusion map j : (3, d) —> C° (which of course is not continuous) 
has closed graph. Here C° stands for the Frechet space of continuous maps (Cn —> 
(C", equipped with the metrizable compact open topology. 

See also [36] for related results. The d-topology had been introduced in [20] 
in order to study symplectic fixed point problems. 

As Y. Eliashberg pointed out recently [9] the d -topology occurs naturally 
in the study of the question to what extend does the interior of a symplectic 
manifold determine the symplectic topology on the boundary, see also [11]. 

Another important question, which one should mention is the following: Does 
there exist a good model for the complection 3 of 3? Note that 3 turns out to be a 
topological group! It is interesting to note that for every continuous Hamiltonian 
H which vanishes at infinity there exists a unique "time-1-map" in 3. 

The d -topology on 3 and the symplectic phase space geometry in Cn are 
closely related. Let S be a compact, connected, smooth hypersurface in C". 
Denote by Bs the bounded component of (Cn \ S. We write CEH for the particular 
symplectic capacity introduced in [5]. We say the hypersuface S is of contact type 
if there exists a 1-form Â on S such that dk = co\S and X does not vanish on the 
fibres of i f s —> S. We say S is of restricted contact type if X can be extended to 
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C" satisfying globally dX = co (see [1] for examples). To get a quantitative idea 
about CEH we just mention the following estimate 

CEH(BS) > sup{7rr2 | There exists a symplectic embedding B2"(r) —• Bs}. 

Theorem 6. Let S be a smooth, compact connected hypersurface of restricted contact 
type in (C". If Y e 3 with E(Y) < CEH(S) then there exists x G S with Y(x) G 
Ls(x). 

This result has nice applications in a global Poincaré perturbation theory [28, 
20]. As a consequence of 2.6 we can define a very intuitive capacity, called the 
displacement energy. 

Definition?. For a bounded subset °U of C" define c(°U) = inf {E(Y) | Y(%C\*U = 
0}. For an unbounded subset T c (C" put c(T) = sup{c(S) | S c T, S bounded}. 
We call c the displacement energy. 

One can show that c(B2"(l)) = c(Z2"(l)) = %. We recall the fact that a Y G 3 
with small energy could be close to a translation in L[QC, 1 < p < oo. Nevertheless 
2.6 shows that small energy implies a lot of local recurrence. 

3. Symplectic Homology 

We have already explained the importance of closed characteristics in the theory 
of symplectic capacities. For the following they might be even more important. 
The starting point is similar to the construction of symplectic capacities. Namely 
we associate to suitable Hamiltonians H some invariant. Whereas it were numeri
cal invariants in the contruction of capacities, we associate now to a Hamiltonian 
H a Floer-Homology group [16]. The contruction is well behaved with respect 
to the pointwise ordering on the Hamiltonians, in the sense that H < K induces 
a unique morphism between the Floer groups, [16]. Thus instead of taking the 
infimum of numbers c(H) over the set of Hamiltonians H vanishing on a set 
S in order to obtain some invariant for S, we just take the direct limit of the 
Floer groups. This construction explained now in more detail leads to symplectic 
homology. 

The domain of the theory consists of all pairs (M,A), where M is a symplectic 
manifold of dimension 2n and A an open subset of M \ dM, whose closure 
À is contained in some open subset °U of M, with % being compact, such 
that d<% is smooth and of contact type. Moreover U2(M) = 0 (however, weaker 
hypotheses will do as well). A morphism Y : (M, A) —• (JV,J3) is a symplectic 
embedding Y : M —• JV satisfying Y (A) c B. One studies now for each pair 
(M, A) the Hamiltonian systems associated to Hamiltonians H : M —> R which 
satisfy H \ À < 0, and H(x) = m(H) G (0,+oo), if x G M \ V for some open 
neighbourhood V of A contained in M \ dM. Moreover H(x) < m(H) for all 
x e M. Let us denote this class of Hamiltonians by J f (M,A). One is interested in 
the 1-periodic solutions of the Hamiltonian system x = XH(X). This problem is 
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variational, i.e. the 1-periodic solutions are critical points of some functional $H-
Using an equivariant version of Floer's construction of a homology theory one 
can associate to &H a cochain complex C(H), which is essentially spanned by the 
1-periodic solutions of X = XH(X). AS a new ingredient we have a real filtration of 
this cochain complex since the basis vectors carry a numerical invariant, namely 
their ^ff-value. There is also a Z-grading through some kind of Maslov-index. 
All homological algebra constructions like chain homotopy, chain map etc., are 
supposed to be compatible with the R-filtration. We write 

Cß a Cx for X <> p . 

Given two Hamiltonian H > K one obtains a natural chain homotopy class 
(preserving the extra structure) C(H) -> C(K), and for X < p induced maps 
Cx(H)/Cp{H) - • CxiKi/CpiK). Applying the functor Hom(-,R) for some com
mutative ring we obtain for every pair (M, A) a directed system 

CHom(Cx(H)/Cß(H))9R)Hejr(M,A) • 

We pass to Homology and take the direct limit denoted by I%(M,A). Symplectic 
embeddings Y : (M, A) -> (N,B) induce group morphisms Y* : I*(N,B) -> 
I%(M,A). One has long exact sequences as well as isotopy invariance. For the 
details we refer the reader to [16] or [22]. We list now some applications. The 
first is a solution of Gromov's polydisk conjecture [22]. Let a = (ai,...,an) be a 
n-tuplet of positive real numbers. We shall write o(a) for the associated ordered n-
tuplet (the aj's written in increasing order). We write D2n(a) for the open polydisk 
D 2 " ( f l ) = B 2 ( a i ) x . , . x B 2 ( 4 

Theorem8. Let a,b be ordered n-tuplets. Suppose aj < bj for j = l,...,n and 
bj < a2 + a2 for j = 2,..., n. Assume D(r) is a third polydisk such that there exist 
symplectic embeddings Y : D(a) —• D(r) and 0 : D(r) —> D(b) with &o Y being 
isotopie to the standard inclusion. Then we have for some permutation O(T)< ofz 

a < O(T) < b. 

In particular if a = b we have a = o(r). 
Hence, ifD(a) ^ D(b) we must have o(a) = o(b), which is Gromov's conjecture. 

It follows from the H-principle [18], that the space of symplectic embeddings 
B2(2) —> D4(l, 1) is connected for the compact open topology. Take any such 
embedding, say Y. Then Y(B2(2)) has a symplectic tubular neighbourhood. 
Hence, we might slightly thicken B2(2) to obtain a symplectic embedding Y : 
D4(e,2) - • D4(191) for some 0 < e < 1. If now * : D4(e,<5) - • D4( l , l ) is the 
composition of the standard inclusion of D4(e,<5) —> D4(e,2) with Y for some 
0 < ö < 1, we obtain the following result 

Theorem 9. Assuming e2 + b2 > 1 the symplectic embedding (P is not isotopie to the 
standard inclusion j : D4(e,(5) —> D4(l, 1). 
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This result is obtained by studying the maps induced by $ and j in symplectic 
homology. 

There is another application concerned with the question to which extent is 
the symplectic topology on the boundary determined by the symplectic topology 
of the interior [9, 11]. Let (M,oS) be a compact symplectic manifold with œ = dX 
being an exact symplectic form. Suppose dM is of restricted contact type. We 
define the action spectrum A(M) by 

A(M) = im f(X\P)\P G 0>(dM),m G N* j . 

Theorem 10. Let (M,co) and (N,o) be of the type described above. Suppose M\8M 
and N\dN are symplectomorphic by an exact symplectic map. Then A(M) = A(N), 
provided the periodic trajectories on dM and dN are nondegenerate. 

One can even strengthen the statements by incorporating the Maslov-type-
index giving the grading of the symplectic homology groups. The symplectic 
homology is so far not complete, but already it allows to prove some not so 
obvious results. 

References 

1. Benci, V., Hofer H., Rabinowitz, P.: A priori bounds for periodic solutions on 
hypersurfaces. In : Periodic solutions of Hamiltonian systems and related topics (eds. 
Rabinowitz et al.). Nato ASI, Ser. C 209. Reidei 1987 

2. Ekeland, I. : Convexity methods in Hamiltonian mechanics. (Ergebnisse der Mathe
matik, 3. Folge, Band 19.) Springer, Berlin Heidelberg New York 1989 

3. Ekeland, L: Une théorie de Morse pour les systèmes hamiltoniens convexes. Ann. 
IHP "Analyse non lineare" 1 (1984) 19-78 

4. Ekeland, L, Hofer, H. : Convex Hamiltonian energy surfaces and their closed trajec
tories. Comm. Math. Phys. 113 (1987) 419-467 

5. Ekeland, L, Hofer, H. : Symplectic topology and Hamiltonian dynamics. Math. Z. 200 
(1990) 355-378 

6. Ekeland, L, Hofer, H. : Symplectic topology and Hamiltonian dynamics II. Math. Z. 
203 (1990) 553-567 

7. Eliashberg, Y : Three lectures in symplectic topology. Proceedings of the Conference 
on Differential Geometry in Cala Conone 1988, to appear 

8. Eliashberg, Y: Filling by holomorphic disks and its applications. Preprint 1989. 
9. Eliashberg, Y: Lecture at a Conference on Dynamical Systems, Lyon, July 1990. 

10. Eliashberg, Y: A theorem on the structure of wave fronts. Funct. Anal. Appi. 21 
(1987) 65-72 

11. Eliashberg, Y, Hofer, H: Towards the definition of a symplectic boundary. In 
preparation 

12. Floer, A.: Morse theory for Lagrangian intersections theory. J. Diff. Geom. 18 (1988) 
513-517 

13. Floer, A.: The unregularised gradient flow of the symplectic action. Comm. Pure 
Appi. Math. 41 (1988) 775-813 

14. Floer, A. : Witten's complex and infinite dimensional Morse theory. J. Diff. Geom. 30 
(1989) 207-221 



528 Helmut Hofer 

15. Floer, A.: Symplectic fixed points and holomorphic spheres. Comm. Math. Physics 
120 (1989) 576-611 

16. Floer, A., Hofer, H.: Symplectic homology. In preparation. 
17. Gromov, M.: Pseudoholomorphic curves in symplectic manifolds. Invent, math. 82 

(1985) 307-347 
18. Gromov, M.: Partial differential relations. Ergebnisse der Mathematik 1986. 
19. Gromov, M.: Soft and hard symplectic geometry. Proceedings of the ICM at Berkeley 

1986. AMS, 1987, pp. 81-89 
20. Hofer, H. : On the topological properties of symplectic maps. Proc. Roy. Soc. Edin

burgh 115A (1990) 25-83 
21. Hofer, H.: Symplectic capacities. Geometry of Low-dimensional Manifolds: 2. Edited 

by S. K. Donaldson and C. B. Thomas. London Mathematical Society Lecture Notes 
151, pp. 15-34 

22. Hofer, H., Wysocki, K. : Applications of symplectic homology. In preparation 
23. Hofer, H., Zefmder, E. : A new capacity for symplectic manifolds. Analysis et cetera, 

edited by P. Rabinowitz and E. Zehnder. Academic Press 1990, pp. 405-428 
24. Hofer, H., Zehnder, E. : Periodic solutions on hypersurfaces and a result by C. Viterbo. 

Inv. math. 90 (1987) 1-7 
25. McDuff, D.: Examples of symplectic structures. Invent, math. 89 (1987) 13-36 
26. McDuff, D. : Rational and ruled symplectic 4-manifolds. Preprint. 
27. McDuff, D.: Elliptic methods in symplectic geometry. Progress in Math. Lecture, 

Boulder 1989 
28. Moser, J.: A fixed point theorem in symplectic geometry. Acta mathematica 141 

(1978) 17-34 
29. Rabinowitz, P. : Periodic solutions of Hamiltonian systems. Comm. Pure Appi. Math. 

31 (1978) 157-184 
30. Rabinowitz, P.: Periodic solutions of a Hamiltonian system on a prescribed enery 

surface. J. Diff. Eq. 33 (1979) 336-352 
31. Sikorav, J.C. : Rigidité symplectique dans le cotangent de Tn. Duke Math. J. 59 (1989) 

227-231 
32. Sikorav, J.C: Systèmes Hamiltoniens et topologie symplectique. Lecture notes Di

partimento Di Matematica Dell' Università Di Pisa, ETS Editrice 
33. Viterbo, C: New obstructions to embedding Lagrangian tori. Invent, math. 100 

(1990) 301-320 
34. Viterbo, C: A proof of the Weinstein conjecture in R2". Ann. Inst. Henri Poincaré. 

Analyse non lineare 4 (1987) 337-356 
35. Viterbo, C: Capacités symplectiques et applications. Séminaire Bourbaki, June 1989, 

Astérisque, no. 695 
36. Viterbo, C. : Symplectic topology as the geometry of generating functions. Preprint 
37. Weinstein, A.: Lectures on symplectic manifolds. CBMS Reg. Conf. Series in Math. 

no 29, AMS, Providence, R.I. 1979 
38. Weinstein, A.: On the hypotheses of Rabinowitz' periodic orbit theorems. J. Diff. Eq. 

33 (1979) 353-388 



Embedded Surfaces in 4-Manifolds 

Peter B. Kronheimer 

Merton College, Oxford 0X1 4JD, UK 

1. Introduction 

The adjunction formula expresses the genus of a smooth curve C in a complex 
surface X in terms only of the homology class of C and the canonical class K of 
the surface: 

2 g - 2 = C-C + X-C. 

An old and still elusive conjecture [Ki] asserts that, if Z is any smoothly embedded 
2-manifold in the same homology class as C, then the genus of E is at least as 
big as the genus of C, so 

2g-2^Z-I + K-Z. (1) 

With Donaldson's introduction of gauge theory into 4-dimensional differential 
topology, there seems reason to hope that such a conjecture might well be 
approachable. However, almost the best result to date on questions of this sort 
is now twenty years old, proved independently by Rohlin [R] and Hsiang and 
Szczarba [HS]. Their result is not special to complex surfaces, but exploits a 
branched covering to prove a non-trivial lower bound on the genus whenever 
the homology class of Z is divisible. Results due to Donaldson do allow an 
occasional improvement of this lower bound, but this still falls short of (1) by a 
factor of about 2, even in favourable cases. 

A somewhat looser version of the above conjecture has been formulated by 
Morgan; we adapt it slightly here: 

Conjecture A. IfX is a simply-connected, oriented 4-manifold for which Donaldson's 
polynomial invariants are defined and non-zero, and if I is any smoothly embedded, 
oriented 2-manifold with positive self-intersection, then the genus of I satisfies the 
inequality 

2g-2^Z-Z, 

To explain this conjecture we need to recall a few facts about the polynomial 
invariants [D2]. These are invariants of X which are defined whenever b+(X) 
(the dimension of a maximal positive subspace of the intersection form on the 
second homology) is odd and not less than 3. This is the case, for example, if 
X is a complex surface whose canonical bundle admits a non-zero holomorphic 
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section, and it is one of the two key results of [D2] that the invariants are indeed 
non-zero for such a surface. Thus simply-connected complex surfaces with pg > 0 
satisfy the hypotheses of the conjecture. (Here pg, the geometric genus, is the 
dimension of the space of sections of K). 

For a complex surface, the condition that K has a section is easily seen 
to imply that K- C is non-negative whenever C is a curve with positive self-
intersection. So Conjecture A is consistent with the adjunction formula and the 
conjecture (1). It is weaker, in that the delicate term involving the canonical 
class is missing, and it says nothing about rational surfaces; on the other hand, 
it is a conjecture which is not restricted to algebraic cycles. An important case 
in which the two conjectures essentially coincide is when X is a JO surface (a 
simply-connected surface with trivial canonical class). On account of this case, 
Conjecture A implies various local versions of (1). Thus it implies that if B4 is 
a standard ball in <C2 and C is a smooth, plane algebraic curve meeting dB4 

transversely, then the genus of C n B4 is minimal among all 2-manifolds in B4 

with the same oriented boundary. This in turn implies, for example, that the 
unknotting number of the (p,q) torus knot is \{p — l)(q — 1); see [Mi]. 

Conjecture A is known to hold if the genus of E is 0 or 1 ; in other words, an 
embedded sphere or torus cannot have positive self-intersection if X has non-zero 
polynomial invariants. The fact that a sphere cannot have self-intersection 1 is 
a special case of the results of [D2] concerning connected sum decompositions; 
the other cases are due to Morgan, Mrowka and Ruberman [MMR]. 

The purpose of this article is to outline a proof of Conjecture A, but a proof 
with a hole. The argument uses gauge theory, but with a modification which 
makes it a little different from the usual set-up. We consider connections in 
some auxiliary 517(2) or 50(3) bundle over the manifold, but connections which 
are defined on the complement of the surface I and have non-trivial holonomy 
around the small linking circles of I. Such a set-up has been considered elsewhere, 
and the similar situation of a punctured 2-manifold is quite well-understood 
[Se,Si]. For the 4-dimensional case, some important analysis has been done by 
Sibner and Sibner [SS], but still some things are missing. 

The basic properties of the moduli spaces of anti-self-dual connections asso
ciated to a compact 4-manifold are deduced from a simple package of results. 
This is the Kuranishi-type deformation theory, built on a particular Fredholm 
complex combined with the implicit' function theorem. This package is missing 
for the "branched instantons" which we wish to exploit. In Section 2 we shall 
explain what one would expect of such a package were it to exist in our case. 
This will be our black box conjecture. Assuming the existence of a black box 
with the expected properties, we shall deduce Conjecture A. 

This is not the place for a very detailed exposition. If the author, or anyone 
else, succeeds in making the necessary box, then full details will appear. If it turns 
out that such a box does not exist, then the reader will be glad that he or she did 
not read a longer paper. 

The author wishes to thank Simon Donaldson for his generous help and 
advice. The key tunnelling trick described in Section 4 was suggested by him. 
The author must also thank Ed Witten for clearing up some of the author's early 
misconceptions and confusion concerning these branched instantons. Finally, 
thanks are due to Tom Mrowka and Carlos Simpson for their help at various 
times. 
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2. Connections with Holonomy 

For some basic definitions and properties of anti-self-dual connections over 4-
manifolds, we refer to [D2] and the references therein. We consider here an 
extension of the usual constructions which seems naturally suited to the problem 
at hand. Let E be a connected, oriented 2-manifold embedded in the oriented, 
Riemannian 4-manifold X, and let E be a hermitian vector bundle over X\E. 
For the moment we shall take it that E has structure group SU(2). Let Jf be 
the set of all connections A in E (compatible with the SU(2) structure) which are 
anti-self-dual and have finite action; that is, the curvature F (A) should satisfy 

*F(A) = -F(A), 

and 

\F(A)\2<œ, 
Jx\ Jx\z 

where * is the Hodge star operator on 2-forms. Let M be the quotient of Jf by 
the action of the automorphisms of the bundle E. This M is the moduli space 
we would like to study. Note that the connections A are defined only on the 
complement of the surface E and are anti-self-dual with respect to an incomplete 
metric. 

A local study of such connections was made by Sibner and Sibner in [SS]. 
Their first result is that the finite action condition alone implies that a connection 
on X \ E has a well-defined holonomy on the small linking circles. To be precise, 
choose polar coordinates on a small element of plane normal to I at a point o. 
Let hr be the holonomy of the connection around the circle of radius r in this 
plane. Then the result is that, for almost all o, the conjugacy class of hr has a 
well-defined limit as r approaches zero, and this limit is independent of the choice 
of o. Thus we can write 

Ä r ~ e x p 2 7 r i ( ; _° a) 

for some real a in the interval 0 < a < 1/2. Let us write Ma for the subset of the 
moduli space M where the holonomy is a in this parametrization. 

The first simple point is that the values 0 and 1/2 are very special values 
for the holonomy. When a = 0, the holonomy matrix is the identity; so there 
is no geometrical obstruction to extending the connection. It follows from the 
technical result of [SS] that in this case, an anti-self dual connection A will extend 
smoothly to all of X, or to be more precise, there is a bundle EQ over X with 
an anti-self-dual connection whose restriction to X \ E is isomorphic to A. When 
a is 1/2, the holonomy is —1. In this case, the connection will not necessarily 
extend as an 51/(2) connection, but in the associated 50(3) bundle the holonomy 
is again trivial; so A extends to a smooth anti-self-dual connection in some 50(3) 
bundle JEi/2 over X. In this sense then, Mo and M\/2 are both ordinary moduli 
spaces of anti-self-dual connections associated to X. (We shall generally write 
ME for the usual moduli space of anti-self-dual connections on a bundle E.) 

When 0 < a < 1/2, there are new phenomena. First, whereas an 51/(2) 
connection on a closed 4-manifold has only one characteristic number, namely the 
second Chern class k, a connection A with holonomy such as we are considering 
has two invariants. To defines these, first take a small tubular neighbourhood 
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JV of E, and let Y be its boundary, a circle bundle over E. Since the holonomy 
around the circle fibres is non-trivial, its eigenspaces give a decomposition of E\y 
as a sum of line bundles L®L*. We take L to be the eigen-bundle corresponding 
to the eigenvalue e~2nia. On each circle fibre, we can choose a trivialization of E 
for which the 9 component of the connection is approximately 

* - « - « ) de. 

This preferred trivialization on the fibres allows us to extend L © L*, in an 
essentially unique way, as a topological bundle on JV. Thus we get an extension 
E of E to all of X, and a decomposition of E\z as a sum of line bundles. We 
define 

k= c2(Ë)[X], 
l = -Cl(L)[E], 

and call these the instanton and monopole number (the latter by analogy with the 
topology of monopole solutions on 3-space; see [A]). 

Given suitable regularity of the connection near the surface, we can also 
define k and Z by a formula of Chern-Weil type, which involves some correction 
terms due to the non-trivial topology of the neighbourhood. Near E, we should 
expect the curvature F (A) to be approximately abelian, since the subbundle L on 
Y should be asymptotically parallel. If this is true to a sufficient degree, we can 
write 

with co having a well-defined limit on E, in which case 

k = -2al + a2E-E + - ^ - / Tr(FAF), (2) 
8TC2 JX\Z 

and 

/ = ocE-E — -— / œ. 
2ni Jz 

We shall write M^jt for the moduli space of anti-self-dual connections with 
holonomy a, instanton number k and monopole number I. Our definition makes 
it, at present, just a set. We can topologize it, mimicking [T2] for example, but 
it is not clear what sort of a space would result. The rest of this article will be 
largely based on the assumption that, for a generic choice of Riemannian metric 
on X, the moduli space M^i will be (except at the reducible or flat connections) 
a smooth manifold whose dimension is given by the formula 

d = 8fc - 3(b+ - b1 + 1) + 4 / - (2g - 2). (3) 

The first two terms here, involving the 4-dimensional characteristic number 
of the bundle and the topology of X, are familiar as the dimension of the 
ordinary moduli spaces associated to a closed 4-manifold. The remaining terms, 
4/ — (2g — 2), involve the surface. The formula is motivated by consideration of 
parabolic bundles on a complex surface, as is explained in the next section. For 
the moment, it might be helpful to note that in the case that E is 52 contained 
in 5 4 and k is zero, the formula gives 4/ — 1, in accordance with the dimension 
of the moduli space of hyperbolic monopoles; see [A] again. 
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The arguments we shall use later will assume a little more. We wish to consider 
the moduli spaces Ma>kj as a family as a varies. Let us write M*xi f° r the union 
of Ma>kj as a runs through (0, \). We cannot expect that, for a given metric, all 
the Mutkj will be smooth manifolds, but we can hope that the union M*tkj *s a 

manifold with a smooth map to to the half-interval : 

Conjecture (Black Box). For a generic choice of Riemannian metric on X, the 
space M*}kj is, except at the reducible or flat connections, a smooth manifold of 
dimension d + 1, with d as shown in (3), and the map a : M* -> (0, \) is smooth. 
The usual transversality and weak compactness arguments, as applied to the usual 
moduli spaces of anti-self-dual connections, carry over to this case. 

It is on the basis of this conjecture, and one other described in Section 3, 
that we shall deduce Conjecture A. The conjecture is, necessarily, loosely phrased. 
Indeed, it would not be sufficient for our application if the conjecture were correct 
only by some accident. We have in mind that Ma should be generically a manifold 
for the same reasons that the usual moduli spaces ME are, and that as a varies, 
Ma should behave rather as the ordinary moduli spaces do when the Riemannian 
metric varies in a 1-parameter family [D2]. The principal thing is that there 
should be a deformation theory describing the local structure of Ma, based on a 
Fredholm complex. Smoothness and compactness are secondary matters which 
should follow from standard techniques if the primary machinery is in place. In 
particular, the results of [SS] are what is needed for a weak compactness theorem 
along the lines of the essential theorem of Uhlenbeck [U]. Here there will be 
differences, though, since there will be a bubbling off phenomenon in which 
both the instanton and monopole number change in the weak limit. Detailed 
information concerning the possibilities is not important to our argument, but we 
do need to know that the limiting connection lives in a moduli space of smaller 
dimension. 

3. Parabolic Bundles 

Suppose X is a Kahler surface and E cz X is a smooth curve. By a parabolic 
SL(2,(E)-bundle on X we shall mean a rank-2 holomorphic bundle S —> X with 
A2i trivial, together with a holomorphic line sub-bundle if c S\z. Pick a positive 
real number a and define the a-degree of a rank-1 subsheaf $? a Shy the formula 

dega(J^) = (dOn [co]) ± a([E], [co]), 

where œ is the Kahler form. Here the sign is to be + if ^\z is contained in 
S£ and is to be — otherwise. Define ($,S£) to be astable if dega(J*") is strictly 
negative for every such subsheaf. 

Conjecture (Parabolic Bundles). If E is a smooth curve in a Kahler surface X and 
0 < a < \, then the set of irreducible connections M^r

k} cz M^i is in one-to-one 
correspondence with the set of astable parabolic bundles (i,&) with 02(e) = k 
and Ci(^)[E] = -I. 

This result is the expected analogue of the theorem of [Dl] relating anti-
self-dual connections to stable bundles on a complex surface. The terminology 
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'parabolic' is taken from [Se] which contains a corresponding result in complex 
dimension 1. An analytic proof of the result of [Se], together with a large part of 
what is necessary for the higher-dimensional case, is contained in [Si]. 

The above conjecture motivates everything else in this paper, but our later 
arguments are not logically dependent on this general result and will appeal 
to only one particular case, that of a ruled surface. To be precise, let JV —» E 
be a holomorphic line bundle of positive degree, and let X be the (CP1 bundle 
obtained by adding a section at infinity. Let E be embedded in X as the zero 
section. We shall assume the truth of the parabolic bundles conjecture for this 
pair (X, E) in the case k = 0. 

There are actually a couple of points which make this case technically a little 
easier. One is the circle symmetry in X, another is the local product structure 
near E. Exploiting these and the results of [Si], the author ha? no difficulty 
in constructing the map from parabolic bundles to M^o,/. Surjectivity is still in 
question. 

4. Outline of the Proof 

Assuming the package of results in the black box, and assuming also the parabolic 
bundles conjecture in the case of the ruled surface described above, let us deduce 
Conjecture A. 

For ease of exposition, we shall first treat a slightly simplified situation; the 
proof will occupy this section and the next. The necessary modifications for the 
general case are described in Section 6. For the simplified argument, we shall 
suppose that there is an 50(3) bundle E over X, with W2(E) non-zero, such that 
the (ordinary) moduli space of anti-self-dual connections ME is a finite set of 
points, cut out transversely by the anti-self-duality equations. The number of 
points in this moduli space, counted with sign according to their orientation, is 
a simple example of one of the polynomial invariants of X. We shall denote this 
number by q and we shall suppose it is non-zero. 

Concerning E, we shall assume that its genus is even and that W2(E) is non
zero on E. This will simplify the excision argument in the following section. We 
assume also that there is an integer homology class r\ in X \ E on which vi^E) 
is again non-zero. Finally, we shall suppose that E-E is square-free. The point of 
this condition is that it ensures that %\ (X \ E) has no non-trivial representations 
in 50(3), as can be deduced from the Chern-Weil formulae for k and / in the 
case that the curvature terms vanish. 

The assumptions on E which we have just listed do not involve a loss of 
generality. If EQ is any surface which satisfies the hypotheses of Conjecture A but 
violates the inequality which is the conclusion of that conjecture, then we can 
soon construct many other surfaces with the same property, and in particular, 
we can find surfaces E which satisfy the additional hypotheses of the previous 
paragraph. The trick is to take n nearby copies of EQ, intersecting transversely 
with positively-oriented intersection points, and then replace the intersection 
points with small handles. This gives a surface representing the class n[Eo] which 
will violate the inequality of Conjecture A by a margin which is n times larger. 
We can then form a connected sum of this new surface with any other surface 
T disjoint from EQ in X, to obtain a representative of [T] + n[Eo] which still 
violates Conjecture A once n is large. 
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We shall lake for granted the slight modification of the contents of the 
previous sections which is necessary to include the case of S0(3) bundles. The 
difference from the SU(2) case is the presence of the Stieffel Whitney class; we 
shall not build W2(E) into our notation for the moduli spaces, but shall take it 
that Maxi denotes now the moduli spaces of connections with the same W2 as E 
on X \ E, The instanton number now lives in Z/4, and the monopole number / 
will be a half-integer if M^(E) is non-zero on E. 

After these preliminaries, we can begin the proof. Let k be the instanton 
number of E and consider the corresponding moduli spaces M«^/. We shall 
consider, a special value for the monopole number: we take 

l=l-(2g-2). (4) 

The significance of this choice is that the dimension of M«^/ is now the same 
as the dimension of the ordinary moduli space ME : the terms from E in the 
dimension formula (3) cancel out. Note that since g is even, / is a half-integer, as 
it should be when W2(E) is non-zero on E. 

Since, the dimension of ME is zero, so too is the dimension of M^]. The latter 
will be generically an oriented O-manifold to which we can attach an integer by 
counting the points with their signs (here we appeal to the compactness assertion 
in the black box). Further, the family Ms/f5/ gives a compact (again), oriented, 
1-dimensional cobordism between any two of these O-manifolds, so the integer 
we obtain is independent of a. Let us call this integer p. (It is important here 
that b+ > 3, to avoid reducible connections in this one-dimensional family). To 
prove Conjecture A, we will calculate p in two different ways, using the limiting 
behaviour as a approaches first 0 and then 1/2. 

The first is technically the harder of the two in our case. We shall argue, using 
small values of a, that p = 2gq. So, roughly speaking, every point of the original 
moduli space ME gives rise to 2g points in Ma, counted algebraically, when a is 
small. The origin of the number 2g is in the following result. 

Proposition. Let S be a stable rank-2 holomorphic bundle on a curve E. Assume 
that the degree of S is even if the genus of E is odd, and that the degree is odd 
otherwise. Let X=\ deg(<f) — ^(2g — 2). Then generically the bundle has precisely 
2g holomorphic line sub-bundles of degree X. Here the word generic refers to a 
Zariski open set in the set of pairs (S,E). 

For the proof, the Riemann-Roch theorem for families shows that 2g is the 
right number: one applies the theorem to the family of bundles Horn(5£,S) as 
3? runs through the Jacobian of line bundles of the given degree. It remains to 
show that the generically expected behaviour does occur, and for this one can 
consider a particularly degenerate curve, such as a sphere intersecting g tori, for 
which the problem is easy to analyse. 

The idea here is that the above proposition tells us that p = 2gq in the case 
that E is a complex curve in a complex surface, provided we accept the conjecture 
of Section 3 concerning parabolic bundles. The proposition tells us that, when / 
is given by (4), the moduli space of parabolic bundles ($, ££) generically covers 
the ordinary moduli space of bundles 2g times (though there are some provisos 
here, to do with stability). Of course, the point is precisely that our 2-manifold 
E is not holomorphic; nevertheless, we can use an excision argument, based on 
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the fact that a neighbourhood of E can always be given a complex structure, to 
show that the conclusion p = 28q is valid generally. Some details of the excision 
argument are given in the next section. 

We have not yet referred to the inequality 2g — 2>E-E, but consider now 
what happens as a approaches 1/2. As we said in Section 29 when a is 1/2 we can 
identify the moduli space Mi/2j/y with an ordinary moduli space M#1/2 for some 
50(3) bundle E1/2. This bundle is different from the E; it differs by a sort of 
twist along E, and its topology depends on /. The essential piece of information 
is the formula which relates the instanton number of Ei/2 to the old k and / : a 
short calculation gives 

k(Ei)=k(E) + l-\E-E. 

(Compare this with (2) when a = 1/2). If we recall that / is given by (4), we 
see that in our case the difference in the instanton numbers is a quarter of 
(2g — 2) — E -E, which is precisely the number whose sign we are interested in. 

Thus if the inequality of Conjecture A is violated, then k(Ey2) is less than 
k(E). Since the dimension of ME is zero, this means that ME1/2 will have negative 
dimension and will therefore be empty. (Here again we use the fact that w2 is 
non-zero, to rule out the possibility that the moduli space contains the trivial 
flat connection.) This would rneqn, however, that p must be zero. For otherwise 
the moduli spaces M^/2-E)}k,i are non-empty for all e > 0, and as e goes to 
zero, Uhlenbeck's compactness theorem gives a limiting anti-self-dual connection 
which is either in ME1/2 (if there is no bubbling off) or in some moduli space of 
still more negative dimension (if some action is lost in the limit). Thus we have 
obtained a contradiction, since p = 2gq, and q was supposed to be non-zero. 

5. Excision 

Excision arguments have become a flexible tool to analyse moduli spaces of 
anti-self-dual connections. Necessary ingredients are described and used in [Tl, 
T2, Mr] and [MMR]. 

Consider deforming the Riemannian metric on X so that a collar of the 
boundary, Y, of the tubular neighbourhood JV => E is stretched out into a 
long cylinder Y x \—T,T\. Let M(T) be the corresponding moduli space of 
anti-self-dual connections in E. This contains q points, counted with sign. As T 
goes to infinity, connections in M(T) converge weakly to give us connections 
on the disjoint union X' U JV', where these two are non-compact manifolds, with 
cylindrical ends isometric to Y xR+ . In our case, a simple dimension count shows 
that the limiting connection on JV' must be flat, and the limiting connection on X' 
must have total action k (no action is lost). On the end of X', the connection will 
approach a flat connection on Y, and if we recall that w2(E) is non-zero on JV, we 
see that this flat connection Q must be the pull-back of a flat 50(3) connection 
on E with odd w2. Write ^(Z)0dd for the space of these flat connections; it is a 
smooth manifold since all these connections are irreducible. 

In the other direction, given an anti-self-dual connection in E over X' with 
action k, asymptotic to a flat connection from 0t(E)Otà, we can "glue" it to the 
corresponding flat connection on JV' to obtain a connection on X. The analysis 
of this gluing is simplified by the fact ^(£)odd is smooth. It can thus be shown 
that, when counted with signs, the number of such connections on Xf is the same 
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integer q. Let us write these connections as A\,...,At, and let Q\,...,Qt be the 
limiting elements of ^(E)0^. 

So far, this has been for the ordinary connections, without holonomy around 
E. Consider now the moduli space of connections on Nf\E which have holonomy 
a and monopole number given by (4). There is a component of this moduli space 
which has the the same dimension as ^(r)0dd (which can be regarded as a moduli 
space of flat connections on JV') and in which every connection is asymptotic 
to some element of ^(X^odd on the end. Calling this moduli space M^N'), we 
have a smooth map r : M^N1) —> ^(E)0^, given by this limiting connection 
[T2]. Although the former space is not compact due to possible bubbling off 
of monopoles, the weak compactness theorem will guarantee that r has a well-
defined degree, say D, provided a is small. (For larger a, the degree may jump, 
on account of reducible connections.) Using Proposition 6.4 from [T2], we can 
ensure that the connections Q\ are regular values for r; so on JV' there will be 
exactly D anti-self-dual connections with holonomy a asymptotic to each Qj. 

For small a, the analysis of the ordinary case goes through, and shows that the 
anti-self-dual connections with holonomy on E over X can be regarded as being 
obtained by gluing one of the connections A\ on X' to one of the connections 
of Ma(JV'). Whereas in the original set-up each A\ could be glued to just one flat 
connection on JV', now there are D possibilities for each (counted algebraically). 
Thus we see that the total number of instantons with holonomy a (the number 
we called p) is equal to D times q. 

The important thing we have gained now is the information that D depends 
only on the neighbourhood of E, not on the geometry of the rest of X; this is 
the excision principle. We can therefore calculate this covering degree using any 
convenient model. The simplest thing is the ruled surface described in Section 3, 
where the answer comes out as 2g, for small oc, by virtue of the proposition from 
Section 4 and the conjecture on parabolic bundles. 

6. The General Case and Further Comments 

For the general case we must start with an SU(2) bundle, not an 50(3) bundle. 
We therefore arrange that g is odd. Our original moduli space ME will not be 
zero-dimensional, but as in [D2] we can cut down the moduli space by divisors 
Vj corresponding to 2-dimensional homology classes ßj in X. We choose the ßj 
so that they are orthogonal to [E] in if2(X) and are therefore supported in X\E. 
Provided we are in the stable range [D2], we can cut down the moduli space to a 
finite set of points whose number (counted algebraically) is an invariant of X and 
the chosen homology classes : this is the definition of the polynomial invariants. 

Everything can be carried through for these cut-down moduli spaces. Being 
in the stable range means that simple dimension-counting arguments ensure the 
compactness which the non-zero Stieffel-Whitney class previously provided (see 
[D2] again). The only technical difference is in the excision step, where we are 
now forced to deal with ffi(E)cyen. Since this space contains reducible connections, 
we need to be sure that, after deformation, we can arrange for the flat connections 
Qi involved in the gluing to be in the irreducible part. For this step, the positive 
sign of the self-intersection of E puts us in a good situation (see [T2], Proposition 
12.2). 



538 Peter B. Kronheimer 

At the end of the day, the argument shows that tho polynomial invari
ants vanish on the orthogonal complement of [E] if the surface contradicts the 
inequality of the conjecture. But since infinitely many pairwise-independent ho
mology classes can be represented by surfaces contradicting, the inequality (see 
the previous section), it follows that the invariant must vanish identically. 

In a more general setting, it seems that the ideas of this paper, if they can be 
carried through, would be useful for establishing relations between the polynomial 
invariant associated to a bundle Eo and that associated to a corresponding twisted 
bundle Ei/2 ; each choice of / would give some relation. To calculate these, one 
first needs to know the analogue of the proposition of Section 4, for different 
values of the monopole number. For example, if p is greater than the value X 
given in that proposition,,then,only special rank-2 bundles $ admit line sub-
bundles of degree p. This condition defines a subvariety of complex codimension 
2(p — X) in the moduli space of stable bundles over E, and one would need to 
know its dual cohomology class in terms of standard generators. Via the excision 
argument, this sort of information establishes the relationship between Mo and 
M a for small a, with similar considerations at a = 1/2. 
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§1. Introduction 

A symplectic structure on a 2«-dimensional manifold Kis a 2-form œ which is closed 
and non-degenerate, that is, dco = 0 and œ" does not vanish. The main example is 
the standard form 

COQ = dx1 A dx2 + dx3 A dx4 + • • • + dx2n-1 A dx2n 

on R2". Darboux showed that every symplectic form is locally diffeomorphic to m0. 
Thus symplectic manifolds, in contrast to Riemannian manifolds, are all locally 
isomorphic. We are concerned here with questions of their global structure. 

When n = 1 a symplectic form is just an area form, and the corresponding global 
topology is well-understood. For example, the existence problem is trivial: clearly, 
if V is compact, orientable and connected, it has a symplectic structure in each 
non-zero class in H2(V; R). The uniqueness problem is almost as easy, since Moser 
[M] showed that an area form (or, in higher dimensions, a volume form) is deter
mined up to isotopy by its cohomology class. (Two forms co0 and co 1 on V are said 
to be isotopie if there is a family gt of diffeomorphisms of V such that g0 = id. and 
QÌ^o) = œi- They are symplectomorphic if g*(co0) = co1 for some diffeomorphism 
gx) However, in dimensions >2, these questions are far from being understood. 

This paper will describe selected topics in the 4-dimensional case, concentrating 
on my own work. As we shall see, there are situations in which a symplectic form 
is determined up to symplectomorphism by its cohomology class. For example, 
Gromov's celebrated uniqueness theorem says that this holds for symplectic forms 
on (CP2 which are non-degenerate on some embedded 2-sphere in the homology 
class of CP1. However, this does not solve the problem of describing all symplectic 
structures on CP2 since it is unknown whether this condition holds for every 
symplectic form on CP2 . 

Almost all the results mentioned below use Gromov's technique of 
J-holomorphic spheres. They exploit the almost complex structures associated to 
a symplectic structure, and so emphasise the similarities between Kahler, complex 
and symplectic geometry. However, symplectic geometry cannot always be derived 
from Kahler (or even complex) geometry. For example, there are many non-Kähler 
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symplectic 4-manifolds. (There are even symplectic 4-manifolds which admit no 
complex structure: see [FGG].) There is also an example in [McD7] of a symplectic 
4-manifold which has a disconnected "symplectically convex" boundary. By con
trast, any complex manifold with pseudo-convex boundary must have connected 
boundary. So far, the geometric significance of a symplectic manifold being Kahler 
is not well understood. It would be very interesting to have some answers to the 
following questions: 

1.1 Is every simply-connected symplectic 4-manifold Kahler? 

This is not true in dimensions > 10 by [McDl]. 

1.2 Is every symplectic form on a 4-manifold determined up to symplectomorphism 
(or even isotopy) by its cohomology class? 

This is not true in dimension 8, and in dimension 6 there are examples of symplecto-
morphic but non-isotopic forms: see [McD2]. 

1.3 Which 4-manifolds admit a symplectic structure? 

Very little is known about this unless V is a fibration or the form co is invariant 
under a non-trivial S1 action (see [Au, AH]). 

§ 2. /-Holomorphic Curves in Almost Complex 4-Manifolds 

Because the linear symplectic group deformation retracts onto the unitary group, 
there is a homotopy class of almost complex structures J associated to a symplectic 
form co. (Recall that an almost complex structure J on F is an automorphism of the 
tangent bundle TV of V such that J2 — —Id. Thus TV may be considered as a 
complex n-dimensional vector bundle, with J corresponding to multiplication by 
i.) When n = 1, every almost complex structure is integrable, that is, it comes from 
an underlying complex structure' on V. This fact is one of the reasons why J-
holomorphic curves have such nice properties. 

Gromov realised that one could get a handle on the geometry of a symplectic 
manifold by considering properties of a more restricted family of almost complex 
structures on V, namely the set /(œ) of all J such that co(v, Jv) > 0 for all non-zero 
ve TV. Such J are said to be co-tatne. Recall from [Gl]' that the set /(co) is 
non-empty arid contractible. 

A map / from a Riemann surface (S, J0) to (F, J) is said to be J-holomorphic 
if / satisfies the generalized Cauchy-Riemann equation df o J0 = J o df. Because 
this equation is elliptic, the space MP(J, A), of all J-holomorphic maps / which 
have a fixed compact domain S and represent a fixed homology class A, is a finite 
dimensional manifold for generic J. Moreover, if J is cò-tame, the quotient of this 
space by the automorphism group G — Aut(S) of (5, J0) is either compact, or has a 
nice compactification. In fact, as the following proposition shows, homological 
conditions are often enough tö guarantee compactness. For simplicity, we state a 
result about rational curves, i.e. curves C = f(S) which are ./-holomorphic images 
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of spheres. The first Chern class of the complex vector bundle (TV, J) will be denoted 
by c. A proof may be found in [GÌ] or [McD4]. 

Theorem 2.1 [Gl ] . Suppose that Cû is integral (i.e. [GL>] e H2(V, Z)) and that co(A) = 1. 
Then, for generic co-tame J, the moduli space Mp(J, A)/G of rational A-curves is a 
compact manifold of dimension 2(c(A) + n — 3). Moreover, the bordism class of the 
evaluation map 

e(J):Mp(J,A)xGS2-^V 

given by (f, z)\-^f(z) is independent of J e /(co). 

This result already has many interesting consequences: see [Gl, 2] for example. 
In dimension 4 the theory is much sharper because, as the following results show, 
the geometric behaviour of the curves is governed by their homology classes. 

Theorem 2.2. Positivity of Intersections ([Gl]). Let C and C be distinct closed 
J-holomorphic curves in the almost complex 4-manifold V, Then C and C have only 
a finite number of intersection points. Each such point x contributes a number kx > 1 
to the algebraic intersection number C • C. Moreover, kx = 1 iff the curves C and C 
intersect transversally at x. 

In particular, the curves C and C are disjoint iff C • C = 0. This result is almost 
obvious if neither curve is singular at the point of intersection. The best way to 
prove the result in general is to perturb the curves so that their intersections avoid 
the singular points: see [McD8], The next result gives a homological criterion for 
a curve to be embedded. By analogy with the integrable case, we define the virtual 
genus g(C) of a closed curve C in an almost complex 4-manifold to be the number 
g(C) = 1 + \(C - C — c(C)). If C is an embedded copy of a closed Riemann surface 
S, it is easy to check that the virtual genus g(C) equals the genus g0 ofS. Conversely: 

Theorem 2.3 [McD5]. Let C cz V4 be the J-holomorphic image of a closed Riemann 
surface S of genus g0. Then g(C) is an integer which is greater than or equal to g0, 
with equality if and only if C is embedded. 

The crucial point here is that one can define for each point x e C = Im / a local 
self-intersection number L. Int.(/, x) of Im / at x. One proves that this is always 
>0, and is strictly > 0 iff x is a singular point off. In fact, it is not hard to see that 
one can choose local coordinates near x G V so that the lowest order terms in the 
Taylor expansion of / when regarded as a polynomial in z and z involve only z. 
More precisely, one can suppose that / : D -> C2 has the form 

z !-• (zk, zm) + terms in z, z of order > m, 

where m > k > 1 and k does not divide m. (Here, D is the unit disc in C, and we 
identify a neighbourhood of x in V with a neighbourhood of {0} in C2 in such a 
way that J corresponds to an almost complex structure on C2, which equals the 
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standard almost complex structure J0 at {0}.) If m and k are mutually prime, it is 
easy to see that L. Int.(/, x) = L. Int.(/0, x) = (m — l)(/c — 1), where/0(z) = (**> zm)-
In general, the proof of Theorem 2.3 involves perturbing/, using the techniques of 
Nijenhuis and Woolf. A more detailed analysis of the generalized Cauchy-Riemann 
equation shows that the jet of the J-holomorphic map at a critical point is dominated 
by its J0-holomorphic part. More precisely, 

Theorem 2.4 [McD8]. Let f : (D, 0) -> (C2, 0) be a J-holomorphic map, where J is an 
almost complex structure on C2 which equals the standard structure J0 at {0}. Then 
there is a J0-holomorphic mapf0 such that for sufficiently small e > 0 the knots formed 
by intersecting f(D) and fQ(D) with the sphere S3(s) of radius e about {0} are isotopie. 

§ 3. Applications to Symplectic 4-Manifolds; Uniqueness Results 

In order to apply this theory one needs to know that the bordism class of the 
evaluation map e(J) of Theorem 2.1 is non-trivial. For example, suppose that there 
is a symplectically embedded 2-sphere C in V4". It is not hard to see that C can be 
parametrized in such a way that it is J-holomorphic for some co-tame J. If in 
addition the self-intersection number p = CC is > — 1 one can show that that the 
corresponding moduli space is generically non-empty. Thus V contains a 2(p -f- 1)-
dimensional family of (unparametrized) curves which may be used to analyse the 
structure of V. 

The case p — — 1 is rather special since then, by Theorem 2.2, there is at most 
one J-holomorphic curve in each homology class. Such an embedded 2-sphere is 
said to be an exceptional sphere. By analogy with the complex case, a symplectic 
4-manifold which contains no exceptional spheres is said to be minimal. 

The following results describe all minimal symplectic 4-manifolds which contain 
a symplectic 2-sphere with non-negative self-intersection. 

Theorem 3.1 [McD6]. Let (V, co) be a closed symplectic 4-manifold (V, co) which 
contains a symplectically embedded 2-sphere C with C • C = 0. Suppose further that 
(V — C, œ) is minimal. Then (V, co) is ruled, that is, there is a fibration n : F-> M 
whose fibers are symplectically embedded 2-spheres, one of which we may assume to 
be C. Moreover the symplectic form co is determined up to symplectomorphism by its 
cohomology class. 

Sketch of proof. Let A be the homology class of C. One first shows that, for any 
co-tame J, the set of y4-curves may be compactified by adding "^-cusp-curves". These 
must consist of two exceptional curves joined at one point, and, because A-A = 0, 
must be disjoint from all J-holomorphic v4-curves by Theorem 2.2. Therefore, if J 
is chosen so that C is J-holomorphic, the minimality of V — C implies that the 
moduli space of ,4-curves is compact. Using Theorem 2.2 again, one sees that there 
is at most one >4-curve through each point. It follows that the evaluation map e(J) 
has degree 1, and that there is exactly one curve through each point. Now observe 
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that these curves are embedded by Theorem 2.3. With a little more work, one can 
show that they form the fibers of a fibration. 

To prove the uniqueness statement, one first reduces to the case V = S2 x S2 

by some cutting and pasting. Next one constructs a symplectic section of V in the 
class B = [pt. x 52] . We are now in a situation considered by Gromov. Since 
B-B = 0, the B-curves also fiber V Thus there is a symplectomorphism from (V, co) 
to (S2 x S2, Q) where Q is non-degenerate on all the slices pt. x S2 and S2 x pt. The 
result now follows from: 

Lemma 3.2 [K]. Suppose that oo is a symplectic form on the product M' x M" of two 
compact 2-manifolds which is non-degenerate on all the slices M' x pt. and pt. x M". 
Then co is isotopie to a product form. 

Proof. This is a straightforward calculation. 

An explicit description of all possible symplectic ruled 4-manifolds is given 
in [McD6] §4. Basically, one gets all the Kahler ruled surfaces considered as 
symplectic manifolds, i.e. one forgets the complex structure, since this is not relevant. 
However, note that when F is a non-trivial bundle the cohomology classes a = [co] 
which can be realised in this way satisfy the condition (a(C))2 < a2(V), and so do 
not include every class a with a2(V) > 0. Note also that (V, co) is itself minimal unless 
V is the non-trivial bundle over S2, in which case (V, co) is (DP2 blown up at one 
point with a standard Kahler form. 

There is a corresponding and even simpler result when the sphere has positive 
self-intersection. It is the symplectic analogue of the fact that the only minimal 
complex surfaces which contain a rational curve of positive self-intersection are (DP2 

and (CP1 x CP1. 

Theorem 3.3 [McD6]. Let (V, co) be a closed minimal symplectic 4-manifold (V, co) 
which contains a symplectically embedded 2-sphere C with p = C • C > 0. Then (V, co) 
is symplectomorphic either to (DP2 with its standard Kahler form or to S2 x S2 with 
a product form. In the former case p must equal I or 4 and C is either (DP1 or a quadric, 
and in the latter case p is even, and C is the graph of a holomorphic self-map of S2. 

We will see in § 4 below that, just as in the complex case, one can get rid of 
exceptional spheres by blowing them down. Thus these two theorems classify all 
symplectic 4-manifolds which contain a symplectically embedded 2-sphere C with 
C • C > 0, modulo the question of the uniqueness of blow ups. They generalize and 
sharpen uniqueness results which Gromov obtained in [Gl] for the manifolds 
S2 x S2 and (DP2. One expects that there are corresponding results for manifolds 
which contain a symplectically embedded 2-manifold M of higher genus, provided 
that M • M (or equivalently, c(M)) is sufficiently large to guarantee that the index 
(i.e. formal dimension of the corresponding moduli space) is positive. But it is 
unknown what happens if M • M is small. For example, if co is a symplectic form on 
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T2 x S2 which is non-degenerate on one slice T2 x pt., it is not known whether co 
must be symplectomorphic to a product form. 

Note. These uniqueness results all derive from considering families of J-holomorphic 
spheres, and so apply only to 4-manifolds which contain such spheres. In some 
circumstances it is better to consider J-holomorphic discs whose boundary is 
constrained to lie on a 2-manifold M which is totally real, i.e. J(TXM) n TXM = {0}, 
except at isolated points. This approach yields the sharpest results when M is a 
2-sphere which is contained in a J-convex hypersurface: see [E, B]. Note that M 
need not be symplectic. 

§ 4. Blowing Up and Down, and Embeddings of Balls 

In the category of complex manifolds, there is a well-known operation of blowing 
up a point in which one replaces a point x by the space of all complex lines through 
x. More formally, one cuts out a neighbourhood of x which is biholomorphic to C" 
and glues back in a copy of the total space L of the canonical line bundle over (DP'1"1 

by identifying the complement of the zero section in L with the deleted neighbour
hood C" — {0} of x. Thus the point x is replaced by an "exceptional divisor" which 
is a copy of (DP"'1 with normal bundle L. When n = 2, this divisor is simply an 
embedded rational curve C with CC = —1. The converse process of "blowing 
down" replaces an exceptional divisor by a point. 

In the symplectic case, when one blows down an exceptional divisor P one gets 
not a point but a ball B(X) whose radius X is related to the cohomology class 
of co by the formula nX2 = co(A), where A is the positive generator of H2(P; Z). 
Conversely, in order to "blow up a point" of (V, co) one chooses a symplectic 
embedding gofB = B(X) into V, cuts out the interior of the ball g(B) and then forms 
the blow up V by identifying the boundary sphere g(dB) with (DPn~x via the Hopf 
map and smoothing the result: see [McD3]. It is not hard to check that co induces 
a symplectic form co on V. Note that V is diffeomorphic to the manifold obtained 
by putting any integrable tame almost complex structure on a neighbourhood of 
some point x e V, and then blowing V up at x. The point of the above description 
is that it gives the construction of co. 

Clearly, by successive blowing down of a finite sequence of exceptional divisors 
one can make any manifold minimal, i.e. such that it does not contain any excep
tional divisors. When n = 2, one can use the theory of J-holomorphic curves to 
control the exceptional divisors and hence can show: 

Theorem 4.1 [McD3]. Every symplectic 4-manifold (V, co) covers a minimal symplectic 
manifold (V, oo') which may be obtained from V by blowing down a finite collection 
of disjoint exceptional curves. Moreover, (V, co') is determined up to symplectomor-
phism by the homology classes of the blown down curves. 

Another important question is that of the uniqueness of blow ups. Not much is 
known about this except when one blows up one point of the standard (DP2. In this 
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case, the resulting manifold (X, co) is the non-trivial S2 bundle over S2. Moreover, 
it is not hard to show that X contains a symplectically embedded 2-sphere C with 
C • C = 0. Hence the theory of § 3 applies, and one can show that all cohomologous 
forms are symplectomorphic. As a corollary, one finds: 

Theorem 4.2 [McD3]. For each X < 1, the space of symplectic embeddings of the ball 
B(X) into the open unit ball in C2 is connected. 

The analogous statement is true if the target space is the standard (DP2. However, 
this result is surprisingly delicate, and it is unclear if this holds for any other target 
space, even those as simple as S2 x S2 or a convex subset of C2. This question is of 
interest because of the following result. 

Proposition 4.3 [McD3]. Let Xk be the complex surface obtained by blowing (DP2 up 
at k points, and let S be a fixed copy of (DP1 in Xk (disjoint from the blown up points). 
Then, there is a non-Kähler structure on Xk which is non-degenerate on S iff there are 
X1,...,Xk such that the space of symplectic embeddings of the disjoint union \\{ B(Xf) 
into B(l) is disconnected. 
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This paper is a description of research I have been doing over the last four 
years, applying some of the methods and ideas of rational homotopy theory as 
developed by Chen, Quillen and Sullivan, to deformations of flat and holomorphic 
bundles, complex manifolds and isolated singularities. My work is based on the 
fundamental observation of Pierre Deligne [D] that "in characteristic zero, a 
deformation problem is controlled by a differential graded Lie algebra, with 
quasi-isomorphic differential graded Lie algebras giving the same deformation 
theory." I would like to thank Pierre Deligne for providing me with this insight 
and Bill Goldman who was my collaborator in developing much of what follows. 
I would also like to thank Ragnar Buchweitz, Kevin Corlette, Steve Halperin, 
Jack Lee, Madhav Nori and Mike Schlessinger for helpful conversations. The 
interested reader will find details in [GM1, GM2, BM] and [M]. 

We begin by recalling that Sullivan showed how to recover explicitly the 
rational homotopy type of a simply-connected manifold M by replacing the de 
Rham algebra srf*(M) on M by a minimal free differential graded algebra quasi-
isomorphic to it having finite dimensional cochain groups and decomposable 
differential. We recall that two differential graded algebras A and B are quasi-
isomorphic if there is a chain of homomorphisms 

A = AQ - • A\ <- A2 • • • - • A„ = B 

all of which induce isomorphisms of cohomology. The rational homotopy type of 
M can be calculated from any differential graded algebra quasi-isomorphic to 
j / * ( M ) . 

We will make use of one concept from the now well-developed homotopy 
theory of differential graded algebras. 

Definition. A differential graded algebra A is formal // it is quasi-isomorphic to 
a differential graded algebra B with zero differential. The underlying algebra B is 
then necessarily isomorphic to the cohomology algebra of A. 

We now recall the celebrated theorem of [DGMS]. 
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Theorem. The de Rham algebra jé*(M) of a compact Kahler manifold M is formal. 

The theorem is a consequence of the following considerations. We use the 
complex structure on M to decompose the exterior differential d on M in the 
usual way, d = d + d. Then we have the following quasi-isomorphism 

(j**(M),d)*-(ker3,3) 
\ i m d J 

The fact that d induces the zero differential on ^ | is an immediate consequence 
of the "33-lemma" of Kahler geometry, [DGMS]. 

To carry Sullivan's ideas over to deformation theory, we start with a differential 
graded Lie algebra over a field k (we will consider only those algebras with finite 
dimensional first cohomology groups). Given such an algebra L we choose a 
complement Cl(L) to the 1-coboundaries Bl(L) c L1. We define a functor 
A -» YL(A) on the category of Artin local k-algebras by 

YL(A) = {rje Cl(L) ® m : drj + \%rj\ = 0}. 

Here m is the maximal ideal of the Artin local k-algebra A. It is evident that the 
functor YL satisfies the hypotheses of Theorem 2.11 of [Sci] and is consequently 
pro-representable by a complete local k-algebra RL (we will see later as a 
consequence of our main theorem that the isomorphism class of RL does not 
depend on the complement CX(L)). 

One can apply the above construction to the following geometric situations: 

(i) The twisted de Rham algebra with coefficients in the flat Lie algebra bundle 
ad P associated to a flat principal G-bundle P over a compact manifold M; 

(ii) the Kodaira-Spencer algebra (®<stf°*(M, T1>0(M)), d) associated to a complex 
manifold M; 

(iii) the tangent complex T associated to the germ (V,x) öf an isolated singularity 
in (Dn. 

It is then reasonably clear (and proved in [GM2]) from the above construction 
that in cases (i) and (ii) the algebra RL is the completion of the analytic local 
ring Dœ associated to the versai deformation space as constructed by Kuranishi 
of the given flat connection on P (resp. complex structure on M), In case (iii), 
it is proved in [BM] following ideas in [SS] that the ring JRT is isomorphic to 
the completion of the analytic local ring of the versai deformation space of 
the isolated singularity (V,x). We note two other important cases of differential 
graded Lie algebras L over a field k in which RL is the completion of an analytic 
local k-algebra. 

In case L has zero differential, then Ri is the completion of the analytic local 
k-algebra associated to the germ (£L, 0) where 

^L^irjeL1 : [ M ] = 0 } . 

We note that Jz, is a quadratic cone canonically associated to L. In case L1 is 
finite dimensional, then RL is the completion of the analytic local k-algebra of 
the germ (Y,0) where 
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Y^tyeC1 :d!/ + £ |>M]=0} . 

Henceforth we will use J#"L to denote the corresponding analytic germ. 

Definition. If (X, x) is an analytic germ which parameterizes a versai family for a 
deformation theory and L is a differential graded Lie algebra such that RL » Oj ) X 

then we will say that L is a controlling differential graded Lie algebra for that 
deformation theory. 

We have the following theorem (Theorem 4.1 of [GM2]). 

The Comparison Theorem. Suppose f : L\ —> L2 is a homomorphism of differential 
graded Lie algebras such that f induces an isomorphism on first cohomology and 
an injection on second cohomology. Then RLì and RL2 are isomorphic. 

Corollary. The isomorphism class of RL does not depend on the choice of CX(L). 

Corollary. If L\ and L2 are quasi-isomorphic, then RLX and RL2 are isomorphic. 

Remarks. We do not require / to carry the complement C^Li) into C 1 ^ ) . In 
case RL{ and RL2 are the complete local k-algebras associated to analytic germs 
(X\,x\) and (X2,X2), it follows from [A] that (Xi,xi) and (^2,X2) are isomorphic. 

If L is quasi-isomorphic to a differential graded Lie algebra with zero differ
ential (one says L is formal), then it follows that 

^L = {n^H1(L):[n,n\=0}. 

Somewhat surprisingly this frequently happens. Carlos Simpson [S] has shown 
that the twisted de Rham algebra is formal if M is Kahler, the structure group G 
of the underlying principal bundle is linear and the monodromy representation 
Q : ii\(M) —> G is completely reducible. Using Simpson's Theorem, the above 
general results and some standard results relating representations of m(M) and 
flat connections we obtain the following theorem (recall that if G is a linear 
algebraic group over IR (or (D) then the space of representations Hom(7Ci(M), G) 
is an affine scheme over R (or (D)). The proof of this theorem is in [GM1]. 

Theorem. Let G be a linear algebraic group over IR (or (D) and M be a compact 
Kahler manifold. Let Q : n\ (M) —> G be a completely reducible representation. Then 
the analytic local ring o/Hom(7üi(M),G) at Q is isomorphic to that of the quadratic 
germ (1,0) where 

£ = {ue zHnMa) • [«,«] = 0 in ff2(7üi(M),ß)}. 

Here Zi(n\(M),^) is the space of Eilenberg-MacLane 1-cocycles with values in 
the Lie algebra g of G and [u, u] denotes the product obtained by combining the 
cup-product on group cochains with the bracket on g. 
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The proofs of the above results are too long to be given here; however, to 
emphasize the analogy with the theorem of [DGMS] referred to earlier, we give 
the original proof of [GM1] of the formality of the twisted de Rham algebra 
in case G is compact. We may decompose the exterior covariant differential 
rfv by type as dsj = 3v + dv (here V is the covariant derivative operator on 
sections of ad P ® C associated to the flat connection on P). We then have the 
quasi-isomorphism 

(^•(M.adPc), Jv) <- (ker3v,äv) -> ( î ^ . o ) . 

Once again the induced differential on fe^f2- is zero by a SySy-lemma, see [GM1]. 
There is also an interesting formality result for the Kodaira-Spencer algebra. 

Theorem. Let Mn be a compact Kahler manifold admitting a nowhere zero top 
degree holomorphic form. Then the Kodaira-Spencer algebra of M is formal. More
over, the cup-square from H1(M,Tl°(M)) to H2(M,Tlfi(M)) is zero. 

Corollary. The Kuranishi space (versai deformation space) of M is H{(M, T1,0(M)). 

The corollary is Bogomolov's Theorem. Our proof of the above theorem is a 
reinterpretation of proofs of Tian [Ti] and Todorov [To]. We let co be the nowhere 
zero top degree holomorphic form on M. We then obtain an isomorphism of 
complexes <ï> : (jtf°>-(M,Tl>0(M)),d) -> (^n~^(M\S) given by 

<P(rj) = 1^00. 

Here inco denotes the contraction [FN] of the scalar form co by the vector form 
rj. We use 0 to transfer the graded Lie bracket from the Kodaira-Spencer algebra 

toe^o^-^M). 

The Tian-Todorov Lemma. Suppose rji e jtfn~i>qi(M) and rj2 e J / W - 1 ' 5 2 ( M ) are 
both d-closed differential forms. Then the (transported) bracket [rjuVi] is d-exact. 

Remark. This lemma is the analogue of the lemma in symplectic geometry that 
the bracket of two symplectic vector fields corresponds to an exact 1-form. It 
may be proved in the same way using the formalism of vector-valued forms of 
[FN]. 

Once the Tian-Todorov Lemma is proved, the formality of the Kodaira-
Spencer algebra follows from the now familiar diagram 

(^n-l-(M),d) <- (kerd,d) - (^,o) . 
\ imo J 

Here ker d denotes ker (d : sén~lì'(M) -> jtfn>m(M)) and im d denotes im (d : 
srfn~2>m(M) -> ja/n_1'*(M)). For details and the vanishing of the cup square the 
reader is referred to [GM2]. 
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A class of examples which are easily analyzed is the class of compact complex 
parallelizable nilmanifolds. Let M = T\N, N nilpotent complex with Lie algebra 
ri defined over R and T a cocompact lattice. Let L be the Kodaira-Spencer 
algebra and L cz L the image of the left iV-invariants. The inclusion L —• L is a 
quasi-isomorphism so JfL = Jf .̂ It is easy to see that 

Jf^ = End aig (n) 

the (germ at 0 of the) affine variety of Lie algebra endomorphisms of u. If we 
describe n by generators and relations we can produce a very large number of 
germs that are Kuranishi spaces of complex manifolds. For example, let rt be the 
free Lie algebra on two generators X and Y subject to the relations 

(i) all (n + l)-fold commutators = 0 
(ii) eLdn-lX(Y) = adu-{Y(X). 

Then 
jf r = {(X1, Y') e n2 : X', Y! satisfy (ii) } 

so the Kuranishi space of M is a homogeneous cone of degree n, see [GM2] for 
more details. 

Remark. These examples provide realizations of all the obstructions to integrating 
an infinitesimal deformation of the complex structure of a complex manifold M. 

We observe that L controls the deformation theory of locally left-invariant 
(i.e., descended from left-invariant complex structure on N) structures on M. 
Since L —> L is a quasi-isomorphism it follows that the two deformation theories 
are the same, that is, every complex structure on M sufficiently close to the locally 
bi-invariant one is locally left-invariant. The rest of this paper outlines deeper 
examples of such a comparison of two deformation theories. 

We now describe applications of the above ideas to deformation of isolated 
singularities. We first summarize the fundamental results of Kuranishi in [K2]. 
Let V be an analytic subvariety of (DN with a normal isolated singularity at the 
origin. Let M be a link of V (the intersection of V with a small sphere centered 
at the origin). Then M has an induced CR-structure. Let TU°(M) be the (1,0) 
subspace of the complexified horizontal subspace H ® (C cz T(M) ® (C. Choose a 
complement F to H in T(M). The map T of [K2], (8), gives 

E = T{'0(M)®(F®<D) 

the structure of a holomorphic vector bundle over M. Then (®<stf°*(M,E), db) 
is a complex, and Kuranishi used it to construct a finite-dimensional family 
(JTM90) of integrable CR-structures on M which is a versai deformation of the 
given CR-structure modulo a relation (coarser than isomorphism) designed to 
account for the above choice of sphere. However, he did not give XM a complex 
analytic structure nor did he relate C^M to the versai deformation space of (V,Q). 
The first problem was solved for the case dim V > 4 by Miyajima in [Mil] 
completing earlier work of Akahori [Akl]. In the rest of this paper we will 
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show how the Comparison Theorem can be used to identify JTM with the versai 
deformation space of (V,0). The following result is proved in [BM]. It was proved 
independently by Miyajima in [Mi2] using results of Fujiki [F]. 

Theorem. Suppose (V,0) is normal and satisfies 

(1) dim V > 4; 
(2) depth{o}F> 3. 

Then the base space of the versai deformation of (V,0) is isomorphic to C/Cw 

Remarks. The assumption (2) is equivalent to the assumption that the Kohn-Rossi 
cohomology group Hi(M,D) vanishes by [Y]. If we do not assume (2), it can be 
shown that the base space for the versai deformation of (V, 0) is isomorphic to a 
closed subgerm of XM- In [BM] we give a family of examples such that (V,0) is 
normal but the deformation space of (V,0) is a proper subgerm of JTM. 

We will now prove the above theorem by applying the Comparison Theorem 
many times. 

Let T be the tangent complex associated to (V,0), see [B], [Sc3] or [P]. Then as 
stated above, T is a differential graded Lie algebra that controls the deformation 
theory of (V, 0). We recall that this means that there is an isomorphism 

RT « Qx,o 

where (X,0) is the analytic germ parametrizing the versai deformation of (V,0). 
Choose any Stein representative V of (V,0) and let L be the Kodaira-Spencer 
algebra of U = V — {0}. In [BM] we prove, following [Sc2], that under the 
assumption depth{0} V > 3 we have 

RT&RL-

It remains to compare the deformation theory of U with that of M. 
We now consider the image of L under the restriction map from U to M. 

Unfortunately brackets in L do not behave well under this map and consequently 
it is necessary to replace L by a subalgebra L tan of forms whose restrictions to M 
take values tangent to M. The definition of the algebra Ltan is somewhat involved. 
We may assume that r has no critical points on U and note that co = ^ôd(r2) 
is the restriction of the Kahler form of (Dn. We consider the sub-graded vector 
space D ' of L defined by 

D° = {ZGL° : i-dzdr\M = 0} 

and for i > 1 
Dl = {p e V : i^drlM = 0, y ü | M = 0}. 

It is proved in [Ak2] that (Dm, d) is a complex and it is easily seen that 
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is closed under the Frölicher-Nijenhuis bracket [FN], Furthermore, it is a result of 
Akahori [Ak2] that the inclusion D* -+ L ' is a quasi-isomorphism of complexes. 
Thus if we choose a complement C1 to 3D0 in D1 and define 

Ltan = C © V37^ » 

we find that Ltan is a differential graded Lie algebra and that the inclusion 
Ltan —> L induces an isomorphism of cohomology in degree greater than or equal 
to one. Thus by the Comparison Theorem we have (for any choice of C1) 

We now identify the image of / . To do this we need the CR-analogue of 
Ltan which was constructed by Akahori in [Akl] and was the basis of the proof 
of the Akahori-Miyajima Theorem referred to above. We define D' to be the 
following sub-graded vector space of Kuranishi's complex (®jtf°*(M,E), db). Let 
6 be a contact form on M compatible with H. Then we define 

D° = {Z e jtf°(M,E) : i-dhZB = 0} 

and for / > 1, 
£ f = {p e sé^(M, E) : i^O = 0, if.de = 0}. 

We then choose a complement C to 3&D in D and define 

L = C 1 © 0 5 / . 

We also define 
D+ = ©!?. 

tel 

Now the restriction map / followed by the canonical map % : T1,0(U)\M —> E 
of [K2] gives a homomorphism of complexes 

;+ : / ) + - + D + . 

Le t /+ = k e r ; + . 

Lemma. I+ is an ideal in D+. 

As a consequence of this lemma we find that D carries the structure of 
a differential graded Lie algebra such that ;*+ is a homomorphism. Since / is 
surjective we may choose the complement C1 so that it is carried into C by j + . 
We obtain a homomorphism of differential graded Lie algebras 

7 + :L , tan 

In [Akl], Akahori proved that the inclusion of L into Kuranishi's complex 
induced an isomorphism of cohomology of degree one or greater. In [Akl] and 

http://if.de
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[Mil], Akahori and Miyajima proved that Kuranishi's family JTM was isomorphic 
to the analytic subvariety J f ^ c i J ^ L ) obtained by applying the well-known 
construction of [KI] to L with a suitable choice of complement C1, provided 
dim V > 4. In particular, it is immediate that 

RL*®œM,o. 

Our theorem then follows by the Comparison Theorem from the fact that j + 

induces isomorphisms on cohomology in degrees 1 and 2 provided dim V > 4. 
To prove this latter fact we consider the following diagram of complexes : 

®^*(M,E) 

We have seen that the two vertical arrows are quasi-isomorphisms. But it follows 
from the discussion in [Y], pp. 81-82, that the top horizontal arrow induces an 
isomorphism on Hl and H2 in case dim V > 4. 

The theorem of Buchweitz-Millson and Fujiki-Miyajima can be used to com
pute C/£M if one has enough information about the ideal of the corresponding 
singularity. In [M] we use differential geometry to compute X M directly for a 
certain class of Ci^-manifolds. Let J£? be a negative line bundle over a compact 
Kahler manifold N and let U(<£) be its unit circle bundle. In [M] we compute Ctf°M 

for M = U(£?) in case if is sufficiently negative. Recall that if 3? is sufficiently 
negative, then 3?~l gives a projective embedding of N into CPm for some m. We 
then have the following theorem, [M], the CR-analogue of Theorem 2 of [Sc2]. 

Theorem. Let M = U(J£) as above. If 5£ is sufficiently negative then C/CM is 
isomorphic to the parameter space for the versai projective deformation of N in 
CFm . Moreover, by Schlessingerfs Theorem, this latter space is isomorphic to the 
deformation space of the singularity (CN,0), where C# is the affine cone over N. 

Example. Let N be a complex torus of dimension n and <£ any negative line 
bundle over N. Then by a direct computation one can show 

.«(im) 

In case £g is sufficiently negative, the above Theorem produces an isomorphism 
between ^\j{se) and the parameter space of the versai deformation of (CJV, 0) even 
though 

depth{o}Cjv = 2. 

Remark. For any <£ as above one can obtain an analytic germ (CN, 0) by collapsing 
the zero section. It is reasonable to expect that the parameter space of the versai 
deformation of (CN,0) is again (Cn"2 . 
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of Algebraic Curves 
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Introduction 

The subject of this lecture is some aspects of the theory of deformations of plane 
real and complex algebraic singular curves and its applications. Namely, in this 
large classical problem we shall consider (i) the independence of singular points 
deformations, (ii) connections between deformations of singularities and discriminant 
hypersurface in moduli space of plane curves of a given degree, (iii) applications of 
these results to classification of algebraic real and complex curves. 

First results in this direction concerned the curves with nodes (in complex case 
- Severi [17], in real case - Brusotti [2]): any reduced curve with nodes can be 
deformed in the space of curves of a given degree so that arbitrary set of nodes is 
smoothed, and all other singularities are preserved. 

The proof idea is that the germ of locus of curves with a given number of nodes 
is a transversal intersection of smooth germs of hypersurfaces corresponding to each 
singularity. The last assertion follows from nonspeciality of some linear system on 
the curve by means of Riemann-Roch theorem. It should be noted that Harris 
theorem on irreducibility of variety of given degree curves with a given genus [10] 
was proved, in fact, by the same ideas. We also point out that many methods of 
construction of real algebraic curves [8] are based on Brusotti theorem. 

In this lecture we shall develop above results and approaches. 

1. Notions and Notations 

Further on we shall consider only plane algebraic projective real and complex 
curves (including irreduced and reducible curves). The polynomial defining a curve 
and the locus of curve points in (DP2 we denote identically. The set of curves of 
degree n is parametrized by FN, N = n(n + 3)/2 (from now on P* means <DPN and 
1RPN at the same time). 

Let F e P N and p e F be an isolated singular point. The singular point type, or 
singularity, means the list of characteristic Puissex exponents of all local curve 
branches and the list of intersection numbers of branches. This is complete topo-
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logical invariant of singular point. Symbols p(p, F), d(p, F) mean the Milnor number 
and (5-invariant of the point pe F respectively. By Up we denote an open sufficiently 
small ball in CP 2 centred at point p. 

Remark 1. If F e WLPN, p e (CP2\IRP2 then there is a conjugated singular point 
conj p e F. In this case we call the pair (p, conj p) by "singular point" understanding 
correspondingly all other terms. 

The perturbation of F e WN is a sufficiently close to F curve G e WN\{F}. By 
perturbation of the point p e F we call any set G n Up, where G is a perturbation of 
curve FLm for some integer m > 0 and some fixed line L e (IP2)* non-crossing Up. 
Nonsingular perturbations of the real point are called smoothings [25]. 

Two perturbations of p e F are called equivalent, if they can be transformed one 
into another by (equivariant in real case) diffeomorphism of Up close to identity. 
Two perturbations of p are called algebraic-topologically (AT) equivalent, if they 
have the same sets of singularities, and (in real case) some neighbourhoods of their 
real parts can be transformed one into another by equivariant homeomorphism of 
Up, close to identity. 

By V(n, Su...9Sf) we'll denote the locus of degree n irreducible curves with r 
singular points of types Sl9..., Sr respectively. The germ M(F) c P* of equisingular 
(ES) stratum (this is p = const stratum) centered at reduced curve F e PN is called 
regular, if it is smooth and has codimension XZ 6FC(Z), where c(z) is codimension of 
p = const stratum in miniversal deformation base of singular point z. 

2. Independence of Versal Deformations 

Let p be an isolated singular point of curve F e P*. Let 77, 77' denote two generic 
polar curves of F. For any branch Q of curve 77 at point p we assign z(Q) = s/r, 
where s is the sum of orders of Q at point p and at the infinitely close to p points 
belonging to 77'. For a reduced curve F we assign T = max x(Q). It depends on 
different singularities of F, and is ever less than 1. Put 

f 25/729, T < 5^/2/18 
1(F) = J 2T 2 /9 , 5^/2/18 < T < 5/9 

[(1 - T + T2 + (1 - 21)^/1 + 2T - 2T2) /9, 5/9 < x 

Theorem 1 [23, 24]. If (i) F is reduced and satisfies 

£ p(z,F)<4n-5 (1) 
zeF 

or (ii) F is reduced and irreducible and satisfies 

£ (p(z,F) + 5(z,n))<X(F)n2, (2) 
zeF 

then some neighbourhood of F in 1PN represents a joint versai déformation of all 
singular points of F. 
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This theorem fully describes properties of the discriminant hypersurface germ 
at F e WN under above conditions. The proof is based on the following: the inter
section transversality of PN and tangent spaces to orbits of Diff [/^-action for all 
p e Sing F can be concluded from nonspeciality of some linear system on suitable 
curve by means of Riemann-Roch theorem (in particular, polar curve 77 can be 
taken as such a curve, and then one obtains condition (1)). 

Corollary 1. Under conditions of Theorem 1 a suitable perturbation of F realizes 
perturbations of any singular points, equivalent to a priori given perturbations of these 
points, while other singularities are preserved. 

This statement does not cover Severi and Brusotti theorems, but it does not 
contain restrictions on singular points types and their perturbations; also the right 
hand side of (2) is sharp with respect to exponent at n. For example, if F has only 
ordinary cusps as their singularities then (2) ensures the independent deformation 
of all cusps when 

#(SingP)<(7-yÏ3)«7l62, 

since the other known estimates [4, 7] give 

# (S ingP)<3n-1 . 

Corollary 2. Under conditions of Theorem 1 M(F) is regular. 

The above assertions do not contain restrictions on a position of singular points. 
Adding such restrictions one can weaken inequalities (1), (2) (in [3] there are those 
estimates for curves with ordinary singular points). 

Compare (1) with known counterexamples. According to [14] varieties V(9, A35), 
7(11, A50) are not smooth. The Corollary 2 implies the smoothness of V(9, Ak), 
7(11, A J only for fc < 31, m < 39. 

3. Independence of Certain Perturbations Classes 

Corollary 1 embraces every perturbation of arbitrary singularities, but it does not 
show what types of perturbations of each singular point exist. Here we'll use certain 
other approaches to our problem. 

3.1 Perturbations of Quasiordinary Singular Points 

Consider the following approach to problem of regularity of M(F). Using Cremona 
transformations we can obtain that F had only ordinary singularities. Then regularity 
of M(F) follows (see [3, 7]) from nonspeciality of some linear system on F. The exact 
assertions are as follows. 
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Definition 1. Let us consider the full resolution of singular point peF. Let p0 = p, 
pl9...,pkbe consequent infinitely close to p points of this resolution, which belong 
to branch Q of F centered at p. Define ß(Q, F) as sum of orders of branch Q at p0 , 
. . . , Pfc-i (i.e. at those points, where proper inverse image of F has singularity, or 
intersection number of F with exceptional divisor exceeds 1). Let ß(Q, F) be equal 
to ß(Q, F) — 1 (resp. ß(Q, F)), if one o fp l 5 . . . , pfc_t is touch node, i.e. point of two 
smooth branches contact (resp. no touch node) of full inverse image of P. If order of 
F at p is 2, then we must subtract the order of Q at p from above defined value 
ß(Q, F). Put also 

ß(p, F) = £ m H ' ß[p, F) = £ ß(Q, F). 

It is easy to show that 

c(p, F) - ö(p, F) < ß(p, F) < p(p, F) - 1 

and that ß(p, F) = r for ordinary singular point of order r (this is an intersection 
point of r smooth branches with different tangents). 

Definition 2. For any reduced curve F with irreducible components P 1 ? . . . , Fk and 
for a set S cz Sing F we define vectors d(F), b(F, S) e If as follows: 

[d(F)]f = 3 deg Ft-1, 

where g 2 (resp. gx) runs all branches oîFt centred at points z e S (resp. z e Sing F\S). 
Put b(F) = b(F, Sing F), b(F) = b(F, 0). 

Every inequality for vectors below means inequalities for each pair of corre
sponding coordinates of vectors. 

Theorem 2 [18, 22, 24]. 7 /P is reduced and'satisfying 

b(F) < d(F) (3) 

then M(F) is regular. If 

HF) < d(F) (4) 

then the variety V cz (DPN of curves, having singularities as F and disintegrating into 
components with the same singularities sets, is irreducible. 

This theorem covers the Severi and Brusotti theorems and analogous results 
on curves with cusps and ordinary singularities [6, 7, 13, 26]. According to [27] 
varieties 7(6, 6A2), 7(6, 3P6) are reducible. Theorem 2 claims the irreducibility of 
7(6, kA2), 7(6, mE6) for k < 4, m < 2. 

Remark 2. The point p e P\Sing F is called quasisingular of order k > 1 with respect 
to fixed line / , smooth at p, if intersection number (F • f)p = k. We can take into 
account quasisingularities in Theorem, 2 by adding to left hand sides of (3)̂  (4) 
the values ß(p, F) = k — 1, ß(p, F) = k respectively. Thus, using the supplemented 
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Theorem 2 one can prove Harris theorem [10] on irreducibility of V(n, kAJ, k > 1, 
Ran theorem [16] on irreducibility of V(n, kAu S), where singularity S is trans
formed into set of quasisingularities and nodes by one blowing-up. Analogous 
approach gives 

Theorem 3. The variety V(n, kAuSu ...,Sr), where k > 0, 0 < r < 9, S1,..., Sr are 
ordinary singularities with J^ßfä) < 2n, is irreducible. 

In particular, this implies that the variety of curves on quadric (DP1 x (DP1 with 
a given bidegree and a given genus is irreducible (see also [16]). 

Remark 3. From proof of Theorem 2 it is possible to deduce that coefficients at 
monomials lieing under Newton diagrams of all singular points can be varied 
independently. Therefore perturbations determined by these monomials are inde
pendent too. Effective construction of those perturbations was suggested by Viro 
[25]. 

Definition 3. Singular point pe F E <DPN is called quasiordinary (QO-point), if (i) for 
some affine coordinates p = (0; 0), and all sections of polynomial F on edges of the 
point p Newton diagram are nondegenerated (normal QO-point), or (ii) some 
embedding cp : Up -> C2 transforms p into normal QO-point (in the case p e IRP2, 
F G R P N we assume cp o conj = conj o (p). Quasisingular points are QO-points in a 
natural sense. 

This notion includes, for instance, zero-modal points, quasihomogeneous 
singular points. For normal QO-point ß(p, F) = k + m — r + 1, where k, m are 
maximal absciss and ordinate of points on the Newton diagram, and r is a number 
of integer points on the Newton diagram. 

Modifying the Viro construction [25] we'll define a set of V-perturbations of 
QO-point pe F. Normalize the point p, and denote the Newton diagram of p by P 
and the Newton polygon of normalized curve P0 by A0. Take a set of polynomials 
Fi(x, y) = (f>f(x, y)x*yu, where x, yjfa, with Newton polygons Ai3 1 < / < k, lieing 
under P. Assume that (i) A = [J Af is convex, any nonempty intersection zf,- n Aj is 
a common edge of A{, Aj or a common apex, there is also a continuous convex 
function v : zf -> R, linear on each At and nonlinear on each union A f u zf,-, (ii) if 
Af n Aj = y is a common edge, then sections of Fh Fj on y are identical square-free 
(except x, y) polynomials. Now 7-perturbation is constructed by means of set {Pj 
according to [25]: (i) lift each curve cp{ upon toric manifold determined by Ah (ii) 
glue these toric manifolds according to arrangement of A0,..., Ak, (iii) project the 
correspondingly glued curves P0, cpl9..., cpk on the plane. 

For a given 7-perturbation n we'll define the set T(n) of oriented graphs without 
oriented circles. Vertexes of graph A e T(n) correspond to polygons A{, arcs of A 
correspond to common edges of Ah 0 < / < k. To curve Fh 1 < / < k, and to graph 
A G T(%) we assign the vector v(Ft, A). Its coordinates correspond to irreducible 
components of q>i3 and are equal to numbers of local branches of each component, 
defining by those edges of Ai9 which correspond to arcs of A coming in A{. 
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Theorem 4 [19,22]. Let F EFN be a reduced curve, o cz Sing P be some set of 
zero-modal singular points, x CZ Sing F\o be some set of QO-points, {itz\z GT} be a 
set of V-perturbations, defined by curves Fzi, z EX, 1 <i < j z . If there exist graphs 
Az E T(nz), ZEX, for which 

b(F, S) + £ <F, Az) < d(F), (5) 
z 

b(Fzi,Szi) + v(Fzi,Az)<d(Fzi), - (6) 

where z e T, 1 < i < jz,S = {z E X\V(F, Az) ^ 0}, Szi = Sing <j)zi n <D2\{xy = 0}, then 
a suitable perturbation of F realizes perturbations of ZEX, which are AT-equivalent 
to %z, ZEX, and perturbations of points ZEG, which are equivalent to their a priori 
given perturbations, while other singularities are preserved. 

Remark 4. If all curves Fzi, ZEX, 1 <i < j z , are smooth in (D2\{xy = 0}, or have 
there only nodes, then (5), (6) can be replaced by (3). 

Remark 5. 7-perturbations can be defined for arbitrary singular point as follows: 
the singular point should be resoluted and all infinitely close singular and quasi-: 
singular points should be consequently perturbed. 

3.2 Equigeneric and Equiclassical Perturbations 

The independence of above perturbations is connected with properties of ES-
stratum. Here we consider perturbations, which are connected with equigeneric 
(EG) stratum g = const and equiclassical (EC) stratum g = const and c = const; c 
is class of curve, i.e. degree of dual curve. 

Theorem 5 (see [1, 15]). For any reduced curve F E (DPN there exists a perturbation 
that turns independently each singular point ZEF into an arbitrary number of nodes 
from 0 to b(z, F). 

This follows from that the tangent cone to EG-stratum at P e CPN is a linear 
system of adjoining curves of degree n, which is evidently nonspecial. It implies that 
curves with nodes form a dense subset of EG-stratum in (DPN. 

A perturbation from EC-stratum turns (see [5]) a singular point into 3<5 — K 
nodes and x — 23 cusps, where x is an intersection number of curve and its polar 
curve at this point. Namely (see [5]), 

Theorem 6. If a reduced irreducible curve F E (DPN satisfies c > 2g — n, then the 
suitable perturbation of F turns independently each singular point p into d nodes and 
k cusps, where d, k are arbitrary satisfying 

0<d<o, 0<k< min{a: - 20, Ö - d}. 

According to [1, 4] EG-germ and EC-germ in a versai deformation base are 
irreducible. Therefore 
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Theorem 7. If FE <DPN satisfies (1) or (2), then EG-germ and EC-germ at F in CP* 
are irreducible. 

3.3 Independence of Minimal Smoothings 

Give one more example of unconditionaly independent perturbations - minimal 
smoothings (see [21]). Minimal smoothing of singular point p E R P 2 of order k, at 
which there are r real local branches of curve P G RP*, is (i) a set of r disjunct 
intervals connecting the points of P n Up n R P 2 for r > 0, or (ii) a set of s < k/2 
concentred circumferences in Up n R P 2 for r = 0. 

Theorem 8 [21]. A suitable perturbation of any reduced curve F E R P * realizes 
arbitrary a priori given minimal smoothings of all real singular points modulo AT-
equivalence, while nodes can be preserved. 

Remark 6. Perturbations from germs of almost all linear families P H- tG, t E R, 
G G RPN , realize only minimal smoothings of all singular points. 

4. Perturbations of Singular Points and Algebraic Curves 

The approach used in Section 3.1 raises the following questions: 1) what part of all 
perturbations form 7-perturbations? 2) what 7-perturbations can be realized for a 
given singular point? 

Consider semiquasihomogeneous singular point (that means Newton diagram 
lies on straight line). Then 7-perturbations are constructed by gluing affine curves 
with complementary Newton triangle. On the other hand (see [23]) any perturba
tion can be obtained by formal gluing of those affine curves and replacing their 
singular points by suitable perturbations. If singular points of above affine curves 
have independent perturbations, then we have (i) property A: each perturbation of 
initial singular point can be obtained from affine curve with a given Newton triangle 
by means of (equivariant in real case) homeomorphism (D2 -• Up, or (ii) property 
A': the same modulo XT-equivalence. If we can vary coefficients of a curve with 
a given Newton triangle at monomials on the edge of gluing, while a curve 
topology is preserved, then singular points of the same type have the same sets of 
7-perturbations modulo homeomorphisms of singular points neighbourhoods 
(property B), or modulo AP-equivalence (property B'). 

Zero-modal singular points, ordinary 4th order point, point of quadratic contact 
of 3 smooth branches hold properties A and B. The ordinary 5th order point holds 
property A [23], and if all local branches are real then property B' is fulfilled for its 
smoothings [20]. Properties A', B' are fulfilled for smoothings of point of quadratic 
contact of 4 real branches [20]. Property A7 is fulfilled for smoothings of ordinary 
6th order point [12]. 

5. Applications to Study of Topology of Algebraic Curves 

Firstly, above results on irreducibility mean that curves of a given kind are rigidly 
isotopie, i.e. they are connected by isotopy consisting of the same curves. 
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It might be interesting to construct curves with a given singularities. For example 
(see [19]), Theorem 4 implies existance of degree n complex curves with arbitrary 
cusps number from 0 to 7n2/36, and existence of degree n curves over R with 
arbitrary number of real cusps from 0 to 3n2/16. 

All known types of nonsingular real curves were realized in the way of 
perturbation of singular curves. The majority of latest results about real curves 
[11,12,22,25] were obtained by Viro method [25] through perturbation of 
singular points mentioned in Section 4. It should also be noted that there is M-curve 
of degree 8, whose construction does not satisfy conditions of Viro method and is 
based on Theorem 4 [22]. 

Another example of using above results is the complete description of dis
criminant in the space of plane real quartic curves and complete classification of 
inflexion points arrangements on these curves [9]. 

At last we'll mention the Hilbert-Rohn method (see [8, 20]), which allows to 
construct or to prohibit certain classes of real curves. 
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Applications of Hodge Theory to Singularities 
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1. Introduction 

We will describe some old and recent results in the theory of complex hypersurface 
singularities which have been obtained using methods from mixed Hodge theory. 
In the last 15 years, there has been a fruitful interaction between singularity 
theory and Hodge theory. The common interest is the study of degenerations. In 
the work of W. Schmid [21] the limit mixed Hodge structure of a one parameter 
polarized variation of Hodge structure was constructed. This has consequences 
for projective degenerating families, but does not apply to the case of a singularity. 
(However, Scherk's trick [19] made it apply to the isolated singularity case.) As 
P. Deligne observed in Metz 1974, the author's geometric approach [23] (filling 
in a divisor with normal crossings as a special fibre and analyzing the relative 
logarithmic de Rham complex) works also for the case of a singularity [24, 11]. 

In cases where a resolution of singularities is readily available, e.g. the Newton 
non-degenerate singularities, the resulting mixed Hodge structure on the vanishing 
cohomology has very computable discrete invariants (Hodge numbers, spectrum) 
which are closely related to interesting topological invariants like monodromy 
and intersection form. In the isolated singularity case, a description of the Hodge 
structure without resolution of singularities was first given by A. Varchenko 
[29] who used asymptotics of integrals over vanishing cycles. This work was the 
starting point of a description in the language of ^-modules, inspired by Pham's 
Gauss-Manin system [12] and leading to M. Saito's theory of mixed Hodge 
modules [13, 14, 15]. This formalism enables one to generalize many results to 
the case of non-isolated singularities. 

2. Vanishing Cycles 

Let I be a complex manifold of dimension n + 1 and let / : X —• C be a 
holomorphic function. Let Xt = f~~l(t) for i G C and let / : Xo —• X be the 
inclusion mapping. Define 

X^ = {(x>u) G X x C | f(x) = exp(2niu)} 

and let k : Xœ —• X be given by k(x, u) = x. Choose an injective resolution I* of 
Cxœ and define the sheaf of nearby cycles of / as 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
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xpf(Cx) = ik*r. .< 

Let x G Xo and choose E,Y\ > 0 with rj < e < 1. By [10], the restriction of / to 
{z e X I \z - x| < e, 0 < |/(z)| < rj} is a C00 fibre bundle (the Milnor fibration). 
Let X/)JC denote a Milnor fibre, i.e. a typical fibre of the Milnor fibration. Then 

Hk(Wf(Cx)x)~Hk(XfìX,C). 

There is a natural morphism of complexes Cx0 —> ip/(Cx) and one obtains 
the sheaf of vanishing cycles (j)f(Cx) as the cone over this morphism. This gives 
a distinguished triangle 

CXo^y>f(Cx)^><l>f(Cx)^> 

and we have 
Hku>f(Cx)x)*Bik(Xf*,Q. 

So (j)f(Cx) measures the difference in the local topology of the zero fibre and 
the nearby fibres of / . In general, we have Hk(XftX,C) = 0 for k> n and in the 
isolated singularity case, Hk(XfiX,C) = 0 for k ^ n. 

Since [10], the study of the topology of the Milnor fibre of a holomorphic 
function germ has been an important issue in singularity theory. A first topic is 
the monodromy. Define h : X^ —> Xœ by h(x, u) = (x, u + 1). Then we have an 
induced action T — (h*)~x on \pf(Cx) and (j)f(Cx) and their cohomology sheaves. 
The latter action is quasi-unipotent by the monodromy theorem [1, 7] and the 
Jordan blocks of T on Hk((j)f(Cx)x) are of size at most k + 1. 

3, Hodge Structure via Resolution 

Let / be a holomorphic function on the complex manifold X and let x e f~{(0). 
Then there exists a projective bimeromorphic mapping % : X —> X such that 

• X is smooth; 
• E = (f o TC)-1(0) is a divisor with normal crossings on X; 
• Ex = n~1(x) is a union of irreducible components of E. 

Let e be a common multiple of all multiplicities of components of E. We map C 
to, itself by t H-> f and let Y be the normalization of {(z, t) € X x C | f(n(z)) = f}. 
The natural projections from 7 to X and C are denoted by f and g respectively. 
By the Semi-stable Reduction Theorem [5], n and e can be chosen in such a way 
that Y is smooth. Then D = F_1(0) is a reduced divisor with normal crossings and 
Q is a cyclic covering of degree e branched only along E. We put Dx = g"" 1 ^) . 

By [24] we have isomorphisms 

Hk(ipf(Cx)x) ~ Hk(Dx, Qm
f/c(log D) 9 ®DX) 

~Uk(Ex,Q*(Q\/c(\ogD)®GDx)) 

where H denotes hypercohomology. 
In [25], a quasi-isomorphism between ß~,/c(log D)®@DX and a certain complex 

K* has been constructed. The complex Km carries an increasing weight filtration 
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L. and a decreasing Hodge filtration F* which make it into a cohomological mixed 
Hodge complex in Deligne's sense (after a suitable rational structure has been 
added). In this way, Hk(xpf(Cx)x) carries a mixed Hodge structure for each k. 

The monodromy action T on Hk(xpf(Cx)x) can be described in the fol
lowing way. The semisimple part Ts is induced by the automorphism (x, i) H-> 
(x,texp(2ni/e)) of Y. Its nilpotent logarithm N = — log(Tu)/2ni is induced by 
an endomorphism v of the complex Km which maps Fp to Fp~l and Lw to Lw_2. 
Hence N is a morphism of mixed Hodge structures of type (—1,-1). 

In the isolated singularity case, there is a nice description of the space 
FuH"(XftX,C) due to Varchenko [29], in terms of the geometrical weight of 
holomorphic (n + l)-forms on X. As a consequence of this description one 
concludes that, if GrypHn(XftX) ^ 0, then Ts has an eigenvalue 1 on it. This 
implies the following surprising supplement to the monodromy theorem in the 
isolated singularity case [2] : if T has a Jordan block of size n + 1, then for the 
eigenvalue 1 it has a Jordan block of size n. 

4. Hodge Structure via ^-Modules 

For each complex manifold X we have the coherent sheaf of rings @x of germs 
of holomorphic differential operators on X. It is equipped with the increasing 
filtration F. by the order of differential operators, such that GrF@x — Sym((9^) 
where ©x is the tangent sheaf of X. 

Each ^ - m o d u l e M has its de Rham complex 

DR(M) = Qm
x ®ox M[dimX]. 

This de Rham functor defines an equivalence of categories 

DR : Db
rh(9x)-^>Db

c{Cx) 

between the derived categories of bounded complexes of ^x-modules with regular 
holonomic cohomology sheaves and of bounded complexes of C^-modules with 
constructible cohomology sheaves. The single regular holonomic ^x-modules 
correspond in this way to the socalled perverse Cx-complexes. These are charac
terized by the fact that for K e Perv(Cx) 

dimsupp Jf'(X), dimsupp Jf'(DK) < -z 

where D denotes Verdier duality. See [9, 3]. 
It appears that for X a complex manifold of dimension n + 1 and / : X -» C 

a holomorphic function, xpf(Cx)[n] and cj)f(Cx)[n] are perverse [8]. Hence they 
correspond via the de Rham functor to regular holonomic ^ - m o d u l e s y)f((9x) 
and (j>j((9x)' These are defined as follows. Consider the @x[t>dt]-modules &x[t,dt] 
and &x[t9dt,dj~{] where the action is defined by 

g(/i3f) = gWf 

v{hdk
t) = v{h)8f - v(f)hd't+1 

t(hdf) = fhôf - khdJT1 
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• - dt(hdk) = hot1 

for g, h sections of 6X and v a section of ©x-
By [8], on @x[dt] and &x[dt, ^T1] there exist unique decreasing filtrations V9, 

discretely indexed by Q, such that 

1. tVa c Fa + 1 with equality for a > 0 
2. dtV

a c Va~l 

3. each Va is a finitely generated ^-module 
4. dtt — ais nilpotent on Gry. 

One has 
VfWx) = 0 Gray&x[dt] = 0 V/« 

0<a^l 0<a^l 

*/(«*) = 0 G4%[3t,3r1]= 0 Vf. 
0<a^l 0<a^l 

Observe that can : y>?->0? for a =f= 1. 
The modules 0x[3t] and öMS f̂l̂ "1] carry the increasing filtration F. given by 

F A [ 3 t , a r ' ] = © W ! . 

These induce filtrations F. on xpf((9x), <l>f(®x) and their de Rham complexes. 
Moreover we have 

Ts = exp(—2rcia), N = —dtt + a on Gry. 

The nilpotent endomorphism N oftpf(@x) determines uniquely an increasing 
weight filtration L on it by ^x-submodules in such a way that N(Lj) a L/_2 and 
N* ; Grn+k^> Grn{fk. The data of the bifiltered ^-module 

(Wf((9x),F,L) 

together with the rational structure 

DR\pf(Qx) ̂  V>f(Cx)[n] ^ Wf(Qx)[n] ®Qx Cx 

constitute the ingredients of a mixed Hodge module on X [15]. We similarly have 
a mixed Hodge module structure on <£/, with the same L on tó ^ \pj for a =/= 1 

but with iVfe : Gr2+fe+1^Gr£~fe+1 on 0}. The natural map can : y/ -> 0/ is a 
morphism of mixed Hodge modules. 

If / : (X, x) —> (C, 0) has an isolated singularity, 0/ has Support at x. Because 
mixed Hodge modules with support at a point correspond to mixed Hodge 
structures, we have a mixed Hodge structure on the vanishing cohomology again. 
This case has been studied in detail in [20]. In general, 0/ has support along 
the critical locus I of / , and one has to take the restriction to {x} in the sense 
of mixed Hodge modules. This is a very delicate affair, even if 27 is a curve. 
One has to take iterated restrictions to divisors, and each of these steps involves 
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taking the cone over the morphism can between nearby and vanishing cycles (for 
a defining function for the divisor). The resulting object 7*0/ is no longer a single 
mixed Hodge structure, but a complex of mixed Hodge structures, satisfying 
H%4>f) ^ Hk+"(XftX) = 0 for k $ [-dim2,0]. 

If 27 has dimension one, there is a description of 0/ in terms of certain 
topological mappings and its restriction H to 27 \ {x}. Choose a holomorphic 
function germ g on (X,x) such that 27 n g~l(0) = {x}. Observe that H is a 
variation of mixed Hodge structure (up to a shift) and that we have mixed Hodge 
structures ipg(H) and 0g(0/). These have the following topological interpretation. 
At each point of 27 n g~] (ö) for some small non-zero ö, take a slice transverse to 
27 and let F^ denote the union of the Milnor fibres of the restriction of / to all 
of these transverse slices. There is a natural way to embed F^ into the Milnor 
fibre F of / , We have (taking n > 2 for convenience) 

0 g (0 / ) c i J» ( i^ b ) . 

The structure of 0/ is now determined by H and a pair of mappings 

can : xpg(H) —• 0g(0/) 

var :0g(0/)—>y>g(H). 

Here can is interpreted as the natural map u : flr"~1(JF'7) —• Hn(F,F^) whereas vàr 
is related to the map v on homology defined in the following way. Represent y e 
Hn-i(F^) by a cycle on F^ and sweap it around x once following a characteristic 
homeomorphism of the monodromy of g the local system H. This gives a chain 
on F with boundary on F^, representing the element v(y) of Hn(F,F^). One has 
var = Xteo(~l)/u*(wu07(^ + !)• One has the exact sequence of mixed Hodge 
structures 

0 —* ff"-1 (F) —• H1]-\F,F^)^Hn(F) —• 0. 

Let / : (X,x) -• (C,0) and g : (Y, y) -> (C,0) be holomorphic function germs. 
Put 

Z=XxY;z = (x,y); h = f + g: (Z,z) —• (C,0). 

(We will also denote h as / © g). A result of Thorn and Sebastiani [22] expresses 
the vanishing cohomology and monodromy of h in terms of the monodromies 
for / and g. Using the ^-module description above, one can show that 

<l>h(&z)^P*xM&x)®P*Y<l>g(®Y) 

and relate the Hodge filtrations at both sides. This is a weakened version of a 
general Thom-Sebastiani formula for mixed Hodge modules due to M. Saito and 
P. Deligne (unpublished). 
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5. Discrete Invariants 

The main discrete invariants of a mixed Hodge structure (V,F, W) are its Hodge 
numbers 

h?HV) = dim Grp
FGrWqVc. 

If moreover an automorphism y of finite order of V is given (like Ts in the case 
of the vanishing cohomology) it is convenient to split into eigenspaces of y and 
to put 

hf (V,y) = dimker(y -XI \ Grp
FGr%_qVc). 

These invariants involve the weight filtration, which is in general quite hard to 
handle. Forgetting about the weight filtration leads one to the weaker invariant 
of the spectrum. For / : (X, x) —> (C, 0) a hypersurface singularity one defines 

ÄS(f.*) = £(-i)yÄf(^i;0/.r»). 
M 

For each a e Q let na = h\(f,x) where X = exip(—2nia) and p e Z is determined 
byn — p <a<n — p + 1. Then 

Sp(f,x) : = ^ n a t a . 

If e G N is such that Te
s = I, then Sp(f,x) e Z[tì/e]. 

There are formulas for spectra of isolated quasi-homogeneous singularities 
in terms of the weights, and for Newton-nondegenerate isolated singularities in 
terms of the Newton diagram [16, 6]. A formula describing the behaviour of the 
spectrum in series of singularities was proven by M. Saito [17]. 

For spectra the Thom-Sebastiani formula takes the elegant form 

Sp(/eg,(x,y)) = Sp(f,x)Sp(g,y) 

(the right hand side is the product in the ring of fractional polynomials). This 
was conjectured in [24, 27], proved in the isolated singularity case in [29, 30] and 
in [18] in general. 

For isolated singularities, the spectrum is äemicontinuous under deformation 
of the singularity in a certain sense [30, 26]. The proof is based on a semicon-
tinuity result for Hodge numbers and the Thom-Sebastiani formula. It appears 
that a similar semicontinuity result also holds for certain deformations of non
isolated singularities [28]. This gives e.g. necessary conditions for the existence of 
(globalizable) deformations between arbitrary normal surface singularities. These 
correspond to admissible (in the sense of [4]) deformations of weakly normal 
surface singularities, of which one considers the spectra. The proof uses the full 
strength of the formalism of mixed Hodge modules. 
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Trace Formulae in Spectral Geometry 

Toshikazu Sunada and Manabu Nishio 

Department of Mathematics, Faculty of Science, Nagoya University 
Nagoya 464-01, Japan 

A geometric analogue of the celebrated "Riemann hypothesis" is stated as 

X1(M)>X0(M), (1) 

where XX(M) is the first positive eigenvalue of the Laplacian AM on a closed Rieman
nian manifold M, and X0(M) is the bottom of the spectrum of the Laplacian on the 
universal covering manifold M (see [21]). For instance, if M is a Riemann surface 
with constant negative curvature, the inequality (1) turns out to be equivalent to 
the Riemann hypothesis for the Selberg zeta function defined by an Euler product 
over prime closed geodesies in M (A. Selberg [17]). 

The view that we regard (1) as an analogue of the Riemann hypothesis is 
supported also by the fact that, under finite-fold covering maps, the eigenvalues 
behave like the non-trivial zeros of the zeta functions of number fields [19]. It is 
worthwhile, on the other hand, to note that prime closed geodesies play the same 
role as prime ideals, though, in general, there does not exist a well-suited zeta 
function connecting the eigenvalues directly with closed geodesies. We may estab
lish, however, a weak relationship between those objects, which is embodied as an 
analogue of the Weil's explicit formula (cf. S. Lang [13]). This illustrates more 
intimate kinship between spectral geometry and number theory. To explain it, let 
Q : nx(M) -> U(N) be a unitary representation, and let X0(Q) < Xt(g) < • • • be the 
eigenvalues of the Laplacian Ae acting on sections of the flat vector bundle asso
ciated with Q (which may be regarded as an analogue of the non-trivial zeros of an 
L-function). We define the (even) distribution 0(Q) e ^ ' (R) by 

<©(<?),/> = I / ( V Ä fem), 
fc = 0 

where f(s) = j ^ œ f(t) cos (st) dt. We also associate -an (even) distribution <9a with 
each free homotopy class a e [S1, M] of closed curves by setting 

<<9a,/> = f Uf(ox, x) dx, (2) 
Jra\x 

where X = M, T = n^M), and we identify [S1, M] with the set [ r ] = {[ex]} of 
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conjugacy classes in T, and write Ta for the centralizer of a. The function Uf(x; y) e 
C™(X x X) is the kernel function of the smooth operator 

Ayfix) = \ f(t) cos(/VzLr) dt. 

We then obtain the following theorem which gives a refinement of the result by J. 
Chazarain [5] (see also [7, 9] and [25]). 

Theorem I. (a) (trace formula) ©(g) = £ tr Q(O)©[(T]. 
Wein 

(b) The support of the distribution ©[a] is contained in the set {t e IR; \t\ > l[ff]}, 
where liff] is the length of the shortest closed geodesies in M whose homotopy class 
is [G~\, so that, when the right hand side of (a) is applied to a test function in ^(R), 
the sum over [JT] reduces to a finite one. 

(c) The singular support of 0[(T] is contained in the set {± length of closed geodesies 
in M with the homotopy class [cr]}. 

(d) For the unit element 1 in r, the distribution ©^ is temperate. 
(e) The distribution ©[(r] (o ^ 1) is extended to a functional on the space of test 

functions f satisfying , 

\f(k)(t)\'<: Cexp(-(h + ö)\t\), 0 < k < 1 + n/2 

for some ô > 0 and C > 0. Hère h is the exponential growth rate of volume of 
geodesic balls in X. Moreover, the sum ] T t r Q(G)' <^[ff]>/) converges absolutely 
and equals (©(g),f}. If T is of polynomial growth, then ©[(T] is also a temperate 
distribution. 

(f) For f(t) = (4m)~1/2 exp( - t2/4z), we have 

\©[a],fxy = pt(Q[a]), 

where H denotes the trivial representation, Q[a] is the connected component of the 
free loop space Q = C°(51, M) corresponding to the homotopy class [a], and px is 
the Wiener measure on Q. 

We should point out that, by a slight modification, all the statements above are 
generalized to the case of normal covering manifolds. We shall give an outline of 
the proof. 

Let X be a normal covering space of M with covering transformation group T. 
From the finite propagation property of the wave equation, it follows that, if 
d(x, y)> R and supp(/) e {t e R; \t \ < R), then Uf(x, y) = 0. For each R > 0, if we 
put 

HR = {x e ra\X; d(x, ox) < R}, 

then HR is compact, so that Uf(ox, x) has compact support in Ta\X. Hence the dis
tribution ©[(T] is well-defined (see (2)) and satisfies (b). Since limÄ_>00 sup R'1 x 
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log(vol(ifK)) < h, applying the estimate established by J. Cheeger, M. Gromov and 
M. Taylor [6], we obtain (e). 

Let Vef(p, q) E C"°(M x M) be the kernel function of the operator 

f(t) CQ*(ty/ÄQ) dt. 

If we denote by œ the coveing map of X onto M, then 

Vetf(œ(x),œ(y))= £ tr o(o)Uf(ex, y). 
a e F 

Moreover, we find 

<0(e)j> = \xfiyfl,) = f u e > , p) dp. 
JM 

The proof of (a) is now carried out in the same way as that of the Selberg trace 
formula (see [17, 18]). Actually, (a) is specialized down to the Selberg's formula 
when M is a constant negatively curved surface. 

The assertion (c) is shown in a similar manner as [5], by analyzing the wave 
front set of ©[aV In fact, one has the following expression for ©[a] in terms of the 
distribution kernel Ux(t, x, y) of the operator cos^^/zï^): 

»w = (*.)*ÌP.*rHD.*)Ux, 

where D f f : R x X - ^ R x I x X is the map defined by Da(t, x) = (t, ox, x), 
/ ) f f : l x I - ) R x (ra\X) is t n e m a P induced by the covering projection X -> ra\X, 
and 7cff : R x (Ta\X) -> R is the projection onto the first factor. We should note that 
(Da*)Ux is a /^-invariant distribution on R x X, and that the pull-back pCT* yields an 
isomorphism of ^ ' (R x (Ta\X)) onto the space of /^-invariant distributions on 
R x X. We then make use of the fact that the map na restricted to the support of 
(p^)~1(Da*)Ux is proper (recall that HR is compact), so that the push-forward (%a)* 
can be applied to this distribution. The rest of the proof is carried out by using the 
wave-front calculus. 

The assertion (f ) is a consequence of the observation that, for / = f, Uf is the 
fundamental solution k(z, x, y) of the heat equation on X ([18]). 

We now proceed to the proof of (d). We first recall that ©(g) is a temperate 
distribution. Indeed, this is deduced from the fact that the counting function cpe(X) = 
# {Xk(g) < X) satisfies (pp(X) - Cn vol(M)A"/2 as X ] oo, and the equality <©(Q),D = 
J / ( \ A ) dcpe(X). We wish to establish a similar expression for @[1]5 say 

< » [ ! ] , / > = f(^X)dcp(X). 

To define the increasing function cp(X), we first note that f(-s/Âx) ü e s m tl l e v o n 

Neumann algebra Endr(L
2(X)) of /"-equivariant endomorphisms of L2(X) and 

<®[i]»/> = ^rf(\fdx\ where t r r is a trace (called T-trace) in the sense of von 
Neumann algebras,and is equal, in this case, to 

Uf(x, x) dx, 

file:///xfiyfl
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3> being a fundamental domain for the T-action (see M.F. Atiyah [1]). Let Ax = 
\XdEx be the spectral resolution of Ax, so that 

/k/ï>=j7<yw 
We observe that Ex is of /"-trace class, and 

A). *rkyfix) = \fiyß)d{\irEl 

Hence we have only to set q>(X) = txrEx. 
Consider the special case / = ft. Then fx(s) = e~™2, and 

k(x, x, x) dx = trrfv{y/ÂJ = \ e Xx d(p(X). 

The function k(x, x, x) has the same asymptotic behavior as that of the heat kernel on 
M, and hence k(%, x, x) ~ (4TCT)~M/2 as x \ 0, so that, applying the Tauberian theorem 
to cp, we get 

q>(X) ~ (4TC)W/2 vol(M)Xn/2/r(^ + 1Y (3) 

This completes the proof of (d). • 

The function cp(X) includes much information of the spectrum of Ax. For in
stance, cp(X) = 0 if X < X0(X), and cp(X) > 0 if X > X0(X). The spectrum o(Ax) coin
cides with the set of increasing points of cp. Let <p(X) = cpac(X) + cps(X) + %(X) be the 
(unique) decomposition into an absolutely continuous function <pac, a singular contin
uous function cps, and a step function cpp. If 

(Ax, L2(X)) = (Ax, HJ e (Ax, Hs) © (Ax, Hp) 

is the decomposition into the absolutely continuous, singular, and pure point parts 
of Ax, then (pac(X) = trr ExPac, cps(X) = tr r EXPS, and cpp(X) = tr r ExPp, where Pac, Ps, 
and Pp are the orthogonal projections onto /fac, //s, and Hp respectively. Therefore 
the sets of increasing points of the functions cpac and cps are just the absolutely 
continuous spectrum and the singular spectrum of Ax respectively. The point 
spectrum coincides with the set of jumping points of cpp. 

When X — M and M has no rajZ/-homotopic closed geodesies except for point 
geodesies, the assertion (c) says that the singular support of ©{l] is {0}. It is an 
interesting problem to examine the decay of the function <9tl] at infinity. For 
instance, if ©{1] is in L2 at infinity, it is shown that Ax has purely absolutely 
continuous spectrum. In fact, from the above argument, we have 

<ö[ i i , /> = /U)#W = <&/> 0A« = <pß2)\ 

so that ij/ = ©[1} = Ti + T2i where Tx is a distribution with compact support and 
T2 e L2(R). In view of the Fourier inversion formula and the Parseval equality, we 
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may write \j/ = Si + S2, where Sx is analytic and S2 e L2(R). Hence \j/ is in L2
oc, and 

cp is absolutely continuous. We conjecture that, if M is nonpositively curved, the 
function 6>tl] decays with the order of \t\~* at t = ±00 with some a > 0. 

Example 1. When M is a flat torus and X = R", 

cp(X) = (4TC)-"/2 vo\(M)Xn}2ir[ - + 1 (X > 0). 

This follows from the Jacobi's inversion formula for the 0-series (a special case of 
(a) in Theorem I). 

Example 2. Let M be a closed Riemann surface with constant negative curvature 
(—1), and let X be the universal covering. The Selberg trace formula leads to the 
identity 

trrexp(-tAx) = (An)"1 vol(M) 

from which we easily deduce 

(Any1 vol(M) 

exp I — M X -f- - I j tanh n^/X dX, 

cp(X) = 

p-l/4 
1 „~wj\/f\ tanh n^/kdX 

0 

forA> 

for A < 

Note that cp(X) ~ i vol(M)(X - {)3/2 asXH 

Example 3. Let X -• M be an infinite-fold covering with an abelian covering trans
formation group of rank b. Then cp(X) is smooth on an interval (0, ö) for some ò > 0, 
and cp(X) ~ CXhß as X [ 0. To see this, we make use of (e) in Theorem I: 

tr exp(-Tzfz) = Y tr %(<r)<ö[ff],/t>, 

X being a character of T. Integrating the both sides over the character group t with 
respect to the normalized Haar measure, we have 

tvrexp(-tAx) = trexp(-tAx)dx, 

where we have applied the orthogonal relations of characters. Thus we obtain the 
equation 

{dX{e-ad<px(X)=L-,*dq>(X), 

which implies cp(X) = §p(px(X) d%. We now recall the fact that A0(1l) = 0 and X0(x) is 
simple for % in a small neighborhood of U, from which it follows that when X > 0 is 
small enough, cpx(X) = 1 for x with X0(x) < X, and cpx(X) = 0 otherwise. Hence we 
have 
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cp(X) = vol{xer;X0(x)<X}. 

Since XQ(X) smoothly depends on % around a neighborhood of 1, and the Hessian 
of X0(x) at x = H is positive definite [11], the assertion follows easily. 

For a normal infinite-fold covering X -> M, the bottom X0(X) lies in the contin
uous spectrum of Ax [21], that is, cp(X) -> 0 as X[X0. In view of the above exmaples, 
we conjecture that there exist positive constants c and C such that 

cp(X) ~ C(X - X0)
c as X[X0. (4) 

We now go back to the analogue of "Riemann hypothesis". The inequality (1) 
does not hold in general. Even for constant negatively curved surfaces, we have 
many counter examples (B. Randol [15], P. Buser [4], and [19]). H. Donnelly [8] 
established, however, a weak version of (1). To be exact, consider a set {M\}f=1 of 
finite-fold subcoverings of a normal covering X -> M, and let 7] be the subgroup of 
finite index in T corresponding to the covering map X -> Mt. Let us introduce the 
counting function (pMi(X) = max{fc; Xk(Mt) < X}, where Xi(Mt) < X2(Mt) < • • • are the 
positive eigenvalues of the Laplacian on M{ (so that cpM = <p^ — 1). The "Riemann 
hypothesis" (1) for M{ is stated as (pM.(X) = 0 for X < X0(M). Suppose that d(Mt) -> oo, 
where 

d(Mt) = inf inf d(x, ox), 
ae r{ xeX 

which, in the case that X = M, coincides with the infimum of length of non-null 
homotopic closed geodesies in Mt. Then, by [8], we have 

lim sup VO1(M£)~VMìW = 0 if X < X0(X), 
i-»oo 

lim inf vol(M£)->Mj(A) > 0 if A > 10{X). 
i->co 

In other words, the set of eigenvalues in the interval [0, X0 (X)) is "thin" in the totality 
of eigenvalues on covering manifolds Mt. 

We shall give a more precise statement. 

Theorem II. Let X -* M be a normal covering, and let {gi}f=i be a sequence of 
finite-dimensional unitary representations of r. Suppose that 

lim (dim ££)-1 Re tr g^o) = 0 
i-*oo 

for every a ^ 1 in T. Then 

lim (dim &r> e .(A) = <p(X) 
i-*co 

at every continuity point X of <p. 

Let {Mt} be as above. As an example of {# J , let us take the regular representa
tion g( of T on L2(r/ri). Then 
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tr Qf(a) = #{pTe r \ / J ; p'xop e rt}. 

It is easily checked that d(Mf) -^ oo if and only if, for o ^ 1, tr gt(o) = 0 for suffi
ciently large /. Furthermore we observe that AMi is unitarily equivalent to A6i, Thus 
we obtain 

Corollary 1. / / d(M{) -> oo, then 

lim vol(Mf)">M<W = vol(M)"V(A) 
/ -»OO 

at all the continuity points of cp, and hence for continuity points a < ß of cp, we have 

lim voUM,.)"1 # {̂ (M,-); a < Xk(M{) < ß} = yoim^Mß) ~ ?(«))• 
/ -»OO 

Especially, o(Ax) c the closure of[Jio(AMi). 

This corollary gives a partial generalization of a result by H. Huber [10] (see 
also [26]). 

Corollary 2. Under the same condition as above, if Tis amenable, then o(Ax) = the 
closure of {JiO(AMi). 

In fact, from amenability, it follows that o(AMi) cz o(Ax) for every Mt (see R. 
Brooks [2], and [19]). 

It is interesting to observe a similarity of Corollary 1 to the thermodynamical-
limit-results in statistical physics. The conjecture (4) on cp bears a resemblance to 
that on critical exponents for phase transitions. 

To prove Theorem II, it suffices to show 

lim (dim g{)
 1 e'» dcpei(X) = «-* 

o Jo 
dcp(X) (5) 

(cf. M.A. Shubin [16]). The left hand side of (5) is equal to 

lim (dim Qj)'1 tr exp( — tA6i) 
Hoo 

= tr rexp(-fz( x) + lim £ (dim e . r ^Re tr Qi{o))(0mJt') 
/-•oo [ff] 

= trrexp(-tAx) = e Af dcp(X). 

This completes the proof. D 

We are now concerned with a fine structure of the spectrum of Ax on a normal 
infinite-fold covering manifold X. If the covering transformation group Tis abelian, 
the spectrum has band structure, namely o(Ax) consists of a series of intervals 
without accumulations ([12]). We conjecture that this is true for general cases. An 
evidence supporting this conjecture will be explained below. 
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We identify L2(X) with L2(T, V) = L2(T) ® V in a natural manner, where V = 
L2($)). We define the subalgebra Cf(T, Jf ) of Endr(L

2(X)) to be the completion of 
C0(r, Jf ) = C0(r) ® Jf with respect to the operator norm, where Jf is the algebra 
of compact operators oîL2(Si), arid C0(JT) ® J f acts on L2(X) by 

feL2(r,V)^AfeL2(r,V) 

(Af)(e) = E A(p-1a)f(p), A e C0(T, Jf). 

The algebra Cf(T, J f ) is what we call the reduced group C*-algebra with value in 
Jf. From the finite propagation property for the wave equation, we deduce that 
f(JYx) e C0(r, Jf) for / e 0(R). Given a rapidly decreasing function / e y(R), by 
approximating / by functions fn in ^(R) in the L1-sense, we find that /(^/zf^) e 
C?(T, Jf ). In fact, 

\\K>fiz)-fn{>ßx)\\ £ SUP | / - / J < H / - / . I L 1 . 

Especially exp( — tAx) e C*(T, J f ). Applying again an approximation-argument, we 
observe that if two real numbers a and b are not in the spectrum oïAx (b > a), then 
the projection Eb — Ea is in C*(r, Jf ). We thus have 

Theorem III [22]. Suppose that there exists a positive constant C such that trrP> C 
for every non-trivial orthogonal projection P in C*(T, J f ). Then the spectrum of Ax 

has band structure (possibly with degenerate intervals, say [X, p\ with X = p, cor
responding to isolated eigenvalues). Moreover, the number of components of the 
spectrum which intersect with (—00, X~\ has the following asymptotic estimate 

CT(\ + n/2)N(X) 1 
l ir0O

up(4,rvoi (M)^2^1-

The asymptotic estimate is a consequence of the asymptotic formula (3) for cp(X). 
A large class of discrete groups seems to satisfy the condition in the above 

theorem (cf. M. Pimsner [14]). For example, a free product of finite number of finite 
groups and infinite cyclic groups satisfies the condition with C = the reciprocal of 
the least common multiple of the orders of the finite groups. The Kadison conjecture 
says that one may take 1 as C if T is torsion free. 

We conclude the discussion with pointing out that the method employed through
out may be applied to a Schrödinger operator on X with a /"-invariant potential, 
thereby leading to non-abelian Bloch's theory. 

Acknowledgement. The authors are grateful to H. Donnelly for drawing their attention to the 
paper [8]. 
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Kähler-Einstein Metrics on Algebraic Manifolds 

Gang Tian* 

Department of Mathematics, State University of New York 
Stony Brook, NY 11794, USA 

1. Introduction 

It is one of fundamental problems in differential geometry to find a distinguished 
metric on a smooth manifold. H. Poincaré's Uniformization theorem settles this 
problem for Riemann surfaces. That is, there is a unique metric with constant 
curvature in each Kahler class on a Riemann surface. Trying to generalize it 
to higher dimensions, E. Calabi conjectured in the 50s the existence of Kähler-
Einstein metrics on a compact Kahler manifold with its first Chern class definite. 
A Kähler-Einstein metric is a Kahler metric with constant Ricci curvature. 

In the middle of the 70s, this conjecture was solved by S. T. Yau in case the 
first Chern class is vanishing and Aubin and Yau, independently, in case the 
Chern class is negative (cf. [Yl]). The uniqueness in these two cases was done 
by E. Calabi himself in the 50s. Such Kähler-Einstein metrics were then applied 
to studying projective manifolds. For instance, Yau used these metrics to show 
the Miyaoka-Yau inequality on surface of general type, its generalized version 
in higher dimensions and the characterization of the quotients of the complex 
hyperbolic spaces (cf. [Y2]). We also refer readers to [CY, Ko, Ts, TY1] for the 
generalizations of these to quasi-projective manifolds. 

However, this conjecture of Calabi still remains open in general in case the 
first Chern class is positive. In this paper, we will survey the recent progress 
on this part of Calabi's conjecture, including the uniqueness and the existence 
of Kähler-Einstein metrics with positive scalar curvature, the outline of the 
complete solution for Calabi's conjecture in case of complex dimension two, etc. 
Some related problems will also be discussed. 

From now on, we always denote by M a compact Kahler manifold with 
positive first Chern class C\(M), that is, M is a smooth Fano variety. Then 
we can choose a Kahler metric g with its Kahler class cog representing C\(M). 
In local coordinates (z\,'--,zn) of M with dime M = n, if g is represented by 
positive hermitian metrices {g (̂z)}î /,y5<H, 

1 

2 * *M 
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It is well-known that the Ricci curvature form Ric(g) also represents the first 
Chern class, therefore, there is a smooth function / in ^(MjR) such that 

Ric(g) = cog + ^__ ddf 
2n 

and 

f (ef - I K = 0 
JM S 

where co* = cog A • • • A cog. In local coordinates, the Ricci curvature has the 
following expression 

Rg = didjlog det(gkl) 

Rie (g) = -^-2lRfjdZiAdzJ-

It follows from this that the existence of a Kähler-Einstein metric on M is 
equivalent to the solvability of the following complex Monge-Ampere equations, 

(cog + ^-ddcpY = ef-t(Pcon on M 

(ojg + ^ddcp) > 0 on M 

where n = dime M. 
In case (l.l)i has a solution cp, then cog + ^-ddcp gives the Kahler form of a 

Kähler-Einstein metric. 

Theorem 1.1 (Bando and Mabuchi [BM]). The solution o/( l . l ) i is unique modulo 
the connected component Auto(M) o/Aut(M) containing the identity if it exists, 
where Aut(M) denotes the group of all holomorphic automorphisms of M. In par
ticular, it implies the uniqueness of the Kähler-Einstein metric on M if it exists. 

Since Yau's solution of Calabi's conjecture in case of vanishing first Chern 
class more than fifteen years ago, it has been known that th'e solvability of (l.l) t 

follows from an a priori C°-estimate for the solutions, namely, there is a uniform 
constant C depending only on M and g such that for any solution cp of (l.l) t, 

sup \cp\ < C. . (1.2) 
M 

However, such an estimate (1.2) does not exist in general due to the analytic 
obstructions discussed in the next section. 
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2. Some Obstructions 

Let rj(M) be the Lie algebra of the automorphism group Aut(M), that is, rj(M) 
consists of all holomorphic vector fileds on M. In [Fu], Futaki defined an analytic 
invariant F : \] (M) -> C as follows, 

F(X) = f X(f)a>n
g9 Xen(M). 

Theorem 2.1 Suppose that (M,g) admits a Kähler-Einstein metric with positive 
scalar curvature. Then 

1. (Matsushima, 1957 [MaJ) The Lie algebra rj(M) is reductive; 
2. (Futaki, 1983, [Fu]) The Futaki invariant F is identically zero on r\(M). 

Blowing up a one or two points in CP2, we obtain a complex surface with 
positive first Chern class and non-reductive Lie algebra of holomorphic vector 
fields. Therefore, by the result of Matsushima, such a surface does not admit a 
Kähler-Einstein metric. In [Fu], Futaki constructed a Fano 3-fold with reductive 
Lie algebra of holomorphic vector fields, but nonvanishing Futaki invariant. 
These obstructions indicate that there is no a priori C°-estimate for the solution 
of (1.1), in general. 

Both obstructions of Matsushima and Futaki come from holomorphic vector 
fields. One might expect that the absence of holomorphic vector field, as is the 
case with most Fano variaties, would exclude these obstructions. However, there 
is a very disturbing example constructed in [Tl]. Before we give this example, 
we first remark that Calabi's conjecture can be generalized to compact Kahler 
orbifolds with positive Chern class and the previous discussions are still effective. 
Using Volume Comparison Theorem [Bi], one can show 

Theorem 2.2 [Tl]. Let (M,g) be a n-dimensional Kähler-Einstein orbifold with 
positive first Chern class. Then for any singular point x in M, 

(2n-l)"Vol(S2'') 
*(Gjt) < • W ( ] 

where Gx is the local uniformization group ofx in M, C\(M)n is the volume of M 
with respect to any Kahler metric with the associated Kahler form in C\ (M) and 
Vol(S2") is the volume of S2n with respect to the standard metric. In particular, in 
case n = 2, (2.1) becomes 

WX) < ^ . (2.2) 

Example 2.1 [Tl]. By blowing up CP2 successively at [0,0,1], [0,1,0], [1,0,0], [0,1,1] 
seven times, one can obtain a rational surface M without holomorphic vector 
fields and containing a Hirzebruch-Jung string D = E\ + Ei + £3 + £4 with E\ 
smooth rational curves and E2 = E2 = —3, E\ = E2 = —2, Ei • Ej = 1 if 
i — j = ±1 ; = 0 otherwise. 

Let M be the 2-dimensional Kahler orbifold obtained from M by collapsing 
the Hirzebruch string D. Then M has positive first Chern class C\(M) with 
C\(M)2 = 3 and an orbifold singular point x of type C2/o, where o : (z\,zi) -> 
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(e(j£)zi,£2(^)^2) for the Euclidean coordinates z\,z% on C2, e(j^) = exp( 2 ^^) . 
In particular, #(GX) = 16 in equal to 48/Ci(M)2. Therefore, by Theorem 2.2, M 
does not admit any Kähler-Einstein orbifold metric. On the other hand, M has 
no holomorphic vector filed since M does not. 

This example indicates that holomorphic vector fields may not be only ob
structions in solving Calabi's conjecture. The author believes that the existence 
of Kähler-Einstein metric with positive scalar curvature should be closely related 
to the geometry of pluri-anti-canonical divisors. 

3. Some Existence Theorems 

In this section, let (M, g) be a compact Kahler manifold with the Kahler form cog 
in C\(M) as given in the first section. We will give some existence results. First of 
all, let us mention two known results among others, for special Kahler manifolds 
with positive first Chern class, in particular, those manifolds having a lot of 
holomorphic automorphisms. In [Ma2], Matsushima showed that every simply-
connected homogeneous Kahler manifold admits a Kähler-Einstein metric. In 
case M is a i^-bundle of certain type with C*-actions which restrict to C*-actions 
on the fibers P1, Koiso and Sakane [KS] showed that M admits a Kähler-Einstein 
metric iff the Futaki invariant is zero. The manifold M in all these examples has 
very high homogeneity. In fact, until 1986, Siu [Si] and the author [T2] provided 
the first examples of compact Kähler-Einstein manifolds with positive first Chern 
class and without holomorphic vector fields. Precisely, Siu showed the existence 
of Kähler-Einstein metrics on the 2-dimensional Fermât surface and the surface 
obtained by blowing up CP2 at three generic points, while the author showed 
the existence of Kähler-Einstein metrics on n-dimensional Fermât hypersurfaces 
of degree « o r n + 1 . Their proofs are completely different. In fact, the examples 
of the author are just corollaries of a general existence theorem proved in the 
same paper [T2]. Let us first describe this result. 

Let G be any compact subgroup in Aut(M). This group G preserves the first 
Chern class C\(M), therefore we may take g,f to be G-invariant. Define 

PG(M,g)= UeCCG(M,g) 

(x(M) 

I 0 is G-invariant on M, cog + ——ôôcp > 0, sup cj) = 0 > 
2% M ) 

= sup{a I 3Ca > 0 s.t. / e-^dVg < Ca for all cb e PG(M,g)}. 
JM 

It is not hard to check that a(M) is independent of the particular choice of G, g, 
that is, a(M) is a holomorphic invariant. 

Theorem 3.1 [T2]. Let M be a compact Kahler manifold with C\(M) > 0 as 
above. Then M admits a Kähler-Einstein metric whenever oc(M) > n/n + 1. 

Theorem 3.1 is proved by deriving an a priori C°-estimate for the solutions 
of (1.1),. 
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Remark. There is another proof of Theorem 3.1 given by W. Ding later in [Di]. 
His approach is interesting by itself and was based on an inequality proposed by 
T. Aubin. 

Example 3.1. Let M be a smooth complete intersection in CPpq defined by Fermât 
polynomials YJi=o afizf = 0 for 1 < j < 4, where [zo, • • •, zpq] is the homogeneous 
coordinate of CPpq and p ;> 2,q > 1 are positive integers. Then by Adjunction 
Formula (cf, [GH]), one can easily see that C\(M) is just the restriction of the 
hyperplane section on CPpq. and the maximal compact subgroup G in Aut(M) 
contains all transformations of form oj : [zo,--,zpq] —> [ZQ, • • -,e(^)zj,- • -,zpq] 
for 1 < j < pq. The dimension n of M is (p — l)q. One can show (cf. [T3]) 

a(M) ^ 1. 

In particular, these complete intersections have Kähler-Einstein metrics with 
positive scalar curvature. 

Besides those mentioned above, one can find in [TY2, T3, Na] etc. more 
examples of Kähler-Einstein manifolds with positive scalar curvature by using 
this theorem. 

The same proof as that for Theorem 3.1 in [T2] also shows 

Theorem 3.2 (cf. [TY2]). Any compact Kahler manifold M with positive first Chern 
class admits a Köhler metric gt with Kahler form cogt in C\(M) and Ricci curvature 
> t for any t between min{l, ^ a ( M ) } and 1. 

By Bishop's Volume Comparison Theorem, one can derive from it 

Corollary 3.1. For any compact Kahler manifold M with C\(M) > 0, we have 

Ci(M)" < C„a(M)-" 

where Cn is a constant depending only on n. 

In case n = 2, we have the following complete solution of Calabi conjecture. 

Theorem 3.3 [T4]. Let M be a complex surface with positive first Chern class, i.e., 
a Del-Pezzo surface. Then M admits a Kähler-Einstein metric ijfr\(M) is reductive. 

We will outline the proof of this theorem in the next section. Next we briefly 
discuss the application of L2-estimate for d-operators to estimating a(M) from 
below. 

Theorem 3.4 (Theorem 3.1 in [T2]). Let {<£/} be a sequence of functions in P(M,g), 
Xbe a positive number. Then there exists a subsequence {ik} of {/} and a subvariety 
Sx of M with dime Sx < dime M — 1 such that 

1. V z e M-Sx, 3 r > 0, O 0, s.t. 

JB, 
e~x^dVg(w) < C 

Br(z) 
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2. V z e Sx, 

lim f e-W^dVJw) = +00 for all r. 
*-*» JBr(z) 

This theorem can be proved with help of Theorem 5.2.4 in Hörmander's 
book [Ho]. It implies that the solution cpt of (l.l)t should behave well outside 
a subvariety. Note that the degree of this subvariety can be controlled in terms 
of the Chern numbers of M. Obviously, a(M) > Xo is equivalent to Sx = 0 for 
X < Xo. Therefore, it is important to understand Sx for X < 1. Since there is no 
nonconstant holomorphic function on M, one can easily show that each Sx is 
connected by the same arguments as in the proof of the Theorem 3.4 (cf. [T2]). 
In fact, recently, A.Nadel has obtained more information on such a subvariety 
Sx for X < 1 by Bochner identities for (0,g)-forms with 0 < q < n. It can be 
explained as follows. Denote by Ix the ideal sheaf of Sx counting multiplicity, 
then for each open subset U c M, h(U) consists of those local holomorphic 
functions / such that fv \f\2e~X(pik^dVg are uniformly bounded for all k. On the 
other hand, one can easily choose the metric g such that Ric(g) + 2^ddcpik > 0 
on M. Therefore hl(M,Ix) = 0 for all i > 1, X < 1 by same argument as that in 
the proof of Kodaira's Vanishing Theorem (cf. [KM, Na]). 

For more applications of L2-estimates to bounding a(M) from below, the 
readers may refer [T5, TY2]. 

4. Solution of Calabi's Conjecture for Surfaces 

Theorem 3.3 gives the complete solution to Calabi's conjecture for complex 
surfaces. In this section, we describe briefly the three major steps in the proof. 
Let M be a complex surface with positive first Chern class. In the first step, 
we deform the complex structure on M to obtain a smooth family of Kahler 
surfaces {Mt}o^t^i with positive first Chern class such that M\ = M and Mo 
admits a Kähler-Einstein metric go« The existence of such a family follows from 
the main theorem in [TY2] and the classification theory of complex surfaces. 
Now we define E = {t e [0, l]|Mt/ has a Kähler-Einstein metric for any tf < t}. 
Then E is nonempty. It is not hard to prove by the Implicit Function Theorem 
that E is open in [0,1]. Therefore, in order to show that M = M\, has a Kähler-
Einstein metric, it suffices to prove that E is closed. We should point out that 
the closedness is the most difficult part in the solution of Calabi's conjecture. We 
accomplish this in the following two steps. Without losing generality, we may 
assume that E = [0,1). Let gt (0 < t < 1) be the Kähler-Einstein metrics on Mt. 
We need to show that gt converges to a metric g\ on M in C2-topology. Since 
{Mt}o<;£<a is a smooth family of Kahler surfaces with positive first Chern class, 
there are Kahler metrics gt on Mt (0 < t < 1) such that their Kahler forms C0gt 

are in C\(Mt) = C\(M). Therefore, for each t < 1, cogt = co^ + *^ddcpt for a 
unique function cpt such that 

œ2 = J<-* a>l on Mt (4.1), 

where ft are smooth functions determined by gt (0 < t < 1), namely, 
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Ric(gt) ddft on Mt 
2% 

and 

JM, 
(ef'-l)a>l = 0. 

Now, in order to have gt converge to a metric on M, it suffices to derive an a 
priori C°-estimate of cpt (0 < t < 1). 

In the second step in the solution of Calabi's conjecture, we give a partial 
C°-estimate for cpt. 

Theorem 4.1. For any positive integer m = 0 mod 6, there is a constant Cm indepen
dent of cpt such that there are an orthonormal basis {S/(0}O</^JVH1 of H°(M,K^m) 
with respect to the inner product induced by g, and a sequence of positive numbers 
0 < Xo(t) < X\(t) < • • • < XNm(t) = 1 satisfying: 

1 (Nm 

cpt-mvcpt--\og YA/(t)||S,(t)ll " m \to 
< Cm (4-2)t 

C°(Mr) 

where || • ||g, are the norms of K^n induced by gt. 

Remark. It is interesting to know whether or not m has to be the multiple of 6 in 
(4.1),. 

The estimate in (4.1), in particular implies that each cpt — supMf cpt is uniformly 
bounded in any compact subset outside the zero locus of SNm(t). That is why (4.2), 
is called a partial C°-estimate of cpt. Since there is no known local estimate for 
the solutions of complex Monge-Ampere equations, such a partial C°-estimate is 
very precious. The key observation in the proof of (4.2), is: by some computations 
and the maximum principle, one can show that (4.2), is equivalent to 

log £ us/wiij ) > cm (4.3), 
w=i 

where Cm is a constant independent of t, || • ||gl is the hermitian metric on KM'" 
induced by gt and {S/(£)}o<f<./vnl is an orthonormal basis of f/°(M,K^'") with 
respect to the inner product induced by gt. In [T4], (4.3), is proved by using 
Cheeger-Gromov^s compactness Theorem, Uhlenbeck's Yang-Mills estimates and 
L2-estimates for 9-operators. 

In the last step of our solution for Calabi's conjecture, we first prove a 
numerical criterion for the existence of a Kähler-Einstein metric on M. To describe 
it, let us denote by PG>mjc(M,gi) the collection of all G-invariant functions of the 
form ì log(Xti ||Si|ß), where {S/}o<f<jvl(I is an orthonormal basis of H°(M,K^n) 
with respect to the metric g\, 0 < k < Nm, Nm = h°(M,K]^m) — 1. Define 

am,k(M) = sup < a|3Ca > 0, s.t. / < ~a(pdVg<Ca for any cp in PGtm,k(M,g\) 
}• 
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Theorem 4.2. Fix an integer m such that (4.1), hold for all t < 1. If either aWji(M) > 
2/3 or am,2(M) > 2/3 and aw,i(M) > l0/(lo + 1), where l0 = max{0,2- ^ M z 2 } , 
then M admits a Kähler-Einstein metric. 

Remark. In general, if we replace 3 by n + 1 and 2 by n in Theorem 4.2 and the 
partial C°-estimate in Theorem 4.1 is valid for solutions of (1.1),, then the above 
conclusion is still true. It is just Theorem 6.1 in [T5]. 

In [T4], by direct computation, it is proved that a6,i(M) > 2/3, a^i(M) > 2/3 
for any complex surface M with positive first Chern class. Therefore, the proof 
for Theorem 3.3 is finished. 

The lower bounds of these am^(M) seem to be closly related to Mumford's 
stability of M in CPN,n in the Chow variety. Therefore, it is quite possible that 
there is a connection between the existence of Kähler-Einstein metrics on M and 
Mumford's stability of M in the Chow variety. 

5. Some Problems Related to Calabi's Conjecture 
in Higher Dimensions 

According to the author's opinion, in order to solve Calabi's conjecture in higher 
dimensions, one has to understand further the behavior of the solutions of (1.1), 
(cf. § 1). The difficulty is the lack of some fundamental estimates for complex 
Monge-Amperé equations. To get around it, we posed and verified a partial C°-
estimate for the solutions of (l.l)i, on complex surfaces. Such an estimate is crucial 
in the solution of Calabi's conjecture for complex surfaces. The auther believes 
such an estimate holds on n-dimensional complex Kahler manifold (M,g) with 
positive first Chern class. For reader's convenience, we state its stronger version. 

Conjecture. Given t > 0 and p > 0. There are constants mo < m\, C, depending 
only on n,t,p, satisfying: For any n-dimensional compact Kahler manifold (M,g) 
with Ric(g) > tcog and YA=\ 1^(^01 ^ /*> where bt(M) is the ith betti number ofM, 
there is an integer m in [mo,m\] such that 

inf log ( £ | |S, | |n > C (5.1) 

where \\-\\g is the hermitian metric on K^1 with mcog as its curvature form, {SJ}I<^JV 

is any orthonormal basis of H°(M,K]^m) with respect to the inner product induced 
by g and || • ||g and N = dimH°(M,K]^m) - 1. 

The author is able to affirm this conjecture under two more assumptions: 
Ricci (g) < pcog and fM\Rm\gdVg < p, where Rm denotes the riemannian 
curvature tensor of g. 

One may try to establish (5.2) by using Hörmander's L2-estimate for d-
operator and constructing local nonvanishing sections of K^™ for m large, as 
we did in [T4] for complex surfaces. It boils down to understanding the local 
structure of a compact Kahler manifold with positive Ricci curvature. Naturally, 
it leads to the following problem. 
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Problem. Classify all complete Ricci-flat Kahler manifolds X with the following 
properties : 

1) There is a point xo £ X such that the geodesic balls Br(xo) have Euclidean 
volume growth as r goes to infinity. 

2) lim r_2"+4/ß(xo) ||^(g)||2rfFg = 0 where R(g) denotes the curvature tensor 
of g. 

In case n = 2, (X,g) is clearly the Euclidean space C2. In case n > 3, we can 
obtain such (X,g) as follows. Define X = X\ x • • • x Z/. Each X\ is a resolution 
of Cni/Fi with n, > 3 and F, c Si/fa,) such that the push-down to (Cn'\{0})/r/ 
of the standard holomorphic w7- form on C"f can be nonvanishingly extended 
across X\. In [T6], by using the method in [TY3], it is proved that there exists 
a complete Ricci flat Kahler metric g/ on X\ with Euclidean volume growth and 
fx, \\Rhi)\\nidVgi < +00. Take g to be the product metric of g, (1 < / < /). Then 
(X,g) satisfies 1) and 2) above. 

Are such (X, g) the only ones with 1) and 2) ? 

6. Degeneration of Kähler-Einstein Manifolds 

In order to compactify the moduli space of Kähler-Einstein metrics with positive 
scalar curvature, we are bound to study Kähler-Einstein orbifold metrics as 
indicated by the work of M.Anderson [An] and Nakajima [Nk]. Such a metric is 
defined to be a Kahler orbifold metric on a normal Kahler orbifold such that its 
Ricci curvature form is a constant.multiple of its Kahler form. On one hand, there 
are some analytic obstructions from holomorphic vector fields to the existence of 
Kähler-Einstein orbifold metrics analogous to those by Matsushima and Futaki 
in case of Kahler manifolds, on the other hand, the absence of holomorphic 
vector field does not assure the existence of a Kähler-Einstein orbifold metric as 
indicated by the example in §2 (cf. §2). 

Problem 6.1. Determine when a Kahler orbifold M with C\(M) > 0 has a 
Kähler-Einstein metric. 

It can be regarded as a generalized form of Calabi's conjecture. Of course, 
The discussions in previous sections, as well as those methods in [T2, TY2], 
etc., can be applied to this general case with slight modification. However, 
there are some additional difficulties due to the presence of singularities. For 
instance, the singularity may cause higher multiplicity of the anticanonical divisor, 
consequently, the invariant a(M) gets smaller (cf. Section 3). Nevertheless, one 
can produce a lot of Kähler-Einstein orbifolds by means of the methods in [T2], 
etc. For example, we can prove that there is a Kähler-Einstein orbifold metric on 
the minimal model of the surface obtained by blowing up CP2 at 7 or 8 points 
such that no six of them are on a common quadratic curve and exact three of 
them are collinear. 

The simplest Kahler orbifold with positive first Chern class is the 2-
dimensional projective variety with only rational double points as singularities. 
The minimal resolution of it is an almost Del-Pezzo surface, i.e., the rational 
surface with numerically positive anticanonical line bundle KH and K2 > 0. It 
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seems to be even nontrivial to solve Problem 6.1 in this particular case. The 
methods in [T2, T4] can be used for this purpose. 

Not every Kähler-Einstein orbifold can be in the boundary of the moduli 
space of Kähler-Einstein metrics. Here the distance function on the moduli is 
defined in terms of some suitable limit, such as Hausdorff limit (cf. [Gr, T4]). 
In [T4], it is proved that the dimensions of all plurianticanonical divisors are 
preserved under Hausdorff limit for compact complex surfaces. In fact, the same 
proof also yields 

Theorem 6.1. Let {(Mi,gï)} be a sequence of Kähler-Einstein manifolds of complex 
dimension n. Suppose that (Mi, gì) converge to a Kähler-Einstein orbifold (M^, g^) 
in the sense (cfi [Gr]): there are subsets V\ in M\ and V^ in Moo of real Hausdorff 
dimension less than 2n — 2 with respect to gi and goo, respectively, such that for any 
e > 0, there are diffeomorphisms fa from Mœ — B28(Voo,goo) ^nt0 Mi — Be(Vi,gì) 
satisfying: (1) The image of cj>i contains the exterior of B^V^gì) for each i; (2) 
The pull-backs cj)*gi converge to gœ in O0-topology. Then H°(Mi,K^m) converge 
to Ho(Mœ, KM™) for all m in Z. In particular, the dimensions of pluri-anticanonical 
or canonical sections stay same under the above convergence. 

Problem 6.2. Characterize the Kähler-Einstein orbifold in the boundary of the 
moduli space of Kähler-Einstein manifolds. 

In fact, the author does not know an example of Kähler-Einstein orbifold 
with positive scalar curvature in the boundary of the moduli space such that its 
anticanonical ring is different from that of those Kähler-Einstein manifolds in the 
moduli. It is certainly an interesting question to be explored. We end this paper 
by a thereom on the degeneration of Kähler-Einstein surfaces (cf. Theorem 7.1 
in [T4]). 

Theorem 6.2. Let {(Mugi)} be a sequence of Kähler-Einstein surfaces with Ci(M/)2 

equal to 9—n (5 < n < 8) and positive first Chern class. By taking a subsequence, we 
may assume that they converge to a Kähler-Einstein orbifold (Moo, goo) (cf. [An], 
[Nk]). Then 

1. if n = 8, then Mœ has either only rational double points or two singular 
points of type C2/Zi}2 besides rational points(2 <l <1); 

2. if n — 1, then Mœ has either only rational double points or two singular 
points of type C2/Z\t2 besides rational points; 

3. ifn = 5,6, Mœ has at most two singular points of type C2/Zi}2 or C2/Z\it 

(1 < / < 3) besides rational double points. Moreover, in case M^ has two of such 
singular points, one of them must be of type C2/Z^, while the other is of type 
C2/Z1}3. 

Here Z M denotes the finite cyclic group in U(2) generated by diag ( e ( ^ i ) , 

*-±+i>)-
We in fact also have the explicit description of those Moo with singular points 

other than rational double points (cf. §6, §7 in [T4]). In fact, there are only a 
few of them. 
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Ensembles Limites et Applications 

Francis Bonahon 

Department of Mathematics, University of Southern California 
Los Angeles, CA 90089-1113, USA 

Nous nous proposons de faire le point sur quelques progrès récents accomplis 
dans l'étude des ensembles limites des variétés à courbure négative, et surtout de 
montrer comment on peut utiliser les ensembles limites comme moyen d'attaque 
pour d'autres problèmes de géométrie et de topologie. 

Les travaux de l'auteur ont été partiellement subventionnés par la N.S.F. et la 
Fondation A.P. Sloan. Cet article a été écrit en grande partie pendant que l'auteur 
visitait l'Université de Californie à Davis, qu'il souhaite vivement remercier de 
son hospitalité. 

1. Ensembles Limites des Variétés de Courbure Négative 

Considérons une variété riemannienne complète M à courbure majorée par une 
constante strictement négative. Dans son revêtement universel M, les rayons 
géodésiques issus d'un point base xo balaient M et, puisque la courbure est 
négative, ne se recoupent pas deux à deux. On peut ainsi compactifier M par sa 
sphère à l'infini Mœ, en adjoignant un point au bout de chacun de ces rayons 
géodésiques. L'espace M U M^ ainsi défini est homéomorphe à une boule fermée. 

L'hypothèse sur la courbure permet de rendre cette construction indépendan
te du choix du point base xb G M (voir par exemple [EbON]). En effet, pour 
chaque rayon géodésique issu d'un autre point base 5c'0, il existe un unique 
rayon géodésique issu de xo qui lui est asymptote. Ceci fournit une identification 
naturelle entre les rayons géodésiques issus de xo et ceux issus de XQ, et montre 
que l'espace M U Mœ est en fait indépendant du choix du point base XQ. En 
particulier, l'action du groupe fondamental %\ (M) sur M s'étend continûment à 
M U Moo. 

Un cas important est celui où la métrique de M a courbure constante —1. Le 
revêtement universel M est alors isométrique à l'espace hyperbolique H", défini 
comme la boule ouverte unité de IR" munie de la métrique qui est 2/(1 — ||x||2) 
fois la métrique euclidienne au point x. La compactification de H" par sa sphère 
à l'infini IHJJQ est simplement la compactification usuelle de la boule unité par la 
sphère unité dans IR". Dans ce cas, M U Mro a une structure particulièrement 
riche. Par exemple, M U M œ admet une structure différentiable qui est respectée 
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par les isometries de M. Ceci n'est en général plus vrai si la courbure n'est pas 
constante (voir [Gh] et les références qui y sont mentionnées). 

Par un argument simple, toutes les orbites de l'action de n\ (M) sur M ont le 
même ensemble A M de points d'accumulation dans M U M^. Ce sous-ensemble 
fermé de Mœ est Yensemble limite de M. Pour une définition plus "physique", 
imaginons un observateur situé en un point xo de M. La sphère visuelle de 
cet observateur, formée de tous les rayons géodésiques issus de xo, s'identifie à 
l'ensemble de tous les rayons géodésiques issus d'un point % € M de la préimage 
de xo, et donc à la sphère à l'infini Moo- Si l'on suppose que la lumière se propage 
le long de géodésiques, notre observateur (ponctuel) voit de nombreuses copies 
de lui-même, correspondant aux arcs géodésiques de M joignant xo à lui-même. 
L'ensemble limite est alors formé des points d'accumulation de ces images de 
l'observateur dans sa sphère de directions. 

Quand M est compacte, l'ensemble limite AM est la sphère à l'infini M^ toute 
entière. Mais sinon, AM peut avoir une structure particulièrement complexe dans 
Moo- Par exemple, considérons le cas classique où S est une surface fermée et où 
M = S x R est munie d'une métrique de courbure constante —1 pour laquelle 
S x [—1, +1] est à bord convexe. Alors, l'ensemble AM dans Moo = H ^ = S2 c R 3 

est une courbe de Jordan qui, ou bien est un cercle, ou bien n'est nulle part 
différentiable et est de dimension de Hausdorff strictement comprise entre 1 
et 2 (voir [Bow, Sul]). A ce propos, on peut signaler une caractéristique non 
négligeable des ensembles limites: ils donnent lieu à de jolis dessins (voir par 
exemple [Th2] pour quelques specimens). En effet, l'action de %\ (M) sur la 
sphère à l'infini M«, respecte l'ensemble limite AM, et lui confère ainsi de multiples 
symétries fractales. 

2. Propriétés de Mesure des Ensembles Limites 

Pour simplifier, limitons-nous au cas où la métrique de M a courbure constante, 
par exemple égale à —1. Nous avons déjà indiqué que son revêtement universel 
M est alors isométrique à l'espace hyperbolique Hn , ce qui identifie la sphère à 
l'infini Moot à la sphère unité S""1 = JH^ de R". Cette identification Moo = S" -1 

est bien définie modulo composition par isométrie de Mn, c'est à dire modulo 
composition par un élément du groupe de transformations de Rn U oo engendré 
par les inversions par rapport aux sphères (rondes) de dimension n — 1 qui sont 
orthogonales à Sn~l. Il s'ensuit facilement dans ce cas que l'on peut alors parler de 
propriétés de négligeabilité pour la mesure de Lebesgue, ainsi que de dimension 
de Hausdorff, pour l'ensemble limite AM dans Moo. 

L'un des premiers résultats dans cette direction est dû à L.V. Ahlfors [Ah2] qui 
a montré en dimension inférieure ou égale à 3 que, sous l'hypothèse que l'action 
de 7ui (M) sur M admet un polyhèdre fondamental borné par un nombre fini 
de faces totalement géodésiques (on dit alors que M est géométriquement finie), 
l'ensemble limite AM est ou bien de mesure de Lebesgue nulle dans la sphère à 
l'infini Moo ou bien égal à M«, tout entière. Ahlfors émit aussi la conjecture que 
cette propriété est vraie sous une hypothèse beaucoup plus faible [Ahi] : 
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Conjecture. Si M est une variété de dimension 3 à courbure négative constante 
dont le groupe fondamental n\ (M) est de type fini, alors l'ensemble limite AM est 
ou bien de mesure de Lebesgue nulle dans la sphère à l'infini Moo ou bien égal à 
Moo tout entière. 

En dimension 2, une surface à courbure négative constante dont le groupe 
fondamental est de type fini est toujours géométriquement finie. 

Ces résultats d'Ahlfors ont depuis été améliorés par D. Sullivan dans [Su3], 
où il montre que la dimension de Hausdorff de l'ensemble limite AM d'une 
variété géométriquement finie M est strictement inférieure à la dimension de la 
sphère à l'infini Moo quand AM n'est pas Moo tout entière. On pourra également 
considérer [Sul] pour une extension de ces résultats en dimension supérieure, 
ainsi que pour une relation entre la dimension de Hausdorff de AM et le spectre 
du Laplacien sur M. D'un autre côté, Sullivan a aussi exhibé dans [Su2] des 
variétés (géométriquement infinies) M de dimension 3 pour lesquelles AM est de 
dimension de Hausdorff 2 sans être égal à Moo* et pour lesquelles m (M) est de 
type fini. 

De gros progrès vers une solution complète de la conjecture d'Ahlfors ont 
été accomplis depuis une quinzaine d'années, grâce à un programme lancé vers 
le milieu des années 1970 par W.P. Thurston. En effet, Thurston a alors proposé 
un modèle conjecturel pour la géométrie des variétés de dimension 3 à courbure 
négative constante et dont le groupe fondamental est de type fini. Selon cette 
conjecture, une telle variété M est nécessairement difféomorphe à l'intérieur 
d'une variété compacte, de sorte que ses bouts sont topologiquement de la forme 
S X [0, oo [ où S est une surface compacte. De plus, pour un tel bout difféomorphe 
à S x [0,oo [, la surface S peut être décomposée en un nombre fini de sous-surfaces 
Si telles que la géométrie de la métrique de M sur chacun de ces S/ x [0,oo[ est 
de deux types possibles: Le premier type est analogue à celui que l'on observe 
pour tous les bouts d'une variété géométriquement finie, et est tel que la métrique 
sur les sections Sj x t croît exponentiellement avec t. Le second type se comporte 
plutôt comme un tube de section bornée, et les tranches S/ x t avec t entier ont 
une aire bornée. 

Par une généralisation d'un argument de L.V. Ahlfors pour les variétés 
géométriquement finies [Ah2], Thurston avait observé que toute variété satis
faisant cette conjecture satisfait aussi la conjecture d'Ahlfors, en ce sens que 
l'ensemble limite AM dans la sphère à l'infini Moo est ou bien de mesure de 
Lebesgue nulle ou bien égal à Moo. 

Cette conjecture de Thurston est maintenant démontrée par les travaux suc
cessifs de Thurston [Thl], l'auteur [Bol], et R. Canary [Ca] si l'on sait déjà que M 
est topologiquement sage, c'est à dire que M est difféomorphe à l'intérieur d'une 
variété compacte. Les résultats de [Bol], améliorant ceux de [Thl], ne nécessitent 
pas l'hypothèse de sagesse topologique sur M (et l'entraînent en fait comme 
corollaire), mais réclament une condition supplémentaire sur le groupe fonda
mental m (M), par exemple que celui-ci ne se décompose pas en un produit libre 
non-trivial. Les résultats récents de [Ca], qui requièrent la sagesse topologique 
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mais pas d'hypothèse sur le groupe fondamental, utilisent [Bol] et [Thl] et sont 
basés sur un astucieux argument de revêtement ramifié. 

3. Topologie des Ensembles Limites 

Que peut-on dire de l'espace topologique AM, muni de son action de ni (M) ? 
Un point de départ est le cas où M a un cœur convexe compact. Un cœur 

convexe pour M est une sous-variété Mc à bord convexe telle que M — int (Mc) 
est difféomorphe à dMc x [0,oo[. En particulier, toute variété compacte M admet 
un cœur convexe compact Mc = M. 

Quand M admet un cœur convexe compact, il est alors connu depuis 
longtemps que l'espace topologique AM et son action de 7ti (M) peuvent être 
décrits uniquement en termes de la structure algébrique du groupe n\ (M) (voir 
[Mo, Ni, FI, Gr]). En effet, identifions m (M) à l'orbite d'un point base xo G M 
situé au-dessus du cœur convexe Mc, ainsi qu'à l'ensemble des sommets du graphe 
de Cayley de %\ (M) associé à un choix de générateurs. Par convexité et com
pacité de Mc, la fonction distance induite par la métrique de M sur cette orbite 
est équivalente à celle provenant du graphe de Cayley. Par ailleurs, l'ensemble 
limite AM est l'espace des suites de l'orbite de xb, où l'on identifie deux telles 
suites quand elles sont asymptotes, c'est à dire quand l'angle sous lequel elles sont 
vues depuis xb converge vers Û. Les références mentionnées plus haut développent 
plusieurs méthodes pour traduire cette relation d'asymptoticité en termes de la 
métrique induite sur l'orbite par la métrique de M. Ceci permet de décrire AM de 
manière purement combinatole, en termes d'une certaine relation d'asymptoticité 
sur les suites de sommets du graphe de Cayley de TUI (M). 

Par exemple, comme on l'a vu au Chap. 1 dans le cas d'une surface, si 
M est une variété fermée à courbure négative, l'ensemble limite de n'importe 
quelle métrique de courbure négative à cœur convexe compact sur M x Rn est 
homéomorphe à l'ensemble limite de M, et donc à la sphère unité de l'espace 
euclidien de même dimension que M. 

Quand la métrique de M n'admet pas de cœur convexe compact, on conjecture 
que l'ensemble limite AM est un certain quotient de Vensemble limite algébrique 
Aa

M associé au groupe TUI (M) par la recette qui produirait l'ensemble limite si M 
avait un cœur convexe compact. Cette conjecture est notamment vérifiée quand la 
métrique de M est géométriquement finie (voir [FI, Tu]), auquel cas AM est obtenu 
à partir de Aa

M en pinçant certaines paires de points associées aux sous-groupes 
de Tri (M) correspondant aux cusps de M. 

Quand M n'est pas géométriquement finie, cette conjecture n'est guère 
vérifiée que dans des cas très particuliers, dûs à J.W. Cannon et W.P. Thurston 
[CaTh]. Dans certains de leurs exemples, l'ensemble limite algébrique Aa

M est 
homéomorphe au cercle tandis que l'ensemble limite AM est une sphère de di
mension 2, ce qui fait que la projection Aa

M —> AM fournit une courbe de Peano 
recouvrant toute la sphère ! 
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4. Utilisations des Ensembles Limites 

Après avoir parlé de la structure des ensembles limites, nous nous proposons 
maintenant de montrer comment on peut utiliser ceux-ci pour attaquer d'autres 
problèmes de toplogie et de géométrie. L'idée générale est, pour analyser des 
objets qui ne sont définis que modulo déformation, de considérer des structures 
sur l'ensemble limite qui sont associées à ces objets et qui sont définies sans 
aucune relation d'équivalence particulière. 

Pour éviter trop de généralité, concentrons-nous sur un exemple. Dans [Bol], 
on est amené à considérer l'espace F des classes d'homotopie libre de courbes 
fermées sur une surface fermée M de courbure négative, et on se trouve con
fronté au problème suivant: définir et étudier des directions asymptotiques dans 
T vis-à-vis de la forme d'intersection géométrique i : F x F —> N, où le nombre 
d'intersection géométrique i (a, ß) de a et ß G F est le minimum du nombre de 
points d'intersection (avec multiplicités) de courbes a et b représentant respec
tivement a et ß. 

Pour une approche formelle de ce problème, on peut considérer l'espace R£ 
des applications de F dans R+ , muni de la topologie produit, et plonger F dans 
R+ en envoyant y G F sur l'application a i-> / (a, y). Les directions asymptotiques 
que l'on veut étudier correspondent alors aux demi-droites de R+ qui sont dans 
l'adhérence des demi-droites R+y cz R^5 y G F. 

Cette approche formelle n'est malheureusement pas commode à manier. On 
peut toutefois raisonner de manière plus géométrique, de la façon suivante. 

Le point de départ est que, à cause de l'hypothèse de courbure négative, 
chaque courbe fermée de M est homotope à un unique multiple d'une géodésique 
fermée. (Par convention, une géodésique fermée ne tourne pas plusieurs fois 
autour d'une autre géodésique, et représente donc un élément indivisible du 
groupe fondamental). Ceci établit une bijection entre les éléments de F et les 
géodésiques fermées de M munies d'un poids entier positif. 

Relevons la situation dans le revêtement universel M. La préimage d'une 
géodésique fermée de M donne une famille de géodésiques de M, invariante 
par l'action du groupe fondamental m (M). A chaque élément de F, on a ainsi 
associé un poids entier positif et un sous-ensemble m (M)-invariant de l'espace 
G (M) des géodésiques de M. On vérifie que ce sous-ensemble est fermé et discret. 
Maintenant, pour analyser un sous-ensemble fermé discret A muni d'un poids 
positif, un moyen naturel est de considérer la mesure de Dirac ainsi définie, 
pour laquelle la masse d'un sous-ensemble est le produit du poids par le nombre 
d'éléments de A contenus dans ce sous-ensemble. On associe ainsi à chaque 
élément de F une mesure de Dirac n\ (M)-invariante sur G (M). 

Nous venons ainsi d'interpréter les éléments de F comme éléments de l'espace 
^(M) des mesures (de Radon positives) sur G (M) qui sont invariantes par 
faction de %\ (M). Pour des raisons expliquées dans [Bol], les éléments de #(M) 
sont appelés courants géodésiques. 

Munissons fé'(M) de la topologie vague, pour laquelle une suite de mesures 
a„ converge vers a si et seulement si les intégrales a„ (f) convergent vers oc (f) 
pour toute fonction / : G (M) -» R à support compact. Notons que l'on peut 
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additionner deux éléments de ^(M), et multiplier un élément de ^(M) par un 
nombre réel positif. Le résultat suivant est alors démontré dans [Bo3]. 

Proposition. Le sous-espace R+F cz ^(M), formé des éléments de la forme Xy où 
X G R+ et y G F cz V(M), est dense dans ^(M). 

On peut donc considérer les courants géodésiques sur M comme des "classes 
d'homotopie diffusées". 

Pour le moment, cette construction semble dépendre du choix d'une métrique 
à courbure négative sur M. Toutefois, chaque géodésique de M est caractérisée 
par ses deux points limites distincts dans la sphère à l'infini Moo, laquelle est aussi 
égale à l'ensemble limite AM puisque M est compacte. Par conséquent, G (M) 
s'identifie à AM X A M — à, où A est la diagonale du produit. Ainsi qu'on l'a 
vu au Chap. 3, l'ensemble limite AM peut être décrit en termes de la structure 
algébrique du groupe fondamental ni (M), et l'espace #(M) est par conséquent 
indépendant de la métrique de M et- dépend uniquement du groupe ni (M). En 
fait, toute cette construction peut être développée dans le cadre plus général des 
groupes à courbure négative (aussi appelés hyperboliques) au sens de Gromov 
[Gr]; ce point de vue est exposé dans [Bo3]. 

Notons que, pour la surface compacte M, l'espace G (M) est particulièrement 
simple puisqu'il est homéomorphe à un anneau ouvert. Toutefois, l'action de 
7Ti (M) sur cet anneau est nettement plus complexe. 

Revenons maintenant à la forme d'intersection géométrique i : F x F —> N. 
Dans [Bol], on montre: 

Proposition. La forme d'intersection géométrique i : F x F -> N s'étend en une 
(unique) application bilinéaire continue i : V(M) x V(M) -» R+. 

En particulier, il existe une application continue V(M) -» R+ qui associe 
y i—> i (<x,y) à a G V(M)9 et on vérifie que cette application est propre. Un résultat 
de J.-P. Otal [Ot] affirme que, réciproquement, un courant géodésique a est 
complètement déterminé par ses nombres d'intersection avec les éléments de F 
(c'est non-trivial même dans le cas apparemment plus simple où a est un élément 
de F) . Par densité des multiples réels d'éléments de F dans V(M)9 on en déduit: 

Théorème. L'application V(M) —> R+ qui associe y t-> i (a, y) à a G #(M) induit 
un homéomorphisme de #(M) sur l'adhérence de R + F dans R+. 

Ainsi, les directions asymptotiques de F que l'on voulait étudier au début de 
cette section correspondent exactement au demi-droites issues de l'origine dans 
#(M). 

La définition de #(M) a été inspirée par une construction antérieure, due 
à W.P. Thurston [Thl, Th3], de "classes d'homotopie de courbes simples dif
fusées" sur les surfaces appelées laminations géodésiques mesurées. En fait, l'espace 
M££(M) des laminations géodésiques mesurées se plonge de manière naturelle 
dans <&(M). De plus, de la même façon qu'un élément y G F est représenté par 
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Dans [Thl, Th3], Thurston a introduit une compactification de l'espace de 
Teichmüller 2T(M) en lui adjoignant à l'infini le projectivisé de l'espace M3?{M) 
des laminations mesurées. L'espace ^(M), qui contient les deux espaces 3T(M) et 
J£££{M), fournit un cadre pour cette construction qui est sans doute plus naturel 
que celui originellement utilisé par Thurston. En effet, on démontre dans [Bo2] 
le résultat suivant: 

Théorème. L'union des demi-droites issues de l'origine dans ^(M) qui sont asymp
totes à 3T(M) cz #(M) est exactement égale à JtS£(M). La compactification de 
!F(M) par l'espace de ces demi-droites que l'on obtient de cette façon est exactement 
la compactification de Thurston. 

De plus, par des travaux de W.P. Thurston et S. Wolpert [Wo], la restriction 
à &~(M) cz ^(M) de la forme d'intersection géométrique i se trouve reliée à la 
forme de Weil-Petersson sur ^~(M); voir [Bo2]. 

L'idée motivant ce programme est que, si l'on convertit des espaces d'objets 
définis seulement modulo isotopie en des espaces de mesures, on peut utiliser des 
méthodes d'analyse pour démontrer des propriétés de continuité et développer 
un calcul différentiel sur ces espaces. Par example, la continuité de la forme 
d'intersection sur ^(M) fournit immédiatement des propriétés de continuité 
intéressantes sur la compactification de Thurston de &~(M). 

Le développement d'un calcul différentiel se heurte toutefois à une difficulté: 
En analyse classique, un vecteur tangent à un espace de mesures est une distri
bution. Mais, comme on l'a indiqué plus haut, la sphère à l'infini Moo = AM et 
donc l'espace G (M) ne possèdent pas de structure différentiable privilégiée. On 
ne peut donc pas parler de distributions sur G (M) de manière intrinsèque. 

On résoud cette difficulté en observant que AM possède une structure Holder 
privilégiée, c'est à dire une fonction distance bien définie modulo la relation 
d'équivalence qui identifie deux distances di et ^2 quand il existe des constantes 
A > 0 et v > 0 telles que A~ld\ (x,y)1^ < ^2 (x>y) < Ad\ (x,y)v pour tous x, y 
(voir par exemple [Gr]). On peut ainsi parler de fonctions Holder G (ßd) -> R, 
Définissons une distribution Holder sur G (M) comme une forme linéaire continue 
sur l'espace des fonctions Holder G (M) —> R à support compact. Ainsi, si 
l'on choisit sur G (M) une structure différentiable compatible avec la structure 
Holder, une distribution Holder est une distribution au sens usuel avec une forte 
propriété de régularité. L'espace Jf (M) des distributions Holder sur G (M) qui 
sont invariantes par l'action de ni (M) semble être le bon cadre pour développer 
un calcul différentiel du type cherché. 

Par exemple, considérons l'espace des laminations géodésiques mesurées 
Jt££(M) cz #(M) cz j f (M). Thurston a construit une structure linéaire par 
morceaux naturelle sur Jt<£{M), ce qui fournit une notion combinatoire de 
vecteur tangent à MS£(M). Dans [Bo4], on établit une correspondance entre ces 
vecteurs tangents et les vecteurs de J f (M) qui sont tangents à son sous-espace 
M<£(M). Ceci fournit une description beaucoup plus géométrique des vecteurs 
tangents de M5£(M), interprétant ceux-ci comme laminations géodésiques mu-
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nies de distributions Holder transverses invariantes. Réciproquement, il existe 
une classification combinatoire simple des distributions Holder transverses in
variantes dont on peut munir une lamination géodésique donnée, ainsi qu'un 
critère simple pour déterminer celles qui proviennent de vecteurs tangents à 
J/y(M). Par ailleurs, un grand nombre d'objets définis sur M3?(M) ont une 
extension naturelle au cadre Holder. En particulier, ceci permet de calculer les 
dérivées de certaines fonctions longueur sur M3?(M), 

De manière similaire, l'espace de Teichmüller ^~(M) cz #(M) cz j f (M) admet 
en chacun de ses points un espace linéaire tangent dans J f (M), isomorphe à 
l'espace tangent défini par la structure différentiable naturelle de ZT{M). 
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Foliations and 3-Manifolds* 

David Gabai 

California Institute of Technology, Pasadena, CA 91125, USA 

The goal of this talk is two fold. First in Sections 1 and 2 I survey some 
key results relating foliations and the topology of 3-manifolds. In particular in 
Section 2 I will follow the evolution of one enormously important idea "foliated 
height functions" as it has evolved over the last century. Second in Section 3 I 
discuss a recent development, the essential lamination. 

1. 1-Dimensional Foliations 

Since x(M) = 0 for all closed 3-manifolds M, it follows that M has a smooth 
vector field, hence a smooth codimension-2 foliation. By requiring a bit of 
structure on the foliation one imparts great structure to the 3-manifold. I briefly 
discuss one such structure. 

A Seifert fibred space is a compact 3-manifold M which is almost a S1 bundle 
over a compact surface, i.e. there exists a projection n : M -> N such that for 
each x G N there exists a D2 neighborhood of x such that n~l(D2) = D2 x S1 

and n((r, 0i), (1,02)) = (r,p#i + qQ-f) where p ^ 0 and p, q are relatively prime and 
depend on x and 0 G R mod 2n. 

Remark. Seifert fibred spaces were classified up to fibre preserving homeomor
phism in 1928 by Seifert [S]. Their topological classification was obtained by 
Orlik, Vogt, and Zieschang [OVZ] in 1967. Seifert fibred spaces have one of six 
geometric structures as discussed in Scott's survey article [Sci]. 

In 1972 Epstein [E] showed that M has a C1 foliation by circles if and only 
if M is a Seifert fibred space. 

Seifert fibred spaces play a central role in 3-dimensional topology. In fact 
Thurston's geometrization conjecture [Th3] for 3-manifolds asserts that a closed 
oriented 3-manifold which has no torus [JS], [Jo] or sphere decomposition [M], 
[K] is either a Seifert fibred space or a hyperbolic 3-manifold. 

Very recently (fall 1990) Casson and the author [Gl] have independently an
nounced proofs of the conjecture that S1 convergence groups [GM] are Fuchsian 
groups. This result implies the Seifert fibred space conjecture, i.e. if M is a closed 

* Partially Supported by NSF grant DMS-8902343 and a Sloan foundation research 
fellowship. 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
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orientable irreducible 3-manifold, then M is a Seifert fibred space if and only if 
7Ti (M) contains an infinite cyclic normal subgroup. [Me] using the work of [Sc2] 
and others reduced the Seifert fibred space conjecture to the convergence group 
conjecture. 

Regarding the qualitative types of codimension-2 foliations on 3-manifolds I 
cite the following two remarkable results. 

Theorem (Schweitzer [Sw] 1976). S3 has a C1 foliation by lines. 

Theorem (Vogt [V] 1989). R3 has a C1 foliation by circles. 

2. 2-Dimensional Foliations 

I will try to give a chronological account of codimension-1 foliations in 3-
manifolds. For simplicity, unless otherwise stated all manifolds will be closed and 
orientable. 

In 1863 Möbius proved the following result (see [St]). 

Theorem. If S is a smooth closed surface in R3, then S is diffeomorphic to a surface 
of genus g. 

Idea of Proof. Find enough parallel planes to chop S up into discs, annuii, and 
spheres with 3-holes. Manipulate the pieces to get a standard form. D 

This is a foliations proof of a topological theorem. Möbius uses a foliation 
of R3 by parallel planes to decompose S, then rebuilds S in a recognizable way. 
This "idea" will be generalized many times over for increasingly sophisticated 
applications. Here is one such generalization. 

Theorem (Alexander 1923 [A]). A PL embedded S2 in R3 bounds a 3-Ball. (The 
PL Shoenflies theorem). 

Idea of Proof. Consider a foliation of R3 by parallel planes. A generic such 
foliation induces a foliation on S2 which has a finite number of critical points 
at isolated levels. Analyzing the foliation and the embedding one observes that 
saddles can be cancelled with centers after an isotopy of S2, thus, after isotopy, 
one obtains an S2 with exactly one maximum and one minimum. This S2 evidently 
bounds a 3-cell, hence so does the original one. D 

The study of foliations did not begin as a recognized subject in its own 
right until the late 1940s with the work of Ehresmann and Reeb. (Perhaps as an 
offshoot of the study of fibre bundles which was a hot new topic in the 1940s.) 
The story goes that Ehresmann suggested the following thesis problem to his 
student Reeb. Show that there exists no codimension-1 foliation on S3. 

Ehresmann-1940s 
- Introduced the idea of holonomy [Eh]. Advisor to Reeb and influenced Haef-

liger's thesis work (whose advisor was DeRham). 
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Reeb-1948 [R] 
- Reeb foliation of S3. 
- Reeb Stability theorem - If F is a codimension-1 foliation on M and L is a 

compact leaf with trivial holonomy group, then L has a neighborhood in M 
homeomorphic l o L x / and F | L x J is the product foliation. 

- If F is transversely orientable and F contains a S2 leaf, then M = S2 X S1. 
(He more generally showed that the set of compact leaves with finite m is 
closed.) 

Remark. Later Lickorisch [L], Zieschang [N], and Wood [W] showed that all 
closed 3-manifolds have codimension-1 foliations. 

Haefliger 1959 [H] 
- Showed that if y is a closed curve transverse to F, an analytic foliation of M, 

then 0 ^ y G n\ (M). In particular this implied that M has infinite fundamental 
group. 

- Showed that the union of compact leaves of a codimension-1 foliation is 
closed in M. 

Novikov 1962 [N]. If M ^ S2 x S1, F is a C2 foliation and has no Reeb 
components then 
- 7E2(M)=0. 
- n\(leaves) inject into ni(M). 
- y transverse to F implies that 0 ^ y 6 m(M). 

Remark. It was known to experts that C2 was not crucial, being used only to 
push curves normally off of surfaces. Thus a transverse line field provides the 
needed structure in the C° case. See also [So] for a C° proof. 

Sacksteder 1962 [Sa]. If F is a C2 foliation on M then 
- F has no holonomy implies that F is defined by a closed 1-form. In particular 

the lifted foliation on the universal cover M is the product foliation R 2 x R. 
- exceptional minimal sets have résiliant leaves, i.e. leaves with holonomy ele

ments which are contractions. 

Remark. A C° "version" of Sacksteder's first theorem can be found in [I]. Tischler 
[Ti] showed that a foliation defined by a closed 1-form can be perturbed slightly 
to obtain a fibration over S1. 

Stallings 1962 [St] 
- If M is irreducible, dM ^ 0 and the inclusion map of T -> M induces an 

isomorphism on m where T is a component of boundary M, then M = T XL 

Rosenberg 1968 [Ro] 
- If F is a foliation without Reeb components, then M is irreducible. 
- (with Sondow). If M is C2 foliated by planes, then M is the 3-torus. 
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Remark. The Rosenberg-Sondow theorem uses C2 in an essential way for it 
invokes Sacksteder's theorem. Although unstated there (see Sect. 3) a C° proof 
follows by [I]. 

The main result of Novikov's paper is that a Reeb component is the obstruc
tion to isotoping a disc rei boundary into a leaf, where the induced foliation of 
the D2 is the standard foliation by circles with one singular point at the origin. 
(Consider a meridianal disc transverse to a Reeb foliated D2 x S1.) 

Rosenberg's key observation in the proof of his first theorem is that Novikov's 
result implies that there is no obstruction to carrying out Alexander's argument 
to show that a smoothly imbedded S2 in a foliated manifold without Reeb 
components bounds a B3. 

A generalization of the Möbius, Alexander, Rosenberg line is the following 
result of 

Rousserie and Thurston 1972 [Rou, Thl] 
- If T is a compact embedded m injective surface in M and F is a foliation on 

M which has no Reeb components, then T can be isotoped to be transverse 
to F except at a finite number of saddle and circle tangencies. 

Remark. A circle tangency looks exactly like the rim of a volcano. Rousserie 
further shows that the obstruction to isotoping away the circle tangencies in the 
case of T a torus is the existence of a cylindrical component, i.e. an annulus 
bundle over S1 whose boundary components are leaves and whose interior leaves 
are annuii whose ends spiral "in the same direction" about the ends. More 
generally it is well known to experts that the obstruction to eliminating the circle 
tangencies is the existence of generalized Reeb components, i.e. of bundles over 
S1 with fibre a compact surface S with boundary. The boundary tori are leaves 

o 

and the interior leaves are homeomorphic to S, and nearly tangent to S except 
near the ends which spiral in the same direction about the boundary tori. 

Thurston 1976 [Th2] 
- Defined the Thurston norm on H2(M). \\z\\ = {min-^S') \ [S] = z e H2(M) 

where S; = S — S2 components}. 
- compact leaves of foliations without Reeb components are Thurston norm 

minimizing, i.e. compact leaves are topologically minimal in their homology 
class. 

Remark. Corresponding definitions and results were given for manifolds with 
boundary. Thurston's Pseudo-Anosov theory [FLP] is also of central importance. 

Palmeira 1978 [P] 
- If F is a foliation on M without Reeb components, then the universal 

covering of M is R3. Furthermore the induced foliation on R3 is topologically 
equivalent to a product of a foliation on R2 and R. 

Sullivan 1979 [Su] 
- If F is C2 and taut, (i.e. there exists a closed curve transverse to F which hits 

all the leaves), then there exists a Riemannian metric on M such that all the 
leaves are minimal, i.e. locally area minimizing. 
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Remark. Sullivan's result was inspired by a letter from Herman Gluck. This result 
was generalized by Harvey and Lawson [HL] who showed that F was in fact 
calibrated, i.e. there exists a metric so that compact portions of leaves are minimal 
area in their homology class. A corresponding topological statement can be made 
regarding the Thurston norm. 

Gabai [G2, G3] 
- 1981 - If T is a Thurston norm minimizing surface in an oriented irreducible 

manifold M, (dM possibly nonempty) then there exists a finite depth taut 
transversely oriented foliation F on M such that F is a leaf. 

- 1 9 8 5 - I f T i s a minimal genus surface for a knot in S3, then there exists a 
o 

finite depth taut transversely oriented foliation F of S3 — N(k) such that T is 
a leaf of F and F \ dN(k) is a foliation by circles. 

Remark. The difference between the 1985 and 1981 theorems is that the foliation 
F | dN(k) given by the former would be a suspension of a homeomorphism of 
the circle with some fixed points. See [G3] for other constructions. 

Applications 
- If z G Ü2(M,dM), then g(z) = 2t(z) where g denotes the gromov norm 

and t denotes the Thurston norm. Viewed another way we obtain a positive 
solution to a conjecture of Thurston [Th2] that the norm on homology based 
on singular or immersed surfaces is equal to the "classical" norm based on 
embedded surfaces. In particular the immersed genus of a knot equals the 
embedded genus of a knot, which is the higher genus analogue to Dehn's 
lemma. [Gi] 

- Positive solutions to Property R and Poenaru conjectures. More generally 
we show that a homology S2 x S1 manifold JV obtained by surgery on 
a knot k in S3 is irreducible or S2 x S1. Furthermore the extension of a 
minimal genus surface for k becomes a Thurston norm minimizing surface 
representing the generator of JV. One can view Property R as asserting that 
{S3 knot theory} n {S2 x S{ knot theory} = 0. [G3] 

- Knots in S2 x S1 or torus bundles over S1, which are not contained in 3-cells, 
are determined by their complements. [G4] 

- If T is a Thurston norm minimizing surface in M disjoint from a boundary 
component P, then T remains norm minimizing (and hence m injective) in 
all but at most one of the manifolds obtained by Dehn filling on P. [G4] 

- Sela showed by example that the bad surgeries corresponding to distinct norm 
minimizing surfaces may be distinct. [Se] 

- Computing the genus of an oriented link in S3. [G5], [G6] 
- Property P for satellite knots. [G7] 
- Superadditivity of knot genus under band connnect sum. [G8], [Sch] 
- The classification of knots in solid tori such that non trivial surgery yields 

a solid torus. In particular there exists a unique knot in D2 x S1 such that 
exactly two surgeries yield D2 x S1. [G7] reduced the problem to 1-bridge 
braids in solid tori and Berge [B] solved the problem for 1-bridge case. See 
also [G9]. 
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Key elements of the proofs of the theorems. 
- Sutured manifold theory. Just as a Haken 3-manifold can be decomposed 

to a 3-cell via splitting along incompressible surfaces, the content of sutured 
manifold theory is that a 3-manifold M with nontrivial Ü2(M,dM) can be 
decomposed, with control, along taut sufaces to obtain a 3-cell. Dual to this 
decomposition is a finite depth foliation such that the cores of the finite depth 
leaves correspond to the splitting taut surfaces. 

- Finite depth foliations "are like" compact surfaces, i.e. technically finite depth 
foliations can be treated more like incompressible surfaces rather than "thick" 
foliations. 

- Height function arguments. A crucial moment in [G3] was the defining the 
notion of thin presentation of a knot in S3. A thin presentation is essentially 
a bridge presentation where the local maxima are required to be as low as 
possible and the minima as high as possible, thus from the point of view 
of the horizontal planes in S3 the knot is as thin as possible. With respect 
to a thin presentation a lamination can be put into a normal form. In 
particular there will be level planes where the induced lamination will have 
no inessential curves. These arguments should be viewed as sophisticated 
versions of Möbius, Alexander, Rosenberg, . . . . 

- Combinatorial arguments. 

I close this section with the following results, whose proofs push variants of 
the foliated height function arguments to high technical levels. 

Gabai 1984 [G10] 
- (Simple Loop Conjecture) / : S —> T is a map of closed surfaces and 0 ^ ker 

/# : ni(S) -> ni(T), then there exists a simple loop in ker /# . 

Gabai Kazez 1985 [GK1] 
- (Homotopy Classification of Maps of Surfaces) If / , g : S —> T are maps of 

positive degree of closed oriented surfaces, then there exists a homeomorphism 
h : S —> S such that / is homotopic to g oh if and only if f#(ni(S)) = g#(ni(S)) 
and deg / = deg g. 

Remark. The idea behind these results is to view / (or g) as a branched immersion 
in T x I, then put the double curve locus into normal form. See [GK 2] for the 
version for maps of closed surfaces. 

Gordon Luecke 1988 [GL] 
- Knots in S3 are determined by their complements. 

Remark. The proof involved two steps. 

i) If there exists two knots with distinct complements, then each knot comple
ment has a foliation by planar surfaces coming from the foliation of S3 by 
level S2's. When these foliations are viewed in a single knot complement one 
finds two planar surfaces which intersect each other in an essential way. This 
step was done independently by myself and [GL] using thin presentations. 

ii) There do not exist such planar surfaces in S3. This step required a deep 
combinatorial topology argument. 
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3. Essential Laminations 

Example. If / : T —• T is a pseudo anosov homeomorphism of a closed surface 
T and A is the /-invariant (stable measured) foliation, then X, the suspension of A 
in M, the T bundle over S1 defined by / , is a singular foliation on M. One can get 
singular foliations in different manifolds by doing Dehn surgery to the singular 
circles, Fried was aware of this construction in the late 70's. Independently (at 
the same time) Ghys and Thurston knew how to create nonsingular foliations 
when the singular locus consisted of 2w prongs. 

Remark. 
i) ([Gil] 1981) X is an example of a singular foliation with a finite number of 

singular circles. X restricted to cross sections of neighborhoods of the circles 
look like index n/2 singularities of line fields where n = 1 or n < — 1. The 
author observed that Novikov's theorem extends to such singular foliations 
provided n < 0. (There exists a singular foliation of S3 with a single singular 
circle of type 1/2 and no compact leaves. Consider the foliation transverse 
to the fibration of the (-2,3,7) Pretzel knot.) 

ii) ([Gil] 1986) Good singular foliations can be constructed transverse to finite 
depth foliations. In some sense most manifolds contain such foliations. 

iii) The notion of essential lamination [GO] developed with Oertel generalizes 
the above notion of "good" singular foliation. Recently Hatcher and Oertel 
have shown that essential laminations in non Haken manifolds can be viewed 
as singular foliations (of a possibly more general type). 

Definition. A codimension-1 lamination X of M3 is a decomposition of a closed 
subset of M by surfaces (called leaves) such that M is covered by charts of the 
form R 2 x R and leaves of X pass through in R2 x pts. X is an essential lamination 
[GO] of M if 

i) M — X is irreducible. 
ii) No leaf of X is a torus bounding a solid torus. 

iii) If V is the closure (in the path metric) of a complementary region of X in 
M, then dV is incompressible and end incompressible. 

Theorem [GO] 1987. Let M be a closed oriented 3-manifold with an essential 
lamination X, then 

i) M is irreducible. 
ii) m (leaves) inject into ni(M). 

iii) m (transverse efficient loops) inject into TüI(M), transverse efficient arcs cannot 
be homotoped rei boundary into a leaf. 

iv) the universal cover of M is R3 . 

Remark. Essential laminations generalize the notions of foliations without Reeb 
components and incompressible surfaces. Like finite depth foliations essential 
laminations can be manipulated as compact surfaces. While in some sense most 
3-manifolds do not contain incompressible surfaces, most 3-manifolds do contain 
essential laminations. 
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Example. Essential laminations can be obtained by "blowing air" into the singular 
loci of the above good singular laminations. See [GO, Ha, O, Na, D] for other 
constructions. 

Conjecture. If M is a closed aspherical 3-manifold, then M is finitely covered by a 
manifold with an essential lamination. 

Conjecture. If M is closed oriented and aspherical, then M has an essential lami
nation or is Seifert fibred. 

Remark. The second optimistic conjecture implies the first. The first conjecture is 
implied by Waldhausen's conjecture that every aspherical 3-manifold is finitely 
covered by a Haken manifold. There is also Thurston's conjecture that every 
hyperbolic manifold is finitely covered by a surface bundle over S1. The following 
result combined with [M2, W2] (see [JN]) shows that there exist examples of 
aspherical Seifert fibred spaces with out essential laminations. 

Theorem (Brittenham [B], Claus [C] 1990). If X is an essential lamination of a 
Seifert Fibred Space, then there exists a sublamination which is either horizontal or 
vertical (after isotopy). 

Remark. Vertical means that it is a union of Seifert fibres and horizontal means 
that it is transverse to the Seifert fibration. 

The case for X a compact surface was due to [Wa]. Thurston [Thl] obtained 
the result when X was a C2 foliation in a S1 bundle. [EHN] generalized that 
result to C2 foliations in Haken Seifert fibred spaces. 

Theorem ([GK3] 1990). If M has an essential lamination and O ^ y G ni(M), then 
o 

D x Sl is the covering space of M with ni generated by y. 

Theorem (Gabai-Kazez 1990). If M has a pseudoanosov flow and f,g : M -> M 
are homotopic homeomorphisms, then f is isotopie to g. 

Remark. It suffices to consider the case that / = id. The hypotheses imply the 
existence of two transverse (stable and unstable) essential laminations. The proof 
proceeds by first showing that / is isotopie to / ' which fixes a simple closed curve 
common to both laminations. 

Homotopy implies isotopy for irreducible 3-manifolds is an old conjecture. 
Waldhausen [Wa] established the case for M Haken, a number of authors 
established the case for M a spherical space form or more generally a Seifert 
fibred space, see [Sc3] and [BO]. See also [HS]. 

Theorem. IfX is an essential lamination of the closed 3-manifold M by planes, then 
M is the 3-torus. 

Proof. The closure of each complementary region of X, with the path metric, is 
o 

D x J, therefore X extends to a foliation also called X of M by planes. It follows 
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from Theorem 3.1 [I], the lift X of X to the universal covering of M has space of 
leaves R. Since each leaf of X is a plane, 711 (M) acts freely and order preserving 
on R, thus by a theorem of Holder n\(M) is archemedian and hence free abelian. 
This last argument is essentially Proposition 4.1 of [I]. Now argue as in [Ro] to 
conclude that M = S1 x S1 x S1. P 
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The Differential Calculus of Homotopy Functors 

Thomas G. Goodwillie 

Department of Mathematics, Brown University, Providence, Rl 02912, USA 

m 

0. Introduction 

My purpose here is to explain a method in homotopy theory. The following result 
is perhaps the best example to date of a statement that can be proved by this method: 

Theorem 1. For any 2-connected map of topological spaces Y-+X the fiber of 
A(Y) -• A(X) and the fiber of TC(Y) -> TC(X) are weakly homotopy equivalent. 

Here A is Waldhausen's algebraic iC-theory functor from spaces to spectra, and 
TC is another functor which I will discuss below. "Fiber" means homotopy fiber. 

If we write A for the reduced functor A(Y) = fiber(y4(7) ->> >4(*)) and similarly 
for TC, then in the case when X is a point we have the statement: 

Corollary 2. For any {-connected topological space Y the spectra A(Y) and TC(Y) 
are weakly homotopy equivalent. 

I will not say much now about the other functor TC, except that TC(X) is closely 
related to the free loop space AX (the space of all unbased maps from the circle to 
X) and is easier to study than A(X) from the point of view of algebraic topology. 

The theorem stated above represents the work of several people. In particular, 
the definition of the functor TC, and of a map A -• TC which is crucial to the proof, 
uses work of Bökstedt-Hsiang-Madsen. A p-completed version of Theorem 1 (proved 
by the method outlined below) was the main result of [BCCGHM]. The theorem 
stated aboveis only a marginal advance over this, since a rational version ( [Gl] , 
Corollary on p. 349) has been known for some time. (The final steps in the proof of 
Theorem 1 will appear in [G6].) 

1. Summary of the Method 

The proof of Theorem 1 uses a kind of deformation theory. The goal is to describe 
the change in A(X) produced by a given (small) change in X. It turns out that to 
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achieve this it is enough to describe the infinitesimal change in A(X) produced by 
an infinitesimal change in X. By this I mean: to give an approximate description of 
the change in A(X) produced by a very small change in X. (A small change in X is 
a highly connected map 7-> X.) 

In a little more, detail, the method is this: 
There is a natural map of spectra from A(X) to TC(X), called the cyclotomic 

trace map. Denote its homotopy fiber by F(X). There i? a constant c such that for 
any fc-connected map of spaces Y-> X the map of homotopy fibers 

fiber(^(7) -• A(X)) -> fiber(TC(7) -> TC(X)) 

is (c + 2fe)-connected. In other words, the map F(Y) -> F(X) is about twice as highly 
connected as the map Y-> X upon which it depends. By a certain general principle 
(Proposition 5 below), it follows that the map F(Y) -> F(X) is in fact oo-connected 
when the map T-> X is at least 2-connected. (In other words, up to weak equiva
lence F(X) depends only on nx(X) if X is connected.) This yields the conclusion of 
Theorem 1. 

The general principle used above is analogous to the following fact from differen
tial calculus: If a function / (in a suitable domain, and satisfying suitable differenti
ability hypotheses) is such that |/(x) — f(y)\ .< C\x — y|2, then/is locally constant. 
A more familiar statement of this fact is that if the derivative of/ is identically zero 
then / is locally constant. 

Section 2 explains the idea "derivative of a homotopy functor". Section 3 states 
the general principle mentioned above. Section 4 discusses what one needs to know 
about Waldhausen's functor A in order to apply the principle here. Section 5 
describes the other functor TC. Section 6 discusses that part of the proof which 
involves the map from A to TC. Details may be found in [BCCGHM, G2, G3, G4, 
and G6]. 

2. Differentiation of a Functor 

For a more detailed account of the ideas below, see [G2]. 

2.1 The Definition 

The idea can be made quite general, but for concreteness let us suppose that F is a 
functor from spaces to spectra. We always assume that it is q. homotopy functor, 
meaning that it takes equivalences to equivalences. (Throughout, an equivalence of 
spaces or spectra means a weak homotopy equivalence.). 

In calculus the concept of derivative, or differential, of a function / at a point x 
is a way of systematically describing the quantity/(y) — f(x) with an accuracy like 
| y — x|2. In a similar way the next two definitions serve to describe the 2fc-homotopy 
type of the fiber of F(Y) -> F(X) when the map Y -» X is fe-connected. 

Definition 3. The derivative dxF(X) of F at the based space (X, x) is the homotopy 
colimit (as k -> oo) of the spectra Qk fiber(F(Z v Sk) -• F(X)). 
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The maps in the limit system are (loosely speaking) induced by the diagrams 

F(X v S*"1) • F(X v Dk
+) ~ F(X) 

F(X) ~ F(X v Dì) -+ F(X v Sk) 

(Note that F(X v Dk) is equivalent to F(X).) Up to equivalence the derivative is 
determined by X and by knowing which component of X contains the point x. The 
spectrum dxF(X) is a functor of the based space (X, x), and any based map (X, x) -» 
(Y, y) which is an equivalence induces an equivalence dxF(X) -> dyF(Y). 

There is a more general construction. If / : Y-> X is a map of spaces, think of 
y as a space over X, think of the mapping cylinder of/ as the fiberwise cone of Y 
over X (another space over X), and denote it by CXY. Let £XY, the fiberwise 
suspension of Y over X, be the union along Y of two copies of Cx Y. 

Definition 4. The differential of (DXF)(Y), defined for any map Y-> X, is the homo
topy colimit of the spectra Qk fiber(F(ZX Y) -• F(X)), 

The maps in the limit system are defined using diagrams 

F{E\~'Y) 

F{X) ~ F(CxE\-lY) 

-> F{CxL
k
x-

lY) ~ F(JQ 

F{IXY) 

For fixed ^ the differential DXF is a functor from spaces over X to spectra. It 
is a homotopy functor in the sense that it preserves equivalences, where a map of 
spaces over X is called an equivalence if as a map of spaces it is a (weak homotopy) 
equivalence. We have (DXF)(X) ~ * and (DXF)(X v S°) - dxF(X). 

Note that there is a natural map 

fiber(F(7)^F(X))^(DxF)(y) 

The functor DXF is intended to be an excisive functor that approximates Y\-> 
fiber(F(Y) -• FpQ), much as in calculus the differential of a function / at a point x 
is a linear function that approximates f(y) — f(x). To explain this I need some 
language. 

2.2 Excision 

A commutative diagram SC of spaces (or spectra) 

x(0) • ar(i) 

ar(2) £•(1, 2) 
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is a cofiber square if the canonical map to 5f(l, 2) from the homotopy pushout (union 
along X{0) of the mapping cylinders of %(0) -> X{\) and X{0) -> £"(2)) is an 
equivalence. It is a /ifcer square (resp. fc-connected) if the canonical map from 9E(0) 
to the homotopy pullback (fiber product over #"(1, 2) of the path fibrations of 
3£(l) -> #"(1, 2) and £"(2) -> #*(1, 2)) is an equivalence (resp. fc-connected). Equiva
lently, a square diagram 9£ of spectra is fc-connected if the iterated fiber, the 
homotopy fiber of the map 

fiber(3T(0) - 3T(1) -> fiber(^(2) -> «"(1, 2)) 

of homotopy fibers, is (fc — l)-connected. 
A functor F (say from spaces, or spaces over X, to spectra) is excisive if it takes 

cofiber squares to fiber squares. This is a very strong condition. Homotopy functors 
occurring in nature usually satisfy a much weaker, but useful, condition, called stable 
excision: there is a constant c2 such that if the maps $C(0) -> 3E(\) and %(0) -> 3£(2) 
in a cofiber square are respectively kt- and fc2-connected, then the diagram F (ST): 

W 0 ) ) > /OT)) 

F(ar(2)) • F(SF(l,2)) 

is (fcj + fc2 + c2)-connected. 
If F satisfies stable excision then, for each X, DXF satisfies excision; we may 

think of DXF as a (reduced) homology theory on the category of spaces over X. 
Moreover, stable excision for F implies that the map from fiber(F(T) -> F(X)) to 
(DXF)(Y) is approximately 2fc-connected for any fc-connected map Y-> X. 

2.3 The Principle 

Theorem 1 is proved by applying the following principle with F = fiber(/4 -» TC) 
and Q = 1. The term "^-analytic" will be explained in Section 3. 

Proposition 5. / / F is a Q-analytic functor from spaces to spectra such that (DXF)(Y) 
is trivial for all X and all Y-+X, then for every (Q + l)-connected map Y -+ X of 
spaces the map F(Y) -> F(X) is an equivalence. 

"Trivial" means equivalent to a point (all homotopy groups are trivial). If F 
satisfies a suitable limit axiom, so that up to equivalence it is determined by its 
behavior on finite CW complexes, then it is enough to assume that dxF(X) rather 
than DXF is trivial. 

3. Analytic Functors 

"Analyticity" of a homotopy functor F has to do with the behavior of F with respect 
to cubical diagrams of spaces. By an n-cubical diagram we mean a functor X from 
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the partially ordered set of all subsets of {\,...,n} to the category of spaces. 
Analyticity of F involves one condition, stable (n — l)st order excision, for each n. 
Stable first-order excision is stable excision as defined in Sect. 2.2. 

Stable (n — l)st order excision concerns certain rc-cubical diagrams SC, namely 
the strong cofiber cubes. Call SC a strong cofiber cube if, for each 1 < / <j <n and 
S cz {1 , . . . , 77} — {/,./}, the diagram 

%(S) > f(Su{î}) 

2C(Su{j} > 3C(Su{iJ}) 

is a cofiber square. The condition is that there is a constant cn such that, whenever 
SC is a strong cofiber cube in which the map SC(0) -> !%(i) is fcrconnected for all /, 
with fc; > Q, then F(SC) is (cn -f- Z7c,)-connected. (An n-cubical diagram of spectra is 
called fc-connected if its iterated fiber - the spectrum obtained by taking homotopy 
fibers in each of the n directions in turn - is (fc — l)-connected.) Note that cn is 
allowed to be negative. 

For n=l this simply says that there is a constant c1 such that for any fc-
connected map SC(0) -• SC(\) of spaces the map F(SC(0)) -* F(3C(\)) is (fc -f- c j -
connected, at least if fc > Q. 

Definition 6. The functor F is ^-analytic if it satisfies (n — l)st order as above for all 
n>\, and if the numbers cn are bounded below by c — gn for some constant c. 

Most homotopy functors occurring in nature are ^-analytic for some Q, and in 
many cases it is a routine matter to verify this. The identity functor from spaces to 
spaces is 1-analytic, as is Waldhausen's functor A. 

The proof of Proposition 5 uses an unusual inductive argument. It is not difficult, 
but I will not take time to explain it here; see [G3], 

Proposition 5 expresses one of two main consequences of analyticity. The other, 
the existence of a "Taylor tower" for a functor in analogy with the Taylor series of 
a function, is not used in the proof of Theorem 1. It is explained in [G5]. 

4. The Derivative of IST-Theory 

In order to use Proposition 5 for proving Theorem 1, it is necessary first of all to 
know (up to natural equivalence) what the derivative of the functor A is. The answer 
turns out to be this: 

Theorem 7. For a based space (X, x) the spectrum dxA(X) is related by a chain of 
natural equivalences to Eco(Q(X, x)+). 

This is the unreduced suspension spectrum of the based loopspace of X. (The 
subscript " + " adds a disjoint basepoint.) 
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Theorem 7 (3.3 of [G2]) is proved indirectly; it is reduced to a corresponding 
statement (Theorem 7 below) about smooth manifolds, using a major theorem of 
Waldhausen: 

Theorem 8 (Waldhausen [Wl]). There is a natural weak equivalence of spectra 
between A(X) and the product Zn{X+) x Whm((X), where WhDin(X) is a natural 
double delooping of the différentiable pseudoisotopy spectrum ^Diff(X). 

In view of Theorem 8, Theorem 7 may be rewritten: 

Theorem 7'. For a based space (X, x) the spectrum dxéPDl({(X) is related by a chain 
of natural equivalences to Q2Eco(Q(X, x)/X). 

It is notable that, while the relationship between X-theory and pseudoisotopy 
theory expressed in Theorem 8 is usually viewed as a way of reducing geometry to 
algebra, in this instance the flow of information is in the other direction. In this 
connection see also Sect. 5.3. 

Recall that the underlying space of the spectrum ^D i f f (JQ is essentially defined 
as a limit of spaces PDif{(M) for manifolds M (compact, with boundary, of arbitrarily 
large dimension) of the homotopy type of X. The space Pmn(M) is the simplicial 
group of all diffeomorphisms o f M x / which are the identity along ( M x O ) u 
(dM x I). 

Therefore, to "compute" dx0^m(X) is essentially to solve the following problem: 
For a smooth manifold M with an attached handle h of index fc > 3, determine the 
2fc-homotopy type of the fiber of FDiff (M) -• FDiff (M u h). This is done in [G2] using 
Morlet's "disjunction lemma" and an old-fashioned différentiable general-position 
argument. 

5. The Functor TC 

I will now say something about the functor TC which occurs in the statement of 
Theorem 1. There are really two questions to address: How is it defined, and what 
does it turn out to be? 

5.1 Definition of TC 

I will not be very specific about this. TC is related to Bökstedt's "topological 
Hochschild homology" (THH). For details see [BCCGHM], [BHM], or [G4]. 

Recall that, according to one way of thinking about the K-theory of (based, 
connected) spaces, A(BG) is the K-theory spectrum of the "ring up to homotopy" 
Q^E00^ G\+). The latter is to be thought of as the "group ring" fc[G] of the simplicial 
group G over the ground "ring" fc = QS°. Heuristically, 

connective spectrum = infinite loop space 

= abelian group up to homotopy 

= k-module 

and the group structure of G gives fc[G] a multiplication compatible with its additive 
structure. These ideas can be made precise by using a suitable notion of "ring up 
to homotopy", for example Bökstedt's notion of F SP (functor with smash product). 
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For such a "ring" R, Bökstedt defines a X-theory spectrum K(R). Both the 
Quillen X-theory of rings and the Waldhausen X-theory of spaces are included as 
special cases (the cases of a discrete ring R and a group ring fc[G] respectively), He 
also defines a spectrum THH(R); heuristically it is the simplicial object 

R 

î i Î 
R®R 

î | î | î 
R®R®R 

with face and degeneracy maps given by the product and unit of R, respectively, as 
in the definition of the standard chain complex for Hochschild homology. The 
"tensor products" are meant to be over fc and are really smash products of spectra. 

Bökstedt defines a map of spectra K(R) -> THH(R); it is modeled on the "trace 
map" from X-theory to Hochschild homology defined by Dennis for an ordinary 
ring R. 

Very roughly speaking, TC is related to THH as cyclic homology is related to 
Hochschild homology. For any FSP there is a spectrum TC(R) with a map TC(R) -> 
THH(R). The trace K(R) -> THH(R) lifts to a map K(R) -+ TC(R), called the 
cyclotomic trace. (After p-completion this is the same as the map ofthat same name 
constructed in [BHM]). 

Let the simplicial group G be a loop group for the space X, and let R be fc[G]. 
In this case we sometimes write TC(X) instead of TC(R). Thus in this case the 
cyclotomic trace is a map A(X) -> TC(X). It is this which is used in the proof of the 
theorem. 

5.2 Description of TC 

From a computational point of view the main thing to know about TC(X) is that 
it is related in a certain way to the free loop space AX = Map(S1, X). Again let G 
be a simplicial loop group for X. 

First of all, it is fairly easy to see that THH(klC]) is equivalent to E™(AX+). 
This is essentially because AX is equivalent to the realization of the simplicial space 

G 

î i î 
G xG 

î 1 î 1 î 
G x G x G 

(the "cyclic bar construction" or "cyclic nerve" of G). 
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To describe TC(X) we must consider some additional structure that the space 
AX has. Let the circle group S1 act on AX in the usual way, and let Ap : AX -> AX 
be the pth power map (composition with the standard map S1 -> S1 of degree p). 

It turns out that the functor X h-> TC(X) is very closely related to the functor 
I H B ( X ) = E^E^ES1 xsl AX)+), although to say exactly how they are related it 
is apparently necessary to consider separately the profinite homotopy type and the 
rational homotopy type. 

Concerning the profinite type, the statement is that after p-completion (p a. 
prime) the spectrum TC(X) becomes part of a fiber square 

TC(X) > B(X) 

Trf 

E™AX+ ) EcoAX+ 

Here Trf is the 51-transfer associated to the bundle 

{AX~) ES1 x AX -> ES1 xsl AX 

and 1 — Ap is the difference between two stable maps, the identity and the map 
induced by Ap. 

This, it turns out, has the consequence that for 1-connected spaces X there is a 
natural equivalence, after p-completion and passage to reduced functors, between 
TC(X) and 

E™(X+) x fiber(e o Trf: B(X) -> Eœ(X+)) 

where the map is the composition of the transfer and the map induced by evaluation 
AX -> X at a point in the circle. 

Concerning the rational type, the statement is that for 2-connected maps Y -> X 
there is a natural equivalence, after rationalization, between the fiber of TC(Y) -> 
TC(X) and the fiber of B(Y) -> B(X). (This is not, however, induced by a natural 
map TC-*BoxB^> TC) 

5.3 Generalizations 

Theorem 1 can be generalized so as to apply to more than the X-theory of spaces. 
There is considerable evidence for the following: 

Conjecture 9. For any 1-connected map R->S of FSP's the resulting map of spectra 
from fiber(XOR) -» K(S)) to fiber (TC(R) -> TC(S) is an equivalence. 

This can be deduced from Theorem 1 in some cases, namely those in which n0(R) 
(= n0(S)) is an integral group ring rE[n\. In particular, it is true for the map 
QS° = k = R-*S = Z. Unfortunately, this does not yet amount to a computation 
of the fiber of A(*) -> K(Z) in any real sense, because TC(Z) is still a fairly mysterious 
object. 
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6. The Derivative of TC 

After producing a map from A to TC, it remains to show that it induces an 
equivalence dxA(X) -> dxTC(X). This is done in two steps. 

The first step is to show that dxA(X) and dxTC(X) are abstractly equivalent, in 
the sense that these two functors from based spaces (X, x) to spectra are related by 
a chain of natural equivalences. I have already said that dxA(X) is abstractly 
equivalent to E°°Q(X, x)+. The same is true of dxTC(X). Of course I cannot begin 
to explain why, since I have not even defined TC here, but to get the idea I invite 
the reader to work out the equivalences (see Section 2 of [G2]): 

dx£"A(X)+ ~ Map(SS EcoQ(X, x)+) 

dxB(XU~E°°Q(X,x)+. 

The second step is to prove: 

Lemma 10. The cyclotomic trace A -» TC induces an equivalence dxA(X) -• dx TC(X). 

The trick in proving this is to begin with the case when X is the suspension EY 
of a connected space Y. 

To see that this special case is enough, one classifies all the natural maps 
EcoQ(X, x)+ -• EcoQ(X, x)+ in the homotopy category of homotopy functors from 
based spaces to spectra. It turns out that the only maps which are equivalences 
when X is a simply-connected suspension are those which are equivalences for all X. 

The argument which proves the lemma in the case X = EY is essentially the 
main argument of [CCGH]. It relies on a tool which is only available in the 
suspension case: the cyclotomic trace can be composed with another natural map 
as follows: 

LI Dn(Y) -> QA(EY) -» QTC(EY). 
nï.1 

Here Dn(Y) is the divided power E°°(E(Z/n)+ AZ/H Y[n]). (I am writing Y[n] for the 
smash product of n copies of Y.) The composed map above induces a map of 
derivatives 

dyI U Dn(Y)J -+ dyQTC(EY) ~ QE°°QEY+ 

which, more or less by direct examination, is seen to be an equivalence. It follows 
that the map 

QE™QEY+ ~ dyQA(EY) -> dyQTC(EY) ~ QE™QEY+ 

induced by the cyclotomic trace is a split surjection, and from this one concludes 
without much trouble that it is an equivalence. 

As a by-product this yields the main result of [CCGH], which can now be viewed 
as a special case of Corollary 2: 
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Theorem 11. For connected spaces Y there is a natural equivalence of spectra 

QA(EY) ~ QA{*) x U Dn(Y). 
« > i 
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Dehn Surgery on Knots 

Cameron McA. Gordon 

Department of Mathematics, The University of Texas at Austin 
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1. Introduction 

In [D], Dehn considered the following method for constructing 3-manifolds: 
remove a solid torus neighborhood N(K) of some knot X in the 3-sphere S3 

and sew it back differently. In particular, he showed that, taking X to be the 
trefoil, one could obtain infinitely many non-simply-connected homology spheres 

o 

in this way. Let Mx = S3 —N(K). Then the different resewings are parametrized 
by the isotopy class r of the simple closed curve on the torus ôMK that bounds 
a meridional disk in the re-attached solid torus. We denote the resulting closed 
oriented 3-manifold by MK(V), and say that it is obtained by r-Dehn surgery on 
X. 

More generally, one can consider the manifolds ML(*) obtained by r-Dehn 
surgery on a fc-component link L = Xi U • • • U Kk in S3, where r = (r\,..., ;>). It 
turns out that every closed oriented 3-manifold can be constructed in this way 
[Wal, Lie]. Thus a good understanding of Dehn surgery might lead to progress 
on general questions about the structure of 3-manifolds. 

Starting with the case of knots, it is natural to extend the context a little and 
consider the manifolds M(r) obtained by attaching a solid torus V to an arbitrary 
compact, oriented, irreducible (every 2-sphere bounds a 3-ball) 3-manifold M with 
dM an incompressible torus, where r is the isotopy class (slope) on dM of the 
boundary of a meridional disk of V. We say that M(r) is the result of r-Dehn 
filling on M. 

An observed feature of this construction is that 

generically, the topology of M persists in M(r). 

We shall illustrate this slogan by stating some results that give restrictions on the 
"exceptional" slopes r for which M(r) represents some sort of degeneration of 
M. Specifically, we shall consider the following questions: 

(1) When is an essential surface destroyed by Dehn filling? 
(2) When is an essential surface created by Dehn filling? 
(3) When is M(r) "small"? 

The results we shall state show that the present state of knowledge on these 
questions is quite good. 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
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First notice that, roughly speaking, anything can happen under a single Dehn 
filling. For if we are interested in when M(r) has a certain property, then we can 

o 

simply start with a closed 3-manifold Q with that property, and let M = Q—N(K) 
for some suitable knot X in Q. Then there is a Dehn filling on M that yields Q. 
This puts a limitation on the kind of results one expects to obtain. However, the 
theorems we shall state will usually assert that (for any M) the set of exceptional 
slopes (for the particular kind of degeneration in question) is small. In fact, if 
A(r,s) denotes the minimal geometric intersection number of two slopes r,s on 
dM, then the theorems will often be of the form that give an upper bound on 
A(r,s) for any pair of exceptional slopes r and s. 

We conclude this introduction with some conventions that we shall adopt 
throughout the paper. All 3-manifolds and surfaces will be assumed to be compact 
and orientable, and M will always denote (as above) an irreducible 3-manifold 
with dM an incompressible torus. A knot X will always be assumed to be a 
(non-trivial) knot in S3 unless otherwise stated, and we reserve the notation MK 

o 

(= S3 — N(K)) for this case. Slopes on 3Mx will be parametrized by (Qu {00} in 
the usual way, using a meridian-longitude basis {p, X} for Hi(dMKÌ- Thus r <-» a/b 
if and only if [r] = ap + bX in #i(dM#). Here, 00 denotes 1/0 (so M#(oo) = S3). 

Finally, since the condition A(r,s) = 1 occurs frequently in the sequel, we 
remark that any set of slopes, such that A(r,s) = 1 for every pair of distinct 
slopes in the set, has at most 3 elements. Also, for slopes on dMK, ̂ (r,oo) = 1 if 
and only if r is an integer. 

2. When Is an Essential Surface Destroyed by Dehn Filling? 

A properly embedded surface F in a 3-manifold Q is essential if either F is 
incompressible, not parallel into dQ, and not a 2-sphere, or F is a 2-sphere which 
does not bound a 3-ball in Q. 

Essential surfaces play an important role in the theory of 3-manifolds. For 
instance there is the Kneser-Milnor prime factorization theorem, which involves 
cutting the manifold up into canonical pieces along essential 2-spheres. Essential 
tori feature in a similar way in the torus decomposition theory of Jaco-Shalen and 
Johannson. And of course there is the Haken-Waldhausen theory of irreducible 
3-manifolds that contain essential surfaces (Haken manifolds), based on the idea 
of successively cutting the manifold along essential surfaces to eventually obtain 
a disjoint union of 3-balls. 

Coming to the title of this section, let us take the case of a closed essential 
surface in M. 

As examples, first consider the case of a (p, q)-cable X in a solid torus S1 xD2. 
In other words, take a simple closed curve on d(S{ x D2) that winds around p 
times meridionally and q times longitudinally (q > 2) and push it into intfS1 xD2). 
Then it turns out that there are infinitely many Dehn surgeries on X that yield 
a solid torus again. In particular, there are infinitely many Dehn surgeries on X 
under which ^(S1 x D2) compresses. To put this in the setting of our question, we 

o 

simply take a knot Xo in a closed 3-manifold Q (such that MQ = Q — N(KQ) is 
irreducible and ôMQ is incompressible), and identify N(KQ) with S1 x D2 by some 
homeomorphism, so that X becomes a knot in Q. (We say that X is a (p, q)-cable 
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of Xo.) Then the torus S = dN(KQ) is essential in M = Q — N(K), but compresses 
in M(r) for infinitely many slopes r. 

Analogous examples with surfaces S of higher genus can be constructed by 
starting with a curve C in the boundary of a handlebody X of genus > 2 such 

o 

that dX — C is incompressible in X, pushing C into X to get X, say, taking a 
o 

suitable embedding of X in some closed 3-manifold Q, and letting M = Q — N(K) 
and S = SX 

An example of a different kind is the knot X in S1 x D2 illustrated in Fig. 1. 

Fig.l 

Let W = S1 x D2 — N(K). Then, parametrizing slopes on dN(K) using the 
meridian and longitude that come from the embedding of X in S3 defined by 
Fig. 1, we have 

W(oo) s W(1S) = W(19) ^ S1 xD2, 

so d(S{ x D2) compresses in W(r) for 3 distinct slopes r. (In fact X is the unique 
non-cable curve in S1 x D2 (which is not a core and does not lie in a 3-ball) with 
this property [Ga2, Bl, Sc].) Note that 

^1(18,19) = ,4(18,oo) = zl(19,oo) = 1. 

Similar examples in handlebodies of genus > 2 have been constructed by Berge 
(unpublished). Again, as above, these can be used to construct essential closed sur
faces S in irreducible 3-manifolds M with torus boundary such that S compresses 
under 3 distinct Dehn fillings on M. 

With these examples in mind we have the following result of Wu. 

Theorem 2.1 [Wu2]. Let S be a closed essential surface in M which compresses 
in M(r) and M(s). Then either A(r,s) = 1, or the core X of the solid torus V in 
M(s) = MUV can be isotoped onto S and S compresses in M(r)for infinitely many 
r. 
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In particular, if S is a torus then either A(r,s) = 1 or X is a cable. In this case 
the theorem was originally proved in [CGLS]. 

Let us now consider when an essential surface with boundary in M is destroyed 
by Dehn filling. By this we mean the following. Let F be an essential surface in 
M with non-empty boundary, so each boundary component of F has slope r, 
say. (We say that r is a boundary-slope.) Then F gives rise to a closed surface F 
in M(r) = M U V by capping off the boundary components of F with meridian 
disks of V, and we are interested in the question: is F essential in M(r)? 

It is clear that the answer is not always "yes." For instance, we can start with 
a closed surface S in S3, and take a knot X which punctures S in such a way 

o ^ 

that F = S — N(K) is essential in MK- But then F = S is necessarily inessential in 
MK(OO) = S3. (It is not hard to explicitly construct such examples.) However, it 
turns out that the failure of F to be essential can be accounted for either by the 
presence of a closed essential surface in M (in which case Theorem 2.1 applies), 
or by a bad choice of F as a representative of the boundary-slope r. 

Theorem 2.2 [CGLS]. Suppose that M contains no closed essential surface, and let 
r be a boundary-slope on dM. Then there exists an essential surface F in M with 
boundary-slope r such that F is essential in M(r). 

One can also show that if the surface F is not a 2-sphere, then M(r) is 
irreducible, and if F is a 2-sphere, then M(r) is either S1 x S2 or a connected sum 
of two lens spaces. 

3. When Is an Essential Surface Created by Dehn Filling? 

Suppose that M(r) = MUV contains an essential surface S. It is straightforward 
to show that if S is moved (by an isotopy if M(r) is irreducible, or in general, by 
a sequence of disk-swappings) so as to minimize the number of components of 

o 

S nV, then either S lies in M or F = S — V is an essential surface in M with 
boundary-slope r. The title of this section refers to the second possibility. In this 
context we have the following basic result of Hatcher. 

Theorem 3.1 [Ha]. M has only finitely many boundary-slopes. 

Corollary 3.2. If M does not contain a closed essential surface then M(r) contains 
a closed essential surface for only finitely many r. 

Since essential spheres and tori play a special role in 3-manifold theory, it is 
of interest to consider when they are created by Dehn filling. 

In the case of essential spheres, the cabling construction described in Sect. 2 
provides some examples. For if X is a (p, g)-cable of a knot Xo in a 3-manifold 

o 

Q, then M = Q — N(K) contains an essential annulus with boundary-slope r 
where A(r,s) = 1, s being the meridian of X. This annulus becomes a 2-sphere 
in M(r), and in fact it splits M(r) as a connected sum Mo(ro)#L(q,p), where 

o 

Mo = Q — N(KQ) and ro is some slope on dMo. If we now choose Q to contain an 
essential sphere (and Xo to be any knot in Q such that Mo is irreducible), then 
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M is irreducible, whilst M(r) and M(s) = Q contain essential spheres, (It is not 
obvious, but in fact follows from [GLul], that, here, Mo(ro) cannot be S3.) 

Another example where M(r) and M(s) contain essential spheres with A(r,s) = 
1, which does not come from cabling, is given in [GLi]. 

The next theorem says that this is the worst that can happen. 

Theorem 3.3 [GLu3]. If M(r) and M(s) each contain an essential sphere then 
A(r,s) = l. 

Turning to essential tori, a key example here is the exterior MK of the figure 
eight knot X (see Fig. 2). MK does not contain an essential torus, but M#(4), 
which is homeomorphic to MK(—4) since X is amphicheiral, does. Note that 
A(4,-4) = 8. 

Fig. 2 

Theorem 3.4 [Go]. If M does not contain an essential torus, but M(r) and M(s) 
do, then A(r,s) < 8. 

In fact one can do a little better. The figure eight knot exterior belongs 
to the family of manifolds obtained by Dehn surgery on one component of 

o 

the Whitehead link L (see Fig. 3). More precisely, let W = S3 — N(L) and let 
W(p/q) be the manifold with torus boundary obtained by p/q-Dehn filling on 
one boundary component of W (where we use the obvious meridian-longitude 
parametrization). Then W(l) is homeomorphic to the exterior of the figure eight 
knot. It also turns out that for M = W(-5), W(-5/2), and W(2), M is irreducible 
and contains no essential torus, whilst there are r,s such that M(r) and M(s) 
contain essential tori with A(r,s) = 8,7, and 6 respectively. One can show that 
these examples are the only ones with A(r,s) > 5. 

Addendum 3.5 [Go]. In the setting of Theorem 3.4, 

if A(r,s) = 8, then M is homeomorphic to W(l) or W(—5); 
if A(r,s) = 1, then M is homeomorphic to W(—5/2); 
if A(r,s) = 6, then M is homeomorphic to W(2). 
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Fig. 3 

4. When Is M{r) Small? 

Examples of what we might mean by "small" are : 

When is m(M(r)) trivial? finite? cyclic? 
When is M(r) homeomorphic to S3? a lens space? S1 x 52? a Seifert fibred 

space? 

This is a convenient point at which to recall that by [T], M is either hyperbolic, 
or Seifert fibred, or contains an essential torus. (For instance, if M = Mx then 
the last two possibilities correspond respectively to X being a torus knot or a 
satellite knot.) As it is straightforward to describe M(r) when M is Seifert fibred 
[He], and as the case when M contains an essential torus is to a large extent 
covered by Theorem 2.1, the hyperbolic case is the most important to understand. 
Here there is the following result of Thurston. 

Theorem 4.1 [T]. If M is hyperbolic then M(r) is hyperbolic for all but finitely 
many r. 

A hyperbolic manifold is one whose interior has a complete Riemannian 
metric of constant negative (sectional) curvature. If we are willing to sacrifice 
"constant" in the conclusion of Theorem 4.1, then we have the following theorem, 
due to Gromov and Thurston, and improved in [BH] using a result of Adams. 

Theorem 4.2. / / M is hyperbolic then M(r) has a Riemannian metric of negative 
curvature for all but at most 24 values of r. 

It is conjectured that a 3-manifold with negative curvature is in fact hyperbolic. 
Even in the absence of a proof of this conjecture it is known that such a manifold 
must have infinite fundamental group, cannot contain an essential sphere or 
torus, cannot be Seifert fibred, etc. 

Let us turn to the more specific question: When is ni(M(r)) cyclic? 
As a first set of examples, let X be a torus knot. Then MK(r) is a lens space 

for infinitely many r [Mo]. Note that in this case MK is Seifert fibred. 
A set of examples of a different flavor comes from the knot X in S1 x D2 

depicted in Fig. 1 and discussed in Sect. 2. Embedding S1 xD2 in S3 by applying fc 
meridional twists to the embedding shown in Fig. 1, we obtain an infinite family of 
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knots X/f, —oo < fc < oo, (which are in fact hyperbolic), The two non-tri vial Dehn 
surgeries on X that yield SixD2 determine two Dehn surgeries on Kk, with slopes 
r* and s*, say, that yield lens spaces, where A(rk,Sk) = A(i\,co) = zl(s/c,oo) = 1. 
For instance Xo is the (—2,3,7) pretzel knot shown in Fig, 4 (this example was 
discovered earlier by Fintushel and Stern [FS]), for which 

M*0(18)^L(18,5), M*0(19)^L(19,7), M* 0 (oo)^S 3 . 

Fig. 4 

The following Cyclic Surgery Theorem shows that these examples are extremal. 

Theorem 4.3 [CGLS]. Suppose that M is not Seifert fibred. If ni(M(r)) and 
m(M(s)) are cyclic then A(r,s) = 1. 

Less is known about when n\(M(r)) is finite. An interesting example here is 
the manifold W(—5) defined in Sect. 3. It is shown in [We] that there exist r,s 
with A(r,s) = 3 such that ni(W(—5)(r)) and n\(W(—5)(s)) are finite. 

Question 4.4. If M is hyperbolic and n\(M(r)) and ni(M(s)) are finite, is A(r,s) < 
3? 

The case where M = MK for a satellite knot X (so M contains an essential 
torus) is discussed in [BH], where it is shown that A(r,s) < 5, and that this bound 
is attained. 

Regarding the question of when ni (M(r)) is trivial, the following conjecture 
is still open. 

Conjecture 4.5. ni (M(r)) is trivial for at most one slope r. 
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5. Dehn Surgery on Knots in S3 

Continuing the theme of the previous section, let us ask: when can we have two 
Dehn fillings on M that give small manifolds, one of which is S31 Clearly there 
is a Dehn filling on M that gives S3 if and only if M is homeomorphic to MK 

for some knot X in S3, with the slope that determines the filling corresponding 
to the meridian of X. So our question becomes: given a knot X in S3, when does 
non-trivial Dehn surgery on X yield a small manifold? 

First we have the result that S3 can never be obtained by non-trivial Dehn 
surgery. 

Theorem 5.1 [GLu2]. MK(r) £ S3 ifr ± oo. 

An immediate corollary of this theorem is that knots are determined by their 
complements. 

Corollary 5.2. If Ki and X2 are knots in S3 such that S3 — Xi is homeomorphic to 
S3 —K2, then there is a homeomorphism of pairs (S3,K\) = (S3,K2). 

The following so-called Property P Conjecture, however, is still open, although 
it is known to be true for many classes of knots. 

Conjecture 5.3. %i(MK(r)) =fc 1 if r ^ co. 

Of course, Conjectures 4.5, 5.3, and Theorem 5.1 are closely related, and are 
equivalent if the Poincaré Conjecture is true. 

After S3 (the unique 3-manifold of Heegaard genus zero), we might consider 
when Dehn surgery on a knot X yields a manifold of Heegaard genus one, i.e., 
S1 x S2 or a lens space. 

For homological reasons, the only Dehn surgery that could possibly give 
S1 x S2 is O-Dehn surgery. However, a result of Gabai implies that this never 
happens. 

Theorem 5.4 [Gal]. M#(0) is irreducible. 

Regarding lens spaces, Berge [B2] gives an explicit construction which yields 
several infinite classes of knots with a Dehn surgery yielding a lens space. (These 
include the infinite family described in Sect. 4 with two such Dehn surgeries.) It 
appears to be not entirely outside the bounds of possibility that every such knot 
can be constructed in this way. 

Question 5.5. Does every knot K such that Mx(r) is a lens space for some r appear 
in Berge's list? 

An affirmative answer to this question would imply, in particular, the truth 
of the following conjecture. 

Conjecture 5.6. MK(r) 9* RP3 (= L(2,1)), L(3,1), or L(4,1). 
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Finally, we mention that for satellite knots, the question of when 7ri(Mjc(r)) 
is cyclic is completely solved. 

Theorem 5.7 [Wan, Wul, BL]. Let X be a satellite knot. Then 7ii(Mx(r)) is cyclic 
if and only ifX is the (2pq ± l,2)-cable of a (p,q)-torus knot and r = 4pq + 1, in 
which case MK(r) = L(4pq ± i,4q2). 

We now turn to the creation of essential spheres and tori by Dehn surgery on 
a knot X. 

As far as spheres are concerned, recall the discussion of cables in Sect. 3. 
In our present setting of knots in S3, if X is the (p, q)-cable of Xo then the 
boundary-slope of the essential annulus in MK is pq, and 

MK(pq)^MK,(p/q)#L(q,p). 

(It is convenient here to allow Xo to be unknotted, in which case X is the 
(p, g)-torus knot and Mx(/;g) = L(p,q)#L(q,p). Also, if Xo is non-trivial then 
ni(MKo(p/q)) j= 1 by [CGLS, Corollary 2].) The following Cabling Conjecture 
of Gonzalez-Acuna and Short asserts that these are the only examples where 
essential spheres arise. 

Conjecture 5.8 [G-AS]. MK(V) contains an essential sphere if and only ifK is a 
(p, q)-cable and r = pq. 

Although this conjecture is still open, several partial results exist. For instance, 
there is Theorem 5.4 above. Also, it is known to be true if X is a satellite knot 
[Sc], an alternating knot [MT], a strongly invertible knot [E-M], and others 
[G-AS]. It is also known that if M^(r) contains an essential sphere then r is 
an integer [GLul] and MK(V) has a lens space summand [GLu2]. (Incidentally, 
it is an immediate consequence of this last result that no non-prime homology 
sphere can be obtained by Dehn surgery on a knot in S3. There remains the 
interesting question of whether there are prime homology spheres that cannot be 
so obtained.) 

Regarding essential tori, some examples are known, but the general picture is 
not yet clear. However, the following conjecture seems reasonable. (Recall that 
MK contains an essential torus if and only if X is a satellite knot.) 

Conjecture 5.9. If K is not a satellite knot and Mx(r) contains an essential torus 
then A (r, oo) < 2. 

(There are examples with A(r,oo) = 2.) 

6. The General Knot Complement Problem 

Theorem 5.1 above asserts that if M(r) = M(s) = S3, then r = s. More generally, 
one can ask: when is M(r) = M(s)l One has to be a little careful with orientations 
here, for M may have an orientation-reversing automorphism. For instance, if X 
is an amphicheiral knot (such as the figure eight knot), then MK(T) = MK(—r). 
However, if we orient M, then this determines an orientation of M(r), and we 
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can ask: when is M(r) = M(s) by an orientation-preserving homeomorphism? 
No counterexamples are known to the following conjecture. 

Conjecture 6.1. 1/ M(r) = M(s) by an orientation-preserving homeomorphism then 
r = s. 

This would imply the truth of the following Oriented Knot Complement 
Conjecture. 

Conjecture 6.2. IfKi and K2 are knots in a closed, oriented 3-manifold Q such that 
Q—Ki and Q—K2 are homeomorphic by an orientation-preserving homeomorphism, 
then there exists an orientation-preserving homeomorphism h : Ô —> Q such that 
h(K{) = K2. 

Mathieu [Ma] has given examples where Q—Ki and Q—K2 are homeomorphic 
(by an orientation-reversing homeomorphism), but there is no homeomorphism 
of pairs (Q,Ki)^(Q,K2). 

7. Intersections of Surfaces 

The proofs of the theorems stated above use several techniques from modern 3-
dimensional topology. See [Sh] for instance, for a nice account of some of the ideas 
that went into the proof of the Cyclic Surgery Theorem (Theorem 4.3). However, 
here we shall focus on just one technique, namely, the analysis of intersections 
of properly embedded surfaces. The point is that many of the particular forms 
of what we have called the "degeneration" of the topology of M in M(r) imply 
the existence of a (useful) surface F in M with non-empty boundary such that 
each boundary component has slope r on dM. For instance, as was pointed 
out in Sect. 3, if M(r) contains an essential surface S which cannot be moved 
into M, then M contains an essential surface F with boundary-slope r such that 
F = S. Hence if M(ri) and M(r2) contain such surfaces Si,S2 respectively, then 
we get corresponding essential surfaces Fi,F2 in M with boundary-slopes ri,r2. 
Putting Fi and F2 in mutual general position, Fi n F2 will consist of circles and 
arcs properly embedded in Fi and F2. Note that the pattern of intersections on 
the boundary, that is, the triple (dM;dFi,dF2) is completely standard: all the 
components of dFt are parallel, i = 1,2, and each component of dFi meets each 
component of dF2 in A(ri,r2) points. A final important point is that we may 
assume that no arc of F\ n F2 is isotopie in F,- (keeping its endpoints fixed) into 
dFi, i= 1,2. This easily follows from the fact that Fi and F2 are essential. 

The idea is to then analyze the pattern of arcs of Fi n F2 as they lie on Fi 
and F2. We record the intersections on the boundary by numbering the boundary 
components of Ft in order as they appear on dM, i = 1,2, and labelling the points 
of dFi n dF2 on Fi with the number of the corresponding boundary component 

^ o 

of F2 (and vice versa). It is convenient to regard the disks Fi—Fi as "fat" vertices, 
and the arcs of F\ nF2 as edges, so that we get graphs Fi, F2 in Fi, F2 respectively, 
whose vertices and edge-endpoints are labelled as just described. Typically, one 
now proceeds to show that if A(ri,r2) is greater than some Ao, then the pair of 
graphs Fi,F2 must contain certain configurations of faces which have topological 
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implications for M (or M(ri) or M(r2)) inconsistent with the hypotheses. This 
type of argument was first used by Litherland [Lit]. 

Theorems 3.3 and 3.4 are proved in this way, the surfaces Sj being spheres 
and tori respectively. The proof of Theorem 2.1 is similar in spirit, only here the 
surfaces S,- are disks, whose boundaries lie on the closed surface S, realizing the 
compression of S in M(ri), i = 1,2. (This set-up is also an ingredient of the proof 
of Theorem 4.3.) In Theorem 5.1, the hypothesis is that M(r\) = M(r2) ^ S3, 
which of course does not contain any essential surface. Nevertheless, using an 
idea of Gabai [Gal], 2-spheres Sj in M(r\), i = 1,2, can be chosen so that the 
corresponding punctured spheres F\ in M still satisfy the key condition that no 
arc of Fi n F2 can be isotoped into the boundary in either Fi or F2. This allows 
one to apply the same philosophy. 

8. Conclusion 

As mentioned in the Introduction, the importance of Dehn surgery lies in the fact 
that every closed oriented 3-manifold can be obtained by Dehn surgery on some 
link in S3, Thus one might regard a Dehn surgery presentation of a 3-manifold 
as being analogous to a Heegaard splitting, with the study of Dehn surgery on 
knots corresponding to the study of Heegaard splittings of genus one. However, 
I think this analogy is misleading, because, unlike Heegaard splittings of genus 
one, Dehn surgery on knots already seems to contain much of the complexity of 
the general case. This, together with the progress that has been made in the case 
of a single component, makes it hopeful that Dehn surgery might be a useful 
way to approach general problems about 3-manifolds. At any rate, the next step 
should be to find appropriate generalizations of the results discussed above to 
the case where solid tori are attached along the boundary components of an 
irreducible 3-manifold M whose boundary is a disjoint union of an arbitrary 
number of tori. 
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Parametrized Morse Theory and Its Applications 

Kiyoshi Igusa* 

Department of Mathematics, Brandeis University, Waltham, MA 02254, USA 

We will discuss the basic concepts of parametrized Morse theory and show how 
they are related to the stability theorem, Waldhausen's A(X) and higher Franz-
Reidemeister torsion. 

§ 1. Standard Morse Theory 

In standard Morse theory one usually takes a compact smooth (C00) manifold M 
with boundary the union of three manifolds d0M ud1MuD x I where / = [0, 1], 
D x 0 = dd0M and D x 1 = dd1M. However for the purpose of these notes we will 
stick mainly to the case when D is empty. We will also write X = d0M. Thus 
dM = X]Jd1M. 

Any generic smooth function f: M -+1 with /_1(/) = <3,M for / = 1, 2 will be a 
Morse function with a finite number of nondegenerate singularities x1,..., xm. Each 
critical point x{ has an index ind(x,) > 0. We can construct a finite relative CW 
complex 

7 = I u ß 1 u ß 2 u , , , u em 

with one cell e{ for each critical point xt and dim(^) = ind(xf). From this relative 
cell complex we can construct the cellular chain complex C^Y, X) with coefficients 
in a ring R or with twisted coefficients given by a locally constant sheaf !F over M. 
If this chain complex is acyclic then we get a torsion invariant T(7) = T(M) which 
is an element of some quotient group of X ^ independent of the choice of the 
function / (assuming X0Z -> X0R is a monomorphism). 

Example 1.1. M = S1 x I,X = d0M = 0, dxM = S1 x {0, 1} and/is the "height" 
in the following drawing. 

In Example 1.1 there are two critical points x0,x1 of indices 0,1 and Y = e° ue1 

is a cricle. There is no torsion unless we take twisted coefficients in which case 
T(7) = T(M) = ±(1 — h±x) where h is the holonomy of the coefficient sheaf around 
the circle S1 x 1/2 in M and the sign ambiguities are due partially to the fact that 
the 1 -cell e1 is unoriented. 
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„ diM 

§ 2. Parametrized Morse Theory 

The study of parametrized Morse theory began with J. Cerf who used 1 and 2 
parameter families of functions onM = X x Ito prove the following theorem with 
definitions given below. 

Theorem 2.1 [C2]. / / X is a simply connected with dimension >5 then W(X) is 
connected. 

Definition 2.2. If X is a compact smooth manifold then the concordance space oîX is 
defined to be the space <g(X) = Diff(X x I rei X x 0 u dX x I) where Diff(M rei A) 
denotes the space of all self diffeomorphisms of M which are the identity on A with 
the strong C00 topology [CI]. 

Instead of taking families of functions on a single manifold we will consider 
functions on "families of manifolds." This is an equivalent point of view. We take 
a smooth bundle (i.e. submersion) p:E->B with fiber M so that E contains the 
trivial subbundle X x B. If B = Sk+1, the isomorphism classes of such bundles are in 
one-to-one correspondence with the elements of nt Diff(M rei X). We are interested 
in calculating these groups and of finding computable invariants. 

Given a smooth bundle M -> E -> B as above we will construct maps: 

0 : B -> \i. (X)\ = {cell complexes and characteristic maps} 

X0:B-+\JT.(Z,F)\ = {filtered chain complexes} 

The second map is constructed from the first by composition with a map X : \S. (X)\ 
-• | J f . (Z, F)\. Taking B = Sk+1 we will get homomorphisms 

0+ : nk Diff(M rei X) -» nk+1 \S. (X)\ 

XJ* ' % Diff(itf rei X) -> nk+1 \Jf. (Z, F)\. 

It turns out that 9* is an isomorphism in many cases. Its purpose it to compute the 
group nk Diff(M rei X). The map X*6* is used to obtain algebraic invariants to 
detect particular elements of nk Diff(M rei X). 
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The idea behind 0 and X is as follows. We take a "good" function / : E -> I and 
consider it as a family of functions on the fibers M, = p - 1(0 of p : E -• B. This will 
give us a "family of cell complexes" Yt which we interpret as a map from B to the 
"space of all cell complexes." By a "linearization" process we get a map to the "space 
of all filtered chain complexes." We will explain what these terms mean. 

§ 3. Waldhausen's Expansion Category 

We use a model for the "space of all cell complexes" due to Waldhausen [Wl] . Our 
nomenclature is however different: what we call the "expansion space" is the loop 
space of Waldhausen's expansion space. Our expansion space \ê.(X)\ is the geo
metric realization of a simplicial category ê. (X). The objects of £Q(X), which form 
the vertices of \S ,(X)\9 are given by pairs (Y, {\pe}) where Y is a finite relative cell 
complex Y = X u e1 u • • • u em and \j/ei : D"1 -> Y are characteristic maps (i.e. param-
etrizations) for the cells. The objects ot$k(X), which form the fc-simplices of \S. (X)\, 
are given by pairs (Y, {\j/e}) where Y is a k parameter family of finite relative cell 
complex Y = X x Akue1 x Ak u • • • u em x Ak and each ij/ei : D"1 x Ak -> Y is a k 
parameter family of characteristic maps. To avoid set theoretic difficulties we 
assume that Y is a subspace of a fixed infinite dimensional contractible space, e.g., 
U°°. This also clarifies our assertion that morphism are inclusion maps. Figure 3.1 
gives an example for k = 1. 

IM»1 x^1) 

1M0' x A1) 

The morphisms of $k(X), which may be viewed as gluing maps for the fc-simplices 
of |<f .(Z)|, are given by expansions. Expansions are compositions of elementary 
expansions which are given by inclusion maps: Y-*YvDn x Ak where the fc param
eter family of disks D" x Ak is attached to the fc parameter family of cell complexes 
Y along the southern hemisphere S"-1 x Ak. Figure 3.2 shows a path in |^ .(X)| 
which is obtained by gluing two edges A, B E êk(X) along a morphism/: d1A -> d0B 
from an endpoint of A to an endpoinl of B. 



646 Kiyoshi Igusa 

An old unpublished result of Waldhausen gives a computation of the homotopy 
type of some of the components of the expansion space in terms of the Waldhausen 
X-theory of X. A proof of this is being prepared for publication in [IW]. 

Theorem3.3(Waldhausen). A(X) ~ Q(X+) x B\ê.\X)\ where A(X) = Waldhausen 
K-theory of X [W2], Q(X+) = Q^E^X]Jpt.) B\ê}(X)\ is a unconnected de-
looping of\S. h(X)\, ê. \X) is the simplicial full subcategory of ê. (X) consisting of 
pairs (Y, \jj) where Y ~ X. 

§ 4. The Framed Function Theorem 

Suppose we have a smooth bundle M -> E -> B as in Section 2 above. Then we 
would like to construct a map 0 : B -• \$. (X)\. This is accomplished by the following 
two theorems. 

Theorem 4.1 [II]. / / dim B < dim M there exists a smooth function f: E-^Iso that 
for each t e B, the map ft: Mt-+1 given by restricting f to the fiber over t is a 
generalized Morse function (GMF), i.e. it satisfies the following conditions. 

a ) / r 1 ( 0 ) = X,/ ,-1(l) = 31M„ 
b) ft is nonsingular on dMt, 
c) ft has only At and A2 singularities. 

Since/: E -• I is being considered as a family of functions/ : Mt -> / we consider 
the fiberwise singular set Y,(f) of / which is defined to be the set of all x in E so 
that x is a singularity of / : Mt -> / where t = p(x) is the image ofx in B. 

Definition 4.2. y e M is an Ak singularity of g : M -> M if g can be written in local 
coordinates as 

g=±xk
0

+l + t +XÎ + C 
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Ai 

"Death" 

Fig. 4.3 

By the Morse lemma Al singularities are the same as nondegenerate singular
ities. A2 singularities are also called birth-death singularities. This is because an A2 

singularity can be perturbed to give either two Ax singularities in "cancelling 
position" or to give no singularities. This is illustrated in Fig. 4.3. (As before/is the 
"height" function given by the distance from the bottom of the page.) 

Theorem 4.1 is not sufficient for our purposes. Given a smooth bundle M -• E -> 
B and a smooth function / : E -> J as described in Theorem 4.1 we can do Morse 
theory on the family of generalized Morse functions/ :Mt-> I and we get a family of 
cell complexes parametrized by B. However we do not get a family of characteristic 
maps {\l/e} as required in the definition of the expansion category. Therefore we do 
not get a map from B into its geometric realization. To remedy this situation we 
have another theorem. 

Theorem 4.4 [12] (Framed Function Theorem). In Theorem 4.1 the smooth map 
/ : £ - > / can be chosen so that it admits a "framing." This consists of a Riemannian 
metric for E and a function £ on the fiberwise singular set off of the following form. 

a) For each critical x of / : M, -> /, £(x) = £t(x) = (É1,..., £') is an orthonormal 
framing for the nonpositive eigenspace of D2ft(x), (i.e. the sum of all eigenspaces 
of D2ft(x) corresponding to nonpositive eigenvalues). 

b) For each], £/(x) is a continuous function on its domain. 
c) At each birth-death singularity the last vector £' lies in ker D2f(x) and the 

intrinsically defined third derivative D3ft(x)(Ç\ £', £') is positive. 

Furthermore, if dim B < dim M then ( / £) is unique up to framed homotopy. 

We will call the pair ( / E) a fiberwise framed function on E. 
Figure 4.5 illustrates the definition of a framing. In Fig. 4.5.1 there are two A± 

singularities of indices 0, 1. Thus a framing associates a unit tangent vector ^ to 
the Ax point of index 1. This goes continuously to the indicated framed A2 singular
ity. The unit vector t} must point to the right at the A2 singularity by condition (c) 
in Theorem 4.4. In Fig. 4.5.2 the same A1 singularities with the opposite framing 
cannot be cancelled in the same way, although there is a more complicated deforma
tion which eliminates these two framed singularities. In Fig. 4.5.3 the framing vector 
£2 plays the role of Ç1 in the first two examples. 
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2) 

3) 

Ài 

e 

Cannot be cancelled 
in the same way 

Fig. 4.5 

M = I 

X x B 

e 

X x B 

B = I 

Expansion 

Fig. 4.6 

Now suppose that M -> E -> B is a smooth bundle and ( / ^) : E -> / is a fiberwise 
framed function. Then for each tin B we get a GMF ft:E-+1 and a framing Çt. The 
GMF / tells us now to construct a finite relative cell complex Yt and the framing 
£t is exactly what is needed to construct the characteristic maps {\j/t} for Yt. Con
sequently we get a map Q:B-+\£ .(X)\. The uniqueness of (/, \) up to framed 
homotopy implies that the map 0 is unique up to homotopy. We note that the 
dimension condition dim B < dim M can be circumvented by "stabilization," i.e. 
by taking the product with a large disk DN to get M x DN -> E x DN -> B. 

Figure 4.6 gives an example of this construction. 
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§ 5. Application to Pseudoisotopy 

Suppose that M = X x \. Then smooth bundles M -• E -> Sk+1 are classified by the 
homotopy group nk^(X) and the framed function theorem gives us a homomor
phism 

0*:nkV(X)^nk+1\£.(X)\ 

This map is an isomorphism if 3fc < dim X — 9 basically because a smooth bundle 
can be reconstructed from a family of cell complexes by embedding it in Euclidean 
space and taking a neighborhood. Another way to say this is that we get a highly 
connected map 

0:BV(X)-+\*.h{X)\ 

where B%>(X) is a nonconnected delooping of <é>(X). This leads to the following 
stability theorem. The details can be found in [13]. 

Theorem 5.1 (Stability Theorem). The suspension map o : ^(X) -> ^(X x I) is 
~dim X/3-connected. 

Using Theorem 3.1 we also get another proof of the following famous theorem 
of Waldhausen [W2]: 

Theorem 5.2 (Waldhausen). A(X) ~ Q{X+) x B20>(X) where 0>(X) is the direct limit 
of concordance spaces %>(X) -» ^(X x / ) ->••• - • %>(X x I") with respect to suspen
sion and B20>(X) denotes a two-fold nonsimply-connected delooping of 0>(X). 

The space 0>(X) is called the stable pseudoisotopy (or concordance) space of X. 

§ 6. The Space of Filtered Chain Complexes 

This section is a report on recent joint work with John Klein. 
One way to obtain X-theory invariants for smooth bundles is to triangulate the 

base space B and associate to each simplex the total singular complex of its inverse 
image. This gives a functor from the category of simplices of B to a category of chain 
complexes with additional structure. If this category is carefully constructed it will 
have homotopy groups closely related to algebraic X-groups. One suitable con
struction is the simplicial category of "filtered chain complexes." 

Suppose that Z is a space, R is an associative ring with 1 and 3F is a locally 
constant sheaf of nonzero finitely generated (f.g.) free fl-modules over Z. Then we 
construct the "space of filtered chain complexes." This is the geometric realization 
of a simplicial category Jf . (Z, !F) whose objects in every degree are quadruples 
(S, C, {SA}, {lA,e}) where S is a free ^-complex, C is a finite poset over Z. {SA} is a 
family of subcomplexes of S indexed by the order ideals in C and {lA%e} is a family 
of cohomology classes indexed by pairs (A, e) where A is an order ideal in C and e 
is a minimal element of the complement C\A of A in C. The precise definition is 
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rather technical so we will explain it with two examples. We recall that an order 
ideal in a poset C is a subset A of C so that A contains any element of C which is 
less than any element of A. 

Example 6.1. Let / : M -> J be a Morse function as explained in Section 1, let Ç be a 
framing for / and let #" be any locally constant sheaf of f.g. free X-modules over M. 
Then an object (S, C, {SA}, {lA,e}) of Jf0(M, #") is given as follows. 

a) 5 = C%(M, X; #") is the relative singular complex of (M, X) with coefficients 
in#". 

b) C = YJ (f) is the singular set of / ordered by critical value. Thus a < b iff 
f(a)<f(b). 
i) ind : C -> JV is given by ind(x) = index off at x. 

ii) p : C -> M is the inclusion map. 
c) 5X = C+(f-1[09f(e)Ji\(C\A)9X;&) for any order ideal A in C where e is a 

minimal element in C \ A (If no such e exists then A = C and Sc = 5.) 
d) If 4̂ is an order ideal in C and e e A is maximal with ind(e) = i then let 

be the isomorphism specified by the framing £(e) where <Fp{e) is the stalk of #" 
over p(e). 

Example 6.2. Let TU = nxX and let Ita be an open X(7C, 1) neighborhood of X in R00. 
Let SF be any locally constant sheaf of f.g. free K-modules over Bn. Let S. n(X) 
denote the simplicial full subcategory of ê. (X) whose objects are pairs (Y, \//) so that 
Y is a subspace of Bn. Then there is a simplicial functor X : ê. n(X) -> Jf . (Bn, 3F) 
given in degree zero by X(Y, ij/) = (S, C, {SA}, {/A>e}) where 5, C, {SA}, (lA%e) are 
given as follows. 

a) S = C*(Y, X; ^Y) where #y is the restriction of #" to Y. 
b) C is the set of cells of Y. (The indexed poset C is actually part of the structure of 

(Y, ft) 
i) ind : C -> JV is given by ind(x) = dim(x). 
ii) p-.C^Bn is given by p(x) = \l/x(0). 

c) SA = C%(YA, X; ^YA) where YA is the closed subcomplex of Y corresponding to 
A. 

d) If A is an order ideal in C and e G A is maximal with ind(e) = i then let 

lA,e'-Hi(S ue, S )r^#p ( e ) 

be the isomorphism specified by the characteristic map \j/e. 

Let Jf . h(Z, $F) denote the simplicial full subcategory of Jf . (Z, 3F) whose objects 
are those quadruples (S, C, {SA}, {lA,e}) so that S is acyclic. Assume that Z is 
connected and that the natural map X 0 Z -» X0R is a monomorphism. Then using 
ideas from the proof of Theorem 3.3 we obtain the following. 

Theorem 6.3 [IK]. There is a homotopy fiber sequence: 

| J f . \ Z , &)\ -> Q(Z+)-+ZxB Gl(R)+. 
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Corollary 6.4 (Higher Franz-Reidemeisler Torsion). Suppose that n1M = n1X = n 
is a finite group, R = C and $F has unitary holonomy, i.e. $F is given by a unitary 
representation ofn. Let M -• E -> S2k be a smooth bundle as in Section 2 so that the 
map in homology H^.(M, X; 8F) -> H^(E, X x S2k\ !F) induced by the inclusion of M 
in E is a monomorphism. Then there is a naturally defined torsion invariant %(E) e R. 
Furthermore these invariants detect the rational homotopy groups of &>(*) and are 
thus nontrivial for all even fc. 

Remark. Higher Franz-Reidemeister torsion was first constructed by Wagoner [W] 
but only for bundles over circles. Klein [K] was the first to construct higher 
Franz-Reidemeister torsion invariants for bundles over higher dimensional spheres 
but he assumed that H^(M, X\^) = 0. 
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Here is an outline of the paper. 
In § 1 we consider whether the class of closed Riemannian manifolds (closed = 

connected, compact, with no boundary) with sectional curvature satisfying X < 0 
everywhere is smoothly rigid or is topologically rigid. In other words if M, JV are 
two such manifolds with isomorphic fundamental groups, then are M, JV diffeo
morphic to one another or homeomorphic to one another? We review some of the 
history of the problem beginning with the rigidity results of Bieberbach and Mostow. 
Our two main results state that this class of manifolds is not smoothly rigid, but it 
is topologically rigid in dimensions greater than four. 

In §2 we analyze the space TOP(M) of all self-homeomorphisms of a closed 
Riemannian manifold M whose sectional curvature satisfies X < 0 everywhere. In 
this setting rigidity expresses itself through the simplicity of the homotopy type of 
TOP(M), e.g. the rational homotopy groups of TOP(M) vanish through a stable 
range of dimensions greater than one. We review results which reduce this problem 
to the study of the space £P(M) of stable topological pseudoisotopies of M. Our main 
result in this section states that up to homotopy the space 0>(M) can be constructed 
in a simple way from the stable pseudoisotopy spectrum ^(S1) of the circle. 

In § 3 we formulate a general conjecture whose truth would certainly imply the 
main topological results of § 1, §2, and would also imply many other well known 
conjectures in algebraic X-theory and algebraic topology (e.g. the Novikov Conjec
tures, the Borei Conjecture in dimensions >5 , and Conjectures 1.8, 1.9, 2.8 of this 
paper). Roughly speaking our conjecture states that for any connected CW complex 
X the stable topological pseudoisotopy ß-spectrum 0^(X) can be constructed in a 
simple way from the ß-spectra {^(XH) : H e ^(X)}, where <&(X) denotes the collec
tion of all cyclic by finite subgroups of n1 X and where XH -> X denotes the covering 
projection corresponding to any H e @(X). This same conjecture is also made for 
the ß-spectra valued functors associated to surgery L-theory, algebraic X-theory, 
and to smooth pseudoisotopy theory. Based on our recent computations of the 
surgery L-groups and the stable pseudoisotopy spectra of cocompact discrete 
subgroups of virtually connected Lie groups (cf. 3.4), we believe it is only a matter 
of time before these conjectures are verified when nxX is a discrete subgroup of a 
virtually connected Lie group. For more general classes of fundamental groups the 
authors regard these conjectures as only estimates which best fit the known data at 
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this time. If these estimates prove incorrect for a larger class of groups, then one 
should look for the minimal class of subgroups @(X) of each nx X which makes the 
preceeding conjecture true (&(X) is now forced to be larger then the class of cyclic 
by finite subgroups of ntX). 

§1. Rigidity 

We begin with a statement of the rigidity results of Bieberbach [5] and of Mostow 
[26, 27]. 

1.1 Bieberbach's Rigidity Theorem. Let f\N-*Mbea homotopy equivalence be
tween closed flat (i.e. sectional curvature satisfies X = 0 everywhere) Riemannian 
manifolds. Then f is homotopic to an affine diffeomorphism. 

1.2 Mostow's Rigidity Theorem. Let f:N->Mbea homotopy equivalence between 
closed locally symmetric spaces with sectional curvature satisfying X < 0 everywhere. 
Suppose that M has no closed one or two-dimensional totally geodesic subspaces which 
are local factors of M. Then f is homotopic to a diffeomorphism, which becomes an 
isometry after adjusting the normalizing factors of M. 

These two results suggest the following problem. 

1.3 Problem. Let / : JV -> M denote a homotopy equivalence between two closed 
Riemannian manifolds which both have sectional curvature satisfying X < 0 every
where. Is / homotopic to a diffeomorphism or to a homeomorphism? 

1.4 History of Problem. In addition to the Rigidity Theorems of Bieberbach and 
Mostow, there are the following results which give partial answers to Problem 1.3. 
Eells and Sampson [9] showed that / is homotopic to a harmonic map f:N->M, 
and Al'ber [1] and Hartmann [18] showed that / i s uniquely determined by / if 
X < 0 holds everywhere for M. Lawson and Yau then suggested that f:N->M 
should be a diffeomorphism whenever X < 0 holds everywhere for both JV, M. This 
was proven by Schoen and Yau [33] when dim M = 2, and follows from Mostow's 
Rigidity Theorem when JV, M are locally symmetric spaces. The next theorem (cf. 
1.5) gives counterexamples to the Lawson-Yau problem in dimensions greater than 
six, but the problem remains open in dimensions three through six. If X = 0 holds 
everywhere for M in 1.3 then it follows from work of Gromoll and Wolf [17], and 
from work of Yau [39], that X = 0 also holds everywhere for JV; thus / must be 
homotopic to an affine diffeomorphism by Bieberbach's Rigidity Theorem. If M is 
an irreducible locally symmetric space of rank > 2 Gromov [3] has shown that 
after rescaling the metric on M / will be homotopic to an isometry. Eberlein [7, 
8] independently proved the same result under the hypothesis that the universal 
cover of M is reducible. Cheeger showed in the mid-1970s that the bundles of 
orthonormal two-frames V2(N), V2(M) are homeomorphic provided X < 0 holds 
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everywhere for both JV, M; and then, under the same hypothesis, Gromov showed 
that the unit sphere bundles S(N), S(M) are homeomorphic, via a homeomorphism 
which preserves the orbits of the geodesic flows. Mishchenko [25] showed that / 
pulls the rational Pointrjagin classes of M back to those of JV; and Farrell and 
Hsiang [10] showed that / x id : JV x R3 -+ M x R3 is properly homotopic to a 
homeomorphism, where id : R3 ~> R3 denotes the identity map. 

The authors [11, 15] have proven the following two theorems which more or 
less settle Problem 1.3. In the first of these theorems we let M denote any closed 
real hyperbolic manifold with sectional curvature satisfying X = — 1 everywhere, 
and we let Ex, E2,..., En denote a complete list of nondiffeomorphic exotic spheres 
of dimension equal dim M > 4. 

1.5 Theorem. Given any number 5 > 0 there is a finite sheeted covering space projec
tion M -> M which satisfies the following properties. 

(a) No two of the manifolds M, M # El9..., M # En are diffeomorphic, but they 
are all homeomorphic. 

(b) Each M # Et supports a Riemannian metric all of whose sectional curvature 
values lie in the interval ( — 1 — 5 , - 1 + 5 ) . 

1.6 Theorem. Let f:N-+M denote a homotopy equivalence between two closed 
manifolds, where M is a closed Riemannian manifold with sectional curvature satisfying 
X < 0 everywhere. Then f is homotopic to a homeomorphism, provided dim M > 5. 

1.6.1 Remark. There is the following more general version of 1.6: any homotopy 
equivalence h : (JV, dN) -• (M x Ik, d(M x Ik)) of compact manifold pairs, which is 
a homeomorphism of the boundaries, is homotopic rei d to a homeomorphism, 
provided k + dim M > 5, where k > 0 is an integer and Ik denotes the fc-fold 
Cartesian product of the unit interval with itself. 

That the conclusion to Theorem 1.6 should remain true for any closed aspherical 
manifold M is known as the Borei Conjecture. In the remainder of this section we 
formulate two conjectures in terms of generalized homology theory and the White
head group, which taken together are even more general than Borel's conjecture. 

1.7 The Assembly Map and Generalized Homology Theory. We remind the reader 
that ß-spectra are the "coefficients" of generalized homology (and cohomology) 
theories. Let S# denote an ß-spectrum, that is S% is a collection of spaces {St : i e Z} 
together with given homotopy equivalences St = &Si+1 and base points st e St for 
all i e Z. For any topological space X and for each integer; define a space Mj(X, S J 
to be the direct limit space lim^^ Q\X x Sj+i/X x sJ+i). Note that the collection 
of spaces {Mj(X, S J :j e Z} is a ß-spectrum, which we denote by M^X, S#) and 
call the homology spectrum for X with coefficients in S^. Recall that the homology 
groups Hj(X, S%) for X with coefficients in S^ are defined to be the homotopy groups 
nj(M^(X9 S J) of the ß-spectrum H J Z , SJ . 

Let J5 '̂( ) denote the ß-spectra valued homotopy functor whose value on a 
connected CW complex X is the equal to the ß-spectrum of surgery classifying 
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Spaces with four-fold periodicity (cf. [30]) for the group ntX with orientation data 
given by the zero homomorphism w : n±X -> Z2 , where the homotopy groups of 
£?£(X) are the surgery groups If^n^X, w) defined by Wall [37]. Let "pt." denote 
the space with one point. Note that for each integer; we get a map fy-.Xx i?/(pt.) -» 
&}{X) by identifying each y x J^/(pt.), y e X, with the subset J2?(y) c &f{X). 
Define Aj : Mj(X, if^(pt.)) -> S£*(X) to be the direct limit of the composition of maps 

Q\X x J ^ (p t . ) /X x S j + . ) ^ M ß f ( ^ + . ( X ) ) s ^ ( X ) , 

where sJ+i is the base point of J^+f(pt.). Note that the collection of all such 
maps A^ : H ^ X , J^(pt.)) -» J?£(X) is a mapping of ß-spectra, which is called the 
assembly map (cf. [29, 38]). 

1.8 Conjecture. Let X denote any connected aspherical C W complex with torsion free 
nxX. Then the assembly map A^ : M^(X, J?£(pt.)) -> J?£(X) is an equivalence of 
Q-spectra. 

1.9 Conjecture. The Whitehead group Wh(T) of any torsion free group T is zero. 

1.10 Remark. There is a more general version of Conjecture 1.8 (which we do not 
write down because of space limitations) that covers the case of surgery when the 
surgery orientation data w : nxX -> Z2 is not assumed to be the zero homomor
phism. Conjecture 1.8 (in its dual cohomology form) and Conjecture 1.9 are pos
sibilities that many experts have been aware of for some time (cf. [20, 28, 31]). It 
has, also been known for some time (cf. [24, 37]) that if Jf is a connected aspherical 
compact manifold (possibly with boundary) satisfying dim(X) > 5 then Conjectures 
1.8, 1.9 (with r=n1X in 1.9) are together equivalent to the following strong 
topological rigidity property for X: any homotopy equivalence h : (N, dN) -> 
(X x Ik, d(X x Ik)) of compact manifold pairs, which is a homeomorphism of the 
boundaries is homotopic rei d to a homeomorphism, where k > 0 is an integer and 
Ik is the fe-fold Cartesian product of the unit interval with itself. Thus it follows from 
1.6.1 that Conjectures 1.8,1.9 are true for X equal any closed Riemannian manifold 
with sectional curvature satisfying X < 0 everywhere. Note that X x Tn also is a 
closed Riemannian manifold having X < 0 everywhere, where Tn is the flat n-torus. 
So by 1.9 we have that Wh(nxX®Zn) = 0 holds for all integers n > 0. Now 
this last equality together with the Bass-Heller-Swan formula [4] implies that 
K0(Zn1X) = 0 and K_i(Zn1X) = 0 for all integers i > 1. We have just derived the 
following theorem. 

1.11 Theorem. Let X denote a closed Riemannian manifold with sectional curvature 
satisfying X < 0 everywhere. Then we have that Wh(nxX) = 0, K0(Zn1X) = 0, and 
K_i(Zn1X) = 0 for all integers i > 1. Moreover Conjecture 1.8 is also true for X. 

§ 2. Spaces of Self-homeomorphisms 

Let TOP(M) denote the space of all self-homeomorphisms of the closed manifold 
M. Topologists study TOP(M) by analyzing the three associated spaces G(M), 
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TOP(M), P(M) of self-homotopy equivalences of M, blocked homeomorphisms of 
M, and pseudoisotopiesofM. We have the inclusions TOP(M) c TOP(M) c G(M) 
since we may think of all of these spaces as being semi-simplicial spaces in which a 
typical /c-simplex A consists of a selfmap f:AkxM-^AkxMoï the Cartesian 
product of the standard k-simplex with M which satisfies the following properties: 
if A eTOP(M) then for each pe Ak the restricted map / : p x M ->p x M is a 
homeomorphism; if A e TOP(M) then for each face A E Ak the restricted map 
f: A x M -+ A x M is a homeomorphism; if A E G(M) then for each face A E Ak 

the restricted map / : ^ x M - > > / f x M i s a homotopy equivalence. Recall that a 
pseudoisotopy of M is a homeomorphism h'.M x [0, 1] -> M x [0, 1] such that 
h\M x 0 is equal the inclusion M x 0 c M x [0, 1]. 

The following lemma, which is due to Hatcher [19], shows the role of TOP(M) 
and P(M) in analyzing TOP(M). 

2.1 Lemma. There is a spectral sequence with E* q = nq(P(M x P)) which converges 
f07t,+p+1(TOP(M)/TOP(M)). 

For any aspherical closed manifold M it is well known that there is a homotopy 
equivalence G(M) = OU1(TC1M) X X(center(7c1M), 1), where Out^ jM) denotes the 
outer automorphism group and where X(F, 1) denotes the aspherical space having 
7c1(X(F, 1)) = r. If M is a closed aspherical manifold for which Conjectures 1.8, 1.9 
hold then we have (by 1.10) that the inclusion TOP(M) c: G(M) is a homotopy 
equivalence provided dim M > 5. Thus we have the following lemma. 

2.2 Lemma. Let M denote a closed aspherical manifold with dim M > 5 for which 
Conjectures 1.8, 1.9 hold (e.g. M is a Riemannian manifold with X < 0 everywhere). 
Then there is a homotopy equivalence TOP(M) ^ Out(7c1 X) x K(center(n1X), 1). 

The effect of Lemmas 2.1, 2.2 is to reduce the study of TOP(M) to the study of 
the spaces of pseudoisotopies P(M x P), p = 0, 1, 2, 3, . . . . Note that there is 
an "inclusion" map P(M x P) -> P(M x Ip+1) gotten by forming the product of 
any pseudoisotopy h:(M x P) x [0, 1] -• (M x P) x [0, 1] with the identity map 
id : / -> I. Thus we may form the direct limit space 0>(M) — limp_>00 P(M x P), 
which is more amenable to homotopy analysis than its approximating spaces 
P(M x P). One of the benefits of this stabilization process is that &(M) now fits in 
as the zero'th space of an ß-spectrum ^ ( M ) (cf. [19]). Moreover ^ ( ) is an 
ß-spectra valued continuous functor defined on the category of all topological 
spaces; the value of @\( ), / > 0, on the space X is the semisimplicial space of all 
stable pseudoisotopies over X x R1' which have compact support in the factor X 
and are bounded in the factor R'. Note that any homotopy information obtained 
about 0>(M) can be translated into information about the spaces P(M x P) by using 
the following lemma. 

2.3 Lemma. For any closed smooth manifold M the inclusion map P(M x P) <= 3P(M) 
induces an isomorphism on homotopy groups through dimension 
d = (dim M + p — 7)/3 provided (dim M + p) > 10 holds. 
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This last lemma is proven by Igusa [22] for spaces of smooth psdeudoisotopies. 
Results of Bürghelea and Lashof [6], and of Goodwillie (unpublished), then imply 
that the lemma also holds for spaces of topological pseudoisotopies. 

We will now precisely formulate a result which states roughly that ^ ( M ) can 
be constructed in a simple way from ^ ( S 1 ) , where S1 is the circle. Towards this end 
we need the terminology and notation of the following two subsections. 

2.4 Homology Theory with Coefficients in Stratified and Twisted ß-Spectra and the 
Assembly Map. A mapping f:E-+X is called a generalized Siefert fibration if 
there is a triangulation Tfor X, and for each simplex A eT there is a continuous 
map gA\ YAx A ~^f~i(A), such that the following hold: / o gA is equal projection 
onto the second factor of YA x A, and YA is connected; the restricted map gA\YA x 
(A — dA) is a homeomorphism onto f~x(A — dA); and the restricted map gA\ YA x 
(a — do) is a covering space projection onto f~x(o — da) for each face o E A. 

Let «Ŝ ( ) denote a given ß-spectra valued continuous functor from the category 
of path connected topological spaces, and let / : E -> X denote a given generalized 
Siefert fibration. Note that the collection of ß-spectra { ^ ( / _ 1 ( p ) ) : p e l } is a 
system of stratified and twisted coefficients over X with respect to which we can 
(roughly) define the homology spectrum for X, denoted by H^(X, «5^(/))9 by 

Mj(x, * ; ( / » = lim ß ' ( ^ U ^ + / ^ _ 1 ( P ) ) ) / ( p U »i+j.,)) 

where si+jtP e ^+j(/_ 1(p)) are the base points. The k-th homology group of X with 
respect to the system of coefficients {^(f~x(p)) : p e X}, denoted by Hk(X, £f#(f)), 
is defined to be nk(M#(X, «^(/))). There is also an assembly map A% : M^X, «S^(/)) 
-> Sr\(E) induced as in 1.7 from the inclusions ^ ( / _ 1 ( p ) ) -> ̂ (E). For more details 
about the homology spectrum M^X, «5^(/)) and the assembly map A% the reader 
is referred to Quinn [29], Yamasaki [38], and to Farrell and Jones [14]. 

2.5 The Generalized Siefert Fibration p : £ -> G and the M a p / : £ - » M Let S 
denote the space of all maps {S1 -> S1} which have constant non-zero speed. Note 
that S is a semi-group with respect to the composition operation. Let F denote the 
space of all essential closed geodesies {g : S1 -> M} in the closed Riemannian mani
fold M with sectional curvature satisfying X <, 0. Note that S "acts" on the right of 
F by (g, h)-+g ohîov g E F,h e S, and S "acts" on the right of F x S1 by (g, x, h) -> 
(g o /i, fr1 (x)) for g E F, x e S1, h e S. We define p : E -• G to be the quotient of the 
first factor projection F x S1 -+F under the right actions of S. Note that the map 
F x S1 -+ M defined by (g, x)->g(x) induces a map f\E-*M. We note that G 
parametrizes the collection of (unparametrized) essential t-simple closed geodesies 
g-.S1 -» M (where "t-simple" means that there is a no rotation r:S1-+S1 other than 
the identity which satisfies g = g o r), in fact any such geodesic is equal to the 
restricted map / : p~x(y) -» M for some y e G. The authors have proven that p : E -> 
G is a generalized Siefert fibration. 

The following two results have been proven by the authors [15]. 
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2.6. Theorem. Let M be a closed Riemannian manifold with sectional curvature 
satisfying X < 0 everywhere. Then the composite map 

H,(G,3»,(P)) * t n ° i S g.(M) 

is an equivalence of Q-spectra, where A# is the assembly map for the generalized 
Siefert fibration p: E-+G (cf. 2.4, 2.5) and where &^(f) is the image of the map 
f:E-+ M under the functor 0>^( ). 

2.6.1 Remark. Theorem 2.6 reduces the study of ^ ( M ) to the ß-spectrum ^ ( S 1 ) 
about which there is a good deal known. For example Waldhausen [35, 36] 
shows that ^ ( ^ ( S 1 ) ) ® Q = 0 for / > 0, and Anderson and Hsiang [2] show that 
nAß+iß1)) = 0 for / < 0; results of Igusa [23] imply that TC 0 (^ (S 1 ) ) = Z?, where Z£ 
denotes the direct sum of a countably infinite number of copies of Z2 . By using 
Theorem 2.6 and a spectral sequence argument we get these same equalities for 
nt(^(M)). 

2.7 Corollary. Let M be as in 2.6 with dim M > 10 and let i be any integer satisfying 
1 < / < (dim M - 7)/3. Then 

I 0,7// ^ 1 

Moreover the forgetful map 7c0(TOP(M)) -> Out(7c1X) is surjective with kernal equal 
ZOO 

2 • 

The proof of 2.7 consists of combining Lemmas 2.1, 2.2, 2.3 with Remarks 1.6.1, 
2.6.1. 

We end this section by recalling a conjecture made by the authors in [14]. To 
precisely formulate this conjecture we associate to any space X a generalized Siefert 
fibration p : Ë -• G as follows. Let F denote the space of all essential continuous 
maps {g : S1 -> X} and let S be the semi-group of 2.5. Note S acts on the right of 
F x S1 and of F as described in 2.5. Our first candidate for p: Ë -> G is gotten by 
imitating the construction of p : E -> G in 2.5, i.e. taking the quotient of the projec
tion map F x S1 -> F under the right actions of S. However with this definition it 
is not clear that p: Ë -> G is a generalized Siefert fibration. So insteadwe define 
p : Ë -> G to be a semisimplicial version of our first candidate: replace F and S by 
their associated semisimplicial objects and proceed as before. By imitating the 
construction of / : E -> M in 2.5 we get a map f:Ë->X. (The reader is referred to 
[14; §4] for more details). 

2.8. Conjecture. Let X denote any path connected aspherical CW complex with 
torsion free ntX. Then the composite map 
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is an equivalence of Q-spectra, where A% is the assembly map for the generalized 
Siefert fibration p : E -> G and where ̂ .(f) is the image of the map f:E-+X under 
the functor 0^( ). 

2.8.1 Remark. Unlike Conjectures 1.8,1.9, which have been around for some time, 
Conjecture 2.8 was first formulated in 1989 by the authors [14] as an attempt to 
generalize Theorem 2.6. It requires some argument (cf, [14; §4]) to see that 2.6 and 
2.8 give the same calculation for ^ ( M ) when M is as in 2.6. 

§ 3. The Isomorphism Conjectures 

The starting point of this section consists of Conjectures 1.8,2.8. Simply stated these 
conjectures offer recipes for computing the values of the functors ££*( ) and ^ ( ) 
on a space X in terms of their values on a collection of much simpler spaces (a point 
or a circle respectively). In this section we formulate a more general conjecture along 
these lines, where we drop the hypothesis of 1.8,2.8 that X be aspherical with torsion 
free nx X, and we add to our list of ß-spectra valued continuous functors «5 (̂ ) which 
we wish to analyze by such a conjectured recipe. 

3.1 The Functors ^ ( ), ^d i f f( ) , ^ ° ( ),JT#( ). We have already discussed <^( ) 
in § 2; 0^m( ) is the functor whose value on a space X is the ß-spectrum defined by 
Hatcher [19] of stable smooth pseudoisotopies which have compact support in X; 
S£™( ) is the functor whose value on a path connected space X is the ß-spectrum 
(with four-fold periodicity) of surgery classifying spaces for the group nxX with 
orientation data given by the zero homomorphism w.n^X ->Z2 , having the 
surgery groups Lc£(n1X, w) defined by Ranicki [32] for homotopy groups; and 
Jf^( ) is the functor whose value on the path connected space X is the algebraic 
X-theory ß-spectrum for the group ring ZnxX defined by Gersten [16] and by 
Wagoner [34]. 

3.2 The Generalized Siefert Fibration Q(X) : S{X) -* m(X) and the Map f(X) : 
$(X) -> X. Recall that a group H is cyclic by finite (also called virtually cyclic) if 
either H is finite or if there is a short exact sequence of groups Z - > / / - • F where 
F is finite and Z is the infinite cyclic group. Let X denote a path connected 
CW complex, and let ^(X) denote the collection of all cyclic by finite subgroups 
of n±(X, x0) where x0 is a given base point of X. Define a category ^(X) as 
follows. The objects of %>(X) are equivalence classes of based connected covering 
space projections p : (Y, y0) -> (X, x0) such that Image(7c1p) e &(X), where two such 
covering projections p : (Y, y0) -> (X, x0) and p' : (Y', y'0) -> (X, x0) are equivalent if 
there is a homeomorphism h : (Y, y0) -• (Y', y'Q) satisfying p = p'oh.k map is %>(X) 
from p : (Y, yQ) -* (X, x0) to p' : (Y', y'0) -> (X, x0) consists of an (unbased) covering 
projection q\Y-+Y' satisfying p = p' o q. We define $(X) to be the nerve of the 
category <ß(X). In more detail the vertices of $(X) are the objects of ^(X), and a 
fe-simplex in $(X) consists of a fe-tuple <pl5 p2,..., pk} of maps p{ in <€(X) such that 
domain(pf) = range(p£_1) holds for all 1 < i < k. The face operators are defined 



Rigidity in Geometry and Topology 661 

by d0(pu ...,pk} = <p2 , . . . ,p k) , dk(px,...,pky = <p l9...,pft_!>, a,<p l 9 . . . ,Pky = 
<Pj, . . . , p,_!, pi+1 o Pi9 pi+2,...., Pky for all 0 < / < k. We get Q(X) : ê(X) -> J*(X) as 
follows. For each /c-simplex A — (pt,..., pk} in 8i(X) we set 

equal to the standard projection 

(A -d0A) x Y-+A-d0A, 

where Y is the domain of px (or more precisely where the covering projection 
(Y, yQ) -> (X, x0) is the domain of px). We note that the union of all the composite 
maps 

(A - d0A) x Y ^ ^ y — ^ - > X 

gives a well defined map f(X) : i(X) -» X. 

3.3 Conjecture. Lef X denote any path connected CW complex and let £^( ) denote 
any of the Q-spectra valued continuous functors ^( ), #£,ff( ), J^°°( ), Jf^( ). Then 
the composite map 

H«(«(J0, ^toW)) W ) ) o y S ^ W 
/s an equivalence of Q-spectra, where A^ denotes the assembly map for the generalized 
Siefert fibration Q(X) : i(X) -> »(X) (cf. 2.4, 3.2) and where ^(f{X))is the "na9e °f 
the map f(X) : S(X) -+ X under the functor Sf%( ). 

There is a more general version of Conjecture 3.3 for ß-spectra associated to 
surgery theory in which the orientation data w : n1X -> Z2 is not assumed to be the 
zero homomorphism. Space limitations prevent us from stating it here. 

We can verify Conjecture 3.3 for many spaces X for the functor J^°°( ), but for 
these same spaces our proofs often break down for the functor J^'( ) (or for the 
functor jSfJJ( )) if nxX contains some elements of finite order. So at this time we do 
not know if 3.3 is a reasonable conjecture for J2j( ) (or for J2£( )). Is it possible that 
the truth of our 3.3 for JS^( ) (or for J££( )) is just a formal consequence of the truth 
of 3.3 for both J%°°( ) and j f t ( )? 

In the following remarks we consider some of the consequences of the truth of 
Conjecture 3.3 for each of the ß-spectra valued functors in 3.1. 

3.3.1 nvX Torsion Free and X Aspherical. Conjecture 1.8 is equivalent to Conjecture 
3.3 for «5̂ ( ) = jSfJ( ) in 3.3. Conjecture 2.8 is equivalent to Conjecture 3.3 for 
^*( ) = ^*( ) *n 3-3> a n d each of these conjectures implies Conjecture 1.9. Conjec
ture 3.3 for JTS|S( ) is equivalent to the usual assembly map A^ : M^.(X, J^(pt.)) -> 
^(X) being an equivalence of ß-spectra, which in turn is equivalent to W h ^ X) = 
0 and K-tiZ^X) = 0 for all / > 1 and K0(ZntX) = 0. 

3.3.2 The Novikov Conjectures. In general the truth of Conjecture 3.3 for the 
functor £f™( ) implies the truth of Novikov's original conjecture, which stated in 
more modern terms claims that the assembly map A^ : M^(X, J%[?(pL)) -> S£^(X) 



662 F. Thomas Farrell and Lowell E. Jones 

is rationally injective on the homotopy group level. The truth of Conjecture 3.3 for 
either J f J ), S^{ ), or for ^d i f f( ) implies the truth of the X-theoretic Novikov 
conjecture, which claims that the assembly map A^ : M^(X, «^(pt.)) -> ̂ (X) is 
rationally injective on the homotopy group level. 

3.3.3. On the Role of Finite Subgroups of ntX. Many authors (Quinn [31] and 
Yamasaki [38] were among the first) have recognized the role that finite subgroups 
should play in any calculation of the ß-valued functors «5 (̂ ) of 3.1. However that 
the class of cyclic by finite subgroups of n^X might be enough to detect all of S^(X) 
first occured as a possibility in the authors' Theorem 2.6 and in their Conjecture 2.8. 

The authors obtain the following partial verification of Conjecture 3.3 in an 
ongoing research project. 

3.4 Theorem. Suppose that in 3.3 nxX is isomorphic to a cocompact discrete subgroup 
of a virtually connected Lie group. Then the map of 3.3 is an equivalence for 6^ = ^ , 
^*lff» or %?*•> ana is a rational equivalence for Sf± = JT^. 
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and Three-Dimensional Manifolds 

Shigeyuki Morita 

Department of Mathematics, Faculty of Science, Tokyo Institute of Technology 
Ohokayama Tokyo 152, Japan 

1. Introduction 

Let Eg be a closed oriented surface of genus g and let Mg be its mapping class 
group. Namely it is the group of all isotopy classes of orientation preserving 
diffeomorphisms of Eg. It is also called the Teichmüller modular group because 
it acts on the Teichmüller space 2Tg properly discontinuously with the quotient 
space Mg : the Riemann moduli space of compact Riemann surfaces of genus g. 
A classical theorem of Nielsen asserts that Jtg can be naturally identified with 
the proper outer automorphism group of TUi(Z'g). Thus the mapping class group 
appears in diverse branches of mathematics and have been investigated from 
various points of view. In this article we would like to describe some of the recent 
progress in the topological aspects of the theory of the mapping class group. More 
precisely we will concern ourselves with the following three topics which are all 
of cohomological nature and mutually closely related : a brief review of some of 
the known results about the cohomology of Jtg, in particular various properties 
of some canonical cohomology classes of Jtg, called the characteristic classes of 
surface bundles (§2), the study of Jig via its action on the lower central series 
of n\(Eg) (§3) and the interplay between the structure of Mg and topological 
invariants of three dimensional manifolds (§4). 

There has been a great deal of results which are relevant to the subjects of 
this article and our coverage here is necessarily limited. The reader is referred to 
survey articles [3, 10, 13, 14, 40] and their bibliographies for more informations. 

2. The Cohomology of Mq 

By the cohomology of Jtg we mean the Eilenberg-MacLane cohomology of the 
group Mg whose definition is given purely algebraically. However it has also 
geometrical meanings at least from the following two viewpoints. One is that, by 
virtue of the result of Earle-Eells [6], the classifying space for oriented Ig -bundles 
has the homotopy type of an Eilenberg-MacLane space K(Jtg, 1) for g > 2 so 
that elements of the cohomology group of Mg can be naturally considered as 
characteristic classes of surface bundles. The other is the fact that the rational 
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cohomology of Jig is canonically isomorphic to that of the moduli space Mg. 
For both of technical and theoretical reasons it is convenient to introduce the 
mapping class group Jiv

m of a general compact oriented surface Ev
gq of genus 

g with p distinguished points and q boundary components (or equivalently q 
embedded discs). Here Jtv

gq is defined to be the group of path components of 
diffeomorphisms of Ev

gA which fix the p points and restrict to the identity on the 
boundary. 

One of the most useful methods to compute (co)homology of a group is 
to find a space or a cell complex on which it acts naturally and then analyse 
the action. As for the mapping class group, besides the Teichmüller space it is 
natural to consider various cell complexes which are constructed out of isotopy 
invariants of surfaces, e.g. simple closed curves or arcs. By an extensive use of this 
method Harer obtained several fundamental results concerning the homology of 
the mapping class group (see [10] for a survey of his results). One of his results 
is about the stability of the (co)homology with respect to the genus and it may 
be stated roughly as 

Theorem (Harer [8]). The cohomology Hk(Jlv
gA\7J) is independent of g and qfor 

g > 3fe + 1 and the same is true for the rational cohomology for g > 3k. 

In the case where q =£ 0 Ivanov has improved the stability range (see [14]). 
By virtue of the above theorem we can speak of the stable cohomology of Jtg. 

Now we recall the definition of some canonical classes in the stable cohomol
ogy of J^la- Thus let 7c : E -> X be an oriented Ev

gq-bundle. This means that it 
is an oriented différentiable fibre bundle with fibre Eg and there are given (p + q) 
cross sections s,- : X —> E (i = 1, • • • ,p + q) such that their images are disjoint 
and the normal bundles of the last q sections are trivialized. Let £ be the tangent 
bundle along the fibres, namely it is an oriented plane bundle over E consisting 
of all tangent vectors of E which are tangent to the fibres. We write e G H2 (E ; Z) 
for the Euler class of £ and consider the element et = n*(eM) e.H2i(X;Z) 
where n* : H2i+1(E;Z) -> H2i(X;Z) is the Gysin homomorphism. We also set 
G\ = s*(e) e H2(X;Z) (i = 1, • • • ,p). These definitions are functorial in the obvi
ous sense so that we have well defined cohomology classes et G H2i(^Pq;Z) and 
Gi G H2(J%Pq;Z). We may call e,- the i-th characteristic class of surface bundles. 
Mumford [31] defined, in the context of algebraic geometry, canonical classes Kt 

in the Chow ring of the moduli space Mg (or in fact its compactification Mg) 
and it turned out that the class et is the topological version of K\ (up to signs) 
although our work has been done independently. Miller [23] also considered the 
same class. According to a recent paper of Witten [39], these characteristic classes 
have physical meanings. 

Theorem. The homomorphism 

is injective up to degree | g . 
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The above theorem for the case p = 0 is due to Miller [23] and the author 
[24] independently and was proved by generalizing an earlier work by Atiyah [1]. 
Miller also observed that the stable cohomology limH*(JKgt\'9Q) ,which exists by 
the stability theorem of Harer, is the tensor product of a polynomial algebra on 
even generators with an exterior algebra on odd generators. The general cases of 
the above theorem were proved by the author [24]. As a corollary to the above 
theorem, we have the following result which was one of our original motivation 
for the present work. 

Corollary [24]. The natural homomorphism Diff+£g -> Jig does not have a right 
inverse for g > 18. 

We mention that the original Nielsen realization problem was solved af
firmatively by Kerckhoff [20] and also that it is still unknown whether the 
homomorphism Homeo+rg -> Mg has a right inverse or not. As Mumford says 
in [31] for the case p = 0 one of the main questions concerning the cohomol
ogy of the mapping class groups (or the moduli spaces of compact Riemann 
surfaces) is whether the stable cohomology \imH*(Jtp

gq',Q) is isomorphic to 
Q[ei,e2,• - • ,G\, - - ' ,Gp] or not. In low dimensions it is known that Jtv

gq is perfect 
except for finite cases ([7, 33]) and also we have 

Theorem (Harer [7]). E2(M\q\Z) s Z^+1 with the generators ^e\,o\,- • ,opfor 
g>5. 

On the other hand for a fixed g it is known that the homomorphism # : 
Q[£i> ß2> ' ' * 5 ö"I, " " " , o>] -> H* (M\A ; Q) is far from being injective nor surjective. 
The latter statement is due to Harer-Zagier and is a consequence of the following 
result. 

Theorem (Harer-Zagier [11], see also Penner [32]). The orbifold Euler character
istic of J4l

g is equal to ((1 — 2g) where Ç is the Riemann zeta function. 

By making use of the above result, they have shown that the true Euler 
characteristic of Jtg grows more than exponentially with respect to g and even 
takes negative values infinitely often. 

Finally we consider the kernel of the homomorphism 0, namely relations 
between the characteristic classes of surface bundles. It has certainly a big kernel 
simply because the rational cohomology of the mapping class groups are finite 
dimensional. More precisely Harer [9] has determined the virtual cohomological 
dimensions of,the mapping class groups and in particular H*(Jtg;Q) = 0 for 
k > Ag — 4. There are several known relations between the characteristic classes. 
For example Mumford proved that for a fixed g, the classes e\ are polynomials on 
ew" >£g-2 for all / ^ g — 1 (see [24, 31] for the proof as well as other relations). 
Here we describe one particular relation which was proved by Harris [12] and the 
author [26] independently and by completely different methods. The following is 
along the lines of our papers [25, 26]. First of all it was proved that Hx(Jil',H), 
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where H stands for the first homology of Ig, is an infinite cyclic group and 
a characterization was given for a crossed homomorphism k : Jtg -» H to 
represent its generator. It is amusing to point out here that there have been 
known various ways of describing such a crossed homomorphism reflecting the 
many-sided features of the mapping class group ;complex analytic construction 
due to Earle [5], two definitions in the context of combinatorial group theory [25, 
26], determinant of certain matrix representation [27], a very simple geometrical 
one due to Furuta (unpublished, see [30]) and a closely related one due to Trapp 
[36] in terms of the winding number and finally Wagoner's definition [37], a 
particular example of his pseudo isotopy invariants using algebraic K-theory, 
should be completed to give yet another one. By making use of the above crossed 
homomorphism, we proved in [26] a topological version of Earle's embedding 
theorem [5] which embedds any surface bundle into its associated family of 
Jacobian manifolds explicitly. We also proved that the crossed homomorphism k 
gives rise to a canonical cocycle for the first characteristic class e\ G H2(jMgy,Z). 
Namely the 2-cochain c of Jtgt\ defined by c(cp,\p) = k(cp) • k(\p~{) (cp,\p G Jtgf) is 
a cocycle representing the class e\, where • denotes the intersection number. Then 
by pulling back a canonical cohomology class of the total space of the family of 
Jacobian manifolds to that of the given surface bundle, we obtain 

Theorem (Harris [12], Morita [26]). Let e G H2(^;Q) be the Euler class of the 
tangent bundle along the fibres of the universal Ig-bundle Jil

g -> Jig and let e\ G 
H2(^g;Q) be the first characteristic class. Then we have {2g(2 — 2g)e — e i}g + 1 = 0 
in H2s+2(J?l;Q). 

3. Representations of M9 via Its Action on n\(lg) 

As was mentioned in the introduction, the mapping class group Jtg is naturally 
isomorphic to the proper outer automorphism group of the fundamental group 
n\{Lg) and similarly Jlgi\ can be identified with a certain subgroup of the auto
morphism group of 7Ci(Zgji) which is a free group of rank 2g. These isomorphisms 
provide us with an algebraic method of investigating the structure of the map
ping class groups in terms of their actions on the fundamental groups of surfaces. 
Apart from the general theory due to Magnus and his school on the structure 
of the (full) automorphism groups of free groups, it was Johnson who has first 
employed the above idea systematically in the study of the structure of (various 
subgroups of) the mapping class groups. By this method he obtained several 
fundamental results concerning the structure of the Torelli group Jg which is the 
subgroup of Jtg acting trivially on the homology of £g (see [18]). In this section 
we summarize the method and results of Johnson and their extensions by the 
author. 

We denote F\ for ni(Zgti) and inductively define F& = [Ffc_i,Fi]. We may call 
the quotient group Nk = Fi/F/c the k-th nilpotent quotient of T\. We simply write 
H for N2 = H\(Ig;Z) and let ££ = ®k>i^k be the free graded Lie algebra over 
Z generated by the elements of H. It is a classical result that we can identify J£f/C 
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with F/f/Ffc+i so that there exists a central extension 0 —• j£?/c —> Nu+i -» Nk —• 1. 
Now the action of ^ g > i on Fi induces that on JVfc and we have a representation 

£* : <^g,i —• AutJVjt. 

The image of the representation QI is equal to the subgroup of AutA/2 which 
preserves the skew symmetric pairing on A/2 = H defined by the intersection 
number so that QI is essentially equal to the classical representation of Jtg onto 
the Siegel modular group Sp(2g;Z). Now let us write Jt(k) for Kergk so that in 
particular Jt(V) = Mg^\ and Jt(2) is the Torelli group Jg±. Jt(k) is the subgroup 
of Jig>\ acting trivially on Nk. Now it can be shown that we have a central 
extension 

0 —• Hom(H, 2\) —> AutJVk+i —• AutNk —• 1 

where the abelian group Hom(H, S£\) a c t s o n ^/c+i by the formula f(y) = 
yf(y)(f £ Hom(H, JSPfc),y G Nk+\ and y G if is the image of y in Hi(Nk+i) = H). 
Hence we obtain a homomorphism 

Tk :Jt{h)—>Rom(H,^k) 

which is the restriction of the homomorphism Qk+i : ^ g , i -> AutiV^+i to the 
subgroup Jt(k). The canonical isomorphism H* = H makes it possible to write 
T/C : J£(k) —> <£k ® H and Kerr/c = Ji(k + 1). The homomorphisms ik were 
introduced by Johnson [16, 18] and we call them Johnson's homomorphisms. 

Before going further, here we review Johnson's results on the structure of the 
Torelli group. There are two natural types of mapping classes which belong to the 
Torelli group. One is the Dehn twist along a bounding simple closed curve and is 
called a BSCC map. The other is the composition (p\p~l of two (say right handed) 
Dehn twists cp and 1/; along mutually homologous simple closed curves on Ig (or 
Zgji) and is called a BP (bounding pair) map. At the time when Johnson began 
his study on the Torelli group, it was known that the Torelli group is generated 
by these two types of mapping classes (Powell [33]) and also it had been asked 
whether the subgroup Jfg of J>g (resp. Jfgji of Jgi\) generated by all BSCC maps 
has a finite index or not. 

Theorem (Johnson [17]). The Torelli group is generated by a finite number of BP 
maps for g > 3. 

Theorem (Johnson [16, 18]). The image of the homomorphism ii : Jgi\ —> A2H®H 
is equal to A3H c A2H ® H and Keri2 = Jf(3) coincides with Jfgti so that we 
have a short exact sequence 

1 • Jfg>i • Jgti —5—• A3H • 1. 

In particular jTg}i has an infinite index in Jgi\. 

There are other abelian quotients of the Torelli group than the homomor
phism T2. Namely Birman and Craggs [4] have produced many Z/2-valued 
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homomorphisms on the Torelli group by making use of the Rohlin invariant for 
homology 3-spheres, Combining these two types of abelian quotients, Johnson 
[19] succeeded to determine the abelianization of the Torelli group completely. 

Now we go back to the general theory. We have Johnson's homomorphism 
tk : Jt(k) -> Hom(Ff, J%) = &k®H. Let us define a submodule jf* of j % ® H to 
be the kernel of the natural surjection J% ® H -> JSfk+i defined as £ ® M I-> [£,«] 
(̂  G JSfjfejM G H). Then one can show that Imi^ c j ^ (see [28]). For k = 2, 
J#2 = A3H so that ImT2 = ^i and in [27] we have shown that ImT3 is a 
submodule of 2/^ of index a power of two. Now there is a natural structure of a 
Lie algebra over Z on the graded module ©fc>2Hom(lï, J£k) such that the graded 
submodule ®k>2^k is a Lie subalgebra (the degree should be shifted down by 
one). The graded module ®k>2^(k)/J£(k +1) also admits a similar structure and 
Johnson's homomorphisms {T&}/̂ >2 induce an injection 

®k>iJ£(k)/J{(k +1) —> ®k>2^k 

of graded Lie algebras. It is a very important problem to identify the image of 
this homomorphism. Computations so far show that the rank of Im-r̂  is much 
smaller than that of J^k for even k > 4. Now A\xtNk is an extension of GL(2g; Z) 
by a nilpotent group whose associated graded module is ©^Hom^JSf j ) and 
the representation Qk : J£gi\ —> AutNk induces an identification of the quotient 
group J£gii/Jt(k) as an extension of Sp(2g;Z) by a nilpotent group whose graded 
module is ©£r2

1ImTi- Now we apply Sullivan's general theory [35]. Thus let N/C®Q 
be the Malcev completion of the nilpotent group iV*. Then any automorphism of 
Nk extends uniquely to that of Nk ® Q so that there is an embedding AutNk —> 
AutiV/c®Q, where the latter group is an extension of GL(2g;Q) by a nilpotent Lie 
group @k °ver Q whose associated graded vectorspace is ®k~2^{.ora(H,^i) ® Q. 
Now it is easy to see that AutiVfe ® Q is a linear algebraic group over Q and its 
maximal normal unipotent subgroup is precisely equal to 0*. Hence, by virtue of 
the Levi-Chevalley decomposition theorem, we can conclude that AutN/c ® Q is 
isomorphic to a split extension ^ X GL(2g;Q). Although there is no canonical 
splitting, we can make explicit calculations involving choices of GL(2g;Q)-
invariant 2-cocycles for the successive extension classes of the nilpotent group Nk 
for small k and we obtain 

Theorem, (i) The representation QI : Mg± —> AutA/3 induces an embedding of 
Jtgì\l$Cgì\ into the split extension A3 H X Sp(2g;Z) as a subgroup of finite index 
such that the associated crossed homomorphism k : <Mgi\ —> A3H has the property 
that its restriction to the Torelli group Jgi\ is equal to 2z%. 

(ii) The representation £4 : Jtgi\ —> AutiN^ induces an embedding ofJigii/Jt($) 
into (J^3xA3H) xSp(2g;Z) as a subgroup of finite index where ^xA3H denotes 
the central extension of A3H by ^ defined by the bracket operation A3H®A3H -» 
^ 3 and Sp(2g;Z) acts on it naturally. 

In view of the fact that the crossed homomorphism k in the above theorem 
followed by the contraction A3H —» H is nothing but the crossed homomorphism 
k : Jigi\ —> H of §2, it seems to be worthwhile to propose 
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Problem. Give a definition of the crossed homomorphism k : J(gi\ -» A3H in the 
context of complex analysis and/or algebraic K-theory. 

4, Algebraic Structures of Jt9 and Topological Invariants 
of 3-Manifolds 

Let us recall the classical theorem on the existence and stable uniqueness of the 
Heegaard splittings of 3-manifolds. First of all it says that any closed oriented 
3-manifold can be expressed as M9 = Hg U^ —Hg for some cp G Mgì\ where Hg 

is an oriented handlebody of genus g with dHg = Ig and My is the manifold 
obtained from the disjoint union of Hg and —Hg by identifying the boundaries 
by the map cp. Secondly two such manifolds M^cp G Jigf) and Mv,(i/; G Jtgf) are 
orientation preserving diffeomorphic each other if and only if the two elements 
(p and y) are equivalent in the disjoint union HgJtgi\ of the mapping class groups 
Jf,gi\ generated by the following two types of moves. One is to replace cp G Mgì\ 
by any other element in its double coset with respect to the subgroup Jfgi\ 
consisting of all elements which extend to diffeomorphisms of Hg. The other is 
to replace cp G Jfgì\ by i*((p)i G ^g+i, i where / : Jf,gi\ —• ^#g+i,i is a natural 
injection and / is the right angled rotation of the "last handle" of £g + i . Thus 
to define a topological invariant of 3-manifolds is equivalent to give a function 
defined on the mapping class groups Jtgi\ which is invariant under the above two 
moves. Although the situation here is much more subtle than that in the case of 
oriented links in S3 and the braid groups, it seems to be still reasonable to expect 
that there should exist a deep connection between the algebraic structure of the 
mapping class group and topological invariants of 3-manifolds. As a supporting 
evidence for that, extending and completing earlier works by Birman-Craggs [4] 
and Johnson [15], we will describe below how the Casson invariant of homology 
3-spheres influences the structure of the subgroup C^gi\ of Jtg±. 

Let ?g G Jtgì\ be the product of right angled rotation of each handle of (an 
appropriate model of) Zg so that MJg is the 3-sphere. For each element cp G JTgji 
we consider the manifold Wq, = Hg \Jlg(p —Hg which is easily seen to be an 
oriented homology 3-sphere. It was proved in [27] that any homology 3-sphere 
appears like this and two such manifolds W^cp G Jfgsi) and Wy)(y) G JTgji) are 
orientation preserving diffeomorphic if and only if cp and \p are equivalent in 
linig^oo Jfgj generated by the move which replaces a given element cp G Jfg>i 
by 'jT^'gW' G ^ , i f° r a n y ' M ' ^ «^.l- Thus to define a topological invariant 
for oriented homology 3-spheres is equivalent to give a function on limg_,oo <#g,i 
which is invariant under the above move. 

Now let A* : C^gi\ -> Z be the mapping defined by l*(cp) = X(W(p)((p G Jfg)i) 
where À(Wcp) is the Casson invariant of the homology 3-sphere W9. Recall that 
Jfgsi is the subgroup of Jf.g>\ generated by all BSCC maps. Suppose cp G Jfgii is 
such a Dehn twist along a simple closed curve œ on Egi\. Then since the surface 
Ig is now considered as a particular Heegaard surface of S3 = Hg U, — Hg, co 
is naturally a knot in S3. Moreover it is easy to see that the homology sphere 
W(p is nothing but the one obtained by performing —1 surgery on S3 along this 
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knot. Hence X(W(p) is equal to the negative of the Casson invariant of the knot 
co and this in turn can be calculated at the level of the surface Ig (and not in 
S3) because the compact surface which co bounds on Zgi\ is naturally a Seifert 
surface of co. Combining these considerations, it can be shown that the mapping 
X* : Xgji —> Z is a homomorphism. Here we recall from §3 that we have Johnson's 
homomorphism T3 : jTgji -> ^ 3 which gives a large abelian quotient of iïgt\. 
However it turns out that the homomorphism X* cannot be covered by T3 and we 
need a deeper additive invariant for C^gi\. Such an invariant can be obtained by 
making use of the first characteristic class e\ G Ff2(^g j i ;Z) of surface bundles 
introduced in §2 as follows. As was described in §2, the cohomology class e\ can 
be represented by a cocycle c G Z2(Jtgy,Z) defined as c(cp,xp) = k(cp) • k(y)~{) 
where k : Jtg± —• H is a crossed homomorphism representing a generator of 
Hl(J(gy,IS). On the other hand Meyer [22] defined a 2-cocycle T of the Siegel 
modular group Sp(2g;Z) which represents the signature class G jrï2(Sp(2g;Z);Z) 
and its pull back under the representation Jlg± —• Sp(2g;Z) is — \e\. Hence there 
exists a mapping d : <Mg± —> Z such that öd = c + 3T. Although the mapping d 
does depend on the choice of the crossed homomorphism k, its restriction to the 
subgroup Jfg4 does not and moreover it is a homomorphism there. This is the 
invariant we seek for. Namely there exists a certain homomorphism q : ̂ f3 —> Q 
and we have 

Theorem [27]. The function ^d + q o T3 defined on c€g± is invariant under the 
equivalence relation on limg^oo Jfg}i so that it defines an invariant for oriented 
homology 3-spheres and this coincides with the Casson invariant. 

Remarks. 1. At present there are only a few known informations about the 
structure of the groups Xg and jfgti. For example it is not known whether they 
are finitely generated or not for g > 3. Also in view of the results in this section, 
it would be worthwhile to determine the abelianizations of them. 

2. Recently the author obtained an interpretation of the invariant d as the 
signature defect of certain framed 3-manifolds [30]. It would be desirable to 
have further geometrical or analytical meaning of it, perhaps along the lines of 
Atiyah's paper [2] which treats the case of genus 1. 

3. In some sense the invariant d can be understood to be the effect of the 
Casson invariant for knots on the structure of the group Ctfgi\ (see [29]). It would 
be interesting to investigate how other invariants for knots influence the structure 
ofJTgji. 

4. It seems to be reasonable to conjecture that we can generalize the definition 
of the Casson invariant to possibly arbitrary 3-manifold by making use of the 
invariant d and the explicit description of the quotient J£gi\/Jt(A) given in §3. In 
particular one can ask whether Walker's extension to rational homology 3-spheres 
[38] can be expressed like this or not. 

5. Recently Reshetikhin and Turaev [34] have defined new topological in
variants for 3-manifolds, motivated by Witten's ideas in quantum field theory, 
and there are certain representations of Mg associated to them. Kohno [21] has 
also made use of certain projective representations of Jtg, which arise naturally 
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in the conformai field theory, to derive topological invariants via the Heegaard 
splittings. There seems to be much work to be done here from the point of 
view of the structure of J4.g. For example we can ask whether there exists a 
natural number k such that the subgroup Jt(k) is contained in the kernel of these 
representations or not. 
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To motivate the subject-matter of this report, let me begin by recalling two 
of the early applications of the Atiyah-Singer Index Theorem, concerning two 
important manifold invariants. The first result, which was in fact a precursor 
of the Index Theorem, is the Hirzebruch Signature Theorem. It asserts that the 
L-genus X(M) = L(M) [M] of a closed oriented smooth 4/c-dimensional manifold 
M is equal to the index of the signature operator $ attached to a Riemannian 
metric, which in turn coincides with the signature of the manifold. The second 
application requires M to be in addition a Spin-manifold and equates its /l-genus 
a(M) = A(M)[M] with the index of the Dirac operator $ associated to a Spin-
structure. These results not only explain the integrality of the above invariants 
(under the given conditions) but also have other, more subtle, implications. Thus, 
Hirzebruch's theorem implies that the L-genus is an invariant of the oriented 
homotopy type of M. On the other hand, in conjunction with Lichnerowicz's 
formula for the Dirac Laplacian, the index theorem for the Dirac operator 
implies that if a(M) ^ 0, then M can admit no metric of (strictly) positive scalar 
curvature. 

It is a remarkable fact that for simply connected manifolds both results are 
'sharp'. That is, the L-genus is, up to a scalar multiple, the only rational oriented 
cobordism invariant which is also a homotopy type invariant. The parallel result 
for the 2-genus, asserting that for a simply connected closed Spin-manifold M 
of dimension 4k (k > 1) the vanishing of a(M) is the only obstruction to the 
existence on M of a metric of positive scalar curvature, was recently proved by 
S. Stolz. 

The uniqueness part of the preceding statements ceases to hold in the non-
simply connected case. Indeed, let F be a torus and let / : M -* T be a continuous 
map. For each cohomology class r\ G H*(T,($), define the corresponding higher 
L (resp. A) -genus by 

XUn(M) = (L(M) U f 0?))[M] (resp. af>i1(M) = (A(M) U f 0?))[M]). 

Lusztig [Lu] found an ingenious index theoretical interpretation for the higher 
L-genera Xfti](M), in terms of the index bundle of a family of twisted signature 
operators, and used it to prove that they are invariants of the oriented homotopy 
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type of M. The same method can be adapted to give the vanishing of the higher 
y4-genera afn(M) in the presence of a metric of positive scalar curvature (cf. 
[GLI]). 

More generally, the torus in the above definition may be replaced by any 
K(T, 1) space, where F is a finitely presented group. According to a conjecture 
of Novikov [N], the numbers Xfjn(M), rj G H*(r,Q^) ought to be homotopy 
invariants. There is a parallel conjecture for the ^4-genera, made by Gromov and 
Lawson [GL2], implying that if the Spin-manifold M admits a metric of positive 
scalar curvature then a/>(M) = 0, for all rj G H*(T,(S^). For both conjectures one 
may assume without loss of generality that T = ni (M) and / is the classifying 
map of the universal cover M —> M. 

The preceding discussion was meant to underscore the following points. 
First, for non-simply connected manifolds, there are 'higher' versions of the 
classical genera, which are involved in interesting open problems. Secondly, an 
index theoretical interpretation of the higher genera provides an effective tool for 
handling such problems. It was also noted above that the Families Index Theorem 
supplies the desired interpretation in the case when F is free abelian, essentially 
because its dual, the torus F, is a nice space. In general, though, the 'dual object' 
of F is no longer an ordinary space and therefore beyond the scope of standard 
index theory. It is, however, a 'non-commutative space' in the sense of A. Connes 
[CI]. Moreover, Connes' theory of cyclic cohomology and its pairing with K-
theory [Cl, C2] offers precisely the right context for developing the appropriate 
generalization of index theory. The first two sections of this report will survey 
the 'higher' index theorems obtained along these lines in [CM2] (cf. also [CM1]) 
and [CGM], as well as their applications to the conjectures of Novikov and 
Gromov-Lawson. 

Like the higher genera, the higher indices of elliptic operators are manufac
tured out of group cohomology classes, viewed as classes in the cyclic cohomology 
of the group ring (CF. Somewhat surprisingly, the unstable component of the 
cyclic cohomology of (CT appears to be intimately related to non-local invariants 
when K(T, 1) is a manifold. This point of view will be put forth in the last sec
tion, where I will interpret in this light the results in [MSI] and [MS2], relating 
*7-invariants and analytic torsion to periodic geodesies. 

1. Group Cocycles and Higher Indices 

1.1 Covering Indices of Elliptic Operators 

Let M be a closed smooth manifold, F a finitely presented group, / : M -> BT a 
continuous map to the classifying space of F and M the pull-back of the universal 
cover ET —> BT. Let C*(T) denote the C*-algebra obtained as the completion 
of the group ring (CF acting on the Hilbert space /2(F). Then M xr C*(T) is 
a C*(F)-bundle over M. Using it, Mishchenko [Ms2] and Kasparov [KI] have 
associated to an elliptic pseudodifferential operator D on M a K-theory class 
Indexf^iD^ G KQ(C*(F)). In [CM2] this assignment was refined to produce an 
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element IndexftrD G Ko((CF ®9l), where 91 stands for the ring of infinite complex 
matrices (fl,7)i<,j<oo satisfying the rapid decay condition sup((/ + 7')/c|ûf/y|) < oo, for 
all k G R. We sketch the construction of this covering index. 

Let W(M,E) denote the algebra of pseudodifferential operators of classical 
type and integral order acting on the space of smooth sections of a vector bundle 
E over M. Let W~co(M,E) denote the ideal formed by all smoothing operators. 
The quotient algebra CS(M,E) is referred to as the algebra of complete symbols 
with coefficients in E. When E is the trivial line bundle, we simplify the notation 
by omitting E and^by setting 91 = W(M) and 23 = W~œ(M). Upstairs, on the 
covering manifold M, we let 31 be the subalgebra of W(M) consisting of all 
F-invariant, properly supported pseudodifferential operators and let 23 be the 
subalgebra of 91 formed of smoothing operators. Clearly 91/93 is isomorphic to 
CS(M) = 91/23. 

For E a ^-graded vector bundle on M, an odd elliptic pseudodifferential 
operator D e W(M,E) defines an 9I-linear map D+ between two finitely generated 
projective right 9I-modules, which becomes an isomorphism, CS(D+), on tensoring 
with CS(M) = 91/23. Note that D+ can also be viewed as a quasi-isomorphism 
over 23. Now identify CS(M) with 91/23. A well-known construction in algebraic 
K-theory, employed in the definition of the connecting homomorphism d : 
Ki(9I/23) -> K0(23), associates to CS(D+) an element d(D+) in K0(23). We remark 
parenthetically that the same construction applied to 91/23 = CS(M) gives rise 
to the ordinary index of D , on identifying Ko (23) with TL. 

The algebra 23 can also be regarded as the convolution algebra of smooth 
compactly supported functions on the différentiable groupoid M xr M. As such, 
it can be homomorphically mapped to (DT ® 23 and further, after identifying 
93 = W~œ(M) with 91, to (DT ® 91. Although these homomorphisms are non-
canonical they induce however a well-defined map, independent of all choices 
made, 

9 :K0(23)->K0((CF®9t). 

Definition 1. The index of D associated to the covering M is defined as 

Indexf>rD
+ = 6(d(D+)) G K0((CF ® 9Î). 

Remarks. 1. The ring (CF ® 9? is very likely the smallest group ring associated to 
F with the property that its Ko-group is nontrivial. Indeed, for F torsion-free, 
the reduced Ko-group of the group ring (ET is believed to be 0. By contrast, the 
group Ko(CF ® 9Î) appears to be, in general, uncountable. 

2. Under the map from K0((CF ®9i) to KQ(C;(T)®R) = K0(C;(r)), induced by 
the inclusion of (CF into C*(T) and of 9Ì into the ring ft of compact operators 
on the infinite dimensional separable Hilbert space, the image of Indexf^D* 
coincides with Indexftc;(r)D+- However, our covering index seems to be a finer 
invariant, which depends on the complete, not just the principal, symbol of the 
given operator. 
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1.2 Higher Analytic Indices 

Next, we will use group cocycles to produce numerical invariants out of the 
covering index. Let c G Zfc(F,(C) be a homogeneous group cocycle; without loss 
of generality, we may assume that c is alternating. One associates to c a cyclic 
cocycle xc on the algebra CF ® 9Î by 

T C ( f l o ® A Q , . . . , a k ® A k ) = T r ( A 0 . . . A k ) Y J a ° ^ ° ) a i ^ • • • a k f e * ) 

g0glg2-g*=l 

• C ( l , g l , g l g 2 , . . . , g l g 2 . . - g * ) ; 

the cyclic cohomology class T[C] = [TC] G #C/c((CF ® 91) depends only on the 
group cohomology class [c] G Hk(r,<ü). 

One employs now Connes' pairing [CI] between cyclic cohomology and K-
theory to define the covering higher indices of the elliptic operator D+, as follows: 

IndexftyjD = (T^,Indexfj-D ) , rj = [c] G Hk(T,(C), k even. 

When rj = [1] G #°(F,(C), the above index coincides with the F-index of Atiyah 
and Singer [A]. Their Index Theorem for Covering Spaces asserts that 

Indexf,[i]D = Index D , 

the right hand side being the ordinary index of D+. 
In the same spirit, relying on the fact that the différentiable groupoids MxrM 

and M x M are locally isomorphic, one can show that the pairing (T,,, Index/,r^+) 
depends only on the Alexander-Spanier cohomology class f*(rj) G Hk(M,<£) and 
the K-homology class [D+] G Ko(M). More precisely, one has the equality 

(Tri,IndexfirD+) = (f(ri),[D+]), 

where the right hand side is a certain natural pairing between FTev(M,(C), viewed 
as Alexander-Spanier cohomology, and the K-homology group K0(M). This 
pairing can also be used to attach intrinsic higher indices to the elliptic operator 
D+ by setting 

IndexçD+ = {Ç,[D+]), 

for each Alexander-Spanier cohomology class £ G #ev(M,(C). When £ = [1] G 
H0(M,<C) one recovers the ordinary index of D+ . The above discussion can thus 
be summarized as follows. 

Proposition 1 ([CM2], §5). Indexfir}D
+ = Indexr(ri)D

+, Mr\ G HGY(BTX). 
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1.3 Cohomological Formulae 

To relate the higher indices introduced above to higher genera, one needs to 
express them, just like in the classical case, in purely cohomological terms. The 
basic result in this direction is the following generalization of the Atiyah-Singer 
Index Theorem. 

Theorem 2 ([CM2], §3). Let £ G H2(*(M,<C). With o(D+) = principal symbol ofD+ 

and 3(M) = the index class of M", one has: 

Indexa = ^ ^{-mcho(D+)(JZ{M) U Q[T*M]. 

Remarks. 3. In fact we obtained a more refined result, at the level of differential 
forms not just cohomology classes, which extends the Local Index Theorem. 
Its proof, based on the heat equation method, uses the full force of Getzler's 
symbolic calculus [G]. 

4. The above result, in a non-compact variant due to J. Roe [R], was also 
used, in a rather striking way, by S. Weinberger [W] to give a direct analytic 
proof of Novikov's celebrated theorem on the topological invariance of rational 
Pontrjagin classes. 

Combining Proposition 1 and Theorem 2, one obtains the desired Higher 
Index Formula for Covering Spaces : 

Theorem 3 [CM2], §5). Let r\ G tf2<*(BF,(C). Then 

IndexUnD
+ = ^ L j ^(-l)»(cho(D+)U3(M)Uf\ri))[T*M]. 

1.4 Applications to the Novikov and Gromov-Lawson Conjectures 

Theorem 3, applied to the signature operator tf on an even-dimensional manifold 
M2k, gives the identity 

Xf>1i(M) = Ckiq(xn,IndexUrf), V17 G H2«(Br,V), 

where Cktq is an explicit (nonzero) constant depending only on the dimension 
of M and the degree of rj. Thus, the Novikov conjecture would follow if one 
could prove that Indexftr$ G K0((CF ® 9Ì) is an invariant of the homotopy 
type of M. In view of Remark 2, this is unlikely to happen. However, its 
image IndexfyC;(r)$ £ ^o(C,!(F)) is SL homotopy invariant. Indeed, this follows 
from Mishchenko's fundamental construction of an a priori homotopy invariant 
o[M,f] in the Witt group L((CF) [Msl], together with the fact that Indexf>C;(r)$+ 

coincides with the image of o[M,f] under the map sending L((CF) to L(C*(r)) = 
Ko(C;(F)) (cf. [MsS], [K2]). 
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The problem which emerges is therefore to extend the pairing of i/ev(F,(C) 
with K0((CF ® 91) to a pairing with K0(C*(r)). There is a strategy for that, 
devised by Connes in a similar context [C3]. It consists of finding an intermediate 
subalgebra, which is closed under holomorphic functional calculus and therefore 
has the same Ko-group, to which cyclic cocycles of the form xc extend by 
continuity. In our situation, the natural candidate for this subalgebra is GF = the 
smallest subalgebra of C*(F)®9Î (C*-tensor product) which contains CF ®9? and 
is closed under holomorphic functional calculus. The following two conditions, 
involving the choice of a word length function g i-> \g\, are sufficient for the 
successful application of the above strategy to F : 

Polynomial Cohomology: Vrç G H2q(r,<ü), 3c G Z2q(T,<E) of polynomial 
growth, with r\ = [c] ; 

Rapid Decay (cf. [J]) : 3s G N and C > 0 such that Va G (CT 

l|fl|lc?tr)^C(X;(l + lgl)2>|fl(g)l2)1/2. 

Theorem 4 ([CM2], §6). Any finitely presented group F with the above two prop
erties satisfies both the Novikov and the Gromov-Lawson conjectures. 

Indeed, for such a group one has, \frj G H2q(BT,(ü), 

Xf>ri(M) = Ckìq(%n, Indexf,c;(r)$ ) , 

which proves the homotopy invariance of the higher L-genera. On the other 
hand, applying Theorem 3 to the Dirac operator ty gives 

af/l(M) = (2nif^^(xri, Index/,c;(r)#+) • 

By an extension of Lichnerowicz' argument, Rosenberg [Ro] has shown that if M 
admits a metric of positive scalar curvature then Indexf,c;{r)I? = 0- Therefore, 
all higher v4-genera also vanish under this hypothesis. 

Remark. 5. The conclusion of the above theorem can be strengthened to assert 
that the assembly map (see [K2], [K3]) p : K*(BT) - • K*(C*(T)) is rationally 
injective. 

The two properties stated above are satisfied by a large class of finitely 
presented groups, including the remarkable class of Gromov's hyperbolic groups 
[Gr]. The fact that a hyperbolic group satisfies the Polynomial Cohomology 
property is due to Gromov, while the Rapid Decay property was proved by P. de 
la Harpe [Ha], building on prior results by Haagerup [H] and Jolissaint [J]. 

Corollary 5 ([CM2], §6). The hyperbolic groups satisfy the Novikov and the Gromov-
Lawson conjectures. 
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2. Asymptotic Cocycles and Higher Indices 

We now turn to a different procedure for constructing numerical indices, based 
on Connes' pairing for entire cohomology [C2]. 

2.1 Almost Flat Bundles and Almost Representations 

Let M be a closed connected Riemannian manifold, E a Hermitian vector bundle 
over M and V a metric preserving connection on E. With © = V2 being the 
curvature of V, we set 

\\0\\=sup{\\0x(X,Y)\\; \\XAY\\^1, X,YeTxM, x G M } . 

Definition 2. (i) Given e > 0, the connection V is called s-flat if \\@ \\ < e. 
(ii) A vector bundle E is called e-flat if it admits a metric preserving connection 

V with | |0 | | <e . 
(iii) A class Ç G K°(M) is called almost flat if for each c > 0, there exist e-flat 

bundles E+, E~ such that [E+] - [E~] = Ç. 

Note that the last notion is independent of the Riemannian structure on M. 
We denote by K^(M) the subgroup of K°(M) formed of almost flat classes. If 
h : JV -> M is a continuous map, then h* : K°(M) —> K°(N) maps K®r(M) to 

Remark. 6. If M is simply connected, there exists eM > 0 such that any £M-flat 
bundle is flat and therefore, trivial. On the other hand K(T, l)-manifolds with F 
'large' tend to have 'many' almost flat bundles (see 2.4). 

Let 23 be a Banach algebra. Given a linear map g of 23 to the algebra £(F) 
of all linear operators on a finite-dimensional Hilbert space V, we introduce 
the 'curvature' operators 6(a,b) = g(ab) — g(a)o(b) and set, for any finite subset 
Fez 23, 

||fl||F = Bup{||fl(fl,fc)||; a,beF}. 

Definition 3. Given £ > 0 and a finite subset F cz 23, an (e,F)-representation of 23 
is a linear map Q : 23 -» 2(V) such that: (i) \\Q(a)\\ < \\a\\, Va G 23; (ii) Q(1) = 1; 
(iii) | |0| |F<B. 

Let p G M be a fixed base point and let F = n\(M,p). We denote by Q(M,p) 
the space of loops based at p. Choose a cross-section y : F —> Q(M,p) to the 
canonical projection n : Q(M,p) -> F such that: y(l) = 1 and Vg e T with 
g2 7̂  1> y(s~{) = y(g)~1- Given F cz ^ ( F ) , one can associate to any e-flat bundle 
E an (ecp,F)-representation QE : ^(T) —• &(EP), by assigning to an element 
g G F the parallel transport operator ££(g) along the loop y(g); if g2 = 1, Qß(g) 
is replaced by \(QE(g) + £ß(g)*)- Indeed, since the effect of the parallel transport 
along loops can be estimated in terms of the curvature, one has 

I IöBI IJ^CJHI©*! ! , 
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where ©E denotes the curvature of E, 9E is the curvature of QE and cp is a 
constant depending on F. 

2.2 Pairing with K-Theory and an Index Formula 

Let Q : 23 -> 2(V) be an (s,F)-representation of a Banach algebra 23. Its character 
<j> = ($2k) is a discrete version of the asymptotic cocycles introduced in [CM2, 
§4], and is given by the following formula: 

</>2/c(flo,aÌ9...,a2k) = (-l)k-r^-Tr(Q(aQ)Q(aua2)...6(a2k-uaik)), cij G 93. 

Recall that asymptotic cocycles pair with K-theory, by means of the pairing 
formula for entire cohomology ([C2], [GS]) : 

00 (—l) f e 1 
<0,«> = X fc! ^k(e-^e,...,e), e2 = e G JtN(%>). 

/c=0 

Proposition 6 ([CGM], Prop. 9). Let e2 = e G JtNÇ8). There exists a finite set 
F cz 23 and ö > 0, such that for any (s, F)-representation gofSB with 0 < e < <5, 
the above series converges. Moreover, with (j) denoting the character of Q one has 

(<t>,e) = Tr(n-1-), 

where II G J?N(2(V)) = 2(V ® C^) is the projection defined by 

n = ̂ ~. f ((Q®Y)(e)-zrldz. 
2m 7|z-i|=i 

In the remainder of this section M will denote the universal cover of Mn and 
/ : M —> BT will be its classifying map. Consider an elliptic operator D+ on M. 
From the preceding discussion, it follows that there exists a ö > 0 such that, for 
any e-flat bundle F on M with 0 < e < ö, the pairing 

IndexE,rD "•= ( $ E , IndexfjD ) , 

between the character <J>E of the associated almost representation QE : ^(T) -> 
2(EP) and the covering index Indexf,rD

+ G Ko(CF ® 91) is well-defined. 

Theorem 7 ([CGM], Thm. 10). With the above assumptions, one has 

IndexEtrD+ = (-l)n(cho(D+) U 3(M) U chE)[T*M] = IndexD\. 

The proof is similar in spirit with that of Theorem 3 and involves two stages. 
The first, corresponding to Proposition 1, converts the above pairing into one 
between the 'asymptotic' Alexander-Spanier cocycle associated to the character 
(j)E and the K-homology class of D+. The second consists in establishing the 
analogue of the index formula of Theorem 2. 



Cyclic Cohomology and Invariants of Multiply Connected Manifolds 683 

2.3 Pairing with L-Theory and a Signature Formula 

The extra virtue of the type of cocycles considered above is that they can be 
paired directly with the L-theory. Indeed, ix(T) is not merely a Banach algebra, 
but one equipped with a compatible involution. So, it is natural to work in the 
context of Banach *-algebras. An obvious modification of Definition 3 gives the 
notion of an (e,F) — ^-representation for a Banach *-algebra 23. 

Proposition 8 ([CGM], Prop. 5). Let 23 be a Banach ^-algebra and let H = H* be 
a self adjoint invertible element in M^{f&). 

(i) If Q : 23 —• 2(V) is an (e,F) — ^-representation, with F = the set of entries 
of H and H~l and 0 < e < 1/2JV2, then (Q ® 1)(H) G JtN(2(V)) = 2(V ® CN) is 
self-adjoint and invertible. 

(ii) If H' is another representative of the Witt class [H] G L(23), there exists 
a finite set F' cz 23 and ô > 0, such that for any (e, Ff)-representation Qof^B with 
0 < e < ö one has: 

Signature (Q ® 1)(H) = Signature (Q ® 1)(H'). 

Remark that the almost representation associated to an almost flat bundle is 
automatically a *-representation, therefore the above construction applies. From 
Proposition 6 and Theorem 7, one obtains : 

Theorem 9 ([CGM], Thm. 6). Let H G J£N(£X(F)) be a representative of the 
Mishchenko class o[M,f] G L(^(r)). There exists a ô > 0 such that, for any 
E-flat bundle E on M2k with 0 < e < ö, one has; 

Signature(QE ® 1)(H) = 2k(<£(M) UchE)[M], 

where 3?(M) denotes the stable L-class of M. 

Corollary 10 [CGM], Let M, N be two closed oriented manifolds and let h : N -> 
M be an oriented homotopy equivalence. Then, for any class t; G K^(M), one has 
(&(N)Uchh*Ç)[N] = (&(M)UchO[M]. 

Remark. 1. According to Theorem 7, the higher indices constructed in this section, 
unlike the higher indices of Section 1, are genuine indices of elliptic operators 
with suitable coefficients. Thus, it makes sense to try to obtain the above result by 
proving directly the homotopy invariance of the index of the signature operator 
with coefficients in an almost flat bundle. Such a direct proof was recently 
achieved by Hilsum and Skandalis [HS]. 

2.4 Application to the Novikov Conjecture 

The notion of an almost flat bundle can be extended to the case when the base 
space is a simplicial complex and the bundle is infinite-dimensional (but endowed 
with a 'superconnection', in a suitable sense). Moreover, Theorem 9 continues to 
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function in this extended context. With these modifications, one can show that 
K°(BT) = K^(BF), and therefore that the Novikov conjecture holds, for a 'very 
large' class of finitely presented groups F. This class includes all the cases for 
which the conjecture was previously established, in particular the following: 

(1) F = n\ (N) where JV is a complete Riemannian manifold of non-positive 
sectional curvature (cf. [K3]) or, more generally, JV is hyperspherical (see [GL2]); 

(2) F is a discrete subgroup of a finitely connected Lie group (cf. [K3]) or of 
an algebraic group over a local field (cf. [KS]); 

(3) F is hyperbolic in Gromov's sense (cf. [CM2]). 

3. Unstable Cyclic Cohomology and Non-Local Invariants 

3.1 Cyclic Cohomology of Group Rings 

Let F be a finitely generated group. For simplicity, we will assume that it is 
torsion-free and of finite cohomological dimension (over Q) n. This implies that 
the cyclic cohomology of <Cr stabilizes above n : HC2k+n(<E,r) = HCn(&r) and 
HC2/C+1+W(CF) = HCn+i((LF), for k = 0,1,2,.... 

Burghelea [B] showed that HC*((£r) decomposes into a direct sum 
parametrized by the conjugacy classes [y] in F : 

HC*(<Cr) ^ H*(Br,<£) ® HC*(£) ® J] H*(BNyX), 

where Ny = Ty/Cy, Ty = the centralizer of y and Cy = the (free) group generated 
by y. On the other hand, for certain classes of groups F, including discrete 
subgroups of general linear groups over fields of characteristic 0, Eckmann [E] 
showed that in the stable range, i.e. for k > n, Hk(BNy,<£) = 0, V[y] ^ 1. 

Thus, it was precisely the stable component of HC*(<Cr) which was used 
in the preceding sections to construct higher indices of elliptic operators. The 
aim of this section is to suggest that the unstable component of HC*(<Er) plays 
a similar, albeit more subtle, rôle with respect to non-local invariants such as 
analytic torsion and ^-invariants. 

3.2 //-Invariants and Analytic Torsion via Cyclic Homology 

Let M4/c_1 be a closed connected Riemannian manifold. The ^-invariant rj of M 
(see [APS]), is meant to measure the 'signature' of the signature operator $ev 

acting on the space ßev = ßev(M) of exterior differential forms of even degree on 
M. We recall that rj is defined as the value at s = 0 of the analytic continuation 
of the function 

*/(5) = £(sign^)|ir, Re(s)>0, 

where X runs over the set of non-zero eigenvalues of $ev, each eigenvalue being 
repeated according to its multiplicity. It can be easily shown that rj involves only 
the 'middle' degree forms, more exactly than rj = rj2k(0), where 
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i1
2k(s) = ^mX)\Xrs, Re(s)>0, 

with X running this time over the set of non-zero eigenvalues of the operator *d 
acting on d*Q2k. 

This definition can be reformulated in terms of the cyclic homology of the 
algebra sé = Cco(M). We recall ([CI]) that: 

(i) HH*(sé) is canonically isomorphic to Q*(M); under this isomorphism, the 
exterior derivative d : Qn(M) —> Qn+i(M) corresponds to the operator ß = B ol: 
HHn(sé) -+ HH„+i(sé); 

(ii) HCn(sé) £* Qn(M)/dQ1ì-y(M) © H"-2(M) © H"-\M) © • • •. 

By transport of structure, both HH*(sé) and HC*(sé) become (graded) pre
Hilbert spaces. 

Thus, ignoring the zero modes, r\ can be viewed as the regularized signature 
of*£ :HC2k^(sé)-^HC2k^(sé). 

There is a similar interpretation for the analytic torsion. Namely, if T denotes 
the analytic torsion of M (see [RS]), with the above notation one has: 

logt = £ ( - l ) * l o g d e t c ( £ 7 : HCq(sé) -+ HCq(sé)). 

Here deg^ denotes the (-determinant of the corresponding positive elliptic opera
tor, with the zero modes removed. Regarding logdeg^/T/J : HCq(sé) -> HCq(sé)) 
as a regularized dimension of HCq(sé), the above formula identifies logi as the 
regularized Euler characteristic of HC* (sé). 

Let S'Q — M Xp E be a flat bundle associated to a unitary representation Q of 
F = 7ii (M) on E. Twisted invariants xQ and qe can be defined in similar terms. 
To this end, one needs a twisted version of the cyclic homology of the algebra 
sé = Cco(M). This is obtained by replacing the entries C(sé)m = sé®q~p+ì, if 
q > p and 0 otherwise, in the (b, £)-bicomplex C(sé) of the algebra sé, with 
C(sé,£Q)M = (E ® stf®q-p+{)r, if q > p and 0 otherwise. Here sé = Cœ(M) and 
(E ® sé®n)r = the subspace of F-invariant elements of E ® sém. Note that 1 ® b 
and 1 ® B commute with the (tensor product) action of F and therefore induce 
boundary operators for the bicomplex C(sé,S>

e), which we will continue to denote 
b and B. One can thus define the cyclic homology of sé with coefficients in $Q as 
HC*(sé,$Q) = the homology of the total complex associated to C(sé,é'Q) and the 
Hochschild homology of sé with coefficients in êQ as HH* (sé, SQ) = the homology 
of the 'vertical column complex' {(E ® sé®n)r, b). 

3.3 Regularized Index Formulae 

In [MSI] and [MS2], the ^-invariants and the torsion invariants of locally 
symmetric manifolds of non-positive sectional curvature were expressed as special 
values of zeta-functions constructed out of the periodic geodesies. Our purpose 
here is to explain how to understand these results as some kind of 'regularized 
index formulae'. 
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Let M = r\M with M a globally symmetric space of non-compact type 
and F a discrete, torsion-free, co-compact subgroup of orientation-preserving 
isometries. M inherits a (locally symmetric) Riemannian metric g, of non-positive 
sectional curvature. The connected components of the periodic set of the geodesic 
flow 0, acting on the unit tangent bundle SM, are parametrized by the non-tri vial 
conjugacy classes [y] in F = n\(M). Each connected component My is itself a 
closed locally symmetric manifold of non-positive sectional curvature. $ restricts 
to a periodic flow on each My and the quotient My = My/$ is an orbifold; we 
denote by %(My) its Euler characteristic. All orbits of <P in My have the same 
length *fy and my will denote the multiplicity of a generic orbit. 

Let Q be an acyclic unitary representation of F and denote by TQ the analytic 
torsion of M with coefficients in êQ. The main result in [MS2] reads as follows: 

logT e =-^ Z (M y )Tr ö (y ) 
e-Sly 

S=0 

where the evaluation at 0 is made after analytic continuation. 
We remark that, as a topological space, My = BNy (see 3.1). Moreover, the 

orientation of My defines a fundamental class [My] in the top-degree rational 
homology of BNy and one has: 

X(My) = e(My)[My], 

where e(My) denotes the Euler class of the orbifold. The collection of classes 
e(M,g) = {e(My) G H*(BNy,<$); [y] =£ 1} can be viewed as an element of a 
suitable completion #C*(QF) of #C*(QF), while the collection [M,g] = {[My] G 
H*(BNy,G$); [y] =£ 1} defines an element in a similar completion of ifC*(QF). 
Therefore, the right hand side of the above formula for torsion can be interpreted 
as a regularized pairing (e(M,g), [M,g])e, depending on the representation Q, the 
regularization being given by the geodesic spectrum. We recall that log %Q is also 
defined by a regularization procedure, but involving the 'dual' data, namely the 
spectrum of the Laplace operator associated to the metric. 

A similar interpretation can be given to the ?/-invariant formula proved in 
[MSI]. 

We conclude by observing that all the above expressions make sense for 
any closed K(T, l)-manifold which admits a metric of non-positive sectional 
curvature. Examples of such formulae, for the torsion of certain manifolds which 
are not locally symmetric, can be found in the work of D. Fried (cf. [F] and 
references therein). It is plausible that such formulae continue to hold on more 
general non-positively curved closed K(F, l)-manifolds. 
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1. Introduction 

In recent years certain fundamental ideas of statistical mechanics and quantum 
physics have penetrated through psychological barriers between physics and 
topology. The original impetus to this development was given in 1984 by the V. 
Jones's discovery of a new polynomial invariant of links in the 3-sphere S3. His 
construction uses braids, Hecke algebras and von Neumann algebras. The later 
progress has involved 2-dimensional conformai field theory, theory of quantum 
groups and other subjects, creating a unified overwhelmingly rich area of study. Of 
especial importance have been the methods of statistical mechanics first applied 
by L. Kauffman to reproduce the Jones polynomial, and the ideas of quantum 
field theory brought into the subject by E. Witten. 

From the viewpoint of topology the main new notion attained in the course 
of this development is the notion of topological quantum field theory (TQFT; 
see [Atl]). There are several complementary approaches to constructing TQFTs 
in dimension 3. Here I present an approach based on the theory of quantum 
groups (see [Drl, FRT1, Jil]). 

The state sum models appear in this context as a technical tool to define 
invariants of geometric objects. I give here an abstract description of the models; 
examples are abundant below. On the geometric part the models use certain 
"images" of the objects and "moves" relating these images. The moves should 
be local transformations of images following certain patterns. Any images of 
topologically equivalent objects should be related by a finite sequence of moves. 
One also distinguishes two sorts of local geometric blocks of the images called 
atoms and interactions. (This terminology is due to G. Kuperberg). Each inter
action should give rise to a tuple of atoms, "involved in this interaction". On 
the statistical mechanics side one uses the notions of "algebraic initial data", 
"state", and "state sum". The initial data (in its simplest form) consists of a 
finite set I of "colors" and a weight function which is a numerical function on 
certain tuples of colors. A state on an image is an /-valued function on the set 
of atoms. Having such a state one associates with each interaction the tuple of 
colors of atoms involved in this interaction. One forms the product of weights 
of these tuples over all interactions and sums up these products over all states. 
To ensure topological invariance of the sum it suffices to check invariance under 
the moves. Their local nature usually enables one to reformulate the invariance 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
© The Mathematical Society of Japan, 1991 



690 Vladimir G. Turaev 

as a collection of algebraic equations on the weights. Solving these equations is 
fundamental to justify the model. 

This scheme admits variations and extends to relative situations, producing 
linear operators (rather then numbers) forming a TQFT. 

It seems that in the last decades of the 20th century characterized by the 
Bourbaki style in mathematics one may reject the methods outlined above as 
old-fashioned and non-elegant. A good excuse is that due mainly to E. Witten 
we have a global physical ideology behind the constructions. To justify this 
mathematically non-rigorous ideology we apply the down-to-earth technique of 
state sum models, moves et cetera. The models play here the role similar to that 
of simplicial chain complexes in homology theory. 

The theory of state sum models has revived certain geometric ideas of K. 
Reidemeister, M. Newman, J. Alexander developed in the 1920-1930s; it involved 
more recent results of J. Cerf, R. Kirby, R. Fenn and C. Rourke, as well as the 
theory of special spines of 3-manifolds due to B. Casier, S. Matveev, and R. 
Piergallini, and the theory of categories of tangles due to D. Yetter and the 
author. Bringing these topological results in a row and relating them to the 
methods coming from physics and representation theory seem to be one of the 
most attractive features of the theory. 

I will describe here 3 types of models: vertex models on link diagrams 
in IR2, face models on link diagrams and link shadows, simplicial models on 
triangulations of 3-manifolds. 

For an earlier discussion of state sum models in knot theory see [Jo2]. For 
other approaches see [Jal, Kul]. 

2. Vertex Models on Link Diagrams 

The 2-dimensional vertex models of statistical mechanics are concerned with 
4-valent graphs in IR2, the edges and Vertexes being respectively the atoms 
and interactions (see [Bal]). These models have been adjusted to the topolog
ical setting of link diagrams in IR2 where one has to take into account the 
over/undercrossing information and to treat the, local extremums of the height 
function (x, y) i-> y : IR2 -> R (reduced to the diagram at hand) as interactions. 
This produces isotopy invariants of. colored framed oriented links in S3 (see 
[AW1, Jol, Tui, Rei, RT1]). 

Fix a set / of left modules over a commutative ring with unit K. Assume that 
each module V e I is equipped with a finite K-basis J>. 

By a colored link in S3 we mean a finite collection of disjoint imbedded 
-circles in S3, each circle being equipped with a "color" Ve I. A link L c S3 

is framed (resp. oriented) if L is equipped with a non-singular normal vector 
field (resp. with orientation of L). Link diagrams are the images of links under 
pushing off into R3 = S3\{oo} and projecting to IR2, with an account taken 
of over/undercrossings. (To construct a diagram of a framed link L one first 
deforms L to make its framing orthogonal to R2). 

We consider only the diagrams whose self-crossings are distinct from local 
extremums (of the height function). The classical Reidemeister moves relate any 
two diagrams of a link modulo ambient isotopy of the diagrams in R2. After a 
small modification the moves work also for diagrams of framed links. D. Yetter 
and independently the author gave a list of moves relating ambiently isotopie 
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diagrams (see [Yel, Tu2, Tu3]); the simplest of these moves introduces 1 point 
of local maxima and 1 point of local minima on a small vertical segment of a 
diagram. 

The initial algebraic data of the model consists of 6 weight functions 

R,R 
V,WeI 

w -r K; a,ß,p,v : ]J Jv 
Vei 

K. (1) 

Let ^ cz R 2 be a diagram of a colored framed oriented link L. The self-
crossings of 3 and the local extremums of the height function split 3 into a 
finite number of arcs. A state s on 3 is a mapping, associating with each such arc 
e of 3 an element of the set Jv(e) where V(e) el is the color of the component 
of L projecting to the loop of 3 which contains e. For a state s on 3 and 
a positive (resp. negative) self-crossing a of 3 we put (a)s = R(i,#,j,k) (resp. 
(a)s = R(i,£,j,k)) where i,£,j,k are the values of s on the 4 arcs incident to 
a; see Fig. 1. For a local extremum b, as in Fig. 2, we put (b)s = f(i,£) where 
respectively / = a,ß,p,v. Put 

(®)s=n<«>*nw*and < L > = < * > = i > > ' 

where 0, b, s run respectively over crossings, local extremums and states of 3. 

b b 

i\ Tl i / ^ \ I i^ I l i / ' X I 

Fig. 2 

h 

To describe equations ensuring invariance of (3) under the moves one treats 
(1) as matrices of linear operators 

RViW,RViW : V ®K W -> W ®K V ; aVißv,pv,vv :V-+V. P) 
The state sum (3) depends solely on 3 and these operators. Here are equations 
corresponding to certain moves: ßv = My1, Vy = Py1, Ry,w p - 1 
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(RyìW <g) lv) o (ly®RUtw) ° (Ru>V ® lflO (3) 

= (lw ® Ru,v) ° (Rt/,w ® IK) ° (lu ® #F,w) • 

The latter equation is the Yang-Baxter equation ; the operators satisfying the 
equation are called R-matrices. This equation ensures invariance of (3) under 
the third Reidemeister move, known also as the braid relation. There are also 
a few equations relating R,a,p (see [Tu3]). Note that without loss of generality 
one may assume that ay = ßy = \y for all Ve I. Note also that one usually 
imposes an additional condition that a positive 360°-twist of the framing along 
a link component of color V leads to multiplication of the link invariant by 
an invertible constant depending only on V. This condition is fullfilled in the 
examples below. 

According to [Re2], any system of invertible R-matrices {Rytw '• V ® W -» 
W ® V}y}wei satisfying a non-degeneracy condition may be enriched by 
{a,ß,p,v}y to satisfy all equations ensuring isotopy invariance of (L). 

Using the operators (2) one may extend the invariant L (—> (L) to operator 
invariants of /-colored framed oriented tangles in R 2 x [0,1] (see [Tu2, Tu3, Re2, 
RT1]). This produces a linear tensor representation of the category of tangles in 
the category of K-modules. 

3. Quantum Groups as a Source of Invariants 

A general method of constructing R-matrices starts with an algebra with unity 
A and an invertible element ("universal R-matrix") R e A® A satisfying the 
equation R12R13R23 = R23Ri3Ri2, where R\2 = R ® 1, R23 = 1 ® R e A®3, and R13 
is obtained from R23 by the permutation of the first two tensor multiples. For any 
left y4-modules V, W one defines Rytw to be the composition of the permutation 
V ® W —> W ® V and multiplication by R. The Yang-Baxter property of R 
implies (3). 

The theory of quantum groups associates with each simple complex Lie 
algebra g the quantized universal enveloping algebra Uq($) over C possessing 
a canonical universal R-matrix (here q e <C). All irreducible finite-dimensional 
g-modules are known to be deformable into Uq(§)-modules. Thus, one may use 
these g-modules as the colors of link components. The system {Ry,w} arising in 
this way may always be enriched by ay = ßy = \y, py,vy = py1 to produce 
isotopy invariants of links (see [Rei], [Wei]). Example: g = sln(<L), V = <Cn 

with the standard action of g and the canonical basis e\,...,en. Let E{ be the 
homomorphism V —> V which transforms et in e;- and transforms ek with fc ^ i 
into 0. Then 

i i^j i<j 

py = £ g 2 M * - l £ I 

(see [Jil, Tui]). One may color all components of an oriented framed link L c S3 

with this V and get an invariant (L) which is a Laurent polynomial over q. 
Multiplying (L) by a power of — q~n one makes it independent of the framing. 
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The resulting polynomial is (up to reparametrization) a reduction PL(qn>q ~q~x) 
of the Homfly polynomial B\f(x,y) (see [Jol, Tui, Lil]). For n = 2 this reduction 
is the Jones polynomial. In the case n = 2 one may reformulate the model to 
produce the Kauffman [Kal] bracket model for the Jones polynomial. Similarly, 
the fundamental representations of the Lie algebras of series B,C,D give rise 
to a series of 1-variable reductions of the 2-variable Kauffman polynomial (see 
[Tui]). For invariants corresponding to g = G2 see [Rei, Ku2]. 

For any m-component link in S3 one may define a universal invariant sitting 
in Uq($)®m and comprising all invariants corresponding to various colorings of 
components by g-modules (see [Lai]). 

4. Invariants of 3-Manifolds 

The invariants of links in S3 discussed above may be combined to produce 
topological invariants of closed oriented 3-manifolds and links in these manifolds. 
The relevant construction was introduced and applied to link invariants derived 
from sl2((C) in [RT2]. For the case of other classical semisimple Lie algebras see 
[TW1]. The construction is based on the classical theorem of V. Rochlin and 
W. Lickorish presenting any closed oriented (connected) 3-manifold as the result 
of surgery on S3 along a framed link. R. Kirby introduced in 1978 moves on 
links which relate any presentations of homeomorphic manifolds. An equivalent 
system of local moves was introduced by R. Fenn and C. Rourke. 

On the algebraic part the construction uses a modular Hopf algebra (see 
[RT2]). This is a quasitriangular Hopf algebra A with an R-matrix R e A ® A 
equipped with a finite collection {F/}/£/ of irreducible finite dimensional bi
modules satisfying certain axioms. Let, now, a closed oriented 3-manifold N be 
the result of surgery on a framed link L c S3 with m components L\,...,Lm. 
Provide L with an arbitrary orientation. For each sequence j = (/i,...,/,„) e Im 

denote by V the link L whose components L\,...,Lm are colored respectively 
with V\x,..., Vjm. Here is the invariant of N: 

ZA(N) = b>»c°M £ ((Lj)fl(Ou)) 

where: b,c are normalizing constants, associated with A,R,\V\\\\ 0/ is the trivial 
knot in S3 with zero framing and the color Vf, o(L) is the signature of the 
oriented 4-manifold WL bounded by JV and obtained by adding 2-handles to the 
4-ball B along L a dB. This definition slightly differs from the one in [RT2] (cf. 
also [KM1]) ; equivalence of definitions follows in the case A = Uq(sln) from 
computations of [RT2, TW1] and in general case from results of K. Walker 
(private communication). If U is a colored framed oriented link in N then one 
pushes V in S3\L and defines %A(N,U) using L^JJL' instead of V. 

With a primitive complex root of unity q of degree r > 3 one associates a 
finite-dimensional modular Hopf algebra U = Uq which is a quotient of Uq(sl2<E) 
(see [RT2]). Here J = {0,1/2,1,..., (r - 2)/2} and Vj is the ^-deformation of the 
irreducible sk^E-module of dimension 2/ + 1. Thus with the pair (N,L') we may 
associate the function q i-> %uq(N,Lf) which is a topological invariant of this pair. 
For colored links in S3 this function coincides with the value of the colored Jones 
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polynomial in q. In general it is unknown if this function may be extended in a 
topologically invariant manner to the unit circle or, what is even more intriguing, 
to the open unit disc in (C. For a further study of Try(iV) see [KM1, Li2]. 

For even r one may refine iu(N) to an. invariant to(N\9) where 9 is an 
arbitrary spin structure on N, if r = 0 (mod 4), and 9 e HÌ(N;'Z/2'E), if r = 2 
(mod 4). Such 9 defines a sublink L(0) of the link L c S 3 presenting N\ it consists 
of components of L such that 9 does not extend across the corresponding 2-
handles of WL. One defines nu(N;9) in the same way as tu(N) but using only 
integral colors 0,1,..., [(r - 2)/2] for the components of L(9). Using [RT2, §7] 
and [KM1, Theorem 4.20] one may show that VJJ(N;9) is a topological invariant 
of (N;9) and Try(iV) = YJe

Tu(N;9). The same refinement applies to (N,Lf). 
In particular, for q = \[—i, r = 4 the invariant xu(N;9) is equivalent to the 
Rochlin invariant p(N;9) e Z/16Z: for any spin structure 9 on N one has 
zu(N,9) = exp(-3ny/-[p(N;9)/8). 

5. The Jones-Witten TQFT 

Witten [Wil] conjectured existence of a 3-dimensional TQFT extending the 
Jones polynomial of links in S3 (or, more exactly, extending the value of this 
polynomial in a fixed root of unity q) to oriented 3-dimensional cobordisms and 
to 3-cobordisms with tangles sitting inside. It was shown in [RT2] that each 
modular Hopf algebra (A,R,{Vi}iei) gives rise to a 3-dimensional TQFT. For 
A = Uq one gets the Jones-Witten TQFT. (Though [RT2] treats only cobordisms 
with links, one may apply the same methods to tangles in cobordisms). The 
construction uses presentations of 3-cobordisms by tangles in R3 and operator 
invariants of tangles. One of the advantages of this approach is the relative 
simplicity of the definition of the linear space associated with a surface. For the 
closed oriented surface Ig of genus g this linear space is 

** = 0 (vh®v*{®-.'®vig®vA , 
h igei v ' 

where for an ^4-module V one denotes by V* the dual module and by V° the 
maximal splitting submodule of V with trivial action of A. (In [RT2] we involved 
a projector acting in Tg which was later proven by K. Walker and the author, and 
independently N. Reshetikhin to be the identity). The Teichmüller modular group 
of Eg projectively acts in Wg ; the corresponding 2-cocycle is closely related to 
the 2-cocycle of the projective Shale-Weil representation of the symplectic group, 
see [CLM1],_ [Tu5]. For A = Uq,_q being a primitive root of even degree, one may 
refine the TQFT along the lines of Sect. 4. 

6. Face Models on Link Shadows 

Face models differ from vertex models mainly in that the role of atoms is played 
by 2-faces. A face model on link diagrams in R2 producing the value in q e (C 
(qr = 1) of the Jones polynomial and its versions for colored links in S3 was 
introduced in [KR1]. In [Tu4] this model was reformulated avoiding the use 
of coordinates, and generalized to diagrams on oriented surfaces. The natural 
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topological setting for the model is the one of shadows (see [Tu4]). A shadow on 
an oriented closed surface E is a finite collection s of closed curves on E lying in 
general position (possibly with intersections) such that each component of E\s is 
equipped with a number, called the gleam of the component. Each link diagram 
3 on E (presenting a link in E x R) canonically produces a shadow s(3) on E ; 
it has the same underlying loops as 3 whereas the gleam of a component X of 
E\s(3) is defined as the number of jumps up along dX diminished by the number 
of jumps down along dX and divided by 2 (the orientation in dX is specified by 
that of X cz E). One defines Reidemeister-type moves on shadows and calls a 
class of shadows related by these moves a (framed) shadow link on E. If M is a 
closed oriented 3-manifold fibering over E with the fiber S1 then each (framed) 
link in M considered up to isotopy canonically produces a (framed) shadow link 
on E. In particular, each link L a S3 produces a shadow link on S2 via the Hopf 
mapping of the diagrams. One may reconstruct L looking at its shadow on S2. 

The algebraic data used in the model consist of a finite set J, a set adm cz I3 

invariant under permutations, two functions / H> U\, i \-+ VJ \ I —> (C\0 and a 
function I6 -• (C, called "the symbol". ( 

A coloring of a shadow s is an /-valued function on the set of underlying 
loops of s. Let s be a colored shadow on E. An area-coloring jy of s is an /-valued 
function on the set of components of E\s such that if 2 components X, Y of E\s 
meet along an arc of s of color i then (i,i](X),i/j(Y)) e adm. For each crossing 
point a of s one defines \a\n to be the symbol of the 6-tuple formed by the properly 
ordered colors of 2 loops of s traversing a and r\-colors of 4 components of E\s 
incident to a. The symbol should be symmetric enough to make \a\n well-defined. 
For a component X of E\s with ?7-color i put \X\n = exp(2uix)vf where x and x 
are the gleam and Euler characteristic of X. One forms the product of \a\ij9 \X\n 
over all crossings and all components of E\s and sums up the products over 
all 1]. Under proper algebraic conditions, this model yields invariants of colored 
shadow links on E and colored framed links in M. 

The model extends to colored shadow 3-valent graphs on E (and the graphs 
in M; a graph is colored if its edges are equipped with elements of /). The 
new ingredients are the additional multiples |/|,7 which are symbols of 6-tuples 
associated in the obvious way with all 3-valent vertices / of the graph. In fact, 
the setting of 3-valent graphs in 3-manifolds rather then links is natural for all 
models in this paper (cf. [RT1]). 

The algebra Uq(s12(D) with q = ex^{2n\f—Yh/r) gives rise to a suitable alge
braic data. Here: r ^ 3; (h,r) = 1; / = {0,l/2,l,...,(r - 2)/2}; the symbol is the 
slightly normalized g-deformation of the Racah-Wigner 67-symbol (see [KR1]); 

u, = nV=ï(i - /(/ + l)hr-l),v, = (-l)2i(qlm - toMfo) - q^T1, 

where q0 = exp(7rv—l/7/r); a triple (i,j,k) belongs to adm iffr — 2 > i + j + k e Z 
and \i — j\<Lk<i + j . For colored links in S3 the corresponding face model on 
S2 produces the values in exp(7c\/—Th/2r) of the invariants considered in Sect. 3, 
the case A = Uq(sl2<ü). 

Using shadow links on S2 with complex gleams, and using the shadow version 
of the Kirby-Fenn-Rourke moves one may define shadow 3-manifolds (over (C) 
and the corresponding shadow version of the Jones-Witten TQFT. A remarkable 
property of shadow links and 3-manifolds over (C is that one may continuously 
deform their topological types. 
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7. Simplicial Models 

By a simplicial model I mean a statistical model on triangulations of polyhedra 
producing a topological invariant. Such a model for 3-manifolds was introduced in 
[TV1]. The geometric result underlying the model is the theorem of J. Alexander 
applicable in all dimensions: any two triangulations of a compact PL-manifold 
may be related by star subdivisions and their inverses. (Note that each 3-manifold 
admits a essentially unique PL-structure.) The algebraic data for the model is 
the same as in Sect. 6. The model gives rise to a 3-dimensional TQFT defined 
for non-oriented (possibly, non-orientable) 3-cobordisms (see [TV1]), and 3-
cobordisms with links sitting inside (see [Tu6]). In particular for links in S3 one 
gets a simplicial model on the link exteriors producing the values of the Jones 
polynomial in the roots of unity. 

A state jf ona triangulated compact 3-manifold N is an /-valued function 
on the set of edges of JV. For a 3-simplex T of JV denote by \T\n the symbol of 
the 6-tuple consisting of the rj -colors of edges of a 2-face of T followed by the 
rç-colors of the opposite edges of T. Put 

iJv,ôJvi,=w-2an^)niTi'/ 
e T 

where e, T run respectively over all edges and 3-simplexes of JV; a is the number 
of Vertexes of JV; w is a constant computed from the algebraic data. For a 
closed JV the state sum |JV| = E^N^ is a topological invariant of JV if the alge
braic data satisfy simple conditions which mimic the orthogonality relation and 
Biedenharn-Eliot identity for 67-symbols. Under the same algebraic conditions 
one similarly constructs for each 3-cobordism (JV, E\, E2) a topologically invari
ant linear operator Q(E\) -» Q(E2) where Q(E) is a finite-dimensional Euclidean 
space associated with any closed surface E (see [TV1]). Elements of Q(E) are 
geometrically represented by /-colored 3-valent graphs imbedded in E. 

The invariant JV i-> |JV| extends to /-colored framed links in JV with oriented 
neighborhoods. Let L = L\ U ... U Lm cz JV be such a link with m components 
(here dN = 0). Let U be a closed regular neighborhood of L. Put M = N\U and 
triangulate M. Put E = dM = m(Sl x S1) and equip E with the triangulation 
induced by that of M and the orientation induced by that of U. Let y)i,...,ipm <= Z 
be meridians of L\,..., Lm. 

For a sequence j = (h,...,im) € Im equip each xpr with the color ir and denote 
by xpj the union of these m colored loops on E. Denote by II the family of m 
colored loops on E obtained by shifting L along its framing. Denote by y the 
3-valent graph on E formed by the segments {e*} dual to edges {e} of E. Here e* 
crosses e once and connects the barycenters of the two 2-simplexes of E meeting 
along e. For a state rj of M denote by yn the graph y with the coloring e* f—> r\(e). 

Put 

IJV,LI=W2-2W ^ (n^z i^ 0 ^^^^) ) 
j={h,-,im) v - i n J 

where the last multiple is the state sum invariant of the shadow graph s = 
y^UL'U y)j on E. Here y is assumed to lie in general position with respect to 
U U ipj ; the gleam of a component X of E\s is defined as follows: looking onto 
ÔX compute the number of passages from \pj to l! and from L' to y, subtract the 
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number of opposite passages, and divide by 2 (the orientation in dX is specified 
by that of X cz E). Topological invariance of |JV,L| is ensured by the conditions 
mentioned above and the Racah identity for the symbol. 

One may generalize this model to models derived from modular Hopf algebras 
or modular tensor categories. The definition of |JV|, |JV,L| may be reformulated 
in terms of simple spines of 3-manifolds and link diagrams on the spines which 
makes computations more accessible. 

The initial data associated with q = exp(2n-^—ïh/r) in Sect. 6 satisfy all 
necessary algebraic equations. The relationships between the corresponding in
variants |JV| e R and TU(N) e (C (defined for oriented JV) are the following: 
|JV| equals TU(N)TU(N) (up to normalization). For links in S3 the approaches of 
Sect. 2-3, Sect. 6, and Sect. 7 are equivalent. In particular, if all components of 
a framed link L cz S3 are provided with the color 1/2 e I and the right-hand 
orientation of neighborhoods then \S3,L\ is equal to the value of the Kauffman 
bracket polynomial (L) in exp(7i\/^ï/i/2r). 

The invariant |JV| corresponding to q may be refined to an invariant |JV,^1| 
where A e Hì(N;È/2) (see [TV1]). It is equal to the sum of |JV|,? over rj such that 
the 1-cocycle ei-> 2rç(e) mod 2 presents zl. Clearly, |JV| = E^\N,A\. For oriented 
closed JV and even r one has \N,A\ = Y,OTU(N;9)T:U(N;9 + A). 

Both T[/(JV) and |JV| have "physical" meaning: they are mathematical versions 
of invariants which come up respectively in the 3-dimensional quantum field 
theory with non-abelian Chern-Simons action (see [Wil]) and (in the limit q —> 1) 
in 3-dimensional quantum gravity (see e.g. [HP1]). 

References 

[AWl] Akutsu, Y, Wadati, M.: Knot invariants and the critical statistical systems. J. 
Phys. Soc. Japan 56 (1987) 839-842 

[Atl] Atiyah, M.: Topological quantum field theories. Pubi. Math. IHES 68 (1989) 
175-186 

[Bal] Baxter, R.J.: Exactly solved models in statistical mechanics. Academic Press, 
London 1982 

[CLM1] Cappell, S.E., Lee, R.} Miller, E.Y: Invariants of 3-manifolds from conformai 
field theory. Preprint 1990 

[Drl] Drinfeld, V.G. : Quantum groups. Proc. Int. Congress of Mathematicians. Aca
demic Press, Berkeley, Cal., vol. 1, 1986, pp. 798-820 

[FRT1] Faddeev, L.D., Reshetikhin, N.Y., Takhtajan, L.A.: Quantization of Lie groups 
and Lie algebras. Algebra i Analysis 1 (1989) 178-207 (Russian) 

[HP1] Hasslacher, B., Perry, M.: Phys. Lett. 103B (1981) 21 
[Jal] Jaeger, F. : Composition products and models for the Homfly polynomial. Preprint 

1987 
[Jil] Jimbo, M.: Quantum R-matrix for the generalized Toda system. Commun. Math. 

Phys. 102 (1986) 537-547 
[Jol] Jones, V.F.R.: Notes on a talk in Atiyah's seminar, 1986 
[Jo2] Jones, V.F.R. : On knot invariants related to some statistical mechanical models. 

Pacif. J. Math. 137 (1989) 311-334 
[Kal] Kauffmann, L.M.: State models and the Jones polynomial. Topology 26 (1987) 

395-407 
[Kul] Kuperberg, G.: Involutory Hopf algebras and 3-manifold invariants. Preprint 

1990 



698 Vladimir G. Turaev 

[Ku2] Kuperberg, G. : The quantum G2 link invariant. Preprint 1990 
[KM1] Kirby, R, Melvin, P.: On the 3-manifold invariants of Witten and Reshetikhin-

Turaev for s/(2,(C). Preprint 1990 
[KR1] Kirillov, A.N., Reshetikhin, N.Y.: Representations of the algebra Uq(sl2), q-

orthogonal polynomials and invariants of links. In: Kac, V.G. (ed.), Infinite 
dimensional Lie algebras and groups. (Adv. Ser. In Math. Phys., vol. 7). World 
Scientific, Singapore 1988, pp. 285-339 

[Lai] Lawrence, R.J.: A universal fink invariant using quantum groups. In: Differential 
geometric methods in theoretical physics, XVII International conference. World 
Scientific, Singapore 1988, pp. 55-63 

[Lil] Lickorish, W.B.R.: Polynomials for links. Bull. London Math. Soc. 20 (1988) 
558-588 

[Li2] Lickorish, W.B.R.: Three-manifolds and the Temperley-Lieb algebra. Preprint 
1990 

[Rei] Reshetikhin, N.Y.: Quantized universal enveloping algebras, the Yang-Baxter 
equation and invariants of links, I, II. LOMI preprints E-4-87, E-17-87, Leningrad 
1988 

[Re2] Reshetikhin, N.Y.: Quasitriangular Hopf algebras and invariants of tangles. 
Algebra i Analysis 1 (1989) 169-188 (Russian) 

[RT1] Reshetikhin, N.Y., Turaev, V.G. : Ribbon graphs and their invariants derived from 
quantum groups. Comm. Math. Phys. 127 (1990) 1-26 

[RT2] Reshetikhin, N.Y, Turaev, V.G. : Invariants of 3-manifolds via link polynomials 
and quantum groups. Invent, math. 103 (1991) 547-597 

[Tui] Turaev, V.G. : The Yang-Baxter equations and invariants of links. Invent, math. 
92 (1988) 527-553 

[Tu2] Turaev, V.G.: The Conway and Kauffman modules of the solid torus with 
an appendix on the operator invariants of tangles. LOMI preprint E-6-88, 
Leningrad, 1988 

[Tu3] Turaev, V.G. : Operator invariants of tangles and R-matrices. Izv. Akad. Nauk 
SSSR 53 (1989) 1073-1107 (Russian) [English transi.: Math. USSR-Izv. 35 (1990) 
411-444] 

[Tu4] Turaev, V.G. : Shadow links and IRF-models of statistical mechanics. Pubi. Inst. 
Rech. Math. Av., Strasbourg (1990) 

[Tu5] Turaev, V.G. : Quantum representations of modular groups and Maslov indices. 
To appear 

[Tu6] Turaev, V.G. : Quantum invariants of links and 3-valent graphs in 3-manifolds. 
Preprint 1990 

[TV1] Turaev, V.G, Viro, O.Y: State sum invariants of 3-manifolds and quantum 
67-symbols. Preprint 1990 

[TW1] Turaev, V.G., Wenzl, H.: Quantum invariants of 3-manifolds associated with 
classical simple Lie algebras. Preprint 1991 

[Wei] Wenzl, H; Representations of braid groups and the quantum Yang-Baxter 
equation. Pacif. J. Math. 145 (1990) 153-180 

[Wil] Witten, E.: Quantum field theory and Jones polynomial. Comm. Math Phys. 121 
(1989) 351-399 

[Yel] Yetter, D.N.: Markov algebras. In:"Braids", AMS Contemporary Mathematics, 
vol. 78. AMS, Providence, RI, 1988 



Canonical and Minimal Models of Algebraic Varieties 

Yujiro Kawamata 

Department of Mathematics, University of Tokyo, Hongo, Tokyo 113, Japan 

In this talk we shall explain a minimal model program for arbitrary dimensional 
algebraic varieties over a field k of characteristic zero. Starting with the working 
hypothesis on the finite generatedness of the canonical ring, we shall discuss the 
process to obtain minimal and canonical models (we refer the reader to [KMM] 
for more general argument, or [Sh2] for more brief survey from the same point of 
view). We shall also review some recent results on the boundedness of indices of 
singularities in dimension 3. 

We shall put emphasis on the idea of logarithmic formalism, which provides 
natural setup for the statements and proofs of new theorems such as vanishing or 
cone-contraction theorems, rather than just generalizations of previously known 
results. Many results will be obtained simultaneously for the log and non-log cases. 
There will also be applications to the reverse direction from the log case to the 
non-log case. 

§ 1. Log-canonical Divisors 

1.1 Let X be a nonsingular projective variety over fc and Kx the canonical 
00 

divisor, i.e., (9X(KX) = det Qx. The canonical ring R(X) = £ H°(X, mKx) is the 

fundamental birational invariant of X, and the Kodaira dimension K(X) is defined 
to be trans. degfc R(X) — 1 if R(X) ^ k and —oo otherwise. Thus K(X) ^ dim X, and 
if the equality holds, then X is said to be of general type. The basic question is the 
following: 

Question 1. Is R(X) a finitely generated graded fc-algebra? 

The answer to this question is known to be "yes" if dim X = 2 by Zariski and 
Mumford [Z, Mu], and if dim X = 3 by the combination of recent results of Mori, 
Kawamata, Benveniste, Shokurov and Fujita (for the case K(X) = 3, the construc
tion of the minimal model is by [Ka5, Ka8, Mo4, Shi] and the rest by [Ka4] or 
[B], whereas the case K(X) < 3 is by [Fu3]). The proof in dimension 2 works in 
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arbitrary characteristic, but our result in dimension 3 needs the assumption that 
the characteristic is zero because we use the vanishing theorem of Kodaira type. 

t 

1.2 The key word of our investigation is the Q-divisor. A Q-divisor D = £ djDj 
J=I 

is a formal sum of distinct prime divisors Dj on a normal variety X with rational 
coefficients dj. The integral part [D] = £ [dj]Dj is a usual Weil divisor. D is said to 
be Q-Cartier if mD is a Cartier divisor for some positive integer m. X is called 
Q-factorial if an arbitrary prime divisor on X is Q-Cartier. 

The intersection number (D • C) e Q of a Q-Cartier Q-divisor D and a complete 
curve C on X is defined by (D • C) = (mD • C)/m. D is said to be nef (or numerically 
semipositive) if (D • C) ^ 0 for all C. 

1.3 Let us define the notion of the log-canonical divisor. Let X be a nonsingular 
t 

variety and B — ]T /). a normal crossing divisor on X. The sheaf of logarithmic 
J=I 

1-forms &i(log £) is a locally free sheaf with a local basis dx1/x1,..., dxr/xr, dxr+1, 
r 

..., dxn if B is defined by J\ *j = 0 for a local parameter system {xx, ...,xn}. Corre
d i 

sponding to its determinant sheaf, we define the log-canonical divisor to be Kx + B, 
which is related to questions concerning the open variety X — B. 

t 

But more important is its Q-divisor version Kx + D with D = £ djDj for some 
J=I 

rational numbers dj which satisfy the inequalities 0 < d} < 1, i.e., D is effective and 
[D] = 0. Here, the experience shows that the conditions on the dj are necessary 
to avoid counterexamples. This Q-divisor version of the log-canonical divisor is 
related to the covering spaces. For example, if / : X -• Y is a morphism of affine 
lines X = Y = A1 given by f*(y) = x\ then Kx = f*(KY + (e - l)/e • B) for B = 
div(y). 

In this paper a smooth pair (X, D) is meant to be a pair consisting of a nonsingular 
projective variety X and an effective Q-divisor on it such that [D] = 0 and Supp(D) 
has only normal crossings. We can extend our question to the log-canonical ring of 

a smooth pair (X, D) defined by R(X, D) = f] H°(X, [m(Kx + /))]). (X, D) is said 
»i=0 

to be of log-general type if trans. degk R(X, D) = dim X + 1. 

Question 2. Is R(X, D) finitely generated? 

The answer is known to be "yes" only in dimension 2 [Kal, Fu2]. 
1.4 We shall explain Fujita's reduction ([Fu3], also [Mo3], [N]) which reduces 
Question 1 (non-log-case) for a variety X with 0 ^ K(X) < dim X (or even Question 
2 for a smooth pair (X, C), see [Mw]) to Question 2 (log-case) for another smooth 
pair (7, Z>) of log-general type such that dim Y = K(X). 

After replacing X by a suitable birational model, one can find a proper surjective 
morphism f: X ->Y with connected fibers to a nonsingular projective variety Y, a 
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Q-divisor D = D' + D" on Y, and a positive integer d which satisfy the following 
conditions: 

(a) D' is nef, 
(b) (Y, D") is a smooth pair and / is smooth over Y — Supp(D"), 
(c) dim T = K(X) and (Y, D) is of log-general type, 
(d) / * : H°(Y, \_d-m(KY + /))]) ~ H°(X,d-m Kx)for all m e N. 

The Q-divisor D' comes from the moduli of fibers off. The property (a) is proved 
by using the theory of variation of Hodge structures ([Fui] if dim Y = 1, and [Ka2] 
in general by using [G]). The degenerations of the fibers of / give rise to D". The 
contribution of semistable degenerations to D" is zero. So by the semistable reduc
tion in codimension one, we understand that the coefficients of D" are dominated 
by those of coverings, hence less than one. Then by using Kodaira's lemma (cf, 
[Ka3]), one can reduce Question 1 for X to Question 2 for some lower dimensional 
smooth pair. 

§ 2. Log-Canonical Model 

2.1 In higher dimensional algebraic geometry, varieties must be allowed to have 
i 

certain mild singularities. Let X be a normal variety and D = £ djDj an effective 

Q-divisor such that [D] = 0. The pair (X, D) is said to have only log-terminal 
singularities, or simply (X, D) is called log-terminal, if the following conditions are 
satisfied: 

(a) Kx + D is Q-Cartier, 
(b) for a resolution of singularities ([//]) fi:Y-^X with a normal crossing 

1+s 

divisor Y, EJ on Y such that the Et (1 ^ i ^ t) are the strict transforms of the Dt and 
/=i 

the Ej (t + 1 ^ f ^ t + s) are all the prime divisors such that coding fi(Et) ^ 2, if 
we write 

t+s t+s 

KY+Y,E, = ß*(Kx + D)+Y a,E, (*) 
1=1 j = l 

then we have at > 0 for all i. 
The rational numbers a{ are called log-discrepancy coefficients. Note that at = 

1 — df for 1 ^ / ^ t. In the case D = 0, considering the formula 

Ky-/i*K^+ '£ &,£„ (**) 
*=*+i 

we say that X has only terminal (resp. canonical) singularities, if fy > 0 (resp. fy ̂  0) 
hold for all /. Since b{ — a{ — 1, we have the implications 

-Y : terminal => X : canonical => (X, 0) : log-terminal. 

If (X, D) is log-terminal and D# is an effective Cartier divisor on X, then the pair 
(X, D + cD#) is also log-terminal for a sufficiently small positive rational number £. 
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For example, if dim X = 2, then 

X : terminalo nonsingular 

X : canonical o rational double points <C2/F, F c SL(2, C) 

(X, 0) : log-terminaj <=> quotient singularities C2/F, F cz GL(2, C). 

Though the above definitions are simple, it is hard to understand what these 
singularities really are. All quotient singularities of any dimension are log-terminal 
(with D = 0), but there are a lot more of them. In dimension 3, a detailed classifica
tion of terminal singularities are obtained by [MS], [D] and especially [Mo2]. The 
results in [Mo2] were fundamental for the success of Mori's flip theorem in dimen
sion 3 ([Mo4]). But it seems too difficult to classify canonical or log-terminal 
singularities even in dimension 3. A structure theorem of three-dimensional canonical 
singularities is proved in [Ka8], and it was one of the key steps toward the flip 
theorem in [Mo4]. In general, we know only that if (X, D) is a log-terminal pair, 
then X has only rational singularities (Elkik [E], also [Fu4]). 

2.2 Since R(X) is determined by the function field k(X), one might say that 
Question 1 is a purely algebraic one. But the solutions so far are geometric. In fact, 
the affirmative answer to Question 2 for a smooth pair (X, D) of log-general type is 
equivalent to the existence of the log-canonical model of (X, D); a. pair (Xf, D') of a 
normal projective variety and a Q-divisor is said to be the log-canonical model of 
(X, D) if the following conditions are satisfied: 

(a) (X', D') has only log-terminal singularities, 
(b) Kx, + D' is an ample Q-Cartier divisor, 
(c) there exists a birational map y:X-->Xf which is surjective in codimen

sion one (i.e., every prime divisor on X' has a strict transform on X), 
(d) y^D — D' and Kx + D ^ y*(Kx. + D'), where y^. is the direct image homo

morphism of codimension one cycles and y* = a*/?* if ß = yen for birational mor
phisms a and ß. 

1ÎR(X, D) is finitely generated, then we set X' = Proj(R(X, D)) (cf. [RI]). Con
versely, the condition (d) implies that R(X, D) is isomorphic to the log-canonical ring 
R(X', D'), which is similarly defined for the log-terminal pair. Hence the existence 
of the log-canonical model implies the finite generatedness. 

§ 3. Minimal Model Program 

3.1 We want to construct the log-canonical model via log-minimal models. A 
log-minimal model (X', D') of a smooth pair (X, D) is a pair which satisfies (a), (c), (d) 
of (2.2) and (V) Kx. + D' is nef. 

A log-minimal model is defined just by a numerical property that K + D is nef. 
But it has a good geometric property at least if it is of log-general type: 



Canonical and Minimal Models of Algebraic Varieties 703 

Theorem (Kawamata, Benveniste, Shokurov). / / (X, D) is a log-minimal model of 
log-general type, then there exists a positive integer m such that the linear system 
\m(Kx + D)| is free. Therefore, the locus on X where Kx + D is numerically trivial is 
contractible, and R(X, D) is finitely generated. 

3.2 Starting from an arbitrary smooth pair (X, D) of log-general type, we should 
reduce the locus where the log-canonical divisor is numerically negative in order to 
obtain a Jog-minimal model. The key idea of the minimal model program is to look 
at the contraction morphisms associated with extremal rays, or the extremal con
tractions ([Mol]). In the following, we combine cone and contraction theorems; in 
fact, they are proved at the same time ([Ka6]). 

Cone-Contraction Theorem (Mori, Kawamata, Reid, Shokurov). Let X be a normal 
projective Q-factorial variety and D a Q-divisor such that the pair (X, D) has only 
log-terminal singularities. Suppose that Kx -f- D is not nef. Then there exists a projec
tive surjedive morphism cp : X -> Y with connected fibers to a normal projective variety 
Y such that (1) — (Kx + D) is (p-ample, and (2) Q(X/Y) = 1 (i.e., cp is not an isomor
phism, and for any two curves Ci (i = 1, 2) with cp(Cf) points, there exists a rational 
number q such that (B- Ct) = q(B • C2) for all prime divisors B on X). 

In the course of the proof of the above two theorems, the log-discrepancy 
coefficients a( play a guiding role. The proof is by induction, and we need the relative 
version of the cone-contraction theorem over a base space S in order to have 
Property (2) (cf. [Ka6]). 

3.3 cp is called an extremal contraction. We define its degenerate locus E = Exc(tp) 
= {x £ X; cp is not an isomorphism at x}. <p is a birational morphism if and only if 
E ^ X. There are three types of cp as follows. 

(a) Fibering type', dim Y < dim X. Then R(X, D) = fc. 
(b) Divisorial contraction: F is a prime divisor. Then y is again Q-factorial and 

(y, cp^D) is log-terminal. So we have a log-minimal model or apply the cone-
contraction theorem again. 

(c) Small contraction: codini^ E ^ 2. The log-flip conjecture asserts that 
there exists another projective birational morphism (p+ : X+ -> Y such that 
codini^* Exc(cp+) ̂  2 and Kx+ + D+ is (p+-ample, where X>+ is the strict transform 
of D. Then (X+,D+) is again Q-factorial and log-terminal. The birational trans
formation X --> X+ is called the log-flip of cp. 

Given a smooth pair, if the log-flip conjecture is true, and if there does not exist 
an infinite chain of successive log-flips (termination conjecture), then we obtain a 
log-minimal model after a finite number of birational transformations of divisorial 
contractions and log-flips. 

Note that the log-flip conjecture is a special case of Question 2, because 
X+ should coincide with Proj(£%(X/Y, />)), where the relative log-canonical ring 

oo 

M(X/Y,D)= £ cp^(9x(\_m(Kx + D)]) is a graded <Valgebra. In particular, the 
?«=o 

conjecture is local. It is easy to see that an affirmative answer to Question 2 implies 
the finite generatedness of {%(X/Y, D). 
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A flip is a log-flip in the case where D = 0 and X has only terminal singularities. 
The existence of flips in dimension 3 is proved in [Mo4]. If X is a nonsingular and 
of dimension 4, the flip exists by [Ka9]. Shokurov has some idea toward the log-flip 
conjecture in dimension 3. 

One can prove that Exc(cp) is covered by a family of rational curves ([Kail , 
appendix] by using the vanishing theorem explained below and [MM]). As an 
application, Wilson [W] proved that there exists a rational curve on any Calabi-
Yau 3-fold X whose Picard number is greater than 19. In fact, he proved the 
existence of an effective Cartier divisor D which is not nef. Since (X, eD) is log-
terminal for 0 < e « 1, the cone-contraction theorem yields the result. 

3.4 The following generalization [Ka3, V] of the Kodaira vanishing theorem is 
essential in the proof of the above theorems. 

Vanishing Theorem (Kawamata, Viehweg). Let (X, D) be a smooth pair and L a 
Cartier divisor on X. If L — (Kx + D) is ample, then Hl(X, L) = 0 for i > 0. 

The idea of the proof is as follows. One constructs a Q-divisor D' on X and a 
Galois covering n : Y-> X from a nonsingular projective variety Y such that n*D 
is a usual divisor, (X, D') is a smooth pair, KY = n*(Kx + D') and D ^ D' ([Ka2]). 
Then by [Kod], H\Y, n*(L + D'-D)) = 0 for i > 0. Taking the Gal(y/X)-
invariants, we obtain the theorem. 

One can extend the theorem to the case where the pair (X, D) is log-terminal 
([KMM]). As an application, if L - Kx is nef and big (i.e., (L - Kx)

dimX > 0), then 
L — (Kx 4- sB) is ample for some effective divisor B and 0 < e « 1 by Kodaira's 
lemma, hence the vanishing (cf. [Ka3]). 

§4. Flip to Flop 

4.1 In the notation of (3.3), a flop is a special kind of log-flip where X has only 
canonical singularities and Kx is numerically trivial along the fibers of cp. We can 
take D to be a small Q-divisor such that (X, D) is log-terminal and — D is <p-ample, 
since cp is an isomorphism in codimension one. 

Given cp : X -> Y, the existence of flops in dimension 3 is proved by [R2] in the 
case where X has only terminal singularities and by [Ka8] in general. By [Ka8] 
and [Kol], if X and X' are birationally equivalent minimal 3-folds (i.e., Q-factorial 
projective 3-folds with terminal singularities and nef canonical divisors), there exists 
a sequence of flops which connects X and X'. In particular, a 3-fold of general type 
has only a finite number of minimal models ([KM]). Flops of 3-folds with terminal 
singularities are geometrically symmetric and preserves the analytic types of singu
larities ([Kol]). But they are not symmetric in general even in dimension 3. In 
dimension > 3, the dimensions of Exc(cp) and Exc(cp+) may also be different. 

4.2 There are two approaches to make flips from flops. The first method uses 
double coverings. Given a small contraction cp : X -• Y with <p-ample — Kx as in 
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(3.2), we replace Y by its affine open subset, since flip is local. We take double covers 
X -> X and Y-+ Y which ramify along a general element Bx e \ — 2KX | and its image 
BY E | — 2Ky |, respectively. The morphism cp induces a small contraction cp : X -> Y 
such that Kx is numerically trivial for cp. So if one can prove that X has only 
canonical singularities, then the existence of flop X-~>X+ produces a flip 
X-->X+ as the Z/(2)-quotient. This approach is first found in [Ka8] to prove 
the existence of a flip for semistable degeneration of surfaces, and then applied to 
general 3-folds in [Mo4], 

The second approach is the cone construction. Given cp : X -> Y as before, 

we take the "total spaces" of K; we let CX = Specl £ ßx{-mKx)J and CY = 

Spec YJ &Y(—ntKY) J. Here, both graded algebras are finitely generated, since 
Wo / 

— Kx is a cp-ample Q-Cartier divisor. One can prove that CX has only canonical 
singularities and Kcx is numerically trivial for the induced morphism Ccp : CX -• 
CY. Thus if the flop CX--> (CX)+ exists, the strict transform X+ o!X gives the flip 
in one dimension less. 

§ 5. Bounding the Indices 

5.1 The index r of a terminal singularity is the smallest positive integer such that 
rK is a Cartier divisor. For example, the cyclic quotient singularity C3/<(Ca> (~fl

5 £)> 
for C = exp(27EN/^î/r) and (r, a) = 1 has index r. By [Mo2], an arbitrary terminal 
singularity of dimension 3 has a small deformation with only quotient singularities 
of the above type. Note that these quotient singularities are rigid [Sch]. 

We have to deal with singular varieties in dimension 3, and so results on 
nonsingular varieties must be modified. Let I b e a projective 3-fold with only 
terminal singularities. Then we have 

Z(0*) = ^ j c i c 2 + Ç (>>-!/>>)J, 
where c1c2 = — (p,*Kx-c2(Y)) for a resolution \i: Y-*X, the summation is taken 
over all virtual quotient singularities of X, where singular points of X are replaced 
by its generic small deformations, and rP are their indices ([Ka7, R3]). More 
generally, Fletcher calculated the correction terms for %(mKx) ([Fl]). 

As applications of the above formula, we have some boundedness results. By 
[Ka7] and [Ms], if Kx is numerically trivial, then Y2KX - 0 if i((9x) ^ 2 and 
1 2 0 K * ~ 0 i f % ( ^ ) = l. 

By [KalO], there exist universal constants m1 E N and m2 E Q such that if X is 
a Q-Fano 3-fold (a projective 3-fold having only terminal singularities and ample 
anti-canonical divisor — Kx) with Picard number Q = 1, then mxKx is a Cartier 
divisor and ( — Kx)

3 ^ m2. Hence all the Q-Fano 3-folds with Q = 1 form a bounded 
family. 

Let S be a minimal nonsingular projective surface with K(S) = 1, / : X -• A — 
{t G C; \t\ < 1} a relative minimal model of a semistable degeneration of surfaces 
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such that / _ 1 ( t ) (t ^ 0) are deformations of S, and mt(i= 1, . . . , e) the multiplicities 
of multiple fibers of the elliptic fibration of S. If m = Lem. {12, m j , then mKx is a 
Cartier divisor by [Ka i l ] . We note that a similar boundedness result for the case 
K(S) = 2 would yield a geometric compactification of the moduli space of such 
surfaces (cf. [KSB]). 
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Flip and Flop 

Janos Kollâr 

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA 

Dedicated to my teacher 
Teruhisa Matsusaka 

The study of smooth projective varieties naturally breaks into two parts. One 
part is to study the relationship between birationally equivalent varieties and the 
other part is to study the different birational equivalence classes. The aim of 
this talk is to review some interesting features of birational equivalence for three 
dimensional varieties over C 

For smooth projective curves birational equivalence implies isomorphism, 
hence the first part of the problem is not interesting. 

For smooth projective surfaces the simplest birational transformation is the 
blowing up. One removes a point of a surface S and replaces it with a copy 
of P1 corresponding to the local complex directions at the removed point. Any 
birational equivalence is a composite of blowing ups and their inverses. There 
are no other kinds of birational transformations. 

In dimension three one can blow up points and smooth curves. It is conjectured 
that any birational transformation is a composite of blowing ups and their 
inverses, though at the moment no one seems to know how to prove this. 
However it became clear in the last decade that even if the above factorisation 
is possible it may not be the best way of factoring birational transformations. 
A large theory has been developped by several people, I refer to the talk of 
(Mori 1990) in the same volume for a general overview. My aim in this talk is 
to concentrate on certain special birational transformations between threefolds, 
called flip and flop. 

For technical reasons it is natural to investigate these transformations not 
only for smooth threefolds but also for certain singular ones. The smallest class 
of singularities that allows the theory to work well is given by the following 
definition : 

Definition 1. Let X be a normal variety and let / : X' -> X be a resolution of 
singularities with exceptional divisors £,- c Xf, Assume that (V(mKx) is locally 
free for some m > 0. The smallest such m will be called the index of X. One can 
write 

Proceedings of the International Congress 
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(9(mKx>) S f(9(mKx) <E> 0 ( £ «%) > 

for some integers at. We say that X has terminal (resp. canonical) singularities if 
at > 0 (resp. a,- > 0) for every i. The survey paper (Reid 1987) is the best source 
of information concerning terminal (and canonical) singularities. 

The informal definition of flip or flop is the following. Let X be a threefold 
and let C cz X be a compact curve. Remove C from X and try to replace it with 
another compact curve C+ in such a way that C + U (X — C) becomes a threefold 
X + . To avoid the unexciting possibility of C = C + we require that X and X+ be 
nonisomorphic. Such an X+ need not exist at all and it also need not be unique. 
It turns out that the nature of the transformation X > X+ depends on the 
sign of C • Kx. The C • Kx = 0 case is called flop, the C • Kx < 0 case called flip. 
Very little is known about the case C • Kx > 0 and I will not consider it at all. 

The formal definitions are the following: 

Definition 2. (2.1) A three dimensional curve neighborhood is a pair C cz X where 
C is a proper connected curve and X is the germ of a normal threefold along C. 
One can think of X as an analytic representative of the germ. 

(2.2) A three dimensional curve neighborhood C cz X is called contractible if 
there is a morphism f'.CaX-^PeY satisfying the following properties : 

(i) Y is the germ of a normal singularity around the point P ; 
(ii) f(C)=P', 
(iii) / : X — C —> Y — P is an isomorphism. 
/ and Y are uniquely determined by C cz X. f is called the contraction 

morphism of C cz X. 
(2.3) Two three dimensional curve neighborhoods Q cz Xi are called bimero-

morphic if there is an isomorphism (X\ — C\) = (X2 — C2). 
(2.4) Let C\ cz X\ be a three dimensional curve neighborhood. Let H\ be a 

line bundle such that iff l\C\ is ample. A three dimensional curve neighborhood 
C2 cz X2 bimeromorphic to C\ cz X\ is called the opposite of C{ cz Xi with 
respect to H\ if there is a line bundle #2 on X2 such that Ü2IC2 is ample and 

(X2 - C2,H?\X2 - C2) s (Xi - Ci, J ^ l * ! - d ) , 

for some positive integers m,n. By (Kollâr 1991, 2.1.6) the opposite is unique, 
though it need not exist. 

Definition 3. Let / : C c l - > P e 7 b e a three dimensional contractible curve 
neighborhood. Assume that X has terminal singularities and that KX\C = 0. Let 
if be a line bundle on X such that ff_1 |C is ample. 

The opposite of C cz X (if it exists) will be called the flop of C cz X. (It turns 
out that the flop is independent of the choice of H.) 

Definition 4. Let / : C c z X — » P e Y b e a three dimensional contractible 
curve neighborhood. Assume that X has terminal singularities and that —K^|C 
is ample. 
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The opposite of C cz X with respect to Kx (if it exists) will be called the flip 
of C cz X. 

The simplest example of flops is the following: 

Example 5. Let V be the total space of the line bundle 0(—1,—1) over P 1 x P1, 
Both of the projections m : P 1 X P 1 -> P 1 can be extended to morphisms 

Pi : (P1 x P 1 cz V) - • (Ci S P 1 cz Xi). 

It is easy to see that Xj is smooth and the normal bundle of C, cz X,- is 
0(— 1) + (9(— 1). P2 ° Pf * • -Xi > X2 is bimeromorphic but it is not an 
isomorphism. 

This example was first noticed by (Atiyah 1958). It was used in a systematic 
way by (Kulikov 1977) to study the birational transformations of threefolds that 
have a basepoint-free pencil of K3 surfaces. 

Examples of flips are much more difficult to present since X cannot be smooth. 
A fairly exhaustive list is given in (Kollâr-Mori 1991). 

From the logical point of view (which is the reverse of the historical order) 
the theory of flips and flops has three large parts. 

I. Prove that flops and flips exist. 
II. Describe C+ cz X+ in terms of C cz X as precisely as possible. 
III. Applications. 

The answer to part I is very simple to state : 

Theorem 6 (Reid 1983). Flops exist. 

Theorem 7 (Mori 1988). Flips exist. 

The existence of flips is one of the most difficult results in three dimensional 
geometry; see (Kollâr 1990a) for an introduction. Previously an important special 
case was settled by (Tsunoda 1987; Shokurov 1985; Mori 1985; Kawamata 1988) 
using different methods. (The order corresponds to the order in which the proofs 
were announced. The only complete published version is the last one.) 

It is interesting to note that the above proofs provide very little information 
beyond the existence of X+ . Thus the answer to part II proceeds along very 
different lines. 

For flops there is a detailed structure theory. This is based on the following 
observation: 

Theorem 8 (Mori 1987). Let f : C cz X - • P e Y be a three dimensional 
contractible curve neighborhood such that KX\C — 0. Assume in addition that X is 
smooth (or that it has only index one terminal singularities). Then Y embedds into 
(C4 and in suitable local coordinates its equation can be written as x2 + h(y,z,t) 
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for some power series h. Let x : Y —> Y be the involution (x,y,z,t) i-> (—x,y,z,t). 
Then 

(f+ :X+^Y)^(Tof:X-+Y). 

In particular, X+ is smooth iff X is smooth. 

If X has higher index points then the symmetry breaks down in some cases. 
However in these cases another explicit description is possible, see (Kollâr 1989; 
Kollâr 1991, 2.2.2). There are always many similarities between X and X+: 

Theorem 9. Let X\ and X2 be projective threefolds with terminal singularities only. 
Assume that X2 is obtained from X\ by a sequence of flops. The following objects 
do not depend on j (up to isomorphism): 

(9.1) The intersection homology groups IHl(Xj,<D) together with their Hodge 
structures (Kollâr 1989, 4.12). 

(9.2) The collection of analytic singularities of Xj (Kollâr 1989, 4.11). 
(9.3) The miniversal deformation space DeîXj (Kollâr-Mori 1991, 12.6). 
(9.4) The integral cohomology groups H\Xhi) (Kollâr 1991, 3.2.2). 
(9.5) PicXj cz WeilX, (Kollâr 1991, 3.2.2). 
(9.6) h°(Xj, (9(D)) for every Weil divisor D. 
(9.7) h\X, (9(mKX])) for every i and m. 
The isomorphisms are canonical except possibly for (9.2). 

Describing C + cz X+ in terms of C cz X is harder for flips. The first 
breakthrough was a result of (Shokurov 1985) which showed that the singularities 
of X+ are less "difficult" than the singularities of X in a complicated technical 
sense. For a given singularity the "difficulty" is not easy to compute but the 
definition is very well suited to inductive proofs. 

It turns out that the situation is very complicated. The problem is that the 
singularities of X+ depend not only on the singularities of X but also on the 
global structure of X. If X is given by coordinate patches and transition functions 
along C = P 1 then the singularities of X + do not depend continuously on the 
transition functions. This makes any description very subtle. Several special cases 
are worked out in (Kollâr-Mori 1991); many more - but not all - cases are 
treated in unpublished works of Mori. I would like to mention one patholgy that 
seems interesting: 

Proposition 10 (Kollâr-Mori 1991, 13.5, 13.7). Let C+ cz X+ be the flip ofCaX. 
Then the number of irreducible components of C + is less than or equal to the 
number of irreducible components of C. For every m > 0 there are examples where 
C+ is irreducible and C has m irreducible components. 

Let us now turn to some of the applications. The most important application 
of flops is the following result which shows that birational maps between certain 
threefolds can be factored into a sequence of flops. This factorisation is much 
more useful than a factorisation into blowing ups and downs would be. Its 
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importance is clear only in light of the minimal model theory of threefolds (see 
e.g. (Mori 1990)). 

Theorem 11 (Reid 1983; Kawamata 1988; Kollâr 1989). Let Xx and X2 be nor
mal projective threefolds with terminal singularities only. Assume that they have 
Q-factorial singularities. Assume furthermore that KXi has nonnegative inter
section number with any curve C cz X\ for i = 1,2. Then any birational map 
f : X\ > X2 can be obtained as a composite of flops, 

Another application is to compact nonprojective threefolds. Under certain 
conditions there is a very economical way of finding a birationally equivalent 
model which is projective. 

Theorem 12 (Kollâr 1991, 5.2.3). Let X be a proper algebraic threefold with Q-
factorial terminal singularities. Assume that Kx has nonnegative intersection num
ber with any curve C cz X. Then after finitely many flops one obtains a proper 
algebraic threefold X+ with Q-factorial terminal singularities such that X+ admits 
a birational morphism g : X+ —• Y onto a projective variety Y. Y has terminal 
singularities and g contracts only finitely many curves. 

Flips are one step of Mori's program (also called minimal model program) for 
threefolds, in fact the most difficult step. Their main importance is thus derived 
from the importance and applications of the program. See (Kollâr 1991) or (Mori 
1990) for details. 

There are many problems concerning flips even in dimension three. The most 
interesting open question about flips is the following. 

Conjecture 13. Reid's Conjecture on General Elephants (Reid 1987; Kollâr-
Mori 1991). The contraction map provides a one-to-one correspondence between 
the following two sets: 

Extremal neighborhoods: 

(Three dimensional contractible curve neighborhoods C cz X such that") 
""" \x has canonical singularities and — KX\C is ample. J 

Flipping singularities: 

(Three din 
'~ [Q-Cartiei 

. ^ „ , ^ dimensional normal singularities P e Y such that Ky is not] 
,— ^~rtier and some D e \ — Ky | has a Du Val singularity at P. I 

Reid's original hope was that this equivalence can be used to obtain a proof 
of the existence of flips. To do this one needs to produce a member of | — Ky | 
with Du Val singularity and then to use this member to construct X+. It is still 
to be seen whether either of these steps can be done in the spirit envisaged by 
Reid. A proof along these lines would considerably enhance our understanding 
of flips. 
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(Kollâr-Mori 1991, 3.1) shows that for every flipping singularity there is a 
corresponding extremal neighborhood. The opposite direction is also proved for 
extremal neighborhoods with terminal singularities and irreducible C in (Kollâr-
Mori 1991, 1.7). The general case probably requires different methods. There is 
also the possibility that the correspondence is more complicated. The conjecture 
implies that every non-Gorenstein singularity on an extremal neighborhood is 
pseudo-terminal. I do not see any a priori reason why this should be so. On 
the other hand, even certain terminal singularities cannot occur on extremal 
neighborhoods, thus unexpected restrictions are possible. 

The higher dimensional problems are discussed in the talk of (Kawamata 
1990). 
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Linear Series on Algebraic Varieties 

Robert K. Lazarsfeld* 

Department of Mathematics, University of California, Los Angeles, CA 90024, USA 

In recent years, ideas and methods from the theory of vector bundles have been 
applied to study some classical sorts of questions concerning linear series on curves, 
surfaces and other algebraic varieties. Our purpose here is to survey some of the 
problems to which these and related techniques have been applied, 

Many of the results we describe in one way or another involve the equations 
defining projective varieties. There are several motivations for studying questions 
along these lines. The first is historical—the equations defining varieties have been 
of interest to geometers at least since Noether, and it is natural to try to clarify and 
extend classical results as much as possible. Secondly, there is a "practical" motiva
tion. It has become common for geometers to use computers to analyze explicit 
varieties, and for the most part the only way to describe a variety to a computer is 
by giving its equations. Finally, it seems likely that vector bundle methods will play 
an increasingly important role in the study of linear series, and the classical ques
tions we consider here have proven to be good testing grounds for these techniques. 

Limitations of space preclude more than a cursory discussion of methods of 
proof. We refer to [L3] for an overview of some of these. However we have 
attempted to survey some of the many interesting open problems in this area. We 
work throughout over the complex numbers (C. 

§ 1. Castelnuovo-Mumford Regularity 

Let X cz P r be an irreducible variety of dimension n, and denote by <fx the ideal 
sheaf of X in P r . Recall that one says that X is k-regular if H '(F1, Jx(k - /)) = 0 for 
i > 1 ([M2], [M3]); the regularity reg(X) of X cz P r is the least such k. The interest 
in this concept stems partly from the fact that veg(X) governs the complexity of 
computing the syzygies and other invariants of X ([BS1, BS2]). For example, a 
theorem of Mumford (cf. [EG]) states that X is fe-regular if and only if for every 
p > 0, the minimal generators of the fcth module of syzygies of the homogeneous 
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ideal Ix occur in degrees <k + p. This has led to a substantial body of work aimed 
at bounding the regularity of X in terms of its invariants or (more recently) the 
degrees of its defining equations. In each case there is a fascinating tension between 
the situation for arbitrary schemes X aW — for which results and examples show 
that the regularity can be very large — and the geometric situation in which X is 
smooth or at least reduced, where one expects much stronger statements. 

We start with the Castelnuovo problem of bounding the regularity of X in terms 
of its invariants. For an arbitrary scheme X cz Wr, Gotzmann [Götz, G3] has given 
a best-possible bound in terms of the Hilbert polynomial of X. For instance, if 
X cz P r is a curve of degree d and arithmetic genus g, his result states that reg(X) < 
'd-l\ 

J + d — g. The question now arises if one can do better assuming X is 
smooth or reduced. 

In practice the main difficulty is to control H1(W, J^x(k)), which is the classical 
question of whether hypersurfaces of degree k trace out a complete linear series on 
X. A theorem of Castelnuovo asserts that when X a W (r > 3) is a smooth curve 
of degree d, then H1^, Jx(k)) = 0 for k > d — 2, and consequently X is (d — 1)-
regular. This is optimal for curves in P3 , but not in general. In fact, Castelnuovo's 
result was completed in [GLP], where vector bundle techniques are used to show 
that if X cz P r is a reduced irreducible non-degenerate curve of degree d, then X is 
(d + 2 — r)-regular. Furthermore the borderline examples are classified: roughly 
speaking, X fails to be (d + 1 — r)-regular if and only if it has a (d + 1 + r)-secant 
line. This possibility of giving geometric explanations for extremal algebraic be
havior is one of the interesting themes in this circle of ideas; another example 
appears in [G3]. 

These results for curves have led various people to hope that if X cz P r is a 
smooth non-degenerate complex projective variety of degree d and dimension n, 
then X is (d + n -f- 1 — r)-regular [EG]. At least when r > 2n + 1, this would be the 
best possible linear inequality. It is proved for surfaces in [P] and [LI], and for 
3-folds in [R] when r > 9. In higher dimensions, the situation is much less clear. 
There is a rather weak bound of Mumford's (cf. [BEL, (2.1)]), but new ideas are 
apparently needed to treat the problem in general. It would already be very interest
ing to show that X is d-regular. There is also no clear understanding of what to 
expect if X is singular (but reduced and irreducible). For an arbitrary scheme 
X cz P r , Ravi [Rav] asks whether one has the inequality reg(XTed) < reg(X); this 
may be too much to wish for, but it would be nice to settle the matter. 

As we have noted, attempts to bound the regularity of a projective variety 
X cz P r are motivated in part by the desire to bound the complexity of computing 
the syzygies and related invariants of X. Bayer has remarked that it is then natural 
to ask for bounds in terms of the degrees of the defining equations of X - which are 
usually primary data when one sets out to make an actual computation - rather 
than the degree of X, which may not be so obvious in a given situation. For an 
arbitrary scheme, this regularity can again be horrendously large: there are examples 
due to Mayr-Meyer-Bayer-Stillman [BS1] of schemes I c P r defined by hyper
surfaces of degree d with reg(Z) > (d — 2)2(r/10). However when X is smooth, the 
regularity grows much more slowly with d and r. In fact, it comes as a pleasant 



Linear Series on Algebraic Varieties 717 

surprise to note that elementary arguments using the Kodaira vanishing theorem 
lead to the optimal bound in this case: 

Theorem 1.1 [BEL]. Assume that X cz P r is a smooth variety of dimension n and 
codimension e defined by hypersurfaces of degrees d1>d2>--> dm. Then X is 
(dx + • • • -h de — e -\- \)-regular, and X fails to be (d± + • • • + de — e)-regular if and 
only if it is the complete intersection of hypersurfaces of degrees dlid2,..., de. 

Note that only the degrees of the first e = codim(X, Pr) defining equations come 
into play here. It would be very interesting to know to what extent one can allow 
X to be singular. 

§ 2. Syzygies of Algebraic Varieties 

It is useful to think of the results described in the previous section as being extrinsic 
in nature, in the sense that they refer to a given projective embedding X cz W, with 
the main difficulties coming from the fact that X might not be linearly normal. But 
one can also take a more intrinsic point of view, where one deals with the embedding 
I c P = P(H°(L)) defined by the complete linear system associated to a very ample 
line bundle L on X. Here it is usually not so hard to compute veg(X), so one can 
ask for more precise information. A very interesting line of inquiry - inaugurated 
by Green in [Gl ] - is to study the syzygies of X. 

We start with some notation. Let L be a very ample line bundle on a projective 
variety X, defining an embedding I c P = JP(H°(L)). Denote by S = Sym"H°(L) 
the homogeneous coordinate ring of the projective space P, and consider the graded 
S-module R = R(L) = ®H°(X, Ld). Let Em = Em(L) be a minimal graded free resolu
tion of R: 

S 
'" • ®S(-a2J) > ®S(-altj) • © >R • 0. 

®S(-a0J) 
II II II 

E2 E1 E0 

We have indicated here the fact that R has a canonical generator in degree zero. It 
is easy to see that all aoj > 2 and all aitj > / + 1 when / > 1. To extend classical 
results on normal generation and presentation we ask when the first few Et are as 
simple as possible: 

Definition 2.1. The line bundle L saisfies property (Np) if 

E0 = S when p > 0 

and 

£. = ®S(-i - 1) [i.e. all aitJ = / + 1] for 1 < / < p. 
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Note that if E0 = S, then E. determines a resolution of the homogeneous ideal 
/ = IX/JP oîX in W(H°(L)). Thus the definition may be summarized very concretely 
as follows: 

L satisfies (N0) o X embeds in P(H°(L)) as a projectively normal variety; 

L satisfies (N±) o (N0) holds for L, and the homogeneous ideal Ix of X is gene
rated by quadrics; 

L satisfies (N2) o (N0) and (NJ hold for L, and the module of syzygies among 
quadratic generators Qte lis spanned by relations of the form 

where the L{ are linear polynomials; 

and so on. Properties (N0) and (NJ are what Mumford [M3] calls respectively 
normal generation and normal presentation. 

A classical theorem of Castelnuovo, Mattuck and Mumford states that if X is 
a smooth curve of genus g, and if deg(L) >2g + 1, then L is normally generated. 
Fujita and St. Donat proved that if deg(L) > 2g + 2, then L satisfies (Nx). These 
results were extended and clarified by Green [Gl ] , who showed that if deg(L) > 
2g + 1 + p, then L satisfies (Np). Green's theorem was recovered as a consequence 
of an analogous statement of finite sets in [GL3], where it was also proved that if 
deg(L) = 2g + p, then L fails to satisfy (Np) if and only if either X is hyperelliptic or 
0L embeds X with a (p + 2)-secant p-plane. 

The result just quoted gives a first indication of the fact that (at least conjec-
turally) the syzygies of a smooth curve X are intimately connected with its geometry. 
The crucial invariant here is the Clifford index Cliff(X) of X. Referring for instance 
to [GLI] for the precise definition, suffice it to say that Cliff(Z) is a non-negative 
integer which measures from the point of view of special divisors how general X is 
in moduli. For instance Cliff(X) = 0 if and only if X is hyperelliptic, and Cliff (X) = 1 
if and only if X is trigonal or a smooth plane quintic. One has the inequality 
0 < Cliff(X) < l(g - l)/2], and Cliff(X) = \_(g - l)/2] when X is a general curve of 
genus g. 

The hope is that uniform results on the syzygies of a curve X can be strengthened 
to take into account its Clifford index. The clearest expression of this philosophy 
which has actually been proved to date is a theorem of [GLI] to the effect that if L 
is a very ample line bundle on X with deg(L) >2g+ 1 — 2 • h}(L) — Cliff(X), then 
L is normally generated. This includes the result of Castelnuovo et al. mentioned 
above, and for example taking L to be the canonical bundle Q it yields Noether's 
celebrated theorem that Q is normally generated unless X is hyperelliptic. One 
conjectures [GLI] that if L is a very ample line bundle with deg(L) > 2g + 1 + p — 
2 - h}(L) — CliffpO, then L satisfies (Np) provided that &L does not embed X with a 
(p + 2)-secant p-plane. This would imply all the known results on syzygies of curves. 
But its most interesting consequence would be a beautiful conjecture of Green's on 
the syzygies of canonical curves: 

Conjecture 2.2 [Gl] . Cliff (Jf) is the least integer p for which (Np) fails for the canonical 
bundle Ü. 
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Green's conjecture has already sparked a considerable amount of work. For in
stance, drawing on some ideas of Chang and Ran as well as some computer 
computations by Bayer and Stillman, Ein [E] proves (2.2) on a general curve for 
p < 3. The most striking progress to date is due to Voisin [VI] and Schreyer [S], 
who verify the first non-classical case p = 2. Schreyer also gives examples to show 
that (2.2) fails in characteristic 2. A possible approach to this conjecture is suggested 
in [PR]. In a somewhat different direction, one has 

Conjecture 2.3 ([GLI], Conj. 3.7). One can read off the "gonalily" of a curve X from 
the grading of the resolution F. = Em(L) of any one line bundle of sufficiently large 
degree. 

In fact, one expects the gonality to be determined by the tail end of Et. One hopes 
that (2.3) should be easier to establish than (2.2). 

Results on normal generation and presentation of curves have traditionally gone 
hand in hand with analogous results for abelian varieties. Suppose then that X is 
an abelian variety of dimension n, and let L be an ample line bundle on X. A theorem 
of Mumford [Ml, M3], Koizumi [K] and Sekiguchi [Sek] states that L®k is 
normally generated provided that k > 3, and Mumford [M3] proved that X is 
scheme-theoretically cut out by quadrics under the embedding defined by L®k 

provided that k > 4. By analogy with the situation on curves, it is then natural to 
conjecture [L3] that if k > p + 3, then L®k satisfies (Np). Kempf [Kmf] has recently 
made considerable progress on this conjecture. Specifically, he proves if /; > 1 then 
(Np) holds for L®k so long as k ^ 2p + 2. It would be wonderful to prove the 
conjecture in general. 

Finally, what can one say in higher dimensions? Green [G2] proved that on an 
arbitrary smooth variety X of dimension n, any sufficiently positive line bundle L 
satisfies (Np). But naturally one would like an explicit result. Mukai observed that 
the known theorems deal with embeddings defined by bundles of the type Kx ® P, 
where P is an explicit multiple of a suitably positive bundle. He suggested that in 
general one should aim for statements having this shape. In this direction one has 

Theorem 2.4 [EL]. Let A be a very ample line bundle on X, and let Ebe a numerically 
effective bundle on X.Ifk>n + \+p, then Kx®A®k®B satisfies (Np). 

So for example, Kx ® A®n+1 is normally generated (which has a quick proof: 
cf. [BEL], [AS] and [ABS]), and in the embedding defined by Kx®A®n+2 the 
homogeneous ideal Ix is generated by quadrics. It would be very interesting to prove 
analagous statements assuming only that A is ample. Butler [But] shows that if X 
is a projective bundle over a curve, and if A is an ample line bundle on X, then 
Kx ® ,4®2»+1 is normally generated. A rash optimist might be tempted to speculate 
that Kx ® A®"+2+P satisfies (Np) whenever A is an ample line bundle on an arbitrary 
smooth variety X. However even when n = 3 it is unknown whether Kx ® A®n+2 

is very ample (this is a celebrated conjecture of Fujita), so that the moment it seems 
premature to hope for statements of this type for syzygies. However as Mukai points 
out, it might be reasonable to ask for sharp theorems for surfaces. When X = P", 
results on syzygies and related issues amount to statements about multiplicative 
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properties of subspaces of the polynomial ring. Green [G2] has obtained some 
general theorems along these lines, for which he has given interesting applications 
to the Hodge theory of hypersurfaces. We refer the reader to [G4] for a survey. 

§ 3. Linear Series and Vector Bundles on Surfaces 

As we remarked in the Introduction, most of the results described above are proved 
using vector bundle techniques. For questions involving regularity and syzygies, the 
arguments are largely cohomological in nature. However on surfaces, bundles have 
been used in a more geometrical fashion to study linear series. In this final section 
we survey two such applications. Henceforth X denotes a smooth complex projec
tive surface. 

Consider a curve C on X, and a line bundle A on C which is generated by its 
global sections. Thinking of A as a coherent sheaf on X, there is a natural surjective 
evaluation map eCtA : H°(A) ®<c 0X -> A. Set F = FCA = ker eGA; thus F is a vector 
bundle of rank h°(C, A) on X. Philosophically, F encodes information about the 
pair (C, A) into a geometric object that lives globally on X. When X is a K3 surface, 
an analysis of these bundles together with a theorem of Mukai's [Mkl, Mk2] on 
the smoothness of the moduli space of simple bundles on X leads to the following 

Theorem 3.1 [L2]. Let X be a K3 surface, and let C0 cz X be a smooth curve having 
the property that every curve in the linear series \ C0 \ is reduced and irreducible. Then 
the general member C e \ C0 \ behaves generically in the sense of Brill-Noether theory, 
i.e. the varieties WJ(C) of special linear series on C have the postulated dimensions 
and WJ(C) is smooth away from WJ+1(C). 

We refer for instance to [ACGH] for a fuller discussion of the Brill-Noether-
Petri package. The hypothesis is satisfied for instance when Pic(Z) = Z • [C0] , and 
the theorem then leads to a very quick proof of an important result of Gieseker's 
[Gies] concerning the behavior of the varieties WJ(C) on a general curve of genus 
g. The bundles FCA were studied on an arbitrary surface by Tjurin [T]. They also 
lead to the proof [GL2] of a conjecture of Harris, Mumford and Green to the effect 
that all curves in a given linear series on a K3 surface have the same Clifford index. 
Related results appear in [DM] and [Par]. Reid [Reid] has some intriguing ideas 
about how bundles of this type might be relevant to the study of canonical surfaces. 
More recently, Voisin [V2] has used an infinitesimal analogue of the FCA to prove 
a very beautiful result about the Wahl map yß:/\

2FT°(C, Q) -+ H°(C, Q3) on a 
smooth curve C of genus g. 

Finally, no survey of vector bundles and linear series would be complete without 
mentioning the very interesting work of Igor Reider [Rdr] on linear series on a 
smooth projective surface X. Suppose that L is a line bundle on X such that 
Kx ® L fails to be globally generated at a point xe X. Then HX(X, *$x ® Kx ® L) 
^ 0, and so by Grothendieck duality and a well-known construction of Serre's one 
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can construct a non-split extension of the form O->0 X -*F-»L-+O. Reider's idea 
— which has its antecedents in a proof by Mumford of the Ramanujam vanishing 
theorem — is that suitable numerical conditions on L will force E to be Bogomolov-
unstable. Analyzing this instability geometrically then leads to the following 

Theorem 3.2 [Rdr]. Assume that L is a nef line bundle on X such that Kx ® L is not 
globally generated. If cx(L

2) > 5, then there is an effective divisor D cz X such that 
either cx(L)• D = 0 and D2 = -\,or c^L)-D = 1 and D2 = 0. 

Reider proves an analogous statement for the failure of Kx ® L to be very ample. 
This theorem has a surprising range of applications, among them a quick proof 
of Bombieri's results on pluricanonical maps of surfaces. Reider's theorem has 
attracted a lot of attention, and it has been extended in several directions. We refer 
to [Kot] and the conference proceedings [Som] for a sampling of some of the work 
in this direction. 
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Mixed Hodge Modules and Applications 

Morihiko Saito 

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan 

1. Mixed Hodge Module 

Since the theory of mixed perverse sheaves was established in char p > 0 by 
Beilinson-Bernstein-Deligne-Gabber [3], it has been conjectured that there would 
exist objects in char 0 corresponding philosophically to mixed perverse sheaves. 
This conjecture was solved recently by introducing the notion of mixed Hodge 
Modules [25-28]. 

For a complex algebraic variety X, we have an abelian category MHM(X) of 
mixed Hodge Modules on X with a forgetful functor rat : MHM(I ) -> Perv(Qx) 
which assigns the underlying perverse sheaf over Q. By [2, 3], rat is naturally 
extended to a morphism of the bounded derived category Db MHM(I ) to Db

c (Qx), 
which is also denoted by rat. They satisfy the formalism of mixed sheaves, i.e. 

Theorem 1.1. The categories DbMYLM(X) are stable by the standard functors like 
f*> f\> f*f fl> tyg> <Pg> 1D> KI, ®, 3tf*#m, and these functors are compatible with 
the corresponding functors on the underlying complexes ofQ-vector spaces via the 
functor rat. 

Proposition 1.2. Every mixed Hodge Module M has a functorial increasing filtration 
W in MHM(I) , called the weight filtration of J4, such that Jt -> Grjf Jt is an 
exact functor and G r f Jt is semisimple. 

If X is smooth, MHM(Z) is a full subcategory of the category of (M,F,K, W) 
where M is a holonomic ^ - M o d u l e with a good filtration F [14] and with 
rational structure given by an isomorphism a : DR(M) ~ (C ® K in Perv(CC )̂ for 
a perverse sheaf K defined over Q [3], and VF is a pair of filtrations on M and 
K compatible with a and gives the weight filtration in Proposition 1.2. Here DR 
is the de Rham functor (shifted to the left by dimX), and DR(M) e Perv((Cz) by 
[14]. (We assume that an analytic holonomic ^-Module on a smooth algebraic 
variety has an algebraic stratification. We can use also algebraic (filtered) $)-
Modules [5] by GAGA and the extendability of mixed Hodge Modules.) For 
X = pt, we have 

Theorem 1.3. MHM(pt) is the category of polarizable mixed Q-Hodge structures 
[8]. 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
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Here a mixed Hodge structure is called polarizable if its graded pieces are. 
This result can be generalized to the case of admissible variation of mixed Hodge 
structure in the sense of Steenbrink-Zucker [41] (in the one-dimensional case) 
and Kashiwara [16], cf. Theorem 1.5. 

We say that a mixed Hodge Module Jt is pure of weight n, if Gr^ Jt = 0 
for k i= n. A pure Hodge Module is semi-simple, and a mixed Hodge Module is 
obtained by successive extensions of pure Hodge Modules. We say that a pure 
Hodge Module Jt has strict support if its support is irreducible and Jt has no 
sub or quotient with smaller support. By semisimplicity, a pure Hodge Module 
is a direct sum of pure Hodge Modules with different strict supports, called 
the decomposition by strict support (which is unique). A pure Hodge Module is 
also called a polarizable Hodge Module in [26], and we denote by MHz(X,n)p 

the category of pure Hodge Modules of weight n with strict support Z. Then 
MHz(X, n)p depends only on Z, and Jt e MHZ(I , n)p is generically a polarizable 
variation of Hodge structure in the sense of Griffiths [13]. An important fact 
is that its converse is true: any polarizable variation of Hodge structure can be 
extended uniquely to a pure Hodge Module, i.e. 

Theorem 1.4. We have an equivalence of categories 

MRz(X,n)p ~ VHSgen(Z,n-dimZ)*\ 

Here the right hand side is the category of polarizable variations of Hodge 
structures of weight n — dimZ defined on (nonempty) smooth subvarieties of 
Z. This result may be viewed as analogue of Brylinski's conjecture [6], cf. (5). 
Actually, the notion of polarizable Hodge Module is weaker than that of pure 
Hodge Module. But they coincide by Theorem 1.5 below, because a polarizable 
variation of Hodge structure is an admissible variation of Hodge structure by 
Schmid [37], and pure Hodge Modules are stable by intermediate direct images 
in the sense of [3] by Theorem 1.1 and the estimate of weight for direct images, 
cf. [27, 2.26]. 

Theorem 1.5. Admissible variations of Hodge structures are mixed Hodge Modules, 
cf. [27, 3.27]. 

Since the condition for mixed Hodge Modules is Zariski local, we can construct 
mixed Hodge Modules by induction on dimension, using Theorem 1.5 and the 
following: 

Proposition 1.6. Let g be a function on an algebraic variety X. Put Y = g-1(())> U = 
X\ Y. Let MHM(£7, 7)ex be the category whose objects are pairs of mixed Hodge 
Modules Jt1 on U and Jt" on Y endowed with morphisms u : ipgiiJt' —> Jt",v : 
Jt" —> \pgi\M

f(— 1) such that vu = N, where ipgii is the unipotent monodromy part 
ofipg, and N is the logarithm of the unipotent part of the monodromy, tensored by 
(2ni)~l,E. Then we have an equivalence of categories 

MHM(X) ~ MHM(t/, 7)ex, cf. [27, 2.28]. 

We have also a generalization of the Kodaira vanishing: 
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Theorem 1.7. Let Z be a projective variety with an ample line bundle L, and 
Jt e MHM(Z). Let X be a smooth variety containing Z so that Jt is represented 
by (M,F,K,W) e MHM(X). Then G r ^ D R ^ := Gr^DRM e D(Oz) depends 
only on Jt, and we have 

Hi(Z,Gvp
7DRJt®L) = 0 for / > 0 , 

ff'(Z,Gi£ DRUT ® IT1) = 0 for / < 0 . 

Convention 1.8. In this paper we use left ^-Modules. In [26, 27], right Modules 
are used, because they are more convenient for the theory of direct image and 
duality. For the correspondence between left and right filtered ^-Modules, we 
use ®&x(Qf*x,F) with Gif Q$mX = 0 for j f -dimJSf, see [28, 34]. 

2. Idea of Construction 

2.1 One-Dimensional Case [37] 

Let S be an open disc with coordinate t, and S* = S \ {0}. Let IH be a polarized 
variation of Hodge structure of weight n on S* with L the underlying local 
system defined over Q. For simplicity, we assume the monodromy is unipotent. 
We denote by (9s* (L) the corresponding locally free $s*-Module with integrable 
connection, and F the Hodge filtration on it. Let S£ be Deligne's canonical 
extension [9] of tfV(L). By Schmid's nilpotent orbit theorem [37], the filtration F 
on Gs* (L) is naturally extended to a filtration F of if whose graduation is free. 
Let J£?(0) = y/ta* the fiber of the vector bundle & at the origin. Let % : S* -• S* 
be a universal covering, and L^ = r(S*,n*L) the multivalued sections of L. Then 
we have a canonical isomorphism 

.s^oj-caL«,. (l) 

See [9]. The left hand side of (1) is equipped with the induced filtration F, called 
the limit Hodge filtration, and the right hand side with rational structure. The 
theorem of Schmid [37] (conjectured by Deligne) asserts that they form a mixed 
Hodge structure, called the limiting mixed Hodge structure, where the weight 
filtration is given by the monodromy filtration shifted by n. Here the monodromy 
filtration FF is a finite increasing filtration which is uniquely characterized by 
the properties: NWj c WH2 and JV' : Gr^ -^ Grf, (i > 0), cf. [37, 11], and 
N is the logarithm of the unipotent part of the monodromy. The primitive 
part P Gr£, := Ker{iV/+1 : GrJÇJ., -> GrJL,_2} is naturally polarized by the 
polarization induced by that of the variation of Hodge structure (combined 
with the isomorphism N1). Since the above construction may be viewed as the 
definition of the nearby cycle functor y)t [10] for variations of Hodge structures, 
the result of Schmid can be interpreted as the stability theorem of polarized 
variations of Hodge structures under P Gr^ \pt in the one-dimensional case. 
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2.2 Geometric Case [38] 

Assume there is a projective morphism / : X —> S such that / is smooth 
over S*, f~x(0) is a reduced divisor with normal crossings, and L = Rnf*Qx\s*-
Steenbrink [38] constructed a theory which gives a geometric proof of Schmid's 
theorem (see [39] for the nonreduced case). Although the notion of perverse 
sheaf and monodromy filtration on it was not yet known at that time, he 
constructed the weight filtration on the nearby cycle sheaf ipfQx [10], which 
represents the monodromy filtration in the abelian category of perverse sheaves 
(up to a shift of complex, cf. [3]). Moreover, he showed that the primitive part 
P Grf y)fQx is a direct sum of constant sheaves supported on the intersections 
of i + 1 irreducible components of the singular fiber (up to Tate twist and shift 
of complex), i.e. the stability of constant sheaves by P Grf \pf in the reduced 
normal crossing case. Using F2-degeneration of the monodromy weight spectral 
sequence, this stability implies Schmid's theorem: the stability of the variations 
of Hodge structures by P GrJ^ xpt, because the direct image of the monodromy 
filtration on \pfQx induces the monodromy filtration on xptL (cf. also [26, 35] for 
further information). 

The above construction can be extended to the vanishing cycle sheaf cpfQx 
[10]. Using these, we can show the decomposition theorem for the direct image 
of filtered ^-Module Jf(&x,F) which implies that of TR.f*Qx, cf. [24, II]. The 
proof uses the F-filtration on the direct image, which was inspired by Varchenko's 
theory of asymptotic Hodge filtration [42], see also [24,1]. (Note that the definition 
of the direct image of filtered ^-Modules in [24] differs from the standard one 
by a shift of complex and filtration.) 

2.3 Generalization 

The first step to generalize the above proof of the decomposition theorem is 
the use of the filtration of Kashiwara [17] and Malgrange [22]. Let g be a 
holomorphic function on X, and ig : X —> X x C the embedding by graph. For 
a filtered holonomic ^-Module (M,F) (i.e. M is holonomic and F is a good 
filtration), we define (M,F) = Jt (M,F) (i.e. M = M[dt], cf. [28, (1.3)] for F). 
By [15], M has the filtration of Kashiwara and Malgrange, denoted by V. We 
assume M regular and quasi-unipotent (i.e. V is indexed by Q, and tdt — a is 
nilpotent on Gry locally on X) and 

(2) 

We define 

t : FpV
aM ^ FPV«+1M for a > - 1 , 

dt-.FpGr^M^Fp+iGi^M for a < 0 . 

ipt(M, F) = ©_1<es0 Gra
v(M, F), 

q>g(M,F) = ©_i<a<0 Gra
v(M,F) © G r ^ M ^ - l ] ) . 

(Same for y)gM, q>sM, forgetting F.) Then we have canonical isomorphisms 

DRV gM = v g DRM[-l ] , DR(pgM = <pgDRM[-l], (4) 

generalizing (1). This was obtained by Malgrange [22] in the case M = &x, 
and the general regular holonomic case is due to Kashiwara [17]. In the case 
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when the Hodge filtrations F of y)gM,cpgM are good and (2) is satisfied, these 
isomorphisms were also constructed in [26, 3.4.12] generalizing the construction 
of Malgrange (see also [33, 2.4] for further information), and used in the proof 
of the main theorems in an essential way. 

For a smooth variety X, we define MU(X, n), the category of Hodge Modules 
of weight n, to be the largest full subcategory of the category of filtered holonomic 
^-Modules with rational structure as in 1, whose objects admit decomposition by 
strict support and are stable by: (i) restrictions to Zariski-open subsets, (ii) strict 
support decomposition, (iii) Gvw y)g, Gr^ cpg for any function g, where W is the 
monodromy filtration shifted by n — 1 or n. Here (2) is always assumed when we 
take y)g,cpg. We assume also that, if an object has point support, it is isomorphic 
to the direct image of Deligne's Q-Hodge structure of weight n [8], cf. [26, 5.1.6]. 
The conditions are well-defined by induction on the dimension of the support. In 
fact, if g~~l(0) ZD suppM, we have xpgM = 0, and cpg(M,F) = (M,F) is equivalent 
to gFpM c Fp^M and follows from (2), cf. [26, 3.2.6]. So, in the stability by 
(iii), it is enough to consider the case when (M,F,K) has strict support and 
g_1(0) ^ suppM, using the stability by (ii). Moreover, in this case, it is enough 
to assume the stability by GrH ' y)g with condition (2) and the surjectivity of dt in 
(2) for a = 0, cf. [26, 5.1.15]. Note that the last conditions are equivalent to 

FpM = ]T dKV^MHßj-'Fp^M) (5) 
i 

where j : X x (C* —• X x (C. This means that the Hodge filtration F is uniquely 
determined by its restriction to the complement of g_ 1 (0) combined with the fil
tration V associated with g. The inverse functor of the equivalence of categories 
in Theorem 1.4 is given in this way, where we use also the regularity of the un
derlying ^-Modules [5, 18, 23]. (In the case of analytic ^-Modules, the regularity 
follows from the above inductive condition of Hodge Module, cf. [26, 5.1.18], but 
we have to assume it at infinity for algebraic ^-Modules. Note that the regularity 
[5, 18, 23] is used only for the uniqueness of the underlying ^-Modules of open 
direct images.) So Theorem 1.4 may be viewed as analogue of Brylinski conjec
ture [6], where Kashiwara-Kawai's order filtration is replaced by the filtration 
V. Here it is enough to take one g locally on X. But, for the stability by direct 
images, it is necessary to consider all g, because we have to deal with all / and 
the pull-backs of functions by / . 

A polarization of a Hodge Module J/t = (M,F,K) e M¥L(X,n) is a duality 
JDJt = Jt(n), whose condition is defined inductively by the stability under 
PGvw y)g, cf. [26, 5.2.10]. Here (n) is the Tate twist, which is defined essentially 
by the shift of filtration by n, cf. [27, (2.17.7)], and the dual EUT = (JD(M,F),BK) 
is defined using the theory of dual of filtered induced ^-Modules and filtered 
differential complexes (e.g. its compatibility with de Rham functor), cf. [26, 2.4-
5]. Note that D(M,F) is well-defined (e.g. D 2 = id holds), because Gr^M is 
Cohen-Macaulay over GrF 3)x, cf. [26, 5.1.13], so that the filtration of the dual 
complex D(M, F) is strict and 1D(M, F) is filtered quasi-isomorphic to a filtered 
^x-Module. The category M H ( I , n)p is defined to be the category of polarizable 
Hodge Modules. 

The merit of the inductive definition using nearby and vanishing cycles is 
that we can show by induction on dimension the stability of polarizable Hodge 
Modules by the cohomological direct image under a projective morphism and 
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also the relative hard Lefschetz property. In fact, generalizing the proof of the 
decomposition theorem in 2.2, we can prove inductively the stability of the 
stability condition in the definition of polarizable Hodge Modules by the direct 
image, where the direct image of filtered ̂ -Modules is defined using a canonical 
resolution by filtered induced ^-Modules [26] (this definition coincides with that 
of Brylinski and Laumon using a factorization of a morphism /) . A key point of 
the proof is the strictness of the Hodge filtration F on the direct image, which 
allows us to deal with filtered Modules instead of filtered complexes. When the 
image of the morphism is a point, we use Lefschetz pencil, and the assertion 
is reduced to the case of the projection of IP1 to a point. Then we can apply 
Zucker's Hodge theory [44]. For the induced polarization on the direct image, 
we use also the duality of filtered ^-Modules for a proper morphism and its 
compatibility with Verdier duality [43], see [26, 2.5]. It should be noted that 
the definition of Hodge Module is obtained by axiomatizing some arguments 
which are repeatedly used in the proof of the stability by projective direct images. 
Combining with 1.4, we get a canonical pure Hodge structure on the intersection 
cohomology of a polarizable variation of Hodge structure. This Hodge structure 
coincides with that of Cattani-Kaplan-Schmid [7] and Kashiwara-Kawai [19, 20] 
where the singularity of the variation is a divisor with normal crossings. 

2.4 Mixed Case 
Once the pure objects are constructed, it is not difficult to define the mixed 
objects. We denote by MKW(X)P the category of (M,F,K,W) as in 1 such 
that Grjf (M,F,K) G MR(X,n)p. We can show by induction on dimension that 
MHW(X)P is an abelian category such that every morphism is strictly compatible 
with the filtrations F and PF in a strong sense, cf. [26, 5.1.14]. 

By definition, an object of MHW(X)P is obtained by successive extension 
of pure Hodge Modules. Here arbitrary extensions are not allowed for mixed 
Hodge Modules, and we control the extensions by using mainly the stability by 
nearby cycle and vanishing cycle functors. The imposed conditions are natural 
generalizations of those of Steenbrink-Zucker [41] : the existence of the relative 
monodromy filtration and some condition on the filtrations F and W (i.e. the 
compatibility [26,1.1.13] of the three filtrations F, W and V on M), cf. [27, 2.2-3]. 
We define the full subcategory of mixed Hodge Modules MHM(X) in MHW(I)P 

using the stability by nearby cycle and vanishing cycle functors, smooth pull-
backs and the existence of (and the stability by) the direct images by open 
embeddings whose complements are locally principal divisors, cf. [27, 4.2]. For 
singular X, MHM(I) is defined by using locally defined closed embeddings of 
X into smooth varieties. We can show the stability of the mixed Hodge Modules 
by the cohomological direct image under a projective morphism, generalizing 
the arguments of Steenbrink-Zucker [41] in the one-dimensional base space case. 
Using this, we can construct the functors in Theorem 1.1, where we use also 
Theorem 1.5 and Kashiwara's result [16] for the stability by external products Eä, 
cf. [27]. Combining with 1.5, we get a canonical mixed Hodge structure on the 
cohomology of an admissible variation of mixed Hodge structure. We have also 
the decomposition theorem for the direct image of a pure Hodge Module by a 
proper morphism, using the semisimplicity of pure Hodge Modules, cf. [27, 4.5]. 
(See [30] for the last two functors in 1.1.) 



Mixed Hodge Modules and Applications 731 

3. Applications 

3.1 Roller's Conjecture [21, 32] 

Let X be an irreducible algebraic variety, and IH a polarizable variation of 
Hodge structure of weight n — dim I o n a smooth open subvariety U of X. 
By Theorem 1.4, there exists uniquely a polarizable Hodge Module Jt on X 
extending H. If X is a closed subvariety of smooth Xf, Jt is represented by 
(M,F,K) G MHx(X',n))p. Let J£? be the underlying tfVModule of M with 
Hodge filtration F. Put qÇH) = max{p : Fptf ^ 0} and 

SZ(1H) = Qpx' ®&x, FpM for p = min{p : FPM + 0} . 

Then, S*(IH) is an extension of Qf}mU ®^ F^(H)if, which is expressed using the 
filtration V, cf. (5). (It is more natural to use right ^-Modules, cf. 1.8.) 

Let / : X —• Y be a proper surjective morphism of irreducible algebraic vari
eties with relative dimension d. Then for a generic point y e Y, the intersection 
cohomology IHj(Xy9lR\Uy) has a canonical pure Hodge structure, cf. 2.2, where 
Xy = f~x(y) and Uy is the smooth points of U n Xy. They form a variation of 
Hodge structure on a smooth open subvariety of Y, which we denote by H'. As 
a corollary of the decomposition theorem for the direct image of pure Hodge 
Modules, we get 

R/*Sx(lH)^ 0 SY(Mi) [-/]. (6) 

3.2 Illusic's Conjecture [35] 

Let / : X -> S be a projective morphism of a complex manifold to an open disc 
such that Zo := /_1(0) is a divisor with normal crossings. Consider the (second) 
spectral sequence 

F f = Hp(X0,œ
qy>fQx) => Hp+«(Xo,y>fQx)(cï Hp+«(Xt,Q)). (7) 

Here Xt := f~l(t) for t ^ 0 sufficiently near 0, and the last isomorphism depends 
on the lifting of t to the universal covering of S \ {0}. The spectral sequence 
degenerates at F3, and the induced filtration coincides with the kernel filtration 
[41, 45]. This can be generalized to the theory of kernel spectral sequence, cf. [35]. 

3.3 Steenbrink's Conjecture [40, 29] 

Let / : (X,x) —> ((C,0) be a germ of holomorphic function on a complex 
manifold. We define the spectrum Sp(f,x) using the Milnor monodromy and the 
mixed Hodge structure on the vanishing cohomology [40], (cf. also [39, 42]). Here 
we express the spectrum as a fractional Laurent polynomial (i.e., an element of 
(C[t1(/", r-1/"] for some integer n), and multiply t on that of [40] to simplify the 
multiplication of spectra. Assume dim Sing/ = 1, and let {Z/J be the irreducible 
components of Sing/. Let g : (X,x) —• ((C,0) be a linear form (i.e., dg(x) ^ 0) 
such that {/ = g = 0} has isolated singularity. Let mu be the mapping degree of 
the restriction of g to Z .̂ Then, for r E N sufficiently large, we have 
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Sp(f + g'\ x) - Sptf, x) = £ t«u+ßv/mkr(t - l)/(t[^r - 1). (8) 
kj 

Here ockj are the exponents of the spectrum of the restriction of/ to g~l(t)(t =fc 0) 
near Zk, and JS Ĵ G (0,1] are the logarithm (divided by — 2nî) of the eigenvalues 
of the monodromy along Z&. The range of r is determined by the discriminant 
of(f,g). 

3.4 Intersection Cohomology of Link [12] 

Let X be a complex algebraic variety, and Z a closed subvariety of X. Then the 
/in/c of Z in X is defined to be a level set of a suitable real analytic function 
on X which vanishes exactly on Z. We can define a canonical mixed Hodge 
structure on the intersection cohomology of the link, and get estimates of weight, 
e.g. IHl

c(L) has weights < i for i < dimX — dimZ. Using these, we can show, for 
example, that a (real) torus cannot be a link of a subvariety of codimension > 1. 

3.5 Thom-Sebastiani Type Theorems 

Let / and g be holomorphic functions on X and Y respectively. For x e X and 
y G Y, put z = (x, y) G X xY. Then 

Sp(/ + g,z) = Sp(/,x)Sp(g,y). (9) 

(See [36, 42] for the isolated singularity case.) This follows from the Thom-
Sebastiani type theorems for regular holonomic filtered ^-Modules (with Steen
brink) and for mixed Hodge Modules (with Deligne). 

3.6 Algebraic Cycles [31] 

If the Hodge conjecture is true, the mixed motives over C and with Q-coefficients, 
whose existence is still conjectural [1], might be quite close to the mixed Hodge 
structures of geometric origin (using mixed Hodge Modules instead of mixed 
perverse sheaves in [3]). In fact, let QH be the trivial Hodge structure of rank 1 
and type (0,0), and Qf = a*xQ

H, RF (X, QH) = (ax)*Q% with ax : X -• pt. Then 
we can define a cycle class map 

clMH : Cff (X)Q - Ext^MHM(x)go(Qf ,Qf (p))) 

= Ext^HS(Q)BO (QH, RF (X, QH)(p)) 

where CRP(X)Q is the Chow group tensored by Q, MHM(I)g0 is the category 
of mixed Hodge Modules of geometric origin, and MHS(Q)go = MHM(pt)go. By 
the canonical filtration on RF (X, QH), we get a filtration L on the target of the 
morphism such that 

Gri, = ExtUs(<©8<>(Q^tf2p-''(*>Q)(P)), (11) 

and it induces a filtration L on CHP(X)Q via clMH. The cycle map is surjective 
if and only if the Hodge conjecture is true for any variety. In this case Gr^ clMH 
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are also surjective, and we get a filtration L on Cïîp(X)<$ such that (11) holds. 
Compare [4]. Moreover GTì

LCHP(X)Q = 0 for / > p, and this filtration is 
separated if and only if clM H is injective. The injectivity of clM H seems to be 
related with the surjectivity of the cycle map of Bloch's higher Chow group 
CH*(X,1)Q to Ext^H M ( z ) B O(Qf,Q^(p)) . 
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Z,2-Cohomology of Algebraic Varieties 

Leslie Saper* 

Department of Mathematics, Duke University, Durham, NC 27706, USA 

In this article I shall sketch the theory of L2-cohomology and its applications 
in algebraic geometry. The basic principle is that for appropriate Riemannian 
metrics on a smooth, Zariski open subset of a complex projective variety X, 
the L2-cohomology represents invariants of the full variety X, for example, the 
intersection cohomology and its Hodge structure. The primary obstacle to proving 
such results is to relate L2-growth conditions to a suitable theory of "weights" for 
which one can establish a semi-purity theorem. Two examples will be presented 
whose proofs, although rather different, exhibit this pattern: the case of Kahler 
varieties with isolated singularities [37-39], and the case of locally symmetric 
varieties (Zucker's conjecture) [40, 41]. 

1. 1,2-Cohomology 

1.1 Definition and Basic Properties 

References are [10] and [45]. Let M be a Riemannian manifold (assumed oriented 
for simplicity) and E a flat complex vector bundle with a (not necessarily flat) 
Hermitian metric. Let L£(M; IE) denote the Hilbert space of measurable IE-valued 
forms (j) which satisfy the L2-growth condition 

/ 
JM 

<j)\2dV <oo . 
JM 

Note that the dependence of this condition on the metric of M arises in two 
opposing fashions: in the metric on the exterior powers of the cotangent bundle, 
and in the volume form. 

Definition 1. The L2-cohomology Hfa(M;lE) is the cohomology of the complex 

Dom(rf) = {(j) G L'2(M;1B) \ d<t> G L^+ 1(M,E)}. 

Here dcj? is taken in the sense of currents. 

* The author is an Alfred P. Sloan Research Fellow and is supported in part by NSF 
Grants DMS-8705849 and DMS-8957216. 
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Similarly we can define the L2-3-cohomology Ffp'"-(M;F) if M is a Hermitian 
manifold and F is a Hermitian holomorphic vector bundle. By a regularization 
result of Cheeger [10], we obtain the same cohomology in either case if we require 
(j) above to be smooth. 

Quasi-isometry Invariance. Although in general the L2-cohomology depends on 
the metrics involved, it is an invariant of their quasi-isometry class (two metrics 
gi, g2 are quasi-isometric if Cg2 < gi < C'g2 for constants C, C > 0). 

Hodge Theory. Clearly we have 

H(-2)(M;1E) = Ker(d) /Range(d) 0 Range(d)/ Range(d) 

= Ker(d) n Ker(d*) 0 Range(d)/ Range(d), 
(1) 

where d* is the Hubert space adjoint. In general Dom(d*) is smaller than 
Dom((5) = {4> G L^(M ;E) [ oc/) G L'{~X(M;T)}, where ö is the formal adjqint to 
d; by a result of Gaffney [15], they are equal if M is complete. 

Since the second term of (1) is either 0 or infinite dimensional, we have the 
following result: 

Theorem 2. Say Range(d) is closed (e.g., if dim H{2)(M;*E) < oo). Then 
1) Hodge Theorem: 

iJ("2)(M;E) = Ker(d) n Ker(<f ) = Ker(A), 

where A = d*d +dd* has domain in the sense of unbounded operators. 
2) Poincaré Duality: If furthermore, d* = ô (e.g., if M is complete), then the 

Hodge star operator induces conjugate linear isomorphisms 

i f j 2 ) ( M ; l E ) ^ > ^ f ( M ; E * ) , 

where m = dim M. 

Kahler Package. Assume now that M is a complete Kahler manifold and E = C 
In this case the formal identity A = 2D between the d- and 3-Laplacians holds 
in the sense of unbounded operators [47]. Consequently we have the 

Theorem 3. Let M bè complete Kahler of dimension n and say Range(d) is closed. 
Then 

1) Hodge Decomposition: 

Hfa{M;V= ® H ( ^(M;C) . 
p+q=i 

2) Hard Lefschetz: IfL denotes the operation of wedging with the Kahler class, 
there are isomorphisms 

V :H(V(M;C)^H("+'(M;<C). 
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Analogous statements hold when E underlies a polarizable variation of Hodge 
structure (see [44]). 

1.2 Example: Conical Metrics 

Let X be a closed triangulated pseudomanifold of dimension n, that is, a compact 
simplicial complex which equals the union of its w-simplices and in which every 
(n — l)-simplex is a boundary face of exactly two n-simplices. For example, it is 
well-known that any compact complex analytic variety admits such a structure. 
If I a X is the codimension 2 skeleton, then XrGg = X \ I is naturally a smooth 
manifold, dense in X. 

Definition 4. A Riemannian metric on Xreg is called conical if it is quasi-isometric 
to a piecewise fiat metric with respect to the triangulation of X. 

Although the metric on Xreg is incomplete, Cheeger [10] has proved the 

Theorem 5. If X is an admissible triangulated pseudomanifold, the Li-cohomology 
Hfy(XTGg;([!) of a conical metric is finite dimensional and invariant under subdivi
sion. It satisfies the Hodge theorem and (if XrGg is oriented) Poincaré duality. 

Here admissibility is an inductively defined condition on the links which is 
always satisfied if X admits a stratification with even codimensional strata (e.g., 
a complex analytic variety). 

The proof of Theorem 5 is based on the following local calculation [10] : 

Proposition 6. Let N be a Riemannian manifold of dimension m — 1; if m is even 
assume Range(rf) is closed in L™ ~ (N). Let c(N) be the closed cone on N and let 
its regular part c(N)TGg have the conical metric dx2 + x2dslf. Then 

^WV-.Q-l^^ \<m'i- (2) 2(2)V 

0 / > m/2. 

The truncation at middle degree arises from the interplay between the volume 
form and the metrics on the bundles of forms; see Sect. 4.1 for a further discussion 
in the case of a complete Kahler metric. 

2. Intersection Cohomology 

Independently of the preceding developments, and also partly motivated by the 
desire to find a homology theory on singular spaces satisfying Poincaré duality, 
Goresky and MacPherson had also encountered a local calculation such as (2), 
but in the topological context of their intersection homology. References are [5, 
16, 17]; see also the historical survey [20]. 
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2.1 Definition and Basic Properties 

Let X = X° ZD I = X1 ZD X2 =3 • • • => Xn be a stratified topological pseudomani
fold. In other words, the strata Sk = Xk\Xk+i are manifolds of even codimension 
2k and S° is dense. (The restriction to even codimensional strata is not essen
tial.) Furthermore, a point in Sk has a cofinal system of local neighborhoods 
of the form B k c(L), where B is a ball in Sk and L is a stratified topological 
pseudomanifold òf dimension 2k— 1. 

Lét E be a flat complex vector bundle on Xrcg = X\I. The (middle perversity) 
intersection cohomology IH'(X;JE) was originally defined by imposing restrictions 
on the dimension of intersection of a geometric chain with the singular strata; it 
may also be defined as the hypercohomology H^Xi^WCE)), where 

• J ^ ' ( E ) = -z<nRin*...T<IRZI*E (3) 

is Deligne's shèaf. Here ^ : X \ Xk -̂> X \ Xk+1 is the inclusion and T<fc truncates 
sheaf cohomology in degrees > k. 

Intersection cohomology is independent of the choice of stratification; when 
X is smooth and E is everywhere defined, it reduces to ordinary cohomology. 
True to its name, there is an intersection pairing effecting Poincaré duality. And 
when X is a projective algebraic variety and E underlies a polarizable variation 
of Hodge structure, Saito [35, 36] has given IH*(X;1E) a natural Hódge structure. 

It is clear from (3) that intersection cohomology admits a-local characteri
zation. Namely, for x G Sk, let U = B x c(L) be a local neighborhood of x as 
above. Then the local calculation 

/ H ' ( l / ; E ) - / ^ ( c ( L ) ; E ) - ( ^ ' ( L ; ] E ) \<k> (4) 
[ 0 i > k, 

essentially characterizes intersection cohomology; here the isomorphism for i < k 
is given by the natural "attaching" map. 

2.2 Relations with F2-Cohomology 

In view of (2) and (4), Cheeger [10] proved: 

Theorem 8. Let XKg have a conical metric. Then FT(-2)(X
reg;C) = IH9(X;€). 

One is thus led to try extending the classical Hodge-de Rham theory to 
singular spaces by using metrics on Xreg which somehow reflect the singular com
pactification. However, for complex projective varieties, it would be more fruitful 
to have a Kahler metric. It is rare that there exist Kahler conical metrics, but 
there is a natural quasi-isometry class of Kahler metrics - namely, those induced 
from the Fubini-Stüdy metric by a projective embedding. Cheeger, Goresky, and 
MacPherson have conjectured [12] : 
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Conjecture 9. For the metric induced on XTeg by the Fubini-Study metric of any pro
jective embedding, Hfa(XTGg;(E) = IH'(X;(C). Furthermore, this induces a natural 
Hodge decomposition. 

Cheeger's work [10, 11] covers the case of varieties with analytically conical 
singularities, while Hsiang and Pati [18] and Nagase [26] have established the first 
part of the conjecture for surfaces with isolated singularities. Recently Ohsawa 
[31] has proven the first part for varieties with isolated singularities, using a result 
of Saper [39] (see Theorem 11 below). Since the metric is incomplete, the second 
part of the conjecture does not follow from Theorem 3. Nagase [25] has obtained 
partial results for surfaces; Pardon [32] has shown that a Hodge decomposition 
cannot in general be given by the L2-3-cohomology groups without conceivably 
imposing boundary conditions. 

3. Complete Kahler Metrics 

Let X be a projective algebraic variety of complex dimension n. In view of 
Theorem 3, we turn to complete Kahler metrics on Xveg in order to construct 
Hodge decompositions on intersection cohomology. 

3.1 Degenerating Coefficients 

Assume X is smooth and let E underlie a polarizable variation of Hodge 
structure on Xreg = X \ D, where D is a divisor with normal crossings. Endow 
Xreg with a complete Kahler metric which has Poincaré singularities normal 
to each component of D; in local coordinates, if D = (z\ • • -zj(), the metric is 
quasi-isometric to k _ „ 

]C i 12/1 ? I ' l2\2 + X &z\fà\ • (5) 
^|z,f(log|z,f)2 . ^ 

The isomorphism H fa (X™g ; E) ^ IH'(X;B) was proved by Zucker [44] when 
n = 1 ; the general case was proved independently by Cattani, Kaplan, and Schmid 
[9] and Kashiwara and Kawai [19]. Note that when E is trivial, the theorem is 
in fact quite simple; the main point here is the degeneration of coefficients. 

3.2 Locally Symmetric Varieties 

The prime examples of complete Kahler metrics naturally associated to singular 
varieties are those on locally symmetric varieties. 

Let D be a bounded symmetric domain endowed with the Bergman metric, or 
equivalently, a Hermitian symmetric space of noncompact type G/K equipped 
with a group invariant metric. For F an arithmetically defined group of au
tomorphisms of D, the quotient F\D is called a locally symmetric variety. It 
may have finite quotient singularities, but this is not important here; the main 
point is that it may be noncompact and that there is a natural, though singular, 
compactification r\D* (due to Baily and Borei [1] and Satake [42]) as a normal 
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projective variety. Briefly, F\D* is obtained by adjoining arithmetic quotients 
TF\F of rational boundary components F of D, which are themselves locally 
symmetric varieties of lower rank and dimension. 

For example, when D is the complex «-ball, F\D* is formed by adding singular 
cusp points. After resolving the singularities with a smooth exceptional divisor, 
the metric is quasi-isometric to (compare (5)) 

dzjdzj 1 V // //- (G\ 

kipaogizii^ + i i o g ^ p i ^ ^ ^ ' - (6) 

The following theorem was conjectured by Zucker after verifying some cases 
with G having Q-rank 1 [45]. It was established independently by Saper and 
Stern [40, 41], and by Looijenga [22]; Looijenga and Rapoport have also given 
a third proof [23]. Previously special cases were proven by Borei [4], Borei and 
Casselman [6] (see also [8]), and Zucker [45, 46]. An indication of Saper and 
Stern's proof will be given in Sect. 4.3. 

Theorem 10. Let E be a finite dimensional complex representation space of G with 
admissible metric, and let E be the corresponding metrized local system on F \D. 
Then we have a natural isomorphism 

H(2)(r\D;B) S IH'(r\D*;E). 

3.3 Kahler Varieties 

For a general Kahler variety X, one would like a complete Kahler metric on Z r e g 

analogous to those on locally symmetric varieties. In particular, one would like a 
generalization of Theorem 10. 

Note that one could always take a resolution X —> X with exceptional divisor 
D having normal crossings, and consider a Poincaré metric on X\D as in Sect. 3.1. 
However this is not the metric we want, since its L2-cohomology is strictly larger 
than IH'(X;(D), namely H'(X;€). Instead, Saper [37-39] constructed a metric 
which, locally on D, is quasi-isometric (modulo a perturbation) to the metrics on 
toroidal resolutions of locally symmetric models. Using this metric (which depends 
on X), he established the following theorem; a brief indication of the proof will 
be given in Sect. 4.2. The case of isolated analytically conical singularities was 
also proven later with a different metric by Ohsawa [30] (see also [28, 29]). 

Theorem 11. Let X be a Kahler variety with isolated singularities. There exists an 
infinite discrete set of complete Kahler metrics on XTeg for which we have 

H(2)(X^;(C)^IH-(X;(C) (7) 

and 
H(

0^(Xre«;C) = / f | - ( l ; (C) . (8) 

Here X is any resolution of X. 
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A priori, the different metrics referred to in the theorem could induce different 
Hodge decompositions on IH'(X;<ü) via (7); Zucker [47] has shown in fact that 
they all agree with Saito's Hodge structure. This is used in the proof of (8), 
which asserts that the L2-S-Betti numbers h,?- are birational invariants. The 

_ W'd 

corresponding assertion for the L2-3-index ^a(~ Wtf^ji w a s conjectured in the 
y (2),ö 

contexts of Conjecture 9 and Theorem 10 by MacPherson [24]. Recently Pardon 
and Stern [33] have given a proof of MacPherson's conjecture (and (8)) for the 
metric induced from the Fubini-Study metric provided one uses L2-d-cohomology 
with Dirichlet boundary conditions. 

4. Outline of Proofs 

Let X be a projective variety of dimension n. To establish the isomorphism 
FT(-2)(X

reg;E) S IH'(X;1B) for some metric on Xreg, the main point is to show 
that L2-cohomology has the correct local calculation (see (4)). That is, for a 
neighborhood U of a point on a complex codimension k stratum with link L, we 
need 

tf(2)(L/reS;E) S H{2)(c(L)^;lE) s j ^ ( ^ ^ ' < k> (9) 
I U 7 ^ /C. 

In practise, proving just the vanishing condition is usually sufficient. 

4.1 Heuristic Arguments 

In order to develop a heuristic device for understanding why the vanishing result 
might hold, applicable to both Theorem 10 and Theorem 11, we will consider 
in this subsection the basic example of a space X with a single singular stratum 
of codimension k. For simplicity we will only treat constant coefficients, however 
this is not necessary. 

Write c(L)reg = R^° x L with r the coordinate on the first factor (r —• oo near 
the vertex) and n the projection on the second. Analogously to Borel's formula 
[3] for the metric on a cusp of a locally symmetric variety, consider the metric 

y 

on c(L)Kg, where TL = 0 r TLy is some decomposition into subbundles indexed 
by weights y G R^° and ds2 is a metric on TLy. Then 

dV = e-òrdrdVL (10) 

where è = (1/2) £y(dim TLy)y is the. middle weight, while for a pure wedge 
product xp = ipi A • • • A \pi (xpj G F(TL*yj)) with weight ß = ^yj, 

|7T>|2 = ^ M Ì . (11) 
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By separation of variables, it is reasonable to assume that an L2-cohomology 
class can be represented either as n*\p or f(r)dt A %*\p, where \p is a closed 
form on L. From (10) and (11) we immediately see that n*xp is L2 if and only 
if IJ, < 5. On the other hand, if f(r)dr A n*xp is L2, it may be expressed as 
a cocycle via (f$ f(t)dt)n*xp or (— f™ f(t)di)7z*tp, which are L2 precisely when 
\x < ö or fi> ö respectively [45]. This suggests that if the above notion of weight 
actually descends to a decomposition (or at least a'filtration) of #'(L;(C) and 
H(2)(c(L)reg;(C), then ' ' ' ' 

H(2)(c(L)reg;(C)Ai 

Hl(L;V), 

^ ( R ^ O H ' - ^ L ; ^ 

0 

ß<Ö, 

H = ö, 

ß>ö, 

(12) 

where the subscript \i denotes the part of weight p.. The group #(2)(R^0) is infinite 
dimensional because, as is well known, Range(d) on R-° is not closed. 

Even ignoring the infinite dimensional contribution, (12),does not achieve 
the desired truncation (9) at and above middle degree; instead we encounter a 
truncation at and above middle weight. We are thus forced to prove a semi-purity 
result, which that asserts these two truncations are the same, namely 

JT(L;<C)A< = 0 f o r \ \ 
> k and u < 5, or 

(13) < k and \i > ö . 

4.2 Kahler Varieties with Isolated Singularities 

Assume X has isolated singularities and let U be a contractible neighborhood of 
SingX. We will realize the above heuristic argument in the proof of Theorem 11 
by relating L2-growth weights in UTGg to the weights of the mixed Hodge structure 
ontf-(Ureg;C), 

Let X —> X be a resolution of X wjth normal crossing exceptional divisor 
D having smooth components. Let D^ denote the disjoint union of p-fold 
intersections of components of D. Recall [13] that the q-th row of the Fi term of 
the weight spectral sequence converging to Ff'(Ureg;C) is 

> Hq-\D®) —» Hq~2(D{1)) - ^ Hq(D{1)) —* Hq(D®) -^ • • • , 

where the differentials are formed from alternating sums of Gysin maps and of 
restriction maps. 

On the other hand, a principal technical result of [39] is the construction 
of an analogous spectral sequence {E^f} converging to Hfe(UtQg;<n). In this 
L2 spectral sequence, the q-th row of £(2),i may be represented by forms with 
L2-growth weight q, or by drf\ forms with L2-growth weight q — 1. Consequently 
we see that 

\E~m q<n, 
£(?? = j . flfot**0) ® E7p>n <1 = n + 1, 

[ 0 otherwise, 

which is the rigorous version of (12) (note that ô = n here). 
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The required semi-purity (13) follows from the following stronger result. It 
was deduced as a consequence of the decomposition theorem [2, 35, 36] by 
Steenbrink [43]; an independent proof was given by Navarro Aznar [27]. 

Proposition 12. The weight filtration W of the mixed Hodge structure on H'(Ureg;(C) 
satisfies 

Gr^(L/-;C) = 0 for { ' * " ""* »* ' ' " 
* [i <n and \i > i. 

Consequently, E2
M = 0 for q — p > n, p < 0 or q — p < n, p > 0. 

For the intersection cohomology of the link of nonisolated singularities, the 
proposition has been generalized by Durfee and Saito [14]. 

4.3 Locally Symmetric Varieties 

Let X now be the Baily-Borel-Satake compactification of a locally symmetric 
variety; we present some of the highlights in Saper and Stern's proof of Theo
rem 10, Zucker's conjecture. The technical approach used is to establish on c(L)TGg 

the estimate 

||d0||2 + ||d>||2 > elicli2 ((j) G Dom(rf)nDom(rf*)5 deg0 > k), (14) 

where c > 0; it is well-known that this implies the desired vanishing of L2-
cohomology (9). The argument follows the heuristic reasoning of Sect. 4.1 by 
exploiting the fairly immediate connection between L2-growth weights and Lie-
theoretic weights. In contrast, the proof of Looijenga [22] (and even more so, 
Looijenga and Rapoport [23]) passes from L2-growth weights to mixed Hodge 
weights via a local Hecke operator. 

When H is a Lie subgroup of G, we will denote the Lie algebra of H by 
I), and when appropriate we will use the notation F# (resp. KH) to denote the 
arithmetic subgroup (resp. maximal compact subgroup) induced in H by F (resp. 
K). 

For simplicity, we begin by assuming we are in the Q-rank 1 case, with a single 
boundary component F. Let Z = A ix °Z be the centralizer of F, where A = IR+ 

is a one-dimensional Q-split torus representing the dilations transverse to F, and 
°Z is a certain complement, representing movement in the link directions. The 
link L is rz\°Z/Kz ; thus since A commutes with Kz, there is an adjoint action 
of A on the tangent bundle TL. We decompose TL into weight spaces 0 TLy 

under this action; after we have fixed a coordinate r on a (with r —> 00 near F), 
we may by abuse of notation consider the weights y as nonnegative real numbers. 
Then Borel's formula for the metric [3] is 

d^ + Ys^'ds), 
y 

where ds2 is a metric on TLy. In fact, after suitably rescaling r, we have y = 0, 
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1, or 2. Thus we see the connection between L2-growth weights and Lie-theoretic 
weights. 

It turns out that it suffices to prove (14) assuming that <j> is a weight vector 
for the induced action of a, say of weight \i. It also suffices to assume that $ is 
an eigenvector for dr A ig/dr, say with eigenvalue j ; note that j = I (resp. 0) if 
(j) belongs to (resp. is orthogonal to) the ideal generated by dr. In realizing the 
previous heuristic reasoning of Sect. 4.1, we never actually pass to cohomology; 
we merely seek to establish the estimate (14) for all possible values of p and j . 
Thus the first step is accomplished by proving the estimate 

||d0||2 + N > | | 2 > ( ^ - 5 ) 2 | | 0 | | 2 + ( ^ - 5 ) ( l - 7 ) / \cß\2dVL, (15) 
Jdc{L) 

where S is the middle weight (the weight of a on (Adim33) )• This proves (14) 
whenever 

p ^ ö and 7 = 1, or 

p>ö, 

which corresponds to (12) of the heuristic argument. 
For the second step, we concentrate on the link. Decompose °Z = M \xN, 

where M is reductive and JV" is the unipotent radical. Thus the link fibers over 
rM\M/Kz with nilmanifold fiber rN\N. By a result of Zucker [45], we may 
assume our forms are harmonic in the fibers. The Koszul Laplacian Am$s on 
A -(m / Iz)* ® Hm(n;E) ®<5 extends to an action on forms and it suffices to assume 
that (f) is also an eigenvector of Am)o, say with eigenvalue v. Similarly to (15), we 
may prove the estimate 

| | ^ | | 2 + ||rf>ll2>v||</>||2. (16) 

The following proposition tells us when (16) yields a nontrivial estimate; it is 
the analogue of the heuristic semi-purity (13). 

Proposition 13. In the above context, 

deg 

deg (j) — j <k and p>ö. 

~ , ( degc/)-j>k and fi<ö, or 
v > 0 for < (17) 

{<>-

The first line of (17) follows from [41, Prop. 10.2, Prop. 11.1, §12]; the second 
line follows by a dual argument. The proof uses a result of Raghunathan [34], 
valid for any coefficient sytem over FM\M/KZ, to obtain a condition equivalent to 
v = 0; a Weyl group argument using Kostant's theorem [21] allows us to analyze 
this for the coefficients H '(n; E) ®ö. In the R-rank 1 case, the proposition reduces 
to a result of Casselman [7]. 

In the case of Q-rank > 1, we form a distinguished cover of c(L)VQg, with 
each open set consisting of the points that are near a particular flag of boundary 
components. The above argument generalizes to prove the estimate for forms 
compactly supported in each such open set; one replaces Z by the Q-parabolic 
subgroup ß which is the normalizer of the corresponding flag. In order to combine 



L2-Cohomology of Algebraic Varieties 745 

the separate estimates into one for all of c(L)reg, we use a partition of unity {ilo}', 
terms involving \diio] arise which can be controlled by choosing the elements of 
the distinguished cover to have sufficiently large overlap. 
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Introduction 

Classically, Hodge theory and related constructions provided extra structure to 
abelian topological invariants of the usual topological spaces associated to alge
braic varieties over (C. I would like to explain how, in analogy with these abelian 
constructions, certain nonabelian topological invariants of complex algebraic 
varieties have extra structures. 

We will be concerned with two related invariants, the space R of framed 
71-dimensional representations of %\(X,x), and M, its universal categorical quo
tient by the action of G£(n). These are related to the nonabelian cohomology 
H1(X,G^(n)), which is the set of isomorphism classes of representations, and 
which has a structure of non-Hausdorff space. The moduli space M is the set 
of Jordan equivalence classes of representations, the universal Hausdorff space 
to which the cohomology space maps. The representation space R is the coho
mology of X relative to a choice of base point x. We will interpret R and M as 
nonabelian analogues of the abelian cohomology H1(X,(C). 

The Nonabelian Hodge Theorem 

Suppose X is smooth and projective over C A harmonic bundle on X is a C00 

vector bundle E with differential operators d and d, and algebraic operators 9 and 
8 (operators from E to one-forms with coefficients in E), such that the following 
hold. There exists a metric K so that ô + ô is a unitary connection and 8 + 8 is 
self adjoint. And if we set D = d + d + 8 + 8 and D" = d + 8, then D2 = 0 and 
(D")2 = 0. With these conditions, (E,D) is a vector bundle with flat connection, 
and (E,d,9) is a Higgs bundle: a holomorphic vector bundle with holomorphic 
section 0 e H°(End(E) ® ß^) such that 8 A 9 = 0. Fix a class of Kahler metric 
for X. A Higgs bundle is stable (resp. semistable) if, for any coherent subsheaf 
F cz E preserved by 9 with 0 < rk(F) < rk(F), we have 

deg(F)/rk(F) < (resp. <) deg(£)/rk(£). 

Proceedings of the International Congress 
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Theorem 1. There is a natural equivalence between the categories of harmonic bun
dles on X and semisimple flat bundles (or representations of %\(X)). There is a 
natural equivalence between the categories of harmonic bundles and direct sums of 
stable Higgs bundles with vanishing Chern classes. The resulting correspondence be
tween representations and Higgs bundles can be extended to an equivalence between 
the categories of all representations of%\(X), and all semistable Higgs bundles with 
vanishing Chern classes. 

The first part of the theorem, relating harmonic bundles and representations, 
is due to Codette [2] and Donaldson [6]. It is a generalization of the theorem 
of Eells and Sampson - a harmonic bundle is equivalent to a representation 
of the fundamental group in G£(n) together with an equivariant harmonic map 
from the universal cover of X to G£(n)/U(n). This equivalence uses the Bochner 
formula of Siu [18]. The part relating harmonic bundles and Higgs bundles is 
a generalization of the theorem of Narasimhan and Seshadri [11] (when 0 = 0 
a Higgs bundle is just a vector bundle, and the corresponding representation is 
unitary). Part of this generalization involves the higher dimensional Hermitian-
Yang-Mills theory for stable vector bundles developed by Donaldson [5] and 
Uhlenbeck, Yau [19]. Hitchin [9] gave the definition of stable Higgs bundles, 
and the proof of their correspondence with irreducible flat bundles, when X is a 
curve. These two directions are combined for the general statement in [14]. The 
last statement of the theorem comes from a formality result for the collection of 
complexes which control extensions [17]. 

A generalization to the case of noncompact curves is carried out in [16]. The 
noncompact higher dimensional case is still open (Codette has some recent work 
on nonabelian L2 cohomology in the higher dimensional case). For the remainder 
of the present discussion we will stick with the assumption that X is compact. 

The set of flat bundles is analogous to the abelian de Rham cohomology, while 
the set of Higgs bundles (E, 8) is analogous to the abelian Dolbeault cohomology, 
Hx(®x) © H°(Qx). The first two parts of Theorem 1 may be interpreted as giving 
harmonic representatives for certain nonabelian de Rham and Dolbeault coho
mology classes. The fact that the notion of harmonic representative (harmonic 
bundle) is the same in both cases, is the analogue of the abelian Kahler identity 
Ad = 2A-Q. 

Variations of Hodge Structure. There is a natural <C* action on the category of 
semistable Higgs bundles with vanishing Chern classes, defined by t : (E, 8) »-> 
(E,t8). 

Lemma 2. The semisimple representations which are fixed by this action of (C* are 
exactly those which underly complex variations of Hodge structure. 

Proof. If (E, 8) is fixed, then there is an action of C on E, corresponding to 
a decomposition E = 0 E? with 8 : Ep -» E?'1 ® Ql

x. The spaces Ep will be 
mutually orthogonal with respect to the harmonic metric [14]. A harmonic bundle 
with orthogonal decomposition which is preserved by d and shifted once by 8 is 
exactly a complex variation of Hodge structure. • 
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Rigid Representations. A representation Q of m (X) is rigid if any nearby represen
tation is conjugate to it. The correspondence given by Theorem 1 is continuous on 
the moduli space of semisimple representations (see below). Thus, if a semisimple 
representation is rigid, then it must be fixed by (ST, and Lemma 2 implies that it 
comes from a complex variation of Hodge structure. This can be strengthened: 

Proposition3. Suppose Q is a rigid semisimple representation ofm(X). Then there is 
a (^-variation of Hodge structure FQ such that Q is a direct factor of the monodromy 
representation of VQ®Q (that monodromy is a sum of conjugates of Q). If Q is 
two dimensional, then the variation of Hodge structure FQ can be assumed to have 
Hodge types (1,0) and (0,1) only. 

For an Aadic analogue, suppose X is defined over K cz (C. If a representation 
Q is rigid, and integral at a prime £, then the resulting representation into 
PG£(n,Qj>) descends to a representation of the algebraic fundamental group 
nfg(XK') for some finite extension K'/K. These results suggest the following 
conjectures (which are actually special cases of the conjectures in [15]). 

Conjecture 4 (rigid => motivic). Suppose Q is a rigid semisimple representation of 
n\(X). Then Q is a direct factor in the monodromy representation of a motive (i.e. 
family of varieties) over X. 

Conjecture 5 (rigid => integral). Suppose Q is a rigid semisimple representation of 
ny(X). Then Q is isomorphic to a representation with coefficients which are algebraic 
integers. 

Note that the first would imply the second. By Proposition 3, a rigid integral 
two dimensional representation comes from a family of abelian varieties, so in this 
case the second statement would imply the first. In the case of two dimensional 
representations, one can show that a Zariski dense representation into S/(2) is 
either rigid, or else it is equal in PS7(2) to a representation pulled back (via 
an algebraic map) from a curve with orbifold structure. So Conjecture 5 would 
imply that any such two dimensional representation is pulled back, either from 
a curve with orbifold structure, or a subspace of the moduli space of abelian 
varieties. 

Restrictions on Fundamental Groups. The nonabelian Hodge theorem, and re
lated considerations, have led to restrictions on which groups can be fundamental 
groups of smooth projective varieties (or really, of any compact Kahler mani
folds). This subject begins with Siu's rigidity theorem [18]. Siu's method has been 
used in [1], [2], and [13]. A typical example is: 

Theorem 6 (Carlson, Toledo). Suppose F is a discrete cocompact subgroup of 
SO(n, 1) (n > 2). Then F is not the fundamental group of a compact Kahler mani
fold. 
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The monodromy group of a variation of Hodge structure must be a Hodge 
group [17]. For connected simple groups, the Hodge groups ate all except the 
complex groups, and those isogenous to S/(n,IR) (n > 3), SU*(2n) (n > 3), 
SO(p,q) (p, q odd), Fö(6)5 or ^6(-26)- By work of many people, almost all lattices 
in real groups are known to be rigid, so some further nonexistence results can be 
derived from Proposition 3 (again, indirectly, from Siu's Bochner formula). 

Theorem 7. Suppose G is a real group which is not a Hodge group. Suppose F c= 
G is a rigid lattice. Then F is not the fundamental group of a compact Kahler 
manifold. If F is a group of the above form, and ifFf is a semi-direct product of F 
with any other group (in which F is the quotient), then F' is not the fundamental 
group of a smooth projective variety. 

Siu's technique has been used to obtain other topological information. In a 
related direction, Codette has used harmonic maps to prove some rigidity results 
about lattices in real groups. With a generalization of the Bochner technique 
applying to spaces with quaternionic structures, he proves that any cocompact 
lattice F in Sp(n, 1) (n > 2), or F^"20, is superrigid over archimedean fields [3]. 

Moduli Spaces 

Fix a number n. The Betti versions of our topological invariants are easy to define. 
RB(X,X) is the space of representations of the fundamental group %\(X,x) on the 
fixed space C". It is an affine variety defined by the generators and relations of 
the fundamental group. The group G£(n, (C) acts. There is a universal categorical 
quotient MB(X), sometimes called the character variety. When X is a smooth 
projective variety, R and M have algebraic de Rham and Dolbeault realizations, 
as provided by the following theorem. 

Theorem 8. Suppose X is a smooth projective variety over (C, with a point x e 
X. There exist algebraic varieties RDR PC x), RD0\(X,X), MDR(X) , and M^0\(X), 
quasiprojective over <C, which are moduli spaces as follows. RDR is a fine moduli 
space for the set of(E, V, ß) where (E, V) is a vector bundle with integrable algebraic 
connection and ß : Ex = <En is a frame. RDOI is a fine moduli space for the set of 
(E,8,ß) where (E,8) is a semistable Higgs bundle with vanishing Chern classes, 
and ß is a frame for Ex. The group G«f(n,(C) acts on RDR and RDOI* and MDR and 
Mpoi are the universal categorical quotients. Their points parametrize semisimple 
objects. 

The construction of the moduli space of Higgs bundles was treated in Hitchin's 
paper [9], and later by Nitsure [12], in the case when X is a curve. The higher 
dimensional case is treated in a preprint by the author (containing some errors -
particularly with regard to the next proposition - which have subsequently been 
corrected). 

Proposition 9. The Riemann-Hilbert correspondence between bundles with integrable 
connection and representations provides isomorphisms of the associated complex an
alytic spaces, (RDR)an = (RB)an and (MDR)an = (MB)an. 
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The Riemann-Hilbert correspondence is not algebraic. It provides an example 
of two different algebraic varieties whose associated complex analytic spaces are 
isomorphic, generalizing the example of Serre. 

Proposition 10. The correspondence of Theorem 1 provides a homeomorphism be
tween the usual topological spaces underlying MDOI and MB. However, the extended 
correspondence between the points ofR^0\ and R& provided by the last part of The
orem 1, is not continuous. 

This proposition was treated by Hitchin in his case [9]. Hitchin also discussed 
several important properties of the moduli space MDOI, all of which carry over to 
the case of higher dimensional X: 

Theorem 11. There is a natural algebraic action of(E* on the space MDOI, repre
senting the action defined previously. There is a proper map from MDOI to a vector 
space, compatible with an action of (C* on the vector space having only positive 
weights. Thus if p is any point in MD0I> then the limit \imt^o tp exists in MDOI-

A corollary of this theorem, the continuity of Proposition 10, and the charac
terization of Lemma 2, is that any representation of m (X) can be deformed to a 
complex variation of Hodge structure. This provides the mechanism for proving 
the restrictions stated in the second half of Theorem 7. 

The Gauss-Manin Connection. Suppose X —> S is a smooth projective family 
over a base scheme S, with section of base points x : S —> X. Then the above 
constructions give families of moduli spaces RDR (X/S, x) and M D R C Z / S ) over S. 
There is an analogue of the Gauss-Manin connection. 

Theorem 12. Suppose X/S is smooth and projective with base point x(S). Let (S x 
S)A denote the formal neighborhood of the diagonal in S xS, similarly in S xS xS. 
There is a canonical isomorphism 

<P :P\(RDR(X/S))\(SXS)* -> P*2(RDR(X/S))\{SXS)*> 

such that on (SxSxS)A the cocycle condition pì$((p)pì2(<p) = Ph(ç) is satisfied. The 
same holds for the universal categorical quotient M^R(X/S). These isomorphisms 
are compatible with the local analytic trivializations which arise from the Riemann-
Hilbert correspondence. 

Proof. The category of vector bundles with connection on X/S can be interpreted 
as a category of crystals on X/S. If So cz S is a closed subscheme defined by a 
nilpotent ideal, and Xo is the inverse image of So, then the category of crystals 
on X/S is equivalent to the category of crystals on Xo/S. Hence the scheme 
&DR(X/S) over S depends functorially only on the family Zo —• So and the 
inclusion So cz S, although the existence of R^^(X/S) seems to depend on the 
existence of a family X —> S. This gives a crystal of schemes over the stratifying 
site of S, which is equivalent to the structure described in the theorem. D , 
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At points where S and RDR (X/S) are smooth, the structure provided by this 
theorem may be described more simply as a splitting %*TS —> T(RDR(X/S)) of 
the quotient of tangent bundles, satisfying an integrability condition. If S is an 
artinian scheme, it gives a natural isomorphism R D R ( X / S ) = RDR(XO) X S. 

The Hyperkähler Structure, The identification given by Theorem 1 is not complex 
analytic. Thus, the same space is given several complex structures. 

Theorem 13 (Hitchin). Denote by Ms, the set of smooth points of the moduli 
space. The isomorphism Mpol = M | is smooth. Let I and J denote the complex 
structures on Ms obtained from MQO1 and M | respectively. Then K = IJ is a 
complex structure, and this triple gives a quaternionic structure in the tangent space 
at any point. The resulting quaternionic manifold Ms has a natural hyperkähler 
structure. 

This was pointed out by Hitchin [9] in the case when X is a curve; the general 
case has been treated in [4] and recently, in detail, by Fujiki [7]. We refer to 
Hitchin's paper for the definition of hyperkähler manifold. 

The Space of ^-Connections. Here is a definition due to Deligne - the contents 
of this subsection were all described or outlined by him in correspondence [4]. 
Suppose l e C A X-connection on a vector bundle E is an operator V : E -» 
E ® Qx, such that V(ae) = Xd(a)e + aV(e). If X ^ 0 then a A-connection V 
corresponds to a connection A_1V. On the other hand, if X = 0 then a bundle 
with integrable A-connection is just a Higgs bundle (E, 8), 8 = V. So this definition 
provides a deformation from the notion of connection to the notion of Higgs 
bundle. Its importance comes from the resulting moduli space. 

Theorem 14. Suppose X is smooth and projective over (C, with base point x. There 
exist quasiprojective algebraic varieties W+ —> A1 and Z + —> A1 which are moduli 
spaces for X-connections as follows. W+ is a fine moduli space for (X,E,V,ß) where 
X G A1, (F,V) is a vector bundle with integrable X-connection (semistable with 
vanishing Chern classes in the case X = 0), and ß is a frame for Ex. The group 
G£(n, (C) acts on W+ with universal categorical quotient Z + . 

The fibers Wf, W$, Z+, and ZQ are respectively the moduli spaces RDR, 
RDO15 MDR, and JÎfooi- There are natural actions of (C* on W+ and Z + , defined 
by t : (X,E,V,ß) •-> (tX,E,iS7,ß), covering the standard action on A1. 

Deligne thought of the space of A-connections as a way of approaching the 
notion of quaternionic structure for the singular space M. There are complex 
analytic spaces W and Z over P 1 characterized by the following properties. There 
are actions of (C* covering the standard action on P1 , and antilinear involutions 
G compatible with the action of (C* (and the map to P1) relative the involution 
t\-* (t)"1. There are identifications 

w\Al^w+ z\Al^z+ 
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compatible with the action of C*. On the fibers W\ = RB and Zi ^ MB, the 
involution a takes a representation to the complex conjugate representation. 

A harmonic bundle E yields a family of holomorphic bundles (E, d + X8) with 
A-connections V = Xd + 8, indexed by A e A1. The resulting section A1 —• W+ is 
holomorphic and extends to a section P 1 —• W. Refer to these sections (and their 
projections in Z) as preferred sections. The involution o maps a preferred section 
to the preferred section corresponding to the complex conjugate representation. 
We get a trivialization Z = M x F1 , where M denotes the moduli space of 
harmonic bundles. 

Proposition 15 (Deligne). The trivialization Z = M x P 1 is a homeomorphism, 
and on the set of smooth points it identifies Z s with the twistor space for the 
quaternionic structure of Ms. 

Proof. There is a P 1 of complex structures q in the quaternions. The twistor 
space is Ms x P 1 endowed with a complex structure which makes the horizontal 
projective lines holomorphic, and which endows each fiber Ms x {q} with the 
complex structure q deduced from the quaternionic structure of Ms. One has to 
check that the identification Zq = Ms takes the complex structure of Zq to the 
complex structure q of Ms. D 

Deligne proposes a way of defining the notion of quaternionic structure for a 
singular space such as M by some axioms for a twistor space such as Z. 

Compactifications. The space of A-connections suggested by Deligne turns out to 
be very useful for compactifying the moduli spaces. 

Lemma 16. Suppose z is a point ofZ+. Then the limit limf_>o tz exists in Z + . Also, 
the set of fixed points o / C in Z + is compact. 

Proposition 17. Suppose Z + is any algebraic variety with an algebraic action of<D*, 
such that the limits lim^o tz exist, and such that the set of fixed points is compact. 
Let S+ CZ Z + denote the subset of points s such that limt^œ ts exists in Z+. Then 
there is a universal geometric quotient P = (Z+ — S+)/(L*, and P is a proper 
scheme (not necessarily projective). 

We can apply this construction to the moduli space of A-connections Z + , to 
obtain a compactification of M DR. 

Corollary 18. Let Z + be the space of X-connections. Let PDR = (Z + — S+)/(C* be 
the proper scheme defined above. Then MDR <= PDR is an open subset, providing a 
compactification of the space of bundles with integrable connection. 

Proof. Note that the subset S+ cz Z + is contained in the fiber over 0 e A1. Let 
D = (Z£ — S+)/(C* cz P D R. It is a closed subset, and the complement is equal to 
( Z + - Z + ) / ( C * ^ M D R . • 

There is a similar compactification MDOI <= FDOI where the complement is the 
same divisor D. In fact, these fit together into a relative compactification of Z+ 
over A1. 
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The Hodge Filtration. Here is another use for the space of A-connections. It can 
be thought of as the nonabelian analogue of the Hodge filtration on the de 
Rham moduli space. Suppose F is a finite dimensional vector space with an 
exhaustive decreasing filtration Fp. Define a locally free sheaf Ç(V,F) over A1 as 
the submodule of F (g) <£[t, r1] generated by the t~pFp. 

Lemma 19. The construction Ç provides an equivalence between the category of 
vector spaces with exhaustive decreasing filtrations, and the category of locally free 
sheaves on A1 with action o/C* covering the standard action on A1. 

The vector space V is recovered as the fiber of Ç(V,F) at 1, whereas the fiber 
at 0 is canonically the associated graded Gr^(F). Given a real structure, one 
can glue together £(V,F) and £,(V,F) using the involution ty-> (ï)_1

5 to obtain a 
locally free sheaf t;(V,F,F) on P1 with action of (C* and antilinear involution. 

In view of this lemma, we can define a nonabelian filtration to be a scheme 
over A1 with action of (C*. The spaces W+ and Z + over A1, together with their 
(C* actions, may then be interpreted as the nonabelian Hodge filtrations of the. 
fibers RDR = W? and MDR = Zx

+. The spaces o(W+) and G(Z+) (which are the 
restrictions of W and Z to the affine neighborhood of infinity) are the complex 
conjugates of the Hodge filtrations. The Dolbeault spaces RDOI and MDoi become 
the associated graded spaces of the nonabelian Hodge filtrations (just as for 
abelian cohomology). Lemma 16 is analogous to saying that the Hodge filtration 
is concentrated in positive degrees. 

These definitions are compatible with the mixed Hodge structure defined by 
Morgan [10] and Hain [8] on the nilpotent completion of the fundamental group. 
Let A = (C7Ci)A be the completion of the group algebra at the augmentation ideal. 
They show that this has a Hodge filtration F giving a mixed Hodge structure 
(the real structure being the completion of the real group algebra, and the weight 
filtration given by powers of the augmentation ideal). By Lemma 19, this data 
is equivalent to the sheaf of algebras Ç(A,F,F) together with its <C* action and 
involution. 

Given a complete augmented algebra such as A, one can define a formal 
scheme R(A), the space of representations infinitesimally close to the trivial 
one. For A = (CTCI)A as above, the space R(A) is naturally isomorphic to the 
completion of RB at the point corresponding to the trivial representation. 

Theorem20. The family of algebras £,(A,F,F) over P1 gives rise to a family of 
formal schemes R(Ç(A,F,F)) over P1. This family of formal schemes (with C* 
action and involution) is naturally isomorphic to the formal neighborhood of the 
trivial preferred section in W. The isomorphism is compatible with the one described 
above in the fiber over 1. 

Conversely, Tannaka duality allows the mixed Hodge structure Ç(A, F, F) to be 
recovered from the data of the formal neighborhoods of the spaces W, together 
with some information on how they fit together for different ranks. 
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Speculations 

It is natural to wonder how the results outlined above might fit into a notion 
of nonabelian Hodge structure. The action of (C* on the space of representations 
gives, by Tannaka duality, an action of (C* on the proalgebraic completion w\ (X) 
(the inverse limit of the Zariski closures of the images, over all finite dimensional 
representations of ni(X)). The action of S1 cz C* on the proreductive quotient 
m[ed satisfies some axioms which might be taken as a preliminary definition of 
pure Hodge structure on a group [17], The map S1 x 7ti(X) —• mfed is continuous 
when the right side is given the inverse limit of analytic topologies. And the action 
of —1 6 S1 is a Cartan involution of the real form (tn[ed)]R (inverse limit of real 
Zariski closures). The restrictions of the first half of Theorem 7 may be derived 
from these axioms (one would like to interpret all those kinds of topological 
restrictions as following from the nonabelian Hodge structure). 

This definition refers to the continuous structure of the space of represen
tations only in the crudest way. Preferable would be a notion of nonabelian 
Hodge structure for the space of representations. We have defined the nonabelian 
Hodge filtration. What about weight filtrations and polarizations? Probably the 
hyperkähler metric will play a role. The mixed Hodge structure on (<Dn\)A will 
provide the power series for the nonabelian Hodge structure at the trivial repre
sentation (Theorem 20). 

With or without a precise definition, we are afforded the pleasant opportunity 
of revisiting all the old glories of Hodge theory, and trying to provide their 
nonabelian analogues. The subject started with Griffiths' transversality result. 
Preliminary heuristic calculations seem to show that an analogous transversality 
relates the Gauss-Manin connection defined in Theorem 12, to the Hodge filtra
tion interpreted as the space Z+ . The lifts of vector fields from the base S, to 
the restriction of Z+(X/S) over A1 — {0}, will have poles of order < 1 along ZQ 
(and hence also along the divisor at infinity in the compactificaton). 

This raises the question of whether there is a good notion of variation of 
nonabelian Hodge structure over S. One could try to replicate the works of 
Schmid and others about degenerating variations. Is there an appropriate sense 
in which the Gauss-Manin connection has regular singularities? And is there 
some type of limiting nonabelian Hodge structure? This type of theory would be 
in the service of dévissage, trying to obtain information about the topology of 
a space X by fibering X -> Y and studying the family of fundamental groups 
of the fibers. For example, the moduli space M(X) (with all of its structures) 
becomes a constant subspace of the varying family M(Xy). The wide array of 
strutures on M(Xy) seems to make this an unlikely event. 

Let me close with some wild speculation on how this picture might fit into 
an overall view of Hodge theory. We have treated two topological invariants, the 
space R of framed representations, and the quotient M. For which topological 
invariants will there be such a theory? Suppose F : Top —» Sch is a functor 
from the category of topological spaces to the category of schemes. Are there 
some simple conditions which would guarantee that, for a smooth projective 
variety X, F(X) has a "Hodge structure"? Perhaps (to say something entirely 
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unsubstantiated) there might be an action of (C* on the set of such functors F, 
and the functors which are fixed are of Hodge type. 
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Arithmetic and Hyperbolic Geometry 

Paul Vojta 

Department of Mathematics, University of California, Berkeley, CA 94720, USA 

We begin by recalling Faltings' theorem (née MordelPs conjecture) : 

Theorem 0.1 (Faltings, 1983). Let C be a curve of genus > 1 defined over a number 
field k. Then the set C(k) of k-rational points on C is finite. 

Compact Riemann surfaces of genus > 1 are also characterized by the 
property that they are hyperbolic, in any of the senses discussed in the next 
section. Recent work has suggested that a similar link exists, formally at least, 
between arithmetic properties of algebraic varieties (of any dimension) and 
complex analytic properties of the corresponding complex manifold. The goal of 
this talk is to discuss generalizations of Theorem 0.1 which have been motivated 
by this analogy. 

1. Hyperbolicity 

We begin by defining several notions of hyperbolicity. Throughout this section 
let X be a connected complex manifold, not necessarily compact. 

Definition 1.1. The manifold X is negatively curved if there exists a (1, l)-form œ 
on X and a constant K > 0 such that all holomorphic sectional curvatures of co 
are < —;c. 

Definition 1.2 (Kobayashi, 1970). The Poincaré distance dhyp on the open unit 
disc D ç C i s the distance given infinitesimally by the form 

dz Adz 

(1 - N2)2 ' 
Then X is said to be Kobayashi hyperbolic if there exists a distance dx on X (with 
dx(x,y) > 0 whenever x ^ y) such that for all holomorphic maps / : D - • X, 
f*dx < dhyp. 

Definition 1.3. The manifold X is Brody hyperbolic if all holomorphic maps from 
C to X are constant. 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
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Actually, the latter two definitions are valid when X is a complex space. 
We have 

negatively curved = > Kobayashi hyperbolic ==> Brody hyperbolic. 

The converse of the second arrow holds if X is compact, but not in general. 
A general reference on hyperbolicity is Lang (1987); see also Kobayashi 

(1970). 

2. Conjectures in Number Theory 

The first conjecture relating complex analytic and arithmetic properties is the 
following. 

Conjecture 2.1 (Lang, 1974). A complete variety X/k has only finitely many rational 
points if the corresponding complex space is Kobayashi hyperbolic. 

More recently the above statement, which is qualitative in nature, has been 
replaced by a more quantitative version. To describe it, we first state a theorem. 

Theorem 2.2. Let D be an effective divisor on a complete irreducible nonsingular 
curve C, and assume that D has no multiple points. Let K be a canonical divisor 
on C, let A be an ample divisor on C, and fix e > 0. Then for almost all symbols 
tl C\ H 

m(D,7) + TKCì)<8TA(l)+0(l). (1) 

Supplied with one set of definitions, this theorem is Nevanlinna's Second 
Main Theorem. Indeed, let C be a compact Riemann surface, and let / : (C —> C 
be a holomorphic function, regarded as an infinite collection of maps fr : JDr —> C 
(here ID,, is the closed disc of radius r, r > 0). Replace the symbol "?" with r, 
and interpret "almost all" to mean all r outside a set of finite Lebesgue measure. 
Choose some distance function dist(P, Q) on C, and extend it to divisors by the 
formula 

dist(P,ZnQ • 0 = n d i s t ( P ' ß ) W ß • 

Then, for any divisor D on C let 

m(D, r)= [ n - log dist(f(rew), D) 
Jo 

N(D,r)= £ ordz=wr/)log^; 
welD, 

TD(r) = m(D,r)+N(D,r). 

ddm 

2% 
r 

wl 

This gives a weak form of the Second Main Theorem for curves. 
With a different set of definitions, we obtain an arithmetic result which goes 

by several names, depending on the genus of the curve. Let C be a curve defined 
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over a number field k, and assume also that D is defined over k. We now replace 
"?" by points P e C(k) \ SuppD, and interpret "almost all" to mean all but 
finitely many points P. Fix a finite set S of places of k, and for all places v of 
k let distp() denote some fixed distance on C in the u-adic topology, extended to 
divisors as before. It is assumed that these are chosen uniformly in some sense, 
as in Lang (1983). Then for any divisor D on C defined over k, let 

m{D,P) = - i — £-log distro) ; 
L * ^ veS 

N(D,P) = - i — ^ - l o g d i s U P . D ) ; 
Vf-VKts 

TD(P) = m(D,P) + N(D,P) 

The quantity TD is thus the Weil height of P relative to D ; in particular if D is 
ample then there are only finitely many points P E C(k) of bounded height. In 
the arithmetic case we will also write ho(P) for the height. 

Proof of Theorem 2.2 (Algebraic Variant). Let g denote the genus of C. 

Case 1. If C(k) is finite then the inequality must hold; by Faltings' theorem 0.1 
this must hold if g > 1. Conversely, if g > 1 then K is ample, so taking D = 0, 
A = K, and e < 1, we see that Theorem 2.2 implies a bound on the height of 
rational points; hence it implies Mordell's conjecture. 

Case 2. If g = 0 then Theorem 2.2 is equivalent to Roth's theorem : 

Theorem (Roth, 1955). For each v e S fix av e Q. Then for all xek\ {av}, 

— — ]T -logmin(||x - aX, 1) < (2 + s)h(x). (2) 
L'C • ^ J veS 

Here h(x) = hA(x) with A = (9(1). For details, see Vojta (1987), Sect. 3.2. 

Case 3. If g = 1, then Theorem 2.2 is equivalent to an approximation statement 
on elliptic curves, derived by Lang from Roth's theorem using methods of Siegel. 
See Lang (1960b) for details. D 

Thus we find that the Second Main Theorem of Nevanlinna theory translates 
into the number field case, giving several known theorems. Generally speaking, 
any such theorem in Nevanlinna theory should translate into a true statement 
for number fields. Such statements often agree with diophantine conjectures 
previously made. See also Sect. 8, as well as Vojta (1987), Chap. 4. 

Again, this framework is related to hyperbolicity because proofs of Nevanlinna 
theory exist using notions of curvature. 
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In Nevanlinna theory, the analogues of Roth's theorem and Mordell's con
jecture are both proved by a common proof. This suggested that Mordell's 
conjecture should be provable by methods similar to those used in the proof of 
Roth's theorem. In fact, such a proof was found in Vojta (1989) and Vojta (1990). 

3. Sketch of Roth's Proof 

Roth's proof proceeds by contradiction. Assume that there are infinitely many 
x G k not satisfying (2). Then we choose a finite set with certain properties. These 
are used to construct an auxiliary polynomial, the properties of which lead to a 
contradiction. 

To start, let <xi,...,am be all the conjugates of all av, v G S. We construct 
a polynomial P(xi,...,xn), of degree di in x,-, with a specified type of zero at 
all points (au...,0Ci), 1 < i < m. This is viewed as a linear algebra problem, 
with the coefficients of the polynomial as variables. The vanishing conditions 
are set up so as to use up almost all of the degrees of freedom in choosing P ; 
by the Dirichlet Box Principle, we can find such a polynomial in R[xi,...,xn] 
with bounded coefficients, where R is the ring of integers of k. This step is often 
referred to as Siegel's lemma. 

Next we choose a set of counterexamples to (2) such that 

1 < h(xi) <••< h(xn) 

and such that, for all v G S, the numbers 

- log min( | |x t -a v \\v,l) 
h(xt) 

l<i<n 

are close to each other. This involves a sphere packing argument. 
Finally, for each v G S, using the Taylor expansion of P at (av,...,av), the 

type of zero of P at that point, and the bound on the coefficients of P, we obtain 
a bound for ||P(xi,...,x„)||y and therefore for its norm. If the norm is too small, 
we obtain a contradiction unless P(xi , . . . , x„) = 0. A similar argument applied to 
certain derivatives of P implies that they vanish as well. Hence P has a certain 
type of zero at (xi,...,xM). But this contradicts Roth's lemma: the type of zero 
of P is bounded from above, depending on the size of the coefficients of P and 
the heights of the xt. 

4. Vojta's Proof 

A key difficulty in extending Roth's proof to the case of rational points is dealing 
with the absence of the a's, which are needed to (a) provide vanishing conditions 
which use up the degrees of freedom in choosing P, and (b) prove the vanishing 
of P(x\,...,xn), via the assumption that (2) fails to hold. 

This difficulty is overcome by means of intersection theory; in particular, we 
make use of the fact that the diagonal divisor A on C x C is a divisor with 
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negative self-intersection. Also let Fi (resp. F2) be a divisor on C x C coming 
from a divisor F of degree 1 on the first (resp. second) factor. Then let 

A' = A-F1-F2; 

Yr = Af + a1Fi+a2F2, 

where a\ G Q are chosen so that a\/a2 = r and 7,.2 is positive but small. Then, by 
Riemann-Roch, high multiples of Yr will have relatively few global sections; this 
is how we use up our degrees of freedom in this case. (Here r is a large rational 
number.) 

The proof replaces many of the classical arguments involving polynomials and 
absolute values with the language of arithmetic intersection theory, as developed 
by Arakelov, Gillet, and Soulé. Therefore, we work on an arithmetic scheme W 
of dimension 3 corresponding to C x C, and replace the Siegel's lemma argument 
with a use of the Riemann-Roch theorem of Gillet and Soulé, to construct a 
section y of a multiple of Yr with certain arithmetical properties. 

Next we choose points, only two this time, such that 

1 < h(Pi) < h(P2) 

and satisfying a certain sphere packing condition again - this time in the Mordell-
Weil group of the Jacobian of C. Let X be the arithmetic surface corresponding 
to C; for / = 1,2 let Ei be the (Arakelov) divisor on X corresponding to P„ and 
let E be the curve on W corresponding to (P\,P2). Then this sphere packing 
condition implies that (Fi . E2) on X will be small, and therefore (E . A) on W 
will be small. Then (E . Yr) will be small and in fact negative. Thus y must be 
zero on E ; similarly certain derivatives must vanish, giving a lower bound for the 
type of zero as before. Again, this produces a contradiction. 

As is the case with Roth's theorem, this proof - as well as all proofs derived 
from it - is ineffective; i.e., it can give a bound on the number of rational points 
but not on their heights. Thus it is often true that one cannot prove that a given 
set of rational points is the set of all rational points. 

5. Extensions Due to Faltings 

In Faltings (1990), Vojta's methods were generalized, giving two new theorems. 

Theorem 5.1 (Conjectured in Lang (1960a)). Let X be a complete subvariety of 
an abelian variety A, and assume that X does not contain any translates of any 
nontrivial abelian subvarieties of A. Let k be a number field over which X and A 
are defined. Then X(k) is finite. 

Theorem 5.2. Let A be an abelian variety, and let Y ç A be a subvariety. Let k 
be a number field over which A and Y are defined, let v be a place of k, and let 
disty(x, Y) be a v-adic distance on A. Fix e > 0, and fix a height function h(x) on 
A relative to some ample divisor. Then the set ofxG A(k) \ Y such that 
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— logdisty(x, Y) > sh(x) 

is finite. 

Corollary 5.3 (Conjectured in Lang (1960a)). Let H be an ample divisor on A. 
Then the set of integral points on A(k) relative to H is finite. 

In proving these results, Faltings adds the following ingredients to Vojta's 
work. 

1. Use of the Poincaré divisor on A x A in place of A'. 
2* JJse of the product of A with itself n times instead of just two. The divisor 

he considers is again a combination of divisors from each factor, together with 
Poincaré divisors associated to the z-th and (i + l)st factors, 1 <> i < n. 

3. A new zero estimate (the "product theorem") is needed to deal with 
technical issues concerning the use of n factors. 

4. Instead of proving separately an upper bound on the type of zero of the 
section y at (Pi,...,Pn), he builds this upper bound into the construction of y, 
using Minkowski's theorem on successive minima. Also, the use of the Gillet-Soulé 
Riemann-Roch theorem is replaced by more elementary manipulations. 

6. Recent Work of Bombieri 

A few months ago Bombieri reworked Vojta's proof, obtaining a more elementary 
proof using only the classical theory of heights, Siegel's lemma, and a few 
necessary results from algebraic geometry over a field; see Bombieri (1990). In 
particular, he also eliminated the use of the Gillet-Soulé Riemann-Roch theorem, 
but in a manner independent of the extensions due to Faltings. 

Bombieri uses the same divisor Y as in Sect. 4, but he expresses it as a 
difference of two very ample divisors, as follows. 

First choose a positive integer s such that 

B := sFi + sF2 - Ä 

is very ample; write 
4>B : C x C -» P™ 

for the corresponding, embedding. Likewise choose a divisor F of degree \ ox^C 
and a positive integer N such that NF is very ample, giving an embedding 

<ßNF : C -• IP*. 

This gives another embedding 

xp : C x C -> Pw x F". 

It then follows from the Enriques-Severi-Zariski lemma (Zariski 1952) that for 
all sufficiently large integers öi,ö2, the map 

F (Pw x P1, ß(Su S2)) ̂ T(CxC, öiNFi + Ö2NF2) 
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is surjective. Thus, writing 

dY = d1NF]+d2NF2-dB, 

we find that for any sections s of d Y and sf of dB, the product ssf is the restriction 
to C x C of a global section on P" x P". Thus, it is possible to revert to use of 
polynomials in this proof. 

Since he is working with polynomials over a field, the arguments in Vojta's 
proof regarding analytic torsion and cohomology over finite fields are unnecessary. 

Also, to obtain the upper bound on the type of zero of the section at (P\,P2), 
Bombieri uses suitably chosen projections from C to P1 ; thus he is able to use 
the same lemma as Roth uses. 

This latter simplification, together with the ideas of Faltings concerning use 
of Siegel's lemma in place of the Gillet-Soulé Riemann-Roch theorem, remove 
the obstacles to combining this proof with Roth's original proof. Thus we have 
a unified proof of the number field version of Theorem 2.2. 

Of course, combining the arithmetic proof with the proof in the case of 
Nevanlinna theory remains a distant goal. 

7. Algebraic Points of Bounded Degree 

The unified proof mentioned above can be further extended to give a generaliza
tion of Theorem 2.2 which contains Wirsing's generalization, Wirsing (1971), of 
Roth's theorem to algebraic points of bounded degree. 

Before stating the theorem, however, let X be an arithmetic surface corre
sponding to C, and for all points P G C(k) let Ep denote the corresponding 
Arakelov divisor on X. Then let 

_ (E.E+œx/B) 
da{F}- [fe(P):Q] ' 

where OJX/B is the relative dualizing sheaf. 

Theorem 7.1. Let C, k, D, K, A, and e be as in Theorem 2.2. Also fix v G TL, v > 0. 
Then for all points P G C(k) with [k(P) : k] < v, we have 

m(D,P) + hK(P) < da(P) + ehA(P) + 0(1). 

This is a weak form of the following conjecture. 

Conjecture 7.2. Under the same conditions as Theorem 7.1, we have 

m(D,P) + hK(P) <; d(P)+shA(P) + 0(1), 

where 

j(Pi . = log|^/c(P)/Ql 
1 J " [*(P):Q1 ' 
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This conjecture is very strong; in particular it implies the abc conjecture: 

Conjecture 7.3 (Masser-Oesterlé). Given c> 0 there exists a constant C = C(e) > 0 
such that for all relatively prime integers a, b, and c with a + b + c = 0, we have 

mzx(\a\,\b\,\c\)<C-Y[p1+E. 
p\abc 

This conjecture, in turn, implies the "asymptotic Fermât conjecture:" 

Conjecture 7.4. For all sufficiently large integers n, the only rational solutions to 
the equation 

Xn + Yn + Zn = 0 

are the trivial ones, i.e., XYZ = 0. 

8. Open Problems 

In addition to the conjectures mentioned just above, the following problems are 
still unresolved at this time. 

1. (Lang, 1965) Replace the error term shA(P) in the arithmetic variant of 
Theorem 2.2 with something sharper, e.g., (1 + s)loghA(P). 

2. (Vojta, 1987) Prove a formula similar to (1) for rational points on varieties 
of higher dimension. In that case, however, one would first have to exclude a 
proper Zariski-closed subset Z from the set of points P. See also Schmidt (1975) 
and Vojta (1987), Example 3.5.1 for a discussion of a partial answer to this 
question, where the variety is projective space and the divisor D is a collection 
of hyperplanes. 

3. (Lang, 1960b, p. 29) Generalize Theorem 5.1 to the case where X may 
contain the translate of an abelian subvariety of A. In this case the translated 
abelian subvarieties may contain infinitely many rational points, but it is conjec
tured that the rational points are not Zariski dense, unless X itself is a translated 
abelian subvariety of A. In Nevanlinna theory the analogue of this conjecture is 
called Bloch's conjecture; it was proved independently by Kawamata (1980) and 
Green and Griffiths (1980), both using work of Ochiai (1977). (In loc. cit., Lang 
actually makes the stronger conjecture that the rational points are contained in 
finitely many translated sub-abelian varieties contained in X; this conjecture is a 
consequence of the above conjecture, by the Kawamata structure theorem.) 
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